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Preface ___________________

Linear models, their variants, and extensions—the most important of which are general-
ized linear models—are among the most useful and widely used statistical tools for social  

research. This book aims to provide an accessible, in-depth, modern treatment of regression 
analysis, linear models, generalized linear models, and closely related methods.

The book should be of interest to students and researchers in the social sciences. Although 
the specific choice of methods and examples reflects this readership, I expect that the book will 
prove useful in other disciplines that employ regression models for data analysis and in courses 
on applied regression and generalized linear models where the subject matter of applications is 
not of special concern.

I have endeavored to make the text as accessible as possible (but no more accessible than 
possible—i.e., I have resisted watering down the material unduly). With the exception of four 
chapters, several sections, and a few shorter passages, the prerequisite for reading the book is a 
course in basic applied statistics that covers the elements of statistical data analysis and infer-
ence. To the extent that I could without doing violence to the material, I have tried to present 
even relatively advanced topics (such as methods for handling missing data and bootstrapping) 
in a manner consistent with this prerequisite.

Many topics (e.g., logistic regression in Chapter 14) are introduced with an example that  
motivates the statistics or (as in the case of bootstrapping, in Chapter 21) by appealing to familiar 
material. The general mode of presentation is from the specific to the general: Consequently, 
simple and multiple linear regression are introduced before the general linear model, and linear, 
logit, and probit models are introduced before generalized linear models, which subsume all the 
previous topics. Indeed, I could start with the generalized linear mixed-effects model (GLMM), 
described in the final chapter of the book, and develop all these other topics as special cases 
of the GLMM, but that would produce a much more abstract and difficult treatment (cf., e.g., 
Stroup, 2013).

The exposition of regression analysis starts (in Chapter 2) with an elementary discussion of 
nonparametric regression, developing the notion of regression as a conditional average—in the 
absence of restrictive assumptions about the nature of the relationship between the response and 
explanatory variables. This approach begins closer to the data than the traditional starting point 
of linear least-squares regression and should make readers skeptical about glib assumptions of 
linearity, constant variance, and so on.

More difficult chapters and sections are marked with asterisks. These parts of the text can be 
omitted without loss of continuity, but they provide greater understanding and depth, along with 
coverage of some topics that depend on more extensive mathematical or statistical background.  
I do not, however, wish to exaggerate the background that is required for this “more difficult’’ 
material: All that is necessary is some exposure to matrices, elementary linear algebra, elementary 
differential calculus, and some basic ideas from probability and mathematical statistics. Appen-
dices to the text provide the background required for understanding the more advanced material.
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All chapters include summary information in boxes interspersed with the text and at the end 
of the chapter, and most conclude with recommendations for additional reading. You will find 
theoretically focused exercises at the end of most chapters, some extending the material in the 
text. More difficult, and occasionally challenging, exercises are marked with asterisks. In addi-
tion, data-analytic exercises for each chapter are available on the website for the book, along 
with the associated data sets.

What Is New in the Third Edition? 
The first edition of this book, published by Sage in 1997 and entitled Applied Regression, Linear 
Models, and Related Methods, originated in my 1984 text Linear Statistical Models and Related 
Methods and my 1991 monograph Regression Diagnostics. The title of the 1997 edition reflected 
a change in organization and emphasis: I thoroughly reworked the book, removing some topics 
and adding a variety of new material. But even more fundamentally, the book was extensively 
rewritten. It was a new and different book from my 1984 text.

The second edition had a (slightly) revised title, making reference to “generalized linear 
models’’ rather than to “linear models’’ (and dropping the reference to “related methods’’ as 
unnecessary), reflecting another change in emphasis. I retain that title for the third edition. 
There was quite a bit of new material in the second edition, and some of the existing material 
was reworked and rewritten, but the general level and approach of the book was similar to the 
first edition, and most of the material in the first edition, especially in Parts I through III (see 
below), was preserved in the second edition. I was gratified by the reception of the first and 
second editions of this book by reviewers and other readers; although I felt the need to bring 
the book up to date and to improve it in some respects, I also didn’t want to “fix what ain’t 
broke.’’

The second edition introduced a new chapter on generalized linear models, greatly aug-
menting a very brief section on this topic in the first edition. What were previously sections on 
time-series regression, nonlinear regression, nonparametric regression, robust regression, and 
bootstrapping became separate chapters, many with extended treatments of their topics. I added 
a chapter on missing data and another on model selection, averaging, and validation (incorporat-
ing and expanding material on model validation from the previous edition).

Although I have made small changes throughout the text, the principal innovation in the 
third edition is the introduction of a new section on mixed-effects models for hierarchical and 
longitudinal data, with chapters on linear mixed-effects models and on nonlinear and gener-
alized linear mixed-effects models (Chapters 23 and 24). These models are used increasingly 
in social research and I thought that it was important to incorporate them in this text. There is 
also a revised presentation of analysis of variance models in Chapter 8, which includes a sim-
plified treatment, allowing readers to skip the more complex aspects of the topic, if they wish; 
an introduction to instrumental-variables estimation and two-stage least squares in Chapter 
9; and a brief consideration of design-based inference for statistical models fit to data from 
complex survey samples in Chapter 15.

As in the second edition, the appendices to the book (with the exception of Appendix A on 
notation) are on the website for the book. In addition, data-analytic exercises and data sets from 
the book are on the website.

Synopsis 
Chapter 1 discusses the role of statistical data analysis in social science, expressing the 
point of view that statistical models are essentially descriptive, not direct (if abstract) 
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 representations of social processes. This perspective provides the foundation for the  
data-analytic focus of the text. 

Part I: Data Craft
The first part of the book consists of preliminary material:1

Chapter 2 introduces the notion of regression analysis as tracing the conditional distribution 
of a response variable as a function of one or several explanatory variables. This idea is ini-
tially explored “nonparametrically,’’ in the absence of a restrictive statistical model for the 
data (a topic developed more extensively in Chapter 18).

Chapter 3 describes a variety of graphical tools for examining data. These methods are use-
ful both as a preliminary to statistical modeling and to assist in the diagnostic checking of a 
model that has been fit to data (as discussed, e.g., in Part III).

Chapter 4 discusses variable transformation as a solution to several sorts of problems com-
monly encountered in data analysis, including skewness, nonlinearity, and nonconstant spread. 

Part II: Linear Models and Least Squares
The second part, on linear models fit by the method of least squares, along with Part III on 

diagnostics and Part IV on generalized linear models, comprises the heart of the book:

Chapter 5 discusses linear least-squares regression. Linear regression is the prototypical lin-
ear model, and its direct extension is the subject of Chapters 7 to 10.

Chapter 6, on statistical inference in regression, develops tools for testing hypotheses and 
constructing confidence intervals that apply generally to linear models. This chapter also 
introduces the basic methodological distinction between empirical and structural relation-
ships—a distinction central to understanding causal inference in nonexperimental research.

Chapter 7 shows how “dummy variables’’ can be employed to extend the regression model 
to qualitative explanatory variables (or “factors’’). Interactions among explanatory variables 
are introduced in this context.

Chapter 8, on analysis of variance models, deals with linear models in which all the explan-
atory variables are factors.

Chapter 9* develops the statistical theory of linear models, providing the foundation for 
much of the material in Chapters 5 to 8 along with some additional, and more general, results. 
This chapter also includes an introduction to instrumental-variables estimation and two-stage 
least squares.

Chapter 10* applies vector geometry to linear models, allowing us literally to visualize the 
structure and properties of these models. Many topics are revisited from the geometric per-
spective, and central concepts—such as “degrees of freedom’’ —are given a natural and com-
pelling interpretation. 

1I believe that it was Michael Friendly of York University who introduced me to the term data craft, a term that aptly 
characterizes the content of this section and, indeed, of the book more generally.
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Part III: Linear-Model Diagnostics
The third part of the book describes “diagnostic’’ methods for discovering whether a linear 

model fit to data adequately represents the data. Methods are also presented for correcting prob-
lems that are revealed:

Chapter 11 deals with the detection of unusual and influential data in linear models.

Chapter 12 describes methods for diagnosing a variety of problems, including non-normally 
distributed errors, nonconstant error variance, and nonlinearity. Some more advanced mate-
rial in this chapter shows how the method of maximum likelihood can be employed for select-
ing transformations.

Chapter 13 takes up the problem of collinearity—the difficulties for estimation that ensue 
when the explanatory variables in a linear model are highly correlated. 

Part IV: Generalized Linear Models
The fourth part of the book is devoted to generalized linear models, a grand synthesis that 

incorporates the linear models described earlier in the text along with many of their most import-
ant extensions:

Chapter 14 takes up linear-like logit and probit models for qualitative and ordinal categorical 
response variables. This is an important topic because of the ubiquity of categorical data in 
the social sciences (and elsewhere).

Chapter 15 describes the generalized linear model, showing how it encompasses linear, logit, 
and probit models along with statistical models (such as Poisson and gamma regression mod-
els) not previously encountered in the text. The chapter includes a treatment of diagnostic 
methods for generalized linear models, extending much of the material in Part III, and ends 
with an introduction to inference for linear and generalized linear models in complex survey 
samples. 

Part V: Extending Linear and Generalized Linear Models
The fifth part of the book discusses important extensions of linear and generalized linear 

models. In selecting topics, I was guided by the proximity of the methods to linear and gener-
alized linear models and by the promise that these methods hold for data analysis in the social 
sciences. The methods described in this part of the text are given introductory—rather than 
extensive—treatments. My aim in introducing these relatively advanced topics is to provide 
(1) enough information so that readers can begin to use these methods in their research and  
(2) sufficient background to support further work in these areas should readers choose to pursue 
them. To the extent possible, I have tried to limit the level of difficulty of the exposition, and 
only Chapter 19 on robust regression is starred in its entirety (because of its essential reliance 
on basic calculus).

Chapter 16 describes time-series regression, where the observations are ordered in time 
and hence cannot usually be treated as statistically independent. The chapter introduces the 
method of generalized least squares, which can take account of serially correlated errors in 
regression.



Preface xix

Chapter 17 takes up nonlinear regression models, showing how some nonlinear models can be 
fit by linear least squares after transforming the model to linearity, while other, fundamentally 
nonlinear, models require the method of nonlinear least squares. The chapter includes treat-
ments of polynomial regression and regression splines, the latter closely related to the topic of 
the subsequent chapter.

Chapter 18 introduces nonparametric regression analysis, which traces the dependence of the 
response on the explanatory variables in a regression without assuming a particular functional 
form for their relationship. This chapter contains a discussion of generalized nonparametric  
regression, including generalized additive models.

Chapter 19 describes methods of robust regression analysis, which are capable of automati-
cally discounting unusual data.

Chapter 20 discusses missing data, explaining the potential pitfalls lurking in common  
approaches to missing data, such as complete-case analysis, and describing more sophisticated 
methods, such as multiple imputation of missing values. This is an important topic because  
social science data sets are often characterized by a large proportion of missing data.

Chapter 21 introduces the “bootstrap,’’ a computationally intensive simulation method for 
constructing confidence intervals and hypothesis tests. In its most common nonparametric 
form, the bootstrap does not make strong distributional assumptions about the data, and it 
can be made to reflect the manner in which the data were collected (e.g., in complex survey 
sampling designs).

Chapter 22 describes methods for model selection, model averaging in the face of model 
uncertainty, and model validation. Automatic methods of model selection and model averag-
ing, I argue, are most useful when a statistical model is to be employed for prediction, less 
so when the emphasis is on interpretation. Validation is a simple method for drawing honest 
statistical inferences when—as is commonly the case—the data are employed both to select a 
statistical model and to estimate its parameters. 

Part VI: Mixed-Effects Models
Part VI, new to the third edition of the book, develops linear, generalized linear, and non-

linear mixed-effects models for clustered data, extending regression models for independent 
observations covered earlier in the text. As in Part V, my aim is to introduce readers to the 
topic, providing a basis for applying these models in practice as well as for reading more 
extensive treatments of the subject. As mentioned earlier in this preface, mixed-effects models 
are in wide use in the social sciences, where they are principally applied to hierarchical and 
longitudinal data.

Chapter 23 introduces linear mixed-effects models and describes the fundamental issues that 
arise in the analysis of clustered data through models that incorporate random effects. Illus-
trative applications include both hierarchical and longitudinal data.

Chapter 24 describes generalized linear mixed-effects models for non-normally distributed  
response variables, such as logistic regression for a dichotomous response, and Poisson and 
related regression models for count data. The chapter also introduces nonlinear mixed-effects 
models for fitting fundamentally nonlinear equations to clustered data.
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Appendices   
Several appendices provide background, principally—but not exclusively—for the starred  
portions of the text. With the exception of Appendix A, which is printed at the back of the book, 
all the appendices are on the website for the book.

Appendix A describes the notational conventions employed in the text.

Appendix B provides a basic introduction to matrices, linear algebra, and vector geometry, 
developing these topics from first principles. Matrices are used extensively in statistics, 
including in the starred portions of this book. Vector geometry provides the basis for the 
material in Chapter 10 on the geometry of linear models.

Appendix C reviews powers and logs and the geometry of lines and planes, introduces  
elementary differential and integral calculus, and shows how, employing matrices, differential 
calculus can be extended to several independent variables. Calculus is required for some starred 
portions of the text—for example, the derivation of least-squares and maximum-likelihood  
estimators. More generally in statistics, calculus figures prominently in probability theory and 
in optimization problems.

Appendix D provides an introduction to the elements of probability theory and to basic  
concepts of statistical estimation and inference, including the essential ideas of Bayesian 
statistical inference. The background developed in this appendix is required for some of the 
material on statistical inference in the text and for certain other topics, such as multiple impu-
tation of missing data and model averaging. 

Computing 
Nearly all the examples in this text employ real data from the social sciences, many of them 
previously analyzed and published. The online exercises that involve data analysis also almost 
all use real data drawn from various areas of application. I encourage readers to analyze their 
own data as well.

The data sets for examples and exercises can be downloaded free of charge via the World 
Wide Web; point your web browser at www.sagepub.com/fox3e. Appendices and exercises are 
distributed as portable document format (PDF) files.

I occasionally comment in passing on computational matters, but the book generally ignores 
the finer points of statistical computing in favor of methods that are computationally simple. I 
feel that this approach facilitates learning. Thus, for example, linear least-squares coefficients 
are obtained by solving the normal equations formed from sums of squares and products of the 
variables rather than by a more numerically stable method. Once basic techniques are absorbed, 
the data analyst has recourse to carefully designed programs for statistical computations.

I think that it is a mistake to tie a general discussion of linear and related statistical models 
too closely to particular software. Any reasonably capable statistical software will do almost 
everything described in this book. My current personal choice of statistical software, both for 
research and for teaching, is R—a free, open-source implementation of the S statistical pro-
gramming language and computing environment (Ihaka & Gentleman, 1996; R Core Team, 
2014). R is now the dominant statistical software among statisticians; it is used increasingly 
in the social sciences but is by no means dominant there. I have coauthored a separate book 
(Fox & Weisberg, 2011) that provides a general introduction to R and that describes its use in 
applied regression analysis.
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Reporting Numbers in Examples 
A note on how numbers are reported in the data analysis examples: I typically show numbers to 
four or five significant digits in tables and in the text. This is greater precision than is usually 
desirable in research reports, where showing two or three significant digits makes the results 
more digestible by readers. But my goal in this book is generally to allow the reader to reproduce 
the results shown in examples. In many instances, numbers in examples are computed from each 
other, rather than being taken directly from computer output; in these instances, a reader compar-
ing the results in the text to those in computer output may encounter small differences, usually 
of one unit in the last decimal place.

To Readers, Students, and Instructors 
I have used the material in this book and its predecessors for two types of courses (along with a 
variety of short courses and lectures):

•	 I cover the unstarred sections of Chapters 1 to 8, 11 to 15, 20, and 22 in a one-semester 
course for social science graduate students (at McMaster University in Hamilton, Ontario, 
Canada) who have had (at least) a one-semester introduction to statistics at the level of 
Moore, Notz, and Fligner (2013). The outline of this course is as follows: 

Week Topic Reading (Chapter)

1 Introduction to the course and to regression 1, 2

2 Examining and transforming data 3, 4

3 Linear least-squares regression 5

4 Statistical inference for regression 6

5 Dummy-variable regression and analysis of 
variance 

7, 8 

6 Review: Through dummy regression 

7 Diagnostics I: Unusual and influential data 11 

8 Diagnostics II: Nonlinearity and other ills 12 

9 Diagnostics III: Collinearity and model 
selection 

13, 22

10 Logit and probit models for dichotomous data 14 

11 Logit and probit models for polytomous data 14 

12 Generalized linear models 15

13 Missing data 20

14 Review: From analysis of variance

These readings are supplemented by selections from An R Companion to Applied Regression, 
Second Edition (Fox & Weisberg, 2011). Students complete required weekly homework assign-
ments, which focus primarily on data analysis. Homework is collected and corrected but not 



xxii Applied Regression Analysis and Generalized Linear Models

graded. I distribute answers after the homework is collected. There are midterm and final take-
home exams (after the review classes), also focused on data analysis.

•	 I used the material in the predecessors of Chapters 1 to 15 and the several appendices for 
a two-semester course for social science graduate students (at York University in Toronto) 
with similar statistical preparation. For this second, more intensive, course, background 
topics (such as linear algebra) were introduced as required and constituted about one fifth 
of the course. The organization of the course was similar to the first one. 

Both courses include some treatment of statistical computing, with more information on pro-
gramming in the second course. For students with the requisite mathematical and statistical 
background, it should be possible to cover almost all the text in a reasonably paced two-semester 
course.

In learning statistics, it is important for the reader to participate actively, both by working 
though the arguments presented in the book and—even more important—by applying methods 
to data. Statistical data analysis is a craft, and, like any craft, developing proficiency requires  
effort and practice. Reworking examples is a good place to start, and I have presented illustra-
tions in such a manner as to facilitate reanalysis and further analysis of the data.

Where possible, I have relegated formal “proofs’’ and derivations to exercises, which never-
theless typically provide some guidance to the reader. I believe that this type of material is best 
learned constructively. As well, including too much algebraic detail in the body of the text invites 
readers to lose the statistical forest for the mathematical trees. You can decide for yourself (or 
your students) whether or not to work the theoretical exercises. It is my experience that some 
people feel that the process of working through derivations cements their understanding of the 
statistical material, while others find this activity tedious and pointless. Some of the theoretical 
exercises, marked with asterisks, are comparatively difficult. (Difficulty is assessed relative to 
the material in the text, so the threshold is higher in starred sections and chapters.)

In preparing the data-analytic exercises, I have tried to find data sets of some intrinsic inter-
est that embody a variety of characteristics. In many instances, I try to supply some direction 
in the data-analytic exercises, but—like all real-data analysis—these exercises are fundamen-
tally open-ended. It is therefore important for instructors to set aside time to discuss data-ana-
lytic exercises in class, both before and after students tackle them. Although students often miss 
important features of the data in their initial analyses, this experience—properly approached and 
integrated—is an unavoidable part of learning the craft of data analysis.

A few exercises, marked with pound-signs (#) are meant for “hand’’ computation. Hand com-
putation (i.e., with a calculator) is tedious, and is practical only for unrealistically small prob-
lems, but it sometimes serves to make statistical procedures more concrete (and increases our 
admiration for our pre-computer-era predecessors). Similarly, despite the emphasis in the text 
on analyzing real data, a small number of exercises generate simulated data to clarify certain 
properties of statistical methods.

I struggled with the placement of cross-references to exercises and to other parts of the text, 
trying brackets [too distracting!], marginal boxes (too imprecise), and finally settling on tradi-
tional footnotes.2 I suggest that you ignore both the cross-references and the other footnotes on 
first reading of the text.3

Finally, a word about style: I try to use the first person singular—“I’’—when I express opin-
ions. “We’’ is reserved for you—the reader—and I.

2Footnotes are a bit awkward, but you don’t have to read them.
3Footnotes other than cross-references generally develop small points and elaborations.
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1 Statistical Models
and Social Science

T he social world is exquisitely complex and rich. From the improbable moment of birth,
each of our lives is governed by chance and contingency. The statistical models typically

used to analyze social data—and, in particular, the models considered in this book—are, in
contrast, ludicrously simple. How can simple statistical models help us to understand a com-
plex social reality? As the statistician George Box famously remarked (e.g., in Box, 1979),
‘‘All models are wrong but some are useful’’ (p. 202). Can statistical models be useful in the
social sciences?

This is a book on data analysis and statistics, not on the philosophy of the social sciences. I
will, therefore, address this question, and related issues, very briefly here. Nevertheless, I feel
that it is useful to begin with a consideration of the role of data analysis in the larger process of
social research. You need not agree with the point of view that I express in this chapter to
make productive use of the statistical tools presented in the remainder of the book, but the
emphasis and specific choice of methods in the text partly reflect the ideas in this chapter. You
may wish to reread this material after you study the methods described in the sequel.

1.1 Statistical Models and Social Reality

As I said, social reality is complex: Consider how my income is ‘‘determined.’’ I am a rela-
tively well-paid professor in the sociology department of a Canadian university. That the bil-
liard ball of my life would fall into this particular pocket was, however, hardly predictable a
half-century ago, when I was attending a science high school in New York City. My subse-
quent decision to study sociology at New York’s City College (after several other majors), my
interest in statistics (the consequence of a course taken without careful consideration in my
senior year), my decision to attend graduate school in sociology at the University of Michigan
(one of several more or less equally attractive possibilities), and the opportunity and desire to
move to Canada (the vote to hire me at the University of Alberta was, I later learned, very
close) are all events that could easily have occurred differently.

I do not mean to imply that personal histories are completely capricious, unaffected by social
structures of race, ethnicity, class, gender, and so on, just that they are not in detail determined
by these structures. That social structures—and other sorts of systematic factors—condition,
limit, and encourage specific events is clear from each of the illustrations in the previous para-
graph and in fact makes sense of the argument for the statistical analysis of social data pre-
sented below. To take a particularly gross example: The public high school that I attended
admitted its students by competitive examination, but no young women could apply (a policy
that has happily changed).

1



Each of these precarious occurrences clearly affected my income, as have other events—
some significant, some small—too numerous and too tedious to mention, even if I were aware
of them all. If, for some perverse reason, you were truly interested in my income (and, perhaps,
in other matters more private), you could study my biography and through that study arrive at
a detailed (if inevitably incomplete) understanding. It is clearly impossible, however, to pursue
this strategy for many individuals or, more to the point, for individuals in general.

Nor is an understanding of income in general inconsequential, because income inequality is
an (increasingly, as it turns out) important feature of our society. If such an understanding
hinges on a literal description of the process by which each of us receives an income, then the
enterprise is clearly hopeless. We might, alternatively, try to capture significant features of the
process in general without attempting to predict the outcome for specific individuals. One
could draw formal analogies (largely unproductively, I expect, although some have tried) to
chaotic physical processes, such as the determination of weather and earthquakes.

Concrete mathematical theories purporting to describe social processes sometimes appear in
the social sciences (e.g., in economics and in some areas of psychology), but they are relatively
rare.1 If a theory, like Newton’s laws of motion, is mathematically concrete, then, to be sure,
there are difficulties in applying and testing it; but, with some ingenuity, experiments and
observations can be devised to estimate the free parameters of the theory (a gravitational con-
stant, for example) and to assess the fit of the theory to the resulting data.

In the social sciences, verbal theories abound. These social theories tend to be vague, ellipti-
cal, and highly qualified. Often, they are, at least partially, a codification of ‘‘common sense.’’
I believe that vague social theories are potentially useful abstractions for understanding an
intrinsically complex social reality, but how can such theories be linked empirically to that
reality?

A vague social theory may lead us to expect, for example, that racial prejudice is the partial
consequence of an ‘‘authoritarian personality,’’ which, in turn, is a product of rigid childrear-
ing. Each of these terms requires elaboration and procedures of assessment or measurement.
Other social theories may lead us to expect that higher levels of education should be associated
with higher levels of income, perhaps because the value of labor power is enhanced by train-
ing, because occupations requiring higher levels of education are of greater functional impor-
tance, because those with higher levels of education are in relatively short supply, or because
people with high educational attainment are more capable in the first place. In any event, we
need to consider how to assess income and education, how to examine their relationship, and
what other variables need to be included.2

Statistical models of the type considered in this book are grossly simplified descriptions of
complex social reality. Imagine that we have data from a social survey of a large sample of
employed individuals. Imagine further, anticipating the statistical methods described in subse-
quent chapters, that we regress these individuals’ income on a variety of putatively relevant
characteristics, such as their level of education, gender, race, region of residence, and so on.
We recognize that a model of this sort will fail to account perfectly for individuals’ incomes,
so our model includes a ‘‘residual,’’ meant to capture the component of income unaccounted

1The methods for fitting nonlinear models described in Chapter 17 are sometimes appropriate to the rare theories in
social science that are mathematically concrete.
2See Section 1.2.

2 Chapter 1. Statistical Models and Social Science



for by the systematic part of the model, which incorporates the ‘‘effects’’ on income of educa-
tion, gender, and so forth.

The residuals for our model are likely very large. Even if the residuals were small, however,
we would still need to consider the relationships among our social ‘‘theory,’’ the statistical
model that we have fit to the data, and the social ‘‘reality’’ that we seek to understand. Social
reality, along with our methods of observation, produces the data; our theory aims to explain
the data, and the model to describe them. That, I think, is the key point: Statistical models are
almost always fundamentally descriptive.

I believe that a statistical model cannot, and is not literally meant, to capture the social pro-
cess by which incomes are ‘‘determined.’’ As I argued above, individuals receive their incomes
as a result of their almost unimaginably complex personal histories. No regression model, not
even one including a residual, can reproduce this process: It is not as if my income is partly
determined by my education, gender, race, and so on, and partly by the detailed trajectory of
my life. It is, therefore, not sensible, at the level of real social processes, to relegate chance and
contingency to a random term that is simply added to the systematic part of a statistical model.
The unfortunate tendency to reify statistical models—to forget that they are descriptive summa-
ries, not literal accounts of social processes—can only serve to discredit quantitative data anal-
ysis in the social sciences.

