
UseR !

Chris Chapman
Elea McDonnell Feit

R for
Marketing
Research and
Analytics

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Kolaczyk / Csárdi: Statistical Analysis of Network Data with R (2014)
Nolan / Temple Lang: XML and Web Technologies for Data Sciences with R (2014)
Willekens: Multistate Analysis of Life Histories with R (2014)
Cortez: Modern Optimization with R (2014)
Eddelbuettel: Seamless R and C++ Integration with Rcpp (2013)
Bivand / Pebesma / Gómez-Rubio: Applied Spatial Data Analysis with R

(2nd ed. 2013)
van den Boogaart / Tolosana-Delgado: Analyzing Compositional Data with R

(2013)
Nagarajan / Scutari / Lèbre: Bayesian Networks in R (2013)

Chris Chapman • Elea McDonnell Feit

R for Marketing Research
and Analytics

123

Chris Chapman
Google, Inc.
Seattle, WA, USA
cnchapman+r@gmail.com

Elea McDonnell Feit
LeBow College of Business
Drexel University
Philadelphia, PA, USA
efeit@drexel.edu

ISSN 2197-5736 ISSN 2197-5744 (electronic)
Use R!
ISBN 978-3-319-14435-1 ISBN 978-3-319-14436-8 (eBook)
DOI 10.1007/978-3-319-14436-8

Library of Congress Control Number: 2014960277

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com
mailto:efeit@drexel.edu
mailto:cnchapman+r@gmail.com

Praise for R for Marketing Research and Analytics

R for Marketing Research and Analytics is the perfect book for those interested in
driving success for their business and for students looking to get an introduction
to R. While many books take a purely academic approach, Chapman (Google) and
Feit (formerly of GM and the Modellers) know exactly what is needed for practical
marketing problem solving. I am an expert R user, yet had never thought about a
textbook that provides the soup-to-nuts way that Chapman and Feit do: show how to
load a data set, explore it using visualization techniques, analyze it using statistical
models, and then demonstrate the business implications. It is a book that I wish I
had written.
Eric Bradlow, K.P. Chao Professor, Chairperson, Wharton Marketing Department
and Co-Director, Wharton Customer Analytics Initiative

R for Marketing Research and Analytics provides an excellent introduction to the R
statistical package for marketing researchers. This is a must-have book for anyone
who seriously pursues analytics in the field of marketing. R is the software gold
standard in the research industry, and this book provides an introduction to R and
shows how to run the analysis. Topics range from graphics and exploratory methods
to confirmatory methods including structural equation modeling, all illustrated with
data. A great contribution to the field!
Greg Allenby, Helen C. Kurtz Chair in Marketing, Professor of Marketing,
Professor of Statistics, Ohio State University

Chris Chapman’s and Elea Feit’s engaging and authoritative book nicely fills a gap
in the literature. At last we have an accessible book that presents core marketing
research methods using the tools and vernacular of modern data science. The book
will enable marketing researchers to up their game by adopting the R statistical
computing environment. And data scientists with an interest in marketing problems
now have a reference that speaks to them in their language.
James Guszcza, Chief Data Scientist, Deloitte Consulting – US

v

vi Praise for R for Marketing Research and Analytics

Finally a highly accessible guide for getting started with R. Feit and Chapman have
applied years of lessons learned to developing this easy-to-use guide, designed to
quickly build a strong foundation for applying R to sound analysis. The authors
succeed in demystifying R by employing a likeable and practical writing style,
along with sensible organization and comfortable pacing of the material. In addi-
tion to covering all the most important analysis techniques, the authors are generous
throughout in providing tips for optimizing R’s efficiency and identifying common
pitfalls. With this guide, anyone interested in R can begin using it confidently in
a short period of time for analysis, visualization, and for more advanced analytics
procedures. R for Marketing Research and Analytics is the perfect guide and refer-
ence text for the casual and advanced user alike.
Matt Valle, Executive Vice President, Global Key Account Management –
GfK

Preface

We are here to help you learn R for marketing research and analytics.

R is a great choice for marketing analysts. It offers unsurpassed capabilities for fit-
ting statistical models. It is extensible and is able to process data from many different
systems, in a variety of forms, for both small and large data sets. The R ecosystem
includes the widest available range of established and emerging statistical methods
as well as visualization techniques. Yet the use of R in marketing lags other fields
such as statistics, econometrics, psychology, and bioinformatics. With your help, we
hope to change that!

This book is designed for two audiences: practicing marketing researchers and an-
alysts who want to learn R, and students or researchers from other fields who want
to review selected marketing topics in an R context.

What are the prerequisites? Simply that you are interested in R for marketing, are
conceptually familiar with basic statistical models such as linear regression, and are
willing to engage in hands-on learning. This book will be particularly helpful to
analysts who have some degree of programming experience and wish to learn R. In
Chap. 1 we describe additional reasons to use R (and a few reasons perhaps not to
use R).

The hands-on part is important. We teach concepts gradually in a sequence across
the first seven chapters and ask you to type our examples as you work; this book
is not a cookbook-style reference. We spend some time (as little as possible) in
Part I on the basics of the R language and then turn in Part II to applied, real-world
marketing analytics problems. Part III presents a few advanced marketing topics.
Every chapter shows off the power of R, and we hope each one will teach you
something new and interesting.

Specific features of this book are as follows:

• It is organized around marketing research tasks. Instead of generic examples,
we put methods into the context of marketing questions.

vii

viii Preface

• We presume only basic statistics knowledge and use a minimum of mathemat-
ics. This book is designed to be approachable for practitioners and does not
dwell on equations or mathematical details of statistical models (although we
give references to those texts).

• This is a didactic book that explains statistical concepts and the R code. We want
you to understand what we’re doing and learn how to avoid common problems
in both statistics and R. We intend the book to be readable and to fulfill a dif-
ferent need than references and cookbooks available elsewhere.

• The applied chapters demonstrate progressive model building. We do not
present “the answer” but instead show how an analyst might realistically con-
duct analyses in successive steps where multiple models are compared for
statistical strength and practical utility.

• The chapters include visualization as a part of core analyses. We don’t regard
visualization as a stand-alone topic; rather, we believe it is an integral part of
data exploration and model building.

• You will learn more than just R. In addition to core models, we include topics
such as structural models and transaction analysis that may be new and useful
even for experienced analysts.

• The book reflects both traditional and Bayesian approaches. Core models are
presented with traditional (frequentist) methods, while later sections introduce
Bayesian methods for linear models and conjoint analysis.

• Most of the analyses use simulated data, which provides practice in the R lan-
guage along with additional insight into the structure of marketing data. If you
are inclined, you can change the data simulation and see how the statistical
models are affected.

• Where appropriate, we call out more advanced material on programming or
models so that you may either skip it or read it, as you find appropriate. These
sections are indicated by * in their titles (such as This is an advanced section*).

What do we not cover? For one, this book teaches R for marketing and does not
teach marketing research in itself. We discuss many marketing topics but omit oth-
ers that would simply repeat the analytic methods in R. As noted above, we approach
statistical models from a conceptual point of view and skip the mathematics. A few
specialized topics have been omitted due to complexity and space; these include
customer lifetime value models and econometric time series models. Overall, we
believe the analyses here represent a great sample of marketing research and ana-
lytics practice. If you learn to perform these, you’ll be well equipped to apply R in
many areas of marketing.

Why are we the right teachers? We’ve used R and its predecessor S for a combined
27 years since 1997 and it is our primary analytics platform. We perform marketing
analyses of all kinds in R, ranging from simple data summaries to complex analyses
involving thousands of lines of custom code and newly created models.

Preface ix

We’ve also taught R to many people. This book grew from courses the authors
have presented at American Marketing Association (AMA) events including the
Academy of Marketing Analytics at Emory University and several years of the Ad-
vanced Research Techniques Forum (ART Forum). We have also taught R at the
Sawtooth Software Conference and to students and industry collaborators at the
Wharton School. We thank those many students for their feedback and believe that
their experiences will benefit you.

Acknowledgements

We want to give special thanks here to people who made this book possible. First are
all the students from our tutorials and classes over the years. They provided valuable
feedback, and we hope their experiences will benefit you.

In the marketing academic and practitioner community, we had valuable feedback
from Ken Deal, Fred Feinberg, Shane Jensen, Jake Lee, Dave Lyon, and Bruce
McCullough.

Chris’s colleagues in the research community at Google provided extensive feed-
back on portions of the book. We thank Mario Callegaro, Marianna Dizik, Rohan
Gifford, Tim Hesterberg, Shankar Kumar, Norman Lemke, Paul Litvak, Katrina
Panovich, Marta Rey-Babarro, Kerry Rodden, Dan Russell, Angela Schörgendorfer,
Steven Scott, Bob Silverstein, Gill Ward, John Webb, and Yori Zwols for their en-
couragement and comments.

The staff and editors at Springer helped us smooth the process, especially Hannah
Bracken, Jon Gurstelle, and the Use R! series editors.

Much of this book was written in public and university libraries, and we thank them
for their hospitality alongside their unsurpassed literary resources. Portions of the
book were written during pleasant days at the New Orleans Public Library, New
York Public Library, Christoph Keller Jr. Library at the General Theological Sem-
inary in New York, University of California San Diego Geisel Library, University
of Washington Suzzallo and Allen Libraries, Sunnyvale Public Library, and most
particularly, where the first words, code, and outline were written, along with much
more later, the Tokyo Metropolitan Central Library.

Our families supported us in weekends and nights of editing, and they endured more
discussion of R than is fair for any layperson. Thank you, Cristi, Maddie, Jeff, and
Zoe.

Most importantly, we thank you, the reader. We’re glad you’ve decided to investigate
R, and we hope to repay your effort. Let’s start!

New York, NY and Seattle, WA Chris Chapman
Philadelphia, PA Elea McDonnell Feit
November 2014

Contents

Preface . vii

Part I Basics of R

1 Welcome to R . 3
1.1 What Is R? . 3
1.2 Why R?. 4
1.3 Why Not R? . 5
1.4 When R? . 6
1.5 Using This Book . 6

1.5.1 About the Text . 6
1.5.2 About the Data . 7
1.5.3 Online Material . 8
1.5.4 When Things Go Wrong . 9

1.6 Key Points . 10

2 An Overview of the R Language . 11
2.1 Getting Started . 11

2.1.1 Initial Steps . 11
2.1.2 Starting R . 12

2.2 A Quick Tour of R’s Capabilities . 13
2.3 Basics of Working with R Commands . 17
2.4 Basic Objects . 18

2.4.1 Vectors . 19
2.4.2 Help! A Brief Detour . 21
2.4.3 More on Vectors and Indexing . 24
2.4.4 aaRgh! A Digression for New Programmers 26
2.4.5 Missing and Interesting Values . 26
2.4.6 Using R for Mathematical Computation 28
2.4.7 Lists . 28

xi

xii Contents

2.5 Data Frames . 30
2.6 Loading and Saving Data . 34

2.6.1 Image Files . 36
2.6.2 CSV Files . 36

2.7 Writing Your Own Functions* . 38
2.7.1 Language Structures* . 40
2.7.2 Anonymous Functions* . 41

2.8 Clean Up! . 42
2.9 Learning More* . 43
2.10 Key Points . 44

Part II Fundamentals of Data Analysis

3 Describing Data . 47
3.1 Simulating Data . 47

3.1.1 Store Data: Setting the Structure . 48
3.1.2 Store Data: Simulating Data Points . 50

3.2 Functions to Summarize a Variable . 52
3.2.1 Discrete Variables . 52
3.2.2 Continuous Variables . 54

3.3 Summarizing Data Frames . 56
3.3.1 summary() . 57
3.3.2 describe() . 58
3.3.3 Recommended Approach to Inspecting Data 59
3.3.4 apply()* . 59

3.4 Single Variable Visualization . 61
3.4.1 Histograms . 61
3.4.2 Boxplots . 66
3.4.3 QQ Plot to Check Normality* . 68
3.4.4 Cumulative Distribution* . 69
3.4.5 Language Brief: by() and aggregate() 70
3.4.6 Maps . 72

3.5 Learning More* . 74
3.6 Key Points . 75

4 Relationships Between Continuous Variables . 77
4.1 Retailer Data . 77

4.1.1 Simulating Customer Data . 78
4.1.2 Simulating Online and In-Store Sales Data 79
4.1.3 Simulating Satisfaction Survey Responses 80
4.1.4 Simulating Non-Response Data . 82

4.2 Exploring Associations Between Variables with Scatterplots 83
4.2.1 Creating a Basic Scatterplot with plot() 83
4.2.2 Color-Coding Points on a Scatterplot . 86

Contents xiii

4.2.3 Adding a Legend to a Plot . 88
4.2.4 Plotting on a Log Scale . 89

4.3 Combining Plots in a Single Graphics Object 90
4.4 Scatterplot Matrices . 92

4.4.1 pairs() . 92
4.4.2 scatterplotMatrix() . 93

4.5 Correlation Coefficients . 95
4.5.1 Correlation Tests . 97
4.5.2 Correlation Matrices . 98
4.5.3 Transforming Variables before Computing Correlations 100
4.5.4 Typical Marketing Data Transformations 102
4.5.5 Box–Cox Transformations* . 102

4.6 Exploring Associations in Survey Responses* 104
4.6.1 jitter()* . 105
4.6.2 polychoric()* . 106

4.7 Learning More* . 107
4.8 Key Points . 108

5 Comparing Groups: Tables and Visualizations . 111
5.1 Simulating Consumer Segment Data . 111

5.1.1 Segment Data Definition . 112
5.1.2 Language Brief: for() Loops . 114
5.1.3 Language Brief: if() Blocks . 116
5.1.4 Final Segment Data Generation . 118

5.2 Finding Descriptives by Group . 120
5.2.1 Language Brief: Basic Formula Syntax 123
5.2.2 Descriptives for Two-Way Groups . 124
5.2.3 Visualization by Group: Frequencies and Proportions 126
5.2.4 Visualization by Group: Continuous Data 129

5.3 Learning More* . 132
5.4 Key Points . 133

6 Comparing Groups: Statistical Tests . 135
6.1 Data for Comparing Groups . 135
6.2 Testing Group Frequencies: chisq.test() 136
6.3 Testing Observed Proportions: binom.test() 139

6.3.1 About Confidence Intervals . 140
6.3.2 More About binom.test() and Binomial Distributions . 141

6.4 Testing Group Means: t.test() . 142
6.5 Testing Multiple Group Means: ANOVA . 144

6.5.1 Model Comparison in ANOVA* . 146
6.5.2 Visualizing Group Confidence Intervals 147
6.5.3 Variable Selection in ANOVA: Stepwise Modeling* 148

6.6 Bayesian ANOVA: Getting Started* . 149
6.6.1 Why Bayes? . 150

xiv Contents

6.6.2 Basics of Bayesian ANOVA* . 150
6.6.3 Inspecting the Posterior Draws* . 152
6.6.4 Plotting the Bayesian Credible Intervals* 155

6.7 Learning More* . 156
6.8 Key Points . 157

7 Identifying Drivers of Outcomes: Linear Models 159
7.1 Amusement Park Data . 160

7.1.1 Simulating the Amusement Park Data 160
7.2 Fitting Linear Models with lm() . 162

7.2.1 Preliminary Data Inspection . 163
7.2.2 Recap: Bivariate Association . 165
7.2.3 Linear Model with a Single Predictor 165
7.2.4 lm Objects . 166
7.2.5 Checking Model Fit . 169

7.3 Fitting Linear Models with Multiple Predictors 173
7.3.1 Comparing Models . 175
7.3.2 Using a Model to Make Predictions . 176
7.3.3 Standardizing the Predictors . 177

7.4 Using Factors as Predictors . 179
7.5 Interaction Terms . 182

7.5.1 Language Brief: Advanced Formula Syntax* 183
7.6 Caution! Overfitting . 185
7.7 Recommended Procedure for Linear Model Fitting 186
7.8 Bayesian Linear Models with MCMCregress()* 186
7.9 Learning More* . 188
7.10 Key Points . 190

Part III Advanced Marketing Applications

8 Reducing Data Complexity . 195
8.1 Consumer Brand Rating Data . 195

8.1.1 Rescaling the Data . 197
8.1.2 Aggregate Mean Ratings by Brand . 198

8.2 Principal Component Analysis and Perceptual Maps 200
8.2.1 PCA Example . 200
8.2.2 Visualizing PCA . 203
8.2.3 PCA for Brand Ratings . 204
8.2.4 Perceptual Map of the Brands . 206
8.2.5 Cautions with Perceptual Maps . 208

8.3 Exploratory Factor Analysis . 209
8.3.1 Basic EFA Concepts . 210
8.3.2 Finding an EFA Solution . 211

Contents xv

8.3.3 EFA Rotations . 213
8.3.4 Using Factor Scores for Brands . 216

8.4 Multidimensional Scaling . 218
8.4.1 Non-metric MDS . 219

8.5 Learning More* . 221
8.5.1 Principal Component Analysis . 221
8.5.2 Factor Analysis . 221
8.5.3 Multidimensional Scaling . 222

8.6 Key Points . 222
8.6.1 Principal Component Analysis . 222
8.6.2 Exploratory Factor Analysis . 222
8.6.3 Multidimensional Scaling . 223

9 Additional Linear Modeling Topics . 225
9.1 Handling Highly Correlated Variables . 226

9.1.1 An Initial Linear Model of Online Spend 226
9.1.2 Remediating Collinearity . 229

9.2 Linear Models for Binary Outcomes: Logistic Regression 231
9.2.1 Basics of the Logistic Regression Model 231
9.2.2 Data for Logistic Regression of Season Passes 232
9.2.3 Sales Table Data . 233
9.2.4 Language Brief: Classes and Attributes of Objects* 234
9.2.5 Finalizing the Data . 236
9.2.6 Fitting a Logistic Regression Model . 237
9.2.7 Reconsidering the Model . 239
9.2.8 Additional Discussion . 242

9.3 Hierarchical Linear Models . 242
9.3.1 Some HLM Concepts . 243
9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park . . 244
9.3.3 Simulating Ratings-Based Conjoint Data 245
9.3.4 An Initial Linear Model . 246
9.3.5 Hierarchical Linear Model with lme4 248
9.3.6 The Complete Hierarchical Linear Model 249
9.3.7 Summary of HLM with lme4 . 251

9.4 Bayesian Hierarchical Linear Models* . 252
9.4.1 Initial Linear Model with MCMCregress()* 253
9.4.2 Hierarchical Linear Model with MCMChregress()* 253
9.4.3 Inspecting Distribution of Preference* 256

9.5 A Quick Comparison of Frequentist & Bayesian HLMs* 259
9.6 Learning More* . 263

9.6.1 Collinearity . 263
9.6.2 Logistic Regression . 263
9.6.3 Hierarchical Models . 263
9.6.4 Bayesian Hierarchical Models . 263

9.7 Key Points . 264
9.7.1 Collinearity . 264

xvi Contents

9.7.2 Logistic Regression . 264
9.7.3 Hierarchical Linear Models . 265
9.7.4 Bayesian Methods for Hierarchical Linear Models 266

10 Confirmatory Factor Analysis and Structural Equation Modeling . . . 267
10.1 The Motivation for Structural Models . 268

10.1.1 Structural Models in This Chapter . 269
10.2 Scale Assessment: CFA . 270

10.2.1 Simulating PIES CFA Data . 272
10.2.2 Estimating the PIES CFA Model . 277
10.2.3 Assessing the PIES CFA Model . 278

10.3 General Models: Structural Equation Models 283
10.3.1 The Repeat Purchase Model in R . 284
10.3.2 Assessing the Repeat Purchase Model 286

10.4 The Partial Least Squares (PLS) Alternative . 288
10.4.1 PLS-SEM for Repeat Purchase . 289
10.4.2 Visualizing the Fitted PLS Model* . 292
10.4.3 Assessing the PLS-SEM Model . 293
10.4.4 PLS-SEM with the Larger Sample . 295

10.5 Learning More* . 297
10.6 Key Points . 297

11 Segmentation: Clustering and Classification . 299
11.1 Segmentation Philosophy . 299

11.1.1 The Difficulty of Segmentation . 299
11.1.2 Segmentation as Clustering and Classification 300

11.2 Segmentation Data . 302
11.3 Clustering . 302

11.3.1 The Steps of Clustering . 303
11.3.2 Hierarchical Clustering: hclust() Basics 305
11.3.3 Hierarchical Clustering Continued: Groups from hclust()309
11.3.4 Mean-Based Clustering: kmeans() . 311
11.3.5 Model-Based Clustering: Mclust() 314
11.3.6 Comparing Models with BIC() . 315
11.3.7 Latent Class Analysis: poLCA() . 317
11.3.8 Comparing Cluster Solutions . 320
11.3.9 Recap of Clustering . 322

11.4 Classification . 322
11.4.1 Naive Bayes Classification: naiveBayes() 323
11.4.2 Random Forest Classification: randomForest() 327
11.4.3 Random Forest Variable Importance . 330

11.5 Prediction: Identifying Potential Customers* . 333
11.6 Learning More* . 336
11.7 Key Points . 337

Contents xvii

12 Association Rules for Market Basket Analysis . 339
12.1 The Basics of Association Rules . 340

12.1.1 Metrics . 340
12.2 Retail Transaction Data: Market Baskets . 341

12.2.1 Example Data: Groceries . 342
12.2.2 Supermarket Data . 344

12.3 Finding and Visualizing Association Rules . 346
12.3.1 Finding and Plotting Subsets of Rules 348
12.3.2 Using Profit Margin Data with Transactions: An Initial Start 349
12.3.3 Language Brief: A Function for Margin Using an

Object’s class* . 351
12.4 Rules in Non-Transactional Data: Exploring Segments Again 356

12.4.1 Language Brief: Slicing Continuous Data with cut() 356
12.4.2 Exploring Segment Associations . 357

12.5 Learning More* . 360
12.6 Key Points . 360

13 Choice Modeling . 363
13.1 Choice-Based Conjoint Analysis Surveys . 364
13.2 Simulating Choice Data* . 365
13.3 Fitting a Choice Model . 370

13.3.1 Inspecting Choice Data . 371
13.3.2 Fitting Choice Models with mlogit() 372
13.3.3 Reporting Choice Model Findings . 375
13.3.4 Share Predictions for Identical Alternatives 380
13.3.5 Planning the Sample Size for a Conjoint Study 381

13.4 Adding Consumer Heterogeneity to Choice Models 383
13.4.1 Estimating Mixed Logit Models with mlogit() 383
13.4.2 Share Prediction for Heterogeneous Choice Models 386

13.5 Hierarchical Bayes Choice Models . 388
13.5.1 Estimating Hierarchical Bayes Choice Models with

ChoiceModelR . 388
13.5.2 Share Prediction for Hierarchical Bayes Choice Models 395

13.6 Design of Choice-Based Conjoint Surveys* . 397
13.7 Learning More* . 398
13.8 Key Points . 399

Conclusion . 401

A Appendix: R Versions and Related Software . 403
A.1 R Base . 403
A.2 RStudio . 404
A.3 Emacs Speaks Statistics . 405
A.4 Eclipse + StatET . 406
A.5 Revolution R . 407

xviii Contents

A.6 Other Options . 408
A.6.1 Text Editors . 408
A.6.2 R Commander . 408
A.6.3 Rattle . 409
A.6.4 Deducer . 409
A.6.5 TIBCO Enterprise Runtime for R . 409

B Appendix: Scaling Up . 411
B.1 Handling Data . 411

B.1.1 Data Wrangling . 411
B.1.2 Microsoft Excel: gdata . 412
B.1.3 SAS, SPSS, and Other Statistics Packages: foreign 412
B.1.4 SQL: RSQLite, sqldf and RODBC 413

B.2 Handling Large Data Sets . 415
B.3 Speeding Up Computation . 416

B.3.1 Efficient Coding and Data Storage . 416
B.3.2 Enhancing the R Engine . 417

B.4 Time Series Analysis, Repeated Measures,
and Longitudinal Analysis . 418

B.5 Automated and Interactive Reporting . 419

C Appendix: Packages Used . 423
C.1 Core and Frequentist Statistics . 424
C.2 Graphics . 424
C.3 Bayesian Methods . 425
C.4 Advanced Statistics . 426
C.5 Machine Learning . 426
C.6 Data Handling . 427
C.7 Other Packages . 428

D Appendix: Online Materials and Data Files . 431
D.1 Data File Structure . 431
D.2 Data File URL Cross-Reference . 432

D.2.1 Update on Data Locations . 432

References . 435

Index . 447

Part I

Basics of R

1

Welcome to R

1.1 What Is R?

As a marketing analyst, you have no doubt heard of R. You may have tried R and
become frustrated and confused, after which you returned to other tools that are
“good enough.” You may know that R uses a command line and dislike that. Or you
may be convinced of R’s advantages for experts but worry that you don’t have time
to learn or use it.

We are here to help! Our goal is to present just the essentials, in the minimal nec-
essary time, with hands-on learning so you will come up to speed as quickly as
possible to be productive in R. In addition, we’ll cover a few advanced topics that
demonstrate the power of R and might teach advanced users some new skills.

A key thing to realize is that R is a programming language. It is not a “statistics
program” like SPSS, SAS, JMP, or Minitab, and doesn’t wish to be one. The official
R Project describes R as “a language and environment for statistical computing and
graphics.” Notice that “language” comes first, and that “statistical” is coequal with
“graphics.” R is a great programming language for doing statistics. The inventor of
the underlying language, John Chambers received the 1998 Association for Com-
puting Machinery (ACM) Software System Award for a system that “will forever
alter the way people analyze, visualize, and manipulate data . . . ”[6].

R was based on Chambers’s preceding S language (S as in “statistics”) developed
in the 1970s and 1980s at Bell Laboratories, home of the UNIX operating system
and the C programming language. S gained traction among analysts and academics
in the 1990s as implemented in a commercial software package, S-PLUS. Robert
Gentleman and Ross Ihaka wished to make the S approach more widely available
and offered R as an open source project starting in 1997.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 1

3

4 1 Welcome to R

Since then, the popularity of R has grown geometrically. The real magic of R
is that its users are able to contribute developments that enhance R with every-
thing from additional core functions to highly specialized methods. And many do
contribute! Today there are over 6,000 packages of add-on functionality available
for R (see http://cran.r-project.org/web/packages for the latest
count).

If you have experience in programming, you will appreciate some of R’s key fea-
tures right away. If you’re new to programming, this chapter describes why R is
special and Chap. 2 introduces the fundamentals of programming in R.

1.2 Why R?

There are many reasons to learn and use R. It is the platform of choice for the largest
number of statisticians who create new analytics methods, so emerging techniques
are often available first in R. R is rapidly becoming the default educational plat-
form in university statistics programs and is spreading to other disciplines such as
economics and psychology.

For analysts, R offers the largest and most diverse set of analytic tools and statistical
methods. It allows you to write analyses that can be reused and that extend the R
system itself. It runs on most operating systems and interfaces well with data sys-
tems such as online data and SQL databases. R offers beautiful and powerful plot-
ting functions that are able to produce graphics vastly more tailored and informative
than typical spreadsheet charts. Putting all of those together, R can vastly improve
an analyst’s overall productivity. Elea knows an enterprising analyst who used R to
automate the process of downloading data and producing a formatted monthly re-
port. The automation saved him almost 40 h of work each month . . . which he didn’t
tell his manager for a few months!

Then there is the community. Many R users are enthusiasts who love to help others
and are rewarded in turn by the simple joy of solving problems and the fact that they
often learn something new. R is a dynamic system created by its users, and there is
always something new to learn. Knowledge of R is a valuable skill in demand for
analytics jobs at a growing number of top companies.

R code is also inspectable; you may choose to trust it, yet you are also free to verify.
All of its core code and most packages that people contribute are open source. You
can examine the code to see exactly how analyses work and what is happening under
the hood.

Finally, R is free. It is a labor of love and professional pride for the R Core Develop-
ment Team, which includes eminent statisticians and computer scientists. As with
all masterpieces, the quality of their devotion is evident in the final work.

http://cran.r-project.org/web/packages

1.3 Why Not R? 5

1.3 Why Not R?

What’s not to love? No doubt you’ve observed that not everyone in the world uses R.
Being R-less is unimaginable to us, yet there are reasons why some analysts might
not want to use it.

One reason not to use R is this: until you’ve mastered the basics of the language,
many simple analyses are cumbersome to do in R. If you’re new to R and want
a table of means, cross-tabs, or a t-test, it may be frustrating to figure out how to
get them. R is about power, flexibility, control, iterative analyses, and cutting-edge
methods, not point-and-click deliverables.

Another reason is if you do not like programming. If you’re new to programming,
R is a great place to start. But if you’ve tried programming before and didn’t enjoy
it, R will be a challenge as well. Our job is to help you as much as we can, and we
will try hard to teach R to you. However, not everyone enjoys programming. On the
other hand, if you’re an experienced coder, R will seem simple (perhaps deceptively
so), and we will help you avoid a few pitfalls.

Some companies and their information technology or legal departments are skepti-
cal of R because it is open source. It is common for managers to ask, “If it’s free,
how can it be good?” There are many responses to that, including pointing out the
hundreds of books on R, its citation in peer-reviewed articles, and the list of eminent
contributors (in R, run the contributors() command and web search some
of them). Or you might try the engineer’s adage: “It can be good, fast, or cheap:
pick 2.” R is good and cheap, but not fast, insofar as it requires time and effort to
master.

As for R being free, you should realize that contributors to R actually do derive
benefit; it just happens to be non-monetary. They are compensated through respect
and reputation, through the power their own work gains, and by the contributions
back to the ecosystem from other users. This is a rational economic model even
when the monetary price is zero.

A final concern about R is the unpredictability of its ecosystem. With packages
contributed by thousands of authors, there are priceless contributions along with
others that are mediocre or flawed. The downside of having access to the latest
developments is that many will not stand the test of time. It is up to you to determine
whether a method meets your needs, and you cannot always rely on curation or
authorities to determine it for you (although you will rapidly learn which authors and
which experts’ recommendations to trust). If you trust your judgment, this situation
is no different than with any software. Caveat emptor.

We hope to convince you that for many purposes, the benefits of R outweigh the
difficulties.

6 1 Welcome to R

1.4 When R?

There are a few common use cases for R:

• You want access to methods that are newer or more powerful than available
elsewhere. Many R users start for exactly that reason; they see a method in a
journal article, conference paper, or presentation, and discover that the method
is available only in R.

• You need to run an analysis many, many times. This is how Chris started his R
journey; for his dissertation, he needed to bootstrap existing methods in order
to compare their typical results to those of a new machine learning model. R is
perfect for model iteration.

• You need to apply an analysis to multiple data sets. Because everything is
scripted, R is great for analyses that are repeated across data sets. It even has
tools available for automated reporting.

• You need to develop a new analytic technique or wish to have perfect control
and insight into an existing method. For many statistical procedures, R is easier
to code than other programming languages.

• Your manager, professor, or coworker is encouraging you to use R. We’ve in-
fluenced students and colleagues in this way and are happy to report that a large
number of them are enthusiastic R users today.

By showing you the power of R, we hope to convince you that your current tools
are not perfectly satisfactory. Even more deviously, we hope to rewrite your expec-
tations about what is satisfactory.

1.5 Using This Book

This book is intended to be didactic and hands-on, meaning that we want to teach
you about R and the models we use in plain English, and we expect you to engage
with the code interactively in R. It is designed for you to type the commands as
you read. (We also provide code files for download from the book’s website; see
Sect. 1.5.3 below.)

1.5.1 About the Text

R commands for you to run are presented in code blocks like this:

> citation()

To cite R in publications use:

1.5 Using This Book 7

R Core Team (2014). R: A language and environment for statistical computing.
R Foundation for Statistical

Computing, Vienna, Austria. URL http://www.R-project.org/.
...

We describe these code blocks and interacting with R in Chap. 2. The code gener-
ally follows the Google style guide for R (available at http://google-style
guide.googlecode.com/svn/trunk/Rguide.xml) except when we
thought a deviation might make the code or text clearer. (As you learn R, you
will wish to make your code readable; the Google guide is very useful for code
formatting.)

When we refer to R commands, add-on packages, or data in the text outside of
code blocks, we set the names in monospace type like this: citation(). We in-
clude parentheses on function (command) names to indicate that they are functions,
such as the summary() function (Sect. 2.4.1), as opposed to an object such as the
Groceries data set (Sect. 12.2.1).

When we introduce or define significant new concepts, we set them in italic, such
as vectors. Italic is also used simply for emphasis.

We teach the R language progressively throughout the book, and much of our cov-
erage of the language is blended into chapters that cover marketing topics and sta-
tistical models. In those cases, we present crucial language topics in Language Brief
sections (such as Sect. 3.4.5). To learn as much as possible about the R language,
you’ll need to read the Language Brief sections even if you only skim the surround-
ing material on statistical models.

Some sections cover deeper details or more advanced topics, and may be skipped.
We note those with an asterisk in the section title, such as Learning More*.

1.5.2 About the Data

Most of the data sets that we analyze in this book are simulated data sets. They are
created with R code to have a specific structure. This has several advantages:

• It allows us to illustrate analyses where there is no publicly available marketing
data. This is valuable because few firms share their proprietary data for analyses
such as segmentation.

• It allows the book to be more self-contained and less dependent on data
downloads.

• It makes it possible to alter the data and rerun analyses to see how the results
change.

• It lets us teach important R skills for handling data, generating random numbers,
and looping in code.

guide.googlecode.com/svn/trunk/Rguide.xml
http://google-style

8 1 Welcome to R

• It demonstrates how one can write analysis code while waiting for real data.
When the final data arrives, you can run your code on the new data.

An exception to this is the transactional data in Chap. 12; such data is complex to
create and appropriate data has been published [20].

We recommend to work through data simulation sections where they appear; they
are designed to teach R and to illustrate points that are typical of marketing data.
However, when you need data quickly to continue with a chapter, it is available for
download as noted in the next section and again in each chapter.

Whenever possible you should also try to perform the analyses here with your own
data sets. We work with data in every chapter, but the best way to learn is to adapt
the analyses to other data and work through the issues that arise. Because this is
an educational text, not a cookbook, and because R can be slow going at first, we
recommend to conduct such parallel analyses on tasks where you are not facing
urgent deadlines.

At the beginning, it may seem overly simple to repeat analyses with your own data,
but when you try to apply an advanced model to another data set, you’ll be much
better prepared if you’ve practiced with multiple data sets all along. The sooner you
apply R to your own data, the sooner you will be productive in R.

1.5.3 Online Material

This book has a companion website: http://r-marketing.r-forge.
r-project.org. The website exists primarily to host the R code and data sets
for download, although we encourage you to use those sparingly; you’ll learn more
if you type the code and create the data sets by simulation as we describe.

On the website, you’ll find:

• A welcome page for news and updates: http://r-marketing.r-forge.
r-project.org

• Code files in .R (text) format: http://r-marketing.r-forge.
r-project.org/code

• Copies of data sets that are simulated in the book: http://r-marketing.
r-forge.r-project.org/data. These can be downloaded directly into
R using the read.csv() command (you’ll see that command in Sect. 2.6.2,
and will find code for an example download in Sect. 3.1)

• A ZIP file containing all of the data and code files: http://r-marketing.
r-forge.r-project.org/data/chapman-feit-rintro.zip

Links to online data are provided in the form of shortened goo.gl links to save
typing. More detail on the online materials and ways to access the data are described
in Appendix D.

http://r-marketing.r-forge.r-project.org/data/chapman-feit-rintro.zip
http://r-marketing.r-forge.r-project.org/data/chapman-feit-rintro.zip
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org

1.5 Using This Book 9

1.5.4 When Things Go Wrong

When you learn something as complex as R or new statistical models, you will
encounter many large and small warnings and errors. Also, the R ecosystem is
dynamic and things will change after this book is published. We don’t wish to
scare you with a list of concerns, but we do want you to feel reassured about small
discrepancies and to know what to do when larger bugs arise. Here are a few things
to know and to try if one of your results doesn’t match this book:

• With R. The basic error correction process when working with R is to check
everything very carefully, especially parentheses, brackets, and upper- or low-
ercase letters. If a command is lengthy, deconstruct it into pieces and build it up
again (we show examples of this along the way).

• With packages (add-on libraries). Packages are regularly updated. Sometimes
they change how they work, or may not work at all for a while. Some are very
stable while others change often. If you have trouble installing one, do a web
search for the error message. If output or details are slightly different than we
show, don’t worry about it. The error "There is no package called
..." indicates that you need to install the package (Sect. 2.2). For other prob-
lems, see the remaining items here or check the package’s help file (Sect. 2.4.2).

• With R warnings and errors. An R “warning” is often informational and does
not necessarily require correction. We call these out as they occur with our code,
although sometimes they come and go as packages are updated. If R gives you
an “error,” that means something went wrong and needs to be corrected. In that
case, try the code again, or search online for the error message.

• With data. Our data sets are simulated and are affected by random number
sequences. If you generate data and it is slightly different, try it again from the
beginning; or load the data from the book’s website (Sect. 1.5.3).

• With models. There are three things that might cause statistical estimates to
vary: slight differences in the data (see the preceding item), changes in a pack-
age that lead to slightly different estimates, and statistical models that employ
random sampling. If you run a model and the results are very similar but slightly
different, you can assume that one of these situations occurred. Just proceed.

• With output. Packages sometimes change the information they report. The out-
put in this book was current at the time of writing, but you can expect some
packages will report things slightly differently over time.

• With names that can’t be located. Sometimes packages change the function
names they use or the structure of results. If you get a code error when try-
ing to extract something from a statistical model, check the model’s help file
(Sect. 2.4.2); it may be that something has changed names.

Our overall recommendation is this. If the difference is small—such as the differ-
ence between a mean of 2.08 and 2.076, or a p-value of 0.726 vs. 0.758—don’t

10 1 Welcome to R

worry too much about it; you can usually safely ignore these. If you find a large
difference—such as a statistical estimate of 0.56 instead of 31.92—try the code
block again in the book’s code file (Sect. 1.5.3).

1.6 Key Points

At the end of each chapter we summarize crucial lessons. For this chapter, there is
only one key point: if you’re ready to learn R, let’s get started with Chap. 2!

2

An Overview of the R Language

2.1 Getting Started

In this chapter, we cover just enough of the R language to get you going. If you’re
new to programming, this chapter will get you started well enough to be productive
and we’ll call out ways to learn more at the end. R is a great place to learn to program
because its environment is clean and much simpler than traditional programming
languages such as Java or C++. If you’re an experienced programmer in another
language, you should skim this chapter to learn the essentials.

We recommend you work through this chapter hands-on and be patient; it will pre-
pare you for marketing analytics applications in later chapters.

2.1.1 Initial Steps

If you haven’t already installed R, please do so. We’ll skip the installation details ex-
cept to say that you’ll want at least the basic version of R (known as “R base”) from
the comprehensive R archive network (CRAN): http://cran.r-project.
org. If you are using:

• Windows or Mac OS X: Get the compiled binary version from CRAN.

• Linux: Use your package installer to add R. This might be a GUI installer as
in Ubuntu’s Software Center or a terminal command such as sudo apt-get
install R. (See CRAN for more options.)

In either case, you don’t need the source code version for purposes of this book.

After installing R, we recommend you also install RStudio [140], an integrated en-
vironment for writing R code, viewing plots, and reading documentation. RStudio is
available for Windows, Mac OS X, and Linux at http://www.rstudio.com.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 2

11

http://www.rstudio.com
http://cran.r-project.org
http://cran.r-project.org

12 2 The R Language

Most users will want the desktop version. RStudio is optional and this book does
not assume that you’re using it, although many R users find it to be convenient.
Some companies may have questions about RStudio’s Affero general public license
(AGPL) terms; if relevant, ask your technology support group if they allow AGPL
open source software.

There are other variants of R available, including options that will appeal to expe-
rienced programmers who use Emacs, Eclipse, or other development environments.
For more information on various R environments, see Appendix A.

2.1.2 Starting R

Once R is installed, run it; or if you installed RStudio, launch that. The R command
line starts by default and is known as the R console. When this book was written,
the R console looked like Fig. 2.1 (where some details depend on the version and
operating system).

R version 3.1.1 (2014-07-10) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin13.1.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

[R.app GUI 1.65 (6784) x86_64-apple-darwin13.1.0]

>

Fig. 2.1. The R console.

The “>” symbol at the bottom of the R console shows that R is ready for input from
you. For example, you could type:

> x <- c(2, 4, 6, 8)

2.2 A Quick Tour of R’s Capabilities 13

As we show commands with “>”, you should try them for yourself. So, right now,
you should type “x <- c(2, 4, 6, 8)” into the R console followed by the
Enter key.

This is a simple assignment command using the assignment operator “<-” to create
a named object x that comprises a vector of numbers, (2, 4, 6, 8). The as-
signment operator <- can be pronounced as “gets” and is the way to assign values
to R variables (“objects”).

In reading our code listings, a few notes might help those who are new to program-
ming. We list commands to R proceeded by the “>” symbol just as you would see
in R. Sometimes a command is longer than one line and in those cases it continues
with a “+” symbol that you don’t type (R adds it automatically). Everything else in
the code listings is output from R.

In code listings, we abbreviate long output with ellipses (“. . . ”) and sometimes add
comments, which are anything on a line after “#”. When we refer to code outside a
listing box, we set it in monospace font so you will know it’s an R command
or object. In short, anything after “>” or “+” is something for you to type.

For some commands, R responds by printing something in the console. For example,
when you type the name of a variable into the console like this:

> x

R responds by printing out the value of x. In this case, we defined x above as a
vector of numbers:

[1] 2 4 6 8

We’ll explain more about these results and the preceding “[1]” below.

2.2 A Quick Tour of R’s Capabilities

Before we dive into the details of programming, we’d like to start with a tour of a
relatively powerful analysis in R. This is a partial preview of other parts of this book,
so don’t worry if you don’t understand the commands. We explain them briefly here
to give you a sense of how an R analysis might be conducted. In this and later
chapters, we explain all of these steps and many more analyses.

To begin, we install some add-on packages that we’ll need:

> install.packages(c("lavaan", "semPlot", "corrplot",
"multcomp"))

Most analyses require one or more packages in addition to those that come with R.
After you install a package once, you don’t have to install it again unless there is an
update.

14 2 The R Language

Now we load a data set from this book’s website and examine it:

> satData <- read.csv("http://goo.gl/UDv12g")
> satData$Segment <- factor(satData$Segment)
> head(satData)
iProdSAT iSalesSAT Segment iProdREC iSalesREC

1 6 2 1 4 3
2 4 5 3 4 4
3 5 3 4 5 4
...
> summary(satData)

iProdSAT iSalesSAT Segment iProdREC iSalesREC
Min. :1.00 Min. :1.000 1: 54 Min. :1.000 Min. :1.000
1st Qu.:3.00 1st Qu.:3.000 2:131 1st Qu.:3.000 1st Qu.:3.000
... ...
Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000

This data set exemplifies observations from a simple sales and product satisfac-
tion survey. It has 500 (simulated) consumers’ answers to a survey with four items
asking about satisfaction with a product (iProdSAT), sales (iSalesSAT) ex-
perience, and likelihood to recommend the product and salesperson (iProdREC
and iSalesREC, respectively). Each respondent is also assigned to a numerically
coded segment (Segment). In the second line of R code above, we set Segment
to be a categorical factor variable.

Next we plot the correlation matrix, omitting the categorical Segment variable in
column 3:

> library(corrplot)
Loading required package: corrplot
> corrplot.mixed(cor(satData[, -3]))

The library() command here is one we’ll see often; it loads an add-on library
of additional functions for R. The resulting chart is shown in Fig. 2.2. The lower
triangle in Fig. 2.2 shows the correlations between item pairs, while the upper tri-
angle visualizes those with circle size and color. The satisfaction items are highly
correlated with one another, as are the likelihood-to-recommend items.

Does product satisfaction differ by segment? We compute the mean satisfaction for
each segment using the aggregate() function:

> aggregate(iProdSAT ∼ Segment, satData, mean)
Segment iProdSAT

1 1 3.462963
2 2 3.725191
3 3 4.103896
4 4 4.708075

2.2 A Quick Tour of R’s Capabilities 15

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iProdSAT

iSalesSAT

iProdREC

iSalesREC

0.41

0.24

0.27

0.28

0.23 0.46

Fig. 2.2. A plot visualizing correla-
tion between satisfaction and likelihood
to recommend variables in a simulated
consumer data set, N = 500. All items
are positively correlated with one an-
other, and the two satisfaction items are
especially strongly correlated with one
another, as are the two recommendation
items. Chapter 4 discusses correlation
analysis in detail.

Segment 4 has the highest level of satisfaction, but are the differences statistically
significant? We perform a one way analysis of variance (ANOVA) and see that sat-
isfaction differs significantly by segment:

> sat.anova <- aov(iProdSAT ∼ -1 + Segment, satData)
> summary(sat.anova)

Df Sum Sq Mean Sq F value Pr(>F)
factor(Segment) 4 8628 2157 2161 <2e-16 ***
Residuals 496 495 1

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We plot the ANOVA model to visualize confidence intervals for mean product sat-
isfaction by segment:

> library(multcomp)
Loading required package: multcomp
Loading required package: mvtnorm
Loading required package: survival
Loading required package: splines
Loading required package: TH.data

> par(mar=c(4,8,4,2))
> plot(glht(sat.anova))

The resulting chart is shown in Fig. 2.3. It is easy to see that Segments 1, 2, and 3
differ modestly, while Segment 4 is much more satisfied than the others. We will
learn more about comparing groups and doing ANOVA analyses in Chap. 5.

R’s open source platform has promoted a proliferation of powerful capabilities in
advanced statistical methods. For example, many marketing analysts are interested
in structural equation models, and R has multiple packages to fit structural equation
models.

16 2 The R Language

3.5 4.0 4.5

Segment4

Segment3

Segment2

Segment1 (

(

(

(

)

)

)

)

l

l

l

l

95% family−wise confidence level

Linear Function

Fig. 2.3. Mean and confidence
intervals for product satisfaction by
segment. The X axis represents a
Likert rating scale ranging 1–7 for
product satisfaction. Chapter 5 dis-
cusses methods to compare groups.

Let’s fit a structural equation model to the satisfaction data. We define a model with
latent variables—which we discuss in Chaps. 8 and 10—for satisfaction (“SAT”)
and likelihood-to-recommend (“REC”). We propose that the SAT latent variable
is manifested in the two satisfaction items, while REC is manifested in the two
likelihood-to-recommend items. As marketers, we expect and hope that the latent
likelihood-to-recommend variable (REC) would be affected by the latent satisfac-
tion (SAT).

This latent variable model is simpler to express in R than in English (note that the
following is a single command, where the + at the beginning of lines is generated
by R, not typed):

> satModel <- "SAT =∼ iProdSAT + iSalesSAT
+ REC =∼ iProdREC + iSalesREC
+ REC ∼ SAT "

This model might be paraphrased as “Latent SATisfaction is observed as items
iProdSAT and iSalesSAT. Latent likelihood to RECommend is observed as items
iProdREC and iSalesREC. RECommendation varies with SATisfaction”.

Next we fit that model to the data using the lavaan package:

> library(lavaan)
This is lavaan 0.5-17
lavaan is BETA software! Please report any bugs.
...
> sat.fit <- cfa(satModel, data=satData)
> summary(sat.fit, fit.m=TRUE)
lavaan (0.5-17) converged normally after 31 iterations
...
User model versus baseline model:
Comparative Fit Index (CFI) 0.995

...

The model converged and reported many statistics that we omit above, but we
note that the model fits the data well with a Comparative Fit Index near 1.0 (see
Chap. 10).

2.3 Basics of Working with R Commands 17

We visualize the structural model using the semPlot package:

> library(semPlot)
> semPaths(sat.fit, what="est",
+ residuals=FALSE, intercepts=FALSE, nCharNodes=9)

This produces the chart shown in Fig. 2.4. Each proposed latent variable is highly
loaded on its manifested (observed) survey items. With an estimated coefficient of
0.76, customers’ latent satisfaction is shown to have a strong association with their
likelihood to recommend. See Chap. 10 for more on structural models and how to
interpret and compare them.

0.76

0.90

1.00

1.00

1.07

iProdSAT iSalesSAT

iProdREC iSalesREC

SAT

REC

Fig. 2.4. A structural model with path
loadings for a model of product satis-
faction and likelihood-to-recommend,
using the lavaan and semPlot
packages. Satisfaction has a strong re-
lationship to likelihood-to-recommend
(coefficient=0.76) in the simulated con-
sumer data. Chapter 10 discusses structural
models.

That ends the tour. If this seems like an impressive set of capabilities, it is only the
tip of the iceberg. Apart from loading packages, those analyses and visualizations
required a total of only 15 lines of R code!

There is a price to pay for this power: you must learn about the structure of the R
language. At first this may seem basic or even dull, but we promise that understand-
ing the language will pay off. You will be able to apply the analyses we present in
this book and understand how to modify the code to do new things.

2.3 Basics of Working with R Commands

Like many programming languages, R is case sensitive. Thus, x and X are different.
If you assigned x as in Sect. 2.1.2 above, try this:

> x
[1] 2 4 6 8
> X
Error: object ’X’ not found

18 2 The R Language

When working with the R console, you’ll find it convenient to use the keyboard up
and down arrow keys to navigate through previous commands that you’ve typed. If
you make a small error, you can recall the command and edit it without having to
type it all over. It’s also possible to copy from and paste into the console when using
other sources such as a help file.

Tip: Although you could type directly into the R console, another option is to use a
separate text editor such as the one built into R (select File — New Script from the
R GUI menu in Windows, File — New Document in Mac OSX, or File — New File
— R Script in RStudio).

With code in a separate file, you can easily edit or repeat commands. To run a com-
mand from a text file, you can copy and paste into the console, or use a keyboard
shortcut to run it directly from R: use CTRL+R in base R on Windows, CTRL+Enter
in RStudio on Windows, or Command+Enter in base R or RStudio on a Mac. (See
Appendix A for other suggestions about R editors.)

When you put code into a file, it is helpful to add comments. The “#” symbol signi-
fies a comment in R, and everything on a line after it is ignored. For example:

> x <- c(2, 4, 6, 8) # start a cheer

In this book, you don’t need to type any of those comments; they just make the code
more readable.

The command above defines x and ends with a comment. One might instead prefer
to comment a whole line; R doesn’t care:

> # start a cheer
> x <- c(2, 4, 6, 8)

Our code includes comments wherever we think it might help. As a politician might
say about voting, we say comment early and comment often. It is much easier to
document your code now than later.

2.4 Basic Objects

Like most programming languages, R differentiates between data and functions that
perform actions. We’ll spend a bit of time first looking at common data types in R,
and then examine functions. We describe the three most important R data types:
vectors, lists, and data frames. Later we introduce the process of writing functions.
Sometimes we also use the term object; in R, “object” is a generic term that refers to
data, functions, or anything else that the R system processes. (Experienced program-
mers: R is a functional language; although it is similar in some ways to procedural
languages such as C++ and Visual Basic, in more important ways it is similar to
Scheme and Lisp. For details, see the references in Sect. 2.9.)

2.4 Basic Objects 19

2.4.1 Vectors

The simplest R object is a vector, a one-dimensional collection of data points of a
similar kind (such as numbers or text). For instance, in the following code

> x <- c(2, 4, 6, 8)

. . . we tell R to create a vector of 4 numbers and name it x. The command c()
indicates to R that you are entering the elements of a vector. Vectors commonly
comprise numeric data, logical values, or character strings. Each of the following
statements defines a vector with four items as members (and if you’re not typing
along in R, now is the time to start):

> xNum <- c(1, 3.14159, 5, 7)
> xLog <- c(TRUE, FALSE, TRUE, TRUE)
> xChar <- c("foo", "bar", "boo", "far")
> xMix <- c(1, TRUE, 3, "Hello, world!")
> xNum
[1] 1.00000 3.14159 5.00000 7.00000

The fourth element of xMix is the character string Hello, world!. The comma inside
that string falls inside quotation marks and thus does not cause separation between
elements as do the other commas. These four objects, xNum, xLog, xChar, and
xMix, have different types of data. We’ll say more about that in a moment.

Vectors may be appended to one another with c():

> x2 <- c(x, x)
> x2
[1] 2 4 6 8 2 4 6 8

An overall view of an object can be obtained with the summary() function, whose
results depend on the object type. For vectors of numerics, summary() gives range
and central tendency statistics, whereas for vectors of characters it reports the length
of the vector and the type of the elements:

> summary(xNum)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.606 4.071 4.035 5.500 7.000
> summary(xChar)

Length Class Mode
4 character character

Indexing denotes particular elements of a data structure. Vectors are indexed with
square brackets, [and]. For instance, the second element of xNum is:

> xNum[2]
[1] 3.14159

We discuss indexing in depth below (Sect. 2.4.3).

20 2 The R Language

At its core, R is a mathematical language that understands vectors, matrices, and
other structures, as well as common mathematical functions and constants. When
you need to write a statistical algorithm from scratch, many optimized mathemati-
cal functions are readily available. For example, R automatically applies operators
across entire vectors:

> x2 + 1
[1] 3 5 7 9 3 5 7 9
> x2 * pi
[1] 6.283185 12.566371 18.849556 25.132741 6.283185 12.566371 18.849556 ...
> (x+cos(0.5)) * x2
[1] 5.755165 19.510330 41.265495 71.020660 5.755165 19.510330 41.265495 ...

The last example shows something to watch out for: when working with vectors,
R recycles the elements to match a longer set. In the last command, x2 has eight
elements, while x has only four. R will line them up and multiply x[1] ∗ x2[1],
x[2] ∗ x2[2], and so forth. When it comes to x2[5], there is no matching ele-
ment in x, so it goes back to x[1] and starts again. This can be a source of subtle
and hard-to-find bugs. When in doubt, check the length() of vectors as one of
the first steps in debugging:

> length(x)
[1] 4
> length(x2)
[1] 8

In order to keep things clear, matrix math uses different operators than vector math.
For instance, %∗% is used to multiply matrices instead of ∗. We do not cover math
operations in detail here; see Sect. 2.4.6 below if you want to learn details about
math operators in R.

When you create a vector, R automatically assigns a data type or class to all elements
in the vector. Some common data types are logical (TRUE/FALSE), integer (0, 1,
2, ...), double (real numbers such as 1.1, 3.14159, etc.), and character (“a”, “hello,
world!”, etc.).

When types are mixed in a vector, it holds values in the most general format. Thus,
the vector “c(1, 2, 3.5)” is coerced to type double because the real number 3.5 is
more general than an integer such as 1:

> c(1, 2, 3.5)
[1] 1.0 2.0 3.5

This may lead to surprises. When we defined the vector xMix above, it was coerced
to a character type because only a character type can preserve the basic values
of types as diverse as TRUE and “Hello, world!”:

> xMix
[1] "1" "TRUE" "3" "Hello, world!"

2.4 Basic Objects 21

When operating on these, R tries to figure out what to do in a sensible way, but
sometimes needs help. Consider the following operations:

> xNum[1]
[1] 1
> xMix[1]
[1] "1"
> xNum[1] + 1
[1] 2
> xMix[1] + 1
Error in xMix[1] + 1 : non-numeric argument to binary

operator

When we attempt to add 1 to xNum and xMix, xNum[1]+1 succeeds while
xMix[1]+1 returns an error that one of the arguments is not a number. We can
explicitly force it to be numeric by coercion with the as.numeric() func-
tion:

> as.numeric(xMix[1])+1
[1] 2

It would be tedious to go through all of R’s rules for coercing from one type to
another, so we simply caution you always to check variable types when debugging
because confusion about types is a frequent source of errors. The str() (“struc-
ture”) function is a good way to see detailed information about an object:

> str(xNum)
num [1:4] 1 3.14 5 7
> str(xChar)
chr [1:4] "foo" "bar" "boo" "far"
> str(xMix)
chr [1:4] "1" "TRUE" "3" "Hello, world!"

In these results, we see that xNum is a numeric vector (abbreviated “num”) with
elements that are indexed 1:4, while xChar and xMix are character vectors (ab-
breviated “chr”).

2.4.2 Help! A Brief Detour

This is a good place to introduce help in R. R and its add-on packages form an
enormous system and even advanced R users regularly consult the help files.

How to find help depends on your situation. If you know the name of a command or
related command, use “?”. For instance, now that you know the as.numeric()

22 2 The R Language

command, you may wonder whether there are similar commands for other types.
Looking at help for a command you know is a good place to start:

> ?as.numeric

This calls up the R help system, as shown in Fig. 2.5.

R help files are arranged according to a specific structure that makes it easier for
experienced R users to find information. Novice R users sometimes dislike help files
because they can be very detailed, but once you grow accustomed to the structure,
help files are a valuable reference.

Fig. 2.5. R help for the as.numeric() command, using ?as.numeric.

Help files are organized into sections titled Description, Usage, Arguments, Details,
Value, References, See Also, and Examples. We often find it helpful to go directly
to the Examples section. These examples are designed to be pasted directly into the
R console to demonstrate a function. If there isn’t an example that matches your
use case, you can go back to the Usage and Arguments sections to understand more
generally how to use a function. The Value section explains what type of object the
function returns. If you find that the function you are looking at doesn’t do quite
what you want, it can be helpful to check out the See Also section, where you will
find links to other related functions.

2.4 Basic Objects 23

Now suppose you do not know the name of a specific command, but wish to find
something related to a concept. The “??” command searches the Help system for
a phrase. For example, the command ??anova finds many references to ANOVA
models and utility functions, as shown in Fig. 2.6.

The ? and ?? commands understand quotation marks. For instance, to get help on
the ? symbol itself, put it inside quotation marks (R standard is the double quote
character: "):

> ?"?"

Note that the help file for ? has the same subject headings as any other help file. It
doesn’t tell you how to get help; it tells you how to use the ? function. This way of
thinking about help files may be foreign at first, but as you get to know the language
the consistency across the help files will make it easy for you to learn new functions
as the need arises.

There are other valuable resources besides the built-in help system. If you are look-
ing for something related to a general area of investigation, such as regression mod-
els or econometrics, and are not sure what exists, CRAN is very useful. CRAN
Task Views (http://cran.r-project.org/web/views/) provide anno-
tated lists of packages of interest in high-level areas such as Bayesian statistics,
machine learning, and econometrics.

Fig. 2.6. Searching R help with ??anova. The exact results depend on packages you have
installed.

http://cran.r-project.org/web/views/

24 2 The R Language

When working with an add-on package, you can check whether the authors have
provided a vignette, a PDF file that describes its usage. They are often linked from a
package’s help file, but an especially convenient way to find them is with the com-
mand browseVignettes(), which lists all vignettes for the packages you’ve
installed in a browser window.

If you run into a problem with something that seems it ought to work but
doesn’t, try the official R-help mailing list (https://stat.ethz.ch/
mailman/listinfo/r-help) or the R forums on StackOverflow (http://
stackoverflow.com/tags/r/info). Both are frequented by R contributors
and experts who are happy to help if you provide a complete and reproducible
example of a problem.

Google web search understands “R” in many contexts, such as searching for “R
anova table”.

Finally, there is a wealth of books covering specific R topics. At the end of each
chapter, we note books and sites that present more detail about the chapter’s
topics.

2.4.3 More on Vectors and Indexing

Now that you can find help when needed, let’s look at vectors and indexing again.
Whereas c() defines arbitrary vectors, integer sequences are commonly defined
with the : operator. For example:

> xSeq <- 1:10
> xSeq
[1] 1 2 3 4 5 6 7 8 9 10

When applying math to : sequences, be careful of operator precedence; “:” is ap-
plied before many other math operators. Use parentheses when in doubt and always
double-check math on sequences:

> 1:5*2
[1] 2 4 6 8 10
> 1:(5*2)
[1] 1 2 3 4 5 6 7 8 9 10

Sequences are useful for indexing and you can use sequences inside []:

> xNum
[1] 1.00000 3.14159 5.00000 7.00000
> xNum[2:4]
[1] 3.14159 5.00000 7.00000
> myStart <- 2
> xNum[myStart:sqrt(myStart+7)]
[1] 3.14159 5.00000

http://stackoverflow.com/tags/r/info
http://stackoverflow.com/tags/r/info
https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help

2.4 Basic Objects 25

For complex sequences, use seq() (“sequence”) and rep() (“replicate”). We
won’t cover all of their options, but here is a preview. Read this, try to predict what
the commands do, and then run them:

> seq(from=-5, to=28, by=4)
> rep(c(1,2,3), each=3)
> rep(seq(from=-3, to=13, by=4), c(1, 2, 3, 2, 1))

With the last example, deconstruct it by looking first at the inner expression
seq(from=-3, to=13, by=4). Each element of that vector will be replicated
a certain number of times as specified in the second argument to rep(). More ques-
tions? Try ?rep.

Exclude items by using negative indices:

> xSeq
[1] 1 2 3 4 5 6 7 8 9 10
> xSeq[-5:-7]
[1] 1 2 3 4 8 9 10

In all of the R output, we’ve seen “[1]” at the start of the row. That indicates
the vector position index of the first item printed on each row of output. Try
these:

> 1:300
> 1001:1300

The result of an R vector operation is itself a vector. Try this:

> xNum[2:4]
> xSub <- xNum[2:4]
> xSub

The new object xSub is created by selecting the elements of xNum. This may seem
obvious, yet it has profound implications because it means that the results of most
operations in R are fully formed, inspectable objects that can be passed on to other
functions. Instead of just output, you get an object you can reuse, query, manipulate,
update, save, or share.

Indexing also works with a vector of logical variables (TRUE/FALSE) that indicate
which elements you want to select:

> xNum
[1] 1.00000 3.14159 5.00000 7.00000
> xNum[c(FALSE, TRUE, TRUE, TRUE)]
[1] 3.14159 5.00000 7.00000

26 2 The R Language

This allows you to use logical expressions—which evaluate as a vector of logical
values—to select subsets of data based on specific criteria. We discuss this more in
later chapters and will use it frequently. Here is an example:

> xNum[xNum > 3]
[1] 3.14159 5.00000 7.00000

2.4.4 aaRgh! A Digression for New Programmers

At about this point when learning R, some students become incredulous. “I’ve got
to type the name of a data set over and over?!” Yes. “I have to manually pick which
rows or columns to include?!” Yes, sometimes, but you’ll learn code approaches that
are more general. “I can’t just point and click on the data I want?!” No, you can’t, at
least not in this book or most R books. (Limited point and click and menus are avail-
able as add-ons in R—see Appendix A—but we strongly believe you’ll be better
served by learning the power of the command line from the beginning.)

Thousands of analysts before you have felt the same way. What’s different this time?
They gave up but you won’t! Seriously, R is not simple and yes, it demands a bit of
effort. Our job is to help you through the difficulty so the effort pays off.

R reminds us of a mountain town, Holden, Washington. Holden is a remote village
in the North Cascades; to get there requires a 3-h ferry ride followed by an hour-long
bus trip. Each bus up the mountain has a sign that declares, “The ride up is free. The
trip down is costly”. In other words, everyone is welcomed . . . but after one settles
in, the place may become beloved and difficult to leave. Some people intend to make
a short visit, yet end up staying for months or years.

R is similar to that mountain village: although it takes time and effort to arrive,
after you settle in and know your way around, you might not want to leave. It has
been many years since we have had a reason to use a statistics environment other
than R.

2.4.5 Missing and Interesting Values

In statistics, missing values are important, and as a statistics environment, R under-
stands them and includes a special constant for a missing value: NA. This is not a
character object ("NA") but a constant in its own right. It is useful in several con-
texts. For instance, you might create a data object that will be filled in with values
later:

> my.test.scores <- c(91, NA, NA)

Any math performed on a value of NA becomes NA:

> mean(my.test.scores)
[1] NA
> max(my.test.scores)
[1] NA

2.4 Basic Objects 27

This may not be what you want, and you may tell R to ignore NA data rather than
calculating on it. Many commands include an argument that instructs them to ignore
missing values: na.rm=TRUE:

> mean(my.test.scores, na.rm=TRUE)
[1] 91
> max(my.test.scores, na.rm=TRUE)
[1] 91

A second approach is to remove NA values explicitly before calculating on them
or assigning them elsewhere. This may be done most easily with the command
na.omit():

> mean(na.omit(my.test.scores))
[1] 91

A third and more cumbersome alternative is to test for NA using the is.na()
function, and then index data for the values that are not NA by adding the ! (“not”)
operator:

> is.na(my.test.scores)
[1] FALSE TRUE TRUE
> my.test.scores[!is.na(my.test.scores)]
[1] 91

One thing never to do in R is to use an actual numeric value such as −999 to in-
dicate missing data. That will cause headaches at best and wrong answers at worst.
Instead, as soon as you load such data into R, replace those values with NA using
indices:

> my.test.scores <- c(91, -999, -999)
> mean(my.test.scores)
[1] -635.6667
> my.test.scores[my.test.scores < -900] <- NA
> mean(my.test.scores, na.rm=TRUE)
[1] 91

The third command tells R to select my.test.scores where the value is lower
than −900 and replace those elements with NA.

R also handles infinity and undefined numbers, with constants Inf and NaN (“not
a number”). For example, if we take the natural logarithm of positive and negative
numbers:

> log(c(-1,0,1))
[1] NaN -Inf 0
Warning message:
In log(c(-1, 0, 1)) : NaNs produced

We get a warning because log() is undefined for negative numbers and log(-1)
gives a value of NaN. Note also that log(0) =−∞ (-Inf).

28 2 The R Language

R tries to be helpful by watching out for such issues, warning you, and carrying on
as best it can. You should watch for “Warning message” and clean up your data
or math when it appears.

2.4.6 Using R for Mathematical Computation

As a programming environment for computational statistics, R has powerful capa-
bilities for mathematics. In particular, it is highly optimized for vector and matrix
operations, which include everything from indexing and iteration to complex op-
erations such as matrix inversion and decomposition. This makes R an attractive
alternative to software such as Matlab for computation, simulation, and optimiza-
tion.

We do not cover such math in detail here for several reasons: it is tedious to read,
many operations are obvious or easy to find, and advanced math is not necessar-
ily used in day-to-day marketing analytics. Instead, we use math commands and
operators with minor explanations as needed, trusting that you may use ? to learn
more.

If you are interested in using R for mathematical computation, remember that ?
understands quotation marks so you can read about operators using a help command
such as ?"*". An entry point to matrix math is the matrix multiplication operator,
%*%. If you need especially high performance, we have pointers on enhancing R’s
computation power in Appendix B.

2.4.7 Lists

Lists are collections of objects of any type. They are useful on their own, and are
especially important to understand how R stores data sets, the topic of the following
section.

Let’s look at two of the objects we defined above, inspecting their structures with
the str() command:

> str(xNum)
num [1:4] 1 3.14 5 7
> str(xChar)
chr [1:4] "foo" "bar" "boo" "far"

We see that these vectors are of type “numeric” and “character”, respectively. All
the elements in a vector must be the same type. We can combine these two vectors
into a list using list():

> xList <- list(xNum, xChar)
> xList
[[1]]

2.4 Basic Objects 29

[1] 1.00000 3.14159 5.00000 7.00000

[[2]]
[1] "foo" "bar" "boo" "far"

Using str(), we see that objects inside the list retain the types that they had as
separate vectors:

> str(xList)
List of 2
$: num [1:4] 1 3.14 5 7
$: chr [1:4] "foo" "bar" "boo" "far"

Lists are indexed with double brackets ([[and]]) instead of the single brack-
ets that vectors use, and thus xList comprises two objects that are indexed with
[[1]] and [[2]]. We might index the objects and find summary information one
at a time, such as:

> summary(xList[[1]])
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.606 4.071 4.035 5.500 7.000

It is often more convenient to run such a command on all members of the list at
once. We can do that with the lapply() or “list apply” command.

With lapply() we must pay special attention to the argument order: lapply
(OBJECT, FUNCTION). We use lapply() to produce a summary() for each
member of the list:

> lapply(xList, summary)
[[1]]

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.606 4.071 4.035 5.500 7.000

[[2]]
Length Class Mode

4 character character

What this did was to separate xList into its separate list elements, [[1]] and
[[2]]. Then it ran summary() on each one of those.

Using lapply() to iterate in this way saves a lot of work, especially with lists
that may comprise dozens or hundreds of objects. It demonstrates that lists have
two advantages: they keep data in one place regardless of constituent types, and
they make it possible to apply operations automatically to diverse parts of that data.

30 2 The R Language

Each element in a list may be assigned a name, which you can access with the
names() function. You may set the names() when a list is created or at a later
time. The following two list creation methods give the same result:
> xList <- list(xNum, xChar) # method 1: create, then name
> names(xList) <- c("itemnum", "itemchar")

> xList <- list(itemnum=xNum, itemchar=xChar) # method 2: create & name at once
> names(xList)
[1] "itemnum" "itemchar"

A list may be indexed using its names rather than a numeric index. You can use
$name or [["name"]] as you prefer:

> xList[[1]] # method 1: numeric
[1] 1.00000 3.14159 5.00000 7.00000

> xList$itemnum # method 2: $name reference
[1] 1.00000 3.14159 5.00000 7.00000

> xList[["itemnum"]] # method 3: quoted name
[1] 1.00000 3.14159 5.00000 7.00000

List names are character strings and may include spaces and various special charac-
ters. Putting the name in quotes is useful when names include spaces.

This brings us to the most important object type in R: data frames.

2.5 Data Frames

Data frames are the workhorse objects in R, used to hold data sets and to provide
data to statistical functions and models. A data frame’s general structure will be fa-
miliar to any analyst: it is a rectangular object comprised of columns of varying data
types (often referred to as “variables”) and rows that each has a value (or missing
value, NA) in each column (“observations”).

You may construct a data frame with the data.frame() function, which takes as
input a set of vectors of the same length:

> x.df <- data.frame(xNum, xLog, xChar)
xNum xLog xChar

1 1.00000 TRUE foo
2 3.14159 FALSE bar
3 5.00000 TRUE boo
4 7.00000 TRUE far

In this code, we use dot notation with a suffix .df that helps to clarify that x.df is
a data frame. The .df is just part of the name as far as R is concerned—it doesn’t
enforce any special rules or type checking—and we use it only as a reminder.

2.5 Data Frames 31

In the resulting data frame we find three named columns that inherit their names
from the contributing vectors. Each row is numbered sequentially starting from 1.
Elements of a data frame may be indexed using [ROW, COLUMN] notation:

> x.df[2,1]
[1] 3.14159

> x.df[1,3]
[1] foo
Levels: bar boo far foo

The latter example shows us something new: by default, R converts character data in
data frames to nominal factors. When xCharwas added to the data frame, its values
were added as the levels of a categorical (nominal) data type. Marketing analysts
often work with categorical data such as gender, region, or different treatments in
an experiment. In R, such values are stored internally as a vector of integers and
a separate list of labels naming the categories. The latter are called levels and are
accessed with the levels() function.

Converting character strings to factors is a good thing for data that you might use
in a statistical model because it tells R to handle it appropriately in the model, but
it’s inconvenient when the data really is simple text such as an address or com-
ments on a survey. You can prevent the conversion to factors by adding an option to
data.frame() that sets stringsAsFactors=FALSE:

> x.df <- data.frame(xNum, xLog, xChar, stringsAsFactors=FALSE)
> x.df

xNum xLog xChar
1 1.00000 TRUE foo
2 3.14159 FALSE bar
3 5.00000 TRUE boo
4 7.00000 TRUE far
> x.df[1,3]
[1] "foo"

The value of x.df[1, 3] is now a character string and not a factor.

Indices can be left blank, which selects all of that dimension:

> x.df[2,] # all of row 2
xNum xLog xChar

2 3.14159 FALSE bar

> x.df[,3] # all of column 3
[1] "foo" "bar" "boo" "far"

Index data frames by using vectors or ranges for the elements you want. Use nega-
tive indices to omit elements:

> x.df[2:3,]
xNum xLog xChar

32 2 The R Language

2 3.14159 FALSE bar
3 5.00000 TRUE boo

> x.df[,1:2] # two columns
xNum xLog

1 1.00000 TRUE
2 3.14159 FALSE
3 5.00000 TRUE
4 7.00000 TRUE

> x.df[-3,] # omit the third observation
xNum xLog xChar

1 1.00000 TRUE foo
2 3.14159 FALSE bar
4 7.00000 TRUE far

> x.df[, -2] # omit the second column
xNum xChar

1 1.00000 foo
2 3.14159 bar
3 5.00000 boo
4 7.00000 far

Indexing a data frame returns an object. The object will have whatever type suits that
data: choosing a single element (row + column) yields a singular object (a vector
of length one); choosing a column returns a vector; and choosing rows or multiple
columns yields a new data frame. We can see this by using the str() inspector,
which tells you more about the structure of the object:

> str(x.df[2,1])
num 3.14

> str(x.df[, 2])
logi [1:4] TRUE FALSE TRUE TRUE

> str(x.df[c(1,3),]) # use c() to get rows 1 and 3 only
’data.frame’: 2 obs. of 3 variables:
$ xNum : num 1 5
$ xLog : logi TRUE TRUE
$ xChar: chr "foo" "boo"

As with lists, data frames may be indexed by using the names of their columns:

> x.df$xNum
[1] 1.00000 3.14159 5.00000 7.00000

In short, data frames are the way to work with a data set in R. R users encounter
data frames all the time, and learning to work with them is perhaps the single most
important set of skills in R.

2.5 Data Frames 33

Let’s create a new data set that is more representative of data in marketing research.
We’ll clean up our workspace and then create new data:

> rm(list=ls()) # caution, deletes all objects! See explanation below
> store.num <- factor(c(3, 14, 21, 32, 54)) # store id
> store.rev <- c(543, 654, 345, 678, 234) # store revenue, $1000
> store.visits <- c(45, 78, 32, 56, 34) # visits, 1000s
> store.manager <- c("Annie", "Bert", "Carla", "Dave", "Ella")

> (store.df <- data.frame(store.num, store.rev, store.visits,

+ store.manager, stringsAsFactors=F)) # F = FALSE
store.num store.rev store.visits store.manager

1 3 543 45 Annie

2 14 654 78 Bert

3 21 345 32 Carla

4 32 678 56 Dave

5 54 234 34 Ella

Notice that we specified that store number is a nominal factor, to tell R that it looks
like a number but really isn’t. We’ll discuss that more in Sect. 3.1.1.

In the final command above, by putting parentheses around the whole expression, we
tell R to assign the result of data.frame(store.num, store.rev, ...)
to store.df and then evaluate the resulting object (store.df). This has the
same effect as assigning the object and then typing its name again to see its contents.
This trick sometimes saves typing.

We can now get a list of our store managers by selecting that column using the same
$ notation that we used with lists:

> store.df$store.manager
[1] "Annie" "Bert" "Carla" "Dave" "Ella"

We can easily pass columns from the data frame to statistical functions using $ and
a column name. For example, we can compute the average of store.rev from
the store.df data frame using mean():

> mean(store.df$store.rev)
[1] 490.8

Similarly, we could use the cor() function, which computes the Pearson product-
moment correlation coefficient (aka Pearson’s r), to gauge the association between
store visits and revenue in our data:

> cor(store.df$store.rev, store.df$store.visits)
[1] 0.8291032

We discuss correlation analysis in depth in Chap. 4.

You can obtain basic statistics for a data frame with summary():

> summary(store.df)
store.num store.rev store.visits store.manager
3 :1 Min. :234.0 Min. :32 Length:5

34 2 The R Language

14:1 1st Qu.:345.0 1st Qu.:34 Class :character
21:1 Median :543.0 Median :45 Mode :character
32:1 Mean :490.8 Mean :49
54:1 3rd Qu.:654.0 3rd Qu.:56

Max. :678.0 Max. :78

This shows us the frequency counts for the factor variable (store number), arith-
metic summaries of the numeric variables, and a simple description of the character
variable. Chapter 3 says much more about describing and summarizing data.

2.6 Loading and Saving Data

There are many ways to load and save data in R. In this section, we focus on the
methods for storing data that are common in typical projects including how to save
and read native R objects, how to save entire R sessions, and how to read and write
comma-separated value (CSV) formats to move data in and out of other environ-
ments like Microsoft Excel.

Native (“binary”) R objects are representations of objects in an R-specific format. If
you need to save an object exclusively for R, then this format will be useful to you.
Use save() to write a binary object to disk and load() to read it.

Let’s back up the store.df object to disk using save(OBJECT, FILE). Then
we’ll delete it from memory and use load(FILE) to restore it:

> save(store.df, file="store-df-backup.RData")
> rm(store.df) # caution, only if save() gave no error
> mean(store.df$store.rev) # error
Error in mean(store.df$store.rev) : object ’store.df’ not found

> load("store-df-backup.RData")
> mean(store.df$store.rev)
[1] 490.8

save() can also take a group of objects as an argument; just replace the sin-
gle object name with list=c() and fill in c() with a character vector. For in-
stance:

> save(list=c("store.df","store.visits"), file="store-df
-backup.RData")

When a file is loaded, its objects are placed into memory with the same names that
they had when saved. Important: when a file is loaded, its objects silently overwrite
any objects in memory with the same names! Consider the following:

> store.df <- 5
> store.df
[1] 5

2.6 Loading and Saving Data 35

> load("store-df-backup.RData")
> store.df
store.num store.rev store.visits store.manager

1 3 543 45 Annie
2 14 654 78 Bert

In the example above, store.df is first assigned a new, simple value of 5 but this
is overwritten by load() with no warning. When loading objects from files, we
recommend to begin from a clean slate with no other objects in memory in order to
reduce unexpected side effects.

Filenames may be specified with just the file name as above, in which case they are
saved to the current R working directory, or as full paths in the format appropriate to
your system. Note that Microsoft Windows uses \ to denote folders, which doesn’t
work in R (which expects Unix-style directory names). You must convert \ to either
\\ or / or else R will give an error.

Assuming the appropriate “R” folder exists, and replacing user to match your
system, you could try:

Works only on Windows:
> save(store.df, file="C:\\Documents and Settings\\user\\

My Documents\\R\\store-df-backup.RData")

Works on all systems (Mac OSX, Linux, and Windows):
> save(store.df, file="∼/Documents/R/store-df-backup.RData")

The standard file suffix for native data files in R is .RData and we recommend you
use that.

If specifying full paths seem cumbersome, you may change the R working directory.
getwd() reports the working directory, while setwd(PATH) sets it to a new
location:

example from author’s Mac OS X system; yours will vary
> getwd()
[1] "/Users/chris"

> setwd("∼/Documents/R") # tilde is handled on UNIX-like
systems

> getwd()
[1] "/Users/chris/Documents/R"

These commands do not create directories; you should do that in the operating
system.

36 2 The R Language

2.6.1 Image Files

The memory image of an entire session can be saved with the command save.
image(FILE). If FILE is excluded, then it defaults to a file named ".RData".
Base R and R Studio both prompt you to save a memory image on closing, but you
can also do it yourself by typing:

> save.image() # saves file ".RData"
> save.image("mywork.RData")

It can be useful to save the contents of working memory if you wish to back up work
in progress. Do not let this substitute for creating reproducible scripts; a best practice
is to create a script file as you work that can always reproduce an analysis up to the
current point. By default, these save to the working directory as set above.

Workspace images are re-loaded with the general load() command, not with a
special “image” version; an image is a collection of objects and no different than
other files produced by save(). As we warned above, loading an image will
silently overwrite current memory objects that have the same names as objects in
the image, but does not remove other objects. In other words, loading an image does
not restore memory to a snapshot of a previous state, but rather adds those contents
to current memory.

> load("mywork.RData")

You can view files with the list.files() command, and delete them with
file.remove() which accepts any number of file names. If you wish to clean up
the files we made above (assuming you have not changed working directory):

> list.files()
[1] "mywork.RData" "store-df-backup.RData"

> file.remove("mywork.RData", "store-df-backup.RData")
[1] TRUE TRUE

The status returned by file.remove() is a vector noting whether each file was
removed (if so, then its status is TRUE) or not (FALSE, if it doesn’t exist or is
currently in use and cannot be removed).

2.6.2 CSV Files

Many analysts save data in delimited files such as CSV files and tab-separated value
(TSV) files to move data between tools such as R, databases, and Microsoft Excel.
We focus on CSV files; TSV and other delimited files are handled similarly.

First, let’s create a CSV by writing store.df to a file. This works similarly
to the save() command above, with syntax write.csv(OBJECT, file=

2.6 Loading and Saving Data 37

"FILENAME"). We strongly recommend to add the option row.names=FALSE
to eliminate an extra, unnamed column containing labels for each row; those mostly
get in the way when interchanging CSV files with other programs.

A handy way to test CSV files is to use the command without a file name, which
sends the output to the console just as it would be written to a file:

> write.csv(store.df, row.names=FALSE)
"store.num","store.rev","store.visits","store.manager"
3,543,45,"Annie"
14,654,78,"Bert"
21,345,32,"Carla"
32,678,56,"Dave"
54,234,34,"Ella"

R automatically includes a header row with variable names and puts quotation marks
around character data.

Now let’s write a real file and then read it using read.csv(file=...):

> write.csv(store.df, file="store-df.csv", row.names=FALSE)
> read.csv("store-df.csv") # "file=" is optional
store.num store.rev store.visits store.manager

1 3 543 45 Annie
2 14 654 78 Bert
3 21 345 32 Carla
4 32 678 56 Dave
5 54 234 34 Ella

By default, read.csv() prints the CSV contents to the R console formatted as a
data frame. To assign the data to an object, use the assignment operator (<-). Let’s
read the CSV file and assign its data to a new object:

> store.df2 <- read.csv("store-df.csv", stringsAsFactors=FALSE)
> store.df2$store.num <- factor(store.df2$store.num)

After reading the CSV file, we recreate store.num as a factor variable. One of the
problems with CSV files is that they lose such distinctions because they are written
out in plain text.

Now we check that the values are identical to the original data frame:

> store.df == store.df2
store.num store.rev store.visits store.manager

[1,] TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE
[4,] TRUE TRUE TRUE TRUE
[5,] TRUE TRUE TRUE TRUE

38 2 The R Language

The operator == tells R to test whether the two data frames are the same,
element-by-element. Although == confirms equality, in general the function
all.equal(X, Y) is more useful because it ignores tiny differences due to
binary rounding errors (there is an infinity of real numbers, which computers
store as finite approximations). Also, the output of all.equal() is more com-
pact:

> all.equal(store.df, store.df2)
[1] TRUE

R can handle many other file formats that we do not discuss in this book. These
include fixed format files, databases, and binary files from other software such as
Microsoft Excel, MATLAB, SAS, and SPSS. If you need to work with such data, we
describe some of the options in Appendix B. A more general overview of options
for data exchange is provided by the R Data Import/Export manual [127].

2.7 Writing Your Own Functions*

The asterisk (*) in the title indicates that this is an optional section. We examine the
basics of writing reusable functions, a fundamental programming skill. If you are
new to programming, you might wish to skip this section for now and refer back to
it when you encounter functions again in later chapters.

Many analyses in R are repetitive: compute statistics across slices of data such as
different sales regions, produce analyses from new data sets such as successive cal-
endar quarters, and so forth. R provides functions to let you write a set of commands
once and reuse it with new data.

We can create a function in R quite easily. A common function we write is to com-
pute the standard error of the mean for a vector of observed data. Such a function
already exists in R, but is so simple that we sometimes write our own. In the infi-
nite population version, the standard error is computed as the standard deviation of
the data (sd()) divided by square root (sqrt()) of the sample size, which is the
length of the vector holding the data. We can declare a function to do this in one
line:

> se <- function(x) { sd(x) / sqrt(length(x)) }

The new function se() can then be used just like any other built-in function
in R:

> se(store.df$store.visits)
[1] 8.42615

2.7 Writing Your Own Functions* 39

A function’s results can also be assigned to other variables or used in additional
functions. For example, we might compute the upper-bound 95 % confidence inter-
val as the mean + 1.96 standard error:

> mean(store.df$store.visits) + 1.96 * se(store.df$store.visits)
[1] 65.51525

This tells us that, if the present data are a good random sample from a larger set,
we could expect the mean of other such samples to be 65.51 or less in 97.5 % of the
samples (97.5 % because the 95 % confidence interval is symmetric around 50 %,
extending from 2.5 to 97.5 %). In other words, we can be highly confident from
these data that the mean number of store visits is less than 65.52.

A schematic for a new function is: FUNCTIONNAME <- function(INPUTS)
EXPR . In most cases, EXPR is a set of multiple lines that operate on the inputs.
When there are multiple lines, they must be enclosed with braces { and }. By default,
the return value of the function is the output of the last command in the function
declaration.

As for the inputs to functions (such as x in se() above), there are a few things
to know. First, you can name them with any legal variable name in R. They can
accept any type of input. We use the term argument for inputs in this book (instead
of parameter, which we reserve for statistical models). An argument has meaning
only within its function; in programming jargon, it is scoped to the function. Thus,
if you declare x as an argument, then x has a value inside that function as assigned
when the function is called; outside the function it could have another value or not
be declared. It is good practice in a function to use only variables that have been
declared as arguments to the function; don’t refer to global workspace variables
whose existence is unpredictable.

If you’ve programmed in other languages, you may find it unusual that R does not
specify types for function arguments. It allows an argument to be of any type and
will try to use it as is, issuing warnings and errors as necessary (pay attention to
them!) For example, if we try to compute the standard error of the character vector
store.df$store.manager, we get a return value of NA along with a warn-
ing:

> se(store.df$store.manager)
[1] NA
Warning message:
In var(x, na.rm = na.rm) : NAs introduced by coercion

In Sect. 12.3.3 we introduce ways to identify object types when you need to deter-
mine them.

When writing a function, we recommend four conventions:

• Put braces around the body using { and }, even if it’s just a one line function

• Create temporary values to hold results along the way inside the function

40 2 The R Language

• Comment the function profusely

• Use the keyword return() to show the explicit value returned by the func-
tion.

Putting those recommendations together, the se function above might be rewritten
as follows:

> se <- function(x) {
computes standard error of the mean
tmp.sd <- sd(x) # standard deviation
tmp.N <- length(x) # sample size
tmp.se <- tmp.sd / sqrt(tmp.N) # std error of the mean
return(tmp.se)

}

Perhaps this is overkill for such a simple function. However, when your functions
get longer and you or your colleagues refer to them years later, you’ll be glad that
they are clean and well-documented.

A function is an object in memory just like data, and may be inspected, listed, and
deleted in the same ways. In particular, one may inspect a function simply by typing
its name (without the parentheses):

> se
function(x) {
computes standard error of the mean
tmp.sd <- sd(x) # standard deviation
tmp.N <- length(x) # sample size
tmp.se <- tmp.sd / sqrt(tmp.N) # std error of the mean
return(tmp.se)

}

This makes it possible to examine what a function is doing and works for many
functions in R and add-on packages.

2.7.1 Language Structures*

This optional section is for experienced programmers and describes how the R lan-
guage controls a sequence of commands in a script or function.

If you program in a language such as C or Java, the control structures in R will be
familiar. Using TEST to indicate a Boolean value (or value coercible to Boolean)
and EXPR for any language expression—which may include a block of expressions
inside { and }—R provides:

if (TEST) EXPR [else EXPR.b] # do EXPR if TEST is true, else EXPR.b

while (TEST) EXPR # repeat EXPR while TEST is true

2.7 Writing Your Own Functions* 41

for (NAME in VECTOR) EXPR # iterate EXPR for values of NAME from VECTOR

switch (INDEX, LIST) # INDEXth statement or matching argument name from LIST

repeat EXPR # repeats forever until ’break’; not recommended

Of these, we only use if() and for() in this book. We describe for() in more
detail in Sect. 5.1.2, and cover if() in Sect. 5.1.3.

There is a caveat to these control structures. On the surface, R syntax appears similar
to imperative programming languages (such as C, C++, and Java) but underneath it
is a functional language whose approach more closely resembles Lisp, Clojure, or
in particular, Scheme. To advance as an R programmer, you will wish to learn more
about functional programming and the object models that underlie it. See Sect. 2.9
for pointers on advanced programming skills.

In addition to the standard if() statement, R provides a vectorized version:
ifelse(TEST, YES, NO). ifelse() applies TEST to every element in a
vector and returns the value of the expression YES for elements that pass the test as
TRUE and the value of the expression NO for those that do not pass.

For example, here’s how we can use ifelse() to test each number in a vector
before applying a math function to it, and thus avoid a common error:

> x <- -2:2
> log(x) # warning, can’t log() negative numbers
[1] NaN NaN -Inf 0.0000000 0.6931472
Warning message:
In log(x) : NaNs produced

> ifelse(x > 0, x, NA) # replace non-positive values with NA
[1] NA NA NA 1 2

> log(ifelse(x > 0, x, NA)) # no warning now
[1] NA NA NA 0.0000000 0.6931472

2.7.2 Anonymous Functions*

Another useful feature is an anonymous function (also known as a lambda expres-
sion) which can substitute for a general expression and does not need to be declared
separately as a named function. (We use the apply() function here, which is simi-
lar to lapply() that we saw above, but works on non-list data such as data frames;
for full details, see Sect. 3.3.4.)

Suppose for some reason we want the median divided by 2 for columns of data. One
solution is to take the median() of each column using the apply() function on
the data’s 2nd dimension (the columns), and then divide the result by 2:
> my.data <- matrix(runif(100), ncol=5) # 100 random numbers in 5 columns
> apply(my.data, 2, median) / 2

42 2 The R Language

The second command here applies the median() function to each column of
data (because the MARGIN is given the value 2), and then divides the resulting
vector by 2.

A second solution is a function with a name such as halfmedian, with
apply():

> halfmedian <- function (x) { median(x) / 2 }
> apply(my.data, 2, halfmedian)

This now applies our custom halfmedian() function to each column.

However, creating such a function adds clutter to the namespace. Unless you want
to use such a function in multiple places, that is inefficient. A third way to solve
the problem is to create an anonymous function that does the work in place with no
function name:

> apply(my.data, 2, function(x) { median(x) / 2 })

If you find yourself creating a short function that is only used once, consider whether
an anonymous function might be simpler and clearer.

This example reveals a truth about R: there are often many ways to solve a problem,
and the best way in general is the one that makes sense to you. As you learn more
about R, your opinion of what is best will change and your code will become more
elegant and efficient. R analysts are thus like economists in the famous joke: “if you
ask five economists, you’ll get six different opinions”.

For further reference (without jokes), a formal outline of the R language is avail-
able in the R Language Definition, http://cran.r-project.org/doc/
manuals/R-lang.pdf [128].

Because this book is about analytics, not programming, we don’t cover the com-
plete details of functions but just use them as necessary. To learn more about R’s
programming model, see Sect. 2.9 and a longer example in Chap. 12.

2.8 Clean Up!

R keeps everything in memory by default, and when you exit (use the command
q(), for quit) R offers to save the memory workspace to disk to be loaded next time.
That is convenient but means that your workspace will become crowded unless you
keep it clean. This can lead to subtle and irreproducible bugs in your analyses, when
you believe an object has one value but in reality it has been kept around with some
other, forgotten value.

We recommend a few steps to keep your workplace clean. Use the ls() (list
objects) command periodically to see what you have in memory. If you don’t

http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf

2.9 Learning More* 43

recognize an object, use the rm() command to remove it. You can remove
a single object by using its name, or a group of them with the list= argu-
ment plus a character vector of names, or a whole set following a pattern with
list=ls(pattern="STRING") (tip: don’t use “*” because it will match more
than you expect):

> ls()
> rm(store.num)
> rm(list=c("store.rev", "store.visits"))
> rm(list=ls(pattern="store"))

It’s better to start every session clean instead of saving a workspace. And as we’ve
said, it’s a good idea to keep all important and reproducible code in a working script
file. This will make it easy to recreate an analysis and keep a workspace clean and
reproducible.

To clean out memory and ensure you’re starting from scratch at a given time, remove
all objects:

> rm(list=ls()) # deletes all visible objects in memory

Alternatively, you could exit without saving the workspace and restart R.

2.9 Learning More*

In this chapter, we have described enough of the R language to get you started for
the applications in this book. Later chapters include additional instruction on the
language as needed for their problems, often presented as separate Language Brief
sections. If you wish to delve more deeply into the language itself, the following
books can also help.

If you are new to statistics, programming, and R, Dalgaard’s An Introduction to R
[32] gives well-paced grounding in R and basic statistics commands. It is a great
complement to this book for more practice with the R language.

For those who are experienced with statistics, A Beginner’s Guide to R by Zuur et al.
[171] dives into R broadly at a more accelerated pace.

If you are an experienced programmer or want to learn the R language in detail,
Matloff’s The Art of R Programming [110] is a readable and enjoyable exposition
of the language from a computer science perspective. John Chambers’s Software
for Data Analysis [23] is an advanced description of the R language model and its
implementation. Wickham’s Advanced R [163] focuses on functional programming
in R and how to write more effective and reusable code.

Whereas this book focuses on teaching R at a conceptual level, it is also helpful
to have more examples in a cookbook format. Albert and Rizzo approach that task

44 2 The R Language

from a largely regression-oriented perspective in R by Example [4]. A code-oriented
collection that is lighter on statistics but deeper on programming is Teetor’s R Cook-
book [150]. Lander (2013) presents a mix of both approaches, language and statis-
tics, applied to a variety of analytic problems in R for Everyone [100].

2.10 Key Points

Most of the present chapter is foundational to R, yet there are a few especially
important points:

• For work that you want to preserve or edit, use a text editor and run commands
from there (Sect. 2.3).

• Create vectors using c() for enumerated values, seq() for sequences, and
rep() for repeated values (Sects. 2.4.1 and 2.4.3).

• Use the constant NA for missing values, not an arbitrary value such as −999
(Sect. 2.4.5).

• In R, data sets are most commonly data.frame objects created with a com-
mand such as my.df <- data.frame(vector1, vector2, ...)
(Sect. 2.5) or by reading a data file.

• Vectors and data frames are most often indexed with specific numbers (x[1]),
ranges (x[2:4]), negative indices (x[-3]) to omit data, and by boolean se-
lection (x[x>3]) (Sects. 2.5 and 2.4.3).

• Data frames are indexed by [ROW, COLUMN], where a blank value means “all
of that dimension” such as my.df[2,] for row 2, all columns (Sect. 2.5).

• You can also index a data frame with $ and a column name, such as my.df$id
(Sect. 2.5).

• Read and write data in CSV format with read.csv() and write.csv()
(Sect. 2.6.2).

• Functions are straightforward to write and extend R’s capabilities. When you
write a function, organize the code well and comment it profusely (Sect. 2.7).

• Clean up your workspace regularly to avoid clutter and bugs from obsolete vari-
ables (Sect. 2.8).

Part II

Fundamentals of Data Analysis

3

Describing Data

In this chapter, we tackle our first marketing analytics problem: summarizing and
exploring a data set with descriptive statistics (mean, standard deviation, and so
forth) and visualization methods. Such investigation is the simplest analysis one can
do yet also the most crucial. It is important to describe and explore any data set
before moving on to more complex analysis. This chapter will build your R skills
and provide a set of tools for exploring your own data.

3.1 Simulating Data

We start by creating data to be analyzed in later parts of the chapter. Why simulate
data and not work entirely with real data sets? There are several reasons. The process
of creating data lets us practice and deepen R skills from Chap. 2. It makes the book
less dependent on vagaries of finding and downloading online data sets. And it lets
you manipulate the synthetic data, run analyses again, and examine how the results
change.

Perhaps most importantly, data simulation highlights a strength of R: because it is
easy to simulate data, R analysts often use simulated data to prove that their methods
are working as expected. When we know what the data should say (because we
created it), we can test our analyses to make sure they are working correctly before
applying them to real data. If you have real data sets that you work with regularly,
we encourage you to use those for the same analyses alongside our simulated data
examples. (See Sect. 2.6 for more information on how to load data files.)

We encourage you to create data in this section step-by-step because we teach R
along the way. However, if you are in a hurry to learn how to compute means, stan-
dard deviations, and other summary statistics, you could quickly run the commands

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 3

47

48 3 Describing Data

in this section to generate the simulated data. Alternatively, the following will load
the data from the book’s website, and you can then go to Sect. 3.2:

> store.df <- read.csv("http://goo.gl/QPDdMl")

But if you’re new to R, don’t do that! Instead, work through the following section
to create the data from scratch. If you accidentally ran the command above, you can
use rm(store.df) to remove the data before proceeding.

3.1.1 Store Data: Setting the Structure

Our first data set represents observations of total sales by week for two products
at a chain of stores. We begin by creating a data structure that will hold the data, a
simulation of sales for the two products in 20 stores over 2 years, with price and pro-
motion status. We remove most of the R output here to focus on the input commands.
Type the following lines, but feel free to omit the comments (following “#”):

> k.stores <- 20 # 20 stores, using "k." for "constant"
> k.weeks <- 104 # 2 years of data each

create a data frame of initially missing values to hold the data
> store.df <- data.frame(matrix(NA, ncol=10, nrow=k.stores*k.weeks))
> names(store.df) <- c("storeNum", "Year", "Week", "p1sales", "p2sales",
+ "p1price", "p2price", "p1prom", "p2prom", "country")

We see the simplest summary of the data frame using dim():

> dim(store.df)
[1] 2080 10

As expected, store.df has 2,080 rows and 10 columns. We create two vectors
that will represent the store number and country for each observation:

> store.num <- 101:(100+k.stores)
> (store.cty <- c(rep("US", 3), rep("DE", 5), rep("GB", 3), rep("BR", 2),
+ rep("JP", 4), rep("AU", 1), rep("CN", 2)))
[1] "US" "US" "US" "DE" "DE" "DE" "DE" "DE" "GB" "GB" "GB" "BR" "BR" "JP" ...

> length(store.cty) # make sure the country list is the right length
[1] 20

Now we replace the appropriate columns in the data frame with those values, using
rep() to expand the vectors to match the number of stores and weeks:

> store.df$storeNum <- rep(store.num, each=k.weeks)
> store.df$country <- rep(store.cty, each=k.weeks)
> rm(store.num, store.cty) # clean up

3.1 Simulating Data 49

Next we do the same for the Week and Year columns:
> (store.df$Week <- rep(1:52, times=k.stores*2))

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
> # try the inner parts of the next line to figure out how we use rep()
> (store.df$Year <- rep(rep(1:2, each=k.weeks/2), times=k.stores))

[1] 1 ...

We check the overall data structure with str():

> str(store.df)
’data.frame’: 2080 obs. of 10 variables:
$ storeNum: int 101 101 101 101 101 101 101 101 101 101 ...
$ Year : int 1 1 1 1 1 1 1 1 1 1 ...
$ Week : int 1 2 3 4 5 6 7 8 9 10 ...
$ p1sales : logi NA NA NA NA NA NA ...
$ p2sales : logi NA NA NA NA NA NA ...
$ p1price : logi NA NA NA NA NA NA ...
$ p2price : logi NA NA NA NA NA NA ...
$ p1prom : logi NA NA NA NA NA NA ...
$ p2prom : logi NA NA NA NA NA NA ...
$ country : chr "US" "US" "US" "US" ...

The data frame has the right number of observations and variables, and proper
column names.

R chose types for all of the variables in our data frame. For example, store.df
$country is of type chr (character) because we assigned a vector of strings to it.
However, country labels are actually discrete values and not just arbitrary text. So
it is better to represent country explicitly as a categorical variable, known in R as a
factor. Similarly, storeNum is a label, not a number as such. By converting those
variables to factors, R knows to treat them as a categorical in subsequent analyses
such as regression models. It is good practice to set variable types correctly as they
are created; this will help you to avoid errors later.

We redefine store.df$storeNum and store.df$country as categorical
using factor():
> store.df$storeNum <- factor(store.df$storeNum)
> store.df$country <- factor(store.df$country)
> str(store.df)
’data.frame’: 2080 obs. of 10 variables:
$ storeNum: Factor w/ 20 levels "101","102","103",..: 1 1 1 1 1 1 1 1 1 1 ...

... [rows omitted] ...
$ country : Factor w/ 7 levels "AU","BR","CN",..: 7 7 7 7 7 7 7 7 7 7 ...

storeNum and country are now defined as factors with 20 and 7 levels,
respectively.

It is a good idea to inspect data frames in the first and last rows because mistakes
often surface there. You can use head(x=DATA, n=NUMROWS) and tail()
commands to inspect the beginning and end of the data frame (we omit long output
from the last two commands):

50 3 Describing Data

> head(store.df) # defaults to 6 rows
storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

1 101 1 1 NA NA NA NA NA NA US
2 101 1 2 NA NA NA NA NA NA US
3 101 1 3 NA NA NA NA NA NA US
...
> head(store.df, 120) # 120 rows is enough to check 2 stores; not shown
> tail(store.df, 120) # make sure end looks OK too; not shown

All of the specific measures (sales, price, promotion) are shown as missing values
(indicated by NA) because we haven’t assigned other values to them yet, while the
store numbers, year counters, week counters, and country assignments look good.
It’s always useful to debug small steps like this as you go.

3.1.2 Store Data: Simulating Data Points

We complete store.df with random data for store-by-week observations of the
sales, price, and promotional status of 2 products.

Before simulating random data, it is important to set the random number generation
seed to make the process replicable. After setting a seed, when you draw random
samples in the same sequence again, you get exactly the same (pseudo-)random
numbers. Pseudorandom number generators (PRNGs) are a complex topic whose
issues are out of scope here. If you are using PRNGs for something important, you
should review the literature; it has been said that whole shelves of journals could be
thrown away due to poor usage of random numbers. (R has support for a wide array
of pseudorandom sequences; see ?set.seed for details. A starting point to learn
more abut PRNGs is Knuth [93].)

If you don’t set a PRNG seed, R will select one for you, but you will get different
random numbers each time you repeat the process. If you set the seed and exe-
cute commands in the order shown in this book, you will get the results that we
show.

> set.seed(98250) # a favorite US postal code

Now we can draw the random data. In each row of data—that is, one week of 1
year, for one store—we set the status of whether each product was promoted (value
1) by drawing from the binomial distribution that counts the number of “heads” in a
collection of coin tosses (where the coin can have any proportion of heads, not just
50 %).

To detail that process: we use the rbinom(n, size, p) (decoded as “random
binomial”) function to draw from the binomial distribution. For every row of the
store data, as noted by n=nrow(store.df), we draw from a distribution repre-
senting the number of heads in a single coin toss (size=1) with a coin that has
probability p=0.1 for product 1 and p=0.15 for product 2. In other words, we
arbitrarily assign a 10 % likelihood of promotion for product 1, and 15 % likelihood
for product 2 and then randomly determine which weeks have promotions.

3.1 Simulating Data 51

> store.df$p1prom <- rbinom(n=nrow(store.df), size=1, p=0.1) # 10% promoted
> store.df$p2prom <- rbinom(n=nrow(store.df), size=1, p=0.15) # 15% promoted
> head(store.df) # how does it look so far? (not shown)

Next we set a price for each product in each row of the data. We suppose that each
product is sold at one of five distinct price points ranging from $2.19 to $3.19 over-
all. We randomly draw a price for each week by defining a vector with the five price
points and using sample(x, size, replace) to draw from it as many times
as we have rows of data (size=nrow(store.df)). The five prices are sampled
many times, so we sample with replacement (replace=TRUE):

> store.df$p1price <- sample(x=c(2.19, 2.29, 2.49, 2.79, 2.99),
+ size=nrow(store.df), replace=TRUE)
> store.df$p2price <- sample(x=c(2.29, 2.49, 2.59, 2.99, 3.19),
+ size=nrow(store.df), replace=TRUE)
> head(store.df) # now how does it look?
storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

1 101 1 1 NA NA 2.29 2.29 0 0 US
2 101 1 2 NA NA 2.49 2.49 0 0 US
3 101 1 3 NA NA 2.99 2.99 1 0 US
...

Question: if price occurs at five discrete levels, does that make it a factor variable?
That depends on the analytic question, but in general probably not. We often perform
math on price, such as subtracting cost in order to find gross margin, multiplying by
units to find total sales, and so forth. Thus, even though it may have only a few
unique values, price is a number, not a factor.

Our last step is to simulate the sales figures for each week. We calculate sales as a
function of the relative prices of the two products along with the promotional status
of each.

Item sales are in unit counts, so we use the Poisson distribution to generate count
data: rpois(n, lambda), where n is the number of draws and lambda is the
mean value of units per week. We draw a random Poisson count for each row
(nrow(store.df), and set the mean sales (lambda) of Product 1 to be higher
than that of Product 2:

sales data, using poisson (counts) distribution, rpois()
first, the default sales in the absence of promotion
> tmp.sales1 <- rpois(nrow(store.df), lambda=120)
> tmp.sales2 <- rpois(nrow(store.df), lambda=100)

Now we scale those counts up or down according to the relative prices. Price ef-
fects often follow a logarithmic function rather than a linear function, so we use
log(price) here:

scale sales according to the ratio of log(price)
> tmp.sales1 <- tmp.sales1 * log(store.df$p2price) / log(store.df$p1price)
> tmp.sales2 <- tmp.sales2 * log(store.df$p1price) / log(store.df$p2price)

52 3 Describing Data

We have assumed that sales vary as the inverse ratio of prices. That is, sales of
Product 1 go up to the degree that the log(price) of Product 1 is lower than the
log(price) of Product 2.

Finally, we assume that sales get a 30 % or 40 % lift when each product is promoted
in store. We simply multiply the promotional status vector (which comprises all
{0, 1} values) by 0.3 or 0.4, respectively, and then multiply the sales vector by that.
We use the floor() function to drop fractional values and ensure integer counts
for weekly unit sales, and put those values into the data frame:

final sales get a 30% or 40% lift when promoted
> store.df$p1sales <- floor(tmp.sales1 * (1 + store.df$p1prom*0.3))
> store.df$p2sales <- floor(tmp.sales2 * (1 + store.df$p2prom*0.4))

Inspecting the data frame, we see that the data look plausible on the surface:

> head(store.df)
storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country

1 101 1 1 127 106 2.29 2.29 0 0 US
2 101 1 2 137 105 2.49 2.49 0 0 US
3 101 1 3 156 97 2.99 2.99 1 0 US
...

A final command is useful to inspect data because it selects rows at random and
thus may find problems buried inside a data frame away from the head or tail:
some() from the car package [51]:

> install.packages("car") # if needed
> library(car)
> some(store.df, 10)

storeNum Year Week p1sales p2sales p1price p2price p1prom p2prom country
27 101 1 27 135 99 2.29 2.49 0 0 US
144 102 1 40 123 113 2.79 2.59 0 0 US
473 105 2 5 127 96 2.99 3.19 0 0 DE
...

Thanks to the power of R, we have created a simulated data set with 20,800 values
(2,080 rows × 10 columns) using a total of 22 assignment commands. In the next
section we explore the data that we created.

3.2 Functions to Summarize a Variable

Observations may comprise either discrete data that occurs at specific levels or con-
tinuous data with many possible values. We look at each type in turn.

3.2.1 Discrete Variables

A basic way to describe discrete data is with frequency counts. The table()
function will count the observed prevalence of each value that occurs in a variable

3.2 Functions to Summarize a Variable 53

(i.e., a vector or a column in a data frame). In store.df, we may count how many
times Product 1 was observed to be on sale at each price point:

> table(store.df$p1price)

2.19 2.29 2.49 2.79 2.99
395 444 423 443 375

If your counts vary from those above, that may be due to running commands in a
different order or setting a different random number seed. The counts shown here
assume that the commands have been run in the exact sequence shown in this chap-
ter. There is no problem if your data is modestly different; just remember that it
won’t match the output here, or try Sect. 3.1.1 again.

One of the most useful features of R is that most functions produce an object that
you can save and use for further commands. So, for example, if you want to save
the table that was created by table(), you can just assign the same command to
a named object:

> p1.table <- table(store.df$p1price)
> p1.table

2.19 2.29 2.49 2.79 2.99
395 444 423 443 375
> str(p1.table)
’table’ int [1:5(1d)] 395 444 423 443 375
...

The str() command shows us that the object produced by table() is a special
type called table. You will find many functions in R produce objects of special
types. We can also easily pass p1.table to the plot() function to produce a
quick plot.

> plot(p1.table)

You can see from the resulting bar plot in Fig. 3.1 that the product was on sale at
each price point roughly the same number of times. R chose a type of plot suitable
for our table object, but it is fairly ugly and the labels could be clearer. Later in
this chapter we show how to modify a plot to get better results.

An analyst might want to know how often each product was promoted at each price
point. The table() command produces two-way cross tabs when a second vari-
able is included:

> table(store.df$p1price, store.df$p1prom)

0 1
2.19 354 41
2.29 398 46

54 3 Describing Data

0
10

0
20

0
30

0
40

0

p1
.ta

bl
e

2.19 2.29 2.49 2.79 2.99

Fig. 3.1. A simple bar plot produced by pass-
ing a table object to plot(). Default charts
are sometimes unattractive, but there are many
options to make them more attractive and
useful.

2.49 381 42
2.79 396 47
2.99 343 32

At each price level, Product 1 is observed to have been promoted approximately
10 % of the time (as expected, given how we created the data in Sect. 3.1.1). In fact,
we can compute the exact fraction of times product 1 is on promotion at each price
point, if we assign the table to a variable and then divide the second column of the
table by the sum of the first and second columns:

> p1.table2 <- table(store.df$p1price, store.df$p1prom)
> p1.table2[, 2] / (p1.table2[, 1] + p1.table2[, 2])

2.19 2.29 2.49 2.79 2.99
0.10379747 0.10360360 0.09929078 0.10609481 0.08533333

The second command takes the second column of table p1.table—the column
with counts of how often the product is promoted—and divides by the total count
to get the proportion of times the product was promoted at each price point. R auto-
matically applies math operators + and / across the entire columns.

By combining results in this way, you can easily produce exactly the results you
want along with code that can repeat the analysis on demand. This is very helpful
to marketing analysts who produce weekly or monthly reports for sales, web traffic,
and the like.

3.2.2 Continuous Variables

Counts are useful when we have a small number of categories, but with continuous
data it is more helpful to summarize the data in terms of its distribution. The most
common way to do that is with mathematical functions that describe the range of
the data, its center, the degree to which it is concentrated or dispersed, and specific
points that may be of interest (such as the 90th percentile). Table 3.1 lists some R
functions to calculate statistics for numeric vector data, such as numeric columns in
a data frame.

3.2 Functions to Summarize a Variable 55

Table 3.1. Distribution functions that operate on a numeric vector

Describe Function Value

Extremes
min(x) Minimum value
max(x) Maximum value

Central tendency
mean(x) Arithmetic mean
median(x) Median

Dispersion

var(x) Variance around the mean
sd(x) Standard deviation

(sqrt(var(x)))
IQR(x) Interquartile range, 75th–25th per-

centile
mad(x) Median absolute deviation (a ro-

bust variance estimator)
Points quantile(x, probs=c(...)) Percentiles

Following are examples of those common functions:

> min(store.df$p1sales)
[1] 73
> max(store.df$p2sales)
[1] 225
> mean(store.df$p1prom)
[1] 0.1
> median(store.df$p2sales)
[1] 96
> var(store.df$p1sales)
[1] 805.0044
> sd(store.df$p1sales)
[1] 28.3726
> IQR(store.df$p1sales)
[1] 37
> mad(store.df$p1sales)
[1] 26.6868
> quantile(store.df$p1sales, probs=c(0.25, 0.5, 0.75))
25% 50% 75%
113 129 150

In the case of quantile() we have asked for the 25th, 50th, and 75th percentiles
using the argument probs=c(0.25, 0.5, 0.75), which are also known as
the median (50th percentile, same as the median() function) and the edges of the
interquartile range, the 25th and 75th percentiles.

For skewed and asymmetric distributions that are common in marketing, such as
unit sales or household income, the arithmetic mean() and standard deviation
sd() may be misleading; in those cases, the median() and interquartile range
(IQR(), the range of the middle 50 % of data) are often more useful to summarize
a distribution.

56 3 Describing Data

Change the probs= argument in quantile() to find other quantiles:
> quantile(store.df$p1sales, probs=c(0.05, 0.95)) # central 90% of data
5% 95%
93 184

> quantile(store.df$p1sales, probs=0:10/10)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

73.0 100.0 109.0 117.0 122.6 129.0 136.0 145.0 156.0 171.0 263.0

The second example here shows that we may use sequences in many places in
R; in this case, we find every 10th percentile by creating a simple sequence of
0:10 and dividing by 10 to yield the vector 0, 0.1, 0.2 ... 1.0. You could
also do this using the sequence function (seq(from=0, to=1, by=0.1)), but
0:10/10 is shorter and more commonly used.

