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Preface 

Linear models are central to the practice of statistics. They are part of the core knowledge 
expected of any applied statistician. Linear models are the foundation of a broad range of 
statistical methodologies; this book is a survey of techniques that grow from a linear 
model. Our starting point is the regression model with response y and predictors x1,…xp. 
The model takes the form: 

y=β0+β1x1+…+βpxp+ε   

where ε is normally distributed. This book presents three extensions to this framework. 
The first generalizes the y part; the second, the ε part; and the third, the x part of the linear 
model. 

Generalized Linear Models: The standard linear model cannot handle nonnormal 
responses, y, such as counts or proportions. This motivates the development of 
generalized linear models that can represent categorical, binary and other response types. 

Mixed Effect Models: Some data has a grouped, nested or hierarchical structure. 
Repeated measures, longitudinal and multilevel data consist of several observations taken 
on the same individual or group. This induces a correlation structure in the error, ε. 
Mixed effect models allow the modeling of such data. 

Nonparametric Regression Models: In the linear model, the predictors, x, are 
combined in a linear way to model the effect on the response. Sometimes this linearity is 
insufficient to capture the structure of the data and more flexibility is required. Methods 
such as additive models, trees and neural networks allow a more flexible regression 
modeling of the response that combine the predictors in a nonparametric manner. 

This book aims to provide the reader with a well-stocked toolbox of statistical 
methodologies. A practicing statistician needs to be aware of and familiar with the basic 
use of a broad range of ideas and techniques. This book will be a success if the reader is 
able to recognize and get started on a wide range of problems. However, the breadth 
comes at the expense of some depth. Fortunately, there are book-length treatments of 
topics discussed in every chapter of this book, so the reader will know where to go next if 
needed. 

R is a free software environment for statistical computing and graphics. It runs on a 
wide variety of platforms including the Windows, Linux and Macintosh operating 
systems. Although there are several excellent statistical packages, only R is both free and 
possesses the power to perform the analyses demonstrated in this book. While it is 
possible in principle to learn statistical methods from purely theoretical expositions, I 
believe most readers learn best from the demonstrated interplay of theory and practice. 
The data analysis of real examples is woven into this book and all the R commands 
necessary to reproduce the analyses are provided. 

Prerequisites: Readers should possess some knowledge of linear models. The first 
chapter provides a review of these models. This book can be viewed as a sequel to Linear 



Models with R, Faraway (2004). Even so there are plenty of other good books on linear 
models such as Draper and Smith (1998) or Weisberg (2005), that would provide ample 
grounding. Some knowledge of likelihood theory is also very useful. An outline is 
provided in Appendix A, but this may be insufficient for those who have never seen it 
before. A general knowledge of statistical theory is also expected concerning such topics 
as hypothesis tests or confidence intervals. Even so, the emphasis in this text is on 
application, so readers without much statistical theory can still learn something here. 

This is not a book about learning R, but the reader will inevitably pick up the language 
by reading through the example data analyses. Readers completely new to R will benefit 
from studying an introductory book such as Dalgaard (2002) or one of the many tutorials 
available for free at the R website. Even so, the book should be intelligible to a reader 
without prior knowledge of R just by reading the text and output. R skills can be further 
developed by modifying the examples in this book, trying the exercises and studying the 
help pages for each command as needed. There is a large amount of detailed help on the 
commands available within the software and there is no point in duplicating that here. 
Please refer to Appendix B for details on obtaining and installing R along with the 
necessary add-on packages and data necessary for running the examples in this text. S-
plus derives from the same S language as R, so many of the commands in this book will 
work. However, there are some differences in the syntax and the availability of add-on 
packages, so not everything here will work in S-plus. 

The website for this book is at www.stat.Isa.umich.edu/~faraway/ELM where data 
described in this book appears. Updates and errata will also appear there. 

Thanks to the builders of R without whom this book would not have been possible.  
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CHAPTER 1  
Introduction 

This book is about extending the linear model methodology using R statistical software. 
Before setting off on this journey, it is worth reviewing both linear models and R. We 
shall not attempt a detailed description of linear models; the reader is advised to consult 
texts such as Faraway (2004), Draper and Smith (1998) or Weisberg (2005). However, 
we will review the main points. Also, we do not intend this as a self-contained 
introduction to R as this may be found in books such as Dalgaard (2002) or Maindonald 
and Braun (2003) or from guides obtainable from the R website. Even so, a reader 
unfamiliar with R should be able to follow the analysis to follow and learn a little R in the 
process without further preparation. 

Let’s consider an example. The 2000 United States Presidential election generated 
much controversy, particularly in the state of Florida where there were some difficulties 
with the voting machinery. In Meyer (2002), data on voting in the state of Georgia is 
presented and analyzed. Let’s take a look at this data using R. Please refer to Appendix B 
for details on obtaining and installing R along with the necessary addon packages and 
data for running the examples in this text. R commands are typed at the command 
prompt: >. We start by loading the package of datasets that are used in this book: 

> library(faraway) 

Please remember that every time you want to access a dataset specific to this book, you 
will need to type the library (faraway) command. Since you might start a new session at 
any point in this book, in future we will simply assume that you type this first. If you 
forget, you will receive an error message notifying you that the data could not be found. 

Next we load the dataset with the Georgia voting information: 

> data(gavote) 

The data command loads the particular dataset into R. In R, the object containing the data 
is called a dataframe. In most installations of R, this data step will be unnecessary as the 
datasets will be silently accessed using a process called lazy loading. However, we will 
retain this command throughout this book as a marker to indicate that we intend to use a 
particular dataset in R. Rather than typing the command, you might regard it as a 
reminder to consult the help page for the dataset. We can obtain definitions of the 
variables and more information about the dataset using the help command: 

> help(gavote) 



You can use the help command to learn more about any of the commands we use. For 
example, to learn about the quantile command:  

> help(quantile) 

If you do not already know or guess the name of the command you need, use: 

> help.search("quantiles") 

to learn about all commands that refer to quantiles. More generally, use: 

> help.start () 

to browse through the documentation. 
We can examine the contents of the dataframe simply by typing its name: 

> gavote 
         equip econ perAA rural    atlanta gore bush 
APPLING  LEVER poor 0.182 rural notAtlanta 2093 3940 
ATKINSON LEVER poor 0.230 rural notAtlanta  821 1228 
.... 

We have deleted most of the output although this dataset is small enough to be 
comfortably examined in its entirety. Sometimes, we simply want to look at the first few 
cases. The head command is useful for this: 

> head (gavote) 
          equip   econ perAA rural    atlanta gore bush 
other 
APPLING   LEVER   poor 0.182 rural notAtlanta 2093 
3940    66 
ATKINSON  LEVER   poor 0.230 rural notAtlanta  821 
1228    22 
BACON     LEVER   poor 0.131 rural notAtlanta  956 
2010    29 
BAKER     os-cc   poor 0.476 rural 
notAtlanta  893  615    11 
BALDWIN   LEVER middle 0.359 rural notAtlanta 5893 
6041   192 
BANKS     LEVER middle 0.024 rural notAtlanta 1220 
3202   111 
          votes ballots 
APPLING    6099    6617 
ATKINSON   2071    2149 
BACON      2995    3347 
BAKER      1519    1607 
BALDWIN   12126   12785 
BANKS      4533    4773 
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The cases in this dataset are the counties of Georgia and the variables are (in order) the 
type of voting equipment used, the economic level of the county, the percentage of 
African Americans, whether the county is rural or urban, whether the county is part of the 
Atlanta metropolitan area, the number of voters for A1 Gore, the number of voters for 
George Bush, the number of voters for other candidates, the number of votes cast, and 
ballots issued. 

A potential voter goes to the polling station where it is determined whether he or she is 
registered to vote. If so, a ballot is issued. However, a vote is not recorded if the person 
fails to vote for President, votes for more than one candidate or the equipment fails to 
record the vote. For example, we can see that in Appling county, 6617–6099=518 ballots 
did not result in votes for President. This is called the undercount. The purpose of our 
analysis will be to determine what factors affect the undercount. We will not attempt a 
full and conclusive analysis here because our main purpose is to illustrate the use of 
linear models and R. The reader is invited to fill in some of the gaps in the analysis.  

Initial data analysis: The first stage in any data analysis should be an initial graphical 
and numerical look at the data. A compact numerical overview is: 

> summary(gavote) 
   equip          econ           perAA       rural 
LEVER:74     middle:69   Min.    :0.000 rural:117 
OS-CC:44     poor:72     1st Qu. :0.112 urban: 42 
OS-PC:22     rich:18     Median  :0.233 
PAPER: 2                 Mean    :0.243 
PUNCH:17                 3rd Qu. :0.348 
                          Max.    :0.765 
       atlanta          gore            bush 
Atlanta   : 15   Min.    :   249  Min.   :   271 
notAtlanta:144   1st Qu. :  1386  1st Qu.:  1804 
                  Median  :  2326  Median :  3597 
                  Mean    :  7020  Mean   :  8929 
                  3rd Qu. :  4430  3rd Qu.:  7468 
                  Max.    :154509  Max.   :140494 
     other          votes           ballots 
Min.   :   5   Min.   :   832  Min.   :   881 
1st Qu.:  30   1st Qu.:  3506  1st Qu.:  3694 
Median :  86   Median :  6299  Median :  6712 
Mean   : 382   Mean   : 16331  Mean   : 16927 
3rd Qu.: 210   3rd Qu.: 11846  3rd Qu.: 12251 
Max.   :7920   Max.   :263211  Max.   :280975 

For the categorical variables, we get a count of the number of each type that occur. We 
notice, for exam ple, that only two counties used a paper ballot. This will make it difficult 
to estimate the effect of this particular voting method on the undercount. For the 
numerical variables, we have six statistics that are sufficient to get a rough idea of the 
distributions. In particular, we notice that the number of ballots cast ranges over orders of 
magnitudes. This suggests that we should consider the relative, rather than the absolute, 
undercount. We create this new relative undercount variable, where we specify the 
variables using the dataframe$variable syntax: 
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> gavote$undercount <- (gavote$ballots-
gavote$votes)/gavote$ballots 
> summary(gavote$undercount) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.0000  0.0278  0.0398  0.0438  0.0565  0.1880 

We see that the undercount ranges from zero up to as much as 19%. The mean across 
counties is 4.38%. Note that this is not the same thing as the overall relative under-count 
which is: 

> sum(gavote$ballots-gavote$votes)/sum(gavote$ballots) 
[1] 0.03518 

Graphical summaries are also valuable in gaining an understanding of the data. 
Considering just one variable at a time, histograms are a well-known way of examining 
the distribution of a variable: 

> 
hist(gavote$undercount,main="Undercount",xlab="Percent 
Undercount") 

The plot is shown in the left panel of Figure 1.1. A histogram is a fairly crude estimate  

 

Figure 1.1 Histogram of the 
undercount is shown on the left and a 
density estimate with a data rug is 
shown on the right. 

of the density of the variable that is sensitive to the choice of bins. A kernel density 
estimate can be viewed as a smoother version of a histogram that is also a superior 
estimate of the density. We have added a “rug” to our display that makes it possible to 
discern the individual data points: 

> plot (density (gavote$undercount), main="Undercount") 
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> rug (gavote$undercount)  

We can see that the distribution is slightly skewed and that there are two outliers in the 
right tail of the distribution. Such plots are invaluable in detecting mistakes or unusual 
points in the data. Categorical variables can also be graphically displayed. The pie chart 
is a popular method. We demonstrate this on the types of voting equipment: 

> pie(table(gavote$equip), col=gray(0:4/4)) 

The plot is shown in the first panel of Figure 1.2. We have used shades of gray for the 
slices of the pie because this is a monochrome book. If you omit the col argument, you 
will see a color plot by default. Of course, a color plot is usually preferable, but bear in 
mind that most photocopying machines and many laser printers are black and white only, 
so a good greyscale plot is still needed. An alternative plot is a Pareto chart which is 
simply a bar plot with categories in descending order of frequency: 

> barplot(sort(table(gavote$equip), 
decreasing=TRUE),las=2) 

The plot is shown in the second panel of Figure 1.2. The las=2 argument means that the 
bar labels are printed vertically as opposed to horizontally, ensuring that there is enough 
room for them to be seen. The Pareto chart (or just a bar plot) is superior to the pie chart 
because the size of the categories are easier to comprehend in the former plot. 

Two dimensional plots are also very helpful. A scatterplot is the obvious way to depict 
two quantitative variables. Let’s see how the proportion voting for Gore relates to the 
proportion of African Americans: 

> gavote$pergore <- gavote$gore/gavote$votes 
 plot(pergore ~ perAA, gavote, xlab="Proportion 

African American", 

ylab="Proportion for Gore") 

The plot, seen in the first panel of Figure 1.3, shows a strong correlation between these 
variables. This is an ecological correlation because the data points are aggregated across 
counties. The plot, in and of itself, does not prove that individual African Americans 
were more likely to vote for Gore, although we know this to be true from other sources. 
We could also compute the proportion of voters for Bush, but this is, not surprisingly, 
strongly negatively correlated with the proportion of voters for Gore. We do not need 
both variables as the one explains the other. We will use the proportion for Gore in the 
analysis to follow although one could just as well replace this with the proportion for 
Bush. We will not consider the proportion for other voters as this has little effect on our 
conclusions. The reader may wish to verify this. 
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Figure 1.2 Pie chart of the voting 
equipment frequencies is shown on the 
left and a Pareto chart on the right. 

Side-by-side boxplots are a good way of displaying the relationship between 
qualitative and quantitative variables: 

> plot(undercount ~ equip, gavote, xlab=" ", las=3) 

The plot, shown in the second panel of Figure 1.3, shows no major differences in 
undercount for the different types of equipment. Two outliers are visible for the optical 
scan-precinct count (OS-PC) method. Plots of two qualitative variables are generally not 
worthwhile unless both variables have more than three or four levels. The xtabs () 
function is useful for compiling cross-tabulations: 

> xtabs (~ atlanta + rural, gavote) 
             rural 
atlanta       rural urban 
  Atlanta         1    14 
  notAtlanta    116    28 

We see that just one county in the Atlanta area is classified as rural. 
Correlations are the standard way of numerically summarizing the relationship  
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Figure 1.3 A scatterplot plot of 
proportions of Gore voters and African 
Americans by county is shown on the 
left. Boxplots showing the distribution 
of the undercount by voting equipment 
are shown on the right. 

between quantitative variables. However, not all the variables in our dataframe are 
quantitative or immediately of interest. First we construct a vector using c ( ) of length 
three which contains the indices of the variables of interest. We select these columns 
from the dataframe and compute the correlation. The syntax for selecting rows and/or 
columns is dataframe [rows, columns] where rows and/or columns are vectors of indices. 
In this case, we want all the rows, so we omit that part of the construction: 

> nix <- c(3,10,11,12) 
> cor(gavote[,nix]) 
              perAA  ballots undercount pergore 
perAA      1.000000 0.027732    0.22969 0.921652 
ballots    0.027732 1.000000   -0.15517 0.095617 
undercount 0.229687-0.155172    1.00000 0.218765 
pergore    0.921652 0.095617    0.21877 1.000000 

We see some mild correlation between some of the variables except for the Gore—
African Americans correlation which we know is large from the previous plot. 

Defining a linear model: We shall try to describe this data with a linear model which 
takes the form: 

Y=β0+β1X1+β2X2+…+βp−1Xp−1+ε   

where βi, i=0, 1, 2,…,p−1 are unknown parameters. β0 is called the intercept term. The 
response is Y and the predictors are X1,…,Xp−1. The predictors may be the original 
variables in the dataset or transformations or combinations of them. The error ε 
represents the difference between what is explained by the systematic part of the model 
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and what is observed. ε may include measurement error although it is often due to the 
effect of unincluded or unmeasured variables. 

The regression equation is more conveniently written as:  
y=Xβ+ε   

where, in terms of then data points, y=(y1,…, yn)T, ε=(ε1,…, εn)T, β=(β0,…, βp−1)T and: 

 

  

The column of ones incorporates the intercept term. The least squares estimate of β, 

called minimizes: 

 
  

Differentiating with respect to β and setting to zero, we find that satisfies: 

   

These are called the normal equations. 
Fitting a linear model: Linear models in R are fit using the 1m command. For 

example, suppose we model the undercount as the response and the proportions of Gore 
voters and African Americans as predictors: 

> lmod <- 1m(undercount ~ pergore+perAA, gavote) 

This corresponds to the linear model formula: 
undercount=β0+β1pergore+β2perAA+ε   

R uses the Wilkinson-Rogers notation of Wilkinson and Rogers (1973). For a straight-
forward linear model, such as here, we see that it corresponds to just dropping the 
parameters from the mathematical form. The intercept is included by default. 

We can obtain the least squares estimates of β, called the regression coefficients, by: 

> coef(lmod) 
(Intercept)  pergore    perAA 
   0.032376 0.010979 0.028533 

The construction of the least squares estimates do not require any assumptions about ε. If 
we are prepared to assume that the errors are at least independent and have equal 
variance, then the Gauss-Markov theorem tells us that the least squares estimates are the 
best linear unbiased estimates. Although it is not necessary, we might further assume that 
the errors are normally distributed, we might compute the maximum likelihood estimate 
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(MLE) of β (see Appendix A for more MLEs). For the linear models, these MLEs are 
identical with the least squares estimates. However, we shall find that, in some of the 
extension of linear models considered later in this book, an equivalent notion to least 
squares is not suitable and that likelihood methods must be used. This issue does not arise 
with the standard linear model. 

The predicted or fitted values are while the residuals are 
We can compute these as: 

> predict (lmod) 
  APPLING ATKINSON    BACON    BAKER  BALDWIN    BANKS 
0.041337 0.043291 0.039618 0.052412 0.047955 0.036016 
...  
> residuals(lmod) 
    APPLING   ATKINSON     BACON     BAKER   BALDWIN 
  0.0369466 -0.0069949 0.0655506 0.0023484 0.0035899 
... 

where the ellipsis indicates that (much of) the output has been omitted. 
It is useful to have some notion of how well the model fits the data. The residual sum 

of squares (RSS) is This can be computed as: 

> deviance(lmod) 
[1] 0.09325 

The term deviance is a more general measure of fit than RSS, which we will meet again 
in chapters to follow. For linear models, the deviance is the RSS. 

The degrees of freedom for a linear model is the number of cases minus the number of 
coefficients or: 

> df.residual(lmod) 
[1] 156 
> nrow(gavote) - length(coef(lmod)) 
[1] 156 

Let the variance of the error be σ2, then σ is estimated by the residual standard error 

computed from For our example, this works out to be: 

> sqrt (deviance (lmod) / df.residual (lmod)) 
[1] 0.024449 

Although several useful regression quantities are stored in the 1m model object (which 
we called lmod in this instance), we can compute several more using the summary 
command on the model object. For example: 

> lmodsum <- summary(lmod) 
> lmodsum$sigma 
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[1] 0.024449 

R is an object-oriented language. One important feature of such a language is that generic 
functions, such as summary, recognize the type of object being passed to it and behave 
appropriately. We used summary for dataframes above and now for linear models, 
residuals is another generic function and we shall see how it can be applied to many 
model types and return appropriately defined residuals. 

The deviance measures how well the model fits in an absolute sense, but it does not 
tell us how well the model fits in a relative sense. The popular choice is R2, called the 
coefficient of determination or percentage of variance explained: 

 

  

where and stands for total sum of squares. This can be most 
conveniently extracted as: 

> lmodsum$r.squared 
[1] 0.053089 

We see that R2 is only about 5% which indicates that this particular model does not fit so 
well. An appreciation of what constitutes a good value of R2 varies according to the 
application. Another way to think of R2 is the (squared) correlation between the predicted 
values and the response: 

> cor (predict(lmod), gavote$undercount) ^2 
[1] 0.053089 

R2 suffers as a criterion for choosing models among those available because it can never 
decrease when you add a new predictor to the model. This means that it will favor the 
largest models. The adjusted R2 makes allowance for the fact a larger model also uses 
more parameters. It is defined as: 

 
  

Adding a predictor will only increase if it has some predictive value. Furthermore, 

minimizing means maximizing over a set of possible linear models. The value can 
be extracted as: 

> lmodsum$adj.r.squared 
[1] 0.040949 

One advantage of R over many statistical packages is that we can extract all these 
quantities individually for subsequent calculations in a convenient way. However, if we 
simply want to see the regression output printed in a readable way, we use the summary: 
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> summary(lmod) 
Residuals: 
     Min       1Q   Median      3Q     Max 
-0.04601 -0.01500 -0.00354 0.01178 0.14244 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   0.0324     0.0128    2.54    0.012 
pergore       0.0110     0.0469    0.23    0.815 
perAA         0.0285     0.0307    0.93    0.355 
Residual standard error: 0.0244 on 156 degrees of 
freedom 
Multiple R-Squared: 0.0531, Adjusted R-squared: 0.0409 
F-statistic: 4.37 on 2 and 156 DF,   p-value: 0.0142 

We have already separately computed many of the quantities given above. 
Qualitative predictors: The addition of qualitative variables requires the introduction 

of dummy variables. Two-level variables are easy to code; consider the rural/urban 
indicator variable. We can code this using a dummy variable d: 

 

  

This is the default coding used in R. Zero is assigned to the level which is first 
alphabetically, unless something is done to change this (perhaps using the relevel 
command). If we add this variable to our model, it would now be:  

under count =β0+β1pergore+β2perAA+β3d+ε   

So β3 would now represent the difference between the undercount in an urban county and 
a rural county. Codings other than 0–1 could be used although the interpretation of the 
associated parameter would not be quite as straightforward. 

A more extensive use of dummy variables is needed for factors with k>2 levels. Let B 
be an n×k dummy variable matrix where Bij=1 if case i falls in class j and is zero 
otherwise. The coding is determined by a contrast matrix C which has dimension k×(k–
1). The contribution of the factor to the model matrix X is then given by BC. 

Consider the voting equipment, which is a five-level factor. The default choice for R is 
treatment coding. The contrast matrix, C that describes this coding, where the columns 
represent the dummy variables and the rows represent the levels, is: 

> contr.treatment(5) 
  2 3 4 5 
1 0 0 0 0 
2 1 0 0 0 
3 0 1 0 0 
4 0 0 1 0 
5 0 0 0 1 

This treats level one (LEVER in this example) as the standard level to which all other 
levels are compared. Each parameter for the dummy variable then represents the 

Introduction     11



difference between the given level and the first level. Other codings, which define 
different C matrices, are used, such as Helmert or sum contrasts, but the treatment coding 
is generally the easiest to interpret. 

Interactions between variables can be added to the model by taking the columns of the 
model matrix X that correspond to the two variables. Call these submatrices A and B 
having r and s columns, respectively. We then form a new matrix by multiplying every 
column of A elementwise with every column of B. This new matrix will have rs columns 
with typical element aijbik where i=1,…, n, j=1,…, r and k=1,…, s. 

Interpretation: Let’s add some qualitative variables to the model to see how the 
terms can be interpreted. We have centered the pergore and perAA terms by their means 
for reasons that will become clear: 

> gavote$cpergore <- gavote$pergore - 
mean(gavote$pergore) 
> gavote$cperAA <- gavote$perAA - mean (gavote$perAA) 
> lmodi <- lm(undercount ~ cperAA+cpergore*rural+eguip, 
gavote) 
> summary(lmodi) 
Coefficients: 
                    Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)          0.04330    0.00284   15.25  < 2e-
16 
cperAA               0.02826    0.03109    0.91   0.364
8 
cpergore             0.00824    0.05116    0.16   0.872
3 
ruralurban          -0.01864    0.00465   -4.01 
0.000096 
equipOS-
CC           0.00648    0.00468    1.39   0.1681 
eguipOS-
PC           0.01564    0.00583    2.68   0.0081 
eguipPAPER          -0.00909    0.01693   -
0.54   0.5920 
eguipPUNCH           0.01415    0.00678    2.09   0.038
7 
cpergore:ruralurban -0.00880    0.03872   -
0.23   0.8205  
Residual standard error: 0.0233 on 150 degrees of 
freedom 
Multiple R-Squared: 0.17,Adjusted R-squared: 0.125 
F-statistic: 3.83 on 8 and 150 DF,  p-value: 0.0004  

Consider a rural county which has an average proportion of Gore voters and an average 
proportion of African Americans where lever machines are used for voting. Because rural 
and lever are the reference levels for the two qualitative variables, there is no contribution 
to the predicted undercount from these terms. Furthermore, because we have centered the 
two quantitative variables at their mean values, these terms also do not enter into the 
prediction. Notice the worth of the centering because otherwise we would need to set 
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these variables to zero to get them to drop out of the prediction equation; zero is not a 
typical value for these predictors. Given that all the other terms are dropped, the predicted 
undercount is just given by the intercept, which is 4.33%. 

The interpretation of the coefficients can now be made relative to this baseline. We see 
that, with all other predictors unchanged, except using optical scan with precinct count 
(OS-PC), the predicted undercount increases by 1.56%. The other equipment methods 
can be similarly interpreted. Notice that we need to be cautious about the interpretation. 
Given two counties with the same values of the predictors, except having different voting 
equipment, we would predict the undercount to be 1.56% higher for the OS-PC county 
compared to the lever county. However, we would not go so far as to say that if we went 
to a county with lever equipment and changed it to OS-PC that this would cause the 
undercount to increase by 1.56%. 

With all other predictors held constant, we would predict the undercount to increase 
by 2.83% going from a county with no African Americans to all African American. 
Sometimes a one-unit change in a predictor is too large or too small, prompting a 
rescaling of the interpretation. For example, we might predict a 0.283% increase in the 
undercount for a 10% increase in the proportion of African Americans. Of course, this 
interpretation should not be taken too literally. We already know that the proportion of 
African Americans and Gore voters is strongly correlated so that an increase in the 
proportion of one would lead to an increase in the proportion of the other. This is the 
problem of collinearity which makes interpretation of regression coefficients more 
difficult. Furthermore, the proportion of African Americans is likely to be associated with 
other socioeconomic variables which might also be related to the undercount. This further 
hinders the possibility of a causal conclusion. 

The interpretation of the rural and per go re cannot be done separately as there is an 
interaction term between these two variables. We see that for an average number of Gore 
voters, we would predict a 1.86%-lower undercount in an urban county compared to a 
rural county. In a rural county, we predict a 0.08% increase in the undercount as the 
proportion of Gore voters increases by 10%. In an urban county, we predict a (0.00824–
0.00880)*10=−0.0056% increase in the undercount as the proportion of Gore voters 
increases by 10%. Since the increase is by a negative amount, this is actually a decrease. 
This illustrates the potential pitfalls in interpreting the effect of a predictor in the presence 
of an interaction. We cannot give a simple stand-alone interpretation of the effect of the 
proportion of Gore voters. The effect is to increase the undercount in rural counties and to 
decrease it, if only very slightly, in urban counties. 

Hypothesis testing: We often wish to determine the significance of one, some or all 
of the predictors in a model. If we assume that the errors are independent and identically 
normally distributed, there is a very general testing procedure that may be used. Suppose 
we compare two models, a larger model Ω and a smaller model ω contained within that 
can be represented as a linear restriction on the parameters of the larger model. Most 
often, the predictors in ω are just a subset of the predictors in Ω. 

Now suppose that the dimension (or number of parameters) of Ω is p and the 
dimension of ω is q, then, assuming that the smaller model ω is correct, the F-statistic is 
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Thus we would reject the null hypothesis that the smaller model is correct if 

 
For example, we might compare the two linear models we have fit so far. The smaller 

model has just pergore and perAA while the larger model adds rural and equip along with 
an interaction. We may compute the F-test as: 

> anova(lmod,lmodi) 
Analysis of Variance Table 
Model 1: undercount ~ pergore + perAA 
Model 2: undercount ~ cperAA + cpergore * rural + eguip 
  Res.Df    RSS  Df Sum of Sg    F Pr(>F) 
1 156 0.0932 
2 150 0.0818      6    0.0115 3.51 0.0028 

It does not matter that the variables have been centered in the larger model but not in the 
smaller model, because the centering makes no difference to the RSS. The p-value here is 
small indicating the null hypothesis of preferring the smaller model should be rejected. 

One common F-test is the comparison of the current model to the null model, which is 
the model with no predictors and just an intercept term. This corresponds to the question 
of whether any of the variables have predictive value. For the larger model above, we can 
see that this F-statistic is 3.83 on 8 and 150 degrees of freedom with a p-value of 0.0004. 
We can see clearly that at least some of the predictors have some significance. 

Another common need is to test specific predictors in the model. It is possible to use 
the general F-testing method: fit a model with the predictor and without the predictor and 
compute the F-statistic. It is important to know what other predictors are also included in 
the models and the results may differ if these are also changed. An alternative approach is 
to use a t-statistic for testing the hypothesis: 

   

and check for significance using a t-distribution with n−p degrees of freedom. This 
approach will produce exactly the same p-value as the F-testing method. For example, in 
the larger model above, the test for the significance of the proportion of African 
Americans gives a p-value of 0.3648. This indicates that this predictor is not statistically 
significant after adjusting for the effect of the other predictors on the response. 

We would usually avoid using the t-tests for the levels of qualitative predictors with 
more than two levels. For example, if we were interested in testing the effects of the 
various voting equipment, we would need to fit a model without this predictor and 
compute the corresponding F-test. A comparison of all models with one predictor less 
than the larger model may be obtained conveniently as: 

> dropl(lmodi, test="F") 
Single term deletions 
Model: 
undercount ~ cperAA + cpergore * rural + equip 
               Df Sum of Sq      RSS   AIC F value Pr 
(F) 
<none>                      0.081775 -1186 
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cperAA          1  0.000451 0.082226 -
1187    0.83  0.365 
equip           4  0.005444 0.087219 -
1184    2.50  0.045 
cpergore:rural  1  0.000028 0.081804 -
1188    0.05  0.821 

We see that the equipment is barely statistically significant in that the p-value is just less 
than the traditional 5% significance level. You will also notice that only the interaction 
term cpergore: rural is considered and not the corresponding main effects terms, cpergore 
and rural. This demonstrates respect for the hierarchy principle which demands that all 
lower-order terms corresponding to an interaction be retained in the model. In this case, 
we see that the interaction is not significant, but a further step would now be necessary to 
test the main effects. 

There are numerous difficulties with interpreting the results of hypothesis tests and the 
reader is advised to avoid taking the results too literally before understanding these 
problems. 

Confidence intervals for β may be constructed using: 

 
  

where is the upper α/2th quantile of a t distribution with n–p degrees of freedom. A 
convenient way of computing the 95% confidence intervals in R is: 

> confint(lmodi) 
                          2.5 %     97.5 % 
(Intercept)          0.03768844  0.0489062 
cperAA              -0.03317106  0.0896992 
cpergore            -0.09284293  0.1093166 
ruralurban          -0.02782090 -0.0094523 
equipOS-CC          -0.00276464  0.0157296 
equipOS-PC           0.00412523  0.0271540 
equipPAPER          -0.04253684  0.0243528 
equipPUNCH           0.00074772  0.0275515 
cpergore:ruralurban -0.08529909  0.0677002 

Confidence intervals have a duality with the corresponding t-tests in that if the p-value is 
greater than 5%, zero will fall in the interval and vice versa. Confidence intervals give a 
range of plausible values for the parameter and are more useful for judging the size of the 
effect of the predictor than a p-value which merely indicates statistical significance, not 
necessarily practical significance. These intervals are individually correct, but there is not 
a 95% chance that the true parameter values fall in all the intervals. This problem of 
multiple comparisons is particularly acute for the voting equipment, where five levels 
leads to 10 possible pairwise comparisons, more than just the four shown here. 

Diagnostics: The validity of the inference depends on the assumptions concerning the 
linear model. One part of these assumptions is that the systematic form of the model 
EY=Xβ is correct; we have included all the right variables and transformed and combined 
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them correctly. Another set of assumptions concerns the random part of the model: ε. We 
require that the errors have equal variance, be uncorrelated and have a normal 
distribution. We are also interested in detecting points, called outliers, that are unusual in 
that they do not fit the model that seems adequate for the rest of the data. Ideally, we 
would like each case to have an equal contribution to the fitted model; yet sometimes a 
few points have a much larger effect than others. Such points are called influential. 

Diagnostic methods can be graphical or numerical. We generally prefer graphical 
methods because they tend to be more versatile and informative. It is virtually impossible 
to verify that a given model is exactly correct. The purpose of the diagnostics is more to 
check whether the model is not grossly wrong. Indeed, a successful data analyst should 
pay more attention to avoiding big mistakes than optimizing the fit. 

A collection of four useful diagnostics can be simply obtained with: 

> plot (lmodi) 

as can be seen in Figure 1.4. The plot in the upper-left panel shows the residuals plotted 
against the fitted values. The plot can be used to detect lack of fit. If the residuals show 
some curvilinear trend, this is a sign that some change to the model is required, often a 
transformation of one of the variables. In this instance, there is no sign of such a problem. 
The plot is also used to check the constant variance assumption on the errors. In this case, 
it seems the variance is roughly constant as the fitted values vary. Assuming symmetry of 
the errors, we can effectively double the resolution by plotting the absolute value of the 
residuals against the fitted values. As it happens tends to be rather skewed and is better 
to use Such a plot is shown in the lower-left panel, confirming what we have already 
observed about the constancy of the variance. Notice that a few larger residuals have 
been labeled. 

The residuals can be assessed for normality using a QQ plot. This compares the residuals 

to “ideal” normal observations. We plot the sorted residuals against for i=1,…, 
n. This can be seen in the upper-right panel of Figure 1.4. In this plot, the points follow a 
linear trend (except for one or two cases), indicating that normality is a reasonable 
assumption. If we observe a curve, this indicates skewness, suggesting a possible 
transformation of the response, while two tails of points diverging from linearity would 
indicate a long-tailed error, suggesting that we should consider robust fitting methods. 
Particularly for larger datasets, the normality assumption is not crucial, as the inference 
will be approximately correct in spite of the nonnormality. Only a clear deviation from 
normality should necessarily spur some action to change the model. 

The Cook statistics are a popular influence diagnostic because they reduce the 
information to a single value for each case. They are defined as: 
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Figure 1.4 Diagnostics obtained from 
plotting the model object. 

They represent a scaled measure of the change in the fit if the single case is dropped from 
the dataset. An index plot of the Cook statistics for the current model is given in the 
lower-right panel of Figure 1.4. We can see that there are a couple of cases that stick out 
and we should investigate more closely the influence of these points. We can pick out the 
top two influential cases with: 

> gavote[cooks.distance(lmodi) > 0.1,]  
         equip econ perAA rural    atlanta gore bush 
other votes 
BEN.HILL OS-PC poor 0.282 rural notAtlanta 2234 
2381    46  4661 
RANDOLPH OS-PC poor 0.527 rural notAtlanta 1381 
1174    14  2569 
         ballots undercount pergore cpergore   cperAA 
BEN.HILL    5741    0.18812 0.47930 0.070975 0.039019 
RANDOLPH    3021    0.14962 0.53756 0.129241 0.284019 
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Notice how we can select a subset of a dataframe using a logical expression. Here we ask 
for all rows in the dataframe that have Cook statistics larger than 0.1. We see that these 
are the same two counties that stuck out in the boxplots seen in Figure 1.3. 

The fitted values can be written as where the hat-
matrix H=X(XTX)−1XT. hi=Hii are called leverages and are useful diagnostics. For 
example, since var a large leverage, hi, will tend to make var small. 
The fit will be “forced” close to yi. It is useful to examine the leverages to determine 
which cases have the power to be influential. Points on the boundary of the predictor 
space will have the most leverage. 

A useful technique for judging whether some cases in a set of positive observations 
are unusually extreme is the half-normal plot. Here we plot the sorted values against 

which represent the quantiles of the upper half of a standard normal 
distribution. We are usually not looking for a straight line relationship since we do not 
necessarily expect a positive normal distribution for quantities like the leverages. We are 
looking for outliers, which will be apparent as points that diverge substantially from the 
rest of the data. Here is the half-normal plot of the leverages: 

> halfnorm(influence(Imodi)$hat) 

The plot, seen in the left panel of Figure 1.5, shows two points with much higher leverage 
than the rest. These points are: 

> gavote[influence(lmodi)$hat>0.3,] 
           equip econ perAA rural    atlanta gore bush 
other 
MONTGOMERY PAPER poor 0.243 rural notAtlanta 1013 
1465    31 
TALIAFERRO PAPER poor 0.596 rural 
notAtlanta  556  271     5 
           votes ballots undercount pergore   cpergore 
MONTGOMERY  2509    2573   0.024874 0.40375 -0.0045753 
TALIAFERRO   832     881   0.055619 0.66827  0.2599475 

These are the only two counties that use a paper ballot, so they will be the only cases that 
determine the coefficient for paper. This is sufficient to give them high leverage as the 
remaining predictor values are all unremarkable. Note that these counties were not 
identified as influential—having high leverage alone is not necessarily enough to be 
influential. 

Partial residual plots display against xi. To see the motivation, look at the 
response with the predicted effect of the other X removed: 

 
  

The partial residual plot for cperAA is shown in the right panel of Figure 1.5: 
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> termplot(lmodi,partial=TRUE,terms=1) 

The line is the least squares fit to the data on this plot as well as having the same  

 

Figure 1.5 Half-normal plot of the 
leverages is shown on the left and a 
partial residual plot for the proportion 
of African Americans is shown on the 
right. 

slope as the cperAA term in the current model. This plot gives us a snapshot of the 
marginal relationship between this predictor and the response. In this case, we see a linear 
relationship indicating that it is not worthwhile seeking transformations. Furthermore, 
there is no sign that a few points are having undue influence on the relationship. 

Robust regression: Least squares works well when there are normal errors, but 
performs poorly for long-tailed errors. We have identified a few potential outliers in the 
current model. One approach is to simply eliminate the outliers from the dataset and then 
proceed with least squares. This approach is satisfactory when we are convinced that the 
outliers represent truly incorrect observations, but even then, detecting such cases is not 
always easy as multiple outliers can mask each other. However, in other cases, outliers 
are real observations. Sometimes, removing these cases simply creates other outliers. A 
generally better approach is to use a robust alternative to least squares that downweights 
the effect of larger errors. The Huber method is the default choice of the rlm function, 
which is part of the MASS package of Venables and Ripley (2002): 

> library(MASS) 
> rlmodi <- rlm(undercount ~ 
cperAA+cpergore*rural+equip, gavote) 
> summary(rlmodi) 
Coefficients: 
                    Value   Std. Error t value 
(Intercept)          0.041   0.002     17.866 
cperAA               0.033   0.025      1.290 
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cpergore            -0.008   0.042     -0.197 
ruralurban          -0.017   0.004     -4.406 
equipOS-CC           0.007   0.004      1.802 
equipOS-PC           0.008   0.005      1.695 
equipPAPER          -0.006   0.014     -0.427 
equipPUNCH           0.017   0.006      3.072 
cpergore:ruralurban 0.007 0.032        0.230 
Residual standard error: 0.0172 on 150 degrees of 
freedom 

Inferential methods are more difficult to apply when robust estimation methods are used, 
hence there is less in this output than for the corresponding 1m output above. The most 
interesting change is that the coefficient for OS-PC is now about half the size. Recall that, 
using the treatment coding, this represents the difference between OS-PC and the 
reference lever method. There is some fluctuation in the other coefficients, but not 
enough to change our impression of the important effects. The robust fit here has reduced 
the effect of the two outlying counties. 

Weighted least squares: The sizes of the counties in this dataset vary greatly with the 
number of ballots cast in each county ranging from 881 to 280,975. We might expect the 
proportion of undercounted votes to be more variable in smaller counties than larger 
ones. Since the responses from the larger counties might be more precise, one might think 
they should count for more in the fitting of the model. This effect can be achieved by the 

use of weighted least squares where we attempt to minimize The appropriate 
choice for the weights wi is to set them to be inversely proportional to var yi. 

Now var y for a binomial proportion is inversely proportional to the group size, in this 
case, the number of ballots. This suggests setting the weights proportional to the number 
of ballots: 

> wlmodi <- lm(undercount ~ 
cperAA+cpergore*rural+equip, 
gavote, weights=ballots) 

This results in a fit that is substantially different from the unweighted fit. It is dominated 
by the data from a few large counties. 

However, the variation in the response is likely to be caused by more than just 
binomial variation due to the number of ballots. There are likely to be other variables that 
affect the response in a way that is not proportional to ballot size. Consider the relative 
size of these effects. Even for the smallest county, assuming an average undercount rate, 
the standard deviation using the binomial is: 

> sqrt(0.035*(1-0.035)/881) 
[1] 0.0061917 

which is much smaller than the residual standard error of 0.0233. The effects will be 
substantially smaller for other counties. So since the other sources of variation dominate, 
we would recommend leaving this particular model unweighted. 
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Transformation: Models can sometimes be improved by transforming the variables. 
Ideas for transformations can come from several sources. One method is to search 
through a family of possible transformations looking for the best fit. An example of this 
approach is the Box-Cox method of selecting a transformation on the response variable. 
Alternatively, the diagnostic plots for the current model can suggest transformations that 
might improve the fit or ameliorate an apparent violations of the assumptions. In other 
situations, transformations may be motivated by theories concerning the relationship 
between the variables or to aid the interpretation of the model. 

For this dataset, transformation of the response is problematic for both technical and 
interpretational reasons. The minimum undercount is exactly zero which precludes 
directly applying some popular transformations such as the log or inverse. An arbitrary 
fix for this problem is to add a small amount (say 0.005 here) to the response which 
would enable the use of all power transformations. The application of the Box-Cox 
method, using the boxcox function from the MASS package, suggests a square root 
transformation of the response. However, it is difficult to give an interpre-tation to the 
regression coefficients with this transformation on the response. Other than no 
transformation at all, a logged response does allow a simple interpretation. For an 
untransformed response, the coefficients represent addition to the undercount whereas for 
a logged response, the coefficients can be interpreted as multiplying the response. So we 
see that, although transformations of the response might sometimes improve the fit, they 
can lead to difficulties with interpretation and so should be applied with care. Another 
point to consider is that if the untransformed response was normally distributed, it will 
not be so after transformation. This suggests considering nonnormal, continuous 
responses as seen in Section 7.1, for example. 

Transformations of the predictors are less problematic. Let’s first consider the 
proportion of African Americans predictor in the current model. Polynomials provide a 
commonly used family of transformations. The use of orthogonal polynomials is 
recommended as these a more numerically stable and make it easier to select the correct 
degree: 

> plmodi <- 1m(undercount ~ 
poly(cperAA,4)+cpergore*rural+equip, gavote) 
> summary(plmodi) 
Coefficients: 
                    Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)          0.04346    0.00288   15.12  < 2e-
16 
poly (cperAA, 
4)1    0.05226    0.06939    0.75   0.4526 
poly (cperAA, 4)2   -0.00299    0.02613   -
0.11   0.9091 
poly (cperAA, 4)3   -0.00536    0.02427   -
0.22   0.8254 
poly (cperAA, 4)4   -0.01651    0.02420   -
0.68   0.4961 
cpergore             0.01315    0.05693    0.23   0.817
6 
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ruralurban          -0.01913    0.00474   -4.03 
0.000088 
equipOS-
CC           0.00644    0.00472    1.36   0.1746 
equipOS-
PC           0.01559    0.00588    2.65   0.0089 
equipPAPER          -0.01027    0.01720   -
0.60   0.5514 
equipPUNCH           0.01405    0.00687    2.05   0.042
5 
cpergore:ruralurban -0.01054    0.04136   -
0.25   0.7993 
Residual standard error: 0.0235 on 147 degrees of 
freedom 
Multiple R-Squared: 0.173, Adjusted R-squared: 0.111 
F-statistic: 2.79 on 11 and 147 DF,   p-value: 0.00254 

The hierarchy principle requires that we avoid eliminating lower-order terms of a variable 
when high-order terms are still in the model. From the output, we see that the fourth-
order term is not significant and can be eliminated. With standard polynomials, the 
elimination of one term would cause a change in the values of the remaining coefficients. 
The advantage of the orthogonal polynomials is that the coefficients for the lower-order 
terms do not change as we change the maximum degree of the model. Here we see that 
all the terms of cperAA are not significant and all can be removed. Some insight into the 
relationship may be gained by plotting the fit on top of the partial residuals: 

> termplot(plmodi,partial=TRUE,terms=1) 

The plot, seen in the first panel of Figure 1.6, shows that the quartic polynomial is not so 
different from a constant fit, explaining the lack of significance. 

Polynomial fits become less attractive with higher-order terms. The fit is not local in 
the sense that a point in one part of the range of the variable affects the fit across the 
whole range. Furthermore, polynomials tend to have rather oscillatory fits and extrapolate 
poorly. A more stable fit can be had using splines, which are piecewise polynomials. 
Various types of splines are available and they typically have the local fit and stable 
extrapolation properties. We demonstrate the use of cubic B-splines here: 

> library (splines) 
> blmodi <- lm(undercount ~ cperAA+bs (cpergore, 
4)+rural+equip, gavote) 

Because the spline fit for cperAA was very similar to orthogonal polynomials, we 
consider cpergore here for some variety. Notice that we have eliminated the interaction 
with rural for simplicity. The complexity of the B-spline fit may be controlled by 
specifying the degrees of freedom. We have used four here. The nature of the fit can be 
seen in the second panel of Figure 1.6: 

> termplot(blmodi,partial=TRUE,terms=2) 
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Figure 1.6 Partial fits using orthogonal 
polynomials for cperAA (shown on the 
left) and cubic B-splines for cpergore 
(shown on the right). 

We see that the curved fit is not much different from a constant. 
Variable selection: One theoretical view of the problem of variable selection is that 

one subset of the available variables represents the correct model for the data and that any 
method should be judged by its success in identifying this correct model. While this may 
be a tempting world in which to test competing variable selection methods, it seems 
unlikely to match with reality. Even if we believe that a correct model even exists, it is 
more than likely that we will not have recorded all the relevant variables or not have 
chosen the correct transformations or functional form for the model amongst the set we 
choose to consider. We might then retreat from the initial goal and hope to identify the 
best model from the available set. Even then, we would need to define what is meant by 
best. 

Linear modeling serves two broad goals. Some build linear models for the purposes of 
prediction—they expect to observe new X and wish to predict y, along with measures of 
uncertainty in the prediction. Prediction performance is improved by removing variables 
that contribute little or nothing to the model. We can define a criterion for prediction 
performance and search for the model that optimizes that criterion. One such criterion is 
the adjusted R2 previously mentioned. The regsubsets function in the leaps package 
implements this search. For problems involving a moderate number of variables, it is 
possible to exhaustively search all possible models for the best. As the number of 
variables increases, exhaustive search become prohibitive and various stepwise methods 
must be used to search the model space. The implementation also has the disadvantage 
that it can only be applied to quantitative predictors. 

Another popular criterion is the Akaike Information Criterion or AIC defined as: 
AIC=−2 maximum log likelihood+2p   

where p is the number of parameters. This criterion has the advantage of generality and 
can be applied far beyond normal linear models. The step command implements a 
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stepwise search strategy through the space of possible models. It does allow qualitative 
variables and respects the hierarchy principle. We start by defining a rather large model: 

> biglm <- lm(undercount ~ (equip+econ+rural+atlanta) 
^2+ 
   (equip+econ+rural+atlanta)* (perAA+pergore), gavote) 

This model includes up to all two-way interactions between the qualitative variables 
along with all two-way interaction between a qualitative and a quantitative variable. All 
main effects are included. The step command sequentially eliminates terms to minimize 
the AIC: 

> smallm <- step (biglm, trace=F) 

The resulting model includes interactions between equip and econ, econ and perAA, and 
rural and perAA, together with the associated main effects. The trace=F arguments blocks 
the large amount of intermediate model information that we would otherwise see. 

Linear modeling is also used to try to understand the relationship between the 
variables—we want to develop an explanation for the data. For this dataset, we are much 
more interested in explanation than prediction. However, the two goals are not mutually 
exclusive and often the same methods are used for variable selection in both cases. Even 
so, when explanation is the goal, it may be unwise to rely on completely automated 
variable selection methods. For example, the proportion of voters for Gore was 
eliminated from the model by the AIC-based step method and yet we know this variable 
to be strongly correlated with the proportion of African Americans which is in the model. 
It would be rash to conclude that the latter variable is important and the former is not—
the two are intertwined. Researchers interested in explaining the relationship may prefer a 
more manual variable selection approach that takes into account background information 
and is geared toward the substantive questions of interest. 

The other major class of variable selection methods is based on testing. We can use F-
tests to compare larger models with smaller nested models. A stepwise testing approach 
can then be applied to select a model. The consensus view among statisticians is that this 
is an inferior method to variable selection compared to the criterion-based methods. 
Nevertheless, testing-based methods are still useful, particularly when under manual 
control. They have the advantage of applicability across a wide class of models where 
tests have been developed. They allow the user to respect restrictions of hierarchy and 
situations where certain variables must be included for explanatory purposes. Let’s 
compare the AlC-selected models above to models with one fewer term: 

> dropl(smallm,test="F") 
Single term deletions 
Model: 
undercount ~ equip + econ + rural + perAA + equip:econ 
+ equip:perAA + 
    rural:perAA 
            Df Sum of Sq    RSS   AIC F value  Pr(F) 
<none>                   0.0536 -1231 
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equip:econ   6    0.0075 0.0612 -1222    3.25 0.0051 
equip:perAA  4    0.0068 0.0605 -1220    4.43 0.0021 
rural:perAA  1    0.0010 0.0546 -1230    2.65 0.1060 

We see that the rural:perAA can be dropped. A subsequent test reveals that rural can also 
be removed. This gives us a final model of: 

> finalm <- 1m(undercount~equip + econ + perAA + 
equip:econ 
  + equip:perAA, gavote) 
> summary(finalm) 
Coefficients: (2 not defined because of singularities) 
                    Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)          0.04187    0.00503    8.33  6.5e-
14 
equipOS-CC          -0.01133    0.00737   -
1.54  0.12670 
equipOS-
PC           0.00858    0.01118    0.77  0.44429 
equipPAPER          -0.05843    0.03701   -
1.58  0.11669 
equipPUNCH          -0.01575    0.01875   -
0.84  0.40218 
econpoor             0.02027    0.00553    3.67  0.0003
5 
econrich            -0.01697    0.01239   -
1.37  0.17313 
perAA               -0.04204    0.01659   -
2.53  0.01239 
equipOS-CC:econpoor -0.01096    0.00988   -
1.11  0.26922 
equipOS-
PC:econpoor  0.04838    0.01380    3.51  0.00061 
equipPAPER:econpoor       NA         NA      NA       N
A 
equipPUNCH:econpoor -0.00356    0.01243   -
0.29  0.77492 
equipOS-
CC:econrich  0.00228    0.01538    0.15  0.88246 
equipOS-PC:econrich -0.01332    0.01705   -
0.78  0.43615 
equipPAPER:econrich       NA         NA      NA       N
A  
equipPUNCH:econrich  0.02003    0.02200    0.91 0.36405 
equipOS-CC:perAA     0.10725    0.03286    3.26 0.00138 
equipOS-PC:perAA    -0.00591    0.04341   -0.14 0.89198 
equipPAPER:perAA     0.12914    0.08181    1.58 0.11668 
equipPUNCH:perAA     0.08685    0.04650    1.87 0.06388 
Residual standard error: 0.02 on 141 degrees of freedom 
Multiple R-Squared: 0.428,Adjusted R-squared: 0.359 
F-statistic:  6.2 on 17 and 141 DF,  p-value: 1.32e-10  
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Because there are only two paper-using counties, there is insufficient data to estimate the 
interaction terms involving paper. This model output is difficult to interpret because of 
the interaction terms. 

Conclusion: Let’s attempt an interpretation of this final model. Certainly we should 
explore more models and check more diagnostics, so our conclusions can only be 
tentative. The reader is invited to investigate other possibilities. 

To interpret interactions, it is often helpful to construct predictions for all the levels of 
the variables involved. Here we generate all combinations of equip and econ for a median 
proportion of perAA: 

> pdf <- data.frame(econ=rep(levels(gavote$econ),5), 
  equip=rep(levels(gavote$equip),rep(3,5)),perAA=0.233) 

We now compute the predicted undercount for all 15 combinations and display the result 
in a table: 

> pp <- predict (finalm, new=pdf) 
> xtabs(round(pp,3) ~ econ + equip, pdf) 
         equip 
econ      LEVER  OS-CC  OS-PC  PAPER  PUNCH 
  middle  0.032  0.046  0.039  0.004  0.037 
  poor    0.052  0.055  0.108  0.024  0.053 
  rich    0.015  0.031  0.009 -0.013  0.040 

We can see that the undercount is lower in richer counties and higher in poorer counties. 
The amount of difference depends on the voting system. Of the three most commonly 
used voting methods, the LEVER method seems best. It is hard to separate the two 
optical scan methods, but there is clearly a problem with the precinct count in poorer 
counties, which is partly due to the two outliers we observed earlier. We notice one 
impossible prediction—a negative undercount in rich paper-using counties, but given the 
absence of such data (there were no such counties), we are not too disturbed. 

We use the same approach to investigate the relationship between the proportion of 
African Americans and the voting equipment. We set the proportion of African 
Americans at three levels—the first quartile, the median and the third quartile and then 
compute the predicted undercount for all types of voting equipment. We set the econ 
variable to middle: 

> pdf <- 
data.frame(econ=rep("middle",15),equip=rep(levels(gavot
e$equip), 
  rep(3,5)),perAA=rep(c(.11,0.23,0.35),5)) 
> pp <- predict(finalm, new=pdf) 

We create a three-level factor for the three levels of perAA to aid the construction of the 
table: 

> propAA <- gl(3,1,15,labels=c("low","medium", "high")) 
> xtabs(round(pp,3) ~ propAA + equip, pdf) 
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        equip 
propAA    LEVER  OS-CC  OS-PC  PAPER   PUNCH 
  low     0.037  0.038  0.045 -0.007   0.031 
  medium  0.032  0.046  0.039  0.003   0.036 
  high    0.027  0.053  0.034  0.014   0.042 

We see that the effect of the proportion of African Americans on the undercount is 
mixed. High proportions are associated with higher undercounts for OS-CC and PUNCH 
and associated with lower undercounts for LEVER and OS-PC. 

In summary, we have found that the economic status of a county is the clearest factor 
determining the proportion of undercounted votes, with richer counties having lower 
undercounts. The type of voting equipment and the proportion of African Americans do 
have some impact on the response, but the direction of the effects are not simply stated. 
We would like to emphasize again that this dataset deserves further analysis before any 
definitive conclusions are drawn. 

Exercises 

Since this is a review chapter, it is best to consult the recommended background texts for 
specific questions on linear models. However, it is worthwhile gaining some practice 
using R on some real data. Your data analysis should consist of: 

• An initial data analysis that explores the numerical and graphical characteristics of the 
data. 

• Variable selection to choose the best model. 
• An exploration of transformations to improve the fit of the model. 
• Diagnostics to check the assumptions of your model.  
• Some predictions of future observations for interesting values of the predictors. 
• An interpretation of the meaning of the model with respect to the particular area of 

application. 

There is always some freedom in deciding which methods to use, in what order to apply 
them, and how to interpret the results. So there may not be one clear right answer and 
good analysts may come up with different models. 

Here are some datasets which should provide some good practice at building linear 
models: 

1. The swiss data—use Fertility as the response. 
2. The rock data—use perm as the response. 
3. The mtcars data—use mpg as the response. 
4. The attitude data—use rating as the response. 
5. The prostate data—use lpsa as the response. 
6. The teengamb data—use gamble as the response. 
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CHAPTER 2 
Binomial Data 

2.1 Challenger Disaster Example 

In January 1986, the space shuttle Challenger exploded shortly after launch. An 
investigation was launched into the cause of the crash and attention focused on the rubber 
O-ring seals in the rocket boosters. At lower temperatures, rubber becomes more brittle 
and is a less effective sealant. At the time of the launch, the temperature was 31°F. Could 
the failure of the O-rings have been predicted? In the 23 previous shuttle missions for 
which data exists, some evidence of damage due to blow by and erosion was recorded on 
some O-rings. Each shuttle had two boosters, each with three O-rings. For each mission, 
we know the number of O-rings out of six showing some damage and the launch 
temperature. This is a simplification of the problem—see Dalal, Fowlkes, and Hoadley 
(1989) for more details. 

Let’s start our analysis with R. For help in obtaining R and installing the necessary 
add-on packages and datasets, please see Appendix B. First we load the data. To do this, 
you will first need to load the faraway package using the library command as seen in 
here. You will need to do this in every session that you run examples from this book. If 
you forget, you will receive a warning message about the data not being found. We then 
plot the proportion of damaged O-rings against temperature in Figure 2.1: 

> library(faraway) 
> data(orings) 
> plot (damage/6 ~ temp, orings, xlim=c(25,85), ylim = 
c(0,1), 
  xlab="Temperature",  ylab="Prob of damage") 

We are interested in how the probability of failure in a given O-ring is related to the 
launch temperature and predicting that probability when the temperature is 31°F. A naive 
approach, based on linear models, simply fits a line to this data: 

> lmod <- lm(damage/6 ~ temp, orings) 
> abline(lmod) 

The fit is shown in Figure 2.1. There are several problems with this approach. Most 
obviously from the plot, it can predict probabilities greater than one or less than zero. 
One might suggest truncating predictions outside the range to zero or one as appropriate, 
but it does not seem credible that these probabilities would be exactly zero or one, in this 
particular example or many others. 



We might consider the number of damage incidents to be binomially distributed. For a 
linear model, we require the errors to be approximately normally distributed for accurate 
inference. However, for a binomial with only six trials, the normal approx- 

 

Figure 2.1 Damage to O-rings in 23 
space shuttle missions as a function of 
launch temperature. Least squares fit 
line is shown. 

imation is too much of a stretch. Furthermore, the variance of a binomial variable is not 
constant which violates another crucial assumption of the linear model. 

The standard linear model is clearly not directly suitable here. Although, we could use 
transformation and weighting to correct some of these problems, it is better to develop a 
model that is directly suited for binomial data. 

2.2 Binomial Regression Model 

Suppose the response variable Yi for i=1,…, ni is binomially distributed B(ni, pi) so that: 

 

  

We further assume that the Yi are independent. The individual trials that compose the 
response Yi are all subject to the same q predictors (xi1,…, xiq). The group of trials is 
known as a covariate class. We need a model that describes the relationship of x1,…, xq 
to p. Following the linear model approach, we construct a linear predictor: 

ηi=β0+β1xi1+…+βqxiq   
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Since the linear predictor can accommodate quantitative and qualitative predictors with 
the use of dummy variables and also allows for transformations and combinations of the 
original predictors, it is very flexible and yet retains interpretability. This notion that we 
can express the effect of the predictors on the response solely through the linear predictor 
is important. The idea can be extended to models for other types of response and is one of 
the defining features of the wider class of generalized linear models (GLMs) discussed in 
Chapter 6. 

We have already seen above that setting ηi=pi is not appropriate because we require 
0≤pi≤1. Instead we shall use a link function g such that ηi=g(pi). For this application, we 
shall need g to be monotone and be such that 0≤g–1(η)≤1 for any η. There are three 
common choices: 

1. Logit: η=log(p/(1–p)). 
2. Probit: η=Φ−1(p) where Φ−1 is the inverse normal cumulative distribution function. 
3. Complementary log-log: η=log(–log(1–p)). 

The idea of the link function is also one of the central ideas of generalized linear models. 
It is used to link the linear predictor to the mean of the response in the wider class of 
models. 

We will compare these three choices of link function later, but first we estimate the 
parameters of the model. We shall use the method of maximum likelihood; see Appendix 
A for a brief introduction to this method. The log-likelihood is given by: 

 

  

We can maximize this to obtain the maximum likelihood estimates and use the standard 
theory to obtain approximate standard errors. An algorithm to perform the maximization 
will be discussed in Chapter 6. 

We use R to estimate the regression parameters for the Challenger data: 

> logitmod <- glm(cbind(damage,6-damage) ~ temp, 
family=binomial, orings) 
> summary(logitmod) 
Deviance Residuals: 
   Min      1Q  Median      3Q     Max 
-0.953  -0.735  -0.439  -0.208   1.957 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  11.6630     3.2963    3.54    4e-04 
temp         -0.2162     0.0532   -4.07  4.8e-05 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 38.898  on 22 degrees of freedom 
Residual deviance: 16.912  on 21 degrees of freedom 
AIC: 33.67 
Number of Fisher Scoring iterations: 6 
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For binomial response data, we need two pieces of information about the response 
values—y and n. In R, one way of doing this is to form a two-column matrix with the first 
column representing the number of “successes” y and the second column the number of 
“failures” n–y. We have specified that the response is binomially distributed. The default 
choice of link is the logit—other choices need to be specifically stated as we shall see 
shortly. This default choice is sometimes called logistic regression. The regression 

coefficients are given in the output and along with their 
respective standard errors. The rest of the output will be explained shortly. 

We show the logit fit to the data as seen in Figure 2.2: 

> plot (damage/6 ~ temp, orings, xlim=c(25,85), 
ylim=c(0,1), 
  xlab="Temperature", ylab="Prob of damage") 
> x <- seq(25,85,1) 
> lines(x,ilogit(11.6630−0.2162*x)) 

Notice how the logit fit tends asymptotically toward zero and one at high and low 
temperatures, respectively. The fitted values never actually reach zero or one, so the 
model never predicts anything to completely certain or completely impossible. Now  

 

Figure 2.2 Logit (solid line) and probit 
(dashed line) fits to the Challenger 
data 

compare this to the probit fit: 

> probitmod <- glm(cbind(damage,6-damage) ~ temp, 
  family=binomial(link=probit), orings) 
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> summary(probitmod) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)   5.5915     1.7105    3.27   0.0011 
temp         -0.1058     0.0266   -3.98  6.8e-05 
(Dispersion parameter for binomial family taken to be 
1)  
    Null deviance: 38.898 on 22 degrees of freedom 
Residual deviance: 18.131 on 21 degrees of freedom 
AIC: 34.89 

Although the coefficients seem quite different, the fits are similar, particularly in the 
range of the data, as seen in Figure 2.2: 

> lines(x, pnorm(5.5915-0.1058*x), lty=2) 

We can predict the response at 31°F for both models: 

> ilogit (11.6630-0.2162*31) 
[1] 0.99304 
> pnorm(5.5915-0.1058*31) 
[1] 0.9896 

We see a very high probability of damage with either model although we still need to 
develop some inferential techniques before we leap to conclusions. 

2.3 Inference 

Consider two models, a larger model with l parameters and likelihood LL and a smaller 
model with s parameters and likelihood LS where the smaller model represents a linear 
subspace (a linear restriction on the parameters) of the larger model. Likelihood methods 
suggest the likelihood ratio statistic: 

 (2.1) 

as an appropriate test statistic for comparing the two models. Now suppose we choose a 
saturated larger model—such a model typically has as many parameters as cases and has 
fitted values In such a case, the test statistic becomes: 

 

  

where ŷi are the fitted values from the smaller model. Now since the saturated model fits 
as well as any model can fit, the deviance D measures how close the (smaller) model 
comes to perfection. Thus deviance is a measure of goodness of fit. In the output for the 
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models above, the Residual deviance is the deviance for the current model while the Null 
deviance is the deviance for a model with no predictors and just an intercept term. 

Provided that Y is truly binomial and that the ni are relatively large, the deviance is 
approximately χ2 distributed with n–l degrees of freedom if the model is correct. Thus we 
can use the deviance to test whether the model is an adequate fit. For the logit model of 
the Challenger data, we may compute: 

> pchisq(deviance(logitmod), 
df.residual(logitmod),lower=FALSE) 
[1] 0.71641 

Since this p-value is well in excess of 0.05, we may conclude that this model fits 
sufficiently well. Of course, this does not mean that this model is correct or that a simpler 
model might not also fit adequately. Even so, for the null model:  

> pchisq(38.9,22,lower=FALSE) 
[1] 0.014489 

we see that the fit is inadequate, so we cannot ascribe the response to simple variation not 

dependent on any predictor. Note that a variable has mean d and standard deviation 
so that it is often possible to quickly judge whether a deviance is large or small 

without explicitly computing the p-value. If the deviance is far in excess of the degrees of 
freedom, the null hypothesis can be rejected. 

The χ2 distribution is only an approximation that becomes more accurate as the ni 
increase. For the case, ni=1, when yi=0 or 1, in other words, a binary response, the 
deviance reduces to: 

 

  

For a deviance to measure fit, it has to compare the fitted values to the data yi, but here 
we have only a function of Thus this deviance does not assess goodness of fit and 
furthermore, it is not even approximately χ2 distributed. Other methods must be used to 
judge goodness of fit for binary data—for example, the Hosmer-Lemeshow test described 
in Hosmer and Lemeshow (2000). 

The approximation is very poor for small ni. Although it is not possible to say exactly 
how large ni should be for an adequate approximation, ni≥5 has often been suggested. 
Permutation or bootstrap methods might be considered as an alternative. 

We can also use the deviance to compare two nested models. The test statistic in (2.1) 

becomes DS—DL. This test statistic is asymptotically distributed assuming that the 
smaller model is correct and the distributional assumptions hold. We can use this to test 
the significance of temperature by computing the difference in the deviances between the 
model with and without temperature. The model without temperature is just the null 
model and the difference in degrees of freedom or parameters is one: 
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> pchisq(38.9–16.9,1,lower=FALSE) 
[1] 2.7265e-06 

Since the p-value is so small, we conclude that the effect of launch temperature is 

statistically significant. An alternative to this test is the z-value, which is here –
4.07 with a p-value of 4.8e-05. In contrast to the normal (Gaussian) linear model, these 
two statistics are not identical. In this particular example, there is no practical difference, 
but in some cases, especially with sparse data, the standard errors can be overestimated 
and so the z-value is too small and the significance of an effect could be missed. This is 
known as the Hauck-Donner effect—see Hauck and Donner (1977). So the deviance-
based test is preferred. 

Again, there are concerns with the accuracy of the approximation, but the test 
involving differences of deviances is generally more accurate than the goodness of fit test 
involving a single deviance. 

Confidence intervals for the regression parameters may be constructed using normal 
approximations for the parameter estimates. A 100(1—α)% confidence interval for βi 
would be: 

   

where zα/2 is a quantile from the normal distribution. Thus a 95% confidence interval for 
β1 in our model would be: 

> c(-0.2162–1.96*0.0532,-0.2162+1.96*0.0532) 
[1] -0.32047 -0.11193 

It is also possible to construct a profile likelihood-based confidence interval: 

> library(MASS) 
> confint(logitmod) 
Waiting for profiling to be done... 
               2.5 %   97.5 % 
(Intercept)  5.57543 18.73812 
temp        -0.33267 -0.12018 

It is important to load the MASS package or the default confint method for ordinary 
linear models will be used (which will not be quite right). The profile likelihood method 
is generally preferable for the same Hauck-Donner reasons discussed above although it is 
more work to compute. 