Nevertheless, and despite the rich chaos of individuals’ lives, social theories imply a struc-
ture to income inequality. Statistical models are capable of capturing and describing that struc-
ture or at least significant aspects of it. Moreover, social research is often motivated by
questions rather than by hypotheses: Has income inequality between men and women changed
recently? Is there a relationship between public concern over crime and the level of crime?
Data analysis can help to answer these questions, which frequently are of practical—as well as
theoretical—concern. Finally, if we proceed carefully, data analysis can assist us in the discov-
ery of social facts that initially escape our hypotheses and questions.

It is, in my view, a paradox that the statistical models that are at the heart of most modern
quantitative social science are at once taken too seriously and not seriously enough by many
practitioners of social science. On one hand, social scientists write about simple statistical mod-
els as if they were direct representations of the social processes that they purport to describe. On
the other hand, there is frequently a failure to attend to the descriptive accuracy of these models.

As a shorthand, reference to the ‘‘effect’’ of education on income is innocuous. That the
shorthand often comes to dominate the interpretation of statistical models is reflected, for
example, in much of the social science literature that employs structural-equation models (once
commonly termed ‘‘causal models,’’ a usage that has thankfully declined). There is, I believe,
a valid sense in which income is ‘‘affected’’ by education, because the complex real process by
which individuals’ incomes are determined is partly conditioned by their levels of education,
but—as I have argued above—one should not mistake the model for the process.3

Although statistical models are very simple in comparison to social reality, they typically
incorporate strong claims about the descriptive pattern of data. These claims rarely reflect the

3There is the danger here of simply substituting one term (‘‘conditioned by’’) for another (‘‘affected by’’), but the point
is deeper than that: Education affects income because the choices and constraints that partly structure individuals’ lives
change systematically with their level of education. Many highly paid occupations in our society are closed to individu-
als who lack a university education, for example. To recognize this fact, and to examine its descriptive reflection in a
statistical summary, is different from claiming that a university education literally adds an increment to individuals’
incomes.
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substantive social theories, hypotheses, or questions that motivate the use of the statistical mod-
els, and they are very often wrong. For example, it is common in social research to assume a
priori, and without reflection, that the relationship between two variables, such as income and
education, is linear. Now, we may well have good reason to believe that income tends to be
higher at higher levels of education, but there is no reason to suppose that this relationship is
linear. Our practice of data analysis should reflect our ignorance as well as our knowledge.

A statistical model is of no practical use if it is an inaccurate description of the data, and we
will, therefore, pay close attention to the descriptive accuracy of statistical models. Unhappily,
the converse is not true, for a statistical model may be descriptively accurate but of little practi-
cal use; it may even be descriptively accurate but substantively misleading. We will explore
these issues briefly in the next two sections, which tie the interpretation of statistical models to
the manner in which data are collected.

With few exceptions, statistical data analysis describes the outcomes of real social pro-
cesses and not the processes themselves. It is therefore important to attend to the descrip-
tive accuracy of statistical models and to refrain from reifying them.

1.2 Observation and Experiment

It is common for (careful) introductory accounts of statistical methods (e.g., Freedman, Pisani,
& Purves, 2007; Moore, Notz, & Fligner, 2013) to distinguish strongly between observational
and experimental data. According to the standard distinction, causal inferences are justified (or,
at least, more certain) in experiments, where the explanatory variables (i.e., the possible
‘‘causes’’) are under the direct control of the researcher; causal inferences are especially com-
pelling in a randomized experiment, in which the values of explanatory variables are assigned
by some chance mechanism to experimental units. In nonexperimental research, in contrast, the
values of the explanatory variables are observed—not assigned—by the researcher, along with
the value of the response variable (the ‘‘effect’’), and causal inferences are not justified (or, at
least, are less certain). I believe that this account, although essentially correct, requires qualifi-
cation and elaboration.

To fix ideas, let us consider the data summarized in Table 1.1, drawn from a paper by
Greene and Shaffer (1992) on Canada’s refugee determination process. This table shows the
outcome of 608 cases, filed in 1990, in which refugee claimants who were turned down by the
Immigration and Refugee Board asked the Federal Court of Appeal for leave to appeal
the board’s determination. In each case, the decision to grant or deny leave to appeal was made
by a single judge. It is clear from the table that the 12 judges who heard these cases differed
widely in the percentages of cases that they granted leave to appeal. Employing a standard sig-
nificance test for a contingency table (a chi-square test of independence), Greene and Shaffer
calculated that a relationship as strong as the one in the table will occur by chance alone about
two times in 100,000. These data became the basis for a court case contesting the fairness of
the Canadian refugee determination process.

If the 608 cases had been assigned at random to the judges, then the data would constitute a
natural experiment, and we could unambiguously conclude that the large differences among
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the judges reflect differences in their propensities to grant leave to appeal.4 The cases were,
however, assigned to the judges not randomly but on a rotating basis, with a single judge hear-
ing all of the cases that arrived at the court in a particular week. In defending the current refu-
gee determination process, expert witnesses for the Crown argued that the observed differences
among the judges might therefore be due to characteristics that systematically differentiated the
cases that different judges happened to hear.

It is possible, in practice, to ‘‘control’’ statistically for such extraneous ‘‘confounding’’ vari-
ables as may explicitly be identified, but it is not, in principle, possible to control for all rele-
vant explanatory variables, because we can never be certain that all relevant variables have
been identified.5 Nevertheless, I would argue, the data in Table 1.1 establish a prima facie case
for systematic differences in the judges’ propensities to grant leave to appeal to refugee clai-
mants. Careful researchers control statistically for potentially relevant variables that they can
identify; cogent critics demonstrate that an omitted confounding variable accounts for the
observed association between judges and decisions or at least argue persuasively that a specific
omitted variable may be responsible for this association—they do not simply maintain the
abstract possibility that such a variable may exist.

Table 1.1 Percentages of Refugee Claimants in 1990 Who Were
Granted or Denied Leave to Appeal a Negative
Decision of the Canadian Immigration and Refugee
Board, Classified by the Judge Who Heard the Case

Leave Granted?

Judge Yes No Total Number of cases

Pratte 9 91 100 57
Linden 9 91 100 32
Stone 12 88 100 43
Iacobucci 12 88 100 33
Décary 20 80 100 80
Hugessen 26 74 100 65
Urie 29 71 100 21
MacGuigan 30 70 100 90
Heald 30 70 100 46
Mahoney 34 66 100 44
Marceau 36 64 100 50
Desjardins 49 51 100 47

All judges 25 75 100 608

SOURCE: Adapted from Table 1 in Greene and Shaffer, ‘‘Leave to Appeal

and Leave to Commence Judicial Review in Canada’s Refugee-

Determination System: Is the Process Fair?’’ International Journal of Refugee

Law, 1992, Vol. 4, No. 1, p. 77, by permission of Oxford University Press.

4Even so, this inference is not reasonably construed as a representation of the cognitive process by which judges arrive
at their determinations. Following the argument in the previous section, it is unlikely that we could ever trace out that
process in detail; it is quite possible, for example, that a specific judge would make different decisions faced with the
same case on different occasions.
5See the further discussion of the refugee data in Section 22.3.1.
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What makes an omitted variable ‘‘relevant’’ in this context?6

1. The omitted variable must influence the response. For example, if the gender of the
refugee applicant has no impact on the judges’ decisions, then it is irrelevant to control
statistically for gender.

2. The omitted variable must be related as well to the explanatory variable that is the focus
of the research. Even if the judges’ decisions are influenced by the gender of the appli-
cants, the relationship between outcome and judge will be unchanged by controlling for
gender (e.g., by looking separately at male and female applicants) unless the gender of
the applicants is also related to judges—that is, unless the different judges heard cases
with substantially different proportions of male and female applicants.

The strength of randomized experimentation derives from the second point: If cases were ran-
domly assigned to judges, then there would be no systematic tendency for them to hear cases
with differing proportions of men and women—or, for that matter, with systematic differences
of any kind.

It is, however, misleading to conclude that causal inferences are completely unambiguous in
experimental research, even within the bounds of statistical uncertainty (expressed, for exam-
ple, in the p-value of a statistical test). Although we can unambiguously ascribe an observed
difference to an experimental manipulation, we cannot unambiguously identify that manipula-
tion with the explanatory variable that is the focus of our research.

In a randomized drug study, for example, in which patients are prescribed a new drug or an
inactive placebo, we may establish with virtual certainty that there was greater average
improvement among those receiving the drug, but we cannot be sure that this difference is due
(or solely due) to the putative active ingredient in the drug. Perhaps the experimenters inadver-
tently conveyed their enthusiasm for the drug to the patients who received it, influencing the
patients’ responses, or perhaps the bitter taste of the drug subconsciously convinced these
patients of its potency.

Experimenters try to rule out alternative interpretations of this kind by following careful
experimental practices, such as ‘‘double-blind’’ delivery of treatments (neither the subject nor
the experimenter knows whether the subject is administered the drug or the placebo), and by
holding constant potentially influential characteristics deemed to be extraneous to the research
(the taste, color, shape, etc., of the drug and placebo are carefully matched). One can never be
certain, however, that all relevant variables are held constant in this manner. Although the
degree of certainty achieved is typically much greater in a randomized experiment than in an
observational study, the distinction is less clear-cut than it at first appears.

Causal inferences are most certain—if not completely definitive—in randomized experi-
ments, but observational data can also be reasonably marshaled as evidence of causation.
Good experimental practice seeks to avoid confounding experimentally manipulated expla-
natory variables with other variables that can influence the response variable. Sound analy-
sis of observational data seeks to control statistically for potentially confounding variables.

6These points are developed more formally in Sections 6.3 and 9.7.
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In subsequent chapters, we will have occasion to examine observational data on the prestige,
educational level, and income level of occupations. It will materialize that occupations with
higher levels of education tend to have higher prestige and that occupations with higher levels
of income also tend to have higher prestige. The income and educational levels of occupations
are themselves positively related. As a consequence, when education is controlled statistically,
the relationship between prestige and income grows smaller; likewise, when income is con-
trolled, the relationship between prestige and education grows smaller. In neither case, how-
ever, does the relationship disappear.

How are we to understand the pattern of statistical associations among the three variables? It
is helpful in this context to entertain an informal ‘‘causal model’’ for the data, as in Figure 1.1.
That is, the educational level of occupations influences (potentially) both their income level
and their prestige, while income potentially influences prestige. The association between pres-
tige and income is ‘‘spurious’’ (i.e., not causal) to the degree that it is a consequence of the
mutual dependence of these two variables on education; the reduction in this association when
education is controlled represents the removal of the spurious component. In contrast, the cau-
sal relationship between education and prestige is partly mediated by the ‘‘intervening vari-
able’’ income; the reduction in this association when income is controlled represents the
articulation of an ‘‘indirect’’ effect of education on prestige (i.e., through income).

In the former case, we partly explain away the association between income and prestige:
Part of the relationship is ‘‘really’’ due to education. In the latter case, we partly explain the
association between education and prestige: Part of the relationship is mediated by income.

In analyzing observational data, it is important to distinguish between a variable that is a
common prior cause of an explanatory and response variable and a variable that inter-
venes causally between the two.

Causal interpretation of observational data is always risky, especially—as here—when the data
are cross-sectional (i.e., collected at one point in time) rather than longitudinal (where the data

Education

Income

Prestige

Figure 1.1 Simple ‘‘causal model’’ relating education, income, and prestige of occupations.
Education is a common prior cause of both income and prestige; income intervenes
causally between education and prestige.
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are collected over time). Nevertheless, it is usually impossible, impractical, or immoral to col-
lect experimental data in the social sciences, and longitudinal data are often hard to come by.7

Moreover, the essential difficulty of causal interpretation in nonexperimental investigations—
due to potentially confounding variables that are left uncontrolled—applies to longitudinal as
well as to cross-sectional observational data.8

The notion of ‘‘cause’’ and its relationship to statistical data analysis are notoriously difficult
ideas. A relatively strict view requires an experimentally manipulable explanatory variable, at
least one that is manipulable in principle.9 This is a particularly sticky point because, in social
science, many explanatory variables are intrinsically not subject to direct manipulation, even in
principle. Thus, for example, according to the strict view, gender cannot be considered a cause
of income, even if it can be shown (perhaps after controlling for other determinants of income)
that men and women systematically differ in their incomes, because an individual’s gender can-
not be changed.10

I believe that treating nonmanipulable explanatory variables, such as gender, as potential
causes is, at the very least, a useful shorthand. Men earn higher incomes than women because
women are (by one account) concentrated into lower paying jobs, work fewer hours, are
directly discriminated against, and so on (see, e.g., Ornstein, 1983). Explanations of this sort
are perfectly reasonable and are subject to statistical examination; the sense of ‘‘cause’’ here
may be weaker than the narrow one, but it is nevertheless useful.

It is overly restrictive to limit the notion of statistical causation to explanatory variables
that are manipulated experimentally, to explanatory variables that are manipulable in
principle, or to data that are collected over time.

1.3 Populations and Samples

Statistical inference is typically introduced in the context of random sampling from an identifi-
able population. There are good reasons for stressing this interpretation of inference—not the
least of which are its relative concreteness and clarity—but the application of statistical infer-
ence is, at least arguably, much broader, and it is certainly broader in practice.

Take, for example, a prototypical experiment, in which subjects are assigned values of the
explanatory variables at random: Inferences may properly be made to the hypothetical

7Experiments with human beings also frequently distort the processes that they purport to study: Although it might well
be possible, for example, to recruit judges to an experimental study of judicial decision making, the artificiality of the
situation could easily affect their simulated decisions. Even if the study entailed real judicial judgments, the mere act of
observation might influence the judges’ decisions—they might become more careful, for example.
8We will take up the analysis of longitudinal data in Chapters 23 and 24 on mixed-effects models.
9For clear presentations of this point of view, see, for example, Holland (1986) and Berk (2004).
10This statement is, of course, arguable: There are historically many instances in which individuals have changed their
gender, for example by disguise, not to mention surgery. Despite some fuzziness, however, I believe that the essential
point—that some explanatory variables are not (normally) subject to manipulation—is valid. A more subtle point is that
in certain circumstances, we could imagine experimentally manipulating the apparent gender of an individual, for
example, on a job application.
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population of random rearrangements of the subjects, even when these subjects are not sampled
from some larger population. If, for example, we find a highly ‘‘statistically significant’’ differ-
ence between two experimental groups of subjects in a randomized experiment, then we can be
sure, with practical certainty, that the difference was due to the experimental manipulation. The
rub here is that our interest almost surely extends beyond this specific group of subjects to
some larger—often ill-defined—population.

Even when subjects in an experimental or observational investigation are literally sampled at
random from a real population, we usually wish to generalize beyond that population. There
are exceptions—election polling comes immediately to mind—but our interest is seldom con-
fined to the population that is directly sampled. This point is perhaps clearest when no sam-
pling is involved—that is, when we have data on every individual in a real population.

Suppose, for example, that we examine data on population density and crime rates for all
large U.S. cities and find only a weak association between the two variables. Suppose further
that a standard test of statistical significance indicates that this association is so weak that it
easily could have been the product of ‘‘chance.’’11 Is there any sense in which this information
is interpretable? After all, we have before us data on the entire population of large U.S. cities
at a particular historical juncture.

Because our interest inheres not directly—at least not exclusively—in these specific cities
but in the complex social processes by which density and crime are determined, we can reason-
ably imagine a different outcome. Were we to replay history conceptually, we would not
observe precisely the same crime rates and population density statistics, dependent as these are
on a myriad of contingent and chancy events; indeed, if the ambit of our conceptual replay of
history is sufficiently broad, then the identities of the cities themselves might change.
(Imagine, for example, that Henry Hudson had not survived his trip to the New World or, if he
survived it, that the capital of the United States had remained in New York. Less momentously,
imagine that Fred Smith had not gotten drunk and killed a friend in a brawl, reducing the num-
ber of homicides in New York by one.) It is, in this context, reasonable to draw statistical infer-
ences to the process that produced the currently existing populations of cities. Similar
considerations arise in the analysis of historical statistics, for example, of time-series data.12

Much interesting data in the social sciences—and elsewhere—are collected haphazardly.
The data constitute neither a sample drawn at random from a larger population nor a coherently
defined population. Experimental randomization provides a basis for making statistical infer-
ences to the population of rearrangements of a haphazardly selected group of subjects, but that
is in itself cold comfort. For example, an educational experiment is conducted with students
recruited from a school that is conveniently available. We are interested in drawing conclusions
about the efficacy of teaching methods for students in general, however, not just for the stu-
dents who participated in the study.

Haphazard data are also employed in many observational studies—for example, volunteers
are recruited from among university students to study the association between eating disorders
and overexercise. Once more, our interest transcends this specific group of volunteers.

To rule out haphazardly collected data would be a terrible waste; it is, instead, prudent to be
careful and critical in the interpretation of the data. We should try, for example, to satisfy our-
selves that our haphazard group does not differ in presumably important ways from the larger

11Cf. the critical discussion of crime and population density in Freedman (1975).
12See Chapter 16 for a discussion of regression analysis with time-series data.
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population of interest, or to control statistically for variables thought to be relevant to the phe-
nomena under study.

Statistical inference can speak to the internal stability of patterns in haphazardly collected
data and—most clearly in experimental data—to causation. Generalization from haphazardly
collected data to a broader population, however, is inherently a matter of judgment.

Randomization and good sampling design are desirable in social research, but they are
not prerequisites for drawing statistical inferences. Even when randomization or random
sampling is employed, we typically want to generalize beyond the strict bounds of statis-
tical inference.

Exercise

Exercise 1.1. Imagine that students in an introductory statistics course complete 20 assign-
ments during two semesters. Each assignment is worth 1% of a student’s final grade, and stu-
dents get credit for assignments that are turned in on time and that show reasonable effort. The
instructor of the course is interested in whether doing the homework contributes to learning,
and (anticipating material to be taken up in Chapters 5 and 6), she observes a linear, moder-
ately strong, and highly statistically significant relationship between the students’ grades on the
final exam in the course and the number of homework assignments that they completed. For
concreteness, imagine that for each additional assignment completed, the students’ grades on
average were 1.5 higher (so that, e.g., students completing all of the assignments on average
scored 30 points higher on the exam than those who completed none of the assignments).

(a) Can this result be taken as evidence that completing homework assignments causes
higher grades on the final exam? Why or why not?

(b) Is it possible to design an experimental study that could provide more convincing evi-
dence that completing homework assignments causes higher exam grades? If not, why
not? If so, how might such an experiment be designed?

(c) Is it possible to marshal stronger observational evidence that completing homework
assignments causes higher exam grades? If not, why not? If so, how?

Summary

! With few exceptions, statistical data analysis describes the outcomes of real social pro-
cesses and not the processes themselves. It is therefore important to attend to the
descriptive accuracy of statistical models and to refrain from reifying them.

! Causal inferences are most certain—if not completely definitive—in randomized experi-
ments, but observational data can also be reasonably marshaled as evidence of causation.
Good experimental practice seeks to avoid confounding experimentally manipulated
explanatory variables with other variables that can influence the response variable.
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Sound analysis of observational data seeks to control statistically for potentially con-
founding variables.

! In analyzing observational data, it is important to distinguish between a variable that is a
common prior cause of an explanatory and response variable and a variable that inter-
venes causally between the two.

! It is overly restrictive to limit the notion of statistical causation to explanatory variables
that are manipulated experimentally, to explanatory variables that are manipulable in
principle, or to data that are collected over time.

! Randomization and good sampling design are desirable in social research, but they are
not prerequisites for drawing statistical inferences. Even when randomization or random
sampling is employed, we typically want to generalize beyond the strict bounds of statis-
tical inference.

Recommended Reading

! Chance and contingency are recurrent themes in Stephen Gould’s fine essays on natural
history; see, in particular, Gould (1989). I believe that these themes are relevant to the
social sciences as well, and Gould’s work has strongly influenced the presentation in
Section 1.1.

! The legitimacy of causal inferences in nonexperimental research is and has been a hotly
debated topic. Sir R. A. Fisher, for example, famously argued in the 1950s that there
was no good evidence that smoking causes lung cancer, because the epidemiological
evidence for the relationship between the two was, at that time, based on observational
data (see, e.g., the review of Fisher’s work on lung cancer and smoking in Stolley,
1991). Perhaps the most vocal recent critic of the use of observational data was David
Freedman. See, for example, Freedman’s (1987) critique of structural-equation modeling
in the social sciences and the commentary that follows it.

! A great deal of recent work on causal inference in statistics has been motivated by
‘‘Rubin’s causal model.’’ For a summary and many references, see Rubin (2004). A
very clear presentation of Rubin’s model, followed by interesting commentary, appears
in Holland (1986). Pearl (2009) develops a different account of causal inference from
nonexperimental data using directed graphs. For an accessible, book-length treatment of
these ideas, combining Rubin’s ‘‘counterfactual’’ approach with Pearl’s, see Morgan
and Winship (2007). Also see Murnane and Willett (2011), who focus their discussion
on research in education.

! Berk (2004) provides an extended, careful discussion, from a point of view different
from mine, of many of the issues raised in this chapter.

! The place of sampling and randomization in statistical investigations has also been
widely discussed and debated in the literature on research design. The classic presenta-
tion of the issues in Campbell and Stanley (1963) is still worth reading, as is Kish
(1987). In statistics, these themes are reflected in the distinction between model-based
and design-based inference (see, e.g., Koch & Gillings, 1983) and in the notion of super-
population inference (see, e.g., Thompson, 1988).

! Achen (1982) argues eloquently for the descriptive interpretation of statistical models,
illustrating his argument with effective examples.
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PART I
Data Craft



2 What Is
Regression Analysis?

A s mentioned in Chapter 1, statistical data analysis is a craft, part art (in the sense of a
skill developed through practice) and part science (in the sense of systematic, formal

knowledge). Introductions to applied statistics typically convey some of the craft of data analy-
sis but tend to focus on basic concepts and the logic of statistical inference. This and the next
two chapters develop some of the elements of statistical data analysis:

! The current chapter introduces regression analysis in a general context, tracing the con-
ditional distribution of a response variable as a function of one or several explanatory
variables. There is also some discussion of practical methods for looking at regressions
with a minimum of prespecified assumptions about the data.

! Chapter 3 describes graphical methods for looking at data, including methods for exam-
ining the distributions of individual variables, relationships between pairs of variables,
and relationships among several variables.

! Chapter 4 takes up methods for transforming variables to make them better behaved—
for example, to render the distribution of a variable more symmetric or to make the rela-
tionship between two variables more nearly linear.

Figure 2.1 is a scatterplot showing the relationship between hourly wages (in dollars) and for-
mal education (in years) for a sample of 14,601 employed Canadians. The line in the plot
shows the mean value of wages for each level of education and represents (in one sense) the
regression of wages on education.1 Although there are many observations in this scatterplot,
few individuals in the sample have education below, say, 5 years, and so the mean wages at
low levels of education cannot be precisely estimated from the sample, despite its large overall
size. Discounting, therefore, variation in average wages at very low levels of education, it
appears as if average wages are relatively flat until about 10 years of education, at which point
they rise gradually and steadily with education.

Figure 2.1 raises several issues that we will take up in subsequent chapters:2 Because of the
large number of points in the plot and the discreteness of education (which is represented as
number of years completed), the plot is difficult to examine. It is, however, reasonably clear
that the distribution of wages at fixed levels of education is positively skewed. One such condi-
tional distribution is shown in the histogram in Figure 2.2. The mean is a problematic measure
of the center of a skewed distribution, and so basing the regression on the mean is not a good
idea for such data. It is also clear that the relationship between hourly wages and education is

1See Exercise 5.2 for the original statistical meaning of the term ‘‘regression.’’
2See, in particular, Chapter 3 on examining data and Chapter 4 on transforming data.
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Figure 2.1 A scatterplot showing the relationship between hourly wages (in dollars) and educa-
tion (in years) for a sample of 14,601 employed Canadians. The line connects the
mean wages at the various levels of education. The data are drawn from the 1994
Survey of Labour and Income Dynamics (SLID).
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Figure 2.2 The conditional distribution of hourly wages for the 3,384 employed Canadians in the
SLID, who had 12 years of education. The vertical axis is scaled as density, which
means that the total area of the bars of the histogram is 1. Moreover, because each bar
of the histogram has a width of 1, the height of the bar also (and coincidentally) repre-
sents the proportion of the sample in the corresponding interval of wage rates. The
vertical broken line is at the mean wage rate for those with 12 years of education:
$12.94.
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not linear—that is, not reasonably summarized by a straight line—and so the common reflex to
summarize relationships between quantitative variables with lines is also not a good idea here.

Thinking more abstractly, regression analysis, broadly construed, traces the distribution of a
response variable (denoted by Y )—or some characteristic of this distribution (such as its
mean)—as a function of one or more explanatory variables (X1; . . . ;Xk):3

pðyjx1; . . . ; xkÞ ¼ f ðx1; . . . ; xkÞ ð2:1Þ

Here, pðyjx1; . . . ; xkÞ represents the probability (or, for continuous Y , the probability density)
of observing the specific value y of the response variable, conditional on a set of specific val-
ues (x1; . . . ; xk) of the explanatory variables, and pðY jx1; . . . ; xkÞ is the probability distribution
of Y (or the density function of Y ) for these specific values of the X s.4 In the relationship
between the response variable wages (Y ) and the single explanatory variable education (X ), for
example, pðY jxÞ represents the population distribution of wages for all individuals who share
the specific value x of education (e.g., 12 years). Figure 2.1 is therefore the sample analog of
the population conditional distribution of Y .

The relationship of Y to the X s is of particular interest when we entertain the possibility that
the X s affect Y or—more weakly—when we wish to use the X s to predict the value of Y .
Primarily for convenience of exposition, I will initially use the term regression analysis to refer
to those cases in which both Y and the X s are quantitative (as opposed to qualitative) vari-
ables.5 This chapter introduces basic concepts of regression analysis in a very general setting
and explores some simple methods of regression analysis that make very weak assumptions
about the structure of the data.