Suppose we wanted a summary of the sales for product 1 and product 2 based on
their median and interquartile range. We might assemble these summary statistics
into a data frame that is easer to read than the one-line-at-a-time output above. We
create a data frame to hold our summary statistics and then populate it using func-
tions from Table 3.1. We name the columns and rows, and fill in the cells with
function values:
> mysummary.df <- data.frame(matrix(NA, nrow=2, ncol=2))
> names(mysummary.df) <- c("Median Sales", "IQR")
> rownames(mysummary.df) <- c("Product 1", "Product 2")
> mysummary.df["Product 1", "Median Sales"] <- median(store.df$p1sales)
> mysummary.df["Product 2", "Median Sales"] <- median(store.df$p2sales)
> mysummary.df["Product 1", "IQR"] <- IQR(store.df$p1sales)
> mysummary.df["Product 2", "IQR"] <- IQR(store.df$p2sales)
> mysummary.df

Median Sales IQR
Product 1 129 37
Product 2 96 29

With this custom summary we can easily see that median sales are higher for prod-
uct 1 (129 versus 96) and that the variation in sales of product 1 (the IQR across
observations by week) is also higher. Once we have this code, we can easily run
it the next time we have new sales data to produce a revised version of our table
of summary statistics. Such code might be a good candidate for a custom function
you can reuse (see Sects. 2.7 and 11.3.1.1). We’ll see a shorter way to create this
summary in Sect. 3.3.4.

3.3 Summarizing Data Frames

As useful as functions such as mean() and quantile() are, it is tedious to apply
them one at a time to columns of a large data frame, as we did with the summary
table above. R provides a variety of ways to summarize data frames without writing
extensive code. We describe three approaches: the basic summary() command, the
describe() command from the psych package, and the R approach to iterating
over variables with apply().

3.3 Summarizing Data Frames 57

3.3.1 summary()

As we saw in Sect. 2.5, summary() is a good way to do a preliminary inspection
of a data frame or other object. When you use summary() on a data frame, it
reports a few descriptive statistics for every variable:
> summary(store.df)

storeNum Year Week p1sales p2sales
101 : 104 Min. :1.0 Min. : 1.00 Min. : 73 Min. : 51.0
102 : 104 1st Qu.:1.0 1st Qu.:13.75 1st Qu.:113 1st Qu.: 84.0
103 : 104 Median :1.5 Median :26.50 Median :129 Median : 96.0
104 : 104 Mean :1.5 Mean :26.50 Mean :133 Mean :100.2
105 : 104 3rd Qu.:2.0 3rd Qu.:39.25 3rd Qu.:150 3rd Qu.:113.0
106 : 104 Max. :2.0 Max. :52.00 Max. :263 Max. :225.0
(Other):1456

p1price p2price p1prom p2prom country
Min. :2.190 Min. :2.29 Min. :0.0 Min. :0.0000 AU:104
1st Qu.:2.290 1st Qu.:2.49 1st Qu.:0.0 1st Qu.:0.0000 BR:208
Median :2.490 Median :2.59 Median :0.0 Median :0.0000 CN:208
Mean :2.544 Mean :2.70 Mean :0.1 Mean :0.1385 DE:520
3rd Qu.:2.790 3rd Qu.:2.99 3rd Qu.:0.0 3rd Qu.:0.0000 GB:312
Max. :2.990 Max. :3.19 Max. :1.0 Max. :1.0000 JP:416

US:312

summary() works similarly for single vectors, with a horizontal rather than verti-
cal display:

> summary(store.df$Year)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 1.0 1.5 1.5 2.0 2.0

The digits= argument is helpful if you wish to change the precision of the
display:
> summary(store.df, digits=2)

storeNum Year Week p1sales p2sales
101 : 104 Min. :1.0 Min. : 1 Min. : 73 Min. : 51
102 : 104 1st Qu.:1.0 1st Qu.:14 1st Qu.:113 1st Qu.: 84

...
p1price p2price p1prom p2prom country

Min. :2.2 Min. :2.3 Min. :0.0 Min. :0.00 AU:104
1st Qu.:2.3 1st Qu.:2.5 1st Qu.:0.0 1st Qu.:0.00 BR:208

...

R generally uses digits to mean significant digits regardless of absolute magnitude
or the decimal position. Thus, digits=3 does not mean “three decimal places”
but instead “three significant positions.” Output conforming to digits= is not
guaranteed; the format may be different in various cases such as reporting integer
values and for factors.

Perhaps the most important use for summary() is this: after importing data, use
summary() to do a quick quality check. Check the min and max for outliers or
miskeyed data, and check to see that the mean and median are reasonable and
similar to one another (if you expect them to be similar, of course). This simple
inspection often turns up errors in the data!

58 3 Describing Data

3.3.2 describe()

Another useful command is describe() from the psych package [132]. To use
describe(), install the psych package if you haven’t done so already and make
it available with library():

> install.packages("psych")
Installing package ...
> library(psych)

describe() reports a variety of statistics for each variable in a data set, includ-
ing n, the count of observations; trimmed mean, the mean after dropping a small
proportion of extreme values; and statistics such as skew and kurtosis that are useful
when interpreting data with regard to normal distributions.

> describe(store.df)
vars n mean sd median trimmed mad min max range skew

storeNum* 1 2080 10.50 5.77 10.50 10.50 7.41 1.00 20.00 19.0 0.00
Year 2 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00
Week 3 2080 26.50 15.01 26.50 26.50 19.27 1.00 52.00 51.0 0.00
p1sales 4 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74
...
country* 10 2080 4.55 1.72 4.50 4.62 2.22 1.00 7.00 6.0 -0.29

kurtosis se
storeNum* -1.21 0.13
Year -2.00 0.01
Week -1.20 0.33
p1sales 0.66 0.62
...
country* -0.81 0.04

By comparing the trimmed mean to the overall mean, one might discover when out-
liers are skewing the mean with extreme values. describe() is especially recom-
mended for summarizing survey data with discrete values such as 1–7 Likert scale
items from surveys (items that use a scale with ordered values such as “Strongly
disagree (1)” to “Strongly agree (7)” or similar).

Note that there is an * next to the labels for storeNum and country in the output
above. This is a warning; storeNum and country are factors and these summary
statistics may not make sense for them. describe() treats each store number as
an integer and computes statistics based on those integers. This may be useful when
your factors are in a meaningful order. When data include character strings or other
non-numeric data, describe() gives an error, “non-numeric argument.”
These problems may be solved by selecting only the variables (columns) that are
numeric with matrix indices. For example, if we wished to describe only columns 2
and 4 through 9, then we could use the following:

> describe(store.df[, c(2, 4:9)])
vars n mean sd median trimmed mad min max range skew

Year 1 2080 1.50 0.50 1.50 1.50 0.74 1.00 2.00 1.0 0.00
p1sales 2 2080 133.05 28.37 129.00 131.08 26.69 73.00 263.00 190.0 0.74
p2sales 3 2080 100.16 24.42 96.00 98.05 22.24 51.00 225.00 174.0 0.99

3.3 Summarizing Data Frames 59

p1price 4 2080 2.54 0.29 2.49 2.53 0.44 2.19 2.99 0.8 0.28
p2price 5 2080 2.70 0.33 2.59 2.69 0.44 2.29 3.19 0.9 0.32
...

3.3.3 Recommended Approach to Inspecting Data

We can now recommend a general approach to inspecting a data set after com-
piling or importing it; replace “my.data” and “DATA” with the names of your
objects:

1. Import your data with read.csv() or another appropriate function and check
that the importation process gives no errors.

2. Convert it to a data frame if needed (my.data <- data.frame(DATA)
and set column names (names(my.data) <- c(...)) if needed.

3. Examine dim() to check that the data frame has the expected number of rows
and columns.

4. Use head() and tail(my.data) to check the first few and last few rows;
make sure that header rows at the beginning and blank rows at the end were
not included accidentally. Also check that no good rows were skipped at the
beginning.

5. Use some() from the car package to examine a few sets of random rows.

6. Check the data frame structure with str() to ensure that variable types and
values are appropriate. Change the type of variables—especially to factor
types—as necessary.

7. Run summary() and look for unexpected values, especially min and max that
are unexpected.

8. Load the psych library and examine basic descriptives with describe().
Reconfirm the observation counts by checking that n is the same for each vari-
able, and check trimmed mean and skew (if relevant).

3.3.4 apply()*

An advanced and powerful tool in R is the apply() command. apply(x=DATA,
MARGIN=MARGIN, FUN=FUNCTION) runs any function that you specify on
each of the rows and/or columns of an object. If that sounds cryptic, well. . . it is.
In R the term margin is a two-dimensional metaphor that denotes which “direc-
tion” you want to do something: either along the rows (MARGIN=1) or columns
(MARGIN=2), or both simultaneously (MARGIN=c(1, 2)).

Here’s an example: suppose we want to find the mean of every column of
store.df, except for store.df$Store, which isn’t a number and so doesn’t

60 3 Describing Data

have a mean. We can apply() the mean() function to the column margin of the
data like this:

> apply(store.df[,2:9], MARGIN=2, FUN=mean)
Year Week p1sales p2sales p1price p2price

1.5000000 26.5000000 133.0485577 100.1567308 2.5443750 2.6995192
p1prom p2prom

0.1000000 0.1384615

As it happens, colMeans() does the same thing as the command above, but
apply gives you the flexibility to apply any function you like. If we want the row
means instead, we simply change the margin to 1:

> apply(store.df[,2:9], 1, mean)
[1] 29.9475 31.2475 32.9975 29.2725 31.2600 31.7850 27.5225 30.7850 28.0725

[10] 31.5600 30.5975 32.5850 25.6350 29.3225 27.9225 30.5350 31.4475 ...

Although row means make little sense for this data set, they can be useful for other
kinds of data.

Similarly, we might find the sum() or sd() for multiple columns with
margin=2:

> apply(store.df[,2:9], 2, sum)
Year Week p1sales p2sales p1price p2price p1prom p2prom

3120.0 55120.0 276741.0 208326.0 5292.3 5615.0 208.0 288.0
> apply(store.df[,2:9], 2, sd)

Year Week p1sales p2sales p1price p2price ...
0.5001202 15.0119401 28.3725990 24.4241905 0.2948819 0.3292181 ...

What if we want to know something more complex? In our discussion of functions
in Sect. 2.7, we noted the ability to define an ad hoc anonymous function. Imagine
that we are checking data and wish to know the difference between the mean and
median of each variable, perhaps to flag skew in the data. Anonymous function to
the rescue! We can apply that calculation to multiple columns using an anonymous
function:

> apply(store.df[,2:9], 2, function(x) { mean(x) - median(x) })
Year Week p1sales p2sales p1price p2price p1prom p2prom

0.0000000 0.0000000 4.0485577 4.1567308 0.0543750 0.1095192 0.1000000 0.1384615

This analysis shows that the mean of p1sales and the mean of p2sales are
larger than the median by about four sales per week, which suggests there is a right-
hand tail to the distribution. That is, there are some weeks with very high sales
that pull the mean up. (Note that we only use this to illustrate an anonymous func-
tion; there are better, more specialized tests of skew, such as those in the psych
package.)

Experienced programmers: your first instinct, based on experience with procedural
programming languages, might be to solve the preceding problem with a for()
loop that iterates the calculation across columns. That is possible in R but less
efficient and less “R-like”. Instead, try to think in terms of functions that are ap-
plied across data as we do here.

3.4 Single Variable Visualization 61

There are specialized versions of apply() that work similarly with lists and
other object types besides data frames. If interested, check ?tapply and
?lapply.

All of these functions, including apply(), summary(), and describe() re-
turn values that can be assigned to an object. For example, using apply, we can
produce our customized summary data frame from Sect. 3.2.2 in five lines of code
rather than seven:
> mysummary2.df <- data.frame(matrix(NA, nrow=2, ncol=2))
> names(mysummary2.df) <- c("Median Sales", "IQR")
> rownames(mysummary2.df) <- names(store.df)[4:5] # names from the data frame
> mysummary2.df[, "Median Sales"] <- apply(store.df[, 4:5], 2, median)
> mysummary2.df[, "IQR"] <- apply(store.df[, 4:5], 2, IQR)
> mysummary2.df

Median Sales IQR
p1sales 129 37
p2sales 96 29

If there were many products instead of just two, the code would still work if we
changed the number of allocated rows, and apply() would run automatically
across all of them.

Now that we know how to summarize data with statistics, it is time to visual-
ize it.

3.4 Single Variable Visualization

We start by examining plots that are part of the base R system. We examine
histograms, density plots, and box plots, and take an initial look at more com-
plex graphics including maps. Later chapters build on these foundational plots
and introduce more that are available in other packages. R has many options for
graphics including dedicated plotting packages such as ggplot2 and lattice,
and specialized plots that are optimized for particular data such as correlation
analysis.

3.4.1 Histograms

A fundamental plot for a single continuous variable is the histogram. Such a plot
can be produced in R with the hist() function:

> hist(store.df$p1sales)

The result, which will appear in the graphical display of base R or RStudio, is shown
in Fig. 3.2. It is not a bad start. We see that the weekly sales for product 1 range
from a little less than 100 to a bit more than 250. Because axes should always be
labeled, R tried to provide reasonable labels based on the variables we passed to
hist().

62 3 Describing Data

Histogram of store.df$p1sales

store.df$p1sales

F
re

qu
en

cy

100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

Fig. 3.2. A basic histogram using
hist().

That plot was easy to make but the visual elements are less than pleasing, so we will
improve it. For future charts, we will show either the basic chart or the final one, and
will not demonstrate the successive steps to build one up. However, we go through
the intermediate steps here so you can see the process of how to evolve a graphic
in R.

As you work through these steps, there are four things you should understand about
graphics in R:

• R graphics are produced through commands that often seem tedious and require
trial and iteration.

• Always use a text editor when working on plot commands; they rapidly become
too long to type, and you will often want to try slight variants and to copy and
paste them for reuse.

• Despite the difficulties, R graphics can be very high quality, portable in format,
and even beautiful.

• Once you have code for a useful graphic, you can reuse it with new data. It is
often helpful to tinker with previous plotting code when building a new plot,
rather than recreating it.

Our first improvement to Fig. 3.2 is to change the title and axis labels. We do that
by adding arguments to the hist() command:

main="..." : sets the main title

xlab="..." : sets the X axis label

ylab="..." : sets the Y axis label

3.4 Single Variable Visualization 63

We add the title and axis labels to our plot command:

> hist(store.df$p1sales,
+ main="Product 1 Weekly Sales Frequencies, All Stores",
+ xlab="Product 1 Sales (Units)",
+ ylab="Count")

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

C
ou

nt

100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

Fig. 3.3. The same histogram, with im-
proved labels.

The result is shown in Fig. 3.3 and is improved but not perfect; it would be nice to
have more granularity (more bars) in the histogram. While we’re at it, let’s add a
bit of color. We adjust the graphic by asking for more bins (breaks) and color the
histogram bars light blue. Here are the arguments involved:

breaks=NUM : suggest NUM bars in the result

col="..." : color the bars

When specifying colors, R knows many by name, including the most common ones
in English (“red”, “blue”, “green”, etc.) and less common (such as “coral” and
“burlywood”). Many of these can be modified by adding the prefix “light” or “dark”
(thus “lightgray”, “darkred”, and so forth). For a list of built-in color names, run the
colors() command.

We add breaks= and col= arguments to our code, with the result shown in
Fig. 3.4:

> hist(store.df$p1sales,
+ main="Product 1 Weekly Sales Frequencies, All Stores",
+ xlab="Product 1 Sales (Units)",
+ ylab="Count",
+ breaks=30, # more columns
+ col="lightblue") # color the bars

64 3 Describing Data

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

C
ou

nt

100 150 200 250

0
50

10
0

15
0

Fig. 3.4. The histogram after adding color
and dividing the counts into a larger num-
ber of bins (breaks).

Comparing Figs. 3.4 with 3.3 we notice a new problem: the y-axis value for the
height of the bars changes according to count. The count depends on the number of
bins and on the sample size. We can make it absolute by using relative frequencies
(technically, the density estimate) instead of counts for each point. This makes the
Y axis comparable across different sized samples.

Figure 3.4 also has ugly and oddly centered numbering on the X axis. Instead of
using hist()’s default tick marks (axis numbers), we remove the axis in order to
replace it with one more to our liking. The arguments for relative frequency and
removing the X axis are:

freq=FALSE : use density instead of counts on Y axis

xaxt="n" : X axis text is set to “none”

Now we need to create the replacement axis. This can be done with axis(side=
MARGIN,at=VECTOR). Note that axis() is a second command and not an ar-
gument to hist(); hist() creates the plot and then axis() modifies it.

Here is the amended code. First we call hist() to create a new plot without an X
axis :

> hist(store.df$p1sales,
+ main="Product 1 Weekly Sales Frequencies, All Stores",
+ xlab="Product 1 Sales (Units)",
+ ylab="Relative frequency",
+ breaks=30,
+ col="lightblue",
+ freq=FALSE, # freq=FALSE means plot density, not counts
+ xaxt="n") # xaxt="n" means "x axis tick marks == no"

With axis(), we specify which axis to change using an argument: side=1 alters
the X axis, while side=2 alters the Y axis (the top and right axes are side=3 and
side=4, respectively). We have to tell it where to put the labels, and the argument

3.4 Single Variable Visualization 65

at=VECTOR specifies the new tick marks for the axis. These are easily made with
the seq() function to generate a sequence of numbers:

> axis(side=1, at=seq(60, 300, by=20)) # add "60", "80", ...

The updated histogram is shown in Fig. 3.5. It is looking good now!

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

R
el

at
iv

e
fr

eq
ue

nc
y

0.
00

0
0.

00
5

0.
01

0
0.

01
5

80 100 120 140 160 180 200 220 240 260

Fig. 3.5. Histogram with relative fre-
quencies (density estimates) and im-
proved axis tick mark labels.

Finally, we add a smoothed estimation line. To do this, we use the density()
function to estimate density values for the p1sales vector, and add those to the
chart with the lines() command. The lines() command adds elements to the
current plot in the same way we saw above for the axis command.

> lines(density(store.df$p1sales, bw=10), # "bw= ..." adjusts the smoothing
+ type="l", col="darkred", lwd=2) # lwd = line width

Figure 3.6 is now very informative. Even someone who is unfamiliar with the data
can easily tell that this plot describes weekly sales for product 1 and that the typical
sales range from about 80 to 200.

The process we have shown to produce this graphic is representative of how analysts
use R for visualization. You start with a default plot, change some of the options,
and use functions like axis() and density() to alter features of the plot with
complete control. Although at first this will seem cumbersome compared to the
drag-and-drop methods of other visualization tools, it really isn’t much more time
consuming if you use a code editor and become familiar with the plotting functions’
examples and help files. It has the great advantage that once you’ve written the code,
you can reuse it with different data.

Exercise: modify the code to create the same histogram for product 2. It requires
only minor change to the code whereas with a drag-and-drop tool, you would
start all over. If you produce a plot often, you could even write it as a custom
function.

66 3 Describing Data

Product 1 Weekly Sales Frequencies, All Stores

Product 1 Sales (Units)

R
el

at
iv

e
fr

eq
ue

nc
y

0.
00

0
0.

00
5

0.
01

0
0.

01
5

80 100 120 140 160 180 200 220 240 260 Fig. 3.6. Final histogram with density
curve.

3.4.2 Boxplots

Boxplots are a compact way to represent a distribution. The R boxplot() com-
mand is straightforward; we add labels and use the option horizontal=TRUE to
rotate the plot 90◦ to look better:

> boxplot(store.df$p2sales, xlab="Weekly sales", ylab="P2",
main="Weekly sales of P2, All stores", horizontal=TRUE)

Figure 3.7 shows the resulting graphic. The boxplot presents the distribution more
compactly than a histogram. The median is the center line while the 25th and 75th
percentiles define the box. The outer lines are whiskers at the points of the most
extreme values that are no more than 1.5 times the width of the box away from the
box. Points beyond the whiskers are outliers drawn as individual circles. This is also
known as a Tukey boxplot (after the statistician, Tukey) or as a box-and-whiskers
plot.

l l lllll l ll ll llll l lll lll lll ll ll l l llll lll llll llll l lll lll ll lll

50 100 150 200

Weekly sales of P2, All stores

Weekly sales

P
2

Fig. 3.7. A simple example
of boxplot().

Boxplots are even more useful when you compare distributions by some other fac-
tor. How do different stores compare on sales of product 2? The boxplot() com-
mand makes it easy to compare these by specifying a response formula using tilde
notation, where the tilde (“∼”) separates the response variable (sometimes called a
dependent variable) from the explanatory variable (sometimes rather misleadingly

3.4 Single Variable Visualization 67

called an independent variable). In this case, our response variable is p2sales and
we want to plot it with regard to the explanatory variable storeNum. This may be
easiest to understand with the R code:

> boxplot(store.df$p2sales ∼ store.df$storeNum, horizontal=TRUE,
+ ylab="Store", xlab="Weekly unit sales", las=1,
+ main="Weekly Sales of P2 by Store")

The first portion of the command may be read as “boxplot p2sales by Store.” For-
mulas like this are pervasive in R and are used both for plotting and for estimating
models. We discuss formulas in detail in Sect. 5.2.1 and Chap. 7.

We added one other argument to the plot: las=1. That forces the axes to have text
in the horizontal direction, making the store numbers more readable. The result is
Fig. 3.8, where stores are roughly similar in sales of product 2 (this is not a statistical
test of difference, just a visualization).

l l

l

ll

l ll ll l

l lll

ll

ll

ll l

l

l l l

ll ll

ll l

ll l ll

l l

l

l l ll l l

ll

ll

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

50 100 150 200

Weekly Sales of P2 by Store

Weekly unit sales

S
to

re

Fig. 3.8. boxplot() of
sales by store.

We see in Fig. 3.8 that the stores are similar in unit sales of P2, but do P2 sales differ
in relation to in-store promotion? In this case, our explanatory variable would be the
promotion variable for P2, so we use boxplot() with the response formula again,
replacing storeNum with the promotion variable p2prom.

This is a good time to introduce two shortcut commands that make life easier. Many
commands for statistics and plotting understand the data=DATAFRAME argument,
and will use variables from datawithout specifying the full name of the data frame.
This makes it easy to repeat analyses on different data sets that include the same
variables. All you have to do is change the argument for data=.

> boxplot(p2sales ∼ p2prom, data=store.df, horizontal=TRUE, yaxt="n",
+ ylab="P2 promoted in store?", xlab="Weekly sales",
+ main="Weekly sales of P2 with and without promotion")
> axis(side=2, at=c(1,2), labels=c("No", "Yes"))

In this plot we also used axis() to replace the default Y axis with one that is more
informative.The result is shown in Fig. 3.9. There is a clear visual difference in sales
on the basis of in-store promotion!

68 3 Describing Data

To wrap up: boxplots are powerful tools to visualize a distribution and make it easy
to explore how an outcome variable is related to another factor. In Chaps. 4 and 5
we explore many more ways to examine data association and statistical tests of
relationships.

l l llll ll

l l

50 100 150 200

Weekly sales of P2 with and without promotion

Weekly sales

P
2

pr
om

ot
ed

 in
 s

to
re

?

N
o

Y
es

Fig. 3.9. Boxplot of prod-
uct sales by promotion
status.

3.4.3 QQ Plot to Check Normality*

This is an optional section on a graphical method to evaluate a distribution more for-
mally. You may wish to skip to Sect. 3.4.4 on cumulative distributions or Sect. 3.4.5
that describes how to compute aggregate values in R.

Quantile–quantile (QQ) plots are a good way to check one’s data against a distri-
bution that you think it should come from. Some common statistics such as the
correlation coefficient r (to be precise, the Pearson product-moment correlation co-
efficient) are interpreted under an assumption that data are normally distributed.
A QQ plot can confirm that the distribution is, in fact, normal by plotting the ob-
served quantiles of your data against the quantiles that would be expected for a
normal distribution.

To do this, the qqnorm() command compares data vs. a normal distribution; you
can use qqline() to add a diagonal line for easier reading. We check p1sales
to see whether it is normally distributed:

> qqnorm(store.df$p1sales)
> qqline(store.df$p1sales)

The QQ plot is shown in Fig. 3.10. The distribution of p1sales is far from the line
at the ends, suggesting that the data is not normally distributed. The upward curving
shape is typical of data with high positive skew.

What should you do in this case? If you are using models or statistical functions
that assume normally distributed data, you might wish to transform your data. As
we’ve already noted, a common pattern in marketing data is a logarithmic distribu-
tion. We examine whether p1sales is more approximately normal after a log()
transform:

> qqnorm(log(store.df$p1sales))
> qqline(log(store.df$p1sales))

3.4 Single Variable Visualization 69

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

10
0

15
0

20
0

25
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 3.10. QQ plot to check distribution. The tails
of the distribution bow away from the line that
represents an exact normal distribution, showing
that the distribution of p1sales is skewed.

The QQ plot for log(p1sales) is shown in Fig. 3.11. The points are much closer
to the solid line, indicating that the distribution of log(store.df$p1sales)
is more consistent with the normal distribution than the untransformed vari-
able.

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

−3 −2 −1 0 1 2 3

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Fig. 3.11. QQ plot for the data after log()
transformation. The sales figures are now much
better aligned with the solid line that represents
an exact normal distribution.

We recommend that you use qqnorm() (and the more general qqplot() com-
mand) regularly to test assumptions about your data’s distribution. Web search will
reveal further examples of common patterns that appear in QQ plots and how to
interpret them.

3.4.4 Cumulative Distribution*

This is another optional section, but one that can be quite useful. If you wish to skip
ahead to cover just the fundamentals, you should continue with Sect. 3.4.5.

Another useful univariate plot involves the impressively named empirical cumula-
tive distribution function (ECDF). It is less complex than it sounds and is simply a

70 3 Describing Data

plot that shows the cumulative proportion of data values in your sample. This is an
easy way to inspect a distribution and to read off percentile values.

Before that we should explain an important thing to know about the R plot()
command: plot() can make only a few plot types on its own and otherwise must
be given an object that includes more information such as X and Y values. Many
R functions produce objects automatically that are suitable as input for plot().
A typical pattern looks like this:

> my.object <- FUNCTION(my.data) # not real code
> plot(my.object)

. . . or combined into a single line as:

> plot(FUNCTION(my.data)) # not real code

We plot the ECDF of p1sales by combining a few steps. First, we use the
ecdf() function to find the ECDF of the data. Then we wrap plot() around
that, adding options such as titles. Next we put some nicer-looking labels on the Y
axis that relabel the proportions as percentiles. The paste() function combines a
number vector (0, 10, 20, ...) with the “%” symbol to make each label.

Suppose we also want to know where we should expect 90 % of sales figures to
occur, i.e., the 90th percentile for weekly sales of P1. We can use the function
abline() to add vertical and horizontal lines at the 90th percentile. We do not
have to tell R the exact value at which to draw a line for the 90th percentile; instead,
we use quantile(, pr=0.9) to find it:
> plot(ecdf(store.df$p1sales),
+ main="Cumulative distribution of P1 Weekly Sales",
+ ylab="Cumulative Proportion",
+ xlab=c("P1 weekly sales, all stores", "90% of weeks sold <= 171 units"),
+ yaxt="n")
> axis(side=2, at=seq(0, 1, by=0.1), las=1,
+ labels=paste(seq(0,100,by=10), "%", sep=""))
> abline(h=0.9, lty=3) # "h=" for horizontal line; "lty=3" for dotted
> abline(v=quantile(store.df$p1sales, pr=0.9), lty=3) # "v=" for vertical line

The resulting plot is shown in Fig. 3.12. We often use cumulative distribution plots
both for data exploration and for presenting data to others. They are a good way
to highlight data features such as discontinuities in the data, long tails, and specific
points of interest.

3.4.5 Language Brief: by() and aggregate()

What should we do if we want to break out data by factors and summarize it, a
process you might know as “cross-tabs” or “pivot tables”? For example, how can
we compute the mean sales by store? We have voluminous data (every store by
every week by each product) but many marketing purposes only need an aggregate
figure such as a total or mean. We saw in Sect. 3.3.4 how to summarize data with

3.4 Single Variable Visualization 71

50 100 150 200 250

Cumulative distribution of P1 Weekly Sales

P1 weekly sales, all stores
90% of weeks sold <= 171 units

C
um

ul
at

iv
e

P
ro

po
rt

io
n

l llllllllll
lllll

lll
lll

ll
ll

ll
ll

ll
ll

ll
ll

ll
ll

ll
ll

l
ll

l
ll

ll
ll

ll
ll

l
ll

lll
ll

ll
lll

ll
ll

lll
ll

lll
ll

llll
lll

llll
llll

llllll
llllllllll

lllllllllllll
llllllll llllll llllll l l l

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 3.12. Cumulative distribution plot with lines to emphasize the 90th percentile. The chart
identifies that 90 % of weekly sales are lower than or equal to 171 units. Other values are easy
to read off the chart. For instance, roughly 10 % of weeks sell less than 100 units, and fewer

than 5 % sell more than 200 units.

various statistics and plots, and to summarize across columns with the apply()
function. Now we will see how to summarize by a factor within the data itself using
the commands by() and aggregate().

Let’s look first at by(data=DATA, INDICES=INDICES, FUN=FUNCTION).
by() uses INDICES as grouping factors to divide DATA into subgroups. Then it
applies the function FUN to each subgroup.

This is easier to understand in the context of an example. Suppose we wish to find
the average sales of P1 by store. The DATAwould be the weekly sales for each store,
store.df$p1sales. We wish to split this by store, so the INDICES (actually,
“index” in this case) would be store.df$storeNum. Finally, we get the average
of each of those groups by using the mean function. Here is the complete command
to break out mean sales of P1 by store:

> by(store.df$p1sales, store.df$storeNum, mean)
store.df$storeNum: 101
[1] 130.5385
--
store.df$storeNum: 102
[1] 134.7404
...

To group it by more than one factor, use a list() of factors. For instance, we can
obtain the mean of p1sales by store and by year:

> by(store.df$p1sales, list(store.df$storeNum, store.df$Year), mean)
: 101
: 1
[1] 127.7885
--
: 102

72 3 Describing Data

: 1
[1] 129.7115
...

A limitation of by() is that the result is easy to read but not structured for
reuse. How can we save the results as data to use for other purposes such as
plotting?

The answer is aggregate() which operates almost identically to by() but re-
turns a nicely formatted data frame. The following computes the total (sum()) sales
of P1 by country:
> aggregate(store.df$p1sales, by=list(country=store.df$country), sum)
country x

1 AU 14544
2 BR 27836
3 CN 27381
4 DE 68876
5 GB 40986
6 JP 55381
7 US 41737

How does this work? Just as with by(), aggregate(x=DATA, by=BY,
FUN=FUNCTION) applies a particular function (FUN) according to divisions of
the data specified by a factor (by). We want to find the total sales by country, so we
apply the mean function by store.df$country.

If we want to save the result as a new data frame, we simply assign it somewhere—
as we do now because we will use it in Sect. 3.4.6 to make a map:
> p1sales.sum <- aggregate(store.df$p1sales,
+ by=list(country=store.df$country), sum)

> p1sales.sum
country x

1 AU 14544
2 BR 27836
3 CN 27381
...

aggregate() gave us a nicely structured data frame with our summary. We will
see further options for aggregate() in Sect. 5.2.1.

3.4.6 Maps

We often need to plot marketing data on a map. A common variety is a choropleth
map, which uses graphics or color to indicate values of a variable such as income or
sales. We consider how to do this for a world map using the rworldmap package
[146].

Here is a routine example. Suppose that we want to chart the total sales by coun-
try. We use aggregate() as in Sect. 3.4.5 to find the total sales of P1 by
country:

3.4 Single Variable Visualization 73

p1sales.sum <- aggregate(store.df$p1sales,
by=list(country=store.df$country), sum)

To make a map, we’ll use the rworldmap package for plotting routines [146], plus
the RColorBrewer package [121] to generate some better-looking colors.

> install.packages(c("rworldmap", "RColorBrewer")) # if needed
> library(rworldmap)
> library(RColorBrewer)

First, we have to associate the aggregated data with specific map regions using
the country codes. This can be done with the joinCountryData2Map() func-
tion, which matches country locations (store.df$country) for data points with
the corresponding international standard names (ISO names) and returns a map
object:

> p1sales.map <- joinCountryData2Map(p1sales.sum, joinCode = "ISO2",
nameJoinColumn = "country")

Let’s inspect that command more closely. The data object that we wish to map is
the p1sales.sum aggregated data frame. We place that on a map according to the
2-letter country names (joinCode="ISO2") which are present in the data object
as the "country" column.

Next we draw the resulting map object using mapCountryData(), selecting
colors from the RColorBrewer package “Greens” palette. We plot the column
named x because that is the default name that the aggregate() function gives in
the aggregated data fame:

> mapCountryData(p1sales.map, nameColumnToPlot="x",
+ mapTitle="Total P1 sales by Country",
+ colourPalette=brewer.pal(7, "Greens"),
+ catMethod="fixedWidth", addLegend=FALSE)

The result is shown in Fig. 3.13, known as a choropleth chart.

Although such maps are popular, they can be misleading. In The Wall Street Journal
Guide to Information Graphics, Wong explains that choropleth charts are problem-
atic because they confuse geographic area with scaled quantities [168, p. 90]. For
instance, in Fig. 3.13, China is more prominent than Japan not because it has a
higher value but because it is larger in size. We acknowledge the need for caution
despite the popularity of such maps.

For more complex charts, there are options in ?rworldmap for drawing regional
maps, more granular areas, setting color palettes, using locations other than country
codes, and so forth. For other mapping options, see the suggestions in Sect. 3.5
below.

74 3 Describing Data

Total P1 sales by Country

Fig. 3.13. World map for P1 sales by country, using rworldmap.

3.5 Learning More*

Plotting. We demonstrate plotting in R throughout this book. R has multiple, often
disjoint solutions for plotting and in this text we use plots as appropriate without
going deeply into their details. The base plotting system comes standard in R and
appears in commands such as hist() and plot().

Two popular and powerful packages that produce more complex graphics are
lattice [141] and ggplot2 [162]. The choice between lattice and
ggplot2 is largely a matter of personal preference and style. We sometimes
suspect that lattice appeals more to scientists and engineers while ggplot2
appeals to computer scientists and social scientists. Chang’s R Graphics Cookbook
[24] is a single volume overview of many kinds of plots available in R, focused on
the ggplot2 package.

Wong’s The Wall Street Journal Guide to Information Graphics [168] presents fun-
damentals of good style for effective graphics in any business context (not specific
to R).

Maps. Producing maps in R is an especially complex topic. Maps require three
essential components: shape files that define the borders of areas (such as country
or city boundaries); spatial translation of one’s data (for instance, a database to
match Zip codes in your data to the relevant areas on a map); and plotting software
to perform the actual plotting. R packages such as rworldmap usually provide
access to all three of those elements.

As of this writing, the landscape of available packages and tools for mapping in
R was changing rapidly. We use the rworldmap package here for its simplicity.

3.6 Key Points 75

For more complex tasks, the ggplot2 package [162] serves as the basis for a
sophisticated mapping tool, the ggmap package [90].

3.6 Key Points

The following guidelines and pointers will help you to describe data accurately and
quickly:

• Consider simulating data before collecting it, in order to test your assumptions
and develop initial analysis code (Sect. 3.1).

• Always check your data for proper structure and data quality using str(),
head(), summary(), and other basic inspection commands (Sect. 3.3.3).

• Describe discrete (categorical) data with table() (Sect. 3.2.1) and inspect
continuous data with describe() from the psych package (Sect. 3.3.2).

• Histograms (Sect. 3.4.1) and boxplots (Sect. 3.4.2) are good for initial data
visualization.

• Use by() and aggregate() to break out your data by grouping variables
(Sect. 3.4.5).

• Advanced visualization methods include cumulative distribution (Sect. 3.4.4),
normality checks (Sect. 3.4.3), and mapping (Sect. 3.4.6).

4

Relationships Between Continuous Variables

Experienced analysts understand that the most important insights in marketing
analysis often come from understanding relationships between variables. While it
is helpful to understand single variables, such as how many products are sold at
a store, more valuable insight emerges when we understand relationships such as
“Customers who live closer to our store visit more often than those who live farther
away,” or “Customers of our online shop buy as much in person at the retail shop as
do customers who do not purchase online.”

Identifying these kinds of relationships helps marketers to understand how to reach
customers more effectively. For example, if people who live closer to a store visit
more frequently and buy more, then an obvious strategy would be to send advertise-
ments to people who live in the area.

In this chapter we focus on understanding the relationships between pairs of vari-
ables in multivariate data, and examine how to visualize the relationships and com-
pute statistics that describe their associations (correlation coefficients). These are the
most important ways to assess relationships between continuous variables. While it
might seem appealing to go straight into building regression models (see Chap. 7),
we caution against that. The first step in any analysis is to explore the data and its ba-
sic properties. This chapter continues the data exploration and visualization process
that we reviewed for single variables in Chap. 3. It often saves time and heartache to
begin by examining the relationships among pairs of variables before building more
complex models.

4.1 Retailer Data

We simulate a data set that describes customers of a multi-channel retailer and their
transactions for 1 year. This data includes a subset of customers for whom we have
survey data on product satisfaction.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 4

77

78 4 Relationships Between Continuous Variables

As in Chap. 3, we present the code that generates this data as a way to teach more
about R syntax. However, if you prefer to jump right into the analysis, you could
quickly run all the commands in Sect. 4.1.1 and then continue with Sect. 4.2 where
we begin plotting the data.

Alternatively, the following will load the data from this book’s website:

> cust.df <- read.csv("http://goo.gl/PmPkaG")

However, you will learn more about R if you work through the simulation code
instead of downloading the data.

4.1.1 Simulating Customer Data

In this section, we create a data set for 1,000 customers of a retailer who sells prod-
ucts in stores and online. This data is typical of what one might sample from a
company’s customer relationship management (CRM) system. We begin by setting
a random number seed to make the process repeatable (as described in Sect. 3.1.2)
and creating a data frame to store the data:

> set.seed(21821)
> ncust <- 1000
> cust.df <- data.frame(cust.id=as.factor(c(1:ncust)))

We declare a variable ncust for the number of customers in the synthetic data
set and use that variable wherever we need to refer to the number of customers.
This is a good practice, as it allows you to change ncust in just one place in your
code and then re-run the code to generate a new data set with a different number of
customers.

Next we create a number of variables describing the customers, add those variables
to the cust.df data frame, and inspect them with summary():

> cust.df$age <- rnorm(n=ncust, mean=35, sd=5)
> cust.df$credit.score <- rnorm(n=ncust, mean=3*cust.df$age+620, sd=50)
> cust.df$email <- factor(sample(c("yes", "no"), size=ncust, replace=TRUE,
+ prob=c(0.8, 0.2)))
> cust.df$distance.to.store <- exp(rnorm(n=ncust, mean=2, sd=1.2))

> summary(cust.df)
cust.id age credit.score email distance.to.store

1 : 1 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
2 : 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383
3 : 1 Median :35.10 Median :725.5 Median : 7.1317
4 : 1 Mean :34.92 Mean :725.5 Mean : 14.6553
5 : 1 3rd Qu.:38.20 3rd Qu.:757.2 3rd Qu.: 16.6589
6 : 1 Max. :51.86 Max. :880.8 Max. :267.0864
(Other):994

4.1 Retailer Data 79

We add new variables to cust.df data frame using simple assignment (<-) to a
name with $ notation. Columns in data frames can be easily created or replaced in
this way, as long as the vector has the appropriate length (or is recycled to fit the
length).

The customers’ ages (age) are drawn from a normal distribution with mean
35 and standard deviation 5 using rnorm(n, mean, sd). Credit scores
(credit.score) are also simulated with a normal distribution, but in that case we
specify that the mean of the distribution is related to the customer’s age, with older
customers having higher credit scores on average. We create a variable (email)
indicating whether the customer has an email on file, using the sample function
that was covered in Chap. 3.

Our final variable for the basic CRM data is distance.to.store, which
we assume follows the exponential of the normal distribution. That gives dis-
tances that are all positive, with many distances that are relatively close to the
nearest store and fewer that are far from a store. To see the distribution for
yourself, try hist(cust.df$distance.to.store). Formally, we say that
distance.to.store follows a lognormal distribution. (This is sufficiently
common that there is a built-in function called rlnorm(n, meanlog, sdlog)
that does the same thing as taking the exponential of rnorm().)

4.1.2 Simulating Online and In-Store Sales Data

Our next step is to create data for the online store: 1 year totals for each customer for
online visits and transactions, plus total spending. We simulate the number of visits
with a negative binomial distribution, a discrete distribution often used to model
counts of events over time. Like the lognormal distribution, the negative binomial
distribution generates positive values and has a long right-hand tail, meaning that
in our data most customers make relatively few visits and a few customers make
many visits. Data from the negative binomial distribution can be generated using
rnbinom():

> cust.df$online.visits <- rnbinom(ncust, size=0.3,
+ mu = 15 + ifelse(cust.df$email=="yes", 15, 0)
+ - 0.7 * (cust.df$age-median(cust.df$age)))

We model the mean (mu) of the negative binomial with a baseline value of 15. The
size argument sets the degree of dispersion (variation) for the samples. We add an
average 15 online visits for customers who have an email on file, using ifelse()
to generate a vector of 0 or 15 as appropriate. Finally, we add or subtract visits
from the target mean based on the customer’s age relative to the sample median;
customers who are younger are simulated to make more online visits. To see ex-
actly how this works, try cutting and pasting pieces of the code above into the R
console.

80 4 Relationships Between Continuous Variables

For each online visit that a customer makes, we assume there is a 30 % chance
of placing an order and use rbinom() to create the variable online.trans.
We assume that amounts spent in those orders (the variable online.spend) are
lognormally distributed:

> cust.df$online.trans <- rbinom(ncust, size=cust.df$online.visits, prob=0.3)
> cust.df$online.spend <- exp(rnorm(ncust, mean=3, sd=0.1)) *
+ cust.df$online.trans

The random value for amount spent per transaction—sampled with exp(rnorm())
is multiplied by the variable for number of transactions to get the total amount
spent.

Next we generate in-store sales data similarly, except that we don’t generate a count
of store visits; few customers visit a physical store without making a purchase and
even if customers did visit without buying, the company probably couldn’t track
the visit. We assume that transactions follow a negative binomial distribution, with
lower average numbers of visits for customers who live farther away. We model
in-store spending as a lognormally distributed variable simply multiplied by the
number of transactions:

> cust.df$store.trans <- rnbinom(ncust, size=5,
+ mu=3 / sqrt(cust.df$distance.to.store))
> cust.df$store.spend <- exp(rnorm(ncust, mean=3.5, sd=0.4)) *
+ cust.df$store.trans

As always, we check the data along the way:

> summary(cust.df)
cust.id age credit.score email distance.to.store

1 : 1 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
2 : 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383

...
online.spend store.trans store.spend
Min. : 0.00 Min. : 0.000 Min. : 0.00
1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.00
Median : 37.03 Median : 1.000 Median : 30.05

...

4.1.3 Simulating Satisfaction Survey Responses

It is common for retailers to survey their customers and record responses in the
CRM system. Our last simulation step is to create survey data for a subset of the
customers.

To simulate survey responses, we assume that each customer has an unobserved
overall satisfaction with the brand. We generate this overall satisfaction from a nor-
mal distribution:

> sat.overall <- rnorm(ncust, mean=3.1, sd=0.7)
> summary(sat.overall)

4.1 Retailer Data 81

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.617 2.632 3.087 3.100 3.569 5.293

We assume that overall satisfaction is a psychological construct that is not directly
observable. Instead, the survey collects information on two items: satisfaction with
service, and satisfaction with the selection of products. We assume that customers’
responses to the survey items are based on unobserved levels of satisfaction overall
(sometimes called the “halo” in survey response) plus the specific levels of satisfac-
tion with the service and product selection.

To create such a score from a halo variable, we add sat.overall (the halo)
to a random value specific to the item, drawn using rnorm(). Because survey
responses are typically given on a discrete, ordinal scale (i.e., “very unsatisfied”,
“unsatisfied”, etc.), we convert our continuous random values to discrete integers
using the floor() function.

> sat.service <- floor(sat.overall + rnorm(ncust, mean=0.5, sd=0.4))
> sat.selection <- floor(sat.overall + rnorm(ncust, mean=-0.2, sd=0.6))
> summary(cbind(sat.service, sat.selection))
sat.service sat.selection
Min. :0.000 Min. :-1.000
1st Qu.:3.000 1st Qu.: 2.000

...
Max. :6.000 Max. : 5.000

Note that we use cbind() to temporarily combine our two vectors of data into a
matrix, so that we can get a combined summary with a single line of code. The sum-
mary shows that our data now ranges from −1 to 6. However, a typical satisfaction
item might be given on a 5-point scale. To fit that, we replace values that are greater
than 5 with 5, and values that are less than 1 with 1. This enforces the floor and
ceiling effects often noted in survey response literature.

We set the ceiling by indexing with a vector that tests whether each element of
sat.service is greater than 5): sat.service[sat.service > 5]. This
might be read as “sat.service, where sat.service is greater than 5.” For the elements
that are selected—which means that the expression evaluates as TRUE—we replace
the current values with the ceiling value of 5. We do the same for the floor effects
(< 1, replacing with 1) and likewise for the ceiling and floor of sat.selection.
While this sounds quite complicated, the code is simple:

> sat.service[sat.service > 5] <- 5
> sat.service[sat.service < 1] <- 1
> sat.selection[sat.selection > 5] <- 5
> sat.selection[sat.selection < 1] <- 1
> summary(cbind(sat.service, sat.selection))
sat.service sat.selection

Min. :1.000 Min. :1.000
...
Max. :5.000 Max. :5.000

82 4 Relationships Between Continuous Variables

Using this type of syntax to replace values in a vector or matrix is common in R,
and we recommend that you try out some variations (being careful not to overwrite
the cust.df data, of course).

4.1.4 Simulating Non-Response Data

Because some customers do not respond to surveys, we eliminate the simulated an-
swers for a subset of respondents who are modeled as not answering. We do this by
creating a variable of TRUE and FALSE values called no.response and then as-
signing a value of NA for the survey response for customers whose no.response
is TRUE. As we have discussed, NA is R’s built-in constant for missing data.

We model non-response as a function of age, with higher likelihood of not respond-
ing to the survey for older customers:

> no.response <- as.logical(rbinom(ncust, size=1, prob=cust.df$age/100))
> sat.service[no.response] <- NA
> sat.selection[no.response] <- NA
> summary(cbind(sat.service, sat.selection))
sat.service sat.selection
Min. :1.00 Min. :1.000
1st Qu.:3.00 1st Qu.:2.000
Median :3.00 Median :2.000
Mean :3.07 Mean :2.401
3rd Qu.:4.00 3rd Qu.:3.000
Max. :5.00 Max. :5.000
NA’s :341 NA’s :341

summary() recognizes the 341 customers with NA values and excludes them from
the statistics.

Finally, we add the survey responses to cust.df and clean up the workspace:

> cust.df$sat.service <- sat.service
> cust.df$sat.selection <- sat.selection
> summary(cust.df)

cust.id age credit.score email distance.to.store
1 : 1 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
2 : 1 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383
...
store.spend sat.service sat.selection

Min. : 0.00 Min. :1.000 Min. :1.000
...
Max. :705.66 Max. :5.000 Max. :5.000

NA’s :341 NA’s :341

> rm(ncust, sat.overall, sat.service, sat.selection, no.response)

The data set is now complete and ready for analysis.

4.2 Exploring Associations Between Variables with Scatterplots 83

4.2 Exploring Associations Between Variables
with Scatterplots

Our analysis begins by checking the data with str() to review its structure:

> str(cust.df)
’data.frame’: 1000 obs. of 12 variables:
$ cust.id : Factor w/ 1000 levels "1","2","3","4",..: 1 2 3 ...
$ age : num 22.9 28 35.9 30.5 38.7 ...
$ credit.score : num 631 749 733 830 734 ...
$ email : Factor w/ 2 levels "no","yes": 2 2 2 2 1 2 2 2 1 1 ...
$ distance.to.store: num 2.58 48.18 1.29 5.25 25.04 ...
$ online.visits : num 20 121 39 1 35 1 1 48 0 14 ...
$ online.trans : int 3 39 14 0 11 1 1 13 0 6 ...
$ online.spend : num 58.4 756.9 250.3 0 204.7 ...
$ store.trans : num 4 0 0 2 0 0 2 4 0 3 ...
$ store.spend : num 140.3 0 0 95.9 0 ...
$ sat.service : num 3 3 NA 4 1 NA 3 2 4 3 ...
$ sat.selection : num 3 3 NA 2 1 NA 3 3 2 2 ...

As we noted above, in this data frame each row represents a different customer. For
each, there is a flag indicating whether the customer has an email address on file
(email), along with the customer’s age, credit.score, and distance to the
nearest physical store (distance.to.store).

Additional variables report 1-year total visits to the online site (online.visits)
as well as online and in-store transaction counts (online.trans and store.
trans) plus 1-year total spending online and in store (online.spend and
store.spend). Finally, the data contains survey ratings of satisfaction with
the service and product selection at the retail stores (sat.service and
sat.selection). Some of the survey values are NA for customers without
survey responses. All values are numeric, except that cust.df$cust.id and
cust.df$email are factors (categorical). We’ll say more shortly about why the
details of the data structure are so important.

4.2.1 Creating a Basic Scatterplot with plot()

We begin by exploring the relationship between each customer’s age and credit score
using plot(x, y), where x is the x-coordinate vector for the points and y is the
y-coordinate vector:

> plot(x=cust.df$age, y=cust.df$credit.score)

The code above produces the graphic shown in the left panel of Fig. 4.1, a fairly
typical scatterplot. There is a large mass of customers in the center of the plot with
age around 35 and credit score around 725, and fewer customers at the margins.
There are not many younger customers with very high credit scores, nor older cus-
tomers with very low scores, which suggests an association between age and credit
score.

84 4 Relationships Between Continuous Variables

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l
l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l l

l

l

l
l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

20 25 30 35 40 45 50

55
0

60
0

65
0

70
0

75
0

80
0

85
0

cust.df$age

cu
st

.d
f$

cr
ed

it.
sc

or
e

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l
l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l l

l

l

l l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

20 30 40 50

50
0

60
0

70
0

80
0

90
0

Active Customers as of June 2014

Customer Age (years)

C
us

to
m

er
 C

re
di

t S
co

re

Fig. 4.1. Basic scatterplot of customer age versus credit score using default settings in
plot() function (left), and a properly labeled version of the same plot (right).

The default settings in plot() produce a quick plot that is useful when you are
exploring the data for yourself; plot() adjusts the x- and y-axes to accommodate
the range of the data and labels the axes using variable names. But if we present the
plot to others, we ought to provide more informative labels for the axes and chart
title:

> plot(cust.df$age, cust.df$credit.score,
+ col="blue",
+ xlim=c(15, 55), ylim=c(500, 900),
+ main="Active Customers as of June 2014",
+ xlab="Customer Age (years)", ylab="Customer Credit Score ")
> abline(h=mean(cust.df$credit.score), col="dark blue", lty="dotted")
> abline(v=mean(cust.df$age), col="dark blue", lty="dotted")

We do not specifically name x= and y= here because, when names of arguments
are omitted, a function such as plot() assumes that they line up in order as listed
in a function’s definition (and shown in help). We use the argument col to color
the points blue. xlim and ylim set a range for each axis. main, xlab, and ylab
provide a descriptive title and axis labels for the chart. The result on the right side of
Fig. 4.1 is labeled well enough that someone viewing the chart can easily understand
what it depicts.

After creating the plot, we use abline() to add lines to the plot, to indicate
the average age and average credit score in the data. We add a horizontal line at
mean(cust.df$credit.score) using abline(h=), and a vertical line at
the mean age with abline(v=).

Often, plots are built up using a series of commands like this. The first step is to use
plot() to set up the basic graphics; then add features with other graphics com-
mands. Some of the most useful functions are points() to add specific points,
abline() to add a line by slope and intercept, lines() to add a set of lines by

4.2 Exploring Associations Between Variables with Scatterplots 85

coordinates, and legend() to add a legend (see Sect. 4.2.3). Each of these adds
elements to a plot that has already been created using plot().

Before we move on, we should make an important note about how the plot()
command works in R. When you type plot() into the console, R looks at what
type of data you are trying to plot and, based on the data type, R will choose a spe-
cific lower-level plotting function, known as a method, that is appropriate to the data
you are trying to plot. When we call plot() with vectors of x and y coordinates,
R uses the plot.default() function. However, there are many other plotting
functions for different data types. For example, if you plot the cust.df data frame
by typing plot(cust.df) into the console, R will use plot.data.frame()
instead of plot.default(). This produces one of several plot types depending
on the number of dimensions in the data frame; in this case, it produces a scatterplot
matrix, which we review in Sect. 4.4.2.

While this may seem like an obtuse detail of the language, it is important to general
R users for two reasons. First, help files for generic functions like plot() and
summary() may be rather unhelpful because they describe the generic methods;
often you need to navigate to the help file for the specific method that you are using.
For instance, to learn more about the plotting function we are using in this chapter,
you should type ?plot.default into the console.

Second, when plot() produces something unexpected, it may be because R has
selected a different method than you expect. If so, check the data types of the vari-
ables you’re sending to plot() because R uses those to select a plot method.
Despite this complexity, generic functions are convenient because you only have
to remember one function name such as plot() instead of many. When you need
to figure out more, you can check the methods available for plot(), depending on
the packages you are using, by typing methods(plot).

We next turn to an important marketing question: in our data, do customers who
buy more online buy less in stores? We start by plotting online sales against in-store
sales:

> plot(cust.df$store.spend, cust.df$online.spend,
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Prior 12 months online sales ($)",
+ cex=0.7)

The resulting plot in Fig. 4.2 is typical of the skewed distributions that are common
in behavioral data such as sales or transaction counts; most customers purchase
rarely so the data is dense near zero. The resulting plot has a lot of points along the
axes; we use the cex option, which scales down the plotted points to 0.7 of their
default size so that we can see the points a bit more clearly. The plot shows that
there are a large number of customers who didn’t buy anything on one of the two
channels (the points along the axes), along with a smaller number of customers who
purchase fairly large amounts on one of the channels.

86 4 Relationships Between Continuous Variables

l

l

l

l

l

l l

l

l

l

l ll

l

l ll

l
l

l
l

l

l

l

l

l

l

l

ll

l

l

l

lll

l

l lll l

l

ll

l

l

l

lll

l

l
l

l

l

l

lll

l

ll l

l

l

l

ll lll l l

l
ll ll l lll l

l

llll

l

l ll

ll

l

l

l

l

l

l

l l

l

l

l

ll
l

l

l

l l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l
l

l

l

l

l

l

l

ll l

l

l ll

l

l
l

l

l
l lll

l

l

l

l

lll

ll

l ll l

l

l

l

l
l

ll

l
l

l
l

l

l
l l

l

l
l

l

l

l
ll l l

l
l

l

l

l l l

l

ll
l

l

l

l
l

l
l

l
l

l l

l

l

l

l
l

l

l

l

l l

l

l
l

l

l l

l

l

lll

l

l

l
l

ll

l

l
l ll l

l

l

l
l ll

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l ll

l

l
ll

l

l

l

l
l

l
l

l
l

ll

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l l

ll

l

l

ll

l

ll
l

l ll

l

l

l
l

l

lll
l

l

l

l

l

l

l

ll lll

l

l

l

ll

l

l

l

l

l
l lll

l

l

l

l
l

l

l
l

l

l

l

l

ll

ll

l
l l

ll

l

l l l

l

l l
l l

l

l

l

l
ll l l

l
l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

ll l

l

l

l l

l

l

ll
l

l

l

l

l

lll

l

l ll l

l

l

l

l

l l

l ll l

l

l

l

l

l l

ll

l

l

l

l

lll

l
l

ll

l

l

l

l

l

l

ll
l

l

l ll

l

l
ll

l l

l

l

l

l

ll l ll l

l

l l

l

l

l

l

l

l

l l
l

lllll

l

ll

l

l

l
ll l

lll

l

ll l

l

l
l
l

l

l

l

l

l

l

l

l

l l l

l

l

l

l
l

l

l

l ll lll ll l

l

l
ll

ll

l

l

l

ll

l
l l

l ll

l

l

l

l

l

l

l

l

l

ll

l

l ll l
l

l

l

lll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

ll
l l

l

l

l

ll
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l lll
l

l
l

l

l

l

l ll ll

l

l

l

l
ll

l

ll

l

ll

l ll
ll ll

l

l

l

l

l

l

l l

lll l

l

l

l

l

l

l

l

l
l

l
l

ll ll

l

l

l

l

llll

l

l

l

l l llll l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l

l l
l

l

l
l

l

l

ll l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l l
l

l

ll ll

l
l

l l

l

l

lll ll ll

l

l

l

l

l

ll

l

ll

l

l

l l

l

l

l

l

l

l ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll ll
l l

l

l
l

l

l

l

l

l

l ll

l

ll

l

l l
l

lll

l

l

l

ll
l

l

l

l

l

l l

l

l

l

ll ll
l

l

l
l
l l

l

ll l l
l l

l

l

l
l

ll ll l l

l

l

l

lll

l

l

ll l

l

ll
l l l

l

l

l

ll

l

l

l
l l

l ll l
l

lll l
l

l

l

ll

ll

l

l

l

l

l

l

l

ll ll

l

ll
l

l

l

l

l

l

l l ll

l

ll

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r
12

 m
on

th
s

on
lin

e
sa

le
s

($
)

Fig. 4.2. Scatterplot of online sales ver-
sus in-store sales for the customers in our
data set.

Because of the skewed data, Fig. 4.2 does not yet give a good answer to our question
about the relationship between online and in-store sales. We investigate further with
a histogram of just the in-store sales (see Sect. 3.4 for hist()):

hist(cust.df$store.spend,
+ breaks=(0:ceiling(max(cust.df$store.spend)/10))*10,
+ main="Customers as of June 2014",
+ xlab="Prior 12 months online sales ($)",
+ ylab="Count of customers")

The histogram in Fig. 4.3 shows clearly that a large number of customers bought
nothing in the online store (about 400 out of 1,000). The distribution of sales among
those who do buy has a mode around $20 and a long right-hand tail with a few
customers whose 12-month spending was high. Such distributions are typical of
spending and transaction counts in customer data.

4.2.2 Color-Coding Points on a Scatterplot

Another question is whether the propensity to buy online versus in store is related
to our email efforts (as reflected by whether or not a customer has an email address
on file). We can add the email dimension to the plot in Fig. 4.2 by coloring in
the points for customers whose email address is known to us. To do this, we use
plot() arguments that allow us to draw different colors (col=) and symbols for
the points (pch=). Each argument takes a vector that specifies the option—the color
or symbol—that you want for each individual point. Thus, if we provide a vector
of colors of the same length as the vectors of x and y values, col= will use the
corresponding colors for each point. Constructing such vectors can be tricky, so we
will build them up slowly.

4.2 Exploring Associations Between Variables with Scatterplots 87
Customers as of June 2014

Prior 12 months online sales ($)

C
ou

nt
 o

f c
us

to
m

er
s

0 100 200 300 400 500 600 700

0
10

0
20

0
30

0

Fig. 4.3. A histogram of prior 12 months
online sales reveals more clearly a large
number of customers who purchase noth-
ing along with a left-skewed distribu-
tion of sales among those who purchase
something.

To begin, we first declare vectors for the color and point types that we want to use:

> my.col <- c("black", "green3")
> my.pch <- c(1, 19) # R’s symbols for solid and open circles (see ?points)

We use green3 as a slightly darker shade of green. It is often helpful to review all
the color names in colors() to find such options.

With these defined, we can select the appropriate color and plotting symbol for each
customer simply by using cust.df$email to index them. How does this work?
The factor email is converted to a numeric value under the hood (1 for no and 2
for yes) and then that value is used to select colors.

Let’s see how that works (using just the head() of the data for brevity). First we
see that email is a factor, which we could coerce to numeric values:

> head(cust.df$email)
[1] yes yes yes yes no yes
Levels: no yes
> as.numeric(head(cust.df$email))
[1] 2 2 2 2 1 2

If we use those numbers to index my.col, then we get the matching color for each
value of email:

> my.col[as.numeric(head(cust.df$email))]
[1] "green3" "green3" "green3" "green3" "black" "green3"

However, it’s tedious (although error-resistant) to write as.numeric() all
the time, and R understands what we want just by indexing with the factor
directly:

> my.col[head(cust.df$email)]
[1] "green3" "green3" "green3" "green3" "black" "green3"

88 4 Relationships Between Continuous Variables

Now that we have a vector of colors, we can pass it as the col option in plot()
to get a plot where customers with emails on file are plotted in green and customers
without email addresses on file are plotted in black. We use a similar strategy for
setting the point styles using the pch option, such that customers without email
addresses have open circles instead of solid. The complete code is:

> plot(cust.df$store.spend, cust.df$online.spend,
+ cex=0.7,
+ col=my.col[cust.df$email], pch=my.pch[cust.df$email],
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Prior 12 months online sales ($)")

The resulting plot appears in the left panel of Fig. 4.4.

When we created Fig. 4.1 earlier, we used an option col="blue" and it turned
all of the points blue. This is because if the vector you pass for col is shorter than
the length of x and y, then R recycles the values. Thus, if your col vector has
one element, all the points will be that single color. Similarly, if you were to pass
the vector c("black", "green3"), then plotwould simply make alternating
points black or green, which might not be what you want. Usually what you’ll want
is to create a vector that exactly matches the length of your data by starting with a
shorter vector as we did here, and then indexing it with [] such that you extract a
value for each one of your data points. That can be difficult to get right in practice,
so we encourage you to experiment with these examples until you understand how
it works.

4.2.3 Adding a Legend to a Plot

Given that we’ve colored some points in our chart, it would be helpful to add a
legend that explains the colors. We can do this using legend().

> legend(x="topright", legend=paste("email on file:", levels(cust.df$email)),
+ col=my.col, pch=my.pch)

The legend() function can be frustrating, but the idea is relatively simple. The
first input to legend() is x=LOCATION, which sets the location of the legend
on the plot. Then you specify the legend argument, which is a vector of labels
that you want to include in the legend. In the present case, we use paste() to
create the labels "email on file: no" and "email on file: yes" by
adding the constant string "email on file:" to the factor levels of email.
Next, you define the markers to associate with those labels in the legend. Because
we defined these with my.col and my.pch, we reuse those here.

Although the code to create the legend is compact, it is a hassle to track the details
of labels, colors, and symbols. Our recommendation is to define the argument values
in a reusable way as we have done here using definition vectors such as my.col

4.2 Exploring Associations Between Variables with Scatterplots 89

and my.pch. An alternative would be to invest in learning a specialized graphics
package such as lattice or ggplot2. Those packages handle legends in more
sophisticated ways that we do not explore in depth here (see Sect. 3.5).

4.2.4 Plotting on a Log Scale

With raw values as plotted in the left panel of Fig. 4.4, it is still difficult to see
whether there is a different relationship between in-store and online purchases for
those with and without emails on file, because of the heavy skew in sales fig-
ures. A common solution for such scatterplots with skewed data is to plot the data
on a logarithmic scale. This is easy to do with the log= argument of plot():
set log="x" to plot the x-axis on the log scale, log="y" for the y-axis, or
log="xy" for both axes.

l

l

l

l

l

ll l

l

lll l

l
ll

l

l

ll

l

l

ll l

l

lll

l

l
l

lll

l

l

l
l l

l

l l

l

l
l

l

l
l l

l

l
ll l

l
l

l
ll

l
l l l

l

l
l

l

ll
l

ll

l

ll ll l
l

l

l

l

l

l llll l

l

l

l l l lll ll

l

l

l

l ll

l

l

l ll

l

l

l

l
l

ll lll ll
l

l
l

l

lll

ll

l

l

ll

l

l

l
l

l

l

l

l

l

lll

l

lllll l
l

l

l

l

l

l
l

l

l
l

ll

l

ll
l lll l ll l

l

l

ll
l

ll

l

0 100 200 300 400 500 600 700

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r
12

 m
on

th
s

on
lin

e
sa

le
s

($
)

l email on file: no
email on file: yes

l

l

l

l

l

l

l l

l

lll l

l

l

l

l

l

l
l

l

l

ll l

l

lll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll l

l

l

l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

l

l ll l

l

l

l

l

l

l

llll l

l

l

l l l lll l

l

l

l

l

l ll

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

lll

l

ll

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll l ll l

l

l

l l

l

l

l

l

1 2 5 10 20 50 100 200 500

1
5

10
50

10
0

50
0

Customers as of June 2014

Prior 12 months in−store sales ($)

P
rio

r
12

 m
on

th
s

on
lin

e
sa

le
s

($
)

l email on file: no
email on file: yes

Fig. 4.4. Scatterplots of online sales vs. in-store sales by customer. On the left, we see a typical
extremely skewed plot using raw sales values; data is grouped along the x and y axes because
many customers purchase nothing. On the right, plotting the log() of sales separates zero
and non-zero values more clearly, and reveals the association among those who purchase in

the two channels (see Sect. 4.2.4).

For cust.df, because both online and in-store sales are skewed, we use a log scale
for both axes:

> plot(cust.df$store.spend + 1, cust.df$online.spend + 1,
+ log="xy", cex=0.7,
+ col=my.col[cust.df$email], pch=my.pch[cust.df$email],
+ main="Customers as of June 2014",
+ xlab="Prior 12 months in-store sales ($)",
+ ylab="Prior 12 months online sales ($)")
> legend(x="topright", legend=paste("email on file:", levels(cust.df$email)),
+ col=my.col, pch=my.pch)

90 4 Relationships Between Continuous Variables

In this code, we plot ...spend + 1 to avoid an error due to the fact that log(0)
is not defined. In the right-hand side of Fig. 4.4, the axes are now logarithmic; for
instance, the distance from 1 to 10 is the same as 10–100.

On the right-hand panel of Fig. 4.4, it is easy to see a large number of customers
with no sales (the points at x = 1 or y = 1, which correspond to zero sales because
we added 1). It now appears that there is little or no association between online
and in-store sales; the scatterplot among customers who purchase in both channels
shows no pattern. Thus, there is no evidence here to suggest that online sales have
cannibalized in-store sales (a formal test of that would be complex, but the present
data do not argue for such an effect in any obvious way).

We also see in Fig. 4.4 that customers with no email address on file show slightly
lower online sales than those with addresses; there are somewhat more black circles
in the lower half of the plot than the upper half. If we have been sending email
promotions to customers, then this suggests that the promotions might be working.
An experiment to confirm that hypothesis could be an appropriate next step.

Did it take work to produce the final plot on the right side of Fig. 4.4? Yes, but the
result shows how a well-crafted scatterplot can present a lot of information about
relationships in data. Looking at the right-hand panel of Fig. 4.4, we have a much
better understanding of how online and offline sales are related to each other, and
whether each relates to having customers’ email on-file.

4.3 Combining Plots in a Single Graphics Object

Sometimes we want to visualize several relationships at once. For instance, suppose
we wish to examine whether customers who live closer to stores spend more in
store, and whether those who live further away spend more online. Those involve
different spending variables and thus need separate plots. If we plot several such
things individually, we end up with many individual charts. Luckily, R can produce
a single graphic that consists of multiple plots. You do this by telling R that you want
multiple plots in a single graphical object with the par(mfrow=...) command;
then simply plot each one with plot() as usual.

It is easiest to see how this works with an example:

> par(mfrow=c(2, 2))
> plot(cust.df$distance.to.store, cust.df$store.spend, main="store")
> plot(cust.df$distance.to.store, cust.df$online.spend, main="online")
> plot(cust.df$distance.to.store, cust.df$store.spend+1, log="xy",
+ main="store, log")
> plot(cust.df$distance.to.store, cust.df$online.spend+1, log="xy",
+ main="online, log")

Instead of four separate plots from the individual plot() commands, this code
produces a single graphic with four panels as shown in Fig. 4.5. The first line sets

4.3 Combining Plots in a Single Graphics Object 91

the graphical parameter mfrow to c(2, 2), which instructs R to create a single
graphic comprising a two-by-two arrangement of plots, which begins on the first
row and moves from left to right.

l

ll

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l ll
l
ll

l
l

l
l

l

l

l

l

ll

ll l l

l

l l

l
l

l
l
l

ll

l

l l

ll
l

ll
l

l

ll

l
ll

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

lll

l
l

l

l
lll

l

l

l

l

l

l
l

l

l

l
ll l

l

l
lllll

l ll

l

l
l

lll

l

l
l

l

l
l

l
ll

l

l

l

l

l
lll

l

l
l

l

l
l

l

l

l

l

ll
l

l

ll

l

ll

l

l

ll
l

ll
l

l

l
l

l

l

l
l

l

l

l

l lll l
l

l
l
l
ll

ll
ll

ll

l

l

l

l

l
l

l

ll

l

l
l

l
l

l

l

l

l

l
l

ll

l

l

l

l

llll l

l l

l

l

l

l

l

l

l

l

ll l

l

l
l

ll l
l

l

l

ll

l

l

l

l

l
ll

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l ll
l l

l
l

l

l

ll
l

ll
l

l

l

l
l

l

l
l

l

l
lll

l

l
l

l
l

l

l

l

l

l

l

l
l
ll

l
l

l

llll l
l

l

l
l
l

l
l
l
lll

l

l
l
l

ll

l

l l

l
l

l

l

l

l

ll ll

l

l

ll
ll

l
l

ll
l

l

l

l
l
ll

ll
l
lll ll

l

l

l

l

l
ll
l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

l
l

ll
l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l
l

ll
l

l

l

l
l

lll
l

l

l

l

l

l

lll ll

l

l

l
l

l l l

l
ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
ll

l
l

l
l

ll
l

l

l

l
l

l

l

ll
l

l

l

l

l

l
l

ll
l

l
l

lllll
l
l

l

l

l

l
l

l

llll
l
l

ll
l

l l
ll

l

l

l lll

l

l
l

ll

l

l

l

l

l l
l

l

l

ll
ll

ll

l

l
ll l

l
l
l

l
l

l

l

l

ll

l

l
l

l
l

l

l

l
l

ll

lll
l

l

l

l

l
ll ll

l

l

lll

l

l

ll
l

lll

l

l
l

l
l

l

l

l

l

l
l

l

ll

ll

l

ll l
ll

l
l

l

l

l

l

ll

l

l

l

l

l
l

l

l
l

l

l ll
lll

ll

l

l

l
l l

lll
l l

l

l
ll

l

l
ll

l

l
l l

l

ll ll

l
l

l

l
l

l ll ll
l

l
l l
l

l

l

l

l

l

l

l

l l
l

l

l

ll

l
l

l

l

ll l
l

l

ll
l

l

l

l

l
l

l
ll
ll l

l

l
l
l l

ll

ll l

l

l

l

l

l
l

l

l
l
l

ll

l

ll
l

l

l

l ll

l

l

ll

l

ll
l

l
l
l

l
l
l

ll

l
l

l

l
l l
l

l
l

l

l
l
l

ll

l

l

l
l

l

lll

l
l

l

l

l
l

l

l

l

l ll l

l

l

l

ll

l

ll

l

l l
l

ll

l
l
ll
l

l

l
lll

l

l
l

l

ll
ll
l
l

l ll
l
l
ll
ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l l

l
l

l
l

ll

l

l

l

l
l

l

lll
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l ll

l

lll
l

ll

l

l

l

l l
l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
lll

l

l

l

l
ll

l

l

l
l l

l

l

l

l

l

l
ll

ll lll

l

l

l

l

l
l

l

l

ll

ll

l ll ll

ll
l

l
l

l

l

l

l

l

0 50 100 150 200 250

0
20

0
40

0
60

0

store

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

l

l

l

l

l
ll

l

l
l
ll l

l

lll
ll

ll
l
l
ll

l
l

l

ll

l
l

l

lll
l

lll ll
l

ll

l

l

l

ll l
l
ll l

l

l

lll

l

lll

l
l

l
lll llll

ll ll l lllll
l

l lll

l

l lll l

l

l

l

l

l

l

ll
l

l

l

lll

l
l

ll

l

l
llll

l
l

l

l

l
l
l

l

l l

lll

l

l

ll
l

l
l

l

l

llllllll

l

l l

l

lll ll

l

ll
l

lll
ll
ll ll

l
l

l

ll l l

ll

ll

l

lll
l

lll

l

ll lll
ll

l

l

lll

l

llll
l

llll
ll

ll
l

l

l
l ll

l

l

ll
l

ll
l

l l

l
ll ll

l

l
llll

l

llll ll
l
lll l l

l

ll
l

l

l

l

l l

l

l
l

l

l

l lll
l

l ll

l

l

l
l lll

ll
ll
l

l

l

l

l

lll
l
l

l

ll

l

l

l

ll
ll

l

l
l l

l

ll llll
l

l

ll

l

llll

l

l
l

l

l

l

l llll
l

ll ll
l

l

l

l
ll ll lll

l

ll

l

ll

l

l

l
l

ll

ll lllll
l
lll

l

ll ll l
l

l
l ll ll
l l
ll

l

l
llll

l
ll

l
l

l

lll

l
l
ll

l
llll

l

l

l

l
ll l

l

l lllll
l

l

ll
ll ll

l

l

l
l

l l

l l
l

l
l

l
l ll

l l

l l
l

l

l

l

l
l

lll

l

ll l
l
lllll

l

l

l

l

llll lllll
l llll
l

ll l lllll
l
ll

l

l lllllll

l

lll
l

l l l

l
l

l
l

l

l

l

l

lll

l

l

l
ll
l

l
ll ll lllll

l
ll l

l l

l

l

l

ll

l lllll

l
l

l

l
l

l

l

l

l
l l
l
ll llll

l

l ll
l
l

l

l

l

l

l
ll

l l

l

l

l

l

l

ll

l

l

l

llll
l

l
l

lll

l

l
ll

l

l

l l

l

l

l

l
l
ll ll
l

l
l

lll ll ll

l

l

l

llll l
l

l

l

l lllll

l

ll
ll ll llll

l

l
l
l

l
ll

l ll ll

l

l

l

l

l

l
ll

l l
lll l

l
l

l

l
llll

l

l

l

lllll ll

l

l

l

l
ll

l
l

l
l

l
l

l

l

l

l

l l

l

ll

l
l

l
l
lllll l

l

l

lll

l

l
l

l

l
ll l

l

l
l

l

ll

l
l

llll

l

l
l

l
ll

l

l
ll l

l

llll
ll

ll

l

l

llll ll l

l

l

l

l

l

ll

l

ll

l

l
ll

l

l

l

l

l

lll

ll

l

l

l
l

l

l

l
l

l

l

l

l

llllll
l

ll

l

ll
l

l

lll

l

ll
l

ll llll

l

l

l l ll
l

l l

l

llll
l
lll ll

l

llll
l

llllll

l

l
lllll lll
l

l
l

lll

l

l

lll

l

l l lll
l

l

l

ll

l
l

lllll llllllll
l l

ll
ll

l

l
l

l
l

l

l

l lll

l

l ll

l

l ll

l

llll
l

ll

ll

l
l

ll
l

l

l

l l
l

l

ll l

0 50 100 150 200 250
0

10
00

20
00

30
00

online

cust.df$distance.to.store

cu
st

.d
f$

on
lin

e.
sp

en
d

l

ll

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l ll

l

ll

l
l

l

l

l

l

l

l

l
l

ll l l

l

l l

l

l

l

l

l

ll

l

l l

l l
l

l
l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l
l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l
l l l

l

l ll

l

l

l

lll

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

ll

l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

l

l

l

ll

ll

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l l

l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l ll

l l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

llll l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l l

l

l l

l

l

l

l

l

l

ll ll

l

l

l l

ll

l

l

ll

l

l

l

l

l

ll

l
l

l

lll ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll ll

l

l

l

l

l l l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

lllll

l

l

l

l

l

l

l

l

l ll l

l

l

ll

l

l l

l

l

l

l

l lll

l

l
l

l l

l

l

l

l

l l

l

l

l

ll

l
l

l
l

l

l

l
l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

ll

ll l

l

l

l

l

l

ll ll

l

l

l

ll

l

l

ll

l

lll

l

l

l

l
l

l

l

l

l

l

l

l

l l

l l

l

ll
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l l

lll

l
l

l

l

ll

l

l

l
l

l

l

l l

l

l l ll

l
l

l

l

l
l

l
l

ll

l

l

l l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l
l

l

l

ll l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

ll

l

l

l

l ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l
l

ll l

l
l

l

l

l

l

l

l

l

l ll l

l

l

l

ll

l

ll

l

l l

l

l l

l

l

l l

l

l

l

l
l

l

l

l

l

l

ll

l
l

l
l

l l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l ll

l

l ll

l

ll

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l
l

ll lll

l

l

l

l

l
l

l

l

l l

l
l

l ll ll

l
l

l

l

l

l

l

l

l

l

0.2 1.0 5.0 20.0 100.0

1
2

5
20

10
0

50
0

store, log

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

+
 1

l

l

l

l

l

ll

l

l

l

l

l l

l

ll l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

ll

l

l

l

l l l

l

l l

l

l

l

ll l

l

l
l

l

l

l

l

l

l

l

ll l

l

l

l

l

ll

l

ll l

l

l ll

l

l

ll ll

l

l

l

l l

l

l ll

l l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

l

l

l ll

l

l ll

l

l

l

l

l

ll ll

l

l

l

l

l

l

l

l
l

ll ll

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

ll

l l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l l

l

l ll

l

ll

l
l

l

l

l

l

ll ll

l l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l lll

l

l

l

l

ll

ll

l

l

l

l

l

l

l l

l l

l

l

l

l

l ll

l l

l

l

l

l

l

l

l
l

l

l

l

l

ll l

l

l

l
l

l l

l
l

l

l

llll

l

l

l

ll

l

l

l

l

l

l

ll

l

l

llll

l

l

l

l

l

l

lll

l ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

ll ll

l

l l ll

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

ll ll

l

l

l

l l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l
l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l

l

l

l

ll

l

ll

l

l

l

l lll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

ll l

l

l

l

l

l

ll ll ll

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

ll l

l

l

l

l

l

l

l

l

ll

l

l

l ll l

l
l

ll

l

l

l ll

l
l

l l

l

l

l

l

l

ll

l

ll

l

l

l l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

lll l

l
l

l

l

l

l

l

l

l

l

lll

l

l l

l

ll

l

l

ll

l

l

l

l l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

ll

l

l

ll

l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

ll

l

l

l

l

l l

l

l

l

ll

ll ll

l

llll

l

l
l

l

l

ll

l

l

l

l

l

l

l

l lll

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l

l

l

l
l

0.2 1.0 5.0 20.0 100.0

1
5

50
50

0

online, log

cust.df$distance.to.store

cu
st

.d
f$

on
lin

e.
sp

en
d

+
 1

Fig. 4.5. A single graphic object consisting of multiple plots shows that distance to store is
related to in-store spending, but seems to be unrelated to online spending. The relationships
are easier to see when spending and distance are plotted on a log scale using log="xy" in

the two lower panels.

Although the plots in Fig. 4.5 are not completely labelled, we see in the lower left
panel that there may be a negative relationship between customers’ distances to the
nearest store and in-store spending. Customers who live further from their nearest
store spend less in store. However, on the lower right, we don’t see an obvious
relationship between distance and online spending.

After using par(mfrow=), you can return to a single plot layout with
par(mfrow=c(1,1)).

92 4 Relationships Between Continuous Variables

4.4 Scatterplot Matrices

4.4.1 pairs()

In our customer data, we have a number of variables that might be associated with
each other; age, distance.to.store, and email all might be related to on-
line and offline transactions and to spending. When you have several variables such
as these, it is good practice to examine scatterplots between all pairs of variables
before moving on to more complex analyses.

To do this, R provides the convenient function pairs(formula, data), which
makes a separate scatterplot for every combination of variables:
> pairs(formula = ∼ age + credit.score + email +
+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend,
+ data=cust.df)

The first input to pairs is a formula listing the variables to include from a data
frame. Formulas are used in many R functions and we describe more about them
in Chaps. 5, 7. For now it is sufficient to know that in pairs(), the formula is
composed with a ∼ followed by the variables to include, separated by +. If you
want to transform a variable, include the math in the formula. For example, to plot
the log() of online.spend, you would include log(online.spend) in
the formula.

The second input is data=cust.df, which tells pairs that we want to use the
cust.df data frame as the source of data for the plot.

The resulting plot is shown in Fig. 4.6 and is called a scatterplot matrix. Each
position in this matrix shows a scatterplot between two variables as noted
in the diagonal for each row and column. For example, the plot in the first
row and forth column is a scatterplot of cust.df$age on the y-axis versus
cust.df$distance.to.store on the x-axis.

We can see relationships between variables quickly in a scatterplot matrix.
In the fifth row and sixth column we see a strong linear association between
online.visits and online.trans; customers who visit the website more
frequently make more online transactions. Looking quickly over the plot, we also
see that customers with a higher number of online transactions have higher to-
tal online spending (not a surprise), and similarly, customers with more in-store
transactions also spend more in-store. This simple command produced a lot of
information to consider.

In addition to using the formula notation above, it is also possible to pass a data
frame directly to pairs and when you do that, pairs() creates a scatterplot
matrix including all the columns in your data frame. In the code below, we select
columns 2–10 from cust.df and pass the resulting data frame to pairs, which
gives us the same plot as shown in Fig. 4.6:
> pairs(cust.df[, c(2:10)]) # output not repeated; same as above

4.4 Scatterplot Matrices 93

Fig. 4.6. A scatterplot matrix for the customer data set produced using pairs().

While this results in compact code, we recommend instead to use the formula ver-
sion as shown above; it is robust to future changes in cust.df that might re-order
the columns. Over time, it becomes a habit to think about how your R code might
be re-used in the future.

4.4.2 scatterplotMatrix()

Scatterplot matrices are so useful for data exploration that several add-on packages
offer additional versions them. We want to point out two other scatterplot matrix
functions that we find valuable. The scatterplotMatrix() function in the
car package (abbreviating “companion to applied regression” [51]) adds a number
of features over pairs(), including adding smoothed lines on scatterplots and

94 4 Relationships Between Continuous Variables

univariate histograms on the diagonal. The syntax for scatterplotMatrix()
is similar to pairs():
> library(car) # install if needed
> scatterplotMatrix(formula = ∼ age + credit.score + email +
+ distance.to.store + online.visits + online.trans +
+ online.spend + store.trans + store.spend,
+ data=cust.df, diagonal="histogram")
Warning messages:
1: In smoother(x, y, col = col[2], log.x = FALSE, log.y = FALSE, ...

This produces warnings because the factor variable email cannot be smoothed.

In Fig. 4.7, we have histograms on the diagonal that show us the distribution of
each variable, where it is easy to see that all of the variables except age and
credit.score are highly left skewed. The green lines show linear fit lines (see
Chap. 7), while the red lines show smoothed fit lines and their confidence inter-
vals. The smoothed lines on the bivariate scatterplots suggest the extent to which
associations are linear. For instance, the smoothed line on the plot of age versus
distance.to.store is nearly flat and shows that there is no linear association
between those variables.

A limitation of Figs. 4.6 and 4.7 concerns the display of the email variable. email
is a binary factor with values yes and no, and a scatterplot is not ideal to vi-
sualize a discrete variable. For such variables, the gpairs, or Generalized Pair
Plots, package [41] provides a function called gpairs() that produces a scat-
terplot matrix that includes better visualizations for both discrete and continuous
variables. For example, if we want to look more closely at the relationship between
email and online.visits, online.trans and online.spend, we can
use gpairs() as follows:

> install.packages("gpairs") # only run once
> library(gpairs)
> gpairs(cust.df[, c(2:10)])

Unfortunately gpairs() does not accept formula input, so we select the columns
to include by number. The resulting scatterplot matrix is shown in Fig. 4.8.

Like pairs() and scatterplotMatrix(), gpairs() produces scatterplots
for pairs of continuous variables. However, for the factor email, gpairs includes
a boxplot that compares the distribution of continuous variables for those who do
and do not have email addresses in the data. A boxplot shows that the distributions of
visits, transactions, and spending have longer tails among customers who have email
addresses on file than those who don’t. We discuss boxplots in depth in Chap. 5,
which focuses on comparisons between groups.

Because it selects individual plots to fit the data types, gpairs() is useful for mar-
keting data sets that include continuous and discrete variables. Note that gpairs()
relies on the data types in R to determine how to construct its plots; if we had stored

4.5 Correlation Coefficients 95

Fig. 4.7. A scatterplot matrix for the customer data set produced using
scatterplotMatrix().

cust.df$email as a numerical code rather than as a factor, gpairs()
would have produced xy scatterplots instead of boxplots by factor. This is yet an-
other reason why it is useful to set variable types appropriately.

4.5 Correlation Coefficients

Although scatterplots provide a lot of visual information, when there are more than
a few variables, it can be helpful to assess the relationship between each pair with a
single number. One measure of the relationship between two variables is the covari-
ance, which can be computed for any two variables using the cov function:

> cov(cust.df$age, cust.df$credit.score)
[1] 63.23443

96 4 Relationships Between Continuous Variables

Fig. 4.8. A scatterplot matrix for the customer data set produced using gpairs().

If values xi and yi tend to go in the same direction—to be both higher or both lower
than their respective means—across observations, then they have a positive covari-
ance. If cov(x,y) is zero, then there is no (linear) association between xi and yi.
Negative covariance means that the variables go in opposite directions relative to
their means: when xi is lower, yi tends to be higher.

However, it is difficult to interpret the magnitude of covariance because the scale
depends on the variables involved. Covariance will be different if the variables are
measured in cents versus dollars or in inches versus centimeters. So, it is helpful to
scale the covariance by the standard deviation for each variable, which results in a
standardized, rescaled correlation coefficient known as the Pearson product-moment
correlation coefficient, often abbreviated as the symbol r.

Pearson’s r is a continuous metric that falls in the range [−1, +1]. It is +1 in the
case of a perfect positive linear association between the two variables, and −1 for

4.5 Correlation Coefficients 97

perfect negative linear association. If there is little or no linear association, r will be
near 0. On a scatterplot, data with r = 1 or r = −1 would have all points along a
straight line (up or down, respectively). This makes r an easily interpreted metric to
assess whether two variables have a close linear association or not.

In R, we compute correlation coefficient r with the cor() function:

> cor(cust.df$age, cust.df$credit.score)
[1] 0.2545045

r is identical to rescaling the covariance by the joint standard deviations (but more
convenient):

> cov(cust.df$age, cust.df$credit.score) /
+ (sd(cust.df$age)*sd(cust.df$credit.score))
[1] 0.2545045

What value of r signifies an important correlation between two variables in mar-
keting? In engineering and physical sciences, physical measurements may demon-
strate extremely high correlations; for instance, r between the lengths and weights
of pieces of steel rod might be 0.9, 0.95, or even 0.999, depending on the unifor-
mity of the rods and the precision of measurement. However, in social sciences
such as marketing, we are concerned with human behavior, which is less consistent
and more difficult to measure. This results in lower correlations, but they are still
important.

We often use Cohen’s Rules of Thumb, which come out of the psychology tradi-
tion [27]. Cohen proposed that for correlations between variables describing peo-
ple, r = 0.1 should be considered a small or weak association, r = 0.3 might be
considered to be medium in strength, and r = 0.5 or higher could be considered to
be large or strong. Cohen’s interpretation of a large effect was that such an asso-
ciation would be easily noticed by casual observers. A small effect would require
careful measurement to detect yet might be important to our understanding and to
statistical models.

Importantly, interpretation of r according to Cohen’s rules of thumb depends on the
assumption that the variables are normally distributed (also known as Gaussian)
or are approximately so. If the variables are not normal, but instead follow a log-
arithmic or other distribution that is skewed or strongly non-normal in shape, then
these thresholds do not apply. In those cases, it can be helpful to transform your
variables to normal distributions before interpreting, as we discuss in Sect. 4.5.3
below.

4.5.1 Correlation Tests

In the code above, cor(age, credit.score) shows r = 0.25, a medium-
sized effect by Cohen’s standard. Is this also statistically significant? We can use the
function cor.test() to find out:

98 4 Relationships Between Continuous Variables

> cor.test(cust.df$age, cust.df$credit.score)

Pearson’s product-moment correlation

data: cust.df$age and cust.df$credit.score
t = 8.3138, df = 998, p-value = 4.441e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1955974 0.3115816
sample estimates:

cor
0.2545045

This tells us that r = 0.25 and the 95 % confidence interval is r = 0.196− 0.312.
Because the confidence interval for r does not include 0 (and thus has p-value of
p < 0.05), the association is statistically significant. Such a correlation, showing a
medium-sized effect and statistical significance, probably should not be ignored in
subsequent analyses.

4.5.2 Correlation Matrices

For more than two variables, you can compute the correlations between all pairs x,y
at once as a correlation matrix. Such a matrix shows r = 1.0 on the diagonal because
cor(x,x) = 1. It is also symmetric; cor(x,y) = cor(y,x). We compute a correlation
matrix by passing multiple variables to cor():

> cor(cust.df[, c(2, 3, 5:12)])
age credit.score distance.to.store online.visits

age 1.000000000 0.254504457 0.00198741 -0.06138107
credit.score 0.254504457 1.000000000 -0.02326418 -0.01081827
distance.to.store 0.001987410 -0.023264183 1.00000000 -0.01460036
online.visits -0.061381070 -0.010818272 -0.01460036 1.00000000
online.trans -0.063019935 -0.005018400 -0.01955166 0.98732805
online.spend -0.060685729 -0.006079881 -0.02040533 0.98240684
store.trans 0.024229708 0.040424158 -0.27673229 -0.03666932
store.spend 0.003841953 0.042298123 -0.24149487 -0.05068554
sat.service NA NA NA NA
sat.selection NA NA NA NA

online.trans online.spend store.trans store.spend
age -0.06301994 -0.060685729 0.02422971 0.003841953
credit.score -0.00501840 -0.006079881 0.04042416 0.042298123
...

In the second column of the first row, we see that cor(age, credit.store)
= 0.254 as above. We can easily scan to find other large correlations; for
instance, the correlation between store.trans, distance.to.store =
−0.277, showing that people who live further from a store tend to have fewer
in-store transactions. cor() did not compute correlations for sat.selection

4.5 Correlation Coefficients 99

and sat.service because they have some NA values. The argument use=
"complete.obs" would instruct R to use only cases without NA values; try it
for practice.

Rather than requiring one to scan a matrix of numbers, the corrplot package
charts correlation matrices nicely with corrplot() and corrplot.mixed():

> library(corrplot) # for correlation plot, install if needed
> library(gplots) # color interpolation, install if needed
> corrplot.mixed(corr=cor(cust.df[, c(2, 3, 5:12)], use="complete.obs"),
+ upper="ellipse", tl.pos="lt",
+ col = colorpanel(50, "red", "gray60", "blue4"))

The resulting graphic is shown in Fig. 4.9. We will explain the code and features
of the plot. The main argument to corrplot.mixed is a correlation matrix and
we use cor(..., use="complete.obs") to provide this, excluding the NA
values.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ag
e

cr
ed

it.
sc

or
e

di
st

an
ce

.to
.s

to
re

on
lin

e.
vi

si
ts

on
lin

e.
tr

an
s

on
lin

e.
sp

en
d

st
or

e.
tr

an
s

st
or

e.
sp

en
d

sa
t.s

er
vi

ce

sa
t.s

el
ec

tio
n

age

credit.score

distance.to.store

online.visits

online.trans

online.spend

store.trans

store.spend

sat.service

sat.selection

0.27

0.05

−0.06

−0.07

−0.07

0.02

−0.01

−0.05

−0.07

−0.03

−0.04

−0.03

−0.03

0.07

0.07

−0.04

−0.02

−0.03

−0.03

−0.03

−0.29

−0.25

0.02

0.01

0.98

0.98

−0.02

−0.06

−0.02

−0.02

0.99

−0.03

−0.06

−0.03

−0.02

−0.03

−0.06

−0.02

−0.02

0.89

0.01

0

0.02

0.01 0.57

Fig. 4.9. A correlation plot produced
using corrplot.mixed() from the
corrplot package is an easy way
to visualize all of the correlations in
the data. Correlations close to zero are
plotted as circular and gray (using the
color scheme we specified), while mag-
nitudes away from zero produce ellipses
that are increasingly tighter and blue for
positive correlation and red for nega-
tive.

In Fig. 4.9, numeric values of r are shown in the lower triangle of the ma-
trix. The upper triangle displays ellipses (because we used the argument
upper="ellipse"). These ellipses are tighter, progressively closer to being
lines, for larger values of r, and are rounder, more like circles for r near zero.
They are also shaded blue for positive direction, and red for negative (and show
corresponding positive or negative slope).

This makes it easy to find the larger correlations in the data: age is positively cor-
related with credit.score; distance.to.store is negatively correlated
with store.trans and store.spend; online.visits, online.trans,
and online.spend are all strongly correlated with one another, as are store.
trans and store.spend. In the survey items, sat.service is positively cor-
related with sat.selection.

100 4 Relationships Between Continuous Variables

corrplot.mixed() has numerous options that let you customize a chart. For
this plot, we use the options upper="ellipse" to visualize the correlations as
ellipses and tl.pos="lt" to place the variable name labels on the left and top
of the matrix. The correlations in this case are mostly small in magnitude, which
produces a very light chart with the default colors. We use colorpanel() from
the gplots package to generate a set of colors anchored at three points (“red”,
“gray60”, and “blue4”) and tell corrplot.mixed() to use that set of colors
instead of its default. You could try other colors and see how the plot is affected; the
colors() command will list all the names of colors that R understands.

While it is impossible to draw strong conclusions based on associations such as
Fig. 4.9, finding large correlations should inform subsequent analysis or suggest
hypotheses.

4.5.3 Transforming Variables before Computing Correlations

Correlation coefficient r measures the linear association between two variables. If
the relationship between two variables is not linear, it would be misleading to inter-
pret r. For example, if we create a random variable that falls in the range [−10,10]—
using runif() to sample random uniform values—and then compute the correla-
tion between that variable and its square, we get a correlation close to zero:

> set.seed(49931)
> x <- runif(1000, min=-10, max=10)
> cor(x, xˆ2)
[1] -0.003674254

r is near zero despite the fact that there is a perfect nonlinear relationship between
x and x2. So, it is important that we consider transformations before assessing the
correlation between two variables. (It might be helpful to plot x and x2 by typing
plot(x, xˆ2), so that you can see the relationship.)

Many relationships in marketing data are nonlinear. For example, as we see in the
cust.df data, the number of trips a customer makes to a store may be inversely
related to distance from the store. When we compute the correlation between the raw
values ofdistance.to.store and store.spend, we get a modest negative
correlation:

> cor(cust.df$distance.to.store, cust.df$store.spend)
[1] -0.2414949

However, if we transform distance.to.store to its inverse (1/distance), we
find a much stronger association:

> cor(1/cust.df$distance.to.store, cust.df$store.spend)
[1] 0.4329997

4.5 Correlation Coefficients 101

In fact, the inverse square root of distance shows an even greater association:

> cor(1/sqrt(cust.df$distance.to.store), cust.df$store.spend)
[1] 0.4843334

How do we interpret this? Because of the inverse square root relationship, someone
who lives 1 mile from the nearest store will spend quite a bit more than someone
who lives 5 miles away, yet someone who lives 20 miles away will only buy a little
bit more than someone who lives 30 miles away.

These transformations are important when creating scatterplots between vari-
ables as well. For example, examine the scatterplots in Fig. 4.10 for raw
distance.to.store versus store.spend, as compared to the inverse
square root of distance.to.store versus store.spend. We create those
two charts as follows:

> plot(cust.df$distance.to.store, cust.df$store.trans)
> plot(1/sqrt(cust.df$distance.to.store), cust.df$store.trans)

The association between distance and spending is much clearer with the transformed
data as shown in the right-hand panel of Fig. 4.10.

To review, it is important to consider transforming variables to approximate nor-
mality before computing correlations or creating scatterplots; the appropriate
transformation may help you to see associations more clearly. As we noted in
Sect. 4.5, interpretation of r with rules of thumb requires data to be approximately
normal.

l

ll

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l ll

l

ll

l

l

l

l

l

l

l

l

l
l

ll l l

l

l l

l

l

l

l

l

ll

l

l l

l
l

l

l l

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l
l l ll

l ll

l

l

l

lll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l
l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
ll

l l

l

l

l

l

ll

ll

l
l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l l

l l

l

l

l

l

l

l

l

l

ll
l

l

l

l

ll l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l ll
l l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

llll l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l l

l

l l

l

l

l

l

l

l

ll ll

l

l

l l

ll

l

l

ll

l

l

l

l

l

ll

l
l

l

lll ll

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l

l

l
l
l

l

l

l

l

l

l

lll ll

l

l

l

l

l l l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l l

l

l

l

lllll

l

l

l

l

l

l

l

l

lll l

l

l

ll

l

l l

l
l

l

l

l lll

l

l

l

l l

l

l

l

l

l l
l

l

l

ll

l
l

l
l

l

l

l
l l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

ll l

l

l

l

l

l

ll ll

l

l

l
ll

l

l

ll

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

ll
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l l
l

l
l
l

ll

l

l

l

l l

lll

l
l

l

l

ll

l

l

l
l

l

l

l l

l

ll ll

l

l

l

l

l

l
l

l
ll

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

ll l

l

l

l
l

l

l

l

l

l
l

l

ll

l
l l

l

l

l

l l

l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

ll

l

ll

l

l

l

l ll

l

l

ll

l

l
l

l

l
l

l

l

l

l

ll

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l
l

lll

l

l

l

l

l

l

l

l

l

l ll l

l

l

l

ll

l

ll

l

l l

l

l
l

l

l

ll

l

l

l

l
l
l

l

l

l

l

ll

l
l

l

l

l l l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l l

l

l

l

l

l
l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l ll

l

l ll

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l
ll

ll lll

l

l

l

l

l
l

l

l

l l

l
l

l ll ll

ll

l

l

l

l

l

l

l

l

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

cust.df$distance.to.store

cu
st

.d
f$

st
or

e.
sp

en
d

l

l l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

ll l

l

ll

l

l

l

l

l

l

l

l

l
l

l lll

l

ll

l

l

l

l

l

ll

l

ll

l
l

l

ll

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

lll

l

l

l
lll l

ll l

l

l

l

lll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l l

l

l
l

l

l

l l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l l

ll

l

l

l

l

l l

l l

l
l

ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

ll

ll

l

l

l

l

l

l

l

l

l l
l

l

l

l

l ll

l

l

l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll l
ll

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l l l ll

l

l

l

l

l

l

l

l

ll l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

lll l

l

l

ll

l l

l

l

ll

l

l

l

l

l

l l

l
l

l

ll ll l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll ll l

l

l

l

l

lll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

ll

l

l

l

l l l l l

l

l

l

l

l

l

l

l

ll ll

l

l

l l

l

ll

l
l

l

l

ll l l

l

l

l

ll

l

l

l

l

ll
l

l

l

l l

l
l

l
l

l

l

l
ll

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l ll

l

l

l

l

l

lll l

l

l

l
l l

l

l

l l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l l
l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

ll

l

l

l

ll

l l l

l
l

l

l

ll

l

l

l
l

l

l

ll

l

lll l

l

l

l

l

l

l
l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l ll

l

l

l
l

l

l

l

l

l
l

l

l l

l
ll

l

l

l

ll

l
l

l
l

l

l

l

l

l

l
l

l

l
l

l

ll

l

l l

l

l

l

lll

l

l

l l

l

l
l

l

l
l

l

l

l

l

l l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l
l

l ll

l

l

l

l

l

l

l

l

l

ll ll

l

l

l

l l

l

l l

l

ll

l

l
l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l l

l
l

l

l

lll

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

ll

l

l

l

l

l
l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

ll l

l

lll

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l
l l

l ll l l

l

l

l

l

l
l

l

l

ll

l
l

ll lll

l l

l

l

l

l

l

l

l

l

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

1/sqrt(cust.df$distance.to.store)

cu
st

.d
f$

st
or

e.
sp

en
d

Fig. 4.10. A transformation of distance.to.store to its inverse square root makes the
association with store.trans more apparent in the right-hand chart, as compared to the

original values on the left.

102 4 Relationships Between Continuous Variables

4.5.4 Typical Marketing Data Transformations

Considering all the possible transforms may seem impossible, but because market-
ing data often concerns the same kinds of data in different data sets—counts, sales,
revenue, and so forth—there are a few common transformations that often apply.
For example, as we discussed when simulating the data for Chap. 3, unit sales are
often related to the logarithm of price.

In Table 4.1, we list common transformations that are often helpful with different
types of marketing variables.

Table 4.1. Common transformations of variables in marketing

Variable Common transform
Unit sales, revenue, household income,
price

log(x)

Distance 1/x, 1/x2, log(x)
Market or preference share based on a
utility value (Sect. 9.2.1)

ex

1+ex

Right-tailed distributions (generally)
√

x or log(x) (watch out for log(x ≤ 0))
Left-tailed distributions (generally) x2

For most purposes, these standard transformations are appropriate and theoretically
sound. However, when these transformations don’t work or you want to determine
the very best transformation, there is a general-purpose transformation function that
can be used instead, and we describe that next.

4.5.5 Box–Cox Transformations*

The remaining sections in the chapter are optional, although important. If you’re
new to this material, you might skip to the Key Points at the end of this chapter
(Sect. 4.8). Remember to return to these sections later and learn more about corre-
lation analysis!

Many of the transformations in Table 4.1 involve taking a power of x: x2, 1/x =
x−1, and

√
x = x−0.5. The Box–Cox transformation generalizes this use of power

functions and is defined as:

y(lambda)
i

{
=

ylambda
i −1
lambda if lambda �= 0

= log(yi) if lambda = 0
(4.1)

where lambda can take any value and log is the natural logarithm. One could try dif-
ferent values of lambda to see which transformation makes the distribution best fit

4.5 Correlation Coefficients 103

the normal distribution. (We will see in Chap. 7 that it is also common to use trans-
formed data that makes a linear regression have normally distributed residuals.) Be-
cause transformed data is more approximately normal, it is more suitable to assess
the strength of association using the rules of thumb for r (Sect. 4.5).

Instead of trying values of lambda by hand, there is an automatic way to find
the optimal value: use the powerTransform(object=DATA) function.
We find the best Box–Cox transformation for distance.to.store using
powerTransform() as follows:

> library(car)
> powerTransform(cust.df$distance.to.store)
Estimated transformation parameters
cust.df$distance.to.store

-0.003696395

This tells us that the value of lambda to make distance as similar as possible to
a normal distribution is −0.003696. We extract that value of lambda using the
coef() function and create the transformed variable using bcPower(U=DATA,
lambda):

> lambda <- coef(powerTransform(1/cust.df$distance.to.store))
> bcPower(cust.df$distance.to.store, lambda)

[1] 0.950421270 3.902743543 0.251429693 1.664085284 3.239908993
[6] 2.931485684 2.243992143 1.940984081 2.565290889 1.896458754

[11] 1.898262423 0.411047042 4.101597125 1.359172873 3.8973383223
...

To see how this changes cust.df$distance.to.store, we plot two his-
tograms comparing the transformed and untransformed variables:

> par(mfrow=c(1,2))
> hist(cust.df$distance.to.store,
+ xlab="Distance to Nearest Store", ylab="Count of Customers",
+ main="Original Distribution")
> hist(bcPower(cust.df$distance.to.store, lambda),
+ xlab="Box-Cox Transform of Distance", ylab="Count of Customers",
+ main="Transformed Distribution")

The resulting graphs in Fig. 4.11 show the highly skewed original distribution on
the left and the transformed distribution on the right, which is much approximately
normally distributed.

If you attempt to transform a variable that is already close to normally distributed,
powerTransform() will report a value of lambda that is close to 1. For ex-
ample, if we find the Box–Cox transform for age, we get lambda very close to 1,
suggesting that a transformation is not required:

> powerTransform(cust.df$age)
Estimated transformation parameters
cust.df$age
1.036142

104 4 Relationships Between Continuous Variables

Distance to Nearest Store

C
ou

nt
 o

f C
us

to
m

er
s

0 50 150 250

0
40

0
80

0

Box−Cox Transform of Distance

C
ou

nt
 o

f C
us

to
m

er
s

−2 0 2 4 6

0
50

15
0

Fig. 4.11. A Box–Cox transformation of distance.to.store makes the distribution
closer to Normal.

Finally, we can compute correlations for the transformed variable. These correla-
tions will often be larger in magnitude than correlations among raw, untransformed
data points. We check r between distance and in-store spending, transforming both
of them first:

> l.dist <- coef(powerTransform(cust.df$distance.to.store))
> l.spend <- coef(powerTransform(cust.df$store.spend+1))
>
> cor(bcPower(cust.df$distance.to.store, l.dist),
+ bcPower(cust.df$store.spend+1, l.spend))
[1] -0.4683126

The relationship between distance to the store and spending can be interpreted as
strong and negative.

In practice, you could consider Box–Cox transformations on all variables with
skewed distributions before computing correlations or creating scatterplots. This
will increase the chances that you will find and interpret important associations be-
tween variables.

4.6 Exploring Associations in Survey Responses*

Many marketing data sets include variables where customers provide ratings on a
discrete scale, such as a 5- or 7-point rating scale. These are ordinal (ranked) vari-
ables and it can be a bit tricky to assess associations among them. For instance, in the
cust.df data, we have response on a 5-point scale for two satisfaction items, sat-
isfaction with the retailer’s service and with the retailer’s product selection.

What is the problem? Consider a simple plot() of the two 5-point items:

> plot(cust.df$sat.service, cust.df$sat.selection,
+ xlab="Customer Satisfaction with Service",
+ ylab="Customer Satisfaction with Selection",
+ main="Customers as of June 2014")

4.6 Exploring Associations in Survey Responses* 105

The resulting plot shown in the left-hand panel of Fig. 4.12 is not very informative.
Because cust.df$sat.service and cust.df$sat.selection only take
integer values from 1 to 5, the points for customers who gave the same responses are
drawn on top of each other. The main thing we learn from this plot is that customers
reported most of the possible pairs of values, except that ratings rarely showed a
difference between the two items of 3 or more points (there were no pairs for (1, 4),
(1, 5), (5, 2), or a few other combinations).

ll

l

l

ll

llll

ll

l

l

l

ll ll

l

l

l

l

ll

l

l

l

l

ll

l

l

ll

l

l

ll

l l ll

ll

l

l

l

l

l

ll l

l

lll l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

lll

l

l

l

l

ll

l

l

l

l

ll

ll

ll l

l

l

l

l

l ll l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

ll

l

ll

l

l

l

l

l

ll

l

l l

ll

l

llll

lll

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

lll l

lll ll l

l

l l

l

l l

l

l

l

l

l

l

l

l

l l

ll l

l ll

ll

l

l

l

l

ll

l

lll ll

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

l

l

l

l

l

l

ll

ll

l

l

l

l

l

lll

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

ll

ll

l

l l

l l

l

l

l

l l

l

l

ll

ll l

l

llll

l

l

ll

l

l l

l ll

l

l ll

l

l

l l

l l

l

l

l

l

lll

l

ll

l ll l l

l

ll

l

l

l

l

l

l

l

l ll l

l

l

ll ll l

ll

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l l

l

l ll

l

lll

l

ll l

ll

l

l

l

l

ll

l

l

ll l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l l

l

ll

ll

l l

l

l

ll

l

l

l

l

l l

ll

ll

l

lll

l

ll

l

l

l ll l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

ll l

l

l

l

l llll

l

l

l

ll

lll

l

l

l

l

l

l

ll

l

ll

l l

ll

l

l

ll

l

l l

l

l

l

l

l

l

ll

l

ll

l

l

ll

l

l

l l

ll

l

l

ll l

ll

l

l

l

l

l

l

l

l ll l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

lllll l

l

lll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

ll

l l

ll

l

l

l

l

l

ll

l

l ll

l

l l

l

1 2 3 4 5

1
2

3
4

5

Customers as of June 2014

Customer Satisfaction with Service

C
us

to
m

er
 S

at
is

fa
ct

io
n

w
ith

 S
el

ec
tio

n

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l
l

l

l

l

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l
l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

ll
l

l

l

l

l
l

l

l
l

l
l l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

ll

l

l
l

l

l l

l

l

l

l

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

1 2 3 4 5

1
2

3
4

5

Customers as of June 2014

Customer Satisfaction with Service

C
us

to
m

er
 S

at
is

fa
ct

io
n

w
ith

 S
el

ec
tio

n

Fig. 4.12. A scatterplot of responses on a survey scale (left) is not very informative. Using
jitter (right) makes the plot more informative and reveals the number of observations for each

pair of response values.

This poses a problem both for visualization and, as it turns out, for assessing the
strength of association. We’ll see next how to improve the visualization.

4.6.1 jitter()*

One way to make a plot of ordinal values more informative is to jitter each variable,
adding a small amount of random noise to each response. This moves the points
away from each other and reveals how many responses occur at each combination
of (x,y) values.

R provides the function jitter() to do this:

> plot(jitter(cust.df$sat.service), jitter(cust.df$sat.selection),
+ xlab="Customer Satisfaction with Service",
+ ylab="Customer Satisfaction with Selection",
+ main="Customers as of June 2014")

106 4 Relationships Between Continuous Variables

The result is shown in the right-hand panel of Fig. 4.12, where it is easier to see that
the ratings (3, 2) and (3, 3) were the most common responses. It is now clear that
there is a positive relationship between the two satisfaction variables. People who
are more satisfied with selection tend to be more satisfied with service.

4.6.2 polychoric()*

The constrained observations from ratings scales affect assessment of correlation
with metrics such as Pearson’s r because the number of available scale points con-
strains the potential range and specificity of r. An alternative to the simple compu-
tation of r is a polychoric correlation coefficient, which is designed specifically for
ordinal responses.

The concept of a polychoric correlation is that respondents have continuous values
in mind when they answer on a rating scale. However, because the scales are limited
to a small number of points, respondents must select discrete values and choose
points on the scale that are closest to the unobserved latent continuous values. The
polychoric estimate attempts to recover the correlations between the hypothetical
latent (unobserved) continuous variables.

We examine whether the sat.service survey item is associated with
sat.selection. Because we have responses for only some customers, we
set an index vector resp to identify the customers with responses to examine.
Then we look at the r correlation coefficient from cor():

> resp <- !is.na(cust.df$sat.service)
> cor(cust.df$sat.service[resp], cust.df$sat.selection[resp])
[1] 0.5878558

To compute the polychoric correlation coefficient, we use polychoric() from
the psych package:

> library(psych)

> polychoric(cbind(cust.df$sat.service[resp],

+ cust.df$sat.selection[resp]))

Call: polychoric(x = cbind(cust.df$sat.service[resp], cust.df$sat.selection[resp]))

Polychoric correlations

C1 C2

R1 1.00

R2 0.67 1.00

with tau of

1 2 3 4

[1,] -1.83 -0.72 0.54 1.7

[2,] -0.99 0.12 1.26 2.4

warnings omitted (caused by simulated data’s lack of error)

This is somewhat more complex information than the simple output of cor(). At
the top of the output, polychoric() reports the polychoric correlation matrix.
The values range [−1, 1] and are interpreted in the same way as Pearson’s r. (In fact,

4.7 Learning More* 107

they are the values of Pearson’s r between the estimated latent continuous variables.)
In our satisfaction data, we can see that the polychoric correlation is quite high at
rho = 0.67. Like cor(), polychoric() can produce a correlation matrix for
multiple variables.

The second output section under “with a tau of” describes how the estimated
latent scores are mapped to the discrete item values. For each variable (in our case
just two), there are four cut points: if a customer’s latent satisfaction is below the
first cut point, the survey response is the first value on the scale (i.e., 1). For latent
scores between the first and second cut points, the survey response is the second
value (2), and so forth. Reviewing the cut points can be informative about how the
scale is performing and whether it has adequate discrimination of responses versus
the estimated latent scores.

4.7 Learning More*

Plotting. As we mentioned at the end of Chap. 3, plotting in R is a complete topic
and the subject of several books. We’ve demonstrated fundamental plotting meth-
ods that work for many analyses. Those who do a great deal of plotting or need to
produce high-quality graphics for presentation might consider learning ggplot2
[162] or lattice [141].

Correlation analysis. The analysis of variable associations is important for sev-
eral reasons: it often reveals interesting patterns, it is relatively straightforward to
interpret, and it is the simplest case of multivariate analysis. Despite the apparent
simplicity there are numerous issues to consider, some of which we have consid-
ered here. A classic text for learning about correlation analysis in depth and how
to perform it well while avoiding pitfalls is Cohen, Cohen and West [29], Applied
Multiple Regression/Correlation Analysis for the Behavioral Sciences, although it
is not specific to R.

Analyzing survey scale responses. Much of the data in that we analyze in mar-
keting involves customers’ responses to survey ratings scales, and in Sect. 4.6.2
we mentioned some of the challenges with such ordinal response data. Although
polychor() is a useful tool when analyzing survey data, there are other ad-
vanced options. For example, the bayesm package [136] provides the function
rscaleUsage(), which estimates differences in how each customer uses a scale
(see also the material on scale usage in Rossi, Allenby and McCulloch [137]).
Using bayesm requires knowledge of Bayesian methods, which we introduce in
Chap. 5.