Although we have only computed results for the logit link, the same methods would 
apply for the probit or any other link. 

 

 

Extending the linear model with R     34



2.4 Tolerance Distribution 

Suppose that students answers questions on a test and that a specific student has an 
aptitude T. A particular question might have difficulty di and the student will get the 
answer correct only if T>di. Now if we consider di fixed and T~N(µ,σ2), then the 
probability that a randomly selected student will get the answer wrong is: 

pi=P(T≤di)=Φ((di−µ)/σ)   

So 
Φ−1(pi)=–µ/σ+di/σ   

If we set β0=−µ/σ and β1=1/σ, we now have a probit regression model. So we see that the 
probit link can be naturally motivated by the existence of a normally distributed tolerance 
distribution T. The term arose from toxicity studies where the aptitude of the subject 
would be replaced with the tolerance of the insect. 

The logit model arises from a logistically distributed tolerance distribution. The 
logistic and normal density are very similar in the mid-range, but differ more in a relative 
sense in the tails. The complementary log-log is similarly associated with an extreme 
value distribution. 

2.5 Interpreting Odds 

Odds are sometimes a better scale than probability to represent chance. They arose as a 
way to express the payoffs for bets. An evens bet means that the winner gets paid an 
equal amount to that staked. A 3–1 against bet would pay $3 for every $1 bet while a 3–1 
on bet would pay only $1 for every $3 bet. If these bets are fair in the sense that a bettor 
would break even in the long-run average, then we can make a correspondence to 
probability. Let p be the probability and o be the odds, where we represent 3–1 against as 
1/3 and 3–1 on as 3, then the following relationships hold: 

 
  

One mathematical advantage of odds is that they are unbounded above which makes 
them more convenient for some modeling purposes. 

Odds also form the basis of a subjective assessment of probability. Some probabilities 
are determined from considerations of symmetry or long-term frequencies, but such 
information is often unavailable. Individuals may determine their subjective probability 
for events by considering what odds they would be prepared to offer on the outcome. 
Under this theory, other potential persons would be allowed to place bets for or against 
the event occurring. Thus the individual would be forced to make an honest assessment 
of probability to avoid financial loss. 

If we have two covariates x1 and x2, then the logistic regression model is: 
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Now β1 can be interpreted as follows: a unit increase in x1 with x2 held fixed increases the 
log-odds of success by β1 or increases the odds of success by a factor of exp β1. Of 
course, the usual interpretational difficulties regarding causation apply as in standard 
regression. No such simple interpretation exists for other links such as the probit. 

An alternative notion to odds-ratio is relative risk. Suppose the probability of 
“success” in the presence of some condition is p1 and p2 in its absence. The relative risk is 
P1/P2. For rare outcomes, the relative risk and the o dds ratio will be very similar, but for 
larger probabilities, there may be substantial differences. There is some debate over 
which is the more intuitive way of expressing the effect of some condition. 

Consider the data shown in Table 2.1 from a study on infant respiratory disease, 
namely the proportions of children developing bronchitis or pneumonia in their first year 
of life by type of feeding and sex, which may be found in Payne (1987): 
  Bottle Only Some Breast with Supplement Breast Only 

Boys 77/458 19/147 47/494 

Girls 48/384 16/127 31/464 

Table 2.1 Incidence of respiratory disease in infants 
to the age of 1 year. 

We can recover the layout above with the proportions as follows: 

> data(babyfood) 
> xtabs(disease/(disease+nondisease)~sex+food, 
babyfood) 
      food  
sex    Bottle   Breast   Suppl 
  Boy 0.16812 0.095142 0.12925 
Girl 0.12500 0.066810 0.12598 

Fit and examine the model:  

> mdl <- glm(cbind(disease, nondisease) ~ sex+food, 
family=binomial, 
babyfood) 
> summary(mdl) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)   -1.613      0.112  -14.35  < 2e-16 
sexGirl       -0.313      0.141   -2.22    0.027 
foodBreast    -0.669      0.153   -4.37  1.2e-05 
foodSuppl     -0.173      0.206   -0.84    0.401 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 26.37529  on 5  degrees of freedom 
Residual deviance:  0.72192  on 2  degrees of freedom 
AIC: 40.24 
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The χ2 approximation can be expected to be accurate here due to the large covariate class 
sizes. Is there a sex-by-food interaction? Notice that a model with the interaction effect 
would be saturated with deviance and degrees of freedom zero, so we can look at the 
residual deviance of this model to test for an interaction effect. A deviance of 0.72 is not 
at all large for two degrees of freedom, so we may conclude that there is no evidence of 
an interaction effect. This means that we may interpret the main effects separately. 

We can test for the significance of the main effects: 

> dropl(mdl,test="Chi") 
Single term deletions 
Model: 
cbind(disease, nondisease) ~ sex + food 
       Df Deviance  AIC  LRT Pr (Chi) 
<none>         0.7 40.2 
sex     1      5.7 43.2  5.0    0.026 
food    2     20.9 56.4 20.2  4.2e-05 

The drop1 function tests each predictor relative to the full. We see that both predictors are 
significant in this sense. Now consider the interpretation of the coefficients, starting with 
the effect of breast feeding: 

> exp(-0.669) 
[1] 0.51222 

We see that breast feeding reduces the odds of respiratory disease to 51% of that for 
bottle feeding. We could compute a confidence interval by figuring the standard error on 
the odds scale; however, we get better coverage properties by computing the interval on 
the log-odds scale and then transforming the endpoints as follows: 

> exp(c (-0.669-1.96*0.153, -0.669+1.96*0.153)) 
[1] 0.37951 0.69134 

Notice that the interval is asymmetric about the estimated effect of 0.512. Confidence 
intervals can also be computed using profile likelihood methods: 

> library(MASS)  
> exp(confint(mdl)) 
Waiting for profiling to be done... 
              2.5 %  97.5 % 
(Intercept) 0.15920 0.24743 
sexGirl     0.55362 0.96292 
foodBreast  0.37819 0.68952 
foodSuppl   0.55552 1.24643 

which gives a slightly wider interval. This latter result is usually more reliable although it 
makes little difference for this data. 

As an aside, note that for small values of ε, we have: 
log(x(1+ε))=log x+log(1+ε) ≈logx+ε   
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This approximation is reasonable for values –0.25<ε<0.25. So, for example, given the 
observed supplement coefficient of –0.173, we can approximate the reduction in odds as 
about 17% relative to bottle feeding. The exact figure is: 

> 1exp(-0.173) 
[1] 0.15886 

that is about 16%. So the approximation is only good for a quick sense of the effect, but 
an exact calculation is necessary for results that will be presented to others. 

Here we see that breast-fed and to a lesser extent supplement-fed babies are less 
vulnerable to respiratory disease. We also see that boys are more vulnerable than girls. 
We should be careful about making any general conclusions from this data without 
knowing how it was collected. In particular, the decision to breast feed is almost certainly 
related to other socioeconomic factors and we would need to investigate whether it is 
these rather than the breast feeding that is responsible for the reduction in the incidence 
of respiratory disease. 

2.6 Prospective and Retrospective Sampling 

In prospective sampling, the predictors are fixed and then the outcome is observed. In 
other words, in the infant respiratory disease example shown in Table 2.1, we would 
select a sample of newborn girls and boys whose parents had chosen a particular method 
of feeding and then monitor them for their first year. This is also called a cohort study. 

In retrospective sampling, the outcome is fixed and then the predictors are observed. 
Typically, we would find infants coming to a doctor with a respiratory disease in the first 
year and then record their sex and method of feeding. We would also obtain a sample of 
respiratory disease-free infants and record their information. How these samples are 
obtained is important—we require that the probability of inclusion in the study is 
independent of the predictor values. This is also called a case-control study. 

Since the question of interest is how the predictors affect the response, prospective 
sampling seems to be required. Let’s focus on just boys who are breast or bottle fed. The 
data we need is: 

> babyfood[c(1,3),]  
disease nondisease sex   food 
1    77        381 Boy Bottle 
3    47        447 Boy Breast 

• Given the infant is breast fed, the log-odds of having a respiratory disease are 
log47/447=–2.25 

• Given the infant is bottle fed, the log-odds of having a respiratory disease are log 
77/381=–1.60 

The difference between these two log-odds, ∆=–1.60– –2.25=0.65, represents the 
increased risk of respiratory disease incurred by bottle feeding relative to breast feeding. 
This is the log-odds ratio. 
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Now suppose that this had been a retrospective study—we could compute the log-odds 
of feeding type given respiratory disease status and then find the difference. Notice that 
this would give the same result because: 

∆=log77/47–log381/447=log77/381–log47/447=0.65   

This shows that a retrospective design is as effective as a prospective design for 
estimating ∆. 

Retrospective designs are cheaper, faster and more efficient, so it is convenient that 
the same result may be obtained from the prospective study. This manipulation is not 
possible for other links. The downside to retrospective studies is that they are typically 
less reliable than prospective studies. Retrospective studies rely on historical records 
which may be of unknown accuracy and completeness. They may also rely on the 
memory of the subject which may be unreliable. 

In most practical situations, we will also need to account for the effects of covariates 
X. Let π0 be the probability that an individual is included in the study if they do not have 
the disease, while let π1 be the probability of inclusion if they do have the disease. For a 
prospective study, π0=π1 because we have no knowledge of the outcome, while for a 
retrospective study typically π1 is much greater than π0. Suppose that for given x, p*(x) is 
the conditional probability that an individual has the disease given that he or she was 
included in the study, while p(x) is the unconditional probability that he or she has the 
disease as we would obtain from a prospective study. Now by Bayes theorem: 

 

  

which can be rearranged to show that: 

 
  

So the only difference between the retrospective and the prospective study would be the 
difference in the intercept: log(π1/π0). Generally π1/π0 would not be known, so we would 
not be able to estimate β0, but knowledge of the other β would be most important since 
this can be used to assess the relative effect of the covariates. We could not, however, 
estimate the absolute effect. This does not work for other links such as the probit.  

 

2.7 Choice of Link Function 

We must choose a link function to specify a binomial regression model. It is usually not 
possible to make this choice based on the data alone. For regions of moderate p, that is 
not close to zero or one, the link functions we have proposed are quite similar and so a 
very large amount of data would be necessary to distinguish between them. Larger 
differences are apparent in the tails, but for very small p, one needs a very large amount 
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of data to obtain just a few successes, making it expensive to distinguish between link 
functions in this region. So usually, the choice of link function is made based on 
assumptions derived from physical knowledge or simple convenience. We now look at 
some of the advantages and disadvantages of the three proposed link functions and what 
motivates the choice. 

Bliss (1935) analyzed some data on the numbers of insects dying at different levels of 
insecticide concentration. We fit all three link functions: 

> data (bliss) 
> bliss 
  dead  alive conc 
1    2     28    0 
2    8     22    1 
3   15     15    2 
4   23      7    3 
5   27      3    4 
> modl <- glm(cbind(dead, alive) ~ conc, 
family=binomial, data=bliss) 
> modp <- glm(cbind(dead, alive) ~ conc, 
family=binomial(link=probit), 
  data=bliss) 
> modc <- glm(cbind(dead, alive) ~ conc, 
family=binomial(link=cloglog), 
  data=bliss) 

We start by considering the fitted values: 

> fitted(modl) 
       1         2         3         4         5 
0.089172  0.238323  0.500000  0.761677  0.910828 

or from predict (modl, type=“response”). These are constructed using linear predictor, η: 

> coef(modl)[1]+coef(modl)[2]*bliss$conc 
[1] -2.3238 -1.1619  0.0000  1.1619  2.3238 

Alternatively, these values may be obtained from modl$linear.predictors or predict 
(modl). The fitted values are then: 

> ilogit (modl$lin) 
       1         2         3         4         5 
0.089172  0.238323  0.500000  0.761677  0.910828 

Notice the need to distinguish between predictions in the scale of the response and the 
link. Now compare the logit, probit and complementary log-log fits: 

> cbind(fitted(modl),fitted(modp),fitted(modc)) 
      [,1]     [,2]    [,3] 
1 0.089172 0.084242 0.12727 
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2 0.238323 0.244873 0.24969  
3 0.500000 0.498272 0.45459 
4 0.761677 0.752396 0.72177 
5 0.910828 0.914411 0.93277 

These are not very different, but now look at a wider range: 

> x <- seq(-2,8,0.2) 
> pl <- ilogit(modl$coef[1]+modl$coef[2]*x) 
> pp <- pnorm(modp$coef[1]+modp$coef[2]*x) 
> pc <- 1-exp(-exp((modc$coef[1]+modc$coef[2]*x))) 
> plot(x,pl,type="1",ylab="Probability",xlab="Dose") 
> lines(x,pp,lty=2) 
> lines(x,pc,lty=5) 

 

Figure 2.3 Probit, logit and 
complementary log-log compared. The 
fitted probabilities are shown on the 
left. The logit fit is shown with a solid 
line, the probit is shown by a dotted 
line and the complementary log-log by 
a dashed line. In the central plot, the 
ratio of probit to logit probabilities in 
both tails is shown. The lower tail ratio 
is given by the solid line while the 
upper tail ratio is given by the dotted 
line. In the plot on the right the same 
information is shown for the ratio of 
the complementary log-log to the logit. 
The data range from 0 to 4. We see 
that the links are similar in this range 
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and only begin to diverge as we 
extrapolate. 

The lines in the left panel of Figure 2.3 do not seem very different, but look at the relative 
differences: 

> matplot(x,cbind(pp/pl,(1-pp)/(1-
pl)),type="1",xlab="Dose",ylab="Ratio") 
> matplot(x,cbind(pc/pl,(1-pc)/(1-
pl)),type="1",xlab="Dose",ylab="Ratio") 

as they appear in the second and third panels of Figure 2.3. We see that the probit and 
logit differ substantially in the tails. The same phenomenon is observed for the 
complementary log-log. This is problematic since the former plot indicates it would be 
difficult to distinguish between the two using the data we have. This is an issue in trials 
of potential carcinogens and other substances that must be tested for possible harmful 
effects on humans. Some substances are highly poisonous in that their effects become 
immediately obvious at doses that might normally be experienced in the environment. It 
is not difficult to detect such substances. However, there are other substances whose 
harmful effects only become apparent at large dosages where the observed probabilities 
are sufficiently larger than zero to become estimable without immense sample sizes. In 
order to estimate the probability of a harmful effect at a low dose, it would be necessary 
to select an appropriate link function and yet the data for high dosages will be of little 
help in doing this. As Paracelsus (1493–1541) said, “All substances are poisons; there is 
none which is not a poison. The right dose differentiates a poison.” 

A good example of this problem is asbestos. Information regarding the harmful effects 
of asbestos derives from historical studies of workers in industries exposed to very high 
levels of asbestos dust. However, we would like to know the risk to individuals exposed 
to low levels of asbestos dust such as those found in old buildings. It is virtually 
impossible to accurately determine this risk. We cannot accurately measure exposure or 
outcome. This is not to argue that nothing should be done, but that decisions should be 
made in recognition of the uncertainties. 

In summary, the default choice is the logit link. There are three advantages: it leads to 
simpler mathematics due the intractability of Φ; it is easier to interpret using odds and it 
allows easier analysis of retrospectively sampled data. 

2.8 Estimation Problems 

Estimation using the Fisher scoring algorithm, described in Section 6.2, is usually fast. 
However, difficulties can sometimes arise. When convergence fails, it is sometimes due 
to a problem exhibited by the following dataset. Urinary androsterone (androgen) and 
etiocholanolone (estrogen) values were recorded from 26 healthy males by Margolese 
(1970). The data were also analyzed by Hand (1981). We start by plotting the data as 
shown in Figure 2.4: 
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> data(hormone) 
> plot(estrogen ~ 
androgen,data=hormone,pch=as.character(orientation)) 

We now fit a binomial model to see if the orientation can be predicted from the two 
hormone values. Notice that when the response is binary, we can use it directly as the 
response variable in the glm function: 

> modl <- glm(orientation ~ estrogen + androgen, 
hormone, family=binomial) 
Warning messages: 
1: Algorithm did not converge in: glm.fit(x = X, y = Y, 
   weights = weights, start = start, etastart = 
etastart, 
2: fitted probabilities numerically 0 or 1 occurred in: 
   glm.fit(x = X, y = Y, weights = weights, start = 
start, 
   etastart = etastart, 

We see that there were problems with the convergence. A look at the summary reveals 
further evidence: 

> summary(modl) 
Coefficients: 
            Estimate Std. Error  z value Pr(>|z|) 
(Intercept)    -84.5   136095.1 -0.00062        1 
estrogen       -90.2    75911.0 -0.00119        1 

 

Figure 2.4 Levels of androgen and 
estrogen for 15 homosexual (g) and 11 
heterosexual (s) males. Solid line 
shows predictions from g 1m fit that 
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correspond to p=1/2. The dotted line is 
equivalent from brlr. 

androgen       100.9    92755.6  0.00109       1 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 3.5426e+01  on 25  degrees of 
freedom 
Residual deviance: 2.3229e-09  on 23  degrees of 
freedom 
AIC: 6 
Number of Fisher Scoring iterations: 25 

Notice that the residual deviance is extremely small indicating a very good fit and yet 
none of the predictors are significant due to the high standard errors. We see that the 
maximum default number of iterations (25) has been reached. A look at the data reveals 
the reason for this. We see that the two groups are linearly separable so that a perfect fit 
is possible. We can compute the line separating the groups by finding the line that 
corresponds to p=1/2 which is when the logit is zero: 

> abline(-84.5/90.2,100.9/90.2) 

We suffer from an embarrassment of riches in this example—we can fit the data 
perfectly. Unfortunately, this results in unstable estimates of the parameters and their 
standard errors and would (probably falsely) suggest that perfect predictions can be 
made. An alternative fitting approach might be considered in such cases called exact 
logistic regression. See Cox (1970) and the work of Cyrus Mehta, for example: Mehta 
and Patel (1995). Currently, there are no comprehensive packages for such exact methods 
in R, although it is available in products such as LogExact©. 

An alternative to exact methods is the bias reduction method of Firth (1993). For the 

and indeed a sensible unbiased estimator would be difficult to ob- 
tain. Firth’s method removes the O(1/n) term from the asymptotic bias of estimated 

coefficients. These estimates have the advantage of always being finite: 

> library(brlr) 
> modb <- brlr(orientation ~ estrogen + androgen, 
hormone, 
  family=binomial) 
> summary(modb) 
Coefficients: 
            Value   Std. Error t value 
(Intercept) -3.650   2.910     -1.254 
estrogen    -3.586   1.499     -2.393 
androgen     4.074   1.621      2.513 
Deviance: 3.70 
Penalized deviance:  4.184 
Residual df: 23 
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We can see that this results in significant predictors which we expect given Figure 2.4. 
Although the fit appears, judging from the coefficients, to be different from the glm 
result, it is effectively very close as we can see by plotting the line corresponding to 
p=1/2: 

> abline(-3.65/3.586,4.074/3.586,lty=2) 

Instability in parameter estimation will also occur in datasets that approach linear 
separability. Care will be needed in such cases. 

2.9 Goodness of Fit 

The deviance is one measure of how well the model fits the data, but there are 
alternatives. The Pearson’s X2 statistic takes the general form: 

 

  

where Oi is the observed counts and Ei are the expected counts for case i. For a binomial 
response, we count the number of successes for which 0i=yi while and failures 
for which Oi=ni–yi and which results in: 

 

  

If we define Pearson residuals as: 

   

which can be viewed as a type of standardized residual, then So the 
Pearson’s X2 is analogous to the residual sum of squares used in normal linear models. 

The Pearson X2 will typically be close in size to the deviance and can be used in the 
same manner. Alternative versions of the hypothesis tests described above might use the 
X2 in place of the deviance with the same approximate null distributions.  

However, some care is necessary because the model is fit to minimize the deviance 
and not the Pearson’s X2. This means that it is possible, although unlikely, that the X2 
could increase as a predictor is added to the model. X2 can be computed like this: 

> modl <- glm(cbind(dead,alive) ~ conc, 
family=binomial, data=bliss) 
> sum(residuals(modi,type="pearson")^2) 
[1] 0.36727 
> deviance(modl) 
[1] 0.37875 

As can be seen, there is little difference here between X2 and the deviance. 
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The proportion of variance explained or R2 is a popular measure of fit for normal 
linear models. We might consider applying the same concept to binomial regression 
models by using the proportion of deviance explained. However, a better statistic is due 
to Naglekerke (1991): 

 

  

where n is the number of binary observations and is the maximized likelihood under 
the null. The numerator can be seen as a ratio of the relative likelihood with the 1/n 
power having the effect of a geometric mean on the observations. The denominator 
simply normalizes so that 0≤R2≤1. For example, for the Bliss insect data, the R2 is: 

> (1-exp((modl$dev-modl$null)/150))/(1-exp(-
modl$null/150)) 
[1] 0.99532 

Notice that we have used n=150 as there are 5 covariate class with 30 observations each. 
We can see that this is a very good fit. 

2.10 Prediction and Effective Doses 

Sometimes we wish to predict the outcome for given values of the covariates. For binary 
data this will mean estimating the probability of success. For given covariates x0, 

with variance given by Approximate confidence intervals 
may be obtained using a normal approximation. To get an answer in the probability scale, 
it will be necessary to transform back using the inverse of the link function. We predict 
the response for the insect data: 

> data(bliss) 
> modl <- glm(cbind(dead, alive) ~ conc, 
family=binomial,data=bliss) 
> lmodsum <- summary(modl) 

We show how to predict the response at dose of 2.5: 

> x0 <- c(1, 2.5) 
> eta0 <- sum(x0*coef(modl)) 
> ilogit(eta0) 
[1] 0.64129 

A 64% predicted chance of death at this dose—now compute a 95% confidence interval 
(CI) for this probability. First, extract the variance matrix of the coefficients:  

> (cm <- lmodsum$cov.unsealed) 
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            (Intercept)      conc 
(Intercept)    0.174630 -0.065823 
conc          -0.065823  0.032912 

The standard error on the logit scale is then: 

> se <- sqrt(t(x0) %*% cm %*% x0) 

so the CI on the probability scale is: 

> ilogit(c(eta0−1.96*se,eta0+1.96*se)) 
[1] 0.53430 0.73585 

A more direct way of obtaining the same result is: 

> predict(modi,newdata=data.frame(conc=2.5),se=T) 
$fit 
[1] 0.58095 
$se.fit 
[1] 0.2263 
> ilogit(c(0.58095−1.96*0.2263, 0.58095+1.96*0.2263)) 
[1] 0.53430 0.73585 

Note that in contrast to the linear regression situation, there is no distinction possible 
between confidence intervals for a future observation and those for the mean response. 
Now we try predicting the response probability at the low dose of –5: 

> x0 <- c(1,-5) 
> se <- sqrt(t(x0) %*% cm %*% x0) 
> eta0 <- sum(x0*1mod$coef) 
> ilogit(c(eta0−1.96*se, eta0+1.96*se)) 
[1] 2.3577e-05 3.6429e-03 

This is not a wide interval in absolute terms, but in relative terms, it certainly is. The 
upper limit is about 100 times larger than the lower limit. 

Logistic regression models have been widely used for classification purposes. 
Depending on whether is greater or less than 0.5, the case may be classified as a 
success or failure. In cases where the losses due to misclassification are not symmetrical, 
such as in disease diagnosis, critical values other than 0.5 should be used. Another 
example is in credit scoring. When financial institutions decide whether to make a loan, it 
is helpful to estimate the probability that a given borrower will default. A logistic 
regression model is one way in which this probability can be estimated using past 
financial data. 

When there is a single (continuous) covariate or when other covariates are held fixed, 
we sometimes wish to estimate the value of x corresponding to a chosen p. For example 
we may wish to determine which dose, x, will lead to a probability of success p. ED50 
stands for the effective dose for which there will be a 50% chance of success. When the 
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objective is to kill the subjects or determine toxicity, as when using insecticides, the term 
LD50 would be used. LD stands for lethal dose. Other percentiles are also of interest. For 
a logit link, we can set p=1/2 and then solve for x to find: 

 
  

Using the Bliss data, the LD50 is: 

> (ld50 <- -lmod$coef[1]/lmod$coef[2]) 
(Intercept) 
           2 

To determine the standard error, we can use the delta method. The general expression for 

the variance of for multivariate θ is given by 

   

which, in this example, works out as: 

> dr <- c(-1/lmod$coef[2],lmod$coef[1]/lmod$coef[2]^2) 
> sqrt(dr %*% lmodsum$cov.un %*% dr)[,] 
[1] 0.17844 

So the 95% CI is given by: 

> c(2–1.96*0.178, 2+1.96*0.178) 
[1] 1.6511 2.3489 

Other levels may be considered—the effective dose xp for probability of success p is: 

 
  

So, for example: 

> ed90 <- (logit(0.9)-lmod$coef[1])/lmod$coef[2] 
> ed90 
(Intercept) 
     3.8911 

More conveniently, we may use the dose. p function in the MASS package: 

> library(MASS) 
> dose.p(lmod,p=c(0.5,0.9)) 
           Dose      SE 
p = 0.5:2.0000 0.17844 
p = 0.9:3.8911 0.34499 
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2.11 Overdispersion 

If the binomial GLM model specification is correct, we expect that the residual deviance 
will be approximately distributed χ2 with the appropriate degrees of freedom. Sometimes, 
we observe a deviance that is much larger than would be expected if the model were 
correct. We must then determine which aspect of the model specification is incorrect. 

The most common explanation is that we have the wrong structural form for the 
model. We have not included the right predictors or we have not transformed or 
combined them in the correct way. We have a number of ways of determining the 
importance of potential additional predictors and diagnostics for determining better 
transformations—see Section 6.4. Suppose, however, that we are able to exclude this 
explanation. This is difficult to achieve, but when we have only one or two predictors, it 
is feasible to explore the model space quite thoroughly and be sure that there is not a 
plausible superior model formula. 

Another common explanation for a large deviance is the presence of a small number 
of outliers. Fortunately, these are easily checked using diagnostic methods explained 
more fully in Section 6.4. When larger numbers of points are identified as outliers, they 
become unexceptional, and we might more reasonably conclude that there is something 
amiss with the error distribution. 

Sparse data can also lead to large deviances. In the extreme case of a binary response, 
the deviance is not even approximately χ2. In situations where the group sizes are simply 
small, the approximation is poor. Because we cannot judge the fit using the deviance, we 
shall exclude this case from further consideration in this section. 

Having excluded these other possibilities, we might explain a large deviance by 
deficiencies in the random part of the model. A binomial distribution for Y arises when 
the probability of success p is independent and identical for each trial within the group. If 
the group size is m, then var Y=mp(1–p) if the binomial assumptions are correct. 
However, the assumptions are broken, the variance may be greater. This is 
overdispersion. In rarer cases, the variance is less and underdispersion results. 

There are two main ways that overdispersion can arise—the independent or identical 
assumptions can be violated. We look at the constant p assumption first. It is easy to see 
how there may be some unexplained heterogeneity within a group that might lead to 
some variation in p. For example, in the shuttle disaster case study of Section 2.1, the 
position of the O-ring on the booster rocket may have some effect on the failure 
probability. Yet this variable was not recorded and so we cannot include it as a predictor. 
Heterogeneity can also result from clustering. Suppose a population is divided into 
clusters, so that when you take a sample, you actually get a sample of clusters. This 
would be common in epidemiological applications. 

Let the sample size be m, the cluster size be k and the number of clusters be l=m/k. Let 
the number of successes in cluster i be Zi~B(k, pi). Now suppose that pi is a random 
variable such that Epi=p and var pi=τ2p(1–p). Let the total number of successes be 
Y=Z1+…+Zl. Then: 

 

  

as in the standard case, but: 

Binomial data     49



   

So Y is overdispersed since 1+(k–1)τ2≥1. Notice that in the sparse case, m=1, and this 
problem cannot arise. 

Overdispersion can also result from dependence between trials. If the response has a 
common cause, say a disease is influenced by genes, the responses will tend to be 
positively correlated. For example, subjects in human or animal trials may be influenced 
in their response by other subjects. If the food supply is limited, the probability of 
survival of an animal may be increased by the death of others. This circumstance would 
result in underdispersion. 

The simplest approach for modeling overdispersion is to introduce an additional 

dispersion parameter, σ2. In the standard binomial case We now let σ2 vary 
and estimate using the data. Notice the similarity to linear regression. The dispersion 
parameter may be estimated using: 

 

  

Using the deviance in place of the Pearson’s X2 is not recommended as it may not be 
consistent. The estimation of β is unaffected since σ2 does not change the mean response 
but: 

   

So we need to scale up the standard errors by a factor of  
We cannot use the difference in deviances when comparing models, because the test 

statistic will be distributed σ2χ2. Since σ2 is not known and must be estimated in the 
overdispersion situation, an F-statistic must be used: 

 
  

This statistic is only an approximately F distributed, in contrast to the Gaussian case. 
This dispersion parameter method is only appropriate when the covariate classes are 

roughly equal in size. If not, more sophisticated methods should be used. One such 
approach uses the beta-binomial distribution where we assume that p follows a beta 
distribution. This approach is discussed in Williams (1982) and Crowder (1978) and can 
be implemented using the aod package in R. 

In Manly (1978), an experiment is reported where boxes of trout eggs were buried at 
five different stream locations and retrieved at four different times, specified by the 
number of weeks after the original placement. The number of surviving eggs was 
recorded. The box was not returned to the stream. The data is also analyzed by Hinde and 
Demetrio (1988). We can construct a tabulation of the data by: 

> data(troutegg) 
> ftable(xtabs(cbind(survive,total) 
location+period,troutegg)) 
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                 survive total 
location period 
1        4            89    94 
         7            94    98 
         8            77    86 
         11          141   155 
2        4           106   108 
         7            91   106 
         8            87    96 
         11          104   122 
3        4           119   123 
         7           100   130 
         8            88   119 
         11           91   125 
4        4           104   104 
         7            80    97 
         8            67    99 
       11      111    132 
5      4        49     93 
       7        11    113 
       8        18     88 
       11        0    138 

Notice that in one case, all the eggs survive, while in another, none of the eggs survive. 
We now fit a binomial GLM for the two main effects: 

> bmod <- glm(cbind(survive,total-survive) ~ 
location+period, 
  family=binomial,troutegg) 
> bmod 
Coefficients: 
(Intercept)   location2     location3     location4   l
ocation5 
      4.636      -0.417        -1.242        -
0.951      -4.614 
    period7     period8      period11 
     -2.170      -2.326        -2.450 
Degrees of Freedom:19 Total (i.e. Null); 12 Residual 
Null Deviance:    1020 
Residual Deviance:64.5 AIC: 157 

The deviance of 64.5 on 12 degrees of freedom seems to show that this model does not 
fit. Before we conclude that there is overdispersion, we need to eliminate other potential 
explanations. With about 100 eggs in each box, we have no problem with sparseness, but 
we do need to check for outliers and look at the model formula. A half-normal plot of the 
residuals is a good way to check for outliers: 

 halfnorm(residuals(bmod)) 
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The half-normal plot is shown in the left panel of Figure 2.5. No single outlier is 
apparent. Perhaps one can discern a larger number of residuals which seem to follow a 
more dispersed distribution than the rest.  

We can also check whether the predictors are correctly expressed by plotting the 
empirical logits. These are defined as: 

 

  

The halves are added to prevent infinite values for groups consisting of all successes or 
failures. We now construct an interaction plot of the empirical logits: 

 

 

Figure 2.5 Diagnostic plots for the 
trout egg model. A half-normal plot of 
the residuals is shown on the left and 
an interaction plot of the empirical 
logits is shown on the right. 

> elogits <- 
log((troutegg$survive+0.5)/(troutegg$total- 
  troutegg$survive+0.5)) 
> 
with(troutegg,interaction.plot(period,location,elogits)
) 

Interaction plots are always difficult to interpret conclusively, but there is no obvious sign 
of large interactions. So there is no evidence that the linear model is inadequate. We do 
not have any outliers and the functional form of the model appears to be suitable, but the 
deviance is still larger than should be expected. Having eliminated these more obvious 
causes as the source of the problem, we may now put the blame on overdispersion. 
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Possible reasons for the overdispersion include inhomogeneous trout eggs, variation in 
the experimental procedures or unknown variables affecting survival. 

We can estimate the dispersion parameter as: 

> (sigma2 <- sum(residuals(bmod,type="pearson")^2) /12) 
[1] 5.3303 

We see that this is substantially larger than one as it would be in the standard binomial 
GLM. We can now make F-tests on the predictors using: 

> drop1(bmod,scale=sigma2,test="F") 
Single term deletions 
scale:  5.3303 
        Df  Deviance AIC  F value   Pr(F) 
<none>            64 157 
location 4       914 308     39.5 8.1e-07 
period   3       229 182     10.2  0.0013 
Warning message: 
F test assumes quasibinomial family in: 
dropl.glm(bmod, scale = sigma2, test = "F") 

We see that both terms are clearly significant. It is necessary to specify the scale 
argument using the estimated value of σ2. If this argument is omitted, the deviance will be 
used in the estimation of the dispersion parameter. For this particular dataset, it makes 
very little difference, but in some cases, using the deviance to estimate the dispersion 
gives inconsistent results. The warning message reminds us that the use of free dispersion 
parameter results in a model that is no longer a true binomial GLM, but rather what is 
known as a quasi-binomial GLM. More on such models may be found in Section 7.4. 

No goodness of fit test is possible because we have a free dispersion parameter. We 
can use the dispersion parameter to scale up the estimates of the standard error as in:  

> summary (bmod, dispersion=sigma2 ) 
Coefficients: 
            Estimate Std.   Error z value Pr(>|z|) 
(Intercept)    4.636        0.649    7.14  9.5e-13 
location2     -0.417        0.568   -0.73    0.463 
location3     -1.242        0.507   -2.45    0.014 
location4     -0.951        0.528   -1.80    0.072 
location5     -4.614        0.578   -7.99  1.4e-15 
period7       -2.170        0.550   -3.94  8.1e-05 
period8       -2.326        0.561   -4.15  3.4e-05 
period11      -2.450        0.540   -4.53  5.8e-06 

2.12 Matched Case-Control Studies 

In a case-control study, we try to determine the effect of certain risk factors on the 
outcome. We understand that there are other confounding variables that may affect the 
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outcome. One approach to dealing with these is to measure or record them, include them 
in the logistic regression model as appropriate and thereby control for their effect. But 
this method requires that we model these confounding variables with the correct 
functional form. This may be difficult. Also, making an appropriate adjustment is 
problematic when the distribution of the confounding variables is quite different in the 
cases and controls. So we might consider an alternative where the confounding variables 
are explicitly adjusted for in the design. 

In a matched case-control study, we match each case (diseased person, defective 
object, success, etc.) with one or more controls that have the same or similar values of 
some set of potential confounding variables. For example, if we have a 56-year-old, 
Hispanic male case, we try to match him with some number of controls who are also 56-
year-old Hispanic males. This group would be called a matched set. Obviously, the more 
confounding variables one specifies, the more difficult it will be to make the matches. 
Loosening the matching requirements, for example, accepting controls who are 50-60 
years old might be necessary. Matching also gives us the possibility of adjusting for 
confounders that are difficult to measure. For example, suppose we suspect an 
environmental effect on the outcome. However, it is difficult to measure exposure, 
particularly when we may not know which substances are relevant. We could match 
subjects based on their place of residence or work. This would go some way to adjusting 
for the environmental effects. 

Matched case-control studies also have some disadvantages apart from the difficulties 
of forming the matched sets. One loses the possibility of discovering the effects of the 
variables used to determine the matches. For example, if we match on sex, we will not be 
able to investigate a sex effect. Furthermore, the data will likely be far from a random 
sample of the population of interest. So although relative effects may be found, it may be 
difficult to generalize to the population. 

Sometimes, cases are rare but controls are readily available. A1: M design has M 
controls for each case. M is typically small and can even vary in size from matched set to 
matched set due to difficulties in finding matching controls and missing values. Each 
additional control yields a diminished return in terms of increased efficiency in 
estimating risk factors—it is usually not worth exceeding M=5. 

For individual i in the jth matched set, we also observe a covariate vector xij which will 
include the risk factors of interest plus any other variables that we may wish to adjust for, 
but were unable for various reasons to include among the criteria used to match the sets. 
It is important that the decision to include a subject in the study be independent of the 
risk factors as in the unmatched case-control studies. Suppose we have n matched sets 
and that we take i=0 to represent the case and i=1,…, M to represent the controls. We 
propose a logistic regression model of the following form: 

logit(pj(xij))=αj+βTxij   

The αj models the effect of the confounding variables in the jth matched set. Given a 
matched set j of M+1 subjects known to have one case and M controls, the conditional 
probability of the observed outcome, or, in other words, that subject i=0 is the case and 
the rest are controls is: 
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Notice that αj cancels out in this expression. We may then form the conditional likelihood 
for the model by taking the product over all the matched sets: 

 

  

We may now employ standard likelihood methods to make inference—see Breslow 
(1982) for details. The likelihood takes the same form as that used for the proportional 
hazards model used in survival analysis. This is convenient because we may use software 
developed for those models as we demonstrate below. Since the as are not estimated, we 
cannot make predictions about individuals, but only make statements about the relative 
risks as measured by the βs. This same restriction also applies to the unmatched model, 
so this is nothing new. 

In Le (1998), a matched case-control study is presented concerning the association 
between x-rays and childhood acute myeloid leukemia. The sets are matched on age, race 
and county of residence. For the most part, there is only one control for each case, but 
there are a few instances of two controls. We start with a look at the data: 

> data(amlxray) 
> head(amlxray) 
    ID disease Sex downs age Mray MupRay MlowRay Fray 
Cray CnRay 
1 
7004       1   F    no    0  no     no      no   no   n
o     1 
2 
7004       0   F    no   0   no     no      no   no   n
o     1 
3 
7006       1   M    no   6   no     no      no   no  ye
s     3 
4 
7006       0   M    no   6   no     no      no   no  ye
s     2 
5 
7009       1   F    no   8   no     no      no   no   n
o     1 
6 
7009       0   F    no   8   no     no      no   no   n
o     1 

Only the age is presented here as one of the matching variables. In the three sets shown 
here, we see that both subjects have the same age and the first is the case and the second 
is the control. The other variables are risk factors of interest.  
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Down syndrome is known to be a risk factor. There are only seven such subjects in the 
dataset: 

> amlxray[amlxray$downs=="yes",1:4] 
      ID disease Sex downs 
7   7010       1   M   yes 
17  7018       1   F   yes 
78  7066       1   F   yes 
88  7077       1   M   yes 
173 7146       1   F   yes 
196 7176       1   F   yes 
210 7189       1   F   yes 

We see that all seven subjects are cases. If we include this variable in the regression, its 
coefficient is infinite. Given this and the prior knowledge, it is simplest to exclude all 
these subjects and their associated matched subjects: 

> (ii <- which(amlxray$downs=="yes")) 
[1]   7  17  78  88 173 196 210 
> ramlxray <- amlxray[-c(ii,ii+1),] 

The variables Mray, MupRay and MlowRay record whether the mother has ever had an 
x-ray, ever had an upper body x-ray and ever had a lower body x-ray, respectively. These 
variables are closely associated, so we will pick just Mray for now and investigate the 
others more closely if indicated. We will also use CnRay, a four-level ordered factor 
grouping the number of x-rays that the child has received in preference to Cray which 
merely indicates whether the child has ever had an x-ray. 

The clogit function fits a conditional logit model. Since the likelihood is identical with 
that from a proportional hazards model, it may be found in the survival package. The 
matched sets must designated by the strata function: 

> library (survival) 
> cmod <- clogit(disease ~ 
Sex+Mray+Fray+CnRay+strata(ID),ramlxray) 
> summary(cmod) 
          coef exp(coef) se(coef)      z      p 
SexM     0.156      1.17    0.386  0.405 0.6900 
Mrayyes  0.228      1.26    0.582  0.391 0.7000 
Frayyes  0.693      2.00    0.351  1.974 0.0480 
CnRay.L  1.941      6.96    0.621  3.127 0.0018 
CnRay.Q -0.248      0.78    0.582 -0.426 0.6700 
CnRay.C -0.580      0.56    0.591 -0.982 0.3300 
        exp(coef) exp(-coef) lower .95 upper .95 
SexM         1.17      0.855     0.549      2.49 
Mrayyes      1.26      0.796     0.401      3.93 
Frayyes      2.00      0.500     1.005      3.98 
CnRay.L      6.96      0.144     2.063     23.51 
CnRay.Q      0.78      1.281     0.249      2.44 
CnRay.C      0.56      1.786     0.176      1.78 
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Rsquare= 0.089   (max possible= 0.499) 
Likelihood ratio test= 20.9  on 6 df,  p=0.00192 
Wald test            = 14.5 on 6 df, p=0.0246 
Score (logrank) test = 18.6 on 6 df, p=0.0049 

The overall tests for significance of the predictors indicate that at least some of the 
variables are significant. We see that Sex and whether the mother had an x-ray are not 
significant. There seems little point in investigating the other x-ray variables associated 
with the mother. An x-ray on the father is marginally significant. However, the x-ray on 
the child has the clearest effect. Because this is an ordered factor, we have used linear, 
quadratic and cubic contrasts. Only the linear effect is significant. 

The second table of coefficients gives us information helpful for interpreting the size 
of the effects. We see that the father having had an x-ray doubles the odds of the disease. 
The interpretation of the number of x-rays of the child is more difficult to interpret 
because of the coding. Since we have found only a linear effect, we convert CnRay to the 
numerical values 1–4 using unclass. We also drop the insignificant predictors: 

> cmodr <- clogit(disease ~ 
Fray+unclass(CnRay)+strata(ID),ramlxray) 
> summary(cmodr) 
                coef exp(coef) se(coef)    z       p 
Frayyes        0.670      1.96    0.344 1.95 0.05100 
unclass(CnRay) 0.814      2.26    0.237 3.44 0.00058 
               exp(coef) exp(-coef) lower .95 upper .95 
Frayyes             1.96      0.512     0.996      3.84 
unclass(CnRay)      2.26      0.443     1.419      3.59 

The codes for Cnray are 1=none, 2=1 or 2 x-rays, 3=3 or 4 x-rays and 4=5 or more x-
rays. We see that the odds of the disease increase by a factor of 2.26 as we move between 
adjacent categories. Notice that the father’s x-ray variable is now just insignificant in this 
regression underlining its borderline status. 

An incorrect analysis of this data ignores the matching structure and simply uses a 
binomial GLM: 

> gmod <- glm(disease ~ 
Fray+unclass(CnRay),family=binomial, ramlxray) 
> summary(gmod) 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)      -1.162      0.301   -3.86 0.00011 
Frayyes           0.500      0.308    1.63 0.10405 
unclass(CnRay)    0.601      0.177    3.39 0.00071 

The results are somewhat different. 
Although we have found an effect due to x-rays of the child, we cannot conclude the 

effect is causal. After all, subjects only have x-rays when something is wrong, so it is 
quite possible that the x-rays are linked to some unknown causal factor. 

Other examples of matched data may be found in Section 4.3. 
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Further Reading: See books by Collett (2003), Hosmer and Lemeshow (2000), Cox 
(1970), Harrell (2001), Menard (2002), Christensen (1997) and Kleinbaum and Klein 
(2002).  

 

Exercises 

1. The question concerns data from a case-control study of esophageal cancer in Ileet-
Vilaine, France. The data is distributed with R and may be obtained along with a 
description of the variables by: 

> data(esoph) 
> help(esoph) 

(a) Fit a binomial GLM with interactions between all three predictors. Use backward 
elimination to simplify the model as far as is reasonable. 

(b) All three factors are ordered and so special contrasts have been used appropriate 
for ordered factors involving linear, quadratic and cubic terms. Further 
simplification of the model is possible by eliminating some of these terms. Use the 
unclass function to convert some or all factors to a numerical representation and 
show how the model may be simplified. 

(c) Does your final model fit the data? Is the test you make accurate for this data? 
(d) Check for outliers in your final model. 
(e) What is the predicted effect of moving one category higher in alcohol 

consumption? 
(f) Compute a 95% confidence interval for this predicted effect. 
(g) Bearing in mind that this is a case-control study, what can be said about the 

predicted probability that a 25-year-old who does not smoke or drink will get 
esophageal cancer? 

2. The dataset wbcd comes from a study of breast cancer in Wisconsin. There are 681 
cases of potentially cancerous tumors of which 238 are actually malignant. 
Determining whether a tumor is really malignant is traditionally determined by an 
invasive surgical procedure. The purpose of this study was to determine whether a 
new procedure called fine needle aspiration, which draws only a small sample of 
tissue, could be effective in determining tumor status. 

(a) Fit a binomial regression with Class as the response and the other nine variables as 
predictors. Report the residual deviance and associated degrees of freedom. Can 
this information be used to determine if this model fits the data? Explain. 

(b) Use AIC as the criterion to determine the best subset of variables. (Use the step 
function.) 

(c) Use the reduced model to predict the outcome for a new patient with predictor 
variables 1, 1, 3, 2, 1, 1, 4, 1, 1 (same order as above). Give a confidence interval 
for your prediction. 
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(d) Suppose that a cancer is classified as benign if p>0.5 and malignant if p<0.5. 
Compute the number of errors of both types that will be made if this method is 
applied to the current data with the reduced model.  

(e) Suppose we change the cutoff to 0.9 so that p<0.9 is classified as malignant and 
p>0.9 as benign. Compute the number of errors in this case. Discuss the issues in 
determining the cutoff. 

(f) It is usually misleading to use the same data to fit a model and test its predictive 
ability. To investigate this, split the data into two parts—assign every third 
observation to a test set and the remaining two thirds of the data to a training set. 
Use the training set to determine the model and the test set to assess its predictive 
performance. Compare the outcome to the previously obtained results. 

3. The National Institute of Diabetes and Digestive and Kidney Diseases conducted a 
study on 768 adult female Pima Indians living near Phoenix. The purpose of the study 
was to investigate factors related to diabetes. The data may be found in the the dataset 
pima. 

(a) Perform simple graphical and numerical summaries of the data. Can you find any 
obvious irregularities in the data? If you do, take appropriate steps to correct the 
problems. 

(b) Fit a model with the result of the diabetes test as the response and all the other 
variables as predictors. Can you tell whether this model fits the data? 

(c) What is the difference in the odds of testing positive for diabetes for a woman with 
a BMI at the first quartile compared with a woman at the third quartile, assuming 
that all other factors are held constant? Give a confidence interval for this 
difference. 

(d) Do women who test positive have higher diastolic blood pressures? Is the diastolic 
blood pressure significant in the regression model? Explain the distinction between 
the two questions and discuss why the answers are only apparently contradictory. 

(e) Perform diagnostics on the regression model, reporting any potential violations and 
any suggested improvements to the model. 

(f) Predict the outcome for a woman with predictor values 1, 99, 64, 22, 76, 27, 0.25, 
25 (same order as in the dataset). Give a confidence interval for your prediction. 

4. Aflatoxin B1 was fed to lab animals at various doses and the number responding with 
liver cancer recorded. The data may be found in the dataset af latoxin. 

(a) Build a model to predict the occurrence of liver cancer. Compute the ED50 level. 
(b) Discuss the extrapolation properties of your chosen model for low doses. 

5. A study was conducted to determine the effectiveness of a new teaching method in 
economics. The data may be found in the dataset spector. Write a report on how well 
the new method works. 

6. Incubation temperature can affect the sex of turtles. An experiment was conducted 
with three independent replicates for each temperature and the number of male and 
female turtles born was recorded and can be found in the turtle dataset. Check for 
evidence of overdispersion in a binomial model for the sex of the turtle. 
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7. The infert dataset from the survival package presents data from a study of infertility 
after spontaneous and induced abortion. Analyze and report on the factors related to 
infertility based on this data. 
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CHAPTER 3  
Count Regression 

When the response is a count (a positive integer), we can use a count regression model to 
explain this response in terms of the given predictors. Sometimes, the total count is 
bounded, in which case a binomial response regression should probably be used. In other 
cases, the counts might be sufficiently large that a normal approximation is justified so 
that a normal linear model may be used. We shall consider two distributions for counts. 
The Poisson and, less commonly, the negative binomial. 

3.1 Poisson Regression 

If Y is Poisson with mean µ>0, then: 

 
  

Now EY=var Y=µ. The Poisson distribution arises naturally in several ways: 

1. If the count is some number out of some possible total, then the response would be 
more appropriately modeled as a binomial. However, for small success probabilities 
and large totals, the Poisson is a good approximation and can be applied. For example, 
in modeling the incidence of rare forms of cancer, the number of people affected is a 
small proportion of the population in a given geographical area. A Poisson regression 
model can be used in preference to a binomial. If µ=np while n→∞, then B(n, p) is 
well approximated by Pois(µ). Also, for small p, note that logit(p)≈log p, so that the 
use of the Poisson with a log link is comparable to the binomial with a logit link. 

2. Suppose the probability of occurrence of an event in a given time interval is 
proportional to the length of that time interval and independent of the occurrence of 
other events. Then the number of events in any specified time interval will be Poisson 
distributed. Examples include modeling the number of incoming telephone calls to a 
service center or the number of earthquakes. However, in any real application, the 
assumptions are likely to be violated. For example, the rate of incoming telephone 
calls is likely to vary with the time of day while the timing of earthquakes are unlikely 
to be completely independent. Nevertheless, a good approximation may be sufficient. 

3. Poisson distributions also arise naturally when the time between events is independent 
and identically exponentially distributed. We count the number of events in a given 
time period. This is effectively equivalent to the previous case, since the exponential 
distribution between events will result from the assumption of constant and 
independent probability of occurrence of an event in an interval. 



If the count is the number falling into some level of a given category, then a multinomial 
response model or categorical data analysis should be used. For example, if we have 
counts of how many people have type O, A, B or AB blood and are interested in how that 
relates to race and gender, then a straight Poisson regression model will not be 
appropriate. We will see later that the Poisson distribution still comes into play in 
Chapter 5. 

An important result concerning Poisson random variables is that their sum is also 
Poisson. Specifically, suppose that Yi~Pois(µi) for i=1, 2,… and are independent, then 
ΣiYi~Pois(Σiµi). This is useful because sometimes we have access only to the aggregated 
data. If we assume the individual-level data is Poisson, then so is the summed data and 
Poisson regression can still be applied. 

For 30 Galápagos Islands, we have a count of the number of species of tortoise found 
on each island and the number that are endemic to that island. We also have five 
geographic variables for each island. The data was presented by Johnson and Raven 
(1973) and also appear in Weisberg (2005). We have filled in a few missing values that 
appeared in the original dataset for simplicity. We model the number of species using 
normal linear regression: 

> data(gala) 
> gala <- gala[,-2] 

We throw out the Endemics variable (which falls in the second column of the dataframe) 
since we won’t be using it in this analysis. We fit a linear regression and look at the 
residual vs. fitted plot: 

> modl <- 1m(Species ~ . , gala) 
> 
plot(predict(modl),residuals(modl),xlab="Fitted",ylab="
Residuals") 

 

Figure 3.1 Residual-fitted plots for the 
Galápagos dataset. The plot on the left 
is for a model with the original 
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response while that on the right is for 
the square-root transformed response. 

We see clear evidence of nonconstant variance in left panel of Figure 3.1. Some 
experimentation (or the use of the Box-Cox method) reveals that a square-root 
transformation is best:  

> modt <- 1m(sqrt(Species) ~ . , gala) 
> 
plot(predict(modt),residuals(modt),xlab="Fitted",ylab="
Residuals") 

We now see in the right panel of Figure 3.1 that the nonconstant variance problem has 
been cleared up. Let’s take a look at the fit: 

> summary(modt) 
Coefficients: 
             Estimate  Std. Error t value Pr(>|t|) 
(Intercept)  3.391924    0.871268    3.89  0.00069 
Area        -0.001972    0.001020   -1.93  0.06508 
Elevation    0.016478    0.002441    6.75  5.5e-07 
Nearest      0.024933    0.047950    0.52  0.60784 
Scruz       -0.013483    0.009798   -1.38  0.18151 
Adjacent    -0.003367    0.000805   -4.18  0.00033 
Residual standard error:  2.77 on 24 degrees of freedom 
Multiple R-Squared: 0.783,       Adjusted R-squared: 
0.737 
F-statistic: 17.3 on 5 and 24  degrees of freedom,  p-
value: 2.87e-07 

We see a fairly good fit (R2=0.78) considering the nature of the variables. However, we 
achieved this fit at the cost of transforming the response. This makes interpretation more 
difficult. Furthermore, some of the response values are quite small (single digits) which 
makes us question the validity of the normal approximation. This model may be 
adequate, but perhaps we can do better. We develop a Poisson regression model: 

Suppose we have count responses Yi that we wish to model in terms of a vector of 
predictors xi. Now if Yi~Pois(µi), we need some way to link the µi to the xi. We use a 

linear combination of the xi to form the linear predictor Since we require that 
µi≥0, we can ensure this by using a log link function, that is: 

   

So, as with the binomial regression models of the previous chapter, this models also has a 
linear predictor and a link function. 

Now, the log-likelihood is: 
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Differentiating with respect to β gives the MLE as the solution to: 

 

  

which can be more compactly written as: 

   

The normal equations for the least squares estimate of β in normal linear models take the 

same form when we set The equations for β for a binomial regression with a 
logit link also take the same form. This would not be true for other link functions. The 
link function having this property is known as the canonical link.  

However, there is no explicit formula for for the Poisson (or binomial) regression 
and we must resort to numerical methods to find a solution. We fit the Poisson regression 
model to the Galápagos data: 

> modp <- glm(Species ~ .,family=poisson, gala) 
> summary(modp) 
Deviance Residuals: 
   Min      1Q  Median      3Q     Max 
-8.275  -4.497  -0.944   1.917  10.185 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|) 
(Intercept)  3.1548079  0.0517495   60.96   < 2e-16 
Area        -0.0005799  0.0000263  -22.07   < 2e-16 
Elevation    0.0035406  0.0000874   40.51   < 2e-16 
Nearest      0.0088256  0.0018213    4.85 0.0000013 
Scruz       -0.0057094  0.0006256   -9.13   < 2e-16 
Adjacent    -0.0006630  0.0000293  -22.61   < 2e-16 
(Dispersion parameter for poisson family taken to be 1) 
    Null deviance: 3510.73 on 29 degrees of freedom 
Residual deviance:  716.85 on 24 degrees of freedom 
AIC: 889.7 
Number of Fisher Scoring iterations: 5 

Using the same arguments as for binomial regression, we develop a deviance for the 
Poisson regression: 

 

  

This Poisson deviance is also known as the G-statistic. 
The same asymptotic inference may be employed as for the binomial model. We can 

judge the goodness of fit of a proposed model by checking the deviance of the model 
against a χ2 distribution with degrees of freedom equal to that of the model. We can 
compare nested models by taking the difference of the deviances and comparing to a χ2 
distribution with degrees of freedom equal to the difference in the number of parameters 
for the two models. We can test the significance of individual predictors and construct 
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confidence intervals for β using the standard errors,  although, as before, it is better 
to use profile likelihood methods. 

An alternative and perhaps better-known goodness of fit measure is the Pearson’s X2 
statistic: 

 

  

In this example, we see that the residual deviance is 717 on 24 degrees of freedom which 
indicates an ill-fitting model if the Poisson is the correct model for the response. We 
check the residuals to see if the large deviance can be explained by an outlier:  

> halfnorm(residuals(modp)) 

 

Figure 3.2 Half-normal plot of the 
residuals of the Poisson model is 
shown on the left and the relationship 
between the mean and variance is 
shown on the right. A line representing 
mean equal to variance is also shown. 

The half-normal plot of the residuals shown in Figure 3.2 shows no outliers. It could be 
that the structural form of the model needs some improvement, but some experimentation 
with different forms for the predictors will reveal that there is little scope for 
improvement. Furthermore, the proportion of deviance explained by this model, 1-
717/3510=0.796, is about the same as in the linear model above. 

For a Poisson distribution, the mean is equal to the variance. Let’s investigate this 
relationship for this model. It is difficult to estimate the variance for a given value of the 
mean, but does serve as a crude approximation. We plot this estimated variance 
against the mean, as seen in the second panel of Figure 3.2: 
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> plot(log(fitted(modp)),log((gala$Species-
fitted(modp))^2), 
  xlab=expression(hat(mu)),ylab=expression((y-
hat(mu))^2)) 
> abline(0,1) 

We see that the variance is proportional to, but larger than, the mean. When the variance 
assumption of the Poisson regression model is broken but the link function and choice of 
predictors is correct, the estimates of β are consistent, but the standard errors will be 
wrong. We cannot determine which predictors are statistically significant in the above 
model using the output we have. 

The Poisson distribution has only one parameter and so is not very flexible for 
empirical fitting purposes. We can generalize by allowing ourselves a dispersion 
parameter. Over- or underdispersion can occur in Poisson models. For example, suppose 
the Poisson response Y has rate λ which is itself a random variable. The tendency to fail 
for a machine may vary from unit to unit even though they are the same model. We can 
model this by letting λ be gamma distributed with Eλ=µ and var Now Y is 
negative binomial with mean EY=µ. The mean is the same as the Poisson, but the 
variance var which is not equal to µ. In this case, overdispersion would 
occur. 

If we know the specific mechanism, as in the above example, we could model the 
response as a negative binomial or other more flexible distribution. If the mechanism is 
not known, we can introduce a dispersion parameter such that var 

is the regular Poisson regression case, while is overdispersion and is 
underdispersion. 

The dispersion parameter may be estimated using: 

 

  

We estimate the dispersion parameter in our example by: 

> (dp <- 
sum(residuals(modp,type="pearson")^2)/modp$df.res) 
[1] 31.749 

We can then adjust the standard errors and so forth in the summary as follows: 

> summary (modp, dispersion=dp) 
Coefficients: 
             Estimate Std.   Error z value Pr(>|z|) 
(Intercept)  3.154808     0.291590   10.82  < 2e-16 
Area        −0.000580     0.000148   -3.92  8.9e-05 
Elevation    0.003541     0.000493    7.19  6.5e-13 
Nearest      0.008826     0.010262    0.86     0.39 
Scruz       -0.005709     0.003525   -1.62     0.11 
Adjacent    -0.000663     0.000165   -4.01  6.0e-05 
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(Dispersion parameter   for poisson family taken to be 
31.749) 
    Null deviance: 3510.73    on 29  degrees of freedom 
Residual deviance:  716.85    on 24  degrees of freedom 
AIC: 889.7 

Notice that the estimation of the dispersion and the regression parameters is independent, 
so choosing a dispersion other than one has no effect on the regression parameter 
estimates. Notice also that there is some similarity in which variables are picked out as 
significant and which not when compared with the linear regression model. 

When comparing Poisson models with overdispersion, an F-test rather than a χ2 test 
should be used. As in normal linear models, the variance, or dispersion parameter in this 
case, needs to be estimated. This requires the use of the F-test. So to test the significance 
of each of the predictors relative to the full model, use: 

> dropl(modp,test="F") 
Single term deletions 
Model: 
Species ~ Area + Elevation + Nearest + Scruz + Adjacent 
          Df Deviance  AIC F value   Pr(F) 
<none>            717  890  
Area       1     1204 1375   16.32 0.00048 
Elevation  1     2390 2560   56.00   1e-07 
Nearest    1      739  910    0.76 0.39336 
Scruz      1      814  984    3.24 0.08444 
Adjacent   1     1341 1512   20.91 0.00012 
Warning message: 
F test assumes quasipoisson family in: dropl.glm(modp, 
test="F") 

The z-statistics from the summary () are less reliable and so the F-test is preferred. In this 
example, there is little practical difference between the two. 

3.2 Rate Models 

The number of events observed may depend on a size variable that determines the 
number of opportunities for the events to occur. For example, if we record the number of 
burglaries reported in different cities, the observed number will depend on the number of 
households in these cities. In other cases, the size variable may be time. For example, if 
we record the number of customers served by a sales worker, we must take account of the 
differing amounts of time worked. 

Sometimes, it is possible to analyze such data using a binomial response model. For 
the burglary example above, we might model the number of burglaries out of the number 
of households. However, if the proportional is small, the Poisson approximation to the 
binomial is effective. Furthermore, in some examples, the total number of potential cases 
may not be known exactly. The modeling of rare diseases illustrates this issue as we may 
know the number of cases but not have precise population data. Sometimes, the binomial 
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model simply cannot be used. In the burglary example, some households may be affected 
more than once. In the customer service example, the size variable is not a count. An 
alternative approach is to model the ratio. However, there are often difficulties with 
normality and unequal variance when taking this approach, particularly if the counts are 
small. 

In Purott and Reeder (1976), some data is presented from an experiment conducted to 
determine the effect of gamma radiation on the numbers of chromosomal abnormalities 
(ca) observed. The number (cells), in hundreds of cells exposed in each run, differs. The 
dose amount (doseamt) and the rate (doserate) at which the dose is applied are the 
predictors of interest. We may format the data for observation like this: 

> data(dicentric) 
> round(xtabs(ca/cells ~ doseamt+doserate, 
dicentric),2) 
       doserate 
doseamt  0.1 0.25  0.5    1  1.5    2  2.5    3    4 
    1   0.05 0.05 0.07 0.07 0.06 0.07 0.07 0.07 0.07 
    2.5 0.16 0.28 0.29 0.32 0.38 0.41 0.41 0.37 0.44 
    5   0.48 0.82 0.90 0.88 1.23 1.32 1.34 1.24 1.43 

We can plot the data as seen in the first panel of Figure 3.3: 

> 
with(dicentric,interaction.plot(doseamt,doserate,ca/cel
ls)) 

We might try modeling the rate directly. We see that the effect of the dose rate may be 
multiplicative, so we log this variable in the following model:  

 

Figure 3.3 Chromosomal 
abnormalities rate response is shown 
on the left and a residuals νs. fitted 
plot of a linear model fit to these data 
is shown on the right. 
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> lmod <- lm(ca/cells ~ log(doserate)*factor(doseamt), 
dicentric) 
> summary(lmod)$adj 
[1] 0.98444 

As can be seen from the adjusted R2, this model fits well. However, a look at the 
diagnostics reveals a problem, as seen in the second panel of Figure 3.3: 

> plot(residuals(lmod) ~ 
fitted(lmod),xlab="Fitted",ylab="Residuals") 
> abline(h=0) 

We might prefer an approach that directly models the count response. We need to use the 
log of the number of cells because we expect this to have a multiplicative effect on the 
response: 

> dicentric$dosef <- factor(dicentric$doseamt) 
> pmod <- glm(ca ~ log(cells)+log(doserate)*dosef, 
  family=poisson,dicentric) 
> summary(pmod) 
Coefficients: 
                       Estimate Std. Error z value 
Pr(>|z|) 
(Intercept)             -2.7653     0.3812   -
7.25    4e-13 
log(cells)               1.0025     0.0514   19.52   <2
e-16 
log(doserate)            0.0720     0.0355    2.03  0.0
4240 
dosef2.5                 1.6298     0.1027   15.87   <2
e-16 
dosef5                   2.7667     0.1229   22.52   <2
e-16 
log(doserate):dosef2.5   0.1611     0.0484    3.33  0.0
0087 
log(doserate):dosef5     0.1932     0.0430    4.49    7
e-06 
(Dispersion parameter for poisson family taken to be 1) 
    Null deviance: 916.127 on 26 degrees of freedom 
Residual deviance:  21.748 on 20 degrees of freedom 
AIC: 211.2 

We can relate this Poisson model with a log link back to a linear model for the ratio 
response: 

log(ca/cells)=Xβ   

This can be rearranged as 
log ca=log cells+Xβ   
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We are using log cells as a predictor. Checking above, we can see that the coefficient of 
1.0025 is very close to one. This suggests fitting a model with the coefficient fixed as 
one. In this manner, we are modeling the rate of chromosomal abnormalities while still 
maintaining the count response for the Poisson model. This is known as a rate model. We 
fix the coefficient as one by using an offset. Such a term on the predictor side of the 
model equation has no parameter attached: 

> rmod <- glm(ca ~ offset 
(log(cells))+log(doserate)*dosef, 
  family=poisson,dicentric) 
> summary(rmod) 
Coefficients: 
                      Estimate Std.   Error  z 
value  Pr(>|z|) 
(Intercept)            -2.7467       0.0343   -
80.16   < 2e-16 
log(doserate)           0.0718       0.0352     2.04   
0.04130 
dosef2.5                1.6254       0.0495    32.86   
< 2e-16 
dosef5                  2.7611       0.0435    63.49   
< 2e-16 
log(doserate):dosef2.5  0.1612       0.0483     3.34   
0.00084 
log(doserate):dosef5    0.1935       0.0424     4.56 
0.0000051 
(Dispersion parameter for poisson family taken to be 1) 
Null deviance:     4753.00  on 26 degrees of freedom 
Residual deviance:   21.75  on 21 degrees of freedom 
AIC: 209.2 

Not surprisingly, the coefficients are only slightly different from the previous model. We 
see from the residual deviance that the model fits well. Previous analyses have posited a 
quadratic effect in dose; indeed, the observed coefficients speak against a purely linear 
effect. However, given that we have only three dose levels, we can hardly check whether 
quadratic is appropriate. Given the significant interaction effect, we can see that the effect 
of the dose rate is different depending on the overall dose. We can see that the 
combination of a high dose, delivered quickly, has a greater combined effect than the 
main effect estimates would suggest. More on the analysis of this data may be found in 
Frome and DuFrain (1986). 

3.3 Negative Binomial 

Given a series of independent trials, each with probability of success p, let Z be the 
number of trials until the kth success. Then: 
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The negative binomial can arise naturally in several ways. One can envision a system that 
can withstand k hits. The probability of a hit in a given time period is p. The negative 
binomial also arises from the generalization of the Poisson where the parameter λ is 
gamma distributed. The negative binomial also comes up as a limiting distribution for urn 
schemes that can be used to model contagion. 

We get a more convenient parameterization if we let Y=Z–k and p=(1 + α)−1 so that: 

 

  

then EY=µ=kα and var Y=kα+kα2=µ+µ2/k. 
The log-likelihood is then: 

 

  

The most convenient way to link the mean response µ to a linear combination of the 
predictors X is: 

 
  

We can regard k as fixed and determined by the application or as an additional parameter 
to be estimated. More on regression models for negative binomial responses may found 
in Cameron and Trivedi (1998) and Lawless (1987). 