Regression analysis examines the relationship between a quantitative response variable,
Y , and one or more explanatory variables, X1; . . . ;Xk . Regression analysis traces the con-
ditional distribution of Y —or some aspect of this distribution, such as its mean—as a
function of the X s.

2.1 Preliminaries

Figure 2.3 illustrates the regression of a continuous Y on a single, discrete X , which takes on
several values, labeled x1; x2; . . . ; x5 . Alternatively, you can think of X as a continuous variable
for which x1; x2; . . . ; x5 are specific representative values. As illustrated in the figure, the values
of X need not be evenly spaced. For concreteness, imagine (as in Figure 2.1) that Y represents

3The response variable is often called the dependent variable, and the explanatory variables are often called indepen-
dent variables or predictors.
4If the concept of (or notation for) a conditional distribution is unfamiliar, you should consult online Appendix D on
probability and estimation. Please keep in mind more generally that background information is located in the appen-
dixes, available on the website for the book.
5Later in the book, we will have occasion to consider statistical models in which the explanatory variables (Chapters 7
and 8) and the response variable (Chapter 14) are qualitative/categorical variables. This material is centrally important
because categorical variables are very common in the social sciences.
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wages, that X represents years of formal education, and that the graph shows the conditional
distribution pðY jxÞ of wages for some of the values of education.

Most discussions of regression analysis begin by assuming that the conditional distribution
of the response variable, pðY jx1; . . . ; xkÞ, is a normal distribution; that the variance of Y condi-
tional on the X s is everywhere the same regardless of the specific values of x1; . . . ; xk ; and that
the expected value (the mean) of Y is a linear function of the X s:

µ ” EðY jx1; . . . ; xkÞ ¼ αþ β1x1 þ & & & þ βkxk ð2:2Þ

This utopian situation is depicted for a single X in Figure 2.4. As we will see,6 the assumptions
of normality, common variance, and linearity, along with independent random sampling, lead
to linear least-squares estimation of the model in Equation 2.2. In this chapter, in contrast, we
will pursue the notion of regression with as few assumptions as possible.

Figure 2.3 illustrates why we should not be too hasty to make the assumptions of normality,
equal variance, and linearity:

! Skewness. If the conditional distribution of Y is skewed, as is pðY jx1Þ, then the mean
will not be a good summary of its center. This is the case as well in Figure 2.1, where
the (sample) conditional distributions of wages given education are all positively
skewed.

! Multiple modes. If the conditional distribution of Y is multimodal, as is pðY jx2Þ, then it
is intrinsically unreasonable to summarize its center by a single number.

µ2 µ3

µ4

µ5

x1 x2 x3 x4 x5
X

Y

p(Y|x)

µ1

Figure 2.3 Population regression of Y on X. The conditional distribution of Y, pðYjxÞ, is shown for
each of a few values of X. The distribution of Y at X ¼ x1 is positively skewed; at
X ¼ x2, it is bimodal; at X ¼ x3, it is heavy tailed; at X ¼ x4, it has greater spread than
at X ¼ x5. The conditional means of Y given X, that is, µ1; . . . ;µ5, are not a linear
function of X.

6Chapters 6 and 9.
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! Heavy tails. If the conditional distribution of Y is substantially non-normal—for exam-
ple, heavy-tailed, as is pðY jx3Þ—then the sample mean will not be an efficient estimator
of the center of the Y -distribution even when this distribution is symmetric.

! Unequal spread. If the conditional variance of Y changes with the values of the X s—
compare, for example, pðY jx4Þ and pðY jx5Þ—then the efficiency of the usual least-
squares estimates may be compromised; moreover, the nature of the dependence of the
variance on the X s may itself be of interest.

! Nonlinearity. Although we are often in a position to suppose that the values of Y will
increase or decrease with some X , there is almost never good reason to assume a priori
that the relationship between Y and X is linear; this problem is compounded when there
are several X s. In Figure 2.3, for example, the conditional means of Y , the µi, do not lie
on a line in the X ; Y plane (as they do in Figure 2.4).

This is not to say, of course, that linear regression analysis or, more generally, linear statistical
models, are of little practical use. Much of this book is devoted to the exposition of linear mod-
els. It is, however, prudent to begin with an appreciation of the limitations of linear models
because their effective use in data analysis frequently depends on adapting to these limitations:
We may, for example, transform data to make the assumptions of normality, equal variance,
and linearity more nearly correct.7

There are two additional advantages to approaching regression analysis from a general per-
spective: First, an appreciation of the practical difficulties of fitting the very general model in
Equation 2.1 to data motivates the specification of more restrictive models, such as the usual

x1 x2 x3 x4 x5

µ1
µ2

µ3
µ4

µ5

X

Y

p(Y|x)

E(Y) = α + βx 

Figure 2.4 Common assumptions in regression analysis: The conditional distributions pðYjxÞ are
all normal distributions with the same variance, and the conditional means of Y (here
µ1; . . . ;µ5) are all on a straight line.

7See Chapters 4 and 12.
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linear regression model. Second, modern methods of nonparametric regression, while not quite
as general as the model in Equation 2.1, are emerging as practical alternatives to the more tra-
ditional linear models.

The balance of the present chapter is devoted to an initial foray into the territory of nonpara-
metric regression. I will begin by taking a direct or ‘‘naı̈ve’’ approach to the problem and then
will extend this approach by local averaging. In the process, we will encounter for the first time
a number of recurring themes in this book, including the direct examination of data by graphi-
cal displays, smoothing to clarify patterns in data, and the detection and treatment of unusual
data.8

2.2 Naive Nonparametric Regression

Imagine once more that we are interested in the relationship between wages and education.
We do not have data for the whole population, but we have a very large sample—say, of
1 million employed Canadians. We could easily display the conditional distribution of income
for each of the values of education ð0; 1; 2; . . . ; 25Þ that occur in our data because (I assume)
each value of education occurs many times. The example in the previous section, illustrated in
Figures 2.1 and 2.2, approaches this situation for some of the more common levels of education.

Although wages is (for practical purposes) a continuous variable, the large quantity of data
makes it practical to display its conditional distribution using a histogram with narrow bars
(each, say, $1.00 wide, as in Figure 2.2).9 If, as is often the case, our interest is in the average
or typical value of wages conditional on education, we could—in light of the large size of our
data set—estimate these conditional averages very accurately. The distribution of wages given
education is likely positively skewed, so it would be better to use conditional medians rather
than conditional means as typical values; nevertheless, we will, for simplicity, focus initially
on the conditional means, Y jx.10

Imagine now that X , along with Y , is a continuous variable. For example, X is the reported
weight in kilograms for each of a sample of individuals, and Y is their measured weight, again
in kilograms. We want to use reported weight to predict actual (i.e., measured) weight, and so
we are interested in the mean value of Y as a function of X in the population of individuals
from among whom the sample was randomly drawn:11

µ ¼ EðY jxÞ ¼ f ðxÞ ð2:3Þ

8More sophisticated methods for nonparametric regression are discussed in Chapter 18.
9We will explore other approaches to displaying distributions in the next chapter.
10Think of a graph like Figure 2.1 that shows the population conditional means, µjx—the values that we now want to
estimate from our sample.
11This is an interesting—and unusual—problem in several respects: First, although it is more reasonable to suppose that
actual weight ‘‘affects’’ the report than vice versa, our desire to use the report to predict actual weight (presumably
because it is easier to elicit a verbal report than actually to weigh people) motivates treating measured weight as the
response variable. Second, this is one of those comparatively rare instances in which a linear-regression equation is a
natural specification, because if people are unbiased reporters of their weight, then we should have µ ¼ x
(i.e., expected reported weight equal to actual weight). Finally, if people are accurate as well as unbiased reporters of
their weight, then the conditional variance of Y given x should be very small.
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Even if the sample is large, replicated values of X will be rare because X is continuous.12 In
the absence of replicated X s, we cannot directly examine the conditional distribution of Y
given X , and we cannot directly calculate conditional means. If we indeed have a large sample
of individuals at our disposal, however, then we can dissect the range of X into many narrow
intervals, or bins, of reported weight, each bin containing many observations; within each such
bin, we can display the conditional distribution of measured weight and estimate the condi-
tional mean of Y with great precision.

In very large samples, and when the explanatory variables are discrete, it is possible to
estimate a regression by directly examining the conditional distribution of Y given the
X s. When the explanatory variables are continuous, we can proceed similarly by dissect-
ing the X s into a large number of narrow bins.

If, as is more typical, we have only a relatively small sample, then we have to make do with fewer
bins, each containing relatively few observations. This situation is illustrated in Figure 2.5, using
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Figure 2.5 Naive nonparametric regression of measured weight on reported weight, each in kilo-
grams. The range of reported weight has been dissected into five bins (separated by bro-
ken lines), each containing about 20 observations. The solid line connects the averages
of measured weight and reported weight in the five bins, shown as filled circles. The
dotted line around which the points cluster is Y ¼ X. The fourth observation is an out-
lier. Because of the very different ranges of measured and reported weight (due to the
outlier), the scales for the axes are different, and the line Y ¼ X is not at 45 degrees.

12No numerical data are literally continuous, of course, because data are always recorded to some finite number of
digits, and in the current example, people would be unlikely to report their weights in fractions of a kilogram. This is
why tied values are possible. Individuals’ measured weights (Y , in the example), however, could well be measured to
greater precision. The philosophical issues surrounding continuity are subtle but essentially irrelevant to us: For practi-
cal purposes, a variable is continuous when it takes on many different values.
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data on reported and measured weight for each of 101 Canadian women engaged in regular
exercise.13 A partially contrasting example, using the prestige and income levels of 102
Canadian occupations in 1971, is shown in Figure 2.6.14

The X -axes in Figures 2.5 and 2.6 are carved into five unequal-width bins, each bin contain-
ing approximately 20 observations (the middle bin contains the extra observations). The non-
parametric regression line displayed on each plot is calculated by connecting the points defined
by the conditional response variable means Y and the explanatory variable means X in the five
intervals.

Recalling our purpose, which is to estimate the model in Equation 2.3, there are two sources
of error in this simple procedure of binning and averaging:

! Sampling error (variance). The conditional sample means Y will, of course, change if
we select a new sample (even if we could retain the same selection of xs). Sampling
error is minimized by using a small number of relatively wide bins, each with many
observations.
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Figure 2.6 Naive nonparametric regression of occupational prestige on average income for 102
Canadian occupations in 1971. The range of income has been dissected into five bins,
each containing about 20 observations. The line connects the average prestige and
income scores in the five bins, shown as filled circles.

13These data were generously made available to me by Caroline Davis of York University, who used them as part of a
larger study; see Davis (1990). The error in the data described below was located by Professor Davis. The 101 women
were volunteers for the study, not a true sample from a larger population.

The observant reader will have noticed that there are apparently fewer than 101 points in Figure 2.5: Because both
measured and reported weight are given to the nearest kilogram, many points are overplotted (i.e., lie on top of one
another). We will learn to deal with overplotting in Chapter 3.
14The Canadian occupational prestige data are described in Fox and Suschnigg (1989). Although there are many more
occupations in the Canadian census, these 102 do not constitute a random sample from the larger population of occupa-
tions. Justification for treating the 102 occupations as a sample implicitly rests on the claim that they are ‘‘typical’’ of
the population, at least with respect to the relationship between prestige and income—a problematic, if arguable, claim.
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! Bias. Let xi denote the center of the ith bin (here, i ¼ 1; . . . ; 5), and suppose that the
X -values are evenly spread in the bin. If the population regression curve f ðxÞ is non-
linear within the bin, then the average population value of Y in the bin, say µi, is usually
different from the value of the regression curve at the center of the bin, µi ¼ f ðxiÞ. This
situation is illustrated in Figure 2.7. Bias—that is, µi ' µi—is therefore minimized by
making the bins as numerous and as narrow as possible.

As is typically the case in statistical estimation, reducing bias and reducing sampling variance
work at cross-purposes. Only if we select a very large sample can we have our cake and eat it,
too—by constructing a very large number of narrow bins, each with many observations. This
situation was, of course, our starting point.

The nonparametric regression lines in Figures 2.5 and 2.6 are also very crude. Although
reported weights vary from about 40 to about 80 kg, we have evaluated the regression at only
five points in this substantial range; likewise, income values for the 102 occupations vary from
about $600 to about $26,000. Nevertheless, it is clear from Figure 2.5 that, except for one very
discrepant data point (Observation 4),15 the data are very close to the line Y ¼ X , and it is clear
from Figure 2.6 that while prestige appears to increase with income, the increase is nonlinear,
with prestige values leveling off at relatively high income.

The opportunity that a very large sample presents to reduce both bias and variance suggests
that naive nonparametric regression is, under very broad conditions, a consistent estimator of
the population regression curve.16 For, as the sample size gets larger (i.e., as n! ‘), we can

(a) Wide Bin

X

Y

µ = f(x)

xi

µi

µi

bi
as

(b) Narrow Bin

X

Y

µ = f(x)

xi

µi ≈ µi

Figure 2.7 When the regression of Y on X is nonlinear in a bin centered at xi, the average value
of Y in the interval µi can be different from the regression curve at the center of the
interval µi ¼ fðxiÞ. The bias, µi ' µi, will tend to be larger in a wide bin (a) than in a
narrow bin (b).

15It seems difficult to comprehend how a 166-kg woman could have reported a weight of only 56 kg, but the solution
to this mystery is simple: The woman’s weight in kilograms and height in centimeters were accidentally switched when
the data were entered into the computer.
16For example, we need to assume that the regression curve µ ¼ f ðX Þ is reasonably smooth and that the distribution of
Y given x has finite variance (see Manski, 1991, for some details). We should also remember that the reasonableness of
focusing on the mean µ depends on the symmetry—and unimodality—of the conditional distribution of Y .
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ensure that the intervals grow successively narrower and yet have each contain more data (e.g.,
by employing

ffiffiffi
n
p

intervals, each containing on average
ffiffiffi
n
p

observations). In the limit—never,
of course, attained—we have an infinite number of intervals, each of zero width and each con-
taining an infinite number of observations. In this statistical nirvana, the naive nonparametric
regression and the population regression curve coincide.

It may appear as if naive nonparametric regression—that is, binning and averaging—is a
practical procedure in large data sets or when explanatory variables are discrete. Although this
conclusion is essentially correct, it is instructive—and sobering—to consider what happens
when there is more than one explanatory variable.

Suppose, for example, that we have three discrete explanatory variables, each with 10 val-
ues. There are, then, 103 ¼ 1,000 combinations of values of the three variables, and within each
such combination, there is a conditional distribution of Y (i.e., pðY jx1; x2; x3Þ). Even if the X s
are uniformly and independently distributed—implying equal expected numbers of observa-
tions for each of the 1,000 combinations—we would require a very large sample to calculate
the conditional means of Y with sufficient precision. The situation is even worse when the X s
are continuous, because dissecting the range of each X into as few as 10 bins might introduce
nonnegligible bias into the estimation.

The problem of dividing the data into too many parts grows exponentially more serious as
the number of X s increases. Statisticians, therefore, often refer to the intrinsic sparseness of
multivariate data as the ‘‘curse of dimensionality.’’ Moreover, the imaginary calculation on
which the consistency of naive nonparametric regression is based—in which the number of
explanatory variables remains the same as the sample size grows—is itself unrealistic because
we are apt, in large samples, to entertain more complex statistical models than in small
samples.17

2.3 Local Averaging

Let us return to Figure 2.6, showing the naive nonparametric regression of occupational pres-
tige on income. One problem with this procedure is that we have estimated the regression at
only five points—a consequence of our desire to have relatively stable conditional averages,
each based on a sufficiently large number of observations (here, 20). There is no intrinsic rea-
son, however, why we should restrict ourselves to partitioning the data by X -values into nono-
verlapping bins.

We can allow X to vary continuously across the range of observed values, calculating the
average value of Y within a moving bin or window of fixed width centered at the current focal
value x. Alternatively, we can employ a window of varying width, constructed to accommodate
a fixed number of data values (say, m) that are the nearest X -neighbors to the focal x-value.
The fraction of the data included in each window, s ” m=n, is called the span of the local-aver-
age regression. As a practical matter, of course, we cannot perform these calculations at the
uncountably infinite number of points produced by allowing X to vary continuously, but using
a computer, we can quickly calculate averages at a large number of focal values spanning the
range of X . One attractive procedure, if the sample size n is not very large, is to evaluate the

17I am indebted to Robert Stine, of the University of Pennsylvania, for this insight.
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local average of Y in a window around each of the X -values observed in the data:
x1; x2; . . . ; xn.

In smaller samples, local averages of Y can be calculated in a neighborhood surrounding
each x-value in the data. In larger samples, we can calculate local averages of Y at repre-
sentative x-values spanning the range of X .

Figure 2.8 illustrates the process of local averaging for the Canadian occupational prestige data,
employing m ¼ 20 of the 102 observations for each local average, representing a span of
s ¼ 20=102 » 0:2. Figure 2.9 shows the result of applying local averaging to Davis’s data on
reported and measured weight, again using m ¼ 20 observations for each local average. Three
defects of the procedure are apparent from these examples:

1. The first few local averages are identical to one another, as are the last few, flattening
the estimated regression line at extreme X -values.18 This artificial flattening at the
edges of the data is called boundary bias.

2. The line connecting the averages tends to be rough because the average ‘‘jumps’’ up or
down as observations enter and exit the moving window. (This roughness is more
apparent in Figure 2.8, where the relationship between the two variables is weaker, than
in Figure 2.9.)

3. Unusual data values, called outliers, unduly influence the average when they fall in the
window (as is the case for Observation 4 in Figure 2.9). In regression analysis, an out-
lier is a value of Y that is very different from other response variable values associated
with similar X s.

More adequate methods of nonparametric regression are the subject of Chapter 18. Never-
theless, because we will often want to smooth scatterplots in examining data, I anticipate that
treatment by applying one such method, called lowess, to the two examples.19 Lowess is in
many respects similar to the local-averaging smoother that I just described, except that instead
of computing an average Y -value within the neighborhood of a focal x, the lowess smoother
computes a fitted value based on a locally weighted least-squares line, giving more weight to
observations in the neighborhood that are close to the focal x than to those relatively far away.20

The lowess smoother also makes provision for discounting outliers.

18Imagine, for example, that the x-values are evenly spaced and that m is 19. Let xð1Þ, xð2Þ; . . . ; xðnÞ represent these
x-values ordered from smallest to largest. Then, the first 19 observations—the Y -values associated with
xð1Þ; xð2Þ; . . . ; xð19Þ —would be used for the first 10 local averages, making these averages identical to one another. One
solution is to employ ‘‘symmetric’’ neighborhoods around each xðiÞ, with the same number of observations below and
above the focal xðiÞ, but this procedure implies using smaller and smaller spans as we approach the extreme values xð1Þ
and xðnÞ. For each extreme, for example, the symmetric neighborhood only includes the observation itself.
19Lowess is an acronym for locally weighted scatterplot smoother and is sometimes rendered as loess, for local
regression.
20Weighted least-squares regression is described (in a different context) in Section 12.2.2. The details of local regres-
sion are deferred to Chapter 18.
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As with local averaging, we have to decide how many observations to include in each local
regression; this is usually expressed by the span of the lowess smoother—the fraction of the
data used to compute each fitted value. As was true of local averaging, larger spans reduce var-
iance but may increase bias; smaller spans can reduce bias but increase variance. Put alterna-
tively, larger spans produce smoother regressions.

One way to determine the span is by visual trial and error: Select the smallest span that
yields a reasonably smooth result. Applying this procedure to the Canadian occupational pres-
tige data and to Davis’s data on reported and measured weight led me to the plots in Figures
2.10 and 2.11. Lowess produces smoother results than local averaging, shows no evidence of
boundary bias, and ignores the outlier in the Davis data.
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Figure 2.8 Nonparametric regression of occupational prestige on income, using local averages.
Each average includes 20 of the 102 observations (i.e., a span of 0.2). Panel (a) shows
the window encompassing the 20 nearest neighbors of xð80Þ, the 80th ordered X-value.
The mean of the Y-values for these 20 observations is represented by the horizontal
line in panel (b). In panel (c), the local-average Y-values for all 102 observations are
connected by a line. Note the roughness of the regression line and the flattening of
the regression at the far left and right of the plot.
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Lowess (locally weighted regression) produces smoother results than local averaging,
reduces boundary bias, and can discount outliers. The degree of smoothness is controlled
by the span of the lowess smoother: Larger spans yield smoother results.

Exercise

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 2.1.21 *Figure 2.7 illustrates how, when the relationship between Y and X is non-
linear in an interval, the average value of Y in the interval can be a biased estimate of EðY jxÞ
at the center of the interval. Imagine that X -values are evenly distributed in an interval centered
at xi, and let µi ” EðY jxiÞ.

(a) If the relationship between Y and X is linear in the interval, is the average value of Y a
biased or an unbiased estimator of µi?

(b) Are there any circumstances under which the average Y in the interval is an unbiased
estimator of µi if the relationship between Y and X is nonlinear in the interval?

(c) What happens when the distribution of X -values in the interval is not uniform?
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Figure 2.9 Nonparametric regression by local averaging for Davis’s data on reported and mea-
sured weight. The local averages at each x-value are given by the line traced through
the plot. Each local average is based on 20 of the 101 observations. Note the impact
of the outlying observation on the averages that include it and the flattening of the
regression at the lowest and highest reported weights. The broken line is the line of
unbiased reporting, Y ¼ X.

21Relatively difficult exercises are marked with an asterisk (*).
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Summary

! Regression analysis examines the relationship between a quantitative response variable,
Y , and one or more explanatory variables, X1; . . . ;Xk . Regression analysis traces the
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Figure 2.10 Lowess smooth of the relationship between occupational prestige and income. The
span of the lowess smoother, 0.6, was determined by visual trial and error.
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Figure 2.11 Lowess smooth of the relationship between reported and measured weight. The span
of the smoother is 0.3. The broken line, almost entirely obscured by the lowess
smooth, is the line of unbiased reporting of weight, Y ¼ X.
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conditional distribution of Y—or some aspect of this distribution, such as its mean—as
a function of the X s.

! In very large samples, and when the explanatory variables are discrete, it is possible to
estimate a regression by directly examining the conditional distribution of Y given the
X s. When the explanatory variables are continuous, we can proceed similarly in large
samples by dissecting the X s into many narrow bins.

! In smaller samples, local averages of Y can be calculated in a neighborhood or window
surrounding each x-value. There is a trade-off in local averaging between the bias and
the variance of the estimates: Narrow windows reduce bias but, because they include
fewer observations, increase variance.

! Lowess (locally weighted regression) produces smoother results than local averaging,
reduces boundary bias, and can discount outliers. The degree of smoothness is con-
trolled by the span of the lowess smoother: Larger spans yield smoother lowess
regressions.
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3 Examining Data

T his chapter, on graphical methods for examining data, and the next, on transformations,
represent a digression from the principal focus of the book. Nevertheless, the material

here is important to us for two reasons: First, careful data analysis should begin with inspection
of the data.1 You will find in this chapter simple methods for graphing univariate, bivariate,
and multivariate data. Second, the techniques for examining and transforming data that are dis-
cussed in Chapters 3 and 4 will find direct application to the analysis of data using linear mod-
els.2 Feel free, of course, to pass lightly over topics that are familiar.

To motivate the material in the chapter, and to demonstrate its relevance to the study of lin-
ear models, consider the four scatterplots shown in Figure 3.1.3 The data for these plots, given
in Table 3.1, were cleverly contrived by Anscombe (1973) to illustrate the central role of gra-
phical methods in data analysis: Anticipating the material in Chapters 5 and 6, the least-squares
regression line and all other common regression ‘‘outputs’’—such as the correlation coefficient,
standard deviation of the residuals, and standard errors of the regression coefficients—are iden-
tical in the four data sets.

It is clear, however, that each graph tells a different story about the data. Of course, the data
are simply made up, so we have to allow our imagination some latitude:

! In Figure 3.1(a), the least-squares line is a reasonable descriptive summary of the ten-
dency of Y to increase with X .

! In Figure 3.1(b), the linear regression fails to capture the clearly curvilinear relationship
between the two variables; we would do much better to fit a quadratic function here,4

that is, Y ¼ aþ bX þ cX 2.
! In Figure 3.1(c), there is a perfect linear relationship between Y and X for all but one

outlying data point. The least-squares line is pulled toward the outlier, distorting the
relationship between the two variables for the rest of the data. Perhaps the outlier repre-
sents an error in data entry or an observation that differs in some fundamental respect
from the others. When we encounter an outlier in real data, we should look for an
explanation.5

1An eminent statistician who has engaged in frequent consulting (and who will remain nameless for fear of embarras-
sing him) told me that his clients routinely extract only about 30% of the information in their data relevant to their
research. He attributed this inefficiency largely to failure to examine the data carefully at an early stage in statistical
analysis. Many problems can be detected and dealt with effectively prior to engaging in statistical modeling of the data.
2See, for example, the treatments of graphical regression ‘‘diagnostics’’ and transformations in Chapters 11 and 12.
3See Section 3.2 for a general discussion of scatterplots.
4Quadratic and other polynomial regression models are discussed in Section 17.1.
5Outlier detection in linear models is taken up in Chapter 11.
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! Finally, in Figure 3.1(d), the values of X are invariant (all are equal to 8), with the excep-
tion of one point (which has an X -value of 19); the least-squares line would be undefined
but for this point—the line necessarily goes through the mean of the 10 Y s that share the
value X ¼ 8 and through the point for which X ¼ 19. Furthermore, if this point were
moved, then the regression line would chase it. We are usually uncomfortable having the
result of a data analysis depend so centrally on a single influential observation.6

The essential point to be derived from Anscombe’s ‘‘quartet’’ (so dubbed by Tufte, 1983) is
that it is frequently helpful to examine data graphically. Important characteristics of data are
often disguised by numerical summaries and—worse—the summaries can be fundamentally
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Figure 3.1 Four data sets, due to Anscombe (1973), with identical linear least-squares regres-
sions. In (a), the linear regression is an accurate summary; in (b), the linear regression
distorts the curvilinear relationship between Y and X; in (c), the linear regression is
drawn toward an outlier; in (d), the linear regression ‘‘chases’’ the influential observa-
tion at the right. The least-squares line is shown on each plot.