108 4 Relationships Between Continuous Variables

4.8 Key Points

Following are some of the important points to consider when analyzing relationships
between variables.

Visualization

• plot(x, y) creates scatterplots where x is a vector of x-values to be plotted
and y is a vector of the same length with y-values (Sect. 4.2.1).

• When preparing a plot for others, the plot should be labeled carefully using
arguments such as xlab, ylab, and main, so that the reader can easily under-
stand the graphic (Sect. 4.2.1).

• You can color-code a plot by passing a vector of color names or color numbers
as the col parameter in plot() (Sect. 4.2.2).

• Use the legend() command to add a legend so that readers will know what
your color coding means (Sect. 4.2.3).

• The cex= argument is helpful to adjust point sizes on a scatterplot (Sect. 4.2.1).

• A scatterplot matrix is a good way to visualize associations among several
variables at once; options include pairs() (Sect. 4.4.1), scatterplot
Matrix() from the cars package, and gpairs() from the gpairs pack-
age (Sect. 4.4.2).

• Many functions such as plot() call a generic function that determines what
to do based on the type of data. When a plotting function does something
unexpected, checking data types with str() will often reveal the problem
(Sect. 4.2.1).

• When variables are highly skewed, it is often helpful to draw the axes on a
logarithmic scale by setting the log argument of the plot() function to
log="x", log="y", or log="xy" (Sect. 4.2.4). Alternatively, the variables
might be transformed to a more interpretable distribution (Sect. 4.5.3).

Statistics

• cor(x, y) computes the Pearson correlation coefficient r between variables
x and y. This measures the strength of the linear relationship between the vari-
ables (Sect. 4.5).

• cor() will produce a correlation matrix when it is passed several or many
variables. A handy way to visualize these is with the corrplot package
(Sect. 4.5.2).

• cor.test() assesses statistical significance and reports the confidence inter-
val for r (Sect. 4.5.1).

4.8 Key Points 109

• For many kinds of marketing data, the magnitude of r may be interpreted by
Cohen’s rules of thumb (r = 0.1 is a weak association, r = 0.3 is medium, and
r = 0.5 is strong), although this assumes that the data are approximately normal
in distribution (Sect. 4.5).

• When the relationship between two variables is nonlinear, r does not give an
accurate assessment of the association. Computing r between transformed vari-
ables may make associations more apparent (Sect. 4.5.3).

• There are common distributions that often occur in marketing, such as unit sales
being related to log(price). Before modeling associations, plot histograms of
your variables and assess potential transformations of them (Sect. 4.5.4).

• An automated way to select an optimal transformation is to use a Box–Cox
transform (Sect. 4.5.5).

• The function polychor() from the psych package is useful to compute
correlations between survey responses on ordinal ratings scales (Sect. 4.6.2).

5

Comparing Groups: Tables and Visualizations

Marketing analysts often investigate differences between groups of people. Do men
or women subscribe to our service at a higher rate? Which demographic segment can
best afford our product? Does the product appeal more to homeowners or renters?
The answers help us to understand the market, to target customers effectively, and
to evaluate the outcome of marketing activities such as promotions.

Such questions are not confined to differences among people; similar questions are
asked of many other kinds of groups. One might be interested to group data by
geography: does Region A perform better than Region B? Or time period: did same-
store sales increase after a promotion such as a mailer or a sale? In all such cases,
we are comparing one group of data to another to identify an effect.

In this chapter, we examine the kinds of comparisons that often arise in market-
ing, with data that illustrates a consumer segmentation project. We review R proce-
dures to find descriptive summaries by groups, and then visualize the data in several
ways.

5.1 Simulating Consumer Segment Data

We begin by creating a data set that exemplifies a consumer segmentation project.
For this example, we are offering a subscription-based service (such as cable tele-
vision or membership in a warehouse club) and have collected data from N = 300
respondents on age, gender, income, number of children, whether they own or rent
their homes, and whether they currently subscribe to the offered service or not. We
use this data in several later chapters as well.

In this data, each respondent has been assigned to one of four consumer segments:
“Suburb mix,” “Urban hip,” “Travelers,” or “Moving up.” (In this chapter we do not

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 5

111

112 5 Comparing Groups: Tables and Visualizations

address how such segments might be created; we just presume to know them. We
look at how to cluster respondents in Chap. 11.)

Segmentation data is moderately complex and we separate our code into three
parts:

1. Definition of the data structure: the demographic variables (age, gender, and so
forth) plus the segment names and sizes.

2. Parameters for the distributions of demographic variables, such as the mean and
variance of each.

3. Code that iterates over the segments and variables to draw random values ac-
cording to those definitions and parameters.

By organizing the code this way, it becomes easy to change some aspect of the
simulation to draw data again. For instance, if we wanted to add a segment or change
the mean of one of the demographic variables, only minor change to the code would
be required. We also use this structure to teach new R commands that appear in the
third step to generate the data.

If you wish to load the data directly, it is available from the book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...

However, we recommend that you at least read the data generation sections. We
teach important R language skills—looping and if() statements—in Sects. 5.1.2
and 5.1.3.

5.1.1 Segment Data Definition

Our first step is to define general characteristics of the data set: the variable names,
data types, segment names, and sample size for each segment:

> segVars <- c("age", "gender", "income", "kids", "ownHome", "subscribe")
> segVarType <- c("norm", "binom", "norm", "pois", "binom", "binom")
> segNames <- c("Suburb mix", "Urban hip", "Travelers", "Moving up")
> segSize <- c(100, 50, 80, 70)

The first variable segVars specifies and names the variables to create.
segVarType defines what kind of data will be present in each of those vari-
ables: normal data (continuous), binomial (yes/no), or Poisson (counts). Next we
name the four segments with the variable segNames and specify the number of
observations to generate in each segment (segSize). For instance, looking at the

5.1 Simulating Consumer Segment Data 113

first entry in segNames and segSize, the code says that we will create N = 100
observations (as specified by segSize[1]) for the “Suburb mix” segment (named
by segNames[1]).

Although those variables are enough to determine the structure of the data set—the
number of rows (observations) and columns (demographic variables and segment
assignment)—they do not yet describe the values of the data. The second step is to
define those values. We do this by specifying distributional parameters such as the
mean for each variable within each segment.

There are four segments and six demographic variables, so we create a 4×6 matrix
to hold the mean of each. The first row holds the mean values of each of the six
variables for the first segment; the second row holds the mean values for the second
segment, and so forth. We do this as follows:

> segMeans <- matrix(c(
+ 40, 0.5, 55000, 2, 0.5, 0.1,
+ 24, 0.7, 21000, 1, 0.2, 0.2,
+ 58, 0.5, 64000, 0, 0.7, 0.05,
+ 36, 0.3, 52000, 2, 0.3, 0.2), ncol=length(segVars), byrow=TRUE)

How does this work? It specifies, for example, that the first variable (which we
defined above as age) will have a mean of 40 for the first segment, 24 for the
second segment, and so forth. When we draw the random data later in this section,
our routine will look up values in this matrix and sample data from distributions
with those parameters.

In the case of binomial and Poisson variables, we only need to specify the mean.
In these data gender, ownHome, and subscribe will be simulated as binomial
(yes/no) variables, which requires specifying the probability for each draw. kids
is represented as a Poisson (count) variable, whose distribution is specified by its
mean. (Note that we use these distributions for simplicity and do not mean to im-
ply that they are necessarily the best distributions to fit real observations of these
variables. For example, real observations of income are better represented with a
skewed distribution.)

However, for normal variables—in this case, age and income, the first and third
variables—we additionally need to specify the variance of the distribution, the de-
gree of dispersion around the mean. So we create a second 4×6 matrix that defines
the standard deviation for the variables that require it:

> # standard deviations for each segment (NA = not applicable for the variable)
> segSDs <- matrix(c(
+ 5, NA, 12000, NA, NA, NA,
+ 2, NA, 5000, NA, NA, NA,
+ 8, NA, 21000, NA, NA, NA,
+ 4, NA, 10000, NA, NA, NA), ncol=length(segVars), byrow=TRUE)

Putting those two matrices together, we have fully defined the distributions of the
segments. For instance, look at the third line of each matrix, which corresponds

114 5 Comparing Groups: Tables and Visualizations

to the “Travelers” segment. The matrices specify that the mean age of that seg-
ment will be 58 years (looking at the first matrix) and that it will have a stan-
dard deviation of 8 years (second matrix). Also it will be approximately 50 % male
(looking at the second column), with an average income of $64,000 and $21,000
standard deviation. By storing values in look-up tables this way, we can easily
change the definitions for future purposes without digging through detailed code.
Such separation between data definition and procedural code is a good programming
practice.

With these data definitions in place, we are ready to generate data. This uses for()
loops and if() blocks, so we review those before continuing with the simulation
process in Sect. 5.1.4.

5.1.2 Language Brief: for() Loops

Our data set involves six random variables for age, gender, and so forth, and four
segments. So, we need to draw random numbers from 6×4 = 24 different distribu-
tions. Luckily, the structure of each of those random number draws is very similar,
and we can use for() loops to iterate over the variables and the segments.

The for() command iterates over a vector of values such as 1:10, assigning suc-
cessive values to an index variable and running a statement block on each iteration.
Here is a simple example:

> for (i in 1:10) { print(i) }
[1] 1
[1] 2
[1] 3
...
[1] 10

The value of i takes on the values from 1 to 10, and the loop executes 10 times in
all, running the print() command for each successive value of i.

If you’ve programmed before, this will be quite familiar—but there are a couple of
twists. The index variable in R for() loops can take on any scalar value, not just
integers, and it can operate on any vector including those that are defined elsewhere
or are unordered. Consider the following where we define a vector of real numbers,
i.seq, and iterate over its values:

> (i.seq <- rep(sqrt(seq(from=2.1, to=6.2, by=1.7)), 3))
[1] 1.449138 1.949359 2.345208 1.449138 1.949359 2.345208 1.449138 1.949359 ...
> for (i in i.seq) { print(i) }
[1] 1.449138
[1] 1.949359
...
[1] 2.345208

5.1 Simulating Consumer Segment Data 115

An index vector may comprise character elements instead of numeric:

> for (i in c("Hello ","world, ","welcome to R!")) { cat(i) }
Hello world, welcome to R!

We use the cat() command for output here instead of print() because of its
greater flexibility.

The brackets (“{” and “}”) enclose the statements that you want to loop over and
are only strictly required when a loop executes a block of more than one statement.
However, we recommend for clarity to use brackets with all loops and control struc-
tures as we’ve done here.

By tradition the most common index variable is named “i” (and inner loops com-
monly use “j”) but you may use any legal variable name. It is a nice practice to give
your index variable a descriptive-but-short name like seg for segments or cust for
customers.

There is one thing to avoid with for() loops in R: indexing on 1:length
(someVariable). Suppose for the example above, we wanted not the value of
each element in i.seq but its position (1, 2, 3, etc.). It would seem natural to write
something like this:

> for (i in 1:length(i.seq)) { cat("Entry", i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Don’t! This works in many cases but R has a better solution: seq along
(someVariable), which gives a vector of 1, 2, 3, etc. of the same length as
someVariable. Write the following instead:

> for (i in seq_along(i.seq)) { cat("Entry", i, "=", i.seq[i], "\n") }
Entry 1 = 1.449138
Entry 2 = 1.949359
...

Why? Because seq along() protects against common errors when the index vec-
tor has zero length or is inadvertently reversed. To see what happens when for()
has a zero-length vector, look at the following buggy code:

> i.seq <- NULL
> # maybe we have a bunch of other code, and then ...
> for (i in 1:length(i.seq)) { print (i) }
[1] 1
[1] 0

What happened? If i.seq is NULL, why does it appear to have length 2? The
answer is that it doesn’t. We told R to do this: start a for() loop with the value of
1, and then continue until you reach an index value that matches the length of the
vector i.seq, which happens to be 0. R complied precisely and iterated over the

116 5 Comparing Groups: Tables and Visualizations

vector 1:0. That is, it started with 1 on the first iteration, and then 0 on the second
iteration, which then matched the length of i.seq.

The proper way to write this is to use seq along():

> i.seq <- NULL
> for (i in seq_along(NULL)) { print (i) } # better
>

This time the index vector has zero length, so nothing is printed. Whenever you
find yourself or a colleague writing “for (i in 1:length ...),” stop right
there and fix it. One day this will save you from a hard-to-find bug . . . and every day
you’ll be writing better R!

Many R and functional language programmers prefer to avoid for() loops and
instead use apply() functions and the like (Sect. 3.3.4), which automatically work
across vector or list objects. We suggest a mixed approach: do whichever makes
more sense to you. For many R newcomers, the logic of a for() loop is obvious
and easier to write reliably than an equivalent such as a list apply (lapply()). As
you gain experience in R and become comfortable with functions, we recommend
to reduce the reliance on for().

5.1.3 Language Brief: if() Blocks

Like most programming languages, R provides if() statements to handle condi-
tional code execution. The formal syntax is if (statement1) statement2
else statement3 but we suggest the following code template:

dummy code, not executed
if (condition1) {
statements

} else if (condition2) {
statements

} else {
statements

}

A condition is the part that evaluates to be TRUE or FALSE, and it goes inside
parentheses. For example, we might write if (segment==1) { ... } to do
something when the value of segment is 1. (Advanced note: An if() condi-
tion may in fact be any R statement and will be coerced to a logical value but you
should take care to make sure it resolves to be a single, logical TRUE or FALSE
value.)

The else if() blocks and final else block in the template are optional and are
evaluated only when the preceding if() statement evaluates as FALSE. The else
if() blocks are just sequenced if() statements and may be chained indefinitely.

5.1 Simulating Consumer Segment Data 117

In case you’re wondering, there is no requirement for an else block to handle
cases that if() does not match; there is an implicit “else do nothing and just
continue.”

We strongly encourage to use brackets (“{” and “}”) around all conditional state-
ment blocks as we’ve done in the template above. This makes code more read-
able, avoids syntactical ambiguities, and helps prevent bugs when lines are added
or deleted in code. Note that when brackets are followed by an else block, the
closing bracket (“}”) generally must be on the same line as else.

There is a common error with if() statements: accidentally or mistakenly using a
logical vector instead of a single logical value for the condition. Consider:
> x <- 1:5
> if (x > 1) {
+ print ("hi")
+ } else {
+ print ("bye")
+ }
[1] "bye"
Warning message:
In if (x > 1) { :
the condition has length > 1 and only the first element will be used

R warns us that the condition is not a single value. It then evaluates x[1] > 1 as
FALSE, so it skips to the else statement and evaluates that. This is probably not
what the programmer intended with this code. There are two possibilities that are
likely responsible for this code problem. First, the programmer might have forgotten
that x is a vector instead of a single value. The warning about “length > 1” tells us
to examine our code for that problem.

A second possibility is that the programmer wanted to evaluate all of the values
of x and act on each one of them. However, the if() statement is about program
flow—in R jargon, it is not vectorized—and thus it evaluates only a single condi-
tion per if(). To perform conditional evaluation on every element of a vector, use
ifelse(test, yes, no) instead:

> ifelse(x > 1, "hi", "bye")
[1] "bye" "hi" "hi" "hi" "hi"

In this case, the condition x > 1 is evaluated for each element of x. That is, it tests
whether x[1] > 1 and then x[2] > 1 and so forth. When a test evaluates as
TRUE, the function returns the first (“yes”) value; for others it returns the second
(“no”) value. The “yes” and “no” values may be functions as needed. For instance,
in a silly case:

> fn.hi <- function() { "hi" }
> fn.bye <- function() { "bye" }
> ifelse(x > 1, fn.hi(), fn.bye())
[1] "bye" "hi" "hi" "hi" "hi"

118 5 Comparing Groups: Tables and Visualizations

Experienced programmers: applying functions conditionally along a vector in this
way is one way to avoid for() loops in R as we mentioned in Sect. 5.1.2.

5.1.4 Final Segment Data Generation

Armed with for() and if() and the data definitions above, we are ready to gen-
erate the segment data. The logic we follow is to use nested for() loops, one
for the segments and another within that for the set of variables. (As mentioned in
Sects. 5.1.2 and 5.1.3, one could do this without for() loops in keeping with the
functional programming paradigm of R. However, we use for() loops here for
clarity and simplicity, and recommend that you code similarly; write whatever code
is clearest and easiest to maintain.)

To outline how this will work, consider the following pseudocode (sentences orga-
nized like code):

Set up data frame "seg.df" and pseudorandom number sequence
For each SEGMENT i in "segNames" {
Set up a temporary data frame "this.seg" for this SEGMENT’s data
For each VARIABLE j in "segVars" {

Use nested if() on "segVarType[j]" to determine data type for VARIABLE
Use segMeans[i, j] and segSDs[i, j] to
... Draw random data for VARIABLE (within SEGMENT) with
... "segSize[i]" observations

}
Add this SEGMENT’s data ("this.seg") to the overall data ("seg.df")

}

Pseudocode is a good way to outline and debug code conceptually before you actu-
ally write it. In this case, you can compare the pseudocode to the actual R code to
see how we accomplish each step. Translating the outline into R, we write:

> seg.df <- NULL
> set.seed(02554)

> # iterate over segments and create data for each
> for (i in seq_along(segNames)) {
+ cat(i, segNames[i], "\n")
+
+ # empty matrix to hold this particular segment’s data
+ this.seg <- data.frame(matrix(NA, nrow=segSize[i], ncol=length(segVars)))
+
+ # within segment, iterate over variables and draw appropriate random data
+ for (j in seq_along(segVars)) { # and iterate over each variable
+ if (segVarType[j] == "norm") { # draw random normals
+ this.seg[,j] <- rnorm(segSize[i], mean=segMeans[i,j], sd=segSDs[i,j])
+ } else if (segVarType[j] == "pois") { # draw counts
+ this.seg[, j] <- rpois(segSize[i], lambda=segMeans[i, j])
+ } else if (segVarType[j] == "binom") { # draw binomials
+ this.seg[, j] <- rbinom(segSize[i], size=1, prob=segMeans[i, j])
+ } else {
+ stop("Bad segment data type: ", segVarType[j])
+ }
+ }

5.1 Simulating Consumer Segment Data 119

+ # add this segment to the total dataset
+ seg.df <- rbind(seg.df, this.seg)
+ }

The core commands occur inside the if() statements: according to the data type
we want (“norm”[al], “pois”[son], or “binom”[ial]), use the appropriate pseudoran-
dom function to draw data (the function rnorm(n, mean, sd), rpois(n,
lambda), or rbinom(n, size, prob), respectively). We draw all of the val-
ues for a given variable within a given segment with a single command (drawing all
the observations at once, with length specified by segSize[i]).

There are a few things to note about this code. As in Sect. 5.1.2 we use
seq along() to set up the for() loops. To see that the code is working
and to show progress, we use cat("some output message", counter,
"\n") inside the loop (\n ends a line so the next iteration will be on a new line of
output). That results in the following output as the code runs:

1 Suburb mix
2 Urban hip
3 Travelers
4 Moving up

Inside the first loop (the i loop), we predefine this.seg as a data frame with
the desired number of rows and columns, but full of missing values (NA). Why?
Whenever R grows an object in memory—such as adding a row—it makes a copy
of the object. This uses twice the memory and slows things down; by preallocating,
we avoid that. In small data sets like this one, it hardly matters, but with larger data
sets, it can make a huge difference in speed. Also, R can easily draw random values
for all respondents in a segment at once and this makes it easier to do so. Finally, it
adds a bit of error checking: if a result doesn’t fit into the data frame where it should
fit, we will get a warning or error.

By filling temporary and placeholder objects with missing values (NA) instead of 0
or blank values, we add another layer of error-checking: if we describe() the
object and discover missing values where we expect data, we know there is a code
error.

We finish the if() blocks in our code with a stop() command that executes in
the case that a proposed data type doesn’t match what we expect. There are three
if() tests for the expected data types, and a final else block in case none of the
ifs matches. This protects us in the case that we mistype a data type or if we try to
use a distribution that hasn’t been defined in the random draw code, such as a gamma
distribution. This stop() condition would cause the code to exit immediately and
print an error string.

Notice that we are doing a lot of thinking ahead about how our code might change
and potentially break in the future to ensure that we would get a warning when
something goes wrong. Our code also has another advantage that you may not notice
right away: we call each random data function such as rnorm in exactly one place.

120 5 Comparing Groups: Tables and Visualizations

If we discover that there was something wrong with that call—say we wanted to
change one of the parameters of the call—we only need to make the correction in
one place. This sort of planning is a hallmark of good programming in R or any
other language. While it might seem overly complex at first, many of these ideas
will become habitual as you write more programs.

To finish up the data set, we perform a few housekeeping tasks: we name the
columns, add segment membership, and convert each binomial variable to a labeled
factor:

make the data frame names match what we defined
names(seg.df) <- segVars
add segment membership for each row
seg.df$Segment <- factor(rep(segNames, times=segSize))
convert the binomial variables to nicely labeled factors
seg.df$ownHome <- factor(seg.df$ownHome, labels=c("ownNo", "ownYes"))
seg.df$gender <- factor(seg.df$gender, labels=c("Female", "Male"))
seg.df$subscribe <- factor(seg.df$subscribe, labels=c("subNo", "subYes"))

We may now inspect the data. As always, we recommend a data inspection plan as
noted in Sect. 3.6, although we only show one of those steps here:

> summary(seg.df)
age gender income kids ownHome

Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141
Median :39.49 Median : 52014 Median :1.00
Mean :41.20 Mean : 50937 Mean :1.27
3rd Qu.:47.90 3rd Qu.: 61403 3rd Qu.:2.00
Max. :80.49 Max. :114278 Max. :7.00

...

The data frame is now suitable for exploration. And we have reusable code: we
could create data with more observations, different segment sizes, or segments with
different distributions or means by simply adjusting the matrices that define the
segments and running the code again.

As a final step we save the data frame as a backup and to use again in later chapters
(Sects. 11.2 and 12.4). Change the destination if you have created a folder for this
book or prefer a different location:

> save(seg.df, file="∼/segdf-Rintro-Ch5.RData")

5.2 Finding Descriptives by Group

For our consumer segmentation data, we are interested in how measures such as
household income and gender vary for the different segments. With this insight, a
firm might develop tailored offerings for the segments or engage in different ways
to reach them.

5.2 Finding Descriptives by Group 121

An ad hoc way to do this is with data frame indexing: find the rows that match
some criterion, and then take the mean (or some other statistic) for the matching
observations on a variable of interest. For example, to find the mean income for the
“Moving up” segment:

> mean(seg.df$income[seg.df$Segment == "Moving up"])
[1] 53090.97

This says “from the income observations, take all cases where the Segment column
is ‘Moving up’ and calculate their mean.” We could further narrow the cases to
“Moving up” respondents who also do not subscribe using Boolean logic:

> mean(seg.df$income[seg.df$Segment == "Moving up" &
+ seg.df$subscribe=="subNo"])
[1] 53633.73

This quickly becomes tedious when you wish to find values for multiple
groups.

As we saw briefly in Sect. 3.4.5, a more general way to do this is with by(data,
INDICES, FUN). The result of by() is to divide data into groups for each
of the unique values in INDICES and then apply the FUN function to each
group:

> by(seg.df$income, seg.df$Segment, mean)
seg.df$Segment: Moving up
[1] 53090.97

seg.df$Segment: Suburb mix
[1] 55033.82
...

With by(), keep in mind that data is the first argument and the splitting factors
INDICES come second. You can break out the results by multiple factors if you
supply factors in a list(). For example, we can break out by segment and sub-
scription status:
> by(seg.df$income, list(seg.df$Segment, seg.df$subscribe), mean)
: Moving up
: subNo
[1] 53633.73

: Suburb mix
: subNo
[1] 54942.69
...

: Urban hip
: subYes
[1] 20081.19

Our favorite command for this is aggregate() as we introduced in Sect. 3.4.5.
aggregate() works almost identically to by in its list form (we’ll see another

122 5 Comparing Groups: Tables and Visualizations

form of aggregate() momentarily), except that it takes a list for even a single
factor:

> aggregate(seg.df$income, list(seg.df$Segment), mean)
Group.1 x

1 Moving up 53090.97
2 Suburb mix 55033.82
3 Travelers 62213.94
4 Urban hip 21681.93

A first advantage of aggregate() is this: the result is a data frame. As we saw
in Sect. 3.4.5, you can save the results of aggregate() to an object, which you
can then index, subject to further computation, write to a file, or manipulate in other
ways.

Here’s an example: suppose we wish to add a “segment mean” column to our data
set, a new observation for each respondent that contains the mean income for their
respective segment so we can compare respondents’ incomes to those typical for
their segments. We can do this by first aggregating the mean incomes into a table,
and then indexing that by segment to look up the appropriate value for each row of
our data:

> seg.income.mean <- aggregate(seg.df$income, list(seg.df$Segment), mean)
> seg.df$segIncome <- seg.income.mean[seg.df$Segment, 2]

When we check the data, we see that each row has an observation that matches
its segment mean (some() does a random sample of rows, so your output may
vary):

> library(car)
> some(seg.df)

age gender income kids ownHome subscribe Segment segIncome
58 34.46528 Male 60971.76 2 ownNo subNo Suburb mix 55033.82
79 42.31337 Male 49674.79 0 ownYes subNo Suburb mix 55033.82
124 22.30333 Female 24541.24 1 ownNo subNo Urban hip 21681.93
136 23.08861 Male 33909.50 3 ownNo subNo Urban hip 21681.93
158 43.35230 Male 51787.88 0 ownNo subNo Travelers 62213.94
...

It is worth thinking about how this works. In the following command:

> seg.df$segIncome <- seg.income.mean[seg.df$Segment, 2]

. . . we see this index for the rows: seg.df$Segment. If we evaluate that on its
own, we see that it is a vector with one entry for each row of seg.df:

> seg.df$Segment
[1] Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix Suburb mix Suburb

mix
...
[295] Moving up Moving up Moving up Moving up Moving up Moving up
Levels: Moving up Suburb mix Travelers Urban hip

5.2 Finding Descriptives by Group 123

Now let’s see what happens when we index seg.income.mean with that
vector:

> seg.income.mean[seg.df$Segment,]
Group.1 x

2 Suburb mix 55033.82
2.1 Suburb mix 55033.82
...
1.68 Moving up 53090.97
1.69 Moving up 53090.97

The result is a data frame in which each row of seg.income.mean occurs many
times in the order requested.

Finally, selecting the second column of that gives us the value to add for each row
of seg.df:

> seg.income.mean[seg.df$Segment, 2]
[1] 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82 55033.82

...
[297] 53090.97 53090.97 53090.97 53090.97

We generally do not like adding derived columns to primary data because we like to
separate data from subsequent computation, but we did so here for illustration. We
now remove that column by setting its value to NULL:

> seg.df$segIncome <- NULL

This use of aggregate() exemplifies the power of R to extract and manipulate
data with simple and concise commands. You may recall that we said this was the
first advantage of aggregate(). The second advantage is even more important
and we describe it next.

5.2.1 Language Brief: Basic Formula Syntax

R provides a standard way to describe relationships among variables through for-
mula specification. A formula uses the tilde (∼) operator to separate response vari-
ables on the left from explanatory variables on the right. The basic form is:

y ∼ x (Simple formula)

This is used in many contexts in R, where the meaning of response and explana-
tory depend on the situation. For example, in linear regression, the simple formula
above would model y as a linear function of x. In the case of the aggregate()
command, the effect is to aggregate y according to the levels of x.

124 5 Comparing Groups: Tables and Visualizations

Let’s see that in practice. Instead of aggregate(seg.df$income, list
(seg.df$Segment), mean) we can write:

> aggregate(income ∼ Segment, data=seg.df, mean)
Segment income

1 Moving up 53090.97
...

The general form is aggregate(formula, data, FUN). In our example, we
tell R to “take income by Segment within the data set seg.df, and apply mean
to each group.”

The formula “y ∼ x” might be pronounced in various contexts as “y in response
to x,” “y is modeled by x,” “y varies with x,” and so forth. R programmers often
become so accustomed to this syntax that they just say “y tilde x.” This syntax may
seem like nothing special at first, but formulas are used in many different contexts
throughout R. We will encounter many uses for formulas later in this book, and
discuss additional forms of them in Sect. 7.5.1.

5.2.2 Descriptives for Two-Way Groups

A common task in marketing is cross-tabulating, separating customers into groups
according to two (or more) factors. Formula syntax makes it easy to compute a cross
tab just by specifying multiple explanatory variables:

y ∼ x1+ x2+ · · · (Multiple variable formula)

Using this format with aggregate(), we write:

> aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
Segment ownHome income

1 Moving up ownNo 54497.68
2 Suburb mix ownNo 54932.83
...
7 Travelers ownYes 61889.12
8 Urban hip ownYes 23059.27

We now have a separate group for each combination of Segment and ownHome
and can begin to see how income is related to both the Segment and the
ownHome variables.

A formula can be extended to include as many grouping variables as needed:
> aggregate(income ∼ Segment + ownHome + subscribe, data=seg.df, mean)

Segment ownHome subscribe income
1 Moving up ownNo subNo 55402.89
...
8 Urban hip ownYes subNo 23993.93
9 Moving up ownNo subYes 50675.70
...
16 Urban hip ownYes subYes 19320.64

5.2 Finding Descriptives by Group 125

As we saw for one-way aggregate, the result can be assigned to a data frame object
and indexed:

> agg.data <- aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
> agg.data[2,]

Segment ownHome income
2 Suburb mix ownNo 54932.83
> agg.data[2, 3]
[1] 54932.83

The aggregate command allows us to compute functions of continuous variables,
such as the mean of income or age) for any combination of factors (Segment,
ownHome and so forth). This is such a common task in marketing research that
there are entire companies who specialize in producing cross tabs. As we’ve just
seen, these are not difficult to compute in R.

We might also want to know the frequency with which different combina-
tions of Segment and ownHome occur. We can compute frequencies us-
ing table(factor1, factor2, ...) to obtain one-way or multi-way
counts:

> with(seg.df, table(Segment, ownHome))
ownHome

Segment ownNo ownYes
Moving up 47 23
Suburb mix 52 48
Travelers 20 60
Urban hip 40 10

There are 10 observed customers in the “Urban hip” segment who own their own
homes, and 60 in the “Travelers” segment.

Suppose we want a breakdown of the number of kids in each household (kids) by
segment:

> with(seg.df, table(kids, Segment))
Segment

kids Moving up Suburb mix Travelers Urban hip
0 13 11 80 17
1 17 36 0 17
2 18 22 0 11
3 13 19 0 4
4 5 7 0 1
5 3 3 0 0
6 0 2 0 0
7 1 0 0 0

This tells us that we have 17 “Urban hip” respondents with 0 kids, 22 “Suburb mix”
respondents with 2 kids, and so forth. It represents purely the count of incidence for
each crossing point between the two factors, kids and Segment. In this case we
are treating kids as a factor and not a number.

126 5 Comparing Groups: Tables and Visualizations

However, kids is actually a count variable; if a respondent reported 3 kids, that is a
count of 3 and we could add together the counts to get the total number of children
reported in each segment. xtabs(formula, data) provides a handy way to
do this. It works with counts to find their total:

> xtabs(kids ∼ Segment, data=seg.df)
Segment
Moving up Suburb mix Travelers Urban hip

134 192 0 55

Now we know that our “Urban hip” respondents reported a total of 55 kids, while
the “Travelers” reported none. You might think of other ways this could be done in
R as well. One alternative is aggregate(..., sum):

> aggregate(kids ∼ Segment, data=seg.df, sum)
Segment kids

1 Moving up 134
2 Suburb mix 192
3 Travelers 0
4 Urban hip 55

Another option is to multiply the frequency table by marginal number of kids and
add it up:

> seg.tab <- with(seg.df, table(kids, Segment))
> apply(seg.tab*0:7, 2, sum)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

apply(, 2, sum) is better expressed using colSums():

> seg.tab <- with(seg.df, table(kids, Segment))
> colSums(seg.tab*0:7)
Moving up Suburb mix Travelers Urban hip

134 192 0 55

We have belabored this in order to show that R typically has many ways to arrive at
the same result. This may seem overly complex, yet it is a good thing. One reason is
that there are multiple options to match your style and situation. Each method pro-
duces results in a different format, and one format might work better in some situa-
tion than another. For instance, we’ve argued that the format from aggregate()
is often more useful than by(). Another reason is that you can do the same thing
in two different ways and compare the answers, thus testing your analyses and un-
covering potential errors.

5.2.3 Visualization by Group: Frequencies and Proportions

Suppose we plot the proportion of subscribers for each segment to understand bet-
ter which segments use the subscription service. Apart from making four separate

5.2 Finding Descriptives by Group 127

plots, it isn’t obvious how to do this with the tools we have learned so far. We
could use table() along with barplot() (from Sect. 3.2.1) to get a plot show-
ing the number of subscribers and non subscribers overall, but breaking this out
by segment would require lots of work to separate the data and label the plots
correctly.

Happily, the lattice package provides a useful solution: histogram
(formula, data, type) is similar to hist() but understands formula
notation including conditioning on a factor, which means to separate the plot into
multiple panes based on that factor. Conditioning is indicated with the symbol “|”.
This is easiest to understand in an example:

> require(lattice)
> histogram(∼subscribe | Segment, data=seg.df)

You will notice that there is no response variable before the tilde (∼) in this formula,
only the explanatory variable (subscribe) after it. histogram() automatically
assumes that we want to plot the proportion of people at each level of subscribe.
We condition the plot on Segment, telling histogram to produce a separate
histogram for each segment. The result is shown in Fig. 5.1.

subscribe

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

80

subNo subYes

Moving up Suburb mix

Travelers

subNo subYes

0

20

40

60

80

Urban hip

Fig. 5.1. Conditional histogram for pro-
portion of subscribers within each seg-
ment, using lattice.

In Fig. 5.1, we see that the “Suburban mix” segment is least likely to subscribe to
our service. While this data doesn’t tell us why that might be, it does suggest that
the company might investigate and perhaps either improve the product to make it
more appealing to this group or else stop marketing to them.

The default in histogram() is to plot proportions within each group so that the
values are relative to the group size. If we wanted actual counts instead, we could

128 5 Comparing Groups: Tables and Visualizations

include the argument type="count". We do that, adding options for color and
changing the layout to 4 columns and 1 row:

> histogram(∼subscribe | Segment, data=seg.df, type="count",
+ layout=c(4,1), col=c("burlywood", "darkolivegreen"))

This produces Fig. 5.2. By plotting the counts, we can see which segments are larger,
but it is difficult and potentially misleading to compare the count of subscribers
across groups of different sizes.

subscribe

C
ou

nt

0

20

40

60

80

subNo subYes

Moving up

subNo subYes

Suburb mix

subNo subYes

Travelers

subNo subYes

Urban hip

Fig. 5.2. Conditional histogram
for count of subscribers within
each segment.

You can condition on more than one factor; just include it in the conditioning
part of the formula with “+”. For example, what is the proportion of subscribers
within each segment, by home ownership? We add ownHome to the formula in
histogram():

> histogram(∼subscribe | Segment + ownHome, data=seg.df)

The result is Fig. 5.3. In this plot, the top and bottom rows of Fig. 5.3 are similar,
and we conclude that differences in subscription rate according to home ownership
within segment are small. An implication is that the company should continue to
market to both homeowners and non-homeowners.

Finally, we could plot just “yes” proportions instead of both “yes” and “no” bars.
There are several ways to do this; we’ll do so by introducing the prop.table
(table, margin) command. If you wrap prop.table(..., margin=
...) around a regular table() command, it will give you the proportions for
each cell with respect to the entire table (by default), or just the rows (margin=1),
or the columns (margin=2).

We would like to know the proportion of subscribers within each segment,
which are the columns in table(...$subscribe, $Segment), so we
use prop.table(..., margin=2) as follows:

5.2 Finding Descriptives by Group 129

> prop.table(table(seg.df$subscribe, seg.df$Segment), margin=2)

Moving up Suburb mix Travelers Urban hip
subNo 0.800 0.940 0.875 0.800
subYes 0.200 0.060 0.125 0.200

To plot just the “yes” values, we use barchart() and select only the second row
of the prop.table() result:

> barchart(prop.table(table(seg.df$subscribe, seg.df$Segment), margin=2)[2,],
+ xlab="Subscriber proportion by Segment", col="darkolivegreen")

subscribe

P
er

ce
nt

 o
f T

ot
al

0

20

40

60

80

100

subNo subYes

Moving up
ownNo

Suburb mix
ownNo

subNo subYes

Travelers
ownNo

Urban hip
ownNo

Moving up
ownYes

subNo subYes

Suburb mix
ownYes

Travelers
ownYes

subNo subYes

0

20

40

60

80

100
Urban hip
ownYes

Fig. 5.3. Conditional histogram for
subscribers, broken out by segment
(in the four columns) and home
ownership (in the two rows).

The result is Fig. 5.4, which strongly communicates that the Suburb mix segment
has an apparent low subscription rate. Note that this visual impression is amplified
by the fact that barchart() started the X axis at 0.05, not at 0, which is rather
misleading. In practice, you might adjust that using the xlim=c(low, high)
argument to barchart(); we leave that as an exercise. We will see more examples
of barcharts in the next section.

5.2.4 Visualization by Group: Continuous Data

In the previous section we saw how to plot counts and proportions. What about
continuous data? How would we plot income by segment in our data? A simple
way is to use aggregate() to find the mean income, and then use barchart()
from the lattice package to plot the computed values:

130 5 Comparing Groups: Tables and Visualizations

Subscriber proportion by Segment

Moving up

Suburb mix

Travelers

Urban hip

0.10 0.15 0.20

Fig. 5.4. Proportion of subscribers
by segment using prop.table and
barchart.

> seg.mean <- aggregate(income ∼ Segment, data=seg.df, mean)
> library(lattice)
> barchart(income∼Segment, data=seg.mean, col="grey")

The result is Fig. 5.5.

in
co

m
e

20000

30000

40000

50000

60000

Moving up Suburb mix Travelers Urban hip

Fig. 5.5. Average income by seg-
ment using prop.table and
barchart.

How do we split this out further by home ownership? First we have to aggregate
the data to include both factors in the formula. Then we tell barchart() to use
ownHome as a grouping variable by adding the argument groups=factor. Do-
ing that, and also adding a simpleTheme option to improve the chart colors, we
have:

> seg.income.agg <- aggregate(income ∼ Segment + ownHome, data=seg.df, mean)
> barchart(income ∼ Segment, data=seg.income.agg,
+ groups=ownHome, auto.key=TRUE,
+ par.settings = simpleTheme(col=terrain.colors(2)))

This produces a passable graphic as shown in Fig. 5.6 although it still looks as if it
came from a spreadsheet program. We can do better in R.

A more informative plot for comparing values of continuous data, like income for
different groups is a box-and-whiskers plot or boxplot, which we first encountered
in Sect. 3.4.2. A boxplot is better than a barchart because it shows more about the
distributions of values.

5.2 Finding Descriptives by Group 131

in
co

m
e

20000

30000

40000

50000

60000

Moving up Suburb mix Travelers Urban hip

ownNo
ownYes

Fig. 5.6. Average income by seg-
ment and home ownership, using
aggregate and barchart.

boxplot() works with formula syntax to plot a box-and-whiskers plot by factor.
Adding improved labels for the Y axis (see Sect. 3.4), we write:
> boxplot(income ∼ Segment, data=seg.df, yaxt="n", ylab="Income ($k)")
> ax.seq <- seq(from=0, to=120000, by=20000)
> axis(side=2, at=ax.seq, labels=paste(ax.seq/1000, "k", sep=""), las=1)

l

l

l

l
l

Moving up Suburb mix Travelers Urban hip

In
co

m
e

($
k)

0k

20k

40k

60k

80k

100k

Fig. 5.7. Box-and-whiskers plot for income by segment using boxplot.

We can now see in Fig. 5.7 that the income for “Travelers” is higher and also has
a greater range, with a few “Travelers” reporting very low incomes. The range of
income for “Urban hip” is much lower and tighter. Although box-and-whisker plots
are not common in business reporting, we think they should be. They are fairly
simple to understand and encode a lot more information than the averages shown in
Fig. 5.4.

An even better option for box-and-whiskers plots is the bwplot() command from
the lattice package, which produces better looking charts and allows multi-
factor conditioning. One point of caution is that bwplot() uses the model formula
in a direction opposite than you might expect; you write Segment ∼ income.
We plot a horizontal box-and-whiskers for income by segment as follows:
> bwplot(Segment ∼ income, data=seg.df, horizontal=TRUE, xlab = "Income")

132 5 Comparing Groups: Tables and Visualizations

The lattice box-and-whiskers is shown in Fig. 5.8.

We can break out home ownership as a conditioning variable using “ | ownHome”
in the formula:

> bwplot(Segment ∼ income | ownHome, data=seg.df, horizontal=TRUE,
+ xlab="Income")

The conditioned plot for income by segment and home ownership is shown in
Fig. 5.9. In this chart we discover—among other things—that in our simulated data
the Travelers segment has a much wider distribution of income among those who
own their homes than those who don’t.

5.3 Learning More*

The topics in this chapter are foundational both for programming skills in R and for
applied statistics. To gain skill in aspects of R programming that we introduce in
this chapter, we recommend Matloff’s The Art of R Programming [110].

Income

Moving up

Suburb mix

Travelers

Urban hip

0 20000 40000 60000 80000 100000

l

l

l

l

l l l

l l

Fig. 5.8. Box-and-whiskers plot for income by segment using bwplot.

In Chap. 6 we continue our investigation with methods that formalize group com-
parisons and estimate the statistical strength of differences between groups.

5.4 Key Points 133

Income

Moving up

Suburb mix

Travelers

Urban hip

0 20000 40000 60000 80000 100000

l

l

l

l

l l

l

ownNo

0 20000 40000 60000 80000 100000

l

l

l

l

l

l

l

ownYes

Fig. 5.9. Box-and-whiskers plot for income by segment and home ownership using bwplot.

5.4 Key Points

This was a crucial chapter for doing everyday analytics with R. Following are some
of the lessons.

In R code in general:

• When writing for() loops, use seq along() instead of 1:length()
(Sect. 5.1.2)

• For if() and for() blocks, always use brackets (“{” and “}”) for improved
readability and reliability (Sect. 5.1.3)

• When creating a data object from scratch, pre-populate it with missing data (NA)
and then fill it in, for speed and reliability (Sect. 5.1.1)

When describing and visualizing data for groups:

• The by() command can split up data and automatically apply functions such
as mean() and summary() (Sect. 5.2)

• aggregate() is even more powerful: it understands formula models and pro-
duces a reusable, indexable object with its results (Sects. 5.2 and 5.2.1)

• Frequency of occurrence can be found with table(). For count data, espe-
cially when using formulas, xtabs() is useful (Sect. 5.2.2)

• Charts of proportions and occurrence by a factor are well suited to the
lattice package histogram() command (Sect. 5.2.2)

• Plots for continuous data by factor may use barchart(), or even better, box-
and-whiskers plots with boxplot(). The lattice package extends such
plots to multiple factors using formula specification and the bwplot() com-
mand (Sect. 5.2.4)

6

Comparing Groups: Statistical Tests

In Chap. 5 we saw how to break out data by groups and inspect it with tables and
charts. In this chapter we continue our discussion and address the question, “It looks
different, but is it really different?” This involves our first inferential statistical pro-
cedures: chi-square, t-tests, and analysis of variance (ANOVA). In the final section,
we introduce a Bayesian approach to compare groups.

6.1 Data for Comparing Groups

In this chapter, we continue with the data from Chap. 5. If you saved it at that time,
you could load it again with a command such as:

> load("∼/segdf-Rintro-Ch5.RData") # modify directory as needed
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...

Alternatively, you could create the data following the procedure in Sect. 5.1. Or
download it from this book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")
> summary(seg.df)

age gender income kids ownHome
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141

...

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 6

135

136 6 Comparing Groups: Statistical Tests

6.2 Testing Group Frequencies: chisq.test()

Much of the work we do in marketing analytics and marketing research involves
summarizing the differences between groups using group averages and cross tabs as
we described in Sect. 5.2. However, a good analyst is able to use statistical tests to
determine whether differences are real or might instead be due to minor variation
(“noise”) in the data. In the rest of the book, we largely focus on statistical tests that
help to identify real differences.

One of the simplest statistical tests is the chi-square test, which is used with fre-
quency counts such as those produced by table. A chi-square test determines
whether the frequencies in cells are significantly different from what one would
expect on the basis of their total counts.

In our segment data, we might ask whether there are equal numbers of respon-
dents in each segment, given a marginal count of N=300 observations. In R, we
use the chisq.test() command. One thing to remember is that in general
chisq.test() operates on a table (such as produced by table()). To see how
this works, let’s look at the process using simple data before we tackle the question
for our segments. Experimenting with simple data is always a good idea when trying
a new command.

For the first example, we create a table where the data comprises 95 observations of
the numbers 1–4 and where the counts of each are almost, but not quite identical.
We then test this with chisq.test():

> tmp.tab <- table(rep(c(1:4), times=c(25,25,25,20)))
> tmp.tab
1 2 3 4

25 25 25 20

> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 0.7895, df = 3, p-value = 0.852

In this code, we generate 95 observations of 1:4, compile those into a table, and
then test that table for chi-square independence. The test evaluates the likelihood
of seeing such a result under the null hypothesis that the data were randomly sam-
pled from a large population where the values 1:4 are equally distributed, given a
marginal count of N = 95 observations. The p-value of 0.852 tells us that there is
an estimated 85 % chance of seeing a data set with differences similar to or greater
than those in our table, if the null hypothesis is true. We conclude that under the
assumptions of the chi-square test, our table does not suggest real differences in
frequency between the four cells. Put another way, this data shows no evidence that
the groups in the population are of unequal size, under the assumption of random
sampling.

6.2 Testing Group Frequencies: chisq.test() 137

Compare that to the following, which differs from the code above by a single
character—we change the number of observations of “4” from 20 to 10:

> tmp.tab <- table(rep(c(1:4), times=c(25,25,25,10)))
> tmp.tab
1 2 3 4

25 25 25 10

> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 7.9412, df = 3, p-value = 0.04724

In this case, we could conclude from the p-value of 0.047 that we can reject the
null hypothesis of no difference between the cells with “95 % confidence.” In other
words, the data in this sample suggests that the distribution of the values 1:4 is likely
to be unequal in the larger population, assuming the data are a random sample. In
general, a p-value less than 0.10 or 0.05 suggests that there is a difference between
groups.

As an aside, there are disagreements among statisticians about the meaning of
null hypotheses and the value of traditional significance testing. We do not ad-
vocate classical significance testing in particular, but report the methods here be-
cause they are widely used in marketing to gauge the strength of evidence in a data
set. We believe the classical methods are imperfect but nevertheless useful and im-
portant to know. For review and discussion of the controversies and alternatives,
see [28, 80, 95]. In Sect. 6.6 we introduce Bayesian methods that do not use this
kind of null hypothesis.

In the results above, if we had a smaller sample we would not get the same result
for the significance test even if the relative proportion of customers in each group
was the same. Significance tests are sensitive to both the observed difference and
the sample size. To see this, we can create data with the same proportions but one
fifth as many observations by dividing tmp.tab by 5.

> tmp.tab <- tmp.tab/5
> tmp.tab

1 2 3 4
5 5 5 2
> chisq.test(tmp.tab)

Chi-squared test for given probabilities

data: tmp.tab
X-squared = 1.5882, df = 3, p-value = 0.6621

Warning message:
In chisq.test(tmp.tab) : Chi-squared approximation may be incorrect

This shows a non-significant result—no evidence of a real difference in group
sizes—even though the proportion of people in the “4” group is the same as in

138 6 Comparing Groups: Statistical Tests

the larger sample above where the result was significant. This highlights one of the
cautions about statistical significance testing: it is dependent on sample size as well
as on the real effect.

Returning to our simulated segment data, which has a N = 300 observations, we
ask whether the segment sizes are significantly different from one another (assum-
ing that our 300 customers are a random sample of a larger population). We use
the same procedure as above, combining chisq.test() and table() into one
command:

> chisq.test(table(seg.df$Segment))

Chi-squared test for given probabilities

data: table(seg.df$Segment)
X-squared = 17.3333, df = 3, p-value = 0.0006035

The answer to our question is “yes, there are differences in segment size.” That
is, with p = 0.0006, our sample does not support the hypothesis that there is an
identical number of customers in each segment.

Is subscription status independent from home ownership, as we hypothesized when
we plotted the data in Sect. 5.2? That is, in our simulated data, are respondents just as
likely to subscribe or not, without regard to home ownership status (and conversely,
are they just as likely to own a home or not, independent of subscription status)? We
construct a two-way table and test it:

> table(seg.df$subscribe, seg.df$ownHome)

ownNo ownYes
subNo 137 123
subYes 22 18

> chisq.test(table(seg.df$subscribe, seg.df$ownHome))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0104, df = 1, p-value = 0.9187

The null hypothesis in this case is that the factors are unrelated, i.e., that the counts
in the cells are as one might expect from the marginal proportions. Based on the
high p-value, we cannot reject the null hypothesis, and conclude that the factors are
unrelated and that home ownership is independent of subscription status in our data.
Although people in general have a low subscription rate—and thus there are many
more non-subscribers than subscribers in both groups—there is no relationship be-
tween subscription rate and home ownership.

We should note two options for chisq.test(). First, for 2 × 2 tables,
chisq.test() defaults to using Yates’ correction, which adjusts the chi-square
statistic in light of the fact that the assumption of continuous data is imperfect when
data comes from a lumpy binomial distribution. If you want the results to match

6.3 Testing Observed Proportions: binom.test() 139

traditional values such as calculation by hand or spreadsheet, turn that off with
correct=FALSE:

> chisq.test(table(seg.df$subscribe, seg.df$ownHome), correct=FALSE)

Pearson’s Chi-squared test

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0741, df = 1, p-value = 0.7854

Second, chisq.test() can calculate confidence intervals using a simulation
method, where it compares the observed table to thousands of simulated tables with
the same marginal counts. The p-value indicates the proportion of those simulations
with differences between the cell counts and marginal proportions at least as large
as the ones in the observed table. We do that for 10,000 simulations using the sim
and B arguments as follows:

> chisq.test(table(seg.df$subscribe, seg.df$ownHome), sim=TRUE, B=10000)

Pearson’s Chi-squared test with simulated p-value (based on 10000
replicates)

data: table(seg.df$subscribe, seg.df$ownHome)
X-squared = 0.0741, df = NA, p-value = 0.8596

The test statistics and p-values change slightly across these commands, but the over-
all conclusion is the same, namely that the factors are independent.

6.3 Testing Observed Proportions: binom.test()

When we are dealing with observations that have only two values, we can consider
them to be a binomial (two-valued) variable. We illustrate this by taking a brief
break from marketing data. On the day of Superbowl XLVIII in 2014, played in the
New York City area, Chris took a walk in Manhattan and observed 12 groups of
Seattle fans and 8 groups of Denver fans.

Suppose we assume the observations are a random sample of a binomial value (ei-
ther Seattle or Denver fandom). Is the observed value of 60 % Seattle fans sig-
nificantly different from equal representation (which would be 50 % each)? We
use binom.test(successes, trials, probability) to test the likeli-
hood of randomly observing 12 cases out of 20 in one direction, if the true likelihood
is 50 %:

> binom.test(12, 20, p=0.5)

Exact binomial test

data: 12 and 20
number of successes = 12, number of trials = 20, p-value = 0.5034
alternative hypothesis: true probability of success is not equal to 0.5

140 6 Comparing Groups: Statistical Tests

95 percent confidence interval:
0.3605426 0.8088099

sample estimates:
probability of success

0.6

Based on our data, the 95 % confidence interval is 36–81 %, which includes the null
hypothesis value of 50 %. Thus, we conclude that observing 60 % Seattle fans in
a sample of 20 does not conclusively demonstrate that there are more Seattle fans
in the larger group of fans roaming New York. We could also interpret the p-value
(p = 0.5034) as being non-significant, i.e., as failing to support the idea that the
results are different from the null hypothesis.

6.3.1 About Confidence Intervals

We have mentioned confidence intervals several times, and should take a moment
to discuss them because they are widely misunderstood. Our definition of a 95 %
confidence interval is this: it is the range of possible estimates that we would expect
to see 95 % of the time if we repeatedly estimate a statistic using random samples
of the same sample size under the assumption that the true value in an infinite or
very large population is the same as our current estimate. In other words, it is the
best guess of the range of possible answers we would expect with repeated random
samples. When the confidence interval excludes the null hypothesis (such as a prob-
ability of 0.5 for equal chances, or a mean difference of 0 for no difference between
groups), then the result is said to be statistically significant.

There are many misunderstandings of confidence intervals and statistical signif-
icance. Confidence intervals (CIs) do not express “how confident we are in the
answer” because they do not reflect the degree of confidence in the assumptions.
For example, true random sampling is rare, so the presumption of random sampling
is usually not completely justified; but that additional uncertainty is not reflected
in the CI. CIs are often misunderstood to imply that “the true value lies in the CI
range,” when in fact it is the other way around; if the true value is what we obtained,
then we would expect additional estimates to fall within this CI 95 % of the time un-
der further rounds of random sampling. The CI is about estimates, not about the
true value. Additionally, statistical significance does not imply practical importance
or the meaningfulness of a result; a tiny difference can be statistically significant
with a large sample even when it is not actionable or interpretable as a business
matter.

In practice, we suggest that before interpreting a result, make sure it is statistically
significant for some level of confidence interval (95 %, or possibly 90 % or 99 %
depending on how sensitive the matter is). If it is not significant, then your evidence
for the result is weak, and you should not interpret it. In that case, either say that,
ignore the result, or collect more data. If the result is significant, then proceed with
your interpretation and reporting (taking care with how you describe “confidence”).

6.3 Testing Observed Proportions: binom.test() 141

Interpret results in light of their importance, not their statistical significance (once it
has been established). We recommend to report—and when appropriate, to chart—
confidence intervals whenever feasible rather than reporting single point estimates.
By reporting CIs, one presents a more complete and accurate description to stake-
holders.

Note that this discussion applies to the interpretation of significance in classical
statistics (which covers most of this book, and is what practitioners mostly use). We
briefly review the Bayesian alternative to confidence intervals (known as credible
intervals) in Sect. 6.6.2 below. In general, the cautions expressed above do not di-
rectly apply to Bayesian models (there are different considerations), yet the practical
recommendations about interpretation and reporting are consistent.

There is a general function in R to determine the confidence intervals for a statistical
model (when appropriate): confint(), which we use in the next section.

6.3.2 More About binom.test() and Binomial Distributions

Now that we understand confidence intervals, let’s look at binom.test() again.
What if we had observed 120 out of 200 to be Seattle fans, the same proportion as
before but in a larger sample?
> binom.test(120, 200, p=0.5)
...
number of successes = 120, number of trials = 200, p-value = 0.005685
...
95 percent confidence interval:
0.5285357 0.6684537

With 120/200 cases, the confidence interval no longer includes 50 %. If we had
observed this, it would be evidence for a preponderance of Seattle fans. Corre-
spondingly, the p-value is less than 0.05, indicating a statistically significant dif-
ference.

With R, we can ask much more about the distribution. For example, what are the
odds that we would observe 8–12 Seattle fans out of 20, if the true rate is 50 %? We
use the density estimate for a binomial distribution across the range of interest and
sum the point probabilities:
> sum(dbinom(8:12, 20, 0.5))
[1] 0.736824

If we observe 20 fans, and the true split is 50 %, there is a 73.7 % chance that we
would observe between 8 and 12 fans (and thus a 1− p or 27.3 % chance of observ-
ing fewer than 8 or more than 12).

An “exact” binomial test (the classical method) may be overly conservative
in its estimation of confidence intervals [2]. One alternative method is to use
binom.confint(, method="agresti-coull"), available in the binom
package [35] (you may need to install that package):

142 6 Comparing Groups: Statistical Tests

> library(binom)
> binom.confint(12, 20, method="ac") # same as "agresti-coull"

method x n mean lower upper
1 agresti-coull 12 20 0.6 0.3860304 0.7817446

With the Agresti–Coull method, the confidence interval is slightly smaller but still
includes 50 %. The binom package also computes several other variants on bino-
mial tests, including a Bayesian version.

Finally, Chris also observed that among the 20 groups, 0 had a mixture of Seattle
and Denver fans (as inferred from their team clothing). Based on that observation,
what should we conclude is the most likely proportion of groups that comprise mixed
fans? We use the Agresti–Coull method because exact tests have no confidence in-
terval for 0 % or 100 % observations:
> binom.confint(0, 20, method="ac")

method x n mean lower upper
1 agresti-coull 0 20 0 -0.0286844 0.1898096

The negative lower bound may be ignored as an artifact, and we conclude that al-
though Chris observed 0 cases, the occurrence of mixed fandom groups is likely to
be somewhere between 0 and 19 %.

6.4 Testing Group Means: t.test()

A t-test compares the mean of one sample against the mean of another sample (or
against a specific value such as 0). The important point is that it compares the mean
for exactly two sets of data. For instance, in the segment data we might ask whether
household income is different among those who own a home and those who do
not.

Before applying any statistical test or model, it is important to examine the data
and check for skew, discontinuities, and outliers. Many statistical tests assume that
the data follows a normal distribution or some other smooth continuous distribu-
tion; skewness or outliers violate those assumptions and might lead to an inaccurate
test.

One way to check for non-normal distributions is to plot the data with a boxplot or
histogram. We have already plotted income above (Figs. 5.7, 5.8, and 5.9) and thus
skip that step. Additionally, we can check histograms for income overall as well as
by home ownership:
> hist(seg.df$income) # not shown
> with(seg.df, hist(income[ownHome=="ownYes"])) # not shown
> with(seg.df, hist(income[ownHome=="ownNo"])) # not shown

We omit those figures for brevity. Overall, in these histograms and in the boxplots
above, income is approximately normally distributed (as it should be, given the
data generation procedure, Sect. 5.1).

6.4 Testing Group Means: t.test() 143

Now we are ready to test whether home ownership overall is related to differences
in income, across all segments, using t.test(formula, data). We write the
formula using income as the response variable to be modeled on the basis of
ownHome as the explanatory variable:

> t.test(income ∼ ownHome, data=seg.df)

Welch Two Sample t-test

data: income by ownHome
t = -3.2731, df = 285.252, p-value = 0.001195
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-12080.155 -3007.193

sample estimates:
mean in group ownNo mean in group ownYes

47391.01 54934.68

There are several important pieces of information in the output of t.test(). First
we see that the t statistic is −3.2, with a p-value of 0.0012. This means that the
null hypothesis of no difference in income by home ownership is rejected. The data
suggests that people who own their homes have higher income.

Next we see that the 95 % confidence interval for the difference is −3,007 to
−12,080. If these are representative data of a larger population, we can have 95 %
confidence that the group difference is between those values. Finally, we see the
sample means for our data: mean income is $47,391 for the rent (ownNo) condi-
tion, and $54,935 for the ownership condition.

What about the difference within the Travelers segment? In Fig. 5.9, we saw that
household income appeared to have a wider distribution among members of the
Travelers segment who own homes than those who do not. Does that also re-
flect a difference in the mean income for the two groups? We use the filter
data=subset(data, condition) to select just Travelers and repeat the
test:

> t.test(income ∼ ownHome, data=subset(seg.df, Segment=="Travelers"))

Welch Two Sample t-test

data: income by ownHome
t = 0.2656, df = 53.833, p-value = 0.7916
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8508.993 11107.604

sample estimates:
mean in group ownNo mean in group ownYes

63188.42 61889.12

The confidence interval of −8,508 to 11,107 includes 0, and thus we conclude—as
evidenced in the p-value of 0.79—that there is not a significant difference in mean
income among those Travelers in our data who own homes and who don’t.

144 6 Comparing Groups: Statistical Tests

We might be puzzled: we saw in the first t-test that there is a significant difference in
income based on home ownership, but in the second test that there’s no significant
difference within Travelers. Any difference must lie largely outside the Travelers
group.

How can we locate where the difference lies? A t-test across all segments will not
work because there are four segments and a t-test only compares two groups. We
could test income within each segment, one at a time, but this is not a good idea be-
cause multiple tests increase the likelihood of finding a spurious difference (a “Type
I error”). To track down the difference, we need a more robust procedure that han-
dles multiple groups; we turn to that next.

6.5 Testing Multiple Group Means: ANOVA

An ANOVA compares the means of multiple groups. Technically, it does this by
comparing the degree to which groups differ as measured by variance in their
means (from one another), relative to the variance of observations around each mean
(within each group). Hence the importance of variance in the name. More casually,
you can think of it as testing for difference among multiple means, assuming that
the groups have similar variance.

An ANOVA can handle single factors (known as one-way ANOVA), two factors
(two-way), and higher orders including interactions among factors. A complete dis-
cussion of ANOVA would take more space than we have here, yet we use it to
address our question from the previous section: which factors are related to differ-
ences in mean income in the segment data? Specifically, is income related to home
ownership, or to segment membership, or both?

The basic R commands for ANOVA are aov(formula, data) to set up the
model, followed by anova(model) to display a standard ANOVA summary. We
look at income by home ownership first, and assign the aov() model to an object
so we can use it with anova(). aov() uses the standard formula interface to
model income as a response to ownHome:

> seg.aov.own <- aov(income ∼ ownHome, data=seg.df)
> anova(seg.aov.own)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

ownHome 1 4.2527e+09 4252661211 10.832 0.001118 **
Residuals 298 1.1700e+11 392611030

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The value of Pr(>F) for ownHome is the p-value and reflects that there is signifi-
cant variation in income between those who do and do not own their own homes.

6.5 Testing Multiple Group Means: ANOVA 145

(This is a slightly different test but the same conclusion that we obtained from the
t-test in Sect. 6.4).

What about income by segment? We model that and save the aov object:

> seg.aov.seg <- aov(income ∼ Segment, data=seg.df)
> anova(seg.aov.seg)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***
Residuals 296 6.6281e+10 2.2392e+08
...

The value of Pr(>F) is very close to zero, confirming that income varies signif-
icantly by segment. (If you’re wondering, 2.2e-16 means 2.2 ∗ 10−16 and is the
smallest non-zero number that R will typically report in Mac OS X. It is the value of
the R constant .Machine$double.eps that expresses the tolerance of floating
point differences.)

If income varies by both home ownership and segment, does that mean that a more
complete model should include both? We can add both factors into the ANOVA
model to test this:

> anova(aov(income ∼ Segment + ownHome, data=seg.df))
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.6381 <2e-16 ***
ownHome 1 6.9918e+07 6.9918e+07 0.3115 0.5772
Residuals 295 6.6211e+10 2.2444e+08
...

The results indicate that when we try to explain income differences in income by
both Segment and ownHome, segment is a significant predictor (p � 0.01) but
home ownership is not a significant predictor. Yet the previous results said that it
was significant. What’s the difference? What is happening is that segment and home
ownership are not independent, and the effect is captured sufficiently by segment
membership alone. Home ownership accounts for little more over and above what
can be explained by Segment.

Could it be that home ownership is related to income in some segments but not in
others? This would be represented in our model by an interaction effect. In a model
formula, “+” indicates that variables should be modeled for main effects only. We
can instead write “:” for an interaction or “∗” for both main effect and interaction.
We test main effects and interaction of home ownership and segment:

> anova(aov(income ∼ Segment * ownHome, data=seg.df))
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

146 6 Comparing Groups: Statistical Tests

Segment 3 5.4970e+10 1.8323e+10 81.1305 <2e-16 ***
ownHome 1 6.9918e+07 6.9918e+07 0.3096 0.5784
Segment:ownHome 3 2.6329e+08 8.7762e+07 0.3886 0.7613
Residuals 292 6.5948e+10 2.2585e+08
...

Again, segment is a significant predictor, while home ownership and the interaction
of segment with home ownership are not significant. In other words, segment mem-
bership is again the best predictor on its own. We discuss interaction effects further
in Chap. 7.

6.5.1 Model Comparison in ANOVA*

Another capability of the anova() command is to compare two or more mod-
els, using the syntax anova(model1, model2, ...) We can compare
the aov() model with segment alone vs. the model with both segment and in-
come:

> anova(aov(income ∼ Segment, data=seg.df),
+ aov(income ∼ Segment + ownHome, data=seg.df))
Analysis of Variance Table

Model 1: income ∼ Segment
Model 2: income ∼ Segment + ownHome
Res.Df RSS Df Sum of Sq F Pr(>F)

1 296 6.6281e+10
2 295 6.6211e+10 1 69918004 0.3115 0.5772

This tells us that Model 2—which includes both segment and home ownership—
is not significantly different in overall fit from Model 1. If it were better, the null
hypothesis of no difference would be rejected, as shown by a p-value (“Pr(>F)”)
less than 0.05.

It is essential to note that model comparison as performed by the anova() com-
mand only makes sense in the case of nested models. In this context, a model
A is nested within another model B when one or more parameters of B can be
fixed or removed to yield model A. In the present case, income ∼ Segment
is nested within income ∼ Segment + ownHome because we can remove
ownHome and arrive at the former model. Because they are nested, the two models
may be compared by anova() or other functions that perform likelihood compar-
isons.

The model income ∼ Segment is not nested within income ∼ subscribe
+ ownHome because no amount of removing or fixing parameters in the latter
model will produce the former. Thus, those two models could not be compared by
anova() in a meaningful way. If you try to compare them, R may produce some
output but it is not generally interpretable.

The question of how to compare non-nested models is one we do not tackle in depth
in this book, although it recurs in our discussion of structural models in Chap. 10.

6.5 Testing Multiple Group Means: ANOVA 147

If you wish to learn more about the issues and methods for general model com-
parison, a good place to start is to review the literature on the Akaike information
criterion (AIC) and Bayesian information criterion (BIC). We review BIC briefly in
Sect. 11.3.5.

6.5.2 Visualizing Group Confidence Intervals

A good way to visualize the results of an ANOVA is to plot confidence intervals for
the group means. This will reveal more about whether the differences are substantial
in magnitude or not. We use the multcomp (multiple comparison) package and its
glht(model) (general linear hypothesis) command [79]. You may need to install
the “multcomp” package on your system.

Let’s take a look at what glht() does. We assign an aov() to an object and
inspect it with glht():

> library(multcomp)
> seg.aov <- aov(income ∼ Segment, data=seg.df)
> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:
Estimate

(Intercept) == 0 53091
SegmentSuburb mix == 0 1943
SegmentTravelers == 0 9123
SegmentUrban hip == 0 -31409

There is a problem: the default aov() model has an intercept term (corresponding
to the Moving up segment) and all other segments are relative to that. This may
be difficult for decision makers or clients to understand, so we find it preferable to
remove the intercept by adding “-1” to the model formula:

> seg.aov <- aov(income ∼ -1 + Segment, data=seg.df)
> glht(seg.aov)

General Linear Hypotheses

Linear Hypotheses:
Estimate

SegmentMoving up == 0 53091
SegmentSuburb mix == 0 55034
SegmentTravelers == 0 62214
SegmentUrban hip == 0 21682

With the intercept removed, glht() gives us the mean value for each segment. We
plot that, using the par(mar=...) command to add some extra margins for large
axis labels:

> par(mar=c(6,10,2,2)) # adjusts margins to preserve axis labels
> plot(glht(seg.aov),
+ xlab="Income", main="Average Income by Segment (95% CI)")

148 6 Comparing Groups: Statistical Tests

The result is Fig. 6.1. The dot shows the mean for each segment, and bars reflect the
confidence interval.

In Fig. 6.1 we see confidence intervals for the mean income of each segment. It is
clear that the average income of Urban hip segment members is substantially lower
than the other three groups.

6.5.3 Variable Selection in ANOVA: Stepwise Modeling*

Building models iteratively by adding and removing variables is a common task
that can be automated with the step(model) command. This performs step-
wise model selection by testing models one at time while changing the variables

Average Income by Segment (95% CI)

20000 30000 40000 50000 60000

SegmentUrban hip

SegmentTravelers

SegmentSuburb mix

SegmentMoving up (

(

(

(

)

)

)

)

l

l

l

l

Income

Fig. 6.1. Confidence intervals for income by segment, from an analysis of variance model
with aov() and glht().

in the model to see whether the change improves the model. There are options
for both backward (starting with a larger set of variables and progressively cutting
them) and forward (adding variables) procedures. The step() command uses the
AIC to compare models on the basis of overall fit balanced with model complex-
ity [3].

We perform a backward stepping procedure here (the default direction) by spec-
ifying a complete main effect model using the formula shorthand “response
∼ .” The “.” is shorthand for “all other variables (except the response vari-
able).” By default this models all main effects without interactions. Higher order
effects in this case may be added with superscript notation, such as “.ˆ2” for
two-way interactions, but it is usually good to avoid such indiscriminate interac-
tion modeling.

For our aov() model for income, the command to run the stepwise procedure for
main effects and save the resulting best model is:

6.6 Bayesian ANOVA: Getting Started* 149

> seg.aov.step <- step(aov(income ∼ ., data=seg.df))
Start: AIC=5779.17
income ∼ age + gender + kids + ownHome + subscribe + Segment

Df Sum of Sq RSS AIC
- age 1 4.7669e+06 6.5661e+10 5777.2
- ownHome 1 1.0337e+08 6.5759e+10 5777.6
- kids 1 1.3408e+08 6.5790e+10 5777.8
- subscribe 1 1.5970e+08 6.5816e+10 5777.9
- gender 1 2.6894e+08 6.5925e+10 5778.4
<none> 6.5656e+10 5779.2
- Segment 3 1.9303e+10 8.4959e+10 5850.5

Step: AIC=5777.19
income ∼ gender + kids + ownHome + subscribe + Segment
... [several steps] ...
Step: AIC=5772.02
income ∼ Segment

Df Sum of Sq RSS AIC
<none> 6.6281e+10 5772.0
- Segment 3 5.497e+10 1.2125e+11 5947.2

We see that step() started by modeling income with all six other variables, went
through several steps of removing variables, and concluded with the “best” model
as income ∼ Segment.

We examine the result of step(), which was saved in a model object, using the
standard anova() command:

> anova(seg.aov.step)
Analysis of Variance Table

Response: income
Df Sum Sq Mean Sq F value Pr(>F)

Segment 3 5.4970e+10 1.8323e+10 81.828 < 2.2e-16 ***
Residuals 296 6.6281e+10 2.2392e+08

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Stepwise procedures are not a panacea and must be used with caution, although they
are sometimes helpful for model exploration. In more general cases—where there
may be dozens, hundreds, or thousands of available variables—variable selection is
better informed by procedures such as a lasso [152] or random forest [19] procedure.
We examine random forest models in Chap. 11.

6.6 Bayesian ANOVA: Getting Started*

This is an advanced section that is primarily recommended for readers who have
some familiarity with the principles of Bayesian analysis and seek an introduction to
Bayesian models in R. We do not provide a comprehensive overview of the methods,

150 6 Comparing Groups: Statistical Tests

and assume that the reader is generally familiar with Bayesian concepts such as a
prior, posterior, and posterior sampling.

For other readers, we attempt to give enough context to make the concepts approach-
able. Although this may be insufficient for a real project, it introduces how such
models work and demonstrates the steps involved. We refer you to Sect. 6.7 for ad-
ditional references.

6.6.1 Why Bayes?

We suggest analysts consider Bayesian analyses instead of traditional (“frequen-
tist”) statistical models when possible. Bayesian analysis is often a more direct way
to tackle the questions we usually want to know: “Is this hypothesis likely to be
true?”, “How much confidence should I have?”, and “What are the most likely val-
ues?” A Bayesian analysis does not take refuge in the double and triple negatives
of traditional models (“we failed to reject the null hypothesis that there is no differ-
ence between the models”). Instead, it answers, “Given these data, how likely is the
difference?”

Despite the advantages, there are reasons Bayesian analyses are not more common:
there are fewer Bayesian teachers, texts, and practitioners; many Bayesian texts are
dense with formulas; and the field is rapidly developing and some contentious issues
have not been settled. Perhaps most importantly, available software packages are
designed to make traditional models easy to run and that ease has not yet been
brought to many areas of Bayesian practice. For an analyst, it may be easier and
more productive to use traditional models in day-to-day work. Happily, Bayesian
and traditional methods often lead to the same business conclusions (although not
always).

R is on the forefront of making Bayesian methods more widely available. This is
made possible by the many contributors to R, and by the R language itself which is
well suited for the iterated analyses that Bayesian methods require. In this section,
we demonstrate a starting point for a Bayesian version of ANOVA.

6.6.2 Basics of Bayesian ANOVA*

There are many options in R for Bayesian analyses (see the Bayesian task view on
CRAN: http://cran.r-project.org/web/views/). The MCMCpack
package is a robust, fast, and powerful Bayesian kit. However, we opt here to use
the BayesFactor package for its simplicity. In particular, BayesFactor has
sensible defaults for weakly informative prior probabilities [116, 139] and makes
model comparison easy. You will need to install the BayesFactor package for
the following code.

We use the lmBF(formula, data) command to specify our ANOVA model as
a linear model for income modeled by the Segment factor:

http://cran.r-project.org/web/views/

6.6 Bayesian ANOVA: Getting Started* 151

> set.seed(96761)
> library(BayesFactor)
> seg.bf1 <- lmBF(income ∼ Segment, data=seg.df)

We set a pseudorandom number seed because this function will take draws from the
posterior distribution. What does that mean? Briefly, a common way to estimate a
Bayesian model is to do repeated assessments of how well a proposed model fits the
data.

To understand this we must consider the concept of a parameter. We have not used
the term yet, but a statistical model estimates one or more parameters that define the
presumed distribution. For example, a t-test compares the mean of two groups, and
the parameter it estimates is the difference between the means. An ANOVA model
can also be used to estimate the mean. It was confidence in the estimation of that
parameter that we plotted in Sect. 6.5.2.

Common Bayesian models operate by selecting initially random values for model
parameters (such as the mean for a segment). The process then retains the parameter
according to the likelihood that it fits the data and prior expectation (an estimated
starting point, if we have one), and iterates that process thousands or even millions
of times. The retained estimates are the draws from the posterior distribution for the
parameters, while the final estimated distribution of them is the posterior distribu-
tion. The end result is a large sample of possible parameters and their likelihoods,
or in other words, an outline of the most likely parameters for a given model. Again,
see Sect. 6.7 for more.

After fitting the model for income ∼ Segment, we might inspect it directly.
However, instead of starting to interpret a model, it is preferable to have a sense that
it is an adequate model. So we first compare it to the alternative we considered in
Sect. 6.5.1, which modeled income ∼ Segment + ownHome. We would then
interpret the Segment-only model if it fits the data better (or fits just as well but is
simpler).

Model comparison in BayesFactor is performed by using the “/” operator to
find the ratio of the models’ Bayes Factors. We have the first model seg.bf1
from above, and now fit the second model with two factors that we wish to
compare:

> seg.bf2 <- lmBF(income ∼ Segment + ownHome, data=seg.df)
=== 100%

> seg.bf1 / seg.bf2
Bayes factor analysis

[1] Segment : 6.579729 1.62%

Against denominator:
income ∼ Segment + ownHome

Bayes factor type: BFlinearModel, JZS

152 6 Comparing Groups: Statistical Tests

This tells us that the ratio of Bayes Factors for model 1 (∼ Segment) vs. model
2 (∼ Segment + ownHome) is 6.58. This means that model 1 is the preferable
model by a factor of 6.5.

To find the model parameters and their credible ranges, we use the posterior
(model, index, draws) command to draw 10,000 samples of the possible
parameters from model 1:

> seg.bf.chain <- posterior(seg.bf1, 1, iterations = 10000)
|===| 100%

The draws are known as a chain because they are estimated by a Markov chain
process; we skip those details (see [61]).

Before we examine the estimates, we should inspect whether the draws converged
to stable values such that the estimates are reliable. In BayesFactor, we simply
call plot() on the chain object. We select columns 1:6 from the draws because
there are six parameters we care about: the population mean and variance (mu and
sigma) and the estimates of means for the four segments:

> plot(seg.bf.chain[, 1:6]) # check console: may need <Return> to see all

The charts for the first three parameters are shown in Fig. 6.2; we omit the other
three charts because they are nearly identical. We interpret the charts as follows.
On the left, we see the estimated parameter values (Y axis) plotted against the draw
sequence (X axis). These form a fat but straight line, which means the estimates
varied around a stable central point; thus, they converged. (If they had not converged,
the plot would show erratic variations up or down, or would spread out increasingly
rather than being straight.)

On the right, we see a density plot of the values. The density shape is approximately
normal, which matches the assumption of the regression model. Thus, the charts
confirm that the model was stable and converged (note that these don’t mean the
model is useful, only that it achieved a stable estimate).

6.6.3 Inspecting the Posterior Draws*

We now examine the parameters as expressed in our posterior draw chain. A simple
summary() of the chain shows us the estimates:

> summary(seg.bf.chain)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

6.6 Bayesian ANOVA: Getting Started* 153

0 2000 4000 6000 8000 10000

45
00

0
49

00
0

Iterations

Trace of mu

44000 46000 48000 50000 52000

0e
+

00
3e

−
04

Density of mu

N = 10000 Bandwidth = 150.7

0 2000 4000 6000 8000 10000

0
60

00

Iterations

Trace of Segment−Moving up

−2000 0 2000 4000 6000 8000 10000 120000.
00

00
0

0.
00

02
0

Density of Segment−Moving up

N = 10000 Bandwidth = 256.4

0 2000 4000 6000 8000 10000

20
00

80
00

Iterations

Trace of Segment−Suburb mix

2000 4000 6000 8000 10000 120000.
00

00
0

0.
00

02
0

Density of Segment−Suburb mix

N = 10000 Bandwidth = 230.7

Fig. 6.2. Trace plot for draws from the posterior distribution of a Bayesian ANOVA for in-
come by segment, for the first three parameters. The left-hand charts show trace convergence;

right-hand charts show the posterior distributions for the parameters.

Mean SD Naive SE Time-series SE
mu 4.806e+04 8.969e+02 8.969e+00 8.804e+00
Segment-Moving up 4.951e+03 1.548e+03 1.548e+01 1.548e+01
Segment-Suburb mix 6.927e+03 1.373e+03 1.373e+01 1.373e+01
Segment-Travelers 1.398e+04 1.487e+03 1.487e+01 1.518e+01
Segment-Urban hip -2.586e+04 1.777e+03 1.777e+01 1.956e+01
sig2 2.259e+08 1.856e+07 1.856e+05 1.856e+05
g_Segment 2.138e+00 3.359e+00 3.359e-02 3.359e-02

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 4.631e+04 4.745e+04 4.805e+04 4.868e+04 4.982e+04
Segment-Moving up 1.925e+03 3.916e+03 4.968e+03 5.961e+03 8.054e+03
Segment-Suburb mix 4.243e+03 5.996e+03 6.934e+03 7.857e+03 9.608e+03
Segment-Travelers 1.104e+04 1.297e+04 1.399e+04 1.499e+04 1.690e+04
Segment-Urban hip -2.934e+04 -2.703e+04 -2.586e+04 -2.466e+04 -2.239e+04
sig2 1.923e+08 2.128e+08 2.249e+08 2.378e+08 2.647e+08
g_Segment 3.765e-01 7.949e-01 1.298e+00 2.284e+00 8.738e+00

The first section of the summary (“1. Empirical mean and ...”) gives arithmetic cen-
tral tendency estimates for the 10,000 draws of each of the parameters in the chain:
the mean of each parameter, the standard deviation of that estimate across the 10,000
draws, and so forth. The second result (“Quantiles ...”) is what we prefer to use in-
stead; it reports the actual observed quantiles for each of the parameters.

Note that the model estimates an overall mu that is the best guess for the population
mean regardless of segment effects, and then estimates each segment as a deviation
from that. However, for many purposes, it is more useful to have direct estimates for
the mean of each segment rather than its deviation. To estimate the direct values for
each segment, we add the population value (mu) to the deviations for each segment.

154 6 Comparing Groups: Statistical Tests

However, we cannot simply do that with the aggregate numbers here by adding the
mu row to each of the other rows. Why not? Because the best estimates of segment
totals are found within each draw; we need to compute segment values at that level
and then summarize those estimates. Luckily that is easy to do in R.

To see how, let’s examine the chain object:

> head(seg.bf.chain)
...

mu Segment-Moving up Segment-Suburb mix Segment-Travelers ...
[1,] 48055.75 4964.3105 6909.032 13983.21 ...
[2,] 47706.52 6478.1497 7816.873 12160.32 ...
[3,] 48362.90 5228.0718 6654.030 12565.87 ...
[4,] 49417.43 5300.9543 7249.228 12218.89 ...
...

We see rows (10,000 in all) for the draws, and columns for the estimates for each
segment. By indexing the chain, we confirm that it is arranged as a matrix:

> seg.bf.chain[1:4, 1:5]
mu Segment-Moving up Segment-Suburb mix Segment-Travelers ...

[1,] 48055.75 4964.310 6909.032 13983.21 ...
[2,] 47706.52 6478.150 7816.873 12160.32 ...
[3,] 48362.90 5228.072 6654.030 12565.87 ...
[4,] 49417.43 5300.954 7249.228 12218.89 ...

This means that simple math will work to find within-draw estimates for each row.
We do this by adding column 1, the population estimate, to each of the other columns
2–5. We test this first on rows 1:4 only:

> seg.bf.chain[1:4, 2:5] + seg.bf.chain[1:4, 1]
Segment-Moving up Segment-Suburb mix Segment-Travelers Segment-Urban hip

[1,] 53020.06 54964.78 62038.95 22199.20
[2,] 54184.67 55523.40 59866.84 21251.18
[3,] 53590.97 55016.93 60928.77 23914.93
[4,] 54718.38 56666.66 61636.32 24648.35

It works, so now we compute that total for all rows and assign the result to a new ob-
ject. Then we get quantiles from that object as the overall best estimates of segment
income:

> seg.bf.chain.total <- seg.bf.chain[, 2:5] + seg.bf.chain[, 1]
> seg.bf.ci <- t(apply(seg.bf.chain.total, 2,
+ quantile, pr=c(0.025, 0.5, 0.975)))
> seg.bf.ci

2.5% 50% 97.5%
Segment-Moving up 49582.08 53020.98 56522.05
Segment-Suburb mix 52039.66 54988.99 57867.29
Segment-Travelers 58799.46 62048.33 65355.62
Segment-Urban hip 17992.85 22216.26 26450.56

In the apply() command, we applied the quantile() function to the columns
with the probabilities that we wanted for a 95 % credible interval. Then we
transposed the result with t() to be more readable (treating the segments as
“cases”).

6.6 Bayesian ANOVA: Getting Started* 155

Those values are the best estimates of the 95 % credible range for the estimate of av-
erage income as modeled by segment, under the assumptions of our model.

6.6.4 Plotting the Bayesian Credible Intervals*

We can plot the credible intervals from the previous section using the capability of
the ggplot2 package to plot error bars. Install the “ggplot2” package if needed.
The ggplot2 commands work best with data frames, so we coerce our credi-
ble interval object seg.bf.ci to a data frame and add a column for segment
names:

> library(ggplot2)
> seg.bf.df <- data.frame(seg.bf.ci)
> seg.bf.df$Segment <- rownames(seg.bf.df)

Now we construct the chart in three steps. We add elements corresponding to the
values of segment quartiles in the summary data frame:

> p <- ggplot(seg.bf.df, aes(x=Segment, y=X50., ymax=X97.5., ymin=X2.5.))

We add points for the y values (the estimated median in this case), and add the
2.5 % and 97.5 % quartiles as “error bars” (which are automatically associated with
the names ymax and ymin as we set above):

> p <- p + geom_point(size=4) + geom_errorbar(width=0.2) + ylab("Income")

Finally we draw that plot object while adding a title and flipping the plot coordinates
so the segments are nicely on the left:

> p + ggtitle("95% CI for Mean Income by Segment") + coord_flip()

The result is Fig. 6.3, a chart that is easy to explain yet comes from a powerful
underlying Bayesian model.

l

l

l

l

l

l

l

l

Segment−Moving up

Segment−Suburb mix

Segment−Travelers

Segment−Urban hip

20000 30000 40000 50000 60000

Income

S
eg

m
en

t

95% CI for Mean Income by Segment

Fig. 6.3. Using ggplot2 to plot the credible intervals for income by segment from the
Bayesian posterior draws.

156 6 Comparing Groups: Statistical Tests

You might notice that the Bayesian results in Fig. 6.3 are not all that different from
the classical results in Fig. 6.1. This is to be expected because they come from the
same data. In fact, if the model is exactly correct and the population is infinite,
then as the sample size approaches infinity, the Bayesian and classical confidence
intervals will be the same.

In that case, why one would want to use the Bayesian approach? One answer will
come in Chaps. 7 and 13 when we introduce hierarchical methods that are more
flexibly modeled in a Bayesian framework. Another answer is that data are never
infinite, and in our opinion Bayesian models more directly address confidence in
models for the data you actually have.

As you can see, R provides powerful capability for Bayesian analysis. R’s open-
source structure has made it easier for the software to keep pace with a rapidly
evolving field. If you run into limitations with existing packages, you can use R’s
programming language to accomplish tasks (as we did here to compute posterior
draws for total segment income).

6.7 Learning More*

t-tests and ANOVA are nothing more than flavors of general linear models, which
we cover in more depth in Chap. 7. In the R domain, there are many books on
linear models. A readable text that focuses on understanding basic models and
getting them right is Fox and Weisberg’s An R Companion to Applied Regression
[51].

For categorical data analysis, which we briefly sampled with our discussion of bino-
mial distribution and chi-square tests, the best starting place—although not specific
to R—is Agresti’s An Introduction to Categorical Data Analysis [1].

Readings on Bayesian data analysis vary tremendously in mathematical prerequi-
sites and authors’ styles. Kruschke’s Doing Bayesian Data Analysis [94] is a text-
book that uses R and builds intuition from the ground up with only high-school
level mathematics. It is a lengthy and thorough exposition of Bayesian thinking. A
standard text that moves faster with more mathematics is Gelman et al., Bayesian
Data Analysis [61]. For advanced marketing applications, especially hierarchical
linear models and choice models, a standard text is Rossi, Allenby, and McCul-
loch’s Bayesian Statistics and Marketing [137].

We presented charts in this chapter using the lattice and ggplot2 packages.
Each of them is described in detail in an eponymous book: Sarkar’s Lattice [141]
and Wickham’s ggplot2 [162].

6.8 Key Points 157

6.8 Key Points

This chapter introduced formal statistical tests in R. Following are some of the im-
portant lessons.

To perform statistical tests on differences by group:

• chisq.test() (Sect. 6.2) and binom.test() (Sect. 6.3) find confidence
intervals and perform hypothesis tests on tables and proportion data, respec-
tively. The binom package offers options such as Agresti–Coull and Bayesian
versions of binomial tests that may be more informative and robust than stan-
dard exact binomial tests (Sect. 6.3).

• A t.test() is a common way to test for differences between the means of
two groups (or between one group and a fixed value) (Sect. 6.4).

• ANOVA is a more general way to test for differences in mean among sev-
eral groups that are identified by one or more factors. The basic model is
fit with aov() and common summary statistics are reported with anova()
(Sect. 6.5).

• The anova() command is also useful to compare two or more ANOVA or
other linear models, provided that they are nested models (Sect. 6.5.1).

• Stepwise model selection with step() is one way to evaluate a list of vari-
ables to select a well-fitting model, although we recommend that it be used
with caution as other procedures may be more appropriate (Sect. 6.5.3).

We reviewed a few advanced topics for statistical models and data visualiza-
tion:

• Plotting a glht() object from the multcomp package is a good way to visu-
alize confidence intervals for ANOVA models (Sect. 6.5.2).

• A relatively straightforward starting point for Bayesian ANOVA and other lin-
ear models is the BayesFactor package (Sect. 6.6).

• Bayesian models should be evaluated for the stability and distribution of their
estimated parameters using trace and density plots (Sect. 6.6).

• Credible intervals (and other types of intervals) may be plotted with the
ggplot2 option to add geom errorbar() lines for groups (Sect. 6.6.4).

7

Identifying Drivers of Outcomes: Linear Models

In this chapter we investigate linear models, which are often used in marketing to
explore the relationship between an outcome of interest and other variables. A com-
mon application in survey analysis is to model satisfaction with a product in relation
to specific elements of the product and its delivery; this is called “satisfaction drivers
analysis.” Linear models are also used to understand how price and advertising are
related to sales, and this is called “marketing mix modeling.” There are many other
situations in which it is helpful to model an outcome, known formally as a response
or dependent variable, as a function of predictor variables (also known as explana-
tory or independent variables). Once a relationship is estimated, one can use the
model to make predictions or forecasts of the likely outcome for other values of the
predictors.

In this chapter, we illustrate linear modeling with a satisfaction drivers analysis us-
ing survey data for customers who have visited an amusement park. In the survey,
respondents report their levels of satisfaction with different aspects of their expe-
rience, and their overall satisfaction. Marketers frequently use this type of data to
figure out what aspects of the experience drive overall satisfaction, asking questions
such as, “Are people who are more satisfied with the rides also more satisfied with
their experience overall?” If the answer to this question is “no,” then the company
will know to invest in improving other aspects of the experience.

An important thing to understand is that driver does not imply causation. A linear
model only assumes an association among variables. Consider a survey of auto-
mobile purchasers that finds a positive association between satisfaction and price
paid. If a brand manager wants customers to be more satisfied, does this imply that
she should raise prices? Probably not. It is more likely that price is associated with
higher quality, which then leads to higher satisfaction. Results should be interpreted
cautiously and considered in the context of domain knowledge.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 7

159

160 7 Identifying Drivers of Outcomes: Linear Models

Linear models are a core tool in statistics, and R provides an excellent set of func-
tions for estimating them. As in other chapters, we review the basics and demon-
strate how to conduct linear modeling in R, yet the chapter does not review ev-
erything that one would wish to know in practice. We encourage readers who are
unfamiliar with linear modeling to supplement this chapter with a review of linear
modeling in a statistics or marketing research textbook, where it might appear under
a name such as regression analysis, linear regression, or least-squares fitting.

7.1 Amusement Park Data

In this section, we simulate data for a hypothetical survey of visitors to an
amusement park. This data set comprises a few objective measures: whether the
respondent visited on a weekend (which will be the variable weekend in the data
frame), the number of children brought (num.child), and distance traveled to the
park (distance). There are also subjective measures of satisfaction: expressed
satisfaction overall (overall) and satisfaction with the rides, games, waiting time,
and cleanliness (rides, games, wait, and clean, respectively).

Unlike earlier chapters, in this one we recommend that you skip the simulation sec-
tion and download the data. There is no new R syntax, and this will allow you
to review the models without knowing the outcome in advance. To download and
check:

> sat.df <- read.csv("http://goo.gl/HKnl74")
> str(sat.df)
’data.frame’: 500 obs. of 8 variables:
$ weekend : Factor w/ 2 levels "no","yes": 2 2 1 2 1 1 2 1 1 2 ...
$ num.child: int 0 2 1 0 4 5 1 0 0 3 ...
$ distance : num 114.6 27 63.3 25.9 54.7 ...

...

If you have the data, skip to Sect. 7.2 for now, and return later to review the simula-
tion code.

7.1.1 Simulating the Amusement Park Data

To start the data simulation, we set the random number seed to make the process
repeatable and declare a variable for the number of observations:

> set.seed(08226)
> nresp <- 500 # number of survey respondents

Our hypothetical survey includes four questions about a customer’s satisfaction
with different dimensions of a visit to the amusement park: satisfaction with rides
(rides), games (games), waiting times (wait), and cleanliness (clean), along

7.1 Amusement Park Data 161

with a rating of overall satisfaction (overall). In such surveys, respondents
often answer similarly on all satisfaction questions; this is known as the halo
effect.

We simulate a satisfaction halo with a random variable for each customer, halo,
that does not appear in the final data but is used to influence the other ratings:

> halo <- rnorm(n=nresp, mean=0, sd=5)

We generate responses for the satisfaction ratings by adding each respondent’s halo
to the value of another random variable that is specific to the survey item (satisfac-
tion with rides, cleanliness, and so forth).

We add a constant just to adjust the range slightly, and convert the continuous values
to integers using floor(). This gives us a final value for each satisfaction item on
a 100-point scale. Although scales rating 1–5, 1–7, or 1–11 may be more common in
practice, such discrete scales introduce complications that we discuss in 7.9; those
would detract from our presentation here. So we assume that the data comes from
a 100-point scale. Such near-continuous values might be obtained by measuring
where respondents mark levels of satisfaction along a line on paper or by touching
a screen.

Creating the nresp responses can be done in just one line per variable:

> rides <- floor(halo + rnorm(n=nresp, mean=80, sd=3)+1)
> games <- floor(halo + rnorm(n=nresp, mean=70, sd=7)+5)
> wait <- floor(halo + rnorm(n=nresp, mean=65, sd=10)+9)
> clean <- floor(halo + rnorm(n=nresp, mean=85, sd=2)+1)

By adding halo to the response for each question, we create positive correlation
between the responses. The constants +1, +5, and +9 are arbitrary to adjust the
ranges just for appearance. You can verify the correlation between variables that
share the halo by using cor():

> cor(rides, games)
[1] 0.4551851

Satisfaction surveys often include other questions related to the customer experi-
ence. For the amusement park data, we include whether the visit was on a weekend,
how far the customer traveled to the park in miles, and the number of children in
the party. We generate this data using two functions: rlnorm(n, meanlog,
sdlog) to sample a lognormal distribution for distance, and sample(x,
size, replace) to sample discrete distributions for weekend and number of
children (num.child):

> distance <- rlnorm(n=nresp, meanlog=3, sdlog=1)
> num.child <- sample(x=0:5, size=nresp, replace=TRUE,
+ prob=c(0.3, 0.15, 0.25, 0.15, 0.1, 0.05))
> weekend <- as.factor(sample(x=c("yes", "no"), size=nresp, replace=TRUE,
+ prob=c(0.5,0.5)))

162 7 Identifying Drivers of Outcomes: Linear Models

We create the overall satisfaction rating as a function of ratings for the various as-
pects of the visit (satisfaction with rides, cleanliness, and so forth), distance traveled,
and the number of children:
> overall <- floor(halo + 0.5*rides + 0.1*games + 0.3*wait + 0.2*clean +
+ 0.03*distance + 5*(num.child==0) + 0.3*wait*(num.child>0) +
+ rnorm(n=nresp, mean=0, sd=7) - 51)

Although this is a lengthy formula, it is relatively simple with five parts:

1. It includes halo to capture the latent satisfaction (also included in rides and
the other ratings)

2. It adds the satisfaction variables (rides, games, wait, and clean) with a
weight for each one

3. It includes weighted contributions for other influences such as distance

4. There is random normal variation using rnorm()

5. It uses floor() to produce an integer, with a constant −51 that adjusts the
total to be 100-points or less

When a variable like overall is a linear combination of other variables plus ran-
dom noise, we say that it follows a linear model. Although these ratings are not a
model of real amusement parks, the structure exemplifies the kind of linear model
one might propose. With real data, one would wish to discover the contributions
from the various elements, which are the weights associated with the various pre-
dictors. In the next section, we examine how to fit such a linear model.

Before proceeding, we combine the data points into a data frame and remove un-
needed objects from the workspace:
> sat.df <- data.frame(weekend, num.child, distance, rides, games, wait, clean,
+ overall)
> rm(nresp, weekend, distance, num.child, halo, rides, games, wait, clean,
+ overall)

7.2 Fitting Linear Models with lm()

Every modeling effort should begin with an inspection of the data, so we start with
a summary() of the data:
> summary(sat.df)
weekend num.child distance rides games
no :259 Min. :0.000 Min. : 0.5267 Min. : 72.00 Min. : 57.00
yes:241 1st Qu.:0.000 1st Qu.: 10.3181 1st Qu.: 82.00 1st Qu.: 73.00

...
Max. :5.000 Max. :239.1921 Max. :100.00 Max. :100.00

wait clean overall
Min. : 40.0 Min. : 74.0 Min. : 6.00
1st Qu.: 62.0 1st Qu.: 84.0 1st Qu.: 40.00

...
Max. :100.0 Max. :100.0 Max. :100.00

7.2 Fitting Linear Models with lm() 163

The data comprise eight variables from a survey of satisfaction with a recent visit to
an amusement park. The first three variables describe features of the visit: weekend
is a factor with two levels, no and yes; num.child is the number of children in
the party, 0–5; and distance is the distance traveled to the park. The remain-
ing five variables are satisfaction ratings for the customers’ experience of the rides,
games, wait times, cleanliness, and overall experience of the park, on a 100 point
scale.

7.2.1 Preliminary Data Inspection

Before modeling, there are two important things to check: that each individual vari-
able has a reasonable distribution, and that joint relationships among the variables
are appropriate for modeling.

We do an initial check of the variable distributions and relationships in sat.df
using gpairs() as described in Sect. 4.4.2:

> gpairs(sat.df)

The result is Fig. 7.1, where we see from the histograms that all of the satisfaction
ratings are close to normally distributed, but distance has a highly skewed dis-
tribution. For most purposes it is a good idea to transform such a variable to a more
normal distribution. As we discussed in Sect. 4.5.4, a common transformation for
such data is a logarithmic transform; we take the log() of distance and add
that to the data frame:

> sat.df$logdist <- log(sat.df$distance)

We could then run gpairs(sat.df) again (or run hist(sat.df$logdist))
to confirm that the new variable logdist is more normally distributed.

To check the relationships among variables, we examine the bivariate scatterplots
shown in Fig. 7.1. They show few concerns apart from the need to transform
distance. For example, the pairwise scatterplots of our continuous measures are
generally elliptical in shape, which is a good indication that they are appropriate to
use in a linear model. One question, however, concerns the fact that the variables in
the lower right of Fig. 7.1 are positively correlated.

Why is this a concern? A common issue with marketing data and especially satisfac-
tion surveys is that variables may be highly correlated with one another. Although
we as marketers care about individual elements of customers’ experiences such as
their amusement park experience with rides and games, when completing a survey,
the respondents might not give independent ratings to each of those items. They may
instead form an overall halo rating and rate individual elements of the experience in
light of that overall feeling.

When variables are strongly related in this way, it is difficult to assess their individ-
ual effects with statistical models. As we will see in Sect. 9.1, the effect can be so

164 7 Identifying Drivers of Outcomes: Linear Models

Fig. 7.1. An inspection of data using gpairs() before we perform further modeling. This
reveals that distance has a highly skewed distribution and should be transformed before
modeling. Additionally, several variables are positively associated and should be examined

further for the strength of association.

severe that the relationships become uninterpretable without taking some action to
handle the high correlations.

Given the positive associations shown in Fig. 7.1, we investigate the corre-
lation structure further using cor() and corrplot() as demonstrated in
Sect. 4.5.2:

> corrplot.mixed(cor(sat.df[, c(2, 4:9)]), upper="ellipse")

We selected columns c(2, 4:9) to exclude the categorical variable weekend
and the raw variable distance that we transformed as logdist. The result is
the correlation plot shown in Fig. 7.2. We see that the satisfaction items are mod-
erately to strongly associated with one another. However, none of the items appear
to be nearly identical, as would be indicated by correlations exceeding r > 0.8 for

7.2 Fitting Linear Models with lm() 165

several of them, or r > 0.9 for particular pairs. Thus, on an initial inspection, it
appears to be acceptable to proceed with modeling the relationships among these
variables.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

num.child

rides

games

wait

clean

overall

logdist

−0.04

0

−0.02

−0.01

0.32

0

0.46

0.31

0.79

0.59

−0.01

0.3

0.52

0.44

0

0.37

0.57

0.02

0.64

0.02 0.08

Fig. 7.2. A correlation plot for the amuse-
ment park data. Inspection of the item
associations is always recommended be-
fore linear modeling, in order to check
for extremely high correlations between
items (such as r > 0.9). In the present
data, rides and clean are highly re-
lated (r = 0.79) but not so strongly that
remediation is strictly required.

In Chap. 9 we discuss how to assess this question in more detail and what to do when
high correlations pose a more significant problem. In Chap. 8 we discuss strategies
to find underlying dimensions that appear in highly correlated data.

7.2.2 Recap: Bivariate Association

The goal of a satisfaction drivers analysis is to discover relationships between cus-
tomers’ satisfaction with features of the service (or product) and their overall ex-
perience. For example, to what extent is satisfaction with the park’s rides related to
overall experience? Is the relationship strong or weak? One way to assess this is to
plot those two variables against each other as we did in Chap. 4:

> plot(overall∼rides, data=sat.df,
+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")

This creates a plot similar to the one in Fig. 7.3, except that it does not include the
blue line (but we’ll get to that soon). The points on the plot show that there is a
tendency for people with higher satisfaction with rides to also have higher overall
satisfaction.

7.2.3 Linear Model with a Single Predictor

A linear model estimates a best fit line through the cloud of points. The function to
estimate a linear model is lm(formula, data), where data is a data frame

166 7 Identifying Drivers of Outcomes: Linear Models

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

75 80 85 90 95 100

20
40

60
80

10
0

Satisfaction with Rides

O
ve

ra
ll

S
at

is
fa

ct
io

n

Fig. 7.3. Scatterplot comparing satisfac-
tion with rides to overall satisfaction
among recent visitors to an amusement
park.

containing the data and formula is an R formula, as we saw in Sect. 6.5 for
anova(). To estimate a linear model relating overall satisfaction to satisfaction
with rides, we write:

> lm(overall ∼ rides, data=sat.df)
...
Coefficients:
(Intercept) rides

-94.962 1.703

The formula above can be read as “overall varies with rides.” When we
call lm(), R finds a line that best fits the relationship of sat.df$rides and
sat.df$overall. In the output, R repeats the model for reference and reports
two coefficients, which are the intercept and the slope of the fitted line. Those
can be used to determine the best estimate for any respondent’s report of overall
based on knowing his or her value for rides. For example, from this model we
would expect that a customer who gives a rating of 95 for satisfaction with rides
would give an overall rating of:

> -94.962 + 1.703*95
[1] 66.823

Using coefficients manually is not very efficient. This brings us to our next topic,
lm objects.

7.2.4 lm Objects

Like most other R functions, lm() returns an object that we can save and use for
other purposes. Typically, we assign the result of lm() to an object that is used in
subsequent lines of code. For example, we can assign the result of lm() to a new
object m1:

> m1 <- lm(overall ∼ rides, data=sat.df)

7.2 Fitting Linear Models with lm() 167

We can then reuse the model by accessing m1. If we redraw the scatterplot for
overall ∼ rides, we can add the linear fit line using abline(m1):

> plot(overall ∼ rides, data=sat.df,
+ xlab="Satisfaction with Rides", ylab="Overall Satisfaction")
> abline(m1, col=’blue’)

The result is shown in Fig. 7.3. abline() recognizes that it is dealing with an lm
object and uses the slope and the intercept from m1 to draw the line.

We can also inspect the m1 object:

> str(m1)
List of 12
$ coefficients : Named num [1:2] -95 1.7
..- attr(*, "names")= chr [1:2] "(Intercept)" "rides"
$ residuals : Named num [1:500] -6.22 11.78 11.18 -17.93 19.89 ...

...

This shows us that the m1 object is a list with 12 specific members that con-
tain everything lm() knows about the model. (To refresh yourself on list objects,
see Chap. 2.) The first element of this list is $coefficients, which you can
inspect:

> m1$coefficients
(Intercept) rides
-94.962246 1.703285

You don’t have to use the full name m1$coefficients. In many places in R, it
works to abbreviate long names, such as m1$coef.

As with other types of R objects, there is a summary() function for lm objects
that summarizes features of the fitted model, reporting much more than the short
output we saw from lm() above:

> summary(m1)
...
Residuals:

Min 1Q Median 3Q Max
-33.597 -10.048 0.425 8.694 34.699

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -94.9622 9.0790 -10.46 <2e-16 ***
rides 1.7033 0.1055 16.14 <2e-16 ***

Signif. codes: *** 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.88 on 498 degrees of freedom
Multiple R-squared: 0.3434, Adjusted R-squared: 0.3421
F-statistic: 260.4 on 1 and 498 DF, p-value: < 2.2e-16

168 7 Identifying Drivers of Outcomes: Linear Models

This summarizes the principal information to review for a linear model. More ad-
vanced models are reported similarly, so it is useful to become familiar with this
format. In addition to listing the model that was estimated, we get information about
coefficients, residuals, and the overall fit.

The most important section is labeled Coefficients and shows the model coef-
ficients in the Estimate column. The coefficient for rides is 1.70, so each ad-
ditional rating point for rides is estimated to result in an increase of 1.7 points of
overall rating. (In case you’re wondering, the coefficient for the (Intercept)
shows where the linear model line crosses the y-axis, but this is usually not inter-
pretable in a satisfaction drivers analysis—for instance, there is no such thing as
a possible negative rating on our scale—so it is generally ignored by marketing
analysts.)

The Std. Error column indicates uncertainty in the coefficient estimate, un-
der the assumption that the data are a random sample of a larger population.
The “t value”, p-value (“Pr(>|t|)”), and significance codes indicate a Wald
test, which assesses whether the coefficient is significantly different than zero. A
traditional estimate of a 95 % confidence interval for the coefficient estimate is
that it will fall within ±1.96× std.error. In this case, 1.7033± 1.96× 0.1055 =
(1.495,1.910). So we are confident—assuming the model is appropriate and the
data are representative—that the coefficient for ride is 1.495–1.910.

Once again, R does not make you compute things by hand. confint() reports
confidence intervals:

> confint(m1)
2.5 % 97.5 %

(Intercept) -112.800120 -77.124371
rides 1.495915 1.910656

This confirms our computation by hand that the best estimate for the relationship
overall ∼ rides is 1.496–1.911 (with slight differences due to rounding).
It is a best practice to report the range of an estimate, not just the single best
point.

The Residuals section in the summary(m1) output tells us how closely the
data follow the best fit line. A residual is the difference between the model-predicted
value of a point and its actual value. In Fig. 7.3, this is the vertical distance between
a plotted point (actual value) and the blue line (predicted value).

In the summary of m1, we see that the residuals are quite wide, ranging from
−33.597 to 34.699, which means our predictions can be quite a bit off for any given
data point (more than 30 points on the rating scale). The quartiles of the residuals
suggest that they are fairly symmetric around 0. As we discuss in Sect. 7.2.5, that is
a good sign that the model is unbiased (although perhaps imprecise).

In the last section of the output, summary(m1) provides measures of how well
the model fits the data. The first is the residual standard error, an estimate of the

7.2 Fitting Linear Models with lm() 169

standard error of the residuals. Like the residuals, this is a measure of how close the
data points are to the best estimate line. (You can directly check this by examining
the standard deviation of the residuals using sd(m1$residuals), which will be
similar.)

The second line reports the estimate of R-squared, a measure of how much varia-
tion in the dependent variable is captured by the model. In this case, the R-squared
is 0.3434, indicating that about a third of the variation in overall satisfaction is ex-
plained by variation in satisfaction with rides. When a model includes only a single
predictor, R-squared is equal to the square of the correlation coefficient r between
the predictor and the outcome:

> cor(sat.df$overall, sat.df$rides)ˆ2
[1] 0.3433799

Finally, the line labeled F-statistic: provides a statistical test of whether the
model predicts the data better than simply taking the average of the outcome vari-
able and using that as the single prediction for all the observations. In essence, this
test tells whether our model is better than a model that predicts overall satisfaction
using no predictors. (For reasons we will not describe in detail, this is the same test
reported by the anova() function that we saw in Chap. 5; you could find the same
value with anova(m1). Check a statistics textbook for a description of the F-test
in more detail.) In the present case, the F-statistic shows a p-value << .05,
so we reject the null hypothesis that a model without predictors performs as well as
model m1.

7.2.5 Checking Model Fit

Because it is easy to fit linear models, too many analysts fit models and report results
without considering whether the models are reasonable. However, there are a variety
of ways to assess model fit and adequacy that are easy to perform in R. While we
can’t possibly cover this material comprehensively, we would like to give you a few
pointers that will help you assess model adequacy.

There are several assumptions when a linear model is fitted to data. The first is that
the relationship between the predictors and the outcomes is linear. If the relationship
is not linear, then the model will make systematic errors. For example, if we generate
data where y is a function of the square of x and then fit a linear model y ∼ x,
this will draw a straight line through a cloud of points that is curved.

> x <- rnorm(500)
> y <- xˆ2 + rnorm(500)
> toy.model <- lm(y∼x)

If you inspect the model by typing summary(toy.model), you will see that
the fitted coefficient for x is −0.01159 and the Wald significance test indicates that
the coefficient is not significantly different from zero. Without model checking, a

170 7 Identifying Drivers of Outcomes: Linear Models

sloppy analyst might conclude that x is not related to y. However, if we plot x
versus y and then draw our fitted line on the plot, we can see more clearly what is
going on.

> plot(y∼x)
> abline(toy.model)

The resulting plot is shown on the left side of Fig. 7.4. The plot shows that our fitted
linear model (illustrated with a blue line) completely misses the curvature in the
relationship between x and y.

Another assumption of a linear model is that prediction errors—the parts of the data
that do not exactly fit the model—are normally distributed and look like random
noise with no pattern. One way to examine this is to plot the model’s fitted values
(the predictions) versus the residuals (the prediction errors).

> plot(toy.model$fitted.values, toy.model$residuals)

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l ll
ll

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l l

l

l

ll

ll

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l
l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l l

l

l l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

ll l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

−3 −2 −1 0 1 2 3

0
5

10

x

y

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l
l

l

l ll
ll

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l

l

l

ll

ll

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l
l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l l

l

l l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

ll l

l
l

ll

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

0.94 0.96 0.98 1.00

0
5

10

toy.model$fitted.values

to
y.

m
od

el
$r

es
id

ua
ls

Fig. 7.4. Fitting a linear model when the true relationship is nonlinear (as shown on the left)
results in unusual residual patterns (shown on the right).

This results in the plot on the right side of Fig. 7.4 and you can see from the plot
that there is a clear pattern in the residuals: our model under-predicts the value of
y near zero and over-predicts far from zero. When you come across this problem in
real data, the solution is usually to transform x; you can use the methods described
in Sect. 4.5.4 to find a transformation that is suitable. If you begin by inspecting
scatterplots as we recommend in Sect. 7.2.1, you will be unlikely to commit such
a simple error. Still, it is good to know that later checks can help prevent errors
as well.

We can look at this same diagnostic plot for our satisfaction drivers data. R suggests
four specific plots to assess the fit of linear model objects and you can look at all
four simply by using plot() with any lm object. To see all four plots at once, we
type par(mfrow=c(2,2)) first:

7.2 Fitting Linear Models with lm() 171

> par(mfrow=c(2,2))
> plot(m1)

In Fig. 7.5, the first plot (in the upper left corner) shows the fitted values versus
residuals for m1, just as we produced manually for our toy y ∼ xmodel. In Fig. 7.5
there is no obvious pattern between the fitted values for overall satisfaction and the
residuals; this is consistent with the idea that the residuals are due to random error,
and supports the notion that the model is adequate.

The second plot in the lower left of Fig. 7.5 is similar to the first, except that in-
stead of plotting the raw residual value, it plots the square root of the standardized
residual. Again, there should be no clear pattern; if there were it might indicate a
nonlinear relationship. Observations with high residuals are flagged as potential out-
liers, and R labels them with row numbers in case we wish to inspect them in the
data frame.

A common pattern in residual plots is a cone or funnel, where the range of errors
gets progressively larger for larger fitted values. This is called heteroskedasticity and
is a violation of linear model assumptions. A linear model tries to maximize fit to
the line; when values in one part of the range have a much larger spread than those
in another area, they have undue influence on the estimation of the line. Sometimes
a transformation of the predictor or outcome variable will resolve heteroskedasticity
(see Sect. 4.5.3).

The third result of plot() for lm objects is a Normal QQ plot, as in the upper right
of Fig. 7.5. A QQ plot helps you see whether the residuals follow a normal distribu-
tion, another key assumption (see Sect. 3.4.3). It compares the values that residuals
would be expected to take if they are normally distributed, versus their actual values.
When the model is appropriate, these points are similar and fall close to a diagonal
line; when the relationship between the variables is nonlinear or otherwise does not
match the assumption, the points deviate from the diagonal line. In the present case,
the QQ plot suggests that the data fits the assumption of the model.

The final plot in the lower right panel of Fig. 7.5 again helps to identify potential
outliers, observations that may come from a different distribution than the others.
Outliers are a problem because, if they are far from other points, they unduly influ-
ence the fitted line. We do not want one or a very few observations to have a large
effect on the coefficients. The lower right plot in Fig. 7.5 plots the leverage of each
point, a measure of how much influence the point has on the model coefficients.
When a point has a high residual and high leverage, it indicates that the point has
both a different pattern (residual) and undue influence (leverage). One measure of
the leverage of a data point is Cook’s distance, an estimate of how much predicted
(y) values would change if the model were re-estimated with that point eliminated
from the data. If you have observations with high Cook’s distance, this chart would
show dotted lines for the distances; in the present case, there are none.