Consider this example. ATT ran an experiment varying five factors relevant to a 
wave-soldering procedure for mounting components on printed circuit boards. The 
response variable, skips, is a count of how many solder skips appeared to a visual 
inspection. The data comes from Comizzoli, Landwehr, and Sinclair (1990). We start 
with a Poisson regression: 

> data(solder) 
> modp <- glm(skips ~ . , family=poisson, data=solder) 
> deviance(modp) 
[1] 1829 
> df.residual(modp) 
[1] 882 

We see that the full model has a residual deviance of 1829 on 882 degrees of freedom. 
This is not a good fit. Perhaps including interaction terms will improve the fit: 

> modp2 <- glm(skips ~ (Opening +Solder + Mask + 
PadType + Panel)^2 , 
  family=poisson, data=solder) 
> deviance(modp2) 
[1] 1068.8 
> 
pchisq(deviance(modp2),df.residual(modp2),lower=FALSE) 
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[1] 1.1307e-10 

The fit is improved but not enough to conclude that the model fits. We could try adding 
more interactions but that would make interpretation increasingly difficult. A check for 
outliers reveals no problem. 

An alternative model for counts is the negative binomial. The functions for fitting 
come from the MASS package—see Venables and Ripley (2002) for more details. We 
can specify the link parameter k. Here we choose k=1 to demonstrate the method, 
although there is no substantive motivation from this application to use this value:  

> library(MASS) 
> modn <- glm(skips ~ . , negative.binomial(1),solder) 
> modn 
Coefficients: 
(Intercept)     OpeningM       OpeningS   SolderThin   
    MaskA3 
    -
1.6993       0.5085         1.9997       1.0489       0
.6571 
     MaskA6       MaskB3         MaskB6    PadTypeD6   
 PadTypeD7 
     2.5265       1.2726         2.0803      -
0.4612       0.0161 
  PadTypeL4    PadTypeL6      PadTypeL7    PadTypeL8   
 PadTypeL9 
     0.4688      -0.4711        -0.2949      -
0.0849      -0.5213 
  PadTypeW4    PadTypeW9          Panel 
    -0.1425      -1.4836         0.1693 
Degrees of  Freedom: 899 Total  (i.e. Null); 882 
Residual 
Null Deviance:      1740 
Residual Deviance: 559   AIC: 3880 

We could experiment with different values of k, but there is a more direct way of 
achieving this by allowing the parameter k to vary and be estimated using maximum 
likelihood in: 

> modn <- glm.nb(skips ~ .,solder) 
> summary (modn) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  -1.4225     0.1427   -9.97  < 2e-16 
OpeningM      0.5029     0.0798    6.31  2.9e-10 
Openings      1.9132     0.0715   26.75  < 2e-16 
SolderThin    0.9393     0.0536   17.52  < 2e-16 
MaskA3        0.5898     0.0965    6.11  9.9e-10 
MaskA6        2.2673     0.1018   22.27  < 2e-16 
MaskB3        1.2110     0.0964   12.57  < 2e-16 
MaskB6        1.9904     0.0922   21.58  < 2e-16 
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PadTypeD6    -0.4659     0.1124   -4.15  3.4e-05 
PadTypeD7    -0.0331     0.1067   -0.31  0.75611 
PadTypeL4     0.3827     0.1026    3.73  0.00019 
PadTypeL6    -0.5784     0.1141   -5.07  4.0e-07 
PadTypeL7    -0.3666     0.1109   -3.30  0.00095 
PadTypeL8    -0.1589     0.1082   -1.47  0.14199 
PadTypeL9    -0.5660     0.1139   -4.97  6.8e-07 
PadTypeW4    -0.2004     0.1087   -1.84  0.06526 
PadTypeW9    -1.5646     0.1362  -11.49  < 2e-16 
Panel         0.1637     0.0314    5.21  1.8e-07 
(Dispersion parameter for Negative Binomial(4.3972) 
family taken to be 1) 
    Null deviance: 4043.3  on 899 degrees of freedom 
Residual deviance: 1008.3  on 882 degrees of freedom 
AIC: 3683 
Number of Fisher Scoring iterations: 1 
             Theta:  4.397 
         Std. Err.:  0.495 
2 x log-likelihood: -3645.309 

We see that with a standard error of 0.495. We can compare negative 
binomial models using the usual inferential techniques. 

Further Reading: See books by Cameron and Trivedi (1998) and Agresti (2002). 

Exercises 

1. The dataset discoveries lists the numbers of “great” inventions and scientific 
discoveries in each year from 1860 to 1959. Has the discovery rate remained constant 
over time? 

2. The salmonella data was collected in a salmonella reverse mutagenicity assay. The 
predictor is the dose level of quinoline and the response is the numbers of revertant 
colonies of TA98 salmonella observed on each of three replicate plates. Show that a 
Poisson GLM is inadequate and that some overdispersion must be allowed for. Do not 
forget to check out other reasons for a high deviance. 

3. The ships dataset found in the MASS package gives the number of damage incidents 
and aggregate months of service for different types of ships broken down by year of 
construction and period of operation. Develop a model for the rate of incidents, 
describing the effect of the important predictors. 

4. The dataset af rica gives information about the number of military coups in subSaharan 
Africa and various political and geographical information. Develop a simple but well-
fitting model for the number of coups. Give an interpretation of the effect of the 
variables you include in your model on the response. 

5. The dvisits data comes from the Australian Health Survey of 1977–78 and consist of 
5190 single adults where young and old have been oversampled. 

(a) Build a Poisson regression model with doctorco as the response and sex, age, 
agesq, income, levyplus, freepoor, freerepa, illness, actdays, hscore, chcond1 and 
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chcond2 as possible predictor variables. Considering the deviance of this model, 
does this model fit the data? 

(b) Plot the residuals and the fitted values—why are there lines of observations on the 
plot? 

(c) Use backward elimination with a critical p-value of 5% to reduce the model as 
much as possible. Report your model. 

(d) What sort of person would be predicted to visit the doctor the most under your 
selected model? 

(e) For the last person in the dataset, compute the predicted probability distribution for 
their visits to the doctor, i.e., give the probability they visit 0,1,2, etc. times.  

(f) Fit a comparable (Gaussian) linear model and graphically compare the fits. 
Describe how they differ. 

6. Components are attached to an electronic circuit card assembly by a wave-soldering 
process. The soldering process involves baking and preheating the circuit card and 
then passing it through a solder wave by conveyor. Defects arise during the process. 
The design is 27−3 with three replicates. The data is presented in the dataset 
wavesolder. Assuming that the replicates are independent, analyze the data. Write a 
report on the analysis that summarizes the substantive conclusions and includes the 
highlights of your analysis. 

7. The dataset esdcomp was recorded on 44 doctors working in an emergency service at a 
hospital to study the factors affecting the number of complaints received. Build a 
model for the number of complaints received and write a report on your conclusions. 
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CHAPTER 4  
Contingency Tables 

A contingency table is used to show cross-classified categorical data on two or more 
variables. The variables can be nominal or ordinal. A nominal variable has categories 
with no natural ordering; for example, consider the automotive companies Ford, General 
Motors and Toyota. An ordering could be imposed using some criterion like sales, but 
there is nothing inherent in the categories that makes any particular ordering obvious. An 
ordinal variable does have a natural default ordering. For example, a disease might be 
recorded as absent, mild or severe. The five-point Likert scale ranging through strongly 
disagree, disagree, neutral, agree and strongly agree is another example. 

An interval scale is an ordinal variable that has categories with a distance measure. 
This is often the result of continuous data that has been discretized into intervals. For 
example, age groups 0–18, 18–34, 34–55 and 55+ might be used to record age 
information. If the intervals are relatively wide, then methods for ordinal data can be used 
where the additional information about the intervals may be useful in the modeling. If the 
intervals are quite narrow, then we could replace interval response with the midpoint of 
the interval and then use continuous data methods. One could argue that all so-called 
continuous data is of this form, because such data cannot be measured with arbitrary 
precision. Height might be given to the nearest centimeter, for example. 

4.1 Two-by-Two Tables 

The data shown in Table 4.1 were collected as part of a quality improvement study at a 
semiconductor factory. A sample of wafers was drawn and cross-classified according to 
whether a particle was found on the die that produced the wafer and whether the wafer 
was good or bad. More details on the study may be found in Hall (1994). The data might 
have arisen under several possible sampling schemes:  
Quality No Particles Particles Total 

Good 320 14 334 

Bad 80 36 116 

Total 400 50 450 

Table 4.1 Study of the relationship between wafer 
quality and the presence of particles on the wafer. 

1. We observed the manufacturing process for a certain period of time and observed 450 
wafers. The data were then cross-classified. We could use a Poisson model. 



2. We decided to sample 450 wafers. The data were then cross-classified. We could use a 
multinomial model. 

3. We selected 400 wafers without particles and 50 wafers with particles and then 
recorded the good or bad outcome. We could use a binomial model. 

4. We selected 400 wafers without particles and 50 wafers with particles that also 
included, by design, 334 good wafers and 116 bad ones. We could use hypergeometric 
model. 

The first three sampling schemes are all plausible. The fourth scheme seems less likely in 
this example, but we include it for completeness. Such a scheme is more attractive when 
one level of each variable is relatively rare and we choose to oversample both levels to 
ensure some representation. 

The main question of interest concerning these data is whether the presence of 
particles on the wafer affects the quality outcome. We shall see that all four sampling 
schemes lead to exactly the same conclusion. First, let’s set up the data in a convenient 
form for analysis: 

> y <- c(320,14,80,36) 
> particle <- gl (2,1,4,labels=c("no","yes")) 
> quality <- gl(2,2,labels=c("good","bad")) 
> wafer <- data.frame(y,particle,quality) 
> wafer 
    y particle quality 
1 320       no    good 
2  14      yes    good 
3  80       no     bad 
4  36      yes     bad 

We will need the data in this form with one observation per line for our model fitting, but 
usually we prefer to observe it table form: 

> (ov <- xtabs(y ~ quality+particle)) 
       particle 
quality no  yes 
   good 320  14 
   bad   80  36 

Poisson Model 
Suppose we assume that the process is observed for some period of time and we count the 
number of occurrences of the possible outcomes. It would be natural to view these 
outcomes occurring at different rates and that we could form Poisson model for these 
rates. Suppose we fit an additive model: 

> modl <- glm(y ~ particle+quality, poisson) 
> summary(modl) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)   5.6934     0.0572   99.54   <2e−16 
particleyes  -2.0794     0.1500  -13.86   <2e−16 
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qualitybad   -1.0576     0.1078   -9.81   <2e-16 
(Dispersion parameter for poisson family taken to be 1)  
    Null deviance: 474.10 on 3 degrees of freedom 
Residual deviance:  54.03 on 1 degrees of freedom 

The null model, which suggests all four outcomes occur at the same rate, does not fit 
because the deviance of 474.1 is very large for three degrees of freedom. The additive 
model, with a deviance of 54.03 is clearly an improvement over this. We might also want 
to test the significance of the individual predictors. We could use the z-values, but it is 
better to use the likelihood ratio test based on the differences in the deviance (not that it 
matters much for this particular dataset): 

> dropl(modl,test="Chi") 
Single term deletions 
Model: 
y ~ particle + quality 
         Df Deviance AIC LRT Pr(Chi) 
<none>            54  84 
particle  1      364 392 310  <2e-16 
quality   1      164 192 110  <2e-16 

We see that both predictors are significant relative to the full model. By examining the 
coefficients, we see that wafers with particles occur at a significantly higher rate than 
wafers without particles. Similarly, we see that bad-quality wafers occur at a significantly 
higher rate than good-quality wafers. 

The model coefficients are closely related to the marginal totals in the table. The 
maximum likelihood estimates satisfy: 

   

where the XTy is, in this example: 

> (t(model.matrix(modl)) %*%y)[,] 
(Intercept) particleyes qualitybad 
        450          50        116 

So we see that the fitted values, are a function of marginal totals. This fact is exploited 
in an alternative fitting method known as iterative proportional fitting. The glm function 
in R, however, uses Fisher scoring, described in Section 6.2. In any case, the log-
likelihood (ignoring any terms not involving µ) is: 

 
  

which is maximized to obtain the fit. 
The analysis so far has told us nothing about the relationship between the presence of 

particles and the quality of the wafer. The additive model posits: 
log µ=γ+αi+βj   
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where α represents the particle effect and β represents the quality outcome and i, j= 1,2. γ 
is the intercept term. Due to the log link, the predicted rate for the response in any cell in 
the table is formed from the product of the rates for the corresponding levels of the two 
predictors. There is no interaction term and so good- or bad-quality outcomes occur 
independently of whether a particle was found on the wafer. This model has a deviance of 
54.03 on one degree of freedom and so does not fit the data. 

The addition of an interaction term would saturate the model and so would have zero 
deviance and degrees of freedom. So an hypothesis comparing the models with and 
without interaction would use a test statistic of 54.03 on one degree of freedom. The 
hypothesis of no interaction would be rejected. 

Multinomial Model 
Suppose we assume that the total sample size was fixed at 450 and that the frequency of 
the four possible outcomes was recorded. In these circumstances, it is natural to use a 
multinomial distribution to model the response. Let yij be the observed response in cell (i, 
j) and let pij be the probability that an observation falls in that cell and let n be the sample 
size. The probability of the observed response under the multinomial is then: 

 

  

Now the pij will be linked to the predictor information according to the model we choose. 
To estimate the parameters, we would maximize the log-likelihood: 

 
  

where terms not involving pij are ignored. Notice that this takes essentially the same form 
as for the Poisson model above. 

The main hypothesis of interest is whether the quality and presence of a particle on the 
wafer are independent. Let pi for i=1,2 be the probabilities of the two quality outcomes 
and pj for j=1,2 be the probability of the two particle categories. Let Pij be the probability 
of a particular joint outcome. Under independence, pij=pipj. Using the fact that 
probabilities must sum to one, the maximum likelihood estimates are: 

 
  

We can compute these for the wafer data as, respectively: 

> (pp <- prop.table( xtabs(y ~ particle))) 
particle 
     no     yes 
0.88889 0.11111 
> (qp <- prop.table( xtabs(y ~ quality))) 
quality 
   good     bad 
0.74222 0.25778 
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The fitted values are then or: 

> (fv <- outer(qp,pp)*450) 
       particle 
quality     no    yes 
good    296.89 37.111  
bad 103.11 12.889  

To test the fit, we compare this model against the saturated model, for which So 
the deviance is: 

 
  

which computes to: 

> 2*sum(ov*log(ov/fv)) 
[1] 54.03 

which is the same deviance we observed in the Poisson model. So we see that the test for 
independence in the multinomial model coincides with the test for no interaction in the 
Poisson model. The latter test is easier to execute in R, so we shall usually take that 
approach. 

This connection between the Poisson and multinomial is no surprise due to the 
following result. Let Y1,…,Yk be independent Poisson random variables with means λ1,…, 
λk, then the joint distribution of Y1,…, Yk|ΣiYi=n is multinomial with probabilities 
pj=λj/Σiλi. 

One alternative to the deviance is the Pearson X2 statistic: 

 

  

which takes the value: 

> sum( (ov-fv)^2/fv) 
[1] 62.812 

Yates’ continuity correction subtracts 0.5 from when this value is positive and 
adds 0.5 when it is negative. This gives superior results for small samples. This 
correction is implemented in: 

> prop.test(ov) 
        2-sample test for equality of proportions with 
        continuity correction 
data: ov 
X-squared = 60.124, df = 1, p-value = 8.907e-15 
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The deviance-based test is preferred to the Pearson’s X2. 

Binomial 
It would also be natural to view the presence of the particle as affecting the quality of 
wafer. We would view the quality as the response and the particle status as a predictor. 
We might fix the number of wafers with no particles at 400 and the number with particles 
as 50 and then observe the outcome. We could then use a binomial model for the 
response for both groups. Let’s see what happens: 

> (m <- matrix(y,nrow=2)) 
     [,1] [,2] 
[1,]  320   80 
[2,]   14   36 
> modb <- glm(m ~ 1, family=binomial)  
> deviance(modb) 
[1] 54.03  

We fit the null model which suggests that the probability of the response is the same in 
both the particle and no particle group. This hypothesis of homogeneity corresponds 
exactly to the test of independence and the deviance is exactly the same. 

For larger contingency tables, where there are more than two rows (or columns), we 
can use a multinomial model for each row. This model is more accurately called a 
product multinomial model to distinguish it from the unrestricted multinomial model 
introduced above. 

Hypergeometric 
The remaining case is where both marginal totals are fixed. This situation is rather less 
common in practice, but does suggest a more accurate test for independence. This 
sampling scheme can arise when classifying objects into one of two types when the true 
proportions of each type are known in advance. For example, suppose you are given 10 
true or false statements and told that 5 are true and 5 are false. You are asked to sort the 
statements into true and false. We can generate a two-by-two table of the correct 
classification against the observed classification generated. Under the hypergeometric 
distribution and the assumption of independence, the probability of the observed table is: 

 
  

If we fix any number in the table, say y11, the remaining three numbers are completely 
determined because the row and column totals are known. There is a limited number of 
values which y11 can possibly take and we can compute the probability of all these 
outcomes. Specifically, we can compute the total probability of all outcomes more 
extreme than the one observed. This method is called Fisher’s exact test. We may 
execute it as follows: 

> fisher.test(ov) 
        Fisher's Exact Test for Count Data 
data:  ov 
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p-value = 2.955e-13 
alternative hypothesis: true odds ratio is not equal to 
1 
95 percent confidence interval: 
  5.0906 21.5441 
sample estimates: 
odds ratio 
    10.213 

Notice that the odds ratio, which is log(y11y22)/(y12y21), takes the value: 

> (320*36)/(14*80) 
[1] 10.286 

and is a measure of the association for which an exact confidence interval may be 
calculated as we see in the output.  

Fisher’s test is attractive because the null distribution for the deviance and Pearson’s 
χ2 test statistics is only approximately χ2 distributed. This approximation is particularly 
suspect for tables with small counts making an exact method valuable. The Fisher test 
becomes more difficult to compute for larger tables and some approximations may be 
necessary. However, for larger tables, the χ2 approximation will tend to be very accurate. 

4.2 Larger Two-Way Tables 

Snee (1974) presents data on 592 students cross-classified by hair and eye color. 

> data(haireye) 
> haireye 
     y   eye  hair 
1    5 green BLACK 
2   29 green BROWN 
..etc.. 
16   7 brown BLOND 

The data is more conveniently displayed using: 

> (ct <- xtabs(y ~ hair + eye, haireye)) 
       eye 
hair    green hazel blue brown 
  BLACK   5    15    20   68 
  BROWN  29    54    84  119 
  RED    14    14    17   26 
  BLOND  16    10    94    7 

We can execute the usual Pearson’s χ2 test for independence as: 

> summary(ct) 
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Call: xtabs(formula = y ~ hair + eye, data = haireye) 
Number of cases in table: 592 
Number of factors: 2 
Test for independence of all factors: 
        Chisq = 138, df = 9, p-value = 2.3e-25 

where we see that hair and eye color are clearly not independent. 
One option for displaying contingency table data is the dotchart: 

> dotchart (ct) 

which may be seen in the first panel of Figure 4.1. The mosaic plot, described in Hartigan 
and Kleiner (1981), divides the plot region according to the frequency of each level in a 
recursive manner: 

> mosaicplot(ct,color=TRUE,main=NULL,las=1) 

In the plot shown in the second panel of Figure 4.1, the area is first divided according to 
the frequency of hair color. Within each hair color, the area is then divided according to 
the frequency of eye color. A different plot could be constructed by reversing the order of 
hair and eye in the xtabs command above. We can now readily see the frequency of 
various outcomes. We see, for example, that brown hair and brown  

 

Figure 4.1 Dotchart and Mosaic Plot 

eyes is the most common combination while green eyes and black hair is the least 
common. 

Now we fit the Poisson GLM: 

> modc <- glm(y ~ hair+eye,family=poisson,haireye) 
> summary(modc) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)    2.458      0.152   16.14   <2e-16 
hair BROWN     0.974      0.113    8.62   <2e-16 
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hairRED       -0.419      0.153   -2.75    0.006 
hairBLOND      0.162      0.131    1.24    0.216 
eyehazel       0.374      0.162    2.30    0.021 
eyeblue        1.212      0.142    8.51   <2e-16 
eyebrown       1.235      0.142    8.69   <2e-16 
(Dispersion parameter for poisson family taken to be 1) 
    Null deviance: 453.31 on 15 degrees of freedom 
Residual deviance: 146.44 on 9 degrees of freedom 
AIC: 241.0 

We see that most of the levels of hair and eye color show up as significantly different 
from the reference levels of black hair and green eyes. But this merely indicates that there 
are higher numbers of people with some hair colors than others and some eye colors than 
others. We already know this. We are more interested in the relationship between hair 
and eye color. The deviance of 146.44 on nine degrees freedom shows that they are 
clearly dependent. This does not tell us how they are dependent. To study this, we can 
use a kind of residual analysis for contingency tables called correspondence analysis. 

Compute the Pearson residuals rp and write them in the matrix form Rij, where i= 
1,…, r and j=1,…, c, according to the structure of the data. Perform the singular value 
decomposition: 

   

where r is the number of rows, c is the number of columns and w=min(r, c). U and V are 
called the right and left singular vectors, respectively. D is a diagonal matrix with sorted 
elements di, called singular values. Another way of writing this is: 

 

  

As with eigendecompositions, it is not uncommon for the first few singular values to be 
much larger than the rest. Suppose that the first two dominate so that: 

Rij≈Ui1d1Vj1+Ui2d2Vj2   

We usually absorb the ds into U and V for plotting purposes so that we can assess the 
relative contribution of the components. Thus: 

 

  

where in the latter expression we have redefined the Us and Vs to include the  
The two-dimensional correspondence plot displays Ui2 against Ui1 and Vj2 against Vj1 

on the same graph. So the points on the plot will either represent a row level (U) or a 
column level (V). We compute the plot for the hair and eye color data: 

> z <- xtabs(residuals(mode, type="pearson")~hair+eye, 
haireye) 
> svdz <- svd(z,2,2) 

Extending the linear model with R     84



> leftsv <- svdz$u %*% diag(sqrt(svdz$d[1:2])) 
> rightsv <- svdz$v %*% diag(sqrt(svdz$d[1:2])) 
> 11 <- 1.1*max(abs(rightsv),abs(leftsv)) 
> plot(rbind(leftsv,rightsv),asp=1,xlim=c(-
11,11),ylim=c(-11,11), 
  xlab="SVl",ylab="SV2",type="n") 
> abline(h=0,v=0) 
> text(leftsv,dimnames(z)[[1]]) 
> text(rightsv,dimnames(z)[[2]]) 

The plot is shown in Figure 4.2. The correspondence analysis plot can be interpreted in 
light of the following observations: 

• Pearson’s X2 is called the inertia. When are the eigenvalues of R. 
• Look for large values of |Ui| indicating that the row i profile is different. For example, 

the point for blonds in Figure 4.2 is far from the origin indicating that the distribution 
of eye colors within this group of people is not typical. In contrast, we see that the 
point for people with brown hair is close to the origin, indicating an eye color 
distribution that is close to the overall average. The same type of observation is true 
for the columns, |Vj|. Points distant from the origin mean that the level associated with 
the column j profile is different in some way. 

• If row and column levels appear close together on the plot and far from the 
origin, we can see that there will be a large positive residual associated with this 
particular combination indicating a strong positive association. For example, we 
see that blue eyes and blond hair occur close together on the plot and far from the 
origin indicating a strong association. On the other hand, if the two points are 
situated diametrically apart on either side of the origin, we may expect a large 
negative residual indicating a strong negative association. For example, there are 
relatively fewer people with blond hair and brown eyes than would be expected 
under independence. 

• If points representing two rows or two column levels are close together, this indicates 
that the two levels will have a similar pattern of association. In some cases, one might 
consider combining the two levels. For example, people with hazel or green eyes have 
similar hair color distributions and we might choose to combine these two categories. 

• Because the distance between points is of interest, it is important that the plot is scaled 
so that the visual distance is proportionately correct. This does not happen 
automatically, because the default behavior of plots is to fill the plot region out to the 
specified aspect ratio. 

There are several competing ways to construct contingency tables. See Venables and 
Ripley (2002) who provide the function corresp in the MASS package. See also Blasius 
and Greenacre (1998) for a survey of methods for visualizing categorical data. 
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Figure 4.2 Correspondence analysis 
for hair-eye combinations. Hair colors 
are given in upper-case letters and eye 
colors are given in lower-case letters. 

 

4.3 Matched Pairs 

In the typical two-way contingency tables, we display accumulated information about 
two categorical measures on the same object. In matched pairs, we observe one measure 
on two matched objects. 

In Stuart (1955), data on the vision of a sample of women is presented. The left and 
right eye performance is graded into four categories: 

> data(eyegrade) 
> (ct <- xtabs(y ~ right+left, eyegrade)) 
        left 
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right    best second third worst 
  best   1520  266    124    66 
  second  234 1512    432    78 
  third   117  362   1772   205 
  worst    36   82    179   492 

If we check for independence: 

> summary(ct) 
Call: xtabs(formula = y ~ right + left, data = 
eyegrade) 
Number of cases in table: 7477 
Number of factors: 2 
Test for independence of all factors: 
        Chisq = 8097, df = 9, p-value = 0 

We are not surprised to find strong evidence of dependence. A more interesting 
hypothesis for such matched pair data is symmetry. Is pij=pij? We can fit such a model by 
defining a factor where the levels represent the symmetric pairs for the off-diagonal 
elements. There is only one observation for each level down the diagonal: 

> (symfac <- factor (apply(eyegrade[,2:3],1, 
  function(x) paste (sort(x), collapse="-")))) 
[1] best-best      best-second    best-third    best-
worst 
[5] best-second    second-second  second-third  second-
worst 
[9] best-third     second-third   third-third   third-
worst 
[13] best-worst     second-worst   third-worst   worst-
worst 
10 Levels: best-best  best-second  best-third ... 
worst-worst 

We now fit this model: 

> mods <- glm(y ~ symfac, eyegrade, family=poisson) 
> c(deviance(mods),df.residual(mods))  
[1] 19.249   6.000 
> pchisq (deviance(mods),df.residual(mods),lower=F) 
[1] 0.0037629  

Here, we see evidence of a lack of symmetry. It is worth checking the residuals: 

> round(xtabs(residuals(mods) ~ right+left, 
eyegrade),3) 
        left 
right    best   second  third  worst 
  best    0.000  1.001   0.317  2.008 
  second -1.023  0.000   1.732 -0.225 
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  third  -0.320 -1.783   0.000  0.928 
  worst  -2.219  0.223  -0.949  0.000 

We see that the residuals above the diagonal are mostly positive, while they are mostly 
negative below the diagonal. So there are generally more poor left, good right eye 
combinations than the reverse. Furthermore, we can compute the marginals: 

> margin.table(ct,1) 
right 
  best second  third  worst 
  1976   2256   2456    789 
> margin.table(ct,2) 
left 
  best second  third  worst 
  1907   2222   2507    841 

We see that there are somewhat more poor left eyes and good right eyes, so perhaps 
marginal homogeneity does not hold here. The assumption of symmetry implies marginal 
homogeneity (the reverse is not necessarily true). We may observe data where there is a 
difference in the frequencies of the levels of the rows and columns, but still be interested 
in symmetry. Suppose we set: 

Pij=αiβjγij   

where γij=γji. This will allow for some symmetry while allowing for different marginals. 
This is the quasi-symmetry model. Now: 

log EYij=log npij=log n+log αi+log βj+log γij   

So we can fit this model using: 

> modq <- glm(y ~ right+left+symfac, eyegrade, 
family=poisson) 
> pchisq(deviance(modq),df.residual(modq),lower=F) 
[1] 0.06375 

We see that this model does fit. It can be shown that marginal homogeneity together with 
quasi-symmetry implies symmetry. One can test for marginal homogeneity by comparing 
the symmetry and quasi-symmetry models: 

> anova(mods,modq,test="Chi") 
Analysis of Deviance Table 
Model 1: y ~ symfac 
Model 2: y ~ right + left + symfac 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|)  
1   6   19.25 
2   3    7.27   3   11.98   0.01  

So we find evidence of a lack of marginal homogeneity. This test is only appropriate if 
quasi-symmetry already holds. 
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When we examine the data here, we do see that many people do have symmetric 
vision. These entries lie down the diagonal. We might ask whether there is independence 
between left and right eyes among those people whose vision is not symmetric. This is 
the quasi-independence hypothesis and we can test it by omitting the data from the 
diagonal: 

> modqi <- glm(y ~ right+left, eyegrade, 
family=poisson, 
  subset=-c(1,6,11,16)) 
> pchisq(deviance(modqi),df.residual(modqi),lower=F) 
[1] 4.4118e-41 

This model does not fit. This is not surprising since we can see that the entries adjacent to 
the diagonal are larger than those further away. The difference in vision between the two 
eyes is likely to be smaller than expected under independence. 

4.4 Three-Way Contingency Tables 

In Appleton, French, and Vanderpump (1996), a 20-year follow-up study on the effects of 
smoking is presented. In the period 1972-74, a larger study, which also considered other 
issues, categorized women into smokers and nonsmokers and according to their age 
group. In the follow-up, the researchers recorded whether the subjects were dead or still 
alive. Only smokers or women who had never smoked are presented here. Relatively few 
smokers quit and these women have been excluded from the data. The cause of death is 
not reported here. Here is the data: 

> data(femsmoke) 
> femsmoke 
     y smoker dead   age 
1    2    yes  yes 18-24 
2    1     no  yes 18-24 
3    3    yes  yes 25-34 
... 
28   0     no   no   75+ 

We can combine the data over age groups to produce: 

> (ct <- xtabs(y ~ smoker+dead, femsmoke)) 
      dead 
smoker yes no 
   yes 139 443 
    no 230 502 

We can compute the proportions of dead and alive for smokers and nonsmokers: 

> prop.table(ct,1) 
      dead 
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smoker yes     no 
   yes 0.23883 0.76117 
    no 0.31421 0.68579 

We see that 76% of smokers have survived for 20 years while only 69% of nonsmokers 
have survived. Thus smoking appears to have a beneficial effect on longevity. We can 
check the significance of this difference: 

> summary(ct) 
Call: xtabs(formula = y ~ smoker + dead, data = 
femsmoke) 
Number of cases in table: 1314 
Number of factors: 2 
Test for independence of all factors: 
        Chisq = 9.1, df = 1, p-value = 0.0025 

So the difference cannot be reasonably ascribed to chance variation. However, if we 
consider the relationship within a given age group, say 55–64: 

> (cta <- xtabs(y ~ smoker+dead, femsmoke, 
subset=(age=="55-64"))) 
      dead 
smoker yes no 
   yes 51  64 
   no  40  81 
> prop.table(cta,1) 
      dead 
smoker yes     no 
   yes 0.44348 0.55652 
   no  0.33058 0.66942 

We see that 56% of the smokers have survived compared to 67% of the nonsmokers. This 
advantage to nonsmokers holds throughout all the age groups. Thus the marginal 
association where we add over the age groups is different from the conditional 
association observed within age groups. Data where this effect is observed are an 
example of Simpson’s paradox. The paradox is named after Simpson (1951), but dates 
back to Yule (1903). 

Let’s see why the effect occurs here: 

> prop.table(xtabs(y ~ smoker+age, femsmoke),2) 
      age 
smoker 18-24   25-34   35-44   45-54   55-64   65-
74   75+ 
   yes 0.47009 0.44128 0.47391 0.62500 0.48729 0.21818 
0.16883 
   no  0.52991 0.55872 0.52609 0.37500 0.51271 0.78182 
0.83117 
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We see that smokers are more concentrated in the younger age groups and younger 
people are more likely to live for another 20 years. This explains why the marginal table 
gave an apparent advantage to smokers which is, in fact, illusory because once we control 
for age, we see that smoking has a negative effect on longevity. 

It is interesting to note that the dependence in the 55–64 age group is not statistically 
significant: 

> fisher.test(cta) 
        Fisher's Exact Test for Count Data 
data:  cta 
p-value = 0.08304 
alternative hypothesis: true odds ratio is not equal to 
1  
95 percent confidence interval: 
0.92031 2.83340 
sample estimates: 
odds ratio 
    1.6103  

However, this is just a subset of the data. Suppose we compute the odds ratios in all the 
age groups: 

> ct3 <- xtabs(y ~ smoker+dead+age,femsmoke) 
> apply(ct3, 3, function(x) 
(x[1,1]*x[2,2])/(x[1,2]*x[2,1])) 
  18-24   25-34   35-44   45-54   55-64   65-74     75+ 
2.30189 0.75372 2.40000 1.44175 1.61367 1.14851     NaN 

We see that there is some variation in the odds ratio, but they are all greater than one with 
the exception of the 25–34 age group. We could test for independence in each 2×2 table, 
but it is better to use a combined test. The Mantel-Haenszel test is designed to test 
independence in 2×2 tables across K strata. It only makes sense to use this test if the 
relationship is similar in each stratum. For this data, the observed odds ratios do not vary 
greatly, so the use of the test is justified. 

Let the entries in the 2×2×K table be yijk. If we assume a hypergeometric distribution 
in each 2×2 table, then y11k is sufficient for each table given that we assume that the 
marginal totals for each table carry no information. The Mantel-Haenszel statistic is: 

 

  

where the expectation and variance are computed under the null hypothesis of 

independence in each stratum. The statistic is approximately distributed under the null, 
although it is possible to make an exact calculation for smaller datasets. The statistic as 
stated above is due to Mantel and Haenszel (1959), but a version without the half 
continuity correction was published by Cochran (1954). For this reason, it is sometimes 
known as the Cochran-Mantel-Haenszel statistic. 

We compute the statistic for the data here: 
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> mantelhaen.test(ct3,exact=TRUE) 
        Exact conditional test of independence in 2 × 2 
× k 
        tables 
data:  ct3 
S = 139, p-value = 0.01591 
alternative hypothesis: true common odds ratio is not 
equal to 1 
95 percent confidence interval: 
1.0689 2.2034 
sample estimates: 
common odds ratio 
           1.5303 

We used the exact method in preference to the approximation. We see that a statistically 
significant association is revealed once we combine the information across strata.  

Now let’s consider a linear models approach to investigating how three factors 
interact. Let pijk be the probability that an observation falls into the (i, j, k) cell. Let pi be 
the marginal probability that the observation falls into the ith cell of the first variable, pj 
be the marginal probability that the observation falls into the jth cell of the second 
variable and pk be the marginal probability that the observation falls into the kth cell of the 
third variable. 

Mutual Independence: If all three variables are independent, then: 
Pijk=PiPjPk   

Now EYijk=npijk so: 
logEYijk=log n+log pi+log pj+log pk   

So the main effects-only model corresponds to mutual independence. The coding we use 
will determine exactly how the parameters relate to the margin totals of the table although 
typically we will not be especially interested in these. Since independence is the simplest 
possibility, this model is the null model in an investigation of this type. The model log 
EYijk=µ would suggest that all the cells have equal probability. It is rare that such a model 
would have any interest so the model above makes for a more appropriate null. 

We can test for independence using the Pearson’s χ2 test: 

> summary(ct3) 
Call: xtabs(formula = y ~ smoker + dead + age, data = 
femsmoke) 
Number of cases in table: 1314 
Number of factors: 3 
Test for independence of all factors: 
        Chisq = 791, df = 19, p-value = 2.1e-155 

We can also fit the appropriate linear model: 

> modi <- glm(y ~ smoker + dead + age, femsmoke, 
family=poisson) 
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> c(deviance(modi),df.residual(modi)) 
[1] 735 19 

Although the statistics for the two tests are somewhat different, in either case, we see a 
very large value for the degrees of freedom. We conclude that this model does not fit the 
data. 

We can show that the coefficients of this model correspond to the marginal 
proportions. For example, consider the smoker factor: 

> (coefsmoke <- exp(c(0,coef(modi)[2]))) 
         smokerno 
1.0000     1.2577 
> coefsmoke/sum(coefsmoke) 
         smokerno 
0.44292   0.55708 

We see that these are just the marginal proportions for the smokers and nonsmokers in 
the data: 

> prop.table(xtabs(y ~ smoker, femsmoke)) 
smoker  
    yes      no 
0.44292 0.55708 

This just serves to emphasize the point that the main effects of the model just convey 
information that we already know and is not the main interest of the study. 

Joint Independence: Let pij be the (marginal) probability that the observation falls 
into a (i, j, ·) cell where any value of the third variable is acceptable. Now suppose that 
the first and second variable are dependent, but jointly independent of the third. Then: 

Pijk=PijPk   

We can represent this as: 
logEYijk=log n+log pij+logpk   

Using the hierarchy principle, we would also include the main effects corresponding to 
the interaction term log pij. So the log-linear model with just one interaction term 
corresponds to joint independence. The specific interaction term tells us which pair of 
variables is dependent. For example, we fit a model that says age is jointly independent 
smoking and life status: 

> modj <- glm(y ~ smoker*dead + age, femsmoke, 
family=poisson) 
> c(deviance(modj), df.residual(modj)) 
[1] 725.8  18.0 

Although this represents a small improvement over the mutual independence model, the 
deviance is still very high for the degrees of freedom and it is clear that this model does 
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not fit the data. There are two other joint independence models that have the two other 
interaction terms. These models also fit badly. 

Conditional Independence: Let pij|k be the probability that an observation falls in cell 
(i,j,.) given that we know the third variable takes the value k. Now suppose we assert that 
the first and second variables are independent given the value of the third variable, then: 

Pij|k=Pi|kPj|k   

which leads to: 
Pijk=PikPjk|Pk   

This results in the model: 
logEYijk=log n+log pik+ log pjk–logpk   

Again, using the hierarchy principle, we would also include the main effects 
corresponding to the interaction terms and we would have model with main effects and 
two interaction terms. The minus for the log pk term is irrelevant. The nature of the 
conditional independence can be determined by observing which of one of the three 
possible two-way interactions does not appear in the model. 

The most plausible conditional independence model for our data is: 

> modc <- glm(y ~ smoker*age + age*dead, femsmoke, 
family=poisson) 
> c(deviance(mode),df.residual(mode)) 
[1] 8.327 7.000 

We see that the deviance is only slightly larger than the degrees of freedom indicating a 
fairly good fit. This indicates that smoking is independent of life status given age. 
However, bear in mind that we do have some zeroes and other small numbers in the table 
and so there is some doubt as to the accuracy of the χ2 approximation here. It is generally 
better to compare models rather than assess the goodness of fit. 

Uniform Association: We might consider a model with all three-way interactions: 
log EYijk=log n+log pi+log pj+log pk+log pij+log pik+log Pjk   

The model has no three-way interaction and so it is not saturated. There is no simple 
interpretation in terms of independence. Consider our example: 

> modu <- glm(y ~ (smoker+age+dead)^2, femsmoke, 
family=poisson) 

Now we compute the fitted values and determine the odds ratios for each age group based 
on these fitted values: 

> ctf <- xtabs(fitted(modu) ~ smoker+dead+age, 
femsmoke) 
> apply(ctf, 3, function(x) 
(x[1,1]*x[2,2])/(x[1,2]*x[2,1]) ) 
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18-24  25-34  35-44  45-54  55-64  65-74    75+ 
1.5333 1.5333 1.5333 1.5333 1.5333 1.5333 1.5333 

We see that the odds ratio is the same for every age group. Thus the uniform association 
model asserts that for every level of one variable, we have the same association for the 
other two variables. 

The information may also be extracted from the coefficients of the fit. Consider the 
log-odds ratio for smoking and life status for a given age group: 

log(EY11kEY22k)/(EY12kEY21k)   

This will be precisely the coefficient for the smoking and life-status term. We extract 
this: 

> exp(coef(modu)['smokernordeadno']) 
smokerno:deadno 
         1.5333 

We see that this is exactly the log-odds ratio we found above. The other interaction terms 
may be interpreted similarly. 

Model Selection: Log-linear models are hierarchical, so it makes sense to start with 
the most complex model and see how far it can be reduced. We can use analysis of 
deviance to compare models. We start with the saturated model: 

> modsat <- glm(y ~ smoker*age*dead, femsmoke, 
family=poisson) 
> dropl(modsat,test="Chi") 
Single term deletions 
Model: 
y ~ smoker * age * dead 
                Df Deviance   AIC  LRT Pr(Chi) 
<none>              3.0e-10 190.2 
smoker:age:dead  6      2.4 180.6  2.4    0.88 

We see that the three-way interaction term may be dropped. Now we consider dropping 
the two-way terms:  

> dropl(modu,test="Chi") 
Single term deletions 
Model: 
y ~ (smoker + age + dead)^2 
            Df Deviance AIC LRT Pr (Chi) 
<none>                2 181 
smoker:age   6       93 259  90   <2e−16 
smoker:dead  1        8 185   6    0.015 
age:dead     6      632 798 630   <2e−16 

Two of the interaction terms are strongly significant, but the smoker: dead term is only 
just statistically significant. This term corresponds to the test for conditional 
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independence of smoking and life status given age group. We see that the conditional 
independence does not hold. This tests the same hypothesis as the Mantel-Haenszel test 
above. In this case the p-values for the two tests are very similar. 

Binomial Model: For some three-way tables, it may be reasonable to regard one 
variable as the response and the other two as predictors. In this example, we could view 
life status as the response. Since this variable has only two levels, we can model it using a 
binomial GLM. For more than two levels, a multinomial model would be required. 

We construct a binomial response model: 

> ybin <- matrix(femsmoke$y,ncol=2) 
> modbin <- glm(ybin ~ smoker*age, femsmoke[1:14,], 
family=binomial) 

This model is saturated, so we investigate a simplification: 

> dropl(modbin,test="Chi") 
Single term deletions 
Model: 
ybin ~ smoker * age 
           Df Deviance  AIC  LRT Pr(Chi) 
<none>         5.3e-10 75.0 
smoker:age  6      2.4 65.4  2.4    0.88 

We see that the interaction term may be dropped, but now we check if we may drop 
further terms: 

> modbinr <- glm(ybin ~ smoker+age, femsmoke[1:14,], 
family=binomial) 
> dropl(modbinr,test="Chi") 
Single term deletions 
Model: 
ybin ~ smoker + age 
       Df Deviance AIC LRT Pr(Chi) 
<none>           2  65 
smoker 1         8  69   6   0.015 
age    6       632 683 630  <2e−16 

We see that both main effect terms are significant, so no further simplification is possible. 
This model is effectively equivalent to the uniform association model above. Check the 
deviances:  

> deviance(modu) 
[1] 2.3809 
> deviance(modbinr) 
[1] 2.3809 

We see that they are identical. We can extract the same odds ratio from the parameter 
estimates as above: 
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> exp(-coef(modbinr)[2]) 
smokerno 
  1.5333 

The change in sign is simply due to which outcome is considered a success in the 
binomial GLM. So we can identify the binomial GLM with a corresponding Poisson 
GLM and the numbers we will obtain will be identical. We would likely prefer the 
binomial analysis where one factor can clearly be identified as the response and we 
would prefer the Poisson GLM approach when the relationship between the variables is 
more symmetric. However, there is one important difference between the two 
approaches. The null model for the binomial GLM: 

> modbinull <- glm(ybin ~ 1, femsmoke[1:14,], 
family=binomial) 
> deviance(modbinull) 
[1] 641.5 

is associated with this two-way interaction model for the Poisson GLM: 

> modj <- glm(y ~ smoker*age + dead, femsmoke, 
family=poisson) 
> deviance(modj) 
[1] 641.5 

So the binomial model implicitly assumes an association between smoker and age. In this 
particular dataset, there are more younger smokers than older ones, so the association is 
present. However, what if there was no association? One could argue that the Poisson 
GLM approach would be superior because it would allow us to drop this term and 
achieve a simpler model. On the other hand, one could argue that if the relationship 
between the response and the two predictors is the main subject of interest, then we lose 
little by conditioning out the marginal combined effect of age and smoking status, 
whether it is significant or not. 

Correspondence Analysis: We cannot directly apply the correspondence analysis 
method described above for two-way tables. However, we could combine two of the 
factors into a single factor by considering all possible combinations of the two level. To 
make the choice of which two levels to combine, we would pick the pair whose 
association is least interesting to us. We could apply this to the smoking dataset here, but 
because there are only two levels of smoking and life status, the plot is not very 
interesting. 

4.5 Ordinal Variables 

Some variables have a natural order. One can use the methods for nominal variables 
described earlier in this chapter, but more information can extracted by taking advantage 
of the structure of the data. Sometimes one might identify a particular ordinal variable as 
the response. In such cases, the methods of Section 5.3 can be used. However, sometimes 
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one is simply interested in modeling the association between ordinal variables. Here the 
use of scores can be helpful. 

Consider a two-way table where both variables are ordinal. We may assign scores ui 
and νj to the rows and columns such that u1≤ u2≤…≤uI and ν1≤ν2≤…≤vj. The assignment 
of scores requires some judgment. If you have no particular preference, even spacing 
allows for the simplest interpretation. If you have an interval scale, for example, 0–10 
years old, 10–20 years old, 20–40 years old and so on, midpoints are often used. It is a 
good idea to check that the inference is robust to the assignment of scores by trying some 
alternative choices. If your qualitative conclusions are changed, this is an indication that 
you cannot make any strong finding. 

Now fit the linear-by-linear association model: 
logEYij=log µij=lognpij=log n+αi+βj+γuiνj   

So γ=0 means independence while γ represents the amount of association and can be 
positive or negative. γ is rather like an (unscaled) correlation coefficient. Consider 
underlying (latent) continuous variables which are discretized by the cutpoints ui and νj. 
We can then identify γ with the correlation coefficient of the latent variables 

Consider an example drawn from a subset of the 1996 American National Election 
Study (Rosenstone, Kinder, and Miller (1997)). Considering just the data on party 
affiliation and level of education, we can construct a two-way table: 

> data(nes96) 
> xtabs( ~ PID + educ, nes96) 
         educ 
PID       MS HSdrop HS Coll CCdeg BAdeg MAdeg 
  strDem   5 19     59 38   17    40    22 
  weakDem  4 10     49 36   17    41    23 
  indDem   1 4      28 15   13    27    20 
  indind   0 3      12  9    3     6     4 
  indRep   2 7      23 16    8    22    16 
  weakRep  0 5      35 40   15    38    17 
  strRep   1 4      42 33   17    53    25 

Both variables are ordinal in this example. We need to convert this to a dataframe with 
one count per line to enable model fitting. 

> (partyed <- as.data.frame.table(xtabs( ~ PID + educ, 
nes96))) 
       PID   educ Freq 
1   strDem     MS    5 
2  weakDem     MS    4 
3   indDem     MS    1 
...etc.... 

If we fit a nominal-by-nominal model, we find no evidence against independence: 

> nomod <- glm(Freq ~ PID + educ, partyed, family= 
poisson) 
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> pchisq(deviance(nomod),df.residual(nomod),lower=F) 
[1] 0.26961 

However, we can take advantage of the ordinal structure of both variables and define 
some scores. As there seems to be no strong reason to the contrary, we assign evenly 
spaced scores: one to seven for both PID and educ: 

> partyed$oPID <- unclass(partyed$PID) 
> partyed$oeduc <- unclass(partyed$educ) 

Now fit the linear-by-linear association model and compare to the independence model: 

> ormod <- glm(Freq ~ PID + educ + I (oPID*oeduc), 
partyed, 
  family= poisson) 
> anova(nomod,ormod,test="Chi") 
Analysis of Deviance Table 
Model 1: Freq ~ PID + educ 
Model 2: Freq ~ PID + educ + I (oPID * oeduc) 
  Resid. Df Resid. Dev Df Deviance  P(>|Chi|) 
1        36       40.7 
2        35       30.6  1     10.2    0.0014 

We see that there is some evidence of an association. So we see that using the ordinal 
information gives us more power to detect an association. We can examine  

> summary(ormod)$coef[′I(oPID * oeduc)',] 
  Estimate Std. Error    z value   Pr(>|z|) 
0.0287446  0.0090617  3.1720850  0.0015135 

We see that is 0.0287. The p-value here can also be used to test the significance of the 
association although, as a Wald test, it is less reliable than the likelihood ratio test we 
used first. We see that is positive, which, given the way that we have assigned the 
scores, mean that a higher level of education is associated with a greater probability of 
tending to the Republican end of the spectrum. 

Just to check the robustness of the assignment of the scores, it is worth trying some 
different choices. For example, suppose we choose scores so that there is more of a 
distinction between Democrats and Independents as well as Independents and 
Republicans. Our assignment of scores for apid below achieves this. Another idea might 
be that people who complete high school or less are not different; that those who go to 
college, but do not get a BA degree are not different and that those who get a BA or 
higher are not different. My assignment of scores in aedu achieves this: 

> apid <- c(1,2,5,6,7,10,11) 
> aedu <- c(1,1,1,2,2,3,3) 
> ormoda <- glm(Freq ~ PID + educ + 
I(apid[oPID]*aedu[oeduc]), 
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  partyed, family= poisson) 
> anova(nomod,ormoda,test="Chi") 
Analysis of Deviance Table 
Model 1: Freq ~ PID + educ 
Model 2: Freq ~ PID + educ + I(apid[oPID] * 
aedu[oeduc]) 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1        36       40.7 
2        35       30.9  1      9.8    0.0017 

The numerical outcome is slightly different, but the result is still significant. Some 
experimentation with other plausible choices indicates that we can be fairly confident 
about the association here. 

The association parameter may be interpreted in terms of log-odds. For example, 
consider the log-odds ratio for adjacent entries in both rows and columns: 

 
  

For evenly spaced scores, these log-odds ratios will all be equal. For our example, where 
the scores are spaced one apart, the log-odds ratio is γ. To illustrate this point, consider 
the fitted values under the linear-by-linear association model: 

> round(xtabs(predict(ormod,type="response") ~ PID + 
educ, partyed),2) 
         educ 
PID       MS    HSdrop HS    Coll  CCdeg BAdeg MAdeg 
  strDem   3.58 13.36  59.22 41.34 18.34 42.46 21.71 
  weakDem  2.92 11.22  51.20 36.78 16.80 40.02 21.06 
  indDem   1.59  6.27  29.45 21.78 10.23 25.09 13.59 
  indind   0.49  2.00   9.65  7.34  3.55  8.96  5.00 
  indRep   1.12  4.71  23.41 18.33  9.13 23.70 13.60 
  weakRep  1.61  6.95  35.59 28.68 14.69 39.28 23.19 
  strRep   1.69  7.49  39.48 32.74 17.26 47.49 28.85 

Now compute log-odds ratio for, say, the lower two-by-two table: 

> log(39.28*28.85/(47.49*23.19)) 
[1] 0.028585 

We see this is, but for rounding, equal to  
It is always worth examining the residuals to check if there is more structure than the 

model suggests. We use the raw response residuals (the unscaled difference between 
observed and expected) because we would like to see effects which are large in an 
absolute sense. 

> round(xtabs(residuals(ormod,type="response") ~ PID + 
educ, partyed),2) 
         educ 

Extending the linear model with R     100



PID       MS    HSdrop HS    Coll  CCdeg BAdeg MAdeg 
  strDem   1.42  5.64  -0.22 -3.34 -1.34 -2.46  0.29 
  weakDem  1.08 -1.22  -2.20 -0.78  0.20  0.98  1.94 
  indDem  -0.59 -2.27  -1.45 -6.78  2.77  1.91  6.41 
  indind  -0.49  1.00   2.35  1.66 -0.55 -2.96 -1.00 
  indRep   0.88  2.29  -0.41 -2.33 -1.13 -1.70  2.40 
  weakRep -1.61 -1.95  -0.59 11.32  0.31 -1.28 -6.19 
  strRep  -0.69 -3.49   2.52  0.26 -0.26  5.51 -3.85 

We do see some indications of remaining structure. For example, we see many more 
weak Republicans with some college than expected while fewer Republicans with 
master’s degrees or higher. There may not be a monotone relationship between party 
affiliation and educational level. 

To investigate this effect, we might consider an ordinal-by-nominal model where we 
now treat education as a nominal variable. This is called a column effects model because 
the columns (which are the education levels here) are not assigned scores and we will 
estimate their effect instead. A row effects model is effectively the same model except 
with the roles of the variables reversed. The model takes the form: 

logEYij=log µij=lognpij=logn+ai+βj+ uiγj   

where the γj are called the column effects. Equality of the γjs corresponds to the 
hypothesis of independence. We fit this model for our data: 

> cmod <- glm(Freq ~ PID + educ + educ:oPID, partyed, 
family= poisson) 

We can compare this to the independence model: 

> anova(nomod,cmod,test="Chi") 
Analysis of Deviance Table 
Model 1: Freq ~ PID + educ 
Model 2: Freq ~ PID + educ + educ:oPID 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1        36       40.7 
2        30       22.8  6     18.0    0.0063 

We find that the column-effects model is preferred. Now examine the fitted coefficients, 
looking at just the interaction terms as the main effects have no particular interest: 

> summary(cmod)$coef[14:19,] 
                  Estimate Std. Error   z value 
Pr(>|z|) 
educMS:oPID      -0.3122169   0.154051 -2.026710 
0.042692 
educHSdrop:oPID -0.1944513   0.077228 -2.517891 
0.011806 
educHS:oPID     -0.0553470   0.048196 -1.148384 
0.250810 
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educColl:oPID    0.0044605   0.050603  0.088147 
0.929760 
educCCdeg:oPID  -0.0086994   0.060667 -0.143395 
0.885978 
educBAdeg:oPID   0.0345539   0.048782  0.708330 
0.478740 

The last coefficient, educMAdeg: oPID, is not identifiable and so this may be taken as 
zero. If there was really a monotone trend in the effect of educational level on party 
affiliation, we would expect these coefficients to be monotone. However, we can see that 
they are not. However, if we compare this to the linear-by-linear association model: 

> anova(ormod,cmod,test="Chi") 
Analysis of Deviance Table 
Model 1: Freq ~ PID + educ + I(oPID * oeduc) 
Model 2: Freq ~ PID + educ + educ:oPID 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1        35      30.57 
2        30      22.76  5     7.81      0.17 

We see that the simpler linear-by-linear association is preferred to the more complex 
column-effects model. Nevertheless, if the linear-by-linear association were a good fit, 
we would expect the observed column-effect coefficients to be roughly evenly spaced. 
Looking at these coefficients, we observe that for high school and above, the coefficients 
are not significantly different from zero while for the lowest two categories, there is some 
difference. This suggests an alternate assignment of scores for education:  

> aedu <- 0(1,1,2,2,2,2,2) 
> ormodb <- glm(Freq ~ PID + educ + I 
(oPID*aedu[oeduc]), 
  partyed, family= poisson) 
> deviance(ormodb) 
[1] 28.451 
> deviance(ormod) 
[1] 30.568 

We see that the deviance of this model is even lower than our original model. This gives 
credence to the view that whether a person finishes high school or not is the determining 
factor in party affiliation. However, since we used the data itself to assign the scores and 
come up with this hypothesis, we would be tempting fate to then use the data again to test 
this hypothesis. 

The use of scores can be helpful in reducing the complexity of models for categorical 
data with ordinal variables. It is especially useful in higher dimensional tables where a 
reduction in the number of parameters is particularly welcome. The use of scores can also 
sharpen our ability to detect associations. 

Further Reading: See books by Agresti (2002), Bishop, Fienberg, and Holland 
(1975), Haberman (1977), Le (1998), Leonard (2000), Powers and Xie (2000), Santner 
and Duffy (1989) and Simonoff (2003). 
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Exercises 

1. The dataset parstum contains cross-classified data on marijuana usage by college 
students as it relates to the alcohol and drug usage of the parents. Analyze the data as 
if both factors were nominal. Redo the analysis treating both factors as ordinal. 
Contrast the results. 

2. The dataset melanoma gives data on a sample of patients suffering from melanoma 
(skin cancer) cross-classified by the type of cancer and the location on the body. 
Determine whether the type and location are independent. Examine the residuals to 
determine whether any dependence can be ascribed to particular type/location 
combinations. 

3. Data on social mobility of men in the UK may be found in cmob. A sample of men 
aged 45–64 was drawn from the 1971 census and 1981 census and the social class of 
the man was recorded at each timepoint. The classes are I=professional, 
II=semiprofessional, IIIN=skilled nonmanual, HIM=skilled manual, IV= semiskilled, 
V=unskilled. 

(a) Check for symmetry, quasi-symmetry, marginal homogeneity and quasi-
independence. 

(b) Develop a score-based model. Find some good-fitting scores. 

4. The dataset death contains data on murder cases in Florida in 1977. The data is cross-
classified by the race (black or white) of the victim, of the defendant and whether the 
death penalty was given. 

(a) Consider the frequency with which the death penalty is applied to black and white 
defendants, both marginally and conditionally, with respect to the race of the 
victim. Is this an example of Simpson’s paradox? Are the observed differences in 
the frequency of application of the death penalty statistically significant? 

(b) Determine the most appropriate dependence model between the variables. 
(c) Fit a binomial regression with death penalty as the response and show the 

relationship to your model in the previous question. 

5. The dataset sex fun comes from a questionnaire from 91 couples in the Tucson, 
Arizona, area. Subjects answered the question “Sex is fun for me and my partner”. The 
possible answers were “never or occasionally”, “fairly often”, “very often” and 
“almost always”. 

(a) Check for symmetry, quasi-symmetry, marginal homogeneity and quasi-
independence. 

(b) Develop a score-based model. Find some good-fitting scores. 
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6. The dataset suicide contains one year of suicide data from the United Kingdom cross-
classified by sex, age and method. 

(a) Determine the most appropriate dependence model between the variables. 
(b) Collapse the sex and age of the subject into a single six-level factor containing all 

combinations of sex and age. Conduct a correspondence analysis and give an 
interpretation of the plot. 

(c) Repeat the correspondence analysis separately for males and females. Does this 
analysis reveal anything new compared to the combined analysis in the previous 
question? 

7. A student newspaper conducted a survey of student opinions about the Vietnam War in 
May 1967. Responses were classified by sex, year in the program and one of four 
opinions. The survey was voluntary. The data may be found in the dataset uncviet. 

(a) Conduct an analysis of the patterns of dependence in the data assuming that all 
variables are nominal. 

(b) Assign scores to the year and opinion and fit an appropriate model. Interpret the 
trends in opinion over the years. Check the sensitivity of your conclusions to the 
assignment of the scores. 

8. The dataset HairEyeColor contains the same data analyzed in this chapter as haireye. 
Repeat the analysis in the text for each sex and make a comparison of the conclusions. 

9. A sample of psychiatry patients were cross-classified by their diagnosis and whether a 
drug treatment was prescribed. The data may be found in drugpsy. Is the chance that 
drugs will be prescribed constant across diagnoses? 

10. The UCBadmissions dataset presents data on applicants to graduate school at 
Berkeley for the six largest departments in 1973 classified by admission and sex. 

(a) Show that this provides an example of Simpson’s paradox. 
(b) Determine the most appropriate dependence model between the variables. 
(c) Fit a binomial regression with admissions status as the response and show the 

relationship to your model in the previous question. 
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CHAPTER 5  
Multinomial Data 

The multinomial distribution is an extension of the binomial to the situation where the 
response can take more than two values. Let Yi be a random variable that takes one of a 

finite number of values, 1, 2,…, J. Let pij=P(Yi=j) so As with binary data 
(the case where J= 2), we may encounter both grouped and ungrouped data. Let Yij be the 
number of observations falling into category j for group or individual i and let ni=ΣjYij. 
For ungrouped data, ni=1 and one and only one of yi1,…, YiJ is equal to one and the rest 
are zero. The Yij, conditional on the total ni, follow a multinomial distribution: 

 
  

We must also distinguish between nominal multinomial data where there is no natural 
order to the categories and ordinal multinomial data where there is an order. The 
multinomial logit model is intended for nominal data. It can be used for ordinal data, but 
the information about order will not be used. 

5.1 Multinomial Logit Model 

As with the binomial logit model, we must find a way to link the probabilities pij to the 
predictors xi, while ensuring that the probabilities are restricted between zero and one. 
We can use a similar idea: 

 
  

We must obey the constraint that so it is convenient to declare one of the 

categories as the baseline, say, j=1. So we set and have: 

 

  

Note that ηi1=0. We may estimate the parameters of this model using maximum 
likelihood and then use the standard methods of inference. 

Consider an example drawn from a subset of the 1996 American National Election 
Study (Rosenstone, Kinder, and Miller (1997)). For simplicity, we consider only the age, 
education level and income group of the respondents. Our response will be party 
identification of the respondent: Democrat, Independent or Republican. The original data 



involved more than three categories; we collapse this to three, again for simplicity of the 
presentation.  

> data(nes96) 
> sPID <- nes96$PID 
> levels(sPID) <- 
c("Democrat","Democrat","Independent","Independent", 
  "Independent","Republican","Republican") 
> summary(sPID) 
   Democrat Independent Republican 
        380         239        325 
> inca <- 
c(1.5,4,6,8,9.5,10.5,11.5,12.5,13.5,14.5,16,18.5,21,23.
5, 
  27.5,32.5,37.5,42.5,47.5,55,67.5,82.5,97.5,115) 
> nincome <- inca[unclass(nes96$income)] 
> summary(nincome) 
  Min. 1st Qu.   Median   Mean  3rd Qu.  Max. 
   1.5    23.5     37.5   46.6     67.5 115.0 
> table (nes96$educ) 
    MS HSdrop      HS  Coll CCdeg  BAdeg MAdeg 
    13     52     248   187    90    227   127 

The income variable in the original data was an ordered factor with income ranges. We 
have converted this to a numeric variable by taking the midpoint of each range. 

Let’s start with a graphical look at the relationship between the predictors and the 
response. The response is at the individual level and so we need to group the data just to 
get a sense of how the party identification is associated with the predictors. We cut the 
age and income predictors into seven levels and used the approximate midpoints of the 
ranges to label the groups: 

> 
matplot(prop.table(table(nes96$educ,sPID),1),type="1", 
  xlab="Education",ylab="Proportion",lty=c(1,2,5)) 
> cutinc <- cut(nincome,7) 
> il <- c(8,26,42,58,74,90,107) 
> matplot(il,prop.table 
(table(cutinc,sPID),1),lty=c(1,2,5), 
  type="1",ylab="Proportion",xlab="Income") 
> cutage <- cut (nes96$age,7) 
> al <- c(24,34,44,54,65,75,85) 
> 
matplot(al,prop.table(table(cutage,sPID),1),lty=c(1,2,5
), 
  type="1",ylab="Proportion",xlab="Age") 

The plots are shown in Figure 5.1. We see that proportion of Democrats falls with 
educational status, reaching a plateau for the college educated. We see the proportion of 
Republicans rising with educational level and reaching a similar plateau. As income 
increases, we observe an increase in the proportion of Republicans and Independents and 
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a decrease in the proportion of Democrats. The relationship of party to age is not clear. 
This is cross-sectional rather than longitudinal data, so we cannot say anything about 
what might happen to an individual with, for example, increasing income. We can only 
expect to make conclusions about the relative probability of party affiliations for different 
individuals with different incomes. 

We might ask whether the trends we see in the observed proportions are statistically 
significant. We need to model the data to answer this question. We fit a multinomial logit 
model. The multinom function is part of the nnet package described in Venables and 
Ripley (2002): 

> library(nnet) 

 

Figure 5.1 Relationship between party 
affiliation and education, age and 
income. Democrats are shown with 
solid line, Republicans with a dashed 
line and Independents with a dotted 
line. Education is categorized into 
seven levels described in the text. 
Income is in thousands of dollars. 

> mmod <- multinom(sPID ~ age + educ + nincome, nes96) 
# weights:  30 (18 variable) 
initial  value 1037.090001 
iter 10  value 990.568608 
iter 20  value 984.319052 
final value  984.166272 
converged 

The program uses the optimization method from the neural net trainer in nnet to compute 
the maximum likelihood, but there is no deeper connection to neural networks. 
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We can select which variables to include in the model based the AIC criterion using a 
step wise search method (output edited to show only the decision information): 

> mmodi <- step(mmod) 
          Df    AIC 
- educ     6 1996.5 
- age     16 2003.6 
<none>    18 2004.3 
- nincome 16 2045.9 
          Df    AIC 
- age      4 1993.4 
<none>     6 1996.5 
- nincome  4 2048.9 
          Df    AIC 
<none>     4 1993.4 
- nincome  2 2045.3 

At the first stage of the search, we see that omitting education would be the best option to 
reduce the AIC criterion. At the next step, age is removed resulting in a model with only 
income. 

We can also use the standard likelihood methods to derive a test to compare nested 
models. For example, we can fit a model without education and then compare the 
deviances: 

> mmode <- multinom(sPID ~ age + nincome, nes96) 
> deviance(mmode) - deviance(mmod) 
[1] 16.206 
> pchisq(16.206,mmod$edf-mmode$edf,lower=F) 
[1] 0.18198 

We see that education is not significant relative to the full model. This may seem 
somewhat surprising given the plot in Figure 5.1, but the large differences between 
proportions of Democrats and Republicans occur for groups with low education which 
represent only a small number of people. 

We can obtain predicted values for specified values of income. For example, suppose 
we pick the midpoints of the income groups we selected for the earlier plot: 

> predict(mmodi,data.frame(nincome=il),type="probs") 
  Democrat Independent Republican 
1  0.55663     0.19552    0.24786 
2  0.48049     0.22546    0.29405 
3  0.41343     0.25094    0.33564 
4  0.34939     0.27432    0.37629 
5  0.29033     0.29486    0.41481 
6  0.23758     0.31211    0.45031 
7  0.18917     0.32668    0.48415 

We see that the probability of being Republican or Independent increases with income. 
The default form just gives the most probable category: 
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> predict(mmodi,data.frame(nincome=il)) 
[1] 
Democrat   Democrat   Democrat   Republican  Republican 
[6] Republican Republican 

We may also examine the coefficients to gain an understanding of the relationship 
between the predictor and the response: 

> summary(mmodi) 
Coefficients: 
            (Intercept)   nincome 
Independent    -1.17493  0.016087 
Republican     -0.95036  0.017665 
Std. Errors: 
             (Intercept)   nincome 
Independent      0.15361 0.0028497 
Republican       0.14169 0.0026525 
Residual Deviance:  1985.4 
AIC: 1993.4 

The intercept terms model the probabilities of the party identification for an income of 
zero. We can see the relationship from this calculation: 

> cc <- c(0,-1.17493,-0.95036) 
> exp(cc)/sum(exp(cc)) 
[1] 0.58982 0.18216 0.22802 
> predict(mmodi,data.frame(nincome=0),type="probs") 
   Democrat Independent Republican 
    0.58982     0.18216    0.22802 

The slope terms represent the log-odds of moving from the baseline category of 
Democrat to Independent and Republican, respectively, for a unit change of $1000 in 
income. We can see more explicitly what this means by predicting probabilities for 
incomes $1000 apart and then computing the log-odds: 

> (pp <- 
predict(mmodi,data.frame(nincome=c(0,1)),type="probs")) 
  Democrat Independent Republican 
1  0.58982     0.18216    0.22802 
2  0.58571     0.18382    0.23047 
> log(pp[1,1]*pp[2,2]/(pp[l,2]*pp[2,l])) 
[1] 0.016087 
> log(pp[1,1]*pp[2,3]/(pp[1,3]*pp[2,1])) 
[1] 0.017665 

Log-odds can be difficult to interpret particularly with many predictors and interactions. 
Sometimes, computing predicted probabilities for a selected range of predictors can 
provide better intuition. 
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It is possible to fit a multinomial logit model using a Poisson GLM. Recall that 
independent Poisson variates conditional on their total are multinomial as described in 
Section 3.1. We can exploit this fact by declaring a factor that has a level for each 
multinomial observation in the data; we call this the response factor. We then treat the 
individual components of the multinomial response as Poisson responses. For ungrouped 
data, such as the current example, this means that one response will be one and the rest 
zero. 