SOURCE: Adapted from Figures 1 & 2, p. 19 and Figures 3 & 4 p. 20 in F. J. Anscombe, ‘‘Graphs in Statistical

Analysis’’ pp. 17–21, Vol. 27, No. 1, Feb., 1973.

6Influential data are discussed in Chapter 11.

Chapter 3. Examining Data 29



misleading. Moreover, directly examining the numerical data is often uninformative: Only in
the fourth of Anscombe’s data sets is a problem immediately apparent upon inspection of the
numbers.

Statistical graphs are central to effective data analysis, both in the early stages of an
investigation and in statistical modeling.

3.1 Univariate Displays

3.1.1 Histograms

Figure 3.2 shows a histogram for the distribution of infant mortality among 193 countries, as
reported in 1998 by the United Nations. The infant mortality rate is expressed as number of
deaths of children aged less than 1 year per 1,000 live births. I assume that the histogram is a
familiar graphical display, so I will offer only a brief description: To construct a histogram for
infant mortality, dissect the range of the variable into equal-width intervals (called ‘‘bins’’), count
the number of observations falling in each bin, and display the frequency counts in a bar graph.
The histogram in Figure 3.2 uses bins of width 10, starting at 0 (i.e., 0 to 10, 10 to 20, etc.).

Figure 3.3 shows an alternative form of histogram, called a stem-and-leaf display. The stem-
and-leaf plot, introduced by John Tukey (1972, 1977), ingeniously employs the numerical data
to form the bars of the histogram. As Tukey suggests, it is simple to construct a stem-and-leaf
display by hand to ‘‘scratch down’’ a small data set.

You may be familiar with the stem-and-leaf display. Here is a terse explanation:

! Each data value is broken between two adjacent digits into a ‘‘stem’’ and a ‘‘leaf’’: In
Figure 3.3, the break takes place between the tens and units digits. For example, the
infant mortality rate in Albania was 32, which translates into the stem 3 and leaf 2.

Table 3.1 Four Contrived Regression Data Sets From Anscombe (1973)

Xa, b, c Ya Yb Yc Xd Yd

10 8.04 9.14 7.46 8 6.58
8 6.95 8.14 6.77 8 5.76

13 7.58 8.74 12.74 8 7.71
9 8.81 8.77 7.11 8 8.84

11 8.33 9.26 7.81 8 8.47
14 9.96 8.10 8.84 8 7.04
6 7.24 6.13 6.08 8 5.25
4 4.26 3.10 5.39 19 12.50

12 10.84 9.13 8.15 8 5.56
7 4.82 7.26 6.42 8 7.91
5 5.68 4.74 5.73 8 6.89
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! Stems (here, 0; 1; . . . ; 14) are constructed to cover the data, implicitly defining a system
of bins, each of width 10. Each leaf is placed to the right of its stem, and the leaves on
each stem are then sorted into ascending order. We can produce a finer system of bins
by dividing each stem into two parts (taking, respectively, leaves 0–4 and 5–9), or five
parts (0–1, 2–3, 4–5, 6–7, 8–9); for the infant mortality data, two-part stems would
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Figure 3.2 Histogram of infant mortality rates for 193 nations.

SOURCE: United Nations (1998).

1 | 2: represents 12
leaf unit: 1

n: 193

39 0 | 345555555666666667777777777778888999999
72 1 | 000122222333344444555566778888999
95 2 | 00112223333444455556669

(19) 3 | 0001233445577889999
79 4 | 012344456889
67 5 | 11246667888
56 6 | 01255568
48 7 | 122347788
39 8 | 00222456669
28 9 | 025678
22 10 | 234677
16 11 | 023445
10 12 | 2445
6 13 | 2
5 14 | 29

HI: 153 [Liberia], 154 [Afghanistan), 169 [Sierra Leone]

Figure 3.3 Stem-and-leaf display for infant mortality.
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correspond to bins of width 5 and five-part stems to bins of width 2. We could employ
still finer bins by dividing stems from leaves between the ones and tenths digits, but for
infant mortality, that would produce a display with almost as many bins as observations.
Similarly, a coarser division between the hundreds and tens digits would yield only two
stems—0 and 1 representing hundreds (each of which could be divided into two or five
parts, to get bins of width 50 or 20, respectively).

! Unusually large values—outliers—are collected on a special ‘‘HI’’ stem and displayed
individually. Here, there are three countries with unusually large infant mortality rates.
Were there countries with unusually small infant mortality rates, then these would be
collected and displayed individually on a ‘‘LO’’ stem.7

! The column of depths to the left of the stems counts in toward the median from both
ends of the distribution. The median is the observation at depth ðnþ 1Þ=2, where (as
usual) n is the number of observations. For the infant mortality data, the median is at
depth ð193þ 1Þ=2 ¼ 97. In Figure 3.3, there are 39 observations at stem 0, 72 at and
below stem 1, and so on; there are five observations (including the outliers) at and above
stem 14, six at and above stem 13, and so forth. The count at the stem containing the
median is shown in parentheses—here, 19 at stem 3. Note that 95þ 19þ 79 ¼ 193.

In constructing histograms (including stem-and-leaf displays), we want enough bins to preserve
some detail but not so many that the display is too rough and dominated by sampling variation.
Let n& represent the number of nonoutlying observations. Then, for n& £ 100, it usually works
well to use no more than about 2

ffiffiffiffiffi
n&
p

bins; likewise, for n& > 100, we can use a maximum of
about 10 · log10 n& bins. Of course, in constructing a histogram, we also want bins that start
and end at ‘‘nice’’ numbers (e.g., 10 to 20 rather than 9.5843 to 21.0457); in a stem-and-leaf
display, we are limited to bins that correspond to breaks between digits of the data values.
Computer programs that construct histograms incorporate rules such as these.8

For the distribution of infant mortality, n& ¼ 193' 3 ¼ 190, so we should aim for no more
than 10 · log10ð190Þ» 23 bins. The stem-and-leaf display in Figure 3.3 uses 15 stems (plus the
‘‘HI’’ stem).

Histograms, including stem-and-leaf displays, are very useful graphs, but they suffer from
several problems:

! The visual impression of the data conveyed by a histogram can depend on the arbitrary
origin of the bin system—that is, the lower boundary of the first bin. Consider, for exam-
ple, the two histograms in Figure 3.4, showing the distribution of prestige for the 102
occupations in the Canadian occupational prestige data set.9 Both histograms use bins of
width 10, but the bins in Figure 3.4(a) start at 0, while those in Figure 3.4(b) start at 10.

7The rule for identifying outliers is explained in Section 3.1.4 on boxplots.
8More sophisticated rules for the number of bins take into account information beyond n. For example, Freedman and
Diaconis (1981) suggest

number of bins »
n1=3 xðnÞ ' xð1Þ

" #

2ðQ3 ' Q1Þ

& ’

where xðnÞ ' xð1Þ is the range of the data, Q3 ' Q1 is the interquartile range, and the ‘‘ceiling’’ brackets indicate round-
ing up to the next integer.
9This data set was introduced in Chapter 2.
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! Because the bin system dissects the range of the variable into class intervals, the histo-
gram is discontinuous (i.e., rough) even if, as in the case of infant mortality, the variable
is continuous.10

! The form of the histogram depends on the arbitrary width of the bins.
! Moreover, if we use bins that are narrow enough to capture detail where data are plenti-

ful—usually near the center of the distribution—then they may be too narrow to avoid
‘‘noise’’ where data are sparse—usually in the tails of the distribution.

3.1.2 Nonparametric Density Estimation

Nonparametric density estimation addresses the deficiencies of traditional histograms by
averaging and smoothing. As the term implies, density estimation can be construed formally as
an attempt to estimate the probability density function of a variable based on a sample, but it
can also be thought of informally as a descriptive technique for smoothing histograms.

In fact, the histogram—suitably rescaled—is a simple density estimator.11 Imagine that the
origin of the bin system is at x0 and that each of the m bins has width 2h; the end points of the
bins are then at x0, x0 þ 2h, x0 þ 4h; . . . ; x0 þ 2mh. An observation Xi falls in the jth bin if (by
convention)
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Figure 3.4 Alternative histograms for the prestige of 102 Canadian occupations: (a) with bins of
width 10 starting at 0 and (b) with bins of width 10 starting at 15.

10That is, infant mortality rates are continuous for practical purposes in that they can take on many different values.
Actually, infant mortality rates are ratios of integers and hence are rational numbers, and the rates in the UN data set
are rounded to the nearest whole number.
11 Rescaling is required because a density function encloses a total area of 1. Histograms are typically scaled so that
the height of each bar represents frequency (or percent), and thus the heights of the bars sum to the sample size n (or
100). If each bar spans a bin of width 2h (anticipating the notation below), then the total area enclosed by the bars is
n · 2h. Dividing the height of each bar by 2nh therefore produces the requisite density rescaling.
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x0 þ 2ðj' 1Þh £ Xi < x0 þ 2jh

The histogram estimator of the density at any x-value located in the jth bin is based on the
number of observations that fall in that bin:

bpðxÞ ¼ #n
i¼1½x0 þ 2ðj' 1Þh £ Xi < x0 þ 2jh)

2nh

where # is the counting operator.
We can dispense with the arbitrary origin x0 of the bin system by counting locally within a

continuously moving window of half-width h centered at x:

bpðxÞ ¼ #n
i¼1ðx' h £ Xi < xþ hÞ

2nh

In practice, of course, we would use a computer program to evaluate bpðxÞ at a large number
of x-values covering the range of X . This ‘‘naive density estimator’’ (so named by
Silverman, 1986) is equivalent to locally weighted averaging, using a rectangular weight
function:

bpðxÞ ¼ 1

nh

Xn

i¼1

W
x' Xi

h

$ %
ð3:1Þ

where

W ðzÞ ¼
1
2 for jzj < 1

0 otherwise

&

a formulation that will be useful below when we consider alternative weight functions to
smooth the density. Here z is a ‘‘stand-in’’ for the argument to the W ð*Þ weight function—that
is, z ¼ ðx' XiÞ=h. The naive estimator is like a histogram that uses bins of width 2h but has
no fixed origin and is similar in spirit to the local-averaging nonparametric-regression estimator
introduced in Chapter 2.

An illustration, using the UN infant mortality data, appears in Figure 3.5 and reveals the
principal problem with the naive estimator: Because the estimated density jumps up and down
as observations enter and leave the window, the naive density estimator is intrinsically rough.

The rectangular weight function W ðzÞ in Equation 3.1 is defined to enclose an area of
2 · 1

2 ¼ 1, producing a density estimate that (as required) also encloses an area of 1. Any func-
tion that has this property—probability density functions are obvious choices—may be used as
a weight function, called a kernel. Choosing a kernel that is smooth, symmetric, and unimodal
smooths out the rough edges of the naive density estimator. This is the essential insight of ker-
nel density estimation.

The general kernel density estimator, then, is given by

bpðxÞ ¼ 1

nh

Xn

i¼1

K
x' Xi

h

$ %

There are many reasonable choices of the kernel function KðzÞ, including the familiar standard
normal density function, φðzÞ, which is what I will use here. While the naive density estimator
in effect sums suitably scaled rectangles centered at the observations, the more general
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kernel estimator sums smooth lumps. An example is shown in Figure 3.6, in which the kernel
density estimator is given by the broken line.12

Selecting the window width for the kernel estimator is primarily a matter of trial and error—
we want a value small enough to reveal detail but large enough to suppress random noise. We
can, however, look to statistical theory for rough guidance:13 If the underlying density that we
are trying to estimate is normal with standard deviation σ, then (for the normal kernel) estima-
tion is most efficient with the window half-width

h ¼ 0:9σn'1=5 ð3:2Þ

As is intuitively reasonable, the optimal window grows gradually narrower as the sample size
is increased, permitting finer detail in large samples than in small ones.14

Although we might, by reflex, be tempted to replace the unknown σ in Equation 3.2 with
the sample standard deviation S, it is prudent to be more cautious, for if the underlying density
is sufficiently non-normal, then the sample standard deviation may be seriously inflated. A
common compromise is to use an ‘‘adaptive’’ estimator of spread:
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Figure 3.5 Naive density estimator for infant mortality, using a window half-width of h ¼ 7. Note
the roughness of the estimator. A rug-plot (or ‘‘one-dimensional scatterplot’’) appears
at the bottom of the graph, showing the location of the data values.

12Notice that there is nonzero estimated density in Figure 3.6 below an infant mortality rate of 0. Of course, this does
not make sense, and although I will not pursue it here, it is possible to constrain the lower and upper limits of the kernel
estimator.
13See, for example, Silverman (1986, chap. 3) for a detailed discussion of these issues.
14If we really knew that the density were normal, then it would be even more efficient to estimate it parametrically by
substituting the sample mean X and standard deviation S for µ and σ in the formula for the normal density,
pðxÞ ¼ ð2πσ2Þ'1=2exp½'ðx' µÞ2=2σ2).
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A ¼ min S;
interquartile range

1:349

$ %
ð3:3Þ

The factor 1.349 is the interquartile range of the standard normal distribution, making (inter-
quartile range)=1:349 a robust estimator of σ in the normal setting.

One further caveat: If the underlying density is substantially non-normal—in particular, if it
is skewed or multimodal—then basing h on the adaptive estimator A generally produces a win-
dow that is too wide. A good procedure, then, is to start with

h ¼ 0:9An'1=5

and to adjust this value downwards until the resulting density plot becomes too rough. This is
the procedure that was used to find the window width in Figure 3.6, where S ¼ 38:55 and
(interquartile range)=1:349 ¼ ð68' 13Þ=1:349 ¼ 40:77. Here, the ‘‘optimal’’ window width is
h ¼ 0:9 · 38:55 · 197'1=5 ¼ 12:061.

The kernel density estimator usually does a pretty good job, but the window half-width h
remains a compromise: We would prefer a narrower window where data are plentiful (to pre-
serve detail) and a wider one where data are sparse (to suppress noise). Because plentiful and
sparse refer implicitly to the underlying density that we are trying to estimate, it is natural to
begin with an initial estimate of the density and to adjust the window half-width on the basis
of the initial estimate.15 The result is the adaptive-kernel estimator (not to be confused with the
adaptive estimator of spread in Equation 3.3).
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Figure 3.6 Kernel (broken line) and adaptive-kernel (solid line) density estimates for the distribu-
tion of infant mortality, using a normal kernel and a window half-width of h ¼ 7. Note
the relative ‘‘lumpiness’’ of the kernel estimator at the right, where data are sparse.

15An alternative is to use a nearest-neighbor approach, as in the nonparametric-regression methods discussed in
Chapter 2.
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1. Calculate an initial density estimate, epðxÞ—for example, by the kernel method.
2. Using the initial estimate, compute local window factors by evaluating the estimated

density at the observations:

fi ¼
epðXiÞ
ep

' ('1=2

In this formula, ep is the geometric mean of the initial density estimates at the observa-
tions—that is,

ep ¼
Yn

i¼1

epðXiÞ

" #1=n

(where the operator
Q

indicates continued multiplication). As a consequence of this
definition, the fis have a product of 1, and hence a geometric mean of 1, ensuring that
the area under the density estimate remains equal to 1.

3. Calculate the adaptive-kernel density estimator using the local window factors to adjust
the width of the kernels centered at the observations:

bpðxÞ ¼ 1

nh

Xn

i¼1

1

fi
K

x' Xi

fih

$ %

Applying the adaptive-kernel estimator to the infant mortality distribution produces the solid
line in Figure 3.6: For this distribution, the kernel and adaptive-kernel estimates are very simi-
lar, although the adaptive kernel more sharply defines the principal mode of the distribution
near 20 and produces a smoother long right tail.

3.1.3 Quantile-Comparison Plots

Quantile-comparison plots are useful for comparing an empirical sample distribution
with a theoretical distribution, such as the normal distribution—something that is more com-
monly of interest for derived quantities such as test statistics or residuals than for observed
variables. A strength of the display is that it does not require the use of arbitrary bins or
windows.

Let PðxÞ represent the theoretical cumulative distribution function (CDF) with which we
want to compare the data; that is, PðxÞ ¼ PrðX £ xÞ. A simple (but not terribly useful) proce-
dure is to graph the empirical cumulative distribution function (ECDF) for the observed data,
which is simply the proportion of data below each value of x, as x moves continuously from
left to right:

bPðxÞ ¼ #n
i¼1ðXi £ xÞ

n

As illustrated in Figure 3.7, however, the ECDF is a ‘‘stair-step’’ function (where each step
occurs at an observation and is of height 1=n), while the CDF is typically smooth, making the
comparison difficult.

The quantile-comparison plot avoids this problem by never constructing the ECDF explicitly:

1. Order the data values from smallest to largest, Xð1Þ, Xð2Þ; . . . ;XðnÞ. The XðiÞ are called
the order statistics of the sample.
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2. By convention, the cumulative proportion of the data ‘‘below’’ XðiÞ is given by16

Pi ¼
i' 1

2

n

3. Use the inverse of the CDF (i.e., the quantile function) to find the value zi correspond-
ing to the cumulative probability Pi; that is,17

zi ¼ P'1 i' 1
2

n

$ %

4. Plot the zi as horizontal coordinates against the XðiÞ as vertical coordinates. If X is
sampled from the distribution P, then XðiÞ » zi. That is, the plot should be approximately
linear, with an intercept of 0 and slope of 1. This relationship is only approximate
because of sampling error (see Step 6). If the distributions are identical except for loca-
tion, then the plot is approximately linear with a nonzero intercept, XðiÞ » µþ zi; if the
distributions are identical except for scale, then the plot is approximately linear with a
slope different from 1, XðiÞ » σzi; finally, if the distributions differ both in location and
scale but have the same shape, then XðiÞ » µþ σzi.
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Figure 3.7 A ‘‘typical’’ empirical cumulative distribution function (ECDF) is shown in (a), a
‘‘typical’’ theoretical cumulative distribution function (CDF) in (b). Xð1Þ; Xð2Þ; . . . ;XðnÞ
represent the data values ordered from smallest to largest. Note that the ordered data
values are not, in general, equally spaced.

16This definition avoids cumulative proportions of 0 or 1, which would be an embarrassment in Step 3 for distributions,
like the normal, that never quite reach cumulative probabilities of 0 or 1. In effect, we count half of each observation
below its exact value and half above. Another common convention is to use Pi ¼ i' 1

3

" #
= nþ 1

3

" #
.

17This operation assumes that the CDF has an inverse—that is, that P is a strictly increasing function (one that never
quite levels off). The common continuous probability distributions in statistics—for example, the normal, t-, F-, and χ2

distributions—all have this property. These and other distributions are reviewed in online Appendix D on probability
and estimation.
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5. It is often helpful to place a comparison line on the plot to facilitate the perception
of departures from linearity. The line can be plotted by eye, attending to the central
part of the data, or we can draw a line connecting the quartiles. For a normal quantile-
comparison plot—comparing the distribution of the data with the standard normal
distribution—we can alternatively use the median as a robust estimator of µ and the
interquartile range=1:349 as a robust estimator of σ. (The more conventional
estimates bµ ¼ X and bσ ¼ S will not work well when the data are substantially
non-normal.)

6. We expect some departure from linearity because of sampling variation; it therefore
assists interpretation to display the expected degree of sampling error in the plot. The
standard error of the order statistic XðiÞ is

SEðXðiÞÞ ¼
bσ

pðziÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1' PiÞ

n

r
ð3:4Þ

where pðzÞ is the probability density function corresponding to the CDF PðzÞ. The val-
ues along the fitted line are given by bXðiÞ ¼ bµ þ bσzi. An approximate 95% confidence
‘‘envelope’’ around the fitted line is, therefore,18

bXðiÞ – 2 · SEðXðiÞÞ

Figures 3.8 to 3.11 display normal quantile-comparison plots for several illustrative
distributions:

! Figure 3.8 plots a sample of n ¼ 100 observations from a normal distribution with mean
µ ¼ 50 and standard deviation σ ¼ 10. The plotted points are reasonably linear and stay
within the rough 95% confidence envelope.

! Figure 3.9 plots a sample of n ¼ 100 observations from the positively skewed chi-square
distribution with 2 degrees of freedom. The positive skew of the data is reflected in
points that lie above the comparison line in both tails of the distribution. (In contrast, the
tails of negatively skewed data would lie below the comparison line.)

! Figure 3.10 plots a sample of n ¼ 100 observations from the heavy-tailed t-distribution
with 2 degrees of freedom. In this case, values in the upper tail lie above the correspond-
ing normal quantiles, and values in the lower tail below the corresponding normal
quantiles.

! Figure 3.11 shows the normal quantile-comparison plot for the distribution of infant
mortality. The positive skew of the distribution is readily apparent. The possibly bimo-
dal character of the data, however, is not easily discerned in this display.

Quantile-comparison plots highlight the tails of distributions. This is important, because the
behavior of the tails is often problematic for standard estimation methods like least squares, but
it is useful to supplement quantile-comparison plots with other displays—such as histograms

18By the method of construction, the 95% confidence level applies (pointwise) to each bXðiÞ, not to the whole envelope:
There is a greater probability that at least one point strays outside the envelope even if the data are sampled from the
comparison distribution. Determining a simultaneous 95% confidence envelope would be a formidable task, because
the order statistics are not independent.
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or kernel-density estimates—that provide more intuitive representations of distributions. A key
point is that there is no reason to limit ourselves to a single picture of a distribution when dif-
ferent pictures bring different aspects of the distribution into relief.
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Figure 3.8 Normal quantile-comparison plot for a sample of 100 observations drawn from a nor-
mal distribution with mean 50 and standard deviation 10. The fitted line is through
the quartiles of the distribution, and the broken lines give a pointwise 95% confidence
interval around the fit.
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Figure 3.9 Normal quantile-comparison plot for a sample of 100 observations from the positively
skewed chi-square distribution with 2 degrees of freedom.
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3.1.4 Boxplots

Unlike histograms, density plots, and quantile-comparison plots, boxplots (due to Tukey,
1977) present only summary information on center, spread, and skewness, along with individ-
ual outlying observations. Boxplots are constructed from the five-number summary of a
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Figure 3.10 Normal quantile-comparison plot for a sample of 100 observations from the heavy-
tailed t-distribution with 2 degrees of freedom.
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Figure 3.11 Normal quantile-comparison plot for the distribution of infant mortality. Note the
positive skew.
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distribution—the minimum, first quartile, median, third quartile, and maximum—and outliers,
if they are present. Boxplots, therefore, are useful when we require a compact representation of
a distribution (as, for example, in the margins of a scatterplot), when we wish to compare the
principal characteristics of several distributions,19 or when we want to select a transformation
that makes a distribution more symmetric.20

An illustrative boxplot for infant mortality appears in Figure 3.12. This plot is constructed
according to the following conventions (illustrated in the schematic horizontal boxplot in
Figure 3.13):

1. A scale is laid off to accommodate the extremes of the data. The infant mortality data,
for example, range between 3 and 169.

2. The central box is drawn between the hinges, which are simple definitions of the first
and third quartiles, and therefore encompasses the middle half of the data. The line in
the central box represents the median. Recall that the depth of the median is
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Figure 3.12 Boxplot for infant mortality. The central box is drawn between the hinges, the posi-
tion of the median is marked in the box, and outlying observations are displayed
individually.
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Figure 3.13 Schematic boxplot, showing the median (M), hinges (HL and HU), adjacent values
(adj), inner and outer fences (IF and OF), and outside and far-outside observations.

19See Section 3.2.
20Transformations to symmetry are discussed in Chapter 4.
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depthðMÞ ¼ nþ 1

2

giving the position of the middle observation after the data are ordered from smallest to largest:
Xð1Þ, Xð2Þ; . . . ;XðnÞ. When n is even, the depth of the median has a fractional part; using
‘‘floor’’ brackets to represent truncation to an integer, we count in from either end to average
the two observations at depth ðnþ 1Þ=2b c. For the infant mortality data, depthðMÞ ¼
ð193þ 1Þ=2 ¼ 97, and M ¼ Xð97Þ ¼ 30.

Likewise, the depth of the hinges is

depthðHÞ ¼ depthðMÞb cþ 1

2

If depth(H) has a fractional part, then, for each hinge, we average the two observations at the
adjacent positions, that is, at depthðHÞb c and depthðHÞb cþ 1. For the infant mortality distribu-
tion, depth(H ) ¼ ð97þ 1Þ=2 ¼ 49. The lower hinge is, therefore, HL ¼ Xð49Þ ¼ 13, and the
upper hinge is HU ¼ Xð145Þ ¼ 68. (Counting down 97 observations from the top yields the sub-
script 193' 49þ 1 ¼ 145.)

3. The following rules are used to identify outliers, which are shown individually in the
boxplot:

! The hinge-spread (roughly the interquartile range) is the difference between the
hinges:

H-spread ¼ HU ' HL

! The lower and upper ‘‘inner fences’’ are located 1:5 hinge-spreads beyond the hinges:

IFL ¼ HL ' 1:5 · H-spread

IFU ¼ HU þ 1:5 · H-spread

Observations beyond the inner fences (but within the outer fences, defined below) are
termed ‘‘outside’’ and are represented by open circles. The fences themselves are not
shown in the display.

! The ‘‘outer fences’’ are located three hinge-spreads beyond the hinges:21

OFL ¼ HL ' 3 · H-spread

OFU ¼ HU þ 3 · H-spread

Observations beyond the outer fences are termed ‘‘far outside’’ and are represented
by filled circles. There are no far-outside observations in the infant mortality data.