Still, in the lower right of Fig. 7.5, three points are automatically labeled with row
numbers because they are potentially problematic outliers based on high standard-
ized residual distance and leverage on the model. We do not recommend routinely

172 7 Identifying Drivers of Outcomes: Linear Models

30 40 50 60 70

−
40

−
20

0
20

40

Fitted values

R
es

id
ua

ls

l

ll

l

l

l

l

l

l

l

ll l

l
l l

ll

l l

l

l

l l

l

ll

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l l

l

l

l
l

l

l

l

l l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l
l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l l

l

l l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l

l l
l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l
l

l

l

l
l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l l

l
l

l

Residuals vs Fitted

103

277

149

l

ll

l

l

l

l

l

l

l

ll
l

l

ll

ll

ll

l

l

ll

l

ll

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l
l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

ll

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l
l

l

l

l

l

ll
l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

ll

l
l

l

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

103

277

149

30 40 50 60 70

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
d u

al
s

l

ll

l
l

l

l

l

l

l

l
l

l

l

l l

l
l

l
l

l

l

l l
l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

ll

l

l
l

l

l

l

l
l

l

l
l

l

l

l l

l

l

l

Scale−Location
103277

149

0.000 0.005 0.010 0.015

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

l

ll

l

l

l

l

l

l

l

ll l

l
ll

ll

ll

l

l

ll

l

l l

l

l

l

l

l

l

ll
l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

ll

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l
ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l
l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

ll

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l

ll
l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l l

l

l
l

l

l

l
l

l
l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l l

l
l

l

Cook's distance

Residuals vs Leverage

57

295129

Fig. 7.5. Diagnostic plots for the model relating overall satisfaction to satisfaction with rides.

removing outliers, yet we do recommend to inspect them and determine whether
there is a problem with the data. We inspect the identified points by selecting those
rows:

> sat.df[c(57, 129, 295),]
weekend num.child distance rides games wait clean overall logdist

57 yes 2 63.29248 98 87 89 100 100 4.147767
129 yes 0 11.89550 76 77 51 77 6 2.476161
295 no 0 11.74474 98 83 63 92 45 2.463406

In this case, none of the data points is obviously invalid (for instance, with values be-
low 1 or greater than 100), although row 129 might be checked for input correctness;
an overall rating of 6 on the survey would be unusual although perhaps accurate. We
generally do not omit outliers except when they represent obvious errors in the data.
In the present case, we would keep all of the observations.

Overall, Fig. 7.5 looks good and suggests that the model relating overall satisfaction
to satisfaction with rides is reasonable.

7.3 Fitting Linear Models with Multiple Predictors 173

But we’ve only examined a single variable so far. In the next section, we consider
multiple predictors. For brevity, in the following sections we omit the checks of
model adequacy that were shown in this section, but we encourage you to check and
interpret plot() for the models.

7.3 Fitting Linear Models with Multiple Predictors

Now that we’ve covered the basics of linear models using just one predictor, we
turn to the problem of assessing multiple drivers of satisfaction. Our goal is to sort
through all of the features of the park—rides, games, wait times, and cleanliness—to
determine which ones are most closely related to overall satisfaction.

To estimate our first multiple variable model, we call lm with a formula describing
the model:

> m2 <- lm(overall ∼ rides + games + wait + clean, data=sat.df)
> summary(m2)
...
Residuals:

Min 1Q Median 3Q Max
-29.944 -6.841 1.072 7.167 28.618

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -131.40919 8.33377 -15.768 < 2e-16 ***
rides 0.52908 0.14207 3.724 0.000219 ***
games 0.15334 0.06908 2.220 0.026903 *
wait 0.55333 0.04781 11.573 < 2e-16 ***
clean 0.98421 0.15987 6.156 1.54e-09 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.59 on 495 degrees of freedom
Multiple R-squared: 0.5586, Adjusted R-squared: 0.5551
F-statistic: 156.6 on 4 and 495 DF, p-value: < 2.2e-16

Looking first at the model fit statistics at the bottom of the output, we see that our
prediction was improved by including all the satisfaction items in the model. The
R-squared increased to 0.5586, meaning that about half of the variation in overall
ratings is explained by the ratings for specific features. The residual standard error
is now 10.59, meaning that the predictions are more accurate. Our residuals also
appear to be symmetric. As noted above, we recommend also to inspect the model
using plot() to confirm that there are no patterns in the residuals indicative of
nonlinearity or outliers, although we omit that step here.

Next we examine the model coefficients. Each coefficient represents the strength
of the relationship between satisfaction with that feature and overall satisfaction,
conditional on the values of the other predictors. All four features are identified
as being statistically significant (p-value, shown as Pr(>|t|), < .05). Rather
than just comparing the numbers in the output, it can be helpful to visualize the

174 7 Identifying Drivers of Outcomes: Linear Models

coefficients. We use the coefplot package [99] to do this, calling coefplot()
for our model, and adding intercept=FALSE to plot just the individual item
coefficients:

> library(coefplot) # install if necessary
> coefplot(m2, intercept=FALSE, outerCI=1.96, lwdOuter=1.5,
+ ylab="Rating of Feature",
+ xlab="Association with Overall Satisfaction")

We use coefplot() arguments to set the outer confidence interval to a width
of 1.96 standard errors (using outerCI=1.96, which corresponds to a 95 %
confidence interval) and to increase the size of the plotted lines slightly with
lwdOuter=1.5.

The result is shown in Fig. 7.6 where we see that satisfaction with cleanliness is esti-
mated to be the most important feature associated with overall satisfaction, followed
by satisfaction with the rides and wait times. Satisfaction with games is estimated
to be relatively less important.

A plot of coefficients is often a key output from a satisfaction drivers analysis. Sort-
ing the plot so that the coefficients are in order based on their estimated coefficient
may make it easier to quickly identify the features that are most closely related to
overall satisfaction if you have a large number of predictors.

l

l

l

l

rides

games

wait

clean

0.0 0.5 1.0
Association with Overall Satisfaction

R
at

in
g

of
 F

ea
tu

re

Coefficient Plot

Fig. 7.6. A coefficient plot produced with coefplot() for an initial multivariate lm()
model of satisfaction in the amusement park data. In the model, satisfaction with cleanli-
ness is most strongly associated with overall satisfaction, and rides and wait times are also

associated.

7.3 Fitting Linear Models with Multiple Predictors 175

7.3.1 Comparing Models

Now that we have two model objects, m1 and m2 we might ask which one is better.
One way to evaluate models is to compare their R-squared values.

> summary(m1)$r.squared
[1] 0.3433799
> summary(m2)$r.squared
[1] 0.558621

Based on the R-squared values we can say that m2 explains more of the variation in
satisfaction than m1. However, a model with more predictors usually has a higher
R2, so we could instead compare adjusted R-squared values, which control for the
number of predictors in the model.

> summary(m1)$adj.r.squared
[1] 0.3420614
> summary(m2)$adj.r.squared
[1] 0.5550543

The adjusted R-squared still suggests that the m2 explains more of the vari-
ation in overall satisfaction, even accounting for the fact that m2 uses more
predictors.

To compare the predictions of the models visually, we plot the fitted versus actual
values for each:
> plot(sat.df$overall, fitted(m1), col=’red’,
+ xlim=c(0,100), ylim=c(0,100),
+ xlab="Actual Overall Satisfaction", ylab="Fitted Overall Satisfaction")
> points(sat.df$overall, fitted(m2), col=’blue’)
> legend("topleft", legend=c("model 1", "model 2"),
+ col=c("red", "blue"), pch=1)

If the model fits the data perfectly, it would fall along a 45◦ line in this plot, but, of
course, it is nearly impossible to fit customer satisfaction data perfectly. By com-
paring the red and the blue points in the resulting plot in Fig. 7.7, you can see that
the blue cloud of points is more tightly clustered along a diagonal line, which shows
that m2 explains more of the variation in the data than m1.

For a more formal test, which is possible because the models here are nested (see
Sect. 6.5.1), we can use anova() function to determine whether m2 explains more
of the variation than m1:

> anova(m1, m2)
Analysis of Variance Table

Model 1: overall ∼ rides
Model 2: overall ∼ rides + games + wait + clean
Res.Df RSS Df Sum of Sq F Pr(>F)

1 498 82612
2 495 55532 3 27080 80.463 < 2.2e-16 ***

176 7 Identifying Drivers of Outcomes: Linear Models

The low p-value indicates that the additional predictors in m2 significantly improve
the fit of the model. If these two models were the only ones under consideration, we
would interpret m2 instead of m1.

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l
l

l

l
ll

l

l

l

l
l

l

l
l

l

l
l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l
l

l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l
ll

l

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l
ll

l

l
l

l

l

l

l

l

l l

l

l

l l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l
l

l l

l

l
l

l

l

l

l

l

l

l

l

l
l

ll

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l
ll

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l
ll l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l

l
l

l
l

l

l

l
l

l

l

l l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l l
l

l
l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

0 20 40 60 80 100

0
20

40
60

80
10

0

Actual Overall Satisfaction

F
itt

ed
 O

ve
ra

ll
S

at
is

fa
ct

io
n

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l
l

l

ll

l

l

l

l

ll

l
l

ll
l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

model 1
model 2

Fig. 7.7. Comparison of fitted versus
actual values for linear models m1
and m2.

We should also point out that the coefficient for rides changed from m1 to m2. The
value in m1was 1.70×rides, while in m2 it is 0.529×rides. Why is this happening?
The reason is because rides is not independent of all the other variables; Fig. 7.1
shows that customers who are more satisfied with the rides tend to be more satisfied
with the wait times and games. When those variables are added as predictors in
model m2, they now perform some of the work in predicting the overall rating, and
the contribution of rides is a smaller share of the total model.

Neither coefficient nor rides is more correct in itself because a coefficient is not
right or wrong but part of a larger model. Which model is preferable? Because model
m2 has better overall fit, we would interpret its coefficient for rides, but only in
the context of the total model. In the sections below, we see that as the structure of
a model changes, the coefficients generally change as well (unless the variables are
entirely uncorrelated).

7.3.2 Using a Model to Make Predictions

As we saw for the single variable case, we could use the model coefficients to predict
the overall outcome for different combinations of the explanatory variables. For
example, if we wanted to predict the overall rating for a customer who rated the
four separate aspects as 100 points each, we could multiply those ratings by the
coefficients and add the intercept:

> coef(m2)["(Intercept)"] + coef(m2)["rides"]*100 + coef(m2)["games"]*100 +
+ coef(m2)["wait"]*100 + coef(m2)["clean"]*100

7.3 Fitting Linear Models with Multiple Predictors 177

(Intercept)
90.58612

The best estimate is 90.586 using model m2. Because coef(m2) is a named vector,
we access the individual coefficients here using their names.

The prediction equation above is clunky to type, and there are more efficient ways
to compute model predictions. One way is to use matrix operations to multiply co-
efficients by a vector of predictor values:

> coef(m2)%*%c(1, 100, 100, 100, 100)
[,1]

[1,] 90.58612

We could also use predict(object, newdata) where newdata is a data
frame with the same column names as the data that was used to estimate the model.
For example, if we want to find the predictions for the first ten customers in our data
set, we would pass the first ten rows of sat.df to predict:

> predict(m2, sat.df[1:10,])
1 2 3 4 5 6 7 ...

46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

This predicts satisfaction for the first ten customers. The predictions for observations
used to estimate the model are also stored in the model object, and can be accessed
with fitted():

> fitted(m2)[1:10]
1 2 3 4 5 6 7 ...

46.60864 54.26012 51.17289 50.30434 52.94625 27.87214 36.27435 ...

7.3.3 Standardizing the Predictors

Thus far, we have interpreted raw coefficients in order to evaluate the contributions
of ratings on the shared 100-point scale. However, if the variables have different
scales, such as a survey where rides is rated on a 1–10 scale while cleanliness is
rated 1–5 scale, then their coefficient values would not be directly comparable. In
the present data, this occurs with the distance and logdist variables, which
are not on a 100-point scale.

When you wish to compare coefficients, it can be helpful to standardize data on a
common scale before fitting a model (and after transforming any variables to a more
normal scale). The most common standardization converts values to zero-centered
units of standard deviation. This subtracts a variable’s mean from each observation
and then divides by the standard deviation (sd()). This could be done using math,
such as:

> (sat.df$rides - mean(sat.df$rides)) / sd(sat.df$rides)
[1] 0.21124774 0.21124774 -0.15486620 0.39430471 -0.33792317 ...

178 7 Identifying Drivers of Outcomes: Linear Models

This process is so common that R includes the scale() function to perform
it:

> scale(sat.df$rides)
[,1]

[1,] 0.21124774
[2,] 0.21124774
[3,] -0.15486620

...

In the remainder of the chapter, we do not want to worry about the scale of our
variables, only their relative contributions, so we create a scaled version of sat.df
called sat.std:

> sat.std <- sat.df[, -3] # sat but remove distance
> sat.std[, 3:8] <- scale(sat.std[, 3:8])
> head(sat.std)
weekend num.child rides games wait clean overall

1 yes 0 0.2112477 -0.69750817 -0.918784090 0.21544189 -0.2681587
2 yes 2 0.2112477 -0.08198737 0.566719693 -0.17555973 0.8654385
3 no 1 -0.1548662 0.16422095 0.009655775 0.01994108 0.6135280
...

In this code, we first copied sat.df to the new data frame sat.std, dropping
the untransformed values of distance with [, -3] because we use logdist
instead. Then we standardized each of the numeric columns. We do not standardize
weekend because it is a factor variable rather than numeric. We leave num.child
as is for now because we have not yet analyzed it.

Note that we do not alter the original data frame sat.df when standardizing it.
Instead, we copy it to a new data frame and alter the new one. This process makes
it easier to recover from errors; if anything goes wrong with sat.std, we can just
run these few commands again to recreate it.

The question of standardizing values depends primarily on how you want to use a
model’s coefficients. If you want to interpret coefficients in terms of the original
scales, then you would not standardize data first. However, in driver analysis we
are usually more concerned with the relative contribution of different predictors
and wish to compare them, and standardization assists with this. Additionally, we
often transform variables before analysis such that they are no longer on the original
scale.

After standardizing, you should check the results. A standardized variable should
have a mean of 0 and values within a few units of the mean. Checking the
summary():

> summary(sat.std)
weekend num.child rides.V1 games.V1
no :259 Min. :0.000 Min. :-2.5346068 Min. :-2.6671747
yes:241 1st Qu.:0.000 1st Qu.:-0.7040371 1st Qu.:-0.6975082

Median :2.000 Median : 0.0281908 Median :-0.0819874
Mean :1.738 Mean : 0.0000000 Mean : 0.0000000

...

7.4 Using Factors as Predictors 179

We see that sat.std matches expectation. Note that the column names from
summary() have an extra .V1 in the output; this indicates that the column has
a more complex data type than a simple vector. Specifically, scale() converts ob-
jects to one-dimensional matrices (instead of vectors). This has no significance for
our model fitting; we just have to be aware of the occasionally confusing addition to
the names.

There is a technical point we should mention when standardizing variables. If the
outcome and predictors are all standardized, their means will be zero and thus the
intercept will be zero. However, that does not imply that the intercept could be
removed from the model. The model is estimated to minimize error in the overall
fit, which includes error for the intercept. This implies that the intercept should
remain in a model after standardization if it would be there otherwise (as it usually
should be; see Sect. 7.5.1).

7.4 Using Factors as Predictors

While m2 above was reasonable, we can continue to improve it. It is typical to try
many models before arriving at a final one.

For the next step, we wonder whether satisfaction is different for customers who
come on the weekend, travel farther, or have more children. We add these predictors
to the model using the standardized data:

> m3 <- lm(overall ∼ rides + games + wait + clean +
+ weekend + logdist + num.child, data = sat.std)
> summary(m3)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.37271 0.04653 -8.009 8.41e-15 ***
rides 0.21288 0.04197 5.073 5.57e-07 ***
games 0.07066 0.03026 2.335 0.0199 *
wait 0.38138 0.02777 13.734 < 2e-16 ***
clean 0.29690 0.04415 6.725 4.89e-11 ***
weekendyes -0.04589 0.05141 -0.893 0.3725
logdist 0.06470 0.02572 2.516 0.0122 *
num.child 0.22717 0.01711 13.274 < 2e-16 ***
...
Multiple R-squared: 0.6786, Adjusted R-squared: 0.674
F-statistic: 148.4 on 7 and 492 DF, p-value: < 2.2e-16

The model summary shows a substantial improvement in fit (R-squared of 0.6786)
and the coefficients for logdist and num.child are significantly greater than
zero, suggesting that people who travel further and have more children have higher
overall satisfaction ratings.

Notice that the coefficient for weekend is labeled weekendyes, which seems a
bit unusual. Recall that weekend is a factor variable, but a factor doesn’t fit nat-
urally in our linear model; you can’t multiply yes by a number. R handles this by

180 7 Identifying Drivers of Outcomes: Linear Models

converting the data to a numeric value where 1 is assigned to the value of yes and 0
to no. It labels the output so that we know which direction the coefficient applies to.
So, we can interpret the coefficient as meaning that on average those who come on
the weekend rate their overall satisfaction −0.046 standard units (standard devia-
tions) lower than those who come on a weekday. A convenient feature of R is that it
does this automatically for factor variables, which are common in marketing.

In fact, we used a linear model with a factor as a predictor in Chap. 5, when we
compared groups using ANOVA. An ANOVA model is a linear model with a factor
as a predictor, and the command we learned in Chap. 5, aov(), internally calls
lm() to fit the model. aov(overall ∼ weekend, data=sat.std) and
lm(overall ∼ weekend, data=sat.std) fit the same model, although
the result is reported differently because of tradition.

If they are the same, which should one use? We generally prefer to use lm because
it is a more flexible method and allows us to include both numeric and factor pre-
dictors in the same model. (For those of you who were wondering, this explains
why we used the linear modeling function lmBF to fit a Bayesian ANOVA model
in Chap. 5.)

When your data includes factors, you must be careful about the data type. For ex-
ample, num.child is a numeric variable, ranging 0–5, but it doesn’t necessarily
make sense to treat it as a number, as we did in m3. In doing so, we implicitly assume
that satisfaction goes up or down linearly as a function of the number of children,
and that the effect is the same for each additional child. (Anyone who has taken a
group of children to an amusement park might guess that this is an unreasonable
assumption.)

We correct this by converting num.child to a factor and re-estimating the
model:

> sat.std$num.child.factor <- factor(sat.std$num.child)
> m4 <- lm(overall ∼ rides + games + wait + clean +
+ weekend + logdist + num.child.factor, data=sat.std)
> summary(m4)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.69100 0.04488 -15.396 < 2e-16 ***
rides 0.22313 0.03541 6.301 6.61e-10 ***
...
num.child.factor1 1.01610 0.07130 14.250 < 2e-16 ***
num.child.factor2 1.03732 0.05640 18.393 < 2e-16 ***
num.child.factor3 0.98000 0.07022 13.955 < 2e-16 ***
num.child.factor4 0.93154 0.08032 11.598 < 2e-16 ***
num.child.factor5 1.00193 0.10369 9.663 < 2e-16 ***
...
Multiple R-squared: 0.7751, Adjusted R-squared: 0.77
F-statistic: 152.9 on 11 and 488 DF, p-value: < 2.2e-16

We now see that there are five fitted coefficients for num.child.factor: one
for parties with one child, one for parties with two children, etc. There is not a

7.4 Using Factors as Predictors 181

coefficient for num.child.factor0, because it is the baseline level to which
the other coefficients are added when they apply. We interpret each coefficient as
the difference between that level of the factor and the baseline level. So, parties with
1 child rate their overall satisfaction on average 1.016 standard deviations higher
than parties without children.

Internally, R has created a new variable num.child.factor1 that is equal to 1
for those cases where num.child.factor represents one child (a factor level of
“1”), and is 0 otherwise. Similarly, num.child.factor2 is 1 for cases with two
children, and 0 otherwise, and so forth. The coefficient for num.child.factor2
is 1.037, meaning that people with two children rate their overall satisfaction on
average a full standard deviation higher than those with no children.

A striking thing about m4 is that the increase in overall satisfaction is about the
same regardless of how many children there are in the party—about one standard
deviation higher for any number of children. This suggests that we don’t actually
need to estimate a different increase for each number of children. In fact, if the
increase is the same for one child as for five children, attempting to fit a model that
scales increasingly per child would result in a less accurate estimate.

Instead, we declare a new variable called has.child that is TRUE when the party
has children in it and FALSE when the party does not have children. We then
estimate the model using that new factor variable. We also drop weekend from the
model because it doesn’t seem to be a significant predictor:

> sat.std$has.child <- factor(sat.std$num.child > 0)
> m5 <- lm(overall ∼ rides + games + wait + clean + logdist + has.child,
+ data=sat.std)
> summary(m5)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.70195 0.03906 -17.969 < 2e-16 ***
rides 0.22272 0.03512 6.342 5.12e-10 ***
...
has.childTRUE 1.00565 0.04683 21.472 < 2e-16 ***
...
Multiple R-squared: 0.7741, Adjusted R-squared: 0.7713
F-statistic: 281.5 on 6 and 493 DF, p-value: < 2.2e-16

Is this still a good model? The change in R-squared between model m4 and
m5 is negligible, suggesting that our simplification did not deteriorate the
model fit.

Model m5 estimates overall satisfaction to be about one standard deviation higher
for parties with children. However, one might now wonder how children influence
other aspects of the ratings. For instance, is the relationship between satisfaction
and waiting times different for parties with and without children? One might guess
from experience that wait time would be more important to parties with children. To
explore this question, we need to incorporate interactions into the model.

182 7 Identifying Drivers of Outcomes: Linear Models

7.5 Interaction Terms

We can include an interaction of two terms by using the : operator between vari-
ables in a formula. For instance, to estimate overall as a function of rides plus
the interaction of wait and has.child, we could write the formula as overall
∼ rides + wait:no.child. There are other ways in R to write interaction
terms (see Sect. 7.5.1) but we prefer to specify them explicitly in this way.

We create a new model with interactions between the satisfaction ratings and two
variables that describe the visit: no.child and weekend:
> m6 <- lm(overall ∼ rides + games + wait + clean +
+ weekend + logdist + has.child +
+ rides:has.child + games:has.child + wait:has.child +
+ clean:has.child + rides:weekend + games:weekend +
+ wait:weekend + clean:weekend, data=sat.std)
> summary(m6)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
...
rides:has.childTRUE 0.057837 0.073070 0.792 0.42902
games:has.childTRUE -0.064043 0.052797 -1.213 0.22572
wait:has.childTRUE 0.350649 0.047241 7.423 5.21e-13 ***
clean:has.childTRUE -0.001854 0.079710 -0.023 0.98146
rides:weekendyes 0.061784 0.067750 0.912 0.36225
games:weekendyes 0.018511 0.049036 0.377 0.70597
wait:weekendyes 0.035168 0.044463 0.791 0.42936
clean:weekendyes -0.027305 0.071005 -0.385 0.70074
...

The model object m6 now includes eight interaction terms between ratings for fea-
tures of the park and no.child and weekend. Only one of these interactions
is significant: the wait:no.child interaction. This suggests we could drop the
non-significant interactions to create a new model m7:
> m7 <- lm(overall ∼ rides + games + wait + clean + logdist + has.child +
+ wait:has.child, data=sat.std)
> summary(m7)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.69316 0.03684 -18.814 < 2e-16 ***
rides 0.21264 0.03313 6.419 3.24e-10 ***
games 0.04870 0.02394 2.034 0.0425 *
wait 0.15095 0.03688 4.093 4.98e-05 ***
clean 0.30244 0.03485 8.678 < 2e-16 ***
logdist 0.02919 0.02027 1.440 0.1504
has.childTRUE 0.99830 0.04416 22.606 < 2e-16 ***
wait:has.childTRUE 0.34688 0.04380 7.920 1.59e-14 ***
...
Multiple R-squared: 0.7996, Adjusted R-squared: 0.7968
F-statistic: 280.5 on 7 and 492 DF, p-value: < 2.2e-16

In these results, we see that attending the park with children is a predictor of higher
satisfaction, and waiting time is more important predictor among those with children

7.5 Interaction Terms 183

(wait:has.childTRUE) than those without children. We don’t know the reason
for this, but perhaps children go on more rides and their parents are therefore more
influenced by wait times.

One might further tune the model by considering whether logdist is still needed;
we’ll leave that to the reader and assume that model m7 is the final model.

What do we do with these results as marketers? We identify several possible mar-
keting interventions. If we want to increase satisfaction overall, we could perhaps
do so by trying to increase the number of visitors with children. Alternatively, if
we want to appeal to visitors without children, we might engage in further research
to understand why their ratings are lower. If we are allocating budget to personnel,
the importance of cleanliness suggests continuing to allocate resources there (as
opposed, say, to games). We might also want to learn more about the association be-
tween children and waiting time, and whether there are things we could do to make
waiting less frequent or more enjoyable.

There are many more such questions one could pose from results like these; a cru-
cial step in analysis is to think carefully about the implications and where one might
be able to make a product or market intervention. When considering actions to take,
it is especially important to remember that the model assesses association, not cau-
sation. Possible changes in outcome should be viewed as hypotheses suggested by
the model, to be confirmed separately.

To share these results with others, it is helpful to create a new satisfaction drivers
plot using coefplot():

> library(coefplot) # install if needed
> coefplot(m7, intercept=FALSE, outerCI=1.96, lwdOuter=1.5,
+ ylab="Rating of Feature",
+ xlab="Association with Overall Satisfaction")

The result is Fig. 7.8 summarizing the relative contribution of each element on over-
all satisfaction.

When including interaction terms in a model, there are two important points. First,
it is especially important to consider standardizing the predictors when modeling
interactions in order to have an interpretable and comparable scale for coefficients.
Second, one should always include main effects (such as x + y) when including
an interaction effect (x:y). If you don’t estimate the main effects, you won’t know
whether a purported interaction is in fact due to an interaction, or is instead due to
one of the individual variables’ unestimated main effects.

7.5.1 Language Brief: Advanced Formula Syntax*

This section is optional for those who wish to construct more complex formulas
with interaction effects. As in the examples above, we generally write formulas

184 7 Identifying Drivers of Outcomes: Linear Models

l

l

l

l

l

l

l

rides

games

wait

clean

logdist

has.childTRUE

wait:has.childTRUE

0.0 0.3 0.6 0.9

Association with Overall Satisfaction

R
at

in
g

of
 F

ea
tu

re

Coefficient Plot

Fig. 7.8. Satisfaction drivers for visitors to an amusement park (simulated). The model reveals
that the variable most strongly (and positively) associated with satisfaction is visiting the park
with children. Satisfaction with waiting time is a stronger predictor of overall satisfaction
among visitors with children than those without, as shown in the wait:has.childTRUE
interaction. Of the individual park features, satisfaction with cleanliness is most associated

with overall satisfaction.

using only + (for main effects) and : (specific interactions), but the following
may help create more compact formulas when you have many variables or inter-
actions.

As we’ve seen, you can include an interaction between x and z by including x:z in
the formula. If you want to include two variables along with their interaction, you
can use x*z, which is the equivalent to writing x + z + x:z.

To include all of the predictors in your data frame in the model, use a . , writing
write y ∼ .. You can also omit any variable using -x. Thus, y ∼ . - x means
“include all the variables except x.”

The intercept can be removed from a model by including -1 in the formula. This
is ill-advised in general linear models with continuous predictors, because it forces
the line to go through the origin (0, 0), which alters the other coefficients. However,
it can be helpful in some kinds of models, such as those with purely categorical
predictors.

Table 7.1 summarizes the common options for formula syntax and their interpreta-
tion in terms of a linear equation (where β is a model coefficient with β0 for the
intercept, β1 for the first predictor, and so forth; ε is the error term).

7.6 Caution! Overfitting 185

Table 7.1. Syntax for including interactions in model formulas

R formula
syntax

Linear model Description

y ∼ x yi = β0 +β1xi + εi y is a linear function of x
y ∼ x - 1 yi = β1xi +β2zi + εi Omit the intercept
y ∼ x + z yi = β0 +β1xi +β2zi + εi y is a linear combination of x and z
y ∼ x:z yi = β0 +β1xizi + εi Include the interaction between x

and z
y ∼ x*z yi = β0 +β1xi +β2zi +β3xiziεi Include x, z and the interaction be-

tween them
y ∼ (u + v
+ w)ˆ3

yi = β0 + β1ui + β2vi + β3wi +
β4uivi + β5uiwi + β6viwi +
β7uiviwi + εi

Include u, v, and w, and all interac-
tions among them up to three-way
(u:v:w)

y ∼
(u+v+w)ˆ3 -
u:v

yi = β0 + β1ui + β2vi + +β3wi +
β5uiwi +β6viwi +β7uiviwi + εi

Include these variables and all inter-
actions up to three-way, but remove
the u:v interaction

7.6 Caution! Overfitting

Now that we’ve seen the complete process of creating a model, from initial data
inspection to the potential implications, we have a caution about linear models. As
you become more comfortable with linear models, you may want to put more and
more predictors into your equation. Be careful about that.

A typical satisfaction drivers survey might include dozens of different features. As
you add predictors to a model, estimates of the coefficients become less precise due
to both the number of effects and associations among the variables. This shows up
in the lm() output as larger standard errors of the coefficients, indicating lower
confidence in the estimates. This is one reason we like to plot confidence intervals
for coefficients, as in Fig. 7.8.

Despite the potentially low confidence in estimates, as you add variables to a model,
the value of R2 will become higher and higher. On a first impression, that might
seem as if the model is getting better and better. However, if the estimates of the
coefficients are imprecise, then the utility of the model will be poor; it could lead to
making the wrong inferences about relationships in your data.

This process of adding too many variables and ending up with a less precise or in-
appropriate model is called overfitting. One way to avoid it is to keep a close eye
on the standard errors for the coefficients; small standard errors are an indicator that
there is sufficient data to estimate the model. Another approach is to select a subset
of the data to hold out and not use to estimate the model. After fitting the model, use
predict() on the hold out data and see how well it performs. Overfitted models
will perform poorly when predicting outcomes for holdout data. Stepwise model

186 7 Identifying Drivers of Outcomes: Linear Models

selection is a traditional approach to select variables while attempting to avoid over-
fitting; the step() function we saw in Sect. 6.5.3 works for lm objects the same
as for aov models.

We recommend to keep models as parsimonious as possible. Although it is tempt-
ing to create large, impressive, omnibus models, it is usually more valuable in
marketing practice to identify a few interventions with clear and confident inter-
pretations.

7.7 Recommended Procedure for Linear Model Fitting

We followed a lengthy process to arrive at the final model m7, and it is helpful to
recount the general steps we recommend in creating such a linear model.

1. Inspect the data to make sure it is clean and has the structure you expect, fol-
lowing the outline in Sect. 3.3.3.

2. Check the distributions of the variables to make sure they are not highly skewed
(Sect. 7.2.1). If one is skewed, consider transforming it (Sect. 4.5.4).

3. Examine the bivariate scatterplots and correlation matrix (Sect. 7.2.1) to see
whether there are any extremely correlated variables (such as r > 0.9, or sev-
eral with r > 0.8). If so, omit some variables or consider transforming them if
needed; see Sect. 9.1 for further discussion.

4. If you wish to estimate coefficients on a consistent scale, standardize the data
with scale() (Sect. 7.3.3).

5. After fitting a model, check the residual quantiles in the output. The residuals
show how well the model accounts for the individual observations (Sect. 7.2.4).

6. Check the standard model plots using plot(), which will help you judge
whether a linear model is appropriate or whether there is nonlinearity, and will
identify potential outliers in the data (Sect. 7.2.4).

7. Try several models and compare them for overall interpretability and model fit
by inspecting the residuals’ spread and overall R2 (Sect. 7.3.1). If the models
are nested, you could also use anova() for comparison (Sect. 6.5.1) .

8. Report the confidence intervals of the estimates with your interpretation and
recommendations (Sect. 7.3).

7.8 Bayesian Linear Models with MCMCregress()*

In this section, we review how the satisfaction analysis could be performed with
Bayesian methods. This is an optional section; if you’re not familiar with Bayesian
methods, you could skip this section or review the basics in Sect. 6.6.

7.8 Bayesian Linear Models with MCMCregress()* 187

Like lm() above, Bayesian inference for a linear model attempts to estimate the
most likely coefficients relating the outcome to the explanatory variables. However,
the Bayesian method does this by sampling the posterior distribution of estimated
model parameters (Sect. 6.6.2), using a procedure known as Markov-chain Monte
Carlo (MCMC).

The package MCMCpack includes MCMCregress(), which estimates Bayesian
linear models using samples from the posterior distribution; it makes a Bayesian
estimation of the model as easy as calling lm(). We call MCMCregress() to
estimate the model m7 from above, supplying an identical formula and data frame
as we used earlier with lm() (Sect. 7.5):

> library(MCMCpack)
...
> m7.bayes <- MCMCregress(overall ∼ rides + games + wait + clean + logdist +
+ has.child + wait:has.child, data=sat.std)
> summary(m7.bayes)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) -0.69331 0.03702 0.0003702 0.0003702
rides 0.21262 0.03351 0.0003351 0.0003301
games 0.04885 0.02400 0.0002400 0.0002400
wait 0.15096 0.03683 0.0003683 0.0003683
clean 0.30205 0.03515 0.0003515 0.0003515
logdist 0.02891 0.02029 0.0002029 0.0002029
has.childTRUE 0.99837 0.04441 0.0004441 0.0004441
wait:has.childTRUE 0.34733 0.04358 0.0004358 0.0004358
sigma2 0.20374 0.01306 0.0001306 0.0001306

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
(Intercept) -0.764177 -0.71841 -0.69345 -0.66861 -0.62004
rides 0.145773 0.19015 0.21290 0.23499 0.27833
games 0.001507 0.03285 0.04876 0.06453 0.09668
wait 0.079481 0.12629 0.15060 0.17602 0.22353
clean 0.233243 0.27832 0.30218 0.32581 0.37076
logdist -0.010923 0.01539 0.02885 0.04262 0.06869
has.childTRUE 0.910071 0.96896 0.99857 1.02800 1.08498
wait:has.childTRUE 0.261291 0.31780 0.34720 0.37724 0.43211
sigma2 0.179781 0.19454 0.20311 0.21213 0.23094

What does this tell us? The important thing to understand is that MCMCregress()
has drawn 10,000 samples from the estimated distribution of possible coefficients
for model m7. It then describes those 10,000 sets of estimates in two ways: using
central tendency statistics (mean and standard deviation, in the output section la-
beled “1.”), and again using distribution quantiles (in output section “2.”).

188 7 Identifying Drivers of Outcomes: Linear Models

We can compare the values to those from lm() in Sect. 7.5 above. There, we
saw that rides had an estimated coefficient of 0.2126; here, the mean of the
Bayesian estimates is 0.2126 and the median is 0.2129. Similarly, lm() estimated
wait:has.child as 0.9983; the mean Bayesian estimate is 0.9984 and the me-
dian is 0.9986. The coefficients estimated by the classical and Bayesian models are
nearly identical.

Despite the similar model coefficients, there are two notable differences between
this output and the output from lm(). First, it includes 2. Quantiles ...
because the Bayesian posterior distribution may be asymmetric; the distribution of
estimates could be skewed if that provided a better fit to the data.

Second, the Bayesian output does not include statistical tests or p-values; null
hypothesis tests are not emphasized in the Bayesian paradigm. Instead, to de-
termine whether a parameter is likely to be non-zero (or to compare it to any
other value), check the 2.5 and 97.5 %’iles and directly interpret the credible in-
terval. For instance, in the quantiles above, the 2.5–97.5 %’iles for logdist range
(−0.01092,0.06869) and we conclude that the coefficient for logdist is not cred-
ibly different from 0 at a level of 95 % confidence. However, all of the other coeffi-
cients are different from zero.

Note that MCMCregress() is similar to lmBF() in the BayesFactor pack-
age that we used in Sect. 6.6. Both functions produce draws from the posterior
of a linear model, which you can then summarize using the summary(). We used
MCMCregress() here because lmBF() does not estimate interaction coefficients
(at the time of writing). It is common in R that different packages do similar things,
yet may be better or worse for a specific problem.

If the Bayesian estimates are so similar to those from lm(), what is the advantage?
The results here are similar for two reasons. First, we have plenty of data and a
well-behaved model. Second, classical methods such as lm() are eminently suited
to estimation of linear models. In Chap. 9 we examine hierarchical Bayesian models,
in which more advantages of the Bayesian approach emerge; we later continue that
investigation with choice models in Chap. 13.

We also believe, as noted in Sect. 6.6.1, that inferences such as hypothesis testing
are clearer and more interpretable in the Bayesian approach. In fitting models, it is
not always the case that classical and Bayesian estimates are so similar, and when
they differ, we are more inclined to trust the Bayesian estimates.

7.9 Learning More*

In this chapter we’ve given an overview of linear modeling in R and its application
to satisfaction drivers analysis. The same modeling approach could be applied to
many other marketing applications, such as advertising response (or marketing mix)
modeling [18], customer retention (or churn) modeling, and pricing analysis.

7.9 Learning More* 189

We covered traditional normal linear models in this chapter, which relate continuous
or near-continuous outcomes to predictors. Other models apply in cases where the
variables are different in structure, such as binary outcomes or counts. However, the
process of estimating those is similar to the steps here. Such models include pois-
son and binomial regression model for outcomes that are counts, hazard regression
for event occurrence (also known as timing regression or survival modeling), and
logistic regression for binary outcomes (see Sect. 9.2). R covers all of these models
with the generalized linear model (GLM) framework, an elegant way of represent-
ing many families of models, and such models can be estimated with the glm()
function. To learn more about generalized models, consult an introduction to GLM
such as Dobson [34].

In our synthetic satisfaction drivers data, hypothetical customers rated satisfaction
on a 100-point scale, making it reasonable for us to analyze the data as if the ratings
were continuous. However, many survey studies collect ratings on a 5- or 7-point
scale, which may be questionable to fit with a linear model. Although many analysts
use lm() for outcomes on 5- or 7-point scales, an alternative is a cut-point model,
such as an ordered logit or probit model. Such a model will fit the data better and
won’t make nonsensical predictions like a rating of 6.32 on a 5-point scale (as lm()
might). These models can be fit with the polr() function from the MASS package
[157].

A more sophisticated model for ordinal ratings data is a Bayesian scale-usage het-
erogeneity model, as described by Rossi, Allenby, and McCullough [137]. This
models that different customers (and cultures) may use scales in different ways;
some customers may give systematically higher or lower scores than others due to
differences in interpreting the rating scale. When this is modeled, it is possible to
find a better estimate of the underlying satisfaction levels. A Bayesian estimation
procedure for such models is implemented in the bayesm package [136].

In this chapter, we used models in which an effect has uniform influence. For exam-
ple, we assumed that the effect of satisfaction with cleanliness is a single influence
that is the same for every respondent (or, more precisely, whose average influence
is the same, apart from random individual variation). You might instead consider a
model in which the effect varies for different people, with both a group-level and
an individual-level effect, known as a hierarchical model. We examine ways to es-
timate individual-level effects using hierarchical models in Chap. 9.

Finally, many data sets have variables that are highly correlated (known as collinear-
ity), and this can affect the stability and trustworthiness of linear modeling. In
Sect. 9.1 we introduce additional ways to check for collinearity and strategies to
mitigate it. One approach is to reduce the number of dimensions under considera-
tion by extracting underlying patterns from the correlated variables; we review such
principal component and factor analytic procedures in Chap. 8.

190 7 Identifying Drivers of Outcomes: Linear Models

7.10 Key Points

There are many applications for linear models in marketing: satisfaction drivers
analysis, advertising response modeling, customer churn modeling, and so forth.
Although these use different kinds of data, they are all implemented in similar ways
in R. The following points are some of the important considerations for such analy-
ses. We also summarized the basic process of linear modeling in Sect. 7.7.

• Linear models relate continuous scale outcome variables to predictors by find-
ing a straight line that best fits the points. A basic linear model function in
R is lm(formula, data). lm() produces an object that can be used with
plot(), summary(), predict(), and other functions to inspect the model
fit and estimates of the coefficients.

• Before modeling, it is important to check the data quality and the distribution
of values on each variable. For distributions, approximately normal distribu-
tions are generally preferred, and data such as counts and revenue often need
to be transformed. Also check that variables do not have excessive correlation
(Sect. 7.2.1).

• To interpret coefficients on a standardized scale, such that they are comparable
to one another, you will either need predictors that are on identical scales or that
have been standardized to be on a uniform scale. The most common standard-
ization is conversion to units of standard deviation, performed by scale()
(Sect. 7.3.3).

• A linear model assumes that the relationship between predictors and an outcome
is linear and that errors in fit are symmetric with similar variability across their
range (a property known as homoskedasticity). Results may be misleading when
these assumptions do not match the data. plot() of a model can help you
assess whether these assumptions are reasonable for your data (Sect. 7.2.5).

• The summary() function for lm objects provides output that analysts review
most frequently, reporting model coefficients along with their standard errors
and p-values for hypothesis tests assessing whether the coefficients differ from
zero (Sect. 7.2.4).

• Factor variables may be included in a model simply by adding the name of the
factor to the model formula. R automatically converts the factor into dummy-
coded 0/1 values for each level. You must check the direction shown in the
output to ensure you interpret these correctly (Sect. 7.4).

• An interaction is a predictor that is the product of two other predictors, and thus
assesses the degree to which the predictors reinforce (or cancel) one another.
You can model an interaction between x and y by including x:y in a model
formula (Sect. 7.5).

7.10 Key Points 191

• Model building is the process of adding and removing predictors from a model
to find a set of predictors that fits the data well. We can compare the fit of dif-
ferent models using the R-squared value or, if models are nested (see Sect. 6.5)
by using the more formal ANOVA test (anova()) (Sect. 7.3.1).

• You can fit a Bayesian version of a linear model using MCMCregress()
from the MCMCpack package. The usage is nearly identical to lm(). The re-
sulting coefficient estimates are assessed as expressing the most likely values
(known as credible intervals) under the assumption that the model is appropri-
ate (Sect. 7.8).

• We recommend to interpret coefficients in terms of their estimated ranges, such
as confidence intervals in the case of lm() (Sect. 7.2.4) or credible intervals
from Bayesian estimates (Sect. 7.8). A plot of the coefficient ranges for lm
objects can be created with the coefplot package (Sect. 7.3).

Part III

Advanced Marketing Applications

8

Reducing Data Complexity

Marketing data sets often have many variables—many dimensions—and it is ad-
vantageous to reduce these to smaller sets of variables to consider. For instance,
we might have many items on a consumer survey that reflect a smaller number of
underlying concepts such as customer satisfaction with a service, category leader-
ship for a brand, or luxury for a product. If we can reduce the data to its underlying
dimensions, we can more clearly identify the relationships among concepts.

In this chapter we consider three common methods to reduce complexity by re-
ducing the number of dimensions in the data. Principal component analysis (PCA)
attempts to find uncorrelated linear dimensions that capture maximal variance in
the data. Exploratory factor analysis (EFA) also attempts to capture variance with a
small number of dimensions while seeking to make the dimensions interpretable in
terms of the original variables. Multidimensional scaling (MDS) maps similarities
among observations in terms of a low-dimension space such as a two-dimensional
plot. MDS can work with metric data and with non-metric data such as categorical
or ordinal data.

In marketing, PCA is often associated with perceptual maps, which are visualiza-
tions of respondents’ associations among brands or products. In this chapter we
demonstrate perceptual maps for brands using PCA. We then look at ways to draw
similar perceptual inferences from factor analysis and MDS.

8.1 Consumer Brand Rating Data

We investigate dimensionality using a simulated data set that is typical of con-
sumer brand perception surveys. This data reflects consumer ratings of brands
with regard to perceptual adjectives as expressed on survey items with the follow-
ing form:

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 8

195

196 8 Reducing Data Complexity

On a scale from 1 to 10—where 1 is least and 10 is most—how [ADJEC-
TIVE] is [BRAND A]?

In this data, an observation is one respondent’s rating of a brand on one of the
adjectives. Two such items might be:

1. How trendy is Intelligentsia Coffee?

2. How much of a category leader is Blue Bottle Coffee?

Such ratings are collected for all the combinations of adjectives and brands of
interest.

The data here comprise simulated ratings of 10 brands (“a” to “j”) on 9 adjectives
(“performance,” “leader,” “latest,” “fun,” and so forth), for N = 100 simulated re-
spondents. The data set is provided on this book’s website. We start by loading and
checking the data:

> brand.ratings <- read.csv("http://goo.gl/IQl8nc")
> head(brand.ratings)
perform leader latest fun serious bargain value trendy rebuy brand

1 2 4 8 8 2 9 7 4 6 a
2 1 1 4 7 1 1 1 2 2 a
...
> tail(brand.ratings)
...
999 1 1 7 5 1 1 2 5 1 j
1000 7 4 7 8 4 1 2 5 1 j

Each of the 100 simulated respondents has observations on each of the 10 brands,
so there are 1,000 total rows. We inspect the summary() and str() to check the
data quality and structure:

> summary(brand.ratings)
perform leader latest fun

Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.000
1st Qu.: 1.000 1st Qu.: 2.000 1st Qu.: 4.000 1st Qu.: 4.000
Median : 4.000 Median : 4.000 Median : 7.000 Median : 6.000

...
> str(brand.ratings)
’data.frame’: 1000 obs. of 10 variables:
...
$ rebuy : int 6 2 6 1 1 2 1 1 1 1 ...
$ brand : Factor w/ 10 levels "a","b","c","d",..: 1 1 1 1 1 1 1 1 1 1 ...

We see in summary() that the ranges of the ratings for each adjective are 1–10. In
str(), we see that the ratings were read as numeric while the brand labels were
properly interpreted as factors. In short, the data appear to be clean and formatted
appropriately.

There are nine perceptual adjectives in this data set. Table 8.1 lists the adjectives
and the kind of survey text that they might reflect.

8.1 Consumer Brand Rating Data 197

Table 8.1. Adjectives in the brand.rating data and examples of survey text that might
be used to collect rating data

Perceptual adjective (column name) Example survey text
perform Brand has strong performance
leader Brand is a leader in the field
latest Brand has the latest products
fun Brand is fun
serious Brand is serious
bargain Brand products are a bargain
value Brand products are a good value
trendy Brand is trendy
rebuy I would buy from Brand again

8.1.1 Rescaling the Data

It is often good practice to rescale raw data. This makes data more comparable
across individuals and samples. A common procedure is to center each variable by
subtracting its mean from every observation, and then rescale those centered values
as units of standard deviation. This is commonly called standardizing, normalizing,
or Z scoring the data (Sect. 7.3.3).

In R, data could be standardized in this way with a mathematical expression using
mean() and sd():

> x <- 1:1000
> x.sc <- (x - mean(x)) / sd(x)
> summary(x.sc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.7290 -0.8647 0.0000 0.0000 0.8647 1.7290

As we saw in Sect. 7.3.3, a simpler way is to use scale() to rescale all variables
at once. We never want to alter raw data, so we assign the raw values first to a new
data frame brand.sc and alter that:

> brand.sc <- brand.ratings
> brand.sc[, 1:9] <- scale(brand.ratings[, 1:9])
> summary(brand.sc)

perform leader latest fun
Min. :-1.0888 Min. :-1.3100 Min. :-1.6878 Min. :-1.84677
1st Qu.:-1.0888 1st Qu.:-0.9266 1st Qu.:-0.7131 1st Qu.:-0.75358
Median :-0.1523 Median :-0.1599 Median : 0.2615 Median :-0.02478
Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.00000
3rd Qu.: 0.7842 3rd Qu.: 0.6069 3rd Qu.: 0.9113 3rd Qu.: 0.70402
Max. : 1.7206 Max. : 2.1404 Max. : 1.2362 Max. : 1.43281

...

In this code we name the new data frame with extension “.sc” to remind ourselves
that observations have been scaled. We operate on columns 1–9 because the 10th
column is a factor variable for brand. We see that the mean of each adjective is

198 8 Reducing Data Complexity

correctly 0.00 across all brands because the data is rescaled. Observations on the
adjectives have a spread (difference between min and max) of roughly 3 standard
deviation units. This means the distributions are platykurtic, flatter than a standard
normal distribution, because we would expect a range of more than 4 standard devi-
ation units for a sample of this size. (Platykurtosis is a common property of survey
data, due to floor and ceiling effects.)

We use corrplot() for initial inspection of bivariate relationships among the
variables:

> library(corrplot)
> corrplot(cor(brand.sc[, 1:9]), order="hclust")

As before, we plot columns 1–9 because the 10th column is the non-numeric brand
label. In corrplot(), the argument order="hclust" reorders the rows and
columns according to variables’ similarity in a hierarchical cluster solution (see
Sect. 11.3.2 for more on hierarchical clustering). The result is shown in Fig. 8.1,
where we see that the ratings seem to group into three clusters of similar variables,
a hypothesis we examine in detail in this chapter.

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fu
n

la
te

st

tr
en

dy

re
bu

y

ba
rg

ai
n

va
lu

e

pe
rf

or
m

le
ad

er

se
rio

us

fun

latest

trendy

rebuy

bargain

value

perform

leader

serious

Fig. 8.1. Correlation plot for the
simulated consumer brand ratings.
This visualization of the basic data
appears to show three general clus-
ters that comprise fun/latest/trendy,
rebuy/bargain/value, and perfor-
m/leader/serious, respectively.

8.1.2 Aggregate Mean Ratings by Brand

Perhaps the simplest business question in these data is: “What is the average
(mean) position of the brand on each adjective?” We can use aggregate() (see
Sects. 3.4.5 and 5.2.1) to find the mean of each variable by brand:

8.1 Consumer Brand Rating Data 199

> brand.mean <- aggregate(. ∼ brand, data=brand.sc, mean)
> brand.mean

brand perform leader latest fun serious bargain
1 a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
2 b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

Before proceeding, we perform a bit of housekeeping on the new brand.mean
object. We name the rows with the brand labels that aggregate() put into the
brand column, and then we remove that column as redundant:

> rownames(brand.mean) <- brand.mean[, 1] # use brand for the row names
> brand.mean <- brand.mean[, -1] # remove brand name column

The resulting matrix is now nicely formatted with brands by row and adjective
means in the columns:

> brand.mean
perform leader latest fun serious bargain

a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...

A heatmap is a useful way to examine such results because it colors data points by
the intensities of their values. We use heatmap.2() from the gplots package
[158] with colors from the RColorBrewer package [121] (install those if you
need them):

> library(gplots)
> library(RColorBrewer)
> heatmap.2(as.matrix(brand.mean),
+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE, dend="none",
+ main="\n\n\n\n\nBrand attributes")

heatmap.2() is a complex function. In the code above, we coerce brand.mean
to be a matrix as heatmap.2() expects. We color the map using greens and blues
from RColorBrewer’s “GnBu” palette and turn off a few options that otherwise
clutter the heatmap (trace, key, and dendrogram). We improve title alignment
by adding blank lines with \n before the title text.

The resulting heatmap is shown in Fig. 8.2. In this chart’s green-to-blue ("GnBu")
palette a green color indicates a low value and dark blue indicates a high value;
lighter colors are for values in the middle of the range. The brands are clearly
perceived differently with some brands rated high on performance and leadership
(brands b and c) and others rated high for value and intention to rebuy (brands f and
g). By default, heatmap.2() sorts the columns and rows in order to emphasize
similarities and patterns in the data, which is why the rows and columns in Fig. 8.2
are ordered in an unexpected way. It does this using a form of hierarchical clustering
(see Sect. 11.3.2).

200 8 Reducing Data Complexity

pe
rf

or
m

se
rio

us

le
ad

er

ba
rg

ai
n

va
lu

e

re
bu

y

la
te

st

tr
en

dy fu
n

j

a

e

d

h

i

c

b

g

f

Brand attributes

Fig. 8.2. A heatmap for the mean of
each adjective by brand. Brands f and
g are similar—with high ratings for re-
buy and value but low ratings for latest
and fun. Other groups of similar brands
are b/c, i/h/d, and a/j.

Looking at Figs. 8.1 and 8.2 we could guess at the groupings and relationships of
adjectives and brands. For example, there is similarity in the color pattern across
columns for the bargain/value/rebuy; a brand that is high on one tends to be high on
another. But it is better to formalize such insight, and the remainder of this chapter
discusses how to do so.

8.2 Principal Component Analysis and Perceptual Maps

PCA recomputes a set of variables in terms of linear equations, known as compo-
nents, that capture linear relationships in the data [87]. The first component captures
as much of the variance as possible from all variables as a single linear function. The
second component captures as much variance as possible that remains after the first
component. This continues until there are as many components as there are vari-
ables. We can use this process to reduce data complexity by retaining and analyzing
only a subset of those components—such as the first one or two components—that
explain a large proportion of the variation in the data.

8.2.1 PCA Example

We explore PCA first with a simple data set to see and develop intuition about what
is happening. We create highly correlated data by copying a random vector xvar
to a new vector yvar while replacing half of the data points. Then we repeat that
procedure to create zvar from yvar:

> set.seed(98286)
> xvar <- sample(1:10, 100, replace=TRUE)
> yvar <- xvar
> yvar[sample(1:length(yvar), 50)] <- sample(1:10, 50, replace=TRUE)
> zvar <- yvar
> zvar[sample(1:length(zvar), 50)] <- sample(1:10, 50, replace=TRUE)
> my.vars <- cbind(xvar, yvar, zvar)

8.2 Principal Component Analysis and Perceptual Maps 201

yvar will be correlated with xvar because 50 of the observations are identical
while 50 are newly sampled random values. Similarly, zvar keeps 50 values from
yvar (and thus also inherits some from xvar, but fewer). We compile those three
vectors into a matrix.

We check one of the three possible bivariate plots along with the correlation matrix.
If we simply plotted the raw data, there would be many overlapping values because
the responses are discrete (integers 1–10). To separate and visualize multiple points
with the same values, we jitter() them (Sect. 4.6.1):

> plot(yvar ∼ xvar, data=jitter(my.vars))
> cor(my.vars)

xvar yvar zvar
xvar 1.0000000 0.5969717 0.2496469
yvar 0.5969717 1.0000000 0.5231468
zvar 0.2496469 0.5231468 1.0000000

The bivariate plot in Fig. 8.3 shows a clear linear trend for yvar vs. xvar on the
diagonal. In the correlation matrix, xvar correlates highly with yvar and less so
with zvar, as expected, and yvar has strong correlation with zvar (using the
rules of thumb from Sect. 4.5).

Using intuition, what would we expect the components to be from this data? First,
there is shared variance across all three variables because they are positively corre-
lated. So we expect to see one component that picks up that association of all three
variables. After that, we expect to see a component that shows that xvar and zvar
are more differentiated from one another than either is from yvar. That implies
that yvar has a unique position in the data set as the only variable to correlate
highly with both of the others, so we expect one of the components to reflect this
uniqueness of yvar.

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

2 4 6 8 10

2
4

6
8

10

xvar

yv
ar

Fig. 8.3. Scatterplot of correlated data with
discrete values, using jitter() to sep-
arate the values slightly for greater visual
impact of overlapping points.

202 8 Reducing Data Complexity

Let’s check the intuition. We use prcomp() to perform PCA:

> my.pca <- prcomp(my.vars)
> summary(my.pca)
Importance of components:

PC1 PC2 PC3
Standard deviation 3.9992 2.4381 1.6269
Proportion of Variance 0.6505 0.2418 0.1077
Cumulative Proportion 0.6505 0.8923 1.0000

There are three components because we have three variables. The first component
accounts for 65 % of the explainable linear variance, while the second accounts for
24 %, leaving 11 % for the third component. How are those components related to
the variables? We check the rotation matrix, which is helpfully printed by default
for a PCA object:

> my.pca
Standard deviations:
[1] 3.999154 2.438079 1.626894

Rotation:
PC1 PC2 PC3

xvar -0.6156755 0.63704774 0.4638037
yvar -0.6532994 -0.08354009 -0.7524766
zvar -0.4406173 -0.76628404 0.4676165

Interpreting PCA rotation loadings is difficult because of the multivariate nature—
factor analysis is a better procedure for interpretation, as we will see later in this
chapter—but we examine the loadings here for illustration and comparison to our
expectations. In component 1 (PC1) we see loading on all 3 variables as expected
from their overall shared variance (the negative direction is not important; the key
is that they are all in the same direction).

In component two, we see that xvar and zvar are differentiated from one an-
other as expected, with loadings in opposite directions. Finally, in component 3, we
see residual variance that differentiates yvar from the other two variables and is
consistent with our intuition about yvar being unique.

In addition to the loading matrix, PCA has computed scores for each of the principal
components that express the underlying data in terms of its loadings on those com-
ponents. Those are present in the PCA object as the $x matrix, where the columns
([, 1], [, 2], and so forth) may be used to obtain the values of the compo-
nents for each observation. We can use a small number of those columns in place of
the original data to obtain a set of observations that captures much of the variation
in the data.

A less obvious feature of PCA, but implicit in the definition, is that extracted PCA
components are uncorrelated with one another, because otherwise there would be
more linear variance that could have been captured. We see this in the scores

8.2 Principal Component Analysis and Perceptual Maps 203

returned for observations in a PCA model, where the off-diagonal correlations are
effectively zero (approximately 10−15 as shown in R’s scientific notation):

> cor(my.pca$x) # components have zero correlation
PC1 PC2 PC3

PC1 1.000000e+00 4.808932e-16 1.768720e-15
PC2 4.808932e-16 1.000000e+00 -1.174441e-15
PC3 1.768720e-15 -1.174441e-15 1.000000e+00

8.2.2 Visualizing PCA

A good way to examine the results of PCA is to map the first few components,
which allows us to visualize the data in a lower-dimensional space. A common
visualization is a biplot, a two-dimensional plot of data points with respect to the first
two PCA components, overlaid with a projection of the variables on the components.
We use biplot() to generate this:

> biplot(my.pca)

The result is Fig. 8.4, where every data point is plotted (and labeled by row number)
according to its values on the first two components. Such plots are especially helpful
when there are a smaller number of points (as we will see below for brands) or when
there are clusters (as we see in Chap. 11).

−0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

PC1

P
C

2

1

2

3

4

5 6

7 8

9

10

11

12

13

14

15

16

17 18 1920

2122
23

24

25

26

27
28

29

30

31

32

3334

35

36

37

38

39

40

41

42

43

444546

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

6364

65

66

67

68

69

70

71

72

7374

75

76

77

78

7980
81 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99100

−20 −10 0 10 20

−
20

−
10

0
10

20

xvar

yvar

zvar

Fig. 8.4. A biplot() of a PCA solu-
tion for the simple, constructed example,
showing data points plotted on the first
two components.

In Fig. 8.4, there are arrows that show the best fit of each of the variables on the prin-
cipal components—a projection of the variables onto the two-dimensional space of
the first two PCA components, which explain a large part of the variation in the data.
These are useful to inspect because the direction and angle of the arrows reflect

204 8 Reducing Data Complexity

the relationship of the variables; a closer angle indicates higher positive associa-
tion, while the relative direction indicates positive or negative association of the
variables.

In the present case, we see in the variable projections (arrows) that yvar is closely
aligned with the first component (X axis). In the relationships among the variables
themselves, we see that xvar and zvar are more associated with yvar, relative to
the principal components, than either is with the other. Thus, this visually matches
our interpretation of the correlation matrix and loadings above.

By plotting against principal components, a biplot benefits from the fact that com-
ponents are uncorrelated; this helps to disperse data on the chart because the x- and
y-axes are independent. When there are several components that account for sub-
stantial variance, it is also useful to plot components beyond the first and second.
This can be done with the choices argument to biplot().

8.2.3 PCA for Brand Ratings

Let’s look at the principal components for the brand rating data (refer to Sect. 8.1
above if you need to load the data). We find the components with prcomp(), se-
lecting just the rating columns 1–9:

> brand.pc <- prcomp(brand.sc[, 1:9])
> summary(brand.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.726 1.4479 1.0389 0.8528 0.79846 0.73133 0.62458 ...
Proportion of Variance 0.331 0.2329 0.1199 0.0808 0.07084 0.05943 0.04334 ...
Cumulative Proportion 0.331 0.5640 0.6839 0.7647 0.83554 0.89497 0.93831 ...

The default plot() for a PCA is a scree plot, which shows the successive propor-
tion of additional variance that each component adds. We plot this as a line chart
using type="l" (lower case “L” for line):

> plot(brand.pc, type="l")

The result is Fig. 8.5. A scree plot is often interpreted as indicating where additional
components are not worth the complexity; this occurs where the line has an elbow,
a kink in the angle of bending, a somewhat subjective determination. In Fig. 8.5, the
elbow occurs at either component three or four, depending on interpretation; and
this suggests that the first two or three components explain most of the variation in
the observed brand ratings.

A biplot() of the first two principal components—which biplot() selects by
default for a PCA object—reveals how the rating adjectives are associated:

> biplot(brand.pc)

8.2 Principal Component Analysis and Perceptual Maps 205

l

l

l

l

l

l

l
l

l

brand.pc
V

ar
ia

nc
es

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 2 3 4 5 6 7 8 9

Fig. 8.5. A scree plot() of a
PCA solution shows the succes-
sive variance accounted by each
component. For the brand rating
data, the proportion largely levels
out after the third component.

We see the result in Fig. 8.6, where adjectives map in four regions: category
leadership (“serious,” “leader,” and “perform” in the upper right), value (“rebuy,”
“value,” and “bargain”), trendiness (“trendy” and “latest”), and finally “fun” on
its own.

−0.05 0.00 0.05

−
0.

05
0.

00
0.

05

PC1

P
C

2

1
2

3

4

5

6

7

8

9

10
11 12

13
14

15

16

17

18

1920

2122

23
24

25

26

27
28

29

30

31

32

33

34

35

36

37

38 39

40
41

42

43

44

45

46

47

48

49

50

5152
53

54

55

56

57

58

59
60

61
62

63

6465

66

67

68

69

70

71

72 73

74

75

76
77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92
93

94

95

96

97
98

99

100

101

102

103

104
105

106

107

108
109

110

111

112

113

114
115

116

117

118

119

120

121

122

123
124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
147

148

149

150

151

152

153

154

155

156
157

158

159

160

161

162

163

164165

166
167

168

169

170

171

172 173
174

175

176
177
178

179

180

181

182

183

184

185

186
187

188

189

190
191

192

193194

195

196
197

198

199

200

201

202

203
204

205

206

207

208

209

210

211

212

213

214215216

217

218

219

220
221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238
239

240

241

242

243

244

245

246
247

248249250

251

252

253

254

255

256
257

258

259

260

261

262

263264

265
266

267

268

269

270

271
272

273 274 275
276

277

278

279

280
281

282
283284

285

286

287

288

289

290

291

292

293
294

295

296

297

298

299

300

301

302

303

304

305

306

307

308
309

310

311

312

313

314315

316
317

318

319
320

321

322

323

324

325326

327

328

329

330

331

332

333

334

335

336

337

338
339

340341

342

343

344
345346

347

348
349350

351

352

353
354

355

356
357

358

359

360

361

362363

364365

366

367

368

369

370371

372

373

374375

376

377

378

379
380

381

382

383

384

385

386
387

388

389

390

391392

393

394

395

396

397

398

399

400
401

402

403

404

405

406 407

408

409
410

411

412

413

414

415

416

417
418

419

420

421

422

423

424
425

426

427

428

429

430

431432

433

434

435
436 437

438

439440

441

442

443

444

445

446
447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473
474

475

476 477

478

479

480
481

482

483
484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508 509

510511

512

513

514515
516

517

518

519

520

521

522

523

524

525

526

527

528

529
530

531

532

533

534

535

536

537
538

539

540

541

542

543

544

545

546

547

548

549

550551

552

553

554

555

556

557

558

559

560

561

562

563

564

565 566

567

568

569

570

571
572

573574

575

576

577

578

579

580

581

582
583

584585586

587 588

589590

591

592

593

594595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622
623

624

625

626

627

628

629

630

631

632

633634

635

636

637638

639

640

641

642

643

644

645

646

647

648

649

650 651

652

653

654

655

656

657

658 659

660

661 662

663

664

665

666

667
668

669

670

671

672

673
674

675
676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700
701

702
703

704

705

706707

708

709

710

711
712

713

714

715

716

717

718

719

720
721

722

723

724
725

726

727728

729

730

731

732

733

734

735

736

737

738

739
740

741742

743

744

745

746

747
748

749750

751752

753

754

755

756

757

758

759

760

761

762

763

764
765766

767

768

769

770

771

772

773

774

775

776
777

778

779780

781

782

783

784

785

786

787

788

789

790

791

792793

794

795

796
797

798

799

800

801

802803

804

805

806

807

808

809
810

811

812
813

814

815

816

817
818

819

820

821

822 823

824825

826

827

828

829

830

831
832

833

834

835

836

837

838
839

840

841

842

843
844

845

846

847

848

849

850

851

852

853

854

855

856

857

858
859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875 876

877

878
879

880

881
882

883

884

885

886

887

888 889

890
891

892

893

894

895

896

897 898

899

900

901

902

903

904

905

906

907

908

909

910

911
912

913

914
915

916

917

918

919

920

921
922

923

924

925

926

927

928

929

930931932

933

934 935

936

937

938

939
940

941

942
943

944

945

946

947
948

949

950

951

952

953
954

955

956

957

958

959
960

961
962

963

964

965

966

967

968

969

970971 972

973

974

975

976

977

978

979
980981 982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

−20 −10 0 10 20

−
20

−
10

0
10

20perform

leader

latest

fun

serious

bargain
value

trendy

rebuy

Fig. 8.6. A biplot of an initial attempt
at PCA for consumer brand ratings. Al-
though we see adjective groupings on the
variable loading arrows in red, and gain
some insight into the areas where rat-
ings cluster (as dense areas of observa-
tion points), the chart would be more use-
ful if the data were first aggregated by
brand.

But there is a problem: the plot of individual respondents’ ratings is too dense
and it does not tell us about the brand positions! A better solution is to perform
PCA using aggregated ratings by brand. First we remind ourselves of the data
that compiled the mean rating of each adjective by brand as we found above using
aggregate()(see Sect. 8.1). Then we extract the principal components:

> brand.mean
perform leader latest fun serious bargain

a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067 0.21409609
b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061 0.04161938
...
> brand.mu.pc <- prcomp(brand.mean, scale=TRUE)
> summary(brand.mu.pc)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 2.1345 1.7349 0.7690 0.61498 0.50983 0.36662 0.21506

206 8 Reducing Data Complexity

Proportion of Variance 0.5062 0.3345 0.0657 0.04202 0.02888 0.01493 0.00514
Cumulative Proportion 0.5062 0.8407 0.9064 0.94842 0.97730 0.99223 0.99737
...

In the call to prcomp(), we added scale=TRUE in order to rescale the data; even
though the raw data was already rescaled, the aggregated means have a somewhat
different scale than the standardized data itself. The results show that the first two
components account for 84 % of the explainable variance in the mean ratings, so we
focus on interpreting results with regard to them.

8.2.4 Perceptual Map of the Brands

A biplot of the PCA solution for the mean ratings gives an interpretable percep-
tual map, showing where the brands are placed with respect to the first two princi-
pal components. We use biplot() on the PCA solution for the mean rating by
brand:
> biplot(brand.mu.pc, main="Brand positioning", cex=c(1.5, 1))

We plot the brand labels with a 50 % larger font using the character expansion
argument cex=c(1.5, 1). The result is Fig. 8.7.

Before interpreting the new map, we first check that using mean data did not greatly
alter the structure. Figure 8.7 shows a different spatial rotation of the adjectives,
compared to Fig. 8.6, but the spatial position is arbitrary and the new map has the
same overall grouping of adjectives and relational structure (for instance, seeing
as in Fig. 8.6 that “serious” and “leader” are closely related while “fun” is rather
distant from other adjectives). Thus the variable positions on the components are
consistent with PCA on the full set of observations, and we go ahead to interpret the
graphic.

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Brand positioning

PC1

P
C

2

a

b
c

d
e

f

g

h i

j

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

perform

leader

latest

fun

serious

bargain
value

trendy

rebuy

Fig. 8.7. A perceptual map of con-
sumer brands with biplot() for
aggregate mean rating by brand. This
shows components almost identical
to those in Fig. 8.6 (although spa-
tially rotated) but the mean brand po-
sitions are clear.

8.2 Principal Component Analysis and Perceptual Maps 207

What does the map tell us? First we interpret the adjective clusters and relationships
and see four areas with well differentiated sets of adjectives and brands that are
positioned in proximity. Brands f and g are high on “value,” for instance, while a
and j are relatively high on “fun,” which is opposite in direction from leadership
adjectives (“leader” and “serious”).

With such a map, one might form questions and then refer to the underlying data
to answer them. For instance, suppose that you are the brand manager for brand e.
What does the map tell you? For one thing, your brand is in the center and thus
appears not to be well-differentiated on any of the dimensions. That could be good
or bad, depending on your strategic goals. If your goal is to be a safe brand that ap-
peals to many consumers, then a relatively undifferentiated position like e could be
desirable. On the other hand, if you wish your brand to have a strong, differentiated
perception, this finding would be unwanted (but important to know).

What should you do about the position of your brand e? Again, it depends on the
strategic goals. If you wish to increase differentiation, one possibility would be to
take action to shift your brand in some direction on the map. Suppose you wanted
to move in the direction of brand c. You could look at the specific differences from
c in the data:
> brand.mean["c",] - brand.mean["e",]

perform leader latest fun serious bargain value ...
c 1.214314 0.9699315 -0.5587936 -1.140567 1.180621 -1.158594 -0.8588416 ...

This shows you that e is relatively stronger than c on “value” and “fun”, which
suggests dialing down messaging or other attributes that reinforce those (assuming,
of course, that you truly want to move in the direction of c). Similarly, c is stronger
on “perform” and “serious,” so those could be aspects of the product or message for
e to strengthen.

Another option would be not to follow another brand but to aim for differentiated
space where no brand is positioned. In Fig. 8.7, there is a large gap between the
group b and c on the bottom of the chart, versus f and g on the upper right. This area
might be described as the “value leader” area or similar.

How do we find out how to position there? Let’s assume that the gap reflects ap-
proximately the average of those four brands (see Sect. 8.2.5 for some of the risks
with this assumption). We can find that average using colMeans() on the brands’
rows, and then take the difference of e from that average:
> colMeans(brand.mean[c("b", "c", "f", "g"),]) - brand.mean["e",]

perform leader latest fun serious bargain value
e 1.174513 0.3910396 -0.9372789 -0.9337707 0.5732131 -0.2502787 0.07921355
...

This suggests that brand e could target the gap by increasing its emphasis on perfor-
mance while reducing emphasis on “latest” and “fun.”

To summarize, when you wish to compare several brands across many dimensions,
it can be helpful to focus on just the first two or three principal components that
explain variation in the data. You can select how many components to focus on

208 8 Reducing Data Complexity

using a scree plot, which shows how much variation in the data is explained by each
principal component. A perceptual map plots the brands on the first two principal
components, revealing how the observations relate to the underlying dimensions
(the components).

PCA may be performed using survey ratings of the brands (as we have done here) or
with objective data such as price and physical measurements, or with a combination
of the two. In any case, when you are confronted with multidimensional data on
brands or products, PCA visualization is a useful tool for understanding differences
in the market.

8.2.5 Cautions with Perceptual Maps

There are three important caveats in interpreting perceptual maps. First, you must
choose the level and type of aggregation carefully. We demonstrated the maps using
mean rating by brand, but depending on the data and question at hand, it might be
more suitable to use median (for ordinal data) or even modal response (for categor-
ical data). You should check that the dimensions are similar for the full data and
aggregated data before interpreting aggregate maps. You can do this by examining
the variable positions and relationships in biplots of both aggregated data (such as
means) and raw data (or a random subset of it), as we did above.

Second, the relationships are strictly relative to the product category and the brands
and adjectives that are tested. In a different product category, or with different
brands, adjectives such as “fun” and “leader” could have a very different relation-
ship. Sometimes simply adding or dropping a brand can change the resulting map
significantly because the positions are relative. In other words, if a new brand enters
the market (or one’s analysis), the other positions may change substantially. One
must also be confident that all of the key perceptions (adjectives, in this example)
have been assessed. One way to assess sensitivity here is to run PCA and biplot on
a few different samples from your data, such as 80 % of your observations, and per-
haps dropping an adjective each time. If the maps are similar across those samples,
you may feel more confident in their stability.

Third, it is frequently misunderstood that the positions of brands in such a map
depend on their relative positioning in terms of the principal components, which are
constructed composites of all dimensions. This means that the strength of a brand
on a single adjective cannot be read directly from the chart. For instance, in Fig. 8.7,
it might appear that brands b and c are weaker than d, h, and i on “latest” but are
similar to one another. In fact, b is the single strongest brand on “latest” while c is
weak on that adjective. Overall, b and c are quite similar to one another in terms of
their scores on the two components that aggregate all of the variables (adjectives),
but they are not necessarily similar on any single variable. Another way to look at
this is that when we use PCA to focus on the first one or two dimensions in the data,
we are looking at the largest-magnitude similarities, which may obscure smaller
differences that do not show up strongly in the first one or two dimensions.

8.3 Exploratory Factor Analysis 209

This last point is a common area of confusion with analysts and stakeholders who
want to read adjective positions directly from a biplot. We recommend to explain
that positions are not absolute but are relative. We often explain positions with
language such as, “compared to its position on other attributes, brand X is rela-
tively differentiated by perceptions of strength (or weakness) on such-and-such at-
tribute.”

Despite these caveats, perceptual maps can be a valuable tool. We use them primar-
ily to form hypotheses and to provide material to inform strategic analyses of brand
and product positioning. If they are used in that way—rather than as absolute as-
sessments of position—they can contribute to engaging discussions about position
and potential strategy.

Although we illustrated PCA with brand position, the same kind of analysis could
be performed for product ratings, position of consumer segments, ratings of political
candidates, evaluations of advertisements, or any other area where you have metric
data on multiple dimensions that is aggregated for a modest number of discrete
entities of interest.

In Chap. 9 we will see the usefulness of PCA for highly correlated data. By extract-
ing components, one can derive a reduced set of variables that captures as much
of the variance as desired, yet where each of the measures is independent of the
others.

8.3 Exploratory Factor Analysis

EFA is a family of techniques to assess the relationship of constructs (concepts) in
surveys and psychological assessments. Factors are regarded as latent variables that
cannot be observed directly, but are imperfectly assessed through their relationship
to other variables.

In psychometrics, canonical examples of factors occur in psychological and educa-
tional testing. For example, “intelligence,” “knowledge of mathematics,” and “anx-
iety” are all abstract concepts (constructs) that are not directly observable in them-
selves. Instead, they are observed empirically through multiple behaviors, each one
of which is an imperfect indicator of the underlying latent variable. These observed
values are known as manifest variables and include indicators such as test scores,
survey responses, and other empirical behaviors. EFA attempts to find the degree to
which latent, composite factors account for the observed variance of those manifest
variables.

In marketing, we often observe a large number of variables that we believe should
be related to a smaller set of underlying constructs. For example, we cannot directly
observe customer satisfaction but we might observe responses on a survey that asks
about different aspects of a customer’s experience, jointly representing different

210 8 Reducing Data Complexity

facets of the underlying construct satisfaction. Similarly, we cannot directly ob-
serve purchase intent, price sensitivity, or category involvement but we can observe
multiple behaviors that are related to them.

In this section, we use EFA to examine respondents’ attitudes about brands, using
the brand rating data from above (Sect. 8.1) to uncover the latent dimensions in the
data. Then we assess the brands in terms of those estimated latent factors.

8.3.1 Basic EFA Concepts

The result of EFA is similar to PCA: a matrix of factors (similar to PCA compo-
nents) and their relationship to the original variables (loadings of the factors on the
variables). Unlike PCA, EFA attempts to find solutions that are maximally inter-
pretable in terms of the manifest variables. In general, it attempts to find solutions
in which a small number of loadings for each factor are very high, while other load-
ings for that factor are low. When this is possible, that factor can be interpreted in
terms of that small set of variables.

To accomplish this, EFA uses rotations that start with an uncorrelated (orthogonal)
mathematical solution and then mathematically alter the solution to explain identical
variance but with different loadings on the original variables. There are many such
rotations available, and they typically share the goals of maximizing the loadings on
a few variables while making factors as distinct as possible from one another.

Instead of reviewing that mathematically (see [119]), let’s consider a loose analogy.
One might think about EFA in terms of a pizza topped with large items such as
tomato slices and mushrooms that will be cut into a certain number of slices. The
pizza could be rotated and cut in an infinite number of ways that are all mathemati-
cally equivalent insofar as they divide up the same underlying structure.

However, some rotations are more useful than others because they fall in-between
the large items rather than dividing them. When this occurs, one might have a
“tomato slice,” a “mushroom slice,” a “half-and-half tomato and mushroom slice,”
and so forth. By rotating and cutting differently, one makes the underlying sub-
stance more interpretable relative to one’s goals (such as having differentiated pizza
slices). No rotation is inherently better or worse, but some are more useful than
others. Similarly, the manifest variables in EFA can be sliced in many ways accord-
ing to one’s goals for interpreting the latent factors. We will see how this works in
Sect. 8.3.3.

Because EFA produces results that are interpretable in terms of the original vari-
ables, an analyst may be able to interpret and act on the results in ways that would
be difficult with PCA. For instance, EFA can be used to refine a survey by keep-
ing items with high loading on factors of interest while cutting items that do not
load highly. EFA is also useful to investigate whether a survey’s items actually go
together in a way that is consistent with expectations.

8.3 Exploratory Factor Analysis 211

For example, if we have a 10-item survey that is supposed to assess the single con-
struct customer satisfaction, it is important to know whether those items in fact go
together in a way that can be interpreted as a single factor, or whether they instead
reflect multiple dimensions that we might not have considered. Before interpret-
ing multiple items as assessing a single concept, one might wish to test that it is
appropriate to do so. In this chapter, we use EFA to investigate such structure. In
Chap. 10, we will see how to test whether one’s data are in fact consistent with an
asserted structure.

EFA serves as a data reduction technique in three broad senses:

1. In the technical sense of dimensional reduction, we can use factor scores instead
of a larger set of items. For instance, if we are assessing satisfaction, we could
use a single satisfaction score instead of several separate items. (In Sect. 9.1.2
we review how this is also useful when observations are correlated.)

2. We can reduce uncertainty. If we believe satisfaction is imperfectly manifest in
several measures, the combination of those will have less noise than the set of
individual items.

3. We might also reduce data collection by focusing on items that are known to
have high contribution to factors of interest. If we discover that some items are
not important for a factor of interest, we can discard them from data collection
efforts.

In this chapter we use the brand rating data to ask the following questions: How
many latent factors are there? How do the survey items map to the factors?
How are the brands positioned on the factors? What are the respondents’ factor
scores?

8.3.2 Finding an EFA Solution

The first step in EFA is to determine the number of factors to estimate. There are var-
ious ways to do this, and two traditional methods are to use a scree plot (Sect. 8.2.3),
and to retain factors where the eigenvalue (a metric for proportion of variance ex-
plained) is greater than 1.0. An eigenvalue of 1.0 corresponds to the amount of vari-
ance that might be attributed to a single independent variable; a factor that captures
less variance than such an item may be considered relatively uninteresting.

As we saw in Sect. 8.2.3, a scree plot of the brand rating data suggests two or three
components. The nFactors package [130] (install if necessary) formalizes this
analysis with nScree():

212 8 Reducing Data Complexity

> library(nFactors)
> nScree(brand.sc[, 1:9])
noc naf nparallel nkaiser

1 3 2 3 3

nScree() applies several methods to estimate the number of factors from scree
tests, and in the present case three of the four methods suggest that the data set
has 3 factors. We can examine the eigenvalues using eigen() on a correlation
matrix:

> eigen(cor(brand.sc[, 1:9]))
$values
[1] 2.9792956 2.0965517 1.0792549 0.7272110 0.6375459 0.5348432 0.3901044
...

The first three eigenvalues are greater than 1.0, although barely so for the third value.
This again suggests 3—or possibly 2—factors.

The final choice of a model depends on whether it is useful. For EFA, a best practice
is to check a few factor solutions, including the ones suggested by the scree and
eigenvalue results. Thus, we test a 3-factor solution and a 2-factor solution to see
which one is more useful.

An EFA model is estimated with factanal(x, factors=K), where K is the
number of factors to fit. For a 2-factor solution, we write:

> factanal(brand.sc[, 1:9], factors=2)
...
Loadings:

Factor1 Factor2
perform 0.600
leader 0.818
latest -0.451
fun -0.137 -0.382
serious 0.686
bargain 0.803
value 0.873 0.117
trendy -0.534
rebuy 0.569 0.303
...

We have removed all of the information except for the loadings because those are
the most important to interpret (see “Learning More” in this chapter for material
that explains much more about EFA and the output of such procedures). Some of
the factor loadings are near zero, and are not shown; this makes EFA potentially
easier to interpret than PCA.

In the 2-factor solution, factor 1 loads strongly on “bargain” and “value,” and there-
fore might be interpreted as a “value” factor while factor 2 loads on “leader” and
“serious” and thus might be regarded as a “category leader” factor.

8.3 Exploratory Factor Analysis 213

This is not a bad interpretation, but let’s compare it to a 3-factor solution:

> factanal(brand.sc[, 1:9], factors=3)
...
Loadings:

Factor1 Factor2 Factor3
perform 0.607
leader 0.810 0.106
latest -0.163 0.981
fun -0.398 0.205
serious 0.682
bargain 0.826 -0.122
value 0.867 -0.198
trendy -0.356 0.586
rebuy 0.499 0.296 -0.298

The 3-factor solution retains the “value” and “leader” factors and adds a clear “lat-
est” factor that loads strongly on “latest” and “trendy.” This adds a clearly inter-
pretable concept to our understanding of the data. It also aligns with the bulk of
suggestions from the scree and eigen tests, and fits well with the perceptual maps
we saw in Sect. 8.2.4, where those adjectives were in a differentiated space. So we
regard the 3-factor model as superior to the 2-factor model because the factors are
more interpretable.

8.3.3 EFA Rotations

As we described earlier, a factor analysis solution can be rotated to have new load-
ings that account for the same proportion of variance. Although a full consideration
of rotations is out of scope for this book, there is one issue worth considering in
any EFA: do you wish to allow the factors to be correlated with one another or
not?

You might think that one should let the data decide. However, the question of
whether to allow correlated factors is less a question about the data than it is about
your concept of the underlying latent factors. Do you think the factors should be
conceptually independent, or does it make more sense to consider them to be re-
lated? An EFA rotation can be obtained under either assumption.

The default in factanal() is to find factors that have zero correlation (using a
varimax rotation). In case you’re wondering how this differs from PCA, it differs
mathematically because EFA finds latent variables that may be observed with error
(see [119]) whereas PCA simply recomputes transformations of the observed data.
In other words, EFA focuses on the underlying latent dimensions, whereas PCA
focuses on transforming the dimensionality of the data.

Returning to our present data, we might judge that value and leader are reason-
ably expected to be related; in many categories, the leader can command a price

214 8 Reducing Data Complexity

premium, and thus we might expect those two latent constructs to be negatively cor-
related rather than independent of one another. This suggests that we could allow
correlated factors in our solution. This is known as an oblique rotation (“oblique”
because the dimensional axes are not perpendicular but are skewed by the correla-
tion between factors).

A common oblique rotation is the “oblimin” rotation from the GPArotation
package [11] (install if necessary). We add that to our 3-factor model with
rotation="oblimin":

> library(GPArotation)
> (brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin"))
...
Loadings:

Factor1 Factor2 Factor3
perform 0.601
leader 0.816
latest 1.009
fun -0.381 0.229
serious 0.689
bargain 0.859
value 0.880
trendy -0.267 0.128 0.538
rebuy 0.448 0.255 -0.226
...
Factor Correlations:

Factor1 Factor2 Factor3
Factor1 1.0000 -0.388 0.0368
Factor2 -0.3884 1.000 -0.1091
Factor3 0.0368 -0.109 1.0000
...

When we compare this oblimin result to the default varimax rotation above, there are
two main differences. First, the loadings are slightly different for the relationships
of the factors to the adjectives. However, the loadings are similar enough in this case
that there is no substantial change in how we would interpret the factors. There are
still factors for “value,” “leader,” and “latest.”

Second, the result includes a factor correlation matrix showing the relationships
between the estimated latent factors. Factor 1 (value) is negatively correlated with
Factor 2 (leader), r = −0.39, and is essentially uncorrelated with Factor 3 (latest),
r = 0.037.

The negative correlation between factors 1 and 2 is consistent with our theory that
brands that are leaders are less likely to be value brands, and thus we think this
is a more interpretable result. However, in other cases a correlated rotation may
or may not be a better solution than an orthogonal one; that is largely an issue to
be decided on the basis of domain knowledge and interpretive utility rather than
statistics.

In the output above, the item-to-factor loadings are displayed. In the returned model
object, those are present as the $loadings element. We can the visualize item-
factor relationships with a heatmap of $loadings:

8.3 Exploratory Factor Analysis 215

> library(gplots)
> library(RColorBrewer)
> heatmap.2(brand.fa.ob$loadings,
+ col=brewer.pal(9, "Greens"), trace="none", key=FALSE, dend="none",
+ Colv=FALSE, cexCol = 1.2,
+ main="\n\n\n\n\nFactor loadings for brand adjectives")

The result is Fig. 8.8, which shows a distinct separation of items into 3 factors,
which are roughly interpretable as value, leader, and latest. Note that the item
rebuy, which reflects stated intention to repurchase, loads on both Factor1 (value)
and Factor2 (leader). This suggests that in our simulated data, consumers say they
would rebuy a brand for either reason, because it is a good value or because it is a
leader.

F
ac

to
r1

F
ac

to
r2

F
ac

to
r3

fun

trendy

latest

leader

perform

serious

rebuy

bargain

value

Factor loadings for brand adjectives

Fig. 8.8. A heatmap of item-factor loadings.

Another useful graphic for factor analysis models is a path diagram, which shows
latent variables and the individual items that load on them.

The semPlot package (install if needed) will draw a visual representation of a
factor analysis model. We use the procedure semPaths() to draw the paths. It is
a complex command and we add several arguments as explained below:

> library(semPlot)
> semPaths(brand.fa.ob, what="est", residuals=FALSE,
+ cut=0.3, posCol=c("white", "darkgreen"), negCol=c("white", "red"),
+ edge.label.cex=0.75, nCharNodes=7)

First we will explain the semPaths() call. We plotted the brand.fa.ob model
as fit above. To draw the loading estimates, we requested what="est". We omit
the residual estimates for manifest variables (an advanced topic we don’t cover
in this book) using residuals=FALSE. Then we cut loadings with absolute
magnitude < 0.3 by adding cut=0.3 and the options posCol=c("white",
"darkgreen") and negCol=c("white", "red"). The posCol argument

216 8 Reducing Data Complexity

says that positive loadings < 0.3 should be colored white (and thus not appear in
the output), while loadings > 0.3 should be darkgreen. The negCol argument
similarly excludes or colors red the loadings < 0. We adjust the loadings’ text size
with edge.label.cex, and create room to spell out full variable names with
nCharNodes.

bargain value rebuy perform leader fun serious latest trendy

Factor1 Factor2 Factor3

0.450.86 0.88 −0.380.60 0.690.82 0.541.01 Fig. 8.9. A path diagram for the factor
analysis solution, which clearly displays
the three factors and their item loadings
(|loadings| < 0.3 are excluded). The
graphic is generated with semPaths()
from the semPlot package.

The result is shown in Fig. 8.9. Luckily, interpreting the path diagram is easier than
the code to create it! Latent variables are shown at the top and are traditionally
drawn with circles; these correspond to the three factors. Manifest variables appear
in squares at the bottom; these are the observed variables that load on the factors.
The strength of loading is shown on the path from each factor to its manifest vari-
ables, with positive loading in green and negative loading in red (and with a negative
sign).

We will see many more examples of path diagrams when we explore confirmatory
factor analysis (CFA) and structural equation models in Chap. 10.

Overall, the result of the EFA for this data set is that instead of using 9 distinct
variables, we might instead represent the data with 3 underlying latent factors. We
have seen that each factor maps to 2–4 of the manifest variables. However, this
only tells us about the relationships of the rating variables among themselves in
our data; in the next section, we use the estimated factor scores to learn about the
brands.

8.3.4 Using Factor Scores for Brands

In addition to estimating the factor structure, EFA will also estimate latent factor
scores for each observation. In the present case, this gives us the best estimates of
each respondent’s latent ratings for the “value,” “leader,” and “latest” factors. We can
then use the factor scores to determine brands’ positions on the factors. Interpreting
factors eliminates the separate dimensions associated with the manifest variables,
allowing us to concentrate on a smaller, more reliable set of dimensions that map to
theoretical constructs instead of individual items.

8.3 Exploratory Factor Analysis 217

Factor scores are requested from factanal() by adding the scores=... ar-
gument. We request Bartlett scores (see ?factanal), and extract them from
the factanal() object using $scores, storing them as a separate data
frame:
> brand.fa.ob <- factanal(brand.sc[, 1:9], factors=3, rotation="oblimin",
+ scores="Bartlett")
> brand.scores <- data.frame(brand.fa.ob$scores) # get the factor scores
> brand.scores$brand <- brand.sc$brand # get the matching brands
> head(brand.scores)

Factor1 Factor2 Factor3 brand
1 1.6521364 -0.6886749 0.5256104 a
2 -1.4005333 -1.6681901 -0.6764121 a
...

The result is an estimated score for each respondent on each factor and brand. If we
wish to investigate individual-level correlates of the factors, such as their relation-
ship to demographics or purchase behavior, we could use these estimates of factor
scores. This can be very helpful in analyses such as regression and segmentation
because it reduces the model complexity (number of dimensions) and uses more
reliable estimates (factor scores that reflect several manifest variables). Instead of
nine items, we have three factors.

To find the overall position for a brand, we aggregate() the individual scores
by brand as usual:
> brand.fa.mean <- aggregate(. ∼ brand, data=brand.scores, mean)

We clean this up by assigning names for the rows (brands) and columns
(factors):
> rownames(brand.fa.mean) <- brand.fa.mean[, 1] # brand names
> brand.fa.mean <- brand.fa.mean[, -1]
> names(brand.fa.mean) <- c("Leader", "Value", "Latest") # factor names
> brand.fa.mean

Leader Value Latest
a 0.23158792 -1.06993703 0.39326652
b 0.09686823 1.51913070 0.72391174
...

Finally, a heatmap graphs the scores by brand:
> heatmap.2(as.matrix(brand.fa.mean),
+ col=brewer.pal(9, "GnBu"), trace="none", key=FALSE, dend="none",
+ cexCol=1.2, main="\n\n\n\n\n\nMean factor score by brand")

The result is Fig. 8.10. When we compare this to the chart of brand by adjective in
Fig. 8.2, we see that the chart of factor scores is significantly simpler than the full
adjective matrix. The brand similarities are evident again in the factor scores, for
instance that f and g are similar, as are b and c, and so forth.

We conclude that EFA is a valuable way to examine the underlying structure and
relationship of variables. When items are related to underlying constructs, EFA re-
duces data complexity by aggregating variables to create simpler, more interpretable
latent variables.

218 8 Reducing Data Complexity

La
te

st

Le
ad

er

V
al

ue

d

h

i

j

a

e

c

b

g

f

Mean factor score by brand

Fig. 8.10. A heatmap of the latent factor scores for
consumer brand ratings, by brand.

In this exposition, we have only explored a small number of the possibilities for
factor analysis; to learn more, see Sect. 8.5. You will also want to review Chap. 10,
which considers the closely related topic of CFA. CFA does not attempt to find a
factor structure as EFA does, but rather assesses how well a proposed structure fits
one’s data.

8.4 Multidimensional Scaling

MDS is a family of procedures that can also be used to find lower-dimensional rep-
resentations of data. Instead of extracting underlying components or latent factors,
MDS works instead with distances (also known as similarities). MDS attempts to
find a lower-dimensional map that best preserves all the observed similarities be-
tween items.

If you have similarity data already, such as ratings of whether one product is like an-
other, you can apply MDS directly to the data. If you have other kinds of data, such
as the brand rating data we’ve considered in this chapter, then you must compute
the distances between points before applying MDS. If you have metric data—where
you consider the units of measurement to have interval or ratio properties—then you
might simply calculate euclidian distances with the default dist() command, as
we do for the mean ratings computed above:

> brand.dist <- dist(brand.mean)

A procedure to find an MDS solution for a distance matrix from metric data is
cmdscale():

> (brand.mds <- cmdscale(brand.dist))
[,1] [,2]

8.4 Multidimensional Scaling 219

a -7.570113e-01 1.4619032
b 5.586301e-01 -2.1698618
...

The result of cmdscale() is a list of X and Y dimensions indicating two-
dimensional estimated plot coordinates for entities (in this case, brands). We see
the plot locations for brands a and b in the output above. Given those coordinates,
we can simply plot() the values and label them:

> plot(brand.mds, type="n")
> text(brand.mds, rownames(brand.mds), cex=2)

In this code, plot(..., type="n") tells R not to plot symbols. Instead, we
add the brand labels to the plot with text(x, labels). The result is Fig. 8.11.
The brand positions are grouped nearly identically to what we saw in the perceptual
map in Fig. 8.7.

−1 0 1 2

−
2

−
1

0
1

brand.mds[,1]

br
an

d.
m

ds
[,2

]

a

b
c

d e
f

g

h i

j

Fig. 8.11. A metric MDS chart
for mean brand rating, using
cmdscale(). The brand posi-
tions are quite similar to those seen
in the biplot() in Fig. 8.7.

8.4.1 Non-metric MDS

For non-metric data such as rankings or categorical variables, you would use a dif-
ferent method to compute distance and an MDS algorithm that does not assume
metric distances.

For purposes of illustration, let’s convert the mean ratings to rankings instead of
raw values; this will be non-metric, ordinal data. We apply rank() to the columns
using lapply() and code each resulting column as an ordinal factor variable using
ordered():
> brand.rank <- data.frame(lapply(brand.mean, function(x) ordered(rank(x))))
> str(brand.rank)
’data.frame’: 10 obs. of 9 variables:

220 8 Reducing Data Complexity

$ perform: Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 10 8 2 4 5 9 6 7 3
$ leader : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 3 9 10 2 7 8 6 5 4 1
...

To find distances between the ranks, we use an alternative to dist(), daisy()
from the cluster package (see Sect. 11.3.2), which can handle non-metric data
such as rank ordering. In daisy(), we compute distance with the gower metric,
which handles mixed numeric, ordinal, and nominal data:

> library(cluster)
> brand.dist.r <- daisy(brand.rank, metric="gower")

Now that we have a distance matrix we apply the non-metric MDS function
isoMDS() to scale the data. Then we plot the result:

> brand.mds.r <- isoMDS(brand.dist.r)
initial value 9.063777
...
converged
> plot(brand.mds.r$points, type="n")
> text(brand.mds.r$points, levels(brand.sc$brand), cex=2)

The plot() and text() commands are slightly different than those we saw
above for cmdscale(), because isoMDS() returns coordinates in the $points
matrix within its object.

The resulting chart is shown in Fig. 8.12. Compared to Fig. 8.11, we see that brand
positions in the non-metric solution are more diffuse. The X axis is arbitrarily re-
versed, which is not important. Still, the nearest neighbors of brands are largely
consistent with the exception of brands h and i, which are separated quite a bit more
than in the metric solution. (This occurs because the rank-order procedure loses
some of the information that is present in the original metric data solution, resulting
in a slightly different map.)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

brand.mds.r$points[,1]

br
an

d.
m

ds
.r

$p
oi

nt
s[

,2
]

a

b c

d
e

f

g

h

i

j

Fig. 8.12. A non-metric MDS chart
for mean brand ratings expressed
as ordinal ranks, obtained using
daisy() to find distances and
isoMDS() for non-metric scaling.
The brand groupings are similar
to but more diffuse than those in
Fig. 8.11.

8.5 Learning More* 221

We generally recommend PCA as a more informative procedure than MDS for typ-
ical metric or near-metric (e.g., survey Likert scale) data. However, PCA will not
work with non-metric data. In those cases, MDS is a valuable alternative.

MDS may be of particular interest when handling text data such as consumers’ feed-
back, comments, and online product reviews, where text frequencies can be con-
verted to distance scores. For example, if you are interested in similarities between
brands in online reviews, you could count how many times various pairs of brands
occur together in consumers’ postings. The co-occurrence matrix of counts—brand
A mentioned with brand B, with brand C, and so forth—could be used as a mea-
sure of similarity between the two brands and serve as the distance metric in MDS
(see [120]).

8.5 Learning More*

8.5.1 Principal Component Analysis

There is a large literature describing many procedures, options, and applications for
each of the analyses in this chapter. With perceptual mapping, a valuable resource
is Gower et al. [64] which describes common problems and best practices for per-
ceptual maps. Jolliffe [87] provides a comprehensive text on the mathematics and
applications of PCA.

8.5.2 Factor Analysis

The literature on factor analysis is particularly voluminous although it often refer-
ences statistics packages other than R. A good conceptual overview of EFA with
procedural notes (but not R specific) is Fabrigar and Wegener [45], Exploratory
Factor Analysis. A modestly more technical volume that covers exploratory and
confirmatory models together, with a social science (psychology) point of view, is
Thompson [151], Exploratory and Confirmatory Factor Analysis. For examination
of the mathematical bases and procedures of factor analysis, a standard text is Mu-
laik [119], Foundations of Factor Analysis.

The psych package [132] presents many additional tools and methods for factor
analysis, especially in the context of traditional psychometric instruments such as
surveys in general and tests of aptitude or personality. The fa() function in psych
offers an alternative to the standard factanal() procedure with more options and
more complete assessment of EFA models.

A companion to exploratory factor analysis is confirmatory factor analysis, which
we discuss in Chap. 10. Whereas EFA infers factor structure from a data set, CFA

222 8 Reducing Data Complexity

tests a proposed model to see whether it corresponds well to observed data. A com-
mon use of EFA is to select items that load highly on underlying dimensions of
interest. CFA allows you to confirm that the relationships between items and factors
are maintained in new data sets.

8.5.3 Multidimensional Scaling

There are many uses and options for MDS beyond those considered in this chapter.
A readable introduction to the methods and applications is Borg et al. [15], Applied
Multidimensional Scaling. The statistical foundations and methods are detailed in
Borg and Groenen [14], Modern Multidimensional Scaling.

8.6 Key Points

Investigation of data complexity has several benefits. It allows inspection of the
underlying dimensional relationships among variables, investigation of how obser-
vations such as brands or people vary on those dimensions, and estimation of a
smaller number of more reliable dimensional scores. The following key points will
assist you to investigate the underlying dimensions of your data.

8.6.1 Principal Component Analysis

• PCA finds linear functions that explain maximal variance in observed data. A
key concept is that such components are orthogonal (uncorrelated). The basic
R command is prcomp() (Sect. 8.2.1).

• A common use for PCA is a biplot of aggregate scores for brands or people
to visualize relationships. When this is done for attitudinal data such as brand
ratings it is called a perceptual map. This is created by aggregating the statistic
of interest by entity and charting with biplot() (Sect. 8.2.2).

• Because PCA components often load on many variables, the results must be
inspected cautiously and in terms of relative position. It is particularly difficult
to read the status of individual items from a PCA biplot (Sect. 8.2.5).

8.6.2 Exploratory Factor Analysis

• EFA models latent variables (factors) that are not observed directly but appear
indirectly as observed manifest variables. A key procedure is factanal()
(Sect. 8.3.1).

8.6 Key Points 223

• A fundamental decision in EFA is the number of factors to extract. Common
criteria involve inspection of a scree plot and extraction of factors such that all
eigenvalues are greater than 1.0. There are useful tools to determine the number
of factors in nFactors, but the final determination depends on one’s theory
and the utility of results (Sect. 8.3.2).

• EFA uses rotation to adjust an initial solution to one that is mathematically
equivalent but more interpretable according to one’s aims. Another key deci-
sion in EFA is whether one believes the underlying latent variables should be
uncorrelated (calling for an orthogonal rotation such as varimax) or corre-
lated (calling for an oblique rotation such as oblimin) (Sect. 8.3.3).

• After performing EFA, you can extract factor scores that are the best esti-
mates for each observation (respondent) on each factor. These are present as
$scores in factanal() objects if you request them with the scores ar-
gument (Sect. 8.3.4).

8.6.3 Multidimensional Scaling

• MDS is similar to PCA but is able to work with both metric and non-metric
data. MDS requires a distance score obtained from dist() for metric data
or a procedure such as daisy() for non-metric data. MDS scaling is then
performed by cmdscale() for metric data or isoMDS() (or other options)
for non-metric data (Sect. 8.4).

9

Additional Linear Modeling Topics

As we noted in Chap. 7, the range of applications and methods in linear modeling
and regression is vast. In this chapter, we discuss four additional topics in linear
modeling that often arise in marketing:

• Handling highly correlated observations, which pose a problem known as
collinearity, as mentioned in Sect. 7.2.1. In Sect. 9.1 we examine the problem
in detail, along with ways to detect and remediate collinearity in a data set.

• Fitting models for yes/no, or binary outcomes, such as purchasing a product. In
Sect. 9.2 we introduce logistic regression models to model binary outcomes and
their correlates.

• Finding a model for the preferences and responses of individuals, not only for
the sample as a whole. In marketing, we often wish to understand individual
consumers and the diversity of behavior and product interest among people. In
Sect. 9.3 we consider hierarchical linear models (HLM) for consumer prefer-
ence in ratings-based conjoint analysis data.

• In marketing, hierarchical models of individual preference are most often es-
timated using Bayesian methods. In Sect. 9.4 we continue the discussion of
HLM by introducing hierarchical Bayesian (HB) methods, and we apply HB
for ratings-based conjoint analysis.

Except for the two HLM sections, these topics are not especially closely related to
one another; unlike other chapters in this book, they may be read independently
within this chapter. Still, each section builds on models presented earlier in the
book and will extend your knowledge of issues and applications for linear modeling.
More importantly, each is a foundational part of a compete toolbox for marketing
analysis.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 9

225

226 9 Additional Linear Modeling Topics

9.1 Handling Highly Correlated Variables

We have mentioned several times (as in Sect. 7.2.1) that highly correlated explana-
tory variables cause problems with linear models. In this section, we examine why
that is the case and present strategies to address the problem.

We consider a question that might arise with the retail sales data in Chap. 4, which
simulated 12-month online and in-store transactions by customer (see Sect. 4.1).
The question is this: which variables are most predictive of online spending? If
we wished to increase online spending by customers, which factors might we con-
sider?

9.1.1 An Initial Linear Model of Online Spend

Either create the simulated retail sales data (Sect. 4.1) or load it from the book’s
website:

> cust.df <- read.csv("http://goo.gl/PmPkaG")
> summary(cust.df)

cust.id age credit.score email distance.to.store
Min. : 1.0 Min. :19.34 Min. :543.0 no :186 Min. : 0.2136
1st Qu.: 250.8 1st Qu.:31.43 1st Qu.:691.7 yes:814 1st Qu.: 3.3383

...

Now we use lm() to model spend as a function of all other variables (online.
spend ∼ .). We omit customers with zero online spend; having exactly zero
spend is probably related to different factors than positive spend, and we are in-
terested here in the associations for those who spend anything. We also index [,
-1] to omit the customer ID column:

> spend.m1 <- lm(online.spend ∼ .,
+ data=subset(cust.df[, -1], online.spend > 0))
> summary(spend.m1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.718948 33.537665 0.200 0.8413
...
online.visits -0.072269 0.204061 -0.354 0.7234
online.trans 20.610744 0.667450 30.880 <2e-16 ***
store.trans 0.135018 3.211943 0.042 0.9665
store.spend 0.001796 0.078732 0.023 0.9818
sat.service 5.638769 3.016181 1.870 0.0623 .
...
Multiple R-squared: 0.9831, Adjusted R-squared: 0.9827

We have omitted much of the summary to show a few key points. First, online spend
is closely related to the number of online transactions (coefficient = 20.6) but not
to the number of online visits. That is puzzling. Second, the model accounts for
almost all the available variance, R2 = 0.98. These results should cause concern.
Because online transactions are dependent on visits, shouldn’t those two variables
show a similar pattern? How could we be so lucky as to fit a model that nearly

9.1 Handling Highly Correlated Variables 227

perfectly predicts online spending (insofar as it is assessed by R2)? And notice that
the standard error on store.trans is quite large, showing that its estimate is very
uncertain.

If we turn to data visualization using gpairs() (Sect. 7.2.1), we see some prob-
lems:

> library(gpairs)
> gpairs(cust.df)

The result in Fig. 9.1 shows variables with extreme skew and pairs of variables that
are very highly correlated.

Fig. 9.1. Visualization of the customer data using gpairs(). Several variables have extreme
skew and other pairs are nearly perfectly correlated; both situations pose problems for linear

modeling.

Our first step to remediate the situation is to transform the data using a Box–Cox
transformation. Building on the transformation routines we saw in Sect. 4.5.5, we
write a short function that uses BoxCox.lambda() from the forecast pack-
age to select the transformation lambda automatically [82]. At the same time, we
standardize the data with scale() (Sect. 7.3.3):

> autoTransform <- function(x) {
+ library(forecast)
+ return(scale(BoxCox(x, BoxCox.lambda(x))))
+ }

228 9 Additional Linear Modeling Topics

We select the complete cases from our data frame, dropping the customer ID column
([, -1]) because it is not a predictor. Then we take only the rows with positive
online spend. We create a vector to index all the columns except email (which
is not numeric), and then lapply() the autoTransform() function to each
numeric column:

> cust.df.bc <- cust.df[complete.cases(cust.df), -1]
> cust.df.bc <- subset(cust.df.bc, online.spend > 0)
> numcols <- which(colnames(cust.df.bc) != "email")
> cust.df.bc[, numcols] <- lapply(cust.df.bc[, numcols], autoTransform)

The result is a data frame with standardized, more normally distributed values,
which we can check with summary() and gpairs():

> summary(cust.df.bc) # output not shown
> gpairs(cust.df.bc) # output not shown

We refit the model using the transformed data:

> spend.m2 <- lm(online.spend ∼ ., data=cust.df.bc)
> summary(spend.m2)
...
online.visits -0.0003913 0.0126165 -0.031 0.975
online.trans 0.9960378 0.0126687 78.622 <2e-16 ***
..
Multiple R-squared: 0.9925, Adjusted R-squared: 0.9923

The coefficients are smaller now because the data have been standardized. Trans-
forming and standardizing the data, although a good idea, have not changed the
unbelievable estimate that online spend is highly related to transactions yet unrelated
to visits. Indeed, the full model is no better than one that simply predicts spending
from the number of transactions alone (see Sect. 6.5.1 on using anova() to com-
pare models):

> spend.m3 <- lm(online.spend ∼ online.trans, data=cust.df.bc)
> anova(spend.m3, spend.m2)
...
Res.Df RSS Df Sum of Sq F Pr(>F)

1 416 3.1539
2 407 3.1139 9 0.040001 0.5809 0.8129

The small difference between the model fits is reflected in the high p-value (p =
0.8129), and thus the null hypothesis of no difference between the models cannot
be rejected.

The problem here is collinearity: because visits and transactions are so highly
related, and also because a linear model assumes that effects are additive, an effect
attributed to one variable (such as transactions) is not available in the model to be
attributed jointly to another that is highly correlated (visits). This will cause the stan-
dard errors of the predictors to increase, which means that the coefficient estimates

9.1 Handling Highly Correlated Variables 229

will be highly uncertain or unstable. As a practical consequence, this may cause
coefficient estimates to differ dramatically from sample to sample due to minor
variations in the data even when underlying relationships are the same.

9.1.2 Remediating Collinearity

The degree of collinearity in data can be assessed as the variance inflation factor
(VIF). This estimates how much the standard error (variance) of a coefficient in a
linear model is increased because of shared variance with other variables, compared
to the situation if the variables were uncorrelated or simple single predictor regres-
sion were performed.

We assess VIF in the spend.m2 model using vif() from the car pack-
age:

> library(car)
> vif(spend.m2)

age credit.score email distance.to.store
1.094949 1.112784 1.046874 1.297978

online.visits online.trans store.trans store.spend
8.675817 8.747756 125.931383 123.435407

...

A common rule of thumb is that V IF > 5.0 indicates the need to mitigate collinear-
ity. In spend.m2, the VIF suggests that collinearity should be addressed for the
online... and store... variables.

There are three general strategies for mitigating collinearity:

• Omit variables that are highly correlated.

• Eliminate correlation by extracting principal components or factors for sets of
highly correlated predictors (see Chap. 8).

• Use a method that is robust to collinearity, i.e., something other than traditional
linear modeling. There are too many options to consider this possibility exhaus-
tively, but one method to consider would be a random forest approach, which
only uses a subset of variables at a time (see Sect. 11.4.2).

Another option for the present data would be to construct a new measure of interest
that combines the collinear variables (such as spend per transaction). For purposes
here, we explore the first two options above and create models spend.m4 and
spend.m5.

We omit highly correlated variables for model spend.m4 by excluding
online.trans and store.trans, using - in the formula:

> spend.m4 <- lm(online.spend ∼ . -online.trans -store.trans,
+ data=cust.df.bc)
> vif(spend.m4)
...

230 9 Additional Linear Modeling Topics

online.visits store.spend sat.service sat.selection
1.026148 1.215208 1.507866 1.509001

> summary(spend.m4)
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0923395 0.0435047 -2.123 0.0344 *
age -0.0333779 0.0178813 -1.867 0.0627 .
credit.score -0.0084524 0.0180637 -0.468 0.6401
emailyes 0.1099655 0.0476011 2.310 0.0214 *
distance.to.store 0.0001702 0.0189271 0.009 0.9928
online.visits 0.9295374 0.0174184 53.365 <2e-16 ***
store.spend 0.0092463 0.0189552 0.488 0.6260
...
Multiple R-squared: 0.8791, Adjusted R-squared: 0.8767

The VIF is now acceptable and we see that online visits are now the best predictor
of online spend, although email status and age are also slightly related.

Another approach is to use the principal components of the correlated data. As you
will recall from Chap. 8, principal components are uncorrelated (orthogonal). Thus,
PCA provides a way to extract composite variables that are guaranteed to be free of
collinearity with other variables that are included in the same PCA.

We use PCA to extract the first component for the online variables, and then do
this again for the store variables, and add those two initial components to the data
frame:

> pc.online <- prcomp(cust.df.bc[, c("online.visits", "online.trans")])
> cust.df.bc$online <- pc.online$x[, 1]
> pc.store <- prcomp(cust.df.bc[, c("store.trans", "store.spend")])
> cust.df.bc$store <- pc.store$x[, 1]

Then we fit a new model:

> spend.m5 <- lm(online.spend ∼ email + age + credit.score +
+ distance.to.store + sat.service +
+ sat.selection + online + store,
+ data=cust.df.bc)
> summary(spend.m5)
...

Estimate Std. Error t value Pr(>|t|)
...
(Intercept) -3.928e-02 2.410e-02 -1.630 0.1039
emailyes 4.678e-02 2.638e-02 1.773 0.0769 .
age -1.695e-02 9.882e-03 -1.715 0.0871 .
...
online -7.019e-01 6.933e-03 -101.247 <2e-16 ***
...
Multiple R-squared: 0.9631, Adjusted R-squared: 0.9623

> vif(spend.m5)
email age credit.score distance.to.store

1.039458 1.081430 1.103206 1.224019
sat.service sat.selection online store

1.508487 1.509001 1.032362 1.228073

9.2 Linear Models for Binary Outcomes: Logistic Regression 231

VIF poses no problem in this model, and we see that online spend is still associ-
ated primarily with online activity (as captured in the first component of the PCA
model, online) and perhaps slightly with email status and age. One caution when
interpreting results that use principal components as explanatory variables is that the
components have arbitrary numerical direction; the negative coefficient for online
here does not imply that online activity results in lower sales.

Although this result—that online sales relate primarily to online activity—may at
first appear to be uninteresting, it is better to have an obvious result than an incorrect
result. This result might prompt us to collect other data, such as attitudes about
our website or online shopping, to build a more complete understanding of factors
associated with online spending.

9.2 Linear Models for Binary Outcomes: Logistic Regression

Marketers often observe yes/no outcomes: did a customer purchase a product? Did
she take a test drive? Did she sign up for a credit card, or renew her subscription,
or respond to a promotion? All of these kinds of outcomes are binary because they
have only two possible observed states: yes or no.

At first it is tempting to fit such a model with a typical linear regression model as
we saw in Chap. 7, predicting the outcome (1= yes, 0= no) as a linear combination
of the features. That is not incorrect to do, but a more flexible and useful way to fit
such outcomes is with a logistic model (also called a logit model for reasons we’ll
discuss below).