We set up these variables, also illustrating what happens with the first four 
individuals: 

> sPID[1:4] 
[1] Republican Democrat   Democrat   Democrat 
Levels: Democrat Independent Republican 
> cm <- diag(3)[unclass(sPID),] 
> cm[1:4,] 
     [,1] [,2] [,3] 
[1,]    0    0    1 
[2,]    1    0    0  
[3,]    1    0    0 
[4,]    1    0    0 
> y <- as.numeric(t(cm)) 
> resp.factor <- gl(944,3) 

The three Poisson responses correspond to the different affiliations so we need to label 
which is which:  

> cat.factor <- gl(3,1,3*944,labels=c("D","I","R")) 

We also need to replicate the predictor: 

> rnincome <- rep(nincome,each=3) 

Now examine the form of the reorganized data: 

> head(data.frame(y,resp.factor,cat.factor,rnincome)) 
  y resp.factor cat.factor rnincome 
1 0           1          D      1.5 
2 0           1          I      1.5 
3 1           1          R      1.5 
4 1           2          D      1.5 
5 0           2          I      1.5 
6 0           2          R      1.5 

As with the contingency table models, the null model has only main effects: 

> nullmod <- glm(y ~ resp.factor + cat.factor, 
family=poisson) 
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The effect of income is modeled with an interaction with party affiliation: 

> glmod <- glm(y ~ resp.factor + cat.factor + 
cat.factor:rnincome, 
  family=poisson) 

We find that the deviance is the same as the multinomial model above: 

> deviance(glmod) 
[1] 1985.4 
> deviance(mmodi) 
[1] 1985.4 

The coefficients also correspond: 

> coef(glmod)[c(1,945:949)] 
         (Intercept)           cat.factorl          cat
.factorR 
          -0.5119613            -1.1749375           -
0.9503621 
cat.factorD:rnincome cat.factorI:rnincome 
cat.factorR:rnincome 
          -0.0176645            -
0.0015777                   NA 
> coef(mmodi) 
            (Intercept)  nincome 
Independent    -1.17493 0.016087 
Republican     -0.95036 0.017665 

The parameterization is slightly different for the Poisson GLM. Because only two 
interaction parameters are identifiable, the last one, being inestimable, is not estimated. 
This has the effect of making Republicans the reference level rather than Democrats as in 
the multinomial model. We see that the sign of the Republican-Democrat contrast is 
reversed and that we may obtain the Independent-Democrat contrast from the Poisson 
GLM by computing: 

> 0.016087-0.017665 
[1] -0.001578 

So we may obtain the same results using the Poisson GLM, but the multinom function is 
more transparent. However, the point is that the multinomial logit can be view as a GLM-
type model, which allows us to apply all the common methodology developed for GLMs.  
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5.2 Hierarchical or Nested Responses 

Consider the following data collected by Lowe, Roberts, and Lloyd (1971) by way of 
McCullagh and Nelder (1989) concerning live births with deformations of the central 
nervous system in south Wales: 

> data (cns) 
> cns 
            Area NoCNS An Sp Other Water      Work 
1        Cardiff  4091  5  9     5   110 NonManual 
2        Newport  1515  1  7     0   100 NonManual 
3        Swansea  2394  9  5     0    95 NonManual 
4     GlamorganE  3163  9 14     3    42 NonManual 
5     GlamorganW  1979  5 10     1    39 NonManual 
6     GlamorganC  4838 11 12     2   161 NonManual 
7      MonmouthV  2362  6  8     4    83 NonManual 
8  MonmouthOther  1604  3  6     0   122 NonManual 
9        Cardiff  9424 31 33    14   110    Manual 
10       Newport  4610  3 15     6   100    Manual 
11       Swansea  5526 19 30     4    95    Manual 
12    GlamorganE 13217 55 71    19    42    Manual 
13    GlamorganW  8195 30 44    10    39    Manual 
14    GlamorganC  7803 25 28    12   161    Manual 
15     MonmouthV  9962 36 37    13    83    Manual 
16 MonmouthOther  3172  8 13     3    122   Manual 

NoCNS indicates no central nervous system(CNS) malformation. An denotes 
anencephalus while Sp denotes spina bifida and Other represents other malformations. 
Water is water hardness and the subjects are categorized by the type of work performed 
by the parents. We might consider a multinomial response with four categories. However, 
we can see that most births suffer no malformation and so this category dominates the 
other three. It is better to consider this as a hierarchical response as depicted in Figure 
5.2. Now consider the multinomial likelihood for the ith observation which is proportional 
to: 

   

Define pic=pi2+pi3+pi4 which is probability of a birth with some kind of CNS 
malformation. We can then write the likelihood as: 

 

  

The first part of the product is now a binomial likelihood for a CNS vs. NoCNS response. 
The second part of the product is now a multinomial likelihood for the three CNS 
categories conditional of the presence of CNS. For example, pi2/pic is the conditional 
probability of an anencephalus birth given that a malformation has occurred for the ith 
observation. We can now separately develop a binomial model for whether malformation 
occurs and a multinomial model for the type of malformation.  
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Figure 5.2 Hierarchical response for 
birth types. 

We start with the binomial model. First we accumulate the number of CNS births and 
plot the data with the response on the logit scale as shown in the first panel of Figure 5.3: 

> cns$CNS <- cns$An+cns$Sp+cns$Other 
> plot(log(CNS/NoCNS) ~ Water, cns, 
pch=as.character(Work)) 

 

Figure 5.3 The first plot shows the 
empirical logits for the proportion of 
CNS births related to water hardness 
and profession (M=Manual, 
N=Nonmanual). The second is a half-
normal plot of the residuals of the 
chosen model 
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We observe that the proportion of CNS births falls with increasing water hardness and is 
higher for manual workers. We observe one observation (manual, Newport) that may be 
an outlier. Notice that the Area is confounded with the Water hardness, so we cannot put 
both these predictors in our model. We try them both and compare: 

> binmodw <- glm(cbind(CNS,NoCNS) ~ Water + Work, cns, 
family=binomial) 
> binmoda <- glm(cbind(CNS,NoCNS) ~ Area + Work, cns, 
family=binomial) 
> anova(binmodw,binmoda,test="Chi") 
Analysis of Deviance Table 
Model 1: cbind(CNS, NoCNS) ~ Water + Work 
Model 2: cbind(CNS, NoCNS) ~ Area + Work 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1       13       12.36 
2        7        3.08  6     9.29     0.16 

One can view this test as a check for linear trend in the effect of water hardness. We find 
that the simpler model using Water is acceptable. A check for an interaction effect 
revealed nothing significant although a look at the residuals is worthwhile: 

> halfnorm(residuals(binmodw)) 

In the second plot of Figure 5.3, we see an outlier corresponding to Newport manual 
workers. This case deserves closer examination. Finally, a look at the chosen model: 

> summary(binmodw) 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)   -4.432580   0.089789  -49.37   < 2e-16 
Water         -0.003264   0.000968   -3.37   0.00075 
WorkNonManual -0.339058   0.097094   -3.49   0.00048 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 41.047  on 15 degrees of freedom 
Residual deviance: 12.363  on 13 degrees of freedom 
AIC: 102.5 

The residual deviance is close to the degrees of freedom indicating a reasonable fit to the 
data. We see that since: 

> exp(-0.339058) 
[1] 0.71244 

births to nonmanual workers have a 29% lower chance of CNS malformation. Water 
hardness ranges from about 40 to 160. So a difference of 120 would decrease the odds of 
CNS malformation by about 32%. 
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Now consider a multinomial model for the three malformation types conditional on a 
malformation having occurred. As this data is grouped, in contrast to the nes96 example, 
it is most convenient to present the response as a matrix: 

> cmmod <- multinom(cbind(An,Sp,Other) ~ Water + Work, 
cns) 

We find that neither predictor has much effect: 

> nmod <- step(cmmod) 
        Df    AIC 
- Water  4 1381.1  
- Work   4 1381.2 
<none>   6 1383.5 
        Df    AIC 
- Work   2 1378.5 
<none>   4 1381.1  

which leaves us with a null final model: 

> nmod 
Coefficients: 
      (Intercept) 
Sp        0.28963 
Other    -0.98083 
Residual Deviance: 1374.5 

The fitted proportions are: 

> cc <- c(0,0.28963,-0.98083) 
> names(cc) <- c("An","Sp","Other") 
> exp(cc)/sum(exp(cc)) 
     An      Sp   Other 
0.36888 0.49279 0.13833 

So we find that water hardness and parents’ profession are related to the probability of a 
malformed birth, but that they have no effect on the type of malformation. 

Observe that if we fit a multinomial logit model to all four categories: 

> multinom(cbind(NoCNS,An,Sp,Other) ~ Water + Work, 
cns) 
Coefficients: 
      (Intercept)       Water WorkNonManual 
An        -5.4551 -0.00290884      -0.36388 
Sp        -5.0710 -0.00432305      -0.24359 
Other     -6.5947 -0.00051358      -0.64219 
Residual Deviance: 9391 
AIC: 9409 
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We find that both Water and Work are significant, but that the fact that they do not 
distinguish the type of malformation is not easily discovered from this model. 

5.3 Ordinal Multinomial Responses 

Suppose we have J ordered categories and that for individual i, with ordinal response Yi, 
pij=P(Yi=j) for j=1,…, J. With an ordered response, it is often easier to work with the 
cumulative probabilities, γij=P(Yi ≤ j). The cumulative probabilities are increasing and 
invariant to combining adjacent categories. Furthermore, γiJ=1, so we need only model J–
1 probabilities. 

As usual, we must link the γs to the covariates x. We will consider three possibilities 
which all take the form: 

   

We will consider three possibilities for the link function g: the logit, the probit and the 
complementary log-log. Notice that we have explicitly specified the intercepts, θj, so that 
the vector xi does not include an intercept. Furthermore, β does not depend on j so that we 
assume that the predictors have a uniform effect on the response categories in a sense that 
we will shortly make clear. 

Suppose that Zi is some unobserved continuous variable that might be thought of as 
the real underlying latent response. We only observe a discretized version of Zi in the 
form of Yi where Yi=j is observed if θj−1<Zi≤θj. Further suppose that Zi–βTxi has 
distribution F then: 

P(Yi≤j)=P(Zi≤θj)=P(Zi–βTxi≤θj–βTxi)=F(θj–βTxi)   

Now if, for example, F follows the logistic distribution, where F(x)=ex/(1+ex), then: 

 

  

and so we would have a logit model for the cumulative probabilities γij. Choosing the 
normal distribution for the latent variable leads to a probit model while the choice of an 
extreme value distribution leads to the complementary log-log. This latent variable 
explanation for the model is displayed in Figure 5.4. Notice that if β>0, as xi 
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Figure 5.4 Latent variable view of an 
ordered multinomial response. Here, 
four discrete response can occur, 
depending on the position of Z relative 
to the cutpoints θj. As x changes, the 
cutpoints will move together to change 
the relative probabilities of the four 
responses. 

increases, P(Yi=J) will also increase. This explains the use of the minus sign in the 
definition of the model because it allows for the more intuitive interpretation of the sign 
of β. 

Proportional Odds Model: Let γj(xi)=P(Yi≤J|xi) then the proportional odds model, 
which uses the logit link, is: 

 

  

It is so called because the relative odds for y≤j comparing x1 and x2 are: 

 

  

This does not depend on j. Of course, the assumption of proportional odds does need to 
be checked for a given dataset. 

Returning to the nes96 dataset, suppose we assume that Independents fall somewhere 
between Democrats and Republicans. We would then have an ordered multinomial 
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response. We can then fit this using the polr function from the MASS library described in 
Venables and Ripley (2002): 

> library(MASS) 
> pomod <- polr(sPID ~ age + educ + nincome, nes96) 

The deviance and number of parameters for this model are: 

> c(deviance(pomod), pomod$edf) 
[1] 1984.2 10.0 

which can be compared to the corresponding multinomial logit model: 

> c(deviance (mmod), mmod$edf) 
[1] 1968.3    18.0 

The proportional odds model uses fewer parameters, but does not fit quite as well. 
Typically, the output from the proportional odds model is easier to interpret. We may use 
an AlC-based variable selection method: 

> pomodi <- step(pomod) 
Start:  AIC= 2004.2 
sPID ~ age + educ + nincome 
          Df  AIC 
- educ     6 2003 
<none>       2004 
- age      1 2004 
- nincome  1 2039 
Step:  AIC= 2002.8 
sPID ~ age + nincome 
         Df  AIC 
- age     1 2001 
<none>      2003 
- nincome 1 2047  
Step: AIC= 2001.4 
sPID ~ nincome 
          Df AIC 
<none>      2001 
- nincome 1 2045 

Thus we finish with a model including just income as we did with the earlier multinomial 
model. We could also use a likelihood ratio test to compare the models: 

> deviance(pomodi)-deviance(pomod) 
[1] 11.151 
> pchisq(11.151,pomod$edf-pomodi$edf,lower=F) 
[1] 0.13217 
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We see that the simplification to just income is justifiable. We can check the proportional 
odds assumption by computing the observed odds proportions with respect to, in this 
case, income levels. We have computed the log-odds difference between γ1 and γ2: 

> pim <- prop.table(table(nincome,sPID),1) 
> logit(pim[,1])-logit(pim[,1]+pim[,2]) 
     1.5        4        6        8      9.5     10.5  
   11.5 
-0.90079 -2.06142 -0.75769 -1.00330 -2.30259 -0.30830 -
0.79851 
    12.5     13.5     14.5       16     18.5       21  
   23.5 
-1.89712 -1.25276 -1.17865 -0.41285 -0.35424 -1.51413 -
1.65345 
    27.5     32.5     37.5     42.5     47.5       55  
   67.5 
-0.74678 -0.52252 -0.92326 -1.02962 -0.82198 -1.42760 -
1.18261 
    82.5     97.5      115 
-0.98676 -1.48292 -1.70660 

It is questionable whether these can be considered sufficiently constant, but at least there 
is no trend. Now consider the interpretation of the fitted coefficients: 

> summary(pomodi) 
Coefficients: 
           Value Std.Error t value 
nincome 0.013120 0.0019708  6.6572 
Intercepts: 
                      Value Std. Error t value 
Democrat|Independent   0.209 0.112      1.863 
Independent|Republican 1.292 0.120     10.753 
Residual Deviance: 1995.36 
AIC: 2001.36 

We can say that the odds of moving from Democrat to Independent/Republican category 
(or from Democrat/Independent to Republican) increase by a factor of exp(0.013120) = 
1.0132 as income increases by one unit ($1000). Notice that the log-odds are similar to 
those obtained in the multinomial logit model. The intercepts correspond to the θj. So for 
an income of $0, the predicted probability of being a Democrat is:  

> ilogit(0.209) 
[1] 0.55206 

while that of being an Independent is: 

> ilogit(1.292)-ilogit(0.209) 
[1] 0.23242 
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with the remainder being Republicans. We can compute predicted values: 

> predict(pomodi,data.frame(nincome=il,row.names=il), 
  type="probs") 
    Democrat Independent    Republican 
8    0.52602     0.24011       0.23387 
26   0.46705     0.25415       0.27880 
42   0.41535     0.26176       0.32290 
58   0.36544     0.26418       0.37038 
74   0.31827     0.26122       0.42051 
90   0.27455     0.25311       0.47234 
107  0.23242     0.23954       0.52804 

Notice how the probability of being a Democrat uniformly decreases with income while 
that for being a Republican uniformly increases as income increases, but that the middle 
category of Independent increases then decreases. This type of behavior can be expected 
from the latent variable representation of the model. 

We can illustrate the latent variable interpretation of proportional odds by computing 
the cutpoints for incomes of $0, $50,000 and $100,000: 

> x <- seq(-4,4,by=0.05) 
> plot(x,dlogis(x),type="1") 
> abline(v=c(0.209,1.292)) 
> abline(v=c(0.209,1.292)-50*0.013120,lty=2) 
> abline(v=c(0.209,1.292)-100*0.013120,lty=5) 

The plot is shown in Figure 5.5. 
Ordered Probit Model: If the latent variable Zi has a standard normal distribution, 

then: 
Φ−1(γj(xi))=θj−βTxi j=1,…, J−1   

Applying this model to the nes96 data, we find: 

> opmod <- polr(sPID ~ nincome, method="probit") 
> summary(opmod) 
Coefficients: 
           Value Std. Error t value 
nincome 0.008182  0.0012078  6.7745 
Intercepts: 
                       Value Std. Error t value 
Democrat|Independent    0.128 0.069      1.851 
Independent|Republican  0.798 0.072     11.040 
Residual Deviance: 1994.89 
AIC: 2000.89 
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Figure 5.5 Solid lines represent an 
income of $0, dotted lines are for 
$50,000 and dashed lines are for 
$100,000. Probability of being a 
Democrat is given by the area lying to 
the left of the leftmost of each pair of 
lines, while the probability of being a 
Republican is given by the area to the 
right of the rightmost of the pair. 
Independents are represented by the 
area in between. 

The deviance is similar to the logit version of this model, but the coefficients appear to be 
different. However, if we compute the same predictions: 

> dems <- pnorm(0.128-i1*0.008182) 
> demind <- pnorm(0.798-i1*0.008182) 
> cbind(dems,demind-dems,1-demind) 
        dems 
[1,] 0.52494 0.24315 0.23192 
[2,] 0.46624 0.25458 0.27918 
[3,] 0.41463 0.26058 0.32479 
[4,] 0.36446 0.26236 0.37318 
[5,] 0.31651 0.25982 0.42366 
[6,] 0.27147 0.25310 0.47543 
[7,] 0.22739 0.24173 0.53088 

We see that the predicted values are very similar to those seen for the logit. If the 
coefficients are appropriately rescaled, they are also very similar. 

Proportional Hazards Model: A concept of hazard was developed in insurance 
applications. When issuing a life insurance policy, the insurer is interested in the 
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probability that the person will die during the term of the policy given that they are alive 
now. This is not the same as the unconditional probability of death during the same time 
period. In other words, for example, we want to know the chance that a 55-year-old man 
will die in the next year, given that he is alive and aged 55. The unconditional probability 
that a man will die aged 55 is not particular useful for the purposes of insurance. 

Suppose we use the complementary log-log in place of the logit above, that is: 
log(–log(1–γj(xi)))=θj+βTxi   

Then the hazard of category j is the probability of falling in category j given that your 
category is greater than j: 

 

  

These hazards are then proportional across categories as x varies. The corresponding 
latent variable distribution is the extreme value: 

F(x)=1−exp(−exp(x))   

The extreme value distribution is not symmetric like the logistic and normal and so there 
seems little justification for applying it to the nes96 data, but the command is: 

> polr(sPID ~ nincome, method="cloglog") 

Generalization: The proportional hazards and odds models can be generalized by 
allowing β to vary that is 

 

  

but this loses the proportionality property. 
Further Reading: For more on the analysis of ordered categorical data see the books 

by Agresti (1984), Clogg and Shihadeh (1994), Powers and Xie (2000) and Simonoff 
(2003). 

Exercises 

1. This hsb data was collected as a subset of the High School and Beyond study 
conducted by the National Education Longitudinal Studies program of the National 
Center for Education Statistics. The variables are gender; race; socioeconomic status; 
school type; chosen high school program type; scores on reading, writing, math, 
science, and social studies. We want to determine which factors are related to the 
choice of the type of program—academic, vocational, or general—that the students 
pursue in high school. The response is multinomial with three levels. 

(a) Fit a trinomial response model with the other relevant variables as predictors 
(untransformed). 
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(b) Use backward elimination to reduce the model to one where all predictors are 
statistically significant. Give an interpretation of the resulting model. 

(c) For the student with id 99, compute the predicted probabilities of the three possible 
choices. 

2. Data were collected from 39 students in a University of Chicago MBA class and 
may be found in the dataset happy. 

(a) Build a model for the level of happiness as a function of the other variables. 
(b) Interpret the parameters of your chosen model. 
(c) Predict the happiness distribution for subject whose parents earn $30,000 a year, 

who is lonely, not sexually active and has no job. 

3. A student newspaper conducted a survey of student opinions about the Vietnam War in 
May 1967. Responses were classified by sex, year in the program and one of four 
opinions. The survey was voluntary. The data may be found in the dataset uncviet. 

(a) Treat the opinion as the response and the sex and year as predictors. Build a 
proportional odds model, giving an interpretation to the estimates. 

(b) If you completed the analysis of this same dataset as a question in the previous 
chapter, compare and contrast the results of the two analyses. 

4. The pneumo data gives the number of coal miners classified by radiological 
examination into one of three categories of pneumonoconiosis and by the number of 
years spent working at the coal face divided into eight categories. 

(a) Treating the pneumonoconiosis status as response variable as nominal, build a 
model for predicting the frequency of the three outcomes in terms of length of 
service and use it to predict the outcome for a miner with 25 years of service.  

(b) Repeat the analysis with the pneumonoconiosis status being treated as ordinal.  
(c) Now treat the response variable as hierarchical with top level indicating whether 

the miner has the disease and the second level indicating, given they have the 
disease, whether they have a moderate or severe case.  

(d) Compare the three analyses. 

5. The debt data arise from a large postal survey on the psychology of debt. The 
frequency of credit card use is a three-level factor ranging from never, through 
occasionally to regularly. Build a model for predicting credit card use as a function of 
the other variables. Write a report describing the nature of the effect of the predictors 
on the response. 

6. The National Youth Survey collected a sample of 11–17 year-olds with 117 boys and 
120 girls, asking questions about marijuana usage. The data may be found in pot use. 
This data is actually longitudinal—the same boys and girls are followed for five years. 
However, for the purposes of this question, imagine that the data is cross-sectional, 
that is, a different sample of boys and girls are sampled each year. Build a model for 
the different levels of marijuana usage, describing the trend over time and the 
difference between the sexes. 
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CHAPTER 6  
Generalized Linear Models 

In previous chapters, we have seen how to model a binomial or Poisson response. 
Multinomial response models can often be recast as Poisson responses and the standard 
linear model with a normal (Gaussian) response is already familiar. Although these 
models each have their distinctive characteristics, we observe some common features in 
all of them that we can abstract to form the generalized linear model (GLM). By 
developing a theory and constructing general methods for GLMs, we can are able to 
tackle a wider range of data with different types of response variables. GLMs were 
introduced by Nelder and Wedderburn (1972) while McCullagh and Nelder (1989) 
provides a book-length treatment. 

6.1 GLM Definition 

A GLM is defined by specifying two components. The response should be a member of 
the exponential family distribution and the link function describes how the mean of the 
response and a linear combination of the predictors are related. 

Exponential family: In a GLM the distribution of Y is from the exponential family of 
distributions which take the general form: 

 

  

The θ is called the canonical parameter and represents the location while is called the 
dispersion parameter and represents the scale. We may define various members of the 
family by specifying the functions a, b, and c. The most commonly used examples are: 

1. Normal or Gaussian: 

 

  

So we can write and 

log  
2. Poisson: 



 

  

So we can write and 
 

3. Binomial: 

 

  

So we see that b(θ)=–nlog(1–µ)=nlog(1+expθ) and 

 
The gamma and inverse Gaussian are other lesser-used members of the exponential 
family that are covered in Chapter 7. Notice that in the normal density, the parameter is 
free (as it is also for the gamma density) while for the Poisson and binomial it is fixed at 
one. This is because the Poisson and binomial are one parameter families while the 
normal and gamma have two parameters. In fact, some authors reserve the term 
exponential family distribution for cases where is not used, while using the term 
exponential dispersion family for cases where it is. This has important consequences for 
the analysis. 

Some other densities, such as the negative binomial and the Weibull distribution, are 
not members of the exponential family, but they are sufficiently close that the GLM can 
be fit with some modifications. It is also possible to fit distributions that are not in the 
exponential family using the GLM-style approach, but there are some additional 
complications. 

The exponential family distributions have mean and variance: 

 

  

The mean is a function of θ only while the variance is a product of functions of the 
location and the scale. b″(θ) is called the variance function and describes how the 
variance relates to the mean. 

In the Gaussian case, b″(θ)=1 and so the variance is independent of the mean. For 
other distributions, this is not true, making the Gaussian case exceptional. We can 
introduce weights by setting: 
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where w is a known weight that varies between observations. 
Link function: Let us suppose we may express the effect of the predictors on the 

response through a linear predictor: 
η=β0+β1x1+…+βpxp=xTβ   

The link function, g, describes how the mean response, EY=µ, is linked to the covariates 
through the linear predictor:  

η=g(µ)   

In principle, any monotone continuous and differentiable function will do, but there are 
some convenient and common choices for the standard GLMs. 

In the Gaussian linear model, the identity link, η=µ is the obvious selection, but 
another choice would give y=g–1(xTβ)+ε. This does not correspond directly to a transform 
on the response: g(y)=xTβ+ ε as, for example, in a Box-Cox type transformation. In a 
GLM, the link function is assumed known whereas in a single index model, g is 
estimated. 

For the Poisson GLM, the mean µ must be positive so η=µ will not work conveniently 
since η can be negative. The standard choice is µ=eη so that η=log µ which ensures µ>0. 
This log link means that additive effects of x lead to multiplicative effects on µ. 

For the binomial GLM, let p be the probability of success and let this be our µ if we 
define the response as the proportion rather than the count. This requires that 0≤p≤1. 
There are several commonly used ways to ensure this: the logistic, probit and 
complementary log-log links. These are discussed in detail in Chapter 2. 

The canonical link has g such that η=g(µ)=θ, the canonical parameter of the 
exponential family distribution. This means that g(b′(θ))=θ. The canonical links for the 
common GLMs are shown in Table 6.1. If a canonical link is used, XTY is 
Family Link Variance Function 

Normal η=µ 1 

Poisson η=log µ µ 

Binomial η=log(µ/(1–µ)) µ(1–µ) 

Gamma η=µ−1 µ2 

Inverse Gaussian η=µ−2 µ3 

Table 6.1 Canonical links for GLMs. 

sufficient for β. The canonical link is mathematically and computationally convenient and 
is often the natural choice of link. However, one is not required to use the canonical link 
and sometimes context may compel another choice. 
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6.2 Fitting a GLM 

The parameters, β, of a GLM can be estimated using maximum likelihood. The log-
likelihood for single observation, where is: 

 
  

So for independent observations, the log-likelihood will be Sometimes 

we can maximize this analytically and find an exact solution for the MLE but the 
Gaussian GLM is the only common case where this is possible. Typically, we must use 
numerical optimization. By applying the Newton-Raphson method with Fisher scoring, 
McCullagh and Nelder (1989) show that the optimization is equivalent to iteratively 
reweighted least squares (IRWLS).  

The procedure can be understood intuitively by analogy to the procedure for the 

Gaussian linear model Y=Xβ+ ε. Suppose var where We would 

use weights wi where Since the weights are a function of an iterative 

fitting procedure would be needed. We might set the weights all equal to one, estimate 

use this to recompute the weights, reestimate and so on until convergence. 
We can use a similar idea to fit a GLM. Roughly speaking, we want to regress g(y) on 

X with weights inversely proportional to var g(y). However, g(y) might not make sense in 
some cases—for example, in the binomial GLM. So we linearize g(y) as follows: Let 
η=g(µ) and µ=EY. Now do a one-step expansion: 

 

  

and 

 

  

So the IRWLS procedure would be: 

1. Set initial estimates and  

2. Form the “adjusted dependent variable”  

3. Form the weights  
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4. Reestimate β to get  
5. Iterate steps 2–3–4 until convergence. 

Notice that the fitting procedure uses only η=g(µ) and V(µ), but requires no further 
knowledge of the distribution of y. This point will be important later in Section 7.4. 
Estimates of variance may be obtained from: 

   

which is comparable to the form used in weighted least squares with the exception that 
the weights are now a function of the response for a GLM. 

Let’s implement the procedure explicitly to understand how the fitting algorithm 
works. We use the Bliss data from Section 2.7 to illustrate this. Here is the fit we are 
trying to match: 

> data(bliss) 
> modl <- glm(cbind(dead,alive) ~ conc, 
family=binomial, bliss) 
> summary(modl) $coef 
            Estimate Std. Error z value   Pr(>|z|) 
(Intercept)  -2.3238    0.41789 -5.5608 2.6854e-08 
conc          1.1619    0.18142  6.4046 1.5077e-10 

For a binomial response, we have:  

 
  

where the variance is computed with the understanding that y is the proportion not the 
count. We use y for our initial guess for which works here because none of the 
observed proportions are zero or one: 

> y <- bliss$dead/30; mu <- y 
> eta <- logit(mu) 
> z <- eta + (y-mu)/(mu*(1-mu)) 
> w <- 30*mu*(1-mu) 
> lmod <- 1m(z ~ conc, weights=w, bliss) 
> coef(lmod) 
(Intercept)       conc 
    -2.3025     1.1536 

It is interesting how close these initial estimates are to the converged values given above. 
This is not uncommon. Even so, to get a more precise result, iteration is necessary. We do 
five iterations here: 

> for(i in 1:5){ 
+ eta <- lmod$fit 
+ mu <- ilogit(eta) 
+ z <- eta + (y-mu)/(mu*(1-mu)) 
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+ w <- 30*mu*(1-mu) 
+ lmod <- 1m(z ~ bliss$conc, weights=w) 
+ cat(i,coef(lmod),"\n") 
+ } 
1 -2.3237 1.1618 
2 -2.3238 1.1619 
3 -2.3238 1.1619 
4 -2.3238 1.1619 
5 -2.3238 1.1619 

We can see that convergence is fast in this case. The Fisher scoring iterations referred to 
in the output record the number of iterations. In most cases, the convergence is rapid. If 
there is a failure to converge, this is often a sign of some problem with the model 
specification or unusual feature of the data. An example of such a problem with the 
estimation may be seen in Section 2.8. A look at the final (weighted) linear model reveals 
that: 

> summary(lmod) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  -2.3238     0.1462   -15.9  0.00054 
conc          1.1619     0.0635    18.3  0.00036 
Residual standard error: 0.35 on 3 degrees of freedom 

The standard errors are not correct and can be computed (rather inefficiently) as follows: 

> xm <- model.matrix(lmod) 
> wm <- diag(w) 
> sqrt(diag(solve(t(xm) %*% wm %*% xm))) 
[1] 0.41787 0.18141 

Now because for the binomial model but in the Gaussian 
linear model To get the correct standard errors from the lm fit, 
we need to scale out the as follows: 

> summary(lmod)$coef[,2]/summary(Imod)$sigma 
(Intercept)        conc 
    0.41789     0.18142 

These calculations are shown for illustration purposes only and are done more efficiently 
and reliably by the glm function. 
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6.3 Hypothesis Tests 

When considering the choice of model for some data, we should define the range of 
possibilities. The null model is the smallest model we will entertain while the full or 
saturated model is the most complex. 

The null model represents the situation where there is no relation between the 
predictors and the response. Usually this means we fit a common mean µ for all y, that is, 
one parameter only. For the Gaussian GLM, this is the model y=µ+ε. For some 
contingency table models, there will be additional parameters that represent row or 
column totals or other such constraints. In these cases, the null model will have more than 
one parameter. 

In the saturated model, the data is explained exactly. Typically, we need to use n 
parameters for n data points. This can often be achieved by fitting a sufficiently high-
order polynomial or by treating the numerical values of quantitative predictors as codes, 
thereby changing them into qualitative predictors. If enough interactions are included, the 
model will be saturated. This model tells us no more than the data itself and is usually 
uninformative. 

A statistical model describes how we partition the data into systematic structure and 
random variation. The null model represents one extreme where the data is represented 
entirely as random variation, while the saturated or full model represents the data as 
being entirely systematic. 

The full model does give us a measure of how well any model could possibly fit and 
so we might consider the difference between the log-likelihood for the full model, 

and that for the model under consideration, expressed as a likelihood 
ratio statistic: 

   

Provided that the observations are independent and for an exponential family distribution, 
when this simplifies to: 

 
  

where are the estimates under the full (saturated) model and are the estimates under 
the model of interest. The above can be written simply as where is 
called the deviance and is called the scaled deviance. Deviances for the 
common GLMs are shown in Table 6.2.  
GLM Deviance 

Gaussian 
 

Poisson  
Binomial  
Gamma  
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Inverse Gaussian 
 

Table 6.2 For the binomial yi ~ B(m, pi) and µi = 
mpi that is µ is the count and not proportion in this 
formula. For the Poisson, the deviance is known as 
the G-statistic. The second term is usually 
zero if an intercept term is used in the model. 

Pearson’s X2 statistic: 

 

  

where is an alternative measure of discrepancy that is sometimes used in 
place of the deviance. 

There are two main types of hypothesis test we shall employ. The goodness of fit test 
simply asks whether the current model fits the data. The other type of test compares two 
nested models where the smaller model represents a linear restriction on the parameters 
of the larger model. The goodness of fit test can be viewed as model comparison test if 
we identify the smaller model with the model of interest and the larger model with the 
full or saturated model. 

For the goodness of fit test, we use the fact that, under certain conditions, provided the 
model is correct, the scaled Deviance and the Pearson’s X2 statistic are both 
asymptotically χ2 with degrees of freedom equal to the number of identifiable parameters. 
For GLMs such as the Gaussian, we usually do not know the value of the dispersion 
parameter, and so this test cannot be used. For the binomial and the Poisson, 
and so the test is practical. However, the accuracy of the asymptotic approximation is 
dubious for smaller datasets. For a binary, that is a 0-1 response, the approximation is 
worthless. 

For comparing a larger model, Ω, to a smaller nested model, ω the difference in the 
scaled deviances, Dω–DΩ is asymptotically χ2 with degrees of freedom equal to the 
difference in the number of identifiable parameters in the two models. For the Gaussian 
model and other models where the dispersion is usually not known, this test cannot be 
directly used. However, if we insert an estimate of we may compute an F-statistic of the 
form: 

 

  

where is a good estimate of the dispersion. For the Gaussian model, 

and the resulting F-statistic has an exact F distribution for the null. For 
other GLMs with free dispersion parameters, the statistic is only approximately F 
distributed. 
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For every GLM except the Gaussian, an approximate null distribution must be used 
whose accuracy may be in doubt particularly for smaller samples. However, the 
approximation is better when comparing models than for the goodness of fit statistic. 

Let’s consider the possible tests on the Bliss insect data: 

> summary(modl) 
Coefficients: 
           Estimate Std. Error z value Pr(>|z|) 
(Intercept)  -2.324      0.418   -5.56  2.7e-08 
conc          1.162      0.181    6.40  1.5e-10 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 64.76327 on 4 degrees of freedom 
Residual deviance:  0.37875 on 3 degrees of freedom 

We are able to make a goodness of fit test by examining the size of the residual deviance 
compared to its degrees of freedom: 

> 1-pchisq(deviance(modi),df.residual(modi)) 
[1] 0.9446 

where we see the p-value is large indicating no evidence of a lack of fit. As with lack of 
fit tests for Gaussian linear models, this outcome does not mean that this model is correct 
or that no better models exist. We can also quickly see that the null model would be 
inadequate for the data since the null deviance of 64.7 is very large for four degrees of 
freedom. 

We can also test for the significance of the linear concentration term by comparing the 
current model to the null model: 

> anova(modl,test="Chi") 
Analysis of Deviance Table 
Model: binomial, link: logit 
Terms added sequentially (first to last) 
     Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                     4        64.8 
conc  1     64.4         3         0.4    le-15 

We see that the concentration term is clearly significant. We can also fit and test a more 
complex model: 

> mod12 <- glm(cbind(dead, alive) ~ conc+I(conc^2), 
family=binomial,bliss) 
> anova(mod1,mod12,test="Chi") 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1         3      0.379 
2         2      0.195  1    0.183     0.669 
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We can see that there is no need for a quadratic term in the model. The same information 
could be extracted with: 

> anova(mod12,test="Chi") 

We may also take a Wald test approach. We may use the standard error of the parameter 

estimates to construct a z-statistic of the form This has an asymptotically normal 
null distribution. For the Bliss data, for the concentration term, we have 
z=1.162/0.181=6.40. Thus the (approximate) p-value for the Wald test of the 
concentration parameter being equal to zero is 1.5e−10 and thus we clearly reject the null 
here. Remember that this is again only an approximate test except in the special case of 
the Gaussian GLM where the z-statistic is the t-statistic and has an exact t-distribution. 
The difference of deviances test is preferred to the Wald test due, in part, to the problem 
noted by Hauck and Donner (1977). 

6.4 GLM Diagnostics 

As with standard linear models, it is important to check the adequacy of the 
assumptions that support the GLM. The diagnostic methods for GLMs mirror those used 
for Gaussian linear models. However, some adaptations are necessary and, depending on 
the type of GLM, not all diagnostic methods will be applicable. 

Residuals: Residuals represent the difference between the data and the model and are 
essential to explore the adequacy of the model. In the Gaussian case, the residuals are 

These are called response residuals for GLMs, but since the variance of the 
response is not constant for most GLMs, some modification is necessary. We would like 
residuals for GLMs to be defined such that they can be used in a similar way as in the 
Gaussian linear model. 

The Pearson residual is comparable to the standardized residuals used for linear 
models and is defined as: 

 

  

where V(µ)=b″(θ). These are just a rescaling of Notice that and hence 
the name. Pearson residuals can be skewed for nonnormal responses. 

The deviance residuals are defined by analogy to Pearson residuals. The Pearson 

residual was rP such that so we set the deviance residual as rD such that 

Thus: 

   

For example, in the Poisson: 
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Let’s examine the types of residuals available to us using the Bliss data. We can obtain 
the deviance residuals as: 

> residuals(modl) 
[1] -0.451015 0.359696 0.000000 0.064302 -0.204493 

These are the default choice of residuals. The Pearson residuals are: 

> residuals(modl,"pearson") 
        1        2        3        4         5 
-0.432523 0.364373 0.000000 0.064147 -0.208107 

which are just slightly different from the deviance residuals. The response residuals are: 

> residuals(modl,"response")  
         1         2         3         4          5 
-0.0225051 0.0283435 0.0000000 0.0049898 -0.0108282  

which is just the response minus the fitted value: 

> bliss$dead/30 - fitted(modl) 
         1         2         3         4          5 
-0.0225051 0.0283435 0.0000000 0.0049898 -0.0108282 

Finally, the so-called working residuals are: 

> residuals(modl,"working") 
        1        2        3        4         5 
-0.277088 0.156141 0.000000 0.027488 -0.133320 
> modl$residuals 
        1        2        3        4         5 
-0.277088 0.156141 0.000000 0.027488 -0.133320 

Note that it is important to use the residuals () function to get the deviance residuals 
which are most likely what is needed for diagnostic purposes. Using $residuals gives the 
working residuals which is not usually needed for diagnostics. We can now identify the 
working residuals as a by-product of the IRWLS fitting procedure: 

> residuals(lmod) 
          1          2           3          4          
 5 
-2.7709e-01 1.5614e-01 -3.8463e-16 2.7488e-02 -1.3332e-
01 

Leverage and influence: For a linear model, where H is the hat matrix that 
projects the data onto the fitted values. The leverages hi are given by the diagonal of H 
and represent the potential of the point to influence the fit. They are solely a function of X 
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and whether they are in fact influential will also depend on y. Leverages are somewhat 
different for GLMs. The IRWLS algorithm used to fit the GLM uses weights, w. These 
weights are just part of the IRWLS algorithm and are not user assigned. However, these 
do affect the leverage. We form a matrix W=diag(w) and the hat matrix is: 

H=W1/2X(XTWX)−1XTW1/2   

We extract the diagonal elements of H to get the leverages hi. A large value of hi 
indicates that the fit may be sensitive to the response at case i. Large leverages typically 
mean that the predictor values are unusual in some way. One important difference from 
the linear model case is that the leverages are no longer just a function of X and now 
depend on the response through the weights W. The leverages may be calculated as: 

> influence(mod1)$hat 
      1       2       3       4       5  
0.42550 0.41331 0.32238 0.41331 0.42550 

As in the linear model case, we might choose to studentize the residuals as follows: 

 

  

or compute jacknife residuals representing the difference between the observed response 
for case i and that predicted from the data with case i excluded, scaled appropriately. 
These are expensive to compute exactly and so an approximation due to  

Williams (1987) can be used: 

   

where These may be computed as: 

> rstudent(modl) 
        1        2        3        4         5 
-0.584786 0.472135 0.000000 0.083866 -0.271835 

Outliers may be detected by observing particularly large jacknife residuals. 
Leverage only measures the potential to affect the fit whereas measures of influence 

more directly assess the effect of each case on the fit. We can examine the change in the 
fit from omitting a case by looking at the changes in the coefficients: 

> influence(mod1)$coef 
  (Intercept)       conc 
1  -0.2140015  0.0806635 
2   0.1556719 -0.0470873 
3   0.0000000  0.0000000 
4  -0.0058417  0.0084177 
5   0.0492639 -0.0365734 
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Alternatively, we can examine the Cook statistics: 

 

  

which may be calculated as: 

> cooks.distance(modi) 
        1         2         3         4         5 
0.1205927 0.0797100 0.0000000 0.0024704 0.0279174 

We can see that the biggest change would occur by omitting the first observation. 
However, since this is a very small dataset with just five observations, we would not 
contemplate dropping cases. In any event, we see that the change in the coefficients 
would not qualitatively change the conclusion. 

Model diagnostics: We may divide diagnostic methods into two types. Some methods 
are designed to detect single cases or small groups of cases that do not fit the pattern of 
the rest of the data. Outlier detection is an example of this. Other methods are designed to 
check the assumptions of the model. These methods can be subdivided into those that 
check the structural form of the model, such as the choice and transformation of the 
predictors, and those that check the stochastic part of the model, such as the nature of the 
variance about the mean response. Here, we focus on methods for checking the 
assumptions of the model. 

For linear models, the plot of residuals against fitted values is probably the single most 
valuable graphic. For GLMs, we must decide on the appropriate scale for the fitted 
values. Usually, it is better to plot the linear predictors rather than the predicted 
responses We revisit the model for Galápagos data first presented in Section 3.1. 
Consider first a plot using presented in the first panel of Figure 6.1: 

> data(gala) 
> gala <- gala[,-2]  
> modp <- glm(Species ~ .,family=poisson,gala) 
> plot(residuals(modp) ~ predict 
(modp,type="response"), 
xlab=expression(hat(mu)),ylab="Deviance residuals")  
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Figure 6.1 Residual νs. fitted plots for 
the Galápagos model. The first uses 
fitted values in the scale of the 
response while the second uses fitted 
values in the scale of the linear 
predictor. The third plot uses response 
residuals while the first two use 
deviance residuals. 

There are just a few islands with a large predicted number of species while most 
predicted response values are small. This makes it difficult to see the relationship 
between the residuals and the fitted values because most of the points are compressed on 
the left of the display. Now we try plotting  

> plot(residuals(modp) ~ predict(modp,type="link"), 
  xlab=expression(hat(eta)),ylab="Deviance residuals") 

Now the points, shown in the second panel of Figure 6.1, are more evenly spaced in the 
horizontal direction. We are looking for two main features in such a plot. Is there any 
nonlinear relationship between the predicted values and the residuals? If so, this would be 
an indication of a lack of fit that might be rectified by a change in the model. For a linear 
model, we might consider a transformation of the response, but this is usually impractical 
for a GLM since it would change the assumed distribution of the response. We might also 
consider a change to the link function, but often this is undesirable since there a few 
choices of link function that lead to easily interpretable models. It is best if a change in 
the choice of predictors or transformations on these predictors can be made since this 
involves the least disruption to the GLM. For this particular plot, there is no evidence of 
nonlinearity. 

The variance of the residuals with respect to the fitted values should also be inspected. 
The assumptions of the GLM would require constant variance in the plot and, in this 
case, this appears to be the case. A violation of this assumption would prompt a change in 
the model. We might consider a change in the variance function V (µ), but this would 
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involve abandoning the Poisson GLM since this specifies a particular form for the 
variance function. We would need to use a quasi-likelihood GLM described in Section 
7.4. Alternatively, we could employ a different GLM for a count response such as the 
negative binomial. Finally, we might use weights if we could identify some feature of the 
data that would suggest a suitable choice. 

For all GLMs but the Gaussian, we have a nonconstant variance function. However, 
by using deviance residuals, we have already scaled out the variance function and so, 
provided the variance function is correct, we do expect to see constant variance in the 
plot. If we use response residuals, that is as seen in the third panel of Figure 6.1: 

> plot (residuals (modp,type="response") ~ predict 
(modp, type="link"), 
  xlab=expression(hat(eta)),ylab="Response residuals") 

We see a pattern of increasing variation consistent with the Poisson. 
In some cases, plots of the residuals are not particularly helpful. For a binary response, 

the residual can only take two possible values for given predicted response. This is the 
most extreme situation, but similar discreteness can occur for binomial responses with 
small group sizes and Poisson responses that are small. Plots of residuals in these cases 
tend to show curved lines of points corresponding to the limited number of observed 
responses. Such artifacts can obscure the main purpose of the plot. Difficulties arise for 
binomial data where the covariate classes have very different sizes. Points on plots may 
represent just a few or a large number of individuals. 

Investigating the nature of the relationship between the predictors and the response is 
another primary objective of diagnostic plots. Even before a model is fit to the data, we 
might simply plot the response against the predictors. For the Galápagos data, consider a 
plot of the number of species against the area of the island shown in the first panel of 
Figure 6.2: 

 plot (Species ~ Area, gala) 

We see that both variables have skewed distributions. We start with a log transformation 
on the predictor as seen in the second panel of Figure 6.2:  

> plot(Species ~ log(Area), gala) 

We see a curvilinear relationship between the predictor and the response. However, the 
default Poisson GLM uses a log link which we need to take into account. To allow for the 
choice of link function, we can plot the linearized response: 

 
  

as we see in the third panel of Figure 6.2: 

> mu <- predict (modp, type="response") 
> z <- predict (modp)+(gala$Species-mu)/mu 
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> plot(z ~ log(Area), gala,ylab="Linearized Response") 

 

 

Figure 6.2 Plots of the number of 
species against area for the Galápagos 
data. The first plot clearly shows a 
need for transformation, the second 
shows the advantage of using logged 
area, while the third shows the value of 
using the linearized response. 

We now see a linear relationship suggesting that no further transformation of area is 
necessary. Notice that we used the current model in the computation of z. Some might 
prefer to use an initial guess here to avoid presuming the choice of model. For this 
dataset, we find that a log transformation of all the predictors is helpful: 

> modpl <- glm(Species ~ log(Area) + log(Elevation) + 
log(Nearest) + 
  log(Scruz+0.1) + log(Adjacent), family=poisson, gala) 
> c(deviance(modp),deviance(modpl)) 
[1] 716.85 359.12 

We see that this results in a substantial reduction in the deviance. 
The disadvantage of simply examining the raw relationship between the response and 

the other predictors is that it fails to take into account the effect of the other predictors. 
Partial residual plots are used for linear models to make allowance for the effect of the 
other predictors while focusing on the relationship of interest. These can be adapted for 
use in GLMs by plotting versus xj. The interpretation is the same as in the 
linear model case. We compute the partial residual plot for the (now logged) area, as 
shown in the first panel of Figure 6.3: 

Generalized linear models     141



> mu <- predict (modpl,type="response") 
> u <- (gala$Species-mu)/mu + coef(modpl) 
[2]*log(gala$Area) 
> plot(u ~ log(Area), gala,ylab="Partial Residual") 
> abline(0,coef(modpl)[2]) 

In this plot, we see no reason for concern. There is no nonlinearity indicating a need to 
transform nor are there any obvious outliers or influential points. Partial residuals can 
also be obtained from residuals (., type=“partial”) although an offset will be necessary if 
you want the regression line displayed correctly on the plot. 

One can search for good transformations of the predictors in nongraphical ways. 
Polynomials terms or spline functions of the predictors can be experimented with, but 
generalized additive models, described in Chapter 12, offer a more direct way to discover 
some good transformations. 

The link function is a fundamental assumption of the GLM. Quite often the choice of 
link function is set by the characteristics of the response, such as positivity, or by ease of 
interpretation, as with logit link for binomial GLMs. It is often difficult to contemplate 
alternatives. Nevertheless, it is worth checking to see whether the link assumption is not 
grossly wrong. Before doing this, it is important to eliminate other simpler violations of 
the assumptions that are more easily rectified such as outliers  

 

Figure 6.3 A partial residual plot for 
log(Area) is shown on the left while a 
diagnostic for the link function is 
shown on the right. 

or transformations of the predictors. After these concerns have been eliminated, one can 
check the link assumption by making a plot of the linearized response z against linear 
predictor An example of this is shown in the second panel of Figure 6.3: 

> z <- predict(modpl)+(gala$Species-mu)/mu 
> plot(z ~ predict(modpl), xlab="Linear predictor", 
  ylab="Linearized Response") 
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In this case, we see no indication of a problem. 
An alternative approach to checking the link function is to propose a family of link 

functions of which the current choice is a member. A range of links can then be fit and 
compared to the current choice. The approach is analogous to the Box-Cox method used 
for linear models. Alternative choices are easier to explore within the quasi-likelihood 
framework described in Section 7.4. 

Unusual Points 
We have already described the raw material of residuals, leverage and influence measures 
that can be used to check for points that do not fit the model or influence the fit unduly. 
Let’s now see how to use graphical methods to examine these quantities. 

The Q-Q plot of the residuals is the standard way to check the normality assumption 
on the errors typically made for a linear model. For a GLM, we do not expect the 
residuals to be normally distributed, but we are still interested in detecting outliers. For 
this purpose, it is better to use a half-normal plot that compares the sorted absolute 
residuals and the quantiles of the half-normal distribution: 

 

  

The residuals are not expected to be normally distributed, so we are not looking for an 
approximate straight line. We only seek outliers which may be identified as points off the 
trend. A half-normal plot is better for this purpose because in a sense the resolution of the 
plot is doubled by having all the points in one tail.  

Since we are more specifically interested in outliers, we should plot the jacknife 
residuals. An example for the Galápagos model is shown in the first panel of Figure 6.4: 

> halfnorm(rstudent(modpl)) 

 

Figure 6.4 Half-normal plots of the 
jacknife residuals on the left and the 
leverages on the right. 
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We see no sign of outliers in the plot. The half-normal plot is also useful for positive-
valued diagnostics such as the leverages and the Cook statistics. A look at the leverages is 
shown in the second panel of Figure 6.4: 

> gali <- influence(modpl) 
> halfnorm(gali$hat) 

There is some indication that case 25, Santa Cruz island, may have some leverage. The 
predictor Scruz is the distance from Santa Cruz island which is zero for this case. This 
posed a problem for making the log transformation and explains why we added 0.1 to this 
variable. However, there is some indication that this inelegant fix may be causing some 
difficulty. 

Moving on to influence, a half-normal plot of the Cook statistics is shown in the first 
panel of Figure 6.5: 

> halfnorm(cooks.distance(modpl)) 

Again we have some indication that Santa Cruz island is influential. We can examine the 
change in the fitted coefficients. For example, consider the change in the Scruz 
coefficient as shown in the second panel of Figure 6.5: 

> plot(gali$coef[, 5],ylab="Change in Scruz 
coef",xlab="Case no.") 

We see a substantial change for case 25. If we compare the full fit to a model without this 
case, we find: 

> modplr <- glm(Species ~ log(Area) + log(Elevation) + 
log(Nearest) 
  + log(Scruz+0.1) + log(Adjacent), family=poisson, 
gala, subset=-25) 
 cbind(coef(modpl),coef(modplr)) 

(Intercept)       3.287941  3.050699 
log(Area)         0.348445  0.334530 
log(Elevation)    0.036421  0.059603 
log(Nearest)     -0.040644 -0.052548 
log(Scruz + 0.1) -0.030045  0.015919 
log(Adjacent)    -0.089014 -0.088516 

We see a sign change for the Scruz coefficient. This is interesting since in the full model, 
the coefficient is more than twice the standard error way from zero indicating some 
significance. A simple solution is to add a larger amount, say 0.5, to Scruz. 

Other than this user-introduced anomaly, we find no difficulty. Using our earlier 
discovery of the log transformation, some variable selection and allowing for remaining 
overdispersion, our final model is: 
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Figure 6.5 Half-normal plot of the 
Cook statistics is shown on the left and 
an index plot of the change in the 
Scruz coefficient is shown on the right. 

                      [,1]      [,2] 

> modpla <- glm(Species ~ log(Area)+log(Adjacent), 
family=poisson, gala) 
> dp <- 
sum(residuals(modpla,type="pearson")^2)/modpla$df.res 
> summary(modpla,dispersion=dp) 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|) 
(Intercept)     3.2767     0.1794   18.26  < 2e-16 
log(Area)       0.3750     0.0326   11.50  < 2e-16 
log(Adjacent)  -0.0957     0.0249   -3.85  0.00012 
(Dispersion parameter for poisson family taken to be 
16.527) 
    Null deviance: 3510.73 on 29 degrees of freedom 
Residual deviance:  395.54 on 27 degrees of freedom 

Notice that the deviance is much lower and the elevation variable is not used when 
compared with our model choice in Section 3.1.  

This example concerned a Poisson GLM. Diagnostics for binomial GLMs are similar, 
but see Pregibon (1981) and Collett (2003) for more details. 

Further Reading: The canonical book on GLMs is McCullagh and Nelder (1989). 
Other books include Dobson (1990), Lindsey (1997), Myers, Montgomery, and Vining 
(2002), Gill (2001) and Fahrmeir and Tutz (2001). For a Bayesian perspective, see Dey, 
Ghosh, and Mallick (2000). 
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Exercises 

1. Consider the or ings data from Chapter 2. Suppose that, in spite of all the drawbacks, 
we insist on fitting a model with an identity link, but with the binomial variance. Show 
how this may be done using a quasi family model using the glm function. (You will 
need need to consult the help pages for quasi and glm and in particular you will need 
to set good starting values for beta—if it doesn’t work at the first attempt, try different 
values.) Describe how the fitted model differs from the standard logistic regression 
and give the predicted response at a temperature of 31°F. 

2. Fit the orings data with a binomial response and a logit link as in Chapter 2. 

(a) Construct the appropriate test statistic for testing the effect of the temperature. 
State the appropriate null distribution and give the p-value. 

(b) Generate data under the null distribution for the previous test. Use the rbinom 
function with the average proportion of damaged O-rings. Recompute the test 
statistic and compute the p-value. 

(c) Repeat the process of the previous question 1000 times, saving the test statistic 
each time. Compare the empirical distribution of these simulated test statistics with 
the nominal null distribution stated in the first part of this question. Compare the 
critical values for a 5% level test computed using these two methods. 

3. Fit the orings data with a binomial response and a logit link as in Chapter 2. 

(a) Construct the appropriate test statistic for testing the effect of the temperature. 
State the appropriate null distribution and give the p-value. 

(b) Generate a random permutation of the responses using sample and recompute the 
test statistic and compute the p-value. 

(c) Repeat the process of the previous question 1000 times, saving the test statistic 
each time. Compare the empirical distribution of these permuted data test statistics 
with the nominal null distribution stated in the first part of this question. Compare 
the critical values for a 5% level test computed using these two methods. 

4. Data is generated from the exponential distribution with density f(y)=λexp(−λy) where 
λ, y>0. 

(a) Identify the specific form of and c() for the exponential distribution.  
(b) What is the canonical link and variance function for a GLM with a response 

following the exponential distribution? 
(c) Identify a practical difficulty that may arise when using the canonical link in this 

instance. 
(d) When comparing nested models in this case, should an F or χ2 test be used? 

Explain. 
(e) Express the deviance in this case in terms of the responses yi and the fitted values 

 

5. The Conway-Maxwell-Poisson distribution has probability function: 
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where 

 

  

Place this in exponential family form, identifying all the relevant components 
necessary for use in a GLM. 
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CHAPTER 7  
Other GLMs 

The binomial, Gaussian and Poisson GLMs are by far the most commonly used, but there 
are a number of less popular GLMs which are useful for particular types of data. The 
gamma and inverse Gaussian are intended for continuous, skewed responses. In some 
cases, we are interested in modeling both the mean and the dispersion of the response and 
so we present dual GLMs for this purpose. The quasi-GLM is a model that is useful for 
nonstandard responses where we are unwilling to specify the distribution but can state the 
link and variance functions. 

7.1 Gamma GLM 

The density of the gamma distribution is usually given by: 

 
  

where ν describes the shape and λ describes the scale of the distribution. However, for the 
purposes of a GLM, it is convenient to reparameterize by putting λ=ν/µ to get: 

 

  

Now EY=µ and var Y=µ2/ν=(EY)2/v. The dispersion parameter is Here we plot a 
gamma density with three different values of the shape parameter ν (the scale parameter 
would just have a multiplicative effect) as seen in Figure 7.1: 

> x <- seq(0,8,by=0.1) 
> 
plot(x,dgamma(x,0.75),type="1",ylab="",xlab="",ylim=c(0
,1.25), 
  xaxs="i",yaxs="i") 
> 
plot(x,dgamma(x,1.0),type="1",ylab="",xlab="",ylim=c(0,
1.25), 
  xaxs="i",yaxs="i") 
> 
plot(x,dgamma(x,2.0),type="1",ylab="",xlab="",ylim=c(0,
1.25), 
  xaxs="i",yaxs="i") 



The gamma distribution can arise in various ways. The sum of ν independent and 
identically distributed exponential random variables with rate λ has a gamma distribution. 
The χ2 distribution is a special case of the gamma where λ=1/2 and ν=df/2. 

The canonical parameter is –1/µ, so the canonical link is η=–1/µ. However, we 
typically remove the minus (which is fine provided we take account of this in any 
derivations) and just use the inverse link. We also have b(θ)=log(1/µ) = –log(–θ)  

 

Figure 7.1 The gamma density 
explored. In the first panel ν=0.75 and 
we see that the density is unbounded at 
zero. In the second panel, ν=1 which is 
the exponential density. In the third 
panel, ν=2 and we see a skewed 
distribution. 

and so b″(θ)=µ2 is the variance function. The (unscaled) deviance is: 

 
  

The utility of the gamma GLM arises in two different ways. Certainly, if we believe the 
response to have a gamma distribution, the model is clearly applicable. However, the 
model can also be useful in other situations where we may be willing to speculate on the 
relationship between the mean and the variance of the response but are not sure about the 
distribution. Indeed, it is possible to grasp the mean to variance relationship from 
graphical displays with relatively small datasets, while assertions about the response 
distribution would require a lot more data. 

In the Gaussian linear model, var Y is constant as a function of the mean response. 
This is a fundamental assumption necessary for the optimality of least squares. However, 
sometimes contextual knowledge of the data or diagnostics show that var Y is 
nonconstant. When the form of nonconstancy is known exactly, then weighted least 
squares can be used. In practice, however, the form is often not known exactly. 
Alternatively, transformation of Y may lead to a constant variance model. The difficulty 
here is that while the original scale Y may be meaningful, log Y or for example, may 
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not. An example is where a sum of the Ys may be of interest. In such a case, 
transformation would be a hindrance. 

If var then is the variance stabilizing transform. If one wants to avoid a 
transformation, a GLM approach can be used. When Y has a Poisson distribution, then 
var suggesting the use of a Poisson GLM. Now one might object that the 
Poisson is a distribution for discrete data, which would seem to disallow its use for 
continuous responses. However, fitting a GLM only depends on the mean and variance of 
a distribution; the other moments are not used. This is important because it indicates that 
we need specify nothing more than the mean and variance. The distribution could be 
discrete or continuous and it would make no difference. 

For some data, we might expect the standard deviation to increase linearly with the 
response. If so, the coefficient of variation, SD Y/EY, would be constant and var 

For example, measurements of larger objects do tend to have more error 
than smaller ones. 

If we wanted to apply a Gaussian linear model, the log transform is indicated. This 
would imply a lognormal distribution for the original response. Alternatively, if Y ~ 

gamma, then var so a gamma GLM is also appropriate in this situation. In a 
few cases, one may have some knowledge concerning the true distribution of the 
response which would drive the choice. However, in many cases, it would be difficult to 
distinguish between these two options on the basis of the data alone and the choice would 
be driven by the purpose and desired interpretation of the model. 

There are three common choices of link function: 

1. The canonical link is η=µ−1. Since –∞<η<∞, the link does not guarantee µ>0 which 
could cause problems and might require restrictions on β or on the range of possible 
predictor values. On the other hand the reciprocal link has some advantages. The 
Michaelis-Menten model has: 

 
  

which can be represented after some reexpression as: 

η=α1/α0+1/(α0x)=µ−1 
  

As x increases, η → α1/α0, which means that the mean µ will be bounded. The 
inverse link can be useful in such situations where we know the mean response to 
be bounded. 

2. The log link, η=log µ, should be used when the effect of the predictors is suspected to 
be multiplicative on the mean. When the variance is small, this approach is similar to a 
Gaussian model with a logged response. 

3. The linear link, η=µ, is useful for modeling sums of squares or variance components 
which are χ2. This is a special case of the gamma. 

The general GLM procedures apply to the analysis and fitting. To estimate the dispersion, 
McCullagh and Nelder (1989) recommend the use of: 
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The maximum likelihood estimator and the usual estimator, D/(n–p), are both sensitive to 
unusually small values of the response and are not consistent estimates of the coefficient 
of variation when the gamma distribution assumption does not hold. 

Myers and Montgomery (1997) present data from a step in the manufacturing process 
for semiconductors. Four factors are believed to influence the resistivity of the wafer and 
so a full factorial experiment with two levels of each factor was run. Previous experience 
led to the expectation that resistivity would have a skewed distribution and so the need 
for transformation was anticipated. We start with a look at the data: 

> data(wafer) 
> summary(wafer) 
x1    x2    x3    x4        resist 
-:8    -:8   -:8   -:8   Min.   :166  
+:8  +:8  +:8  +:8  1st Qu.:201 
                    Median :214 
                    Mean   :229 
                    3rd Qu.:259 
                    Max.   :340  

The application of the Box-Cox method or past experience suggests the use of a log 
transformation on the response. We fit the full model and then reduce it using AlC-based 
model selection: 

> llmdl <- lm(log(resist)~ .^2, wafer) 
> rlmdl <- step(llmdl) 
> summary(rlmdl) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   5.3111     0.0476  111.53  4.7e-14 
x1+           0.2009     0.0476    4.22  0.00292 
x2+          -0.2107     0.0476   -4.43  0.00221 
x3+           0.4372     0.0673    6.49  0.00019 
x4+           0.0354     0.0476    0.74  0.47892 
x1+:x3+      -0.1562     0.0673   -2.32  0.04896 
x2+:x3+      -0.1782     0.0673   -2.65  0.02941 
x3+:x4+      -0.1830     0.0673   -2.72  0.02635 
Residual standard error: 0.0673 on 8 degrees of freedom 
Multiple R-Squared: 0.947,Adjusted R-squared: 0.901 
F-statistic: 20.5 on 7 and 8 DF, p-value:  0.000165 

We find a model with three two-way interactions, all with x3. 
Now we fit the corresponding gamma GLM and again select the model using the AIC 

criterion. Note that the family must be specified as Gamma rather than gamma to avoid 
confusion with the Γ function. We use the log link to be consistent with the linear model. 
This must be specified as the default is the inverse link: 
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> gmdl <- glm(resist ~ . ^2, family=Gamma(link=log), 
wafer) 
> rgmdl <- step(gmdl) 
> summary(rgmdl) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   5.3120     0.0476  111.68  4.6e-14 
x1+           0.2003     0.0476    4.21  0.00295 
x2+          -0.2110     0.0476   -4.44  0.00218 
x3+           0.4367     0.0673    6.49  0.00019 
x4+           0.0354     0.0476    0.74  0.47836 
x1+:x3+      -0.1555     0.0673   -2.31  0.04957 
x2+:x3+      -0.1763     0.0673   -2.62  0.03064 
x3+:x4+      -0.1819     0.0673   -2.70  0.02687 
(Dispersion parameter for Gamma family taken to be 
0.0045249) 
    Null deviance: 0.697837 on 15 degrees of freedom 
Residual deviance: 0.036266 on  8 degrees of freedom  
AIC: 139.2  

In this case, we see that the coefficients are remarkably similar to the linear model with 
the logged response. Even the standard errors are almost identical and the square root of 
the dispersion corresponds to the residual standard error of the linear model: 

> sqrt(0.0045249) 
[1] 0.067267 

The maximum likelihood estimate of may be computed using the MASS package: 

> library(MASS) 
> gamma.dispersion(rgmdl) 
[1] 0.0022657 

We see that this gives a substantially smaller estimate, which would suggest smaller 
standard errors. However, it is not consistent with our experience with the Gaussian 
linear model in this example. 

In this example, because the value of is large (221), the gamma distribution 
is well approximated by a normal. Similarly, for the logged response linear model, a 
lognormal distribution with a small variance (σ=0.0673) is also very well approximated 
by a normal. For this reason, there is not much to distinguish these two models. The 
gamma GLM has the advantage of modeling the response directly while the lognormal 
has the added convenience of working with a standard linear model. 