21Here is a rough justification for the fences: In a normal population, the hinge-spread is 1:349 standard deviations, and
so 1:5 · H -spread ¼ 1:5 · 1:349 · σ » 2σ. The hinges are located 1:349=2 » 0:7 standard deviations above and below
the mean. The inner fences are, therefore, approximately at µ – 2:7σ and the outer fences at µ – 4:7σ. From the standard
normal table, PrðZ > 2:7Þ » :003, so we expect slightly less than 1% of the observations beyond the inner fences
(2 · :003 ¼ :006); likewise, because PrðZ > 4:7Þ » 1:3 · 10'6, we expect less than one observation in 100,000 beyond
the outer fences.
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! The ‘‘whisker’’ growing from each end of the central box extends either to the
extreme observation on its side of the distribution (as at the low end of the infant
mortality data) or to the most extreme nonoutlying observation, called the ‘‘adjacent
value’’ (as at the high end of the infant mortality distribution).22

The boxplot of infant mortality in Figure 3.12 clearly reveals the skewness of the distribution:
The lower whisker is much shorter than the upper whisker, the median is closer to the lower
hinge than to the upper hinge, and there are several outside observations at the upper end of
the infant mortality distribution but none at the lower end. The apparent bimodality of the
infant mortality data is not captured by the boxplot, however.

There are many useful univariate displays, including the traditional histogram. The stem-
and-leaf plot is a modern variant of the histogram for small data sets, constructed directly
from numerical data. Nonparametric density estimation may be employed to smooth a
histogram. Quantile comparison plots are useful for comparing data with a theoretical
probability distribution. Boxplots summarize some of the most important characteristics
of a distribution, including center, spread, skewness, and outliers.

3.2 Plotting Bivariate Data

The scatterplot—a direct geometric representation of observations on two quantitative vari-
ables (generically, Y and X )—is the most useful of all statistical graphs. The scatterplot is a
natural representation of data partly because the media on which we draw plots—paper, com-
puter screens—are intrinsically two-dimensional. Scatterplots are as familiar and essentially
simple as they are useful; I will therefore limit this presentation to a few points. There are
many examples of bivariate scatterplots in this book, including in the preceding chapter.

! In analyzing data, it is convenient to work in a computing environment that permits the
interactive identification of observations in a scatterplot.

! Because relationships between variables in the social sciences are often weak, scatter-
plots can be dominated visually by ‘‘noise.’’ It often helps, therefore, to plot a nonpara-
metric regression of Y on X .

! Scatterplots in which one or both variables are highly skewed are difficult to examine,
because the bulk of the data congregate in a small part of the display. Consider, for
example, the scatterplot for infant mortality and gross domestic product (GDP) per
capita in Figure 3.14. It often helps to ‘‘correct’’ substantial skews prior to examining
the relationship between Y and X .23

! Scatterplots in which the variables are discrete can also be difficult to examine. An
extreme instance of this phenomenon is shown in Figure 3.15, which plots scores on a

22All of the folksy terminology—hinges, fences, whiskers, and so on—originates with Tukey (1977).
23See Chapter 4.
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10-item vocabulary test against years of education. The data are from 16 of the U.S.
General Social Surveys conducted by the National Opinion Research Center between
1974 and 2004 and include in total 21,638 observations. One solution—especially useful
when only X is discrete—is to focus on the conditional distribution of Y for each value
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Figure 3.14 Scatterplot for infant mortality and GDP per capita for 193 nations. The line is for a
lowess smooth with a span of 1/2. Several nations with high infant mortality for their
levels of GDP are identified.
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Figure 3.15 Scatterplot of scores on a 10-item vocabulary test versus years of education.
Although there are nearly 22,000 observations in the data set, most of the plotted
points fall on top of one another.

SOURCE: National Opinion Research Center (2005).
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of X . Boxplots, for example, can be employed to represent the conditional distributions
(see Figure 3.17, discussed below). Another solution is to separate overlapping points
by adding a small random quantity to the discrete scores. In Figure 3.16, for example, I
have added a uniform random variable on the interval ['0:4, þ0:4] to each value of
vocabulary and education. Paradoxically, the tendency for vocabulary to increase with
education is much clearer in the randomly ‘‘jittered’’ display.24

The bivariate scatterplot is a natural graphical display of the relationship between two
quantitative variables. Interpretation of a scatterplot can often be assisted by graphing a
nonparametric regression, which summarizes the relationship between the two variables.
Scatterplots of the relationship between discrete variables can be enhanced by randomly
jittering the data.

As mentioned, when the explanatory variable is discrete, parallel boxplots can be used to dis-
play the conditional distributions of Y . One common case occurs when the explanatory variable
is a qualitative/categorical variable. An example is shown in Figure 3.17, using data collected
by Michael Ornstein (1976) on interlocking directorates among the 248 largest Canadian firms.
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Figure 3.16 Jittered scatterplot for vocabulary score versus years of education. A uniformly dis-
tributed random quantity between '0.4 and þ0.4 was added to each score for both
variables. The heavier solid line is for a lowess fit to the data, with a span of 0.2; the
broken line is the linear least-squares fit; the conditional means for vocabulary given
education are represented by the dots, connected by the lighter solid line.

24The idea of jittering a scatterplot, as well as the terminology, is due to Cleveland (1994).
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The response variable in this graph is the number of interlocking directorships and executive
positions maintained by each firm with others in the group of 248. The explanatory variable is
the nation in which the corporation is controlled, coded as Canada, the United Kingdom, the
United States, and other foreign.

It is apparent from the graph that the average level of interlocking is greater among other-
foreign and Canadian corporations than among corporations controlled in the United Kingdom
and the United States. It is relatively difficult to discern detail in this display: first, because the
conditional distributions of interlocks are positively skewed and, second, because there is an
association between level and spread—variation is also greater among other-foreign and
Canadian firms than among U.K. and U.S. firms.25

Parallel boxplots display the relationship between a quantitative response variable and a
discrete (categorical or quantitative) explanatory variable.

3.3 Plotting Multivariate Data

Because paper and computer screens are two-dimensional, graphical display of multivariate
data is intrinsically difficult. Multivariate displays for quantitative data often project the
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Figure 3.17 Number of interlocking directorate and executive positions by nation of control for
248 dominant Canadian firms.

SOURCE: Personal communication from Michael Ornstein.

25We will revisit this example in Section 4.4. Because the names of the firms are unavailable, I have not identified the
outliers in the plot.
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higher-dimensional ‘‘point cloud’’ of the data onto a two-dimensional space. It is, of course,
impossible to view a higher-dimensional scatterplot directly (but see the discussion of the
three-dimensional case below). The essential trick of effective multidimensional display is to
select projections that reveal important characteristics of the data. In certain circumstances, pro-
jections can be selected on the basis of a statistical model fit to the data or on the basis of
explicitly stated criteria.26

3.3.1 Scatterplot Matrices

A simple approach to multivariate data, which does not require a statistical model, is to
examine bivariate scatterplots for all pairs of variables. Arraying these plots in a scatterplot
matrix produces a graphical analog to the correlation matrix.

An illustrative scatterplot matrix, for data on the prestige, education, and income levels of
45 U.S. occupations, appears in Figure 3.18. In this data set, first analyzed by Duncan (1961),
‘‘prestige’’ represents the percentage of respondents in a survey who rated an occupation as
‘‘good’’ or ‘‘excellent’’ in prestige, ‘‘education’’ represents the percentage of incumbents in the
occupation in the 1950 U.S. Census who were high school graduates, and ‘‘income’’ represents
the percentage of occupational incumbents who earned incomes in excess of $3,500. Duncan’s
purpose was to use a regression analysis of prestige on income and education to predict the
prestige levels of other occupations, for which data on income and education were available
but for which there were no direct prestige ratings.27

The variable names on the diagonal of the scatterplot matrix in Figure 3.18 label the rows
and columns of the display: For example, the vertical axis for the two plots in the first row of
the display is ‘‘prestige’’; the horizontal axis for the two plots in the second column is ‘‘educa-
tion.’’ Thus, the scatterplot in the first row, second column is for prestige (on the vertical axis)
versus education (on the horizontal axis).

It is important to understand an essential limitation of the scatterplot matrix as a device for
analyzing multivariate data: By projecting the multidimensional point cloud onto pairs of axes,
the plot focuses on the marginal relationships between the corresponding pairs of variables.
The object of data analysis for several variables, however, is typically to investigate partial
relationships (between pairs of variables, ‘‘controlling’’ statistically for other variables), not
marginal associations. For example, in the Duncan data set, we are more interested in the par-
tial relationship of prestige to education holding income constant than in the marginal relation-
ship between prestige and education ignoring income.

The response variable Y can be related marginally to a particular X , even when there is no
partial relationship between the two variables controlling for other X s. It is also possible for
there to be a partial association between Y and an X but no marginal association. Furthermore,
if the X s themselves are nonlinearly related, then the marginal relationship between Y and a
specific X can be nonlinear even when their partial relationship is linear.28

Despite this intrinsic limitation, scatterplot matrices often uncover interesting features of
the data, and this is indeed the case in Figure 3.18, where the display reveals three

26We will apply these powerful ideas in Chapters 11 and 12.
27We will return to this regression problem in Chapter 5.
28These ideas are explored in Chapter 12.
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unusual observations: Ministers have relatively low income for their relatively high level of
education and relatively high prestige for their relatively low income; railroad conductors and
railroad engineers have relatively high incomes for their more-or-less average levels of educa-
tion; railroad conductors also have relatively low prestige for their relatively high incomes.
This pattern bodes ill for the least-squares linear regression of prestige on income and
education.29
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Figure 3.18 Scatterplot matrix for occupational prestige, level of education, and level of income
for 45 U.S. occupations in 1950. The least-squares regression line (broken line) and
lowess smooth (for a span of 0.6, solid line) are shown on each plot. Three unusual
observations are identified.

SOURCE: Duncan (1961).

29See the discussion of Duncan’s occupational-prestige regression in Chapter 11.
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3.3.2 Coded Scatterplots

Information about a categorical third variable can be entered on a bivariate scatterplot by
coding the plotting symbols. The most effective codes use different colors to represent cate-
gories, but degrees of fill, distinguishable shapes, and distinguishable letters can also be
effective.30

Figure 3.19 shows a scatterplot of Davis’s (1990) data on measured and reported weight.31

Observations are displayed as Ms for men and Fs for women. Except for the outlying point
(number 12—which, recall, represents an error in the data), the points both for men and for
women cluster near the line Y ¼ X ; it is also clear from the display that most men are heavier
than most women, as one would expect, and that, discounting the bad data point, one man
(number 21) is quite a bit heavier than everyone else.

3.3.3 Three-Dimensional Scatterplots

Another useful multivariate display, directly applicable to three variables at a time, is the
three-dimensional scatterplot. Moreover, just as data can be projected onto a judiciously cho-
sen plane in a two-dimensional plot, higher-dimensional data can be projected onto a three-
dimensional space, expanding the range of application of three-dimensional scatterplots.32
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Figure 3.19 Davis’s data on measured and reported weight, by gender. Data points are repre-
sented by Ms for men and Fs for women and are jittered slightly to reduce overplot-
ting. The line on the graph is Y = X. In the combined data set for men and women,
the outlying observation is number 12.

30See Spence and Lewandowsky (1990) for a fine review of the literature on graphical perception, including informa-
tion on coded scatterplots.
31Davis’s data were introduced in Chapter 2, where only the data for women were presented.
32For example, there are three-dimensional versions of the added-variable and component-plus-residual plots discussed
in Chapters 11 and 12. See, for example, Cook and Weisberg (1989).
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Barring the use of a true stereoscopic display, the three-dimensional scatterplot is an illusion
produced by modern statistical software: The graph represents a projection of a three-dimen-
sional space onto a two-dimensional computer screen. Nevertheless, motion (e.g., rotation) and
the ability to interact with the display—possibly combined with the effective use of perspec-
tive, color, depth cueing, and other visual devices—can produce a vivid impression of directly
examining objects in three-dimensional space.

It is literally impossible to convey this impression adequately on the static, two-dimensional
page of a book, but Figure 3.20 shows Duncan’s (1961) prestige data rotated interactively into
a revealing orientation: Looking down the cigar-shaped scatter of most of the data, the three
unusual observations stand out very clearly.

3.3.4 Conditioning Plots

Conditioning plots (or coplots), described in Cleveland (1993), are another graphical device
for examining multidimensional data. The essential idea of the coplot is to focus on the rela-
tionship between the response variable and a particular explanatory variable, dividing the data
into groups based on the values of other explanatory variables—the conditioning variables. If
the conditioning variables are discrete, then this division is straightforward and natural. If a
conditioning variable is continuous, it can be binned: Cleveland suggests using overlapping
bins, which are called ‘‘shingles.’’

An illustrative coplot, for the General Social Survey vocabulary data, is shown in
Figure 3.21. This graph displays the relationship between vocabulary score and education,

minister

prestige

RR. engineer

income
education

conductor

Figure 3.20 Three-dimensional scatterplot for Duncan’s occupational prestige data, rotated into
an orientation that reveals three unusual observations. From this orientation, the
least-squares regression plane, also shown in the plot, is viewed nearly edge on.
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‘‘controlling for’’ gender and the year of the survey. The partial relationships are remarkably
similar in the different panels of the coplot; that is, gender and year appear to make little differ-
ence to the relationship between vocabulary score and education. The relationships also appear
to be very close to linear: In a few panels, the lowess line departs from the linear least-squares
line at the far left, but data in this region are quite sparse.

Although they can be effective graphs, coplots have limitations: First, if there are more than two,
or perhaps three, conditioning variables, it becomes difficult to perceive how the partial relationship
between the response and the focal explanatory variable changes with the conditioning variables.
Second, because coplots require the division of the data into groups, they are most useful for large
data sets, an issue that grows more acute as the number of conditioning variables increases.

Visualizing multivariate data is intrinsically difficult because we cannot directly examine
higher-dimensional scatterplots. Effective displays project the higher-dimensional point
cloud onto two or three dimensions; these displays include the scatterplot matrix, the
dynamic three-dimensional scatterplot, and the conditioning plot.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Summary

! Statistical graphs are central to effective data analysis, both in the early stages of an
investigation and in statistical modeling.

! There are many useful univariate displays, including the traditional histogram. The
stem-and-leaf plot is a modern variant of the histogram for small data sets, constructed
directly from numerical data. Nonparametric density estimation may be employed to
smooth a histogram. Quantile-comparison plots are useful for comparing data with a the-
oretical probability distribution. Boxplots summarize some of the most important charac-
teristics of a distribution, including center, spread, skewness, and outliers.

! The bivariate scatterplot is a natural graphical display of the relationship between two
quantitative variables. Interpretation of a scatterplot can often be assisted by graphing a
nonparametric regression, which summarizes the relationship between the two variables.
Scatterplots of the relationship between discrete variables can be enhanced by randomly
jittering the data.

! Parallel boxplots display the relationship between a quantitative response variable and a
discrete explanatory variable.

! Visualizing multivariate data is intrinsically difficult because we cannot directly examine
higher-dimensional scatterplots. Effective displays project the higher-dimensional point
cloud onto two or three dimensions; these displays include the scatterplot matrix, the
dynamic three-dimensional scatterplot, and the conditioning plot.
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Recommended Reading

The literature—especially the recent literature—on statistical graphics is truly voluminous. I
will furnish only the briefest of bibliographies:

! Fox (2000c) presents a brief overview of statistical graphics, including information on
the history of the subject. Jacoby (1997, 1998) gives a more extended overview
addressed to social scientists.

! Tufte’s (1983) influential book on graphical presentation of quantitative information is
opinionated but well worth reading. (Tufte has since published several other books on
graphics, broadly construed, but I prefer his first book.)

! Modern interest in statistical graphics is the direct result of John Tukey’s work on
exploratory data analysis; unfortunately, Tukey’s idiosyncratic writing style makes his
seminal book (Tukey, 1977) difficult to read. Velleman and Hoaglin (1981) provide a
more digestible introduction to the topic. There is interesting information on the statisti-
cal theory underlying exploratory data analysis in two volumes edited by Hoaglin,
Mosteller, and Tukey (1983, 1985).

! Tukey’s influence made Bell Labs a center of work on statistical graphics, much of
which is described in two accessible and interesting books by William Cleveland (1993,
1994) and in Chambers, Cleveland, Kleiner, and Tukey (1983). Cleveland (1994) is a
good place to start.

! Modern statistical graphics is closely associated with advances in statistical computing:
The S statistical computing environment (Becker, Chambers, & Wilks, 1988; Chambers,
1998; Chambers & Hastie, 1992), also a product of Bell Labs, is particularly strong in
its graphical capabilities. R, a free, open-source implementation of S, was mentioned in
the preface. Cook and Weisberg (1994, 1999) use the Lisp-Stat statistical computing
environment (Tierney, 1990) to produce an impressive statistical package, called Arc,
which incorporates a variety of statistical graphics of particular relevance to regression
analysis (including many of the methods described later in this text). Friendly (1991)
describes how to construct modern statistical graphs using the SAS/Graph system. Brief
presentations of these and other statistical computing environments appear in a book edi-
ted by Stine and Fox (1996).

! Atkinson (1985) presents a variety of innovative graphs in support of regression analy-
sis, as do Cook (1998) and Cook and Weisberg (1994, 1999).
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4 Transforming Data

‘‘C lassical’’ statistical models, for example, linear least-squares regression, make strong
assumptions about the structure of data—assumptions that, more often than not, fail to

hold in practice. One solution is to abandon classical methods in favor of more flexible alterna-
tives, such as nonparametric regression analysis. These newer methods are valuable, and I
expect that they will be used with increasing frequency, but they are more complex and have
their own limitations, as we saw in Chapter 2.1

It is, alternatively, often feasible to transform the data so that they conform more closely to
the restrictive assumptions of classical statistical models. In addition, and as we will discover
in this chapter, transformations can often assist in the examination of data, even in the absence
of a statistical model. The chapter introduces two general families of transformations2 and
shows how they can be used to make distributions symmetric, to make the relationship between
two variables linear, and to equalize variation across groups.

Transformations can often facilitate the examination and statistical modeling of data.

4.1 The Family of Powers and Roots

There is literally an infinite variety of functions f ðxÞ that could be used to transform a quantita-
tive variable X . In practice, of course, it helps to be more restrictive, and a particularly useful
group of transformations is the ‘‘family’’ of powers and roots:

X ! X p ð4:1Þ

where the arrow indicates that we intend to replace X with the transformed variable X p. If p is
negative, then the transformation is an inverse power: For example, X#1 ¼ 1=X (i.e., inverse),
and X#2 ¼ 1=X 2 (inverse square). If p is a fraction, then the transformation represents a root:
For example, X 1=3 ¼

ffiffiffiffi
X3
p

(cube root) and X#1=2 ¼ 1=
ffiffiffiffi
X
p

(inverse square root).
For some purposes, it is convenient to define the family of power transformations in a

slightly more complex manner, called the Box-Cox family of transformations (introduced in a
seminal paper on transformations by Box & Cox, 1964):3

1Also see Chapter 18.
2A third family of transformations is described in Exercise 4.4.
3In addition to revealing the relative effect of different power transformations, the Box-Cox formulation is useful for
estimating a transformation as a parameter, as in Section 4.6.
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X ! X ðpÞ[
X p # 1

p
ð4:2Þ

We use the parenthetical superscript ðpÞ to distinguish this definition from the more straightfor-
ward one in Equation 4.1. Because X ðpÞ is a linear function of X p, the two transformations have
the same essential effect on the data, but, as is apparent in Figure 4.1, the definition in
Equation 4.2 reveals more transparently the essential unity of the family of powers and roots:4

% Dividing by p preserves the direction of X , which otherwise would be reversed when p
is negative, as illustrated in the following example:

Note that subtracting 1 from the numerator does not affect differences between adjacent
transformed values in the table.

% The transformations X ðpÞ are ‘‘matched’’ above X ¼ 1 both in level and in slope: (1)
1ðpÞ ¼ 0, for all values of p, and (2) each transformation has a slope of 1 at X ¼ 1.5

% Matching the transformations facilitates comparisons among them and highlights their
relative effects on the data. In particular, descending the ‘‘ladder’’ of powers and roots

0 1 2 3 4

X

X
′

−1

0

15

10

5

0

1

2

3

Figure 4.1 The Box-Cox family of power transformations X
0
of X. The curve labeled p is the trans-

formation XðpÞ, that is, Xp # 1ð Þ=p; Xð0Þ is logeðpÞ.

X X#1 X#1

#1

X#1 # 1

#1

1 1 #1 0
2 1/2 #1/2 1/2
3 1/3 #1/3 2/3
4 1/4 #1/4 3/4

4See Exercise 4.1.
5&That is, the derivative of X ðpÞ at X ¼ 1 is 1; see Exercise 4.2.
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toward X ð#1Þ compresses the large values of X and spreads out the small ones; ascend-
ing the ladder of powers and roots toward X ð2Þ has the opposite effect.6 As p moves fur-
ther from p ¼ 1 (i.e., no transformation) in either direction, the transformation grows
more powerful, increasingly ‘‘bending’’ the data.

% The power transformation X 0 is useless because it changes all values to 1, but we can
think of the log (i.e., logarithm) transformation as a kind of ‘‘zeroth’’ power: As p gets
very close to 0, the log function more and more closely approximates X ðpÞ.7 Because the
log transformation is so useful, we will, by convention, take X ð0Þ[ loge X , where
e » 2:718 is the base of the natural logarithms.8

In practice, it is generally more convenient to use logs to the base 10 or base 2, which are more
easily interpreted than logs to the base e: For example, increasing log10 X by 1 is equivalent to
multiplying X by 10; increasing log2 X by 1 is equivalent to doubling X . Selection of a base
for the log transformation is essentially arbitrary and inconsequential, however, because chang-
ing bases is equivalent to multiplying by a constant; for example,

log10 X ¼ log10 e · loge X » 0:4343 · loge X

Likewise, because of its relative simplicity, we usually use X p in applied work in preference to X ðpÞ

when p 6¼ 0. Transformations such as log, square root, square, and inverse have a long history of
use in data analysis, often without reference to each other; thinking about these transformations as
members of a family facilitates their systematic application, as illustrated later in this chapter.

The powers and roots are a particularly useful family of transformations: X ! X p. When
p ¼ 0, we employ the log transformation in place of X 0.

The effects of the various power transformations are apparent in Figure 4.1 and in the follow-
ing simple examples (in which the numbers by the braces give differences between adjacent
values):

#1=X log2 X X X2 X3

#1 0 1 1 1
1
2 f 1 f g 1 g 3 g 7

#1/2 1 2 4 8
1
6 f 0.59 f g 1 g 5 g19

#1/3 1.59 3 9 27
1
12 f 0.41 f g 1 g7 g37

#1/4 2 4 16 64

6The heuristic characterization of the family of powers and roots as a ‘‘ladder’’ follows Tukey (1977).
7&More formally,

lim
p!0

X p # 1

p
¼ loge X

8Powers and logarithms are reviewed in online Appendix C.
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Power transformations are sensible only when all the values of X are positive. First of all, some
of the transformations, such as square root, log, and inverse, are undefined for negative or zero
values (or both). Second, even when they are defined, the power transformations are not mono-
tone—that is, not order preserving—if there are both positive and negative values in the data;
for example,

This is not, however, a practical limitation, because we can always add a positive constant
(called a ‘‘start’’) to each data value to make all the values positive, calculating the transforma-
tion X ! ðX þ sÞp;9 in the preceding example,

It is, finally, worth pointing out that power transformations are effective only when the ratio of
the largest data values to the smallest ones is sufficiently large; if, in contrast, this ratio is close
to 1, then power transformations are nearly linear and, hence, ineffective at bending the data.
Consider the following example, where the ratio of the largest to the smallest data value is only
2015=2011 ¼ 1:002 » 1:

X log10 X

2011 3.30341
1 f g 0.00022

2012 3.30363
1 f g 0.00021

2013 3.30384
1 f g 0.00022

2014 3.30406
1 f g 0.00022

2015 3.30428

X X2

#2 4
#1 1

0 0
1 1
2 4

X (Xþ3)2

#2 1
#1 4

0 9
1 16
2 25

9An alternative family of power transformations that can handle positive and negative data is described in Exercise 4.4.
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Using a negative start produces the desired effect:

This strategy should be considered whenever the ratio of the largest to the smallest data value
is less than about 5. When the ratio is sufficiently large—either initially or after subtracting a
suitable start—an adequate power transformation can typically be found in the range
#2 £ p £ 3. We usually select integer values of p or simple fractions such as 1

2 or 1
3.

Power transformations preserve the order of the data only when all values are positive
and are effective only when the ratio of the largest to the smallest data values is itself
large. When these conditions do not hold, we can impose them by adding a positive or
negative start to all the data values.

4.2 Transforming Skewness

Power transformations can make a skewed distribution more symmetric. But why should we
bother?

% Highly skewed distributions are difficult to examine because most of the observations
are confined to a small part of the range of the data. Recall from the previous chapter,
for example, the distribution of infant mortality rates, redisplayed in Figure 4.2.10

% Apparently, outlying values in the direction of the skew are brought in toward the main
body of the data when the distribution is made more symmetric. In contrast, unusual val-
ues in the direction opposite to the skew can be hidden prior to transforming the data.

% Some of the most common statistical methods summarize distributions using means.
Least-squares regression, which traces the mean of Y conditional on X , comes immedi-
ately to mind.11 The mean of a skewed distribution is not, however, a good summary of
its center.

X log10(X # 2010)

2011 0
1 f g 0.301

2012 0.301
1 f g 0.176

2013 0.477
1 f g 0.125

2014 0.602
1 f g 0.097

2015 0.699

10Adapting Figure 3.6 on page 46.
11See Chapter 5.
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The following simple example illustrates how a power transformation can eliminate a positive
skew:

Descending the ladder of powers to log X makes the distribution more symmetric by pulling in
the right tail. Ascending the ladder of powers (toward X 2 and X 3) can, similarly, ‘‘correct’’ a
negative skew.