9.2.1 Basics of the Logistic Regression Model

The core feature of a logistic model is this: it relates the probability of an outcome
to an exponential function of a predictor variable. We’ll illustrate that and show
the formula in a moment, but before examining that, let’s consider why those are
desirable properties and are improvements on a basic linear model.

By modeling the probability of an outcome, a logistic model accomplishes two
things. First, it more directly models what we’re interested in, which is a probability
or proportion, such as the likelihood of a given customer to purchase a product, or
the expected proportion of a segment who will respond to a promotion. Second, it
limits the model to the appropriate range for a proportion, which is [0,1]. A basic
linear model as generated with lm() does not have such a limit and could estimate
a nonsensical probability such as 1.05 or −0.04.

232 9 Additional Linear Modeling Topics

We ask indulgence to consider the formula here because it is instrumental in under-
standing how the model works. The equation for the logistic function is:

logistic : p(y) =
evx

evx +1
(9.1)

In this equation, the outcome of interest is y, and we compute its likelihood p(y)
as a function of vx. We typically estimate vx as a function of the features (x) of
a product, such as price. vx can take any real value, so we are able to treat it as a
continuous function in a linear model. In that case, vx is composed from one or more
coefficients of the model and indicates the importance of the corresponding features
of the product.

This formula gives a value between [0,1]. The likelihood of y is less than 50 %
when vx is negative, is 50 % when vx = 0, and is above 50 % when vx is positive. We
compute this first by hand, and then switch to the equivalent, built-in plogis()
function:

> exp(0) / (exp(0) + 1) # computing logistic by hand; could use plogis()
[1] 0.5
> plogis(-Inf) # infinitely low = likelihood 0
[1] 0
> plogis(2) # moderate probability = 88% chance of outcome
[1] 0.8807971
> plogis(-0.2) # weak likelihood
[1] 0.450166

Such a model is known as a logit model, which determines the value of vx from the
logarithm of the relative probability of occurrence of y:

logit : vx = log

(
p(y)

1− p(y)

)
(9.2)

Again, R includes a built-in function qlogis() for the logit function:

> log(0.88 / (1-0.88)) # moderate high likelihood
[1] 1.99243
> qlogis(0.88) # equivalent to hand computation
[1] 1.99243

In practice, the expressions logit model and logistic regression are used interchange-
ably.

9.2.2 Data for Logistic Regression of Season Passes

We considered an amusement park example in Chap. 7. Suppose that we now have
data on the sales of season tickets to the park. The data consist of a table of season
ticket pass sales (with values of yes or no), on the basis of two factors: the channel
used to extend the offer (email, postal mail, or in-person at the park) and whether

9.2 Linear Models for Binary Outcomes: Logistic Regression 233

it was promoted in a bundle offering the season ticket with another feature such as
free parking, or not. The marketing question is this: are customers more likely to
purchase the season pass when it is offered in the bundle (with free parking), or
not?

In this section, we see how to simulate such data, and how to create a full data frame
from tabulated data. If you wish to load the data from the website instead of working
through the data creation, you can retrieve it with:

> pass.df <- read.csv("http://goo.gl/J8MH6A")
> pass.df$Promo <- factor(pass.df$Promo, levels=c("NoBundle", "Bundle"))
> summary(pass.df)
Channel Promo Pass
Email: 633 NoBundle:1482 NoPass :1567
Mail :1328 Bundle :1674 YesPass:1589
Park :1195

Note that the second command above is required for reasons we describe in
Sect. 9.2.5. Be sure to run it after loading the CSV and check that the summary()
matches the above.

We encourage you to read the rest of this simulation section and the R language
lessons it contains. But if you loaded the data and prefer to skip ahead to analysis,
you could continue with Sect. 9.2.6.

9.2.3 Sales Table Data

Suppose that we have been given sales data as shown in Table 9.1.

Table 9.1. Counts of sales of season tickets broken out by promotion status (bundled or not
bundled with a promotion), and channel by which a customer was reached (mail, at the park,

by email)

Bought season pass (count)
Bundle NoBundle

Mail 242 359
Park 639 284

Email 38 27

Did not buy season pass (count)
Bundle NoBundle

Mail 449 278
Park 223 49

Email 83 485

There are several ways to analyze tabular data as shown in Table 9.1, including chi-
square analysis (Sect. 6.2), but a versatile approach when the data set is not too large
is to convert it to long form and recreate a data frame of individual observations.
This lets us use a full range of approaches such as linear modeling with minimal
hassle.

234 9 Additional Linear Modeling Topics

To convert the data into such format, we first recreate the cross-tab data table in R.
We begin this by reading the values from Table 9.1 one column and row at a time,
putting them into a vector:

> pass.tab <- c(242, 639, 38, 359, 284, 27, 449, 223, 83, 278, 49, 485)

Next we add dimensions to the vector, which reformats it as a 3× 2× 2 array, and
set it to be an object of class "table":

> dim(pass.tab) <- c(3, 2, 2)
> class(pass.tab) <- "table"

We add the marginal labels to the table by setting its dimnames attribute:

> dimnames(pass.tab) <- list(Channel=c("Mail", "Park", "Email"),
+ Promo=c("Bundle", "NoBundle"),
+ Pass=c("YesPass", "NoPass"))

We describe more about class, table, and dimnames in optional Sect. 9.2.4
below. For now, we inspect the resulting table and confirm that it matches
Table 9.1:

> pass.tab
, , Pass = YesPass

Promo
Channel Bundle NoBundle
Mail 242 359
Park 639 284
Email 38 27

...

We now have the data in R and are ready to create a full data frame from the table.
Before that, we take a brief detour into the R language to understand the commands
we just used.

9.2.4 Language Brief: Classes and Attributes of Objects*

In this optional section, we explore how the R language understands data types. If
you just want to continue with the logistic regression model, you could skip ahead
to Sect. 9.2.5.

Every object in R has an associated class, which functions use to determine how
to handle the object. For example, a vector of real numbers has a class of numeric,
while a data frame is a data.frame. The class of an object may be inspected
directly by class():

> class(c(1, pi, exp(1)))
[1] "numeric"
> class(data.frame(1:10))
[1] "data.frame"

9.2 Linear Models for Binary Outcomes: Logistic Regression 235

When we examine str(), the first thing listed is the class of the object and its raw
values:

> str(pass.tab)
table [1:3, 1:2, 1:2] 242 639 38 359 284 27 449 223 83 278 ...
- attr(*, "dimnames")=List of 3
..$ Channel: chr [1:3] "Mail" "Park" "Email"
..$ Promo : chr [1:2] "Bundle" "NoBundle"
..$ Pass : chr [1:2] "YesPass" "NoPass"

This code shows that pass.tab is an object of class table that comprises values
242 639

The is.*() set of functions tests whether an object is of some class (abbreviated
here with *). For example:

> is.table(pass.tab)
[1] TRUE
> is.character(pass.tab)
[1] FALSE

Class membership is non-exclusive. For example, tables are composed of counts,
and counts are numeric:

> is.numeric(pass.tab)
[1] TRUE

The as.*() functions attempt to treat (convert, or coerce) objects as other
classes:

> as.numeric(pass.tab)
[1] 242 639 38 359 284 27 449 223 83 278 49 485

> as.character(pass.tab)
[1] "242" "639" "38" "359" "284" "27" "449" "223" "83" "278" "49" "485"

This shows how we could extract the vector of counts from our park table, and how
we might reformat them as character strings for printing, chart labeling, and similar
purposes.

In addition to class, objects can have other attributes. An attribute is a property
of an object other than its data, and typically tells R something important about the
object. Common attributes that we have used throughout the book are names for the
names of columns, dim for the dimensions of a matrix or data frame, and class
to specify the type of object. Each of these can be queried for an object:

> names(pass.tab)
NULL
> dim(pass.tab)
[1] 3 2 2
> class(pass.tab)
[1] "table"

236 9 Additional Linear Modeling Topics

In this case, the names for pass.tab are NULL because it is not a data frame
or other object for which names are useful. However, we see that it has dim and
class attributes. A table also has names for its rows and columns, which are known
as dimnames:

> dimnames(pass.tab)
$Channel
[1] "Mail" "Park" "Email"
$Promo
[1] "Bundle" "NoBundle"
...

Thus, Channel, the first dimension of the table, has elements "Mail", "Park",
and "Email".

You can see all the attributes of an object with attributes():

> attributes(pass.tab)
$dim
[1] 3 2 2
$class
[1] "table"
...

Attributes may be changed using the assignment operator (<-). We often use this
feature to set names of data frames, using names(DATA) <- c("name1",
"name2", ...). In the code above, we converted pass.tab from a simple
vector to a table by assigning class(pass.tab) <- "table" and setting its
dim attribute. As you might imagine, this must be done very carefully! Setting an
inappropriate class or dimension of an object will render it useless (but you can
usually just change it back to make things work again).

We’ll see another use for classes in Sect. 12.3.3, where we use objects’ classes to de-
termine how to handle multiple data types inside a function. To learn more about the
R class and attribute system, review the R language reference [128] and Wickham’s
Advanced R [163].

9.2.5 Finalizing the Data

We have the data in a table pass.tab, which is suitable for analysis as is. How-
ever, because most data sets come in the form of an extended data frame with one
observation per respondent, we expand it from a table to a complete data frame so
the analysis will match typical data structures.

9.2 Linear Models for Binary Outcomes: Logistic Regression 237

We use expand.dft() from the vcdExtra package [56] to expand the table to
a data frame:

> library(vcdExtra) # install if needed
> pass.df <- expand.dft(pass.tab)
> str(pass.df)
’data.frame’: 3156 obs. of 3 variables:
$ Channel: Factor w/ 3 levels "Email","Mail",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Promo : Factor w/ 2 levels "Bundle","NoBundle": 1 1 1 1 1 1 1 1 1 1 ...
$ Pass : Factor w/ 2 levels "NoPass","YesPass": 2 2 2 2 2 2 2 2 2 2 ...

We now have a data frame with 3,156 observations for whether a customer purchases
a Pass, by Channel, with and without promotion (Promo).

We can use table() on this data to create cross-tabs other than those in Ta-
ble 9.1. For example, to see purchases of a pass (Pass) by promotion bundle
(Promo):

> table(pass.df$Pass, pass.df$Promo)
Bundle NoBundle

NoPass 755 812
YesPass 919 670

Statistical modeling is a detail-oriented process, and before building a model from
the data, there is one minor detail to attend to: the factors in pass.df are
alphabetized—which is how R handles factor names by default—but that is counter-
intuitive. We might think that NoBundle should have a lower implicit value (such
as “bundle = 0”) than Bundle (which might be “bundle = 1”). However, in the
table we just saw, NoBundle appears in the second column because it has a higher
value thanks to alphabetic ordering.

In a regression model, that would mean that a positive effect of Bundlewould have
a negative value (think about it). Rather than having to remember such convoluted
logic (“we see a negative effect for no bundle, which really means a positive effect
for bundle after we reverse the signs . . . ”), it is easier just to set the order straight
by reassigning that variable with the factor levels in the order we want:

> pass.df$Promo <- factor(pass.df$Promo, levels=c("NoBundle", "Bundle"))
> table(pass.df$Pass, pass.df$Promo)

NoBundle Bundle
NoPass 812 755
YesPass 670 919

With the data ordered sensibly (Bundle > NoBundle, YesPass > NoPass), we pro-
ceed with modeling.

9.2.6 Fitting a Logistic Regression Model

A logistic regression model in R is fit as a generalized linear model (GLM) using
a process similar to linear regression that we saw in Chap. 7 with lm(), but with

238 9 Additional Linear Modeling Topics

the difference that a GLM can handle dependent variables that are not normally
distributed. Thus, GLM can be used to model data counts (such as number of pur-
chases) or time intervals (such as time spent on a website) or binary variables (e.g.,
did/didn’t purchase). The common feature of all GLM models is that they relate
normally distributed predictors to a non-normal outcome using a function known as
a link. This means that they are able to fit models for many different distributions
using a single, consistent framework.

In the present case, we model a binary outcome, and the appropriate distribution is a
binomial distribution (see Sect. 6.3). There are multiple functions and packages that
can estimate a GLM in R, but the most common is the glm(...) function. glm()
takes an argument family= that specifies the distribution for the outcome variable.
For a binary outcome, set family=binomial. The default link function for a bi-
nomial model is the logit function that we saw in Sect. 9.2.1, so we do not have
to specify that. (But, as an example, if we wished to use a probit link function in-
stead, we could specify family=binomial(link="probit"), and similarly
for other link functions.)

Our marketing question was, “does the promotion bundle have an effect on sea-
son pass sales?” and we model this initially with a logistic regression of Pass on
Promo, using glm(..., family=binomial) and syntax otherwise identical
to lm():

> pass.m1 <- glm(Pass ∼ Promo, data=pass.df, family=binomial)

The initial model appears to confirm that the bundle is effective:

> summary(pass.m1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19222 0.05219 -3.683 0.000231 ***
PromoBundle 0.38879 0.07167 5.425 5.81e-08 ***
...

There is a positive coefficient for the bundle condition, and the effect is statistically
significant.

What does a coefficient of 0.3888 mean? We can use it to calculate the association
of pass sales, as associated with the promotion bundle factor, by examining the ratio
of success (using plogis()) to non-success (1− success). A manual way to do
this is to use plogis() directly:

> plogis(0.3888) / (1-plogis(0.3888)) # ratio of outcome % to alternative %
[1] 1.475209

This shows that the effect of Bundle is an estimated odds ratio of 1.475, meaning
that customers are 1.475 times more likely to purchase the pass when it is offered

9.2 Linear Models for Binary Outcomes: Logistic Regression 239

in the bundle. Another way to think about this is that the bundle increases the pur-
chase likelihood by 47.5 %. An easier and equivalent way to calculate this is to
exponentiate the coefficient:

> exp(0.3888) # identical
[1] 1.475209

We can find the odds ratios from the model by extracting the coefficients with
coef() and using exp():

> exp(coef(pass.m1))
(Intercept) PromoBundle
0.8251232 1.4751962

We can obtain a confidence interval for the odds ratio using exp(confint
(model)):

> exp(confint(pass.m1))
2.5 % 97.5 %

(Intercept) 0.744749 0.9138654
PromoBundle 1.282055 1.6979776

The odds ratio for the promotion bundle is estimated to be 1.28–1.70, a significant
positive effect. This demonstrates that the promotion is highly effective, right? Not
necessarily, because the effects are estimated under the assumption that the model
is the one we want to interpret. But is the model Pass ∼ Promo really the one
we should interpret?

9.2.7 Reconsidering the Model

If we explore the data further, we notice something interesting. Consider a table of
season pass purchases by channel:

> table(pass.df$Pass, pass.df$Channel)
Email Mail Park

NoPass 568 727 272
YesPass 65 601 923

The channel that was most successful in selling season tickets was at the park, re-
gardless of whether the promotion was offered.

A good way to visualize tables is with mosaic plots, which lay out “tiles” whose
areas correspond to counts in a table. The vcd package [113] provides several ways
to create mosaic plots (including the rather obvious mosaic() function). We use
a so-called doubledecker plot here as it makes the relationships particularly clear in
the present data:

> library(vcd) # install if needed
> doubledecker(table(pass.df))

240 9 Additional Linear Modeling Topics

The result is shown in Fig. 9.2, where we see that the three channels have some-
what different effects. Sales of season passes are very successful at the park, and
very unsuccessful by email. This implies that our model Pass ∼ Promo may be
inadequate and needs to account for the effect of Channel.

Channel
Promo

Email
NoBundle Bun

Mail
NoBundle Bundle

Park
NoBundle Bundle

YesPass

NoPass

Pass

Fig. 9.2. A mosaic plot created with doubledecker() [113] for sales of season passes
by channel and promotion in simulated amusement park data. Season passes (“YesPass,”
plotted as dark areas) are sold most frequently at the park and least frequently by email.
The promotion bundle (“Bundle,” the second column within each channel) is associated with
higher sales through the email channel, but lower sales in regular mail and at the park, thus

showing an interaction effect.

We model a main effect of channel by adding + Channel to the model
formula:
> pass.m2 <- glm(Pass ∼ Promo + Channel, data=pass.df, family=binomial)
> summary(pass.m2)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.07860 0.13167 -15.787 < 2e-16 ***
PromoBundle -0.56022 0.09031 -6.203 5.54e-10 ***
ChannelMail 2.17617 0.14651 14.854 < 2e-16 ***
ChannelPark 3.72176 0.15964 23.313 < 2e-16 ***
...

The resulting model now estimates a strong negative contribution of the promotion
bundle. We compute the odds ratios and their confidence intervals:

> exp(coef(pass.m2))
(Intercept) PromoBundle ChannelMail ChannelPark
0.1251054 0.5710846 8.8125066 41.3371206

> exp(confint(pass.m2))
...

2.5 % 97.5 %
PromoBundle 0.47793969 0.6810148

9.2 Linear Models for Binary Outcomes: Logistic Regression 241

ChannelMail 6.65770550 11.8328173
ChannelPark 30.42959274 56.9295369

In this model, promotion is associated with a 32–53 % lower likelihood of purchas-
ing a season pass. On the other hand, offers in person at the park are associated with
season ticket sales 30–56× higher in this model.

But is this the appropriate model? Should we also consider an interaction effect,
where Promo might have a different effect by Channel? Our data exploration
suggests a possible interaction effect, especially because of the dramatically differ-
ent pattern for the influence of Bundle in the Email channel in Fig. 9.2.

We add an interaction term using the : operator, as noted in Sect. 7.5:

> pass.m3 <- glm(Pass ∼ Promo + Channel + Promo:Channel,
+ data=pass.df, family=binomial)
> summary(pass.m3)
...

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.8883 0.1977 -14.608 < 2e-16 ***
PromoBundle 2.1071 0.2783 7.571 3.71e-14 ***
ChannelMail 3.1440 0.2133 14.743 < 2e-16 ***
ChannelPark 4.6455 0.2510 18.504 < 2e-16 ***
PromoBundle:ChannelMail -2.9808 0.3003 -9.925 < 2e-16 ***
PromoBundle:ChannelPark -2.8115 0.3278 -8.577 < 2e-16 ***
...

The interaction of promotion with channel is statistically significant, and is strongly
negative for the mail and in-park channels, as opposed to the baseline (omitted)
email channel in these simulated data.

In the odds ratios, we see that the promotion is only 2–11 % as effective through the
mail and in-park channels as it is in email:

> exp(confint(pass.m3))
Waiting for profiling to be done...

2.5 % 97.5 %
...
PromoBundle:ChannelMail 0.02795867 0.09102369
PromoBundle:ChannelPark 0.03135437 0.11360965

We now have a much better answer to our question. Is the promotion bundle effec-
tive? It depends on channel. There is good reason to continue the promotion cam-
paign by email, but its success there does not necessarily imply success at the park
or through a regular mail campaign. In case you’re wondering how the statistical
model is advantageous to simply interpreting Fig. 9.2, one answer is that the model
estimates confidence intervals and statistical significance for the effect.

242 9 Additional Linear Modeling Topics

9.2.8 Additional Discussion

Before moving to the topic of hierarchical models, we have a few observations for
the current section:

• Although we performed logistic regression here with categorical predictors
(factor variables) due to the structure of the amusement park sales data, we
could also use continuous predictors in glm(). Just add those to the right-hand
side of the model formula as we did with lm() in Chap. 7.

• We saw that the estimated effect of promotion in these data was positive when
we estimated one model, yet negative when we estimated another, and this
shows that it is crucial to explore data thoroughly before modeling or interpret-
ing a model. For most marketing data, no model is ever definitive. However,
through careful data exploration and consideration of multiple models, we may
increase our confidence in our models and the inferences drawn from them.

• The data here are an example of Simpson’s paradox, which is when the estimate
of an aggregate effect is misleading and markedly different than the effect seen
in underlying categories. A famous example occurred in graduate admissions
at the University of California at Berkeley, where an apparent bias in admis-
sions was due instead to the fact that different departments had different overall
admission rates and numbers of applicants [12]. In R, the Berkeley data are
available as the table UCBAdmissions in the standard datasets package.

Logistic regression is powerful method and one that is a particularly good fit for
many marketing problems that have binary outcomes. To learn more, see Sect. 9.6.
For modeling product choice among sets of alternatives, we cover choice models in
Chap. 13.

9.3 Hierarchical Linear Models

In Chap. 7 we saw how to estimate a linear model for data for a sample of respon-
dents. What if we want to estimate the values in the model for each respondent? As
marketers, it can be very useful to determine individual-level effects such as which
customers are more interested in a product or service, who among them want which
features, and who are most or less sensitive to price. We can use such information
to see the diversity of preference or for purposes such as customer targeting or seg-
mentation (see Chap. 11).

To estimate both a population-level effect and an individual-level effect, we can use
a hierarchical linear model (HLM). The model is hierarchical because it proposes
that individual effects follow a distribution across the population. There are various
algorithms to fit such models, but the general approach is that the algorithm fits
the overall model to all the data, and then attempts to determine best fit for each
individual within that overall estimate (and repeats as necessary).

9.3 Hierarchical Linear Models 243

In general, a data set for HLM at an individual level needs multiple observations
per individual. Such observations may come from responses over time (as in trans-
actions or a customer relationship management system (CRM)) or from multiple
responses at one time (as in a survey with repeated measures). We consider the case
of conjoint analysis, where a respondent rates multiple items on a survey at one
time.

How is this different from simply adding the individual, store, or other grouping
variable as a factor variable in the model? The key difference is that a factor vari-
able would add a single term that adjusts the model up or down according to the
individual. In HLM, however, we can estimate every coefficient—or any that we
wish—for each individual.

There are other uses for hierarchical models besides customer-level estimation. For
example, one might wish to estimate differences by a factor such as geographic
region, store, salesperson, product, or promotion campaign. Each of these might
provide many responses that could be grouped and allow estimation of a group-
level effect within an overall hierarchy. We can’t cover every application of HLM
here—hierarchical models are the subject of entire books (e.g., Gelman and Hill
[60])—yet we hope this discussion will help you to understand when and how they
may be useful, and how to begin with them in R.

9.3.1 Some HLM Concepts

A few words of jargon are required. Hierarchical models distinguish two types of
effects. One type is fixed effects, which are effects that are the same for every respon-
dent. In a standard linear model (Chap. 7) all effects are fixed effects. For instance,
in Sect. 9.1.2, we saw that online spend was highly associated with online transac-
tions and slightly associated with age. Both of those estimates are fixed effects that
predict the same pattern of association for everyone in the sample.

An HLM also estimates random effects, which are additional adjustments to the
model coefficients estimated for each individual (or group). These are known as
“random” because they are estimated as random variables that follow a distribution
around the fixed estimates. However, for the estimate of each individual, they are
best estimates according to the model, not random guesses in that sense.

Such models are also known as multilevel models, where individuals and the full
sample are at different levels. They are a subset of models known as mixed effect
models, where mixed reflects the fact that the total effect for each respondent has (at
least) two effects that are combined: the overall fixed effect plus the individual-level
random effect.

A final variation on mixed effects models is a nested model, where a factor of in-
terest might occur only within subgroups of the total sample. For example, if we
consider sales in response to different promotions that each occur at different stores,

244 9 Additional Linear Modeling Topics

we might model both the effect of store (as a random effect, such that there are dif-
ferent sales intercepts for different stores) and the effect of promotion within store
as a nested effect. We do not examine a nested model here, yet they may also be fit
using the lme4 package used below.

9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park

For a hierarchical model, we return to the fictional amusement park from Sect. 7.1.
The park is now considering designs for a new roller coaster and hopes to find out
which roller coaster features appeal to its customers. They are considering coasters
with various possible levels of maximum speed (40, 50, 60 or 70 mph), height (200,
300, or 400 ft), construction type (wood or steel), and theme (dragon or eagle). The
stakeholders wish to know which combination of features would be most popular
according to customers’ stated preference.

One way to examine this is a survey that asks customers to rate different roller coast-
ers (illustrated with photographs or videos for more realism). For example:

On a 10-point scale, where 10 is the best and 1 is the worst, how would you rate a roller
coaster that is made of wood, is 400 ft high, has a maximum speed of 50 mph, with a
dragon theme?

Customers’ ratings could be analyzed with a linear model where the ratings are
predicted from the different features of the roller coasters. This would tell us the
contribution of each feature to the total rating.

Additionally, we wish to understand these preferences at an individual level, such
that we can see the distribution of preference or identify individuals for potential
marketing actions. To do this, we use a HLM that estimates both the overall fixed
effect and the individual-level random effect.

In the following section we simulate consumers’ ratings for such a survey. The code
is brief and illustrative of the data, but if you wish to skip the simulation, you can
load the data from the book’s website:

> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Given this data, you may skip to Sect. 9.3.4.

9.3 Hierarchical Linear Models 245

9.3.3 Simulating Ratings-Based Conjoint Data

In this section we simulate responses for a hypothetical conjoint analysis survey
with 200 respondents who each rate the same set of 16 roller coaster profiles. If you
have worked through the data simulation in previous chapters, this code should be
relatively simple in structure, although a few functions are new.

We set the structure: 200 respondents who rate 16 designs, each with 4 roller coaster
attributes:

> set.seed(12814)
> resp.id <- 1:200 # respondent ids
> nques <- 16 # number of conjoint ratings per respondent
> speed <- sample(as.factor(c("40", "50", "60", "70")), size=nques,
+ replace=TRUE)
> height <- sample(as.factor(c("200", "300", "400")), size=nques, replace=TRUE)
> const <- sample(as.factor(c("Wood", "Steel")), size= nques, replace=TRUE)
> theme <- sample(as.factor(c("Dragon", "Eagle")), size=nques, replace=TRUE)

In this example we assume that all respondents rate the same set of designs. De-
pending on your study’s goal, you might instead want to have a different, random
set for each respondent. A single set of designs is convenient for printed surveys,
while an online study could easily have a different set for every respondent; we will
see an example in Chap. 13.

Next we create a model matrix for the combinations of features to rate. We draw
multivariate random normal values for respondents’ preferences using mvrnorm()
from the MASS package [157]:

> profiles.df <- data.frame(speed, height, const, theme)
> profiles.model <- model.matrix(∼ speed + height + const + theme,
+ data=profiles.df)
> library(MASS) # a standard library in R
> weights <- mvrnorm(length(resp.id),
+ mu=c(-3, 0.5, 1, 3, 2, 1, 0, -0.5),
+ Sigma=diag(c(0.2, 0.1, 0.1, 0.1, 0.2, 0.3, 1, 1)))

model.matrix() converts the list of design attributes (profiles.df) into
coded variables; it is similarly used by functions such as lm() to convert factors
into variables for regression equations. You can compare profiles.model to
profiles.df to see how this works. We use mvrnorm() to draw unique pref-
erence weights for each respondent. Estimating those later is the key feature that
distinguishes a hierarchical model from a standard linear model.

Given the designs to be rated and individuals’ preferences, we compile the simu-
lated individual ratings. For each respondent, we multiply the preference weights
by the design matrix to get the total preference (utility) for each design, adding
some random noise with rnorm(). We convert the utility to a 10-point rating scale
using cut() (see Sect. 12.4.1), and add the respondent’s result to the overall data
frame:

246 9 Additional Linear Modeling Topics

> conjoint.df <- NULL # make sure there’s no data yet
> for (i in seq_along(resp.id)) {
+ # create one respondent’s ratings of the 16 items, plus error
+ utility <- profiles.model %*% weights[i,] + rnorm(16) # preference
+ rating <- as.numeric(cut(utility, 10)) # put on a 10-point scale
+ conjoint.resp <- cbind(resp.id=rep(i, nques), rating, profiles.df)
+ conjoint.df <- rbind(conjoint.df, conjoint.resp)
+ }

Building a data frame using rbind() repeatedly instead of preallocating a whole
matrix is not efficient, but it is easy to understand and it is fast enough for this data
set. For large data sets, it would be better to preallocate the data frame for the size
needed and fill in the rows. With a bit of matrix manipulation, one might instead
create the whole data frame at once; but a simple, readable method like the one here
may be more effective overall if it’s easier and more reliable to code.

9.3.4 An Initial Linear Model

We begin as always with a quick summary of our conjoint data to check it (create
or load the data as described in Sect. 9.3.2 if needed):

> summary(conjoint.df)
resp.id rating speed height const

Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

Ratings of the designs range from 1 (strongly disprefer) to 10 (strong prefer). We
also see the counts of the features that were shown in various combinations: speed,
height, const, and theme.

Our goal is to determine how the four features relate to the ratings. At an aggregate
level, we might use by() to find the average rating for levels of each attribute. For
example, the averages by height are:

> by(conjoint.df$rating, conjoint.df$height, mean)
conjoint.df$height: 200
[1] 3.657857

conjoint.df$height: 300
[1] 7.254167

conjoint.df$height: 400
[1] 5.05

The average rating for designs with 300 foot height is 7.25 points on the 10-point
scale, compared to 3.66 and 5.05 for heights of 200 and 400 ft. So, respondents
prefer the middle of our height range.

9.3 Hierarchical Linear Models 247

We could examine each individual feature in that way, but a more comprehen-
sive linear model considers all of the effects in combination. To start, we’ll
estimate a regular linear model without a hierarchical component using lm()
(Chap. 7):

> ride.lm <- lm(rating ∼ speed + height + const + theme, data=conjoint.df)
> summary(ride.lm)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.07307 0.08102 37.932 < 2e-16 ***
speed50 0.82077 0.10922 7.515 7.35e-14 ***
speed60 1.57443 0.12774 12.326 < 2e-16 ***
speed70 4.48697 0.15087 29.740 < 2e-16 ***
height300 2.94551 0.09077 32.452 < 2e-16 ***
height400 1.44738 0.12759 11.344 < 2e-16 ***
constWood -0.11826 0.11191 -1.057 0.291
themeEagle -0.75454 0.11186 -6.745 1.81e-11 ***
...

In this abbreviated output, the coefficients indicate the association with preference
(the rating). The highest rated roller coaster on average would have a top speed
of 70 mph, a height of 300 ft, steel construction, and the dragon theme (steel and
dragon because wood and eagle have negative values). We estimate an overall rating
for this most-desired coaster; it would be the intercept + speed70 + height300 (steel
and dragon are included in the intercept), or 3.07+ 4.49+ 2.94 = 10.46 points on
our 10-point rating scale.

But wait! That’s not possible; our scale is capped at 10 points. This shows that
simply interpreting the “average” result can be misleading. The coefficients are es-
timated on the basis of designs that mostly combine both desirable and undesirable
attributes, and are not as reliable at the extremes of preference. Additionally, it could
happen that few people prefer that exact combination even though the individual
features are each best on average.

Consider that the coefficient for constWood is near zero. Are people indifferent
between wood and steel coasters, or do they have strong preferences that cancel
out when averaged? If people are strongly but almost equally divided, that’s im-
portant for us to know as marketers; it might suggest that we construct different
rides that appeal to two different groups. On the other hand, if they are truly in-
different, we could choose between steel and wood on the basis of cost and other
factors.

To understand our respondents better, we turn next to a hierarchical model that will
estimate both the overall average preference level and individual preferences within
the group.

248 9 Additional Linear Modeling Topics

9.3.5 Hierarchical Linear Model with lme4

The linear model ride.lm has only fixed effects that are estimated at the sample
level. In an HLM, we add one or more individual-level effects to those.

The simplest HLM allows individuals to vary only in terms of the constant inter-
cept. For example, we might expect that individuals vary in their usage of a rating
scale such that some will rate our roller coaster designs higher or lower than the av-
erage respondent. This would be an individual-level random effect for the intercept
term.

To estimate an HLM with fixed effects plus a per-respondent intercept, we change
the lm() model from above in three ways. First, instead of lm(), we use a hierar-
chical estimation function, lmer() from the lme4 package [8].

Second, in the formula for lmer(), we specify the term(s) for which to estimate
random effects. For the intercept, that is signified as simply “1”. Third, we specify
the grouping variable, for which a random effect will be estimated for each unique
group. In our conjoint data, the group in the set of responses for a single respondent,
which is identified in the data frame by respondent number, resp.id. With lme4,
we specify the random effect and grouping variable with syntax using a vertical bar
(“|”) as + (predictors | group), or in this case for the intercept only, +
(1 | resp.id).

We estimate this model using lme4, where the only difference from the call to
lm() above is the addition of a term for random intercept by respondent:

> library(lme4)
> ride.hlm1 <- lmer(rating ∼ speed + height + const + theme + (1 | resp.id),
+ data=conjoint.df)
> summary(ride.hlm1)
...
Scaled residuals:

Min 1Q Median 3Q Max
-3.3970 -0.6963 0.0006 0.6700 3.3689

Random effects:
Groups Name Variance Std.Dev.
resp.id (Intercept) 0.3352 0.5789
Residual 3.5358 1.8804

Number of obs: 3200, groups: resp.id, 200

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.07307 0.08759 35.08
speed50 0.82077 0.10439 7.86
speed60 1.57443 0.12209 12.90
speed70 4.48697 0.14421 31.11
height300 2.94551 0.08676 33.95
height400 1.44738 0.12195 11.87
constWood -0.11826 0.10696 -1.11
themeEagle -0.75454 0.10692 -7.06
...

9.3 Hierarchical Linear Models 249

In this output, we see that the fixed effects are identical to those estimated by lm()
above. But now we have also estimated a unique intercept term adjustment for each
respondent. The output section labeled “Random effects” shows 3,200 total obser-
vations (survey questions) grouped into 200 respondents for which a random effect
was estimated (such as the effect for (Intercept)).

fixef() is an easy way to extract just the fixed (population level) effects:

> fixef(ride.hlm1)
(Intercept) speed50 speed60 speed70 height300 height400 ...
3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...

The 200 per-respondent random effect estimates for intercept, which summary
(ride.hlm1) does not display because there could be many of them, are accessed
with ranef() (and we additionally use head() to shorten the output):

> head(ranef(ride.hlm1)$resp.id)
(Intercept)

1 -0.65085634
2 -0.04821158
3 -0.31186866
...

The complete effect for each respondent comprises the overall fixed effects that
apply to everyone, plus the individually varying random effects (in this case, just
the intercept). Those are accessed using coef():

> head(coef(ride.hlm1)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood ...

1 2.422216 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
2 3.024861 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
3 2.761204 0.8207718 1.574426 4.486971 2.945508 1.447385 -0.1182553 ...
...

It is possible to estimate random effects for multiple grouping factors (hierarchi-
cal levels), so these effects must be extracted for the grouping level of interest by
selecting the coefficient matrix named $resp.id.

In coef(ride.hlm1)$resp.id, each respondent has the overall sample-level
value of the effect on all coefficients except for intercept, and the final intercept
coefficient is the same as the fixed effect plus the random effect. For example, for
respondent 1, the intercept is 3.07(fixef)−0.65(ranef) = 2.42(coef).

9.3.6 The Complete Hierarchical Linear Model

The most common hierarchical model in marketing practice is to estimate a random
effect parameter for every coefficient of interest for every respondent. This is easy
to do with the lme4 syntax; simply add all the variables of interest to the predictors
in the random effects specification (predictors | group).

250 9 Additional Linear Modeling Topics

For the conjoint data, we write the random effects part of the formula as (speed
+ height + const + theme | resp.id). Before estimating that model,
we should note that this is a much more complex model than the intercept model
above. Whereas the random intercept-only HLM estimated 8 fixed parameters and
200 random effects, the full model will estimate 8 fixed effects plus 8∗200 random
effects. And it will do this for a total data frame of 3,200 observations.

This fact has two implications. First, the estimation can be rather slow, taking sev-
eral minutes for the present model at the time of writing. Second, there are so many
parameters that even 3,200 observations is not a lot, and one can expect some diffi-
culty finding a stable converged model.

With those facts in mind, we estimate the full model as follows (this will take some
time, perhaps several minutes):
> ride.hlm2 <- lmer(rating ∼ speed + height + const + theme +
+ (speed + height + const + theme | resp.id),
+ data=conjoint.df,
+ control=lmerControl(optCtrl=list(maxfun=100000)))

Compared to model ride.hlm1 above, this model has two changes. First, we
added all four roller coaster factors to be estimated for random effects. Second, we
added a control argument to lmer(), which increases the maxfun number of
iterations to attempt convergence from 10,000 iterations (the default) to 100,000.
This allows the model to converge better, although still not completely as we see in
the resulting warnings when it finishes:
Warning messages:
1: In optwrap(optimizer, devfun, getStart(start, rho$lower, rho$pp) ...
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv ...

Despite the warnings, we proceed with data analysis here because it is quite slow
to run the model to convergence and the exact results are for illustration, not for an
important business decision. For a model of importance, we recommend to run to
convergence whenever possible.

If you run into warnings, we suggest five potential remedies. First, increase the
control maxfun argument by a factor of 2, 5, or 10 to see if convergence re-
sults (and repeat that if necessary). Second, check whether the max|grad| (max-
imum absolute value of the gradient in the optimization function; cf. [8]) is small,
such as max < 0.001; if so, you may be okay. Alternatively, if max >> .01, such
as max = 0.10, increase the iterations. Third, do a web search for the warnings you
receive and consider the suggestions offered on R discussion forums. Fourth, con-
sider using a different optimization function (see lme4 documentation [8]). Fifth,
consider collecting more data, or evaluate your data for internal consistency. Again,
we skip these steps now primarily for convenience.

Fixed effects are extracted with fixef():
> fixef(ride.hlm2)
(Intercept) speed50 speed60 speed70 height300 height400 ...
3.0730724 0.8207718 1.5744257 4.4869715 2.9455084 1.4473848 ...

9.3 Hierarchical Linear Models 251

This part of the ride.hlm2 model is identical to the model estimated for
ride.hlm1 above, so the coefficients are identical.

The random effects now include an estimate for each parameter for each respon-
dent. Again, because we grouped by resp.id and could have had multiple
grouping factors, we request the $resp.id portion of the random effects using
ranef():

> head(ranef(ride.hlm2)$resp.id)
(Intercept) speed50 speed60 speed70 height300

1 -1.1199673 -0.20603467 -0.12507535 0.10294883 0.10742700
2 -1.0104334 0.24975368 -0.08225264 0.16262789 0.05610339
3 -1.0352111 -0.21870984 0.31082035 -0.29288693 0.34166296
...

Notice that the random intercepts are no longer identical to those estimated in model
ride.hlm1, because we added seven explanatory variables and the predicted out-
come rating points are distributed differently across the predictors.

We obtain the total coefficients per respondent with coef():
> head(coef(ride.hlm2)$resp.id)
(Intercept) speed50 speed60 speed70 height300 height400 constWood

1 1.953105 0.6147371 1.449350 4.589920 3.052935 1.4473264 0.1060510
2 2.062639 1.0705254 1.492173 4.649599 3.001612 2.5206374 1.4178018
3 2.037861 0.6020619 1.885246 4.194085 3.287171 1.3337777 0.4858052
...

As a final sanity check to confirm that the model matches expectations, we choose
a respondent (ID 196) and see that the coefficients are indeed the sum of the fixed
and random effects:
> fixef(ride.hlm2) + ranef(ride.hlm2)$resp.id[196,]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143063 0.7534565 1.271094 4.594383 2.94959 1.212746 2.580269 ...
> coef(ride.hlm2)$resp.id[196,]

(Intercept) speed50 speed60 speed70 height300 height400 constWood ...
196 2.143063 0.7534565 1.271094 4.594383 2.94959 1.212746 2.580269 ...

In this code, the random effect and coefficient values for respondent 196 are re-
trieved by indexing that row within the corresponding $resp.id matrix.

9.3.7 Summary of HLM with lme4

This concludes our discussion of classical hierarchical models; in the next section,
we consider the Bayesian approach to HLM, which uses the same general concep-
tual model but a different estimation method.

In this section, we hope to have convinced you that, when you have multiple obser-
vations for an individual or other grouping factor of interest, you should consider a
hierarchical model that estimates both sample-level and individual- or group-level
effects. These models are relatively straightforward to estimate using the lme4
package.

252 9 Additional Linear Modeling Topics

Besides customer-level models, which are most common in marketing, other factors
for which one might wish to estimate a hierarchical model include store, country,
geographic region, advertising campaign, advertising creative, channel, bundle, and
brand.

If this section has inspired you to consider adding hierarchical modeling to your
toolbox, see “Learning More” (Sect. 9.6) for pointers to other resources.

9.4 Bayesian Hierarchical Linear Models*

This is an optional section that you may skip if you are not interested in the Bayesian
approach to estimate hierarchical models.

Hierarchical models may be fit with classical estimation procedures (such as the
lme4 package we saw above), yet they are particularly well suited to Bayesian
estimation, which gives a best estimate for each individual even when there are few
individual observations.

The method we use here is known as a hierarchical Bayes approach; hierarchical be-
cause it models individuals in relationship to an overarching distribution, and Bayes
because it uses Bayesian estimation techniques to fit the models (see Sects. 6.6.1
and 6.6.2 for an introduction).

In this section, we apply a hierarchical Bayes (HB) method to estimate the HLM for
ratings-based (metric) conjoint analysis, using the same data set that we analyzed
with classical hierarchical models in Sect. 9.3 above. Before continuing this section
you should:

• Review the concepts of Bayesian linear models and MCMC estimation in
Sect. 7.8

• Review the concepts of HLM in Sects. 9.3 and 9.3.1

• Review the description of the amusement park conjoint analysis data in
Sect. 9.3.2

Download the simulated amusement park conjoint analysis data as follows, or see
Sect. 9.3.2:

> conjoint.df <- read.csv("http://goo.gl/G8knGV")
> conjoint.df$speed <- factor(conjoint.df$speed)
> conjoint.df$height <- factor(conjoint.df$height)
> summary(conjoint.df)

resp.id rating speed height const
Min. : 1.00 Min. : 1.000 40: 800 200:1400 Steel:1400
1st Qu.: 50.75 1st Qu.: 3.000 50:1200 300:1200 Wood :1800

...

9.4 Bayesian Hierarchical Linear Models* 253

9.4.1 Initial Linear Model with MCMCregress()*

We start by estimating a non-hierarchical model, which allows us to check that
our basic estimation procedures are working before we attempt a complex model.
We model respondents’ ratings of roller coaster designs as a function of roller
coaster features using MCMCregress() to fit a simple linear model as we did
in Sect. 7.8:

> library(MCMCpack)
> set.seed(97439)
> ride.mc1 <- MCMCregress(rating ∼ speed + height + const + theme,
+ data=conjoint.df)
> summary(ride.mc1)
...

Mean SD Naive SE Time-series SE
(Intercept) 3.0729 0.08112 0.0008112 0.0008112
speed50 0.8208 0.11061 0.0011061 0.0011126
speed60 1.5754 0.12889 0.0012889 0.0012889
speed70 4.4873 0.15002 0.0015002 0.0015002
height300 2.9444 0.09122 0.0009122 0.0009337
height400 1.4461 0.12934 0.0012934 0.0013367
constWood -0.1187 0.11310 0.0011310 0.0011310
themeEagle -0.7533 0.11308 0.0011308 0.0011308
sigma2 3.8705 0.09737 0.0009737 0.0009737
...

As expected, the overall effects are nearly identical to those estimated by the classi-
cal linear models in Sect. 9.3.5, so we are ready to add the hierarchical component
to the model.

9.4.2 Hierarchical Linear Model with MCMChregress()*

We estimate a hierarchical model using MCMChregress(fixed, random,
group, data, r, R). Note the h for hierarchical buried in that function
name. This is a slightly different syntax than lme4 uses (as we reviewed in
Sect. 9.3.5), as it separates the fixed and random effect specifications. The key argu-
ments we use here are:

fixed : formula for fixed effects at the higher level that are the same for all
respondents

random : formula for random effects that are estimated for each respondent

group : name of the column with identifiers that group observations for the
random effects

data : the data frame with observations

r, R : pooling arguments. We’ll just set them for now; see below for detail

254 9 Additional Linear Modeling Topics

For fixed effects we specify the primary model to estimate: rating ∼
speed + height + const + theme. For random effects, the most com-
mon models in marketing estimate all parameters of the model for every respon-
dent, so we specify random = ∼ speed + height + const + theme.
Because we are estimating by individual, group is the respondent identifier,
"resp.id".

Estimation of this model may take several minutes to run. Here is the final
code:

> set.seed(97439)
> ride.mc2 <- MCMChregress(fixed = rating ∼ speed + height + const + theme,
+ random = ∼ speed + height + const + theme,
+ group="resp.id", data=conjoint.df, r=8, R=diag(8))

Running the Gibbs sampler. It may be long, keep cool :) ...

While the model runs, let’s examine the two arguments r and R. A hierarchical
model assumes that each respondent has a set of preferences (coefficients) drawn
from a larger distribution that defines the range of possible preferences. The model
is slow because it makes thousands of estimates of both the individuals’ coefficients
and the higher-order distributions that best describe those individuals.

Of course there are only a few observations for each respondent, and a model for a
single person cannot be estimated very well with such limited data. To improve esti-
mation, the MCMC model pools information across respondents, allowing estimates
to be more or less similar to one another based on the data. If several respondents
dislike a feature, it’s more likely (but not certain) that another randomly selected
respondent will also dislike it; this expected similarity is used to improve estimates
given sparse data.

That degree of pooling across respondents is adjusted by the final two arguments r
and R. For most analyses, you can set r equal to the number of parameters in your
model and R equal to a diagonal matrix with values along the diagonal equal to the
number of parameters in your model, and the algorithm will determine the optimal
level of pooling from the data. This can be done with the simple function diag(K),
where K is the same number as r. However, if you plan to run hierarchical Bayesian
models regularly, you will wish to learn more about pooling; check the references
in Sect. 9.6.

By now, MCMChregress() from above should have finished, and we can review
its result:

> str(ride.mc2)
List of 2
$ mcmc : mcmc [1:1000, 1:1674] 3.04 2.87 2.9 3.06 2.98 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:1674] "beta.(Intercept)" "beta.speed50" "beta.speed60" "beta.

speed70" ...
..- attr(*, "mcpar")= num [1:3] 1001 10991 10
$ Y.pred: num [1:3200] 4.94 2.69 5.73 6.24 4.67 ...

9.4 Bayesian Hierarchical Linear Models* 255

The output of MCMChregress is a list with two items. The first item in this list
is an mcmc object containing the draws from the posterior distribution of the pa-
rameters. A notable thing is that ride.mc2$mcmc contains 1,674 columns. Why
so many? The model estimates a set of 8 coefficients—the preferences for each at-
tribute of our roller coasters—for every one of the 200 respondents. That’s 1,600
parameters plus a few more that describe the overall population distribution. For
each of those parameters, it drew 1,000 estimates from the posterior distribution for
every respondent (see Sect. 6.6.2).

Let’s look at the first 8 columns, estimated coefficients for the overall, population-
level preferences:

> summary(ride.mc2$mcmc[,1:8])
...

Mean SD Naive SE Time-series SE
beta.(Intercept) 3.0739 0.1694 0.005356 0.005457
beta.speed50 0.8168 0.1398 0.004422 0.004422
beta.speed60 1.5691 0.1618 0.005117 0.005569
beta.speed70 4.4849 0.1862 0.005889 0.005889
beta.height300 2.9474 0.1235 0.003904 0.003681
beta.height400 1.4578 0.1796 0.005680 0.005680
beta.constWood -0.1128 0.1952 0.006172 0.005615
beta.themeEagle -0.7542 0.1857 0.005871 0.005871
...

These estimates are nearly identical to the result of non-hierarchical MCMCregress
in model ride.mc1 above. speed70 is still preferred and worth 4.5 points on
our rating scale, preference for wood construction is near zero, and so forth. Where
is the difference? Why did we wait several minutes for these results? The answer is
in the coefficients it estimated for individual respondents.

Let’s look at an example respondent; we pull and summarize the posterior draws
for the parameters that are associated with respondent 196. We do this by finding
columns that are named with “196” (the resp.id that we want). We accomplish
that by indexing the columns with the results of the grepl() function that identi-
fies elements of a character vector (in this case, column names) containing a partic-
ular string:

> summary(ride.mc2$mcmc[, grepl(".196", colnames(ride.mc2$mcmc), fixed=TRUE)])
...

Mean SD Naive SE Time-series SE
b.(Intercept).196 -1.03806 0.6780 0.02144 0.02144
b.speed50.196 0.44049 0.5434 0.01718 0.01718
b.speed60.196 0.10442 0.6335 0.02003 0.02003
b.speed70.196 0.03807 0.7167 0.02266 0.02357
b.height300.196 -0.35414 0.5441 0.01721 0.01797
b.height400.196 -0.55132 0.7357 0.02327 0.02327
b.constWood.196 2.57915 0.8370 0.02647 0.02647
b.themeEagle.196 -1.41955 0.8220 0.02599 0.02599
...

256 9 Additional Linear Modeling Topics

Respondent 196 strongly prefers wood coasters; her ratings for them are 2.5 points
higher on our 10-point scale than those for steel construction (the default level). On
the other hand, she dislikes the eagle-themed design, rating it −1.4 points lower
on average than the dragon theme. These preferences are rather different than the
population averages above.

How could we use this information? The ideal roller coaster for respondent 196,
according to her responses, would be a dragon-themed wood coaster with a top
speed of 50 mph and a height of 200 ft (the default level not shown). Although in-
dividual customization is impractical for roller coasters, a plausible marketing use
would be to segment respondents’ preferences to determine a mix of coasters (see
Chap. 11). For instance, we might ask which new coaster would maximize prefer-
ence over and above the coasters the park already has; in other words, we could
investigate a product line extension. More immediately, if we have respondents’
contact information, we could tailor marketing communications to this and similar
respondents and tell them about wooden coasters at the park.

The MCMC output also informs our confidence of estimates. One could use the
standard error of the mean estimate, but we recommend instead to use the values
from the Quantiles section of the output. Let’s look at the population estimates
again, but focus on the quantiles::

> summary(ride.mc2$mcmc[,1:8])
...
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta.(Intercept) 2.7389 2.9594 3.0764 3.18818 3.4099
beta.speed50 0.5421 0.7251 0.8114 0.91274 1.0801
beta.speed60 1.2604 1.4636 1.5725 1.68365 1.8804
beta.speed70 4.1213 4.3599 4.4834 4.60792 4.8599
beta.height300 2.7114 2.8642 2.9501 3.03263 3.1779
beta.height400 1.0898 1.3429 1.4589 1.58500 1.8017
beta.constWood -0.5219 -0.2464 -0.1105 0.01628 0.2698
beta.themeEagle -1.0999 -0.8745 -0.7571 -0.63284 -0.3609

This tells us that the fixed effect estimate for speed70 had a value between 4.12–
4.86 in 95 % of the draws from the posterior distribution. Thus, we can use these
values to express the credible interval for the parameters we report. An advantage
of Bayesian statistics is that confidence in estimates can be stated directly, without
resorting to discussion of null hypotheses.

9.4.3 Inspecting Distribution of Preference*

We wondered above whether respondents were just indifferent to wooden versus
steel coasters, or had significant differences. To investigate this in the estimated
model, we need to do a bit of work. First, we extract out all the coefficients labeled

9.4 Bayesian Hierarchical Linear Models* 257

b.constWood, which are the individual-level estimates for preference for wood
construction. There are 200 columns for these coefficients, one for each customer in
our data set.

Those values each represent a difference for the individual relative to the
overall population, so we add the values to the baseline population estimate,
beta.constWood. Because we have 1,000 sets of estimates from the MCMC
draws, we compute the total (individual plus population mean) for each of the
1,000 draws from the posterior distribution, and summarize those totals. (Do not
summarize first and then add.)

Although this process may sound complex, it is accomplished in a single, albeit
cryptic, command:

> ride.constWood <- summary(ride.mc2$mcmc[, grepl("b.constWood",
+ colnames(ride.mc2$mcmc))]
+ + ride.mc2$mcmc[, "beta.constWood"])

Deconstructing this code, it finds the columns in mcmc draws with “b.constWood” in
their names; those are the individual differences in preference. It adds the population
value, beta.constWood, to obtain the total preference for each respondent. Then
it summarizes the result. (You might try parts of this code in the R console to see
how this works.)

The result is that ride.constWood contains estimates from the posterior distri-
bution for individual-level preference of wood over steel coasters. We plot these to
see the distribution of individuals’ preferences for wood coasters:

> hist(ride.constWood$statistics[,1],
+ main="Preference for Wood vs. Steel",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))

Preference for Wood vs. Steel

Rating points

C
ou

nt
 o

f R
es

po
nd

en
ts

−4 −2 0 2 4

0
5

10
15

20
25

30

Preference for 60mph vs. 40mph

Rating points

C
ou

nt
 o

f R
es

po
nd

en
ts

−4 −2 0 2 4

0
10

20
30

40

Fig. 9.3. Histograms of individual respondent preferences in a ratings-based conjoint analysis
model.

258 9 Additional Linear Modeling Topics

We compare that to the distribution of preference for 60 mph speed (versus baseline
40mph):

> ride.speed60 <- summary(ride.mc2$mcmc[,grepl("b.speed60",
+ colnames(ride.mc2$mcmc))]
+ + ride.mc2$mcmc[,"beta.speed60"])
> hist(ride.speed60$statistics[,1],
+ main="Preference for 60 vs. 40\,mph",
+ xlab="Rating points", ylab="Count of Respondents", xlim=c(-4,4))

The resulting charts are shown in Fig. 9.3. In the first, we see a wide range across
individuals in preference of wood versus steel construction; some respondents have
negative preference for wood, and thus prefer steel, while others prefer wood. The
magnitude is very strong for some, corresponding to a difference in rating of up to
4 points. By comparison, in the second chart, preference for 60 mph coasters over
40 mph is less diverse; all respondents prefer the faster speed.

This degree of variation among respondents is known as heterogeneity, and in
addition to estimating the parameters (coefficients) for the population (beta.
<predictor name> as we saw above), MCMChregress() also estimates
their variance and covariance across the population of respondents. The results are
named VCV.<predictor name>.<predictor name> in the output, where
“VCV” abbreviates variance covariance. When the two predictor names are the
same, this gives the variance estimate for a single parameter; when they are differ-
ent, it is the covariance of two parameters.

For example, we can find the population mean and variance of the wood and 60 mph
parameters:

> summary(ride.mc2$mcmc[,c("beta.constWood", "VCV.constWood.constWood",
+ "beta.speed60","VCV.speed60.speed60")])
...

Mean SD Naive SE Time-series SE
beta.constWood -0.1128 0.1952 0.006172 0.005615
VCV.constWood.constWood 2.3458 0.3749 0.011855 0.014056
beta.speed60 1.5691 0.1618 0.005117 0.005569
VCV.speed60.speed60 0.5782 0.1351 0.004273 0.004939
...

The estimated variance for constWood is quite large at 2.34, demonstrating that
there is large heterogeneity between respondents in preference for wooden roller
coasters. On the other hand, the variance of the estimates for speed60 is much
smaller at 0.58. This reflects the difference in distributions that we saw in the his-
tograms in Fig. 9.3.

You might wish to predict respondents’ interest in one or more fully specified roller
coaster designs, as opposed to interest in individual features. Such assessment is
typical in conjoint analysis to predict product interest and is often known as mar-
ket simulation. However, there is not yet an appropriate predict() function for
MCMC models as there is for lm(). To obtain estimates of overall preference for a
design, there are two choices. One option is to calculate the net level of interest by
adding the columns of the MCMC draws that match your design (plus the baseline

9.5 A Quick Comparison of Frequentist & Bayesian HLMs* 259

population estimates), and then summarize the level of interest for each respondent.
Another option is to use a market simulation routine that compares preference be-
tween choices, such as the relative preference for your design versus some other
design; an example is available in Chapman et al. [25]. We discuss preference share
estimation further in Chap. 13.

One other thing we should mention with regard to this model—as is illustrated in our
data simulation and Fig. 9.3 as well as in the model’s assumptions—is that individ-
uals’ estimates (random coefficients) are assumed to follow a multivariate normal
distribution. This means that the model assumes most people’s preferences are in
the middle of the distribution. If you have reason to suspect that there are separate
groups with divergent and strong preferences, you might consider a mixture or latent
class model, which is outside the scope of this chapter (see [137], Chap. 5).

We hope this introduction to hierarchical Bayesian models has demonstrated their
value in understanding individual customers. Hierarchical modeling has become
widespread in marketing because it allows us both to obtain model estimates at an
individual level and to understand the diversity across customers. We’ll have more
to say about such models for conjoint analysis, in the form of choice-based conjoint
analysis, in Chap. 13. These models are also common in CRM applications, where
the goal is to estimate a likely response or outcome of some sort for individual cus-
tomers. We suggest to consider a Bayesian approach anytime that you are interested
to fit a linear model.

9.5 A Quick Comparison of Frequentist & Bayesian
HLMs*

This is an optional section for those who completed both of the previous sections.
In those sections we modeled the same data set using classical methods (Sect. 9.3)
and Bayesian methods (Sect. 9.4). We saw that the estimates of the fixed effects are
nearly identical in the two models (Sect. 9.4.1). What about the random, individual-
level effects? How similar are they?

Before examining those effects, let’s try to apply a bit of intuition to the problem.
First, we might consider that the fixed effects, even with 3,200 total observations are
not exactly identical between the two methods. Second, we should expect that the
individual-level effects, with only 16 observations per respondent would have much
more variance (because variance is inversely proportional to the square root of the
number of observations). When we consider that we are estimating 8 random effects
per respondent given only 16 observations, we should expect a lot of uncertainty in
the estimates. Third, we should understand that neither model can be regarded as
true, but only expected to be (one hopes) an unbiased estimate.

To compare the models here, you need to fit both the ride.hlm2 and ride.mc2
models as we did above (Sects. 9.3.6 and 9.4.2, respectively).

260 9 Additional Linear Modeling Topics

We’ve seen that the mean fixed effect estimates are quite similar. We can check that
visually by plotting the eight parameters of each against those from the other model.
First we get the fixed effects from each, then we plot them against one another and
add a 45◦ line to see how closely they align (Fig. 9.4).

> fix.hlm <- fixef(ride.hlm2)
> fix.hb <- colMeans(ride.mc2$mcmc[, 1:8])
> plot(fix.hlm, fix.hb)
> abline(0,1)

Figure 9.5 shows that the fixed effects are nearly identical in the two models. Note
that we use the abbreviation “HLM” to refer to the model estimated by lme4 in
order to distinguish it from “HB” for the Bayesian model, although both models are
HLM yet estimated with different methods.

The random effects have to be compared within respondent. We’ll do this for just
one respondent, ID 196 whom we considered above. First, let’s just consider the
mean estimates of each random effect. We extract those using ranef() for the
lme4 model (Sect. 9.3.6) and colMeans() to take the mean effect estimated in
the draws of the MCMC model (Sect. 9.4.2):

l

l

l

l

l

l

l

l

0 1 2 3 4

0
1

2
3

4

fix.hlm2

fix
.h

b

Fig. 9.4. Fixed effects from the two hierar-
chical models, classical and Bayesian. The
Bayesian method estimates (y-axis; estimated
using MCMCpack) are nearly identical to the
classical method estimates (x-axis; estimated
using lme4) for these simulated data.

> ranef(ride.hlm2)$resp.id[196,]
(Intercept) speed50 speed60 speed70 height300 height400

196 -0.9300097 -0.06731524 -0.3033319 0.107412 0.004081423 -0.2346389
constWood themeEagle

196 2.698524 -1.438102
> colMeans(ride.mc2$mcmc[, grepl(".196", colnames(ride.mc2$mcmc),
+ fixed=TRUE)])
b.(Intercept).196 b.speed50.196 b.speed60.196 b.speed70.196

-1.03806213 0.44049447 0.10441996 0.03807113
b.height300.196 b.height400.196 b.constWood.196 b.themeEagle.196

-0.35414215 -0.55131679 2.57914806 -1.41954714

There are some overall similarities in the two sets of estimates for respondent 196,
such as the strong negative effect for the eagle theme, relative to the same fixed
effect, and strong positive for a wooden roller coasts. However, there are small

9.5 A Quick Comparison of Frequentist & Bayesian HLMs* 261

to modest differences in some of the mean estimates. The MCMC process should
prompt you to recall that Bayesian methods estimate not only a point estimate (the
mean effect estimate reported above), but also a posterior distribution that reflects
uncertainty.

One might compare estimates in various ways; in this case, we compare them vi-
sually. We’ll do this by overlaying distribution curves for the two sets of estimates.
In the case of the HB estimates, we have 1,000 MCMC draws for each parameter,
so we plot the density() estimate of those draws. For the HLM estimates, we
construct a similar density estimate in the following way: we obtain the mean effect
from ranef() and the standard deviation of the estimation from the “postVar”
(variance) attribute of the ranef() random effect estimates for one respondent,
and use those parameters to draw random points from that distribution.

Doing this process one time—plotting the density of the MCMC draws and
then adding a distribution plot for the mean and standard deviation of the HLM
estimate—would give us a comparison of one set of parameters such as the prefer-
ence for one speed or design. We iterate that to compare multiple parameters. We do
that for parameters 2–5, the first four non-intercept parameters, as follows:

> par(mfrow=c(2,2)) # make a 2x2 plot surface
> plot.xlim <- c(-3, 3) # define limits for the x-axis
> for (i in 2:5) { # first four parameters only, for convenience
+ # plot the MCMC density for random effect i
+ mcmc.col <- which(grepl(".196", colnames(ride.mc2$mcmc), fixed=TRUE))[i]
+ plot(density(ride.mc2$mcmc[, mcmc.col]), xlab="",
+ ylim=c(0, 1.4), xlim=plot.xlim,
+ main=paste("HB & lmer density:",
+ colnames(ride.mc2$mcmc)[mcmc.col]))
+ # add the HLM density for random effect i
+ hlm2.est <- ranef(ride.hlm2)$resp.id[196, i] # mean estimate
+ hlm2.sd <- sqrt(attr(ranef(ride.hlm2, condVar=TRUE)$resp.id,
+ "postVar")[, , 196][i, i])
+ seq.pts <- seq(from=plot.xlim[1], to=plot.xlim[2], length.out=1000) # range
+ # .. find density at x-axis points using dnorm() and add that to the plot
+ points(seq.pts, dnorm(seq.pts, mean=hlm2.est, sd=hlm2.sd),
+ col="red", pch=20, cex=0.05)
+ legend("topright", legend=c("red = lmer", "black = HB"),
+ text.col=c("red", "black"))
+ }

This code is lengthy but should not be difficult for you to deconstruct by this point.
The two significant new elements here are that it uses attr(..., "postVar")
to obtain the variance of the random effect estimate for the HLM model, and uses
dnorm() to obtain a density estimate for 1,000 points that match the HLM param-
eter distribution estimate, which it adds to the plot with points().

The resulting chart in Fig. 9.5 shows that the density estimates from the two methods
are largely overlapping. It is also congruent with our intuition above, as the results
are different but not enormously so, and there is no reason to suspect either method is
highly discrepant because the distributions are generally similar in range and central

262 9 Additional Linear Modeling Topics

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

HB & lmer density: b.speed50.196

D
en

si
ty

lll
llllllll

lllll
llll
lll
ll
ll
ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll

red = lmer
black = HB

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

HB & lmer density: b.speed60.196

D
en

si
ty

ll
llllllllllllll

llllllll
llllll

lllll
lllll
llll
lll
lll
lll
lll
lll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
ll
lll
lll
llllll

llllllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll

red = lmer
black = HB

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

HB & lmer density: b.speed70.196

D
en

si
ty

ll
llllllllllllllll

llllllllll
llllllll

llllll
lllll
lllll
llll
llll
lll
lll
lll
lll
lll
lll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
lll
lll
llll
llllll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
lll

red = lmer
black = HB

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

HB & lmer density: b.height300.196

D
en

si
ty

ll
llllllllllllllll

llllllllll
lllllll

llllll
lllll
lllll
llll
llll
lll
lll
lll
lll
lll
lll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
lll
lll
llll
llllll

ll
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll

red = lmer
black = HB

Fig. 9.5. A comparison of the estimates for four of the model parameters for respondent ID
196 in the MCMC and lmer results. The estimates for each respondent have substantial

uncertainty but the distributions are generally similar and largely overlapping.

tendency, with just slightly higher variance in the MCMC estimates. Of course this
is a comparison of only four parameters for a single respondent.

We could compare similarly across all 200 respondents, either graphically or sta-
tistically, but will leave that as an exercise for the reader. If we did so, what would
we expect to see? Given that the fixed effects are nearly identical, we would expect
that deviations between the models in the random effects would be close to zero
and symmetric around zero. If you want to try this on your own, we can give you
a preview: the median difference between the models’ mean estimates of the ran-
dom effects, across all 200 individuals, for the 8 parameters, ranges from −0.015 to
0.020, with a median of 0.003.

Given that the models are similar but not identical, you might wonder which is
better, the classical or the Bayesian? The models themselves do not answer that;
you would need to consider your assumptions, the degree to which you believe each
model is appropriate (see Sect. 6.6.1), and if possible, which works better for your
situation in regard to other metrics such as external validity. As we have noted, the
models tend to show increasingly similar estimates with larger samples, while the
Bayesian methods may yield more intuitive or useful estimates with small numbers
of observations.

9.6 Learning More* 263

9.6 Learning More*

The topics in this chapter are drawn from the vast range of topics related to lin-
ear modeling, and the best general recommendation is to learn about those topics
broadly, as in Harrell [74] on strategies and issues for effective regression modeling
and Dobson [34] on GLM. The following notes provide further guidance on specific
topics.

9.6.1 Collinearity

The best way to learn more about collinearity and how to detect and address it is to
become more fluent in linear modeling in general. Good texts for learning broadly
about regression modeling are Harrell [74], and Fox and Weisberg [51].

9.6.2 Logistic Regression

Logistic regression models are especially common in health sciences (modeling im-
provement after treatment, for instance), and much of that literature is approachable
for marketers with modest translation. Hosmer et al. [78] is a standard text on such
models and demonstrates the importance of model building and assessment. Binary
outcomes are also often the subject of models in the machine learning community.
We consider machine learning models in the context of classification in Chap. 11.
A general text on those methods is Kuhn and Johnson [97].

9.6.3 Hierarchical Models

The best overall didactic text on hierarchical models is Gelman and Hill [60], which
provides outstanding conceptual explanation and a breadth of models with detailed
code in R. The one, comparatively minor limitation of Gelman and Hill is that its
level of detail and discussion can make it difficult to determine what to do when
confronted with an immediate modeling need.

Support for hierarchical models (also known as mixed effects models) is an evolving
area in R. Besides the lme4 package that we used, another common package is
nlme, which has a somewhat dated companion book, Pinheiro and Bates [123].
A more up-to-date and didactic text is Galecki and Burzykowski [57].

9.6.4 Bayesian Hierarchical Models

We have provided only an introduction to hierarchical Bayes models and their im-
portance, and have not covered the implementation issues and problems that may

264 9 Additional Linear Modeling Topics

arise. To learn more about such models, there are technical introductions at vary-
ing levels of mathematical sophistication from Kruschke [94], Gelman et al. [61],
and Rossi et al. [137]. Gelman and Hill [60] discuss hierarchical models from both
Bayesian and non-Bayesian perspectives, with examples in R.

Many Bayesian texts, including several of those noted above, discuss the im-
plementation of MCMC samplers (as in MCMCpack). There is a caveat: they
show how to write an MCMC sampler in detail, such as the internal workings of
MCMChregress(). That is a valuable and reusable skill but a very technical one.
For some readers, it may be similar to having an automotive engineer teach you how
to drive a sedan; it is highly informative but occasionally overwhelming.

MCMCpack includes functions for several other families of Bayesian models. A
general framework that handles both mixed effects and multiple response data, using
the MCMC approach, is available in the MCMCglmm package [68]. If you want to
do hierarchical logistic regression in a Bayesian framework, you could consider
MCMCglmm (see also Chap. 13).

9.7 Key Points

We covered a lot of material in this chapter. Following are some important
lessons.

9.7.1 Collinearity

• Collinearity occurs when two or more variables are highly associated. Including
them in a linear model can result in confusing, nonsensical, or misleading re-
sults, because the model cannot differentiate the contribution from each of them
(Sect. 9.1).

• The VIF provides a measure of shared variance among variables in a model.
A rule of thumb is that collinearity should be addressed for a variable when
V IF > 5 (Sect. 9.1.2).

• Common approaches to fixing collinearity include omitting highly correlated
variables, and using principal components or factor scores (see Chap. 8) instead
of individual items (Sect. 9.1.2).

9.7.2 Logistic Regression

• Logistic regression relates a binary outcome such as purchase to predictors that
may include continuous and factor variables, by modeling the variables’ asso-
ciation with the probability of the outcome (Sect. 9.2.1).

9.7 Key Points 265

• A logistic regression model, also known as a logit model, is a mem-
ber of the generalized linear models family, and is fit using glm(,
family=binomial) (Sect. 9.2.6).

• Coefficients in a logit model can be interpreted in terms of odds ratios, the de-
gree to which they are associated with the increased or decreased likelihood of
an outcome. This is done simply by exponentiating the coefficients with exp()
(Sect. 9.2.6).

• A statistically significant result does not always mean that the model is appro-
priate. It is important to explore data thoroughly and to construct models on the
basis of careful consideration (Sect. 9.2.7).

9.7.3 Hierarchical Linear Models

• In common marketing discussion, a hierarchical model estimates both group
level effects and individual differences in effects. Such models are popular
in marketing because they provide insight into differences among customers
(heterogeneity) and distribution of preference. HLM are exemplified when we
estimate the importance of effects for individuals as well as for an overall pop-
ulation (Sect. 9.3).

• Effects that are associated with all observations are known as fixed effects, and
those that differ across various grouping levels are known as random effects
(Sect. 9.3.1).

• These models are also known as mixed effect models, because the total effect
for each person is composed of the effect for the overall population (the fixed
effect) plus the per-individual (random) effect. We estimated an HLM using
lmer() from the lme4 package (Sect. 9.3.5).

• The difference between estimating hierarchical effects, as opposed to including
the grouping variable as a factor in a standard linear model, is that a hierarchical
model estimates every specified effect for each individual or group, not only a
single adjustment term.

• The formula for a mixed effect model includes a grouping term, + (...
| group). Common models have a different intercept by group using (1 |
group) or different intercepts and slopes for predictors within each group us-
ing (predictor | group) (Sects. 9.3.5, 9.3.6). To estimate an individual-
level model, the grouping term is typically the respondent identifier.

• Hierarchical models can be used to group observations at other levels than the
individual level. For example, we might wish to group by store, advertising
campaign, salesperson, or some other factor, if we want to estimate effects that
are specific to such a grouping (Sect. 9.3.7).

266 9 Additional Linear Modeling Topics

• A common marketing application of HLM is conjoint analysis, to estimate both
overall preference and individual differences in preference. In this chapter, we
demonstrated ratings-based, or metric conjoint analysis (Sect. 9.3.2).

9.7.4 Bayesian Methods for Hierarchical Linear Models

• Hierarchical models in marketing are often estimated with Bayesian methods
that are able to pool information and produce best estimates of both group and
individual effects using potentially sparse data (Sect. 9.4.2).

• A Bayesian HLM can be estimated using MCMChregress() in the
MCMCpack package (Sect. 9.4.2).

• Model coefficients from a hierarchical model are inspected using summaries of
the many estimates that are collected in an mcmc object (Sects. 9.4.2, 9.4.3).

10

Confirmatory Factor Analysis and Structural
Equation Modeling

In this chapter, we discuss structural equation models in R. We show how R can be
used for both covariance-based and partial least squares modeling, and present basic
guidelines for model assessment. We also demonstrate the power of R to simulate
data and to use simulation to inform our expectations.

Structural models are helpful when your modeling needs meet any of these condi-
tions: you need to evaluate interconnections of multiple data points that do not map
neatly to the division between predictors and an outcome variable (as would be the
case in linear modeling); you wish to include unobserved latent variables such as
attitudes and estimate their relationships to one another or to observed data; or you
wish to estimate the overall fit between observed data and a proposed model with
latent variables or complex connections. From this point of view, structural models
are closely related to both linear modeling because they estimate associations and
model fit, and to factor analysis because they use latent variables.

The uses for structural models in marketing follow from those needs. For exam-
ple, the models can be used to determine whether concepts on a survey match as-
sumptions, for instance to assess whether items are in fact related to an underlying
construct as one hopes; this is an extension of factor analysis (see Chap. 8). With re-
gard to latent variables, the models can be used to estimate the association between
outcomes such as purchase behavior and underlying attitudes that influence those,
such as satisfaction and brand perception. An even more complex model would be
one where several latent variables are simultaneously associated with one another
in multiple ways. For example, brand perception, purchase intent, willingness to
pay, and satisfaction all relate to one another as latent constructs, and also relate in
multiple ways to observed consumer behaviors such as purchases.

We assume in this chapter that the reader is familiar with structural models and
primarily wishes to learn the R approach to them. The topic is too complex for a
single chapter although we attempt to present an overview that is understandable

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 10

267

268 10 Confirmatory Factor Analysis and Structural Equation Modeling

for any analyst. Section 10.1 provides a conceptual introduction for readers new to
the area; experienced analysts may wish to skip to Sect. 10.1.1.

10.1 The Motivation for Structural Models

The real world rarely divides into nicely controlled experiments and marketers are
often interested to test complex models. Consider a consumer’s likelihood to pur-
chase a new product. The likelihood will be influenced by many factors such as prior
product experience, perception of brand and features, price sensitivity, promotional
effects, and so forth.

Imagine that we are brand managers interested in the impact of brand perception
on likelihood to purchase. One approach to assess this might be to collect survey
data on stated likelihood to purchase the product and attitudes about the brand. In
schematic terms, we might model this as a linear relationship (Chap. 7): purchase ∼
perception. Yet whether we find an effect or not, our model is open to the challenge
that there are many other possible variables that we didn’t assess. Perhaps an effect
we thought we found was due to prior experience and not to brand; or perhaps we
didn’t find an effect because we failed to account for a promotional campaign that
influences the relationship.

Even imperfect assessment of those additional influences can improve our under-
standing. In a statistical model, any unbiased—even if incomplete—capture of vari-
ance will improve other parts of the model. For instance, we might only care about
the relationship between brand perception on likelihood to purchase; yet if our
model also includes promotion and prior brand experience, it will capture some
of the variance due to those factors and give us a better, more realistic estimate for
the relationship between brand and purchase. Including those influences will make
us and our stakeholders more confident.

A common way to test complex models of this kind in marketing is structural equa-
tion modeling (SEM). It is impossible to model every possible influence in a market,
and we don’t recommend trying. Yet with SEM, it is feasible to do several things
that improve our models: to include multiple influences, to posit unobserved con-
cepts that underlie the observed indicators (i.e., constructs such as brand preference,
likelihood to purchase, and satisfaction), to specify how those concepts influence
one another, to assess the model’s overall congruence to the data, and to determine
whether the model fits the data better than alternative models.

As we will show, this is done by creating a graphical path diagram of influences
and then estimating the strength of relationship for each path in the model. Such
paths often concern two kinds of variables: manifest variables that are observed,
i.e., that have data points, and latent variables that are conceived to underlie the
observed data. For example, in the first model we examine, product involvement is
conceived as a latent factor that underlies several other latent factors such as image

10.1 The Motivation for Structural Models 269

involvement, and those factors in turn are observed as manifest variables on survey
items. The set of relationships among the latent variables is called the structural
model, while the linkage between those elements and the observed, manifest vari-
ables is the measurement model.

Structural models pose many potential pitfalls and have a great deal of specialized
jargon. We attempt to use a minimum of technical jargon in this chapter, yet we urge
you not to use this chapter as your only guide to such models. Despite that warning,
we believe that the chapter demonstrates the power and importance of such models
and will prepare you to learn more about them.

Structural equation models are similar to linear regression models (Chap. 7) but dif-
fer in three regards. First, they assess the relationships among many variables, with
models that may be more complex than simply predictors and outcomes. Second,
those relationships allow for latent variables that represent underlying constructs
that are thought to be manifested imperfectly in the observed data. Third, the mod-
els allow relationships to have multiple “downstream” effects. For example, experi-
ence with a product (a stated variable on a survey) might relate to brand perception
(a latent construct expressed in several survey items) which then relates to willing-
ness to pay (a latent construct) which relates observed behavior to purchase or not at
a particular price point (perhaps in transaction data or as a stated choice on a survey
item).

Finally, we close this introduction with a warning: with this potential for such con-
nections among latent variables, it is tempting to interpret structural models as being
about causation and many analysts, stakeholders, and even authors of academic pa-
pers do this. We believe that it is possible to use these models as part of causal
modeling but to do so requires attention to issues and models that are well outside
the scope of this book. In general, however, we recommend that you consciously
avoid all discussion of causation, and instead talk about relationships or association
among the latent variables.

10.1.1 Structural Models in This Chapter

In examining R’s capabilities to specify, test, and visualize structural equation mod-
els (SEM), we present two examples: a confirmatory factor analysis (CFA) model
that evaluates an assessment scale for product involvement, and a more general SEM
that models the likelihood to repurchase a product, as related to quality, value, price,
and customer satisfaction of a prior purchase. In each case, we demonstrate how to
simulate data for test purposes, how to specify and fit the proposed model, and how
to assess the proposed model.

We also show two different SEM approaches: the most common but more
demanding covariance based (CB-SEM) approach, and the more flexible par-
tial least squares (PLS-SEM) approach. We start with CB-SEM because it is
virtually synonymous with “SEM” in the literature, especially outside marketing.

270 10 Confirmatory Factor Analysis and Structural Equation Modeling

Nevertheless, PLS-SEM is often able to fit models in situations where CB-SEM
fails and has become popular for marketing applications in the past decade, so we
demonstrate it as well.

Several R packages are able to fit SEMs. In this chapter, we demonstrate CB-SEM
using the lavaan package [135] (where lavaan abbreviates “latent variable
analysis”) because of its simplicity for model specification and its rich set of
available tools for data simulation, model comparison, and visualization. Then we
demonstrate PLS-SEM with the semPLS package.

10.2 Scale Assessment: CFA

We start by considering a survey scale that assesses product involvement, using the
survey items shown in Table 10.2 [26]. This survey scale reflects a model in which
product involvement is a hierarchical construct comprising three factors: general
involvement with a product category, involvement with the choices and features of
the product, and involvement with the category in terms of personal image.

On the survey, three subscales reflect those factors and could lead to higher or lower
scores depending on how consumers view a product. For instance, as marketers
we would expect digital cameras to engage consumers in terms of their technical
features and thus to score high on feature involvement. By contrast, clothing is a
key component of personal image, and could be expected to score high on image
involvement. Either category might be high or low on general involvement according
to the interests of a specific respondent. To consider other categories, a generic good
such as paper might show low consumer involvement on all three factors, while
automobiles might be relatively high on all three. This model was proposed as an
alternative to a single factor model of product involvement, where involvement is
simply high or low overall with no differentiation between factors such as feature or
image involvement.

The three-factor model here was named PIES as an abbreviation of the “Product
Involvement and Enthusiasm Scale” [26]. It could be used in many marketing situa-
tions. For instance, if we assess that our product category is high on feature involve-
ment, we might develop communication and positioning strategies that emphasize
technical specifications. It may also be used to inform targeting: if we determine
that a given demographic group views our category as important to their personal
image, then we might target them with campaigns that highlight our product in terms
of personal image.

The PIES structural model proposes four latent (unobserved) constructs that under-
lie product involvement: a general involvement factor (here abbreviated as “Gnr”),
a choice/feature factor (hereafter “Feature” or “Ftr”), an image (“Img”) factor, and a
higher-order PIE factor (product involvement and engagement) that is conceived as
the underlying level of interest underlying the other three factors. This hierarchical

10.2 Scale Assessment: CFA 271

factor model is shown in Fig. 10.1. The relationships among these are linear relation-
ships of unobserved, latent variables that match a particular theory about product
involvement (and whose relationship we will specify and test below).

Gnr Ftr Img

PIE

Fig. 10.1. PIES latent construct (factor) model, showing three factors of product involvement
(General involvement = Gnr, Feature = Ftr, and Image = Img). These three latent factors
relate to a higher-order, overall latent construct for involvement, PIE. None of these latent

constructs is directly observed; for the observational model, see Fig. 10.2.

The three involvement factors and the higher-order PIE factor are modeled as latent
variables that are not directly observed but are instead conceived to influence the
survey items that manifest them. On the survey, each factor is represented by a
subscale comprising several items, as shown in Table 10.1.

In the hierarchical model, the overall PIE factor does not directly influence any items
on the scale. Rather, it influences the other three factors as a higher order latent
variable. The complete structural model, showing the hierarchical relation of the
latent constructs and the manifest scale items that are observed for each construct,
is shown in Fig. 10.2.

An analyst’s question with PIES—and the question for the PIES authors in the cited
paper—might be this: Is the PIES scheme a good model for some set of survey
responses for the items in Table 10.2? If we confirm that PIES is a good model,
we will be much more confident in using this survey data to draw inferences about
product involvement than if we had not assessed the model. We show how SEM in
R can address that question.

To do this, we use a particular application of SEM known as CFA. In CFA, one
specifies the factor structure and asks, “How well does the proposed model agree
with the structure of the data?” We also address a closely related question, “Is that
model better than some other specified model?”

272 10 Confirmatory Factor Analysis and Structural Equation Modeling

Table 10.1. The hierarchical product involvement (PIES) scale, showing the subscales
(factors) and items

Item Text Reversed?
General scale

i1 are not very important to me. Yes
i2 I never think about . Yes
i3 I am very interested in .

Feature scale
i4 In choosing a I would look for some specific features or options.
i5 If I chose a new I would investigate the available choices in depth.
i6 Some are clearly better than others.
i7 If I were choosing a , I would wish to learn about the available

options in detail.
Image scale

i8 When people see someone’s , they form an opinion of that person.
i9 A expresses a lot about the person who owns it.
i10 You can learn a lot about a person by seeing the person’s .
i11 It is important to choose a that matches one’s image.
The survey would be given for a specific product category, filling in the blanks with a

descriptive phrase such as “digital cameras” or “diet soda.” From [26]

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

PIE

Fig. 10.2. The complete PIES model with latent factors and manifest scale items.

10.2.1 Simulating PIES CFA Data

To demonstrate CFA, we create a simulated data set with known factor structure that
corresponds to the PIES model in Table 10.2. We use this data to demonstrate how
to assess a CFA model (which ordinarily would be done with data collected from
respondents). Then we evaluate alternative models and discuss the importance of
model comparison in CFA.

10.2 Scale Assessment: CFA 273

If you prefer to download the data for the CFA example:

> piesSimData <- read.csv("http://goo.gl/yT0XwJ")
> summary(piesSimData)

i1 i2 i3 i4 i5
Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000
Median :4.000 Median :4.000 Median :4.00 Median :4.000 Median :4.000
Mean :4.339 Mean :4.104 Mean :4.11 Mean :4.039 Mean :3.999
...

Once you have the data, you may proceed to Sect. 10.2.2. Otherwise, continue here;
data generation for CFA turns out to be rather easy.

We use the lavaan package for core SEM (and CFA) functionality including data
simulation and model fitting [135], and extend its capabilities for model comparison
and visualization using two other packages, semTools [124] and semPlot [43].
Our first step is to install those packages and make them available in R:

> install.packages(c("lavaan", "semTools", "semPlot"))
> library(lavaan)
> library(semTools)
> library(semPlot)

In lavaan, a structural model may be specified using syntax that is rather similar to
R’s linear model formulas (Sect. 7.3). We specify two models here: (1) a structural
model that we fit to the data and whose structure we wish to assess, and (2) a data
model that we use only to generate simulated data for test purposes. The structural
model is specified according to the model as shown in Fig. 10.2, written as a simple
string that lavaan will parse:

> piesModel <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ PIES =∼ General + Feature + Image "

In SEM code we read the “=∼” symbol as “is manifested by,” which means that
it is estimated to be a single variable that is a composite of the three items (with
some degree of unreliability or error in each). Each line in this formula defines a
new latent variable—General, Feature, and so forth—that does not appear in
the data set but which lavaan will estimate for us based on the observed items
i1, i2, etc. We can then use these latent variable in other parts of the formula to
express additional relationships. For instance, in this code the latent variable PIES
relates in turn to the other latent variables General, Feature, and Image. Such
relationships of latent variables are a key differentiator between SEM and regular
linear modeling.

274 10 Confirmatory Factor Analysis and Structural Equation Modeling

The piesModel formulas say that PIES is manifested by three factors: General,
Feature, and Image. Each of those is manifested by 3 or 4 of the items i1 through
i11 as defined in Table 10.1.1

Next we simulate data similar to what might come from a PIES survey of consumers.
(Of course if you only test a model against real data, then these data generation steps
are not required.) We define our data simulation model using the same SEM syntax,
but add factor loading coefficients for the items and subfactors in order to specify
the structural relationships. We use factor loadings that approximate those reported
by the PIES authors [26]:

> piesDataModel <- " General =∼ 0.9*i1 + 0.7*i2 + 0.5*i3
+ Feature =∼ 0.3*i3 + 0.7*i4 + 0.9*i5 + 0.5*i6 + 0.9*i7
+ Image =∼ 0.2*i3 + 0.8*i8 + 0.9*i9 + 0.8*i10 + 0.7*i11
+ PIES =∼ 0.7*General + 0.8*Feature + 0.8*Image"

We generate a data set with that factor structure by setting a random number seed
and using simulateData(MODEL, sample.nobs), where sample.nobs
is the number of observations, or N. We choose N = 3,600 to approximate data
reported in the PIES paper:

> set.seed(10001) # another island Zip code
> piesSimData.norm <- simulateData(piesDataModel, sample.nobs=3600)
> print(head(piesSimData.norm), digits=2)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
1 -0.16 2.07 1.14 -1.746 -1.68 -1.79 -1.46 -0.032 1.82 0.610 -0.032
2 -0.38 2.27 0.79 0.922 0.23 0.35 0.51 0.963 -1.11 -0.037 0.792
3 -0.65 -3.00 0.25 -0.077 -0.35 0.12 -1.63 -0.766 -0.22 -1.220 0.462
...

Each row here represents a set of hypothetical survey responses from one respon-
dent. Note that the generated data is continuous (drawn from a normal distribution
with decimal values), so it is not yet appropriate for PIES; as survey responses, PIES
items are 1–7 Likert-type scores [26].

In order to convert the continuous data to discrete survey data, we use the function
cut(DATA, breaks=K) that divides continuous data into K groups, expressed
as K factor levels (see Sect. 12.4.1 for more on cut()). We could do this separately
for each of the 11 columns of data, but it is more instructive to do it in a way that is
generalizable. That involves a few conceptual steps.

We use cut() to convert a vector of continuous numeric data into seven factors,
using labels=FALSE to keep the result as integers instead of labeled, nominal
values. Then we enclose that in an anonymous function that can be used repeat-
edly by apply(). We apply() that anonymous recoding function to each of the
columns of our data set using the list version of apply (lapply()), and assemble

1 If you are experienced with other SEM software, you may wonder about details such as
the need to fix a path for each factor and to specify error terms. Those are automatically
handled by lavaan with defaults that are appropriate for many situations (for instance,
having uncorrelated errors and fixing the first manifest variable path to 1.0).

10.2 Scale Assessment: CFA 275

the resulting set of discrete numeric vectors into a new data.frame. That comes
together in amazingly compact R code (you should spend time deconstructing and
tinkering with it to see how this works):

> piesSimData <- data.frame(lapply(piesSimData.norm,
+ function(x) { cut(x, breaks=7, labels=FALSE) }))

We now perform our usual data quality checks:

> library(car)
> some(piesSimData)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
11 3 3 4 2 2 5 3 2 4 3 4
709 3 3 3 5 4 3 3 3 4 4 4
1392 4 3 3 3 4 4 3 4 4 5 4
...
> library(psych)
> describe(piesSimData)

vars n mean sd median trimmed mad min max range skew kurtosis se
i1 1 3600 4.34 1.00 4 4.32 1.48 1 7 6 -0.07 -0.01 0.02
i2 2 3600 4.10 1.05 4 4.09 1.48 1 7 6 -0.01 -0.07 0.02
i3 3 3600 4.11 1.02 4 4.10 1.48 1 7 6 -0.01 -0.13 0.02
...

The data set now comprises discrete values from 1–7, averaging about 4, with good
distribution properties (no skew, sd around 1, and so forth). We visualize the rela-
tionships among the items using scatterplotMatrix() from the car package
[51], selecting a subset of the items—two items from each factor—to make inspec-
tion easier:

> library(car)
> library(RColorBrewer)
> scatterplotMatrix(piesSimData[, c(1, 2, 4, 5, 8, 9)], diag="histogram",
+ col=brewer.pal(3, "Paired"), ellipse=TRUE)

The result is shown in Fig. 10.3. In looking at the scatterplots, we see the situation
as expected: items are discrete (as shown in histograms on the diagonal), and items
have higher correlation within a subscale (as in the off-diagonal plots for i1 vs. i2)
than they do across scales (such as i1 vs. i4).

Because this data reflects a factor model, we may also do a quick inspection of the
apparent factor structure. Although we use CFA later to do a strong test of factor
structure, it is useful to perform a brief check using the factanal() command to
perform an exploratory factor analysis (EFA, see Sect. 8.3):

> factanal(piesSimData, factors=3)
...
Loadings:

Factor1 Factor2 Factor3
i1 0.138 0.119 0.675
i2 0.614
i3 0.277 0.362 0.476
i4 0.151 0.608
i5 0.126 0.715 0.102

276 10 Confirmatory Factor Analysis and Structural Equation Modeling

Fig. 10.3. Scatterplot matrix for selected items in the simulated PIES data. Individual items
have discrete values that approximate a normal distribution (in the histograms on the diago-
nal). Items are all positively correlated. Items within a proposed factor, such as i1 and i2,

show stronger association than those in differing factors.

i6 0.519
i7 0.133 0.678 0.154
i8 0.665 0.137 0.128
i9 0.706 0.138 0.130
i10 0.655 0.117 0.145
i11 0.632 0.126
...

We see three plausible factors comprising items i8–i11, i4–i7, and i1–i3, respec-
tively, as we would expect (the factor order is irrelevant). As a reminder, the EFA
model does not test or confirm the PIES model; that is what CFA does. Instead, EFA
reassures us that the data look reasonable before proceeding.

To recap, the simulated data—created using just 4 commands in R—have the kind
of structure that might be expected from a consumer survey using the items in
Table 10.2. We now proceed to the CFA.

10.2 Scale Assessment: CFA 277

10.2.2 Estimating the PIES CFA Model

CFA assessment begins by defining the model that we wish to evaluate. In this
case, we model the three PIES factors (latent variables), General, Feature, and
Image as manifest in items i1–i11. We then model the overall PIES latent vari-
able as the composite of the other three factors (see Sect. 10.2.1 for an explanation
of the formula syntax here):

> library(lavaan)
> piesModel <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ PIES =∼ General + Feature + Image "

We fit this model to data using cfa(MODEL, data=DATA) and inspect the re-
sult with summary(FIT, fit.measures=TRUE). The output of summary
(FIT) is lengthy in this case so we abbreviate it:

> pies.fit <- cfa(piesModel, data=piesSimData)
> summary(pies.fit, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 41 iterations

Number of observations 3600
...
Comparative Fit Index (CFI) 0.975
Tucker-Lewis Index (TLI) 0.966

...
Root Mean Square Error of Approximation:
RMSEA 0.041
90 Percent Confidence Interval 0.036 0.045
P-value RMSEA <= 0.05 1.000

Standardized Root Mean Square Residual:
SRMR 0.030

Parameter estimates:
Estimate Std.err Z-value P(>|z|)

Latent variables:
General =∼

i1 1.000
i2 0.948 0.042 22.415 0.000
i3 1.305 0.052 25.268 0.000

Feature =∼
i4 1.000
i5 1.168 0.037 31.168 0.000
i6 0.822 0.033 25.211 0.000
i7 1.119 0.036 31.022 0.000

Image =∼
i8 1.000

278 10 Confirmatory Factor Analysis and Structural Equation Modeling

i9 0.963 0.028 34.657 0.000
i10 0.908 0.027 33.146 0.000
i11 0.850 0.027 31.786 0.000

PIES =∼
General 1.000
Feature 0.875 0.057 15.355 0.000
Image 0.932 0.060 15.628 0.000

...

The CFA output establishes that the three-factor hierarchical model fits the data
well. In the upper portion of the summary, we see that fit indices are strong (e.g.,
CFI = 0.975) and residuals are low (e.g., RMSEA = 0.041). The lower part of the
summary shows that model parameters for the paths of latent variables to items, and
for the upper-level PIES factor to the three subfactors, are all significant (“P(> |z|)”
= 0), are similar to one another in magnitude (ranging 0.822–1.305), and are not far
from 1.0 (a good thing because the items are intended to be used in simple additive
subscales).

If these were real data, the CFA would establish both that the PIES hierarchical
model fits well and—because the factor-item loadings are around 1.0—that it is rea-
sonable to add up the items as a simple sum to form subscale scores, as is common
for such surveys (instead of computing weighted factor scores).

The final model with fitted parameter estimates is plotted with the semPaths()
command from the semPlot package. We use the argument edge.label.cex
to scale the parameter font to be smaller and more readable. Many R packages use
“cex” (character expansion) to rescale the font for some element of the plot (in this
case, edge labels, i.e., parameter estimates). Setting cex > 1.0 enlarges a font; cex
< 1.0 shrinks it. If you’re looking for a way to rescale a font, try searching for “cex”
in a plot routine’s help file. The model is drawn as follows:

> library(semPlot)
> semPaths(pies.fit, what="est", fade=FALSE, residuals=FALSE,
+ edge.label.cex=0.75)

The result is Fig. 10.4. This figure expresses some of the crucial information from
the longer CFA text output above, in a more readable way. The graphical version
makes it easy to see the relationships between the latent and manifest variables and
to browse the coefficient values.

10.2.3 Assessing the PIES CFA Model

The PIES model fits the data extremely well. If this were real data, we’d be done,
right?

No! A common error with SEM is to propose a model, fit the data, and then assert
on the basis of fit indices that the model is “good.” The problem is that some other,

10.2 Scale Assessment: CFA 279

0.82 0.85

0.87

0.91

0.93

0.95 0.961.00 1.00 1.00

1.00

1.121.171.31

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

PIE

Fig. 10.4. Coefficients for the PIES structural model, using simulated consumer survey
responses. Dotted lines represent coefficients automatically fixed to 1.00.

and perhaps more reasonable, model might be just as good or even better. Thus,
there is an important second stage: establish that the proposed model fits better than
a reasonable alternative model.

We test the PIES hierarchical model (“PIES 3+ 1”) against two alternatives. The
first is a single factor alternative where one underlying involvement factor manifests
in all items (as in Fig. 10.5), which we call “PIES 1.” PIES 1 is a simpler model that
proposes product involvement to be a single latent factor; if it fits the data as well
as PIES 3+ 1, then we could reject the more complex model and use this simple
one instead. It is a good alternative to the hierarchical model both because it is
simpler and because it focuses on the top level of the hierarchy, assessing whether
it is advantageous to add the complications of the subfactors in PIES 3+1.

The second alternative we consider is an uncorrelated three-factor model, where
three independent factors are manifest in the three respective sets of items (shown
in Fig. 10.6), or “PIES 3.” This omits the top level, overall factor from the hierar-
chy and focuses on the three subfactors, asking whether they are better conceived as
being separate instead of relating to a hierarchical model. If the PIES 3 model fits
as well as PIES 3+ 1, we could reject the complication of the hierarchical model
and consider using the subscales as independent, largely unrelated assessment
measures.

We specify and fit a one-factor model for PIES 1 using lavaan as follows:

> piesModelNH1 <- " PIES =∼ i1 + i2 + i3 + i4 + i5 + i6 +
+ i7 + i8 + i9 + i10 + i11 "
> pies.fit.NH1 <- cfa(piesModelNH1, data=piesSimData)

There is a complication in asserting the PIES 3 model. We can see in Fig. 10.6 that
the number of paths and manifest variables in PIES 3 is the same as in the baseline
3+ 1 hierarchical model (Fig. 10.2) because we allow the factors to be associated
with one another. Because it estimates the same number of paths among all the

280 10 Confirmatory Factor Analysis and Structural Equation Modeling

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

PIE

Fig. 10.5. A one-factor alternative model, PIES 1, in which a single latent factor of product
involvement is manifest in all of the items, with no subfactors. We use this to test a simpler

model than PIES 3+1 and determine whether it fits the data just as well.

variables, the global fit index for PIES 3 would be identical to that of PIES 3+ 1.
To differentiate the models, it is necessary to constrain the PIES 3 model in some
other way.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

Gnr Ftr Img

Fig. 10.6. A three-factor alternative, PIES 3. To differentiate this from the PIES 3+1 model,
the latent factor correlations here are constrained to show weak association among the factors.
This allows us to test a model where the factors express largely separate constructs as opposed

to closely related ones.

How should we constrain PIES 3? Because PIES 3 asserts that the 3 factors are
largely independent and not part of a larger hierarchy, it implies that their inter-
correlations should be relatively low. Thus, we could constrain the latent variable
correlations to a small value such that they are not reasonably part of a hierarchy.
A correlation of zero is unreasonable as it implies absolutely no relationship.2 In-
stead of zero, we fix the non-hierarchical model to have correlation of 0.1 between

2 Always be wary of models that assert or test independence; a well-known phenomenon
in human research is that within a given domain, “everything correlates with everything
else.” Paul Meehl referred to this as the “crud” factor in research, and showed that it leads
to research that finds “significant” associations everywhere [112].

10.2 Scale Assessment: CFA 281

the latent variables; this reflects an expectation of modest association that is too
weak to justify a hierarchical model.

In lavaan we add the fixed relationships to the PIES 3 model syntax as additional
lines and fit the model to the simulated data:

> piesModelNH3 <- " General =∼ i1 + i2 + i3
+ Feature =∼ i4 + i5 + i6 + i7
+ Image =∼ i8 + i9 + i10 + i11
+ General ∼∼ 0.1*Feature
+ General ∼∼ 0.1*Image
+ Feature ∼∼ 0.1*Image "
> pies.fit.NH3 <- cfa(piesModelNH3, data=piesSimData)

In this model specification, the “∼∼” operator specifies a correlation between vari-
ables. By using a fixed value 0.1, we specify that the value of the correlation should
not be estimated but should be constrained to 0.1. The PIES 3 model requires that
correlation be small among the latent factors, so we set the three possible correla-
tions (General∼Feature, General∼Image, and Feature∼Image) to our chosen value
of 0.1.

The semTools package provides a command to compare CB-SEM (and therefore
CFA) models: compareFit(MODEL1, MODEL2, ...). This reports individ-
ual fit measures for each model along with pairwise model comparisons. Our PIES
models are nested, meaning that one might start with the hierarchical model and
then fix some of the paths coefficient to derive the three-factor model (specifically,
constraining the factor correlations to 0.1), and again could fix some paths to derive
the single factor model (specifically, setting the factor correlations to 1.0 so that they
are identical and thus a single factor).

Here is the comparison of all three models:

> library(semTools)
> compareFit(pies.fit.NH1, pies.fit.NH3, pies.fit)
################### Nested Model Comparison #########################

chi df p delta.cfi
pies.fit - pies.fit.NH3 222.43 3 <.001 0.0222
pies.fit.NH3 - pies.fit.NH1 2774.50 0 <.001 0.2812

#################### Fit Indices Summaries ##########################
chisq df pvalue cfi tli aic bic rmsea srmr

pies.fit.NH1 3284.581 44 .000† .672 .589 108812.709 108948.860 .143 .102
pies.fit.NH3 510.078 44 .000† .953 .941 106038.205 106174.356 .054 .078
pies.fit 287.649 41 .000† .975† .966† 105821.776† 105976.494† .041† .030†

We start by inspecting the second half of the report, the “Fit Indices Summaries.”
For the non-hierarchical three-factor model PIES 3 (pies.fit.NH3), the fit was
strong (e.g., CFI = 0.953, RMSEA = 0.054). If that were the only model that
we tested, we would have concluded that it was an excellent fit. Yet when we

282 10 Confirmatory Factor Analysis and Structural Equation Modeling

compare the PIES 3 + 1 model, pies.fit, the fit indices are stronger (CFI =
0.975, RMSEA = 0.041). The stronger fit indices are indicated by the dagger
symbol (“†”).

Is PIES 3+1 stronger than PIES 3? We turn to the upper portion of the report to
examine the model comparison. The first line of output (“pies.fit - pies.fit.NH3”) re-
ports the Chi-square test of the difference between the two models: Chisq = 222.43,
d f = 3. This is a strong and statistically significant difference, p < 0.001. We also
see in the results that the one-factor model PIES 1 was a poor fit (CFI = 0.672 in
the fit index summary) and much worse in comparison with PIES 3+ 1 than even
the non-hierarchical PIES 3 model. (In Sect. 11.3.5 we will also see how to interpret
the bic values for model comparison.)

What does this tell us? For our data—which of course were simulated to fit the 3+1
model—the three-factor hierarchical model was an excellent fit in itself and was
better than two reasonable alternative models. If this were the case in real data (as
claimed in [26]), it would establish a strong argument for the model.

What does this mean for us as marketers? It means that, if we saw such results in
a product category of interest to us, we would not assume that product involvement
is a unitary, single factor. Instead, we would wish to use the somewhat more infor-
mative and differentiated hierarchical model that assesses overall product interest
alongside measures of feature and image involvement. Additionally, because the
overall model fits the data well, it tells us that the 3+1 model is a good representa-
tion of associations in the data (relative to plausible alternatives). This enhances our
confidence that the survey items really do assess what we intend.

We note two important lessons. First, the simulated data is useful to examine the
likelihood of being able to support a model. Simulated data showed us that the non-
hierarchical PIES 3 model could fit the data well—if interpreted on its own—even
when the PIES 3 + 1 model was “true” given the data simulation process. Such
tests with simulated data inform us about the power needed for model compari-
son.

Second, we see that simply establishing strong fit for a model is not enough; we
also need to establish superiority over alternative models. If we only tested the non-
hierarchical three-factor PIES 3 model, we might have concluded that it was an
excellent model. Yet when we compare it to the PIES 3+ 1 hierarchical model,
we find the latter is a better fit to the data. We will encounter this again when we
consider more general SEM models.

For marketers, there is another implication: when we devise a survey scale, we
should test the assumed factor model to ensure that it meets our expectation. Imag-
ine that we write a survey that asks about product preferences in four areas: perfor-
mance, price, appearance, and quality. If each area has a few survey items and we
add them together—as is common with surveys—then we are implicitly asserting a
four-factor model for our survey. Before we use those added-up scores, we should

10.3 General Models: Structural Equation Models 283

check our assumption about factors. Does our model match the data as we believe it
should? If not, we might draw very misleading conclusions from the data. Test the
model! R and lavaan make it easy to do this in just a few lines of code.

10.3 General Models: Structural Equation Models

We now consider a more general form of structural models, where latent constructs
may influence one another in more complex ways. We consider an example from
Iacobucci [83] concerning customer satisfaction ratings and their effect on stated in-
tention to repurchase HP printers. The data consisted of responses to 15 satisfaction
items, where there were three items each for factors of Quality, Cost (fair pricing),
Value, Customer Satisfaction (CSat), and Repeat purchase intention.

The survey items, the variable names we use for them, and the higher-order latent
factors (Quality, Cost, and so forth) are shown in Table 10.2.

The proposed structural model for the associations among the latent variables is
shown in Fig. 10.7. For brevity, we omit consideration of the measurement model
and the individual items for each factor.

As marketers, if we had collected consumer data from a survey such as this, we
would have two goals. First, as we did with CFA above, we would wish to as-
certain whether our proposed model of influence—for example, that perception of
cost is associated with both perception of value and intent to repurchase, as shown
in Fig. 10.7—is an adequate model for the data we have collected. Second, if the
model fits the data well, we would answer questions about the relationships: how
much does perception of quality relate to satisfaction? Is quality more important
than perceived value? What is the largest determinant of stated intent to purchase
again? And so forth.

To explore how to do this, we follow the same process as with CFA above. Specifi-
cally, we use a covariance-based SEM with four steps:

1. Define the structural model to be tested

2. Create simulated data that we use for illustration and debugging

3. Fit the model to the data

4. Compare the model to a simpler, alternative model

As always, simulating the data in Step 2 is illustrative here; you would use your own
data instead, although we believe additional simulation is useful.

284 10 Confirmatory Factor Analysis and Structural Equation Modeling

Table 10.2. A 15-item survey of purchase satisfaction, perceived value, and repurchase intent

Item Text
Quality
q1 The quality of the HP printer I bought is excellent
q2 HP printers are known to be highly reliable
q3 I’m sure my HP printer will last a long time

Cost
c1 The HP printer was reasonably priced
c2 HP sets fair prices for its products
c3 The HP printers are no more expensive than others

Value
v1 I feel like I got good value for this purchase
v2 The quality of the printer is worth its cost
v3 I could tell my boss this purchase was good value

CSat
cs1 I am very satisfied with my newly purchase HP printer
cs2 My printer is better than I expected it would be
cs3 I have no regrets about having bought this printer
Repeat
r1 I would buy another HP if I had to buy another printer
r2 I would buy other HP products
r3 I would tell my friends and coworkers to buy HPs

Item (variable) names are listed in the first column. Each division (Quality, Cost, Value, etc.)
represents a latent factor manifest in the three following items. From Iacobucci [83]

Quality

Cost Value CSat Repeat

Fig. 10.7. A model of re-
peat purchase intent. In this
model, the cost of a product
is associated with both per-
ception of value and intent to
repurchase, while perception
of quality relates to both per-
ceived value and satisfaction,
which is then associated with
repurchase. Adapted from
Iacobucci [83].

10.3.1 The Repeat Purchase Model in R

We begin by specifying the structural model that we wish to assess. This consists
of a left-hand name of each latent factor, followed by the “is manifested by” sym-
bol, “=∼” with the latent variables that it influences and its observed manifest vari-
ables (in this case, the 15 items from the customer survey). For convenience, we
write the latent variables with capitalized names, and manifest items in lowercase.
In lavaan this is:

10.3 General Models: Structural Equation Models 285

> satModel <- " Quality =∼ CSat + Value + q1 + q2 + q3 + 0*Cost
+ Cost =∼ Value + Repeat + c1 + c2 + c3
+ Value =∼ CSat + v1 + v2 + v3
+ CSat =∼ Repeat + cs1 + cs2 + cs3
+ Repeat =∼ r1 + r2 + r3 "

We read the first line as saying, “Quality influences CSat and Value, and is man-
ifested as items q1, q2, and q3.” Notice that we specify a fixed loading of zero
between Cost and Quality. That reflects Iacobucci’s report that those factors had
near zero relationship (specifically, correlation of −0.03, [83] p. 676). Also, we are
not interested in their relationship in this model and constraining the relationship
may prevent spurious model effects.3 Continuing with the model, we read “Cost
influences Value and Repeat purchase intention, and is manifested on items c1, c2,
and c3,” and similarly for the other lines.

Next we obtain simulated data to use. If you prefer to load the data instead of simu-
lating it, you may download it as follows:
> satSimData <- read.csv("http://goo.gl/MhghRq")
> summary(satSimData)

q1 q2 q3 c1 c2
Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000
Median :4.00 Median :3.000 Median :4.000 Median :4.00 Median :4.000
Mean :3.95 Mean :3.535 Mean :3.805 Mean :4.34 Mean :4.185
...

Once you have the data, you may proceed to Sect. 10.3.2. Otherwise, continue with
the following; once again, data simulation is surprisingly straightforward.

Using the approximate loadings reported by Iacobucci [83, p. 677], we write the
data model as:
> satDataModel <- " Quality =∼ 0.59*CSat + 0.56*Value +
+ 0.9*q1 + 0.9*q2 + 0.9*q3 + 0*Cost
+ Cost =∼ -0.5*Value + -0.29*Repeat +
+ 0.9*c1 + 0.9*c2 + 0.9*c3
+ Value =∼ 0.06*CSat + 0.9*v1 + 0.9*v2 + 0.9*v3
+ CSat =∼ 0.48*Repeat + 0.9*cs1 + 0.9*cs2 + 0.9*cs3
+ Repeat =∼ 0.9*r1 + 0.9*r2 + 0.9*r3 "

Then we simulate the data for N = 200 respondents and convert to Likert type scaled
values using the same approach as in Sect. 10.2.1:
> set.seed(33706) # continuing the island tour
> satData.norm <- simulateData(satDataModel, sample.nobs=200)
> satSimData <- data.frame(lapply(satData.norm,
+ function(x) { as.numeric(cut(x, breaks=7)) }))

We omit here the data quality checks (see Sect. 10.2.1), but it is a good idea for you
to inspect those.

3 In general, fixing parameters is not recommended; the whole point of SEM is to estimate
parameters. However, in some cases, especially with smaller samples as we consider here,
it may help to focus a model on the influences under consideration if one constrains factors.
It is possible with lavaan to constrain to any value, not just 0.

286 10 Confirmatory Factor Analysis and Structural Equation Modeling

10.3.2 Assessing the Repeat Purchase Model

To fit the model, we use sem(MODEL, DATA) and add an argument, std.lv=
TRUE, to standardize the latent variables because we are interested to compare rel-
ative influence strength (the alternative is to treat them in terms of the unit scales of
the observed items, which might be of interest for CFA). In the abbreviated output,
we see a strong model fit (CFI = 0.998 and low residuals):

> sat.fit <- sem(satModel, data= satSimData, std.lv=TRUE)
> summary(sat.fit, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 24 iterations

Number of observations 200

Estimator ML
Minimum Function Test Statistic 85.454
Degrees of freedom 84
P-value (Chi-square) 0.435

...
User model versus baseline model:
Comparative Fit Index (CFI) 0.998

...
Root Mean Square Error of Approximation:
RMSEA 0.009
90 Percent Confidence Interval 0.000 0.040
P-value RMSEA <= 0.05 0.993

Standardized Root Mean Square Residual:
SRMR 0.052

...

We plot the resulting structural coefficients for the proposed model with argu-
ments for structural=TRUE to suppress the loadings for the manifest items and
nCharNodes=7 to put the full factor names in the latent variable circles:

> semPaths(sat.fit, what="est", fade=FALSE, residuals=FALSE,
+ layout="tree", structural=TRUE, nCharNodes=7, edge.label.cex=1)

The result is Fig. 10.8. Not surprisingly, the simulated data show effects close to
what we specified (but not exactly the same, which demonstrates that model recov-
ery is not perfect).

As we have already seen, a great fit in CB-SEM is not enough! We still need to
compare our proposed model to one or more plausible alternative models, in order
to demonstrate that our proposal is superior to other reasonable models.

How do we define an alternative model? It depends on your goal and theory. In some
cases, you might wish to compare to a simpler model, in order to show that rela-
tionships are more complex or to fit a more precise model. In other cases, you could

10.3 General Models: Structural Equation Models 287

0.24 0.34−0.40

0.44

−0.52

0.61

Quality

Cost Value CSat Repeat

Fig. 10.8. Coefficient estimates
for the repeat purchase model,
using simulated data.

compare to an existing model from the literature or previous research. In still others,
you might show that a proposed complex model is too complex, and that a simpler
model is more effective. As a general principle, we prefer to show that a model is
better than a simpler model with fewer paths, and just as good as (i.e., not signifi-
cantly worse than) a more complex model with a larger number of paths.

In the present case, our full model proposes that Quality and Cost do not have
a simple relationship with single variables but are associated with multiple other
variables. For instance, Cost influences not only perception of Value but also the
likelihood of Repeat purchase. An alternative is a simpler, more obvious model,
where each is associated with only a single other variable, such as Cost affecting
Value but not directly influencing Repeat. To support our more complex model,
we wish to show that the simpler model is inadequate. Thus, we define an alternative
model where each latent variable only influences one other variable, giving us a
model with 2 fewer paths as shown in Fig. 10.9. The alternative model specification
in lavaan is:

satAltModel <- " Quality =∼ CSat + q1 + q2 + q3 + 0*Cost
Cost =∼ Value + c1 + c2 + c3
Value =∼ CSat + v1 + v2 + v3
CSat =∼ Repeat + cs1 + cs2 + cs3
Repeat =∼ r1 + r2 + r3 "

Quality

Cost Value CSat Repeat

Fig. 10.9. An alternative struc-
tural model for repeat purchase
influence, omitting the direct
associations of cost with re-
peat purchase and of perceived
quality with value.

288 10 Confirmatory Factor Analysis and Structural Equation Modeling

We fit the alternative model to the simulated data with sem() and compare that fit
to the proposed model with compareFit():

> satAlt.fit <- sem(satAltModel, data=satSimData, std.lv=TRUE)
> compareFit(sat.fit, satAlt.fit, nested=TRUE)
################### Nested Model Comparison #########################

chi df p delta.cfi
sat.fit - satAlt.fit 37.51 2 <.001 0.0495

#################### Fit Indices Summaries ##########################
chisq df pvalue cfi tli aic bic rmsea srmr

sat.fit 85.454 84 .435† .998† .997† 9174.942† 9293.681† .009† .052†
satAlt.fit 122.962 86 .006 .949 .937 9208.449 9320.592 .046 .095

Once again we see that—taken on its own—the alternative model appears to be a
good fit to the data (e.g., CFI = 0.95, RMSEA = 0.046) yet the proposed model is
significantly better, showing Chi-square (d f = 2) = 37.51 for the model difference,
p < 0.001, and stronger fit indices with lower residuals.