Let us examine another example where there is more distinction between the two 
approaches. In Hallin and Ingenbleek (1983) data on payments for insurance claims for 
various areas of Sweden in 1977 are presented. The data is further subdivided by mileage 
driven, the bonus from not having made previous claims and the type of car. We have 
information on the number of insured, measured in policy-years, within each of these 
groups. Since we expect that the total amount of the claims for a group will be 
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proportionate to the number of insured, it makes sense to treat the log of the number 
insured as an offset for similar reasons to those in Section 3.2. Attention has been 
restricted to data from Zone 1. After some model selection, a gamma GLM of the 
following form was found: 

> data(motorins) 
> motori <- motorins[motorins$Zone == 1,] 
> gl <- glm(Payment ~ 
offset(log(Insured))+as.numeric(Kilometres)+ 
     Make+Bonus , family=Gamma(link=log), motori) 
> summary(gl) 
Coefficients : 
                       Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)              6.5273     0.1777   36.72  < 
2e-16 
as. numeric (Kilometres) 
0.1201     0.0311    3.85  0.00014 
Make2                    0.4070     0.1782    2.28  0.0
2313 
Make3                    0.1553     0.1796    0.87  0.3
8767 
Make4                   -0.3439     0.1915   -
1.80  0.07355 
Make5                    0.1447     0.1810    0.80  0.4
2473 
Make6                   -0.3456     0.1782   -
1.94  0.05352 
Make7                    0.0614     0.1824    0.34  0.7
3689 
Make8                    0.7504     0.1873    4.01 
0.000079 
Make9                    0.0320     0.1782    0.18  0.8
5778  
Bonus                   -0.2007    0.0215    -9.33  < 
2e-16 
(Dispersion parameter for Gamma family taken to be 
0.55597) 
    Null deviance: 238.97 on 294 degrees of freedom 
Residual deviance: 155.06 on 284 degrees of freedom 
AIC: 7168 

In comparison, the lognormal model, where we have used the glm function for 
compatibility, looks like this: 

> llg <- glm(log(Payment) ~ 
offset(log(Insured))+as.numeric(Kilometres) + 
  Make+Bonus,family=gaussian , motori) 
> summary(11g) 
Coefficients: 

Extending the linear model with R     154



                       Estimate Std. Error t value 
Pr(>|t|) 
(Intercept)              6.51403   0.18634   34.96  < 
2e-16 
as .numeric (Kilometres) 
0.05713   0.03265    1.75   0.0813 
Make2                    0.36387   0.18686    1.95   0.
0525 
Make3                    0.00692   0.18824    0.04   0.
9707 
Make4                   -0.54786   0.20076   -
2.73   0.0067 
Make5                   -0.02179   0.18972   -
0.11   0.9087 
Make6                   -0.45881   0.18686   -
2.46   0.0147 
Make7                   -0.32118   0.19126   -
1.68   0.0942 
Make8                    0.20958   0.19631    1.07   0.
2866 
Make9                    0.12545   0.18686    0.67   0.
5025 
Bonus                   -0.17806   0.02254   -
7.90  6.2e-14 
(Dispersion parameter for gaussian family taken to be 
0.61102) 
    Null deviance: 238.56 on 294 degrees of freedom 
Residual deviance: 173.53 on 284 degrees of freedom 
AIC: 704.6 

Notice that there are now important differences between the two models. We see that 
mileage class given by Kilometers is statistically significant in the gamma GLM, but not 
in the lognormal model. Some of the coefficients are quite different. For example, we see 
that for make 8, relative to the reference level of make 1, there are exp(0.7504)=2.1178 
times as much payment when using the gamma GLM, while the comparable figure for 
the lognormal model is exp(0.20958)=1.2332. 

These two models are not nested and have different distributions for the response, 
which makes direct comparison problematic. The AIC criterion, which is minus twice the 
maximized likelihood plus twice the number of parameters, has often been used as a way 
to choose between models. Smaller values are preferred. However, when computing a 
likelihood, it is common practice to discard parts that are not functions of the parameters. 
This has no consequence when models with same distribution for the response are 
compared since the parts discarded will be equal. For responses with different 
distributions, it is essential that all parts of the likelihood be retained. The large difference 
in AIC for these two models indicate that this precaution was not taken. Nevertheless, we 
note that the null deviance for both models is almost the same while the residual deviance 
is smaller for the gamma GLM. This improvement relative to the null indicates that the 
gamma GLM should be preferred here. Note that purely numerical comparisons such as 
this are risky and that some attention to residual diagnostics, scientific context and 
interpretation is necessary. 
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We compare the shapes of the distributions for the response using the dispersion 
estimates from the two models, as seen in Figure 7.2: 

> x <- seq(0,5,by=0.05) 
> 
plot(x,dgamma(x,1/0.55597,scale=0.55597),type="l",ylab=
"", 
  xlab="",yaxs="i",ylim=c(0,1)) 
> plot(x,dlnorm(x,meanlog=-0.30551,sdlog=sqrt(0.55597)) 
,type="l", 
  ylab="",xlab="",yaxs="i",ylim=c(0,1)) 

 

Figure 7.2 Gamma density for 
observed shape of 1/0.55597 is shown 
on the left and lognormal density for 
an observed SD on the log scale 

The means have been set to 
one in both cases. 

We see the greater peakedness of the lognormal indicating more small payments which 
are balanced by more large payments. The lognormal thus has higher kurtosis. 

We may also make predictions from both models. Here is a plausible value of the 
predictors: 

> x0 <- 
data.frame(Make="1",Kilometres=1,Bonus=1,Insured=100) 

and here is predicted response for the gamma GLM: 

> predict(gl,new=x0,se=T,type="response") 
$fit 
[1] 63061 
$se.fit 
[1] 9711.5 
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For the lognormal, we have: 

> predict(11g,new=x0,se=T,type="response") 
$fit 
[1] 10.998  
$se.fit 
[1] 0.16145 

so that the corresponding values on the original scale would be: 

> c(exp(10.998),exp(10.998)*0.16145) 
[1] 59754.5  9647.4 

where we have used the delta method to estimate the standard error on the original scale. 

7.2 Inverse Gaussian GLM 

The density of an inverse Gaussian random variable, Y~IG(µ, λ) is: 
f(y|µ,λ) = (λ/2πy3)1/2exp[−λ(y−µ)2/2µ2y] y,µ,λ>0   

The mean is µ and the variance is µ3/λ. The canonical link is η=1/µ2 and the variance 
function is V(µ)=µ3. The deviance is given by: 

 
  

Plots of the inverse Gaussian density for a range of values of the shape parameter, λ, are 
shown in Figure 7.3: 

> library(SuppDists) 
> x <- seq(0,8,by=0.1) 
> 
plot(x,dinvGauss(x,1,0.5),type="l",ylab="",xlab="",ylim
=c(0,1.5), 
  xaxs="i",yaxs="i") 
> 
plot(x,dinvGauss(x,1,1),type="l",ylab="",xlab="",ylim=c
(0,1.5), 
  xaxs="i",yaxs="i") 
> 
plot(x,dinvGauss(x,1,5),type="l",ylab="",xlab="",ylim=c
(0,1.5), 
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Figure 7.3 Inverse Gaussian densities 
for λ=0.5 on the left, λ=1 in the middle 
and λ=5 on the right. µ=1 in all three 
cases. 

The case of µ=1 is known as the Wald distribution. The inverse Gaussian has found 
application in the modeling of lifetime distributions with nonmonotone failure rates and 
in the first passage times of Brownian motions with drift. See Seshadri (1993) for a book-
length treatment. 

Notice that the variance function for the inverse Gaussian GLM increases more 
rapidly with the mean than the gamma GLM, making it suitable for data where this 
occurs. 

In Whitmore (1986), some sales data on a range of products is presented for the 
projected, xi, and actual, yi, sales for i=1,…, 20. We consider a model, yi=βxi where β 
would represent the relative bias in the projected sales. Since the sales vary over a wide 
range from small to large, a normal error would be unreasonable because Y is positive 
and violations of this constraint could easily occur. We start with a look at the normal 
model: 

> data(cpd) 
> lmod <- lm(actual ~ projected-1,cpd) 
> summary(lmod) 
Coefficients: 
          Estimate Std. Error t value Pr(>|t|) 
projected   0.9940     0.0172    57.9   <2e-16 
> plot(actual ~ projected, cpd) 
> abline(lmod) 

Now consider the inverse Gaussian GLM where we must specify an identity link because 
we have yi=βxi: 

> igmod <- glm(actual ~ projected-1, 
  family=inverse.gaussian(link="identity"), cpd) 
> summary(igmod) 
Coefficients: 
          Estimate Std. Error t value Pr(>|t|) 
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projected   1.1036     0.0614    18.0  2.2e-13 
(Dispersion parameter for inverse.gaussian family taken 
to be 0.00017012) 
    Null deviance:       Inf on 20 degrees of freedom 
Residual deviance: 0.0030616 on 19 degrees of freedom 
> abline(igmod,lty=2) 

We see that there is a clear difference in the estimates of the slope. The fits are shown in 
the first panel of Figure 7.4. We should check the diagnostics on the inverse Gaussian 
GLM: 

> plot(residuals(igmod) ~ 
log(fitted(igmod)),ylab="Deviance residuals", 
  xlab=expression(log(hat(mu)))) 
> abline(h=0) 

We see in the second panel of Figure 7.4 that the variance of the residuals is decreasing 
with error indicating that the inverse Gaussian variance function is too strong for this 
data. We have used so that the points are more evenly spread horizontally making 
it easier, in this case, to see the variance relationship. A gamma GLM is a better choice 
here. In Whitmore (1986), a different variance function is used, but we do not pursue this 
here as this would not be a GLM.  

 

Figure 7.4 Projected and actual sales 
are shown for 20 products on the left. 
The linear model fit is shown as a solid 
line and the inverse Gaussian GLM fit 
is shown with a dotted line. A residual-
fitted plot for the inverse Gaussian 
GLM is shown on the right. 
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7.3 Joint Modeling of the Mean and Dispersion 

All models we have considered so far have modeled the mean response µ=EY where the 
variance takes a known form: var where the dispersion parameter is the 
variance in the Gaussian model, the squared coefficient of variation in the gamma model 
and one in the binomial and Poisson models. We can generalize a little to allowing 
weights by letting when the weights are known. 

In this section, we are interested in examples where varies with the covariates X. 
This is a particular issue that arises in industrial experiments. We wish to manufacture an 
item with a target mean or optimized response. We set the predictors to produce items as 
close as possible to the target mean or to optimize the mean. This requires a model for the 
mean. We would also prefer that the variance of the response be small at the chosen value 
of the predictors for production. So we need to model the variance as a function of the 
predictors. 

We take, as an example, an experiment to determine which recipe will most reliably 
produce the best cake. The data comes from Box, Bisgaard, and Fung (1988) and is 
shown in Table 7.1. The objective is to bake a cake reliably no matter how incompetent 
the cook. For this data, we can see, by examination, that a response of 6.8 is possible for 
lower flour and shortening content and higher egg content, if the temperature is on the 
high side and the cooking time on the short side. However, we cannot be sure that the 
consumer will be able to set the temperature and cooking time correctly. Perhaps their 
oven is not correctly calibrated or they are just incompetent. If they happen to bake the 
cake for longer than the set time, they will produce a cake with a 3.5 rating. They will 
blame the product and not themselves and not buy that mix again. If on the other hand we 
produce the mix with high flour and eggs and low shortening, the worst the customer can 
do is a 5.2 and will do better than that for other combinations of time and temperature. 

Here we need a combination of a high mean with respect to the design factors, flour, eggs 
and shortening, and a low variance with respect to the environmental factors, temperature 
and time. In this example, the answer is easily seen by inspection, but usually more 
formal model fitting methods will be needed. 

Joint Model Specification: We use the standard GLM approach for the mean: 

 
  

Now the dispersion, is no longer considered fixed. Suppose we find an estimate, di, of 
the dispersion and model it using a gamma GLM: 

 
  

Notice the connection between the two models. The model for the mean produce the 
response for the model for the dispersion, which in turn produces the weights for the 
mean model. In principle, something other than a gamma GLM could be used for the 
dispersion although since we wish to model a strictly positive, continuous and typically 
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skewed dispersion, the gamma is the obvious choice. The dispersion predictors, Z are 
usually a subset of the mean model predictors X. 

 
Design Vars Environmental Vars 

      T 0 − + − + 

F S E t 0 − − + + 

0 0 0   6.7 3 .4 5.4 4.1 3.8 

− − −   3.1 1.1 5.7 6.4 1.3 

+ − −   3.2 3.8 4.9 4.3 2.1 

− + −   5.3 3.7 5.1 6.7 2.9 

+ + −   4.1 4.5 6.4 5.8 5.2 

− − +   6.3 4.2 6.8 6.5 3.5 

+ − +   6.1 5.2 6.0 5.9 5.7 

− + +   3.0 3.1 6.3 6.4 3.0 

+ + +   4.5 3.9 5.5 5.0 5.4 

Table 7.1 F=Flour, S=Shortening, E=Eggs, 
T=Oven temperature and t=Baking time. “+” 
indicates a higher-than-normal setting while “−” 
indicates a lower-than-normal setting. “0” 
indicates the standard setting. 

For unreplicated experiments, and are two possible choices for di. If replications 
are available, then a more direct estimate of dispersion would be possible. For more 
details on the formulation, estimation and inference for these kinds of model see 
McCullagh and Nelder (1989), Box and Meyer (1986), Bergman and Hynen (1997) and 
Nelder, Lee, Bergman, Hynen, Huele, and Engel (1998). 

In the last three citations, data from a welding-strength experiment was analyzed. 
There were nine two-level factors and 16 unreplicated runs. Previous analyses have 
differed on which factors are significant for the mean. We found that two factors, Drying 
and Material, were apparently strongly significant, while the significance of others, 
including Preheating, was less clear. We fit a linear model for the mean using these three 
predictors: 

> data(weldstrength) 
> lmod <- lm(Strength ~ Drying + Material + Preheating, 
weldstrength) 
> summary(lmod) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   43.625      0.262  166.25  < 2e-16 
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Drying         2.150      0.262    8.19  2.9e-06 
Material      -3.100      0.262  -11.81  5.8e-08 
Preheating    -0.375      0.262   -1.43     0.18 
Residual standard error: 0.525 on 12 degrees of freedom 
Multiple R-Squared: 0.946,Adjusted R-squared: 0.932 
F-statistic: 69.6 on 3 and 12 DF, p-value:  7.39e-08 

Following a suggestion of Smyth, Huele, and Verbyla (2001), we use the squared 

studentized residuals, as the response in the dispersion with a gamma 
GLM using a log-link and weights of 1–hi. Again, we follow the suggestion of some 
previous authors as to which predictors are important for modeling the dispersion: 

> h <- influence(lmod)$hat 
> d <- residuals(lmod)^2/(1-h) 
> gmod <- glm(d ~ Method+Preheating, 
family=Gamma(link=log), 
  weldstrength,weights=1−h) 

Now feedback the estimated weights to the linear model: 

> w <- 1/fitted(gmod) 
> lmod <- lm(Strength ~ Drying + Material + Preheating, 
  weldstrength, weights=w) 

We now iterate until convergence, where we find that: 

> summary(lmod) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   43.825      0.108  406.83 < 2e-16 
Drying         1.869      0.045   41.53 2.5e-14 
Material      -3.234      0.108  -30.03 1.2e-12 
Preheating    -0.239      0.101   -2.35 0.036 
Residual standard error: 1 on 12 degrees of freedom 
Multiple R-Squared: 0.995,Adjusted R-squared: 0.994 
F-statistic: 877 on 3 and 12 DF, p-value: 2.56e-14 

We note that Preheating is now significant in contrast to the initial mean model fit. The 
output for the dispersion model is: 

> summary(gmod) 
Coefficients: 
           Estimate Std. Error t value  Pr(>|t|) 
(Intercept)  -3.064      0.356   -8.60 0.0000010 
Material     -3.037      0.413   -7.35 0.0000056  
Preheating     2.904      0.413   7.03  0.0000089 
(Dispersion parameter for Gamma family taken to be 
0.50039) 
    Null deviance: 57.919 on 15 degrees of freedom 
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Residual deviance: 20.943 on 13 degrees of freedom  

The standard errors are not correct in this output and further calculation, described in 
Smyth, Huele, and Verbyla (2001), would be necessary. This would result in somewhat 
larger standard errors (about twice the size), but the two factors would still be significant. 

7.4 Quasi-Likelihood 

Suppose that we are able to specify the link and variance functions of the model for some 
new type of data, but that we do not have a strong idea about the appropriate 
distributional form for the response. For example, suppose that we specify an identity 
link and constant variance. This would be typical in the standard regression setting. We 
can use least squares to estimate the regression parameters. If we want to do some 
inference, then formally we need to assume a Gaussian distribution for the errors (or 
equivalently, the response). We know that the inference is fairly robust to nonnormality 
especially as the sample size gets larger. The important part of the model specification is 
the link and variance; the outcome is less sensitive to the distribution of the response. 

The same effect holds for other GLMs. Provided we have a larger sample, the results 
are not sensitive to smaller deviations from the distributional assumptions. The link, 
variance and independence assumptions are far more important. Now suppose that we 
were to specify a link and variance function combination that does not correspond to any 
of the standard GLMs. An examination of the fitting procedure for GLMs reveals that 
only the link and variance functions are used and no distributional assumptions are 
necessary. This opens up new modeling possibilities because one might well be able to 
suggest reasonable link and variance functions but not know a suitable distribution. 

Computation of and standard errors is often not enough and some form of inference 
is required. To compute a deviance, we need a likelihood and to compute a likelihood we 
need a distribution. At this point, we need a suitable substitute for a likelihood that can be 
computed without assuming a distribution. 

Let Yi have mean µi and variance We assume that Yi are independent. We 
define a score, Ui: 

 
  

Now:  
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These properties are shared by the derivative of the log-likelihood, l′. This suggests that 
we can use U in place of l′. So we define: 

 
  

The intent is that Q should behave like the log-likelihood. We then define the log quasi-
likelihood for all n observations as: 

 

  

The usual asymptotic properties expected of maximum likelihood estimators also hold for 
quasi-likelihood-based estimators as may be seen in McCullagh (1983). 

Notice that the quasi-likelihood depends directly only on the variance function and 
that the choice of distribution also determines only the variance function. So the choice of 
variance function is associated with the random structure of the model while the link 
function determines the relationship with the systematic part of the model. 

For the variance functions associated with the members of the exponential family 
distribution, the quasi-likelihood corresponds exactly to the log-likelihood. However, 
there is an advantage to using the quasi-likelihood approach for models with variance 
functions corresponding to the binomial and Poisson distribution. The regular GLMs 
assume whereas the corresponding quasi-binomial and quasi-Poisson GLMs allow 
for the dispersion to be a free parameter which is useful in modeling overdispersion. 
One curious possibility is that some choices of V(µ) may not correspond to a known, or 
even any, distribution. 

is obtained by maximizing Q. Everything proceeds as in the standard GLMs except 
for the estimation of since the likelihood approach is not reliable here. We recommend: 

 

  

Although quasi-likelihood estimators are attractive because they require fewer 
assumptions, they are generally less efficient than the corresponding regular likelihood-
based estimator. So if you have information about the distribution, you are advised to use 
it. 

The inferential procedures are similar to those for standard GLMs. Recall that the 
regular deviance for a model is formed from the difference in log-likelihoods for the 
model and the saturated model: 

 
  

so by analogy the quasi-deviance is because the contribution from the saturated 
model is zero. The cancels, so the quasi-deviance is just:  
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In Allison and Cicchetti (1976), data on the sleep behavior of 62 mammals is presented. 
Suppose we are interested in modeling the proportion of sleep spent dreaming as a 
function of the other predictors: the weight of the body and the brain, the lifespan, the 
gestation period and the three constructed indices measuring vulnerability to predation, 
exposure while sleeping and overall danger: 

> data(mammalsleep) 
> mammalsleep$pdr <- with(mammalsleep, dream/sleep) 
> summary(mammalsleep$pdr) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  0.000   0.118   0.176   0.186   0.243   0.462  14.000 

We notice that the proportion of time spent dreaming varies from zero up to almost half 
the time. A normal model seems inappropriate while transformations are problematic. We 
attempt to model the proportion response directly. A logit link seems sensible since the 
response is restricted between zero and one. Furthermore, we might expect the variance 
to be greater for moderate values of the proportion µ and less as µ approaches zero or one 
because of the nature of the measurements. This suggests a variance function of the 
approximate form µ(1–µ). This corresponds to the binomial GLM with the canonical logit 
link and yet the response is not binomial. We propose a quasi-binomial: 

> modl <- glm(pdr ~ 
log(body)+log(brain)+log(lifespan)+log(gestation) 
          +predation+exposure+danger, 
family=quasibinomial, mammalsleep) 

where we have logged many of the predictors because of skewness. Since we now have a 
free dispersion parameter, we must use F-tests to compare models: 

> dropl(modl,test="F") 
Single term deletions 
               Df Deviance F value Pr (F) 
<none>                1.57 
log(body)       1     1.78    4.51 0.041 
log(brain)      1     1.59    0.33 0.568 
log(lifespan)  -1     1.65    1.79 0.189 
log(gestation)  1     1.62    1.15 0.292 
predation       1     1.57    0.10 0.749 
exposure        1     1.58    0.32 0.575 
danger          1     1.58    0.31 0.579 

We might eliminate predation as the least significant variable. Further sequential 
backward elimination results in: 

Other GLMs     163



> modl <- glm(pdr ~ log(body)+log(lifespan)+danger, 
          family=quasibinomial, mammalsleep ) 
> summary(modl) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)    -0.4932     0.2913   -1.69  0.09796 
log(body)       0.1463     0.0384    3.81  0.00046 
log(lifespan)  -0.2866     0.1080   -2.65  0.01126 
danger         -0.1732     0.0600   -2.89  0.00615  
(Dispersion parameter for quasibinomial family taken to 
be 0.040654) 
    Null deviance: 2.5088 on 44 degrees of freedom 
Residual deviance: 1.7321 on 41 degrees of freedom 
AIC: NA  

Notice that the dispersion parameter is far less than the default value of one that we 
would see for a binomial. Furthermore, the AIC is not calculated since we do not have a 
true likelihood. We see that the proportion of time spent dreaming increases for heavier 
mammals that live less time and live in less danger. Notice that the relatively large 
residual deviance compared to the null deviance indicates that this is not a particularly 
well-fitting model. 

The usual diagnostics should be performed. Here are two selected plots that have some 
interest: 

> ll <- row.names(na.omit(mammalsleept,c(1,6,10,11)])) 
> halfnorm(cooks.distance(modi),labs=ll) 
> plot(predict (modl),residuals(modl,type="pearsonn), 
  xlab="Linear Predictor", ylab="Pearson Residuals") 

 

Figure 7.5 A half-normal plot of the 
Cook statistics is shown on the left and 
a plot of the Pearson residuals against 
the fitted linear predictors is shown on 
the right. 
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In the first panel of Figure 7.5, we see that the Asian elephant is quite influential and a fit 
without this case should be considered. In the second panel, we see that a pattern of 
constant variation indicating that our choice of variance function was reasonable. We 
used the Pearson residuals because these explicitly normalize the raw residuals using the 
variance function making the check more transparent. Even so, the deviance residuals 
would have served the same purpose.  

Exercises 

1. The relationship between corn yield (bushels per acre) and nitrogen (pounds per acre) 
fertilizer application were studied in Wisconsin. The data may be found in cornnit. 

(a) Using (Gaussian) linear model methods, represent the relationship between the 
yield response and the nitrogen predictor. You will need to find appropriate 
transformations for the data. Present a quantitative interpretation for the effect of 
nitrogen fertilizer on yield. 

(b) Now develop a GLM for the data that does not (explicitly) transform the response. 
Describe quantitatively the relationship between the response and the predictor and 
compare it to the linear model you found in the previous question. 

2. An experiment was conducted as part of an investigation to combat the effects of 
certain toxic agents. The survival time of rats depended on the type of poison used and 
the treatment applied. The data is found in rats. 

(a) Construct a linear model for the data bearing in mind that some transformation of 
the response may be necessary and that the possibility of interactions needs to be 
considered. Interpret the effects of the poisons. 

(b) Build an inverse Gaussian GLM for this data. Select an appropriate link function 
and perform diagnostics to verify your choices. Interpret the effects of the poisons. 

3. Components are attached to an electronic circuit card assembly by a wave-soldering 
process. The soldering process involves baking and preheating the circuit card and 
then passing it through a solder wave by conveyor. Defects arise during the process. 
Design is 27−3 with 3 replicates. The data is found in wavesolder. Build a pair of 
models for the mean and dispersion in the number of defects. Investigate which factors 
are significant in the two models. 

4. Data were collected from 39 students in a University of Chicago MBA class and 
presented in happy. Happiness was measured on a 10 point scale. The response could 
be viewed as ordinal, but a quasi-likelihood approach is also possible. Build a quasi-
GLM selecting appropriate link and variance functions. Interpret the effect of the 
predictors. 

5. The leafblotch data shows the percentage leaf area affected by leaf blotch on 10 
varieties of barley at nine different sites. The data comes from Wedderburn (1974). 
The data is analyzed in McCullagh and Nelder (1989), which motivates the following 
questions: 

(a) Fit a quasi-GLM with a logit link and a µ(1– µ) variance function. Construct a 
diagnostic plot that shows that this is not a good choice of variance function. 
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(b) A better variance function is µ2(1– µ)2 and yet this is not one of the available 
choices in R. However, the effect may be obtained by the appropriate use of 
weighting. Define weights as a function of µ that, when used in conjunction with a 
variance function of µ(1– µ), achieve the effect of a µ2(1–µ)2 variance function. 
Note that some iteration will be required in the fitting.  

(c) Reprogram R to allow for a µ2(1–µ)2 function. (This is more challenging.) 

6. One hundred twenty-five fruitflies were divided randomly into five groups of 25 each. 
The response was the longevity of the fruitfly in days. One group was kept solitary, 
while another was kept individually with a virgin female each day. Another group was 
given eight virgin females per day. As an additional control the fourth and fifth groups 
were kept with one or eight pregnant females per day. Pregnant fruitflies will not 
mate. The thorax length of each male was measured as this was known to affect 
longevity. The data is presented in fruitfly. 

Show how a gamma GLM may be used to model the lifetimes as a function of the 
predictors. Interpret your chosen model. 

7. The truck data concerns an experiment to optimize the production of leaf springs for 
trucks. A heat treatment is designed so that the free height of the spring should come 
as close to eight inches as possible. We can vary five factors at two levels each. A 25−1 
fractional factorial experiment with three replicates was carried out. The data comes 
from Pignatiello and Ramberg (1985). McCullagh and Nelder (1989) recommended a 
Gaussian linear model for the mean response and gamma model for the variance. Fit 
these models using R and use them to select the best combination of factors given the 
purpose of the experiment. 
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CHAPTER 8  
Random Effects 

Grouped data arise in almost all areas of statistical application. Sometimes the grouping 
structure is simple, where each case belongs to single group and there is only one 
grouping factor. More complex datasets have a hierarchical or nested structure or include 
longitudinal or spatial elements. All such data share the common feature of correlation of 
observations within the same group and so analyses that assume independence of the 
observations will be inappropriate. The use of random effects is one common and 
convenient way to model such grouping structure. 

A fixed effect is an unknown constant that we try to estimate from the data. Fixed 
effect parameters are commonly used in linear and generalized linear models as we have 
presented them earlier in this book. In contrast, a random effect is a random variable. It 
does not make sense to estimate a random effect; instead, we try to estimate the 
parameters that describe the distribution of this random effect. 

Consider an experiment to investigate the effect of several drug treatments on a 
sample of patients. Typically, we are interested in specific drug treatments and so we 
would treat the drug effects as fixed. However, it makes most sense to treat the patient 
effects as random. It is often reasonable to treat the patients as being randomly selected 
from a larger collection of patients whose characteristics we would like estimate. 
Furthermore, we are not particularly interested in these specific patients, but in the whole 
population of patients. A random effects approach to modeling effects is more ambitious 
in the sense that it attempts to say something about the wider population beyond the 
particular sample. Blocking factors can often be viewed as random effects, because these 
often arise as a random sample of those blocks potentially available. 

There is some judgment required in deciding when to use fixed and when to use 
random effects. Sometimes the choice is clear, but in other cases, reasonable statisticians 
may differ. In some analyses, random effects are used simply to induce a certain 
correlation structure in the data and there is sense in which the chosen levels represent a 
sample from a population. Gelman (2005) remarks on the variety of definitions for 
random effects and proposes a particular straightforward solution to the dilemma of 
whether to use fixed or random effects—he recommends always using random effects. 

A mixed effects model has both fixed and random effects. A simple example of such a 
model would be a two-way analysis of variance (ANOVA): 

yijk=µ+τi+νj+εijk   

where the µ and τi are fixed effects and the error, εijk and the random effects νj are 

independent and identically distributed N(0,σ2) and respectively.  
We would want to estimate the τi and test the hypothesis while we 

would estimate and test Notice the difference: we need to estimate and 



test several fixed effect parameters while we need only estimate and test a single random 
effect parameter. 

In the following sections, we consider estimation and inference for mixed-effect 
models and then illustrate the application to several common designs. 

8.1 Estimation 

This is not as simple as it was for fixed effects models, where least squares is an easily 
applied method with many good properties. Let’s start with the simplest possible random 
effects model: a one-way ANOVA design with a factor at a levels: 

   

where the αs and εs have mean zero, but variances and respectively. These 
variances are known as the variance components. Notice that this induces a correlation 
between observations at the same level equal to: 

 

  

This is known as the intraclass correlation coefficient (ICC). In the limiting case when 
there is no variation between the levels, σα=0 so then ρ=0. Alternatively, when the 
variation between the levels is much larger than that within the levels, the value of ρ will 
approach 1. This illustrates how random effects generate correlations between 
observations. 

For simplicity, let there be an equal number of observations n per level. We can 
decompose the variation as follows: 

 

  

or SST=SSE+SSA. SSE is the residual sum of squares, SST is the total sum of squares 
(corrected for the mean) and SSA is the sum of squares due to a. These quantities are 
often displayed in an ANOVA table along with the degrees of freedom associated with 
each sum of squares. Dividing through by the respective degrees of freedom, we obtain 
the mean squares, MSE and MSA. Now we find that: 

   

which suggests using the estimators: 

 
  

This method of estimating variance components can be used for more complex designs. 
The ANOVA table is constructed, the expected mean squares calculated and the variance 
components obtained by solving the resulting equations. These estimators are known as 
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ANOVA estimators. These were the first estimators developed for variance components. 
They have the advantage of taking explicit forms suitable for hand calculation which was 
important in precomputing days, but they have a number of disadvantages: 

1. The estimates can take negative values. For example, in our situation above, if 
MSA<MSE then This is rather embarrassing since variances cannot be 
negative. Various fixes have been proposed, but these all take away from the original 
simplicity of the estimation method. 

2. A balanced design has an equal number of observations per cell, where cell is defined 
as the finest subdivision of the data according to the factors. In such circumstances, 
the ANOVA decomposition into sums of squares is unique. For unbalanced data, this 
is not true and we must choose which ANOVA decomposition to use which will in 
turn affect the estimation of the variance components. Various rules have been 
suggested about how the decomposition should be done, but none of these have 
universal appeal. 

3. The need for complicated algebraic calculations. Formulae for the simpler models are 
easy to find and coded in software. More complex models will require difficult and 
opaque constructions. 

We would like a method that would avoid negative variances, work unambiguously for 
unbalanced data and that can be applied in a transparent and straightforward manner. 
Maximum likelihood (ML) estimation satisfies these requirements. This does require that 
we assume some distribution for the errors and the random effects. The usual assumption 
is normality; ML would work for other distributions, but these are almost never 
considered. 

For a fixed effect model with normal errors, we can write: 
y=Xβ+ε or y~N(Xβ,σ2I)   

where X is an n×p model matrix and β is a vector of length p. We can generalize to a 
mixed effect model with a vector γ of q random effects with associated model matrix Z 
which has dimension n×q. Then we can model the response y, given the value of the 
random effects as: 

y=Xβ+Zγ+ε or y|γ~N(Xβ+Zγ,σ2I)   

If we further assume that the random effects γ~N(0,σ2D) then var y=var Zγ+ var 
ε=σ2ZDZT+σ2I and we can write the unconditional distribution of y as: 

y~N(Xβ,σ2(I+ZDZT))   

If we knew Di then we could estimate β using generalized least squares; see, for example, 
Chapter 6 in Faraway (2004). However, the estimation of the variance components, D, is 
often one purpose of the analysis. Standard maximum likelihood is one method of 
estimation that can be used here. If we let V=I+ZDZT, then the joint density for the 
response is:  
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so that the log-likelihood for the data is: 

 
  

This can be optimized to find maximum likelihood estimates of β, σ2 and D. This is 
straightforward in principle, but there may be difficulties in practice. More complex 
models involving larger numbers of random effects parameters can be difficult to 
estimate. One particular problem is that the variance cannot be negative so the MLE for 
the variance might be zero. This causes difficulties in the optimization when the 
unrestricted MLE has a maximum that is negative. This forces us to set that variance 
estimate to be zero where the derivative of the likelihood will not be zero. This 
complicates the numerical calculation. 

Standard errors can obtained using the usual large sample theory for maximum 
likelihood estimates. The variance can be estimated using the inverse of the negative 
second derivative of the log-likelihood evaluated at the MLE. 

MLEs have some drawbacks. One particular problem is that they are biased. For 
example, consider an i.i.d. sample of normal data x1,…, xn then the MLE is: 

 
  

A denominator of n–1 is needed for an unbiased estimator. Similar problems occur with 
the estimation of variance components. Given that the number of levels of a factor may 
not be large, the bias of the MLE of the variance component associated with that factor 
may be quite large. Restricted maximum likelihood (REML) estimators are an attempt to 
get round this problem. The idea is to take a linear combination of the response, k, such 
that kTX=0. We then have: 

kTy~N(0,KTVK)   

We can then proceed to maximize the likelihood based on kTy which does not involve any 
of the fixed effect parameters. Once the random effect parameters have been estimated, it 
is simple enough to obtain the fixed effect parameter estimates. REML generally 
produces less biased estimates. For balanced data, the REML estimates are usually the 
same as the ANOVA estimates. 

We illustrate the fitting methods using some data from an experiment to test the paper 
brightness depending on a shift operator described in Sheldon (1960). We start with a 
fixed effects one-way ANOVA: 

> data(pulp) 
> op <- options (contrasts=c("contr.sum", 
"contr.poly")) 
> lmod <- aov(bright ~ operator, pulp) 
> summary(lmod) 
            Df Sum Sq Mean Sq F value Pr(>F) 
operator     3  1.340   0.447     4.2  0.023 
Residuals   16  1.700   0.106 
> coef(lmod) 
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(Intercept)   operatorl   operator2   operators 
      60.40       -0.16       -0.34        0.22 
> options(op) 

We have specified sum contrasts here instead of the default treatment contrasts to make 
the later connection to the corresponding random effects clearer. The aov function is just 
a wrapper for the standard 1m function that produces results more appropriate for 
ANOVA models. We see that the operator effect is significant with a p-value of 0.023. 
The estimate of σ2 is 0.106 and the estimated overall mean is 60.4. For sum contrasts, 
Σαi=0, so we can calculate the effect for the fourth operator as 0.16+0.34–0.22=0.28. 

Turning to the random effects model, we can compute the variance of the operator 
effects, using the formula above as: 

> (0.447-0.106)/5 
[1] 0.0682 

Now we demonstrate the maximum likelihood estimators. The original R package for 
fitting mixed effects models was nlme as described in Pinheiro and Bates (2000). More 
recently, Bates (2005) introduced an improved version with the package lme4 which we 
shall use here: 

> library(Ime4) 
> mmod <- lmer(bright ~ 1+(1|operator), pulp) 
> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: bright ~  1 + (1 | operator) 
   Data: pulp 
    AIC    BIG  logLik deviance REMLdeviance 
24.626 27.613 -9.3131   16.637       18.626 
Random effects: 
  Groups  Name        Variance Std.Dev. 
  operator(Intercept)   0.0681    0.261 
  Residual              0.1062    0.326 
# of obs: 20, groups:   operator,  4 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)   60.400      0.149 19     404   <2e−16 

The model has fixed and random effects components. The fixed effect here is just the 
intercept represented by the first 1 in the model formula. The random effect is 
represented by (1|operator) indicating that the data is grouped by operator and the 1 
indicating that the random effect is constant within each group. The parentheses are 
necessary to ensure that expression is parsed in the correct order. 

The default fitting method is REML. We see that this gives identical estimates to the 

ANOVA method For unbalanced 
designs, the REML and ANOVA estimators are not necessarily identical. The standard 
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deviations are simply the square roots of the variances and not estimates of the 
uncertainty in the variances. 

The maximum likelihood estimates may also be computed: 

> smod <- lmer(bright ~ 1+(1|operator), pulp, 
method="ML") 
> summary(smod) 
Linear mixed-effects model fit by maximum likelihood  
Formula: bright ~ 1 + (1 | operator) 
   Data: pulp 
    AIC    BIG  logLik deviance REMLdeviance 
22.512 25.499 -8.2558   16.512       18.738 
Random effects: 
Groups   Name         Variance Std.Dev. 
operator (Intercept)   0.0482   0.219 
Residual               0.1118   0.334 
# of obs: 20, groups:  operator, 4 
Fixed effects: 
            Estimate Std.  Error DF t value Pr(>|t|) 
(Intercept)   60.400       0.129 19     467   <2e−16 

As can be seen, the between-subjects variance, 0.0482, is smaller than with the REML 
method. Because the total variance is partitioned, this means the withinsubjects variance, 
0.1118, is larger than before. 

8.2 Inference 

Using standard likelihood theory, we may derive a test to compare two nested 
hypotheses, H0 and H1, by computing the likelihood ratio test statistic: 

   

where are the MLEs of the parameters under the null hypothesis and 

are the MLEs of the parameters under the alternative hypothesis. 
The null distribution of this test statistic is approximately chi-squared with degrees of 

freedom equal to difference in the dimensions of the two parameters spaces (the 
difference in the number of parameters when the models are identifiable). 

Unfortunately, this test is only approximate and requires several assumptions—see a 
text such as Cox and Hinkley (1974) for more details. One crucial assumption is that the 
parameters under the null are not on the boundary of the parameter space. Since we are 
often interested in testing hypotheses about the random effects that take the form 

this a real concern. Furthermore, even if the conditions are met, the χ2 
approximation is sometimes poor. 

Testing the fixed effects: If you plan to use the likelihood ratio test to compare two 
nested models that differ only in their fixed effects, you cannot use the REML estimation 
method. The reason is that REML estimates the random effects by considering linear 
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combinations of the data that remove the fixed effects. If these fixed effects are changed, 
the likelihoods of the two models will not be directly comparable. Use ordinary 
maximum likelihood in this situation if you also wish to use the likelihood ratio test. 

The p-values generated by the likelihood ratio test for fixed effects are approximate 
and unfortunately tend to be too small, thereby sometimes overstating the importance of 
some effects. We may use bootstrap methods to find more accurate p-values for the 
likelihood ratio test. The usual bootstrap approach is nonparametric in that no distribution 
is assumed. Since we are willing to assume normality for the er-rors and the random 
effects, we can use a technique called the parametric bootstrap. We generate data under 
the null model using the fitted parameter estimates. We compute the likelihood ratio 
statistic for this generated data. We repeat this many times and use this to judge the 
significance of the observed test statistic. This approach will be demonstrated below. 

An alternative approach is to condition on the estimated values of the random effect 
parameters and then use standard F- or t-tests. This assumes that the covariance of the 
random part of the model, D, is equal to its estimated value and proceeds as one would 
for generalized least squares. 

Testing the random effects: In most cases, a test of random effects will involve a 
hypothesis of the form H0:σ2 = 0. The standard derivation of the asymptotic χ2 
distribution for the likelihood ratio statistic depends on the null hypothesis lying in the 
interior of the parameter space. This assumption is broken when we test if a variance is 
zero. The null distribution in these circumstances is unknown in general and we must 
resort to numerical methods if we wish for precise testing. If you do use the χ2 
distribution with the usual degrees of freedom, then the test will tend to be 
conservative—the p-values will tend to be larger than they should be. This means that if 
you observe a significant effect using the χ2 approximation, you can be fairly confident 
that it is actually significant. Small, but not significant, p-values might spur one to use 
more accurate, but time-consuming, bootstrap methods. 

Expected mean squares: Another method of hypothesis testing is based on the sums 
of squares found in the ANOVA decompositions. These tests are sometimes more 
powerful than their likelihood ratio test equivalents. However, the correct derivation of 
these tests usually requires extensive tedious algebra that must be recalculated for each 
type of model. Furthermore, the tests cannot be used (at least without complex and 
unsatisfactory adjustments) when the experiment is unbalanced. 

Now let’s demonstrate these methods on the pulp data. The fixed effect analysis shows 
that the operator effects are statistically significant with a p-value of 0.023. A random 
effects analysis using the expected mean squares approach yields exactly the same F-
statistic for the one-way ANOVA. 

We can also employ the likelihood ratio approach. Because we are testing the random 
effects, we can use either ML or REML. For fixed effects, we must use ML. In this 
example, the only fixed effect is the mean and there is no interest in testing that. We first 
fit the null model: 

> nullmod <- lm (bright ~ 1, pulp) 
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As there are no random effects in this model, we must use 1m. For models of the same 
class, we could use anova to compute the LRT and its p-value. Here, we need to compute 
this directly: 

> as.numeric(2*(logLik(smod)-logLik(nullmod))) 
[1] 2.5684 
> pchisq(2.5684,1,lower=FALSE) 
[1] 0.10902 

The p-value is now well above the 5% significance level. We have used the MLE here—
using REML produces a slightly different result, but still above 5%. We cannot say that 
this result is necessarily wrong, but the use of the χ2 approximation does cause us to 
doubt the result. 

We can use the parametric bootstrap approach to obtain a more accurate p-value. We 
need to estimate the probability, given that the null hypothesis is true, of observing an 
LRT of 2.5684 or greater. Under the null hypothesis, y~N(µ,σ2). A simulation approach 
would generate data under this model, fit the null and alternative models and then 
compute the LRT. The process would be repeated a large number of times and the 
proportion of LRTs exceeding the observed value of 2.5684 would be used to estimate 
the p-value. In practice, we do not know the true values of µ and a, but we can use the 
estimated values; this distinguishes the parametric bootstrap from the simulation 
approach. We can simulate responses under the null: under the null: 

> y <- simulate(nullmod) 

Now taking the data we generate, we fit both the null and alternative models and then 
compute the LRT. We repeat the process 1000 times: 

> lrstat <- numeric(1000) 
> for(i in 1:1000){ 
  y <- unlist(simulate(nullmod)) 
  bnull <- 1m(y ~ 1) 
  balt <- lmer(y 1 + (1|operator),pulp,method="ML") 
  lrstat[i] <- as.numeric(2*(logLik(bait)-
logLik(bnull))) 
  } 

We may examine the distribution of the bootstrapped LRTs. We compute the proportion 
that are close to zero: 

> mean(lrstat < 0.00001) 
[1] 0.7 

The LRT clearly does not have a χ2 distribution. There is some discussion of this matter 
in Stram and Lee (1994), who propose a 50:50 mixture of a χ2 and a mass at zero. 
Unfortunately, as we can see, the relative proportions of these two components vary from 
case to case. Crainiceanu and Ruppert (2004) give a more complete solution to the one-
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way ANOVA problem, but there is no general and exact result for this and more complex 
problems. The parametric bootstrap may be the simplest approach. The method we have 
used above is transparent and could be computed much more efficiently if speed is an 
issue. 

Our estimate p-value is: 

> mean(lrstat > 2.5684) 
[1] 0.02 

We should compute the standard error for this estimate by: 

> sqrt(0.02*0.98/1000) 
[1] 0.0044272 

So we can be fairly sure it is under 5%. If in doubt, do some more replications to make 
sure; this only costs computer time. As it happens, this p-value is close to the fixed 
effects p-value. 

In this example, the random and fixed effect tests gave similar outcomes. However, 
the hypotheses in random and fixed effects are intrinsically different. To generalize 
somewhat, it is easier to conclude there is an effect in a fixed effects model since the 
conclusion applies only to the levels of the factor used in the experiment, while for 
random effects, the conclusion extends to levels of the factor not considered. Since the 
range of the random effect conclusions is greater, the evidence necessarily has to be 
stronger. 

8.3 Predicting Random Effects 

In a fixed effects model, the effects are represented by parameters and it makes sense to 
estimate them. For example, in the one-way ANOVA model: 

yij=µ+αi+εij   

We can calculate We do need to resolve the identifiability problem with the αs and the 
µ, but once we decide on this, the meaning of the is clear enough. We can then 
proceed to make further inference such as multiple comparisons of these levels. 

In a model with random effects, the as are no longer parameters, but random variables. 
Using the standard normal assumption: 

   

It does not makes sense to estimate the α’s because they are random variables. So instead, 
we might think about the expected values. However: 

   

which is clearly not very interesting. If one looks at this from a Bayesian point of view, 
as described in, for example, Gelman, Carlin, Stern, and Rubin (2003), we have a prior 
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density on the as and Eαi=0 is just the prior mean. Let f represent density, then the 
posterior density for α is given by: 

   

We can then find the posterior mean, denoted by as: 
E(αi|y)= ∫ aif(αi|y)dαi   

For the general case, this works out to be: 

   

Now a purely Bayesian approach would specify the parameters of the prior and we could 
simply compute this. We take an empirical Bayes point of view and substitute the MLEs 
into D, V and β to obtain the predicted random effects. These may be computed as: 

> ranef(mmod)$operator 
  (Intercept) 
a    -0.12194 
b    -0.25912 
c     0.16767 
d     0.21340 

The predicted random effects are related to the fixed effects. We can show these for all 
operators as: 

> (cc <- model.tables(lmod)) 
Tables of effects 
operator 
operator 
    a     b    c    d 
-0.16 -0.34 0.22 0.28 

and then compute the ratio to the random effects as: 

> cc[[1]]$operator/ranef(mmod)$operator 
  X. Intercept. 
a        1.3121 
b        1.3121 
c        1.3121 
d        1.3121 

We see that the predicted random effects are exactly in proportion to the fixed effects. 
Typically, the predicted random effects are smaller and could be viewed as a type of 
shrinkage estimate. 

Suppose we wish to predict a new value. If the prediction is to be made for a new 
operator or unknown operator, the best we can do is give If we know the 
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operator, then we can combine this with our fixed effects to produce what are known as 
the best linear unbiased predictors (BLUPs) as follows: 

> fixef(mmod)+ranef(mmod)$operator 
  X. Intercept. 
a        60.278 
b        60.141 
c        60.568 
d        60.613 

This means that we have more than one type of residual depending on what fitted values 
we use. The default predicted values and residuals are from the outermost level of 
grouping. The usual diagnostic plots are still worthwhile: 

> qqnorm(resid(mmod),main="") 
> 
plot(fitted(mmod),resid(mmod),xlab="Fitted",ylab="Resid
uals") 
> abline(0,0) 

The plots are shown in Figure 8.1 and indicate no particular problems. Random effects 
models are particular sensitive to outliers, depending as they do on variance components, 
which can be substantially inflated by unusual points. The QQ plot is one way to pick out 
outliers. We also need the normality for the testing. The residual-fitted plot is also 
important because we made the assumption that the error variance was constant. 

If we had more than four groups, we could also look at the normality of the group 
level effects and check for constant variance also. With so few groups, it is not possible 
to do this. Also note that there is no point thinking about multiple comparisons. These are 
for comparing selected levels of a factor. For a random effect, the levels were randomly 
selected, so such comparisons have little value.  

 

Figure 8.1 Diagnostic plots for the 
one-way random effects model. 

Random effects     179



8.4 Blocks as Random Effects 

Blocks are properties of the experimental units. The blocks are either clearly defined by 
the conditions of the experiment or they are formed with the judgment of the 
experimenter. Sometimes, blocks represent groups of runs completed in the same period 
of time. Typically, we are not interested in the block effects specifically, but must 
account for their effect. It is therefore natural to treat blocks as random effects. 

We illustrate with an experiment to compare four processes, A, B, C and D, for the 
production of penicillin. These are the treatments. The raw material, corn steep liquor, is 
quite variable and can only be made in blends sufficient for four runs. Thus a randomized 
complete block design is suggested by the nature of the experimental units. The data 
comes from Box, Hunter, and Hunter (1978). We start with the fixed effects analysis: 

> data(penicillin) 
> summary(penicillin) 
treat    blend      yield 
A:5    Blend1:4   Min. :77 
B:5    Blend2:4 1st Qu.:81 
C:5    Blend3:4 Median :87 
D:5    Blend4:4 Mean   :86 
       Blend5:4 3rd Qu.:89 
                Max.   :97 
> op <- options(contrasts=c("contr.sum", "contr.poly") 
> lmod <- aov(yield ~ blend + treat, penicillin) 
> summary(lmod) 
            Df Sum Sq Mean Sq F value Pr(>F) 
blend        4  264.0    66.0    3.50  0.041 
treat        3   70.0    23.3    1.24  0.339  
Residuals   12  226.0     18.8 
> coef(lmod) 
(Intercept)      blend1       blend2    blend3    blend
4 
         86           6           -3        -
1         2 
     treat1      treat2       treat3 
         -2          -1            3  

From this we see that there is no significant difference between the treatments, but there 
is between the blends. Now let’s fit the data with a mixed model, where we have fixed 
treatment effects, but random blend effects. This seems natural since the blends we use 
can be viewed as having been selected from some notional population of blends. 

> mmod <- lmer (yield ~ treat + (1|blend), penicillin) 
> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: yield ~ treat + (1 | blend) 
   Data: penicillin 
    AIC    BIG  logLik deviance REMLdeviance 
118.60 124.58 -53.301   117.28       106.60 
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Random effects: 
Groups    Name        Variance Std.Dev. 
blend     (Intercept) 11.8     3.43 
Residual              18.8     4.34 
# of obs: 20, groups: blend, 5 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)    86.00       1.82 16   47.34   <2e−16 
treat1         -2.00       1.68 16   -1.19    0.251 
treat2         -1.00       1.68 16   -0.59    0.560 
treat3          3.00       1.68 16    1.78    0.093 
> options(op) 

We notice a few connections. The residual variance is the same in both cases: 18.8. This 
is because we have a balanced design and so REML is equivalent to the ANOVA 
estimator. The treatment effects are also the same as is the overall mean. The BLUPs for 
the random effects are: 

> ranef(mmod)$blend 
       (Intercept) 
Blendl     4.28788 
Blend2    -2.14394 
Blend3    -0.71465 
Blend4     1.42929 
Blend5    -2.85859 

which, as with the one-way ANOVA, are a shrunken version of the corresponding fixed 
effects. The usual diagnostics show nothing amiss. 

We can test the significance of the fixed effects in two ways. We can use the ANOVA 
method, where we assume that the random effect parameters take their estimated values:  

> anova(mmod) 
Analysis of Variance Table 
      Df Sum Sq Mean Sq Denom F value Pr(>F) 
treat  3   70.0 23.3     16.0    1.24   0.33 

The result is identical with the fixed effects analysis above. 
We can also test for a treatment effect using the maximum-likelihood ratio method: 

> amod <- lmer (yield ~ treat + (1|blend), penicillin, 
method="ML") 
> nmod <- lmer (yield ~ 1 + (1|blend), penicillin, 
method="ML") 
> anova(amod,nmod) 
Data: penicillin 
Models: 
nmod: yield 1 + (1 | blend) 
amod: yield ~ treat + (1 | blend) 
      Df   AIC   BIG logLik Chisq Chi Df Pr(>Chisq) 
nmod   3 127.3 130.3  -60.7 
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amod   6 129.3 135.3  -58.6  4.05      3       0.26 

Notice that we needed to use the ML method because comparison of models with 
different fixed effects is not valid when REML is used. This is because in the REML 
method, the likelihood of linear combination not involving the fixed effects parameters is 
maximized. When comparing models with different fixed effects, the linear combinations 
will be different and the obtained maximum likelihoods will not be comparable. The 
qualitative outcome of the test is the same as before, but the test itself is numerically 
different. 

We can improve the accuracy with the parametric bootstrap approach. We can 
generate a response from the null model and use this to compute the LRT. We repeat this 
1000 times, saving the LRT each time: 

> lrstat <- numeric(1000) 
> for(i in 1:1000){ 
  ryield <- unlist(simulate(nmod)) 
  nmodr <- lmer(ryield 1 + (1|blend), penicillin, 
method="ML") 
  amodr <- lmer(ryield ~ treat + (1|blend), penicillin, 
method="ML") 
  lrstat[i] <- 2*(logLik(amodr)-logLik(nmodr)) 
  } 

Under the standard likelihood theory, the LRT here should have a distribution. We can 
do a QQ plot to check this: 

> 
plot(qchisq((1:1000)/1001,3),sort(lrstat),xlab=expressi
on(chi[3]^2) 
  ylab="Simulated LRT") 
> abline(0,l) 

As can be seen in the first panel of Figure 8.2, the approximation is not particularly good. 
We can compute our estimated p-value as: 

> mean(Irstat > 4.05) 
[1] 0.336 

which is much closer to the F-test result than the based approximation. 
We can also test the significance of the blends. As with a fixed effects analysis, we are 

typically not directly interested in size of the blocking effects. Once having  
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Figure 8.2 Bootstrapped 
LRTapproximations to the χ2 
distribution. QQ plots of the test 
statistics for the fixed effects are shown 
on the left and for the random effects 
on the right. 

decided to design the experiment with blocks, we must retain them in the model. 
However, we may wish to examine the blocking effects for information useful for the 
design of future experiments. We can fit the model with and without random effects and 
compute the LRT: 

> rmod <- lmer (yield ~ treat + (1|blend), penicillin) 
> nlmod <- lm(yield ~ treat, penicillin) 
> 2* (logLik(rmod)-logLik(nlmod,REML=TRUE)) 
[1]  2.7629 

We need to specify the nondefault REML option for null model to ensure that the LRT is 
computed correctly. Now we perform the parametric bootstrap much as before: 

> lrstatf <- numeric(1000) 
> for(i in 1:1000){ 
  ryield <- unlist(simulate(nlmod)) 
  nlmodr <- lm(ryield ~ treat, penicillin) 
  rmodr <- lmer(ryield ~ treat + (1|blend), penicillin) 
  lrstatf [i] <- 2*(logLik(rmodr)−logLik(nlmodr, 
REML=TRUE)) 
  } 

Again, the distribution is far from which is clear when we examine the proportion of 
generated LRTs which are close to zero: 
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> mean(lrstatf < 0.00001) 
[1] 0.551 

Notice that this proportion is different from that observed for the one-way ANOVA 
illustrating the difficulty in finding a good approximation for the null distribution in such 
cases. We can also check the distribution of the nonzero LRTs:  

> cs <- Irstatf[lrstatf > 0.00001] 
> ncs <- length(cs) 
> 
plot(qchisq((1:ncs)/(ncs+1),1),sort(cs),xlab=expression
(chi[1]^2), 
  ylab="Simulated LRT") 
> abline (0,l) 

We see in the right panel of Figure 8.2 that the distribution is close to except for the 
tail. We can compute the estimated p-value as: 

> mean(lrstatf > 2.7629) 
[1] 0.043 

So we find a significant blend effect. The p-value is close to that observed for the fixed 
effects analysis. Given that the p-value is close to 5%, we might wish to increase the 
number of bootstrap samples to increase our confidence in the result. 

In this example, we saw no major advantage in modeling the blocks as random effects, 
so we might prefer to use the fixed effects analysis as it is simpler to execute. However, 
in subsequent analyses, we shall see that the use of random effects will be mandatory as 
equivalent results may not obtained from a purely fixed effects analysis. 

8.5 Split Plots 

Split plot designs originated in agriculture, but occur frequently in other settings. As the 
name implies, main plots are split into several subplots. The main plot is treated with a 
level of one factor while the levels of some other factor are allowed to vary with the 
subplots. The design arises as a result of restrictions on a full randomization. For 
example, a field may be divided into four subplots. It may be possible to plant different 
varieties in the subplots, but only one type of irrigation may be used for the whole field. 
Note the distinction between split plots and blocks. Blocks are features of the 
experimental units which we have the option to take advantage of in the experimental 
design. Split plots impose restrictions on what assignments of factors are possible. They 
impose requirements on the design that prevent a complete randomization. Split plots 
often arise in nonagricultural settings when one factor is easy to change while another 
factor takes much more time to change. If the experimenter must do all runs for each 
level of the hard-to-change factor consecutively, a split-plot design results with the hard-
to-change factor representing the whole plot factor. 
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Consider the following example. In an agricultural field trial, the objective was to 
determine the effects of two crop varieties and four different irrigation methods. Eight 
fields were available, but only one type of irrigation may be applied to each field. The 
fields may be divided into two parts with a different variety planted in each half. The 
whole plot factor is the method of irrigation, which should be randomly assigned to the 
fields. Within each field, the variety is randomly assigned. Here is a summary of the data: 

> data(irrigation) 
> summary(irrigation) 
     field   irrigation   variety      yield 
f1:2   i1:4         v1:8     Min.   :34.8 
f2:2   i2:4         v2:8     1st Qu.:37.6  
f3:2    13:4    Median :40.1 
f4:2    14:4    Mean   :40.2 
f5:2            3rd Qu.:42.7 
f6:2            Max.   :47.6 
(Other):4  

The irrigation and variety are fixed effects, but the field is clearly a random effect. We 
must also consider the interaction between field and variety, which is necessarily also a 
random effect because one of the two components is random. The fullest model that we 
might consider is: 

yijk=µ+ii+νj+(iv)ij+fk+(vf)jk+εijk   

µ, ii, vj, (iv)ij are fixed effects, the rest are random having variances and Note 
that we have no (if)ik term in this model. It would not be possible to estimate such an 
effect since only one type of irrigation is used on a given field; the factors are not 
crossed. 

We may fit this model as follows: 

> lmod <- lmer (yield ~ irrigation * variety + 
(1|field) + (1|field:variety), 
  data=irrigation) 
> logLik(lmod) 
'log Lik.' -22.697 (df=11) 

A simpler model omits the variety by field interaction random effect: 
yijk=µ+ii+νj+(iv)ij+fk+εijk   

> lmodr <- lmer (yield ~ irrigation * variety + 
(1|field),data=irrigation) 
> logLik(lmodr) 
'log Lik.' -22.697 (df=10) 

We see that although the model is simpler, the likelihood is the same. The reason for this 
is that it is not possible to distinguish the variety within field variation from the error 
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variation. We would need more than one observation per variety within each field for us 
to separate these two variabilities. Now examine the output of the last model: 

> summary(lmodr) 
Linear mixed-effects model fit by REML 
Formula: yield ~ irrigation * variety + (1 | field) 
   Data: irrigation 
    AIC    BIG  logLik deviance REMLdeviance 
65.395 73.121 -22.697   68.609       45.395 
Random effects: 
Groups   Name        Variance Std.Dev. 
field    (Intercept) 16.20    4.02 
Residual              2.11    1.45 
# of obs: 16, groups: field, 8 
Fixed effects: 
                        Estimate Std. Error DF t 
value  Pr(>|t|) 
(Intercept)                38.50       3.03  8   12.73 
0.0000014  
irrigationi2              1.20   4.28  8  0.28   0.79 
irrigationi3              0.70   4.28  8  0.16   0.87 
irrigationi4              3.50   4.28  8  0.82   0.44 
varietyv2                 0.60   1.45  8  0.41   0.69 
irrigationi2:varietyv2   -0.40   2.05  8 -0.19   0.85 
irrigationiS:varietyv2   -0.20   2.05  8 -0.10   0.92 
irrigationi4:varietyv2    1.20   2.05  8  0.58   0.57 

We can see that the largest variance component is that due to the field effect: 
with We can check the fixed effects for significance: 

> anova(lmodr) 
Analysis of Variance Table 
                  Df  Sum Sq Mean Sq Denom F value 
Pr(>F) 
irrigation         3    2.45    0.82  8.00    0.39   0.
76 
variety            1    2.25    2.25  8.00    1.07   0.
33 
irrigation:variety 
3    1.55    0.52  8.00    0.25   0.86 

So we see there is no evidence for a fixed effect for either irrigation or variety or their 
interaction. We should check the diagnostic plots to make sure there is nothing amiss: 

> 
plot(fitted(lmodr),resid(lmodr),xlab="Fitted",ylab="Res
iduals") 
> qqnorm(resid(lmodr),main="") 
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Figure 8.3 Diagnostic plots for the 
split plot example. 

We can see in Figure 8.3 that there is no problem with the nonconstant variance, but that 
the residuals indicate a short-tailed distribution. This type of divergence from normality 
is unlikely to cause any major problems with the estimation and inference. 

Sometimes analysts ignore the split-plot variable as in: 

> mod <- lm(yield ~ irrigation * variety, 
data=irrigation) 
> anova(mod) 
Analysis of Variance Table  
Response: yield 
                  Df Sum Sq Mean Sq F value Pr(>F) 
irrigation         3   40.2    13.4    0.73   0.56 
variety            1    2.2     2.2    0.12   0.73 
irrigation:variety 3    1.6     0.5    0.03   0.99 
Residuals          8  146.5    18.3  

The results will not be the same. This last model is incorrect because it fails to take into 
account the restrictions on the randomization introduced by the fields and the additional 
variability thereby induced. 

8.6 Nested Effects 

When the levels of one factor vary only within the levels of another factor, that factor is 
said to be nested. For example, when measuring the performance of workers at several 
different job locations, if the workers only work at one location, the workers are nested 
within the locations. If the workers work at more than one location, then the workers are 
crossed with locations. 

Here is an example to illustrate nesting. Consistency between laboratory tests is 
important and yet the results may depend on who did the test and where the test was 
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performed. In an experiment to test levels of consistency, a large jar of dried egg powder 
was divided up into a number of samples. Because the powder was homogenized, the fat 
content of the samples is the same, but this fact is withheld from the laboratories. Four 
samples were sent to each of six laboratories. Two of the samples were labeled as G and 
two as H, although in fact they were identical. The laboratories were instructed to give 
two samples to two different technicians. The technicians were then instructed to divide 
their samples into two parts and measure the fat content of each. So each laboratory 
reported eight measures, each technician four measures, that is, two replicated measures 
on each of two samples. The data comes from Bliss (1967): 

> data (eggs) 
> summary (eggs) 
      Fat          Lab    Technician  Sample 
Min.    :0.060    I  :8   one:24      G:24 
1st Qu  :0.307    II :8   two:24      H:24 
Median  :0.370    III:8 
Mean    :0.388    IV :8 
3rd Qu. :0.430    V  :8 
Max.    :0.800    VI :8 

Although the technicians have been labeled “one” and “two,” they are two different 
people in each lab. Thus the technician factor is nested within laboratories. Furthermore, 
even though the samples are labeled“H” and “G,” these are not the same samples across 
the technicians and the laboratories. Hence we have samples nested within technicians. 
Technicians and samples should be treated as random effects since we may consider 
these as randomly sampled. If the labs were specifically selected, then they should be 
taken a fixed effects. If, however, they were randomly selected from those available, then 
they should be treated as random effects. If the purpose of the study is come to some 
conclusion about consistency across laboratories, the latter approach is advisable. 

For the purposes of this analysis, we will treat labs as random. So all our effects 
(except the grand mean) are random. The model is: 

yijkl=µ+Li+Tij+Sijk+εijkl   

This can be fit using: 

> cmod <- lmer(Fat 1 + (1|Lab) + (1|Lab:Technician) + 
  (1|Lab:Technician:Sample), data=eggs) 
> summary(cmod) 
Linear mixed-effects model fit by REML 
Formula: Fat ~ 1 + (1 | Lab) + (1 | Lab:Technician) + 
         (1 | Lab:Technician:Sample) 
   Data: eggs 
    AIC     BIG logLik deviance REMLdeviance 
-54.235 -44.879 32.118  -68.703      -64.235 
Random effects: 
Groups                Name        Variance Std.Dev. 
Lab:Technician:Sample (Intercept) 0.00306  0.0554 
Lab:Technician        (Intercept) 0.00698  0.0835 
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Lab (Intercept)                   0.00592  0.0769 
Residual                          0.00720  0.0848 
# of obs: 48, groups: Lab:Technician:Sample, 24; 
          Lab:Technician, 12; Lab, 6 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)    0.388      0.043 47    9.02    8e-12 

So we have and So all four variance 
components are of a similar magnitude. The lack of consistency in measures of fat 
content can be ascribed to variance between labs, variance between technicians, variance 
in measurement due to different labeling and just plain measurement error. We can see if 
the model can be simplified by removing the lowest level of the variance components: 

> cmodr <- Imer(Fat ~ 1 + (1|Lab) + (1|Lab:Technician), 
data=eggs) 
> anova(cmod,cmodr) 
Data: eggs 
Models: 
cmodr: Fat ~ 1 + (1 | Lab) + (1 | Lab:Technician) 
cmod: Fat ~ 1 + (1 | Lab) + (1 | Lab:Technician) + 
      (1 | Lab:Technician:Sample) 
      Df   AIC   BIG logLik Chisq Chi Df Pr(>Chisq) 
cmodr 4 -59.1  -51.6   33.5 
cmod  5 -58.7  -49.3   34.4   1.6      1       0.21 

We see that we cannot reject However, we know that this p-value is con-
servative and the true value will be somewhat lower. An examination of the reduced 
model is interesting: 

> VarCorr(cmodr) 
Groups          Name       Variance Std.Dev. 
Lab:Technician (Intercept) 0.00800  0.0895 
Lab            (Intercept) 0.00592  0.0769 
Residual                   0.00924  0.0961 

The variation due to samples has been absorbed into the other components. 
As before, it is worth checking the accuracy of these p-values. We generate data under 

the null model and compute the LRT 1000 times: 

> lrstat <- numeric(1000) 
> for(i in 1:1000){ 
  rFat <- unlist(simulate(cmodr)) 
  nmod <- lmer(rFat ~ 1 + (1|Lab) + (11 
Lab:Technician), data=eggs) 
  amod <- lmer(rFat ~ 1 + (1|Lab) + (11 Lab:Technician) 
+ 
  (1|Lab:Technician:Sample), data=eggs) 
  lrstat[i] <- 2*(logLik(amod)-logLik(nmod)) 
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  } 

As before, we can see that the LRT does not have a null χ2 distribution because, in this 
case, 55% of the generated LRTs are close to zero: 

> mean(lrstat < 0.00001) 
[1] 0.55 

We can estimate the p-value as: 

> 2*(logLik(cmod)-logLik(cmodr)) 
[1] 1.6034 
> mean(Irstat > 1.6034) 
[1] 0.092 

So we can reasonably say that the variation due to samples can be ignored. We may now 
test the significance of the variation between technicians. Using the same method above, 
this is found to be significant. 

8.7 Crossed Effects 

Effects are said to be crossed when they are not nested. In full factorial designs, effects 
are completely crossed because every level of one factor occurs with every level of 
another factor. However, in some other designs, crossing is less-than-complete. Even if 
just two levels of two factors occur in all four combinations, the factors are crossed. An 
example of less than complete crossing is a latin square design, where there is one 
treatment factor and two blocking factors. Although not all combinations of factors occur, 
the blocking factors are not nested. When at least some crossing occurs, methods for 
nested designs cannot be used. We consider a latin square example. 