An effective transformation can be selected analytically or by trial and error.12 Examining
the median and the hinges, moreover, can provide some guidance to trial and error. A conveni-
ent property of order statistics—including the median and hinges—is that they are preserved
under nonlinear monotone transformations of the data, such as powers and roots; that is, if
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Figure 4.2 Adaptive-kernel density estimate for the distribution of infant mortality rates of 193
nations of the world. The data values are displayed in the rug-plot at the bottom of the
figure.

X log10 X

1 0
9 f g 1

10 1
90 f g 1

100 2
900 f g 1

1000 3

12See Sections 4.6 and 12.5 for analytic methods for selecting transformations.
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X 0 ¼ X ðpÞ, then X 0ðiÞ ¼ ½XðiÞ)
ðpÞ, and thus medianðX 0Þ ¼ ½medianðX Þ)ðpÞ.13 This is not the case

for the mean and standard deviation.
In a symmetric distribution, the median is midway between the hinges, and consequently, the ratio

Upper hinge#Median

Median # Lower hinge

is approximately 1. In contrast, a positive skew is reflected in a ratio that exceeds 1 and a nega-
tive skew in a ratio that is smaller than 1. Trial and error can begin, therefore, with a transfor-
mation that makes this ratio close to 1.

Some statistical software allows the transformation p to be selected interactively using a ‘‘sli-
der,’’ while a graph of the distribution—for example, a density plot—is updated when the value
of p changes. This is an especially convenient and effective approach. A static alternative is to
show parallel boxplots for various transformations, as in Figure 4.3 for the infant mortality data.

For the distribution of infant mortality rates, we have

log(X) X−X−1 −X−1/2 X1/2

Figure 4.3 Boxplots for various power transformations of infant mortality; because the distribu-
tion of infant mortality is positively skewed, only transformations ‘‘down’’ the ladder
of powers and roots are considered.

Transformation HU Median HL
HU #Median

Median#HL

X 68 30 13 2.23ffiffiffi
X
p

8.246 5.477 3.605 1.48
log10 X 1.833 1.477 1.114 0.98
#1/

ffiffiffi
X
p

20.1213 #0.1825 #0.2773 0.65
#1/X 20.01471 #0.03333 #0.07692 0.43

13There is some slippage here because the median and hinges sometimes require averaging adjacent order statistics.
The two averaged values are seldom very far apart, however, and therefore the distinction between the median of the
transformed values and the transformation of the median is almost always trivial. The same is true for the hinges. The
results presented for the example give the median and hinges of the transformed data.
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This table and the boxplots in Figure 4.3 suggest the log transformation of infant mortality,
and the result of transforming the data is shown in Figure 4.4. Not only is the distribution much
more symmetric than before, but three modes are clearly resolved (and there is the suggestion
of a fourth); the modes at infant mortality rates of about 7 and 20 were not distinguishable in
the untransformed, positively skewed data.

Note the untransformed scale for infant mortality at the top of the graph: These values,
which are equally spaced on the log scale, represent doubling of infant mortality rates. This is,
in my experience, an effective device for presenting the results of a statistical analysis in which
the familiar scale of a variable is lost through a transformation.

Although it is not the case here, where the log transformation is clearly indicated, we often
have a choice between transformations that perform roughly equally well. Although we should
try to avoid distorting the data, we may prefer one transformation to another because of inter-
pretability. I have already mentioned that the log transformation has a convenient multiplicative
interpretation. In certain contexts, other transformations may have specific substantive mean-
ings. Here are a few common examples: The inverse of the time (say, in hours) required to
travel a given distance (a kilometer) is speed (kilometers per hour); the inverse of response
latency (say, in milliseconds, as in a psychophysical experiment) is response frequency
(responses per 1,000 seconds); the square root of a measure of area (say, in square meters) is a
linear measure of size (in meters); and the cube of a linear measure of size (say in centimeters)
can be interpreted as a volume (cubic centimeters).

We generally prefer interpretable transformations when variables are measured on familiar
and meaningful scales. Conversely, because the rating ‘‘scales’’ that are ubiquitous in social
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Figure 4.4 Adaptive-kernel density estimate for the distribution of log10 infant mortality. The win-
dow half-width for the adaptive-kernel estimator is h ¼ 0.1 (on the log10 infant mor-
tality scale). A rug-plot of the data values appears at the bottom of the graph and the
original infant mortality scale at the top.
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research are not really measurements, there is typically no reason to prefer the original scores
to a better-behaved monotone transformation of them.14

Descending the ladder of powers (e.g., to log X ) tends to correct a positive skew; ascend-
ing the ladder of powers (e.g., to X 2) tends to correct a negative skew.

4.3 Transforming Nonlinearity

Power transformations can also be used to make many nonlinear relationships more nearly lin-
ear. Again, we ask, why bother?

% Linear relationships—expressible in the form bY ¼ Aþ BX —are particularly simple.
Recall that this equation specifies that the average value of the response variable Y is a
linear function of the explanatory variable X , with intercept A and slope B. Linearity
implies that a unit increase in X —regardless of the level of X —is associated, on aver-
age, with a change of B units in Y .15 Fitting a linear equation to data makes it relatively
easy to answer certain questions about the data: If B is positive, for example, then Y
tends to increase with X .

% Especially when there are several explanatory variables, the alternative of nonparametric
regression may not be feasible because of the sparseness of the data. Even if we can fit
a nonparametric regression with several X s, it may be difficult to visualize the multidi-
mensional result.16

% There is a simple and elegant statistical theory for linear models, which we explore in
subsequent chapters. If these models are reasonable for the data, then their use is
convenient.

% There are certain technical advantages to having linear relationships among the explana-
tory variables in a regression analysis.17

The following simple example suggests how a power transformation can serve to straighten a
nonlinear relationship: Suppose that Y ¼ 1

5 X 2 (with no residual) and that X takes on successive
integer values between 1 and 5:

14Rating scales are composed, for example, of items with response categories labeled strongly agree, agree, disagree,
and strongly disagree. A scale is constructed by assigning arbitrary numbers to the categories (e.g., 1–4) and adding or
averaging the items. See Coombs, Dawes, and Tversky (1970, Chapters 2 and 3) for an elementary treatment of mea-
surement issues in the social sciences and Duncan (1984) for an interesting account of the history and practice of social
measurement. I believe that social scientists should pay more attention to measurement issues (employing, e.g., the
methods of item response theory; e.g., Baker & Kim, 2004). It is unproductive, however, simply to discard rating scales
and similar ‘‘measurements by fiat’’ (a felicitous term borrowed from Torgerson, 1958): There is a prima facie reason-
ableness to many rating scales, and to refuse to use them without adequate substitutes would be foolish.
15I use the terms ‘‘increase’’ and ‘‘change’’ loosely here as a shorthand for static comparisons between average values
of Y for X -values that differ by one unit: Literal change is not necessarily implied.
16See, however, the additive regression models discussed in Section 18.2.2, which overcome this deficiency.
17This point is developed in Section 12.3.3.
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These ‘‘data’’ are graphed in panel (a) of Figure 4.5, where the nonlinearity of the relationship
between Y and X is apparent. Because of the manner in which the example was constructed, it
is obvious that there are two simple ways to transform the data to achieve linearity:

1. We could replace Y by Y 0 ¼
ffiffiffiffi
Y
p

, in which case Y 0 ¼
ffiffi
1
5

q
X .

2. We could replace X by X 0 ¼ X 2, in which case Y ¼ 1
5 X 0.

In either event, the relationship is rendered perfectly linear, as shown graphically in panels (b)
and (c) of Figure 4.5. To achieve an intuitive understanding of this process, imagine that the
original plot in panel (a) is drawn on a rubber sheet: Transforming Y ‘‘down’’ the ladder of
powers to square root differentially stretches the rubber sheet vertically so that small values are
spread out relative to large ones, stretching the curve in (a) into the straight line in (b).
Likewise, transforming X ‘‘up’’ the ladder of powers spreads out the large values relative to
the small ones, stretching the curve into the straight line in (c).

A power transformation works here because the relationship between Y and X is smooth,
monotone (in this instance, strictly increasing), and simple. What I mean by ‘‘simple’’ in this
context is that the direction of curvature of the function relating Y to X does not change (i.e.,
there is no point of inflection). Figure 4.6 seeks to clarify these distinctions: The relationship in
panel (a) is simple and monotone; the relationship in panel (b) is monotone but not simple; and
the relationship in panel (c) is simple but not monotone. I like to use the term ‘‘curvilinear’’ for
cases such as (c), to distinguish nonmonotone from monotone nonlinearity, but this is not stan-
dard terminology. In panel (c), no power transformation of Y or X can straighten the relation-
ship between them, but we could capture this relationship with a quadratic model of the form
bY ¼ Aþ B1X þ B2X 2.18

Like transformations to reduce skewness, a transformation to correct nonlinearity can be
selected analytically or by guided trial and error.19 Figure 4.7 introduces Mosteller and
Tukey’s (1977) ‘‘bulging rule’’ for selecting a transformation: If the ‘‘bulge’’ points down and
to the right, for example, we need to transform Y down the ladder of powers or X up (or both).
This case corresponds to the example in Figure 4.5, and the general justification of the rule fol-
lows from the need to stretch an axis differentially to transform the curve into a straight line.
Trial and error is simplest with software that provides ‘‘sliders’’ for the power transformations
of X and Y , immediately displaying the effect of a change in either power on the scatterplot
relating the two variables, but we can in any event examine a series of scatterplots for different
transformations.

X Y

1 0.2
2 0.8
3 1.8
4 3.2
5 5.0

18Quadratic and other polynomial regression models are discussed in Section 17.1.
19See Sections 4.6 and 12.5 for analytic methods of selecting linearizing transformations.
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Simple monotone nonlinearity can often be corrected by a power transformation of X , of
Y , or of both variables. Mosteller and Tukey’s bulging rule assists in selecting lineariz-
ing transformations.

Let us reexamine, in the light of this discussion, the relationship between prestige and income
for the 102 Canadian occupations first encountered in Chapter 2 and shown in Figure 4.8.20

The relationship between prestige and income is clearly monotone and nonlinear: Prestige rises
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(c)

X’ = X2

Y

Figure 4.5 How a power transformation of Y or X can make a simple monotone nonlinear rela-
tionship linear. Panel (a) shows the relationship Y ¼ 1

5 X2. In panel (b), Y is replaced by
the transformed value Y 0 ¼ Y1=2. In panel (c), X is replaced by the transformed value
X0 ¼ X2.

20Repeating Figure 2.10 on page 26.
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(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 4.6 (a) A simple monotone relationship between Y and X; (b) a monotone relationship that
is not simple; (c) a relationship that is simple but not monotone. A power transforma-
tion of Y or X can straighten (a) but not (b) or (c).

X down:
log(X), X

Y down:
Y

log(Y)

Y3

Y2

Y up:

X up:

X2, X3

Figure 4.7 Tukey and Mosteller’s bulging rule: The direction of the bulge indicates the direction
of the power transformation of Y and/or X to straighten the relationship between them.
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with income, but the slope is steeper at the left of the plot, where income is low, than at the
right, where it is high. The change in slope appears fairly abrupt rather than smooth, however,
and we might do better to model the relationship with two straight lines (one for relatively
small values of income, one for relatively large ones) than simply to transform prestige or
income.21

Nevertheless, the bulge points up and to the left, and so we can try transforming prestige up
the ladder of powers or income down. Because the income distribution is positively skewed, I
prefer to transform income rather than prestige, which is more symmetrically distributed. As
shown in Figure 4.9, the cube-root transformation of income works reasonably well here.
Some nonlinearity remains, but it is not simple, and the linear regression of prestige on income
no longer grossly distorts the relationship between the two variables. I would have preferred to
use the log transformation, which makes the income distribution more symmetric and is sim-
pler to interpret, but this transformation ‘‘overcorrects’’ the nonlinearity in the relationship
between prestige and income.

For a more extreme and ultimately more successful example, consider the relationship
between infant mortality and gross domestic product (GDP) per capita, shown in Figure 4.10
and first discussed in Chapter 3.22 As I pointed out previously, both variables are highly posi-
tively skewed and, consequently, most of the data are confined to a small region at the lower
left of the plot.
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Figure 4.8 The relationship between prestige and income for the Canadian occupational prestige
data. The nonparametric regression line on the plot is computed by lowess, with a
span of 0.6.

21For an alternative interpretation of the relationship between prestige and income, plot the data using different symbols
for different types of occupations. (The data set distinguishes among blue-collar, white-collar, and professional and
managerial occupations.)
22Repeating Figure 3.14 on page 45. This example is motivated by a discussion of similar data in Leinhardt and
Wasserman (1979).
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The skewness of infant mortality and income in Figure 4.10 makes the scatterplot difficult to
interpret; despite this fact, the nonparametric regression shown on the plot reveals a highly
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Figure 4.10 Scatterplot for infant mortality and GDP per capita for 193 nations. The line is for a
lowess smooth with a span of 1/2. Several nations with high infant mortality for their
levels of GDP are identified.
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Figure 4.9 Scatterplot of prestige versus income1=3. The broken line shows the linear least-
squares regression, while the solid line shows the lowess smooth, with a span of 0.6.
The original income scale is shown at the top of the graph.
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nonlinear but monotone relationship between infant mortality and income. The bulging rule
suggests that infant mortality or income should be transformed down the ladder of powers and
roots. In this case, transforming both variables by taking logs makes the relationship nearly lin-
ear (as shown in Figure 4.11). Moreover, although several countries still stand out as having
relatively high infant mortality for their GDP, others now are revealed to have relatively low
infant mortality in comparison to countries with similar GDP.

The least-squares regression line in Figure 4.11 has the equation

log10
dInfant mortality ¼ 3:06# 0:493 · log10 GDP

Because both variables are expressed on log scales to the same base, the slope of this relation-
ship has a simple interpretation: A 1% increase in per-capita income is associated, on average,
with an approximate 0.49% decline in the infant mortality rate. Economists call this type of
coefficient an ‘‘elasticity.’’23
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Figure 4.11 Scatterplot of log10 infant mortality rate versus log10 per-capita GDP. The broken
line was calculated by linear least-squares regression and the solid line by lowess
with a span of 1/2. The original scales of the variables appear at the top and to the
right.

23Increasing X by 1% is equivalent to multiplying it by 1.01, which in turn implies that the log of X increases by
log10 1:01 ¼ 0:00432. The corresponding change in log Y is then B · 0:00432 ¼ #0:493 · 0:00432 ¼ #0:00213:
Subtracting 0:00213 from log Y is equivalent to multiplying Y by 10#0:00213 ¼ 0:99511, that is, decreasing Y by
100 · ð1# 0:99511Þ ¼ 0:489 » B. The approximation holds because the log function is nearly linear across the small
domain of X -values between log 1 and log 1:01.
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4.4 Transforming Nonconstant Spread

When a variable has very different degrees of variation in different groups, it becomes difficult
to examine the data and to compare differences in level across the groups. We encountered this
problem in the preceding chapter, where we compared the distribution of the number of inter-
locking directorships by nation of control, employing Ornstein’s data on 248 dominant
Canadian corporations, shown in Figure 4.12.24

Differences in spread are often systematically related to differences in level: Groups with
higher levels tend to have higher spreads. Using the median and hinge-spread as indices of
level and spread, respectively, the following table shows that there is indeed an association, if
only an imperfect one, between spread and level for Ornstein’s data:

Tukey (1977) suggests graphing the log hinge-spread against the log median, as shown in
Figure 4.13. Because some firms maintained 0 interlocks, I used a start of 1 to construct this
graph, which has the effect of adding 1 to each median but leaves the hinge-spreads
unchanged.
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Figure 4.12 Number of interlocking directorate and executive positions by nation of control, for
248 dominant Canadian firms.

Nation of Control Lower Hinge Median Upper Hinge Hinge Spread

Other 3 14.5 23 20
Canada 5 12.0 29 24
United Kingdom 3 8.0 13 10
United States 1 5.0 12 11

24Repeating Figure 3.17 on page 47.
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The slope of the linear ‘‘trend,’’ if any, in the spread-level plot can be used to suggest a
spread-stabilizing power transformation of the data: Express the linear fit as

log spread » aþ b log level

Then the corresponding spread-stabilizing transformation uses the power p ¼ 1# b. When
spread is positively related to level (i.e., b > 0), therefore, we select a transformation down the
ladder of powers and roots.

When there is a positive association between the level of a variable in different groups
and its spread, the spreads can be made more constant by descending the ladder of pow-
ers. A negative association between level and spread is less common but can be cor-
rected by ascending the ladder of powers.

In Figure 4.13, a line was fit by least squares to the spread-level plot for the interlocking direc-
torate data. The slope of this line, b ¼ 0:85, suggests the power transformation
p ¼ 1# 0:85 ¼ 0:15 » 0. I decided, therefore, to try a log transformation. Figure 4.14 shows
the result, employing logs to the base 2.25 The spreads of the several groups are now much
more similar, and differences in level are easier to discern. The within-group distributions are
more symmetric as well, and there are no outliers.
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Figure 4.13 Spread (log hinge-spread) versus level [log(median þ 1)]. The plot is for Ornstein’s
interlocking-directorate data, with groups defined by nation of control. The line on
the plot was fit by least squares.

25Recall that increasing log2X by 1 represents doubling X (where, here, X is the number of interlocks plus 1).
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The problems of unequal spread and skewness commonly occur together because they often
have a common origin. When, as here, the data represent frequency counts (number of inter-
locks), the impossibility of obtaining a negative count tends to produce positive skewness,
together with a tendency for larger levels to be associated with larger spreads. The same is true
of other types of variables that are bounded below (e.g., wage and salary income). Likewise,
variables that are bounded above but not below (e.g., grades on a very simple exam) tend both
to be negatively skewed and to show a negative association between spread and level. In the
latter event, a transformation ‘‘up’’ the ladder of powers (e.g., to X 2) usually provides a
remedy.26

4.5 Transforming Proportions

Power transformations are often unhelpful for proportions because these quantities are bounded
below by 0 and above by 1. Of course, if the data values do not approach the two boundaries,
then proportions can be handled much like other sorts of data.

Percentages and many sorts of rates (e.g., infant mortality rate per 1,000 live births) are sim-
ply rescaled proportions and, therefore, are similarly affected. It is, moreover, common to
encounter ‘‘disguised’’ proportions, such as the number of questions correct on an exam of
fixed length or the number of affirmative responses to a series of dichotomous attitude
questions.
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Figure 4.14 Parallel boxplots of number of interlocks by nation of control, transforming inter-
locksþ1 to the log2 scale. Compare this plot with Figure 4.12, where number of
interlocks is not transformed. The original scale for number of interlocks is shown at
the right.

26Plotting log spread against log level to select a spread-stabilizing transformation is quite a general idea. In Section
12.2, for example, we will use a version of the spread-level plot to find a variance-stabilizing transformation in regres-
sion analysis.
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An example, drawn from the Canadian occupational prestige data, is shown in the stem-and-
leaf display in Figure 4.15. The distribution is for the percentage of women among the incum-
bents of each of 102 occupations. There are many occupations with no women or a very small
percentage of women, but the distribution is not simply positively skewed, because there are
also occupations that are predominantly female. In contrast, relatively few occupations are
balanced with respect to their gender composition.

Several transformations are commonly employed for proportions, P, including the following:

% The logit transformation,

P! logitðPÞ ¼ loge
P

1# P

The logit transformation is the log of the ‘‘odds,’’ P=ð1# PÞ. The ‘‘trick’’ of the logit
transformation is to remove the upper and lower boundaries of the scale, spreading out
the tails of the distribution and making the resulting quantities symmetric about 0; for
example,

1 | 2: represents 12
leaf unit: 1

n: 102

32 0* | 00000000000000111111222233334444
44 0. | 555566777899
(8) 1* | 01111333
50 1. | 5557779
43 2* | 1344
39 2. | 57
37 3* | 01334
32 3. | 99

4* |
30 4. | 678
27 5* | 224
24 5. | 67
22 6* | 3
21 6. | 789
18 7* | 024
15 7. | 5667
11 8* | 233

8. |
8 9* | 012

Figure 4.15 Stem-and-leaf display of percentage of women in each of 102 Canadian occupations
in 1970. Note how the data ‘‘stack up’’ against both boundaries.

P P

1# P
logit

.01 1/99 #4.59

.05 1/19 #2.94

.1 1/9 #2.20

.3 3/7 #0.85

.5 1 0

.7 7/3 0.85

.9 9/1 2.20

.95 19/1 2.94

.99 99/1 4.59
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A graph of the logit transformation, shown in Figure 4.16, reveals that the transforma-
tion is nearly linear in its center, between about P ¼ :2 and P ¼ :8.

% The probit transformation,

P ! probitðPÞ ¼ F#1ðPÞ

where F#1 is the inverse distribution function (i.e., the quantile function) for the stan-
dard normal distribution. Once their scales are equated, the logit and probit transforma-
tions are, for practical purposes, indistinguishable: logit » ðπ=

ffiffiffi
3
p
Þ · probit.27

% The arcsine-square-root transformation also has a similar shape:

P! sin#1
ffiffiffi
P
p

Tukey (1977) has embedded these common transformations for proportions into the family
of ‘‘folded’’ powers and roots, indexed by the power q, which takes on values between
0 and 1:

P ! Pq # ð1# PÞq

When q ¼ 0, we take the natural log, producing the logit transformation. Setting q ¼ 0:14
yields (to a very close approximation) a multiple of the probit transformation. Setting q ¼ 0:41
produces (again, to a close approximation) a multiple of the arcsine-square-root transformation.
When q ¼ 1, the transformation is just twice the ‘‘plurality’’ (i.e., the difference between P and
1
2), leaving the shape of the distribution of P unaltered:

P ! P # ð1# PÞ ¼ 2ðP # 1
2Þ
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Figure 4.16 The logit transformation loge½P=ð1# PÞ) of a proportion P.

27We will encounter the logit and probit functions again in a different context when we take up the analysis of categori-
cal data in Chapter 14.
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Power transformations are ineffective for proportions P that simultaneously push the
boundaries of 0 and 1 and for other variables (e.g., percentages, rates, disguised propor-
tions) that are bounded both below and above. The folded powers P! Pq # ð1# PÞq

are often effective in this context; for q ¼ 0, we employ the logit transformation,
P! loge½P=ð1# PÞ).

The logit and probit transformations cannot be applied to proportions of exactly 0 or 1. If, how-
ever, we have access to the original counts on which the proportions were based, then we can
avoid this embarrassment by employing

P0 ¼
F þ 1

2

N þ 1

in place of P. Here, F is the frequency count in the focal category (e.g., number of women)
and N is the total count (total number of occupational incumbents, women plus men). If the
original counts are not available, then we can use the expedient of mapping the proportions to
an interval that excludes 0 and 1. For example, P0 ¼ :005þ :99 · P maps proportions to the
interval [.005, .995].

Employing the latter strategy for the Canadian occupational data produces the distribution
for logit(P0women) that appears in Figure 4.17. Spreading out the tails of the distribution has
improved its behavior considerably, although there is still some stacking up of low and high
values.

1 | 2: represents 1.2
leaf unit: 0.1

n: 102

5 -5* | 22222
8 -4. | 555
16 -4* | 44332111
21 -3. | 98875
31 -3* | 4432111000
39 -2. | 98887655
48 -2* | 443220000

(10) -1. | 9888666555
44 -1* | 331110
38 -0. | 987666
32 -0* | 44110
27 0* | 00122
22 0. | 577889
16 1* | 01111
11 1. | 556
8 2* | 23
6 2. | 5
5 3* | 00014

Figure 4.17 Stem-and-leaf display for the logit transformation of proportion of women in each
of 102 Canadian occupations. Because some occupations have no women,
the proportions were mapped to the interval .005 to .995 prior to calculating the
logits.
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4.6 Estimating Transformations as Parameters*

If we lived in a world in which the joint distribution of all quantitative data were multivariate-
normal, then statistical analysis would be simple indeed: Outliers would be rare, all variables
would be symmetrically distributed, all regressions would be linear, and least-squares regres-
sion would be a fine method of estimation. Making data as close to multivariate-normal as pos-
sible by transformation, therefore, can facilitate their analysis.

If the vector random variable x ¼ ðX1;X2; . . . ;XpÞ0 with population mean vector „
ðp · 1Þ

and

covariance matrix S
ðp · pÞ

is multivariate-normal, then its probability density function is28

pðxj„;SÞ ¼ 1

ð2πÞp=2 ffiffiffiffiffiffiffiffiffiffiffi
det S
p exp #1

2ðx# „Þ
0S#1ðx# „Þ

h i

In shorthand, x;Npð„;SÞ:
For a sample of n observations, X

ðn · pÞ
, we have

pðXj„;SÞ ¼ 1

ð2πÞp=2 ffiffiffiffiffiffiffiffiffiffiffi
det S
p

" #n

exp
Xn

i¼1

#1
2ðxi # „ Þ0S#1ðxi # „Þ

h i( )

where x0i is the ith row of X. The log-likelihood for the parameters is, therefore,29

loge Lð„;SjXÞ ¼ # np
2

logeð2πÞ #
n
2

loge det S# 1
2

Xn

i¼1

ðxi # „ Þ0S#1ðxi # „ Þ
h i

The maximum-likelihood estimators (MLEs) of the mean and covariance matrix are, then,30

b„ ¼ x ¼ ðX 1;X 2; . . . ;X pÞ0

bS ¼ bσ jj0
" #

¼
Pn

i¼1ðXij # X jÞðXij0 # X j0Þ
n

$ %

Now, suppose that x is not multivariate-normal but that it can be made so by a power
transformation of its elements.31 It is convenient to use the Box-Cox family of power transfor-
mations (Equation 4.2) because they are continuous at p ¼ 0. Rather than thinking about
these powers informally, let us instead consider them as additional parameters,32

‚[ðλ1; λ2; . . . ; λpÞ0; one for each element of x, so that

xðl Þ[ xðλ1Þ
1 ; xðλ2Þ

2 ; . . . ; xðλpÞ
p

h i0

28See online Appendix D on probability and estimation.
29The likelihood function and maximum-likelihood estimation are described in online Appendix D on probability and
estimation.
30Note that the MLEs of the covariances have n rather than n# 1 in the denominator and consequently will be biased
in small samples.
31This cannot be strictly correct, because Box-Cox transformations are only applicable when the elements of x are posi-
tive and normal distributions are unbounded, but it may be true to a close-enough approximation. There is no guaran-
tee, however, that x can be made normal by a power transformation of its elements.
32We will encounter this general approach again in Section 12.5 in the context of the linear regression model.
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Then,

pðxj„;S;‚Þ ¼ 1

ð2πÞp=2 ffiffiffiffiffiffiffiffiffiffiffi
det S
p exp #1

2ðx
ð‚Þ # „ Þ0S#1ðxð‚Þ # „ Þ

h iYp

j¼1

X λ j#1
j ð4:3Þ

where now „ ¼ E xðl Þ
& '

and S ¼ V xðl Þ
& '

are the mean vector and covariance matrix
of the transformed variables, and

Qp
j¼1 X λj#1

j is the Jacobian of the transformation from xðlÞ

to x.33

The log-likelihood for the model is

loge Lð‚;„;SjXÞ ¼ # np
2

logeð2πÞ #
n
2

loge det S# 1
2

Xn

i¼1

ðxð‚Þi # „ Þ
0
S#1ðxð‚Þi # „ Þ

h i

þ
Xp

j¼1

ðλj # 1Þ
Xn

i¼1

loge Xij

There is no closed-form solution for the MLEs of ‚, „; and S, but we can find the MLEs by
numerical methods. Standard errors for the estimated transformations are available in the usual
manner from the inverse of the information matrix, and both Wald and likelihood-ratio tests
can be formulated for the transformation parameters.