If these were results from real data, we could draw a few conclusions. First, the
model shows good fit to the observed (in this case, simulated) data, so we are able
to interpret the results. Second, it is better than a simpler alternative model, which
argues that our model is not an arbitrarily good fit but is preferable to a plausible
alternative. Most importantly, we would use the coefficient estimates in the model
to answer our substantive questions about the associations of the latent factors with
the outcomes of interest to us as marketers. However, we omit this step here because
we’ve done this several times for other models and it does not further advance our
knowledge of R; see Iacobucci [83] for conclusions in this case.

10.4 The Partial Least Squares (PLS) Alternative

The first two models we have considered in this chapter exemplify covariance-based
structural equation modeling (CB-SEM). Such models attempt to account for as
much of the total covariance in the data as possible, among all observed and latent
variables. CB-SEM requires that a data set complies with relatively strict assump-
tions about data distributions (continuous data, normally distributed residuals), the
number of indicators per factor (generally three or more), reliability of indicators,
and sample size (some authorities recommend several hundred, although it is pos-
sible that samples of N = 100 or even N = 50 may be adequate when measures are
very reliable; see Iacobucci [84]). When such assumptions are met, CB-SEM is a
powerful tool that tests a model rigorously, assesses overall strength of the model,
and allows for model comparison.

When data do not comply with the assumptions of CB-SEM or come from a modest
sample size with potentially less reliable indicators, an alternative is partial least
squares structural equation modeling (PLS-SEM). PLS-SEM is often able to yield

10.4 The Partial Least Squares (PLS) Alternative 289

estimates of path coefficients in models where CB-SEM would fail. However, PLS-
SEM does not allow one to say much about model fit or comparative strength; there
is no accepted measure of global “goodness of fit” that is comparable across models.
Thus, we recommend CB-SEM when possible; but when CB-SEM fails, PLS-SEM
may still give useful estimates of model coefficients.

In this section, we demonstrate PLS-SEM for the repeat purchase model that we
examined above. We will see that PLS-SEM can estimate parameters with a sample
where CB-SEM fails, but with greater uncertainty about the model’s results.

10.4.1 PLS-SEM for Repeat Purchase

We conduct PLS with the semPLS package; install that for the following examples.
We continue with the example from Iacobucci [83] of the influence of customer
satisfaction and perceived value on intended repeat purchase of a computer printer.
You may review that model—and find steps to create simulated data that we use
here—in Sect. 10.3 above.

Let’s see why PLS-SEM can be useful. Our simulated data set (satSimData) has
N = 200 observations, which was modeled successfully with CB-SEM. What if the
sample were smaller? Let’s take N = 50 rows and try to fit the CB-SEM model to
those:
> set.seed(90704)
> satSimData2 <- satSimData[sample(nrow(satSimData), 50),]
> describe(satSimData2)

vars n mean sd median trimmed mad min max range skew kurtosis se
q1 1 50 3.80 1.39 4 3.75 1.48 1 7 6 0.26 -0.23 0.20
...

> sat.fit2 <- sem(satModel, data= satSimData2, std.lv=TRUE)
Warning messages:
1: In lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, :
lavaan WARNING: could not compute standard errors!

...

Model estimation with lavaan fails because we do not have enough data.4 If you
inspect the model object, you will see extreme and nonsensical values:

> summary(sat.fit2, fit.measures=TRUE)
lavaan (0.5-17) converged normally after 9043 iterations
...

Estimate Std.err Z-value P(>|z|)
Latent variables:
...

4 The small sample exacerbates another reason for estimation difficulty: our data is highly
collinear due to the factor structure imposed when we simulated it to match the report by
Iacobucci [83].

290 10 Confirmatory Factor Analysis and Structural Equation Modeling

Cost =∼
Value -0.003
Repeat -0.011
c1 0.014
c2 57.293

...
Variances:

q1 1.540
...

c1 1.515
c2 -3280.640

...

It is unreasonable to think that one survey item about cost (c1) has nearly zero
relationship while another (c2) is thousands of times more strongly related
(57.29/0.014), or that one has thousands of times as much variance as another.
This indicates model instability as the message from lavaan warned us.

We will try PLS-SEM instead. The first step is to define a measurement model that
links underlying latent variables to their observed manifest variables such as survey
items, and then to define a structural model that links latent variables to one another.
In lavaan these were combined into a single step (cf. Sect. 10.3.1) but with the
semPLS package they are separate.

Whereas lavaan uses a formula syntax to define relationships among variables,
semPLS uses a matrix format. In this format, each row represents one “arrow” in
a model. The first column of the row represents the from variable while the sec-
ond column represents the to variable. Thus, an arrow from Quality to the manifest
variable q1 would be represented as a matrix line ("Quality", "q1").

The matrix definition is not as difficult as it may sound; we need only list the from
and to entries in a simple format. Referring to the model in Sect. 10.3.1, we define
the measurement model (latent to observed variables) model as:

> satPLSmm <- matrix(c(
+ "Quality", "q1",
+ "Quality", "q2",
+ "Quality", "q3",
+ "Cost", "c1",
+ "Cost", "c2",
+ "Cost", "c3",
+ "Value", "v1",
+ "Value", "v2",
+ "Value", "v3",
+ "CSat", "cs1",
+ "CSat", "cs2",
+ "CSat", "cs3",
+ "Repeat", "r1",
+ "Repeat", "r2",
+ "Repeat", "r3"), ncol=2, byrow=TRUE)

10.4 The Partial Least Squares (PLS) Alternative 291

The structural model presents the latent variable relationships using the same kind
of matrix format. Referring to the model shown in Fig. 10.7 we write:

> satPLSsm <- matrix(c(
+ "Quality", "CSat",
+ "Quality", "Value",
+ "Cost", "Value",
+ "Cost", "Repeat",
+ "Value", "CSat",
+ "CSat", "Repeat"), ncol=2, byrow=TRUE)

We now fit the PLS model using the simulated 50-respondent data set. We use
plsm(data, strucmod, measuremod) from semPLS to create a PLS
model using the structural and measurement model matrices that we defined.
Then we use sempls(model, data, wscheme) to estimate the model
parameters:

> library(semPLS)

> satPLS.mod <- plsm(data=satSimData2, strucmod=satPLSsm, measuremod=satPLSmm)
> satPLS.fit <- sempls(model=satPLS.mod, data=satSimData2)
All 50 observations are valid.
Converged after 14 iterations.
Tolerance: 1e-07
Scheme: centroid

We can now inspect the results. To begin, we examine the fit between the latent
variables and the manifest observations (items), i.e., the estimated factor structure,
using plsLoadings(MODEL). We see that the items have positive and moderate
to high loadings, and are similar in magnitude within each latent variable:

> plsLoadings(satPLS.fit)
Cost Quality Value CSat Repeat

c1 0.39
c2 0.82
c3 0.78
q1 . 0.54 . . .
...

Each latent variables has a moderate to strong loading with its manifest variables, so
we are reassured that the model reflects those relationships. If a latent variable failed
to load significantly—for example, with factor loadings below 0.3 for any mani-
fest variable, or below 0.5 for all of its manifest variables—then we would be con-
cerned about the model, sample size, or reliability of the measures and would con-
duct further investigation (or, at a minimum, replicate the results, as in Sect. 10.4.3
below).

292 10 Confirmatory Factor Analysis and Structural Equation Modeling

We now use pathCoeff(MODEL) to examine the structural coefficients between
latent variables, which is what we most care about:

> pathCoeff(satPLS.fit)
Cost Quality Value CSat Repeat

Cost . . -0.196 . -0.393
Quality . . 0.323 0.400 .
Value . . . 0.062 .
CSat 0.231
Repeat

We see that cost has a negative influence on perceived value and likelihood to
repeat purchase, while customer satisfaction has a positive influence on repeat
purchase.

10.4.2 Visualizing the Fitted PLS Model*

This section is optional because it detours into modest additional requirements and
file handling.

As we have seen, it is convenient to plot the results of structural models and inter-
pret coefficients and models visually. For the PLS model, we can plot the structural
coefficients using pathDiagram(MODEL, FILE, full=FALSE, ...) but
this does not immediately create a plot within R. Instead, it outputs a .dot file that
is then processed by the freely available Graphviz software package to produce a
corresponding image as a PDF file [59]. Graphviz is available at http://www.
graphviz.org.

Once Graphviz is installed, a PDF output file with the paths and coefficients for a
fitted PLS model objected may be created with pathDiagram:

> pathDiagram(satPLS.fit, file = "satPLSstruc", full = FALSE, digits = 2,
+ edge.labels = "values", output.type = "graphics", graphics.fmt = "pdf")

The result is shown in Fig. 10.10. Comparing the values to those obtained from the
full sample with CB-SEM (Fig. 10.8) we see that the coefficients are identical in
direction (positive or negative) and similar in relative magnitude.

Cost

Value

-0.2 Repeat
-0.39

Quality

0.32
CSat

0.4

0.06
0.23

Fig. 10.10. PLS estimate for the repeat purchase model (with N = 50).

http://www.graphviz.org
http://www.graphviz.org

10.4 The Partial Least Squares (PLS) Alternative 293

Because PLS models do not assess global model fit, there is not a general way to
compare CB-SEM and PLS-SEM results apart from interpreting the models and
their implications, so it is not advisable to compare the coefficients directly between
Figs. 10.10 and 10.8.

10.4.3 Assessing the PLS-SEM Model

Unlike CB-SEM, PLS-SEM models do not have a summary metric that allows
global model assessment and comparison [73]. Instead, at a minimum we recom-
mend three steps:

• Examine the model’s coefficients for intelligibility, as we did in Sect. 10.4.1

• Examine the overall R2 for the model, and determine (largely subjectively)
whether sufficient variance is explained to be useful

• Bootstrap the model to examine coefficient stability

It is easy to find R2 for each of the latent variables using the rSquared(MODEL)
function:

> rSquared(satPLS.fit)
R-squared

Cost .
Quality .
Value 0.18
CSat 0.18
Repeat 0.26

A problem with R2 is that there is no general standard for whether the values are ad-
equate. R2 is a measure of overall variance explained within each part of the model,
but its interpretation is dependent on what you might expect for a given type of data
(in other words, it depends on your experience with models in a domain) and it can
be increased simply by adding variables (i.e., overfitting). There are various rules
of thumb for interpreting R2, but they are domain specific. If we use the standards
for interpreting correlation coefficients in behavioral data, where r = 0.3 indicates
a moderately strong correlation (Sect. 4.5), then R2 > 0.09 could be a reasonable
goal for a moderately strong association in the model, assuming that you have been
parsimonious in selecting the number of associated variables.

We recommend a more general approach that does not rely on R2 and instead uses a
bootstrap process to assess coefficient stability. In semPLS, this may be done with
the bootsempls() command. We fit the PLS model object to 500 resampled sets
of observations:

294 10 Confirmatory Factor Analysis and Structural Equation Modeling

> set.seed(04460) #note:some semPLS versions give different results
> satPLS.boot <- bootsempls(satPLS.fit, nboot=500, start="ones")
Resample: 500 Done.
Warning message:
In bootsempls(satPLS.fit, nboot = 500, start = "ones") :
There were 409 apparent convergence failures;
these are discarded from the 500 bootstrap replications returned.

> summary(satPLS.boot, type = "bca", level = 0.9)
Call: bootsempls(object = satPLS.fit, nboot = 500, start = "ones")

Lower and upper limits are for the 90 percent bca confidence interval

Estimate Bias Std.Error Lower Upper
lam_1_1 0.3953 0.00452 0.2268 -0.0796 0.671
lam_1_2 0.8167 -0.00667 0.0926 0.5314 0.897
...
beta_1_3 -0.2061 -0.06158 0.1242 -0.3370 0.271
beta_2_3 0.3159 -0.01384 0.1431 0.1195 0.540
beta_2_4 0.4013 0.04927 0.1036 0.1577 0.514
beta_3_4 0.0627 0.00689 0.1706 -0.3480 0.251
beta_1_5 -0.3873 -0.00942 0.1406 -0.5515 -0.139
beta_4_5 0.2426 0.00496 0.1533 -0.2289 0.442

In examining the results, we see two indications of problems: a warning that ap-
proximately 80 % of the PLS iterations failed to converge, and several model coef-
ficients (such as the beta values that reflect the structural model) whose upper and
lower bounds include 0, and for which we therefore do not have even directional
confidence.

We can see the problems visually using a parallel plot. This plots all bootstrap es-
timates of the structural coefficients so we can see the spread in estimates; we use
reflinesAt=0 to add a reference line at 0 in order to see direction, and include
varnames to label the Y axis with friendly names:
> parallelplot(satPLS.boot, reflinesAt = 0, alpha=0.8,
+ varnames=attr(satPLS.boot$t, "path")[16:21],
+ main="Path coefficients in 500 PLS bootstrap iterations (N=50)")

The resulting plot is shown in Fig. 10.11, where the gray lines represent individ-
ual bootstrap estimates and the red lines show median (solid line) and outer 95 %
observed intervals (dotted lines). The estimates fluctuate widely for most of the
coefficients. We read this by looking at the spread of estimates along each of the
horizontal grid lines representing one model coefficient. For example, the influence
of Cost on Repeat purchase is generally estimated to be strongly negative, but
several of the estimates hold the relationship to be strongly positive. Additionally,
2 of the 6 coefficient ranges straddle the zero line and thus are not significantly
different from zero.

The convergence problems and bootstrap ranges demonstrate that estimates in our
PLS model with N = 50 are unstable. However, whether they are useful in a given
situation is a judgment call. Depending on the question at hand and the risks in-
volved, an analyst might conclude that the estimates are not adequately reliable—or
alternatively might conclude that, although the instability is not ideal, the estimates
are still useful because they are more informative than nothing.

10.4 The Partial Least Squares (PLS) Alternative 295

Path coefficients in 500 PLS bootstrap iterations (N=50)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.11. Bootstrapped coefficients for the PLS model, showing divergent estimates for
N = 50 observations. Each line plots the six estimated coefficients for one complete bootstrap
iteration. The model is unstable with the small sample and 409 of 500 bootstrap iterations

failed to converge, so these results come from the other 91 iterations.

10.4.4 PLS-SEM with the Larger Sample

Is PLS-SEM more stable with the larger sample? We can examine that quickly for
the full data set from Sect. 10.3.1 with no need to respecify the model. The analysis
is identical, except for using the full data (satSimData) in the modeling com-
mands:

> satPLS.modF <- plsm(data=satSimData, strucmod=satPLSsm, measuremod=satPLSmm)
> satPLS.fitF <- sempls(model=satPLS.mod, data=satSimData)
All 200 observations are valid.
Converged after 7 iterations.
Tolerance: 1e-07
Scheme: centroid

We see that the path coefficients for the N = 200 data are similar to the N = 50
estimates, but the magnitudes are somewhat different:

> pathCoeff(satPLS.fitF)
Cost Quality Value CSat Repeat

Cost . . -0.27 . -0.32
Quality . . 0.30 0.34 .
Value . . . 0.22 .
CSat 0.29
Repeat

296 10 Confirmatory Factor Analysis and Structural Equation Modeling

As before, we check PLS-SEM stability with a bootstrap. We repeat the procedure
from Sect. 10.4.3, this time with the model for the full data set:

> set.seed(04460)
> satPLS.bootF <- bootsempls(satPLS.fitF, nboot=500, start="ones")
Resample: 500 Done.
> parallelplot(satPLS.bootF, reflinesAt = 0, alpha=0.8,
+ varnames=attr(satPLS.bootF$t, "path")[16:21],
+ main="Path coefficients in 500 PLS bootstrap iterations (N=200)")

The bootstrap with full N = 200 data converged on all 500 iterations (as opposed
to 80 % failures to converge with N = 50 above). The parallel plot of estimates in
Fig. 10.12 shows bootstrap coefficient values that are grouped much more tightly
(the gray lines) and confidence intervals that do not cross zero (red lines).

These are results that we could use more confidently than we obtained for N = 50.
Either way, PLS-SEM opens up the opportunity for that decision. With the boot-
strap we were able to find instability with the smaller sample but stability for the
larger. With such capability we can make an informed choice about whether to use
imperfect results.

Path coefficients in 500 PLS bootstrap iterations (N=200)

Cost −> Value

Quality −> Value

Quality −> CSat

Value −> CSat

Cost −> Repeat

CSat −> Repeat

Min Max

Fig. 10.12. Bootstrapped coefficients for the PLS model with a larger sample, showing tighter
estimates with N = 200 observations.

10.6 Key Points 297

10.5 Learning More*

Structural models are a complex topic, and this chapter is intended primarily to
demonstrate R’s capability for experienced SEM users while inspiring others to
learn more. To use SEM well, you will need substantial background in addition
to this overview. For CB-SEM, an excellent text is Kline’s Principles and Practice
of Structural Equation Modeling [92]. Kline presents a social science perspective
that is similar to many marketing applications, especially for application to survey
data.

A guide to SEM models in R using the lavaan package is Beaujean [9]. The com-
bination of Kline’s Principles [92] for general concepts along with Beaujean’s guide
to implementation in R would provide a thorough grounding in SEM with R.

As you learn more about structural models, you will encounter SEM traditions that
reflect a diversity of statistical foundations and applications. One difference involves
model specification. The Lisrel tradition—named after one of the first SEM software
programs [88, 89]—is exemplified in Iacobucci’s article [83] and presents models
in terms of matrix algebra and Greek lettering. This is a very precise way to specify
models but is difficult for non-specialists. An alternative is the Mplus tradition—also
named after a software program—which uses simpler equation style specifications.
We generally recommend marketers to start with the latter kind of model specifica-
tion, as we did in the present chapter.

PLS-SEM is popular for marketing applications but, unlike the case with CB-SEM,
to date there have been few sources to learn about it. A paper from Hair et al de-
scribes how to do PLS-SEM appropriately [73]. At the time of writing, other gen-
eral references on PLS-SEM included a textbook [72] and a paper presenting an
overview of marketing applications [76].

In R, there are several packages available for SEM. In this chapter we used the
lavaan package [135] for CB-SEM and the semPLS package [115] for PLS-SEM.
One of the earliest and widely used packages for SEM is the sem package [52],
which has many examples available online for various models and situations (e.g.,
[50]). The OpenMx Project provides a powerful system for SEM in the OpenMx
package [13].

10.6 Key Points

We have seen two examples of complex models in marketing applications: to
examine whether a survey instrument has good factor structure, and to estimate
the relationship in survey data between customer satisfaction and intent to repur-
chase a product. Additionally, we saw how such models may be estimated in both
covariance and partial least squares approaches.

298 10 Confirmatory Factor Analysis and Structural Equation Modeling

The following suggestions will help you to succeed at this kind of modeling:

• Learn about structural models and their assumptions; do not fit them blindly.
If you become discouraged by mathematical treatments, keep looking; the con-
cepts can be challenging but there are excellent and readable expositions such
as Kline [92].

• A structural equation model (SEM) relates observed manifest variables—such
as data points or survey responses—to underlying latent variables. It estimates
the strength of associations in a proposed model, as well as the degree to which
the model fits the observed data.

• SEM may be used to check the factor structure of survey items and their rela-
tionships to proposed latent variables; this is known as CFA. A good practice in
survey research is to assess those relationships; do not simply assume that sur-
vey items relate to one another or to latent constructs as expected (Sect. 10.2).

• SEM can also be used to test more complex models, in which latent variables
affect one another and are related to multiple sets of manifest variables.

• Two general approaches to SEM are the covariance-based approach (CB-SEM),
which attempts to model the relationships among the variables at once and thus
is a strong test of the model, and the partial least squares approach (PLS-SEM),
which fits parts of the data sequentially and has less stringent requirements.

• After you specify a CB-SEM model, simulate a data set using
simulateData() from lavaan with reasonable guesses as to variable
loadings. Use the simulated data to determine whether your model is likely to
converge for the sample size you expect.

• Plot your specified model graphically and inspect it carefully to check that it is
the model you intended to estimate.

• Whenever possible, specify one or two alternative models and check
those in addition to your model. Before accepting a CB-SEM model, use
compareFit() to demonstrate that your model fits the data better than
alternatives.

• If you have data of varying quality, nominal categories, small sample, or
problems converging a CB-SEM model, consider partial least squares SEM
(PLS-SEM).

• For PLS-SEM, use a bootstrap procedure (such as bootsempls() in the
semPLS package) to examine the stability of coefficients.

11

Segmentation: Clustering and Classification

In this chapter, we tackle a canonical marketing research problem: finding,
assessing, and predicting customer segments. In previous chapters we’ve seen how
to assess relationships in the data (Chap. 4), compare groups (Chap. 5), and assess
complex multivariate models (Chap. 10). In a real segmentation project, one would
use those methods to ensure that data has appropriate multivariate structure, and
then begin segmentation analysis.

Segmentation is not a well-defined process and analysts vary in their definitions of
segmentation as well as their approaches and philosophy. The model in this chap-
ter demonstrates our approach using basic models in R. As always, this should be
supplemented by readings that we suggest at the end of the chapter.

We start with a warning: we have definite opinions about segmentation and what we
believe are common misunderstandings and poor practices. We hope you’ll be con-
vinced by our views—but even if not, the methods here will be useful to you.

11.1 Segmentation Philosophy

The general goal of market segmentation is to find groups of customers that differ in
important ways associated with product interest, market participation, or response
to marketing efforts. By understanding the differences among groups, a marketer
can make better strategic choices about opportunities, product definition, and posi-
tioning, and can engage in more effective promotion.

11.1.1 The Difficulty of Segmentation

The definition of segmentation above is a textbook description and does not
reflect what is most difficult in a segmentation project: finding actionable business

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 11

299

300 11 Segmentation: Clustering and Classification

outcomes. It is not particularly difficult to find groups within consumer data; indeed,
in this chapter we see several ways to do this, all of which “succeed” according to
one statistical criterion or another. Rather, the difficulty is to ensure that the outcome
is meaningful for a particular business need.

It is outside the range of this book to address the question of business need in gen-
eral. However, we suggest that you ask a few questions along the following lines.
If you were to find segments, what would you do about them? Would anyone in
your organization use them? Why and how? Are the differences found large enough
to be meaningful for your business? Among various solutions you might find, are
there organizational efforts or politics that would make one solution more or less
influential than another?

There is no magic bullet to find the “right” answer. In computer science the no free
lunch theorem says that “for both static and time-dependent optimization problems,
the average performance of any pair of algorithms across all possible problems is
identical” [167]. For segmentation this means that there is no all-purpose method or
algorithm that is a priori preferable to others. This does not mean that the choice of a
method is irrelevant or arbitrary; rather, one cannot necessarily determine in advance
which approach will work best for a novel problem. As a form of optimization,
segmentation is likely to require an iterative approach that successively tests and
improves its answer to a business need.

Segmentation is like slicing a pie, and any pie might be sliced in an infinite number
of ways. Your task as an analyst is to consider the infinity of possible data that
might be gathered, the infinity of possible groupings of that data, and the infinity of
possible business questions that might be addressed. Your goal is to find a solution
within those infinities that represents real differences in the data and that informs
and influences real business decisions.

Statistical methods are only part of the answer. It often happens that a “stronger”
statistical solution poses complexity that makes it impossible to implement in a
business context while a slightly “weaker” solution illuminates the data with a clear
story and fits the business context so well that it can have broad influence.

To maximize chances of finding such a model, we recommend that an analyst
expects—and prepares management to understand—the need to iterate analyses.
A segmentation project is not a matter of “running a segmentation study” or “doing
segmentation analysis on the data.” Rather, it is likely to take multiple rounds of data
collection and analysis to determine the important data that should be collected in
the first place, to refine and test the solutions, and to conduct rounds of interpretation
with business stakeholders to ensure that the results are actionable.

11.1.2 Segmentation as Clustering and Classification

In this chapter, we demonstrate several methods in R that will help you start
with segmentation analysis. We explore two distinct yet related areas of statistics:

11.1 Segmentation Philosophy 301

clustering or cluster analysis and classification. These are the primary branches of
what is sometimes called statistical learning, i.e., learning from data through statis-
tical model fitting.

A key distinction in statistical learning is whether the method is supervised or unsu-
pervised. In supervised learning, a model is presented with observations whose out-
come status (dependent variable) is known, with a goal to predict that outcome from
the independent variables. For example, we might use data from previous direct mar-
keting campaigns—with a known outcome of whether each target responded or not,
plus other predictor variables—to fit a model that predicts likelihood of response in
a new campaign. We refer to this process as classification.

In unsupervised learning we do not know the outcome groupings but attempt to
discover them from structure in the data. For instance, we might explore a direct
marketing campaign and ask, “Are there groups that differ in how and when they
respond to offers? If so, what are the characteristics of those groups?” We use the
term clustering for this approach.

Clustering and classification are both useful in segmentation projects. Stakeholders
often view segmentation as discovering groups in the data in order to derive new
insight about customers. This obviously suggests clustering approaches because the
possible customer groups are unknown. Still, classification approaches are also use-
ful in such projects for at least two reasons: there may be outcome variables of inter-
est that are known (such as observed in-market response) that one wishes to predict
from segment membership, and if you use clustering to discover groups you will
probably want to predict (i.e., classify) future responses into those groups. Thus, we
view clustering and classification as complementary approaches.

A topic we do not address is how to determine what data to use for clustering, the
observed basis variables that go into the model. That is primarily a choice based
on business need, strategy, and data availability. Still, you can use the methods here
to evaluate different sets of such variables. If you have a large number of measures
available and need to determine which ones are most important, the variable impor-
tance assessment method we review in Sect. 11.4.3 might assist. Aside from that,
we assume in this chapter that the basis variables have been determined (and we use
the customer relationship data from Chap. 5).

There are hundreds of books, thousands of articles, and scores of R packages for
clustering and classification methods, all of which propose hundreds of approaches
with—as we noted above—no single “best” method. This chapter cannot cover clus-
tering or classification in a comprehensive way, but we can give an introduction that
will get you started, teach you the basics, accelerate your learning, and help you
avoid some traps. As you will see, in most cases the process of fitting such models
in R is extremely similar from model to model.

302 11 Segmentation: Clustering and Classification

11.2 Segmentation Data

We use the segmentation data (object seg.df) from Chap. 5. If you saved that data
in Sect. 5.1.4, you can reload it:
> load("∼/segdf-Rintro-Ch5.RData")
> seg.raw <- seg.df
> seg.df <- seg.raw[, -7] # remove the known segment assignments

Otherwise, you could download the data set from the book website:
> seg.raw <- read.csv("http://goo.gl/qw303p")
> seg.df <- seg.raw[, -7] # remove the known segment assignments

As you may recall from Chap. 5, this is a simulated data set with four identified seg-
ments of customers for a subscription product, and contains a few variables that are
similar to data from typical consumer surveys. Each observation has the simulated
respondent’s age, gender, household income, number of kids, home ownership, sub-
scription status, and assigned segment membership. In Chap. 5, we saw how to sim-
ulate this data and how to examine group differences within it. Other data sources
that are often used for segmentation are customer relationship management (CRM)
records, attitudinal surveys, product purchase and usage, and more generally, any
data set with observations about customers.

The original data seg.raw contains “known” segment assignments that have been
provided for the data from some other source (as might occur from some human
coding process). Because our task here is to discover segments, we create a copy
seg.df that omits those assignments (omitting column 7), so we don’t accidentally
include the known values when exploring applying segmentation methods. (Later,
in the classification section, we will use the correct assignments because they are
needed to train the classification models.)

We check the data after loading:
> summary(seg.df)

age gender income kids ownHome ...
Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159 ...
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141 ...

We use the subscription segment data in this chapter for two purposes: to exam-
ine clustering methods that find intrinsic groupings (unsupervised learning), and to
show how classification methods learn to predict group membership from known
cases (supervised learning).

11.3 Clustering

We examine four clustering procedures that are illustrative of the hundreds of avail-
able methods. You’ll see that the general procedure for finding and evaluating clus-
ters in R is similar across the methods.

11.3 Clustering 303

To begin, we review two distance-based clustering methods, hclust() and
kmeans(). Distance-based methods attempt to find groups that minimize the dis-
tance between members within the group, while maximizing the distance of mem-
bers from other groups. hclust() does this by modeling the data in a tree struc-
ture, while kmeans() uses group centroids (central points).

Then we examine model-based clustering methods, Mclust() and poLCA().
Model-based methods view the data as a mixture of groups sampled from different
distributions, but whose original distribution and group membership has been “lost”
(i.e., is unknown). These methods attempt to model the data such that the observed
variance can be best represented by a small number of groups with specific distri-
bution characteristics such as different means and standard deviations. Mclust()
models the data as a mixture of Gaussian (normal) variables, while poLCA() uses
a latent class model with categorical (nominal) variables.

11.3.1 The Steps of Clustering

Clustering analysis requires two stages: finding a proposed cluster solution and eval-
uating that solution for one’s business needs. For each method we go through the
following steps:

• Transform the data if needed for a particular clustering method; for instance,
some methods require all numeric data (e.g., kmeans(), mclust()) or all
categorical data (e.g., poLCA()).

• Compute a distance matrix if needed; some methods require a precomputed
matrix of similarity in order to group observations (e.g., hclust()) .

• Apply the clustering method and save its result to an object. For some methods
this requires specifying the number (K) of groups desired (e.g., kmeans(),
poLCA()).

• For some methods, further parse the object to obtain a solution with K groups
(e.g., hclust()).

• Examine the solution in the model object with regard to the underlying data,
and consider whether it answers a business question.

As we’ve already argued, the most difficult part of that process is the last step: estab-
lishing whether a proposed statistical solution answers a business need. Ultimately,
a cluster solution is largely just a vector of purported group assignments for each
observation, such as “1, 1, 4, 3, 2, 3, 2, 2, 4, 1, 4” It is up to you to figure out
whether that tells a meaningful story for your data.

304 11 Segmentation: Clustering and Classification

11.3.1.1 A Quick Check Function

We recommend that you think hard about how you would know whether the
solution—assignments of observations to groups—that is proposed by a clustering
method is useful for your business problem. Just because some grouping is proposed
by an algorithm does not mean that it will help your business. One way we often ap-
proach this is to write a simple function that summarizes the data and allows quick
inspection of the high-level differences between groups.

A segment inspection function may be complex depending on the business need and
might even include plotting as well as data summarization. For purposes here we use
a simple function that reports the mean by group. We use mean here instead of a
more robust metric such as median because we have several binary variables and
mean() easily shows the mixture proportion for them (i.e., 1.5 means a 50 % mix
of 1 and 2). A very simple function is:

> seg.summ <- function(data, groups) {
+ aggregate(data, list(groups), function(x) mean(as.numeric(x)))
+ }

This function first splits the data by reported group (aggregate(. . ., list
(groups), . . .)). An anonymous function (function(x) . . .) then converts
all of a group’s data to numeric (as.numeric(x)) and computes its mean().
Here’s an example using the known segments from seg.raw:

> seg.summ(seg.df, seg.raw$Segment)
Group.1 age gender income kids ownHome subscribe

1 Moving up 36.33114 1.30 53090.97 1.914286 1.328571 1.200
2 Suburb mix 39.92815 1.52 55033.82 1.920000 1.480000 1.060
3 Travelers 57.87088 1.50 62213.94 0.000000 1.750000 1.125
4 Urban hip 23.88459 1.60 21681.93 1.100000 1.200000 1.200

This simple function will help us to inspect cluster solutions efficiently. It is not
intended to be a substitute for detailed analysis—and it takes shortcuts such as treat-
ing categorical variables as numbers, which is inadvisable except for analysts who
understand what they’re doing—yet it provides a quick first check of whether there
is something interesting (or uninteresting) occurring in a solution.

With a summary function of this kind we are easily able to answer the following
questions related to the business value of a proposed solution:

• Are there obvious differences in group means?

• Does the differentiation point to some underlying story to tell?

• Do we see immediately odd results such as a mean equal to the value of one
data level?

11.3 Clustering 305

Why not just use a standard R function such as by() or aggregate()? There are
several reasons. Writing our own function allows us to minimize typing by providing
a short command. By providing a consistent and simple interface, it reduces risk of
error. And it is extensible; as an analysis proceeds, we might decide to add to the
function, expanding it to report variance metrics or to plot results, without needing
to change how we invoke it.

11.3.2 Hierarchical Clustering: hclust() Basics

Hierarchical clustering is a popular method that groups observations according to
their similarity. The hclust() method is one way to perform this analysis in R.
hclust() is a distance-based algorithm that operates on a dissimilarity matrix, an
N-by-N matrix that reports a metric for the distance between each pair of observa-
tions.

The hierarchical clustering method begins with each observation in its own cluster.
It then successively joins neighboring observations or clusters one at a time accord-
ing to their distances from one another, and continues this until all observations
are linked. This process of repeatedly joining observations and groups is known as
an agglomerative method. Because it is both very popular and exemplary of other
methods, we present hierarchical clustering in more detail than the other clustering
algorithms.

The primary information in hierarchical clustering is the distance between obser-
vations. There are many ways to compute distance, and we start by examining the
best-known method, the Euclidean distance. For two observations (vectors) X and
Y , the Euclidean distance d is:

d =
√

∑(X −Y)2. (11.1)

For single pairs of observations, such as X = {1,2,3} and Y = {2,3,2} we can
compute the distance easily in R:

> c(1,2,3) - c(2,3,2) # vector of differences
[1] -1 -1 1
> sum((c(1,2,3) - c(2,3,2))ˆ2) # the sum of squared differences
[1] 3
> sqrt(sum((c(1,2,3) - c(2,3,2))ˆ2)) # root sum of squares
[1] 1.732051

When there are many pairs, this can be done with the dist() function. Let’s check
it first for the simple X ,Y example, using rbind() to group these vectors as ob-
servations (rows):

306 11 Segmentation: Clustering and Classification

> dist(rbind(c(1,2,3), c(2,3,2)))
1

2 1.732051

The row and column labels tell us that dist() is returning a matrix for observation
1 (column) by observation 2 (row).

A limitation is that Euclidean distance is only defined when observations are nu-
meric. In our data seg.df it is impossible to compute the distance between Male
and Female (a fact many people suspect even before studying statistics). If we did
not care about the factor variables, then we could compute Euclidean distance using
only the numeric columns.

For example, we can select the three numeric columns in seg.df, calculate the dis-
tances, and then look at a matrix for just the first five observations as follows:

> d <- dist(seg.df[, c("age", "income", "kids")])
> as.matrix(d)[1:5, 1:5]

1 2 3 4 5
1 0.000 13936.531 5313.626 31559.178 29870.205
2 13936.531 0.000 8622.906 45495.698 43806.727
3 5313.626 8622.906 0.000 36872.800 35183.828
4 31559.178 45495.698 36872.800 0.000 1688.977
5 29870.205 43806.727 35183.828 1688.977 0.000

As expected, the distance matrix is symmetric, and the distance of an observation
from itself is 0.

For seg.df we cannot assume that factor variables are irrelevant to our cluster
definitions; it is better to use all the data. The daisy() function in the cluster
package [108] works with mixed data types by rescaling the values, so we use that
instead of Euclidean distance:

> library(cluster) # daisy works with mixed data types

> seg.dist <- daisy(seg.df)

We inspect the distances computed by daisy() by coercing the resulting object to
a matrix and selecting the first few rows and columns:

> as.matrix(seg.dist)[1:5, 1:5]
1 2 3 4 5

1 0.0000000 0.2532815 0.2329028 0.2617250 0.4161338
2 0.2532815 0.0000000 0.0679978 0.4129493 0.3014468
3 0.2329028 0.0679978 0.0000000 0.4246012 0.2932957
4 0.2617250 0.4129493 0.4246012 0.0000000 0.2265436
5 0.4161338 0.3014468 0.2932957 0.2265436 0.0000000

11.3 Clustering 307

The distances look reasonable (zeroes on the diagonal, symmetric, scaled [0, 1]) so
we proceed to the hierarchical cluster method itself, invoking hclust() on the
dissimilarity matrix:

> seg.hc <- hclust(seg.dist, method="complete")

We use the complete linkage method, which evaluates the distance between every
member when combining observations and groups.

A simple call to plot() will draw the hclust object:

> plot(seg.hc)

The resulting tree for all N = 300 observations of seg.df is shown in
Fig. 11.1.

12
8

13
7

10
2

10
1

10
7 17

3
21

9
29

8
25

6
28

7 6
5

17
2

14
1

12
1

12
9

89 25
7

24
2

27
8

29
4

28
3

28
8 18

5
20

4
21

5
53

13
0

25
8

20 27
1

27
6

26
1

29
3 1

99 22
3

10
8

19
4

22
4 8

4 95
19

1
20

6
18

6
35 24

9
15

4
22

7
21

8
22

9
20

5
21

2
21

7
11

1
26

2
13

3
14

7
14

6
14

9
11

7
14

2
12

4
13

4
13

2
13

8
82 24

6 49 23
3 32 63

88
26

6
29

2 24
8

26
0

28
2 42

25
5

28
1 4 48 30 24
4 13 28
9

23
7

27
7

25
4

12
24

3
24

5 69 26
8

27
2

66 29
7

28
5

25
1

28
4 27

0
67 27
5 61 9 38 64 71 98 28
0 29 25
9

15
5

15
9

22
1

20
0

22
0

18
0

16
6

17
8

20
1

21
0

16
2

15
1

18
1 20

7
18

3
22

8
18

2
18

8
16

9
18

7
16

1
19

7
15

7
17

1
21

3 51 72 4
0

24
7

24 97 24
0

27
9 68 5 47 2
2

27
3 25

55 27
4

11
8

14
5

12
2

15
0 23

1
39 13

9 19
0

19 83 29
6

10 25
2

17 28
6 18 16
8 8

1 92 73 21 87 2
6

24
1 2

65
91 96

23
2

30
0 9

0
52 23
6 41 43
6

99 37 14 16
75 23
8 2

26
4

15 80 3
3 57

50
14

4
12

0
12

5
18

9
16

7
22

6 18
4

22
5

15
3

16
0

17
6

21
1

21
4

16
5

21
6

11 79 19
5

29
5 3

17
5

26
9 15

6
17

9
19

2
15

2
20

8
19

6
20

3
19

8
17

0
17

7
16

3
16

4
20

2
20

9
17

4
19

3
23

0
11

2
11

5
10

9
12

6
12

7
13

1
14

3
10

3
11

3
10

5
14

0
11

9
14

8
10

6
12

3
13

5
7

11
6

11
0

13
6

10
4

11
4 27 58 23
9

25
0

23 23
4

76
23

5
54 78 60 94

56
34 25
3

8
26

7
22

2
93 28 15
8 4

4
31 62

1
45 77 7

0
74 29

0 59 10
0

86 36 26
3

85 29
1 46 29
9

0.
0

0.
2

0.
4

0.
6

0.
8

Cluster Dendrogram

seg.dist
hclust (*, "complete")

H
ei

gh
t

Fig. 11.1. Complete dendrogram for the segmentation data, using hclust().

A hierarchical dendrogram is interpreted primarily by height and where observa-
tions are joined. The height represents the dissimilarity between elements that are
joined. At the lowest level of the tree in Fig. 11.1 we see that elements are com-
bined into small groups of 2–10 that are relatively similar, and then those groups are
successively combined with less similar groups moving up the tree. The horizon-
tal ordering of branches is not important; branches could exchange places with no
change in interpretation.

Figure 11.1 is difficult to read, so it is helpful to zoom in on one section of the chart.
We can cut it at a specified location and plot just one branch as follows. We coerce it
to a dendrogram object (as.dendrogram(. . .)), cut it at a certain height (h=. . .),
and select the resulting branch that we want (. . .$lower[[1]]).

> plot(cut(as.dendrogram(seg.hc), h=0.5)$lower[[1]])

308 11 Segmentation: Clustering and Classification

The result is shown in Fig. 11.2, where we are now able to read the observation la-
bels (which defaults to the row names—usually the row numbers—of observations
in the data frame). Each node at the bottom represents one customer, and the brack-
ets show how each has been grouped progressively with other customers.

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

12
8

13
7

10
2

10
1

10
7

17
3

21
9

29
8

25
6

28
7 65 17
2

14
1

12
1

12
9 89 25
7

24
2

27
8

29
4

28
3

28
8

Fig. 11.2. A close up view of the left-most branch from Fig. 11.1.

We can check the similarity of observations by selecting a few rows listed in
Fig. 11.2. Observations 101 and 107 are represented as being quite similar because
they are linked at a very low height, as are observations 278 and 294. On the other
hand, observations 173 and 141 are only joined at the highest level of this branch
and thus should be relatively dissimilar. We can check those directly:

> seg.df[c(101, 107),] # similar
age gender income kids ownHome subscribe

101 24.73796 Male 18457.85 1 ownNo subYes
107 23.19013 Male 17510.28 1 ownNo subYes
> seg.df[c(278, 294),] # similar

age gender income kids ownHome subscribe
278 36.23860 Female 46540.88 1 ownNo subYes
294 35.79961 Female 52352.69 1 ownNo subYes
> seg.df[c(173, 141),] # less similar

age gender income kids ownHome subscribe
173 64.70641 Male 45517.15 0 ownNo subYes
141 25.17703 Female 20125.80 2 ownNo subYes

The first two sets—observations that are neighbors in the dendrogram—are similar
on all variables (age, gender, income, etc.). The third set—observations taken from
widely separated branches—differs substantially on the first four variables.

Finally, we might check one of the goodness-of-fit metrics for a hierarchical clus-
ter solution. One method is the cophenetic correlation coefficient (CPCC), which
assesses how well a dendrogram (in this case seg.hc) matches the true distance
metric (seg.dist) [145]. We use cophenetic() to get the distances from the
dendrogram, and compare it to the dist() metrics with cor():

11.3 Clustering 309

> cor(cophenetic(seg.hc), seg.dist)
[1] 0.7682436

CPCC is interpreted similarly to Pearson’s r. In this case, CPCC > 0.7 indicates
a relatively strong fit, meaning that the hierarchical tree represents the distances
between customers well.

11.3.3 Hierarchical Clustering Continued: Groups from hclust()

How do we get specific segment assignments? A dendrogram can be cut into clus-
ters at any height desired, resulting in different numbers of groups. For instance, if
Fig. 11.1 is cut at a height of 0.7, there are K = 2 groups (draw a horizontal line at
0.7 and count how many branches it intersects; each cluster below is a group), while
cutting at height of 0.4 defines K = 7 groups.

Because a dendrogram can be cut at any point, the analyst must specify the number
of groups desired. We can see where the dendrogram would be cut by overlaying
its plot() with rect.hclust(), specifying the number of groups we want
(k=. . .):

> plot(seg.hc)
> rect.hclust(seg.hc, k=4, border="red")

The K = 4 solution is shown in Fig. 11.3.

12
8

13
7

10
2

10
1

10
7 17

3
21

9
29

8
25

6
28

7 6
5

17
2

14
1

12
1

12
9

89 25
7

24
2

27
8

29
4

28
3

28
8 18

5
20

4
21

5
53

13
0

25
8

20 27
1

27
6

26
1

29
3 1

99 22
3

10
8

19
4

22
4 8

4 95
19

1
20

6
18

6
35 24

9
15

4
22

7
21

8
22

9
20

5
21

2
21

7
11

1
26

2
13

3
14

7
14

6
14

9
11

7
14

2
12

4
13

4
13

2
13

8
82 24

6 49 23
3 32 63

88
26

6
29

2 24
8

26
0

28
2 42

25
5

28
1 4 48 30 24
4 13 28
9

23
7

27
7

25
4

12
24

3
24

5 69 26
8

27
2

66 29
7

28
5

25
1

28
4 27

0
67 27
5 61 9 38 64 71 98 28
0 29 25
9

15
5

15
9

22
1

20
0

22
0

18
0

16
6

17
8

20
1

21
0

16
2

15
1

18
1 20

7
18

3
22

8
18

2
18

8
16

9
18

7
16

1
19

7
15

7
17

1
21

3 51 72 4
0

24
7

24 97 24
0

27
9 68 5 47 2
2

27
3 25

55 27
4

11
8

14
5

12
2

15
0 23

1
39 13

9 19
0

19 83 29
6

10 25
2

17 28
6 18 16
8 8

1 92 73 21 87 2
6

24
1 2

65
91 96

23
2

30
0 9

0
52 23
6 41 43
6

99 37 14 16
75 23
8 2

26
4

15 80 3
3 57

50
14

4
12

0
12

5
18

9
16

7
22

6 18
4

22
5

15
3

16
0

17
6

21
1

21
4

16
5

21
6

11 79 19
5

29
5 3

17
5

26
9 15

6
17

9
19

2
15

2
20

8
19

6
20

3
19

8
17

0
17

7
16

3
16

4
20

2
20

9
17

4
19

3
23

0
11

2
11

5
10

9
12

6
12

7
13

1
14

3
10

3
11

3
10

5
14

0
11

9
14

8
10

6
12

3
13

5
7

11
6

11
0

13
6

10
4

11
4 27 58 23
9

25
0

23 23
4

76
23

5
54 78 60 94

56
34 25
3

8
26

7
22

2
93 28 15
8 4

4
31 62

1
45 77 7

0
74 29

0 59 10
0

86 36 26
3

85 29
1 46 29
9

0.
0

0.
2

0.
4

0.
6

0.
8

Cluster Dendrogram

seg.dist
hclust (*, "complete")

H
ei

gh
t

Fig. 11.3. The result of cutting Fig. 11.1 into K = 4 groups.

310 11 Segmentation: Clustering and Classification

We obtain the assignment vector for observations using cutree():

> seg.hc.segment <- cutree(seg.hc, k=4) # membership vector for 4 groups
> table(seg.hc.segment)
seg.hc.segment
1 2 3 4

124 136 18 22

We see that groups 1 and 2 dominate the assignment. Note that the class la-
bels (1, 2, 3, 4) are in arbitrary order and are not meaningful in themselves.
seg.hc.segment is the vector of group assignments.

We use our custom summary function seg.summ(), defined above, to inspect the
variables in seg.df with reference to the four clusters:

> seg.summ(seg.df, seg.hc.segment)
Group.1 age gender income kids ownHome subscribe

1 1 40.78456 2.000000 49454.08 1.314516 1.467742 1
2 2 42.03492 1.000000 53759.62 1.235294 1.477941 1
3 3 44.31194 1.388889 52628.42 1.388889 2.000000 2
4 4 35.82935 1.545455 40456.14 1.136364 1.000000 2

We see that groups 1 and 2 are distinct from 3 and 4 due to subscription sta-
tus. Among those who do not subscribe, group 1 is all male (gender=2 as in
levels(seg.df$gender)) while group 1 is all female. Subscribers are differ-
entiated into those who own a home (group 3) or not (group 4).

Is this interesting from a business point of view? Probably not. Imagine describing
the results to a set of executives: “Our advanced hierarchical analysis in R examined
consumers who don’t yet subscribe and found two segments to target! The segments
are known as ‘Men’ and ‘Women.”’ Such insight is unlikely to win the analyst a
promotion.

We confirm this with a quick plot of gender by subscribe with all of the obser-
vations colored by segment membership. To do this, we use a trick: we convert the
factor variables to numeric, and call the jitter() function to add a bit of noise
and prevent all the cases from being plotted at the same positions (namely at exactly
four points: (1,1), (1,2), (2,1), and (2,2)). We color the points by segment with
col=seg.hc.segment, and label the axes with more meaningful labels:

> plot(jitter(as.numeric(seg.df$gender)) ∼
+ jitter(as.numeric(seg.df$subscribe)),
+ col=seg.hc.segment, yaxt="n", xaxt="n", ylab="", xlab="")
> axis(1, at=c(1, 2), labels=c("Subscribe: No", "Subscribe: Yes"))
> axis(2, at=c(1, 2), labels=levels(seg.df$gender))

The resulting plot is shown in Fig. 11.4, where we see clearly that the non-
subscribers are broken into two segments (colored red and black) that are perfectly
correlated with gender. We should point out that such a plot is a quick hack, which
we suggest only for rapid inspection and debugging purposes.

11.3 Clustering 311

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l l

ll

l

l

ll
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

Subscribe: No Subscribe: Yes

F
em

al
e

M
al

e

Fig. 11.4. Plotting the 4-segment solution from hclust() by gender and subscription sta-
tus, with color representing segment membership. We see the uninteresting result that non-

subscribers are simply divided into two segments purely on the basis of gender.

Why did hclust() find a result that is so uninteresting? That may be answered
in several ways. For one thing, machine learning techniques often take the path of
least resistance and serve up obvious results. In this specific case, the scaling in
daisy() rescales variables to [0,1] and this will make two-category factors (gen-
der, subscription status, home ownership) more influential. Overall, this demon-
strates why you should expect to try several methods and iterate in order to find
something useful.

11.3.4 Mean-Based Clustering: kmeans()

K-means clustering attempts to find groups that are most compact, in terms of the
mean sum-of-squares deviation of each observation from the multivariate center
(centroid) of its assigned group. Like hierarchical clustering, k-means is a very pop-
ular approach.

Because it explicitly computes a mean deviation, k-means clustering relies on Eu-
clidean distance. Thus it is only appropriate for numeric data or data that can be
reasonably coerced to numeric. In our seg.df data, we have a mix of numeric
and binary factors. Unlike higher-order categorical variables, binary factors can be
coerced to numeric with no alteration of meaning.

Although it is not optimal to cluster binary values with k-means, given that we have
a mixture of binary and numeric data, we might attempt it. Our first step is to create
a variant of seg.df that is recoded to numeric. We make a copy of seg.df and
use ifelse() to recode the binary factors:

> seg.df.num <- seg.df
> seg.df.num$gender <- ifelse(seg.df$gender=="Male", 0, 1)
> seg.df.num$ownHome <- ifelse(seg.df$ownHome=="ownNo", 0, 1)
> seg.df.num$subscribe <- ifelse(seg.df$subscribe=="subNo", 0, 1)

312 11 Segmentation: Clustering and Classification

> summary(seg.df.num)
age gender income kids ownHome

Min. :19.26 Min. :0.0000 Min. : -5183 Min. :0.00 Min. :0.00
1st Qu.:33.01 1st Qu.:0.0000 1st Qu.: 39656 1st Qu.:0.00 1st Qu.:0.00
Median :39.49 Median :0.0000 Median : 52014 Median :1.00 Median :0.00
...

There are several ways to recode data, but ifelse() is simple and explicit for
binary data.

We now run the kmeans() algorithm, which specifically requires specifying the
number of clusters to find. We ask for four clusters with centers=4:

> set.seed(96743)
> seg.k <- kmeans(seg.df.num, centers=4)

We use our custom function seg.summ() to do a quick check of the data by pro-
posed group, where cluster assignments are found in the $cluster vector inside
the seg.k model:

> seg.summ(seg.df, seg.k$cluster)
Group.1 age gender income kids ownHome subscribe

1 1 56.37245 1.428571 92287.07 0.4285714 1.857143 1.142857
2 2 29.58704 1.571429 21631.79 1.0634921 1.301587 1.158730
3 3 44.42051 1.452632 64703.76 1.2947368 1.421053 1.073684
4 4 42.08381 1.454545 48208.86 1.5041322 1.528926 1.165289

Unlike with hclust()we now see some interesting differences; the groups appear
to vary by age, gender, kids, income, and home ownership. For example, we can
visually check the distribution of income according to segment (which kmeans()
stored in seg.k$cluster) using boxplot():

> boxplot(seg.df.num$income ∼ seg.k$cluster, ylab="Income", xlab="Cluster")

The result is Fig. 11.5, which shows substantial differences in income by segment.
Note that in clustering models, the group labels are in arbitrary order, so don’t worry
if your solution shows the same pattern with different labels.

We visualize the clusters by plotting them against a dimensional plot.
clusplot() will perform dimensional reduction with principal components or
multidimensional scaling as the data warrant, and then plot the observations with
cluster membership identified (see Chap. 8 to review principal component analysis
and plotting.) We use clusplot from the cluster package with arguments to
color the groups, shade the ellipses for group membership, label only the groups
(not the individual points) with labels=4, and omit distance lines between groups
(lines=0):

> library(cluster)
> clusplot(seg.df, seg.k$cluster, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="K-means cluster plot")

11.3 Clustering 313

l

l

1 2 3 4

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Cluster

In
co

m
e

Fig. 11.5. Boxplot of income by cluster
as found with kmeans().

The code produces the plot in Fig. 11.6, which plots cluster assignment by color and
ellipses against the first two principal components of the predictors (see Sect. 8.2.2).
Groups 3 and 4 are largely overlapping (in this dimensional reduction) while group
1 and especially group 2 are modestly differentiated.

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

K−means cluster plot

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

l

l

l

l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

1

2 3

4

Fig. 11.6. Cluster plot created with
clusplot() for the four group so-
lution from kmeans(). This shows
the observations on a multidimensional
scaling plot with group membership
identified by the ellipses.

Overall, this is a far more interesting cluster solution for our segmentation data than
the hclust() proposal. The groups here are clearly differentiated on key variables
such as age and income. With this information, an analyst might cross-reference the
group membership with key variables (as we did using our seg.summ() function
and then look at the relative differentiation of the groups (as in Fig. 11.6).

314 11 Segmentation: Clustering and Classification

This may suggest a business strategy. In the present case, for instance, we see
that group 1 is modestly well differentiated, and has the highest average income.
That may make it a good target for a potential campaign. Many other strategies
are possible, too; the key point is that the analysis provides interesting options to
consider.

A limitation of k-means analysis is that it requires specifying the number of clusters,
and it can be difficult to determine whether one solution is better than another. If we
were to use k-means for the present problem, we would repeat the analysis for k = 3,
4, 5, and so forth, and determine which solution gives the most useful result for our
business goals.

One might wonder whether the algorithm itself can suggest how many clusters are
in the data. Yes! To see that, we turn next to model-based clustering.

11.3.5 Model-Based Clustering: Mclust()

The key idea for model-based clustering is that observations come from groups
with different statistical distributions (such as different means and variances). The
algorithms try to find the best set of such underlying distributions to explain the
observed data. We use the mclust package [53, 54] to demonstrate this.

Such models are also known as “mixture models” because it is assumed that the
data reflect a mixture of observations drawn from different populations, although we
don’t know which population each observation was drawn from. We are trying to
estimate the underlying population parameters and the mixture proportion. mclust
models such clusters as being drawn from a mixture of normal (also known as Gaus-
sian) distributions.

As you might guess, because mclustmodels data with normal distributions, it uses
only numeric data. We use the numeric data frame seg.df.num that we adapted
for kmeans() in Sect. 11.3.4; see that section for the code if needed. The model is
estimated with Mclust() (note the capital letter for the fitting function, as opposed
to the package name):

> library(mclust)
> seg.mc <- Mclust(seg.df.num)
> summary(seg.mc)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEV (ellipsoidal, equal volume and shape) model with 3 components:

log.likelihood n df BIC ICL
-5256.222 300 71 -10917.41 -10955.48

Clustering table:
1 2 3

111 115 74

11.3 Clustering 315

This tells us that the data are estimated to have three clusters (components) with
the sizes as shown in the table. Mclust() compared a variety of different mixture
shapes and concluded that an ellipsoidal model (modeling the data as multivariate
ellipses) fit best.

We also see log-likelihood information, which we can use to compare models. We
try a 4-cluster solution by telling Mclust() the number of clusters we want with
the G=4 argument:

> seg.mc4 <- Mclust(seg.df.num, G=4)
> summary(seg.mc4)
...
Mclust EEI (diagonal, equal volume and shape) model with 4 components:

log.likelihood n df BIC ICL
-5455.346 300 33 -11098.92 -11131.54

Clustering table:
1 2 3 4
45 54 23 178

Forcing it to find four clusters resulted in quite a different model, with lower log-
likelihood, a different multivariate pattern (diagonal), and no obvious correspon-
dence in the cluster table (for instance, it’s not simply that one of the groups in the
3-cluster solution was split into two).

11.3.6 Comparing Models with BIC()

We compare the 3-cluster and 4-cluster models using the Bayesian information cri-
terion (BIC) [129] with BIC(model1, model2):

> BIC(seg.mc, seg.mc4)
df BIC

seg.mc 71 10917.41
seg.mc4 33 11098.92

The difference between the models is 181. The key point to interpreting BIC is to
remember this: the lower the value of BIC, on an infinite number line, the better. BIC
of −1,000 is better than BIC of −990; and BIC of 60 is better than BIC of 90.

There is one important note when interpreting BIC in R: unfortunately, some func-
tions return the negative of BIC, which would then have to be interpreted in the op-
posite direction. We see above that BIC() reports positive values while Mclust()
returns the same values in the negative direction. If you are ever unsure of the di-
rection to interpret, use the BIC() function and interpret as noted (lower values are
better). Alternatively, you could also check the log-likelihood values, where higher
log-likelihood values are better (e.g., −1,000 is better than −1,100).

316 11 Segmentation: Clustering and Classification

With that in mind, differences in BIC may be interpreted as shown in Table 11.1.
Comparing the present models, we see that the Mclust() solution with three clus-
ters (BIC = 10,917) is a much stronger fit than the model with 4 clusters (BIC =
11,098) because it is lower by 181. That doesn’t mean that the 3-cluster model is
correct; there’s no absolute standard for such a statement. Rather, it means that be-
tween just these two models, as found by Mclust(), the 3-cluster solution has
much stronger evidence in the data.

Table 11.1. Interpretation of the Bayesian information criterion (BIC) when comparing two
models

BIC difference Odds of model superiority (%) Strength of the evidence
0–2 50–75 Weak
2–6 75–95 Positive
6–10 95–99 Strong
>10 >99 Very strong

Lower BIC is better, and the difference in BIC indicates the strength of evidence. Adapted
from Raftery [129, p. 139]

Will the 3-cluster solution provide useful insight for the business? We check the
quick summary and plot the clusters:

> seg.summ(seg.df, seg.mc$class)
Group.1 age gender income kids ownHome subscribe

1 1 37.11167 1.405405 53142.71 1.747748 1.099099 1.270270
2 2 33.67599 1.530435 41315.55 1.626087 1.634783 1.000000
3 3 59.02380 1.500000 62578.80 0.000000 1.770270 1.135135
> library(cluster)
> clusplot(seg.df, seg.mc$class, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="Model-based cluster plot")

The plot is shown in Fig. 11.7.

−2 0 2 4

−
3

−
2

−
1

0
1

2
3

Model−based cluster plot

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

1

2

3

Fig. 11.7. A cluster plot using
clusplot() for the 3-cluster
model from Mclust(). Group 3 is
highly differentiated on the first two
multivariate dimensional components
(X and Y axes).

11.3 Clustering 317

When we compare the Mclust() solution to the one found by kmeans(), there
are arguments for and against each. The 4-cluster k-means solution had much
crisper differentiation on demographics (Sect. 11.3.4). On the other hand, the most
clearly differentiated segment (segment 2; cf. Fig. 11.6) had the lowest income and
thus might be more difficult to sell to (or not—it depends on the product or ser-
vice).

Looking closely at the Mclust() solution, we see that one of the groups is nicely
differentiated (group 3), but the demographic differences reported in seg.summ()
are not particularly interesting. Everyone in Group 2 is a non-subscriber, Group 3
has no kids, and Group 1 mixes everyone else. As always, the ultimate value depends
more on one’e strategy, business case, and modes available to target respondents
than it does on the statistical solution in itself. The statistics provide information
about how customers are similar and different, not a definitive answer.

11.3.7 Latent Class Analysis: poLCA()

Latent class analysis (LCA) is similar to mixture modeling in the assumption that
differences are attributable to unobserved groups that one wishes to uncover. In
this section we take a look at the poLCA package for polytomous (i.e., categorical)
LCA [105].

Whereas mclust and kmeans() work with numeric data, and hclust() de-
pends on the distance measure, poLCA uses only categorical variables. To demon-
strate it here, we adopt an opposite strategy from our procedure with k-means
and mclust and convert our data seg.df to be all categorical data before
analyzing it.

There are several approaches to convert numeric data to factors, but for purposes
here we simply recode everything as binary with regard to a specified cutting point
(for instance, to recode as 1 for income below some cutoff and 2 above that). In the
present case, we split each variable at the median() and recode using ifelse()
and factor() (we’ll see a more general approach to recoding numeric values with
cut() in Sect. 12.4.1):

> seg.df.cut <- seg.df
> seg.df.cut$age <- factor(ifelse(seg.df$age < median(seg.df$age), 1, 2))
> seg.df.cut$income <- factor(ifelse(seg.df$income < median(seg.df$income),
+ 1, 2))
> seg.df.cut$kids <- factor(ifelse(seg.df$kids < median(seg.df$kids), 1, 2))
> summary(seg.df.cut)
age gender income kids ownHome subscribe
1:150 Female:157 1:150 1:121 ownNo :159 subNo :260
2:150 Male :143 2:150 2:179 ownYes:141 subYes: 40

With the data in place, we specify the model that we want to fit. poLCA can es-
timate complex models with covariates, but for the present analysis we only wish

318 11 Segmentation: Clustering and Classification

to examine the effect of cluster membership alone. Thus, we model the dependent
variables (all the observed columns) with respect to the model intercepts (i.e., the
cluster positions). We use with() to save typing, and ∼1 to specify a formula with
intercepts only:

> seg.f <- with(seg.df.cut,
+ cbind(age, gender, income, kids, ownHome, subscribe)∼1)

Next we fit poLCA models for K = 3 and K = 4 clusters using poLCA(formula,
data, nclass=K):

> library(poLCA)
> set.seed(02807)
> seg.LCA3 <- poLCA(seg.f, data=seg.df.cut, nclass=3)
...
> seg.LCA4 <- poLCA(seg.f, data=seg.df.cut, nclass=4)
...

poLCA() displays voluminous information by default, which we have omit-
ted.

Which model is better? We use str(seg.LCA3) to discover the bic value within
the object (as shown in the printed output from poLCA()). Comparing the two
models:

> seg.LCA4$bic
[1] 2330.043
> seg.LCA3$bic
[1] 2298.767

The 3-cluster model shows a lower BIC by 32 and thus a substantially stronger fit
to the data (see Table 11.1). As we’ve seen, that is not entirely conclusive as to busi-
ness utility, so we also examine some other indicators such as the quick summary
function and cluster plots:

> seg.summ(seg.df, seg.LCA3$predclass)
Group.1 age gender income kids ownHome subscribe

1 1 28.22385 1.685714 30075.32 1.1285714 1.285714 1.271429
2 2 54.44407 1.576923 60082.47 0.3846154 1.769231 1.105769
3 3 37.47652 1.277778 54977.08 2.0793651 1.325397 1.079365
> table(seg.LCA3$predclass)
1 2 3
70 104 126

> clusplot(seg.df, seg.LCA3$predclass, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="LCA plot (K=3)")

> seg.summ(seg.df, seg.LCA4$predclass)
Group.1 age gender income kids ownHome subscribe

1 1 36.62554 1.349593 52080.13 2.1951220 1.349593 1.113821
2 2 53.64073 1.535714 60534.17 0.5178571 1.785714 1.098214
3 3 30.22575 1.050000 41361.81 0.0000000 1.350000 1.000000

11.3 Clustering 319

4 4 27.61506 1.866667 28178.70 1.1777778 1.066667 1.333333
> table(seg.LCA4$predclass)
1 2 3 4

123 112 20 45
> clusplot(seg.df, seg.LCA4$predclass, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="LCA plot (K=4)")

The resulting plots from clusplot() are shown in Fig. 11.8.

We interpret the LCA results by looking first at the cluster plots (Fig. 11.8). At a high
level, it appears that “Group 2” is similar in both solutions. The primary difference is
that “Group 3” buried inside the overlapping ellipses in the 4-cluster solution could
be viewed as being largely carved out of two larger groups (Groups “2” and “3” as
labeled in the 3-cluster solution). This is an approximate interpretation of the data
visualization, not a perfect correspondence.

Does the additional group in the 4-cluster solution add anything to our interpre-
tation? Turning to the quick summary from seg.summ() in the code block, we
see good differentiation of groups in both models. One argument in favor of the
4-cluster solution is that Group 3 has no subscribers (as shown by the mean in the
seg.summ() results) and is relatively well identified (mostly younger women with
no kids); that might make it an appealing group either for targeting or exclusion, de-
pending on one’s strategy.

As a final note on model-based clustering (and many other clustering methods such
as kmeans()), the solutions are partially dependent on the random number seed. It
can be useful to run the models with different random seeds and compare the results.
This brings us to our next topic: comparing cluster solutions.

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

LCA plot (K=3)

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

1

2

3

−2 0 2

−
2

−
1

0
1

2
3

LCA plot (K=4)

Component 1

C
om

po
ne

nt
 2

These two components explain 48.49 % of the point variability.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

1

2

3

4

Fig. 11.8. 3-cluster and 4-cluster latent class solutions for seg.df found by poLCA().

320 11 Segmentation: Clustering and Classification

11.3.8 Comparing Cluster Solutions

One question we’ve avoided until now is this: given that we know the real group
membership in seg.df, how does it compare to the clustering methods’ results?
The question is not as simple as counting agreement for two reasons. First, it is not
obvious how to match one cluster solution to another because the order of group
labels is arbitrary. “Group 1” in one solution might well be called “Group 2” or
“Group C” in another solution.

Second, if we solve the matching problem we still need to adjust for chance agree-
ment. Is an agreement rate of 90 % good? It depends on the base rate. If you are
attempting to predict the gender of each person in a random sample of Japanese
citizens, then 90 % accuracy is much better than chance (which would be roughly
51 %, the proportion of women). On the other hand, if you are attempting to predict
whether each respondent speaks Japanese, then 90 % accuracy is terrible (just as-
signing everyone to “Yes” would achieve nearly perfect prediction, because the true
rate is over 99 %).

The mclust package provides tools to solve both issues. mapClass() solves
the matching problem. It examines all permutations of how two sets of class as-
signments might be related and selects a mapping that maximizes agreement be-
tween the two assignment schemes. adjustedRandIndex() likewise matches
two assignment schemes and then computes the degree of agreement over and above
what might be attributed to “chance” by simply assigning all observations to the
largest group [81, 131]. Its magnitude may be interpreted similarly to a standard r
correlation coefficient.

We use table() to look at the cross-tabs between the LCA 3-cluster and 4-cluster
solutions found above:

> table(seg.LCA3$predclass, seg.LCA4$predclass)

1 2 3 4
1 13 0 12 45
2 0 104 0 0
3 110 8 8 0

It would appear that observations assigned to “Group 1” in the 3-cluster
solution are split between Groups 1, 3, and 4 in the 4-cluster solution, while
“Group 3” maps closely to “Group 1” (in the 4 class solution) and “Group
2” is predominantly the same in both. However, matching groups manually
is sometimes unclear and generally error-prone. Instead, we use mapClass
(a, b) and adjustedRandIndex(a, b) to compare agreement between the
two solutions:

> library(mclust)
> mapClass(seg.LCA3$predclass, seg.LCA4$predclass)
$aTOb

11.3 Clustering 321

$aTOb$‘1‘
[1] 4
$aTOb$‘2‘
[1] 2
$aTOb$‘3‘
[1] 1
... # [similarly for mapping b to a, omitted]
> adjustedRandIndex(seg.LCA3$predclass, seg.LCA4$predclass)
[1] 0.7288822

This tells us that “1” in the LCA3 model (a) maps best to “4” in the LCA4 model
(b), and so forth. The adjusted Rand index of 0.729 indicates that the match between
the two assignment lists is much better than chance. From a business perspective, it
also tells us that the 3-cluster and 4-cluster differ modestly from one another, which
provides another perspective on choosing between them.

By comparison, R makes it easy to see what happens if we were to test a random
assignment scheme:

> set.seed(11021)
> random.data <- sample(4, length(seg.LCA4$predclass),

replace=TRUE)
> adjustedRandIndex(random.data, seg.LCA4$predclass)
[1] 0.002292031

In this case, the adjusted Rand index is near zero, because the match between the
clusters is no better than random chance.

Finally we compare the LCA 4-cluster solution to the true segments in
seg.raw:

> table(seg.raw$Segment, seg.LCA4$predclass)
1 2 3 4

Moving up 50 4 8 8
Suburb mix 62 29 2 7
Travelers 0 79 1 0
Urban hip 11 0 9 30

> adjustedRandIndex(seg.raw$Segment, seg.LCA4$predclass)
[1] 0.3513031

With a Rand index of 0.35, the LCA solution matches the true segment assignments
moderately better than chance alone. In many cases, of course, one would not have
identified clusters for comparison; but when they are available from other projects
or previous efforts, it is helpful to examine correspondence in this way.

322 11 Segmentation: Clustering and Classification

11.3.9 Recap of Clustering

We’ve covered four statistical methods to identify potential groups of observations
in a data set. In the next section we examine the problem of how to predict (classify)
observations into groups after those groups have been defined. Before we move
to that problem, there are two points that are crucial for success in segmentation
projects:

• Different methods are likely to yield different solutions, and in general there is
no absolute “right” answer. We recommend to try multiple clustering methods
with different potential numbers of clusters.

• The results of segmentation are primarily about business value, and solutions
should be evaluated in terms of both model fit (e.g., using BIC()) and busi-
ness utility. Although model fit is an important criterion and should not be over-
looked, it is ultimately necessary that an answer can be communicated to and
used by stakeholders.

11.4 Classification

Whereas clustering is the process of discovering group membership, classification
is the prediction of membership. In this section we look at two examples of classi-
fication: predicting segment membership, and predicting who is likely to subscribe
to a service.

Classification uses observations whose status is known to derive predictors, and then
applies those predictors to new observations. When working with a single data set it
is typically split into a training set that is used to develop the classification model,
and a test set that is used to determine performance. It is crucial not to assess per-
formance on the same observations that were used to develop the model.

A classification project typically includes the following steps at a minimum:

• A data set is collected in which group membership for each observation is
known or assigned (e.g., assigned by behavioral observation, expert rating, or
clustering procedures).

• The data set is split into a training set and a test set. A common pattern is
to select 50–80 % of the observations for the training set (67 % seems to be
particularly common), and to assign the remaining observations to the test set.

• A prediction model is built, with a goal to predict membership in the training
data as well as possible.

11.4 Classification 323

• The resulting model is then assessed for performance using the test data. Per-
formance is assessed to see that it exceeds chance (base rate). Additionally one
might assess whether the method performs better than a reasonable alternative
(and simpler or better-known) model.

Classification is an even more complex area than clustering, with hundreds of
methods and hundreds of R packages, thousands of academic papers each year,
and enormous interest with technology and data analytics firms. Our goal is not to
cover all of that but to demonstrate the common patterns in R using two of the best-
known and most useful classification methods, the naive Bayes and random forest
classifiers.

11.4.1 Naive Bayes Classification: naiveBayes()

A simple yet powerful classification method is the Naive Bayes (NB) classifier.
Naive Bayes uses training data to learn the probability of class membership as a
function of each predictor variable considered independently (hence “naive”). When
applied to new data, class membership is assigned to the category considered to be
most likely according to the joint probabilities assigned by the combination of pre-
dictors. Several R packages provide NB methods; we use the e1071 package from
the Vienna University of Technology (TU Wien) [114].

The first step in training a classifier is to split the data into training and test data,
which will allow one to check whether the model works on the test data (or is in-
stead overfitted to the training data). We select 65 % of the data to use for training
with the sample() function, and keep the unselected cases as holdout (test) data.
Note that we select the training and test cases not from seg.df, which omitted
the previously known segment assignments, but from the full seg.raw data frame.
Classification requires known segment assignments in order to learn how to assign
new values.

> set.seed(04625)
> train.prop <- 0.65
> train.cases <- sample(nrow(seg.raw), nrow(seg.raw)*train.prop)
> seg.df.train <- seg.raw[train.cases,]
> seg.df.test <- seg.raw[-train.cases,]

We then train a naive Bayes classifier to predict Segment membership from all
other variables in the training data. This is a very simple command:

> library(e1071)
> (seg.nb <- naiveBayes(Segment ∼ ., data=seg.df.train))
...
Y
Moving up Suburb mix Travelers Urban hip
0.2512821 0.3025641 0.2615385 0.1846154

324 11 Segmentation: Clustering and Classification

Conditional probabilities:
...

gender
Y Female Male
Moving up 0.6530612 0.3469388
Suburb mix 0.4576271 0.5423729
Travelers 0.4705882 0.5294118
Urban hip 0.3333333 0.6666667

...

Examining the summary of the model object seg.nb, we see how the NB model
works. First, the a priori likelihood of segment membership—i.e., the estimated
odds of membership before any other information is added—is 25.1 % for the Mov-
ing up segment, 30.2 % for the Suburb mix segment, and so forth. Next we see the
probabilities conditional on each predictor. In the code above, we show the proba-
bilities for gender conditional on segment. A member of the Moving up segment
has a 65.3 % probability of being female in the training data.

The NB classifier starts with the observed probabilities of gender, age, etc., con-
ditional on segment found in the training data. It then uses Bayes’ Rule to com-
pute the probability of segment, conditional on gender, age, etc. This can then be
used to estimate segment membership in new observations such as the test data.
You have likely seen a description of how Bayes’ Rule works, and we will not
repeat it here. For details, refer to a general text on Bayesian methods such as
Kruschke [94].

Using the classifier model object seg.nb we can predict segment membership in
the test data seg.df.test with predict():

> (seg.nb.class <- predict(seg.nb, seg.df.test))

[1] Suburb mix Travelers Suburb mix Suburb mix Suburb mix Suburb mix

[7] Moving up Suburb mix Suburb mix Suburb mix Travelers Moving up

...

We examine the frequencies of predicted membership using table() and
prop.table():

> prop.table(table(seg.nb.class))
seg.nb.class
Moving up Suburb mix Travelers Urban hip
0.2285714 0.3047619 0.3428571 0.1238095

A cluster plot of these segments against their principal components is created with
the following code and shown in Fig. 11.9. In this case we remove the known seg-
ment assignments from the data using [, -7] because we are using the NB clas-
sifications:

> clusplot(seg.df.test[, -7], seg.nb.class, color=TRUE, shade=TRUE,
+ labels=4, lines=0,
+ main="Naive Bayes classification, holdout data")

11.4 Classification 325

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
Naive Bayes classification, holdout data

Component 1

C
om

po
ne

nt
 2

These two components explain 45.71 % of the point variability.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Moving up

Suburb mix

Travelers

Urban hip

Fig. 11.9. A cluster plot for the naive
Bayes classifier for segment member-
ship predicted in holdout (test) data.

How well did the model perform? We compare the predicted membership to the
known segments for the 35 % holdout (test) data. First we see the raw agreement
rate, which is 80 % agreement between predicted and actual segment member-
ship:

> mean(seg.df.test$Segment==seg.nb.class)
[1] 0.8

As we saw in Sect. 11.3.8, instead of raw agreement, one should assess performance
above chance. In this case, we see that NB was able to recover the segments in the
test data imperfectly but substantially better than chance:

> library(mclust)
> adjustedRandIndex(seg.nb.class, seg.df.test$Segment)
[1] 0.5626787

We compare performance for each category using table(). The resulting table is
known in machine learning as a confusion matrix:

> table(seg.nb.class, seg.df.test$Segment)

seg.nb.class Moving up Suburb mix Travelers Urban hip
Moving up 13 10 0 1
Suburb mix 3 29 0 0
Travelers 5 2 29 0
Urban hip 0 0 0 13

The NB prediction (shown in the rows) was correct for a majority of observations
in each segment, as shown in the diagonal. When we examine individual categories,
we see that NB was correct for every proposed member of the Urban hip segment
(13 correct out of 13 proposed), and for nearly 90 % of the Suburb mix proposals

326 11 Segmentation: Clustering and Classification

(29 correct out of 32). However, it incorrectly classified 12 of the actual 41 Suburb
mix respondents into other segments, and similarly failed to identify 1 of the true
Urban hip segment.

This demonstrates the asymmetry of positive prediction (making a correct claim
of inclusion) vs. negative prediction (making a correct claim of exclusion). There is
likely to be a different business gain for identifying true positives and true negatives,
versus the costs of false positives and false negatives. If you have estimates of these
costs, you can use the confusion matrix to compute a custom metric for evaluating
your classification results.

As we did for clustering, we check the predicted segments’ summary values using
our summary function. However, because we now have labeled test data, we can
also compare that to the summary values using the true membership:

> # summary data for proposed segments in the test data
> seg.summ(seg.df.test, seg.nb.class)

Group.1 age gender income kids ownHome subscribe Segment
1 Moving up 34.29258 1.125000 51369.52 2.2916667 1.416667 1.250000 1.541667
2 Suburb mix 41.24653 1.562500 58095.10 2.1875000 1.562500 1.000000 1.906250
3 Travelers 55.08669 1.444444 58634.10 0.0000000 1.666667 1.166667 2.666667
4 Urban hip 23.36047 1.461538 22039.69 0.8461538 1.307692 1.153846 4.000000

> seg.summ(seg.df.test, seg.df.test$Segment)
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1
2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2
3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3
4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

Overall, we see that the summary of demographics for the proposed segments (the
first summary above) is very similar to the values in the true segments (the second
summary). Thus, although NB assigned some observations to the wrong segments,
its overall model of the segment descriptive values—at least at the mean values—is
similar for the proposed and true segments. By making such a comparison using the
test data, we gain confidence that although assignment is not perfect on a case-by-
case basis, the overall group definitions are quite similar.

For naive Bayes models, predict() can estimate not only the most likely seg-
ment but also the odds of membership in each segment, using the type="raw"
argument:

> predict(seg.nb, seg.df.test, type="raw")
Moving up Suburb mix Travelers Urban hip

[1,] 4.070780e-01 5.928052e-01 4.848358e-05 6.832328e-05
[2,] 2.715183e-04 2.422066e-03 9.973064e-01 6.143554e-32
[3,] 2.671393e-01 7.326897e-01 1.710510e-04 2.844967e-40
[4,] 2.237216e-01 7.746457e-01 1.632613e-03 7.568258e-37
[5,] 2.255663e-01 7.740280e-01 4.057610e-04 9.030641e-11

...

11.4 Classification 327

This tells us that Respondent 1 is estimated to be about 59 % likely to be a member of
Suburb mix, yet 40 % likely to be in Moving up. Respondent 2 is estimated nearly
100 % likely to be in Travelers. This kind of individual-level detail can suggest
which individuals to target according to the difficulty of targeting and the degree of
certainty. For high-cost campaigns, we might target only those most certain to be in
a segment; whereas for low-cost campaigns, we might target people for second-best
segment membership in addition to primary segment assignment.

We conclude that the naive Bayes model works well for the data analyzed here,
with performance much better than chance, overall 80 % accuracy in segment as-
signment, and demographics that are similar between the proposed and actual seg-
ments. It also provides interpretable individual-level estimation of membership like-
lihood.

Of course there are times when naive Bayes may not perform well, and it’s always
a good idea to try multiple methods. For an alternative, we next examine random
forest models.

11.4.2 Random Forest Classification: randomForest()

A random forest (RF) classifier does not attempt to fit a single model to data but
instead builds an ensemble of models that jointly classify the data [19, 104]. RF
does this by fitting a large number of classification trees. In order to find an assort-
ment of models, each tree is optimized to fit only some of the observations (in our
case, customers) using only some of the predictors. The ensemble of all trees is the
forest.

When a new case is predicted, it is predicted by every tree and the final decision is
awarded to the consensus value that receives the most votes. In this way, a random
forest avoids dependencies on precise model specification while remaining resilient
in the face of difficult data conditions, such as data that are collinear or wide (more
columns than rows). Random forest models perform well across a wide variety of
data sets and problems [48].

In R, a random forest may be created with code very similar to that for naive Bayes
models. We use the same seg.df.train training data as in Sect. 11.4.1, and
call randomForest() from the (surprise!) randomForest package to fit the
classifier:

> library(randomForest)
> set.seed(98040)
> (seg.rf <- randomForest(Segment ∼ ., data=seg.df.train, ntree=3000)

)
...

OOB estimate of error rate: 24.1%
Confusion matrix:

Moving up Suburb mix Travelers Urban hip class.error
Moving up 29 19 0 1 0.40816327

328 11 Segmentation: Clustering and Classification

Suburb mix 20 35 3 1 0.40677966
Travelers 0 3 48 0 0.05882353
Urban hip 0 0 0 36 0.00000000

There are two things to note about the call to randomForest(). First, random
forests are random to some extent, as the name says. They select variables and sub-
sets of data probabilistically. Thus, we use set.seed() before modeling. Second,
we added an argument ntree=3000 to specify the number of trees to create in the
forest. It is sometimes suggested to have 5–10 trees per observation for small data
sets like the present one.

randomForest() returns a confusion matrix of its own based on the training
data. How can it do that? Remember that RF fits many trees, where each tree is
optimized for a portion of the data. It uses the remainder of the data—known as
“out of bag” or OOB data—to assess the tree’s performance more generally. In the
confusion matrix, we see that the Travelers and Urban hip segments fit well, while
the Moving up and Suburb mix segments had 40 % error rates in the OOB data. This
is an indicator that we may see similar patterns in our holdout data.

Example: Tree 987

age

ownHome

gender

kids

U
rb

an
 h

ip

income

income

U
rb

an
 h

ip

U
rb

an
 h

ip

kids

income

age

M
ov

in
g

up

income

S
ub

ur
b

m
ix

S
ub

ur
b

m
ix

S
ub

ur
b

m
ix

S
ub

ur
b

m
ix

income

U
rb

an
 h

ip

age

income

age

M
ov

in
g

up

S
ub

ur
b

m
ix

M
ov

in
g

up

M
ov

in
g

up

income

gender

kids

income

M
ov

in
g

up

age

income

S
ub

ur
b

m
ix

M
ov

in
g

up

S
ub

ur
b

m
ix

M
ov

in
g

up

income

S
ub

ur
b

m
ix

M
ov

in
g

up

age

age

Tr
av

el
er

s

S
ub

ur
b

m
ix

Tr
av

el
er

s

Tr
av

el
er

s

Example: Tree 1245

age

income

age

U
rb

an
 h

ip
Tr

av
el

er
s

ownHome

income

age

kids

subscribe

income

U
rb

an
 h

ip
M

ov
in

g
up

M
ov

in
g

up
M

ov
in

g
up

S
ub

ur
b

m
ix

age

income

age

S
ub

ur
b

m
ix

gender

kids

S
ub

ur
b

m
ix

M
ov

in
g

up

income

M
ov

in
g

up
S

ub
ur

b
m

ix

income

M
ov

in
g

up
S

ub
ur

b
m

ix

kids

age

M
ov

in
g

up
S

ub
ur

b
m

ix

kids

S
ub

ur
b

m
ix

subscribe

S
ub

ur
b

m
ix

M
ov

in
g

up

income

income

age

kids

M
ov

in
g

up
M

ov
in

g
up

income

income

gender

age

S
ub

ur
b

m
ix

Tr
av

el
er

s
S

ub
ur

b
m

ix
S

ub
ur

b
m

ix

age

Tr
av

el
er

s
S

ub
ur

b
m

ix

kids

age

gender

M
ov

in
g

up

kids

M
ov

in
g

up
S

ub
ur

b
m

ix

gender

S
ub

ur
b

m
ix

income

income

S
ub

ur
b

m
ix

M
ov

in
g

up
S

ub
ur

b
m

ix
M

ov
in

g
up

age

age

Tr
av

el
er

s
S

ub
ur

b
m

ix
Tr

av
el

er
s

Tr
av

el
er

s

Fig. 11.10. Two examples among the 3,000 trees in the ensemble found by
randomForest() for segment prediction in seg.df. The trees differ substantially in
structure and variable usage. No single tree is expected to be a particularly good predictor in
itself, yet the ensemble of all trees may predict well in aggregate by voting on the assignment

of observations to outcome groups.

What does a random forest look like? Figure 11.10 shows two trees among those
we fit above (using visualization code from Caldon [21]). The complete forest com-
prises 3,000 such trees that differ in structure and the predictors used. When an
observation is classified, it is assigned to the group that is predicted by the greatest
number of trees within the ensemble.

11.4 Classification 329

A cluster plot of predicted segment membership is shown in Fig. 11.11, where we
omit the known segment assignments in column 7 of seg.df.test because we
want to see the differences on the baseline variables on the basis of segments iden-
tified in the RF model:

> library(cluster)

> clusplot(seg.df.test[, -7], seg.rf.class, color=TRUE, shade=TRUE,

+ labels=4, lines=0, main="Random Forest classification, holdout data"

+)

The RF clusters in Fig. 11.11 are quite similar in shape to those found by naive
Bayes in Fig. 11.9, with respect to the principal components axes.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Random Forest classification, holdout data

Component 1

C
om

po
ne

nt
 2

These two components explain 45.71 % of the point variability.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Moving up

Suburb mix

Travelers

Urban hip

Fig. 11.11. A cluster plot for the ran-
dom forest solution for segment mem-
bership predicted in holdout (test) data.

It is possible to inspect the distribution of predictions for individual cases. Add the
predict.all=TRUE argument to the predict() call to get the estimate of
every tree for every case in the test data. We then apply() the table() function
to summarize a few of these:

> seg.rf.class.all <- predict(seg.rf, seg.df.test, predict.all=TRUE)
> apply(seg.rf.class.all$individual[1:5,], 1, table) / 3000

2 3 4 6 7
Moving up 0.42066667 0.076333333 0.1886667 0.1223333 0.217
Suburb mix 0.47266667 0.485000000 0.6930000 0.8526667 0.340
Travelers 0.02966667 0.436333333 0.1173333 0.0240000 0.050
Urban hip 0.07700000 0.002333333 0.0010000 0.0010000 0.393

We divide the results of table() by 3,000 to get the percentage of votes across
all trees. Cases 2, 3, 4, and 6 are each assigned to the Suburb mix segment as the
most likely class (by tiny margins for cases 2 and 3), although only cases 4 and

330 11 Segmentation: Clustering and Classification

6 are assigned with an overall majority of the votes. Case 7 would be assigned to
the Urban hip segment as the most likely, although with only an estimated 39 %
likelihood of that being its true class.

The proposed and actual segments are quite similar in the mean values of the vari-
ables in our summary function:

> seg.summ(seg.df.test, seg.rf.class) # proposed segments
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 34.60317 1.130435 52288.38 2.39130435 1.434783 1.260870 1.608696
2 Suburb mix 40.83221 1.500000 57652.19 1.65000000 1.550000 1.000000 1.850000
3 Travelers 59.26118 1.464286 59812.04 0.03571429 1.714286 1.214286 2.892857
4 Urban hip 24.37450 1.500000 21842.73 1.00000000 1.285714 1.142857 3.857143

> seg.summ(seg.df.test, seg.df.test$Segment) # actual segments
Group.1 age gender income kids ownHome subscribe Segment

1 Moving up 36.88989 1.190476 53582.16 1.4761905 1.333333 1.190476 1
2 Suburb mix 39.61984 1.487805 56341.99 2.2439024 1.585366 1.048780 2
3 Travelers 58.57245 1.448276 59869.24 0.0000000 1.689655 1.206897 3
4 Urban hip 23.71537 1.428571 22700.06 0.9285714 1.357143 1.142857 4

As suggested by the OOB assessment we saw above for the training data, a confu-
sion matrix reveals which segments were predicted more accurately:

> mean(seg.df.test$Segment==seg.rf.class)
[1] 0.7428571
> table(seg.df.test$Segment, seg.rf.class)

seg.rf.class
Moving up Suburb mix Travelers Urban hip

Moving up 11 9 1 0
Suburb mix 11 28 1 1
Travelers 0 3 26 0
Urban hip 1 0 0 13

The segment comparison using mean(.. == ..) calculates that RF correctly
assigned 72 % of cases to their segments, and the confusion matrix using table()
shows that incorrect assignments were mostly in the Moving up and Suburb mix
segments.

Finally, we note that the RF model performed substantially better than
chance:

> library(mclust)
> adjustedRandIndex(seg.df.test$Segment, seg.rf.class)
[1] 0.4659346

11.4.3 Random Forest Variable Importance

Random forest models are particularly good for one common marketing prob-
lem: estimating the importance of classification variables. Because each tree

11.4 Classification 331

uses only a subset of variables, RF models are able to handle very wide data
where there are more—even many, many more—predictor variables than there are
observations.

An RF model assesses the importance of a variable in a simple yet powerful way:
for each variable, it randomly permutes (sorts) the variable’s values, computes the
model accuracy in OOB data using the permuted values, and compares that to the
accuracy with the real data. If the variable is important, then its performance will
degrade when its observed values are randomly permuted. If, however, the model
remains just as accurate as it is with real data, then the variable in question is not
very important [19].

To estimate importance, run randomForest() with the importance=TRUE
argument. We reset the random seed and run RF again:

> set.seed(98040)
> (seg.rf <- randomForest(Segment ∼ ., data=seg.df.train, ntree=3000,

importance=TRUE))
...

> importance(seg.rf)
Moving up Suburb mix Travelers Urban hip

age 61.386693 44.653251 121.9187436 86.345025
gender 13.065763 -4.266584 -1.6609796 8.409029
income 23.712016 17.428848 15.9978527 77.258853
kids 18.476067 14.248174 53.8039237 6.308172
ownHome 5.212246 -11.539183 23.5491524 20.667305
subscribe 16.625874 9.118376 0.8989833 -3.194460

MeanDecreaseAccuracy MeanDecreaseGini
age 130.712724 62.399834
gender 7.382935 3.354667
income 68.809768 36.439804
kids 52.404913 20.081438
ownHome 16.063356 4.898022
subscribe 16.023871 2.965571

The upper block shows the variable importance by segment. We see, for exam-
ple, that age is important for all segments, while gender is not very important.
The lower block shows two overall measures of variable importance, the permu-
tation measure of impact on accuracy (MeanDecreaseAccuracy), and an assess-
ment of the variable’s ability to assist classification better than chance labeling
(MeanDecreaseGini, a measure of Gini impurity [19]).

The randomForest package includes varImpPlot() to plot variable impor-
tance:

> varImpPlot(seg.rf, main="Variable importance by segment")

The result is Fig. 11.12. The most important variables in this data set are age,
income, and kids.

332 11 Segmentation: Clustering and Classification

We plot the importance for variables by segment with information from
importance(MODEL). The variable-by-segment data are in the first four
columns of that object (as shown in the code output above). We transpose it to put
segments on the rows and use heatmap.2() to plot the values with color:

> library(gplots)
> library(RColorBrewer)
> heatmap.2(t(importance(seg.rf)[, 1:4]),
+ col=brewer.pal(9, "Blues"),
+ dend="none", trace="none", key=FALSE,
+ margins=c(10, 10),
+ main="Variable importance by segment"
+)

gender

subscribe

ownHome

kids

income

age

l

l

l

l

l

l

20 40 60 80 100
MeanDecreaseAccuracy

subscribe

gender

ownHome

kids

income

age

l

l

l

l

l

l

0 10 20 30 40 50 60
MeanDecreaseGini

Variable importance by segment

Fig. 11.12. Variable importance
for segment classification from
randomForest().

The result is Fig. 11.13. We used the gplots package for heatmap.2(),
and RColorBrewer to get a color palette. In the call to heatmap.2(),
we specified col=brewer.pal(9, "Blues") to get nine shades of blue,
dend="none", trace="none", key=FALSE to turn off some plot options
we didn’t want (dendrograms and a legend), and margins=c(10, 10) to adjust
the margins and make the axes more readable.

in
co

m
e

ow
nH

om
e

ge
nd

er

su
bs

cr
ib

e

ki
ds

ag
e

Travelers

Urban hip

Suburb mix

Moving up

Variable importance by segment

Fig. 11.13. A heatmap of vari-
able importance by segment, pro-
duced with randomForest() and
heatmap.2(). Darker shades sig-
nify higher importance for the vari-
able (column) in differentiating a
segment (row).

11.5 Prediction: Identifying Potential Customers* 333

Figure 11.13 highlights the importance of age in predicting all of the segments, the
importance of income to predict Urban hip, of kids to predict Travelers, and the
relatively low importance of the other predictors.

11.5 Prediction: Identifying Potential Customers*

We now turn to another use for classification: to predict potential customers. An
important business question—especially in high-churn categories such as mobile
subscriptions—is how to reach new customers. If we have data on past prospects
that includes potential predictors such as demographics, and an outcome such as
purchase, we can develop a model to identify customers for whom the outcome is
most likely among new prospects. In this section, we use a random forest model and
attempt to predict subscription status from our data set seg.df.

As usual with classification problems, we split the data into a training sample and a
test sample:

> set.seed(92118)
> train.prop <- 0.65
> train.cases <- sample(nrow(seg.df), nrow(seg.df)*train.prop)
> sub.df.train <- seg.df[train.cases,]
> sub.df.test <- seg.df[-train.cases,]

Next, we wonder how difficult it will be to identify potential subscribers. Are
subscribers in the training set well differentiated from non-subscribers? We use
clusplot() to check the differentiation, removing subscribe from the data
with [, -6] and using it instead as the cluster identifier:

> clusplot(sub.df.train[, -6], sub.df.train$subscribe, color=TRUE, shade=TRUE,
+ labels=4, lines=0, main="Subscriber clusters, training data")

The result in Fig. 11.14 shows that the subscribers and non-subscribers are not well
differentiated when plotted against principal components (which reflect almost 56 %
of the variance in the data). This suggests that the problem will be difficult!

We fit an initial RF model to predict subscribe:

> library(randomForest)
> set.seed(11954)
> (sub.rf <- randomForest(subscribe ∼ ., data=sub.df.train,
+ ntree=3000))
...

OOB estimate of error rate: 14.87%
Confusion matrix:

subNo subYes class.error
subNo 166 4 0.02352941
subYes 25 0 1.00000000

334 11 Segmentation: Clustering and Classification

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Subscriber clusters, training data

Component 1

C
om

po
ne

nt
 2

These two components explain 55.83 % of the point variability.

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

subNosubYes

Fig. 11.14. Cluster plot for the
subscribers and non-subscribers.
The two groups show little dif-
ferentiation on the principal
components, which suggests that
classifying respondents into the
groups and predicting subscribers
could be difficult.

The results are not encouraging. Although the error rate might initially sound good
at 14.9 %, we have 100 % error in predicting subscribers (subYes) with all 25
misclassified in the OOB data.

Why? This demonstrates the class imbalance problem in machine learning. When
one category dominates the data, it is very difficult to learn to predict other groups.
This frequently arises with small-proportion problems, such as predicting the com-
paratively rare individuals who will purchase a product, who have a medical condi-
tion, who are security threats, and so forth.

A general solution is to balance the classes by sampling more from the small group.
In RF models, this can be accomplished by telling the classifier to use a balanced
group when it samples data to fit each tree. We use sampsize=c(25, 25) to
draw an equal number of subscribers and non-subscribers when fitting each tree
(selecting N = 25 each because we have that many subscribers in the training data;
these are sampled with replacement so trees are not all identical):

> set.seed(11954)
> (sub.rf <- randomForest(subscribe ∼ ., data=sub.df.train, ntree=3000,
+ sampsize=c(25, 25)))

Call:
randomForest(formula = subscribe ∼ ., data = sub.df.train, ntree

= 3000, sampsize = c(25, 25))
Type of random forest: classification

Number of trees: 3000
No. of variables tried at each split: 2

OOB estimate of error rate: 30.77%
Confusion matrix:

subNo subYes class.error

11.5 Prediction: Identifying Potential Customers* 335

subNo 127 43 0.2529412
subYes 17 8 0.6800000

Although our overall error rate is substantially higher at 31.79 %, we are success-
fully predicting 32 % (i.e., 1− 0.68) of the subscribers in the OOB data, which is
greatly improved over zero.

We use predict() to apply the RF model to the holdout data and examine the
confusion matrix:

> sub.rf.sub <- predict(sub.rf, sub.df.test)
> table(sub.rf.sub, sub.df.test$subscribe)
sub.rf.sub subNo subYes

subNo 79 9
subYes 11 6

The model correctly predicts 6 of the 15 subscribers in the holdout data, at a cost
of incorrectly predicting 11 others as subscribers who are not. That may be an ac-
ceptable tradeoff if we are trying to identify prospects who are worth an effort to
reach. For instance, in the present case, calling all prospects would result in 15/105
successes (14 % success rate), while calling the suggested ones would result in 6/17
successes (35 %). The ultimate value of each strategy—to call of them or not—
depends on the cost of calling vs. the value of successful conversion.

Another way to look at the result is this: those that the model said were non-
subscribers were almost 90 % correct (79 correct out of 88). If the cost to target
customers is high, it may be very useful to predict those not to target with high
accuracy.

Is the model predicting better than chance? We use adjustedRandIndex()
to find that performance is modestly better than chance, and we confirm this
with cohen.kappa() in the psych package, which provides confidence inter-
vals:

> adjustedRandIndex(sub.rf.sub, sub.df.test$subscribe)
[1] 0.1928668

> library(psych)
> cohen.kappa(cbind(sub.rf.sub, sub.df.test$subscribe))
Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha)

Cohen Kappa and Weighted Kappa correlation coefficients and confidence
boundaries

lower estimate upper
unweighted kappa 0.025 0.26 0.5
weighted kappa 0.025 0.26 0.5

336 11 Segmentation: Clustering and Classification

With an adjusted Rand Index = 0.19 and Cohen’s kappa = 0.26 (confidence interval
0.025–0.50), the model identifies subscribers in the test data modestly better than
chance.

How could we further improve prediction? We would expect to improve predictive
ability if we had more data: additional observations of the subscriber group and
additional predictor variables. We have described prediction using a random forest
model, but there are many other approaches such as logistic regression (Sect. 9.2)
and other machine learning algorithms (see Sect. 11.6).

With a difficult problem—predicting a low incidence group, in data where the
groups are not well-differentiated, and with a small sample—the random forest
model performs modestly yet perhaps surprisingly well. There are no magic bullets
in predictive modeling, but if you use the many tools available in R, avoid pitfalls
such as class imbalance, and interpret results in terms of the business action, you
will have good odds to achieve positive results.

11.6 Learning More*

We covered the basics of clustering and classification in this chapter. There are many
places to learn more about those methods and related statistical models. A recom-
mended introduction to the field of statistical learning is James et al., An Introduc-
tion to Statistical Learning (ISL) [86]. A more advanced treatment of the topics in
ISL is Hastie et al., The Elements of Statistical Learning [75].

For cluster analysis, a readable text is Everitt et al., Cluster Analysis [44]. An in-
troduction to latent class analysis is Collins and Lanza, Latent Class and Latent
Transition Analysis [30].

R has support for a vast number of clustering algorithms that we cannot cover here,
but a few are worth mentioning. Mixture modeling is an area with active and exciting
work. In addition to mclust that we covered above, another package of note is
flexmix [66, 102], which fits more generalized models, and which finds mixtures
using a variety of models (normal, Poisson, multinomial, Markov, and others). For
very large data sets, the clara algorithm in the standard cluster package is a
good starting point.

For classification and especially prediction, in addition to ISL noted above, an ap-
plied, practitioner-friendly text is Kuhn and Johnson’s Applied Predictive Modeling.
If you do classification in R, you owe it to yourself and your stakeholders to examine
the caret package from Kuhn et al [98]. caret provides a uniform interface to
149 machine learning and classification algorithms (as of writing time) along with
tools to assess performance and streamline other common tasks.

A resource for data when practicing clustering and classification is the mlbench
package [103]. mlbench provides data sets from a variety of applications in
agriculture, forensics, politics, economics, genomics, engineering, and other areas
(although not marketing).

11.7 Key Points 337

Marketing segmentation has developed approaches and nuances that differ from the
typical description in statistics texts. For instance, in addition to the static, cross-
sectional models considered in this chapter (where segmentation examines data at
just one point in time), one might wish to consider dynamic models that take into
account customer lifestyle changes over time. An overview of diverse approaches in
marketing is Wedel and Kamakura, Market Segmentation: Conceptual and Method-
ological Foundations [160].

There are various ways to model changes in class membership over time. One ap-
proach is latent transition analysis (LTA), described in Collins and Lanza [30]. At
the time of writing, LTA was not supported by a specific package in R. Another
approach is a finite state model such as Markov chain model (cf. Ross [134]). An
alternative when change over time is metric (i.e., is conceptualized as change in a
dimension rather than change between groups) is to use longitudinal structural equa-
tion modeling or latent growth curve models. A starting point is the growth()
function in the lavaan package that we examined in Chap. 10.

Finally, a generalized approach that is popular for clustering is cluster ensemble
analysis. An ensemble method creates multiple solutions and determines group
membership by likelihood or consensus among the solutions. Cluster ensembles are
conceptually similar to random forest models for classification that we examined in
this chapter. A package for cluster ensemble analysis is clue [77].

11.7 Key Points

We addressed segmentation through the lenses of clustering and classification, each
of which is a large area of statistics with active research. We examined several vari-
eties of clustering methods and compared them. Once segments or groups are iden-
tified, classification methods can help to predict group membership status for new
observations.

• The most crucial question in a segmentation project is the business aspect: will
the results be useful for the purpose at hand? Will they inspire new strategies
for marketing to customers? It is important to try multiple methods and evaluate
the utility of their results (cf. Sect. 11.1.1).

• Distance-based clustering methods attempt to group similar observations. We
examined hclust() for hierarchical clustering (Sect. 11.3.2) and kmeans()
for k-means grouping (Sect. 11.3.4). Distance-based measures rely on having a
way to express metric distance, which is a challenge for categorical data.

338 11 Segmentation: Clustering and Classification

• Model-based clustering methods attempt to model an underlying distribution
that the data express. We examined mclust for model-based clustering of
data assumed to be a mix of normal distributions (Sect. 11.3.5), and poLCA
for latent-class analysis with categorical data (Sect. 11.3.7).

• A feature of some model-based methods is that they propose the number of
clusters, unlike distance-based measures in which the analyst must choose a
number. We saw how to estimate the number of groups using the mclust pro-
cedure (Sect. 11.3.5).

• BIC can compare models with the best statistical fit (Sect. 11.3.5). We rec-
ommend that the ultimate decision to use a model’s solution be made on the
grounds of both statistics (i.e., excellent fit) and the business applicability of the
solution (i.e., actionable implications).

• With classification models, data should be split into training and test groups,
and models validated on the test (holdout) data (Sect. 11.4).

• We examined naive Bayes models (naiveBayes(), Sect. 11.4.1) and ran-
dom forest models (randomForest(), Sect. 11.4.2). These—and many other
classification methods—have quite similar syntax, making it easy to try and
compare models.

• A useful feature of random forest models is their ability to determine variable
importance for prediction, even when there are a large number of variables
(Sect. 11.4.3).

• A common problem in classification is class imbalance, where one group dom-
inates the observations and makes it difficult to predict the other group. We saw
how to correct this for random forest models with the sampsize argument,
resulting in a more successful predictive model (Sect. 11.5).

12

Association Rules for Market Basket Analysis

Many firms compile records of customer transactions. These data sets take diverse
forms including products that are purchased together, services that are tracked over
time in a customer relationship management (CRM) system, sequences of visits and
actions on a Web site, and records of customer support calls. These records are very
valuable to marketers and inform us about customers’ purchasing patterns, ways
in which we might optimize pricing or inventory given the purchase patterns, and
relationships between the purchases and other customer information.

Such records may comprise an enormous number of data points yet with relatively
little information in each observation. This means that simple analyses such as cor-
relation and linear regression are not applicable because those methods assume
complete or near-complete measurement for each case. For example, consider the
number of products in a typical supermarket. Most items are not purchased with
most other items in any transaction because there are so many possible combina-
tions.

In this chapter we examine a strategy to extract insight from transactions and co-
occurrence data: association rule mining. Association rule analysis attempts to find
sets of informative patterns from large, sparse data sets. We demonstrate associa-
tion rules using a real data set of more than 80,000 market basket transactions with
16,000 unique items [20]. We then examine how rule mining is potentially useful
with non-transactional data and we use association rules to explore patterns in the
subscription data from Chap. 5.

We develop the methods here from an exploratory point of view, to gain insight and
form hypotheses about relationships in the data. Although it is out of scope for this
chapter, if one is interested to demonstrate that the insights apply to new data or are
stable over time, the same methods might be used with split samples and replication
techniques (see Kuhn and Johnson [97] for an introduction to such approaches in
general).

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 12

339

340 12 Association Rules for Market Basket Analysis

12.1 The Basics of Association Rules

The basic idea of association rule mining is this: when events occur together more
often than one would expect from their individual rates of occurrence, such co-
occurrence is an interesting pattern. For example, consider sales of sweet relish and
hot dogs (summertime treats in the USA). Imagine that hot dogs are sold in 5 %
of supermarket transactions during a summer month, while relish is sold in 3 % of
transactions. Are they related?

Suppose we just take the data for every sale that includes hot dogs, which is 5 %
of transactions. If the proportion of those hot dog sales that have relish is 3 %, then
there is no relationship because that is what we would expect for relish from the
overall data, regardless of what else is sold. However, if relish is sold in 25 % of
the transactions that have hot dogs, that is quite different than the base rate and is
evidence of an association.

There are some terms to understand for association rules. An association is simply
the co-occurrence of two or more things. Hot dogs might be positively associated
with relish, hot dog buns, soda, potato chips, and ketchup. An association is not
necessarily strong. In a store such as Costco that sells everything from hot dogs
to (sometimes) grand pianos, everything sold is associated with everything else but
most of those associations are weak. A set of items is a group of one or more items,
and might be written as {item1, item2, . . .}. For instance, a set might be {relish} or
{hot dogs, soda, potato chips}.

A transaction is a set of items that co-occur in an observation. In marketing, a com-
mon transaction unit is the market basket, the set of things that are purchased or
considered for purchase at one time. Any data points that co-occur are considered to
be a transaction, even if using the term “transaction” seems unusual in the context.
For example, the set of web pages that a user visits during a session would be a
transaction in this sense.

A rule expresses the incidence across transactions of one set of items as a condi-
tion of another set of items. The association of relish, conditional on hot dogs, is
expressed in the rule {relish} ⇒ {hot dogs}. Rules may express the relationship of
multiple items; for instance, {relish, ketchup, mustard, potato chips} ⇒ {hot dogs,
hamburger patties, hot dog buns, soda, beer}. A condition in this sense does not
imply a causal relationship, only an association of some strength, whether strong or
weak.

12.1.1 Metrics

Association rules are expressed with a few common metrics that reflect the rules
of conditional probability. The support for a set of items is the proportion of all
transactions that contain the set. If {hot dogs, soda} appears in 10 out of 200

12.2 Retail Transaction Data: Market Baskets 341

transactions, then support({hotdogs,soda}) = 0.05. It does not matter if those 10
transactions contain other items; support is defined separately for every unique set
of items.

Confidence is the support for the co-occurrence of all items in a rule, condi-
tional on the support for the left-hand set alone. Thus, confidence(X ⇒ Y) =
support(X ∩Y)/support(X) (where “∩” means “and”). How does that work? Con-
sider the rule {relish} ⇒ {hot dogs}. If {relish} occurs in 1 % of transactions (in
other words, support({relish}) = 0.01) and {relish, hot dogs} appears in 0.5 %, then
confidence({relish}⇒ {hotdogs}) = 0.005/0.1 = 0.5. In other words, hot dogs ap-
pear alongside relish 50 % of the time that relish appears.

Note that “confidence” in this context carries no implication about hypothesis
testing, confidence intervals, or the like; it is only a measure of conditional as-
sociation. Confidence is also not symmetric; unless support(X) = support(Y),
confidence(X ⇒ Y) �= confidence(Y ⇒ X).

Perhaps the most popular measure is lift, the support of a set conditional on the joint
support of each element, or lift(X ⇒Y) = support(X ∩Y)/(support(X)support(Y)).
To continue the hot dog example, if support({relish})= 0.01, support({hotdogs})=
0.01, and support({relish,hotdogs}) = 0.005, then lift({relish ⇒ hotdogs}) =
0.005/(0.01 ∗ 0.01) = 50. In other words, the combination {relish, hot dogs}
occurs 50 times more often than we would expect if the two items were independent.

These three measures tell us different things. When we search for rules we wish
to exceed a minimum threshold on each: to find item sets that occur relatively fre-
quently in transactions (support), that show strong conditional relationships (con-
fidence), and that are more common than chance (lift). As we will see, in practice
an analyst sets the level of required support to a value such as 0.01, 0.10, 0.20, or
so forth as is meaningful and useful for the business in consideration of the data
characteristics (such as the size of the item set). Similarly, the level of required con-
fidence might be high (such as 0.8) or low (such as 0.2) depending on the data and
business. For lift, higher values are generally better and certainly should be above
1.0, although one must be mindful of outliers with huge lift.

We use the R package arules to illustrate association rules [71]. arules encap-
sulates many popular methods for mining associations and provides extensions for
visualization [69]. Readers who are interested in the algorithms that generate asso-
ciation rules should review the references in the primary arules documentation
[70, 71].

12.2 Retail Transaction Data: Market Baskets

The first two data sets we examine contain supermarket transaction data. We first
examine a small data set that is included with the arules package. This data set
is useful despite its small size because the items are labeled with category names,

342 12 Association Rules for Market Basket Analysis

making them easier to read. Then we turn to a larger data set from a supermarket
chain whose data is disguised but is more typical of large data sets.

12.2.1 Example Data: Groceries

We illustrate the general concepts of association rules with the Groceries data set
in the arules package. This data set comprises lists of items purchased together
(that is, market baskets), where the individual items have been recorded as category
labels instead of product names. You should install the arules and arulesViz
packages before proceeding.

We load the package and data, and then check the data as follows:

> library(arules)
> data("Groceries")
> summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146
...
> inspect(head(Groceries, 3))
items

1 {citrus fruit,
semi-finished bread,
margarine,
ready soups}

2 {tropical fruit,
yogurt,
coffee}

3 {whole milk}

The summary() shows us that the data comprise 9,835 transactions with 169
unique items. Using inspect(head(Groceries)) we see a few examples
from the baskets. For example, the second transaction includes fruit, yogurt, and
coffee, while the third transaction is just a container of milk. In this output, notice
that the item sets are structured with brackets, a visual clue that they reflect a new
“transactions” data type that we examine in more detail below.

We now use apriori(data, parameters=...) to find association rules
with the “apriori” algorithm [17, 71]. At a conceptual level, the apriori algorithm
searches through the item sets that occur frequently in a list of transactions. For
each item set, it evaluates the various possible rules that express associations among
the items at or above a particular level of support, and then retains the rules that
show confidence above some threshold value [16].

To control the extent that apriori() searches, we use the parameter=list()
control to instruct the algorithm to search rules that have a minimum support

12.2 Retail Transaction Data: Market Baskets 343

of 0.01 (1 % of transactions) and extract the ones that further demonstrate
a minimum confidence of 0.3. The resulting rule set is assigned to the
groc.rules object:

> groc.rules <- apriori(Groceries, parameter=list(supp=0.01, conf=0.3,
+ target="rules"))

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

ext
0.3 0.1 1 none FALSE TRUE 0.01 1 10 rules

FALSE

algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.01s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [125 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

The rules have been found and saved to an object that we shall inspect in a moment.
Note that the values for the support and confidence parameters are found
largely by experience (in other words, by trial and error) and should be expected
to vary from industry to industry and data set to data set. We arrived at the values
of support=0.01 and confidence=0.3 after finding that they resulted in a
modest number of rules suitable for an example. In real cases, you would adapt those
values to your data and business case (we will say more about this as we examine
additional data sets).

To interpret the results of apriori() above, there are two key things to examine.
First, check the number of items going into the rules, which is shown on the output
line “sorting and recoding items ...” and in this case tells us that the
rules found are using 88 of the total number of items. If this number is too small
(only a tiny set of your items) or too large (almost all of them), then you might wish
to adjust the support and confidence levels.

Next, check the number of rules found, as indicated on the “writing ...” line.
In this case, the algorithm found 125 rules. Once again, if this number is too low,
it suggests the need to lower the support or confidence levels; if it is too high
(such as many more rules than items), you might increase the support or confi-
dence levels.

Once we have a rule set from apriori(), we use inspect(rules) to examine
the association rules. The complete list of 125 from above is too long to examine
here, so we select a subset of them with high lift, lift > 3. We find that five
of the rules in our set have lift greater than 3.0:

344 12 Association Rules for Market Basket Analysis

> inspect(subset(groc.rules, lift > 3))
lhs rhs support confidence lift

1 {beef} => {root vegetables} 0.01738688 0.3313953 3.040367
2 {citrus fruit,

root vegetables} => {other vegetables} 0.01037112 0.5862069 3.029608
3 {citrus fruit,

other vegetables} => {root vegetables} 0.01037112 0.3591549 3.295045
4 {tropical fruit,

root vegetables} => {other vegetables} 0.01230300 0.5845411 3.020999
5 {tropical fruit,

other vegetables} => {root vegetables} 0.01230300 0.3427762 3.144780

The first rule tells us that if a transaction contains {beef} then it is also relatively
more likely to contain {root vegetables}—a category that we assume includes items
such as potatoes and onions. That combination appears in 1.7 % of baskets (“sup-
port”), and the lift tells us that combination is 3× more likely to occur together than
one would expect from the individual rates of incidence alone.