In an experiment reported by Davies (1954), four materials, A, B, C and D, were fed 
into a wear-testing machine. The response is the loss of weight in 0.1 mm over the testing 
period. The machine could process four samples at a time and past experience indicated 
that there were some differences due to the position of these four samples. Also some 
differences were suspected from run to run. A fixed effects analysis of this dataset may 
be found in Faraway (2004). Four runs were made. The latin square structure of the 
design may be observed: 

> data(abrasion) 
> matrix(abrasion$material,4,4) 
     [,1] [,2] [,3] [,4] 
[1,] "C"  "A"  "D"  "B" 
[2,] "D"  "B"  "C"  "A" 
[3,] "B"  "D"  "A"  "C" 
[4,] "A"  "C"  "B"  "D" 

A fixed effects analysis of the data reveals: 
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> lmod <- aov(wear ~ material + run + position, 
abrasion) 
> summary(lmod) 
            Df Sum Sq Mean Sq F value  Pr(>F) 
material     3   4622    1540   25.15 0.00085 
run          3    986     329    5.37 0.03901 
position     3   1468     489    7.99 0.01617 
Residuals    6    367      61 

All the effects are significant. However, we might regard the run and position as random 
effects. The appropriate model is then: 

> mmod <- lmer(wear ~ material + (1|run) + 
(1|position), abrasion) 
> anova(mmod) 
Analysis of Variance Table 
         Df Sum Sq Mean Sq Denom F value   Pr(>F) 
material  3   4621    1540    12    25.1 0.000018 
> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: wear ~ material + (1 | run) + (1 | position) 
   Data: abrasion 
    AIC    BIG  logLik MLdeviance REMLdeviance 
114.26 119.66 -50.128     120.43       100.26 
Random effects: 
Groups   Name        Variance Std.Dev. 
run      (Intercept)  66.9     8.18 
position (Intercept) 107.1    10.35 
Residual              61.2     7.83 
# of obs: 16, groups: run, 4; position, 4 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)   265.75       7.67 12   34.66  2.1e-13 
materials     -45.75       5.53 12   -8.27  2.7e-06 
materialC     -24.00       5.53 12   -4.34  0.00097 
materialD     -35.25       5.53 12   -6.37  3.6e-05 

The lmer function is able to recognize that the run and position effects are crossed and 
fits the model appropriately. The F-test for the fixed effects is almost the same as the 
corresponding fixed effects analysis. The only difference is that the fixed effects analysis 
uses a denominator degrees of freedom of six while the random effects analysis is made 
conditional on the estimated random effects parameters which results in 12 degrees of 
freedom. The difference is not crucial here. 

The significance of the random effects could be tested using the parametric bootstrap 
method. However, since the design of this experiment has already restricted the 
randomization to allow for these effects, there is no motivation to make these tests since 
we will not modify the analysis of this current experiment. 

The fixed effects analysis was somewhat easier to execute, but the random effects 
analysis has the advantage of producing estimates of the variation in the blocking factors 
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which will be more useful in future studies. Fixed effects estimates of the run effect for 
this experiment are only useful for the current study. 

8.8 Multilevel Models 

Multilevel models is a term used for models for data with hierarchical structure. The term 
is most commonly used in the social sciences. We can use the methodology we have 
already developed to fit some of these models. 

We take as our example some data from the Junior School Project collected from 
primary (U.S. term is elementary) schools in inner London. The data is described in detail 
in Mortimore, Sammons, Stoll, Lewis, and Ecob (1988) and a subset is analyzed 
extensively in Goldstein (1995). 

The variables in the data are the school, the class within the school (up to four), 
gender, social class of the father (I=1; II=2; III nonmanual=3; III manual=4; IV=5; V=6; 
Long-term unemployed=7; Not currently employed=8; Father absent=9), raven’s test in 
year 1, student id number, english test score, mathematics test score and school year 
(coded 0, 1, and 2 for years one, two and three). So there are up to three measures per 
student. The data was obtained from the Multilevel Models project at 
http://www.ioe.ac.uk/multilevel/. 

We shall take as our response the math test score result from the final year and try to 
model this as a function of gender, social class and the Raven’s test score from the first 
year which might be taken as a measure of ability when entering the school. We subset 
the data to ignore the math scores from the first two years: 

> data(jsp) 
> jspr <- jsp [jsp$year==2,] 

We start with two plots of the data. Due to the discreteness of the score results, it is 
helpful to jitter (add small random perturbations) the scores to avoid overprinting: 

> plot(jitter(math)~jitter(raven),data=jspr,xlab="Raven 
score", 
  ylab="Math score") 
> boxplot(math ~ social, data=jspr,xlab="Social 
class",ylab="Math score") 

In Figure 8.4, we can see the positive correlation between the Raven’s test score and the 
final math score. The maximum math score was 40 which reduces the variability at the 
upper end of the scale. We also see how the math scores tend to decline with social class. 

One possible approach to analyzing these data is multiple regression. For example, we 
could fit:  
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Figure 8.4 Plots of the Junior School 
Project data. 

> glin <- 1m (math ~ raven*gender*social, jspr) 
> anova(glin) 
Analysis of Variance Table 
Response: math 
                     Df  Sum Sq Mean Sq F value Pr(>F) 
raven                 1   11481   11481  368.06 <2e−16 
gender                1      44      44    1.41 0.2347 
social                8     779      97    3.12 0.0017 
raven:gender          1 0.01145 0.01145 0.00037 0.9847 
raven:social          8     583      73    2.33 0.0175 
gender:social         8     450      56    1.80 0.0727 
raven:gender:social   8     235      29    0.94 0.4824 
Residuals           917   28603      31 

It would seem that gender effects can be removed entirely, giving us: 

> glin <- 1m(math ~ raven*social, jspr) 
> anova(glin) 
Analysis of Variance Table 
Response: math 
              Df Sum Sq Mean Sq F value Pr(>F) 
raven          1  11481   11481  365.72 <2e−16 
social         8    778      97    3.10 0.0019 
raven:social   8    564      71    2.25 0.0222 
Residuals    935  29351      31 

This is a fairly large dataset, so even small effects can be significant. Even though the 
raven: social term is significant at the 5% level, we remove it to simplify interpretation:  

> glin <- 1m (math ~ raven+social, jspr) 
> summary(glin) 
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Coefficients : 
           Estimate Std.   Error t value Pr(>|t|) 
(Intercept) 17.0248       1.3745   12.39   <2e-16 
raven        0.5804       0.0326   17.83   <2e-16 
social2      0.0495       1.1294    0.04    0.965 
social3     -0.4289       1.1957   -0.36    0.720 
social4     -1.7745       1.0599   -1.67    0.094 
social5     -0.7823       1.1892   -0.66    0.511 
social6     -2.4937       1.2609   -1.98    0.048 
social7     -3.0485       1.2907   -2.36    0.018 
social8     -3.1175       1.7749   -1.76    0.079 
social9     -0.6328       1.1273   -0.56    0.575 
Residual standard error: 5.63 on 943 degrees of freedom 
Multiple R-Squared: 0.291, Adjusted R-squared:0.284 
F-statistic: 42.9 on 9 and  943 DF, p-value: <2e-16 

We see that the final math score is strongly related to the entering Raven score and that 
the math scores of the lower social classes are lower, even after adjustment for the 
entering score. Of course, any regression analysis requires more investigation than this; 
there are diagnostics and transformations to be considered and more. However, even if 
we were to do this, there would still be a problem with this analysis: We are assuming 
that the 953 students in the dataset are independent observations. This is not a tenable 
assumption as the students come from 50 different schools. The number coming from 
each school varies: 

> table (jspr$school) 
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 
20 21 
26 11 14 24 26 18 11 27 21  0 11 23 22 13  7 16  6 18 
14 13 28 
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
40 41 42 
14 18 21 14 20 22 15 13 27 35 23 44 27 16 28 17 12 14 
10 10 41 
44 45 46 47 48 49 50 
5 11 15 33 63 22 14 

It is highly likely that students in the same school (and perhaps) class will show some 
dependence. So we have somewhat less than 953 independent cases worth of information. 
Any analysis that pretends these are independent is likely to overstate the significance of 
the results. Furthermore, the analysis above tells us nothing about the variation between 
and within schools. People will certainly be interested in this. We could aggregate the 
results across schools but this would lose information and expose us to the dangers of an 
ecological regression. 

We need an analysis that uses the individual-level information, but also reflects the 
grouping in the data. Our first model has fixed effects representing all interactions 
between raven, social and gender with random effects for the school and the class nested 
within the school: 
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> mmod <- lmer(math ~ 
raven*social*gender+(1|school)+(1|school:class), 
  data=jspr)  
> anova(mmod) 
Analysis of Variance Table 
                    Df Sum Sq Mean Sq Denom F value 
Pr(>F) 
raven                1  10218   10218   917  374.40 
<2e−16 
social               8    616      77   917    2.82 
0.0043 
gender               1     22      22   917    0.79 
0.3738 
raven:social         8    577      72   917    2.64 
0.0072 
raven:gender         1      2       2   917    0.09 
0.7639 
social:gender        8    275      34   917    1.26 
0.2605 
raven:social:gender  8    187      23   917    0.86 
0.5524  

Again, it seems that gender is not important and so we simplify to: 

> jspr$craven <- jspr$raven-mean(jspr$raven) 
> mmod <- lmer(math ~ craven*social+(1|school) + 
(1|school:class) , jspr) 
> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: math ~ craven * social + (1 | school) + (1 | 
school:class) 
   Data: jspr 
    AIC    BIG   logLik deviance REMLdeviance 
5963.2 6065.2  -2960.6   5907.4       5921.2 
Random effects: 
Groups       Name         Variance Std.Dev. 
school:class (Intercept)    1.18    1.08 
school       (Intercept)    3.15    1.77 
Residual                   27.14    5.21 
# of obs: 953, groups: school:class, 90; school, 48 
Fixed effects: 
               Estimate Std. Error  DF t value Pr(>|t|) 
(Intercept)     31.9112     1.1955 935   26.69   <2e−16 
craven           0.6058     0.1885 935    3.21   0.0014 
social2          0.0236     1.2722 935    0.02   0.9852 
social3         -0.6307     1.3089 935   -0.48   0.6300 
social4         -1.9670     1.1971 935   -1.64   0.1007 
social5         -1.3585     1.3002 935   -1.04   0.2964 
social6         -2.2687     1.3737 935   -1.65   0.0990 
social7         -2.5518     1.4055 935   -1.82   0.0698 
social8         -3.3950     1.8014 935   -1.88   0.0598 
social9         -0.8313     1.2535 935   -0.66   0.5074 
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craven:social2  -0.1321     0.2058 935   -0.64   0.5212 
craven:social3  -0.2243     0.2189 935   -1.02   0.3057 
craven:social4   0.0358     0.1949 935    0.18   0.8542 
craven:social5  -0.1503     0.2089 935   -0.72   0.4719 
craven:social6  -0.0386     0.2326 935   -0.17   0.8682 
craven:social7   0.3983     0.2318 935    1.72   0.0861 
craven:social8   0.2560     0.2615 935    0.98   0.3279 
craven:social9  -0.0810     0.2055 935   -0.39   0.6935 

We centered the Raven score about its overall mean. This means that we can interpret the 
social effects as the predicted differences from social class one at the mean Raven score. 
If we did not do this, these parameter estimates would represent differences for raven=0 
which is not very useful. We can see the math score is strongly related to the entering 
Raven score. We see that for the same entering score, the final math score tends to be 
lower as social class goes down. Note that class 9 here is when the father is absent and 
class 8 is not necessarily worse than 7, so this factor is not entirely ordinal. We also see 
the most substantial variation at the individual level with smaller amounts of variation at 
the school and class level. 

We check the standard diagnostics first: 

> qqnorm (resid (mmod),main="") 
> 
plot(fitted(mmod),resid(mmod),xlab="Fitted",ylab="Resid
uals") 

 

Figure 8.5 Diagnostic plots for the 
Junior Schools Project model. 

In Figure 8.5, we see that the residuals are close to normal, but there is a clear decrease in 
the variance with an increase in the fitted values. This is due to the reduced variation in 
higher scores already observed. We might consider a transformation of the response to 
remove this effect. 
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We can also check the assumption of normally distributed random effects. We can do 
this at the school and class level: 

> qqnorm(ranef(mmod)$school[[1]],main="School effects") 
> qqnorm(ranef(mmod)$"school:class"[[1]],main="Class 
effects") 

We see approximate normality in both cases with some evidence of short tails for the 
school effects. It is interesting to look at the sorted school effects: 

> adjscores <- ranef (mmod) $school [[1]] 

These represent a ranking of the schools adjusted for the quality of the intake and the 
social class of the students. The difference between the best and the worst is about 5 
points on the math test. Of course, we must recognize that there is variability in these 
estimated effects before making any decisions about the relative strengths of  

 

Figure 8.6 QQ plots of the random 
effects at the school and class levels. 

these schools. Compare this with an unadjusted ranking that simply takes the average 
score achieved by the school, centered by the overall average: 

> rawscores <- coef(1m(math ~ school-1,jspr)) 
> rawscores <- rawscores-mean(rawscores) 

We compare these two measures of school quality in Figure 8.7: 

> plot(rawscores,adjscores) 
> sint <- c(9,14,29) 
> 
text(rawscores[sint],adjscores[sint]+0.2,c("9","15","30
")) 
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School 10 is listed but has no students hence the need to adjust the labeling. There are 
some interesting differences. School 15 looks best on the raw scores but after adjustment, 
it drops to 15th place. This is a school that apparently performs well, but when the quality 
of the incoming students is considered, its performance is not so impressive. School 30 
illustrates the other side of the coin. This school looks average on the raw scores, but is 
doing quite well given the ability of the incoming students. School 9 is actually doing a 
poor job despite raw scores that look quite good. 

It is also worth plotting the residuals and the random effects against the predictors. We 
would be interested in finding any inhomogeneity or signs of structure that might lead to 
an improved model. 

Compositional effects: Fixed effect predictors in this example so far have been at the 
lowest level, the student, but it is not improbable that factors at the school or class level 
might be important predictors of success in the math test. We can construct some such 
predictors from the individual-level information; such factors are called compositional 
effects. For example, the average entering score for a school might be an important 
predictor. The ability of one’s fellow students may have an impact on future 
achievement. We construct this variable: 

> schraven <- lm(raven ~ school, jspr)$fit 

and insert it into our model:  

 

Figure 8.7 Raw and adjusted school-
quality measures. Three selected 
schools are marked. 
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> mmodc <- lmer(math ~ 
craven*social+schraven*social+(1|school) + 
  (1|school:class),jspr) 
> anova(mmodc) 
Analysis of Variance Table 
                Df Sum Sq Mean Sq Denom F value Pr(>F) 
craven           1  10166   10166   926  373.23 <2e-16 
social           8    610      76   926    2.80 0.0045 
schraven         1      5       5   926    0.18 0.6699 
craven:social    8    561      70   926    2.58 0.0088 
social:schraven  8    166      21   926    0.76 0.6353 

We see that this new effect is not significant. We are not constrained to taking means. We 
might consider various quantiles or measures of spread as potential compositional 
variables. 

Much remains to be investigated with this dataset. We have only used the simplest of 
error structures and we should investigate whether the random effects may also depend 
on some of the other covariates. 

Further Reading: The classical approach to random effects can be found in many 
older books such as Snedecor and Cochran (1989) or Scheffeé (1959). More recent books 
such as Searle, Casella, and McCulloch (1992) also focus on the ANOVA approach. A 
wide range of models are explicitly considered in Milliken and Johnson (1992). 
Multilevel models are covered in Goldstein (1995) and Raudenbush and Bryk (2002). 
The predecessor to the Ime4 package was nlme which is described in Pinheiro and Bates 
(2000), but the book still contains much general material of interest. 

Exercises 

1. Use the pulp dataset for this question. 

(a) Analyze the data as a fixed effects model. Is the operator significant? 
(b) Analyze the data with operator as a random effect. What are the estimated 

variances? 
(c) Compute confidence intervals for these variances. 
(d) Compute the intraclass correlation coefficient. 
(e) Determine the significance of the operator effect using a likelihood ratio test taking 

care to compute the p-value accurately. 

2. The coagulat ion dataset comes from a study of blood coagulation times. Twenty-four 
animals were randomly assigned to four different diets and the samples were taken in 
a random order. 

(a) A new animal is assigned to diet D. Predict the blood coagulation time for this 
animal along with an estimate of the variability in this prediction. 

(b) A new diet is given to a new animal. Predict the blood coagulation time for this 
animal along with an estimate of the variability in this prediction. 

Random effects     199



(c) A new diet is given to the first animal in the dataset. Predict the blood coagulation 
time for this animal along with an estimate of the variability in this prediction. You 
may assume that the effects of the initial diet for this animal have washed out. 

3. The eggprod dataset concerns an experiment where six pullets were placed into each of 
12 pens. Four blocks were formed from groups of three pens based on location. Three 
treatments were applied. The number of eggs produced was recorded. 

(a) Fit a model for the number of eggs produced with the treatments as fixed effects 
and the blocks as random effects. Describe the estimated differences between the 
treatments. 

(b) Test for the significance of the treatment. Compute the p-value using both the χ2 
distribution and resampling methods. 

4. Data on the cutoff times of lawnmowers may be found in the dataset lawn. 3 machines 
were randomly selected from those produced by manufacturers A and B. Each 
machine was tested twice at low speed and high speed. 

(a) Fit a mixed effects model with manufacturer and speed as main effects along with 
their interaction and machine nested in manufacturer as random effects. Write 
down the formula for the model. In the summary output for the model, you will 
find that fixed manufacturer effect has zero degrees of freedom. Explain why this is 
so (check your model formula).  

(b) Show why the manufacturer term may be removed from the fixed effect part of the 
model. 

(c) Determine if the manufacturer term can be removed from the random part of the 
model. 

5. A number of growers supply broccoli to a food processing plant. The plant instructs 
the growers to pack the broccoli into standard-size boxes. There should be 18 clusters 
of broccoli per box and each cluster should weigh between 1.33 and 1.5 pounds. 
Because the growers use different varieties and methods of cultivation, there is some 
variation in the cluster weights. The plant manager selected three growers at random 
and then four boxes at random supplied by these growers. Three clusters were selected 
from each box. The data may be found in the broccoli dataset. The weight in grams of 
the cluster is given. Estimate and test the variance components. 

6. An experiment was conducted to select the supplier of raw materials for production of 
a component. The breaking strength of the component was the objective of interest. 
Four suppliers were considered. The four operators can only produce one component 
each per day. A latin square design is used and the data is presented in breaking. 

(a) Explain why it would be natural to treat the operators and days as random effects 
but the suppliers as fixed effects. 

(b) Build a model to predict the breaking strength. Describe the variation from 
operator to operator and from day to day. 

(c) Test the significance of the supplier effect. 
(d) Is there a significant difference between the operators? 
(e) For the best choice of supplier, predict what proportion of components produced in 

the future will have a breaking strength exceeding 900. 
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7. An experiment was conducted to optimize the manufacture of semiconductors. The 
semicond data has the resistance recorded on the wafer as the response. The 
experiment was conducted during four different time periods denoted by ET and three 
different wafers during each period. The position on the wafer is a factor with levels 1 
to 4. The Grp variable is a combination of ET and wafer. Analyze the data as a split 
plot experiment where ET and position are considered as fixed effects. Since the 
wafers are different in experimental time periods, the Grp variable should be regarded 
as the block or group variable. Determine the best model for the data and check all 
appropriate diagnostics. 

8. Redo the Junior Schools Project data analysis in the text with the final year English 
score as the response. Highlight any differences from the analysis of the final year 
Math scores. 

9. An experiment was conducted to determine the effect of recipe and baking temperature 
on chocolate cake quality. Fifteen batches of cake mix for each recipe were prepared. 
Each batch was sufficient for six cakes. Each of the six cakes was baked at a different 
temperature which was randomly assigned. Several measures of cake quality were 
recorded of which breaking angle was just one. The dataset is presented as choccake. 

Build an appropriate model for the data and write a report on the analysis. 
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CHAPTER 9  
Repeated Measures and Longitudinal Data 

In repeated measures designs, there are several individuals and measurements are taken 
repeatedly on each individual. When these repeated measurements are taken over time, it 
is called a longitudinal study or, in some applications, a panel study. Typically various 
covariates concerning the individual are recorded and the interest centers on how the 
response depends on the covariates over time. Often it is reasonable to believe that the 
response of each individual has several components: a fixed effect, which is a function of 
the covariates; a random effect, which expresses the variation between individuals; and 
an error, which is due to measurement or unrecorded variables. 

Suppose each individual has response yi, a vector of length ni which is modeled 
conditionally on the random effects γi as: 

   

Notice this is very similar to the model used in the previous chapter with the exception of 
allowing the errors to have a more general covariance ai. As before, we assume that the 
random effects γi~N(0,σ2D) so that: 

   

where Now suppose we have M individuals and we can assume 
the errors and random effects between individuals are uncorrelated, then we can combine 
the data as: 

 

  

and Z=diag(Z1, Z2,…, ZM), Σ=diag(Σ1, Σ2,…, ΣM), and 
Λ=diag(Λ1, Λ2,…, ΛM). Now we can write the model simply as 

   

The log-likelihood for the data is then computed as above and estimation, testing, 
standard errors and confidence intervals all follow using standard likelihood theory as 
before. In fact, there is no strong distinction between the methodology used in this and 
the previous chapter. 

Of course, this general structure encompasses a wide range of possible models for 
different types of data. We explore some of these in the following three examples:  



9.1 Longitudinal Data 

The Panel Study of Income Dynamics (PSID), begun in 1968, is a longitudinal study of a 
representative sample of U.S. individuals described in Hill (1992). The study is 
conducted at the Survey Research Center, Institute for Social Research, University of 
Michigan, and is still continuing. There are currently 8700 households in the study and 
many variables are measured. We chose to analyze a random subset of this data, 
consisting of 85 heads of household who were aged 25-39 in 1968 and had complete data 
for at least 11 of the years between 1968 and 1990. The variables included were annual 
income, gender, years of education and age in 1968: 

> data(psid) 
> head(psid) 
  age educ sex income year person 
1  31   12   M   6000   68      1 
2  31   12   M   5300   69      1 
3  31   12   M   5200   70      1 
4  31   12   M   6900   71      1 
5  31   12   M   7500   72      1 
6  31   12   M   8000   73      1 

Now plot the data: 

> library(lattice) 
> xyplot(income ~ year | person, psid, type="1", 
  subset=(person < 21),strip=FALSE) 

The first 20 subjects are shown in Figure 9.1. We see that some individuals have a slowly 
increasing income, typical of someone in steady employment in the same job. Other 
individuals have more erratic incomes. We can also show how the incomes vary by sex. 
Income is more naturally considered on a log-scale: 

> xyplot(log(income+100) ~ year | sex, psid, type="1") 

See Figure 9.2. We added $100 to the income of each subject to remove the effect of 
some subjects having very low incomes for short periods of time. These cases distorted 
the plots without the adjustment. We see that men’s incomes are generally higher and less 
variable while women’s incomes are more variable, but are perhaps increasing more 
quickly. We could fit a line to each subject starting with the first: 

> lmod <- 1m(log(income) ~ I(year-78), 
subset=(person==1), psid) 
> coef(lmod) 
  (Intercept) I(year - 78) 
     9.399957     0.084267 
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We have centered the predictor at the median value so that the intercept will represent the 
predicted log income in 1978 and not the year 1900 which would be nonsense. We now 
fit a line for all the subjects and plot the results: 

> slopes <- numeric(85);intercepts <- numeric(85) 
> for(i in 1:85){ 
     lmod <- 1m(log(income) ~ I(year-78), 
subset=(person==i), psid) 
     intercepts[i] <- coef(lmod)[1] 
     slopes[i] <- coef(lmod)[2] 
     } 

 

Figure 9.1 The first 20 subjects in the 
PSID data. Income is shown over time. 
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Figure 9.2 Income change in the PSID 
data grouped by sex. 

> plot(intercepts,slopes,xlab="Intercept",ylab="Slope") 
> psex <- psid$sex[match(1:85,psid$person)] 
> boxplot(split(slopes,psex)) 

See Figure 9.3. We can simply compare the income growth rates for men and women: 

 

Figure 9.3 Slopes and intercepts for 
the individual income growth 
relationships are shown on the left. A 
comparison of income growth rates by 
sex is shown on the right. 

> t.test(slopes[psex=="M"],slopes[psex=="F"]) 
Welch Two Sample t-test 
data: slopes[psex == "M"] and slopes[psex == "F"] 
t = -2.3786,df = 56.736, p-value = 0.02077 
alternative hypothesis: true difference in means is not 
equal to 0 
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95 percent confidence interval: 
-0.0591687 −0.0050773 
sample estimates: 
mean of x mean of y 
0.056910  0.089033 

We see that women have a significantly higher growth rate than men. We can also 
compare the incomes at the intercept (which is 1978): 

> t.test(intercepts[psex=="M"],intercepts[psex=="F"]) ) 
Welch Two Sample t-test 
data: intercepts[psex == "M"] and intercepts[psex == 
"F"] 
t = 8.2199, df = 79.719, p-value = 3.065e-12 
alternative hypothesis: true difference in means is not 
equal to 0 
95 percent confidence interval: 
0.87388 1.43222 
sample estimates: 
mean of x mean of y  
9.3823   8.2293  

We see that men have significantly higher incomes. 
This is an example of a response feature analysis. It requires choosing an important 

characteristic. We have chosen two here: the slope and the intercept. For many datasets, 
this is not an easy choice and at least some information is lost by doing this. 

Response feature analysis is attractive because of its simplicity. By extracting a 
univariate response for each individual, we are able to use a wide array of well-known 
statistical techniques. However, it is not the most efficient use of the data as all the 
additional information besides the chosen response feature is discarded. Notice that 
having additional data on each subject would be of limited value. 

Suppose that the income change over time can be partly predicted by the subject’s age, 
sex and educational level. We do not expect a perfect fit. The variation may be 
partitioned into two components. Clearly there are other factors that will affect a subject’s 
income. These factors may cause the income to be generally higher or lower or they may 
cause the income to grow at a faster or slower rate. We can model this variation with a 
random intercept and slope, respectively, for each subject. We also expect that there will 
be some year-to-year variation within each subject. For simplicity, let us initially assume 
that this error is homogeneous and uncorrelated, that is, Ai=I. We also center the year to 
aid interpretation as before. We may express these notions in the model: 

> library(lme4) 
> psid$cyear <- psid$year-78 
> mmod <- lmer(log(income) ~ cyear*sex 
+age+educ+(cyear|person),psid) 

This model can be written as: 
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where i indexes the year and j indexes the individual. We have: 

 

  

The model summary is: 

> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: log(income) ~ cyear * sex + age + educ + 
(cyear | person) 
   Data: psid 
    AIC    BIG  logLik MLdeviance REMLdeviance 
3839.8 3893.9 -1909.9     3785.6       3819.8 
Random effects: 
Groups   Name        Variance  Std.Dev. Corr 
person   (Intercept) 0.2817    0.531 
          cyear       0.0024    0.049    0.187 
Residual              0.4673    0.684 
# of obs: 1661, groups: person, 85  
Fixed effects: 
            Estimate Std. Error   DF t value  Pr(>|t|) 
(Intercept)   6.6742     0.5433 1655   12.28   < 2e-16 
cyear         0.0853     0.0090 1655    9.48   < 2e-16 
sexM          1.1503     0.1213 1655    9.48   < 2e-16 
age           0.0109     0.0135 1655    0.81     0.419 
educ          0.1042     0.0214 1655    4.86 0.0000013 
cyear:sexM   -0.0263     0.0122 1655   -2.15     0.032  

Let’s start with the fixed effects. We see that income increases about 10% for each 
additional year of education. We see that age does not appear to be significant. For 
females, the reference level in this example, income increases about 8.5% a year, while 
for men, it increases about 8.5-2.6=5.9% a year. We see that, for this data, the incomes of 
men are exp(1.15) = 3.16 times higher. 

We know the mean for males and females, but individuals will vary about this. The 
standard deviation for the intercept and slope are 0.28 and 0.0024 and 
respectively. These have a correlation of 0.19 (cor(γ0,γ1)). Finally, there is some 
additional variation in the measurement not so far accounted for having standard 
deviation of 0.46 (sd(εijk)). We see that the variation in increase in income is relatively 
small while the variation in overall income between individuals is quite large. 
Furthermore, given the large residual variation, there is a large year-to-year variation in 
incomes. 

There is a wider range of possible diagnostic plots that can be made with longitudinal 
data than with a standard linear model. In addition to the usual residuals, there are 
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random effects to be examined. We may wish to break the residuals down by sex as seen 
in the QQ plots in Figure 9.4: 

> qqmath (~resid(mmod) | sex, psid) 

 

Figure 9.4 QQ plots by sex. 

We see that the residuals are not normally distributed, but have a long tail for the lower 
incomes. We should consider changing the log transformation on the response. 
Furthermore, we see that there is greater variance in the female incomes. This suggests a 
modification to the model. We can make the same plot broken down by subject although 
there will be rather too many plots to be useful. 

Plots of residuals and fitted values are also valuable. We have broken education into 
three levels: less than high school, high school or more than high school: 

> xyplot(resid(mmod) ~ fitted(mmod) | 
cut(educ,c(0,8.5,12.5,20)), 
  psid, layout=c(3,l),xlab="Fitted",ylab="Residuals") 

See Figure 9.5. Again, we can see evidence that a different response transformation 
should be considered. 

Plots of the random effects would also be useful here. 

9.2 Repeated Measures 

The acuity of vision for seven subjects was tested. The response is the lag in milliseconds 
between a light flash and a response in the cortex of the eye. Each eye is tested at four 
different powers of lens. An object at the distance of the second number appears to be at 
distance of the first number. The data is given in Table 9.1. The data comes from 
Crowder and Hand (1990) and was also analyzed by Lindsey (1999). 
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Figure 9.5 Residuals νs. fitted plots for 
three levels of education: less than 
high school on the left, high school in 
the middle and more than high school 
on the right. 

We start by making some plots of the data. We create a numerical variable 
representing the power to complement the existing factor so that we can see how the 
acuity changes with increasing power: 

> data(vision) 
> vision$npower <- rep(1:4,14) 
> 
xyplot(acuity~npower|subject,vision,type="1",groups=eye
, 
  lty=1:2,layout=c(4,2)) 

See Figure 9.6. There is no apparent trend or difference between right and left eyes.  

feet. 

However, individual #6 appears anomalous with a large difference between the eyes. It 
also seems likely that the third measurement on the left eye is in error for this individual. 
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Figure 9.6 Visual acuity profiles. The left eye is shown as a solid line and the right as a 
dashed line. Four powers of lens are displayed where 1=6/6, 2=6/18, 3=6/36 and 
4=6/60. 

Power 

6/6 6/18 6/36 6/60 6/6 6/18 6/36 6/60 

Left Right 

116 119 116 124 120 117 114 122 

110 110 114 115 106 112 110 110 

117 118 120 120 120 120 120 124 

112 116 115 113 115 116 116 119 

113 114 114 118 114 117 116 112 

119 115 94 116 100 99 94 97 

110 110 105 118 105 105 115 115 

Table 9.1 Visual acuity of seven 
subjects measured in milliseconds of 
lag in responding to a light flash. The 
power of the lens causes an object six 
feet distant to appear at a distance of 
6, 18, 36 or 60  

We must now decide how to model the data. The power is a fixed effect. In the model 
below, we have treated it as a nominal factor, but we could try fitting it in a quantitative 
manner. The subjects should be treated as random effects. Since we do not believe there 
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is any consistent right-left eye difference between individuals, we should treat the eye 
factor as nested within subjects. We start with this model: 

> mmod <- 
lmer(acuity~power+(1|subject)+(1|subject:eye),vision) 

Note that if we did believe there was a consistent left vs. right eye effect, we would have 
used crossed random effects, putting (11 eye) in place of (11 subject: eye). 

We can write this (nested) model as: 
yijk=µ+Pj+si+eik+εijk   

where i= 1,…,7 runs over individuals, j= 1,…, 4 runs over power and k=1, 2 runs over 
eyes. The pj term is a fixed effect, but the remaining terms are random. Let 

and where we take Σ=I. The summary 
output is: 

> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: acuity ~ power + (1 | subject) + (1 | 
subject:eye) 
   Data: vision 
    AIC    BIG  logLik MLdeviance REMLdeviance 
342.71 356.89 -164.35     339.22       328.71 
Random effects: 
Groups      Name        Variance Std.Dev. 
subject:eye (Intercept) 10.3     3.21 
subject     (Intercept) 21.5     4.64 
Residual                16.6     4.07 
# of obs: 56, groups: subject:eye, 14; subject, 7 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)  112.643      2.235 52   50.40   <2e−16 
power6/18      0.786      1.540 52    0.51    0.612 
power6/36     -1.000      1.540 52   -0.65    0.519 
power6/60      3.286      1.540 52    2.13    0.038 

We see that the estimated standard deviation for subjects is 4.64 and that for eyes for a 
given subject is 3.21. The residual standard deviation is 4.07. The random effects 
structure we have used here induces a correlation between measurements on the same 
subject and another between measurements on the same eye. We can compute these two 
correlations respectively as: 

> 4.64^2/(4.64^2+3.21^2+4.07^2) 
[1] 0.44484 
> (4.64^2+3.21^2)/(4.64^2+3.21^2+4.07^2) 
[1] 0.65774 
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As we might expect, there is a stronger correlation between observations on the same eye 
than between the left and right eyes of the same individual. 

We can check for a power effect: 

> anova(mmod) 
Analysis of Variance Table  
      Df Sum Sq Mean Sq Denom F value Pr(>F) 
power  3  140.8    46.9  52.0    2.83  0.048 

We see the result is just significant at the 5% level. We might expect some trend in acuity 
with power, but the estimated effects do not fit with this trend. While acuity is greatest at 
the highest power, 6/60, it is lowest for the second highest power, 6/36. A look at the data 
makes one suspect the measurement made on the left eye of the sixth subject at this 
power. If we omit this observation and refit the model, we find: 

> mmodr <- 
lmer(acuity~power+(1|subject)+(1|subject:eye), 
vision,subset=-43) 
> anova(mmodr) 
Analysis of Variance Table 
      Df Sum Sq Mean Sq Denom F value Pr(>F) 
power  3   89.2    29.7  51.0     3.6  0.020 
> summary(mmodr) 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept)  112.643      1.880 51   59.91   <2e−16 
power6/18      0.786      1.087 51    0.72   0.4731 
power6/36      0.521      1.114 51    0.47   0.6418 
power6/60      3.286      1.087 51    3.02   0.0039 

Now the power effect is significant, but it appears this is due to an effect at the highest 
power only. We can test the hypothesis that the highest power has a higher acuity than 
the average of the first three levels by using Helmert contrasts: 

> op <- options(contrasts=c("contr.helmert", 
"contr.poly")) 
> mmodr <- 
lmer(acuity~power+(1|subject)+(1|subject:eye),vision,su
bset=-43) 
> summary(mmodr) 
Fixed effects: 
            Estimate Std. Error DF t value Pr(>|t|) 
(Intercept) 113.7911     1.7596 51   64.67   <2e−16 
powerl        0.3929     0.5436 51    0.72   0.4731 
power2        0.0428     0.3242 51    0.13   0.8954 
power3        0.7125     0.2228 51    3.20   0.0024 
> options(op) 

The Helmert contrast matrix is 

Repeated measures and longitudinal data     213



> contr.helmert(4) 
  [,1] [,2] [,3] 
1   -1   -1   -1 
2    1   -1   -1 
3    0    2   -1 
4    0    0    3 

We can see that the third contrast (column) represents the difference between the average 
of the first three levels and the fourth level, scaled by a factor of three. In the output, we 
can see that this is statistically significant while the other two contrasts are not. 

We finish with some diagnostic plots. The residuals and fitted values and the QQ plot 
of random effects for the eyes are shown in Figure 9.7: 

> plot(resid(mmodr) ~ 
fitted(mmodr),xlab="Fitted",ylab="Residuals") 
> abline(h=0) 
> qqnorm(ranef(mmodr)$"subject:eye"[[1]],main="") 

 

Figure 9.7 Residuals νs. fitted plot is 
shown on the left and a QQ plot of the 
random effects for the eyes is shown on 
the right. 

The outlier corresponds to the right eye of subject #6. For further analysis, we should 
consider dropping subject #6. There are only seven subjects altogether, so we would 
certainly regret losing any data, but this may be unavoidable. Ultimately, we may need 
more data to make definite conclusions. 

9.3 Multiple Response Multilevel Models 

In Section 8.8, we analyzed some data from the Junior Schools Project. In addition to a 
math test, students also took a test in English. Although it would be possible to analyze 
the English test results in the same way that we analyzed the math scores, additional 
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information may be obtained from analyzing them simultaneously. Hence we view the 
data as having a bivariate response with English and math scores for each student. The 
student is a nested factor within the class which is in turn nested within the school. We 
express the multivariate response for each individual by introducing an additional level of 
nesting at the individual level. So we might view this as just another nested model except 
that there is a fixed subject effect associated with this lowest level of nesting. 

We set up the data in a format with one test score per line with an indicator subject 
identifying which type of test was taken. We scale the English and math test scores by 
their maximum possible values, 40 and 100, respectively, to aid comparison: 

> data(jsp) 
> jspr <- jsp[jsp$year==2,] 
> mjspr <- data.frame(rbind(jspr[,1:6],jspr[,1:6]), 
  subject=factor(rep(c("english","math"),c(953,953))), 
  score=c(jspr$english/100,jspr$math/40)) 

We can examine the relationship between subject, gender and scores, as seen in Figure 
9.8:  

 

Figure 9.8 Scores on test compared to 
raven score for subjects and genders. 

> xyplot(score ~ raven| subject*gender, mjspr) 
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We now fit a model for the data that includes all the variables of interest that incorporates 
some of the interactions that we suspect might be present: 

> mjspr$craven <- mjspr$raven-mean(mjspr$raven) 
> mmod <- lmer (score ~ 
subject*gender+craven*subject+social+ 
  (1|school)+(1|school:class)+(1|school:class:id),mjspr
) 

The model being fit for school i, class j, student k in subject l is: 
scoreijkl=subjectl+genderk+ravenk+socialk+(subject×gender)lk+ 

(raven×subject)lk+schooli+classj+studentk+εijkl 
  

where the Raven score has been mean centered and school, class and student are random 
effects with the other terms, apart from ε, being fixed effects. The test on the fixed effects 
reveals: 

> anova(mmod)  
Analysis of Variance Table 
               Df Sum Sq Mean Sq Denom F value  Pr(>F) 
subject         1     54      54  1892 3953.67 < 2e-16 
gender          1  0.101   0.101  1892    7.46  0.0064 
craven          1      6       6  1892  444.63 < 2e-16 
social          8      1   0.088  1892    6.47 2.5e-08 
subject:gender  1  0.384   0.384  1892   28.23 1.2e-07 
subject:craven  1  0.217   0.217  1892   15.99 6.6e-05  

Both interactions are significant so no simplifications are indicated for this model. We 
might consider adding additional fixed effects, but we shall attempt to interpret only this 
model for now. The summary output: 

> summary(mmod) 
Linear mixed-effects model fit by REML 
Formula: score ~ subject * gender + craven * subject + 
social + (1 | school) + 
      (1 | school:class) + (1 | school:class :id) 
    Data: mjspr 
      AIC     BIG logLik MLdeviance REMLdeviance 
  -1705.6 -1605.6 870.79    -1846.3      -1741.6 
Random effects: 
Groups          Name        Variance Std.Dev. 
school:class:id (Intercept) 0.010252 0.1013 
school:class    (Intercept) 0.000582 0.0241 
school          (Intercept) 0.002231 0.0472 
Residual                    0.013592 0.1166 
# of obs: 1906, groups: school:class:id, 953; 
school:class, 90; school, 48 
Fixed effects: 
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                          Estimate  Std. Error   DF t 
value Pr(>|t|) 
(Intercept)               0.441578    0.026459 
1892   16.69  < 2e-16 
subjectmath               0.366565    0.007710 
1892   47.54  < 2e-16 
gendergirl                0.063351    0.010254 
1892    6.18  7 9e-10 
craven                    0.017390    0.000925 
1892   18.81  < 2e-16 
social2                   0.013754    0.027230 
1892    0.51   0.6136 
social3                  -0.020768    0.028972 1892   -
0.72   0.4736 
social4                  -0.070708    0.025868 1892   -
2.73   0.0063 
social5                  -0.050474    0.028818 1892   -
1.75   0.0800 
social6                  -0.087852    0.030672 1892   -
2.86   0.0042 
social7                  -0.099408    0.031607 1892   -
3.15   0.0017 
social8                  -0.081623    0.042352 1892   -
1.93   0.0541 
social9                  -0.047337    0.027445 1892   -
1.72   0.0847 
subjectmath:gendergirl   -0.059194    0.010706 1892   -
5.53  3.7e-08 
subjectmath:craven       -0.003720    0.000930 1892   -
4.00  6.6e-05 

Starting with the fixed effects, we see that the math subject scores were about 37% higher 
than the English scores. This may just reflect the grading scale and difficulty of the test 
and so perhaps nothing in particular should be concluded from this except, of course, that 
it is necessary to have this term in the model to control for this difference. Since gender 
has a significant interaction with subject, we must interpret these terms together. We see 
that on the English test, which is the reference level, girls score 6.5% higher than boys. 
On the math test, the difference is 6.5−5.9=0.6% which is negligible. We see that the 
scores are strongly related to the entering Raven score although the relation is slightly 
less strong for math than English (slope is 0.0179 for English but 0.0179–0.0037=0.0142 
for math). We also see the declining performance as we move down the social class scale 
as we found in the previous analysis. 

Moving to the random effects, we see that standard deviation of the residual error in 
the math scores was 59% of that observed in the English scores. Perhaps this can be 
ascribed to the greater ease of consistent grading of math assignments or perhaps just 
greater variation is to be expected in English performance. The correlation between the 
English and math scores after adjusting for the other effects is also of interest. The last 
two terms in the model, studentk+εijkl, represent a 2×2 covariance matrix for the residual 
scores for the two tests. We can compute the correlation as: 
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> 0.1013^2/(0.1013^2+0.1166^2) 
[1] 0.43013 

giving a moderate positive correlation between the scores. Various diagnostic plots can 
be made. An interesting one is: 

> xyplot(residuals(mmod) ~ 
fitted(mmod)|subject,mjspr,pch=".", 
  xlab="Fitted",ylab="Residuals") 

as seen in Figure 9.9. There is somewhat greater variance in the verbal scores. The 
truncation effect of the maximum score is particularly visible for the math scores. 

 

Figure 9.9 Residuals νs. fitted plot 
broken down by type of test. 

Further Reading: Longitudinal data analysis is explicitly covered in books by Verbeke 
and Molenberghs (2000), Fitzmaurice, Laird, and Ware (2004), Diggle, Heagerty, Liang, 
and Zeger (2002) and Frees (2004). Books stating repeated measures in the title, such as 
Lindsey (1999), cover much the same material.  

Exercises 

1. The ratdrink data consist of five weekly measurements of body weight for 27 rats. The 
first 10 rats are on a control treatment while seven rats have thyroxine added to their 
drinking water. Ten rats have thiouracil added to their water. Build a model for the rat 
weights that shows the effect of the treatment. 

2. Data on housing prices in 36 metropolitan statistical areas (MSAs) over nine years 
from 1986-94 were collected and can be found in the dataset hprice. Find a good 
model for the data. Explain the effect of the predictors on housing prices. It is not 
necessary to present every part of your analysis. Present a compact description of how 
you found your model in five pages or less. 
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3. The nepali data is a subset from public health study on Nepalese children. Develop a 
model for the weight of the child as he or she ages. You may use mage, lit, died, 
gender and alive (but not ht) as predictors. Show how you developed your model and 
interpret your final model. 

4. The attenu data gives peak accelerations measured at various observation stations for 
23 earthquakes in California. The data has been used by various workers to estimate 
the attenuating affect of distance on ground acceleration. 

(a) Model the log of the acceleration as a function of the log of the distance while 
taking account of the magnitude of the quake. 

(b) Predict how the acceleration varied for an earthquake of magnitude 7.5. Express 
quantitatively the uncertainty in this prediction. 

(c) Predict how the acceleration varied for the first event where only one observation 
was available. 

5. The sleepstudy data found in the Matrix package, which is loaded with Ime4, describes 
the reaction times of subjects who are progressively sleep deprived. Form a model for 
the reaction times and describe the variation between individuals. 
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CHAPTER 10  
Mixed Effect Models for Nonnormal 

Responses 

10.1 Generalized Linear Mixed Models 

Generalized linear mixed models (GLMM) combine the ideas of generalized linear 
models with the random effects modeling ideas of the previous two chapters. The 
response is a random variable, Yi, taking observed values, yi, for i=1,…, n, and follows an 
exponential family distribution as defined in Chapter 6: 

 

  

Let EYi=µi and let this be connected to the linear predictor ηi using the link function g by 
ηi=g(µi). Suppose for simplicity that we use the canonical link for g so that we may make 
the direct connection that θi=µi. 

Now let the random effects, γ, have distribution h(γ|V) for parameters V. The fixed 
effects are β. Conditional on the random effects, γ: 

   

where xi and zi are the corresponding rows from the design matrices, X and Z, for the 
respective fixed and random effects. Now the likelihood may be written as: 

 

  

Typically the random effects are assumed normal: γ~N(0,D). However, unless f is also 
normal, the integral remains in the likelihood, which becomes difficult to compute, 
particularly if the random effects structure is complicated. 

A variety of approaches are available to approximating the likelihood using theoretical 
or numerical methods. A Bayesian approach is also possible. See Sinha (2004) for a 
recent approach that also contains a survey of past approaches. We investigate the issues 
through an example. 

An experiment was conducted to study the effects of surface and vision on balance. 
The balance of subjects were observed for two different surfaces and for restricted and 
unrestricted vision. Balance was assessed qualitatively on an ordinal four-point scale 
based on observation by the experimenter. Forty subjects were studied, twenty males and 
twenty females ranging in age from 18 to 38, with heights given in cm and weights in kg. 
The subjects were tested while standing on foam or a normal surface and with their eyes 
closed or open or with a dome placed over their head. Each subject was tested twice in 



each of the surface and eye combinations for a total of 12 measures per subject. The data 
comes from Steele (1998) via the Australasian Data and Story Library (OzDASL). 

For the purposes of this analysis, we will reduce the response to a two-point scale: 
whether the subject was judged completely stable or not. We start by defining this 
response: 

> data(ctsib) 
> ctsib$stable <- ifelse (ctsib$CTSIB==1,1,0) 
> summary(ctsib) 
    Subject         Sex           Age           Height 
       Weight 
Min.   : 
1.0   female:240   Min.   :18.0   Min.   :142   Min.   
: 44.2 
1st Qu.:10.8   male :240    1st Qu.:21.8   1st 
Qu.:167   1st Qu.: 60.7 
Median :20.5                Median :25.5   Median 
:173   Median : 68.0 
Mean   :20.5                Mean   :26.8   Mean   :172 
  Mean   : 71.1 
3rd Qu.:30.3                3rd Qu.:33.0   3rd 
Qu.:180   3rd Qu.: 83.5 
Max.   :40.0                Max.   :38.0   Max.   :190 
  Max.   : 102.0 
Surface       Vision        CTSIB          stable 
foam:240   closed:160   Min.   :1.00   Min.   :0.000 
norm:240   dome  :160   1st Qu.:2.00   1st Qu.:0.000 
            open  :160   Median :2.00   Median :0.000 
                         Mean   :1.92   Mean   :0.238 
                         3rd Qu.:2.00   3rd Qu.:0.000 
                         Max.   :4.00   Max.   :1.000 

We could fit a binomial GLM ignoring the subject information entirely: 

> gf <- glm(stable ~ 

Sex+Age+Height+Weight+Surface+Vision,binomial,data=ctsi
b) 
> summary(gf) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  7.27745    3.80399    1.91  0.05573 
Sexmale      1.40158    0.51623    2.72  0.00663 
Age          0.00252    0.02431    0.10  0.91739 
Height      -0.09641    0.02684   -3.59  0.00033 
Weight       0.04350    0.01800    2.42  0.01567 
Surfacenorm  3.96752    0.44718    8.87  < 2e-16 
Visiondome   0.36375    0.38322    0.95  0.34252 
Visionopen   3.18750    0.41600    7.66  1.8e-14 
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However, there may be a significant subject effect. We could try including a fixed subject 
factor: 

> gfs <- glm(stable ~ 

Sex+Age+Height+Weight+Surface+Vision+factor(Subject), 
  binomial,data=ctsib) 
> anova(gf,gfs,test="Chi”) 
Analysis of Deviance Table 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1       472        295 
2       437        121  35      174  2.5e-20 

We see strong evidence for a significant subject effect. However, when we examine the 
summary for this model, we see problems with identifiability and separability which 
prompt the use of bias-reduced logistic regression, as described in Section 2.8:  

> library(brlr) 
> modbr <- brlr (stable ~ 

Sex+Age+Height+Weight+Surface+Vision+ 
  factor (Subject), data=ctsib) 
> summary(modbr) 
Coefficients: 
                  Value   Std. Error t value 
(Intercept)       -44.619  50.432     -0.885 
Sexmale             0.538   3.060      0.176 
Age                -0.223   0.137     -1.625 
Height              0.335   0.351      0.953 
Weight             -0.255   0.186     -1.370 
Surfacenorm         6.150   0.734      8.378 
Visiondome          0.635   0.489      1.300 
Visionopen          5.043   0.687      7.344 

We find that the subject-specific variables, sex, age, height and weight, are no longer 
significant. This is because these predictors are constant for a given subject. We cannot 
completely unconfound these effects from the subject effects. 

There are variety of ways of fitting GLMMs in R. We demonstrate the Penalized 
Quasi-Likelihood method implemented in the MASS package: 

> library(MASS) 
> gg <- glmmPQL(stable ~ 

Sex+Age+Height+Weight+Surface+Vision, 
  random=~1 | Subject, family=binomial,data=ctsib) 
> summary(gg) 
Random effects: 
Formula: "1 | Subject 
        (Intercept) Residual 
StdDev:      3.0608  0.59062 
Variance function: 
Structure: fixed weights 
Formula: ~invwt 
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Fixed effects: stable ~ Sex + Age + Height + Weight + 
Surface + Vision 
              Value Std.Error DF t-value p-value 
(Intercept) 15.5716   13.4985 437  1.1536  0.2493 
Sexmale      3.3554    1.7526  35  1.9145  0.0638 
Age         -0.0066    0.0820  35 -0.0810  0.9359 
Height      -0.1908    0.0920  35 -2.0736  0.0455 
Weight       0.0695    0.0629  35  1.1051  0.2766 
Surfacenorm  7.7241    0.5736 437 13.4666  0.0000 
Visiondome   0.7265    0.3259 437  2.2289  0.0263 
Visionopen   6.4853    0.5440 437 11.9220  0.0000 

The fit falls somewhere between the two above from the point of view of effect 
significance. Notice how there are more degrees of freedom for the experimental factors 
which do vary within individuals. This is expected. Compared to the fixed effect subject 
modeling, rather less of the variation is attributed to the GLMM. Here the SD for subjects 
is 3.06 while the SD of the subject effects from the GLM is: 

> sd(coef(modbr)[9:43]) 
[1] 4.4407 

This model can also be fit using the lmer function from the Ime4 package. Estimation of 
GLMMs is an active area of research and further study of the best methods of estimation 
is necessary. 

10.2 Generalized Estimating Equations 

The advantage of the quasi-likelihood approach compared to GLMs was that we did not 
need to specify the distribution of the response. We only needed to give the link function 
and the variance. We can adapt this approach for repeated measures and/or longitudinal 
studies. Let Yi be a vector of random variables representing the responses on a given 
individual and let EYi=µi which is then linked to the linear predictor η=Xβ in some 
appropriate way. Let: 

var Yi≡var (Yi;β,α)   

where a represents parameters that model the correlation structure within individuals. The 
parameters, β, may then be estimated setting the (multivariate) score function to zero and 
solving: 

 

  

These equations can be regarded as the multivariate analogue of those used for the quasi-
likelihood models described in Section 7.4. Since var Y also depends on α, we substitute 
any consistent estimate of α in this equation and still obtain an estimate as asymptotically 
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efficient as if α were known. A similar set of equations can be derived representing the 
score with respect to α, which may be similarly solved. 

These are called generalized estimating equations (GEE). Note that no specification of 
the distribution has been necessary which makes the fitting and specification much 
simpler. The estimates of β are consistent even if the variance is misspecified. 

We reanalyze the stability dataset: 

> data(ctsib) 
> ctsib$stable <- ifelse (ctsib$CTSIB==l, 1, 0) 
> library(gee) 
> gg <- gee(stable ~ 

Sex+Age+Height+Weight+Surface+Vision, id=Subject, 
family=binomial,data=ctsib,corstr="exchangeable",scale.
fix=TRUE) 

We have specified the same fixed effects as in the corresponding GLMM earlier. The 
grouping variable is specified by the id argument. Only simple groups are allowed while 
nested grouping variables cannot be accommodated easily in this function. We must 
choose the correlation structure within each group. If we choose no correlation, then the 
problem reduces to a standard GLM. Several choices are available. For this data, it seems 
reasonable to assume that any pair of observations from the same subject have the same 
correlation. This is known as an exchangeable correlation or equivalently, compound 
symmetry. We have chosen to fix the scale parameter at the default value of 1 to ensure 
maximum compatibility with the GLMM fit. Otherwise, there would not be a strong 
reason to fix this. Let us now examine the output: 

> summary(gg) 
Model: 
Link:                      Logit 
Variance to Mean Relation: Binomial 
Correlation Structure:     Exchangeable 
Coefficients: 
            Estimate Naive S.E.  Naive z Robust S.E. 
Robust z 
(Intercept) 
8.602874   5.199006  1.65472    5.911263  1.45534 
Sexmale     1.641080   0.701444  2.33957    0.902840  1
.81769 
Age        -0.011842   0.033022 -0.35862    0.047986 -
0.24679 
Height     -0.102020   0.036315 -2.80933    0.042336 -
2.40976 
Weight      0.043655   0.024630  1.77242    0.033964  1
.28534 
Surfacenorm 
3.917254   0.412501  9.49636    0.566333  6.91687 
Visiondome  0.358961   0.335804  1.06896    0.404175  0
.88813 
Visionopen  3.180126   0.377109  8.43292    0.460365  6
.90783 
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Estimated Scale Parameter: 1 
Number of Iterations: 4 
Working Correlation 
        [,1]    [,2]    [,3]    [,4]    [,5]    [,6]   
 [,7] 
[1,] 1.00000 0.21389 0.21389 0.21389 0.21389 0.21389 
0.21389 
[2,] 0.21389 1.00000 0.21389 0.21389 0.21389 0.21389 
0.21389 
[3,] 0.21389 0.21389 1.00000 0.21389 0.21389 0.21389 
0.21389 
[4,] 0.21389 0.21389 0.21389 1.00000 0.21389 0.21389 
0.21389 
....rest deleted.... 

We can see from the working correlation that the estimated correlation between 
observations on the same subject is 0.21. The naive standard errors are based on the 
assumption that the proposed correlation structure is correct. However, GEE has the 
property that even if this structure is incorrect, the fixed effect estimates are still 
consistent. Nevertheless, the naive standard errors may be improved by the use of a 
sandwich estimator. This gives us the robust standard errors given above. These are 
typically, but not always, larger than the naive standard errors. The robust SEs should be 
used in practice. We see from the robust z-statistics that the height, surface and vision 
factors are significant. This corresponds to the result from GLMM. 

There is one clear difference with the GLMM output: the estimates for the GLMM are 
about half the size of the GLMM βs. This is to be expected. GLMMs model the data at 
the subject or individual level. The correlation between the measurements on the 
individual is generated by the random effect. Thus the βs for the GLMM represent the 
effect on an individual. A GEE models the data at the population level. The βs for a GEE 
represent the effect of the predictors averaged across all individuals with the same 
predictor values. GEEs do not use random effects but model the correlation at the 
marginal or correlation level. 

Let’s consider another GEE example. We have data from a clinical trial of 59 
epileptics. For a baseline, patients were observed for 8 weeks and the number of seizures 
recorded. The patients were then randomized to treatment by the drug Progabide (31 
patients) or to the placebo group (28 patients). They were observed for four 2-week 
periods and the number of seizures recorded. The data have been ana-lyzed by many 
authors including Thall and Vail (1990), Breslow and Clayton (1993) and Diggle, 
Heagerty, Liang, and Zeger (2002). Does Progabide reduce the rate of seizures? Take a 
look at the first two patients: 

> data(epilepsy) 
> epilepsy[1:10,] 
   seizures id treat expind timeadj age 
1        11  1     0      0       8  31 
2         5  1     0      1       2  31 
3         3  1     0      1       2  31 
4         3  1     0      1       2  31 
5         3  1     0      1       2  31 
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6        11  2     0      0       8  30 
7         3  2     0      1       2  30 
8         5  2     0      1       2  30 
9         3  2     0      1       2  30 
10        3  2     0      1       2  30 

Both were not treated (treat=0). The expind indicates the baseline period by 0 and the 
treatment period by 1. The length of these time periods is recorded in timeadj. We now 
compute the mean number of seizures per week broken down by the treatment and 
baseline vs. experimental period: 

> 
with(epilepsy,by(seizures/timeadj,list(treat,expind),me
an)) 
: 0 
: 0 
[1] 3.8482 
: 1 
: 0 
[1] 3.9556 
: 0 
: 1 
[1] 4.3036 
: 1 
: 1 
[1] 3.9839 

We can tabulate this in Table 10.1. 
  Baseline Experiment 

Placebo 3.85 4.30 

Treatment 3.96 3.98 

Table 10.1 Seizures per week in epilepsy patients. 

We see that the rate of seizures in the treatment group actually increases during the 
period in which the drug was taken. The rate of seizures also increases even more in the 
placebo group. Perhaps some other factor is causing the rate of seizures to increase 
during the treatment period and the drug is actually having a beneficial effect. Now we 
make some plots to show the difference between the treatment and the control. The first 
plot shows the difference between the two groups during the experimental period only: 

> y <- matrix(epilepsy$seizures,nrow=5) 
> matplot(1:4,sqrt(y[-
1,]),type="1",lty=epilepsy$treat[5*(1:59)]+1, 
  xlab="Period",ylab="Sqrt(Seizures)") 
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Figure 10.1 Square root of seizures per 
2-week period with treatment group 
shown as solid lines and the placebo 
group shown as dotted lines is shown 
in the plot on the left. The mean 
seizures per week is shown compared 
with the seizures per week during the 
baseline period is shown on the right 
where + indicates treated group. 

We compare the two groups in the left panel of Figure 10.1 and find little to choose 
between them. The square-root transform is used to stabilize the variance; this is often 
used with count data. Now we compare the average seizure rate to the baseline for the 
two groups: 

> my <- apply(y[-1,],2,mean)/2 
> plot(sqrt(epilepsy$seizures[epilepsy$expind == 
0]/8),sqrt(my), 
  pch=epilepsy$treat[5*(1:59)]+2,xlab="sqrt(Baseline 
seizures)", 
  ylab="sqrt(Experiment seizures)") 
> abline (0,l) 

A treatment effect, if one exists, is not readily apparent. Now we fit the GEE model. An 
offset is necessary to account for the differing lengths of the baseline and treatment 
periods being 8 and 2 weeks, respectively. Patient #49 is unusual because of the high rate 
of seizures observed. We exclude this point. An AR(1) model for the correlation structure 
is most natural since consecutive measurements will be more correlated than 
measurements separated in time.  
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> g <- gee(seizures 
~offset(log(timeadj))+expind+treat+I(expind*treat), 
  id, family=poisson,corstr="AR-
M",Mv=1,data=epilepsy,subset=(id!=49)) 
> summary(g) 
Coefficients: 
                    Estimate Naive S.E.  Naive z Robust 
S.E. Robust z 
(Intercept)         1.320377    0.10354 
12.75176     0.16065  8.21872 
expind              0.142777    0.13932  1.02482     0.
10769  1.32578 
treat              -0.079402    0.14682 -
0.54083     0.19716 -0.40273 
I (expind * treat) -0.377546    0.21774 -
1.73396     0.16839 -2.24210 
Estimated Scale Parameter:   10.687 
Number of Iterations:  3 
Working Correlation 
        [,1]    [,2]    [,3]    [,4]    [,5] 
[1,] 1.00000 0.61854 0.38259 0.23665 0.14637 
[2,] 0.61854 1.00000 0.61854 0.38259 0.23665 
[3,] 0.38259 0.61854 1.00000 0.61854 0.38259 
[4,] 0.23665 0.38259 0.61854 1.00000 0.61854 
[5,] 0.14637 0.23665 0.38259 0.61854 1.00000 

The drug does barely have a significant effect. The dispersion parameter is estimated as 
10.687. This means that if we did not account for the overdispersion, the standard errors 
would be much larger. The AR(1) correlation structure can be seen in the working 
correlation where adjacent measurements have 0.62 correlation. 

Further analysis would involve an investigation of alternative correlation structures, 
the age covariate and any trend during the experimental period. The analysis of this 
dataset is discussed in Diggle, Heagerty, Liang, and Zeger (2002). 

Further Reading: McCulloch and Searle (2002) have some coverage of GLMMs as 
well as more material on GLMs. Hardin and Hilbe (2003) give a book-length treatment of 
GEEs. Diggle, Heagerty, Liang, and Zeger (2002) discuss both topics. 

Exercises 

1. The ohio data concern 536 children from Steubenville, Ohio and were taken as part of 
a study on the effects of air pollution. Children were in the study for four years from 
age seven to ten. The response was whether they wheezed or not. The variables are: 

resp an indicator of wheeze status (1=yes, 0=no) 
id an identifier for the child 
age 7 yrs=–2, 8 yrs=–1, 9 yrs=0, 10 yrs=1 
smoke an indicator of maternal smoking at the first year of the study (1=smoker, 
0=nonsmoker) 

(a) Fit an appropriate GEE model and determine the effects of age and maternal 
smoking on wheezing.  

Mixed effect models for nonnormal responses     229



(b) In your model, what indicates that a child who already wheezes is likely to 
continue to wheeze? 

(c) What is the predicted probability that a 7 year-old with a smoking mother, 
wheezes? 

(d) Repeat your analysis using a GLM where you assume that the observations are 
independent, that is, each single response value represents a different child. 
Indicate how the conclusions would differ and which results should be preferred. 

(e) Sum the number of times wheezing is recorded for a child over the four 
measurements and model this as a function of the smoking status of the mother. 
This can be achieved as follows: 

> nohio <- reshape(ohio,idvar ="id",direction="wide", 
  timevar="age",v.names="resp") 
> nohio <- data.frame(smoke=nohio$smoke, 
  wheeze=apply(nohio[,3:6],1,sum)) 

Now determine the effect of smoking. Compare this result to the previous analyses and 
discuss which is preferable. 

2. The National Youth Survey collected a sample of 11–17 year-olds, 117 boys and 120 
girls, asking questions about marijuana usage. The data is presented in potuse. 

(a) Condense the levels of the response into whether the person did or did not use 
marijuana that year. Build a model for marijuana usage over the time period that 
takes account of sex differences. 

(b) In your model, what describes correlation between marijuana usage one year and 
the next for a particular individual? 

(c) What is the difference between boys and girls? 
(d) Compute the predicted probability of usage by boys over time. 
(e) Can you model the original three-level response in R? 

3. Components are attached to an electronic circuit card assembly by a wave-soldering 
process. The soldering process involves baking and preheating the circuit card and 
then passing it through a solder wave by conveyor. Defects arise during the process. 
The design is 27−3 with three replicates and the data is found in wave solder. Assuming 
that the responses for each run are in time order, analyze the data. Is there any 
evidence of an effect due to the time order? 

4. The nitrofen data in boot package come from an experiment to measure the 
reproductive toxicity of the pesticide nitrofen on a species of zooplankton called 
Ceriodaphnia dubia. Each animal produced three broods in which the number of live 
offspring was recorded. Fifty animals in total were used and divided into five batches. 
Each batch was treated in a solution with a different concentration of the pesticide. 

Build a model for the number of live offspring produced in the successive broods. 
Your model should describe how this number changes and is related within a 
given animal and how this relates to the concentration of pesticide.  

5. The toenail data comes from a multicenter study comparing two oral treatments for 
toenail infection. Patients were evaluated for the degree of separation of the nail. 
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Patients were randomized into two treatments and were followed over seven visits: 
four in the first year and yearly thereafter. The patients have not been treated prior to 
the first visit so this should be regarded as the baseline. 

Analyze the data to determine the difference between the two treatments and the 
progression of the infection over time. 
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CHAPTER 11  
Nonparametric Regression 

The generalized linear model was an extension of the linear model y=Xβ+ε to allow the 
responses y from the exponential family. The mixed effect models allowed for a much 
more general treatment of ε. We now switch our attention to the linear predictor η=Xβ. 
We want to make this more flexible. There are a wide variety of available methods, but it 
is best to start with simple regression. The methods developed here form part of the 
solution to the multiple predictor problem. 

We start with a simple regression problem. Given fixed x1,…, xn, we observe y1,…, yn 
where: 

yi=f(xi)+εi   

where the εi are i.i.d. and have mean zero and unknown variance σ2. The problem is to 
estimate the function f. 

A parametric approach is to assume that f(x) belong to a parametric family of 
functions: f(x|β). So f is known up to a finite number of parameters. Some examples are: 

f(x|β)=β0+β1x 
f(x|β)=β0+β1x+β2x2 
f(x|β)=β0+β1xβ2 

  

The parametric approach is quite flexible because we are not constrained to just linear 
predictors as in the first model of the three above. We can add many different types of 
terms such as polynomials and other functions of the variable to achieve flexible fits. 
Nonlinear models, such as the third case above, are also parametric in nature. 
Nevertheless, no matter what finite parametric family we specify, it will always exclude 
many plausible functions. 

The nonparametric approach is to choose f from some smooth family of functions. 
Thus the range of potential fits to the data is much larger than the parametric approach. 
We do need to make some assumptions about f—that it has some degree of smoothness 
and continuity, for example, but these restrictions are far less limiting than the parametric 
way. 

The parametric approach has the advantage that it is more efficient if the model is 
correct. If you have good information about the appropriate model family, you should 
prefer a parametric model. Parameters may also have intuitive interpretations. 
Nonparametric models do not have a formulaic way of describing the relationship 
between the predictors and the response; this often needs to be done graphically. This 
relates to another advantage of parametric models in that they reduce information 
necessary for prediction; you can write down the model formula, typically in a com-pact 
form. Nonparametric models are less easily communicated on paper. Parametric models 
also enable easy utilization of past experience. 



The nonparametric approach is more flexible. In modeling new data, one often has 
very little idea of an appropriate form for the model. We do have a number of heuristic 
tools using diagnostic plots to help search for this form, but it would be easier to let the 
modeling approach take care of this search. Another disadvantage of the parametric 
approach is that one can easily choose the wrong form for the model and this results in 
bias. The nonparametric approach assumes far less and so is less liable to make bad 
mistakes. The nonparametric approach is particularly useful when little past experience is 
available 

For our examples we will use three datasets, one real (data on Old Faithful) and two 
simulated, called exa and exb. The data comes from Härdle (1991). The reason we use 
simulated data is to see how well the estimates match the true function (which cannot 
usually be known for real data). We plot the data in the first three panels of Figure 11.1, 
using a line to mark the true function where known. For exa, the true function is 
f(x)=sin3(2πx3). For exb, it is constant zero, that is, f(x)=0: 

> data(exa) 
> plot (y ~ x, exa,main="Example A",pch=".") 
> lines(m ~ x, exa) 
> data(exb) 
> plot(y ~ x, exb,main="Example B",pch=".") 
> lines(m ~ x, exb) 
> data(faithful) 
> plot(waiting ~ duration, faithful,main="old 
Faithful",pch=".") 