Moreover, because our real interest lies in the transformation parameters ‚, the means „ and

covariances S are ‘‘nuisance’’ parameters; indeed, given b‚, the MLEs of „ and S are just the

sample mean vector and covariance matrix of xðb‚Þ. Let us define the modified Box-Cox family
of transformations as follows:

X ½λ) ¼
eX 1#λ X λ#1

λ
for λ 6¼ 0

eX loge X for λ ¼ 0

$

where

eX [
Yn

i¼1

Xi

 !1=n

is the geometric mean of X . Multiplication by eX 1#λ is a kind of standardization, equating the
scales of different power transformations of X . Let V½‚ ) represent the sample covariance matrix
of

x½‚ )[ x½λ1)
1 ; x½λ2)

2 ; . . . ; x½λp)
p

h i0

Velilla (1993) shows that the MLEs of ‚ in Equation 4.3 are the values that minimize the
determinant of V½‚ ).

Applying this approach to the joint distribution of infant mortality and GDP per capita pro-
duces the following results:

33See online Appendix D on probability and estimation.
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The first column in this table gives the MLE of each transformation parameter, the second col-
umn gives the asymptotic standard error of the transformation, the third column gives the Wald
statistic for testing the hypothesis H0: λj ¼ 1 (i.e., that no transformation is required), and the
final column gives the two-sided p-value for this test. In this case, evidence for the need to
transform the two variables is very strong. Moreover, both estimated transformations are very
close to 0—that is, the log transformation. A likelihood-ratio test for the hypothesis H0:
λ1 ¼ λ2 ¼ 1 yields the chi-square test statistic G2

0 ¼ 680:25 on 2 degrees of freedom, which is
also wildly statistically significant. In contrast, testing the hypothesis that H0: λ1 ¼ λ2 ¼ 0 pro-
duces G2

0 ¼ 1:649 on 2 degrees of freedom, for which p ¼ :44, supporting the use of the log
transformations of infant mortality and GDP. We know from our previous work that these
transformations make the distributions of the two variables symmetric and linearize their
relationship.

Finally, we can also apply this method to individual variables to attempt to normalize their
univariate distributions. For the current example, the individual MLEs of the power transfor-
mation parameters λ for infant mortality and GDP are similar to those reported above:

The method of maximum likelihood can be used to estimate normalizing power transfor-
mations of variables.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 4.1. Create a graph like Figure 4.1, but for the ordinary power transformations
X ! X p for p ¼ #1; 0; 1; 2; 3. (When p ¼ 0, however, use the log transformation.) Compare
your graph to Figure 4.1, and comment on the similarities and differences between the two
families of transformations X p and X ðpÞ.

Exercise 4.2. &Show that the derivative of f ðX Þ ¼ ðX p # 1Þ=p is equal to 1 at X ¼ 1 regard-
less of the value of p.

bλ SEðbλ Þ z0¼ bλ#1

SEðbλ Þ
p

Infant mortality 0.0984 0.0786 #11.47 *.0001
GDP per capita #0.0115 0.0440 #23.00 *.0001

bλ j SE ðbλ jÞ z0 ¼
bλ j#1

SEðbλ jÞ
p

Infant mortality #0.0009 0.0655 #15:28 *.0001
GDP per capita 0.0456 0.0365 #26.14 *.0001
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Exercise 4.3. &We considered starts for transformations informally to ensure that all data val-
ues are positive and that the ratio of the largest to the smallest data values is sufficiently large.
An alternative is to think of the start as a parameter to be estimated along with the transforma-
tion power to make the distribution of the variable as normal as possible. This approach defines
a two-parameter Box-Cox family:

X ðα; λÞ[
ðX # αÞλ

λ

(a) Develop the MLEs of α and λ for the two-parameter Box-Cox family.
(b) Attempt to apply the estimator to data. Do you encounter any obstacles? [Hint:

Examine the correlation between the parameter estimates bα and bλ.]

Exercise 4.4. The Yeo-Johnson family of modified power transformations (Yeo & Johnson,
2000) is an alternative to using a start when both negative (or 0) and positive values are
included in the data. The Yeo-Johnson family is defined as follows:

X ! X ½p)[ ðX þ 1ÞðpÞ for X ‡ 0
ð1# X Þð2#pÞ for X < 0

(

where the parenthetical superscript ðpÞ gives the Box-Cox power, as in Equation 4.2

(a) Graph the transformations X ½p) in the Yeo-Johnson family for values of X between
#10 and þ10 and powers p of #1, #0:5, 0, 0.5, 1, and 2.

(b) Now consider strictly positive X -values between 0.1 and 10. Compare the
Yeo-Johnson and Box-Cox transformations of X for powers p of #1, #0:5, 0, 0.5, 1,
and 2.

(c) &As in Section 4.6 for Box-Cox transformations, derive the maximum-likelihood esti-
mator of the Yeo-Johnson transformations to multivariate normality of a vector of
X sg.

Summary

% Transformations can often facilitate the examination and statistical modeling of data.
% The powers and roots are a particularly useful family of transformations: X ! X p.

When p ¼ 0, we employ the log transformation in place of X 0.
% Power transformations preserve the order of the data only when all values are positive

and are effective only when the ratio of largest to smallest data values is itself large.
When these conditions do not hold, we can impose them by adding a positive or nega-
tive start to all the data values.

% Descending the ladder of powers (e.g., to log X ) tends to correct a positive skew;
ascending the ladder of powers (e.g., to X 2) tends to correct a negative skew.

% Simple monotone nonlinearity can often be corrected by a power transformation of X ,
of Y , or of both variables. Mosteller and Tukey’s bulging rule assists in selecting linear-
izing transformations.

% When there is a positive association between the level of a variable in different groups
and its spread, the spreads can be made more constant by descending the ladder of
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powers. A negative association between level and spread is less common but can be cor-
rected by ascending the ladder of powers.

% Power transformations are ineffective for proportions, P, that simultaneously push the
boundaries of 0 and 1 and for other variables (e.g., percentages, rates, disguised propor-
tions) that are bounded both below and above. The folded powers P! Pq # ð1# PÞq

are often effective in this context; for q ¼ 0, we employ the logit transformation,
P! loge½P=ð1# PÞ).

% The method of maximum likelihood can be used to estimate normalizing power transfor-
mations of variables.

Recommended Reading

Because examination and transformation of data are closely related topics, most of the readings
here were also listed at the end of the previous chapter.

% Tukey’s important text on exploratory data analysis (Tukey, 1977) and the companion
volume by Mosteller and Tukey (1977) on regression analysis have a great deal of inter-
esting information and many examples. As mentioned in the previous chapter, however,
Tukey’s writing style is opaque. Velleman and Hoaglin (1981) is easier to digest, but it
is not as rich in material on transformations.

% Several papers in a volume edited by Hoaglin, Mosteller, and Tukey (1983) have valu-
able material on the family of power transformations, including a general paper by
Emerson and Stoto, an extended discussion of the spread-versus-level plot in a paper on
boxplots by Emerson and Strenio, and a more difficult paper by Emerson on the mathe-
matics of transformations.

% The tools provided by the Lisp-Stat statistical computing environment (described in
Tierney, 1990)—including the ability to associate a transformation with a slider and to
link different plots—are especially helpful in selecting transformations. Cook and
Weisberg (1994, 1999) have developed a system for data analysis and regression based
on Lisp-Stat that includes these capabilities. Similar facilities are built into some statisti-
cal packages and can be implemented in other statistical computing environments
(such as R).

80 Chapter 4. Transforming Data



PART II
Linear Models
and Least Squares



5 Linear Least-Squares
Regression

O n several occasions in the first part of the text, I emphasized the limitations of linear
least-squares regression. Despite these limitations, linear least squares lies at the very

heart of applied statistics:1

! Some data are adequately summarized by linear least-squares regression.
! The effective application of linear regression is considerably expanded through data

transformations and techniques for diagnosing problems such as nonlinearity and overly
influential data.

! As we will see, the general linear model—a direct extension of linear least-squares
regression—is able to accommodate a very broad class of specifications, including, for
example, qualitative explanatory variables and polynomial and other nonlinear functions
of quantitative explanatory variables.

! Linear least-squares regression provides a computational basis for a variety of generali-
zations, including weighted least-squares regression, robust regression, nonparametric
regression, and generalized linear models.

Linear least-squares regression and the closely related topic of linear statistical models are
developed in this chapter and in Chapters 6 through 10:

! The current chapter describes the mechanics of linear least-squares regression. That is, I
will explain how the method of least squares can be employed to fit a line to a bivariate
scatterplot, a plane to a three-dimensional scatterplot, and a general linear surface to
multivariate data (which, of course, cannot be directly visualized).

! Chapter 6 develops general and flexible methods of statistical inference for linear
models.

! Chapters 7 and 8 extend linear models to situations in which some or all of the explana-
tory variables are qualitative and categorical rather than quantitative.

! Chapter 9 casts the linear model in matrix form and describes the statistical theory of
linear models more formally and more generally.

! Chapter 10 introduces the vector geometry of linear models, a powerful tool for concep-
tualizing linear models and least-squares estimation.2

1The extensions of linear least-squares regression mentioned here are the subject of subsequent chapters.
2Chapters 9 and 10 are ‘‘starred’’ (i.e., marked with asterisks) and therefore are more difficult; like all starred material
in this book, these chapters can be skipped without loss of continuity, although some of the later starred material
depends on earlier starred text.
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5.1 Simple Regression

5.1.1 Least-Squares Fit

Figure 5.1 shows Davis’s data, introduced in Chapter 2, on the measured and reported
weight in kilograms of 101 women who were engaged in regular exercise.3 The relationship
between measured and reported weight appears to be linear, so it is reasonable to fit a line to
the plot. A line will help us determine whether the subjects in Davis’s study were accurate and
unbiased reporters of their weights, and it can provide a basis for predicting the measured
weight of similar women for whom only reported weight is available.

Denoting measured weight by Y and reported weight by X , a line relating the two variables
has the equation Y ¼ Aþ BX .4 It is obvious, however, that no line can pass perfectly through
all the data points, despite the strong linear relationship between these two variables. We intro-
duce a residual, E, into the regression equation to reflect this fact; writing the regression equa-
tion for the ith of the n ¼ 101 observations:

Yi ¼ Aþ BXi þ Ei

¼ bYi þ Ei

ð5:1Þ

where bYi ¼ Aþ BXi is the fitted value for observation i. The essential geometry is shown in
Figure 5.2, which reveals that the residual
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Figure 5.1 Scatterplot of Davis’s data on the measured and reported weight of 101 women. The
solid line gives the least-squares fit; the broken line is Y ¼ X. Because weight is given
to the nearest kilogram, both variables are discrete, and some points are overplotted.

3The misrecorded data value that produced an outlier in Figure 2.5 on page 19 has been corrected.
4See online Appendix C for a review of the geometry of lines and planes.
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Ei ¼ Yi & bYi ¼ Yi & ðAþ BXiÞ

is the signed vertical distance between the point and the line—that is, the residual is negative
when the point lies below the line and positive when the point is above the line [as is the point
ðXi; YiÞ in Figure 5.2].

A line that fits the data well therefore makes the residuals small, but to determine a line ana-
lytically, we need to be more precise about what we mean by ‘‘small.’’ First of all, we want
residuals that are small in magnitude, because large negative residuals are as offensive as large
positive ones. For example, simply requiring that the sum of residuals,

Pn
i¼1 Ei, be small is

futile, because large negative residuals can offset large positive ones.
Indeed, any line through the means of the variables—the point ðX ; Y Þ—has

P
Ei ¼ 0. Such

a line satisfies the equation Y ¼ Aþ BX . Subtracting this equation from Equation 5.1 produces

Yi & Y ¼ BðXi & X Þ þ Ei

Then, summing over all observations,

Xn

i¼1

Ei ¼
X
ðYi & Y Þ & B

X
ðXi & X Þ ¼ 0& B · 0 ¼ 0 ð5:2Þ

Two possibilities immediately present themselves: We can employ the unsigned vertical distances
between the points and the line, that is, the absolute values of the residuals, or we can employ the
squares of the residuals. The first possibility leads to least-absolute-value (LAV) regression:

Find A and B to minimize the sum of the absolute residuals,
P

Eij j:

The second possibility leads to the least-squares criterion:

Find A and B to minimize the sum of squared residuals,
P

E2
i :

X

Y

0

Y = A + BX
∧

Xi

Yi

Yi
∧

Ei

(Xi, Yi)

Figure 5.2 Linear regression of Y on X, showing the residual Ei for the ith observation.
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Squares are more tractable mathematically than absolute values, so we will focus on least
squares here, but LAV regression should not be rejected out of hand, because it provides
greater resistance to outlying observations.5

We need to consider the residuals in the aggregate, because it is no trick to produce a 0 resi-
dual for an individual point simply by placing the line directly through the point. The least-
squares criterion therefore minimizes the sum of squared residuals over all observations; that
is, we seek the values of A and B that minimize

SðA;BÞ ¼
Xn

i¼1

E2
i ¼

X
ðYi & A& BXiÞ2

I have written this expression as a function SðA;BÞ of the regression coefficients A and B to
emphasize the dependence of the sum of squared residuals on the coefficients: For a fixed set
of data fXi; Yig, i ¼ 1; . . . ; n, each possible choice of values for A and B corresponds to a spe-
cific residual sum of squares,

P
E2

i ; we want the pair of values for the regression coefficients
that makes this sum of squares as small as possible.

*The most direct approach to finding the least-squares coefficients is to take the partial deri-
vatives of the sum-of-squares function with respect to the coefficients:6

∂SðA;BÞ
∂A

¼
X
ð&1Þð2ÞðYi & A& BXiÞ

∂SðA;BÞ
∂B

¼
X
ð&XiÞð2ÞðYi & A& BXiÞ

Setting the partial derivatives to 0 yields simultaneous linear equations for the least-squares
coefficients, A and B.7

Simultaneous linear equations for the least-squares coefficients A and B, the so-called nor-
mal equations8 for simple regression, are

Anþ B
X

Xi ¼
X

Yi

A
X

Xi þ B
X

X 2
i ¼

X
XiYi

where n is the number of observations. Solving the normal equations produces the least-squares
coefficients:

A ¼ Y & BX

B ¼ n
P

XiYi &
P

Xi
P

Yi

n
P

X 2
i & ð

P
XiÞ2

¼
P
ðXi & X ÞðYi & Y Þ
P
ðXi & X Þ2

ð5:3Þ

The formula for A implies that the least-squares line passes through the point of means of the
two variables. By Equation 5.2, therefore, the least-squares residuals sum to 0. The second nor-
mal equation implies that

P
XiEi ¼ 0, for

5We will return to LAV regression in Chapter 19, which discusses robust regression.
6In Chapter 10, I will derive the least-squares solution by an alternative geometric approach.
7As a formal matter, it remains to be shown that the solution of the normal equations minimizes the least-squares func-
tion SðA;BÞ. See Section 9.2.
8The term normal here refers not to the normal distribution but to orthogonality (perpendicularity); see Chapter 10 on
the vector geometry of regression.
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X
XiEi ¼

X
XiðYi & A& BXiÞ ¼

X
XiYi & A

X
Xi & B

X
X 2

i ¼ 0

Similarly,
P bYiEi ¼ 0.9 These properties, which will be useful to us below, imply that the

least-squares residuals are uncorrelated with both the explanatory variable X and the fitted val-
ues bY .10

It is clear from Equations 5.3 that the least-squares coefficients are uniquely defined as long
as the explanatory-variable values are not all identical, for when there is no variation in X , the
denominator of B vanishes. This result is intuitively plausible: Only if the explanatory-variable
scores are spread out can we hope to fit a (unique) line to the X ; Y scatter; if, alternatively, all
the X -values are the same (say, equal to x0), then, as is shown in Figure 5.3, any line through
the point ðx0; Y Þ is a least-squares line.

I will illustrate the least-squares calculations using Davis’s data on measured weight (Y ) and
reported weight (X ), for which

n ¼ 101

Y ¼ 5780

101
¼ 57:228

X ¼ 5731

101
¼ 56:743

X
ðXi & X ÞðYi & Y Þ ¼ 4435:9X

ðXi & X Þ2 ¼ 4539:3

B ¼ 4435:9

4539:3
¼ 0:97722

A ¼ 57:228& 0:97722 · 56:743 ¼ 1:7776

X

Y

x0

Y

various
least–squares

lines

Figure 5.3 When all values of X are the same (x0), any line through the point ðx0; YÞ is a least-
squares line.

9See Exercise 5.1.
10See the next section for a definition of correlation.
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Thus, the least-squares regression equation is

dMeasured weight ¼ 1:78þ 0:977 · Reported weight

Interpretation of the least-squares slope coefficient is straightforward: B ¼ 0:977 indicates that
a 1-kg increase in reported weight is associated, on average, with just under a 1-kg increase in
measured weight. Because the data are not longitudinal, the phrase ‘‘a unit increase’’ here
implies not a literal change over time but rather a notional static comparison between two indi-
viduals who differ by 1 kg in their reported weights.

Ordinarily, we may interpret the intercept A as the fitted value associated with X ¼ 0, but it
is, of course, impossible for an individual to have a reported weight equal to 0. The intercept A
is usually of little direct interest, because the fitted value above X ¼ 0 is rarely important.
Here, however, if individuals’ reports are unbiased predictions of their actual weights, then we
should have the equation bY ¼ X —that is, an intercept of 0 and a slope of 1. The intercept
A ¼ 1:78 is indeed close to 0, and the slope B ¼ 0:977 is close to 1.

In simple linear regression

Yi ¼ Aþ BXi þ Ei

the least-squares coefficients are given by A ¼ Y & BX and B ¼
P
ðXi & X ÞðYi & Y Þ=P

ðXi & X Þ2. The slope coefficient B represents the average change in Y associated with
a one-unit increase in X . The intercept A is the fitted value of Y when X ¼ 0.

5.1.2 Simple Correlation

Having calculated the least-squares line, it is of interest to determine how closely the line fits
the scatter of points. This is a vague question, which may be answered in a variety of ways.
The standard deviation of the residuals, SE, often called the standard error of the regression or
the residual standard error, provides one sort of answer.11 Because of estimation considera-
tions, the variance of the residuals is defined using degrees of freedom n& 2, rather than the
sample size n, in the denominator:12

S2
E ¼

P
E2

i

n& 2

The residual standard error is, therefore,

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiP

E2
i

n& 2

r

11The term standard error is usually used for the estimated standard deviation of the sampling distribution of a statistic,
and so the use here to denote the standard deviation of the residuals is potentially misleading. This usage is common,
however, and I therefore adopt it.
12Estimation is discussed in the next chapter. Also see the discussion in Section 10.3.
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Because it is measured in the units of the response variable and represents a type of ‘‘aver-
age’’ residual, the standard error is simple to interpret. For example, for Davis’s regression of
measured weight on reported weight, the sum of squared residuals is

P
E2

i ¼ 418:87, and thus
the standard error of the regression is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
418:87

101& 2

r
¼ 2:0569kg

On average, then, using the least-squares regression line to predict measured weight from
reported weight results in an error of about 2 kg, which is small but perhaps not negligible.
Moreover, if the residuals are approximately normally distributed, then about 2/3 of them are
in the range – 2, and about 95% are in the range – 4. I believe that social scientists overempha-
size correlation (described immediately below) and pay insufficient attention to the standard
error of the regression as an index of fit.

In contrast to the standard error of the regression, the correlation coefficient provides a rela-
tive measure of fit: To what degree do our predictions of Y improve when we base these pre-
dictions on the linear relationship between Y and X ? A relative index of fit requires a
baseline—how well can Y be predicted if X is disregarded?

To disregard the explanatory variable is implicitly to fit the equation bY 0i ¼ A0 or,
equivalently,

Yi ¼ A0 þ E0i

By ignoring the explanatory variable, we lose our ability to differentiate among the observa-
tions; as a result, the fitted values are constant. The constant A0 is generally different from the
intercept A of the least-squares line, and the residuals E0i are different from the least-squares
residuals Ei.

How should we find the best constant A0? An obvious approach is to employ a least-squares
fit—that is, to minimize

SðA0Þ ¼
X

E
02
i ¼

X
ðYi & A0Þ2

As you may be aware, the value of A0 that minimizes this sum of squares is simply the
response-variable mean, Y .13

The residuals Ei ¼ Yi & bYi from the linear regression of Y on X will mostly be smaller in
magnitude than the residuals E0i ¼ Yi & Y , and it is necessarily the case that

X
ðYi & bYiÞ2 £

X
ðYi & Y Þ2

This inequality holds because the ‘‘null model,’’ Yi ¼ A0 þ E0i , specifying no relationship
between Y and X , is a special case of the more general linear regression ‘‘model,’’
Yi ¼ Aþ BXi þ Ei: The two models are the same when B ¼ 0.14 The null model therefore can-
not have a smaller sum of squared residuals. After all, the least-squares coefficients A and B
are selected precisely to minimize

P
E2

i , so constraining B ¼ 0 cannot improve the fit and will
usually make it worse.

13See Exercise 5.3.
14A formal statistical model for linear regression is introduced in the next chapter.
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We call
X

E
02
i ¼

X
ðYi & Y Þ2

the total sum of squares for Y , abbreviated TSS, while
X

E2
i ¼

X
ðYi & bYiÞ2

is called the residual sum of squares and is abbreviated RSS. The difference between the two,
termed the regression sum of squares,

RegSS [ TSS& RSS

gives the reduction in squared error due to the linear regression. The ratio of RegSS to TSS,
the proportional reduction in squared error, defines the square of the correlation coefficient:

r2 [
RegSS

TSS

To find the correlation coefficient r, we take the positive square root of r2 when the simple-
regression slope B is positive and the negative square root when B is negative.

Thus, if there is a perfect positive linear relationship between Y and X (i.e., if all of the resi-
duals are 0 and B > 0), then r ¼ 1. A perfect negative linear relationship corresponds to
r ¼ &1. If there is no linear relationship between Y and X , then RSS ¼ TSS, RegSS ¼ 0, and
r ¼ 0. Between these extremes, r gives the direction of the linear relationship between the two
variables, and r2 can be interpreted as the proportion of the total variation of Y that is ‘‘cap-
tured’’ by its linear regression on X . Figure 5.4 illustrates several levels of correlation. As is
clear in Figure 5.4(b), where r ¼ 0, the correlation can be small even when there is a strong
nonlinear relationship between X and Y .

It is instructive to examine the three sums of squares more closely: Starting with an individ-
ual observation, we have the identity

Yi & Y ¼ ðYi & bYiÞ þ ðbYi & Y Þ

This equation is interpreted geometrically in Figure 5.5. Squaring both sides of the equation
and summing over observations produces

X
ðYi & Y Þ2 ¼

X
ðYi & bYiÞ2 þ

X
ðbYi & Y Þ2 þ 2

X
ðYi & bYiÞðbYi & Y Þ

The last term in this equation is 0,15 and thus the regression sum of squares, which I previously
defined as the difference TSS& RSS, may also be written directly as

RegSS ¼
X
ðbYi & Y Þ2

This decomposition of total variation into ‘‘explained’’ and ‘‘unexplained’’ components, paral-
leling the decomposition of each observation into a fitted value and a residual, is typical of lin-
ear models. The decomposition is called the analysis of variance for the regression:
TSS ¼ RegSSþ RSS.

Although I have developed the correlation coefficient from the regression of Y on X , it is
also possible to define r by analogy with the correlation r ¼ σXY=σXσY between two random

15See Exercise 5.1 and Section 10.1.
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variables (where σXY is the covariance of the random variables X and Y , σX is the standard
deviation of X , and σY is the standard deviation of Y ).16 First defining the sample covariance
between X and Y ,

SXY [

P
ðXi & X ÞðYi & Y Þ

n& 1

we may then write

r ¼ SXY

SX SY
¼

P
ðXi & X ÞðYi & Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðXi & X Þ2

P
ðYi & Y Þ2

q ð5:4Þ

where SX and SY are, respectively, the sample standard deviations of X and Y .17

It is immediately apparent from the symmetry of Equation 5.4 that the correlation does not
depend on which of the two variables is treated as the response variable. This property of r is
surprising in light of the asymmetry of the regression equation used to define the sums of

(a)
r = 0

(b)
r = 0

(c)
r = 0.2

(d)
r = −0.5

(e)
r = 0.8

(f)
r = −1

Figure 5.4 Scatterplots illustrating different levels of correlation: r ¼ 0 in both (a) and (b), r ¼ :2
in (c), r ¼ &:5 in (d), r ¼ :8 in (e), and r ¼ &1 in (f). All the data sets have n ¼ 50
observations. Except in panel (b), the data were generated by sampling from bivariate
normal distributions.