A store might form several ideas on the basis of such information. For instance, the
store might create a display for potatoes and onions near the beef counter to en-
courage shoppers who are examining beef to purchase those vegetables or consider
recipes with them. It might also suggest putting coupons for beef in the root veg-
etable area, or featuring recipe cards somewhere in the store. We will see other ways
to inspect such data and develop ideas later in this chapter.

12.2.2 Supermarket Data

We now investigate associations in a larger set of retail transaction data from a Bel-
gian supermarket chain. This data set comprises market baskets of items purchased
together, where each record includes arbitrarily numbered item numbers without
item descriptions (to protect the chain’s proprietary data). This data set is made
publicly available by Brijs et al. [20].

First we use readLines(url) to get the data from the website where it is
hosted:

> retail.raw <- readLines("http://fimi.ua.ac.be/data/retail.dat")

An alternative location on this book’s website is the following (see Appendix D for
more options):

> retail.raw <- readLines("http://goo.gl/FfjDAO")

As always, we check the head, tail, and summary:

> head(retail.raw)
[1] "0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ... "
[2] "30 31 32 "
...
> tail(retail.raw)
...

12.2 Retail Transaction Data: Market Baskets 345

[5] "39 48 2528 "
[6] "32 39 205 242 1393 "
> summary(retail.raw)

Length Class Mode
88162 character character

Each row in this object represents a single market basket of items purchased to-
gether. Within each row, the items have been assigned arbitrary numbers that simply
start at 0 in the first transaction and add new item numbers as needed for all later
transactions. The data comprise 88,162 transactions, where the first basket has 30
items (numbered 0–29, some truncated in the output here), the second has 3 items,
and so forth. In the tail(), we see that the last market basket had 5 items, most
of which—items 32, 39, 205, and 242—have low numbers reflecting that those par-
ticular items first appeared in transactions early in the data set.

In this text format, the data are not ready to mine; we must first split each of the
transaction text lines into individual items. To do this, we use strsplit(lines,
" "). This command splits each line wherever there is a blank space character ("
") and saves the results to a list:

> retail.list <- strsplit(retail.raw, " ")

To label the individual transactions, we assign descriptive names using names()
and paste():

> names(retail.list) <- paste("Trans", 1:length(retail.list), sep="")

As usual, we check the data format again. Finally, we remove the retail.raw
object that is no longer needed:

> str(retail.list)
List of 88162
$ Trans1 : chr [1:30] "0" "1" "2" "3" ...
$ Trans2 : chr [1:3] "30" "31" "32"

...
> library(car)
> some(retail.list) # note: random sample; your results may vary
$Trans3742
[1] "488" "1588" "2750" "2832" "4099"
...
> rm(retail.raw)

Using str() we confirm that the list has 88,162 entries and that individual entries
look appropriate. some() samples a few transactions throughout the larger set for
additional confirmation.

The transaction list could be used to find rules at this point, but we take an additional
step to convert it to a formal transactions object, which enhances the ways we can
work with the data and speeds up arules operations. To convert from a list to
transactions, we cast the object using as(..., "transactions"):

> retail.trans <- as(retail.list, "transactions") # takes a few seconds
> summary(retail.trans)

346 12 Association Rules for Market Basket Analysis

transactions as itemMatrix in sparse format with
88162 rows (elements/itemsets/transactions) and
16470 columns (items) and a density of 0.0006257289

most frequent items:
39 48 38 32 41 (Other)

50675 42135 15596 15167 14945 770058

element (itemset/transaction) length distribution:
sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310
...

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 4.00 8.00 10.31 14.00 76.00

...
> rm(retail.list) # no longer needed

Looking at the summary() of the resulting object, we see that the transaction-by-
item matrix is 88,162 rows by 16,470 columns. Of those 1.4 billion intersections,
only 0.06 % have positive data (density) because most items are not purchased in
most transactions. Item 39 appears the most frequently and occurs in 50,675 baskets
or more than half of all transactions. 3,016 of the transactions contain only a single
item (“sizes” = 1) and the median basket size is 8 items.

12.3 Finding and Visualizing Association Rules

With the data in transaction format, we are ready to find rules. As we have
seen briefly already, the apriori(data, parameters=...) command
finds association rules [17]. For the Belgian supermarket data, we specify
parameter=list(...) with values of minimum support = 0.001
and minimum confidence = 0.4. We assign the resulting rules to a
new object:
> retail.rules <- apriori(retail.trans, parameter=list(supp=0.001, conf=0.4))
parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

ext
0.4 0.1 1 none FALSE TRUE 0.001 1 10 rules

FALSE
...
set transactions ...[16470 item(s), 88162 transaction(s)] done [0.12s].
sorting and recoding items ... [2117 item(s)] done [0.02s].
creating transaction tree ... done [0.06s].
checking subsets of size 1 2 3 4 5 6 done [0.16s].
writing ... [5944 rule(s)] done [0.01s]. ...

This finds a set of 5,944 rules that exceed the required levels of support
and confidence.

To get a sense of the rule distribution, we load the arulesViz package and then
plot() the rule set, which charts the rules according to confidence (Y axis) by

12.3 Finding and Visualizing Association Rules 347

support (X axis) and scales the darkness of points to indicate lift. The commands
are simply:

> library(arulesViz)
> plot(retail.rules)

The resulting chart is shown in Fig. 12.1. In that chart, we see that most rules involve
item combinations that occur infrequently (that is, they have low support) while
confidence is relatively smoothly distributed.

Scatter plot for 5944 rules

50

100

150

200

250

300

lift0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf

id
en

ce

Fig. 12.1. Plotting a large set of rules for con-
fidence (Y axis) by support (X axis) and lift
(shade). There are a few rules in the upper left
with exceptionally high confidence and lift.

Simply showing points is not very useful, and a key feature with arulesViz
is interactive plotting. In Fig. 12.1 there are some rules in the upper left with
high lift. We can use interactive plotting to inspect those rules. To do this, add
interactive=TRUE to the plot() command:

> plot(retail.rules, interactive=TRUE)

In interactive mode, you can examine regions of rules. To do so, click once in the
plot window at one corner of the area of interest, and then click again at the opposite
corner. You can use zoom in to magnify that region, or inspect to list the rules
in the region. When finished, click end.

Figure 12.2 shows an interactive plotting session in RStudio where we seek rules
with high lift. To get Fig. 12.2 we previously selected the upper left region as was
shown in Fig. 12.1 and zoomed in on that region. Then we selected a few rules from
the zoomed-in area and clicked inspect to display them in the console. There
were seven rules in that subregion, as shown in the lower left console window. This
revealed one exceptionally high lift rule:

lhs rhs support confidence lift
1 {16431,

48} => {16430} 0.001973639 0.9942857 205.770463

348 12 Association Rules for Market Basket Analysis

This rule tells us that the combination {16431, 48} occurs in about 0.2 % of baskets
(support=0.00197), and when it occurs it almost always includes {16430} (confi-
dence=0.99). The combination occurs 200 times more often than we would expect
from the individual incidence rates of {16431, 48} and {16430} considered sepa-
rately (lift=205).

Such information could be used in various ways. If we pair the transactions with
customer information, we could use this for targeted mailings or email suggestions.
For items often sold together, we could adjust the price and margins together; for in-
stance, to put one item on sale while increasing the price on the other. Or perhaps—
only somewhat facetiously—the cashiers might ask customers, “Would you like a
16,430 with that?”

Fig. 12.2. Using plot(..., interactive=TRUE) to inspect rules of interest in inter-
active mode. In this screenshot from RStudio, we zoomed into a small region to inspect()
a subgroup of the complete rule set. This reveals the selected rules in the console (lower

left window).

12.3.1 Finding and Plotting Subsets of Rules

A common goal in market basket analysis is to find rules with high lift. We can find
such rules easily by sorting the larger set of rules by lift. We extract the 50 rules
with highest lift using sort() to order the rules by lift and taking 50 from the
head():

12.3 Finding and Visualizing Association Rules 349

> retail.hi <- head(sort(retail.rules, by="lift"), 50)
> inspect(retail.hi)

lhs rhs support confidence lift
1 {696} => {699} 0.001032191 0.5833333 338.3410
2 {699} => {696} 0.001032191 0.5986842 338.3410
3 {1818,

3311,
795} => {1819} 0.001088905 0.9056604 318.1069

4 {3402} => {3535} 0.001417844 0.7062147 305.2024
...

Support and lift are identical for an item set regardless of the items’ order within
a rule (left-hand or right-hand side of the rule). Thus the first two rules—which
include the same two items {696} and {699} on opposite sides of the conditional
arrow—are identical for support and lift. However, confidence reflects direction be-
cause it computes occurrence the right-hand set conditional on the left-hand side
set, and differs slightly for the first two rules.

A graph display of rules may be useful to seek higher level themes and pat-
terns. We chart the top 50 rules by lift with plot(..., method="graph")
and display rules as the intersection of items by adding the graph option,
control=list(type="item")):

> plot(retail.hi, method="graph", control=list(type="items"))

The resulting chart is shown in Fig. 12.3. Positioning of items on the graph may
differ for your system, but the item clusters should be similar. Each circle there
represents a rule with inbound arrows coming from items on the left-hand side
of the rule and outbound arrows going to the right-hand side. The size (area) of
the circle represents the rule’s support, and shade represents lift (darker indicates
higher lift).

Figure 12.3 shows several patterns of interest. Items 696 and 699 form a tight set;
there are item clusters for {3402, 3535, 3537}, {309, 1080, 1269, 1378, 1379,
1380}, and so forth; and item 39 appears as a key item in two sets of items that
otherwise do not overlap. By exploring sets of rules with various levels of lift and
support, and with specific subsets of items (see the usage of %in% in arules
help), an analyst may be able to find patterns that suggest interesting hypotheses and
trends. We will see a further example of this for non-transactional data in Sect. 12.4
below.

12.3.2 Using Profit Margin Data with Transactions: An Initial Start

An analyst will often wish to combine market basket transactions and rules with
other data; for instance, one might have information on item profitability (margin) or
purchaser characteristics. In this section, we consider how to combine information
on item cost and margin with transaction data.

350 12 Association Rules for Market Basket Analysis

Graph for 50 rules

1080

1269

1378

1379

1380

1818
1819

309

3311

3402

35353537

39

48

696

699

795

size: support (0.001 − 0.002)
color: lift (232.725 − 338.341)

Fig. 12.3. A graph using
arulesViz of the top 50 as-
sociation rules mined from the retail
market basket data set. There are
four distinct sets of rules (arrows
and circular nodes), each relating
a set of 2–6 items (the integer ID
numbers). These rules have lift of
232× or more in the retail shopping
data.

How can we find the profit for a transaction? The answer may be complex and
depend on the details of a firm and its transaction data. Because the Belgian super-
market data set does not include item price or cost, we simulate margin by items for
illustration purposes. We assume that each item has a single margin value; if we had
access to a firm’s complete data, it would be better to use information about costs
and prices by date, along with discounts and other adjustments to estimate margin
more accurately.

To simulate per-item margin data we first compile a list of the item names that we
need. We do this by converting the complete transaction set to list format and
then using unlist() to gather the individual items from the many transactions
into a single vector. We take the unique() values to remove duplicates, and then
sort() them:

> retail.itemnames <- sort(unique(unlist(as(retail.trans, "list"))))
> head(retail.itemnames); tail(retail.itemnames)
[1] "0" "1" "10" "100" "1000" "10000"
[1] "9994" "9995" "9996" "9997" "9998" "9999"

Items are not in numeric order because the item labels are character data and
sort() orders them alphabetically; this poses no problem here.

Next we generate the simulated margin data with one value for each item, using
rnorm() with a mean and standard deviation of 0.30 currency units (such as
AC 0.30):

> set.seed(03870)
> retail.margin <- data.frame(margin=rnorm(length(retail.itemnames),
+ mean=0.30, sd=0.30))
> quantile(retail.margin$margin)

0% 25% 50% 75% 100%
-1.1090452 0.1045897 0.3026245 0.5050533 1.5542344

12.3 Finding and Visualizing Association Rules 351

We make those values indexable by item name by adding the list of items from
above as the rownames() for the random numbers:

> rownames(retail.margin) <- retail.itemnames
> head(retail.margin); tail(retail.margin)

margin
0 0.88340359
1 0.52964087
...
9999 0.6850124
> library(car); some(retail.margin)

margin
12336 0.18504274
...

In this format, we can look up the margin for an item—or set of items—using the
relevant item names. For example, we find the item margins and then their sum for
the basket {39, 48} as follows:

> retail.margin[c("39", "48"),]
[1] 0.1217833 -0.2125105
> sum(retail.margin[c("39", "48"),])
[1] -0.09072725

Item 39 has margin of 0.12, and the basket {39, 48} has total margin of
−0.09.

To find the margin for a complete transaction—in this case, transaction #3 from the
Belgian data—there is one more step. We have to convert the transaction to list form
to find the items in it using as(..., "list"), at which point we can look up
the margins for those items:

> (basket.items <- as(retail.trans[3], "list")[[1]])
[1] "33" "34" "35"
> retail.margin[basket.items,]
[1] 0.3817115 0.6131403 0.1979879
> sum(retail.margin[basket.items,])
[1] 1.19284

12.3.3 Language Brief: A Function for Margin Using an
Object’s class*

This optional section expands on the margin example by writing a more complex
function. Along the way we will see one way to use objects’ classes and how to
write more error-resistant code. If you do not wish to dive deeply into programming,
you may safely skip this section.

352 12 Association Rules for Market Basket Analysis

12.3.3.1 Motivation

Using a simple index to look up the margin for items as we did above is not very
satisfactory because it depends on the exact format of the data, such as the fact that
it is given in a list format. If we ever change the format or wish to explore margin
for some other kind of data, it is necessary to find any code where data is treated as a
list and alter it. That process would be tedious and likely to introduce errors.

A better solution is to write a function to look up margins. With a function, we
can perform more complex logic such as date lookups and volume or customer
discounts. It also localizes all logic to a single place; if we call the function in each
place that we need a margin lookup, we only need to change the procedure in one
place.

In this section we create an initial working version of a more general lookup func-
tion. We also enhance the simple lookup capability in an important way: we make
it work for transactions and rule sets as well as item names. A user may call the
function with any of those data types and it will handle the data properly.

One way to make a function work for different kinds of input data is to use the R
class system to determine the data type. (More advanced programmers may note
that the approach here is a simple solution; a more complete solution—but well
beyond the scope of this book—is to implement S3 or S4 methods for each data class
that a function supports. For details on the various object-oriented programming
paradigms in R, see [22, 62, 156, 163].)

Our function takes the form retail.margsum(items, itemMargins),
where items may be any of the following:

• A character vector of item names such as c("39", "48"), of class
“character”

• One or more transactions such as retail.trans in our example above, of
class “transactions”

• A set of rules such as retail.hi in our example above, of class “rules”

By checking the class(), our function is able to extract items appropriately from
the data that a user provides, so the user will not have to extract item names from
different kinds of objects.

Before inspecting the retail.margsum() code, we note that it has three key
sections:

1. Convert the data we’re given to a list of item name sets

2. Check that those item names are in our margin data (itemMargins)

3. Look up the margins and sum them

12.3 Finding and Visualizing Association Rules 353

Here is the complete code:

retail.margsum <- function(items, itemMargins) {
Input: "items" == item names, rules or transactions in arules format
"itemMargins", a data frame of profit margin indexed by name
Output: look up the item margins, and return the sum
library(arules)

check the class of "items" and coerce appropriately to an item list
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items, "list") # transactions ==> item list
} else if (class(items) == "list") {

tmp.items <- items # it’s already an item list!
} else if (class(items) == "character") {

tmp.items <- list(items) # characters ==> item list
} else {

stop("Don’t know how to handle margin for class ", class(items))
}
make sure the items we found are all present in itemMargins
good.items <- unlist(lapply(tmp.items, function (x)

all(unlist(x) %in% rownames(itemMargins))))

if (!all(good.items)) {
warning("Some items not found in rownames of itemMargins. ",

"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

and add them up
return(unlist(lapply(tmp.items, function(x) sum(itemMargins[x,]))))

}

We explain the code in detail below, but first let’s see how it works. One way to use
it is to find margin for an item set with simple item names:

> retail.margsum(c("39", "48"), retail.margin)
[1] -0.09072725

Another use is to find margin for each entry in a list with multiple, separate item
sets:

> retail.margsum(list(t1=c("39", "45"), t2=c("31", "32")), retail.margin)
t1 t2

0.9664982 0.2733963

It accepts one or more transaction objects:

> retail.margsum(retail.trans[101:103], retail.margin)
Trans101 Trans102 Trans103

0.7171411 4.8989272 4.9470372

354 12 Association Rules for Market Basket Analysis

It also accepts sets of rules, such as our retail.hi set of the 50 highest list
rules:
> retail.margsum(retail.hi, retail.margin)
[1] 0.9609471 0.9609471 1.9327917 0.7084729 0.7084729 1.9327917 ...

...
[45] 0.1624291 0.5067865 0.5067865 0.5442604 0.5442604 0.6285698

It includes error detection. For instance, it gives an error in case of incorrect item
names:
> retail.margsum(c("hello", "world"), retail.margin) # error!
NULL
Warning message:
In retail.margsum(c("hello", "world"), retail.margin) :
Some items not found in rownames of itemMargins. ...

In the above case, it returns a value of NULL as shown on the first line of the output
because there was nothing valid to look up. However, if some of the data is bad
while other parts are good, it finds whatever is possible:
> retail.margsum(list(a=c("39", "45"), b=c("hello", "world"), c=c("31", "32")),
+ retail.margin) # only the first and third are OK

a c
0.9664982 0.2733963
Warning message:
...

In this case, the second element in the input is bad, so the function omits that and
returns the sums for the other two item sets “a” and “c.”

Now let’s look at the function in detail to see how it works. In the first part of the
code we convert the items input to proper types, by checking the class() and
then applying an appropriate conversion:
[function excerpt, don’t run on its own]
if (class(items) == "rules") {

tmp.items <- as(items(items), "list") # rules ==> item list
} else if (class(items) == "transactions") {

tmp.items <- as(items, "list") # transactions ==> item list
...
} else {

stop("Don’t know how to handle margin for class ", class(items))
}

In this part of the code, we use the if ... else if ... construct in R to
check types successively. It ends with a final else clause in case the data is a type
the function cannot handle. In that case, it calls stop(message) to issue an error
message to the user and exit the function.

The second part of our code checks that the sets of items are present in the
itemMargins data:
[function excerpt, don’t run on its own]
good.items <- unlist(lapply(tmp.items, function (x)

all(unlist(x) %in% rownames(itemMargins))))

12.3 Finding and Visualizing Association Rules 355

if (!all(good.items)) {
warning("Some items not found in rownames of itemMargins. ",

"Lookup failed for element(s):\n",
which(!good.items), "\nReturning only good values.")

tmp.items <- tmp.items[good.items]
}

This short code block has a few crucial elements. First it uses an anony-
mous function to check that item names are present in itemMargins. It uses
%in% to look up each name from a single list element (with the names extracted by
unlist(x)) and then uses all() to make sure that every one of the names is
found successfully (that is, that all of the %in% matches are TRUE). The result of
this is a flag whether a given element of tmp.items is good or not.

Then we use the unlist() function a second time to convert the individual re-
sults from lapply() to a master vector, which indicates whether each individ-
ual element of tmp.items is good or not. Finally, if any of the individual item
sets has an item that was not found (and therefore, using ! for binary negation,
!all(good.items) is TRUE) then we issue a warning() to the user, and
retain only the good items for further processing. Unlike stop(), a function con-
tinues after a warning() to the user.

The third and final part of our code looks up the items and returns the sum of their
margins:

[function excerpt, don’t run on its own]
return(unlist(lapply(tmp.items, function(x) sum(itemMargins[x,]))))

That line unpacks as follows, starting from the innermost part. An anonymous func-
tion looks up rows in itemMargins, and then sums them. Those rows x are de-
termined by the surrounding lapply() that iterates over the individual sets of
items that form the list tmp.items. Each member set of tmp.items has its
items’ margins summed. Finally, the line calls unlist() in order to convert the
lapply() result—which is a list—to a more convenient vector.

But wait! That final, single line effectively delivers the whole purpose of the func-
tion. Why did we have to write so much else in the function? Isn’t that needless
complexity?

The answer depends on the circumstance, but this function exemplifies a common
issue in programming: handling exceptions and doing error-checking is often the
most complex part of a programming task. Just as getting data into shape is often the
bulk of an analyst’s work, much of a programmer’s effort is to anticipate potential
data problems when writing code. It is a good practice to include error-checking
as we’ve done here. Don’t assume your data will always be good; check it! You’ll
avoid many headaches for yourself and your colleagues.

Once the skeleton of a profit margin function is in place, an analyst will find many
uses for it. For example, one might use it on transactions to find the most valuable
customers, to find potential loss-leading items that are associated with other, higher

356 12 Association Rules for Market Basket Analysis

margin items, to find money-losing associations, and so forth. A simple function
of the kind here would be a proof of concept; a next step might be to increase
its precision by including time series data, discounts, and other important factors
specific to a firm and category.

12.4 Rules in Non-Transactional Data: Exploring
Segments Again

There are many uses of association rules beyond retail transactions such as we con-
sidered above. The idea of a “transaction” broadly speaking is simply an observa-
tion of one or more data points that co-occur. For instance, when a user visits one or
more web pages during a browsing session, the pages would constitute a transaction
in this sense.

In the most general sense, one can consider any data points that occur together
in a record—such as any variables observed for a customer, user, or survey
respondent—to be a transaction. This means that association rules can be ap-
plied to other kinds of data such as general data frames (with some limitations that
we’ll discuss). In this section, we examine association rules as a way to explore
consumer segmentation.

We use the simulated consumer segmentation data from Sect. 5.1.4. If you saved
the data in that chapter (page 120), reload it now. We suggested a file destination as
file="∼/segdf-Rintro-Ch5.RData". If you saved there, you can retrieve
the data with:

> load("∼/segdf-Rintro-Ch5.RData")

Alternatively, run the code in that chapter (Sects. 5.1.1–5.1.4) or download the file
from this book’s website:

> seg.df <- read.csv("http://goo.gl/qw303p")

After loading the data, check that it matches expectations:

> summary(seg.df)
age gender income kids ownHome ...

Min. :19.26 Female:157 Min. : -5183 Min. :0.00 ownNo :159 ...
1st Qu.:33.01 Male :143 1st Qu.: 39656 1st Qu.:0.00 ownYes:141 ...

12.4.1 Language Brief: Slicing Continuous Data with cut()

Association rules work with discrete data yet seg.df includes three continu-
ous (or quasi-continuous) variables: age, income, and kids. It’s necessary to
convert those to discrete factors to use with association rules in the arules
package.

12.4 Rules in Non-Transactional Data: Exploring Segments Again 357

We could add factor variables as new columns appended to the original data frame.
However, we use that data frame elsewhere in this book and thus prefer instead to
make a copy and alter it:

> seg.fac <- seg.df

Now we replace age, income, and kids with recoded factors (specifically, us-
ing the ordered factor class to code these data as ordinal values). cut(data,
breaks, labels) transforms numeric data to a factor variable. breaks=...
specifies either the number of bins or specific cut points, and labels=... speci-
fies the text for a factor’s category labels. We transform age as follows:

> seg.fac$age <- cut(seg.fac$age,
+ breaks=c(0,25,35,55,65,100),
+ labels=c("19-24", "25-34", "35-54", "55-64", "65+"),
+ right=FALSE, ordered_result=TRUE)

This recodes age from an integer value into an ordered factor with five levels:
19–24, 25–34, and so forth. The argument right=FALSE ensures that continuous
values have closed intervals on the left, giving us [25− 34) instead of (25− 34].
We set ordered result=TRUE to specify that the resulting factor is ordinal. We
check the data and see that the recode was successful:

> summary(seg.fac$age)
19-24 25-34 35-54 55-64 65+

38 58 152 38 14

Next we convert income and kids similarly:

> seg.fac$income <- cut(seg.fac$income,
+ breaks=c(-100000, 40000, 70000, 1000000),
+ labels=c("Low", "Medium", "High"),
+ right=FALSE, ordered_result=TRUE)
> seg.fac$kids <- cut(seg.fac$kids,
+ breaks=c(0, 1, 2, 3, 100),
+ labels=c("No kids", "1 kid", "2 kids", "3+ kids"),
+ right=FALSE, ordered_result=TRUE)
> summary(seg.fac)

age gender income kids ownHome subscribe
19-24: 38 Female:157 Low : 77 No kids:121 ownNo :159 subNo :260
25-34: 58 Male :143 Medium:183 1 kid : 70 ownYes:141 subYes: 40

...

All variables are now coded as categorical factors and the seg.fac data frame is
suitable for exploring associations.

12.4.2 Exploring Segment Associations

A data frame in suitable discrete (factor) format can be converted to use in arules
by using as(..., "transactions") to code it as transaction data:

358 12 Association Rules for Market Basket Analysis

> library(arules)
> library(arulesViz)
> seg.trans <- as(seg.fac, "transactions")
> summary(seg.trans)
transactions as itemMatrix in sparse format with
300 rows (elements/itemsets/transactions) and
22 columns (items) and a density of 0.3181818

...

Rules are generated in the same way as for market basket data. We use
apriori() and specify support=0.1 and conf=0.4. This finds 579 as-
sociation rules:

> seg.rules <- apriori(seg.trans, parameter=list(support=0.1, conf=0.4,
+ target="rules"))
> summary(seg.rules)
set of 579 rules ...

A default plot of the resulting seg.rules object is:

> plot(seg.rules)

Scatter plot for 579 rules

1

2

3

4

5

6

lift0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

support

co
nf

id
en

ce

Fig. 12.4. The distribution of rules in-
ferred from the segmentation data set.

This products Fig. 12.4, where we see a few rules with high confidence shown in
the upper left region. If we add the interactive=TRUE option for plot() (not
shown; see Sect. 12.3 for an explanation), we could explore those interactively to
find the following rules with both high confidence and high lift:

> plot(seg.rules, interactive=T)
...

lhs rhs support confidence lift
1 {age=19-24} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
2 {age=19-24,

income=Low} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
3 {age=19-24,

12.4 Rules in Non-Transactional Data: Exploring Segments Again 359

ownHome=ownNo} => {Segment=Urban hip} 0.1000000 1.0000000 6.000000
4 {age=19-24,

subscribe=subNo} => {Segment=Urban hip} 0.1000000 1.0000000 6.000000
...

These show an association of age and other variables with membership in the Urban
hip segment.

A graph plot visualizes clusters of rules to reveal higher-level patterns. We extract
the top 35 highest-lift rules and visualize them as a graph:

> seg.hi <- head(sort(seg.rules, by="lift"), 35)
> inspect(seg.hi)

lhs rhs support confidence lift
1 {age=19-24} => {Segment=Urban hip} 0.1266667 1.0000000 6.000000
...
> plot(seg.hi, method="graph", control=list(type="items")) # orientation varies

The resulting chart is shown in Fig. 12.5 (orientation of the chart may vary for you).
There are two dominant clusters: a large cluster with many rules and relatively high
lift that involve ages 19–24, no home ownership, lower income, and so forth; and
a smaller cluster involving late middle-age consumers without kids in the travelers
segment.

Graph for 35 rules

age=19−24

age=55−64

gender=Male

income=Low

kids=No kids

ownHome=ownNo

subscribe=subNo

Segment=Travelers

Segment=Urban hip

size: support (0.1 − 0.167)
color: lift (3.75 − 6)

Fig. 12.5. Example of using a
graph plot to explore rule clusters
for the segmentation data set.

One might do further explorations by selecting additional sets of rules beyond the
head() of the sorted rules. To do this, sort() the rules by lift (or other parameter
as desired) and then index the rules you want. To examine the next 25 rules after the
first 35 considered above:

> seg.next <- sort(seg.rules, by="lift")[36:60]
> plot(seg.next, method="graph", control=list(type="items")) # not shown

360 12 Association Rules for Market Basket Analysis

We omit the resulting chart in this case, which shows patterns involving factors such
as the suburban mix segment and home ownership.

The patterns demonstrate that association rules can be useful to seek patterns in such
non-transactional data. A key point is that this is primarily an exploratory exercise.
It is useful if it reveals interesting patterns for further investigation. One should
confirm any such inferences before drawing final conclusions.

12.5 Learning More*

An approachable text for association rules is Tan et al [149]. In that text, Chap. 6 dis-
cusses the fundamental concepts and algorithms of association rules, and Chap. 7
develops more advanced concepts and applications. Vipin Kuman, one of that
text’s authors, has published online materials related to the book and association
rules, at http://www-users.cs.umn.edu/˜kumar/dmbook/index.
php.

The arules package is notable for its rich ecosystem of tools such as the
arulesViz package that we used for charting. Other options include sequence
mining and naive Bayes algorithms in addition to the standard apriori algorithm.
For an overview of the arules ecosystem, see [70] and the vignettes that come
with arules. The latest developments are available from the first author Michael
Hahsler’s site, http://michael.hahsler.net/.

12.6 Key Points

Association rules are a powerful way to explore the relationships in a data set. The
following points summarize some key suggestions from this chapter.

• Association rules are commonly used with sparse data sets that have many ob-
servations but little information per observation. In marketing, this is typical of
market baskets and similar transaction data. (Sect. 12.1)

• The arules package is the standard R package for association rules.
arules provides support for handling sparse data and finding rules and
the arulesViz package provides visualization methods.

• Core metrics for evaluating association rules are support (frequency), confi-
dence (co-occurrence), and lift (co-occurrence above the rate of association by
pure chance). There is no absolute value required of them except that lift should
be somewhat greater than 1.0 (or possibly very much less than 1.0, showing
that the non-association is unexpected, as in fraud detection). Interpretation de-
pends on experience with similar data and the usefulness for a particular busi-
ness question. (Sect. 12.1)

http://michael.hahsler.net/
http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://www-users.cs.umn.edu/~kumar/dmbook/index.php

12.6 Key Points 361

• A typical workflow for association rules (Sects. 12.2.1 and 12.2.2) is:

– Import the raw data and use as(data, "transactions") to trans-
form it to a transactions object for better performance.

– Use apriori(transactions, support= , confidence= ,
target="rules") to find a set of association rules.

– Plot the resulting rule with plot(..., interactive=TRUE) and in-
spect the rules (Sect. 12.3)

– Look for patterns by selecting subsets of rules, such as those with high-
est lift, and use plot(..., method="graph") for visualization
(Sect. 12.3.1)

• Data such as item profit margin may be used to extend analyses and look at the
potential business impact of acting on particular rules (Sect. 12.3.2)

• Association rule mining can also be a useful exploratory technique for mining
non-transactional data such as consumer segmentation data (Sect. 12.4).

• We used R functions cut() to slice continuous data (Sect. 12.4.1) and
class() to determine an object’s data type (Sect. 12.3.3)

• When you write a custom function, use warning() to report potential issues
and violations of data assumptions (Sect. 12.3.3), and use stop() when a
condition means that the function should not continue.

13

Choice Modeling

Much of the data we observe in marketing describes customers purchasing products.
For example, as we discussed in Chap. 12, retailers now regularly record the trans-
actions of their customers. In that chapter, we discussed analyzing retail transaction
records to determine which products tend to occur together in the same shopping
basket. In this chapter we discuss how to analyze customers’ product choices within
a category to understand how features and price affect which product a customer will
choose. For example, if a customer comes into the store and purchases a 30 oz. jar of
Hellman’s brand canola mayonnaise for $3.98, we can conceptualize this as the cus-
tomer choosing that particular type of mayonnaise among all the other mayonnaise
available at that store. This data on customers’ choices can be analyzed to determine
which features of a product (e.g., package size, brand, or flavor) are most attractive
to customers and how they trade off desirable features against price.

On the surface, this may sound quite similar to what we discussed in Chap. 7, where
we cover how to use linear models to identify drivers of outcomes. It is similar, ex-
cept that product choice data doesn’t fit well into the linear modeling framework,
because the outcome we observe is not a number or a rating for each product. In-
stead, we observe that the customer makes a choice among several options, each
of which has its own set of attributes. To accommodate this unique data structure,
marketers have adopted choice models, which are well suited to understanding the
relationship between the attributes of products and customers’ choices among sets
of products. In this chapter, we focus on the multinomial logit model, the most fre-
quently used choice model in marketing.

While choice models are often used to analyze retail purchase data, there are some
settings where it is more difficult to collect data on customers’ product choices. For
example, when people shop for a car, they typically gather information from many
sources over several months, so it is more difficult to reconstruct the set of products
that they considered and the features and prices of those products. In these settings,
marketers turn to choice-based conjoint analysis, which is a survey method where

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8 13

363

364 13 Choice Modeling

Which of the following minivans would you buy?
Assume all three minivans are identical other than the features listed below.

Option 1 Option 2 Option 3

6 passengers 8 passengers 6 passengers

2 ft. cargo area 3 ft. cargo area 3 ft. cargo area

gas engine hybrid engine gas engine

$35,000 $30,000 $30,000

I prefer (check one):

Fig. 13.1. An example choice-based conjoint survey question.

customers are asked to make choices among products with varying features and
prices. We analyze these survey choices using the multinomial logit model just as we
might analyze real purchases. In this chapter, our example focuses on choice-based
conjoint analysis, but the methods we describe could be applied to retail purchase
data as well.

13.1 Choice-Based Conjoint Analysis Surveys

Suppose an automotive company such as Toyota or Ford is designing a new line of
minivans and is trying to determine how large the minivan should be and what type
of engine it should have. To inform this decision it would be helpful to understand
how customers value those different features. Do customers like or dislike hybrid
engines? If they like them, how much more would they be willing to pay for a
hybrid engine? Are there segments of customers who like hybrid engines more than
other customers?

Conjoint surveys give marketers information about how customers choose products
by asking respondents to answer survey questions like the one shown in Fig. 13.1.
In this question, respondents are asked to choose from three product profiles, each
with a specific passenger capacity, cargo capacity, engine type, and price. The prod-
uct options in the survey are called alternatives and the product features are called
attributes. This conjoint analysis study has three alternatives in each question, de-
scribed by four attributes. Each attribute occurs at some level. For example, the
possible levels for cargo capacity in our example survey are 2 ft. and 3 ft.

In a typical choice-based conjoint survey, we ask respondents who are likely buy-
ers of minivans to answer a number of questions similar to the one in Fig. 13.1.
Each question has the same structure, but varies the levels of the attributes for the
alternatives.

In the next section, we generate hypothetical data from a conjoint survey where
each respondent answers 15 questions like the one in Fig. 13.1. Each question offers

13.2 Simulating Choice Data* 365

the respondent three alternatives to choose from, so each respondent sees a total of
15× 3 = 45 product profiles. Conjoint surveys often include more attributes, more
questions, and more alternatives in each question; a typical study might have 5–10
attributes and include 10–20 questions for each respondent.

You may recall that we also discussed “conjoint analysis” in Chap. 9. In that chapter
we asked respondents to rate single products instead of having them choose among
sets of products. This is called “ratings-based conjoint” or “metric conjoint” and is
analyzed with linear models as we did in Chap. 9. While asking respondents to give
ratings allows us to use a linear model instead of a choice model, rating profiles
is a more difficult task for the respondent. When was the last time you consid-
ered whether a product was a 7 or an 8 on a 10-point scale? Choosing products as
in Fig. 13.1 is a natural task that consumers do every day. For this reason choice-
based conjoint surveys have become a standard tool in the arsenal of marketing
researchers. When marketers say “conjoint,” they often mean choice-based conjoint
analysis.

The key difference between choice-based conjoint and metric conjoint is the struc-
ture of the data you collect. In the minivan choice-based conjoint survey, each
observation is a choice among three alternatives with varying levels of the prod-
uct attributes. The goal of our analysis is to relate the choice to the product at-
tributes. To do this we use a choice model, which is tailored to this unusual data
structure.

The next section, where we simulate conjoint data, is written for readers who have
some knowledge of choice models already. We encourage those of you who are new
to choice modeling to download the data using the commands below and skip ahead
to Sect. 13.3. Those who are familiar with choice modeling might wish to work
through Sect. 13.2 to see how choice data is structured in R.

> cbc.df <- read.csv("http://goo.gl/5xQObB",
+ colClasses = c(seat = "factor", price = "factor"))
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 no :6345 6:3024 2ft:4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 yes:2655 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2
3rd Qu.:150.25 3rd Qu.:12 3rd Qu.:3
Max. :200.00 Max. :15 Max. :3
...

13.2 Simulating Choice Data*

If you loaded the data above, you can skip this optional section and go to
Sect. 13.3.

366 13 Choice Modeling

The first step in creating any conjoint survey is to decide on which product attributes
to include in the survey. Since this study focuses on size and engine type, we include
four attributes: number of seats in the minivan, the cargo capacity (measured by the
depth of the cargo area), the engine type, and the price. We create a list in R called
attrib to store the attributes:

> attrib <- list(seat = c("6", "7", "8"),
+ cargo = c("2ft", "3ft"),
+ eng = c("gas", "hyb", "elec"),
+ price = c("30", "35", "40"))

Each element of this list is a character vector indicating levels of the attribute to
include in the survey.

The next step is to generate part worths for the attributes. Part worths are conceived
to be latent values a customer places on levels of an attribute when making choices.
Each attribute in the choice model is treated like a factor in a linear model. As
we discussed in Chap. 7, when we include a factor as a predictor in any model, that
factor has to be coded. In this chapter, we use dummy coding, so that one level of the
factor is considered the base level and the model includes coefficients that describe
the part worth or value of that factor over the base level. If this is puzzling, you
might review Sect. 7.4 on including factors as predictors in a linear model.

We designate the first level of each attribute to be the base level. We create names
for the coefficients by looping over the attribute list, dropping the first level of the
attribute, and then concatenating the name of the attribute and the level designa-
tion:

> coef.names <- NULL
> for (a in seq_along(attrib)) {
+ coef.names <- c(coef.names,
+ paste(names(attrib)[a], attrib[[a]][-1], sep=""))
+ }
> coef.names
[1] "seat7" "seat8" "cargo3ft" "enghyb" "engelec" "price35"
[7] "price40"

Now we have a vector of seven coefficient names.

To generate the simulated data we assume that the average part worths in the popu-
lation are:

> mu <- c(-1, -1, 0.5, -1, -2, -1, -2)
> names(mu) <- coef.names
> mu

seat7 seat8 cargo3ft enghyb engelec price35 price40
-1.0 -1.0 0.5 -1.0 -2.0 -1.0 -2.0

You can see that we’ve given names to the elements of mu. While this isn’t abso-
lutely necessary, by keeping everything labeled using R’s built-in names, the output
is easier to read.

13.2 Simulating Choice Data* 367

We assume that each respondent has his or her own unique part worth coefficients
and that these follow a multivariate normal distribution in the population with a
covariance matrix Sigma:

> Sigma <- diag(c(0.3, 1, 0.1, 0.3, 1, 0.2, 0.3))
> dimnames(Sigma) <- list(coef.names, coef.names)
> Sigma["enghyb", "engelec"] <- Sigma["engelec", "enghyb"] <- 0.3

The last line above creates a correlation between the part worth for engelec (elec-
tric engine) and enghyb (hybrid engine), so respondents who have a stronger
preference for engelec over enggas will also have a stronger preference for
enghyb over enggas.

With mu and Sigma in hand, we generate each respondent’s part worth coefficients
using the mvrnorm function from the MASS package. We create a vector of re-
spondent IDs for the 200 respondents (resp.id) and a factor variable indicating
whether each respondent intends to use the minivan to carpool (carpool).

> set.seed(33040)
> resp.id <- 1:200 # respondent ids
> carpool <- sample(c("yes", "no"), size=length(resp.id), replace=TRUE,
+ prob=c(0.3, 0.7))
> library(MASS)
> coefs <- mvrnorm(length(resp.id), mu=mu, Sigma=Sigma)
> colnames(coefs) <- coef.names

Finally, we adjust the part worths for respondents who use the minivan to
carpool:

> coefs[carpool=="yes", "seat8"] <- coefs[carpool=="yes", "seat8"] + 2
> coefs[carpool=="yes", "seat7"] <- coefs[carpool=="yes", "seat7"] + 1.5

coefs is now a matrix where each row contains the part worths for each respon-
dent. To get a better sense of what we have done, you could type head(coefs)
or, better yet, head(cbind(carpool, coefs)). You can also use the by()
command (Sect. 3.4.5) to compute mean part worths for those who do and do not
carpool. Just keep in mind that these coefficients are parameters of the model we
plan to simulate from, not the final observed data.

With coefs in hand, we are ready to generate our survey questions and the ob-
served responses. Our survey includes 15 questions that each ask the respondent to
choose from three alternative minivans. We set the number of questions and alter-
natives as variables (nques and nalt) so that we might easily change the size of
the survey in the future:

> nques <- 15
> nalt <- 3

Next, we create a master list of all possible minivan profiles by passing the attrib
list to expand.grid(), which we discuss below:

368 13 Choice Modeling

> profiles <- expand.grid(attrib)
> nrow(profiles)
[1] 54
> head(profiles)
seat cargo eng price

1 6 2ft gas 30
2 7 2ft gas 30
3 8 2ft gas 30
4 6 3ft gas 30
5 7 3ft gas 30
6 8 3ft gas 30

As you can see, profiles has 54 rows, representing all possible combinations of
three levels of seating capacity, two levels of cargo capacity, three levels of engine,
and three levels of price (3×2×3×3 = 54). We can convert profiles to dummy
coding using model.matrix().

> profiles.coded <- model.matrix(∼ seat + cargo + eng + price,
+ data=profiles)[, -1]
> head(profiles.coded)
seat7 seat8 cargo3ft enghyb engelec price35 price40

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
5 1 0 1 0 0 0 0
6 0 1 1 0 0 0 0

profiles.coded now contains 54 rows, one for each possible combination of
features, that are coded using the dummy coding scheme.

We haven’t yet reviewed expand.grid() and model.matrix(); they are
utility functions for handling factor variables. They are used under the hood in lin-
ear modeling routines such as lm() and predict() (Chap. 7). Because choice
models are a variant of linear models, we can use these to generate our choice
data. The only adjustment we need to make is to remove the intercept from the
result of model.matrix() because choice models typically do not include
intercepts.

Now that the respondent part worth coefficients are in coefs and the set of all
possible minivan profiles is in profiles.coded, we are ready to generate our
hypothetical survey questions and responses and store them in a data frame called
cbc.df. For each of the 200 respondents, we choose nques*nalt (or 15×3 =
45) profiles at random from the list of all possible profiles in profiles.coded.
The profiles indicated by the vector profiles.i are the profiles that we show
respondent i in the survey: the first three profiles are the alternatives shown in choice
1, the next three profiles are the alternatives for choice 2, and so forth.

We compute each respondent’s expected utility for each profile by multiply-
ing the respondent’s coefs by the coded product profile. (This happens in the
line utility <- profiles.coded[profiles.i,]%*%coefs[i,]

13.2 Simulating Choice Data* 369

in the code below. We then compute choice probabilities for each alterna-
tive in the question according to the multinomial logit probabilities, com-
puted as probs <- exp(wide.util)/rowSums(exp(wide.util)).
We then take a random draw to determine which of the nalt products
the customer chooses choice <- apply(probs, 1, function(x)
sample(1:nalt, size=1, prob=x)). Finally, we append the choices
and profiles to the cbc.df data frame. All of these steps are repeated for each
respondent.

> cbc.df <- data.frame(NULL)
> for (i in seq_along(resp.id)) {
+ profiles.i <- sample(1:nrow(profiles), size=nques*nalt)
+ utility <- profiles.coded[profiles.i,] %*% coefs[i,]
+ wide.util <- matrix(data=utility, ncol=nalt, byrow=TRUE)
+ probs <- exp(wide.util) / rowSums(exp(wide.util))
+ choice <- apply(probs, 1, function(x) sample(1:nalt, size=1, prob=x))
+ choice <- rep(choice, each=nalt)==rep(1:nalt, nques)
+ conjoint.i <- data.frame(resp.id=rep(i, nques),
+ ques = rep(1:nques, each=nalt),
+ alt = rep(1:nalt, nques),
+ carpool = rep(carpool[i], nques),
+ profiles[profiles.i,],
+ choice = as.numeric(choice))
+ cbc.df <- rbind(cbc.df, conjoint.i)
Tidy up, keeping only cbc.df and attrib
> rm(a, i, resp.id, carpool, mu, Sigma, coefs, coef.names,
+ conjoint.i, profiles, profiles.i, profiles.coded, utility,
+ wide.util, probs, choice, nalt, nques)
+ }

The code above leverages R’s vector and matrix operations quite extensively. Going
through it carefully and figuring out how each step works may take some time,
but it will help you understand R’s matrix computations and give you a clearer
understanding of the assumptions of the multinomial logit model. At the core, this
model is very similar to a linear model; the equation for utility is, in fact, a linear
model. What makes a choice model distinct is that the utility is not observed
directly; we only observe which product the respondent chooses. This is why we
haven’t stored the utility in our synthetic data in cbc.df.

In the code above, we have generated data from a choice model called a hierarchi-
cal multinomial logit model. Hierarchical refers to the fact that there is a different
set of coefficients for each respondent and that those coefficients follow an “upper
level” model for the population. In our code, the parameters of the upper level model
are mu, Sigma and the adjustments we made for people who use their minivan to
carpool. At the “lower level,” the choices of an individual consumer follow a multi-
nomial logit. The hierarchical multinomial logit model has become the workhorse
of choice-based conjoint and is incorporated into commercial software for conjoint
analysis such as Sawtooth Software. In this chapter, we begin by analyzing the data
using the simpler multinomial logit model in Sect. 13.3, and then estimate the hier-
archical multinomial logit model in Sects. 13.4 and 13.5.

370 13 Choice Modeling

13.3 Fitting a Choice Model

The simulated choice-based conjoint data is in the cbc.df data frame.

> head(cbc.df)
resp.id ques alt carpool seat cargo eng price choice

19 1 1 1 yes 6 2ft gas 35 0
12 1 1 2 yes 8 3ft hyb 30 0
4 1 1 3 yes 6 3ft gas 30 1
1 1 2 1 yes 6 2ft gas 30 0
23 1 2 2 yes 7 3ft gas 35 1
31 1 2 3 yes 6 2ft elec 35 0

The first three rows in cbc.df describe the first question that was asked of re-
spondent 1, which is the question shown in Fig. 13.1. The choice column shows
that this respondent chose the third alternative, which was a 6-passenger gas engine
minivan with 3 ft of cargo capacity at a price of $30,000 (represented in $1,000s
as “30”). resp.id indicates which respondent answered this question, ques in-
dicates that these first three rows were the profiles in the first question and alt
indicates that the first row was alternative 1, the second was alternative 2, and the
third was alternative 3. (The row numbers all the way to the left in the output are
not very meaningful. They indicate the profile number from our master list of 54
profiles that were used to generate the question; R carried this information over
when we generated the data.) The variable choice indicates which alternative the
respondent chose; it takes the value of 1 for the profile in each choice question that
was indicated as the preferred alternative.

The cbc.df data frame organizes the data in what is sometimes called “long” for-
mat, where each profile is on its own line and there is a column that indicates which
question the profile was displayed in. This is generally our preferred format for
choice data, since it allows you to have a different number of profiles in each ques-
tion by including additional rows. However, there are several other popular formats
including a “wide” format, where each row corresponds to a different question and
another format where the profiles are stored separately from the choices.

Because there is no standard format for choice data, when you work with different
R packages or use data collected with other software systems, you need to pay close
attention to how the package you are using expects the data to be formatted. Fortu-
nately, there are R functions that can be helpful when reformatting data including
base functions such as reshape(). You should never have to resort to tedious
manual reformatting using a spreadsheet tool. Often someone else has written re-
liable R code to do the reformatting. For example, Rcbc [25] provides a helpful
set of utilities for converting from the format used by Sawtooth Software into the
format used by the ChoiceModelR package.

13.3 Fitting a Choice Model 371

13.3.1 Inspecting Choice Data

Once you have your data properly formatted, it is tempting to estimate a complete
choice model immediately. Popular choice modeling software packages make it easy
to fit a model without even doing basic descriptives on the data. Don’t fall into this
trap! As with any other modeling, it is important to first get an understanding of the
data using basic descriptives. We start with summary:
> summary(cbc.df)

resp.id ques alt carpool seat cargo
Min. : 1.00 Min. : 1 Min. :1 yes:2655 6:3024 2ft:4501
1st Qu.: 50.75 1st Qu.: 4 1st Qu.:1 no :6345 7:2993 3ft:4499
Median :100.50 Median : 8 Median :2 8:2983
Mean :100.50 Mean : 8 Mean :2
3rd Qu.:150.25 3rd Qu.:12 3rd Qu.:3
Max. :200.00 Max. :15 Max. :3

...

We see how many times each level of each attribute appeared in the questions (about
3,000 times for three-level attributes and about 4,500 times for two-level attributes).
However, a more informative way to summarize choice data is to compute choice
counts, which are cross tabs on the number of times respondents chose an alter-
native at each feature level. We can do this easily using xtabs(), covered in
Chap. 5:

> xtabs(choice ∼ price, data=cbc.df)
price
30 35 40

1486 956 558

Respondents chose a minivan at the $30 K price point much more often than they
chose minivans priced at $35 K or $40 K. If we compute counts for the cargo
attribute, we find that the choices were more balanced between the two options,
suggesting that cargo was not as important to customers as price:

> xtabs(choice ∼ cargo, data=cbc.df)
cargo
2ft 3ft
1312 1688

We encourage you to compute choice counts for each attribute before estimating a
choice model. If you find that your model’s estimates or predicted shares are not
consistent with the raw counts, consider whether there could be a mistake in the
data formatting. Many times, a junior analyst has come to one of us saying, “The
predictions from my choice model don’t make sense to the client,” and our first
question is always,“Have you looked at the raw choice counts?”

Often this reveals a mistake, but when there is no mistake, it can be helpful to show
the clients the raw choice counts to help them understand that your model pre-
dictions are based on how people responded in the survey. With that warning, we
can now estimate our first choice model. By fitting a choice model, we can get a

372 13 Choice Modeling

precise measurement of how much each attribute is associated with respondents’
choices.

13.3.2 Fitting Choice Models with mlogit()

We use the mlogit package, which you may need to install with install.
packages(). mlogit estimates the most basic and commonly used choice
model, the multinomial logit model. This model is also called the conditional
logit.

mlogit requires the choice data to be in a special data format created using the
mlogit.data() function. You pass your choice data to mlogit.data, along
with a few parameters telling it how the data is organized. mlogit.data accepts
data in either a “long” or a “wide” format and you tell it which you have using
the shape parameter. The choice, varying and id.var parameters indicate
which columns contain the response data, the attributes and the respondent ids,
respectively.
> library(mlogit)
> cbc.mlogit <- mlogit.data(data=cbc.df, choice="choice", shape="long",
+ varying=3:6, alt.levels=paste("pos",1:3),
+ id.var="resp.id")

The resulting cbc.mlogit is an mlogit.data object that can be used to es-
timate a model with mlogit(). The syntax for mlogit uses formula notation
similarly to other functions for regression models in R:

> m1 <- mlogit(choice ∼ 0 + seat + cargo + eng + price, data = cbc.mlogit)

> summary(m1)

...

Frequencies of alternatives:

pos 1 pos 2 pos 3

0.32700 0.33467 0.33833

...

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

seat7 -0.535280 0.062360 -8.5837 < 2.2e-16 ***
seat8 -0.305840 0.061129 -5.0032 5.638e-07 ***
cargo3ft 0.477449 0.050888 9.3824 < 2.2e-16 ***
enghyb -0.811282 0.060130 -13.4921 < 2.2e-16 ***
engelec -1.530762 0.067456 -22.6926 < 2.2e-16 ***
price35 -0.913656 0.060601 -15.0765 < 2.2e-16 ***
price40 -1.725851 0.069631 -24.7856 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -2581.6

13.3 Fitting a Choice Model 373

The output also looks quite similar to what we have seen for other models. At the
bottom of the output is a table of the estimated part worth coefficients for the popula-
tion. The Estimate lists the mean values for each level; these must be interpreted
relative to the base levels of each attribute. For example, the estimate for seat7
measures the attractiveness of 7 passenger minivans relative to 6 passenger mini-
vans. The negative sign tells us that, on average, our simulated customers preferred
6 seat minivans to 7 seat minivans. Estimates that are larger in magnitude indicate
stronger preferences, so we can see that customers strongly disliked electric engines
(relative to the base level, which is gas) and disliked the $40 K price (relative to the
base level price of $30). These parameter estimates are on the logit scale (Sect. 9.2.1)
and typically range between −2 and 2.

The Std. Error column gives a sense of how precise the estimate is, given the
data, along with a statistical test of whether the coefficient is different than zero. A
non-significant test result indicates that there is no detectible difference in prefer-
ence for that level relative to the base level. Just as with any statistical model, the
more data you have in you conjoint study (for a given set of attributes), the smaller
the standard errors will be. Similarly, if there are many attributes and levels in a
study (for a fixed number of respondents answering a survey of a given length), the
part worth estimates will be very imprecise. We’ll discuss more what this means for
an analysis in Sect. 13.6.

You may have wondered why we included 0 + in the formula for m1, indicating
that we did not want an intercept included in our model. We could estimate a model
with an intercept:

> m2 <- mlogit(choice ∼ seat + cargo + eng + price, data = cbc.mlogit)
> summary(m2)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
pos 2:(intercept) 0.028980 0.051277 0.5652 0.5720
pos 3:(intercept) 0.041271 0.051384 0.8032 0.4219
seat7 -0.535369 0.062369 -8.5840 < 2.2e-16 ***
seat8 -0.304369 0.061164 -4.9763 6.481e-07 ***
cargo3ft 0.477705 0.050899 9.3854 < 2.2e-16 ***
enghyb -0.811494 0.060130 -13.4956 < 2.2e-16 ***
engelec -1.529423 0.067471 -22.6677 < 2.2e-16 ***
price35 -0.913777 0.060608 -15.0769 < 2.2e-16 ***
price40 -1.726878 0.069654 -24.7922 < 2.2e-16 ***
...
Log-Likelihood: -2581.3
McFadden Rˆ2: 0.21674
Likelihood ratio test : chisq = 1428.5 (p.value = < 2.22e-16)

When we include the intercept, mlogit adds two additional parameters that indi-
cate preference for the different positions in the question (left, right, or middle in
Fig. 13.1): pos2:(intercept) indicates the relative preference of the second

374 13 Choice Modeling

position in the question (versus the first) and pos3:(intercept) indicates the
preference for the third position (versus the first.) These are sometimes called alter-
native specific constants or ASC’s to differentiate them from the single intercept in
a linear model.

In a typical conjoint analysis study, we don’t expect that people will choose a mini-
van because it is on the left or the right in a survey question! For that reason, we
would not expect the estimated alternative specific constants to differ from zero. If
we found one of these parameters to be significant, that might indicate that some
respondents are simply choosing the first or the last option without considering the
question.

In this model, the intercept parameter estimates are non-significant and close to zero.
This suggests that it was reasonable to leave them out of our first model, but we can
test this formally using lrtest():

> lrtest(m1, m2)
Likelihood ratio test

Model 1: choice ∼ 0 + seat + cargo + eng + price
Model 2: choice ∼ seat + cargo + eng + price
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -2581.6
2 9 -2581.3 2 0.6789 0.7122

This function performs a statistical test called a likelihood ratio test, which can be
used to compare two choice models where one model has a subset of the parameters
of another model. Comparing m1 to m2 results in a p-value (Pr(>Chisq)) of
0.7122. Since the p-value is much greater than 0.05, we can conclude that m1 and
m2 fit the data equally well. This suggests that we don’t need the alternative specific
constants to fit the present data.

There are a few occasions where alternative specific constants do make sense. In
some conjoint studies, the respondent is presented with several “fixed” alternatives.
Option 1 might be a salad, option 2 might be a sandwich, and option 3 might be
a soup. In each question, the attributes of those options vary, but the respondent
is always asked to chose from one salad, one sandwich and one soup. Similarly,
there might be a study of commuters’ choice of transportation alternatives where
alternative 1 is always a bus, alternative 2 is always a train, and alternative 3 is
always driving. In such cases, you should include the alternative specific constants,
but in the majority of conjoint analysis surveys in marketing, alternative specific
constants aren’t used.

You don’t have to treat every attribute in a conjoint study as a factor. As with
linear models, some predictors may be factors while others are numeric. For ex-
ample, we can include price as a numeric predictor with a simple change to
the model formula. In the model formula, we convert price to character vec-
tor using as.character and then to a number using as.numeric. (If you

13.3 Fitting a Choice Model 375

use as.numeric without as.character first, price will be converted to the
values 1, 2, and 3 due to the way R stores factors internally. Converting to a char-
acter first results in values of 30, 35, and 40.)

> m3 <- mlogit(choice ∼ 0 + seat + cargo + eng
+ + as.numeric(as.character(price)),
+ data = cbc.mlogit)
> summary(m3)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.5345392 0.0623518 -8.5730 < 2.2e-16 ***
seat8 -0.3061074 0.0611184 -5.0084 5.488e-07 ***
cargo3ft 0.4766936 0.0508632 9.3721 < 2.2e-16 ***
enghyb -0.8107339 0.0601149 -13.4864 < 2.2e-16 ***
engelec -1.5291247 0.0673982 -22.6879 < 2.2e-16 ***
as.numeric(as.character(price)) -0.1733053 0.0069398 -24.9726 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’0.1 ‘ ’ 1

Log-Likelihood: -2582.1

The output now shows a single parameter for price. The estimate is negative indi-
cating that people prefer lower prices to higher prices. A quick likelihood ratio test
suggests that the model with a single price parameter fits just as well as our first
model.

> lrtest(m1, m3)
Likelihood ratio test

Model 1: choice ∼ 0 + seat + cargo + eng + price
Model 2: choice ∼ 0 + seat + cargo + eng + as.numeric(as.character(price))
#Df LogLik Df Chisq Pr(>Chisq)

1 7 -2581.6
2 6 -2582.1 -1 0.9054 0.3413

Given this finding, we choose m3 as our preferred model because it has fewer pa-
rameters.

13.3.3 Reporting Choice Model Findings

It is often difficult, even for those with training in choice models, to interpret choice
model part worth estimates directly. The coefficients are on an unfamiliar scale and
they measure relative preference for the levels, which can make them difficult to
understand. So, instead of presenting the coefficients, most choice modelers pre-
fer to focus on using the model to make choice share predictions or to compute
willingness-to-pay for each attribute.

376 13 Choice Modeling

13.3.3.1 Willingness-to-Pay

In a model like m3 where we estimate a single parameter for price, we can compute
the average willingness-to-pay for a particular level of an attribute by dividing the
coefficient for that level by the price coefficient.

> coef(m3)["cargo3ft"]/(-coef(m3)["as.numeric(as.character(price))"]/1000)
cargo3ft
2750.601

The result is a number measured in dollars, $2750.60 in this case. (We divide by
1000 because our prices were recorded in 1,000s of dollars.) Willingness-to-pay is
a bit of a misnomer; the proper interpretation of this number is that, on average,
customers would be equally divided between a minivan with 2 ft of cargo space and
a minivan with 3 ft of cargo space that costs $2750.60 more. Another way to think
of it is that $2750.60 is the price at which customers become indifferent between the
two cargo capacity options. This same willingness to pay value can be computed for
every attribute in the study and reported to decision makers to help them understand
how much customers value various features.

13.3.3.2 Simulating Choice Shares

While willingness-to-pay is more interpretable than attribute coefficients, it can still
be difficult to understand. Many analysts prefer to focus exclusively on using the
model to make share predictions. A share simulator allows you to define a number
of different alternatives and then use the model to predict how customers would
choose among those new alternatives. For example, you could use the model to
predict choice share for the company’s new minivan design against a set of key
competitors. By varying the attributes of the planned minivan design, you can see
how changes in the design affect the choice share.

Unfortunately, there isn’t a handy predict() function for mlogit model ob-
jects, as there are for many other types of model objects. Luckily, it isn’t too difficult
to write our own:

> # Predicting shares
> predict.mnl <- function(model, data) {
+ # Function for predicting shares from a multinomial logit model
+ # model: mlogit object returned by mlogit()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format as the data used to estimate model.
+ data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]
+ utility <- data.model%*%model$coef
+ share <- exp(utility)/sum(exp(utility))
+ cbind(share, data)
+ }

In a moment, we’ll walk through this code more carefully, but first let’s see how
it works. The comments tell us that the function takes two inputs: a model object

13.3 Fitting a Choice Model 377

returned from mlogit() and a data frame containing the set of designs for which
you want to predict shares. We already have several model objects, so all we need to
do is create new data. One way to do this is to create the full set of possible designs
using expand.grid() and select the designs we want by row number:

> (new.data <- expand.grid(attrib)[c(8, 1, 3, 41, 49, 26),])
seat cargo eng price

8 7 2ft hyb 30
1 6 2ft gas 30
3 8 2ft gas 30
41 7 3ft gas 40
49 6 2ft elec 40
26 7 2ft hyb 35

We then pass these designs to predict.mnl() to determine what customers
would choose if they had to pick among these six minivan alternatives:

> predict.mnl(m3, new.data)
share seat cargo eng price

8 0.11268892 7 2ft hyb 30
1 0.43263922 6 2ft gas 30
3 0.31855551 8 2ft gas 30
41 0.07216867 7 3ft gas 40
49 0.01657221 6 2ft elec 40
26 0.04737548 7 2ft hyb 35

The model-predicted shares are shown in the column labeled share and we can see
that among this set of products, we would expect respondents to choose the 7-seat
hybrid engine minivan with 2 ft of cargo space at $30 K a little more than 11 % of
the time. If a company was planning to launch a minivan like this, they could use
the model to see how changing the attributes of this product would affect the choice
shares. Note that these share predictions are always made relative to a particular set
of competitors; the share for the first minivan would change if the competitive set
were different.

For those who are new to choice models, we should caution against using share
predictions based on survey data as a market share forecast. While these share pre-
dictions are typically a good representation of how respondents would behave if
they were asked to choose among these six minivans in a new survey, that predicted
survey response might not translate directly to sales in the marketplace. Customers
might not be able to find the product in stores or they may react differently to the
features when they see them in the showroom. We generally recommend that the
analyst be careful to communicate this by labeling the predicted shares as “survey
shares” or “preference shares” to alert others to this distinction. If you estimate a

378 13 Choice Modeling

multinomial logit model using retail purchase data, as we discussed earlier, you
would not need to make this caveat, as your predictions would be based on real-
world purchases.

We could compute shares using model m1, which treated price as a factor rather
than a continuous variable:

> predict.mnl(m1, new.data)
share seat cargo eng price

8 0.11273356 7 2ft hyb 30
1 0.43336911 6 2ft gas 30
3 0.31917819 8 2ft gas 30
41 0.07281396 7 3ft gas 40
49 0.01669280 6 2ft elec 40
26 0.04521237 7 2ft hyb 35

We see that the predicted shares are almost identical, confirming our previous con-
clusion that m3 is very similar to m1. (Comparing predicted shares is not the best
way to compare two models. For a formal comparison of models, we recommend
lrtest().)

Now that we have seen how predict.mnl() works, let’s take a closer look at the
code for the function. Ignoring the comments, the code is just four lines. We repeat
them here so that we can discuss each line, but you don’t need to type them into the
console again. On the first line, we convert the data, which is stored as factors, to a
coded matrix:

data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]

We do this using two functions from base R for working with formulas. The func-
tion model.matrix, which we saw earlier in the chapter, converts the data from
factors to coded effects. It requires the right-hand side of the formula from model,
which we obtain using the update function for formulas. We also have to remove
the first column of the result of model.matrix, because our choice model doesn’t
have an intercept. On the next line, we compute the utility for each product by multi-
plying the coded data by the model coefficients using matrix multiplication:

utility <- data.model %*% model$coef

The result is a utility value for each product in the set based on its attributes. Finally,
we convert that to shares using the multinomial logit equation:

share <- exp(utility) / sum(exp(utility))

The function then returns the shares along with the product design data. (Experi-
enced choice modelers will notice that we are slightly abusing terminology when we
call this utility. More precisely this should be called the deterministic portion

13.3 Fitting a Choice Model 379

of the utility, since it doesn’t include the error term. We do not include a stochastic
component in the share simulator, because we want to report the expected average
shares across many choices.)

13.3.3.3 Sensitivity Plots

Often a product design team has a particular product design in mind and wants to
know how share would change if they were to change their design. For example,
suppose the minivan designers plan to build a 7-passenger hybrid minivan with 2 ft.
of cargo space and sell it at $30 K. The model can be used to predict how share
would change if different levels of the attributes were included (while keeping the
competitive set fixed.) The plot in Fig. 13.2 shows how share would change if we
changed each of the attributes of the design, one at a time. We see that changing
the planned 7-seat design to a 6-seat design would increase share by just under
0.07. Increasing the price to $35 K would decrease share by about 0.06. This gives
the design team an at-a-glance picture of how changes in their design affect choice
share.

6 7 8 2ft 3ft gas hyb elec 30 35 40

C
ha

ng
e

in
 S

ha
re

 fo
r

B
as

el
in

e
P

ro
du

ct

−
0.

05
0.

00
0.

05
0.

10

Fig. 13.2. Sensitivity plot showing
how share for the planned design
changes as we change each attribute,
relative to a set of competing designs.
The planned design is a 7-passenger
hybrid minivan with 2 ft. of cargo
space offered at $30,000.

Producing this plot using R is relatively simple: we just need to loop through all
the attribute levels, compute a share prediction, and save the predicted share for
the target design. Since this is an analysis we do regularly, we wrote a function to
do it.

> sensitivity.mnl <- function(model, attrib, base.data, competitor.data) {
+ # Function for creating data for a share-sensitivity chart
+ # model: mlogit object returned by mlogit() function
+ # attrib: list of vectors with attribute levels to be used in sensitivity
+ # base.data: data frame containing baseline design of target product

380 13 Choice Modeling

+ # competitor.data: data frame containing design of competitive set
+ data <- rbind(base.data, competitor.data)
+ base.share <- predict.mnl(model, data)[1,1]
+ share <- NULL
+ for (a in seq_along(attrib)) {
+ for (i in attrib[[a]]) {
+ data[1,] <- base.data
+ data[1,a] <- i
+ share <- c(share, predict.mnl(model, data)[1,1])
+ }
+ }
+ data.frame(level=unlist(attrib), share=share, increase=share-base.share)
+ }

Using sensitivity.mnl, we create the plot in Fig. 13.2 with four com-
mands:

> base.data <- expand.grid(attrib)[c(8),]
> competitor.data <- expand.grid(attrib)[c(1, 3, 41, 49, 26),]
> (tradeoff <- sensitivity.mnl(m1, attrib, base.data, competitor.data))

level share increase
seat1 6 0.17831027 0.06557671
seat2 7 0.11273356 0.00000000
...
price3 40 0.02211862 -0.09061494
> barplot(tradeoff$increase, horiz=FALSE, names.arg=tradeoff$level,
+ ylab="Change in Share for Baseline Product")

13.3.4 Share Predictions for Identical Alternatives

Occasionally, you may want to predict shares for two designs that are identical in
terms of the attributes that you’ve included in your conjoint study. For example, you
might be planning to offer a design that is the same as a competitor. A naive analyst
might include both designs in a set to estimate with predict.mnl() and there is
nothing to stop one from doing that:

> new.data.2 <- expand.grid(attrib)[c(8, 8, 1, 3, 41, 49, 26),]
> predict.mnl(m1, new.data.2)

share seat cargo eng price
8 0.10131227 7 2ft hyb 30
8.1 0.10131227 7 2ft hyb 30
1 0.38946350 6 2ft gas 30
3 0.28684152 8 2ft gas 30
41 0.06543701 7 3ft gas 40
49 0.01500162 6 2ft elec 40
26 0.04063181 7 2ft hyb 35

13.3 Fitting a Choice Model 381

However, these share predictions may be considered unrealistic. When we estimate
shares from m1 with just one copy of design 8, we get a share of about 0.113. With
two copies of the same design, each alternative is predicted to get a share of about
0.101 for a total of 0.202 between the two of them. It seems quite unreasonable
that people would be more likely to choose a 7-passenger, 2 ft., hybrid at $30 K just
because there are two of them in the choice set. Beyond that, the relative shares of all
the other vehicles have remained the same, including the higher-priced 7-passenger
hybrid (design 26 in the last row). Why wouldn’t design 8 steal more share from
design 26 than from the other non-hybrid vehicles?

While this is confusing, multinomial logit models make predictions in this way.
Much has been written about this property of the multinomial logit model and there
are many arguments about whether it is desirable. In fact, the property has been
given a name: the independence of irrelevant alternatives or IIA property. It is also
sometimes called the “red bus/blue bus problem” based on a classic example that
involves predicting share for two different color buses that have otherwise identical
features. Predictions from the multinomial logit model for two identical alternatives
or even two nearly identical alternatives will exhibit this property.

More sophisticated hierarchical models, which we discuss in Sect. 13.5, relax this
property somewhat, although they still may make predictions for similar or identi-
cal alternatives that seem unreasonable [36]. There are a number of proposed meth-
ods to estimate choice models that do not have the IIA property including nested
logit, generalized logit, and multinomial probit. If you need to predict shares for
nearly identical designs, we encourage you to review those alternatives. However,
the majority of marketers today use either the multinomial logit or the hierarchical
multinomial logit model, and—we hope—try to avoid including identical or nearly
identical designs when estimating shares.

13.3.5 Planning the Sample Size for a Conjoint Study

A crucial issue in planning a successful conjoint analysis study is to decide how
many respondents should complete the survey. To see how sample size affects
the model estimates and share predictions, let’s estimate a model using just the
data from the first 25 respondents. We do this by creating small.conjoint,
which is an mlogit.data object with just the first 25× 15× 3 = 1125 rows of
our original cbc.df data, corresponding to the survey responses for the first 25
respondents.

382 13 Choice Modeling

> small.cbc <- mlogit.data(data=cbc.df[1:(25*15*3),],
+ choice="choice", shape="long",
+ varying=3:6, alt.levels=paste("pos", 1:3),
+ id.var="resp.id")
> m4 <- mlogit(choice ∼ 0 + seat + cargo + eng + price, data = small.cbc)

If we take a look at the coefficient estimates for m4 and compare them to the coeffi-
cient estimates for m1 (above), we can see that the estimated coefficients for m4 are
similar, but the standard errors for the coefficients are more than three times as big,
reflecting the fact that with less data, our estimates of the model coefficients are less
precise.

> summary(m4) # larger standard errors
...

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.74326 0.17767 -4.1833 2.873e-05 ***
seat8 -0.15180 0.16859 -0.9004 0.3679142
cargo3ft 0.45613 0.14459 3.1546 0.0016071 **
enghyb -0.59674 0.16838 -3.5440 0.0003941 ***
engelec -1.62677 0.19764 -8.2311 2.220e-16 ***
price35 -0.81508 0.17304 -4.7105 2.471e-06 ***
price40 -1.71390 0.20304 -8.4410 < 2.2e-16 ***
...

The standard errors are also higher for the attribute-levels that are least often cho-
sen, including the engelec and price40 coefficients. In general, standard er-
rors for less-frequently chosen attributes will be higher. One method for planning
sample sizes focuses on reducing the standard errors of the estimates to acceptable
levels. We discuss this further when we discuss the design of conjoint surveys in
Sect. 13.6.

We can also compare predictions between m1 and m4:

> cbind(predict.mnl(m4, new.data), predict.mnl(m1, new.data))
share seat cargo eng price share seat cargo eng price

8 0.10876219 7 2ft hyb 30 0.11273356 7 2ft hyb 30
1 0.41536666 6 2ft gas 30 0.43336911 6 2ft gas 30
3 0.35686673 8 2ft gas 30 0.31917819 8 2ft gas 30
41 0.05615650 7 3ft gas 40 0.07281396 7 3ft gas 40
49 0.01470947 6 2ft elec 40 0.01669280 6 2ft elec 40
26 0.04813846 7 2ft hyb 35 0.04521237 7 2ft hyb 35

Here we find that the two models make similar share predictions. This illustrates the
fact that comparing share predictions is not the ideal way to compare two different
conjoint survey designs. When we look at the standard errors for the coefficients,
we see the difference between m1 and m4 more clearly.

If we looked at the standard errors of the share predictions, they would be more pre-
cise for m1, but we can’t see that here because there are no standard errors reported
for shares. While it is possible to compute standard errors for share predictions, it
requires using the “delta method” or a bootstrapping strategy, both of which are dif-

13.4 Adding Consumer Heterogeneity to Choice Models 383

ficult to do outside of a programming environment like R. So, among those who do
not use R, it is uncommon to report standard errors or estimates of uncertainty for
share predictions.

This is unfortunate; decision makers often see only the point estimates for share
predictions and are not informed about the confidence intervals of those shares.
An ambitious reader might write code to produce intervals for share predictions
from the multinomial logit model, but we will hold off on estimating intervals
for share predictions until we review choice models in a Bayesian framework in
Sect. 13.5.

13.4 Adding Consumer Heterogeneity to Choice Models

Up to this point, we have focused on the multinomial logit model, which estimates
a single set of part worth coefficients for a whole sample. In this section, we look
at a model that allows for each respondent to have his or her own coefficients. Dif-
ferent people have different preferences, and models that estimate individual-level
coefficients can fit data better and make more accurate predictions than sample-level
models (see [137]).

To estimate a model where each respondent has his or her own part worths, it is
helpful to have multiple observations for each respondent. This is not a problem in a
typical conjoint analysis study because each respondent answers multiple question.
However, it can be a problem when estimating choice models using retail purchase
data, because many people only make a single purchase. Most conjoint analysis
practitioners routinely estimate heterogeneous choice models with conjoint survey
data and it is easy to do this in R. In this section, we show how to do it using
mlogit, which uses traditional frequentist statistical methods. In Sect. 13.5, we
show how to estimate heterogeneous choice models using Bayesian methods. For
either section, if you are not familiar with hierarchical models, you should review
the basics in Sect. 9.3.

13.4.1 Estimating Mixed Logit Models with mlogit()

The statistical term for coefficients that vary across respondents (or customers) is
random coefficients or random effects (see Sect. 9.3.1). To estimate a multinomial
logit model with random coefficients using mlogit, we define a vector indicat-
ing which coefficients should vary across customers. mlogit requires a character
vector the same length as the coefficient vector with a letter code indicating what
distribution the random coefficients should follow across the respondents: ‘n’ for
normal, ‘l’ for log normal, ‘t’ for truncated normal, and ‘u’ for uniform. For this
analysis, we assume that all the coefficients are normally distributed across the pop-
ulation and call our vector m1.rpar.

384 13 Choice Modeling

> m1.rpar <- rep("n", length=length(m1$coef))
> names(m1.rpar) <- names(m1$coef)
> m1.rpar

seat7 seat8 cargo3ft enghyb engelec price35 price40
"n" "n" "n" "n" "n" "n" "n"

We pass this vector to mlogit as the rpar parameter, which is short for “random
parameters”. In addition, we tell mlogit that we have multiple choice observations
for each respondent (panel=TRUE) and whether we want to allow the random
parameters to be correlated with each other. For this first run, we assume that we do
not want random parameters to be correlated (correlation=FALSE), a setting
we reconsider below.

> m1.hier <- mlogit(choice ∼ 0 + seat + eng + cargo + price,
+ data = cbc.mlogit,
+ panel=TRUE, rpar = m1.rpar, correlation = FALSE)

The algorithm to estimate the heterogeneous logit model is computationally inten-
sive, so it may take a few seconds to run. Once it finishes, you can look at the
parameter estimates using summary():

> summary(m1.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.642241 0.070893 -9.0593 < 2.2e-16 ***
seat8 -0.390021 0.070460 -5.5353 3.106e-08 ***
enghyb -0.926145 0.067456 -13.7296 < 2.2e-16 ***
engelec -1.831864 0.083439 -21.9544 < 2.2e-16 ***
cargo3ft 0.550838 0.058459 9.4226 < 2.2e-16 ***
price35 -1.081310 0.070874 -15.2567 < 2.2e-16 ***
price40 -1.991787 0.085312 -23.3471 < 2.2e-16 ***
sd.seat7 -0.651807 0.101906 -6.3961 1.594e-10 ***
sd.seat8 0.995007 0.093397 10.6535 < 2.2e-16 ***
sd.enghyb 0.159495 0.137950 1.1562 0.247607
sd.engelec 0.973303 0.099850 9.7476 < 2.2e-16 ***
sd.cargo3ft 0.307194 0.131109 2.3430 0.019127 *
sd.price35 -0.260907 0.121369 -2.1497 0.031579 *
sd.price40 0.418148 0.128104 3.2641 0.001098 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-Likelihood: -2498.5

random coefficients
Min. 1st Qu. Median Mean 3rd Qu. Max.

seat7 -Inf -1.0818780 -0.6422410 -0.6422410 -0.2026039 Inf
seat8 -Inf -1.0611428 -0.3900209 -0.3900209 0.2811010 Inf
cargo3ft -Inf 0.3436387 0.5508377 0.5508377 0.7580366 Inf
enghyb -Inf -1.0337226 -0.9261449 -0.9261449 -0.8185673 Inf
engelec -Inf -2.4883466 -1.8318636 -1.8318636 -1.1753805 Inf
price35 -Inf -1.2572890 -1.0813097 -1.0813097 -0.9053304 Inf
price40 -Inf -2.2738236 -1.9917870 -1.9917870 -1.7097505 Inf

13.4 Adding Consumer Heterogeneity to Choice Models 385

The results show 14 estimated parameters, which is twice as many as we had in m1.
These parameters describe the average part worth coefficients across the popula-
tion of respondents (labeled seat7, seat8, etc.) as well as how those parameters
vary across the population (reported as standard deviations and labeled sd.seat7,
sd.seat8, etc.)

The standard deviation parameter estimates indicate that there is a lot of hetero-
geneity in preference for 7 or 8 seats over 6 seats. For example, the estimate of
sd.seat8 is about 0.995 larger than the mean estimate for the level of 0.39 which
suggests that some people prefer 6 seats to 8, while others prefer 8. Another way to
see this is in the output section labeled random coefficients, which shows
the range of respondent-level coefficients. For seat8, the first quartile is −1.06
(indicating a preference for 6 seats) and the third quartile is 0.281 (indicating a
preference for 8 seats). Because we specified the random coefficients as normally
distributed, the model assumes that the majority of respondents are in the middle,
slightly preferring 6 seats to 8. Given that there is a large fraction of respondents
who prefer 8 seats, it may make sense for the company to offer a minivan with 6
seats and a minivan with 8 seats. To tell that for certain, you could make several
share predictions and compare the potential increase in market share to the costs of
offering both options.

There is one additional feature we can add to the random coefficients model using
mlogit(). Model m1 assumed that there were no correlations between the random
coefficients, meaning that if one person prefers 8 seats over 6, we would not expect
that they also prefer 7 seats over 6. Including correlations in the random coefficients
allows us to determine, based on the data, whether people who like one attribute
also tend to like another attribute. This is easily done by including correlations
= TRUE as a parameter in the call to mlogit or by using the update function
provided by mlogit.

> m2.hier <- update(m1.hier, correlation = TRUE)
> summary(m2.hier)
...
Coefficients :

Estimate Std. Error t-value Pr(>|t|)
seat7 -0.6571127 0.0730592 -8.9942 < 2.2e-16 ***
seat8 -0.4336405 0.0754669 -5.7461 9.132e-09 ***
enghyb -0.9913358 0.0731532 -13.5515 < 2.2e-16 ***
engelec -1.8613750 0.0855809 -21.7499 < 2.2e-16 ***
cargo3ft 0.6021314 0.0623728 9.6537 < 2.2e-16 ***
price35 -1.1819210 0.0770295 -15.3437 < 2.2e-16 ***
price40 -2.1749326 0.0960858 -22.6353 < 2.2e-16 ***
seat7.seat7 0.6830318 0.1046707 6.5255 6.776e-11 ***
seat7.seat8 1.0089934 0.1092730 9.2337 < 2.2e-16 ***
seat7.cargo3ft -0.0624345 0.0962322 -0.6488 0.5164737
seat7.enghyb -0.3517319 0.1146392 -3.0682 0.0021538 **
seat7.engelec -0.1946944 0.0859581 -2.2650 0.0235131 *
seat7.price35 0.1318172 0.0973219 1.3544 0.1755947
...

386 13 Choice Modeling

Model m2.hier now includes many more parameters, so many that we have
truncated the output. The additional parameters are the variance and covariance
parameters between the random coefficients. seat7.seat7 is the variance of the
seat7 random coefficient and seat7.seat8 is our estimate of the covariance
between preference for 7 seats and preference for 8 seats. The estimate is significant
and positive, indicating that people who prefer 7 seats also tend to prefer 8 seats.
To get a better sense of the strength of this association, we can extract the covari-
ance matrix using cov.mlogit and then convert it to a correlation matrix using
cov2cor from base R.

> cov2cor(cov.mlogit(m2.hier))
seat7 seat8 cargo3ft enghyb engelec price35

seat7 1.0000000 0.774540837 -0.1116303 -0.313095351 -0.4886197 0.24366546
seat8 0.7745408 1.000000000 0.1364164 -0.001877182 -0.2351177 -0.07335863
cargo3ft -0.1116303 0.136416377 1.0000000 0.498038677 -0.6257625 -0.03750020
enghyb -0.3130954 -0.001877182 0.4980387 1.000000000 0.1096523 0.16249428
engelec -0.4886197 -0.235117662 -0.6257625 0.109652292 1.0000000 -0.24671982
price35 0.2436655 -0.073358628 -0.0375002 0.162494277 -0.2467198 1.00000000
price40 0.1318966 0.034897989 0.3074710 -0.026541375 -0.4260211 0.54721196
...

This matrix shows that the correlation between the part worth for 7 seats and the
part worth for 8 seats is 0.77, a strong association. In real data, it is common to find
correlations between levels of the same attribute; if an attribute is important to a
respondent, then he or she will likely have parameters with larger absolute values
for all the levels of that attribute. For this reason, we strongly recommend that you
include correlations in all random coefficients choice models. When you review the
estimates of those models, you should review both the mean part worth coefficients,
which represent the average value that respondents place on each attribute, and the
variance and covariances in preferences across the population.

13.4.2 Share Prediction for Heterogeneous Choice Models

Reporting share predictions for heterogeneous choice models is largely the same as
for standard choice models. The key difference is in how those share predictions are
computed. The model assumes that there is a population of respondents, each with
different part worth coefficients. So, when we compute shares, we need to compute
the choice shares for many different respondents and then average over those to
get our overall share predictions. You can see how we do this by comparing our
prediction function for the hierarchical multinomial logit model to the prediction
function we had for the standard multinomial logit.

> predict.hier.mnl <- function(model, data, nresp=1000) {
+ # Function for predicting shares of a hierarchical multinomial logit model
+ # model: mlogit object returned by mlogit()
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ # Note that this code assumes all model parameters are random
+ data.model <- model.matrix(update(model$formula, 0 ∼ .), data = data)[,-1]
+ coef.Sigma <- cov.mlogit(model)

13.4 Adding Consumer Heterogeneity to Choice Models 387

+ coef.mu <- m2.hier$coef[1:dim(coef.Sigma)[1]]
+ draws <- mvrnorm(n=nresp, coef.mu, coef.Sigma)
+ shares <- matrix(NA, nrow=nresp, ncol=nrow(data))
+ for (i in 1:nresp) {
+ utility <- data.model%*%draws[i,]
+ share = exp(utility)/sum(exp(utility))
+ shares[i,] <- share
+ }
+ cbind(colMeans(shares), data)
+ }

The key difference is that we now compute the shares for each of nresp=1000
newly sampled, representative respondents. The part worths for these respondents
are drawn from a multivariate normal distribution with mean set at our estimated
value of mu and covariance equal to our estimated value of Sigma (draws <-
mvrnorm(n=nresp, coef.mu, coef.Sigma). The computation for each
respondent is exactly the same as our computation in predict.mnl. Once we
have the shares for all of the representative respondents, we average across respon-
dents to get our overall share predictions.

We compute shares using predict.hier.mnl just as we did before with
predict.mnl. It may take a moment, because we are doing 1,000 times more
computation.

> predict.hier.mnl(m2.hier, data=new.data)
colMeans(shares) seat cargo eng price

8 0.08959674 7 2ft hyb 30
1 0.46390066 6 2ft gas 30
3 0.34231092 8 2ft gas 30
41 0.05370156 7 3ft gas 40
49 0.01797406 6 2ft elec 40
26 0.03251606 7 2ft hyb 35

If you compare these share predictions to those we got with predict.mnl(m1,
data=new.data), you will see that they are similar, but not quite the same. For
example, the electric minivan in the second-to-last row gets slightly more share
with the heterogeneous model. Models that account for heterogeneity often pre-
dict that “niche” products attract a slightly larger share because the model accounts
for the fact that there are a small number of respondents who find those “niche”
designs very attractive. These models do not strictly follow the IIA property (see
Sect. 13.3.4); if two similar products appeal to the same subset of customers, they
will compete more closely with each other than with other products.

The share predictions produced by predict.hier.mnl are still based on the
point estimates of coef.Sigma and coef.mu. So, while we have accounted
for consumer heterogeneity in these predictions, we still haven’t accounted for our
uncertainty in the parameter estimates. This makes it difficult to determine what

388 13 Choice Modeling

would be a (statistically) meaningful difference in share for two alternative de-
signs. While it is possible to estimate prediction intervals for these models in the
frequentist framework, it is easier to do so in a Bayesian framework. We address
prediction intervals for shares in the next section where we review Bayesian choice
models.

13.5 Hierarchical Bayes Choice Models

In this section, we show how to estimate choice models with heterogeneity us-
ing Bayesian methods and point out advantages (and some disadvantages) of the
Bayesian approach.

Moving into the Bayesian framework can be somewhat confusing, both because
the Bayesian approach to estimation is different and because Bayesians often use
different language to describe the same thing. Those who use the classical meth-
ods often refer to the model we estimated in the previous section as the “random-
coefficients multinomial logit” or “mixed logit” model. Bayesians tend to refer to
these same models (and some extensions of them) as hierarchical Bayes multinomial
logit.

There are several available packages for estimating choice models using Bayesian
methods. The MCMCpack package we used in Chap. 7 includes a function called
MCMCmnl to estimate non-hierarchical multinomial choice models [109]. To es-
timate the hierarchical choice model here, we use the ChoiceModelR package
[143], which builds on the bayesm package [136].

13.5.1 Estimating Hierarchical Bayes Choice Models with
ChoiceModelR

Unfortunately, there isn’t a universal standard for how choice data is stored and
we have to reorganize our data slightly to use ChoiceModelR. ChoiceModelR
requires the data to be stored in a “long” data frame where each row is an alternative
(as we have already in cbc.df), but it requires the selected alternative to be stored
as an integer number on the first row of each choice task, with zeros in the remaining
rows. It turns out that it takes just a few lines of code to create the new choice
data.

13.5 Hierarchical Bayes Choice Models 389

> choice <- rep(0, nrow(cbc.df))
> choice[cbc.df[,"alt"]==1] <- cbc.df[cbc.df[,"choice"]==1,"alt"]
> head(choice)
[1] 3 0 0 2 0 0

Since there are three alternatives in each question, the first element of choice in-
dicates that the respondent chose the third alternative in the first choice task; the
second and third elements for choice are left as zeros. Similarly, the fourth ele-
ments indicates that the respondent chose the second alternative in the second choice
task, and the next two elements are zeros.

ChoiceModelR automatically codes factors but it uses a different scheme than
mlogit. To be consistent with the models we’ve run before, we’ll go ahead and
code the factors manually ourselves using model.matrix.

> cbc.coded <- model.matrix(∼ seat + eng + cargo + price, data = cbc.df)
> cbc.coded <- cbc.coded[, -1] # remove the intercept

Finally, we can create a new data frame that combines the coded attributes and the
choice back together with the resp.id, ques and alt (which are the first three
columns in cbc.df).

> choicemodelr.data <- cbind(cbc.df[,1:3], cbc.coded, choice)
> head(choicemodelr.data)

resp.id ques alt seat8 enghyb engelec cargo3ft price35 price40 choice
19 1 1 1 0 0 0 0 1 0 3
12 1 1 2 1 1 0 1 0 0 0
4 1 1 3 0 0 0 1 0 0 0
1 1 2 1 0 0 0 0 0 0 2
23 1 2 2 0 0 0 1 1 0 0
31 1 2 3 0 0 1 0 1 0 0

The function we use to estimate the hierarchical Bayes choice model is
choicemodelr(), which requires the data to be organized in exactly the format
above: a number indicating which respondent answered the question, a number
indicating which question the profile belongs to, and a number indicating which
alternative this was, and then the attributes followed by the choice. The choice is
stored as an integer number in the first row of each question.

A key advantage of the hierarchical Bayes framework is that it allows you relate a
customer’s part worths for the attributes to characteristics of the customer (some-
times called “demographics,” although this is a very poor name as we discuss later.)
In our data set, we happen to know whether each customer uses his or her car to
carpool and it seems quite reasonable that people who carpool might have different
part worths than people who don’t carpool. To figure out whether this is true, we
estimate a model where the part worths are a function of the respondent character-
istics, following a linear model. Of course, this means we need to pass the data on
the respondent characteristics to choicemodelr(), which expects this data to be
formatted as a matrix with one row for each respondent and one column for each
respondent characteristic.

390 13 Choice Modeling

> carpool <- cbc.df$carpool[cbc.df$ques==1 & cbc.df$alt==1]=="yes"
> carpool <- as.numeric(carpool)
> choicemodelr.demos <- as.matrix(carpool, nrow=length(carpool))
> str(choicemodelr.demos)
num [1:200, 1] 1 0 0 0 1 0 0 1 0 0 ...

Note that each row in choicemodelr.demos represents a respondent and not
a question or an alternative, and so we have 200 rows. A value of 1 indicates that
the respondent does use their car to carpool and a value of 0 indicates that they
don’t.

With this bit of data re-organization done, we can call choicemodelr():

> library(ChoiceModelR)
> hb.post <- choicemodelr(data=choicemodelr.data, xcoding=rep(1, 7),
+ demos=choicemodelr.demos,
+ mcmc=list(R=20000, use=10000),
+ options=list(save=TRUE))

In addition to the data and the demos, there are a couple of additional parameters
of choicemodelr that control the estimation routine. The xcoding parameter
tells choicemodelr how you want the attributes coded; by setting this to a vector
of 1s, we indicate that we’ve already done the coding. The mcmc and options
parameters control several aspects of the algorithm, which we discuss below. You
can always type ?choicemodelr for more details, although the help files might
be more helpful to experienced Bayesian modelers than to novices.

While we recommend ChoiceModelR, there are a few aspects that make it less
“R-like” than some packages. For example, choicemodelr() does not use R’s
formula notation or the base functions for coding factors. It relies on the order of
the columns in the data frame, rather than using column names. The package does
not include common utility functions like summary() and predict(). Because
R is open source, it is up to each package development team to decide how they
want to structure their functions and how consistent the package is with other R
functions. While it sometimes requires a bit of work to figure out how a particular
package works, it is difficult to complain too much, since the package was donated
by the developers. If there is some functionality you’d like to see in a package, you
can always write it yourself and then suggest to the package developers that they
include your extension in their next release. (The name and email address of every
package’s maintainer are available in the package listing on CRAN.)

If you ran the code above, you probably noticed that it took a long time to run
and produced a lot of output about its process. We omitted that output here. In the
graphics window, you might have noticed something similar to Fig. 13.3.

13.5 Hierarchical Bayes Choice Models 391

What is Fig. 13.3? The focus of Bayesian inference is on generating a posterior dis-
tribution for the parameters of a model. The posterior distribution samples the likely
values of a model’s parameters, given the observed data. Most Bayesian routines
like choicemodelr produce a set of random draws from the posterior distribu-
tion. Figure 13.3 is called a trace plot and it shows the posterior draws that have
been produced so far by the estimation routine.

0 5000 10000 15000 20000

−
3

−
2

−
1

0
1

2

Rep

M
u

Fig. 13.3. Trace plot of posterior draws for a hierarchical Bayes choice model produced by
choicemodelr().

Without getting into the details of how and why these algorithms work, it is im-
portant to know that they don’t always start out producing posterior draws. There is
typically a burn-in period, where the algorithm settles into the posterior distribution.
Before we use draws from the distribution, we have to throw out these initial burn-in
draws. The trace plot allows us to see where the burn-in period ends. Judging from
Fig. 13.3 the algorithm seems to have settled in after the first 1,000 draws, because
that is where the lines plotting the estimated values settle into a stable, horizontal
pattern (apart from noise).

We used two other arguments with choicemodelr(). The mcmc=list
(R=20000, use=10000) argument tells choicemodelr that we want to
produce 20,000 posterior draws and that we want to use only the last 10,000 (giving
us a wide margin on the burn-in). The options=list(save=TRUE) argument
tells choicemodelr() to save those last 10,000 posterior draws. By default,
choicemodelr() saves every tenth draw, so it actually stores 1,000 posterior
draws.

392 13 Choice Modeling

When choicemodelr() finishes, the posterior draws are saved to the object we
specified, hb.post, which becomes a list with four elements:

> names(hb.post)
[1] "betadraw" "deltadraw" "compdraw" "loglike"

The key parameters of the model are the average and the variance of the part
worths across the population. We can access one posterior draw of these parame-
ters by selecting an element of hb.post$compdraw. We arbitrarily look at draw
567.

> hb.post$compdraw[[567]]$mu
[1] -0.6565015 -0.4263809 -1.1496282 -1.8733265 0.5620929 -1.2089470
[7] -2.5772394

These are the average population part worths and you can compare them to the pa-
rameters we estimated with mlogit(). The parameters above come in the same
order as the first seven parameters estimated by mlogit(). For example, the aver-
age part worth for seat7 was -0.642 when we estimated it with mlogit() and
for this posterior draw we get a value of -0.657 from choicemodelr().

There is one key difference between this model and the model we estimated with
mlogit(). The parameters above represent the average part worth parameters
among respondents who do not use their car to carpool. The hierarchical Bayes
model also includes a set of “adjustments” for people who carpool; we can look
at the 567th draw of these adjustment factors by looking at the appropriate row of
hb.post$deltadraw.

> hb.post$deltadraw[567,]
[1] 1.63415698 1.78079508 -0.04400289 -0.12966126 0.02713614 -0.21926035
[7] -0.19518696

You can see that there are huge adjustments in the part worths for the first two
parameters: seat7 and seat8. The average part worth for 7 seats (versus the base
level of 6) for people who carpool is −0.657+ 1.634 = 0.977. This means that on
average people who carpool actually prefer 7 over 6 seats while people who don’t
carpool prefer 6 seats on average. This is a potentially critical insight for product
designers that we completely missed when we used the mixed logit model with
mlogit. You may not see a major difference in share predictions between these
two models, but the insight you get from reviewing the parameters can be quite
valuable.

We caution readers that this potential insight comes at a cost. We had to estimate
seven additional parameters to describe the population. Adding a large number of
additional parameters can make the burn-in period longer and it can add to uncer-
tainty to the parameter estimates. We suggest you only include respondent character-
istics that you believe should be related to the part worths. In this case, it seems rea-
sonable that minivan preferences should be different for people who carpool.

13.5 Hierarchical Bayes Choice Models 393

In general, covariates that are directly related to product usage are ideal. There are
also potential issues with the scaling of these respondent characteristics; binary indi-
cators tend to work well as they avoid these scaling issues. It is generally a bad idea
to include general demographic variables like age, race, or gender, just because you
have them. Often demographic variables are not associated with product preferences
[47]. For this reason, we avoid referring to covariates as “demographics.”

We also have a set of parameters that describe the variance in part worths across the
population. We can pull out the 567th draw from hb.post:

> hb.post$compdraw[[567]]$rooti
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.011972 -0.04367931 -0.045915749 0.1129225 0.005337426 -0.081773492
[2,] 0.000000 0.81711384 0.003180727 0.1535246 0.161135551 -0.192515134
[3,] 0.000000 0.00000000 1.011131267 -0.6173136 0.216005822 -0.011914137
[4,] 0.000000 0.00000000 0.000000000 0.8302175 -0.018093331 -0.002099283
[5,] 0.000000 0.00000000 0.000000000 0.0000000 1.146767704 -0.023986760
[6,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 1.332875325
[7,] 0.000000 0.00000000 0.000000000 0.0000000 0.000000000 0.000000000
...

This set of parameters is actually stored as the Cholesky root of the covariance ma-
trix. This is the matrix equivalent of a square root and we can recover the covariance
matrix by “squaring” rooti with crossprod():

> crossprod(hb.post$compdraw[[567]]$rooti)
[,1] [,2] [,3] [,4] [,5]

[1,] 1.024087812 -0.044202250 -0.046465463 0.11427448 0.005401327
[2,] -0.044202250 0.669582906 0.004604584 0.12051469 0.131432954
[3,] -0.046465463 0.004604584 1.024504812 -0.62888172 0.218677697
[4,] 0.114274477 0.120514688 -0.628881721 1.10665848 -0.123023753
[5,] 0.005401327 0.131432954 0.218677697 -0.12302375 1.388055204
[6,] -0.082752504 -0.153734971 -0.008904404 -0.03317798 -0.061500274
[7,] 0.014590162 0.073588053 -0.233576644 0.47484770 0.281647756
...

The diagonals of this matrix describe the variance across the population in the part
worths and if you compare them to the estimates we got with mlogit, you will
find that variation across the population is generally smaller, particularly for the first
two parameters that describe preferences for number of seats. The reason for this is
that the new model accounts for some of the differences between individuals who
carpool versus not, so the remaining unexplained variation between respondents is
smaller.

In addition to population level parameters, we look at posterior draws of the
individual-level parameters:

> head(hb.post$betadraw[,,567])
[,1] [,2] [,3] [,4] [,5] [,6] ...

[1,] 1.0112255 0.6282393 -0.2210578 -0.01774596 0.8777881 -0.8889406 ...
[2,] -2.1737290 1.2036846 -2.2063721 -3.21025972 0.3277637 -2.8757266 ...
[3,] -2.4349625 -1.5172192 -0.7548992 -0.76935985 -0.2273173 -1.2754315 ...
...

394 13 Choice Modeling

Each row of this output represents the part worths for each person, which you can
see vary widely. For example, for this posterior draw the first respondent really likes
7 seats over 6 or 8, since 1.011 is larger than 0 or 0.628. The second respondent
prefers 8 seats over 6 or 7. You could plot histograms of these part worth values to
get a sense for how preferences vary across the population (Sec. 9.4.3).

Up to this point, we’ve been talking about a single draw from the posterior (number
567). But if you look at hb.post$betadraw, you can see that there are 1,000
posterior draws of the seven part worths for each of 200 respondents.

> str(hb.post$betadraw)
num [1:200, 1:7, 1:1000] 0.816 -1.083 -2.306 -0.91 2.043 ...

To fully characterize the posterior and our uncertainty about these parameters, we
need summarize all of the posterior draws. Unfortunately, choicemodelr does
not provide convenient summaries, but for the respondent-level betadraws, we
can find the posterior means using apply.

> beta.post.mean <- apply(hb.post$betadraw, 1:2, mean)
> head(beta.post.mean)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.6333957 0.26137739 -0.4483550 -1.426702 1.1568186 -0.4751817
[2,] -2.1134244 0.64602926 -1.0926311 -1.916450 0.9893599 -1.4853397
[3,] -1.9297260 -2.10100104 -0.9827285 -1.413800 0.4395638 -1.4189584
...

The values in beta.post.mean show our best estimate for each individual’s
part worths. While it is possible to obtain individual-level estimates using classi-
cal methods, it is much more common for Bayesian choice modelers to focus on
individual-level parameters.

It is also important to recognize that with just 15 choice questions for each respon-
dent, there is still a great deal of uncertainty about those individual-level part worths.
We can get a sense for how much uncertainty there is by looking at the posterior
quantiles of the part worths for each respondent. We compute the fifth and 95th
quantiles of the individual betadraws, then display the mean and quantiles for the
first respondent:

> beta.post.q05 <- apply(hb.post$betadraw, 1:2, quantile, probs=c(0.05))
> beta.post.q95 <- apply(hb.post$betadraw, 1:2, quantile, probs=c(0.95))
> rbind(q05=beta.post.q05[1,], mean=beta.post.mean[1,], q95=beta.post.q95[1,])

[,1] [,2] [,3] [,4] [,5] [,6]
q05 -0.5380902 -1.1223590 -1.5063476 -2.876466010 0.05096963 -1.5266892
mean 0.6333957 0.2613774 -0.4483550 -1.426702290 1.15681862 -0.4751817
q95 1.8404189 1.5819603 0.6093953 0.001986669 2.36650000 0.6431527
...

These numbers represent how much uncertainty we have in our estimates of the first
respondent’s part worth estimates. Roughly, the range of likely values for respon-
dent 1’s preference for 7 seats over 6 (the first parameter) is about −0.538 to 1.840.
In other words, given this data, we can say that our best guess is that respondent

13.5 Hierarchical Bayes Choice Models 395

1 prefers 7 seats (i.e., has a positive coefficient), but it is quite possible that the
respondent prefers 6 (i.e., has a negative coefficient). This is a huge amount of un-
certainty that we need to account for when making share predictions.

13.5.2 Share Prediction for Hierarchical Bayes Choice Models

The 1,000 posterior draws in hb.post$betadraw give us a sense of the range
of part worth values that each respondent might have and we can use these draws
to figure out the likely range of shares that we might get for new vehicle designs.
For each posterior draw, we can compute the shares for a new set of product designs
based on the values of the part worth coefficients for that draw. Each time we do
this, the shares we obtain represent a posterior draw for the shares. (Being able
to compute posterior draws for any function of the parameters in this way is one
of the great advantages of Bayesian MCMC.) We can compute the shares for a
number of different posterior draws (selected at random from the draws that we
produced when we called choicemodelr) and then analyze the range of shares
that we get.

We create a function for computing shares that loops over both the respondents and
the posterior draws:

> predict.hb.mnl <- function(betadraws, data) {
+ # Function for predicting shares from a hierarchical multinomial logit

model
+ # betadraws: matrix of betadraws returned by ChoiceModelIR
+ # data: a data frame containing the set of designs for which you want to
+ # predict shares. Same format at the data used to estimate model.
+ data.model <- model.matrix(∼ seat + eng + cargo + price, data = data)
+ data.model <- data.model[,-1] # remove the intercept
+ nresp <- dim(betadraws)[1]
+ ndraws <- dim(hb.post$betadraw)[3]
+ shares <- array(dim=c(nresp, nrow(data), ndraws))
+ for (d in 1:ndraws) {
+ for (i in 1:nresp) {
+ utility <- data.model%*%betadraws[i,,d]
+ shares[i,,d] = exp(utility)/sum(exp(utility))
+ }
+ }
+ shares.agg <- apply(shares, 2:3, mean)
+ cbind(share=apply(shares.agg, 1, mean),
+ pct=t(apply(shares.agg, 1, quantile, probs=c(0.05, 0.95))),
+ data)
+ }

The inner loop in this function for i in 1:nresp computes the shares for each
respondent for a given posterior draw. The outer loop for d in 1:ndraws loops
over the posterior draws. (If there were too many posterior draws, we could also use
a random subset of them.) The function stores the share estimates for each user for
each draw in shares. In the last few lines, the function averages the shares across
respondents resulting in an estimate of the shares for each posterior draw. We then

396 13 Choice Modeling

compute the mean as well as the quantiles of those posterior draws to get a sense for
the likely range of shares.

When we compute the shares in this function, we use the estimated individual-level
part worths for the respondents in our data, which is what most analysts do in prac-
tice. In contrast, when we computed share predictions in the previous section using
the output from mlogit(), we sampled new representative respondents based on
our estimates of the population mean and covariance. We should point out that it is
possible to use the same approach with a Bayesian choice model, using the poste-
rior draws of mu, delta, and rooti and sampling a new set of respondents from
the multivariate normal distribution. This would require a relatively small change to
predict.hb.mnl.

When we apply predict.hb.mnl to the designs in new.data, we get both
point estimates and ranges of potential shares for each design:

> predict.hb.mnl(hb.post$betadraw, new.data)
share pct.5% pct.95% seat cargo eng price

8 0.09920353 0.086505556 0.11352010 7 2ft hyb 30
1 0.45300946 0.428510287 0.47765666 6 2ft gas 30
3 0.32986260 0.305608282 0.35368987 8 2ft gas 30
41 0.06947448 0.056391010 0.08434871 7 3ft gas 40
49 0.01357954 0.009832746 0.01800444 6 2ft elec 40
26 0.03487038 0.028179167 0.04215179 7 2ft hyb 35

There is quite a bit of uncertainty in these share predictions. Our “best guess” esti-
mate of the shares for the 6-passenger base engine minivan (number 1 in the second
row) is 45.3 %, but it could be as low as 42.9 % or as high as 47.8 %. Understanding
the uncertainty in our model predictions helps in interpreting differences in share.
For example, if we make a minor change such that 6-passenger gas minivan share
increases to 46.0 %, we would recognize that this change in share is well within the
prediction error of our model, and we probably shouldn’t make strong statements
that one design will do better than the other in the marketplace. But if we change the
seating to 7 passenger for that vehicle, the predicted share is 30.2 % with a range of
28.2 % to 32.1 %. Because the prediction intervals do not overlap, we can say that
the 7-passenger version of the design has significantly lower share, knowing that we
are not over-interpreting the limited data that we have.

Given how easy it is to compute these share prediction ranges, we think it is sur-
prising how rarely practitioners report prediction intervals of choice model shares.
Many conjoint analysis studies unfortunately report only point estimates of share
predictions. This leaves decision makers blind to the possibility that the share pre-
dictions they are relying on may not be very accurate. In extreme cases, when there
are many attributes in the model and very few choice questions, one may find that
the prediction intervals are extremely wide. This is an indication that there isn’t suf-
ficient data to make precise predictions and suggests that one might wish to collect
more or different data. In the next section, we discuss the design of choice-based
conjoint surveys.

13.6 Design of Choice-Based Conjoint Surveys* 397

13.6 Design of Choice-Based Conjoint Surveys*

Once you start looking at parameter estimates and share predictions for your choice
models, you may start to wonder how you can make your parameter estimates and
prediction intervals tighter. The easiest way to do this is to increase the amount of
data you collect, either by increasing the number of respondents or by increasing
the number of questions that you ask each respondent. If you were to recreate data
as we’ve used in this chapter with 1,000 respondents instead of 200, you would see
that the standard deviations for the parameter estimates and the prediction intervals
would be smaller (as is true for any model).

A good way to assess sample sizes before fielding a conjoint analysis project is
to simulate data from known parameters, estimate the model from the synthetic
data, and examine the resulting prediction intervals. This would only require a few
changes to the code presented in this chapter. Such analysis can help you determine
how many respondents you need for a given number of attributes and levels, or, as
is more often the case, how many attribute and levels you can afford given your
available budget for collecting data.

Beyond getting more data, choosing the right questions to ask can also result in more
precise parameter estimates and share predictions. The selection of questions to
include in the conjoint survey is example of an experimental design problem.

If you review the code in Sect. 13.2, you will notice that when we generated the con-
joint questions we selected a different set of minivan profiles at random to create
the choice questions for each respondent. This approach works well and is robust, as
long as you can give a different set of questions to each respondent. If your survey
platform is limited so that every respondent must answer the same questions, a ran-
dom design will not be very efficient. There are several other approaches you can use
that can improve upon selecting questions randomly. The main design approaches
are the following.

• Random designs use a randomly selected set of profiles in each question.

• Fractional factorial designs are based on the assumption that there are no in-
teractions between different attributes (e.g., there isn’t some additional boost
to having 8-seats combined with 3 ft of cargo space). Many of the advantages
of fractional factorial designs, such as orthogonality, are only beneficial in the
context of linear models and not choice models. However, fractional factorial
designs are occasionally used in practice because they are readily available and
were once the standard approach for conjoint analysis surveys. These designs
are often constrained so that every respondent answers the same questions, or
such that there are only a few survey versions.

• Optimal designs are created by selecting a set of questions that minimizes the
standard error of the estimated parameters (called D-Optimal designs) or mini-
mizes the standard error of share predictions (called G-Optimal designs). These
designs are created by starting with an arbitrary design and then iteratively

398 13 Choice Modeling

changing questions and assessing whether those changes make the sampling
error or posterior intervals smaller. The routines may not always produce the
true optimal design, but they can often improve substantially on the starting de-
sign. These designs may also be constrained so that every respondent answers
the same question.

• There are a number of heuristic conjoint design strategies that aren’t based
on a formal theory, but have produced good quality predictions in the past.

• Adaptive designs select successive choice questions based on the respondent’s
answers as he or she takes the survey. For instance, a survey might ask about
preferred options and then focus on the features that a respondent identifies as
important. One approach is called fast-polyhedral conjoint design [154]. An-
other method is Adaptive Choice-Based Conjoint (ACBC) from Sawtooth Soft-
ware [142].

There is much debate in the conjoint analysis community about which of these meth-
ods is the best. While we can’t answer that, we can say that each has worked well in
at least some conditions. A common mistake when comparing these conjoint design
methods is to look at whether different methods result in different point estimates
of the share predictions (either in-sample or for holdout questions). Since many
of these methods produce similar point estimates for shares, that is a poor way to
compare different experimental design strategies. A better approach is to compare
the prediction range between approaches. Better designs produce smaller prediction
ranges, meaning that there will be less uncertainty in predictions.

Unfortunately, there aren’t yet readily available tools for the design of choice exper-
iments in R. The AlgDesign package can produce fractional factorial and optimal
designs, but it isn’t customized for choice models and the package is no longer be-
ing maintained. For our own work, we tend to use random designs (which are easy
to produce in R) or use other software to create designs. JMP includes routines for
creating D-Optimal designs for choice models. Sawtooth Software offers a variety
of heuristic and adaptive design strategies for choice models.

13.7 Learning More*

In this chapter, we have given a brief overview of choice modeling in the context
of conjoint analysis surveys, with examples of how to estimate choice models in R.
For those who want to learn more about choice modeling, there are many additional
resources, although no single text covers everything of importance.

For those who are interested strictly in conjoint surveys, Orme’s Getting Started with
Conjoint Analysis [122] offers an accessible introduction to how conjoint surveys
are constructed and analyzed in practice while Louvier, Hensher, and Swait’s Stated
Choice Methods [106] provides a more extensive (but slightly dated) overview of
the topic, including coverage of several variations on non-hierarchical multinomial

13.8 Key Points 399

logit models and how to create fractional factorial designs. Rossi, Allenby, McCul-
loch’s Bayesian Statistics and Marketing provides technical coverage of the multi-
nomial and hierarchical multinomial logit model from the Bayesian perspective and
describes the bayesm package that ChoiceModelR uses heavily.

As we mentioned in the introduction, there are uses of choice models other than
choice-based conjoint analysis surveys. One broad application area is the model-
ing of consumers’ transportation choices. Kenneth Train (2009) offers a clear and
concise overview of discrete choice methods [155] and their use in transportation
economics, including coverage of both the mixed logit and hierarchical Bayes logit
models; it is an ideal introduction for those using hierarchical choice models in
nearly any context. Train also covers a number of alternative choice models includ-
ing the nested logit model and the multinomial probit model. While there are ad-
vantages and disadvantages to each of these models, they are all based on the same
premise that customers choose among a set of products based on part worths of the
attributes of those products.

Another major application for choice models in marketing is to understand how
consumers choose products in retail stores, such as grocery stores. Using data col-
lected by grocery store scanners where customers are tracked over multiple visits
(called scanner panel data), one can assemble observations that are nearly identi-
cal in structure to conjoint data [67]. Many marketing academics have used choice
models with such data to assess the relationship between marketing actions such as
price, promotion, and in-store display, and customers’ product and brand choices.
Much work has been published on extending these models to accommodate differ-
ent types of consumer behavior such as stockpiling goods, learning about products,
strategically trying new products, and changes in preferences over time.

13.8 Key Points

• Choice models are used to understand how product attributes drive customers’
choices. The most popular choice model in practice is the multinomial logit
model. This model can be estimated using frequentist methods with mlogit
or using Bayesian methods with MCMCmnl (Sect. 13.3).

• Choice data can be stored in “long” or “wide” formats and there is no universal
standard for how the data should be organized. Before you use any choice mod-
eling package, read the documentation carefully to understand how the package
expects the data to be formatted (Sect. 13.3).