We now examine several widely used nonparametic regression estimators, also known as 
smoothers. 

 

Figure 11.1 Data examples. Example A 
has varying amounts of curvature, two 
optima and a point of inflexion. 
Example B has two outliers. The Old 
Faithful provides the challenges of 
real data. 
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11.1 Kernel Estimators 

In its simplest form, this is just a moving average estimator. More generally, our estimate 
of f, called is: 

 
  

K is a kernel where ∫ K=1. The moving average kernel is rectangular, but smoother 
kernels can give better results, λ is called the bandwidth, window width or smoothing 
parameter. It controls the smoothness of the fitted curve. 

If the xs are spaced very unevenly, then this estimator can give poor results. This 
problem is somewhat ameliorated by the Nadaraya-Watson estimator: 

 

  

We see that this estimator simply modifies the moving average estimator so that it is a 
true weighted average where the weights for each y will sum to one. 

It is worth understanding the basic asymptotics of kernel estimators. The optimal 
choice of λ, gives: 

   

MSE stands for mean squared error and we see that this decreases at a rate propor-tional 
to n−4/5 with the sample size. Compare this to the typical parametric estimator where 
MSE(x)=O(n−1), but this only holds when the parametric model is correct. So the kernel 
estimator is less efficient. Indeed, the relative difference between the MSEs becomes 
substantial as the sample size increases. However, if the parametric model is incorrect, 
the MSE will be O(1) and the fit will not improve past a cer-tain point even with 
unlimited data. The advantage of the nonparametic approach is the protection against 
model specification error. Without assuming much stronger restrictions on f, 
nonparametric estimators cannot do better than O(n−4/5). 

The implementation of a kernel estimator requires two choices: the kernel and the 
smoothing parameter. For the choice of kernel, smoothness and compactness are 
desirable. We prefer smoothness to ensure that the resulting estimator is smooth, so for 
example, the uniform kernel will give stepped-looking fit that we may wish to avoid. We 
also prefer a compact kernel because this ensures that only data, local to the point at 
which f is estimated, is used in the fit. This means that the Gaussian kernel is less 
desirable, because although it is light in the tails, it is not zero, meaning in principle that 
the contribution of every point to the fit must be computed. The optimal choice under 
some standard assumptions is the Epanechnikov kernel: 
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This kernel has the advantage of some smoothness, compactness and rapid computa-tion. 
This latter feature is important for larger datasets, particularly when resampling 
techniques like bootstrap are being used. Even so, any sensible choice of kernel will 
produce acceptable results, so the choice is not crucially important. 

The choice of smoothing parameter λ is critical to the performance of the estimator 
and far more important than the choice of kernel. If the smoothing parameter is too small, 
the estimator will be too rough; but if it is too large, important features will be smoothed 
out. 

We demonstrate the Nadaraya-Watson estimator next for a variety of choices of 
bandwidth on the Old Faithful data shown in Figure 11.2. We use the ksmooth function 
which is part of the R base package. This function lacks many useful features that can be 
found in some other packages, but it is adequate for simple use. The default uses a 
uniform kernel, which is somewhat rough. We have changed this to the normal kernel: 

> plot(waiting ~ duration, 
faithful,main="bandwidth=0.1",pch=".") 
> 
lines(ksmooth(faithful$duration,faithful$waiting,"norma
l",0.1)) 
> plot(waiting ~ duration, 
faithful,main="bandwidth=0.5",pch=".") 
> 
lines(ksmooth(faithful$duration,faithful$waiting,"norma
l",0.5)) 
> plot(waiting ~ duration, 
faithful,main="bandwidth=2",pch=".") 
> 
lines(ksmooth(faithful$duration,faithful$waiting,"norma
l”, 2)) 

 

Figure 11.2 Nadaraya-Watson kernel 
smoother with a normal kernel for 
three different bandwidths on the Old 
Faithful data. 
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The central plot in Figure 11.2 is the best choice of the three. Since we do not know the 
true function relating waiting time and duration, we can only speculate, but it does seem 
reasonable to expect that this function is quite smooth. The fit on the left does not seem 
plausible since we would not expect the mean waiting time to vary so much as a function 
of duration. On the other hand, the plot on the right is even smoother than the plot in the 
middle. It is not so easy to choose between these. Another consideration is that the eye 
can always visualize additional smoothing, but it is not so easy to imagine what a less 
smooth fit might look like. For this reason, we recommend picking the least smooth fit 
that does not show any implausible fluctuations. Of the three plots shown, the middle plot 
seems best. Smoothers are often used as a graphical aid in interpreting the relationship 
between variables. In such cases, visual selection of the amount of smoothing is effective 
because the user can employ background knowledge to make an appropriate choice and 
avoid serious mistakes. 

You can choose λ interactively using this subjective method. Plot for a range of 
different λ and pick the one that looks best as we have done above. You may need to 
iterate the choice of λ to focus your decision. Knowledge about what the true relationship 
might look like can be readily employed. 

In cases where the fitted curve will be used to make numerical predictions of future 
values, the choice of the amount of smoothing has an immediate effect on the outcome. 
Even here subjective methods may be used. If this method of selecting the amount of 
smoothing seems disturbingly subjective, we should also understand that the selection of 
a family of parametric models for the same data would also involve a great deal of 
subjective choice although this is often not explicitly recognized. Statistical modeling 
requires us to use our knowledge of what general forms of relationship might be 
reasonable. It is not possible to determine these forms from the data in an entirely 
objective manner. Whichever methodology you use, some subjective decisions will be 
necessary. It is best to accept this and be honest about what these decisions are. 

Even so, automatic methods for selecting the amount of smoothing are also useful. 
Selecting the amount of smoothing using subjective methods requires time and effort. 
When a large number of smooths are necessary, some automation is desirable. In other 
cases, the statistician will want to avoid the explicit appearance of subjectivity in the 
choice. Cross-validation (CV) is a popular general-purpose method. The criterion is: 

 

  

where (j) indicates that point j is left out of the fit. We pick the λ that minimizes this 
criterion. True cross-validation is computationally expensive, so an approximation to it, 
known as generalized cross-validation or GCV, is sometimes used. There are also many 
other methods of automatically selecting the λ. 

Our practical experience has been that automatic methods, such as CV, often work 
well, but sometimes produce estimates that are clearly at odds with the amount of 
smoothing that contextual knowledge would suggest. For this reason, we are unwilling to 
trust automatic methods completely We recommend using them as a starting point for a 
possible interactive exploration of the appropriate amount of smoothing if time permits. 
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They are also useful when a very large numbers of smooths are needed such as in the 
additive modeling approach described in Chapter 12. 

When smoothing is used to determine whether f has certain features such as multiple 
maximums (called bump hunting) or monotonicity, special methods are necessary to 
choose the amount of smoothing since this choice will determine the outcome of the 
investigation. 

The sm library, described in Bowman and Azzalini (1997), allows the computation of 
the cross-validated choice of bandwidth. For example, we find the CV choice of 
bandwidth for the Old Faithful and plot the result: 

> library(sm) 
> hm <- 
hcv(faithful$duration,faithful$waiting,display="lines") 
> 
sm.regression(faithful$duration,faithful$waiting,h=hm, 
  xlab="duration",ylab="waiting”) 

 

Figure 11.3 The cross-validation 
criterion shown as a function of the 
smoothing parameter is shown in the 
first panel. The minimum occurs at a 
value of 0.424. The second panel 
shows the kernel estimate with this 
value of the smoothing parameter. 

We see the criterion plotted in the first panel of Figure 11.3. Notice that the function is 
quite flat in the region of the minimum indicating that a wide range of choices will 
produce acceptable results. The resulting choice of fit is shown in the second panel of the 
figure. The sm package uses a Gaussian kernel where the smoothing parameter is the 
standard deviation of the kernel. 

We repeat the exercise for Example A; the plots are shown in Figure 11.4: 

> hm <- hcv(exa$x,exa$y,display="lines”) 
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> sm.regression(exa$x,exa$y,h=hm,xlab="x",ylab="y”) 

For Example B: 

> hm <- hcv(exb$x,exb$y,display="lines”) 
hcv: boundary of search area reached. 
Try readjusting hstart and hend. 
hstart:  0.014122 
hend :  0.28244 
            h     cv 
[1,] 0.014122 171.47 
[2,] 0.021665 190.99 
[3,] 0.033237 219.87 
[4,] 0.050990 242.99 
[5,] 0.078226 258.13 
[6,] 0.120008 272.24 
[7,] 0.184108 284.39 
[8,] 0.282445 288.48 

we find that the CV choice is at the lower boundary of suggested bandwidths. We can 
look at a smaller range:  

 

Figure 11.4 Cross-validation selection 
of smoothing for Example A. The 
cross-validation criterion is shown on 
left—the minimum is at h=0.022. The 
fit from this choice of h is shown on the 
right. 

> hm <- hcv(exb$x,exb$y,display="lines",hstart=0.005) 
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However, bandwidths this small represent windows that include only a single point, 
making cross-validation impractical. Choosing such a small bandwidth as in: 

> sm.regression(exb$x,exb$y,h=0.005) 

gives us a dramatic undersmooth because the regression exactly fits the data. 

11.2 Splines 

Smoothing Splines: The model is yi=f(xi)+εi, so in the spirit of least squares, we might 

choose to minimize the The solution is This is a 
“join the dots” regression that is almost certainly too rough. Instead, suppose we choose 

to minimize a modified least squares criterion: 

 
  

where λ>0 is the smoothing parameter and ∫[f″(x)]2dx is a roughness penalty. When f is 
rough, the penalty is large, but when f is smooth, the penalty is small. Thus the two parts 
of the criterion balance fit against smoothness. This is the smoothing spline fit. 

For this choice of roughness penalty, the solution is of a particular form: is a cubic 

spline. This means that is a piecewise cubic polynomial in each interval (xi, xi+1) 
(assuming that the xis are sorted). It has the property that and are continuous. 
Given that we know the form of the solution, the estimation is reduced to the parametric 
problem of estimating the coefficients of the polynomials. This can be done in a 
numerically efficient way. 

Several variations on the basic theme are possible. Other choices of roughness penalty 
can be considered, where penalties on higher-order derivatives lead to fits with more 
continuous derivatives. We can also use weights by inserting them in the sum of squares 
part of the criterion. This feature is useful when smoothing splines are means to an end 
for some larger procedure that requires weighting. A robust version can be developed by 
modifying the sum of squares criterion to: 

 
  

where ρ(x)=|x| is one possible choice. 
In R, cross-validation is used to select the smoothing parameter by default. We show 

this default choice of smoothing for our three test cases: 

> plot(waiting ~ duration, faithful,pch=".") 
> 
lines(smooth.spline(faithful$duration,faithful$waiting)
) 
> plot(y ~ x, exa, pch=".") 
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> lines(exa$x,exa$m) 
> lines(smooth.spline(exa$x,exa$y),lty=2) 
> plot(y ~ x, exb, pch=".") 
> lines(exb$x,exb$m) 
> lines(smooth.spline(exb$x,exb$y), lty=2) 

 

Figure 11.5 Smoothing spline fits. For 
Examples A and B, the true function is 
shown as solid and the spline fit as 
dotted. 

The fits may be seen in Figure 11.5. The fit for the Old Faithful data looks reasonable. 
The fit for Example A does a good job of tracking the hills and valleys but overfits in the 
smoother region. The default choice of smoothing parameter given by CV is a disaster for 
Example B as the data is just interpolated. This illustrates the danger of blindly relying on 
automatic bandwidth selection methods. 

Regression Splines: Regression splines differ from smoothing splines in the fol-
lowing way: For regression splines, the knots of the B-splines used for the basis are 
typically much smaller in number than the sample size. The number of knots chosen 
controls the amount of smoothing. For smoothing splines, the observed unique x values 
are the knots and λ is used to control the smoothing. It is arguable whether the regression 
spline method is parametric or nonparametric, because once the knots are chosen, a 
parametric family has been specified with a finite number of parameters. It is the freedom 
to choose the number of knots that makes the method nonparametric. One of the desirable 
characteristics of a nonparametric regression estimator is that it should be consistent for 
smooth functions. This can be achieved for regression splines if the number of knots is 
allowed to increase at an appropriate rate with the sample size. 

We demonstrate some regression splines here. We use piecewise linear splines in this 
example, which are constructed and plotted as follows: 

> rhs <- function (x,c) ifelse (x>c, x-c, 0) 
> curve(rhs(x,0.5), 0,1) 
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where the spline is shown in the first panel of Figure 11.6. Now we define some knots for 
Example A: 

> knots <- 0:9/10 
> knots 
  [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

and compute a design matrix of splines with knots at these points for each x: 

> dm <- outer (exa$x,knots,rhs) 
> matplot(exa$x,dm,type="l",col=l) 

where the basis functions are shown in the second panel of Figure 11.6. Now we  

 

Figure 11.6 One basis function for 
linear regression splines shown on the 
left and the complete set shown on the 
right. 

compute and display the regression fit: 

> g <- lm(exa$y ~ dm) 
> plot (y ~ x, exa,pch=".",xlab="x",ylab="y") 
> lines(exa$x,predict(g)) 

where the plot is shown in the first panel of Figure 11.7. Because the basis functions are 
piecewise linear, the fit is also piecewise linear. A better fit may be obtained by adjusting 
the knots so that they are denser in regions of greater curvature: 
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> newknots <- 
c(0,0.5,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95) 
> dmn <- outer(exa$x,newknots,rhs) 
> gn <- lm(exa$y ~ dmn) 
> plot(y ~x, exa,pch=".",xlab="x",ylab="y") 
> lines(exa$x,predict(gn)) 

where the plot is shown in the second panel of Figure 11.7. We obtain a better fit  

 

Figure 11.7 Evenly spaced knots fit 
shown on the left and knots spread 
relative to the curvature on the right. 

but only by using our knowledge of the true curvature. This knowledge would not be 
available for real data, so more practical methods place the knots adaptive according to 
the estimated curvature. 

One can achieve a smoother fit by using higher-order splines. The bs () function can 
be used to generate the appropriate spline basis. The default is cubic B-splines. We 
display 12 cubic B-splines evenly spaced on the [0, 1] interval. The splines close to the 
boundary take a different form as seen in the first panel of Figure 11.8: 

> library(splines) 
> 
matplot(bs(seq(0,1,length=1000),df=12),type="1",ylab=""
,col=1) 

We can now use least squares to determine the coefficients. We then display the fit as 
seen in the second panel of Figure 11.8:  
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Figure 11.8 A cubic B-spline basis is 
shown in the left panel and the 
resulting fit to the Exam-ple A data is 
shown in the right panel. 

> sml <- 1m(y ~ bs(x,12),exa) 
> plot (y ~ x, exa, pch=".") 
> lines(m ~ x, exa) 
> lines(predict(sml) ~ x, exa, lty=2) 

We see a smooth fit, but again we could do better by placing more knots at the points of 
high curvature and fewer in the flatter regions. 

11.3 Local Polynomials 

Both the kernel and spline methods have been relatively vulnerable to outliers as seen by 
their performance on Example B. The fits can be improved with some manual 
intervention, either to remove the outliers or to increase the smoothing parameters. 
However, smoothing is frequently just a small part of an analysis and so we might wish 
to avoid giving each smooth individual attention. Furthermore, habitual removal of 
outliers is an ad hoc strategy that is better replaced with a method that deals with long-
tailed errors gracefully. The local polynomial method combines robustness ideas from 
linear regression and local fitting ideas from kernel methods. 

First we select a window. We then fit a polynomial to the data in that window using 
robust methods. The predicted response at the middle of the window is the fitted value. 
We then simply slide the window over the range of the data, repeating the fitting process 
as the window moves. The most well-known implementation of this type of smoothing is 
called lowess or loess and is due to Cleveland (1979). 

As with any smoothing method, there are choices to be made. We need to choose the 
order of the polynomial fit. A quadratic allows us to capture peaks and valleys in the 
function. However, a linear term also performs well and is the default choice in the loess 
function. As with most smoothers, it is important to pick the window width well. The 
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default choice takes three quarters of the data and may not be a good choice as we shall 
see below.  

For the Old Faithful data, the default choice is satisfactory, as seen in the first panel of 
Figure 11.9: 

> plot(waiting ~ duration, faithful,pch=".") 
> f <- loess(waiting ~ duration, faithful) 
> i <- order(faithful$duration) 
> lines(f$x[i],f$fitted[i]) 

For Example A, the default choice is too large. The choice that minimizes the integrated 
squared error between the estimated and true function requires a span (proportion of the 
range) of 0.22. Both fits are seen in the middle panel of Figure 11.9: 

> plot(y ~ x, exa, pch=".") 
> lines(exa$x,exa$m,lty=1) 
> f <- loess(y ~ x,exa) 
> lines(f$x,f$fitted,lty=2) 
> f <- loess(y ~ x, exa, span=0.22) 
> lines(f$x,f$fitted,lty=5) 

In practice, the true function is, of course, unknown and we would need to select the span 
ourselves, but this optimal choice does at least show how well loess can do in the best of 
circumstances. The fit is similar to that for smoothing splines. 

For Example B, the optimal choice of span is one (that is all the data). This is not 
surprising since the true function is a constant and so maximal smoothing is desired. We 
can see that the robust qualities of loess prevent the fit from becoming too distorted by 
the two outliers even with the default choice of smoothing span: 

> plot(y ~ x, exb, pch=".") 
> f <- loess(y ~ x, exb) 
> lines(f$x,f$fitted,lty=2) 
> f <- loess(y ~ x, exb,span=1) 
> lines(f$x,f$fitted,lty=5) 
> lines(exb$x,exb$m) 

11.4 Wavelets 

Regression splines are an example of a basis function approach to fitting. We 

approximate the curve by a family of basis functions, so that 
Thus the fit requires estimating the coefficients, ci. The choice of basis functions will 
determine the properties of the fitted curve. The estimation of ci is particularly easy if the 
basis functions are orthogonal. 

Examples of orthogonal bases are orthogonal polynomials and the Fourier basis. The 
disadvantage of both these families is that the basis functions are not compactly 
supported so that the fit of each basis function depends on the whole data. This means 
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that these fits lack the desirable local fit properties that we have seen in previously 
discussed smoothing methods. Although Fourier methods are popular for some 
applications, they are not typically used for general-purpose smoothing. 

Cubic B-splines are compactly supported, but they are not orthogonal. Wavelets have 
the advantage that they are compactly supported and can be defined so as to possess the 
orthogonality property. They also possess the multiresolution property  

 

Figure 11.9 Loess smoothing: Old 
Faithful data is shown in the left panel 
with the default amount of smoothing. 
Example A data is shown in the middle 
and B in the right panel. The true 
function is shown as a solid line along 
with the default choice (dotted) and 
respective optimal amounts of 
smoothing (dashed) are also shown. 

which allows them to fit the grosser features of the curve while focusing on the finer 
detail where necessary. 

We begin with the simplest type of wavelet: the Haar basis. The mother wavelet for 
the Haar family is defined on the interval [0, 1) as: 

 

  

We generate the members of family by dilating and translating this function. The next 
two members of the family are defined on [0, 1/2) and [1/2, 1) by rescaling the mother 
wavelet to these two intervals. The next four members are defined on the quarter intervals 
in the same way. We can index the family members by level j and within the level by k so 
that each function will be defined on the interval [k/2j, (k+1)/2j) and takes the form: 

hn(x)=2j/2w(2jx−k)   
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where n=2j+k and 0≤k≤2j. We can see by simply plotting these functions that they are 
orthogonal. There are also orthonormal, because they integrate to 1. Furthermore, they 
have a local basis where the support becomes narrower as the level is increased. 
Computing the coefficients is particularly quick because of these properties. 

Wavelet fitting can be implemented using the wavethresh package. The first step is to 
make the wavelet decomposition. We will illustrate this with Example A: 

> library(wavethresh) 
> wds <- wd (exa$y, filter.number=l) 

The filter number specifies the complexity of the family. The Haar basis is the sim-plest 
available but is not the default choice. We can now show the mother wavelet and wavelet 
coefficients: 

> draw(wds,main="") 
> plot (wds, main="") 

 

Figure 11.10 Haar mother wavelet and 
wavelet coefficients from 
decomposition for Example A. 

We can see the Haar mother wavelet in the left panel of Figure 11.10. We see the wavelet 
decomposition in the right panel. 

Suppose we wanted to compress the data into a more compact format. Smoothing can 
be viewed as a form of compression because it retains the important features of the data 
while discarding some of the finer detail. The smooth is described in terms of the fitted 
coefficients which are fewer than the number of data points. The method would be called 
lossy since some information about the original data is lost. 

For example, suppose we want to smooth the data extensively. We could throw away 
all the coefficients of level four or higher and then reconstruct the function as follows: 

> wtd <- threshold(wds,policy="manual",value=9999) 
> fd <- wr(wtd) 
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Only level-three and higher coefficients are retained. There are only 23=8 of these. The 
thresholding here applies to level four and higher only by default. Any coefficient less 
than 9999 in absolute value is set to zero—that is, all of them in this case. The wr 
reverses the wavelet transform. We now plot the result as seen in the first panel of Figure 
11.11: 

> plot(y ~ x, exa,pch=".") 
> lines(m ~ x, exa) 
> lines(fd ~ x, exa, lty=5, lwd=2) 

We see that the fit consists of eight constant fits; we expect this since Haar basis is 
piecewise constant and we have thrown away the higher-order parts leaving just eight 
coefficients.  

 

Figure 11.11 Thresholding and 
inverting the transform. In the left 
panel all level-four and above 
coefficients are zeroed. In the right, the 
coefficients are thresholded using the 
default method. The true function is 
shown as a solid line and the estimate 
as a dashed line. 

Instead of simply throwing away higher-order coefficients, we could zero out only the 
small coefficients. We choose the threshold using the default method: 

> wtd2 <- threshold(wds) 
> fd2 <- wr(wtd2) 

Now we plot the result as seen in the second panel of Figure 11.11. 
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> plot(y ~ x, exa,pch=".") 
> lines(m ~ x, exa) 
> lines(fd2 ~ x, exa, lty=5, lwd=2) 

Again, we see a piecewise constant fit, but now the segments are of varying lengths. 
Where the function is relatively flat, we do not need the detail from the higher-order 
terms. Where the function is more variable, the finer detail is helpful. 

We could view the thresholded coefficients as a compressed version of the original 
data (or signal). Some information has been lost in the compression, but the thresholding 
algorithm ensures that we tend to keep the detail we need, while throwing away noisier 
elements. 

Even so, the fit is not particularly good because the fit is piecewise constant. We 
would like to use continuous basis functions while retaining the orthogonality and 
multiresolution properties. Families of such functions were discovered recently and 
described in Daubechies (1991). We illustrate the default form on our data: 

> wds <- wd (exa$y) 
> draw(wds,main="") 
> plot (wds,main="") 

The mother wavelet takes an unusual form. The function is not explicitly defined, but is 
implicitly computed from the method for making the wavelet decomposition. Now we try 
the default thresholding and reconstruct the fit:  

> wtd <- threshold(wds) 
> fd <- wr(wtd) 
> plot(y ~ x, exa,pch=".") 
> lines(m ~ x, exa) 
> lines(fd ~ x, exa, lty=2) 

We can see the fit in Figure 11.13. Although the fit follows the true function quite well, 
there is still some roughness. 

Example A does not illustrate the true strengths of the wavelet approach which is not 
well suited to smoothly varying functions with the default choice of wavelet. It comes 
into its own on functions with discontinuities and higher dimensions such as two-
dimensional image data. 

11.5 Other Methods 

Nearest Neighbor: In this method, we set average of λ nearest neighbors of x. 
We let the window width vary to accommodate the same number of points. We need to 
pick the number of neighbors to be used; cross-validation can be used for this purpose. 

Variable Bandwidth: When the true f varies a lot, a small bandwidth is good, but 
where it is smooth, a large bandwidth is preferable. This motivates this estimator, suitable 
for evenly spaced data: 
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Figure 11.12 Mother wavelet is shown 
in the left panel—the Daubechies 
orthonormal compactly supported 
wavelet N=2 from the extremal phase 
family. The right panel shows the 
wavelet coefficients. 

 

  

This is an appealing idea in principle, but it is not easy to execute in practice, because it 
requires prior knowledge of the relative smoothness of the function across the range of 
the data. A pilot estimate may be used, but it has been difficult to make this work in 
practice.  

Running Medians: Nonparametric regression is more robust than parametric regression 
in a model sense, but that does not mean that it is robust to outliers. Local averaging-
based methods are sensitive to outliers, so medians can be useful. We let N(x, λ)={i: xi is 
one of the λ-nearest neighbors of x} then: 

   

This method is robust to outliers, but produces a rough-looking fit. One might want to 
smooth again using another method. This is called twicing. 

Others: The construction of alternate smoothing methods has long been a popular 
topic of interest for statisticians and researchers in other fields. Because no definitive 
solution is possible, this has encouraged the development of a wide range of methods. 
Some are intended for general use while others are customized for a particular 
application. 
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Figure 11.13 Daubechies wavelet N=2 
thresholded fit to the Example A data. 

11.6 Comparison of Methods 

In the univariate case, we can describe three situations. When there is very little noise, 
interpolation (or at most, very mild smoothing) is the best way to recover the relation 
between x and y. When there is a moderate amount of noise, nonparametric methods are 
most effective. There is enough noise to make smoothing worthwhile but also enough 
signal to justify a flexible fit. When the amount of noise becomes larger, parametric 
methods become relatively more attractive. There is insufficient signal to justify anything 
more than a simple model. 

It is not reasonable to claim that any one smoother is better than the rest. The best 
choice of smoother will depend on the characteristics of the data and knowledge about 
the true underlying relationship. The choice will also depend on whether the fit is to be 
made automatically or with human intervention. When only a single dataset is being 
considered, it’s simple enough to craft the fit and intervene if a particular method 
produces unreasonable results. If a large number of datasets are to be fit automatically, 
then human intervention in each case may not be feasible. In such cases, a reliable and 
robust smoother may be needed. 
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We think the loess smoother makes a good all-purpose smoother. It is robust to 
outliers and yet can produce smooth fits. When you are confident that no outliers are 
present, smoothing splines is more efficient than local polynomials. 

11.7 Multivariate Predictors 

Given x1,…, xn where we observe: 
yi=f(x)+εi i=1,…n   

Many of the methods discussed previously extend naturally to higher dimensions, for 
example, the Nadaraya-Watson estimator becomes: 

 

  

where the kernel K is typically spherically symmetric. The spline idea can be used with 
the introduction of thin plate splines and local polynomials can be naturally extended. 

We can illustrate kernel smoothing in two dimensions: 

> data(savings) 
> y <- savings$sr 
> x <- cbind(savings$pop15,savings$ddpi) 
> 
sm.regression(x,y,h=c(1,1),xlab="pop15",ylab="growth",z
lab="savings rate”) 
> 
sm.regression(x,y,h=c(5,5),xlab="pop15",ylab="growth",z
lab="savings rate”) 

Developing such estimators is not so difficult but there are problems: Because 
nonparametric fits are quite complex, we need to visualize them to make sense of them 
and yet this cannot be done easily for more than two predictors. Most nonparametric 
regression methods rely on local smoothing; local averaging is the crudest exam-ple of 
this. However, to maintain a stable average we need sufficient points in the window. For 
data in high dimensions, the window will need to be wide to capture sufficient points to 
average. You need an extremely large number of points to cover a high-dimensional 
space to high density. This is known as the “curse of dimension-ality,” a term coined by 
Bellman (1961). In truth, it should not be called a curse, but rather a blessing, since 
information on additional variables should have some value, even if it is inconvenient. 
Our challenge is to make use of this information. Nonpara- 
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Figure 11.14 Smoothing savings rate 
as a function growth and population 
under 15. Plot on the left is too rough 
while that on the right seems about 
right. 

metric regression fits are hard to interpret in higher dimensions where visualization is 
difficult. Simply extending the one-dimensional method is not effective. 

The methods we describe in the following chapters impose additional restrictions on 
the fitted function to make the problem feasible and the results easier to interpret. 

Further Reading: For a general review of smoothing methods, see Simonoff (1996). 
For books on specific methods of smoothing, see Loader (1999), Wahba (1990), Bowman 
and Azzalini (1997), Wand and Jones (1995) and Eubank (1988). The application of 
nonparametric regression to the goodness of fit problem may be found in Hart (1997). 

Exercises 

We have introduced kernel smoothers, splines, local polynomials, wavelets and other 
smoothing methods in this chapter. Apply these methods to the following datasets. You 
must choose the amount of smoothing you think is appropriate. Compare the fits from the 
methods. Comment on the features of the fitted curves. Comment on the advantage of the 
nonparametric approach compared to a parametric one for the data and, in particular, 
whether the nonparametric fit reveals structure that a parametric approach would miss. 

1. The dataset teengamb concerns a study of teenage gambling in Britain. Take the 
variables gamble as the response and income as the predictor. Does a transformation 
of the data before smoothing help? 

2. The dataset us wages is drawn as a sample from the Current Population Survey in 
1988. Predict the wage from the years of education. Compute the mean wage for each 
number of years of education and compare the result to the smoothed fit. Take the 
square root of the absolute value of the residuals from your chosen fit and smooth 
these as a function of educ.  
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3. The dataset prostate is from a study of 97 men with prostate cancer who were due to 
receive a radical prostatectomy. Predict the 1 weight using the age. How do the 
methods deal with the outlier? 

4. The dataset divusa contains data on divorces in the United States from 1920 to 1996. 
Predict divorce from year. Predict military from year. There really were more military 
personnel during the Second World War, so these points are not outliers. How well do 
the different smoothers respond to this? 

5. The aatemp data comes from the U.S. Historical Climatology network. They are the 
annual mean temperatures (in degrees Fahrenheit) in Ann Arbor, Michigan, going 
back about 150 years. Fit a smooth to the temperature as a function of year. Does the 
smooth help determine whether the temperature is changing over time? 
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CHAPTER 12  
Additive Models 

Suppose we have a response y and predictors x1,…, xp. A linear model takes the form: 

 

  

We can include transformations and combinations of the predictors among the xs, so this 
model can be very flexible. However, it can often be difficult to find a good model, given 
the wide choice of transformations available. We can try a systematic approach of fitting 
a family of transformations. For example, we can try polynomials of the predictors, but 
particularly if we include interactions, the number of terms becomes very large, perhaps 
greater than the sample size. Alternatively, we can use more interactive and graphical 
approaches that reward intuition over brute force. However, this requires some skill and 
effort on the part of the analyst. It is easy to miss important structure; a particular 
difficulty is that the methods only consider one variable at a time, when the secret to 
finding good transformations may require that variable be considered simultaneously. 

We might try a nonparametric approach by fitting: 
y=f(x1,…, xp)+ε   

This avoids the necessity of parametric assumptions about the form of the function f, but 
for p bigger than two or three, it is simply impractical to fit such models due to large 
sample size requirements, as discussed at the end of the previous chapter. 

A good compromise between these extremes is the additive model: 

 

  

where the fj are smooth arbitrary functions. Additive models were introduced by Stone 
(1985). 

Additive models are more flexible than the linear model, but still interpretable since 
the functions fj can be plotted to give a sense of the marginal relationship between the 
predictor and the response. Of course, many linear models discovered during a data 
analysis take an additive form where the transformations are determined in an ad hoc 
manner by the analyst. The advantage of the additive model approach is that the best 
transformations are determined simultaneously and without parametric assumptions 
regarding their form. 

In its basic form, the additive model will do poorly when strong interactions exist. In 
this case we might consider adding terms like fij(xi xj) or even fij(xi, xj) if there is sufficient 



data. Categorical variables can be easily accommodated within the model using the usual 
regression approach. For example: 

 

  

where Z is the design matrix for the variables that will not be modeled additively, where 
some may be quantitative and others qualitative. The γ are the associated regression 
parameters. We can also have an interaction between a factor and a continuous predictor 
by fitting a different function for each level of that factor. For example, we might have 
fmale and ffemale. 

There are at least three ways of fitting additive models in R. The gam package 
originates from the work of Hastie and Tibshirani (1990). The mgcv package is part of 
the recommended suite that comes with the default installation of R and is based on 
methods described in Wood (2000). The gam package allows more choice in the 
smoothers used while the mgcv package has an automatic choice in the amount of 
smoothing as well as wider functionality. The gss package of Gu (2002) takes a spline-
based approach. 

The fitting algorithm depends on the package used. The backfitting algorithm is used 
in the gam package. It works as follows: 

1. We initialize by setting and where is some initial estimate, such 
as the least squares, for j=1,…p. 

2. We cycle j=1,…, p, 1,…, p, 1,… 

 
  

where S(x, y) means the smooth on the data (x, y). The choice of S is left open to 
the user. It could be a nonparametric smoother like splines or loess, or it could be 
a parametric fit, say linear or polynomial. We can even use different smoothers on 
different predictors with differing amounts of smoothing. 

The algorithm is iterated until convergence. Hastie and Tibshirani (1990) show that 
convergence is assured under some rather loose conditions. The term y−β0−Σi≠j fi(xi) is a 
partial residual—the result of fitting everything except xj, making the connection to linear 
model diagnostics. 

The mgcv package employs a penalized smoothing spline approach. Suppose we 
represent for a family of spline basis functions, We impose a 

penalty which can be written in the form for a suitable matrix Sj 
that depends on the choice of basis. We then maximize: 

 
  

where L(β) is likelihood with respect to β and the λjs control the amount of smoothing for 
each variable. GCV is used select the λjs.  
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12.1 Additive Models Using the gam Package 

We use data from a study of the relationship between atmospheric ozone concentration, 
O3 and other meteorological variables in the Los Angeles Basin in 1976. To simplify 
matters, we will reduce the predictors to just three: temperature measured at E1 Monte, 
temp, inversion base height at LAX, ibh, and inversion top temperature at LAX, ibt. A 
number of cases with missing variables have been removed for simplicity. The data were 
first presented by Breiman and Friedman (1985). First we fit a simple linear model for 
reference purposes: 

> data(ozone) 
> olm <- 1m(03 ~ temp + ibh + ibt, ozone) 
> summary(olm) 
Coefficients: 
             Estimate Std. Error t value  Pr(>|t|) 
(Intercept) -7.727982   1.621662   -4.77 0.0000028 
temp         0.380441   0.040158    9.47   < 2e-16 
ibh         -0.001186   0.000257   -4.62 0.0000055 
ibt         -0.005821   0.010179   -0.57      0.57 
Residual standard error: 4.75 on 326 degrees of freedom 
Multiple R-Squared: 0.652,    Adjusted R-squared: 0.649 
F-statistic:  204 on 3 and 326 DF,  p-value: <2e-16 

Note that ibt is not significant in this model. One task among others in a regression 
analysis is to find the right transforms on the predictors. Additive models can help here. 
We fit an additive model using the a Gaussian response as the default. 

> library(gam) 
> amgam <- gam(03 ~ lo(temp) + lo(ibh) + lo(ibt), 
data=ozone) 
> summary(amgam) 
(Dispersion Parameter for gaussian family taken to be 
18.664) 
    Null Deviance: 21115 on 329 degrees of freedom 
Residual Deviance: 5935.1 on 318 degrees of freedom 
AIC: 1916.0 
Number of Local Scoring Iterations: 2 
DF for Terms and F-values for Nonparametric Effects 
             Df Npar Df Npar F    Pr(F) 
(Intercept) 1.0 
lo(temp)    1.0     2.5   7.45  0.00025 
lo(ibh)     1.0     2.9   7.62 0.000082 
lo(ibt)     1.0     2.7   7.84 0.000099 

We have used the loess smoother here by specifying lo in the model formula for all three 
predictors. Compared to the linear model, the R2 is: 

> 1-5935.1/21115 
[1] 0.71892 
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So the fit is a little better. However, the loess fit does use more degrees of freedom. We 
can compute the equivalent degrees of freedom by an analogy to linear models. For linear 
smoothers, the relationship between the observed and fitted values may be written as 
ŷ=Py. The trace of P then estimates the effective number of parameters. For example, in 
linear regression, the projection matrix is X(XTX)−1XT whose trace is equal to the rank of 
X or the number of identifiable parameters. This notion can be used to obtain the degrees 
of freedom for additive models. 

The gam package uses a score test for the predictors. However, the p-values are only 
approximate at best and should be viewed with some skepticism. It is generally better to 
fit the model without the predictor of interest and then construct the F-test: 

> amgamr <- gam(03 ~ lo(temp) + lo(ibh) , data=ozone) 
> anova(amgamr,amgam,test="F") 
Analysis of Deviance Table 
Model 1:03 ~ lo(temp) + lo(ibh) 
Model 2:03 ~ lo(temp) + lo(ibh) + lo(ibt) 
  Resid. Df Resid. Dev     Df Deviance   F Pr(>F) 
1    321.67       6045 
2    318.00       5935   3.66      109 1.6   0.18 

Again the p-value is an approximation, but we can see there is some evidence that ibt is 
not significant. We now examine the fit: 

> plot(amgam,residuals=TRUE,se=TRUE,pch=".") 

 

Figure 12.1 Transformations on the 
predictors chosen by the gam fit on the 
ozone data. Partial residuals and 
approximate 95% pointwise 
confidence bands are shown. 

We see the transformations chosen in Figure 12.1. For ibt, a constant function would fit 
between the confidence bands. This reinforces the conclusion that this predictor is not 
significant. For temperature, we can see a change in the slope around 60°, while for ibh, 
there is a clear maximum. The partial residuals allow us to check for outliers or 
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influential points. We see no such problems here. However, the use of the loess smoother 
is recommended where such problems arise and is perhaps the best feature of the gam 
package relative to the other options.  

12.2 Additive Models Using mgcv 

Another method of fitting additive models is provided by the mgcv package of Wood 
(2000). We demonstrate its use on the same data. Splines are the only choice of smoother, 
but the appropriate amount of smoothing is internally chosen by default. In contrast, the 
gam package relies on the user to select this. There are advantages and disadvantages to 
automatic smoothing selection. On the positive side, it avoids the work and subjectivity 
of making the selection by hand, but on the negative side, automatic selection can fail and 
human intervention may sometimes be necessary. We follow a similar analysis: 

> library(mgcv) 
> ammgcv <- gam(03 ~ s(temp)+s(ibh)+s(ibt),data=ozone) 
Parametric coefficients: 
              Estimate  std. err.    t 
ratio    Pr(>|t|) 
(Intercept)     11.776     0.2382      49.44    <2e-16 
Approximate significance of smooth terms: 
               edf       chi.sq     p-value 
s(temp)      3.386       88.047     <2e-16 
s(ibh)       4.174       37.559     4.28e-07 
s(ibt)       2.112       4.2263     0.134 
R-sq. (adj) = 0.708  Deviance explained = 71.7% 
GCV score = 19.346   Scale est. = 18.72     n = 330 

We see that the R2 is similar to the gam fit. We also have additional information 
concerning the significance of the predictors. We can also examine the transformations 
used: 

 plot(ammgcv) 

The chosen transformations are again similar. We see that ibt does not appear to be 
significant. We might also be interested in whether there really is a change in the trend 
for temperature. We test this by fitting a model with a linear term in temperature and then 
make the F-test: 

> aml <- gam(03 ~ s(temp)+s(ibh), data=ozone) 
> am2 <- gam(03 ~ temp+s(ibh), data=ozone) 
> anova(am2,am1,test="F") 
Analysis of Deviance Table 
Model 1:03 ~ temp + s(ibh) 
Model 2:03 ~ s(temp) + s(ibh) 
  Resid. Df Resid. Dev     Df Deviance    F Pr(>F) 
1    323.67       6950 
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2    320.97       6054   2.70      896 17.6  8e-10 

 

Figure 12.2 Transformation functions 
for the model fit by mgcv. Note how the 
same scale has been deliberately used 
on all three plots. This allows us to 
easily compare the relative 
contribution of each variable. 

The p-value is only approximate, but it certainly seems there really is a change in the 
trend. 

You can also do bivariate transformations with mgcv. For example, suppose we 
suspect that there is an interaction between temperature and IBH. We can fit a model with 
this term: 

> amint <- gam(03 ~ s (temp, ibh)+s(ibt), data=ozone) 
> summary(amint) 
Parametric coefficients: 
              Estimate  std. err.    t 
ratio    Pr(>|t|) 
(Intercept)     11.776     0.2409      48.88    <2e-16 
Approximate significance of smooth terms: 
                   edf       chi.sq     p-value 
s(temp,ibh)      6.346       120.46     <2e-16 
     s(ibt)      2.917       36.081     1.57e-07 
R-sq. (adj) = 0.702   Deviance explained =   71% 
GCV score = 19.767   Scale est. = 19.152   n = 330 

We compare this to the previous additive model: 

> anova(ammgcv,amint,test="F") 
Analysis of Deviance Table 
Model 1:03 ~ s(temp) + s(ibh) + s(ibt) 
Model 2:03 ~ s(temp, ibh) + s(ibt) 
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  Resid. Df Resid. Dev      Df Deviance    F Pr(>F) 
1   319.327       5978 
2   319.737       6124  -0.409     -146 19.0 0.0014 

We see that the supposedly more complex model with the bivariate fit actually fits worse 
than the model with univariate functions. This is because fewer degrees of freedom have 
been used to fit the bivariate function than the two corresponding univariate functions. In 
spite of the output p-value, we suspect that there is no interaction effect, because the 
fitting algorithm is able to fit the bivariate function so simply. We now graphically 
examine the fit as seen in Figure 12.3:  

> plot(amint) 
> vis.gam(amint,theta=-45,color="gray”) 

 

Figure 12.3 The bivariate contour plot 
for temperature and ibh is shown in 
the left panel. The middle panel shows 
the univariate transformation on ibt 
while the right panel shows a 
perspective view of the information on 
the left panel. 

Given that the contours appear almost parallel and the perspective view looks like it 
could be constructed with piece of paper rippled in one direction, we conclude that there 
is no significant interaction. One interesting side effect is that ibt is now significant. 

One use for additive models is as an exploratory tool for standard parametric 
regression modeling. We can use the fitted functions to help us find suitable simple 
transformations of the predictors. One idea here is to model the temp and ibh effects 
using piecewise linear regression (also known as “broken stick” or segmented 
regression). We define the right and left “hockey-stick” functions: 

> rhs <- function (x,c) ifelse(x > c, x-c, 0) 
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> lhs <- function(x, c) ifelse(x < c, c-x, 0) 

and now fit a parametric model using cutpoints of 60 and 1000 for temp and ibh, 
respectively. We pick the cutpoints using the plots: 

> olm2 <- 1m(03 ~ 

rhs(temp,60)+lhs(temp,60)+rhs(ibh,1000)+lhs(ibh, 1000) 
, 
  ozone) 
> summary(olm2) 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|) 
(Intercept)    11.603832   0.622651   18.64  < 2e-16 
rhs (temp, 60)  0.536441   0.033185   16.17  < 2e-16 
lhs (temp, 60) -0.116173   0.037866   -3.07   0.0023 
rhs (ibh, 1000)-0.001486   0.000198   -7.49  6.7e-13 
lhs (ibh, 1000)-0.003554   0.001314   -2.71   0.0072 
Residual standard error: 4.34 on 325 degrees of freedom  
Multiple R-Squared: 0.71,       Adjusted R-squared: 
0.706 
F-statistic:  199 on 4 and 325 degrees of 
freedom,      p-value:     0 

Compare this model to the first linear model we fit to this data. The fit is better and about 
as good as the additive model fit. It is unlikely we could have discovered these 
transformation without the help of the intermediate additive models. Furthermore, the 
linear model has the advantage that we can write the prediction formula in a compact 
form. 

We can use additive models for building a linear model as above, but they can be used 
for inference in their own right. For example, we can predict new values with standard 
error: 

> predict(ammgcv,data.frame(temp=60,ibh=2000,ibt=100), 
se=T) 
$fit 
[1] 11.013 
$se.fit 
[1] 0.97278 

If we try to make predictions for predictor values outside the original range of the data, 
we will need to linearly extrapolate the spline fits. This is dangerous for all the usual 
reasons: 

> predict(ammgcv,data.frame(temp=120,ibh=2000,ibt=100), 
se=T) 
$fit 
[1] 35.511 
$se.fit 
[1] 5.7261 
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We see that the standard error is much larger although this likely does not fully reflect the 
uncertainty. 

We should also check the usual diagnostics: 

> plot (predict (ammgcv), residuals 
(ammgcv),xlab="Predicted",ylab="Residuals”) 
> qqnorm (residuals (ammgcv), main="") 

We can see in Figure 12.4 that although the residuals look normal, there is some 
nonconstant variance. 

Now let’s see the model for the full dataset. We found that the ibh and ibt terms were 
insignificant and so we removed them: 

> amred <- gam(03 ~ 

s(vh)+s(wind)+s(humidity)+s(temp)+s(dpg)+ 
  s(vis)+s(doy),data=ozone) 
> summary(amred) 
Approximate significance of smooth terms: 
                   edf       chi.sq     p-value 
      s(vh)          1       20.497     0.00000852 
    s (wind)         1       6.5571     0.0109 
s (humidity)         1       14.608     0.00016 
    s (temp)     5.769       87.825     7.36e-15 
      s(dpg)     3.312       59.782     1.26e-11 
     s (vis)     2.219       20.731     0.00006 
     s (doy)     4.074       106.69     <2e-16 

 

Figure 12.4 Residuals plots for the 
additive model. 

R-sq. (adj) = 0.793   Deviance explained = 80.5% 
GCV score = 14.113   Scale est. = 13.285    n = 330 
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We will compare this to the results of different modeling approaches that we will present 
later. We can see that we achieve a good fit with an R2 of 80.5%, but at the cost of using 
effectively 19.4 parameters including the intercept. 

Also for future reference, here is the linear model with all insignificant terms 
removed: 

> alm <- 1m(03 ~ vis+doy+ibt+humidity+temp,data=ozone) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept) -10.01786    1.65306   -6.06  3.8e-09 
vis          -0.00820    0.00369   -2.22    0.027 
doy          -0.01020    0.00245   -4.17  3.9e-05 
ibt           0.03491    0.00671    5.21  3.4e-07 
humidity      0.08510    0.01435    5.93  7.7e-09 
temp          0.23281    0.03607    6.45  4.0e-10 
Residual standard error: 4.43 on 324 degrees of freedom 
Multiple R-Squared: 0.699,      Adjusted R-squared: 
0.694 
F-statistic:  150 on 5 and 324 DF,  p-value: <2e-16 

We can see that the fit is substantially worse, but uses only six parameters. Of course, we 
may be able to improve this fit with some manual data analysis. We could look for good 
transformations and check for outliers and influential points. However, since we want to 
compare different modeling techniques, we want to avoid making subjective 
interventions for the sake of a fair comparison.  

12.3 Generalized Additive Models 

In generalized linear models: 

   

The approach is readily extended to additive models to form generalized additive models 
(GAM). The fitting process is different in the mgcv and gam packages. The mgcv 
package takes a likelihood approach, so the implementation of the fitting algorithm is 
conceptually straightforward. The gam package uses a backfitting approach as described 
below. 

Recalling the GLM fitting method described in Section 6.2, the iterative reweighted 
least squares (IRWLS) fitting algorithm starts from some reasonable µ0, forms the 

“adjusted dependent variate” and weights 

It then regresses z on X using weights w using weighted least 
squares to get The process is repeated until convergence. 

In generalized additive models the linear predictor becomes: 
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and we just add an iteration step to estimate the fjs. There are two levels of iteration: the 
GLM part where z and w are computed and the additive model part. We need to use a 
smoother that understands weights like loess or splines. 

The ozone data has a response with relatively small integer values. Furthermore, the 
diagnostic plot in Figure 12.4 shows nonconstant variance. This suggests that a Poisson 
response might be suitable. We fit this using the mgcv package: 

> gammgcv <- gam(03 ~ 

s(temp)+s(ibh)+s(ibt),family=poisson, 
  scale=-1,data=ozone) 
> summary(gammgcv) 
Parametric coefficients: 
              Estimate  std. err.    t 
ratio    Pr(>|t|) 
(Intercept)     2.2927    0.02304      99.51    <2e-16 
Approximate significance of smooth terms: 
               edf       chi.sq     p-value 
s(temp)      3.803       79.802     8.19e-15 
s(ibh)      3.779       48.471     2.59e-09 
s(ibt)      1.422      0.94684     0.465 
R-sq. (adj) = 0.712   Deviance explained = 72.9% 
GCV score = 1.5025   Scale est. = 1.4569    n=330 

We have set scale=−1 because negative values for this parameter indicate that the 
dispersion should be estimated rather than fixed at one. Since we do not truly believe the 
response is Poisson, it seems wise to allow for overdispersion. The default of not 
specifying scale would fix the dispersion at one. We see that the estimated dispersion is 
indeed somewhat bigger than one. We see that IBT is not significant. We can check the 
transformations on the predictors as seen in Figure 12.5:  

> plot (gammgcv, residuals=TRUE) 

 

Figure 12.5 Transformation on the 
predictors for the Poisson GAM. 
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We see that the selected transformations are quite similar to those observed previously. 

12.4 Alternating Conditional Expectations 

In the additive model: 

 

  

but in the transform both sides (TBS) model: 

 

  

For example, cannot be modeled well by additive models, but can if we 
transform both sides: This fits within the transform-both-sides (TBS) 
model framework. A more complicated alternative approach would be nonlinear 
regression. One particular way of fitting TBS models is alternating conditional 
expectation (ACE) which is designed to minimize Σi(θ(yi)−Σfj(xij))2. Distractingly, this 
can be trivially minimized by setting θ=fj=0=0 for all j. To avoid this solution, we impose 
the restriction that the variance of θ(y) be one. The fitting proceeds using the following 
algorithm: 

1. Initialize: 

 
  

2. Cycle:  

 
  

 
  

Renormalize at the end of each cycle: 

 

  

We repeat until convergence. ACE is comparable to the additive model, except now we 
allow transformation of the response as well. In principle, you can use any reasonable 
smoother S, but the original smoother used was the supersmoother. This cannot be easily 
changed in the R software implementation. 

For our example, we start with the same three predictors in the ozone data: 
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> x <- ozone[, c("temp”, “ibh”, “ibt")] 
> library(acepack) 
> acefit <- ace (x, ozone$03) 

Note that the ace function interface is quite rudimentary as we must give it the X matrix 
explicitly. The function returns the components ty which contains θ(y) and tx which is a 
matrix whose columns contain the fj(xj). We can get a sense of how well these 
transformations work by fitting a linear model that uses the transformed variables: 

> summary(lm(acefit$ty ~ acefit$tx)) 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|) 
(Intercept)       9.2e-18     0.0290 3.2e-16   1.0000 
acefit$txtemp      0.9676     0.0509   19.01  < 2e-16 
acefit$txibh       1.1801     0.1360    8.68  2.2e-16 
acefit$txibt       1.3712     0.5123    2.68   0.0078 
Residual standard error: 0.527 on 326 degrees of 
freedom 
Multiple R-Squared: 0.726,      Adjusted R-squared: 
0.723 
F-statistic:  288 on 3 and 326 degrees of 
freedom,      p-value:    0 

All three transformed predictors are strongly significant and the fit is superior to the 
original model. The R2 for the comparable additive model was 0.703. So the additional 
transformation of the response did improve the fit. Now we examine the transforms on 
the response and the three predictors: 

> plot (ozone$03,acefit$ty,xlab="03", 
  ylab=expression(theta(03))) 
> plot(x[,1],acefit$tx[,1],xlab="temp",ylab="f(temp)") 
> plot (x[,2],acefit$tx[,2],xlab="ibh",ylab="f(ibh)") 
> plot(x[,3],acefit$tx[,3],xlab="ibt",ylab="f(ibt)") 

See Figure 12.6. The transform on the response is close to, but not quite, linear. The 
transformations on temp and ibh are similar to those found by the additive model. The 
transformation for ibt looks implausibly rough in some parts. 

Now let’s see how we do on the full data: 

> x <- ozone[,-1] 
> acefit <- ace(x,ozone$03) 
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Figure 12.6 ACE transformations: the 
first panel shows the transformation on 
the response while the remaining three 
show the transformations on the 
predictors. 

>summary(lm(acefit$ty ~ acefit$tx)] 
Coefficients: 
                   Estimate Std. Error  t value Pr(>|t| 
(Intercept)       -5.8e-17     0.0225 -2.6e-15   1.0000 
acefit$txvh        1.1715      0.3852     3.04   0.0026 
acefit$txwind      1.0739      0.4047     2.65   0.0084 
acefit$txhumidity  0.6515      0.2455     2.65   0.0084 
acefit$txtemp      0.9163      0.1236     7.41  1.le-12 
acefit$txibh       1.3510      0.4370     3.09   0.0022 
acefit$txdpg       1.3217      0.1672     7.91  4.4e-14 
acefit$txibt       0.9256      0.1967     4.70  3.8e-06 
acefit$txvis       1.3864      0.2303     6.02  4.8e-09 
acefit$txdoy       1.2837      0.1097    11.70  < 2e-16 
Residual standard error: 0.409 on 320 degrees of 
freedom 
Multiple R-Squared: 0.838,      Adjusted R-squared: 
0.833 
F-statistic:  184 on 9 and 320 degrees of 
freedom,      p-value:    0 

A very good fit, but we must be cautious. Notice that all the predictors are strongly 
significant. This might be a reflection of reality or it could just be that the ACE model is 
overfitting the data by using implausible transformations as seen on the ibt variable 
above. 

ACE can be useful in searching for good transformations while building a linear 
model. We might examine the fitted transformations as seen in Figure 12.6 to suggest 
appropriate parametric forms. More caution is necessary if the model is to be used in its 
own right, because of the tendency to overfit. 

An alternative view of ACE is to consider the problem of choosing θ and fj’s such that 
θ(Y) and Σjfj(Xj) are maximally correlated. ACE solves this problem. For this reason, 
ACE can be viewed as a correlation method rather than a regression method. 
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The canonical correlation method is an ancestor to ACE. Given two sets of random 
variables X1,…Xm and Y1,…Yn, we find unit vectors a and b such that: 

corr(aTX, bTY)   

is maximized. One generalization of canonical correlation is to allow some the X’s and 
Y’s s to be power transforms of the original variables; this results in a parametric form of 
ACE. For example: 

> y <- cbind(ozone$03,ozone$03^2,sqrt(ozone$03)) 
> x <- ozone[, c("temp”, “ibh”, “ibt")] 
> cancor(x, y) 
$cor 
[1] 0.832346 0.217517 0.016908 
$xcoef 
            [,1]        [,2]        [,3] 
[1,] -3.4951e-03  3.6335e-03 -6.7913e-03 
[2,]  1.3667e-05 -5.2054e-05 -5.2243e-06 
[3,]  1.6744e-04 -1.7384e-03  1.2436e-03 
$ycoef 
            [,1]        [,2]        [,3] 
[1,] -0.00390830 -0.00539076 -0.1802230 
[2,]  0.00009253 -0.00044172  0.0022167 
[3,] -0.03928664  0.12068982  0.7948130 

We see that it is possible to obtain a correlation of 0.832 by taking particular linear 

combinations of O3, O32 and with the three predictors. The other two orthogonal 
combinations are not of interest to us here. Remember that R2 is the correlation squared in 
a simple linear model and 0.8322=0.692, so this is not a particularly competitive fit. 

There are some oddities about ACE. For a single predictor, ACE is symmetric in X 
and Y, which is not the usual situation in regression. Furthermore, ACE does not 
necessarily reproduce the true model. Consider the population form of the problem and 
take Y=X+ε and ε~N(0, 1) and X~U(0, 1), then E(Y|X)=X but E(X|Y)≠ Y which is not 
what one might expect, because f and θ will not both be identity transformations as the 
model might suggest. 

12.5 Additivity and Variance Stabilization 

Additivity and variance stabilization (AVAS) is another TBS model and is quite similar 
to ACE. We choose the fj to optimize the fit, but we also want constant variance for the 
response: 

 

  

So we choose the fj’s to get a good additive fit and choose the θ to get constant variance. 
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Here is how the method of fitting θ works: Suppose Var(Y)≡V(Y) is not constant. We 
transform to constancy by:  

 

  

We use data to estimate V(y), then get θ. The purpose of the AVAS method is to obtain 
additivity and variance stabilization and not necessarily to produce the best possible fit. 
We demonstrate its application on the ozone data: 

> avasfit <- avas(x,ozone$03) 

Plot the transformations selected: 

> plot (ozone$03, avasfit$ty, 
xlab="03",ylab=expression(theta(03))) 
> plot(x[,1],avasfit$tx[,1],xlab="temp",ylab="f(temp)") 
> plot(x[,2],avasfit$tx[,2],xlab="ibh",ylab="f(ibh)") 
> plot(x[,3],avasfit$tx[,3],xlab="ibt",ylab="f(ibt)") 

 

Figure 12.7 AVAS transformations—
the first panel shows the 
transformation on the response while 
the remaining three show the 
transformations on the predictors. 

See Figure 12.7. It would be convenient if the transformation on the response matched a 
simple functional form. We see if this is possible. We need to sort the response to get the 
line plots to work: 

> i <- order(ozone$03) 
> 
plot(ozone$03[i],avasfit$ty[i],type="1",xlab="03",ylab=
expression(theta(03)] 
> gs <- lm (avasfit$ty[i] ~ sqrt (ozone$03[i])) 
> lines(ozone$03[i],gs$fit,lty=2) 
> gl <- lm(avasfit$ty[i] ~ log(ozone$03[i])) 
> lines (ozone$03[i], gl$fit, lty=5) 
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See the;eft panel of Figure 12.8. We have shown the square-root fit as a dotted line and 
log fit as a dashed line. Neither one fits well across the whole range. Now look at the 
overall fit: 

> lmod <- lm (avasfit$ty avasfit$tx) 
> summary(lmod) 
Coefficients: 
                  Estimate Std Error t value Pr(>|t|) 
(Intercept)       2.87e-07   3.10e-02 9.3e-06    1.000 
avasfit$txtemp    9.02e-01   7.50e-02   12.02  < 2e-16 
avasfit$txibh     7.98e-01   1.09e-01    7.33  1.8e-12 
avasfit$txibt     5.69e-01   2.39e-01    2.38    0.018 
Residual standard error: 0.563 on 326 degrees of 
freedom 
Multiple R-Squared: 0.687,      Adjusted R-squared: 
0.684 
F-statistic:  238 on 3 and 326 degrees of 
freedom,      p-value:    0 

 

Figure 12.8 The left panel checks for 
simple fits to the AVAS transformation 
on the response given by the solid line. 
The log fit is given by the dashed line 
while the square-root fit is given by the 
dotted line. The right panel shows the 
residuals νs. fitted values plot for the 
AVAS model. 

The fit is not so good, but check the diagnostics: 

> plot (predict (lmod), residuals 
(lmod),xlab="Fitted",ylab="Residuals”) 
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The plot is shown in the right panel of Figure 12.8. 
AVAS does not optimize the fit; it trades some of the optimality in order to obtain 

constant variance. Whether this is a good trade depends on how much relative value you 
put on the accuracy of point predictions and accurate estimation of the standard error of 
prediction. In other words, is it more important to try to be right or to know how much 
you are wrong? The choice will depend on the application. 

12.6 Generalized Additive Mixed Models 

The generalized additive mixed model (GAMM) manages to combine the three major 
themes of this book. The response can be nonnormal from the exponential family of 
distributions. The error structure can allow for grouping and hierarchical arrangements in 
the data. Finally we can allow for smooth transformations of the response. We 
demonstrate this method on the epilepsy data from Section 10.2: 

> data(epilepsy) 
> egamm <- gamm(seizures ~ treat*expind+s(age), 
family=poisson, 
  random=list(id=~1),data=epilepsy,subset=(id!=49)) 
> summary(egamm$gam) 
Parametric coefficients: 
               Estimate std. err.    t 
ratio    Pr(>|t|) 
(Intercept)     3.1607     0.1435     22.02    <2e-16 
       treat  -0.010368     0.2001   -0.05182    0.959 
      expind    -1.2745    0.07574     -16.83    <2e-16 
treat:expind   -0.30238     0.1126     -
2.684    0.00769 
Approximate significance of smooth terms: 
              edf        chi.sq    p-value 
s(age)      1.014       0.30698    0.586 
R-sq. (adj) = 0.328  Scale est. = 2.5754   n = 290 

We see that the age effect is not significant. Again the interaction effect is significant 
which shows, in this case, a beneficial effect for the drug. We would like to use an offset 
here for compatibility with the previous analysis. 

12.7 Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines (MARS) were introduced by Friedman (1991). 
We wish to find a model of the form: 
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where the basis functions, Bj(x), are formed from products of terms of the form 

The []+ denotes taking the positive part. For q=1, this is sometimes called a 
hockey-stick function and can be seen in the right panel of Figure 11.6. The q=1 case is 
the most common choice and one might think this results in a piecewise linear fit, as in 
Section 11.2. However, the fit is more flexible than this. Consider the product of two 
hockey-stick functions in one dimension; this forms a quadratic shape. Furthermore, if we 
form the product of terms in two or more variables, we have an interaction term. 

The model building proceeds iteratively. We start with no basis functions. We then 
search over all variables and possible knotpoints t to find the one basis function that 
produces the best fit to the data. We now repeat this process to find the next best basis 
function addition given that the first basis function is already included in the model. We 
might impose rules on what new basis functions are included. For example, we might 
disallow interactions or only allow two-way interactions. This will enhance 
interpretability, possibly at the cost of fit. The number of basis functions added 
determines the overall smoothness of the fit. We can use cross-validation to determine 
how many basis functions are enough. 

When interactions are disallowed, the MARS approach will be a type of additive 
model. The MARS model building will be iterative, in contrast to the fit using the gam 
function of the mgcv package that fits and determines overall smoothness in one step. If a 
strictly additive model is all that is needed, the mgcv approach will typically be more 
effective. The MARS approach will have a relative advantage when interactions are 
considered, particularly when there are a larger number of variables. Here there will be a 
large number of potential interactions that cannot be simultaneously entertained. The 
iterative approach of MARS will be more appropriate here. 

We apply the MARS method to the ozone dataset. The mda library needs to be 
installed and loaded: 

> library(mda) 
> data(ozone) 
> a <- mars(ozone[,-1],ozone[,1]) 

The interface is quite rudimentary. The default choice allows only additive (first-order) 
predictors and chooses the model size using a GCV criterion. The basis functions can be 
used as predictors in a linear regression model: 

> summary(lm(ozone[,1] ~ a$x-1)) 
Coefficients: 
      Estimate Std. Error t value Pr(>|t|) 
a$x1   8.99345    0.80456   11.18  < 2e-16 
a$x2   0.24607    0.05326    4.62  5.6e-06 
a$x3  -0.00300    0.00108   -2.79  0.00561 
a$x4   0.04784    0.01722    2.78  0.00580 
a$x5  -0.11358    0.02316   -4.90  1.5e-06 
a$x6  -0.10105    0.01423   -7.10  8.le-12 
a$x7   0.02482    0.00568    4.37  1.7e-05 
a$x8   0.01752    0.00471    3.72  0.00024 
a$x9  -0.09178    0.02082   -4.41  1.4e-05 
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a$x10 -0.13890    0.02302   -6.03  4.4e-09 
a$x11 -0.55358    0.17375   -3.19  0.00159 
a$x12  0.02970    0.01074    2.77  0.00602 
Residual standard error: 3.64 on 318 degrees of freedom 
Multiple R-Squared: 0.937,      Adjusted R-squared: 
0.935 
F-statistic:  395 on 12 and 318 degrees of 
freedom,     p-value:    0 

The fit is very good in terms of R2, but the model size is also larger. It is also an additive 
model, so we can reasonably compare it to the additive model presented at the end of 
Section 12.2. That model had an adjusted R2 of 79.3% using 19.4 parameters. 

Let’s reduce the model size to that used for previous models. The parameter nk 
controls the maximum number of model terms: 

> a <- mars(ozone[,-1],ozone[,1],nk=7) 
> summary(lm(ozone[,1] ~ a$x-1)) 
Coefficients: 
      Estimate Std. Error t value Pr (>|t|) 
a$x1 12.663482   0.751400   16.85  < 2e-16 
a$x2  0.483948   0.029735   16.28  < 2e-16 
a$x3 -0.096484   0.043102   -2.24    0.026 
a$x4 -0.001420   0.000199   -7.13  6.8e-12 
a$x5 -0.002100   0.001086   -1.93    0.054 
a$x6 -0.012421   0.002784   -4.46  1.le-05 
a$x7 -0.108042   0.020666   -5.23  3.le-07 
Residual standard error: 4.16 on 323 degrees of freedom 
Multiple R-Squared: 0.916,      Adjusted R-squared: 
0.915 
F-statistic: 506 on 7 and 323 degrees of 
freedom,        p-value:    0 

This fit is worse, but remember we are disallowing any interaction terms. Now let’s allow 
second-order (two-way) interaction terms, nk was chosen to get the same model size as 
before:  

> a <- mars(ozone[,-1],ozone[,1],nk=10,degree=2) 
> summary(lm(ozone[, 1] ~ a$x-1)) 
Coefficients: 
      Estimate Std. Error t value Pr(>|t|) 
a$x1 12.090698   0.647896  18.66  < 2e-16 
a$x2  0.574349   0.031756   18.09  < 2e-16 
a$x3 -0.119057   0.041274   -2.88   0.0042 
a$x4 -0.001149   0.000163   -7.05  1.le-11 
a$x5 -0.008251   0.001380   -5.98  6.0e-09 
a$x6 -0.012828   0.002656   -4.83  2.le-06 
a$x7 -0.102334   0.019730   -5.19  3.8e-07 
Residual standard error: 3.97 on 323 degrees of freedom 
Multiple R-Squared: 0.924,        Adjusted R-squared: 
0.922 
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F-statistic:  560 on 7 and 323 DF,  p-value: <2e-16 

This is a good fit. Compare this with an additive model approach. Since there are nine 
predictors, this would mean 36 possible two-way interaction terms. Such a model would 
be complex to estimate and interpret. In contrast, the MARS approach reduces the 
complexity by carefully selecting the interaction terms. 