• Before analyzing any choice data, it is useful to compute raw choice counts for
each attribute. This can be done very easily using xtabs. (Sect. 13.3.1)

• Estimating a choice model is similar to estimating simpler linear models. The
key output of the estimation is a set of parameters that describe how much each
attribute is associated with the observed choices.

400 13 Choice Modeling

• Choice models can include both factors and numeric attributes in the choice
alternatives. When you use a factor as a predictor, the factor has to be dummy
coded, just as it would for a linear model. With dummy coding, the estimates
are interpreted as the preference for a particular level of the attribute relative to
the base level of the attribute (Sect. 13.3).

• Most choice models do not include intercepts. When a choice models does in-
clude intercepts, there is an intercept for each alternative in the choice questions;
these are called alternative specific constants or ASCs (Sect. 13.3).

• When reporting choice models, it is best to focus on reporting share predic-
tions from the model because parameter estimates are difficult for non-experts
to interpret. If you model price as a numeric predictor, you can also report the
willingness to pay for each attribute (Sect. 13.3.3).

• Heterogeneous choice models allow each respondent to have individually esti-
mated part worths. This may result in share predictions that are slightly (and
appropriately) higher for “niche” products (Sect. 13.4.2).

• Hierarchical choice models can be estimated using frequentist methods with
mlogit and with Bayesian methods using choicemodelr (Sects. 13.4
and 13.5).

• Bayesian methods produce draws from the posterior distribution of the param-
eters. To understand the uncertainty in the parameters (given the data), examine
the range of the posterior draws. To find the uncertainty in predicted shares,
compute the share values for each posterior draw of the estimated parame-
ters. The range of share estimates indicates the uncertainty in share predictions
(Sect. 13.5).

• Bayesian methods allow you to incorporate an upper level model that relates
respondent characteristics to attribute preferences. Good candidates for respon-
dent characteristics are binary variables that describe product usage. (Sect. 13.5)

• In general, if you collect more data, your estimates of the parameters will be
more precise and your prediction intervals will be smaller. Prediction intervals
can also be made smaller by selecting better choice questions. There are sev-
eral alternative approaches to choosing profiles to include in choice questions
(Sect. 13.6).

Conclusion

We covered many topics in this book, from basic programming to Bayesian
methods. As a final note, we would like to summarize key suggestions and lessons
that apply to everything we discussed.

1. Summarize, explore, and visualize data before starting to build models. It is easy
to overlook bad data points . . . especially if you don’t even look (Sects. 3.3.3, 3.6,
and 9.2.7).

2. Model building is an interactive process. Start with a simple model and build
on it progressively, assessing at each stage whether a more complex model is an
improvement (Sects. 6.5.3, 7.3, and 7.7).

3. Human behavior and marketing data often yield observations that are correlated,
yet high correlation may make a statistical model unstable. Consider reduc-
ing data to key dimensions before modeling, and assess models for collinearity
(Sects. 8.2 and 9.1).

4. It is important to understand and to report the uncertainty in any statistic that
you estimate from sampled data. Report confidence intervals whenever possible.
This can often be done with a minimum of statistical jargon by using graphics
(Sects. 6.5.2, 6.6.4, and 7.3).

5. Statistical significance is a necessary condition for a model to be interesting, yet
it does not imply that a model is appropriate, useful, or even the best-fitting.
When possible, compare alternative models and evaluate a model in terms of its
usefulness to answer important questions (Sects. 9.2.7, 11.3.1, and 11.3.6).

6. Hierarchical models that estimate differences by individual, sample, or group are
often very useful in marketing, and are not as complex as they might seem at first.
Once you know how to estimate basic linear models in R, it is relatively easy to
start considering hierarchical models. These may be fit with either traditional
maximum likelihood or Bayesian methods (Sects. 9.3, 9.4, and 13.4).

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

401

402 Conclusion

7. Don’t simply assume that a data set, especially from a consumer survey, reflects
underlying concepts as expected. Methods such as factor analysis and struc-
tural equation modeling make it possible to assess latent variables and determine
whether a model fits your data (Sects. 8.3 and 10.1).

Perhaps our most important point is this: R is a dynamic ecosystem and there is
always more to learn. As you work with R over the years, consider how you might
contribute. Whether you teach a colleague, contribute code, share data sets exter-
nally, or simply ask great questions, you can give back to the R community. If we
each do that, we all benefit from more useful and powerful tools. And that means
we will do better, more satisfying work for our organizations, firms, colleagues, and
customers.

A

Appendix: R Versions and Related Software

R is available in several versions. Just as R packages are contributed by authors who
like to share their innovations, others have adapted R itself for commercial purposes
and to work with other programming tools.

Our recommended installation depends on your background:

• For new or casual Windows programmers: R base + RStudio.

• For Mac users: R base, and optionally RStudio or one of the editors below.

• For new or casual Linux users: R base + RStudio.

• For experienced Windows programmers: R base + your favorite editor, or Rev-
olution R.

• For Emacs users: R base + Emacs speaks statistics (ESS).

• For Java, C, or C++ programmers: R base + your favorite editor, or Eclipse +
StatET.

• For instructors and students: any of the above, or R Commander, Deducer, or
Rattle.

These notes are current as of the time of writing (2014) although the R landscape is
rich and evolving.

A.1 R Base

R base is generic R. In Windows, it runs as a graphical user interface (GUI) program
like other applications, with relatively limited capability for code editing and plots.
R users on Windows will want to supplement R base with a programming editor
such as RStudio or another choice noted below.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

403

404 A Appendix: R Versions and Related Software

For Mac users, the GUI version is more sophisticated than on Windows and features
syntax highlighting, plot exporting, and other features. Figure A.1 shows R on a
Mac OS X system with highlighted syntax, direct execution of code from the editor
in the R console, and integrated plotting. Mac users may be satisfied with the default
R GUI for simple and moderate-sized projects.

On Linux, R runs as a terminal (command line) program. Much R development
occurs first on Linux, and Linux is a great system to run R. However, you will also
want RStudio or another code editing option, as R base has no GUI support on
Linux.

Fig. A.1. R base GUI on Mac OS X 10.9.1, showing syntax-aware editing, plot window, and
the console.

R is available at the comprehensive R archive network (CRAN): http://cran.
r-project.org. R has also been widely ported to other operating systems. You
can find many versions as well as source code at CRAN.

A.2 RStudio

RStudio is a separate application that works with R to provide an integrated devel-
opment environment (IDE), similar to other language platforms such as Eclipse and
Microsoft Visual Studio. Unlike Eclipse and Visual Studio, RStudio is tailored to R
and is less complex for new and casual programmers.

http://cran.r-project.org
http://cran.r-project.org

A.3 Emacs Speaks Statistics 405

Some of the appealing features of RStudio are the syntax-aware editor that shows
code elements with highlighting, an object inspector that allows you to look at mem-
ory contents, an integrated debugger, plot exporting, and an easily navigable layout
for help content, files, package installation, and multiple code windows. RStudio
exports plots to the clipboard and resizes them nicely, which is very helpful when
copying plots into office software such as Microsoft Office and Google Docs.

An exceptional feature of RStudio is its integration of tools for code management,
documentation, and reproducible research. RStudio integrates Sweave to create
documents that mix LATEXwith R code, results, and graphics, along with the flexi-
ble and easy to use knitr system [58, 169]. These markup tools allow an analyst
to create reports and documentation that combine readable text with actual R com-
mands used to perform the analysis. RStudio supports code projects with version
control using Git and Subversion [58].

To use RStudio, you first install R base as above (Sect. A.1) and then install the
RStudio application from http://www.rstudio.com. Figure A.2 shows the
RStudio interface on a Mac laptop.

Fig. A.2. RStudio showing the syntax-aware editor, the console, object inspector, and plot
window.

A.3 Emacs Speaks Statistics

ESS [138] is a set of extensions to the Emacs text editor [147] to interface with R
and other statistics programs. Emacs is a powerful editing platform that includes

http://www.rstudio.com

406 A Appendix: R Versions and Related Software

a Lisp-based programming language. ESS extends that interface to R with syntax
coloring, plot display, and other IDE functions.

ESS is available for Windows, Mac, and Linux from http://ess.r-project.
org/. There are several software prerequisites such as Emacs and an X Window
system, depending on your operating system. Installing those is straightforward on
Mac OS X and Linux, but rather more complex in Windows as they require adding
the Linux-like Cygwin system to Windows. Figure A.3 presents a screenshot of
ESS on Mac OS X [63].

Fig. A.3. ESS with the code
editor above and R console
below. Plots open in a sepa-
rate window.

If you know Emacs already, ESS may be your environment of choice. On the other
hand, if you do not know Emacs, it may be frustrating; Emacs has its own set of
keystrokes for many commands functions and although those are elegant and effi-
cient, they may seem antiquated and non-obvious (the reference card at http://
ess.r-project.org/refcard.pdf provides a sample of those).

A.4 Eclipse + StatET

If you have professional programming experience in Java or C++, you may be fa-
miliar with Eclipse. The StatET plug-in for Eclipse adds functionality for R, includ-
ing integration of the R console into Eclipse, browsing R memory objects, plots, and

http://ess.r-project.org/refcard.pdf
http://ess.r-project.org/refcard.pdf
http://ess.r-project.org/
http://ess.r-project.org/

A.5 Revolution R 407

interface between R and the Eclipse debugger. It is similar to RStudio in its feature
set for R, although the overall Eclipse environment is more complex.

Eclipse + StatET is available by installing Eclipse from http://www.
eclipse.org and then adding the StatET plug-in from http://www.
walware.de/goto/statet. Figure A.4 shows Eclipse “Kepler” + StatET
3.3 running on OS X. Warning: setting up StatET is modestly complex with several
steps in strictly dependent order; we recommend to search online for the latest
instructions for your platform.

Fig. A.4. Eclipse + StatET, showing the code editor, R console, and integrated plot display.

Eclipse provides powerful code editing capability needed by professional program-
mers and integrates with other coding tools such as Git. However, some users find
StatET integration to be finicky and less performant than RStudio. We recommend
Eclipse + StatET if you are a programmer looking for more code editing power than
RStudio, or if you already use Eclipse.

A.5 Revolution R

Revolution Analytics offers a commercial version of R for Windows and Linux with
optimizations for database integration, working with larger data sets, parallel com-
puting, support options, and an IDE for Windows built on Microsoft Visual Studio.

http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://www.eclipse.org
http://www.eclipse.org

408 A Appendix: R Versions and Related Software

At the time of writing, Revolution R was available as a free Open version with en-
hancements for parallel computation and reproducible research, and in a licensed
(non-free, except for academics) Enterprise version with additional computational
improvements, IDE and development features, and workgroup support.

Corporate users may be interested in Revolution R when their companies prefer
license assurance and support of a commercial offering. Revolution Analytics has
released parallel computing enhancements back to the R community for inclusion
in R base, thus enhancing R for all users as well as offering their own version. See
http://www.revolutionanalytics.com/ for more information.

A.6 Other Options

We will not attempt to compile every offering of interest in the R ecosystem, and any
such list would rapidly be obsolete. Still, there are a few offerings that we believe
deserve attention for various readers.

A.6.1 Text Editors

Many programming editors support R with either standard or user-provided tem-
plates that provide syntax highlighting and other features. If you have a favorite
programming editor, the odds are good that someone has written a language defi-
nition for it to work with .R files. Your editor may even be able to send commands
directly to R; if not, the process of copy + switch window + paste into R con-
sole is typically only three keystrokes—and was our standard solution for many
years.

Multiplatform—typically Windows, Mac, and Linux—editors for R include Blue-
fish, Eclipse + StatET (Sect. A.4), Emacs + ESS (Sect. A.3), Komodo Edit +
SciViews-K, RStudio (Sect. A.2), Sublime Text, UltraEdit, and Vim.

For Windows, other editors with R support include Crimson Editor, Revolution R
(Sect. A.5), TextPad, Tinn-R (built especially for R), and WinEdt using the RWinEdt
R package (an editor especially appealing to LATEXusers).

For Mac, the popular TextMate editor has an R definition, as does the Kate
editor.

For Linux, the lightweight gedit editor has a plugin for R (Rgedit) with console
integration, and the Kate editor has R syntax support.

A.6.2 R Commander

R Commander [49] provides a GUI for R with menus and other enhancements for
basic statistics. It is often used in introductory courses with undergraduates and

http://www.revolutionanalytics.com/

A.6 Other Options 409

provides easy access to functions such as loading data, running descriptive statistics,
doing basic inferential statistics such as t-tests and ANOVA, fitting common models
such as linear regression and factor analysis, and plotting.

R Commander is designed explicitly to be a tool to help GUI users—general com-
puter users and analysts who use other software such as SPSS—make the transi-
tion to R. It shows the commands that it runs and resists going much beyond the
basics, due to its goal to assist users to transition to full command-line and script
usage. More details are available at http://socserv.mcmaster.ca/jfox/
Misc/Rcmdr/.

A.6.3 Rattle

Rattle is a GUI for R that is intended to help newcomers to R perform data mining
tasks easily and quickly [165]. Rattle is menu-driven and includes commands for
loading and handling data, transforming data, descriptive statistics, and a variety of
data mining tasks such as visualization (using ggplot2), clustering, supervised
and unsupervised machine learning, and decision trees.

Rattle is available for Windows, Mac OS X, and Linux systems at http://
rattle.togaware.com/, and is detailed in Williams [166]. Rattle may be par-
ticularly appealing to analysts who work in teams with members who vary in R
skills, yet wish to share analyses and common data sets.

A.6.4 Deducer

Deducer is a GUI for R that features general data handling and basic analytic tasks
(similar to R Commander, Sect. A.6.2) with a spreadsheet-like interface for inspect-
ing and manipulating data. In addition to general functionality designed for new-
comers to R, Deducer offers extensions for regression analysis, factor analysis, clus-
tering, and other multivariate procedures that are intended to enhance productivity
for more experienced R users. Deducer uses JGR, the Java GUI for R, and runs
on Windows, Mac OS X, and Linux. It is available at http://www.deducer.
org/.

A.6.5 TIBCO Enterprise Runtime for R

TIBCO Enterprise Runtime for R (TERR) is a proprietary interpreter for the R lan-
guage designed for deployment in large-scale situations such as enterprise hosting
or integration with the Spotfire platform for analytics, visualization, and predictive
modeling. TERR is provided under a traditional software license (not open source),
and offers commercial support. Also, at the time of writing, a free console-only de-
veloper’s version was available. More information on TERR and the Spotfire plat-
form is available at http://spotfire.tibco.com/.

http://spotfire.tibco.com/
http://www.deducer.org/
http://www.deducer.org/
http://rattle.togaware.com/
http://rattle.togaware.com/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/

B

Appendix: Scaling Up

As you develop R skills, you will wish to take on larger projects that stretch R in
various ways. You might wish to work with diverse data sources, larger data, greater
computational power, or automated reporting. In this appendix we provide brief
introductions to R packages and other resources that may be of assistance.

The resources outlined here are especially subject to change as these are dynamic
areas of development in the R community. Thus, we provide general guidance here
rather than detailed exposition. R code in this appendix is provided for illustration
only, not as complete working code.

B.1 Handling Data

B.1.1 Data Wrangling

Two of the most useful packages for data handling are data.table [37] and
dplyr [164]. Each of them is so useful that we considered using it for data handling
throughout this book. We ultimately decided that it was preferable to handle data
using the standard approaches of base R, because that approach is most stable over
time, and is universally available and understood within the R community. Still, we
recommend that you consider the advantages of data.table and dplyr as your
R fluency develops.

data.table [37] supplies an alternative to data frames with higher performance,
more efficient memory usage, enhanced indexing capability, and the ability to query
data with more complex syntax than standard data frames. If you use large data sets
in memory, or find that data manipulation is slow, consider moving your data to
data.table (see also Sects. B.2 and B.3 below).

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

411

412 B Appendix: Scaling Up

dplyr [164] attempts to be a complete data handling solution that implements a
more consistent, efficient, and higher order grammar for data operations. dplyr
provides standard methods for selecting, filtering, recoding, and performing com-
mon aggregation tasks on data, and works with both in-memory and database
sources (see Sect. B.1.4).

B.1.2 Microsoft Excel: gdata

The gdata package [159] provides the capability to read data from Microsoft Ex-
cel spreadsheets using syntax based on the familiar read.csv() command. For
example, consider data on US corporate financials that is provided in XLS format
by Aswath Damodaran at New York University [33]. We read the data directly from
the XLS posted online, skipping the first 3 rows:

> library(gdata)

> corpdata <- read.xls(

+ "http://www.stern.nyu.edu/∼adamodar/pc/datasets/compfirm.xls",
+ stringsAsFactors=FALSE, sheet=1, skip=3)

trying URL ’http://www.stern.nyu.edu/∼adamodar/pc/datasets/compfirm.xls’
...

> head(corpdata)

Company.Name Exchange.Ticker

1 General Motors Company (NYSE:GM) NYSE:GM

2 Ford Motor Co. (NYSE:F) NYSE:F

3 The Home Depot, Inc. (NYSE:HD) NYSE:HD

...

When importing Excel data, check carefully that you are importing variables in the
correct format; using stringsAsFactors=FALSE may help, although columns
with percentages and other formatting might need to be converted manually. For
instance, in the case of percentages, you might use the sub() command to replace
the “%” character with a null character (""), and then coerce the result to a number
with as.numeric() and divide by 100. Always check carefully.

Another option to import data from Excel files is to use ODBC functionality (as
described below for connecting to SQL databases, Sect. B.1.4).

B.1.3 SAS, SPSS, and Other Statistics Packages: foreign

The foreign package [125] provides the capability to read data in a variety of
other formats including those used by Minitab, Octave, SAS, SPSS, Stata, and other
systems. Because commercial software may change data formats between versions,
it may not work with all data files. Users of SPSS and Stata could also review the
memisc package [40], which supports a broader set of SPSS and Stata files.

B.1 Handling Data 413

Following is sample code that uses foreign and read.spss() to load the
“tenure” data set provided in SPSS format with Singer and Willet [144], Applied
Longitudinal Data Analysis. In this case, we load the data from a local file; a
download is available at http://www.ats.ucla.edu/stat/examples/
alda/.

> library(foreign)
> tenure.df <- read.spss("∼/Downloads/aldaspss/tenure_orig.sav",
+ to.data.frame=TRUE)
> summary(tenure.df)

ID TIME CENSOR
Min. : 111 Min. :1.000 Min. :0.0000
1st Qu.: 9989 1st Qu.:4.000 1st Qu.:0.0000
Median :19067 Median :6.000 Median :0.0000
Mean :20433 Mean :5.669 Mean :0.3615
3rd Qu.:30135 3rd Qu.:7.000 3rd Qu.:1.0000
Max. :50310 Max. :9.000 Max. :1.0000

If you are familiar with SAS or SPSS, you may appreciate the detailed task com-
parisons and guidance in Muenchen’s book, R for SAS and SPSS Users [117]. For
Stata users, check Muenchen and Hilbe, R for Stata Users [118]. The R.matlab
package works with MATLAB files.

As always, a general option is to export data from another system to a CSV file or
to a database (see Sect. B.1.4) and import that into R.

B.1.4 SQL: RSQLite, sqldf and RODBC

Many analysts are familiar with the structured query language (SQL) for data pro-
cessing, and R provides capabilities for SQL. We differentiate two aspects of SQL:
the SQL language, and SQL data sources.

B.1.4.1 SQL Language

A full SQL instance (using SQLite, http://www.sqlite.org/) may be run
inside R through the RSQlite package [85]. This allows access to nearly all the
features of a complete SQL database.

A particularly easy way to access the SQL SELECT statement for R data frames
is with the sqldf package [65]. For instance, referring to the corporate finance
data loaded in Sect. B.1.2 above, we can select firms in the data set with a forward
price-earnings ratio greater than 100 using a SELECT statement:

> library(sqldf)
> sqldf("SELECT Company_Name, Cash
+ FROM corpdata
+ WHERE Forward_PE > 100")

http://www.sqlite.org/
http://www.ats.ucla.edu/stat/examples/alda/
http://www.ats.ucla.edu/stat/examples/alda/

414 B Appendix: Scaling Up

Company_Name Cash
1 Amazon.com Inc. (NasdaqGS:AMZN) $3,872.00
2 MGM Resorts International (NYSE:MGM) $1,375.40

Note that the SQL language understands a period (“.”) very differently than R—in
R, a period is a symbol that is generally used like any letter or number in an object
name, but in SQL it signifies a database to table relationship. In general, when using
sqldf(), avoid data frame names with “.” and use an underscore (“ ”) instead of
“.” to reference column names that contain periods.

B.1.4.2 SQL Data Sources

Remote SQL databases and tables can be accessed directly from R using the RODBC
package [133]. ODBC (open database connectivity) protocol allows access to many
different database systems using a standard interface. There are several steps to
setting up an ODBC connection. First, you configure ODBC access permission on
the data system that will serve the data (such as a MySQL, Oracle, or Microsoft
SQL system). Second, you configure a data source name (DSN) in your operating
system to connect to the ODBC remote system. Finally, you tell R to connect to the
DSN and pull data from it.

The process of setting up an external database with a DSN lies outside the scope of
this book; you could seek assistance from a database administrator for those steps.
For purposes here, we will suppose that we already have a local ODBC DSN called
“mydata”. We can connect to it and get data in R using an SQL query passed to the
external database:

> library(RODBC)
> sqlconn <-odbcConnect("mydata", uid="username", pwd="****")
> mysqldata <- sqlQuery(sqlconn, "select * from MyTable")
> close(sqlconn)

There is extensive support for querying the database for table information, and
for sending SQL commands to perform complex queries. For more details, see
the extensive RODBC vignette at http://cran.r-project.org/web/
packages/RODBC/vignettes/RODBC.pdf [133].

http://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf
http://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf

B.2 Handling Large Data Sets 415

For databases that are too large to fit into memory, the biglm package noted in
Sect. B.2 provides the capability to fit regression models from multiple smaller
chunks. As we noted in Sect. B.1.1, the dplyr package provides access to data
in databases along with other performance and syntax enhancements.

B.2 Handling Large Data Sets

By default, R holds data objects in system random access memory (RAM). How-
ever, you might need to work with a data set too large to fit in memory. There are a
few strategies to handle these situations:

• Observation sampling. This is often the best choice to handle large data; for
many purposes it is not necessary to fit a model to all observations. For in-
stance, a linear model fit to 100,000 rows appropriately sampled from a data
set of 100 million rows will give a model very close to that of the full sample
model (if other general assumptions about model suitability and sampling are
met). One way to do this in R is to use readlines() or scan() to read a
smaller block of lines from a CSV file, keep some of those observations accord-
ing to a uniform probability distribution (runif()), and iterate until the entire
file has been sampled. If the data are in a database, sampling might instead be
done in SQL, with the caution that some SQL systems have poor implemen-
tations of pseudorandom number generators; check your SQL implementation
documentation.

• Compact storage. This is a feasible option when a data set does not dramati-
cally exceed RAM and especially when it is sparse (i.e., when a relatively small
number of cells in a matrix are non-zero). The Matrix package [7] implements
sparse matrices, and some packages such as glmnet [55] can fit models to
sparse objects. See the glmnet vignette (http://www.stanford.edu/
˜hastie/glmnet/glmnet_alpha.html#spa) for an example.

• Disk-augmented memory. The bigmemory package [91] implements com-
pact storage with the option to manage large objects transparently by keeping
portions of them outside RAM in one or more disk files; it will swap portions
of objects into memory as needed. Related packages such as biganalytics
[42] implement models that work with these bigmemory objects.

• Database storage. If the data are stored in a database, then you may be able
to use observations directly from there with an RODBC or similar database
connection (see Sect. B.1.4). The biglm package [107] works with data sets
that exceed memory size by estimating regression models progressively using
blocks of data.

The choice among these methods depends on the problem at hand. We highly rec-
ommend first to consider sampling observations such that the data will fit in mem-
ory; this is fastest and allows the full range of options in R for model fitting and

http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html#spa
http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html#spa

416 B Appendix: Scaling Up

estimation. Sampling also allows bootstrap estimation of stability and easily affords
cross-validation samples. It is crucial to ensure that a random sample of the data
is taken appropriately. Two issues to consider in particular are whether the random
number generation approach scales appropriately and whether there is order bias, as
would be produced, for instance, by sampling from the top until some number of
rows has been collected.

When it is more suitable to work with as large a sample as possible, we look to
database and memory augmentation options according to the precise model support
that is needed.

B.3 Speeding Up Computation

Some analyses take a very long time to complete. One of Chris’s projects, for in-
stance, involved repeatedly running code that took several days per iteration on a
typical workstation. However, R does not have to be slow. At Google, for example,
R is deployed in applications that use Google data centers to reduce the runtime in
some cases by more than 99 % (Stokely et al. [148]). The key to performance is to
optimize code and to use more powerful server infrastructure when needed.

We outline here a few strategies in order of progressive complexity to handle slow
code (and see also the following Sect. B.3.2 on enhancing the R engine).

B.3.1 Efficient Coding and Data Storage

A good place to begin when code is slow is to use Rprof() to profile one’s code
and see which parts use the most time to execute, and then optimize those. There
are four common bottlenecks for R code:

• Reinventing the wheel is when a programmer writes code for something that
already exists. Examples include writing code for tasks such as search and re-
place (try gsub()), vector-to-matrix expansion (expand.grid()), or find-
ing the maximum column by row (max.col()). If you have code that seems
like it should occur commonly enough to have a common solution, the odds
are that an efficient alternative exists; the trick is to find that solution. We rec-
ommend to consult with other R users about ways to optimize the code. For
instance, the R language forums at Stack Overflow are a good source.

• for loops can be problematic on several fronts. If you have slow code and
it involves a for loop, think hard about whether it could be vectorized with
apply() and anonymous functions or has parts that could be speeded up with
common code as noted above. Matloff’s The Art of R Programming is a good
starting point to learn about more efficient R coding [110]. Wickham’s Ad-
vanced R focuses on the advantages and practice of functional programming

B.3 Speeding Up Computation 417

that helps with efficient and effective programming [163]. for loops are also
good candidates for parallel computation; see Sect. B.3.2 below.

• Data frames are another source of slow R execution, especially for large data
structures. There are many non-obvious occasions that cause R to create a copy
of a data frame, which can take a long time in itself and force time-consuming
memory cleanup by the system. If you work with large data sets, consider using
data.table or dplyr objects instead of data frames (see Sect. B.1.1).

• Compiled code can be faster than interpreted R code. Starting with version
2.13, R provides the compiler package (which comes with R, not down-
loaded separately) that can do partial compilation of code, which is sometimes
faster in R. It is easy to try for slow code. A more comprehensive but complex
solution is to rewrite parts of your code in C++ or another language, compile
it, and call the compiled code from R. See Eddellbuettel, 2013, Seamless R and
C++ Integration with Rcpp for instructions on how to do this with the Rcpp
package [39].

B.3.2 Enhancing the R Engine

Another way to increase computation power and speed is to enhance or replace your
R engine. We describe a few options for both local (workstation) and server-based
solutions.

One approach is to make R more powerful on your workstation by increasing its
mathematics performance, and to use parallel computation where possible:

• BLAS. Like all statistical computing packages, R uses linear algebra heavily.
Your operations may be speeded up significantly—sometimes by a factor of
5 or more—by using a basic linear algebra subprograms (BLAS) system that
is optimized for your computer’s processor and operating system. This area
is evolving rapidly so we suggest doing a web search for “BLAS for R” and
reading recent articles for your system (Windows, Linux, Mac).

• Parallelization. parallel, snow, foreach. If you have already opti-
mized code as noted above (Sect. B.3.1) and still seek a modest amount
of additional speed—say, 2×–10× improvement in speed—then parallel
processing may help. There are two general options here: using multiple
processor cores on a single machine using multicore processors, and us-
ing multiple machines with networked communication. The parallel
package (which comes with R) provides options for both, using multicore
versions of apply() for multiple processes and snow [153] to network
multiple machines (which can be complex, especially in secure comput-
ing environments). The foreach package [5] provides a relatively simple
way to share computation inside a for() loop across multiple proces-
sors or machines. Two things to consider are whether your code can run in

418 B Appendix: Scaling Up

independent, parallel blocks, and whether you need special handling of in-
dependent random number streams. See the CRAN High-Performance and
Parallel Computing task page (http://cran.r-project.org/web/
views/HighPerformanceComputing.html for the latest information
and list of packages that support parallel computing, and McCallum and We-
ston, Parallel R, for a general introduction [111].

• Revolution R offers open source and commercial versions of R with enhance-
ments for larger data and higher performance computing. See Sect. A.5 for more
information.

The ultimate computational power in R comes from multi-machine, server-based,
and cloud-hosted solutions:

• Multi-machine parallelism. See the discussion above of workstation-based
parallelization for options to deploy simple network-based combinations of
workstations.

• TIBCO Enterprise Runtime for R is a proprietary statistics platform compat-
ible with R that can be deployed on centralized, higher-powered machines. See
Sect. A.6.5 for more information.

• Cloud computing. For maximum computing power, Amazon Web Services and
the Google Compute Engine offer cloud-based hosting for R, where you can
choose to run an R model on dozens, hundreds, or thousands of high-powered
servers simultaneously. A general strategy here is to make sure that your code
works in parallel as described in the Parallelization notes above, and then port it
to a cloud system. For an introduction to this model, see McCallum and Weston,
Parallel R [111]. Because this is an exceptionally rapidly changing area, the best
bet to learn more is a web search for recent documentation and tutorials.

One thing to remember is that runtime speed is not the best measure of R perfor-
mance; you also need to account for development and maintenance time. If it takes
3 h to develop and deploy a cloud solution for a process that would run in 2 h on a
workstation, the cloud solution is a net loss in performance.

B.4 Time Series Analysis, Repeated Measures,
and Longitudinal Analysis

We have not covered time series analysis in this book due to space, yet it is strongly
supported in R. The array of available options is, like most things in R, diverse and
somewhat confusing. Here are a few pointers to get started.

A first thing to know is that the default time series objects in R (created with ts())
assume equal spacing of observations. They work well for regular intervals such
as daily measurements or quarterly financials, but do not handle irregularly spaced

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html

B.5 Automated and Interactive Reporting 419

observations such as transactions or typical longitudinal behavior or survey waves.
For such observations, we recommend to start with the zoo package [170], which
handles irregularly (and regularly) spaced data, and adds many features for time
series analysis.

A text that covers the basics of time series with a progressive, hands-on approach
and approachable mathematics is Cowpertwait and Metcalfe [31], Introductory Time
Series with R.

The literature on time series analysis is, not surprisingly, especially large in the ar-
eas of finance and econometrics. For mathematically oriented readers, those areas’
textbooks and R packages provide a rich set of resources. Less complex time series
models are often used in the biological and related physical sciences such as ma-
rine biology and environmental science, and these may be useful to marketers with
a bit of imaginative translation. For example, a model of the change in fish popu-
lation after a habitat cleanup might use R code that is almost identical to a model
of unit sales in response to a promotion. Pointers to resources in all of these areas
are on CRAN in the Time Series view, http://cran.r-project.org/web/
views/TimeSeries.html.

Longitudinal analysis is the study of outcomes with repeated observations over time.
At a conceptual level, this differs from time series analysis in that there is relatively
less emphasis on the time component itself as a predictor or covariate, and more
emphasis on understanding the individual (customer, respondent, system, etc.) that
is being measured. Longitudinal models are an example of repeated measures mod-
els. In R, many of the basic linear modeling packages include options for repeated
measures and other forms of longitudinal measures. One place to start is with mixed
effects models (Sect. 9.3.1) where it possible to specify effects for time or observa-
tion block.

A special case of longitudinal analysis common in marketing is the family of the
so-called buy ‘til you die’ models (BTYD) for customer transactions [46]. Several
implementations of BTYD for non-contractual purchase models are implemented in
the BTYD package [38].

B.5 Automated and Interactive Reporting

An especially attractive benefit of R is the ability to automate work, and there are
tools available to automate not only analyses but also reporting. In the R and statis-
tics community, such solutions are commonly described as “reproducible research”
where the data, code, and written output are bundled together. For example, some
statistics journals require that articles be written with all analytic code embedded
in the article, including code that creates charts and tables, such that a typeset arti-
cle is produced directly from the code with no human copy-and-paste or inclusion

http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html

420 B Appendix: Scaling Up

of independently created tables or graphics. In marketing, we think of this more as
“automated reporting,” yet the concepts and tools are identical.

Fig. B.1. An example of HTML out-
put using knitr to combine R out-
put and graphics with explanatory
text.

Because R is a general purpose programming language, in principle you could write
any automated output system you might want. However, we suggest a few tools to
consider first:

• Markdown and knitr. The RStudio environment provides a simple way to
combine the output of R code and graphics with arbitrary text to create an
HTML document, using the knitr package [169] and integrated RStudio pub-
lishing tools. Using the example grocery data that we saw in Chap. 12, the
following code snippet loads the arules package and data, and uses R com-
mands to describe the data and display a chart:

‘‘‘{r setup, echo=FALSE, results="hide", message=FALSE}
require(arules)
data(Groceries)
‘‘‘

Our data from the __supeRmarket__ chain comprises ‘r nrow(
Groceries)‘ cash

register transactions covering ‘r ncol(Groceries)‘ categories of
items. We

see the top 20 best selling items in the following chart:

‘‘‘{r plot example, echo=FALSE}
itemFrequencyPlot(Groceries, topN=20)
‘‘‘

B.5 Automated and Interactive Reporting 421

Whole milk is the most popular single category in our data,
although less

popular than the combination of soda and bottled water.

In this code, the sections between ‘‘‘ marks are executed as R code with the
results either shown (as for the itemFrequencyPlot) or not. Other text is
arbitrary but may be interspersed with the output of R commands using the
‘ marker and marked up with font styles using codes such as (bold). The
resulting HTML output from this code snippet is shown in Fig. B.1.

• LATEX output with Sweave(). R provides rich tools for those who are familiar
with LATEX, including the Sweave() command [101] that can produce a PDF
document from a single file that mixes R code and LATEX markup. The markup
language with LATEX is substantially more complex than that used by knitr but
it has more powerful options and capabilities (for instance, this book is written
in LATEX).

• odfWeave. If you need to produce documents that are compatible with common
office word processing systems such as Microsoft Word and Open Office Writer,
consider the odfWeave package [96]. odfWeave uses markup styles based
on Sweave but produces an open document format (ODF) file instead of a PDF
file. ODF files can be read by most office software packages.

• Interactive applications: Shiny. For interactive web-based applications, such
as reporting dashboards, consider Shiny from RStudio. Shiny uses a web server
(hosted locally on your network or as a cloud service from RStudio) to host
R code and produce interactive graphics. For details, a tutorial, and examples,
see http://shiny.rstudio.com. An example of an interactive cluster
analysis session is shown in Fig. B.2.

Fig. B.2. An interactive web application using R and Shiny, reproduced from http://www.
shiny.rstudio.com/gallery/kmeans-example.html. This example shows the
result of k-means clustering of the iris data set. The model is run in response to a user’s

selection in the control boxes and the chart is updated automatically.

http://www.shiny.rstudio.com/gallery/kmeans-example.html
http://www.shiny.rstudio.com/gallery/kmeans-example.html
http://shiny.rstudio.com

C

Appendix: Packages Used

We have used many packages in this book and provide a reference to them here with
brief notes. Following are tables that arrange the packages by general topic (statistics
models, graphics, and so forth). For each package, we note the name, a comment on
its purpose or use as we see it, and a reference to one or more places where we
mention it. The comments on usage are admittedly brief for some packages that
are complex and defy summarization. In some cases, we only mentioned a package
briefly in the text, yet we reference it here because it is helpful to augment and
contrast the other tools presented.

Packages that we particularly recommend or use often are in bold font, such as
cluster. In a few instances, we list a package in more than one category. The
list is far from complete for R overall because there are thousands of packages
available.

Most of the packages in this list can be installed from CRAN with the typical pack-
age installation routine (install.packages("NAME")), although a few are
included in the standard R system (cluster, compiler, foreign, lattice,
MASS, Matrix, parallel) and may be accessed with library() with no ad-
ditional installation required. Details of package availability change often; check
CRAN (http://cran.r-project.org) for the latest information.

The lists here reflect the contents of this book and its aim to provide an introduction
to R. Thus, although we recommend the packages here, the topic areas are not meant
to be comprehensive guides to the R packages available in their areas. CRAN task
views http://cran.r-project.org/web/views/) provide more system-
atic guidance to the packages for specific topics and applications.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

423

http://cran.r-project.org/web/views/
http://cran.r-project.org

424 C Appendix: Packages Used

C.1 Core and Frequentist Statistics

The following packages add statistical estimation routines for a variety of models
ranging from assessment of binomial variables (binom) to complex hierarchical
models (lme4).

Package Brief summary Section
binom [35] Additional options for binomial models, tests, and confi-

dence intervals
6.3.2

car [51] Tools for interpreting and visualizing regression
models, plus other utilities; source of some() and
scatterplotMatrix()

3.1.2, 10.2.1

e1071 [114] Assorted econometrics and machine learning extensions; we
use it for naive Bayes classification with naiveBayes()

11.4.1

lme4 [8] Estimating linear mixed-effects models for nested effects 7.9, 9.3
MASS [157] A diverse collection of utility, machine learning, and statis-

tics functions and data sets to accompany Venables and Rip-
ley [157]

7.9

multcomp [79] Multiple comparisons for linear models 6.5.2
psych [132] Methods for psychometrics and survey analysis, especially

for factor analytic and item response models; we scratch the
surface with the describe() command

3.3, 4.6.2

zoo [170] Methods and classes for irregularly and regularly spaced
time series

B.4

C.2 Graphics

We used the following packages to produce the graphics in the book. The list in-
cludes packages that make particular tasks easy (such as rworldmap), that handle
specific families of models (arulesViz, semPlot), and that are powerful and
broad (lattice, ggplot2).

C.3 Bayesian Methods 425

Package Brief summary Section
arulesViz [69] Visualization for association rules of transactional

data and market baskets; works with the arules
package

12.3

coefplot [99] Plot confidence intervals for coefficients from linear
models

7.3

corrplot [161] Enhanced graphics for correlation matrices 4.5.2
ggplot2 [162] Grammar of graphics implementation for sophisti-

cated plotting
6.6.4

gpairs [41] Generalized pair plotting; produces scatterplot matri-
ces for mixed categorical and continuous variables

4.4.2

gplots [158] Assorted plotting routines, including enhanced
heatmaps (heatmap.2()) and color interpolation
(colorpanel())

8.1.2, 4.5

lattice [141] Trellis-based plots that build on core plotting capabil-
ities

5.2.3

RColorBrewer [121] Optimized color palettes for continuous and categor-
ical data

3.4.6, 8.1.2

rworldmap [146] Straightforward choropleth maps for the whole world
or regions

3.4.6

semPlot [43] Draw structural diagrams for exploratory and confir-
matory factor analysis and structural equation models

8.3.3, 10.2.2

vcd [113] Visualize categorical data, such as mosaic and dou-
bledecker plots

9.2.7

C.3 Bayesian Methods

A general, nearly all-purpose Bayesian estimation engine in R is MCMCpack. Other
packages in this table add utilities (e.g., BayesFactor), models (e.g., e1071),
and marketing applications (bayesm).

Package Brief summary Section
BayesFactor [116] Easy to use functions to estimate and compare Bayesian

linear models
6.6.2

bayesm [136] Hierarchical Bayesian models for marketing applications;
a companion to Rossi et al. [137]

binom [35] Additional options for binomial models, tests, and confi-
dence intervals

6.3.2

MCMCpack [109] A core estimation engine for Bayesian models using
Markov chain Monte Carlo method; very fast posterior
sampling implemented in C++

6.6.2, 7.8

426 C Appendix: Packages Used

C.4 Advanced Statistics

These packages focus on specific statistical problems such as working with sparse
or very large data sets (e.g., biglm), add capabilities to base models (e.g.,
GPArotation), or add specific models such as structural equation model es-
timation (e.g., lavaan, semPLS).

Package Brief summary Section
biganalytics [42] Basic statistics and handling for bigmemory ob-

jects (very large data sets)
B.2

biglm [107] Fit linear models to data that is too large for memory,
either from databases or bigmemory objects

B.2

forecast [82] Models and extensions for forecasting, especially
with time series data. We use BoxCox() to perform
data transformation

9.1

glmnet [55] Regularization and lasso fitting for generalized lin-
ear models; also works with sparse data (very large
matrices)

B.2

GPArotation [11] Additional rotation methods for factor analysis, with
multiple variants of both oblique and orthogonal ro-
tations

8.3.3

lavaan [135] Estimate structural equation (SEM) and confirmatory
factor analysis (CFA) models

10.2.1, 10.2.2

nFactors [130] Find the number of factors for factor analysis 8.3.2
OpenMx [13] Another powerful engine to estimate structural equa-

tion and confirmatory factor models; an alternative to
lavaan

10.5

sem [52] Basic structural equation models (SEM); an alterna-
tive to lavaan

10.5

semPLS [115] Estimate structural equation models using partial
least squares (PLS)

10.4.1

semTools [124] Compare structural equation models 10.2.3

C.5 Machine Learning

There are hundreds of packages for R that relate to machine learning. The follow-
ing are ones that we use to illustrate various applications of machine learning and
to estimate specific models. Moving from breadth to specificity of application, the
packages cluster, randomForest, and arules are especially helpful to be
familiar with. The caret package provides a structured way to use and evaluate a
large array of machine learning procedures.

C.6 Data Handling 427

Package Brief summary Section
arules [71] Association rules for transaction and market basket

analysis
12.2

caret [98] Provides a systematic interface to access, use, and evalu-
ate hundreds of machine learning models and their fit for
your problem

11.6

cluster [108] Basic functions for clustering data, representing multiple
approaches

11.3

clue [77] Cluster ensemble analysis for clustering 11.6
e1071 [114] Assorted econometrics and machine learning exten-

sions; we use it for naive Bayes classification with
naiveBayes()

11.4.1

flexmix [66, 102] Flexible mixture modeling for latent classes 11.6
mclust [53, 54] Model-based clustering for finite mixture models 11.3.5
mlbench [103] Benchmark data sets for machine learning 11.6
poLCA [105] Latent class analysis and clustering for data with categor-

ical observations
11.3.7

randomForest [104] Random forest classification and variable importance 11.4.2

C.6 Data Handling

In Appendix B we described options to work with databases and data from other
software programs, and to increase R performance with large data sets. The follow-
ing table summarizes those packages.

428 C Appendix: Packages Used

Package Brief summary Section
biglm [107] Fit linear models to data that is too large for memory B.2
bigmemory [91] Tools to work with very large data sets that exceed memory

size
B.2

data.table [37] A powerful alternative to standard data frames; higher per-
formance plus advanced query and indexing options in-
cluding keys

B.2, B.1.1

dplyr [164] A higher-order approach to common data handling tasks,
including querying, recoding, and accessing data in
databases

B.1.1

foreign [125] Read data from SAS, SPSS, and other systems B.1.3
gdata [159] Import data, especially Microsoft Excel files, and manipu-

late data format
B.1.2

glmnet [55] Regularization and lasso fitting for general linear models;
also works with sparse data (very large matrices)

B.2

Matrix [7] Handling for sparse and dense matrices to reduce memory,
increase performance, and access linear algebra optimiza-
tions

B.2

memisc [40] Work with survey data, handle common survey metadata
such as variable labels and codebooks, import data from
SPSS and Stata, and simulate data

B.1.3

R.matlab [10] Work with MATLAB files B.1.3
RODBC [133] Connect and query databases that support ODBC B.1.4
RSQLite [85] Host a complete SQL database instance within R B.1.4
sqldf [65] Run SQL queries on data frames B.1.4

C.7 Other Packages

These packages provide access to higher performance and automated
reporting.

C.7 Other Packages 429

Package Brief summary Section
compiler [126] Compile functions for (sometimes) more efficient processing B.3.1
datasets [126] A diverse collection of interesting and illustrative data sets 9.2.7
knitr [169] Produce reports in HTML and other formats that combine text

with output from R, such as computations and graphics. RStu-
dio [140] provides direct knitr integration

B.5

odfWeave [96] Creates open document format (ODF) files such as word pro-
cessing documents that include results, graphics, and tables
from R

B.5

parallel [126] Run R processes such as apply() in parallel across multiple
processor cores or workstations

B.3.2

Rcpp [39] Use C++ with R for faster processing and data exchange B.3.1
snow [153] Run R processes across a network of workstations for increased

performance
B.3.2

Sweave() [101] Produces LATEX documents and PDFs with inline results and
charts from R (and is not technically a package on its own, but
is built into R in the standard utils package)

B.5

vcdExtra [56] Additional tools to assist with visualizing categorical data; use
expand.dft() to convert a table to a complete data frame

9.2.5

D

Appendix: Online Materials and Data Files

The dedicated website for this book is http://r-marketing.r-forge.
r-project.org. All data files and .R code files are available there and it is the
source for news and updates for the book.

At the website, code files are available in the /code directory, specifically:
http://r-marketing.r-forge.r-project.org/code.

Data files are available in the /data folder: http://r-marketing.
r-forge.r-project.org/data. These may be downloaded directly to your
local system individually or all at once in a .ZIP file, and also may be downloaded
programmatically using the code in each chapter.

All data sets made available for download are simulated, not real data, except for
the supermarket transaction records provided by Brijs et al. [20]. See Sect. 1.5.2 for
discussion of why we use simulated data.

D.1 Data File Structure

The data files are organized as follows:

• File names ending with “.csv” are comma-separated value (CSV) text files,
and may be read with the read.csv() function (Sect. 2.6.2).

• The supermarket transaction file name ends with “.dat” and is a text file de-
limited with spaces. This may be read with readLines() (Sect. 12.2.2).

• “. . . ” in Table D.1 below refers to the data folder http://r-marketing.
r-forge.r-project.org/data, which should be used as a prefix to the
file names.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

431

http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/data
http://r-marketing.r-forge.r-project.org/code
http://r-marketing.r-forge.r-project.org
http://r-marketing.r-forge.r-project.org

432 D Appendix: Online Materials and Data Files

Typical examples of reading the data files are as follows. First, if you have down-
loaded a file to a local directory, you can read it using its local path:

> satData <- read.csv("∼/Downloads/rintro-chapter2.csv")

To read directly from the website, you could use the goo.gl short version:

> satData <- read.csv("http://goo.gl/UDv12g")

Alternatively, you can read from the website using the full URL as shown in
Table D.1:

> satData <- read.csv("http://r-marketing.r-forge.r-project.
org/data/chapter2.csv")

D.2 Data File URL Cross-Reference

In the R code listings in the book chapters, we provide short goo.gl URLs in
order to save typing. Table D.1 below cross-references those short names with the
corresponding complete, long, direct URL addresses.

D.2.1 Update on Data Locations

Although we use R Forge for the book’s website, which has been stable over time,
all sites are liable to change. If you suspect the site no longer functions, send mail to
cnchapman+bookupdate@gmail.com for an automated message with news,
or do a web search for the authors.

D.2 Data File URL Cross-Reference 433

Ta
bl

e
D

.1
.D

at
a

fil
es

an
d

do
w

nl
oa

d
U

R
L

s

D
at

a
Sh

or
tU

R
L

L
on

g
U

R
L

(r
ep

la
ce

“.
..

”
as

ab
ov

e)
Se

ct
io

ns
Sh

or
ts

at
is

fa
ct

io
n

su
rv

ey
g
o
o
.
g
l
/
U
D
v
1
2
g
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
2
.
c
s
v

2.
2

W
ee

kl
y

st
or

e
da

ta
g
o
o
.
g
l
/
Q
P
D
d
M
l
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
3
.
c
s
v

3.
1

C
us

to
m

er
tr

an
sa

ct
io

n
da

ta
g
o
o
.
g
l
/
P
m
P
k
a
G
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
4
.
c
s
v

4.
1,

9.
1

C
on

su
m

er
se

gm
en

ta
tio

n
su

rv
ey

g
o
o
.
g
l
/
q
w
3
0
3
p
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
5
.
c
s
v

5.
1,

6.
1,

11
.2

,1
2.

4
A

m
us

em
en

tp
ar

k
sa

tis
fa

ct
io

n
su

r-
ve

y
g
o
o
.
g
l
/
H
K
n
l
7
4
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
7
.
c
s
v

7.
1

B
ra

nd
pe

rc
ep

tio
n

ra
tin

gs
g
o
o
.
g
l
/
I
Q
l
8
n
c
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
8
.
c
s
v

8.
1

A
m

us
em

en
t

pa
rk

se
as

on
tic

ke
t

sa
le

s
g
o
o
.
g
l
/
J
8
M
H
6
A
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
9
.
c
s
v

9.
2.

2

R
at

in
gs

-b
as

ed
(m

et
ri

c)
co

nj
oi

nt
an

al
ys

is
g
o
o
.
g
l
/
G
8
k
n
G
V
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
9
c
o
n
j
o
i
n
t
.
c
s
v

9.
3.

2

Pr
od

uc
ti

nv
ol

ve
m

en
ts

ur
ve

y
g
o
o
.
g
l
/
y
T
0
X
w
J
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
0
p
i
e
s
.
c
s
v

10
.2

Sa
tis

fa
ct

io
n

an
d

re
pu

rc
ha

se
su

r-
ve

y
g
o
o
.
g
l
/
M
h
g
h
R
q
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
0
s
a
t
.
c
s
v

10
.3

Su
pe

rm
ar

ke
t

tr
an

sa
ct

io
n

da
ta

[2
0]

g
o
o
.
g
l
/
O
4
9
5
R
V
f
i
m
i
.
u
a
.
a
c
.
b
e
/
d
a
t
a
/
r
e
t
a
i
l
.
d
a
t

12
.2

.2

A
lte

rn
at

iv
e

lo
ca

tio
n

fo
r

su
pe

r-
m

ar
ke

t
da

ta
(w

ith
pe

rm
is

si
on

of
th

e
au

th
or

[2
0]

)

g
o
o
.
g
l
/
F
f
j
D
A
O
.
.
.
/
r
e
t
a
i
l
.
d
a
t

12
.2

.2

C
ho

ic
e-

ba
se

d
co

nj
oi

nt
an

al
ys

is
g
o
o
.
g
l
/
5
x
Q
O
b
B
.
.
.
/
r
i
n
t
r
o
-
c
h
a
p
t
e
r
1
3
c
o
n
j
o
i
n
t
.
c
s
v

13
.2

References

[1] Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.).
Hoboken: Wiley-Interscience.

[2] Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for
interval estimation of binomial proportions. The American Statistician, 52(2),
119–126.

[3] Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6), 716–723.

[4] Albert, J., & Rizzo, M. L. (2012). R by example. New York: Springer.

[5] Analytics, R., & Weston, S. (2014). foreach: Foreach looping construct for
R. http://CRAN.R-project.org/package=foreach, R package
version 1.4.2.

[6] Association for Computing Machinery (1999). ACM honors Dr. John M.
Chambers of Bell Labs with the 1998 ACM Software system award for creat-
ing “S System” software. http://www.acm.org/announcements/
ss99.html.

[7] Bates, D., & Maechler, M. (2014). Matrix: Sparse and dense matrix classes
and methods. http://CRAN.R-project.org/package=Matrix, R
package version 1.1-3.

[8] Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear
mixed-effects models using Eigen and S4. http://CRAN.R-project.
org/package=lme4, R package version 1.1-7.

[9] Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step
guide. London: Routledge.

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

435

http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=Matrix
http://www.acm.org/announcements/ss99.html
http://www.acm.org/announcements/ss99.html
http://CRAN.R-project.org/package=foreach

436 References

[10] Bengtsson, H. (2014). R.matlab: Read and write MAT files together
with R-to-MATLAB connectivity. http://CRAN.R-project.org/
package=R.matlab, R package version 3.0.1.

[11] Bernaards, C. A., & Jennrich, R. I. (2005) Gradient projection algorithms
and software for arbitrary rotation criteria in factor analysis. Educational and
Psychological Measurement, 65, 676–696.

[12] Bickel, P., Hammel, E., & O’Connell, J. (1975). Sex bias in graduate admis-
sions: data from Berkeley. Science, 187(4175), 398–404.

[13] Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., et al.
(2011). OpenMx: an open source extended structural equation modeling
framework. Psychometrika, 76(2), 306–317.

[14] Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory
and applications. New York: Springer.

[15] Borg, I., Groenen, P. J., & Mair, P. (2012). Applied multidimensional scaling.
New York: Springer

[16] Borgelt, C. (2002). The apriori algorithm for finding association rules.
http://www.borgelt.net/docs/apriori.pdf. Last Retrieved
October 11, 2014.

[17] Borgelt, C., & Kruse, R. (2002). Induction of association rules: Apriori im-
plementation. In W. Hardle, & B. Ronz (Eds.), Compstat 2002: Proceedings
in computational statistics (pp. 395–400). Heidelberg: Physica.

[18] Bowman, D., & Gatignon, H. (2010). Market response and marketing mix
models. Foundations and Trends in Marketing. Boston: Now Publishers Inc.

[19] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

[20] Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). Using association
rules for product assortment decisions: A case study. In: Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 254–260), Association for Computing Machinery.

[21] Caldon, P. (2013). to.dendrogram. http://stats.stackexchange.
com/a/45161.

[22] Chambers, J. M. (1998). Programming with data: A guide to the S language.
New York: Springer.

[23] Chambers, J. M. (2008). Software for data analysis: Programming with R.
New York: Springer.

[24] Chang, W. (2012). R graphics cookbook. Sebastopol: O’Reilly Media.

[25] Chapman, C. N., Alford, J. L., & Ellis, S. (2013). Rcbc: Marketing research
tools for choice-based conjoint analysis. Version 0.20-1.

http://stats.stackexchange.com/a/45161
http://stats.stackexchange.com/a/45161
http://www.borgelt.net/docs/apriori.pdf
http://CRAN.R-project.org/package=R.matlab
http://CRAN.R-project.org/package=R.matlab

References 437

[26] Chapman, C. N., Love, E., Staton, M., & Lahav, M. (forthcoming). The de-
velopment of a hierarchical and universal scale for product involvement: The
product involvement and engagement scale (“PIES”).

[27] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd
ed.). Hillsdale: Lawrence Erlbaum Associates.

[28] Cohen, J. (1994). The earth is round (p < 0.05). American Psychologist,
49(12), 997.

[29] Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple re-
gression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale:
Lawrence Erlbaum.

[30] Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition
analysis: With applications in the social, behavioral, and health sciences.
New York: Wiley.

[31] Cowpertwait, P. S., & Metcalfe, A. V. (2009). Introductory time series with
R. New York: Springer.

[32] Dalgaard, P. (2008). Introductory statistics with R. New York: Springer.

[33] Damodaran, A. (2014). Damodaran online. http://pages.stern.
nyu.edu/˜adamodar/New_Home_Page/home.htm.

[34] Dobson, A. J. (2008). An introduction to generalized linear models (3rd ed.).
Boca Raton: Chapman & Hall.

[35] Dorai-Raj, S. (2009). binom: Binomial confidence intervals for several pa-
rameterizations. http://CRAN.R-project.org/package=binom,
R package version 1.0-5.

[36] Dotson, J. P., Lenk, P., Otter, T., Brazell, J., MacEachern, S., & Allenby, G.
(2014). A probit approximation to the dependent poisson race model for im-
proved source of volume calculations, in review.

[37] Dowle, M., Short, T., Lianoglou, S., & Srinivasan, A. (2014).
data.table: Extension of data.frame. http://CRAN.R-project.
org/package=data.table, W with contributions from R Saporta and
E Antonyan. R package version 1.9.2.

[38] Dziurzynski, L., Wadsworth, E., Fader, P., Feit, E. M., McCarthy, D., Hardie,
B., et al. (2014). BTYD: Implementing buy ’til you die models. R package
version 2.3.

[39] Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp.
New York: Springer

[40] Elff, M. (2013). memisc: Tools for management of survey data, graphics, pro-
gramming, statistics, and simulation. http://CRAN.R-project.org/
package=memisc, R package version 0.96-9.

http://CRAN.R-project.org/package=memisc
http://CRAN.R-project.org/package=memisc
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=binom
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/home.htm
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/home.htm

438 References

[41] Emerson, J. W., & Green, W. A. (2014). gpairs: The generalized pairs
plot. http://CRAN.R-project.org/package=gpairs, R package
version 1.2.

[42] Emerson, J. W., & Kane, M. J. (2013). biganalytics: A library of utilities for
big.matrix objects of package bigmemory. http://CRAN.R-project.
org/package=biganalytics, R package version 1.1.1.

[43] Epskamp, S. (2013). semPlot: Path diagrams and visual analysis of
various SEM packages’ output. http://CRAN.R-project.org/
package=semPlot, R package version 0.3.3.

[44] Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis
(5th ed.). Wiley Series in Probability and Statistics. Chichester: Wiley.

[45] Fabrigar, L. R., & Wegener, D. T. (2011). Exploratory factor analysis.
New York: Oxford University Press.

[46] Fader, P. S., & Hardie, B. G. (2009). Probability models for customer-base
analysis. Journal of Interactive Marketing, 23(1), 61–69.

[47] Fennell, G., Allenby, G. M., Yang, S., & Edwards, Y. (2003). The effective-
ness of demographic and psychographic variables for explaining brand and
product category use. Quantitative Marketing and Economics, 1(2), 223–244.

[48] Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do
we need hundreds of classifiers to solve real world classification problems?
Journal of Machine Learning Research, 15, 3133–3181.

[49] Fox, J. (2005). Getting started with the R commander: a basic-statistics
graphical user interface to R. Journal of Statistical Software, 14(9), 1–42.

[50] Fox, J. (2006). Teacher’s corner: structural equation modeling with the sem
package in R. Structural Equation Modeling, 13(3), 465–486.

[51] Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd
ed.). Thousand Oaks: Sage. http://socserv.socsci.mcmaster.
ca/jfox/Books/Companion.

[52] Fox, J., Nie, Z., & Byrnes, J. (2013). sem: Structural equation models.
http://CRAN.R-project.org/package=sem, R package version
3.1-3.

[53] Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Asso-
ciation, 97(458), 611–631.

[54] Fraley, C., Raftery, A. E., Murphy, T. B., & Scrucca, L. (2012). mclust version
4 for R: Normal mixture modeling for model-based clustering, classification,
and density estimation (Tech. Rep. 597). Seattle: University of Washington.

http://CRAN.R-project.org/package=sem
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://CRAN.R-project.org/package=semPlot
http://CRAN.R-project.org/package=semPlot
http://CRAN.R-project.org/package=biganalytics
http://CRAN.R-project.org/package=biganalytics
http://CRAN.R-project.org/package=gpairs

References 439

[55] Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical Soft-
ware, 33, 1–22.

[56] Friendly, M. (2014). vcdExtra: vcd extensions and additions. http://
CRAN.R-project.org/package=vcdExtra, R package version
0.6-1.

[57] Gałecki, A., & Burzykowski, T. (2013). Linear mixed-effects models using R:
A step-by-step approach. New York: Springer.

[58] Gandrud, C. (2013). Reproducible research with R and RStudio. London:
CRC Press.

[59] Gansner, E. R., & North, S. C. (2000). An open graph visualization system
and its applications to software engineering. Software: Practice and Experi-
ence, 30(11), 1203–1233.

[60] Gelman, A., & Hill, J. (2006). Data analysis using regression and multi-
level/hierarchical models. Cambridge: Cambridge University Press.

[61] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin,
D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton: Chapman & Hall.

[62] Genolini, C. (2008). A (not so) short introduction to S4. Technical Report

[63] Goulet, V. (2013). Emacs for OSX modified. http://vgoulet.act.
ulaval.ca/en/emacs/.

[64] Gower, J., Groenen, P. J., Van de Velden, M., & Vines, K. (2010). Perceptual
maps: The good, the bad and the ugly. Technical Report ERIM Report
Series Reference No. ERS-2010-011-MKT, Erasmus Research Institute of
Management.

[65] Grothendieck, G. (2014). sqldf: Perform SQL selects on R data frames.
http://CRAN.R-project.org/package=sqldf, R package ver-
sion 0.4-7.1.

[66] Grün, B., & Leisch, F. (2008). FlexMix version 2: finite mixtures with con-
comitant variables and varying and constant parameters. Journal of Statistical
Software, 28(4), 1–35. http://www.jstatsoft.org/v28/i04/.

[67] Guadagni, P. M., & Little, J. D. (1983). A logit model of brand choice cali-
brated on scanner data. Marketing Science, 2(3), 203–238.

[68] Hadfield, J. D. (2010). Mcmc methods for multi-response generalized linear
mixed models: the MCMCglmm R package. Journal of Statistical Software,
33(2), 1–22. http://www.jstatsoft.org/v33/i02/.

[69] Hahsler, M., & Chelluboina, S. (2013). arulesViz: Visualizing associ-
ation rules and frequent itemsets. http://CRAN.R-project.org/
package=arulesViz, R package version 0.1-7.

http://CRAN.R-project.org/package=arulesViz
http://CRAN.R-project.org/package=arulesViz
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v28/i04/
http://CRAN.R-project.org/package=sqldf
http://vgoulet.act.ulaval.ca/en/emacs/
http://vgoulet.act.ulaval.ca/en/emacs/
http://CRAN.R-project.org/package=vcdExtra
http://CRAN.R-project.org/package=vcdExtra

440 References

[70] Hahsler, M., Grün, B., & Hornik, K. (2005). arules: a computational environ-
ment for mining association rules and frequent item sets. Journal of Statisti-
cal Software, 14, 1–25.

[71] Hahsler, M., Buchta, C., Gruen, B., & Hornik, K. (2014). arules: Mining as-
sociation rules and frequent itemsets. http://CRAN.R-project.org/
package=arules, R package version 1.1-1.

[72] Hair, J. F., Jr., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2013). A primer
on partial least squares structural equation modeling (PLS-SEM). Thousand
Oaks: Sage.

[73] Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment
of the use of partial least squares structural equation modeling in marketing
research. Journal of the Academy of Marketing Science, 40(3), 414–433.

[74] Harrell, F. E. (2001). Regression modeling strategies: With applications to
linear models, logistic regression, and survival analysis. New York: Springer.

[75] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statisti-
cal learning: Data mining, inference, and prediction (2nd ed.). New York:
Springer.

[76] Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least
squares path modeling in international marketing. Advances in International
Marketing (AIM), 20, 277–320.

[77] Hornik, K. (2005). A CLUE for CLUster ensembles. Journal of Statistical
Software, 14(12), 1–25.

[78] Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logis-
tic regression. New York: Wiley.

[79] Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in gen-
eral parametric models. Biometrical Journal, 50(3), 346–363.

[80] Hubbard, R., & Armstrong, J. S. (2006). Why we don’t really know what sta-
tistical significance means: Implications for educators. Journal of Marketing
Education, 28(2), 114–120.

[81] Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classifica-
tion, 2(1), 193–218.

[82] Hyndman, R. J. (2014). forecast: Forecasting functions for time
series and linear models. http://CRAN.R-project.org/
package=forecast, with contributions from G. Athanasopoulos,
S. Razbash, D. Schmidt, Z. Zhou, Y. Khan, C. Bergmeir, and E. Wang. R
package version 5.5.

http://CRAN.R-project.org/package=forecast
http://CRAN.R-project.org/package=forecast
http://CRAN.R-project.org/package=arules
http://CRAN.R-project.org/package=arules

References 441

[83] Iacobucci, D. (2009). Everything you always wanted to know about SEM
(structural equations modeling) but were afraid to ask. Journal of Consumer
Psychology, 19(4), 673–680.

[84] Iacobucci, D. (2010). Structural equations modeling: fit indices, sample size,
and advanced topics. Journal of Consumer Psychology, 20(1), 90–98.

[85] James, D. A., Falcon, S., & The Authors of SQLite (2013). RSQLite:
SQLite interface for R. http://CRAN.R-project.org/
package=RSQLite, R package version 0.11.4.

[86] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to
statistical learning: With applications in R. New York: Springer.

[87] Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York:
Springer.

[88] Jöreskog, K. G. (1973). Analysis of covariance structures. In P. R. Krishnaiah
(Ed.), Multivariate analysis (Vol. 3, pp. 263–285). New York: Academic.

[89] Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide.
Lincolnwood: Scientific Software International.

[90] Kahle, D., & Wickham, H. (2013). ggmap: A package for spatial vi-
sualization with Google Maps and OpenStreetMap. http://CRAN.
R-project.org/package=ggmap, R package version 2.3.

[91] Kane, M. J., Emerson, J., & Weston, S. (2013). Scalable strategies for com-
puting with massive data. Journal of Statistical Software, 55(14), 1–19.
http://www.jstatsoft.org/v55/i14/.

[92] Kline, R. B. (2011). Principles and practice of structural equation modeling.
New York: Guilford Press.

[93] Knuth, D. (1997). The art of computer programming, Vol. 2: Seminumerical
Algorithms (3rd ed.). Reading: Addison-Wesley.

[94] Kruschke, J. K. (2010). Doing Bayesian data analysis: A tutorial introduction
with R. New York: Academic.

[95] Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis.
Trends in Cognitive Sciences, 14(7), 293–300.

[96] Kuhn, M. (2014). odfWeave: Sweave processing of open document format
(ODF) files. http://CRAN.R-project.org/package=odfWeave,
R package version 0.8.4. With contributions from S. Weston, N. Coulter,
P. Lenon, Z. Otles, and the R Core Team.

[97] Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York:
Springer.

http://CRAN.R-project.org/package=odfWeave
http://www.jstatsoft.org/v55/i14/
http://CRAN.R-project.org/package=ggmap
http://CRAN.R-project.org/package=ggmap
http://CRAN.R-project.org/package=RSQLite
http://CRAN.R-project.org/package=RSQLite

442 References

[98] Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., et
al. (2014). caret: Classification and Regression Training. http://CRAN.
R-project.org/package=caret, R package version 6.0-22.

[99] Lander, J. P. (2013). coefplot: Plots coefficients from fitted models.
http://CRAN.R-project.org/package=coefplot, R package
version 1.2.0.

[100] Lander, J. P. (2013). R for everyone: Advanced analytics and graphics. Read-
ing: Addison-Wesley.

[101] Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using
literate data analysis. In W. Härdle, B. Rönz (Eds.), Compstat 2002: Pro-
ceedings in computational statistics (pp. 575–580). Heidelberg: Physica.

[102] Leisch, F. (2004). FlexMix: a general framework for finite mixture models
and latent class regression in R. Journal of Statistical Software, 11(8), 1–18.
http://www.jstatsoft.org/v11/i08/.

[103] Leisch, F., & Dimitriadou, E. (2010). mlbench: Machine learning benchmark
problems. R package version 2.1-1.

[104] Liaw, A., & Wiener, M. (2002). Classification and regression by random-
forest. R News, 2(3), 18–22. http://CRAN.R-project.org/doc/
Rnews/.

[105] Linzer, D. A., & Lewis, J. B. (2011). poLCA: an R package for polytomous
variable latent class analysis. Journal of Statistical Software, 42(10), 1–29.
http://www.jstatsoft.org/v42/i10/.

[106] Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods:
Analysis and applications. Cambridge: Cambridge University Press.

[107] Lumley, T. (2013). biglm: Bounded memory linear and generalized linear
models. http://CRAN.R-project.org/package=biglm, R pack-
age version 0.9-1.

[108] Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2014).
cluster: Cluster analysis basics and extensions. R package version 1.15.2.

[109] Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov
chain monte carlo in R. Journal of Statistical Software, 42(9), 22. http://
www.jstatsoft.org/v42/i09/.

[110] Matloff, N. S. (2011). The art of R programming: A tour of statistical software
design. San Francisco: No Starch Press.

[111] McCallum, E., & Weston, S. (2011). Parallel R. Sebastopol: O’Reilly Media.

[112] Meehl, P. E. (1990). Why summaries of research on psychological theories
are often uninterpretable. Psychological Reports, 66(1), 195–244.

http://www.jstatsoft.org/v42/i09/
http://www.jstatsoft.org/v42/i09/
http://CRAN.R-project.org/package=biglm
http://www.jstatsoft.org/v42/i10/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v11/i08/
http://CRAN.R-project.org/package=coefplot
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret

References 443

[113] Meyer, D., Zeileis, A., & Hornik, K. (2014). vcd: Visualizing categorical
data. R package version 1.3-2.

[114] Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2014).
e1071: Misc Functions of the Department of Statistics (e1071), TU Wien.
http://CRAN.R-project.org/package=e1071, R package ver-
sion 1.6-3.

[115] Monecke, A., & Leisch, F. (2012). semPLS: structural equation model-
ing using partial least squares. Journal of Statistical Software, 48(3), 1–32.
http://www.jstatsoft.org/v48/i03/.

[116] Morey, R. D., & Rouder, J. N. (2014). BayesFactor: Computation of
Bayes factors for common designs. http://CRAN.R-project.org/
package=BayesFactor, R package version 0.9.6.

[117] Muenchen, R. A. (2011). R for SAS and SPSS users. New York: Springer.

[118] Muenchen, R. A., & Hilbe, J. M. (2010). R for Stata users. New York:
Springer.

[119] Mulaik, S. A. (2009). Foundations of factor analysis (2nd ed.). Statistics in
the Social and Behavioral Sciences. Boca Raton: Chapman & Hall/CRC.

[120] Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. (2012). Mine your
own business: market-structure surveillance through text mining. Marketing
Science, 31(3), 521–543.

[121] Neuwirth, E. (2011). RColorBrewer: ColorBrewer palettes. http://
CRAN.R-project.org/package=RColorBrewer, R package ver-
sion 1.0-5.

[122] Orme, B. K. (2010). Getting started with conjoint analysis: Strategies
for product design and pricing research (2nd ed.). Madison: Research
Publishers.

[123] Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-
PLUS. New York: Springer.

[124] Pornprasertmanit, S., Miller, P., Schoemann, A., & Rosseel, Y. (2013).
semTools: Useful tools for structural equation modeling. http://CRAN.
R-project.org/package=semTools, R package version 0.4-0.

[125] R Core Team (2014). Foreign: Read data stored by Minitab, S, SAS,
SPSS, Stata, Systat, Weka, dBase, http://CRAN.R-project.org/
package=foreign, R package version 0.8-61.

[126] R Core Team (2014). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. http://
www.R-project.org/.

http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=foreign
http://CRAN.R-project.org/package=foreign
http://CRAN.R-project.org/package=semTools
http://CRAN.R-project.org/package=semTools
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=BayesFactor
http://CRAN.R-project.org/package=BayesFactor
http://www.jstatsoft.org/v48/i03/
http://CRAN.R-project.org/package=e1071

444 References

[127] R Core Team (2014). R data import/export (version 3.1.1). Technical Re-
port, R Core Team. http://cran.r-project.org/doc/manuals/
r-release/R-data.html.

[128] R Core Team (2014). R language definition (version 3.1.1 draft). Technical
Report, R Core Team.

[129] Raftery, A. E. (1995). Bayesian model selection in social research. Sociolog-
ical Methodology, 25, 111–164.

[130] Raiche, G. (2010). An R package for parallel analysis and non graphi-
cal solutions to the Cattell scree test. http://CRAN.R-project.org/
package=nFactors, R package version 2.3.3.

[131] Rand, W. M. (1971). Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association, 66(336), 846–850.

[132] Revelle, W. (2013). psych: Procedures for psychological, psychometric, and
personality research. Evanston: Northwestern University. http://CRAN.
R-project.org/package=psych, R package version 1.3.10.

[133] Ripley, B., & Lapsley, M. (2013). RODBC: ODBC database access. R pack-
age version 1.3-10.

[134] Ross, S. M. (2010). Introduction to probability models (10th ed.). New York:
Academic.

[135] Rosseel, Y. (2012). lavaan: an R package for structural equation modeling.
Journal of Statistical Software, 48(2), 1–36. http://www.jstatsoft.
org/v48/i02/.

[136] Rossi, P. (2012). bayesm: Bayesian Inference for Marketing/Micro-
econometrics. http://CRAN.R-project.org/package=bayesm,
R package version 2.2-5.

[137] Rossi, P. E., Allenby, G. M., & McCulloch, R. E. (2005). Bayesian statistics
and marketing. New York: Wiley.

[138] Rossini, A., Heiberger, R., Hornik, K., Maechler, M., Sparapani, R., Eglen,
S., et al. (2013). ESS – Emacs speaks statistics (13th ed.). Noida: The ESS
Developers.

[139] Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). De-
fault Bayes factors for ANOVA designs. Journal of Mathematical Psychol-
ogy, 56(2012), 356–374.

[140] RStudio (2014). RStudio: Integrated development environment for R. Boston:
RStudio. http://www.rstudio.org/, version 0.98.1049.

[141] Sarkar, D. (2008). Lattice: Multivariate data visualization with R. New York:
Springer.

http://www.rstudio.org/
http://CRAN.R-project.org/package=bayesm
http://www.jstatsoft.org/v48/i02/
http://www.jstatsoft.org/v48/i02/
http://CRAN.R-project.org/package=psych
http://CRAN.R-project.org/package=psych
http://CRAN.R-project.org/package=nFactors
http://CRAN.R-project.org/package=nFactors
http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/doc/manuals/r-release/R-data.html

References 445

[142] Sawtooth Software (2014). Adaptive choice-based conjoint technical pa-
per. http://www.sawtoothsoftware.com/downloadPDF.php?
file=acbctech2014.pdf.

[143] Sermas, R. (2012). ChoiceModelR: Choice modeling in R. http://CRAN.
R-project.org/package=ChoiceModelR, R package version 1.2.

[144] Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis:
Modeling change and event occurrence. New York: Oxford university press.

[145] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by ob-
jective methods. Taxon, 11(2), 33–40.

[146] South, A. (2011). rworldmap: a new R package for mapping global data.
The R Journal, 3(1), 35–43. http://journal.r-project.org/
archive/2011-1/RJournal_2011-1_South.pdf.

[147] Stallman, R. M. (1981) EMACS: The extensible, customizable self-
documenting display editor. In: Proceedings of the ACM Conference on Text
Processing (Vol. 16), Association for Computing Machinery.

[148] Stokely, M., Rohani, F., & Tassone, E. (2011). Large-scale parallel statistical
forecasting computations in R. In: JSM (Joint Statistical Meetings) Proceed-
ings, Section on Physical and Engineering Sciences, Alexandria.

[149] Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining.
Reading: Addison-Wesley.

[150] Teetor, P. (2011). R Cookbook. Sebastopol: O’Reilly Media.

[151] Thompson, B. (2004). Exploratory and confirmatory factor analysis: Under-
standing concepts and applications. Washington, DC: American Psycholog-
ical Association.

[152] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society Series B (Methodological), 58, 267–288.

[153] Tierney, L., Rossini, A. J., Li, N., & Sevcikova, H. (2013). snow:
Simple network of workstations. http://CRAN.R-project.org/
package=snow, R package version 0.3-13.

[154] Toubia, O., Simester, D. I., Hauser, J. R., & Dahan, E. (2003). Fast polyhedral
adaptive conjoint estimation. Marketing Science, 22(3), 273–303.

[155] Train, K. E. (2009). Discrete choice methods with simulation. Cambridge:
Cambridge University Press.

[156] Venables, W., & Ripley, B. D. (2000). S programming. New York: Springer.

[157] Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S
(4th ed.). New York: Springer.

http://CRAN.R-project.org/package=snow
http://CRAN.R-project.org/package=snow
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf
http://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf
http://CRAN.R-project.org/package=ChoiceModelR
http://CRAN.R-project.org/package=ChoiceModelR
http://www.sawtoothsoftware.com/downloadPDF.php?file=acbctech2014.pdf
http://www.sawtoothsoftware.com/downloadPDF.php?file=acbctech2014.pdf

446 References

[158] Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A.,
Lumley, T., et al. (2014). gplots: Various R programming tools for plotting
data. http://CRAN.R-project.org/package=gplots, R pack-
age version 2.13.0.

[159] Warnes, G. R., Bolker, B., Gorjanc, G., Grothendieck, G., Korosec, A., Lum-
ley, T., et al. (2014). gdata: Various R programming tools for data manipula-
tion. http://CRAN.R-project.org/package=gdata, R package
version 2.13.3.

[160] Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual
and methodological foundations (2nd ed.). International Series in Quantita-
tive Marketing. Boston: Kluwer Academic.

[161] Wei, T. (2013). corrplot: Visualization of a correlation matrix. http://
CRAN.R-project.org/package=corrplot, R package version
0.73.

[162] Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York:
Springer.

[163] Wickham, H. (2014). Advanced R. Boca Raton: Chapman & Hall/CRC.

[164] Wickham, H., & Francois, R. (2014). dplyr: a grammar of data manipula-
tion. http://CRAN.R-project.org/package=dplyr, R package
version 0.2.

[165] Williams, G. J. (2009). Rattle: a data mining GUI for R. The R Journal, 1(2),
45–55.

[166] Williams, G. J. (2011). Data mining with Rattle and R: The art of excavating
data for knowledge discovery. New York: Springer.

[167] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

[168] Wong, D. M. (2010). The wall street journal guide to information graphics:
The Dos and Don’ts of presenting data, facts, and figures. New York: WW
Norton & Company.

[169] Xie, Y. (2013). Dynamic documents with R and knitr. Boca Raton: CRC
Press.

[170] Zeileis, A., & Grothendieck, G. (2005). zoo: S3 infrastructure for regular and
irregular time series. Journal of Statistical Software, 14(6), 1–27. http://
www.jstatsoft.org/v14/i06/.

[171] Zuur, A. F., Ieno, E. N., & Meesters, E. H. (2009). A beginner’s guide to R.
New York: Springer.

http://www.jstatsoft.org/v14/i06/
http://www.jstatsoft.org/v14/i06/
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=corrplot
http://CRAN.R-project.org/package=corrplot
http://CRAN.R-project.org/package=gdata
http://CRAN.R-project.org/package=gplots

Index

., 30, 148, 184, 226, 229
:, 24, 44, 182, 184, 185, 190
|

for conditioning, 127, 128, 132
for multilevel effects, 248–250,

265
!, 27. See also Logical values
$, 30, 32, 33, 44, 49
?, 21–23
??, 23
[, 19, 24–26, 44
[[, 29, 30, 351
<−, 13, 19, 24, 26, 44
== 37, 38, 116, 121, 311, 330. See also

all.equal
∼

for data aggregation, 124–127
for models, 123–125, 144–149, 166, 173,

182–185, 226, 273, 323, 327. See also
Formula syntax

for plot breakouts, 127–129
for scatter plots, 92, 94

−, for negative indexing, 25, 32

A
abline, 70, 84, 167, 170, 260
aggregate, 72, 75, 121–123, 126,

129–131, 133, 304, 305
Agreement, assessing, 320, 325. See also

Confusion matrix; Rand index,
adjusted

all.equal, 38
Analysis of variance (ANOVA), 15, 23, 135,

144–157, 175, 180, 191, 409. See also
anova

Anonymous function, 41–42, 60, 274, 304,
416. See also Functions

ANOVA. See Analysis of variance
(ANOVA)

anova. See also Analysis of variance
(ANOVA)

to compare group means, 135, 144, 149,
157

to compare models, 146, 175
aov, 15, 144–149, 157, 180, 186
apply, 29, 41, 42, 56, 59–61, 416,

417
apriori, 342, 343, 346, 358, 360,

361
arules, 341, 342, 345, 347, 349, 350, 353,

356–358, 360
as.numeric, 21, 22, 87, 235, 246, 285,

304, 310, 369, 374
Assignment. See <−
Association rule mining, 339–361
Attributes. See also Classes, of

objects
of objects, 234–236
of products (see Conjoint

analysis)
attributes, 199, 236
axis, 62–65, 67, 70, 84, 131, 147, 152,

310

© Springer International Publishing Switzerland 2015
C. Chapman, E.M. Feit, R for Marketing Research and Analytics, Use R!,
DOI 10.1007/978-3-319-14436-8

447

448 Index

B
Base rate, 320, 323, 340. See also

Agreement, assessing
Basic linear algebra subprograms (BLAS),

417
Basis variables, in clustering, 301
Bayesian information criterion (BIC), 147,

315, 316, 318, 322, 338. See also
Model comparison

Bayesian methods. See also Credible
interval; Markov chain Monte Carlo
(MCMC)

analysis of variance (ANOVA),
149–155

choice models, 156, 188, 242, 383,
388–396, 399

hierarchical linear models, 225, 252–259,
266

linear models, 186–188, 252, 426
reasons to use, 150, 188, 254

BIC. See Bayesian information criterion
(BIC)

Binomial distribution, 50, 79, 138–142,
238

binom.test, 139–142, 157
Boolean values. See Logical values
Bootstrap, 293–296, 298, 416
Box-and-whiskers plot, 66. See also

boxplot; bwplot
Box–Cox transform, 102–104
boxplot, 66–68, 75, 94, 95, 130, 131,

133, 142, 312, 313
Brand perception, 204–208, 215–219,

222
bwplot, 131–133
by, 70–72, 75, 121, 126, 133, 305

C
c, 19, 24, 44
Categorical data. See factor
cfa, 16, 277, 279, 281
chisq.test, 136–139, 157
Chi-square test, 132, 136, 282
Choice-based conjoint analysis. See

Conjoint analysis,
choice-based

ChoiceModelR, 370, 388–395
class, 234–236, 352–354, 361

Classes, of objects, 20, 21, 49,
234–236

in classification, 316, 319, 320, 324–327,
333

Classification, 263, 299–338, 424,
427

Class imbalance, 334, 338
Cloud computing, 471
clusplot, 312, 313, 316, 318, 319, 324,

329, 333
cluster, 220, 306, 312, 314–316, 329,

336, 423, 426, 427
Clustering, 112, 198, 199, 203, 205, 207,

220, 299–338, 349, 359, 409, 421,
423, 426, 427. See also cluster;
hclust; kmeans; mclust;
poLCA

coef, 103, 104, 167, 168, 176, 177, 239,
240, 249, 251, 366, 367, 369, 376,
378, 384, 386, 387

coefplot, 174, 183, 191, 425
Cohen’s rules of thumb. See Correlation

coefficient r
Collinearity, 189, 225, 228–231, 263, 264,

401
colMeans, 60, 207, 260, 387
colnames, 228, 255, 257, 258, 260, 261,

367
colors, 14, 63, 64, 72, 73, 84, 86–88,

99, 100, 108, 128, 130, 199, 200,
216, 310–313, 316, 318, 319, 324,
329, 332, 333, 350, 359, 381, 406,
425

Command line, working with, 12, 13, 26,
404, 409

Comma-separated value (CSV) file, 36–38,
413, 415, 431. See also read.csv;
write.csv

compiler, 417, 423, 429
Comprehensive R archive network (CRAN),

4, 11, 23, 42, 150, 390, 404, 414, 418,
419, 423

Conditioning, plot, 127
Confidence intervals, 15, 16, 39, 98,

139–143, 147–148, 157, 168, 174,
185, 186, 191, 239–241, 277, 286,
294, 296, 336, 341, 383, 401, 425.
See also Credible interval

Index 449

plotting, 147, 157, 174, 183, 185,
425

Confidence, of association rule, 341,
346

confint, 141, 142, 168, 239–241
Confirmatory factor analysis, 221,

267–298
Confusion matrix, 325–328, 330,

333–335
Conjoint analysis

choice-based, 259, 363–365, 369, 370,
396–399, 433

metric, 244, 246–252, 259, 365,
433

Control structures, 40, 41. See also for;
Functions; if; while

Cook’s distance, 171
cor, 14, 33, 97–101, 104, 106–108, 161,

164, 169, 198, 201, 203, 212, 308,
309

Correlation analysis, 15, 33, 77–109
Correlation coefficient r, 68, 97, 100, 108,

169. See also cor; cor.test;
corrplot

Cohen’s rules of thumb, 97, 109
corrplot, 13, 14, 99, 100, 108, 164, 198,

425
cor.test, 97, 98, 108
CRAN. See Comprehensive R archive

network (CRAN)
Credible interval, 154–157, 191,

256
Cross-tabs, 70
CSV file. See Comma-separated value

(CSV) file
cut, 215, 245, 246, 274, 275, 285, 307,

317, 318, 356–357, 361

D
daisy, 220, 223, 306, 311
Database access, 415, 428
Data download. See Web site, this

book’s
Data exploration, recommended procedure,

59, 93
Data frame, 30–34. See also data.

frame

data.frame, 30–33, 48, 49, 56, 59, 61,
78, 83, 85, 118, 155, 160, 162, 196,
217, 219, 234, 237, 245, 275, 285,
350, 369, 380, 413

Data sets. See also Data simulation; Web
site, this book’s

amusement park conjoint analysis,
160–163, 165, 252, 433

amusement park satisfaction, 160,
433

automobile conjoint analysis, 270,
433

customer segmentation, 78, 111–120,
433

football fans (observational), 139
grocery store transactions, 420, 344,

433
product involvement survey, 270, 271,

433
roller coaster conjoint analysis, 244, 245,

256, 433
satisfaction and repeat purchase survey,

297, 433
Data simulation, 7–9, 47. See also Data

sets
data.table, 411, 417, 428
Data types. See Classes, of objects
Deleting objects. See rm
density, 61, 64–66, 141, 152, 157, 261,

342, 346, 358
describe, 58, 59, 75, 424
Descriptive statistics, 47, 52–59, 70–72,

409. See also describe; mean;
median; sd

Diagnostic plots, for regression, 170,
172

dim, 48, 59, 234–236, 387, 395
Dimensional reduction, 195, 211, 312, 313.

See also Factor analysis; Principal
component analysis (PCA)

dimnames, 234–236, 254, 367
Discrete choice models. See Conjoint

analysis, choice-based
dist, 104, 218, 220, 223, 305–309
Distance metrics, 219, 221, 305–307.

See also daisy; dist
Dot notation, 30

450 Index

Downloading data, 4, 431–433. See also
Database access; read.csv; Web
site, this book’s

dplyr, 411, 412, 415, 417, 428
Driver analysis. See Linear model

E
ecdf. See Empirical cumulative

distribution
Eclipse, 12, 403, 404, 406, 407
Editor, for code, 18, 44, 403
Emacs, 12, 403, 405–406, 408

Emacs speaks statistics, 403, 405–406,
408

Empirical cumulative distribution,
69

Errors, what to do, 9
Excel, Microsoft, 34, 36, 38, 412,

428
exp, 78, 80, 232, 234, 239–241, 265, 369,

376, 378, 387, 395
Exploratory factor analysis, 195, 209–218,

221–223, 275, 276

F
factanal, 212–214, 217, 221–223, 275.

See also Factor analysis
factor, 14, 33, 49, 87, 179–181,

357
Factor analysis

confirmatory, 216, 218, 221, 222,
267–298, 426

exploratory, 195, 209–218, 221–223, 275,
276

Factor scores, 211, 216–218, 223, 264,
278

Fixed effect, 243, 248–250, 253, 254, 256,
259, 260, 262, 265. See also fixef;
Mixed effects model; Random
effect

fixef, 249–251, 260
for, 41, 114–116
Formula syntax, 123–124, 131, 183–185,

277, 290. See also ∼
Frequency, 34, 52, 64, 125, 126, 133, 136,

360. See also density; Histogram;
table

function, 42, 59, 69, 353, 354,
431

Functional programming, 41, 43, 118,
416

Functions, 38–42, 44, 351–356. See also
Anonymous function; Functional
programming

G
Generalized linear model (GLM), 189, 237,

238, 240–242, 263, 265
ggplot, 155
glm, 189, 238, 240–242, 265
Google style guide for R. See Style guide

for R
Grouping data. See aggregate
gpairs, 94–96, 108, 163, 164, 227, 228,

425

H
hclust, 198, 303, 305–309, 311–313, 317,

337
head, 14, 49–52
heatmap.2, 199, 215, 217, 332,

425
Heat maps, 199, 200, 214, 215, 217, 218,

332, 425
Help file, 9, 18, 21–24, 65, 85, 278, 390.

See also ?
Hierarchical Bayes models, 252–259,

388–396. See also Hierarchical linear
model; Markov chain Monte Carlo
(MCMC)

for conjoint analysis (see Conjoint
analysis)

Hierarchical linear model, 225, 242,
248–259, 265–266

Bayesian (see Hierarchical Bayes
models)

High performance computing, 418. See also
Parallel computing

hist, 61–64, 74, 79, 86, 103, 127, 142,
163, 257, 258

Histogram, 61–66, 86, 87, 94, 109,
127–129, 133, 142, 163, 257, 275,
276, 394

I
if, 41, 112, 114, 116–119, 133, 354.

See also ifelse
ifelse, 41, 79, 117, 311, 312, 317

263,

Index 451

Import data, 412, 428. See also Comma-
separated value file; Database access;
Excel, Microsoft

Indexing, 19, 24–26, 32, 81, 87, 88,
115, 121, 122, 154, 251, 255, 411,
428

Individual-level models. See Hierarchical
linear model

Installation, 11, 403, 405, 423
of packages (see Packages)

install.packages, 13, 52, 58, 73, 94,
273, 423

Interaction terms, in formula,182, 184,
185

is.na, 27, 106. See also Missing
values

J
jitter, 105, 201, 310

K
Kappa, 335, 336. See also Rand index,

adjusted
kmeans, 303, 311–314, 317, 319,

337

L
lapply, 29, 41, 61, 116, 219, 228, 274,

275, 285, 353–355
Latent class analysis, 317–319, 336, 338,

427. See also poLCA
Latent variables, 16, 17, 209, 213, 215–217,

222, 223, 267–271, 273, 277, 278,
280, 281, 283, 284, 286, 287,
289–293, 298, 402

lattice, 61, 74, 89, 107, 127, 129–133,
156, 423–425

lavaan, 13, 16, 17, 270, 273, 274
Legend, for plot, 88–89
Leverage, 171, 369
library, 14–17, 52
Lift, 52, 341, 343, 344, 347–350,

358–361
Linear model, 150, 159–191, 225–266.

See also Formula syntax; Hierarchical
linear model

Linear regression. See Linear model
list, 28–30, 32, 345, 350–355

indexing, 29, 30, 41

lm, 162–174, 179–182, 185–191, 226,
228–231, 237, 238, 242, 245,
247–249, 258, 368

lme4, 244, 248–253, 260, 263, 265, 424,
435

lmer, 248, 250, 261, 262, 265
load, 34–36. See Database access;

Comma-separated value (CSV)
file

log, 27, 41, 51, 52, 68, 69, 89–92, 94,
97, 102, 108, 109, 163, 232, 314,
315, 383. See also Logarithmic
distribution

Logarithmic distribution, 68. See also
Transforming data

Logical values, 19, 20, 25, 27, 40,
116

Logistic regression, 189, 225, 231–242,
263–265, 336

Logit model, 231, 232, 265, 363, 369, 372,
376, 378, 381, 383–386, 388, 392,
399. See also Logistic regression;
Multinomial logit model

Lognormal distribution, 79, 161
Longitudinal data analysis, 413

M
Machine learning, 426, 427. See also

Classification; Clustering; Association
rule mining

Market basket analysis. See Association rule
mining

Markov chain Monte Carlo (MCMC), 187,
425. See also MCMChregress;
MCMCpack; MCMCregress

for Bayesian models, 187, 425
Matrix

mathematics operators, 20, 28
mclust, 303, 314
MCMChregress, 253–256, 258, 264,

266
MCMC methods. See Markov chain Monte

Carlo (MCMC)
MCMCpack, 150, 187, 191, 260, 264, 266,

388, 426
MCMCregress, 186–188, 191, 253
MDS. See Multidimensional scaling

(MDS)

452 Index

mean, 33, 55, 56, 133, 178, 197,
330

median, 41, 42, 55, 317
Missing values, 26, 27, 30, 50, 119. See also

is.na; NA
Mixed effects model, 243, 263, 265, 420,

425
mlogit, 372–377, 381, 383–386, 389, 392,

393, 396
Model-based clustering, 303, 314–316, 319,

427. See also mclust
Model comparison. See also anova;

Bayesian information criterion
(BIC)

for ANOVA, 146–147
for linear model, 150, 162
for structural equation model, 15, 16, 216,

283–288
Multidimensional scaling (MDS), 195,

218–223, 312, 313
Multilevel model. See Hierarchical linear

model
Multinomial logit model. See also Conjoint

analysis; Logit model, 363, 364,
369, 372, 378, 381, 383, 386, 388,
398–399

N
NA, 26, 27, 30, 39, 50, 82, 83, 99, 119, 133.

See also Missing values
naiveBayes, 323–327, 424, 427
Naive Bayes classification, 323–327, 424,

427
names, 30, 345
NaN, 27, 41
Nested model, 146, 243, 244. See also

Hierarchical linear model
nrow, 48, 50
Null hypothesis, 136–138, 143, 150, 169,

228, 1140

O

Objects, removing from memory. See
rm

Odds ratio, 238–241, 264
Online data. See Web site, this

book’s
ordered, 357
Outliers, detecting, 66, 142, 172, 173, 186,

341

P
Packages, 4, 13, 423–429. See also

install.packages;
library

Parallel computing, 407, 408, 417,
418

par, for multiple graphics, 90, 91,
147

Partial least squares. See Structural equation
model (SEM)

Path diagram, 215, 216, 268
PCA. See Principal component analysis

(PCA)
Pearson’s r. See Correlation

coefficient r
Performance, enhancing, 417
Pivot table, 70
plogis, 232, 238
plot, 53, 54, 70, 74, 83–86, 88–90, 104,

108, 152, 170, 171, 173, 186, 190,
204, 205, 219, 220, 307, 309, 346,
347, 358

Plotting. See also plot
clusters, 312, 313, 316, 318, 319,

324, 325, 329, 334 (see also
clusplot)

of diagnostic plots, 170, 172
of heat maps (see Heat Maps)
histogram (see Histogram)
of linear models, 165, 170, 186
multiple plots (see par, for multiple

graphics)
points, 84, 261
Poisson distribution, 51
poLCA, 303, 317–319, 427
Posterior distribution, sampling, 391.

See also Bayesian methods; Markov
chain Monte Carlo (MCMC)

prcomp, 202, 204, 206, 222
predict, 185, 190, 258, 324, 326, 329,

335, 368, 376, 390
Prediction, 159, 168–170, 173, 175–177,

189, 320, 322, 325, 326, 328,
329, 333–336, 338, 371, 375–377,
379–383, 385–388, 392, 395–398,
400

Principal component analysis (PCA), 195,
200–209, 221–223, 230, 231

Index 453

Program flow. See Control
structures

prop.table, 128–130, 324
Pseudorandom numbers, 118, 151,

415. See also Random number
generation

p-value, 9, 98, 136–141, 143, 144, 146,
168, 169, 173, 176, 188, 190,
228, 374. See also Statistical
significance

Q
qlogis, 232

principal component analysis, 195,
200–209, 221–223, 230, 231

qqnorm, 68, 69
qqplot, 69
quantile, 55, 56, 154
Quantile–quantile plot, 68

R
r. See Correlation coefficient r
Rand index, adjusted, 320, 321, 336
Random effect, 243, 244, 248–251, 253,

254, 259, 261, 262, 265, 383. See also
Fixed effect; Mixed effects model;
ranef

Random forest, 149, 229, 323,
327–333, 336, 337. See also
randomForest

variable importance in, 330–333,
427

randomForest, 327–334, 338, 426,
427

Random number generation, 50, 416.
See also Pseudorandom numbers;
rbinom; rlnorm; rnorm; rpois;
sample

ranef, 249, 251, 260, 261
Ratings-based conjoint analysis. See

Conjoint analysis, metric
rbind, 119, 246, 305, 306, 369, 380,

394
rbinom, 50, 51, 80, 82, 118, 119
read.csv, 8, 14, 37, 48, 59, 78, 112,

135, 160, 196, 226, 233, 244, 252,
273, 285, 302, 356, 365, 412, 431,
432. See also Comma-separated value
file

Regression. See Linear model
rep, 25, 48
repeat, 40, 41
Repeated measures, 243, 418–419
Residuals

in linear model, 103, 170
plotting, 171
in structural equation model, 288

return, 40
rlnorm, 79, 161
rm, 43
rnorm, 79–81, 162, 245, 350
rpois, 51, 119
RStudio 11, 12, 18, 61, 347, 348, 403–405,

407, 408, 420, 421, 429

S
sample, 51, 79, 274, 323, 369
save, 34, 36
save.image, 36
Sawtooth Software, 369, 370, 398
scale, 178, 179, 186, 190, 197,

227
sd, 38, 55, 60, 79, 119, 169, 177, 197,

275
Segmentation. See also Clustering

with association rules, 356–360
SEM. See Structural equation model

(SEM)
semPLS, 270, 289–291, 293, 297, 298,

426
seq, 25, 44, 56, 65
seq along, 115, 116, 119, 133
set.seed, 50, 328
setwd, 35
Significance tests. See Statistical

significance
Similarity measures. See Distance

metrics
Simulating data. See Data simula-

tion
Skew, in data, 58, 60, 68, 142, 227,

275
some, 52, 59, 122, 345
Speed, of code. See Performance,

enhancing
Standardizing data, 177–179, 186, 197, 206,

227, 228

454 Index

Statistical significance, 15, 97, 98, 108, 138,
140, 141, 173, 238, 241, 265, 282,
401. See also Confidence intervals;
Null hypothesis

Bayesian (see Credible interval)
step, 148, 149, 157, 186
Stepwise model selection, 157
stop, 354, 355, 361
str, 21, 28, 29, 32, 49, 53, 59, 73, 83, 108,

196, 235, 318, 345
Structural equation model (SEM). See also

lavaan; semPLS
covariance based, 16, 17, 267–288, 297,

298
model comparison, 270, 273, 281, 288,

293
partial least squares, 269, 270,

288–298
path diagrams, 17, 216, 268

Structured query language (SQL). See
Database access

Style guide for R, 7
subset, 343
sum, 60, 72
summary, 7, 19, 29, 33, 56, 57, 59, 75, 78,

82, 85, 133, 152, 162, 167–169, 178,
179, 188, 190, 196, 228, 233, 246,
249, 277, 342, 344, 346, 371, 384,
390

switch, 41
Synthetic data. See Data simulation

T
table, 52, 53, 75, 125, 127–129, 133,

138, 234–237, 320, 324, 325, 329,
330

tail, 49, 52, 59, 344, 345
Time series, 356, 418–419, 424, 426
Transactions. See Association rule

mining
Transforming data. See also Box–Cox

transform

common transformations in marketing,
102

t.test, 142–144, 157

V
Variable importance. See Random forest,

variable importance in
Variable names, 37, 39, 84, 100, 112, 115,

216, 283, 284
Variable selection, 148–149. See also Model

comparison; Random forest, variable
importance in; Stepwise model
selection

Variance inflation factor, 229. See also
Collinearity; vif

Vector, 13, 18–21, 24–26, 28–32, 41–44, 48,
49, 51–57

vif, 229. See also Variance inflation
factor

W
warning, 355, 361
Web site

CRAN, 4, 11, 23, 42, 150, 390, 404, 414,
418, 419, 423

R project, 3, 4, 8, 11, 23, 42, 150,
321, 404, 406, 414, 418, 419, 423,
431

StackOverflow, 24
this book’s, 8, 14, 135, 196, 344, 356,

431
while, 40
with, 125, 318
Working directory. See setwd
write.csv, 36, 44. See also

Comma-separated value (CSV)
file

Z
Z score. See scale; Standardizing

data

	Praise for R for Marketing Research and Analytics
	Preface
	Contents
	Part I Basics of R
	1 Welcome to R
	1.1 What Is R?
	1.2 Why R?
	1.3 Why Not R?
	1.4 When R?
	1.5 Using This Book
	1.5.1 About the Text
	1.5.2 About the Data
	1.5.3 Online Material
	1.5.4 When Things Go Wrong

	1.6 Key Points

	2 An Overview of the R Language
	2.1 Getting Started
	2.1.1 Initial Steps
	2.1.2 Starting R

	2.2 A Quick Tour of R's Capabilities
	2.3 Basics of Working with R Commands
	2.4 Basic Objects
	2.4.1 Vectors
	2.4.2 Help! A Brief Detour
	2.4.3 More on Vectors and Indexing
	2.4.4 aaRgh! A Digression for New Programmers
	2.4.5 Missing and Interesting Values
	2.4.6 Using R for Mathematical Computation
	2.4.7 Lists

	2.5 Data Frames
	2.6 Loading and Saving Data
	2.6.1 Image Files
	2.6.2 CSV Files

	2.7 Writing Your Own Functions*
	2.7.1 Language Structures*
	2.7.2 Anonymous Functions*

	2.8 Clean Up!
	2.9 Learning More*
	2.10 Key Points

	Part II Fundamentals of Data Analysis
	3 Describing Data
	3.1 Simulating Data
	3.1.1 Store Data: Setting the Structure
	3.1.2 Store Data: Simulating Data Points

	3.2 Functions to Summarize a Variable
	3.2.1 Discrete Variables
	3.2.2 Continuous Variables

	3.3 Summarizing Data Frames
	3.3.1 summary()
	3.3.2 describe()
	3.3.3 Recommended Approach to Inspecting Data
	3.3.4 apply()*

	3.4 Single Variable Visualization
	3.4.1 Histograms
	3.4.2 Boxplots
	3.4.3 QQ Plot to Check Normality*
	3.4.4 Cumulative Distribution*
	3.4.5 Language Brief: by() and aggregate()
	3.4.6 Maps

	3.5 Learning More*
	3.6 Key Points

	4 Relationships Between Continuous Variables
	4.1 Retailer Data
	4.1.1 Simulating Customer Data
	4.1.2 Simulating Online and In-Store Sales Data
	4.1.3 Simulating Satisfaction Survey Responses
	4.1.4 Simulating Non-Response Data

	4.2 Exploring Associations Between Variables with Scatterplots
	4.2.1 Creating a Basic Scatterplot with plot()
	4.2.2 Color-Coding Points on a Scatterplot
	4.2.3 Adding a Legend to a Plot
	4.2.4 Plotting on a Log Scale

	4.3 Combining Plots in a Single Graphics Object
	4.4 Scatterplot Matrices
	4.4.1 pairs()
	4.4.2 scatterplotMatrix()

	4.5 Correlation Coefficients
	4.5.1 Correlation Tests
	4.5.2 Correlation Matrices
	4.5.3 Transforming Variables before Computing Correlations
	4.5.4 Typical Marketing Data Transformations
	4.5.5 Box–Cox Transformations*

	4.6 Exploring Associations in Survey Responses*
	4.6.1 jitter()*
	4.6.2 polychoric()*

	4.7 Learning More*
	4.8 Key Points

	5 Comparing Groups: Tables and Visualizations
	5.1 Simulating Consumer Segment Data
	5.1.1 Segment Data Definition
	5.1.2 Language Brief: for() Loops
	5.1.3 Language Brief: if() Blocks
	5.1.4 Final Segment Data Generation

	5.2 Finding Descriptives by Group
	5.2.1 Language Brief: Basic Formula Syntax
	5.2.2 Descriptives for Two-Way Groups
	5.2.3 Visualization by Group: Frequencies and Proportions
	5.2.4 Visualization by Group: Continuous Data

	5.3 Learning More*
	5.4 Key Points

	6 Comparing Groups: Statistical Tests
	6.1 Data for Comparing Groups
	6.2 Testing Group Frequencies: chisq.test()
	6.3 Testing Observed Proportions: binom.test()
	6.3.1 About Confidence Intervals
	6.3.2 More About binom.test() and Binomial Distributions

	6.4 Testing Group Means: t.test()
	6.5 Testing Multiple Group Means: ANOVA
	6.5.1 Model Comparison in ANOVA*
	6.5.2 Visualizing Group Confidence Intervals
	6.5.3 Variable Selection in ANOVA: Stepwise Modeling*

	6.6 Bayesian ANOVA: Getting Started*
	6.6.1 Why Bayes?
	6.6.2 Basics of Bayesian ANOVA*
	6.6.3 Inspecting the Posterior Draws*
	6.6.4 Plotting the Bayesian Credible Intervals*

	6.7 Learning More*
	6.8 Key Points

	7 Identifying Drivers of Outcomes: Linear Models
	7.1 Amusement Park Data
	7.1.1 Simulating the Amusement Park Data

	7.2 Fitting Linear Models with lm()
	7.2.1 Preliminary Data Inspection
	7.2.2 Recap: Bivariate Association
	7.2.3 Linear Model with a Single Predictor
	7.2.4 lm Objects
	7.2.5 Checking Model Fit

	7.3 Fitting Linear Models with Multiple Predictors
	7.3.1 Comparing Models
	7.3.2 Using a Model to Make Predictions
	7.3.3 Standardizing the Predictors

	7.4 Using Factors as Predictors
	7.5 Interaction Terms
	7.5.1 Language Brief: Advanced Formula Syntax*

	7.6 Caution! Overfitting
	7.7 Recommended Procedure for Linear Model Fitting
	7.8 Bayesian Linear Models with MCMCregress()*
	7.9 Learning More*
	7.10 Key Points

	Part III Advanced Marketing Applications
	8 Reducing Data Complexity
	8.1 Consumer Brand Rating Data
	8.1.1 Rescaling the Data
	8.1.2 Aggregate Mean Ratings by Brand

	8.2 Principal Component Analysis and Perceptual Maps
	8.2.1 PCA Example
	8.2.2 Visualizing PCA
	8.2.3 PCA for Brand Ratings
	8.2.4 Perceptual Map of the Brands
	8.2.5 Cautions with Perceptual Maps

	8.3 Exploratory Factor Analysis
	8.3.1 Basic EFA Concepts
	8.3.2 Finding an EFA Solution
	8.3.3 EFA Rotations
	8.3.4 Using Factor Scores for Brands

	8.4 Multidimensional Scaling
	8.4.1 Non-metric MDS

	8.5 Learning More*
	8.5.1 Principal Component Analysis
	8.5.2 Factor Analysis
	8.5.3 Multidimensional Scaling

	8.6 Key Points
	8.6.1 Principal Component Analysis
	8.6.2 Exploratory Factor Analysis
	8.6.3 Multidimensional Scaling

	9 Additional Linear Modeling Topics
	9.1 Handling Highly Correlated Variables
	9.1.1 An Initial Linear Model of Online Spend
	9.1.2 Remediating Collinearity

	9.2 Linear Models for Binary Outcomes: Logistic Regression
	9.2.1 Basics of the Logistic Regression Model
	9.2.2 Data for Logistic Regression of Season Passes
	9.2.3 Sales Table Data
	9.2.4 Language Brief: Classes and Attributes of Objects*
	9.2.5 Finalizing the Data
	9.2.6 Fitting a Logistic Regression Model
	9.2.7 Reconsidering the Model
	9.2.8 Additional Discussion

	9.3 Hierarchical Linear Models
	9.3.1 Some HLM Concepts
	9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park
	9.3.3 Simulating Ratings-Based Conjoint Data
	9.3.4 An Initial Linear Model
	9.3.5 Hierarchical Linear Model with lme4
	9.3.6 The Complete Hierarchical Linear Model
	9.3.7 Summary of HLM with lme4

	9.4 Bayesian Hierarchical Linear Models*
	9.4.1 Initial Linear Model with MCMCregress()*
	9.4.2 Hierarchical Linear Model with MCMChregress()*
	9.4.3 Inspecting Distribution of Preference*

	9.5 A Quick Comparison of Frequentist & Bayesian HLMs*
	9.6 Learning More*
	9.6.1 Collinearity
	9.6.2 Logistic Regression
	9.6.3 Hierarchical Models
	9.6.4 Bayesian Hierarchical Models

	9.7 Key Points
	9.7.1 Collinearity
	9.7.2 Logistic Regression
	9.7.3 Hierarchical Linear Models
	9.7.4 Bayesian Methods for Hierarchical Linear Models

	10 Confirmatory Factor Analysis and Structural Equation Modeling
	10.1 The Motivation for Structural Models
	10.1.1 Structural Models in This Chapter

	10.2 Scale Assessment: CFA
	10.2.1 Simulating PIES CFA Data
	10.2.2 Estimating the PIES CFA Model
	10.2.3 Assessing the PIES CFA Model

	10.3 General Models: Structural Equation Models
	10.3.1 The Repeat Purchase Model in R
	10.3.2 Assessing the Repeat Purchase Model

	10.4 The Partial Least Squares (PLS) Alternative
	10.4.1 PLS-SEM for Repeat Purchase
	10.4.2 Visualizing the Fitted PLS Model*
	10.4.3 Assessing the PLS-SEM Model
	10.4.4 PLS-SEM with the Larger Sample

	10.5 Learning More*
	10.6 Key Points

	11 Segmentation: Clustering and Classification
	11.1 Segmentation Philosophy
	11.1.1 The Difficulty of Segmentation
	11.1.2 Segmentation as Clustering and Classification

	11.2 Segmentation Data
	11.3 Clustering
	11.3.1 The Steps of Clustering
	11.3.1.1 A Quick Check Function

	11.3.2 Hierarchical Clustering: hclust() Basics
	11.3.3 Hierarchical Clustering Continued: Groups from hclust()
	11.3.4 Mean-Based Clustering: kmeans()
	11.3.5 Model-Based Clustering: Mclust()
	11.3.6 Comparing Models with BIC()
	11.3.7 Latent Class Analysis: poLCA()
	11.3.8 Comparing Cluster Solutions
	11.3.9 Recap of Clustering

	11.4 Classification
	11.4.1 Naive Bayes Classification: naiveBayes()
	11.4.2 Random Forest Classification: randomForest()
	11.4.3 Random Forest Variable Importance

	11.5 Prediction: Identifying Potential Customers*
	11.6 Learning More*
	11.7 Key Points

	12 Association Rules for Market Basket Analysis
	12.1 The Basics of Association Rules
	12.1.1 Metrics

	12.2 Retail Transaction Data: Market Baskets
	12.2.1 Example Data: Groceries
	12.2.2 Supermarket Data

	12.3 Finding and Visualizing Association Rules
	12.3.1 Finding and Plotting Subsets of Rules
	12.3.2 Using Profit Margin Data with Transactions: An Initial Start
	12.3.3 Language Brief: A Function for Margin Using an Object's class*
	12.3.3.1 Motivation

	12.4 Rules in Non-Transactional Data: Exploring Segments Again
	12.4.1 Language Brief: Slicing Continuous Data with cut()
	12.4.2 Exploring Segment Associations

	12.5 Learning More*
	12.6 Key Points

	13 Choice Modeling
	13.1 Choice-Based Conjoint Analysis Surveys
	13.2 Simulating Choice Data*
	13.3 Fitting a Choice Model
	13.3.1 Inspecting Choice Data
	13.3.2 Fitting Choice Models with mlogit()
	13.3.3 Reporting Choice Model Findings
	13.3.3.1 Willingness-to-Pay
	13.3.3.2 Simulating Choice Shares
	13.3.3.3 Sensitivity Plots

	13.3.4 Share Predictions for Identical Alternatives
	13.3.5 Planning the Sample Size for a Conjoint Study

	13.4 Adding Consumer Heterogeneity to Choice Models
	13.4.1 Estimating Mixed Logit Models with mlogit()
	13.4.2 Share Prediction for Heterogeneous Choice Models

	13.5 Hierarchical Bayes Choice Models
	13.5.1 Estimating Hierarchical Bayes Choice Models with ChoiceModelR
	13.5.2 Share Prediction for Hierarchical Bayes Choice Models

	13.6 Design of Choice-Based Conjoint Surveys*
	13.7 Learning More*
	13.8 Key Points

	Conclusion
	A Appendix: R Versions and Related Software
	A.1 R Base
	A.2 RStudio
	A.3 Emacs Speaks Statistics
	A.4 Eclipse + StatET
	A.5 Revolution R
	A.6 Other Options
	A.6.1 Text Editors
	A.6.2 R Commander
	A.6.3 Rattle
	A.6.4 Deducer
	A.6.5 TIBCO Enterprise Runtime for R

	B Appendix: Scaling Up
	B.1 Handling Data
	B.1.1 Data Wrangling
	B.1.2 Microsoft Excel: gdata
	B.1.3 SAS, SPSS, and Other Statistics Packages: foreign
	B.1.4 SQL: RSQLite, sqldf and RODBC
	B.1.4.1 SQL Language
	B.1.4.2 SQL Data Sources

	B.2 Handling Large Data Sets
	B.3 Speeding Up Computation
	B.3.1 Efficient Coding and Data Storage
	B.3.2 Enhancing the R Engine

	B.4 Time Series Analysis, Repeated Measures, and Longitudinal Analysis
	B.5 Automated and Interactive Reporting

	C Appendix: Packages Used
	C.1 Core and Frequentist Statistics
	C.2 Graphics
	C.3 Bayesian Methods
	C.4 Advanced Statistics
	C.5 Machine Learning
	C.6 Data Handling
	C.7 Other Packages

	D Appendix: Online Materials and Data Files
	D.1 Data File Structure
	D.2 Data File URL Cross-Reference
	D.2.1 Update on Data Locations

	References
	Index