Now let’s see how the terms enter into the model. We can examine the actual form of 
the basis functions. Start by examining the indicator matrix: 

> a$factor[a$selected.terms,] 
     vh wind humidity temp ibh dpg ibt vis doy 
[1,]  0    0        0    0   0   0   0   0   0 
[2,]  0    0        0    1   0   0   0   0   0 
[3,]  0    0        0   -1   0   0   0   0   0 
[4,]  0    0        0    0   1   0   0   0   0 
[5,]  0    0       -1    1   0   0   0   0   0 
[6,]  0    0        0    0   0   0   0   0   1 
[7,]  0    0        0    0   0   0   0   0  -1 

The first term, given by the first row, is the intercept and involves no variables. The sixth 
and seventh involve just doy. The “1” indicates a right hockey stick and the “−1” a left 
hockey stick. The ibh term just has the right hockey stick. Depicting the effect of doy and 
ibh just requires plotting the transformation as a function of the predictor: 

> 
plot(ozone[,6],a$x[,4]*a$coef[4],xlab="ibh",ylab="Contr
ibution of ibh”) 
> 
plot(ozone[,10],a$x[,7]*a$coef[7]+a$x[,6]*a$coef[6],xla
b="Day”, 
  ylab="Contribution of day”) 

Temperature and humidity have an interaction so we must combine all terms involving 
these. Our approach is to compute the predicted value of the response over a grid of 
values where temperature and humidity are varied while holding the other predictors at 
their median values. The interaction is displayed as a contour plot and a three-dimensionl 
plot of the surface: 

> humidity <- seq(10,100,len=20) 
> temp <- seq(20,100,len=20) 
> medians <- apply(ozone,2,median) 
> pdf <- matrix(medians,nrow=400,ncol=10,byrow=T) 
> pdf[,4] <- rep(humidity,20) 
> pdf[,5] <- rep(temp,rep(20,20)) 
> pdf <- as.data.frame(pdf) 
> names(pdf) <- names(medians) 
> z <- predict.mars(a,pdf[,-1]) 
> zm <- matrix(z,ncol=20,nrow=20) 
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> 
contour(humidity,temp,zm,xlab="Humidity",ylab="Temperat
ure”) 
> persp (humidity, temp, zm, 
xlab="Humidity",ylab="Temperature”, 
  zlab="Ozone",theta=-30) 

Now check the diagnostics: 

> qqnorm (a$res, main="") 
> plot (a$fit, a$res, xlab="Fitted”, ylab="Residuals”) 

These plots show no problem with normality, but some indication of nonconstant 
variance. See the bottom two panels of Figure 12.9. 

It is interesting to compare the MARS approach to the univariate version as 
demonstrated in Figure 11.7. There we used a moderate number of knots in just one 
dimension while MARS gets by with just a few knots in higher dimensions. The key is to 
choose the right knots. MARS can be favorably compared to linear regression: it has 
additional flexibility to find nonlinearity in the predictors in higher dimensions. MARS 
can also be favorably compared to the tree method discussed in the next chapter: it allows 
for continuous fits but still maintains good interpretability. 

Further Reading: Hastie and Tibshirani (1990) provide the original overview of 
additive modeling, while Wood (2006) gives a more recent introduction. Gu (2002) 
presents another approach to the problem. Green and Silverman (1993) show the link to 
GLMs. Hastie, Tibshirani, and Friedman (2001) discuss additive models as part of larger 
review and compare them to competitive methods. 

Exercises 

1. The fat data gives percentage of body fat, age, weight, height, and 10 body 
circumference measurements, such as the abdomen, are recorded for 252 men. Body 
fat is estimated through an underwater weighing technique, but this is inconvenient to 
use widely. Develop an additive model that allows the estimation of body fat for men 
using only a scale and a measuring tape. Your model should predict %body fat 
according to Siri. You may not use Brozek’s %body fat, density or fat free weight as 
predictors. 

2. Find a good model for volume in terms of girth and height using the trees data. We 
might expect that Volume=c* Height * Girth2 suggesting a logarithmic transformation 
on all variables to achieve a linear model. What models do the ACE and AVAS 
procedures suggest for this data? 

3. Refer to the pima dataset described in Question 3 of Chapter 2. First take care to deal 
with the clearly mistaken observations for some variables. 
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Figure 12.9 Contribution of predictors 
in the MARS model and diagnostics. 

(a) Fit a generalized additive model with the result of the diabetes test as the response 
and all the other variables as predictors. 

(b) Perform diagnostics on your model, reporting any potential violations. 
(c) Predict the outcome for a woman with predictor values 1, 99, 64, 22, 76, 27, 0.25, 

25 (same order as in dataset). How certain is this prediction? 
(d) If you completed the logistic regression analysis of the data earlier, compare the 

two analyses. 
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4.The dvisits data comes from the Australian Health Survey of 1977–78 and consist of 
5190 single adults where young and old have been oversampled. 

(a) Build a generalized additive model with doctorco as the response and sex, age, 
agesq, income, levyplus, freepoor, freerepa, illness, actdays, hscore, chcond1 and 
chcond2 as possible predictor variables. Select an appropriate size for your model. 

(b) Check the diagnostics. 
(c) What sort of person would be predicted to visit the doctor the most under your 

selected model? 
(d) For the last person in the dataset, compute the predicted probability distribution for 

their visits to the doctor, i.e., give the probability they visit 0,1, 2 etc. times. 
(e) If you have previously completed the analysis of this data in the exercises for 

Chapter 3, compare the results. 

5. Use the additive model approach to reanalyze the mot or ins data introduced in Section 
7.1. For compatibility with the previous analysis, restrict yourself to data from zone 
one. Try both a Gaussian additive model with a logged response and a gamma GAM 
for the untransformed response. Compare your analysis to the gamma GLM analysis 
in the text. 

6. The ethanol dataset in the lattice package presents data from ethanol fuel burned in a 
single-cylinder engine. The emissions of nitrogen oxides should be considered as the 
response and engine compression and equivalence ratio as the predictors. Study the 
example plots given on the help page for ethanol that reveal the relationship between 
the variables. 

• Apply the additive model approach to the data. 
• Try the MARS approach. 

Did either approach reveal the structure that seems apparent in the plots? 
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CHAPTER 13  
Trees 

13.1 Regression Trees 

Regression trees are similar to additive models in that they represent a compromise 
between the linear model and the completely nonparametric approach. Tree methodology 
has roots in both the statistics and computer science literature. A precursor to current 
methodology was CHAID developed by Morgan and Sonquist (1963) although the book 
by Breiman, Friedman, Olshen, and Stone (1984) introduced the main ideas to statistics. 
Concurrently, tree methodology was developed in machine learning starting in the 
1970s—see Quinlan (1993) for an overview. 

Most statistical work starts from the specification of a model. The model says how we 
believe the data is generated and contains both a systematic and a random component. 
The model is not completely specified and so we use the data to select a particular model 
by either estimating parameters or perhaps by fitting functions, as in our recent 
nonparametric approaches. Clearly this strategy has been effective in a wide range of 
situations. However, the insistence on specifying a model, right from the start, does limit 
statistics. It is often difficult to specify a model, particularly for larger and more complex 
datasets. Furthermore, it is often impractical to develop inferential methods for more 
complex statistical models. 

Tukey (1977) advocated exploratory data analysis (EDA) in his book. Graphical and 
descriptive statistics can sometimes make the message of the data very clear or at least 
suggest a suitable form for the model. However, EDA is not a complete solution and 
sometimes we need definite predictions or conclusions. 

Regression trees are an example of a statistical method that is best described by the 
algorithm used in their construction. One can uncover the implicit model underlying 
regression trees, but the algorithm is the true starting point. Any method of analysis 
should ultimately be judged on whether it successfully predicts or explains something. 
Statistical models may achieve this, but algorithmically based methods are also 
competitive. The distinction between algorithm based and model-based methods is 
discussed in Breiman (2001b). In the computer science literature, tree methodology has 
been applied to decision tree problems where there is no stochastic structure and we 
simply want to build a rule for making the correct decision. 

We use the recursive partitioning regression algorithm: 

1. Consider all partitions of the region of the predictors into two regions where the 
division is parallel to one of the axes. In other words, we partition a single predictor by 
choosing a point along the range of that predictor to make the split. It does not matter 
exactly where we make the split between two adjacent points so there will be at most 
(n−1)p partitions to consider.  



2. For each partition, we take the mean of the response in that partition. We then 
compute: 

RSS(partition)=RSS(part1)+RSS(part2) 
  

We then choose the partition that minimizes the residual sum of squares (RSS). 
We do need to consider many partitions, but the computations on each partition 
are simple, so that fit can be accomplished without excessive effort. 

3. We now subpartition the partitions in a recursive manner. We only allow partitions 
within existing partitions and not across them. This means that the partitioning can be 
represented using a tree. There is no restriction preventing us from splitting the same 
variables consecutively. 

For categorical predictors, it is possible to split on the levels of the factor. For an ordered 
factors with L levels, there are only L−1 possible splits. For an unordered factor, there are 
2L−1−1 possible splits. Although, this is a large number of possibilities as L grows, there 
is a way to limit the number that need to be considered. Notice that there is no point in 
monotonely transforming a quantitative predictor as this will have no effect on the 
partitioning algorithm. Transforming the response will make a difference because it will 
change the computation of the RSS. 

Missing values can be handled quite easily by tree methods. When we construct the 
tree, we may encounter missing values for a predictor when we are considering a split on 
that variable. We may simply exclude such points from the computation provided we 
weight appropriately. This approach is suitable for data where the observations are 
missing in a noninformative manner. If we believe the fact of being missing express some 
information, we might choose to treat missingness as an additional level of a factor. For 
continuous predictors, we could discretize the data into ranges so that it becomes a factor 
and then add missingness as an additional level. When we wish to predict the response 
for a new value with missing values, we can drop the prediction down through the tree 
until the missing values prevent us from going further. We can then use the mean value 
for that internal node. An alternative is to use surrogate splits, described below. 

Tree models are well suited to finding interactions. If we split on one variable and then 
split on another variable within the partitions of the first variable, we are finding an 
interaction between these two variables. As we construct further splits within splits, we 
are finding higher and higher order interactions. This may be a disadvantage as true high-
order interactions are not common in reality. The MARS method discussed in Section 
12.7 counteracts this by limiting the amount of interaction. 

Trees are quite popular because the structure is easier for nontechnical people to 
understand. The term CART stands for Classification and Regression Trees and is also 
the name of a commercial software product. 

We apply the regression tree methodology to study the relationship between 
atmospheric ozone concentration and meteorology in the Los Angeles Basin in 1976. A 
number of cases with missing variables have been removed for simplicity. The data were 
first presented by Breiman and Friedman (1985). We wish to predict the ozone level from 
the other predictors. We read in the data and summarize numerically and graphically:  
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> data(ozone) 
> summary(ozone) 
> pairs(ozone,pch=".") 

The plots (not shown) reveal several nonlinear relationships indicating that a linear 
regression might not be appropriate without the addition of some transformations. Now 
fit a tree: 

> library(rpart) 
> (roz <- rpart(03 ~ .,ozone)) 
n= 330 
node), split, n, deviance, Yval 
     * denotes terminal node 
1) root 330 21115.00 11.7760 
   2) temp< 67.5 214   4114.30 7.4252 
     4) ibh>=3573.5 108   689.63 5.1481 * 
     5) ibh< 3573.5 106  2294.10 9.7453 
      10) dpg< -9.5 35   362.69 6.4571 * 
      11) dpg>=−9.5 71  1366.50 11.3660 
        22) ibt< 159 40   287.90 9.0500 * 
        23) ibt>=159 31   587.10 14.3550 * 
   3) temp>=67.5 116  5478.40 19.8020 
     6) ibt< 226.5 55  1276.80 15.9450 
      12) humidity< 59.5 10   167.60 10.8000 * 
      13) humidity>=59.5 45   785.64 17.0890 * 
     7) ibt>=226.5 61  2646.30 23.2790 
      14) doy>=306.5 8   398.00 16.0000 * 
      15) doy< 306.5 53  1760.50 24.3770 
        30) vis>=55 36  1149.90 22.9440 * 
        31) vis< 55 17   380.12 27.4120 * 

We see that the first split (nodes 2 and 3) is on temperature, 214 observations have 
temperatures less than 67.5 with a mean response value of 7.4, whereas 116 observations 
have temperatures greater than 67.5 with a mean response value of 20. The total RSS has 
been reduced from 21,000 to 4100+5500=9600. Although the relevant information can be 
gleaned from the text-based output, a graphical display is nicer as in Figure 13.1. In the 
first version of the plot, the depth of the branches is proportional to the reduction in error 
due to the split. The disadvantage is that the labels can be hard to read in lower parts of 
the tree where the reduction in error is much smaller. The second version of the plot uses 
a uniform spacing to allow more room for labeling: 

> plot(roz,margin=.10) 
> text(roz) 
> plot(roz,compress=T,uniform=T,branch=0.4,margin=.10) 
> text(roz) 

We see that the first split on temperature produces a large reduction in the RSS. Some of 
the subsequent splits do not do much. The immediate message is that high  
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Figure 13.1 Tree model for the ozone 
data. On the left, the depth of the 
branches is proportional to the 
improvement in fit. On the right, the 
depth is held constant to improve 
readability. If the logical condition at 
a node is true, follow the branch to the 
left. 

temperatures are associated with high ozone levels. A regression tree is a regression 
model, so diagnostics are called for: 

> plot(predict(roz), residuals(roz), 
xlab="Fitted",ylab="Residuals”) 
> qqnorm(residuals(roz)) 

See Figure 13.2. There are no visible problems here. If nonconstant variance is observed, 
one might consider transforming the response. Trees are also somewhat sensitive to 
outliers as they are based on local means. Outliers may be observed in the QQ plot, but, 
as with linear models, they may conceal themselves and be influential on the fit. Suppose 
we wanted to predict the response for a new value—for example the median value in the 
dataset:  

> (x0 <- apply(ozone[,-1],2,median)) 
      vh     wind 
humidity     temp     ibh     dpg     ibt     vis 
   5760.0     5.0     64.0     62.0  2112.5    24.0   1
67.5   120.0 
      doy 
    205.5 
> predict (roz, data.frame(t(x0))) 
     1 
14.355 
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You should be able to verify this prediction by following the splits down through the tree 
shown in Figure 13.1. 

 

Figure 13.2 Residuals and fitted values 
for the tree model of the Ozone data 
are shown in the left panel. A QQ plot 
of the residuals is shown in the right 
panel. 

13.2 Tree Pruning 

The recursive partitioning algorithm describes how to grow the tree, but what is the 
optimal size for the tree? The default form of rpart does restrict the size of the tree, but 
some intervention is probably necessary to select the best tree size. 

One possibility, called a greedy strategy, is to keep partitioning until the reduction in 
overall cost (RSS for this type of tree) is not reduced by more than ε. However, it is 
difficult to set ε in a sensible way. Furthermore, a greedy strategy may stop too soon. For 
example, consider data laid out in Table 13.1: Neither the horizontal nor  
x2 1 2 

  2 1 

    x1 

Table 13.1 There are four data points arranged in a 
square. The number shows the value of y at that 
point. 

the vertical split will improve the fit at all. Both splits are required to get a better fit. 
However, this drawback is common to most tree-growing strategies as looking more than 
one step ahead greatly increases the number of splits that must be considered. 
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Nevertheless, it does illustrate the point that the incremental improvements due to each 
expansion of the tree may not necessarily be always decreasing. 

The observed RSS for a tree will be an underestimate of how well the tree will make 
predictions. This phenomenon is common to most models. One generic method of 
obtaining a better estimate of predictive ability is cross-validation (CV). 

For a given tree, leave out one observation, recalculate the tree and use that tree to 
predict the left-out observation. For regression, this criterion would be: 

 

  

where denotes the predicted value of the tree given the input xj when case j is not 
used in the construction of the tree. For other types of tree, a different criterion would be 
used. For classification problems, it might be the deviance. CV is a more realistic 
estimate of how the tree will perform in practice. Leave-out-one cross-validation is 
computationally expensive for trees so usually k-fold cross-validation is used. The data is 
randomly divided into k roughly equal parts and the remainder is used to predict those 
left out. As well as being less expensive computationally than the full leave-out-one 
method, it may even work better. One drawback is that the partition is random so that 
repeating the method will give different numerical results. 

However, there may be very many possible trees if we consider all subsets of a large 
tree; cross-validation would just be too expensive. We need a method to reduce the set of 
trees to be considered to just those that are worth considering. This is where cost-
complexity pruning is useful. We define a cost-complexity function for trees: 

 
  

If λ is large, then the tree that minimizes this cost will be small and vice versa. We can 
determine the best tree of any given size by growing a large tree and then pruning it back. 
Given a tree of size n, we can determine the best tree of size n−1 by considering all the 
possible ways of combining adjacent nodes. We pick the one that increases the fit 
criterion by the least amount. The strategy is akin to backward elimination in linear 
regression variable selection except that it can be shown that it generates the optimal 
sequence of trees of a given size. 

We now use cross-validation to select from this sequence of trees. By default, rpart 
selects a tree size that may not be large enough to include all those trees we might want to 
consider. We force it to consider a larger tree and then examine the cross-validation 
criterion for all the subtrees. The parameter cp plays a similar role to the smoothing 
parameter in nonparametric regression and is defined as the ratio of λ to the RSS of the 
root tree (a tree with no branches). When we call rpart initially, it computes the whole 
sequence of trees and we merely need to use functions like printcp to examine the 
intermediate possibilities: 

> roze <- rpart(03 ~ .,ozone,cp=0.001) 
> printcp(roze) 
        CP nsplit rel error xerror   xstd 
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1  0.54570      0     1.000  1.015 0.0771 
2  0.07366      1     0.454  0.486 0.0416 
3  0.05354      2     0.381  0.411 0.0383 
4  0.02676      3     0.327  0.385 0.0358 
5  0.02328      4     0.300  0.387 0.0364 
6  0.01532      6     0.254  0.377 0.0363 
7  0.01091      7     0.239  0.372 0.0364 
8  0.00707      8     0.228  0.376 0.0391 
9  0.00599      9     0.221  0.375 0.0402 
10 0.00497     12     0.203  0.372 0.0408 
11 0.00319     17     0.179  0.380 0.0415 
12 0.00222     19     0.172  0.378 0.0416 
13 0.00144     23     0.164  0.382 0.0420 
14 0.00113     24     0.162  0.378 0.0420 
15 0.00100     26     0.160  0.379 0.0422 

In this table, we see the value of the cp parameter, the number of splits in the tree, the 
RSS of the tree divided by the RSS of the null tree, xerror denotes the cross-validated 
error which is also scaled by the RSS of the null tree. Since the partition of the data into 
10 parts is random, this CV error is also random, which makes the given standard error 
useful. The random division also means that if you repeat this command, you will not get 
exactly the same answer. We can select the size of the tree by minimizing the value of 
xerror and selecting the corresponding value of CP: 

> rozr <- prune.rpart(roze,0.01091) 

This selected tree turns out to be the same as the default choice in this instance. Another 
strategy for selecting the tree size is to select the smallest tree with a CV error within one 
standard error of the minimum—in this case, 0.372+0.036= 0.408. So we would take the 
two-split tree. We can illustrate this by plotting the CV error and a line showing one 
standard deviation above this value as shown in Figure 13.3: 

> plotcp(roz) 

 

Figure 13.3 Cross-validation plot for 
ozone tree model. 
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You can get some fancier output by: 

> post (roz, filename="") 

If you do not specify the filename, nothing will appear on-screen, but you will find a file 
called roz.ps in the directory from which you started R. See Figure 13.4: Let’s compare 
the result to the earlier linear regression. We achieved an R2 of about 70% using only six 
parameters in the previous chapter. We can select a tree with five splits and hence 
effectively six parameters and compare them: 

> rozr <- prune.rpart(roz,0.0154) 
> 1-sum(residuals(rozr)^2)/sum((ozone$03-
mean(ozone$03))^2) 
[1] 0.74603 

We see that the tree model achieved a better fit than the equivalent linear model. Of 
course, it would be a mistake to generalize from this, but it is a good demonstration of the 
value of trees. A tree fit is piecewise constant over the regions defined by the partitions, 
so one might not expect a particularly good fit. However, we can see from this example 
that it can outperform linear regression. 

13.3 Classification Trees 

Trees can be used for several different types of response data. For the regression tree, we 
computed the mean within each partition. This is just the null model for a regression. We 
can extend the tree method to other types of response by fitting an appropriate null model 
on each partition. For example, we can extend the idea to binomial, multinomial, Poisson 
and survival data by using a deviance, instead of the RSS, as a criterion. 

Classification trees work similarly to regression trees except the residual sum of 
squares is no longer a suitable criterion for splitting the nodes. The splits should divide 
the observations within a node so that the class types within a split are mostly of one kind 
(or failing that, just few kinds). We can measure the purity of the node with several 
possible measures. Let nik be the number of observations of type k within terminal node i 
and pik be the observed proportion of type k within node i. Let Di be the measure for node 
i so that the total measure is ΣDi. There are several choices for Di: 

 

Trees     285



 

Figure 13.4 Final tree model for the 
ozone data. 

1. Deviance: 
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2. Entropy: 

 
  

3. Gini index: 

 
  

All these measures share the characteristic that they are minimized when all members of 
the node are of the same type. The rpart function uses the Gini index by default. 

We illustrate the classification tree method in a problem involving the identification of 
the sex and species of an historical specimen of kangaroo. We have some training data 
consisting of 148 cases with the following variables: there are three possible species, 
Giganteus, Melanops and Fuliginosus, the sex of the animal and 18 skull measurements. 
The data were published in Andrews and Herzberg (1985). The historical specimen is 
from the Rijksmuseum van Natuurlijkee in Leiden which had the following skull 
measurements in the same order as in the data: 

1115 NA 748 182 NA NA 178 311 756 226 NA NA NA 48 1009 
NA 204 593 

We have a choice in how we model the response. One possibility is to form a six-level 
response representing all possible combinations of sex and species. Another approach is 
to form separate trees for identifying the sex and the species. We take the latter approach 
below, focusing on the the species. This choice is motivated by the belief that different 
features are likely to discriminate the sex and the species so that attempting to model 
them both in the same tree might result in a larger, more complex tree that might be less 
powerful than two smaller trees. Even so, it would be worth trying the first approach 
although we shall not do so here. We start by reading in and specifying the museum case: 

> data(kanga) 
> x0 <- c(1115, NA, 748, 182, NA, NA, 178, 311, 756, 
226, NA, NA, NA, 48, 1009, NA, 204, 593) 

We have missing values for the case to be classified. We have two options. We can build 
a tree model that will classify if there are missing values in the input or we can build a 
tree model that uses only variables that are observed. If we believe that the missing 
values were in some way informative, the first choice would be fine. In this particular 
case, that does not seem plausible, so the latter approach is preferred. However, if we 
want to build a model that could be used for future unspecified cases, then we would 
have to deal directly with the missing values. For this special purpose situation, where we 
want to classify one particular kangaroo, this is not a concern. 

We exclude all variables that are missing in the test case. We drop sex since we will 
not be modeling it yet. We form a convenient data frame: 

> kanga <- kanga[,c (T, F, ! is.na (x0))] 
> kanga[1:2,] 
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    species basilar.length palate.length palate.width 
squamosal.depth 
1 
giganteus           1312           882           NA    
         180 
2 
giganteus           1439           985           230   
         150 
  lacrymal.width zygomatic.width orbital.width 
foramina.length 
1            394            782            249         
     88 
2            416            824            233         
    100 
mandible.length mandible.depth ramus.height 
           10861           179          591 
           11582           181          643 

We still have missing values in the training set. We have a number of options: 

1. Build a tree model that discretizes the predictors into factors and then treats missing 
values as another level of the factors. This might be appropriate if we think missing 
values are informative in some way. Information would be lost in the discretization. 
For this data, we have no reason to believe that the data is not missing at random and 
furthermore we have already decided to ignore the missing values in the test case. 

2. Fill in or estimate the missing values and then build a tree. We could use missing data 
fill-in methods as used in other regression problems. This is not easy to implement and 
there are concerns about the bias caused by such methods. 

3. The tree-fitting algorithm can handle missing values naturally. If a value for some case 
is not available, then it is simply excluded from the criterion. When we want to 
classify a new case with missing values, we follow the tree down until we reach a split 
which involves a missing value in our new case and take the majority verdict in that 
node. A more complicated approach is to allow a second-choice variable for splitting 
at a node called a surrogate split. Information on the surrogate splits may be obtained 
by using the summary command on the tree object. 

4. Leave out the missing cases entirely. 

We first check where the missing values occur: 

> apply(kanga,2,function(x) sum(is.na(x))) 
        species basilar.length palate.length 
palate.width 
              0              1             1           
24 
squamosal.depth lacrymal.width zygomatic.width 
orbital.width 
              1              0               1         
    0 
foramina.length mandible.length mandible.depth 
ramus.height 
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              0              12              0         
   0 

We observe that the majority of missing values occur in just two variables: mandible 
length and palate width. Suppose we throw out those variables and then remove the 
remaining missing cases. We compute the pairwise correlation of these variables with the 
other variables. 

> round(cor(kanga[,-
1],use="pairwise.complete.obs")[,c(3, 9)],2) 
                palate.width mandible.length 
basilar.length          0.77            0.98 
palate.length           0.81            0.98 
palate.width            1.00            0.81 
squamosal.depth         0.69            0.80 
lacrymal.width          0.77            0.92 
zygomatic.width         0.78            0.92 
orbital.width           0.12            0.25 
foramina.length         0.19            0.23 
mandible.length         0.81            1.00 
mandible.depth          0.62            0.85 
ramus.height            0.73            0.94 

We see that these two variables are highly correlated with other variables in the data. We 
claim that there is not much additional information in these two variables and we can 
reasonably discard them. We do this and then remove the remaining missing cases: 

> newko <- na.omit (kanga [, -c(4, 10)]) 
> dim(newko) 
[1] 144  10 

After excluding these two variables, we only lose four cases more by throwing out all the 
missing value cases. Alternatively, suppose we just throw out the missing value cases on 
the original data: 

> dim(na.omit(kanga)) 
[1] 112  12 

We would lose 36 cases by simply throwing out all the missing values. Removing a 
combination of variables and cases seems a better choice for this data. 

We should also plot the data to see how the classes separate. An example of such a 
plot is: 

> plot(foramina.length ~ zygomatic.width,data=newko, 
  pch=substring(species,1, 1)) 

We see in the left panel of Figure 13.5 that the classes do not separate well, at least for 
these two variables. We now fit a classification tree as follows: Because the response  

Trees     289



 

Figure 13.5 Historical kangaroo tree 
model. The left panel shows the three 
species, m=melanops, g=giganteus 
and f=fuliginosus, as they vary with 
two of the measurements. The right 
panel shows the chosen tree. 

is a factor, classification rather than regression is automatically used. Gini’s index is the 
default choice of criterion. Here we specify a smaller value of the complexity parameter 
cp than the default, so that larger trees are also considered: 

> kt <- rpart(species ~ ., data=newko,cp=0.001) 
> printcp(kt) 
Root node error: 95/144 =0.66 
n= 144 
      CP nsplit rel error xerror   xstd 
1 0.1789      0     1.000  1.105 0.0561 
2 0.1053      1     0.821  0.979 0.0604 
3 0.0500      2     0.716  0.874 0.0624 
4 0.0211      6     0.516  0.800 0.0631 
5 0.0105      7     0.495  0.853 0.0627 
6 0.0010      8     0.484  0.905 0.0620 

The cross-validated error (expressed in relative terms in the rel error column) reaches a 
minimum for the six-split tree. We select this tree: 

> ktp <- prune(kt,cp=0.0211) 
> ktp 
n= 144 
node), split, n, loss, Yval, (Yprob) 
      * denotes terminal node 
1) root 144 95 fuliginosus (0.340278 0.333333 0.326389) 
  2) zygomatic.w>=923 37 13 fuliginosus (0.648649 
0.162162 0.189189) 
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  3) zygomatic.w< 923 107 65 giganteus (0.233645 
0.392523 0.373832)  
  6) zygomatic.w>=901 16  3 giganteus (0.125000 
0.812500 0.062500) * 
  7) zygomatic.w< 901 91 52 melanops  (0.252747 
0.318681 0.428571) 
   14) foramina.1< 98.5 58 33 melanops (0.362069 
0.206897 0.431034) 
     28) lacrymal.w< 448.5 50 29 fuliginosus (0.420000 
0.240000 0.340000) 
      56) ramus.h>=628.5 33 14 fuliginosus (0.575758 
0.181818 0.242424) * 
      57) ramus.h< 628.5 17 8 melanops (0.117647 
0.352941 0.529412) * 
     29) lacrymal.w>=448.5 8 0 melanops (0.000000 
0.000000 1.000000) * 
   15) foramina.1>=98.5 33 16 giganteus (0.060606 
0.515152 0.424242) 
     30) squamosal.d< 182.5 26 10 giganteus (0.076923 
0.615385 0.307692) 
     31) squamosal.d>=182.5 7  1 melanops (0.000000 
0.142857 0.857143) * 
> plot(ktp, compress=T, 
uniform=T,branch=0.4,margin=0.1) 
> text(ktp) 

This tree is not particularly successful as the relative error is estimated as 80% of just 
guessing the species. Some of the terminal nodes are quite pure, for example, #29 and 
#31, while others retain much uncertainty, for example, #56 and #57. We now compute 
the misclassification error: 

> (tt <- table (actual=newko$species, 
predicted=predict(ktp,type="class"))) 
             predicted 
actual        fuliginosus giganteus melanops 
  fuliginosus          43         4        2 
  giganteus            12        29        7 
  melanops             15         9       23 
> 1-sum(diag(tt))/sum(tt) 
[1] 0.34028 

We see that the error rate is 34%. We might hope to do better. We see that we can 
generally correctly identify fuliginosus, but we are more likely to be in error in 
distinguishing melanops and giganteus. 

A look at the left panel of Figure 13.5 explains why we may have difficulty in 
classification. Any single measure will reflect mostly the overall size of the skull. For 
example, suppose we wanted to distinguish male human skulls from female human 
skulls. Most interesting measures will correlate strongly with size. If we just use one 
measure, then the rule will likely be: if the measure is small, then pick male; if it is large 
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pick, female. This cannot be expected to work particularly well. There is something about 
the relative dimensions of the skulls that ought be more informative. 

One possibility is to allow splits on linear combinations of variables. This is allowed 
in some classification tree software implementations. An alternative idea is to apply the 
method to the principal component scores rather than the raw data. Principal components 
(PC) seek out the main directions of variation in the data and might generate more 
effective predictors for classification in this example: 

> pck <- princomp(newko[,-1]) 
> pcdf <- data.frame(species=newko$species,pck$scores) 
> kt <- rpart (species ~ ., pcdf, cp=0.001) 
> printcp(kt) 
Root node error: 95/144 =0.66 
n= 144 
      CP nsplit rel error xerror   xstd 
1 0.4000      0     1.000  1.126 0.0552 
2 0.1789      1     0.600  0.621 0.0621 
3 0.0421      2     0.421  0.558 0.0609 
4 0.0105      3     0.379  0.568 0.0612 
5 0.0010      5     0.358  0.589 0.0616 

We find a significantly smaller relative CV error (0.558). Before we can predict the test 
case, we need to do some work to remove the missing values, unused variables and apply 
the principal component transformation: 

> nx0 <- x0[! is.na(x0)] 
> nx0 <- nx0 [-c(3, 9)] 
> nx0 <- (nx0-pck$center)/pck$scale 
> nx0 %*% pck$loadings 
       Comp.1  Comp.2  Comp.3  Comp.4 Comp.5 
Comp.6  Comp.7 
  [1,] 499.93 -74.834 -37.632 23.169 3.9564 16.584 -
54.017 
        Comp.8  Comp.9 
  [1,] -35.995 -16.705 

Our chosen tree is: 

> ktp <- prune.rpart(kt,0.0421) 
> ktp 
n= 144 
node), split, n, loss, Yval, (Yprob) 
      * denotes terminal node 
1) root 144 95 fuliginosus (0.340278 0.333333 0.326389) 
   2) Comp.2< -15.126 49  8 fuliginosus (0.836735 
0.040816 0.122449) * 
   3) Comp.2>=-15.126 95 49 giganteus (0.084211 
0.484211 0.431579) 
     6) Comp.4>=-9.513 63 24 giganteus (0.111111 
0.619048 0.269841) 
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      12) Comp.3>=-18.996 55 17 giganteus (0.090909 
0.690909 0.218182) * 
      13) Comp.3< -18.996 8  3 melanops (0.250000 
0.125000 0.625000) * 
     7) Comp.4< -9.513 32  8 melanops (0.031250 
0.218750 0.750000) * 

It is interesting that the first PC is not used. Typically, the first PC represents an overall 
average or total size. Other PCs represent contrasts between variables which would 
describe shape features in this case. We see that the test case is classified as fuliginosus, 
which agrees with the experts. We can also compute the error rate as before: 

> (tt <- 
table(newko$species,predict(ktp,type="class"))) 
              fuliginosus giganteus melanops 
  fuliginosus 41           5         3 
  giganteus    2          38         8 
  melanops     6          12        29 
> 1-sum(diag(tt))/sum(tt) 
[1] 0.25 

We see that the error rate has been reduced to 25%. It would be worth considering other 
combinations of predictors in an attempt to reduce the error rate further. 

Further Reading: Breiman, Friedman, Olshen, and Stone (1984) is the classic book 
on trees. Ripley (1996) and Hastie, Tibshirani, and Friedman (2001) also discuss trees 
and compare them to other methods. See also the random forests method described in 
Breiman (2001a) that results in more stable assessments of the effects of predictors. 

Exercises 

1. Four hundred three African Americans were interviewed in a study to understand the 
prevalence of obesity, diabetes, and other cardiovascular risk factors in central 
Virginia. Data is presented in diabetes. Build a regression tree-based model for 
predicting glycosolated hemoglobin in terms of the other relevant variables. Interpret 
your model. Use the model to predict the glycosolated hemoglobin for a subject with: 

  id chol stab.glu hdl ratio location age gender 
1004  213       72  58   3.3 Buckingham  56 female 
height weight  frame bp.1s bp.1d bp.2s bp.2d waist hip 
     64    131 medium   108    55    NA    NA    30  40 
   time.ppn 
       720 

Glycosolated hemoglobin greater than 7.0 is usually taken as a positive diagnosis 
of diabetes. Now build a classification tree for the diagnosis of diabetes and 
compare your model to the corresponding regression tree. 
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2. Refer to the pima dataset described in Question 3 of Chapter 2. First take care to deal 
with the clearly mistaken observations for some variables. 

(a) Fit a tree model with the result of the diabetes test as the response and all the other 
variables as predictors.  

(b) Perform diagnostics on your model, reporting any potential violations. 
(c) Predict the outcome for a woman with predictor values 1, 99, 64, 22, 76, 27, 0.25, 

25 (same order as in dataset). How certain is this prediction? 
(d) If you completed the logistic regression analysis of the data earlier, compare the 

two analyses. 

3. The dataset wbcd is described in Question 2 of Chapter 2. 

(a) Fit a tree model with Class as the response and the other nine variables as 
predictors. 

(b) Use the model to predict the outcome for a new patient with predictor variables 1, 
1, 3, 2, 1, 1,4, 1, 1 (same order as above). 

(c) Suppose that a cancer is classified as benign if p>0.5 and malignant if p<0.5. 
Compute the number of errors of both types that will be made if this method is 
applied to the current data with the reduced model.  

(d) Suppose we change the cutoff to 0.9 so that p<0.9 is classified as malignant and 
p>0.9 as benign. Compute the number of errors in this case. Discuss the issues in 
determining the cutoff. 

(e) It is usually misleading to use the same data to fit a model and test its predictive 
ability. To investigate this, split the data into two parts and assign every third 
observation to a test set and the remaining two thirds of the data to a training set. 
Use the training set to determine the model and the test set to assess its predictive 
performance. Compare the outcome to the previously obtained results. 

(f) If you completed the logistic regression analysis of the data earlier, compare the 
two analyses. 

4. The dataset uswages is drawn as a sample from the Current Population Survey in 1988. 

(a) Build a tree regression model to predict wage. 
(b) Check the diagnostics of your model. 
(c) Use your model to predict the wage of a subject with predictor characteristics 12, 

33, 0, 1, 0, 0, 0, 1, 0 where the values occur in the same order as in the data frame. 
(d) Conduct a quick linear model analysis and compare the results with the tree model. 

In particular, what do the two models say about the relationship between the 
predictors and the response? 

5. The dvisits data comes from the Australian Health Survey of 1977–78 and con-sist of 
5190 single adults where young and old have been oversampled. 

(a) Build a Poisson tree model with doctorco as the response and sex, age, agesq, 
income, levyplus, freepoor, freerepa, illness, actdays, hscore, chcond1 and chcond2 
as possible predictor variables. Consult the rpart documentation for how to specify 
a Poisson response. 

(b) Check the diagnostics. 
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(c) What sort of person would be predicted to visit the doctor the most under your 
selected model? 

(d) For the last person in the dataset, compute the predicted probability distribution for 
their visits to the doctor, i.e., give the probability they visit 0, 1, 2 etc. times. 

(e) If you have previously completed the analysis of this data in the exercises for 
Chapter 3, compare the results. 
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CHAPTER 14  
Neural Networks 

Neural networks (NN) were originally developed as an attempt to emulate the human 
brain. The brain has about 1.5×1010 neurons each with 10 to 104 connections called 
synapses. The speed of messages between neurons is about 100 m/sec which is much 
slower than CPU speed. Given that our fastest reaction time is around 100 ms and neuron 
computation time is 1–10 ms, then the number of steps must be less than 100. This is 
inconceivably small for a sequential computation, even in machine code; therefore, the 
brain must be computing in parallel. 

The original idea behind neural networks was to use a computer-based model of the 
human brain to perform complex tasks. We can recognize people in fractions of a second, 
but this task is difficult for computers. So why not make software more like the human 
brain? 

Despite the promise, there are some drawbacks. The brain model of connected 
neurons, first suggested by McCulloch and Pitts (1943), is too simplistic given more 
recent research. There are also more controversial philosophical questions about how any 
algorithmic computation can mimic some of the functions of the brain. This is discussed 
in Penrose (1989). For these and other reasons, the methodology is more properly called 
artificial neural nets. As with artificial intelligence, the promise of NNs is not matched by 
the reality of their performance. Arnold Schwarzenegger’s brain in The Terminator was 
powered by a neural net, but the true accomplishments of NNs are much more modest. 
Nevertheless, they can be useful as we shall see. 

NNs are used for various purposes. They can be used as biological models, which was 
the original motivation. They can also be used as a hardware implementation for adaptive 
control. But the area of application we are interested in is data analysis. There are NN 
models that rival the regression, classification and clustering methods normally used by 
statisticians. 

A perceptron is a model of a neuron and is the basic building block of a neural 
network as depicted in Figure 14.1. The output xo is determined from inputs xi: 

 
  

where fo is called the activation function. Standard choices include the identity, logistic 
and indicator functions. The wi are weights. The NN learns the weights from the data. A 
statistician would prefer to say that the NN estimates the parameters from the data. Thus 
NN terminology differs from statistical usage in ways that can be confusing.  



 

Figure 14.1 A perceptron. 

14.1 Statistical Models as NNs 

Three common statistical models are analogous to the single perceptron NN. For multiple 
linear regression: 

 
  

So here fo is the identity function. We can define x1≡1 to get an intercept term. The NN 
alternative is to attach a weight, called a bias, to each neuron: 

f(x)=x+θ   

A statistician would call the bias θ an intercept. 
Logistic regression also fits easily within this framework if we define fo as the logistic 

function. Of course, such an NN is not exactly equivalent to the corresponding statistical 
model unless that NN is fit in a very particular way. 

Linear discriminant analysis is used to classify a binary response. Suppose there are 
two groups encoded by y=0 or y=1. In this case f0 is the indicator function. Again the NN 
and and statistical approach are not exactly equivalent unless the same fitting procedures 
are used. 

Other common statistical models can be approximated by adding more neurons 
Multivariate multiple linear regression with a bivariate response is Y=X β+ε where Y, X, 
β, ε are all matrices and is depicted as an NN in Figure 14.2: Polynomial regression can 
be mimicked by using different activation function and more than one layer of neurons as 
seen in the second panel of Figure 14.2. 

14.2 Feed-Forward Neural Network with One Hidden Layer 

The feed-forward neural network with one hidden layer is the most common choice for 
regression-like modeling applications. It takes the form: 
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The activation functions for the hidden layer, are almost always logistic. If identity 
functions are used for the hidden layer and for the output, the resulting NN is quite 
similar to the partial least squares approach of Wold, Ruhe, Wold, and Dunn (1984). We 
will set one of our inputs to be constant at one so as to allow for an intercept/bias term. 
The choice of output activation function depends on the nature of  

 

Figure 14.2 NN equivalents of 
multivariate linear regression (shown 
on the top) and polynomial regression 
(shown on the bottom). 

the response. For continuous unrestricted output, an identity function is appropriate while 
for response bounded between zero and one, such as a binomial proportion, a logistic 
function should be used. We show the feed-forward NN in Figure 14.3.  
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Figure 14.3 Feed-forward neural 
network with one hidden layer. 

Sometimes a direct connection between the inputs and outputs is added called a skiplayer 
connection. More complexity can be added using more layers or feedbacks although this 
not always beneficial to the practical performance of the NN. 

NNs can be elaborated to perform as universal approximators. This has been shown by 
authors such as Hornik, Stinchcombe, and White (1989). However, these results are of 
little practical value when confronted with a finite amount of data subject to noise. We 
must use the data estimate the parameters of the model or, in NN-speak, use the data to 
train the network. The weights w are chosen to minimize a criterion, such as: 

 
  

where y is the observed output and ŷ is the predicted output. A different criterion would 
be more suitable for categorical responses. 

NN researchers have developed different methods of estimation motivated by brain 
models of learning. These methods have generally not compared well with the numerical 
analysis-based approaches which are generally faster and more reliable. Nevertheless, in 
all but the most simple NNs, the criterion is a complicated function of the parameters. 
The function often has many local minima making it difficult to find the true minimum. 
A statistician, with no pretensions to mimicking brain functions, would be inclined to use 
standard methods of numerical analysis such as quasiNewton methods, conjugate 
gradients or simulated annealing. The nnet function in R uses the BFGS method, as 
described in Fletcher (1987). 

14.3 NN Application 

We apply the NN method to the ozone data analyzed in previous chapters. The nnet 
package, due to Venables and Ripley (2002), must be loaded first: 

> library(nnet) 
> data(ozone) 
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We start with just three variables for simplicity of exposition as in previous analyses. We 
fit a feed-forward NN with one hidden layer containing two units with a linear output 
unit: 

> nnmdl <- nnet(03 ~ temp + ibh + ibt, ozone, size=2, 
linout=T) 
# weights:  11 
initial value  65447.874069 
final value  21115.406061 
converged 

The RSS of 21,115 is equal to so the fit is not any better than the null 
model. If you repeat this, your result may differ slightly because of the random starting 
point of the algorithm, but you will likely get a similar result. The problem lies with the 
initial selection of weights. It is hard to do this well when the variables have very 
different scales. The solution is to rescale the data to have zero mean and unit variance: 

> sx <- scale (ozone) 

Because a random starting point is used, the algorithm will not necessarily converge to 
the same solution if the fitting is repeated. Now we try refitting the model. We repeat this 
100 times because of the random starting point. Here we find the best fit of the 100 
attempts: 

> bestrss <- 10000 
> for(i in 1:100){ 
  nnmdl <- nnet(03 ~ temp + ibh + ibt, sx, size=2, 
linout=T, trace=F) 
  cat(nnmdl$value,"\n”) 
  if(nnmdl$value < bestrss){ 
  bestnn <- nnmdl 
  bestrss <- nnmdl$value 
  }} 
> bestnn$value 
[1] 88.031 

The criterion function has 11 parameters or weights and has multiple minima. The 
problem is that we can never really know whether we have found the true minimum. All 
we can do is keep trying and stop if we do not find anything better after some number of 
attempts. The best strategy is not clear, although one can do better than the simple 
approach we have used above. Examine the estimated weights: 

> summary(bestnn) 
a 3-2-1 network with 11 weights 
options were—linear output units 
b->h1 i1->h1 i2->h1 i3->h1 
  1.12  -0.98   0.84   0.29 
b->h2 i1->h2 i2->h2 i3->h2 
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137.89 -74.74 240.66 137.89 
  b->o  h1->o  h2->o 
  2.59  -4.41   0.67 

The notation i2->h1, for example, refers to the link between the second input variable and 
the first hidden neuron, b refers to the bias, which takes a constant value of one. We see 
that there is one skip-layer connection, b->o, from the bias to the output. 

NNs have some drawbacks relative to competing statistical models. The parameters of 
an NN are uninterpretable whereas they often have some meaning in statistical models. 
Furthermore, NNs are not based on a probability model that expresses the structure and 
variation. As a consequence, there are no standard errors. It is possible to graft some 
statistical inference onto this NN model, but it is not easy. The bootstrap is a possible 
way of implementing this. The R2 for the fit is: 

> 1–88.03/sum((sx[,1]-mean(sx[,1])) ^2) 
[1] 0.73243 

which is very similar to the additive model fit for these predictors. 
Although the NN weights may be difficult to interpret, we can get some sense of the 

effect of the predictors by observing the marginal effect of changes in one or more 
predictor as other predictors are held fixed. Here, we vary each predictor individually 
while keeping the other predictors fixed at their mean values. Because the data has been 
centered and scaled for the NN fitting, we need to restore the original scales. The fits are 
shown in Figure 14.4: 

> ozmeans <- attributes(sx)$"scaled:center” 
> ozscales <- attributes(sx)$"scaled:scale” 
> xx <- expand.grid(temp=seq(-3,3,0.1),ibh=0,ibt=0) 
> plot(xx$temp*ozscales['temp']+ozmeans['temp'], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans['03'], 
xlab="Temp”, ylab="03") 
> xx <- expand.grid(temp=0,ibh=seq(-3,3,0.1), ibt=0) 
> plot(xx$ibh*ozscales['ibh']+ozmeans['ibh'], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans['03'], 
xlab="IBH", ylab="03") 
> xx <- expand.grid(temp=0,ibh=0,ibt=seq(-3, 3, 0 .1)) 
> plot(xx$ibt*ozscales['ibt']+ozmeans['ibt’], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans['03'], 
xlab="IBT", ylab="03") 
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Figure 14.4 Marginal effects of 
predictors for the NN fit. Other 
predictors are held fixed at their mean 
values. 

We see some surprising discontinuities in the plots which do not seem consistent with 
what we might expect for the effect of these predictors. If we examine the weights for 
this NN above, we see several large values. Consider that all the variables have been 
scaled to mean zero and variance one. Products formed using the large weights will vary 
substantially. The situation is analogous to the collinearity problem in linear regression 
where unreasonably large regression coefficients are often seen. The NN is choosing 
extreme weights in order to optimize the fit, but the predictions will be unstable, 
especially for extrapolations. 

We can use a penalty function, as with smoothing splines, to obtain a more stable fit. 
Instead of minimizing E, we minimize: 

 
  

In NN terms, this is known as weight decay. The idea is similar to ridge regression. Let’s 
try λ=0.001 for 100 NN model fits: 

> bestrss <- 10000 
> for(i in 1:100){ 
  nnmdl <- nnet (03 ~ temp+ibh+ibt, sx, 
size=2,linout=T, 
  decay=0.001,trace=F) 
  cat(nnmdl$value,"\n”) 
  if(nnmdl$value < bestrss){ 
  bestnn <- nnmdl 
  bestrss <- nnmdl$value 
  }} 
> bestnn$value 
[1] 92.055 
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The value of the best RSS is somewhat larger than before. We expect this since weight 
decay sacrifices some fit to the current data to obtain a more stable result. We repeat the 
assessment of the marginal effects as before and display the results in Figure 14.5: 

> xx <- expand.grid(temp=seq(-3,3,0.1), ibh=0, ibt=0) 
> plot(xx$temp*ozscales['temp']+ozmeans['temp'], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans['03'], 
xlab="Temp”, ylab="03") 
> xx <- expand.grid(temp=0,ibh=seq(-3,3,0.1), ibt=0) 
> plot(xx$ibh*ozscales['ibh']+ozmeans['ibh'], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans['03'], 
xlab="IBH", ylab="03") 
> xx <- expand.grid(temp=0,ibh=0,ibt=seq(-3,3,0.1)) 
> plot(xx$ibt*ozscales['ibt']+ozmeans['ibt'], 
  predict(bestnn, new=xx)*ozscales['03']+ozmeans[ 
‘03'], xlab="IBT",ylab="03") 

 

Figure 14.5 Marginal effects of 
predictors for the NN fit with weight 
decay. Other predictors are held fixed 
at their mean values. 

We see that the fits are now plausibly smooth. Note that ibh is strictly positive in practice 
so the strange behavior for negative values is irrelevant. Compare these plots to Figure 
12.2. The shapes are similar for temperature and ibh. The ibt plot looks quite different 
although we have no way to assess the significance of any of the terms in the NN fit. 

NNs have interactions built in so one should also look at these. We could produce 
analogous plots to those in Figure 14.5 by varying two predictors at a time. 

Now let’s look at the full dataset. We use four hidden units because there are now 
more inputs. 

> bestrss <- 10000 
> for(i in 1:100){ 
   nnmdl <- nnet (03 ~ ., sx, size=4, linout=T,trace=F) 
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   cat (nnmdl$value, "\n”) 
   if(nnmdl$value < bestrss) 
    bestnn <- nnmdl 
    bestrss <- nnmdl$value 
}} 
> 1-bestnn$value/sum((sx[,1]-mean(sx[,1]))^2) 
[1] 0.85063 

The fit is good and there may be better minimum than we have found and increasing the 
number of hidden units would always improve the fit. The fit can be compared to those in 
previous chapters. The R2 for the linear and tree model fits was substantially smaller, but 
these approaches place a premium on simplicity and interpretability. The fit for the 
corresponding additive model was better, but not quite as good as the NN. But the 
additive model also has the interpretability that the NN lacks. Finally, the MARS model 
fit better and was also interpretable. 

Of course, it would be rash to draw firm conclusions from just one dataset. 
Furthermore, the value of the modeling approaches needs to be judged within the context 
of the particular problem. If explanation is the main goal of the data analysis, NNs are not 
a good choice. If prediction is the objective, we cannot judge just by the fit to the data we 
have now. It is more important how the model performs on future observations. We do 
not have fresh data here as we have used it all to fit the data. Some studies have withheld 
data for use in testing the prediction performance of the models considered. NNs have 
been generally competitive in these studies but by no means dominant. 

14.4 Conclusion 

NNs, as presented here, are a controlled flexible class of nonlinear regression models. By 
adding more hidden units we can control the complexity of the model in a measured way 
from relatively simple models up to models suitable for large datasets with complex 
structure. NNs are also attractive because they require less expertise to use successfully 
compared to statistical models. Nevertheless the user must still pay attention to basic 
statistical issues involving transformation and scaling of the data and outliers and 
influential points. See Faraway and Chatfield (1998) for an example of the application of 
neural networks and how they compare with statistical methods. 

NNs are generally good for prediction but bad for understanding. The NN weights are 
almost uninterpretable. Although one can gain some insight from plotting the marginal 
effect of predictors, the NN inevitably introduces complex interactions that often do not 
reflect reality. Furthermore, without careful control, the NN can easily overfit the data 
resulting in overoptimistic predictions. 

NNs are quite effective for large complex datasets compared to statistical methods 
where the burden of developing an appropriate sampling model can sometimes slow or 
even block progress. NNs do lack good statistical theory for inference, diagnostics and 
model selection. Of course, they were not developed with these statistical considerations 
in mind, but experience shows that such issues are often important. 
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NNs can outperform their statistical competitors for some problems provided they are 
carefully used. However, one should not be fooled by the evocative name, as NNs are just 
another tool in the box. 

Further Reading: See Ripley (1996), Bishop (1995), Haykin (1998), Neal (1996) and 
Hertz, Krogh, and Palmer (1991) for more on NNs.  

Exercises 

This book has covered a wide range of statistical methods. For some datasets, only one 
method may be applicable, but for some others, we have a wide variety of choices. For 
continuous, binary or even count response data with some number of predictors, we can 
choose between: 

1. Generalized linear models  
2. Generalized additive models and associated methods 
3. Trees 
4. Neural networks 

These methods have their strengths and weaknesses. It is not possible to claim that any 
one method dominates. Even so, we might hope to intuit what method might work well 
for a particular dataset. One way to gain an understanding of the relative value of these 
datasets is by the use of case studies. We want to make two sorts of comparisons: 

Quantitative Does one method fit or predict better than another? Unfortunately, adding 
complexity to a model does tend to make it fit the current data better, but is no reliable 
indication of whether it will predict future data well. One way to avoid this problem is to 
reserve a portion of the data for testing your chosen model. A random subset of the data 
is selected and put to one side. The remaining data is used to select and fit the model. The 
model is then used to predict the response in the test set. 
Qualitative Sometimes the purpose of a statistical analysis is to gain an understanding of 
the relationship between the variables. A good numerical fit to the data is then not helpful 
unless it can be intuitively understood. Judging the success of a method in this sense is 
necessarily more subjective. 

Several of the datasets we have already used in previous exercises are suitable for case 
studies comparing the performance of the competing methods. We recommend the 
following datasets for this purpose: diabetes, pima, wbcd, uswages, dvisits, fat and 
motorins.  
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APPENDIX A  
Likelihood Theory 

This appendix is just an overview of the likelihood theory used in this book. For greater 
detail or a more gentle introduction, the reader is advised to consult a book on theoretical 
statistics such as Cox and Hinkley (1974), Bickel and Doksum (1977) or Rice (1998). 

A.1 Maximum Likelihood 

Consider n independent discrete random variables, Y1,…, Yn, with probability distribution 
function f(y|θ) where θ is the, possibly vector-valued, parameter. Suppose we observe 
y=(y1,…, yn)T, then we define the likelihood as: 

 

  

So the likelihood is a function of the parameter(s) given the data and is the probability of 
the observed data given a specified value of the parameter(s). 

For continuous random variables, Y1,…, Yn with probability density function f(y|θ), we 
recognize that, in practice, we can only measure or observe data with limited precision. 

We may record yi, but this effectively indicates an observation in the range so that: 

 

  

where We can now write the likelihood as: 

 

  

Now provided that δi is relatively small and does not depend on θ, we may ignore it and 
the likelihood is the same as in the discrete case. 

As an example, suppose that Y is binomially distributed B(n, p). The likelihood is: 

 

  

The maximum likelihood estimate (MLE) is the value of the parameter(s) that gives the 
largest probability to the observed data, or in other words, maximizes the likelihood 
function. The value at which the maximum occurs, is the maximum likelihood 



estimate. In most cases, it is easier to maximize the log of likelihood function, 
l(θ|y)=logL(θ|y). Since log is a monotone increasing function, the maximum occurs at the 

same  
In a few cases, we can find an exact analytical solution for For the binomial, we 

have the log-likelihood: 

 

  

The score function, u(θ), is the derivative of the log-likelihood with respect to the 
parameters. For this example, we have: 

 
  

We can find the maximum likelihood estimate by solving u(p)=0. We get We 
should also verify that this stationary point actually represents a maximum. 

Usually we want more than an estimate; some measure of the uncertainty in the 
estimate is valuable. This can be obtained via the Fisher information which is: 

 
  

If there is more than one parameter, I(θ) will be a matrix. The information at is the 
second derivative at the maximum. Large values indicate high curvature so that the 
maximum is well defined and even close alternatives will have much lower likelihood. 
This would indicate a high level of confidence in the estimate. One can show that the 
variance of can be estimated by: 

   

under mild conditions. Sometimes it is difficult to compute the expected value of the 
matrix of second derivatives. As an alternative, the observed, rather than expected, value 
at may be used instead. For the binomial example this gives: 

   

We illustrate these concepts by plotting the log-likelihood for two binomial datasets: one 
where n=25, y=10 and another where n=50, y=20. We construct the log-likelihood 
function: 

> loglik <- function(p,y,n) lchoose(n, y) + y*log(p) + 
(n-y)*log(1-p) 

For ease of presentation, we normalize by subtracting the log-likelihood at the maximum 
likelihood estimate: 
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> nloglik <- function (p,y,n) loglik(p,y,n) - 
loglik(y/n,y,n) 

Now plot the two log-likelihoods, as seen in Figure A.1: 

> pr <- seq(0.05,0.95,by=0.01) 
> 
matplot(pr,cbind(nloglik(pr,10,25),nloglik(pr,20,50)),t
ype="1", 
  xlab="p",ylab=" log-likelihood”) 

We see that the maximum occurs at p=0.4 in each case at a value of zero because of the 
normalization. For the larger sample, we see greater curvature and hence more 
information.  

 

Figure A. 1 Normalized binomial log-
likelihood for n=25, y=10 shown with a 
solid line and n=50, y=20 shown with a 
dotted line. 
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Examples where likelihood can be maximized explicitly are confined to simple cases. 
Typically, numerical optimization is necessary. The Newton-Raphson method is the most 
well-known technique. Let θ0 be an initial guess at θ, then we update using: 

θ1=θ0−H−1(θ0)u(θ0)   

where H is the Hessian matrix of second derivatives: 

 
  

We iterate this method, putting θ1 in place of θ0 and so on, until the procedure (hopefully) 
converges. This method works well provided the log-likelihood is smooth and convex 
around the maximum and that the initial value is reasonably close. In less well-behaved 
cases, several things can go wrong: 

• The likelihood has multiple maxima. The maximum that Newton-Raphson finds will 
depend on the choice of initial estimate. If you are aware that multiple maxima may 
exist, it is advisable to try multiple starting values to search for the overall maximum. 
The number and choice of these starting values is problematic. Such problems are 
common in fitting neural networks, but rare for generalized linear models. 

• The maximum likelihood may occur at the boundary of the parameter space. This 

means that perhaps which will confuse the Newton-Raphson method. 
Mixed effect models have several variance parameters. In some cases, these are 
maximized at zero, which causes difficulties in the numerical optimization. 

• The likelihood has a large number of parameters and is quite flat in the neighborhood of 
the maximum. The Newton-Raphson method may take a long time to converge. 

The Fisher scoring method replaces H with −I and sometimes gives superior re-sults. 
This method is used in fitting GLMs and is equivalent to iteratively reweighted least 
squares. 

A minimization function that uses a Newton-type method is available in R. We 
demonstrate its use for likelihood maximization. Note that we need to minimize −l 
because nlm minimizes, not maximizes: 

> f <- function (x) -loglik(x,10,25) 
> mm <- nlm (f, 0.5, hessian=T) 

We use a starting value of 0.5 and find the optimum at: 

> mm$estimate 
[1] 0.4 

The inverse of the Hessian at the optimum is equal to the standard estimate of the 
variance: 

> c(1/mm$hessian, 0.4*(1-0.4)/25) 
[1] 0.0096016 0.0096000 
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Of course, this calculation is not necessary for the binomial, but it is useful for cases 
where exact calculation is not possible. 

A.2 Hypothesis Testing 

Consider two nested models, a larger model Ω and a smaller model ω. Let be the 

maximum likelihood estimate under the larger model, while be the correspond-ing 
value when θ is restricted to the range proscribed by the smaller model. The likelihood 
ratio test statistic is: 

   

Under some regularity conditions, this statistic is asymptotically distributed χ2 with 
degrees of freedom equal to the difference in the number of identifiable parameters in the 
two models. The approximation may not be good for small samples and may fail entirely 
if the regularity conditions are broken. For example, if the smaller model places some 
parameters on the boundary of the parameter space, the χ2 may not be valid. This can 
happen in mixed effects models when testing whether a particular variance component is 
zero. 

The Wald test may be used to test hypotheses of the form H0: θ=θ0 and the test statistic 
takes the form: 

   

Under the null, the test statistic has approximately a χ2 distribution with degrees of 
freedom equal to the number of parameters being tested. Quite often, one does not wish 
to test all the parameters and the Wald test is confined to a subset. In particular, if we test 
only one parameter, H0: θi=θi0, the square root of the Wald test statistic is simply: 

 

  

This is asymptotically normal. For a Gaussian linear model, these are the t-statistics and 
have an exact t-distribution, but for generalized linear and other models, the normal 
approximation must suffice. 

The score test of the hypothesis H0: θ=θ0 uses the statistic: 
u(θ0)TI−1(θ0)u(θ0)   

and is asymptotically χ2 distributed with degrees of freedom equal to the number of 
parameters being tested. 

There is no uniform advantage to any of these three tests. The score test does not 
require finding the maximum likelihood estimate, while the likelihood ratio test needs 
this computation to be done for both models. The Wald test needs just one maximum 
likelihood estimate. However, although the likelihood ratio test requires more 
information, the extra work is often rewarded. Although the likelihood ratio test is not 
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always the best, it has been shown to be superior in a wide range of situations. Unless one 
has indications to the contrary or the computation is too burdensome, the likelihood ratio 
test is the recommended choice. 

These test methods can be inverted to produce confidence intervals. To compute a 
100(1−α)% confidence interval for θ, we calculate the range of hypothesized θ0 such that 
H0: θ0=0 would not be rejected at the a level. The computation is simple for the single-
parameter Wald test where the confidence interval for θi is: 

   

where z is the appropriate quantile of the normal distribution. The computation is trickier 
for the likelihood ratio test. If we are interested in a confidence interval for a single 
parameter θi, we will need to compute the log-likelihood for a range of θi with the other θ 
set to the maximizing values. This is known as the profile likelihood for θi. Once this is 
computed as li(θi|y), the confidence interval is: 

   

As an example, this type of calculation is used in the computation of the confidence 
interval for the transformation parameter used in the Box-Cox method. 

We can illustrate this by considering a binomial dataset where n=100 and y= 40. We 
plot the normalized log-likelihood in Figure A.2 where we have drawn a horizontal line 

at half the distance of the 0.95 quantile of below the maximum: 

> pr <- seq(0.25,0.55,by=0.01) 
> 
plot(pr,nloglik(pr,40,100),type="1",xlab="p",ylab="log-
likelihood”) 
> abline(h=-qchisq(0.95,1)/2) 

All p that have a likelihood above the line are contained within a 95% confidence interval 
for p. We can compute the range by solving for the points of intersection: 

> g <- function(x) nloglik (x, 40, 100)+qchisq(0.95,1) 
/2 
> uniroot(g,c(0.45,0.55))$root 
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Figure A.2 Likelihood ratio test-based 
confidence intervals for binomial p. 

[1] 0.49765 
> uniroot(g,c(0.25,0.35))$root 
[1] 0.30743 
> abline(v=c(0.49765,0.30743)) 

The confidence interval is (0.307,0.498) as is indicated by the vertical lines on the plot. 
We can compute the Wald test-based interval as: 

> se <- sqrt(0.4*(1-0.4)/100) 
> cv <- qnorm(0.975) 
> c(0.4-cv*se,0.4+cv*se) 
[1] 0.30398 0.49602 

which is very similar, but not identical, to the LRT-based intervals. 
Suppose we are interested in the hypothesis, H0: p=0.5. The LRT and p-value are: 

> (lrstat <- 2*(loglik(0.4, 40, 100)−loglik(0.5, 40, 
100))) 
[1] 4.0271 
> pchisq(Irstat,1,lower=F) 
[1] 0.044775 
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So the null is barely rejected at the 5% level. The Wald test gives: 

> (z <- (0.5-0.4)/se) 
[1] 2.0412 
> 2*pnorm(z, lower=F) 
[1] 0.041227 

Again, not very different from the LRT. The score test takes more effort to compute. The 
observed information is: 

 

  

We compute the score and information at p=0.5 and then form the test and get the p-
value: 

> (sc <- 40/0.5-(100-40)/(1-0.5)) 
[1] -40 
> (obsinf <- 40/0.5^2+(100-40)/ (1-0.5)^2) 
[1] 400 
> (score.test <- 40*40/400) 
[1] 4 
> pchisq(4,1,lower=F) 
[1] 0.0455 

The outcome is again slightly different from the previous two tests. Asymptotically, the 
three tests agree. We have a moderate size sample in the example, so there is little 
difference. More substantial differences could be expected for smaller sample sizes.  

Appendix A     314



 



APPENDIX B  
R Information 

R may be obtained from the R project website at http://www.r-project.org/. 
This book uses some functions and data that are not part of base R. You may wish to 

download these extras from the R website. The additional packages used are: 

faraway, mgcv, acepack, mda, brlr, sm, wavethresh, 
SuppDists, Ime4 

MASS, rpart and nnet are part of the “recommended” R installation; you will have these 
already unless you choose a nonstandard installation. Use the command: 

> library() 

within R to see what packages you have. Under Windows, to install the additional 
packages, choose the “Install packages from CRAN” menu option. You must have a 
network connection for this to work—if you are working offline, you may use the “Install 
packages from local zip file” menu option provided you have already obtained the 
necessary packages. Under other operating systems, such as Macintosh or Linux, the 
installation procedure differs. Consult the R website for details. 

I have collected the data and functions that I have used in this book as an R package 
called faraway that you may obtain from CRAN or the book website at 
www.stat.Isa.umich.edu/~faraway/ELM. The functions defined are: 

halfnorm        Half normal plot 
logit           logit transformation 
ilogit          inverse logit transformation 

Where add-on packages are needed in the text, you will find the appropriate library 
command. However, I have assumed that the faraway library is always loaded. You can 
add a line reading library (faraway) to your Rprofile file if you expect to use this package 
in every session. Otherwise, you will need to remember to type it each time. 

I set the following options to achieve the output seen in this book: 

> options(digits=5,show.signif.stars=FALSE) 

The digits=5 reduces the number of digits shown when printing numbers from the default 
of seven. Note that this does not reduce the precision with which these numbers are 
internally stored. One might take this further as anything more than two or three 
significant digits in a displayed table is usually unnecessary and more importantly, 



distracting. I have also edited the output in the text to remove extraneous output or to 
improve the formatting. 

The code and output shown in this book were generated under R version 2.2.0. R is 
regularly updated and improved, so more recent versions may show some differences in 
the output.  

Getting Started with R: R requires some effort to learn. Such effort will be repaid 
with increased productivity. Free introductory guides to R may be obtained from the R 
project website at http://www.r-project.org/. Introductory books have been written by 
Dalgaard (2002), Verzani (2004) and Maindonald and Braun (2003). Venables and 
Ripley (2002) also have an introduction to R along with more advanced material. Fox 
(2002) is intended as a companion to a standard regression text. You may also find 
Becker, Chambers, and Wilks (1998) and Chambers and Hastie (1991) to be useful 
references to the S language. Ripley and Venables (2000) wrote a more advanced text on 
programming in S or R. 

While running R you can get help about a particular command; for example, if you 
want help about the boxplot command, just type help (boxplot). If you do not know what 
the name of the command that you want to use, then type: 

> help.start() 

and then browse. You will be able to pick up the language from the examples in the text 
and from the help pages.  
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