16See online Appendix D on probability and estimation.
17The equivalence of the two formulas for r is established in Section 10.1 on the geometry of simple regression
analysis.
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squares: Unless there is a perfect correlation between the two variables, the least-squares line
for the regression of Y on X differs from the line for the regression of X on Y .18

There is another central property, aside from symmetry, that distinguishes the correlation
coefficient r from the regression slope B. The slope coefficient B is measured in the units of the
response variable per unit of the explanatory variable. For example, if dollars of income are
regressed on years of education, then the units of B are dollars/year. The correlation coefficient
r, however, is unitless, as can be seen from either of its definitions. As a consequence, a change
in scale of Y or X produces a compensating change in B but does not affect r. If, for example,
income is measured in thousands of dollars rather than in dollars, the units of the slope become
$1,000s/year, and the value of the slope decreases by a factor of 1,000, but r remains the same.19

For Davis’s regression of measured on reported weight,

TSS ¼ 4753:8

RSS ¼ 418:87

RegSS ¼ 4334:9

Thus,

r2 ¼ 4334:9

4753:8
¼ :91188

X

Y

Xi

Yi

Y

∧
∧

∧ ∧

(Xi, Yi)

(Xi, Yi)

Y = A + BXYi − Yi
Yi − Y

Yi − Y

Figure 5.5 Decomposition of the total deviation Yi & Y into components Yi & bYi and bYi & Y.

18See Exercise 5.2.
19A peculiarity of the regression of measured on reported weight is that both Y and X are measured in kilograms. As a
consequence, the units of B (kg/kg) cancel, and if both X and Y were rescaled to other units—such as pounds—the
value of B would be unchanged. The general lesson remains the same, however: Interpret regression coefficients in
relation to the units of measurement of the variables.
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and, because B is positive, r ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:91188
p

¼ :9549. The linear regression of measured on
reported weight, therefore, captures 91% of the variation in measured weight. Equivalently,

SXY ¼
4435:9

101& 1
¼ 44:359

S2
X ¼

4539:3

101& 1
¼ 45:393

S2
Y ¼

4753:8

101& 1
¼ 47:538

r ¼ 44:359ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45:393 · 47:538
p ¼ :9549

5.2 Multiple Regression

5.2.1 Two Explanatory Variables

The linear multiple-regression equation

bY ¼ Aþ B1X1 þ B2X2

for two explanatory variables, X1 and X2, describes a plane in the three-dimensional
fX1;X2; Yg space, as shown in Figure 5.6. As in simple regression, it is unreasonable to expect

X2

Y

(Xi1, Xi2, Yi)

Ei

1

1

A

B2

B1

(Xi1, Xi2, Yi)

∧

∧

Y = A + B1X1 + B2X2

X1

Figure 5.6 The multiple-regression plane, showing the partial slopes B1 and B2 and the residual
Ei for the ith observation. The white dot in the regression plane represents the fitted
value. Compare this graph with Figure 5.2 for simple regression.
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that the multiple-regression regression plane will pass precisely through every point, so the
fitted value bYi for observation i in general differs from the observed value Yi. The residual is
the signed vertical distance from the point to the plane:

Ei ¼ Yi & bYi ¼ Yi & ðAþ B1Xi1 þ B2Xi2Þ

To make the plane come as close as possible to the points in the aggregate, we want the values
of A, B1; and B2 that minimize the sum of squared residuals:

SðA;B1;B2Þ ¼
X

E2
i ¼

X
ðYi & A& B1Xi1 & B2Xi2Þ2

'As in simple regression, we can proceed by differentiating the sum-of-squares function with
respect to the regression coefficients:

∂SðA;B1;B2Þ
∂A

¼
X
ð&1Þð2ÞðYi & A& B1Xi1 & B2Xi2Þ

∂SðA;B1;B2Þ
∂B1

¼
X
ð&Xi1Þð2ÞðYi & A& B1Xi1 & B2Xi2Þ

∂SðA;B1;B2Þ
∂B2

¼
X
ð&Xi2Þð2ÞðYi & A& B1Xi1 & B2Xi2Þ

Setting the partial derivatives to 0 and rearranging terms produces the normal equations for the
regression coefficients A, B1, and B2.

The normal equations for the regression coefficients A, B1, and B2 are

Anþ B1

X
Xi1 þ B2

X
Xi2 ¼

X
Yi

A
X

Xi1 þ B1

X
X 2

i1 þ B2

X
Xi1Xi2 ¼

X
Xi1Yi

A
X

Xi2 þ B1

X
Xi2Xi1 þ B2

X
X 2

i2 ¼
X

Xi2Yi ð5:5Þ

Because Equations 5.5 are a system of three linear equations in three unknowns, they usually
provide a unique solution for the least-squares regression coefficients A, B1; and B2. We can
write out the solution explicitly, if somewhat tediously: Dropping the subscript i for observa-
tions, and using asterisks to denote variables in mean deviation form (e.g., Y '[ Yi & Y ),

A ¼ Y & B1X 1 & B2X 2

B1 ¼
P

X '1 Y '
P

X '22 &
P

X '2 Y '
P

X '1 X '2P
X '21

P
X '22 & ð

P
X '1 X '2 Þ

2

B2 ¼
P

X '2 Y '
P

X '21 &
P

X '1 Y '
P

X '1 X '2P
X '21

P
X '22 & ð

P
X '1 X '2 Þ

2 ð5:6Þ

The denominator of B1 and B2 is nonzero—and, therefore, the least-squares coefficients are
uniquely defined—as long as

X
X '21

X
X '22 6¼

X
X '1 X '2

" #2
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This condition is satisfied unless X1 and X2 are perfectly correlated or unless one or both of
the explanatory variables are invariant.20 If X1 and X2 are perfectly correlated, then they are
said to be collinear.

To illustrate the computation of multiple-regression coefficients, I will employ Duncan’s
occupational prestige data, which were introduced in Chapter 3. For the time being, I will dis-
regard the problems with these data that were revealed by graphical analysis. Recall that
Duncan wished to predict the prestige of occupations ðY Þ from their educational and income
levels (X1 and X2, respectively). I calculated the following quantities from Duncan’s data:

n ¼ 45

Y ¼ 2146

45
¼ 47:689

X 1 ¼
2365

45
¼ 52:556

X 2 ¼
1884

45
¼ 41:867

X
X '21 ¼ 38;971

X
X '22 ¼ 26;271

X
X '1 X '2 ¼ 23;182

X
X '1 Y ' ¼ 35;152

X
X '2 Y ' ¼ 28;383

Substituting these values into Equations 5.6 produces A ¼ &6:0647;B1 ¼ 0:54583; and
B2 ¼ 0:59873. The fitted least-squares regression equation is, therefore,

dPrestige ¼ &6:065þ 0:5458 · Educationþ 0:5987 · Income

Although the development of least-squares linear regression for two explanatory variables is
very similar to the development for simple regression, there is this important difference in
interpretation: The slope coefficients for the explanatory variables in multiple regression are
partial coefficients, while the slope coefficient in simple regression gives the marginal rela-
tionship between the response variable and a single explanatory variable. That is, each slope in
multiple regression represents the ‘‘effect’’ on the response variable of a one-unit increment in
the corresponding explanatory variable holding constant the value of the other explanatory
variable. The simple-regression slope effectively ignores the other explanatory variable.

This interpretation of the multiple-regression slope is apparent in Figure 5.7, which shows the
multiple-regression plane for Duncan’s regression of prestige on education and income (also see
Figure 5.6). Because the regression plane is flat, its slope (B1) in the direction of education,
holding income constant, does not depend on the specific value at which income is fixed.
Likewise, the slope in the direction of income, fixing the value of education, is always B2.

Algebraically, let us fix X2 to the specific value x2 and see how bY changes as X1 is increased
by 1, from some specific value x1 to x1 þ 1:

20The correlation between X1 and X2 is, in the current notation,

r12 ¼
P

X '1 X '2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X '21

P
X '22

p
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½Aþ B1ðx1 þ 1Þ þ B2x2) & ðAþ B1x1 þ B2x2Þ ¼ B1

Similarly, increasing X2 by 1, fixing X1 to x1 produces

½Aþ B1x1 þ B2ðx2 þ 1Þ) & ðAþ B1x1 þ B2x2Þ ¼ B2

'Because the regression surface

bY ¼ Aþ B1X1 þ B2X2

is a plane, precisely the same results follow from differentiating the regression equation with
respect to each of X1 and X2:

∂bY
∂X1

¼ B1

∂bY
∂X2

¼ B2

Nothing new is learned here, but differentiation is often a useful approach for understanding
nonlinear statistical models, for which the regression surface is not flat.21

educationincome

prestige

Figure 5.7 The multiple-regression plane in Duncan’s regression of prestige on education and
income. The two sets of parallel lines on the regression plane represent the partial
relationship of prestige to each explanatory variable, holding the other explanatory
variable at particular values.

21For example, see the discussion of quadratic surfaces in Section 17.1.1.
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For Duncan’s regression, then, a unit increase in education (i.e., in the percentage of high
school graduates in an occupation), holding income constant, is associated, on average, with an
increase of 0:55 units in prestige (which, recall, is the percentage of respondents rating the
prestige of the occupation as good or excellent). A unit increase in income (i.e., in the percent-
age of relatively high-income earners), holding education constant, is associated, on average,
with an increase of 0:60 units in prestige. Because Duncan’s data are not longitudinal, this lan-
guage of ‘‘increase’’ or ‘‘change’’ is a shorthand for hypothetical static comparisons (as was
the case for the simple regression of measured on reported weight using Davis’s data).

The regression intercept, A ¼ &6:1, has the following literal interpretation: The fitted value
of prestige is &6:1 for a hypothetical occupation with education and income levels both equal
to 0. Literal interpretation of the intercept is problematic here, however. Although there are
some observations in Duncan’s data set with small education and income levels, no occupa-
tions have levels of 0. Moreover, the response variable cannot take on negative values.

5.2.2 Several Explanatory Variables

The extension of linear least-squares regression to several explanatory variables is straight-
forward. For the general case of k explanatory variables, the multiple-regression equation is

Yi ¼ Aþ B1Xi1 þ B2Xi2 þ * * * þ BkXik þ Ei

¼ bYi þ Ei

It is, of course, not possible to visualize the point cloud of the data directly when k > 2, but it
is a relatively simple matter to find the values of A and the Bs that minimize the sum of
squared residuals:

SðA;B1;B2; . . . ;BkÞ ¼
Xn

i¼1

½Yi & ðAþ B1Xi1 þ B2Xi2 þ * * * þ BkXikÞ)2

Minimization of the sum-of-squares function produces the normal equations for general multi-
ple regression:22

Anþ B1

X
Xi1 þ B2

X
Xi2 þ * * * þ Bk

X
Xik ¼

X
Yi

A
X

Xi1 þ B1

X
X 2

i1 þ B2

X
Xi1Xi2 þ * * * þ Bk

X
Xi1Xik ¼

X
Xi1Yi

A
X

Xi2 þ B1

X
Xi2Xi1 þ B2

X
X 2

i2 þ * * * þ Bk

X
Xi2Xik ¼

X
Xi2Yi

..

. ..
.

A
X

Xik þ B1

X
XikXi1 þ B2

X
XikXi2 þ * * * þ Bk

X
X 2

ik ¼
X

XikYi ð5:7Þ

We cannot write out a general solution to the normal equations without specifying the number
of explanatory variables k, and even for k as small as 3, an explicit solution would be very
complicated.23 Nevertheless, because the normal equations are linear, and because there are as
many equations as unknown regression coefficients (k þ 1), there is usually a unique solution

22See Exercise 5.5.
23As I will show in Section 9.2, however, it is simple to write out a general solution to the normal equations using
matrices.
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for the coefficients A, B1, B2; . . . ;Bk . Only when one explanatory variable is a perfect linear
function of others, or when one or more explanatory variables are invariant, will the normal
equations not have a unique solution. Dividing the first normal equation through by n reveals
that the least-squares surface passes through the point of means ðX 1;X 2; . . . ;X k ; Y Þ.

The least-squares coefficients in multiple linear regression

Yi ¼ Aþ B1Xi1 þ B2Xi2 þ * * * þ BkXik þ Ei

are found by solving the normal equations for the intercept A and the slope coefficients
B1;B2; . . . ;Bk . The slope coefficient B1 represents the average change in Y associated
with a one-unit increase in X1 when the other X s are held constant.

To illustrate the solution of the normal equations, let us return to the Canadian occupational
prestige data, regressing the prestige of the occupations on average education, average income,
and the percentage of women in each occupation. Recall that our graphical analysis of the data
in Chapter 2 cast doubt on the appropriateness of the linear regression, but I will disregard this
problem for now.

The various sums, sums of squares, and sums of products that are required are given in
Table 5.1. Notice that the sums of squares and products are very large, especially for income,
which is scaled in small units (dollars of annual income). Substituting these values into the four
normal equations and solving for the regression coefficients produces

A ¼ &6:7943
B1 ¼ 4:1866
B2 ¼ 0:0013136
B3 ¼ &0:0089052

The fitted regression equation is, therefore,

dPrestige ¼ &6:794þ 4:187 · Educationþ 0:001314 · Income

& 0:008905 · Percent women

In interpreting the regression coefficients, we need to keep in mind the units of each variable.
Prestige scores are arbitrarily scaled and range from a minimum of 14.8 to a maximum of 87.2

Table 5.1 Sums of Squares (Diagonal), Sums of Products (Off Diagonal), and Sums (Last Row) for
the Canadian Occupational Prestige Data

Variable Prestige Education Income Percentage of women

Prestige 253,618. 55,326. 37,748,108. 131,909.
Education 55,326. 12,513. 8,121,410. 32,281.
Income 37,748,108. 8,121,410. 6,534,383,460. 14,093,097.
Percentage of women 131,909. 32,281. 14,093,097. 187,312.

Sum 4777. 1095. 693,386. 2956.
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for these 102 occupations; the interquartile range of prestige is 24.1 points. Education is mea-
sured in years, and hence the impact of education on prestige is considerable—a little more
than 4 points, on average, for each year of education, holding income and gender composition
constant. Likewise, despite the small absolute size of its coefficient, the partial effect of income
is also fairly large—more than 0:001 points, on average, for an additional dollar of income, or
more than 1 point for each $1,000. In contrast, the impact of gender composition, holding edu-
cation and income constant, is very small—an average decline of about 0.01 points for each
1% increase in the percentage of women in an occupation.

5.2.3 Multiple Correlation

As in simple regression, the residual standard error in multiple regression measures the
‘‘average’’ size of the residuals. As before, we divide by degrees of freedom, here
n& ðk þ 1Þ ¼ n& k & 1; rather than by the sample size n, to calculate the variance of the resi-
duals; thus, the standard error of the regression is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

E2
i

n& k & 1

r

Heuristically, we ‘‘lose’’ k þ 1 degrees of freedom by calculating the k þ 1 regression coeffi-
cients, A;B1; . . . ;Bk .24

For Duncan’s regression of occupational prestige on the income and educational levels of
occupations, the standard error is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7506:7

45& 2& 1

r
¼ 13:37

Recall that the response variable here is the percentage of raters classifying the occupation as
good or excellent in prestige; an average prediction error of 13 is substantial given Duncan’s
purpose, which was to use the regression equation to calculate substitute prestige scores for
occupations for which direct ratings were unavailable. For the Canadian occupational prestige
data, regressing prestige scores on average education, average income, and gender composi-
tion, the standard error is

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6033:6

102& 3& 1

r
¼ 7:846

which is also a substantial figure.
The sums of squares in multiple regression are defined in the same manner as in simple

regression:

TSS ¼
X
ðYi & Y Þ2

RegSS ¼
X
ðbYi & Y Þ2

RSS ¼
X
ðYi & bYiÞ2 ¼

X
E2

i

24A deeper understanding of the central concept of degrees of freedom and its relationship to estimating the error var-
iance is developed in Chapter 10.
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Of course, the fitted values bYi and residuals Ei now come from the multiple-regression equa-
tion. Moreover, we have a similar analysis of variance for the regression:

TSS ¼ RegSSþ RSS

The least-squares residuals are uncorrelated with the fitted values and with each of the X s.25

The linear regression decomposes the variation in Y into ‘‘explained’’ and ‘‘unex-
plained’’ components: TSS ¼ RegSSþ RSS. The least-squares residuals, E, are uncorre-
lated with the fitted values, bY , and with the explanatory variables, X1; . . . ;Xk .

The squared multiple correlation R2, representing the proportion of variation in the response
variable captured by the regression, is defined in terms of the sums of squares:

R2 [
RegSS

TSS

Because there are now several slope coefficients, potentially with different signs, the multiple
correlation coefficient is, by convention, the positive square root of R2. The multiple correla-
tion is also interpretable as the simple correlation between the fitted and observed Y values—
that is, rbY Y

.

The standard error of the regression, SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

E2
i =ðn& k & 1Þ

p
, gives the ‘‘average’’

size of the regression residuals; the squared multiple correlation, R2 ¼ RegSS=TSS,
indicates the proportion of the variation in Y that is captured by its linear regression on
the X s.

For Duncan’s regression, we have the following sums of squares:

TSS ¼ 43;688:

RegSS ¼ 36;181:

RSS ¼ 7506:7

The squared multiple correlation,

R2 ¼ 36;181

43;688
¼ :8282

indicates that more than 80% of the variation in prestige among the 45 occupations is
accounted for by the linear regression of prestige on the income and educational levels of the
occupations. For the Canadian prestige regression, the sums of squares and R2 are as follows:

25These and other properties of the least-squares fit are derived in Chapters 9 and 10.
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TSS ¼ 29;895

RegSS ¼ 23;862

RSS ¼ 6033:6

R2 ¼ 23;862

29;895
¼ :7982

Because the multiple correlation can only rise, never decline, when explanatory variables are
added to the regression equation,26 investigators sometimes penalize the value of R2 by a ‘‘cor-
rection’’ for degrees of freedom. The corrected (or ‘‘adjusted’’) R2 is defined as

eR2 [ 1& S2
E

S2
Y

¼ 1&

RSS

n& k & 1
TSS

n& 1

Unless the sample size is very small, however, eR2 will differ little from R2. For Duncan’s
regression, for example,

eR2 ¼ 1&

7506:7

45& 2& 1
43;688

45& 1

¼ :8200

5.2.4 Standardized Regression Coefficients

Social researchers often wish to compare the coefficients of different explanatory variables
in a regression analysis. When the explanatory variables are commensurable (i.e., measured in
the same units on the same scale), or when they can be reduced to a common standard, com-
parison is straightforward. In most instances, however, explanatory variables are not commen-
surable. Standardized regression coefficients permit a limited assessment of the relative effects
of incommensurable explanatory variables.

To place standardized coefficients in perspective, let us first consider an example in which
the explanatory variables are measured in the same units. Imagine that the annual dollar income
of wage workers is regressed on their years of education, years of labor force experience, and
some other explanatory variables, producing the fitted regression equation

dIncome ¼ Aþ B1 · Educationþ B2 · Experienceþ * * *

Because education and experience are each measured in years, the coefficients B1 and B2 are
both expressed in dollars/year and, consequently, can be directly compared. If, for example, B1

is larger than B2, then (disregarding issues arising from sampling variation) a year’s increment
in education yields a greater average return in income than a year’s increment in labor force
experience, holding constant the other explanatory variables in the regression equation.

It is, as I have mentioned, much more common for explanatory variables to be measured in
different units. In the Canadian occupational prestige regression, for example, the coefficient
for education is expressed in points (of prestige) per year, the coefficient for income is
expressed in points per dollar, and the coefficient of gender composition is expressed in points

26See Exercise 5.6.
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per percentage of women. I have already pointed out that the income coefficient (0.001314) is
much smaller than the education coefficient (4.187) not because income is a much less impor-
tant determinant of prestige but because the unit of income (the dollar) is small, while the unit
of education (the year) is relatively large. If we were to reexpress income in $1,000s, then we
would multiply the income coefficient by 1,000.

By the literal meaning of the term, incommensurable quantities cannot be directly compared.
Still, in certain circumstances, incommensurables can be reduced to a common (e.g., monetary)
standard. In most cases, however—as in the prestige regression—there is no obvious basis for
this sort of reduction.

In the absence of a theoretically meaningful basis for comparison, an empirical comparison
can be drawn by rescaling regression coefficients according to a measure of explanatory-
variable spread. We can, for example, multiply each regression coefficient by the interquartile
range of the corresponding explanatory variable. For the Canadian prestige data, the interquar-
tile range of education is 4.2025 years; of income, 4081.3 dollars; and of gender composition,
48.610%. When each explanatory variable is varied over this range, holding the other explana-
tory variables constant, the corresponding average changes in prestige are

Education : 4:2025 · 4:1866 ¼ 17:59
Income: 4081:3 · 0:0013136 ¼ 5:361
Gender : 48:610 · & 0:0089052 ¼ &0:4329

Thus, education has a larger effect than income over the central half of scores observed in the
data, and the effect of gender is very small. This conclusion is distinctly circumscribed: For
other data, where the variation in education and income may be different, the relative impact of
the variables may also differ, even if the regression coefficients are unchanged.

There is no profound justification for equating the interquartile range of one explanatory
variable to that of another, as we have done here implicitly in calculating the relative ‘‘effect’’
of each. Indeed, the following observation should give you pause: If two explanatory variables
are commensurable, and if their interquartile ranges differ, then performing this calculation is,
in effect, to adopt a rubber ruler. If expressing coefficients relative to a measure of spread
potentially distorts their comparison when explanatory variables are commensurable, then why
should the procedure magically allow us to compare coefficients that are measured in different
units?

It is much more common to standardize regression coefficients using the standard deviations
of the explanatory variables rather than their interquartile ranges. Although I will proceed to
explain this procedure, keep in mind that the standard deviation is not a good measure of
spread when the distributions of the explanatory variables depart considerably from normality.
The usual procedure standardizes the response variable as well, but this is an inessential ele-
ment of the computation of standardized coefficients, because the relative size of the slope
coefficients does not change when Y is rescaled.

Beginning with the fitted multiple-regression equation

Yi ¼ Aþ B1Xi1 þ * * * þ BkXik þ Ei

let us eliminate the regression constant A, expressing all the variables in mean deviation form
by subtracting27

27Recall that the least-squares regression surface passes through the point of means for the k þ 1 variables.
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Y ¼ Aþ B1X 1 þ * * * þ BkX k

which produces

Yi & Y ¼ B1ðXi1 & X 1Þ þ * * * þ BkðXik & X kÞ þ Ei

Then divide both sides of the equation by the standard deviation of the response variable SY

and simultaneously multiply and divide the jth term on the right-hand side of the equation by
the standard deviation Sj of Xj. These operations serve to standardize each variable in the
regression equation:

Yi & Y
SY

¼ B1
S1

SY

$ %
Xi1 & X 1

S1
þ * * * þ Bk

Sk

SY

$ %
Xik & X k

Sk
þ Ei

SY

ZiY ¼ B'1Zi1 þ * * * þ B'kZik þ E'i

In this equation, ZiY [ ðYi & Y Þ=SY is the standardized response variable, linearly transformed
to a mean of 0 and a standard deviation of 1; Zi1; . . . ; Zik are the explanatory variables, simi-
larly standardized; E'i [ Ei=SY is the transformed residual, which, note, does not have a stan-
dard deviation of 1; and B'j [ BjðSj=SY Þ is the standardized partial regression coefficient for
the jth explanatory variable. The standardized coefficient is interpretable as the average change
in Y , in standard deviation units, for a one standard deviation increase in Xj, holding constant
the other explanatory variables.

By rescaling regression coefficients in relation to a measure of variation—such as the
interquartile range or the standard deviation—standardized regression coefficients permit
a limited comparison of the relative impact of incommensurable explanatory variables.

For the Canadian prestige regression, we have the following calculations:

Education : 4:1866 · 2:7284=17:204 ¼ 0:6640
Income: 0:0013136 · 4245:9=17:204 ¼ 0:3242
Gender : &0:0089052 · 31:725=17:204 ¼ &0:01642

Because both income and gender composition have substantially non-normal distributions,
however, the use of standard deviations here is difficult to justify.

I have stressed the restricted extent to which standardization permits the comparison of coef-
ficients for incommensurable explanatory variables. A common misuse of standardized coeffi-
cients is to employ them to make comparisons of the effects of the same explanatory variable
in two or more samples drawn from different populations. If the explanatory variable in ques-
tion has different spreads in these samples, then spurious differences between coefficients may
result, even when unstandardized coefficients are similar; on the other hand, differences in
unstandardized coefficients can be masked by compensating differences in dispersion.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.
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Exercise 5.1. 'Prove that the least-squares fit in simple-regression analysis has the following
properties:

(a)
P bYiEi ¼ 0.

(b)
P
ðYi & bYiÞðbYi & Y Þ ¼

P
EiðbYi & Y Þ ¼ 0.

Exercise 5.2. 'Suppose that the means and standard deviations of Y and X are the same:
Y ¼ X and SY ¼ SX .

(a) Show that, under these circumstances,

BY jX ¼ BX jY ¼ rXY

where BY jX is the least-squares slope for the simple regression of Y on X , BX jY is the
least-squares slope for the simple regression of X on Y , and rXY is the correlation
between the two variables. Show that the intercepts are also the same, AY jX ¼ AX jY .

(b) Why, if AY jX ¼ AX jY and BY jX ¼ BX jY , is the least-squares line for the regression of Y
on X different from the line for the regression of X on Y (as long as r2 < 1)?

(c) ‘‘Regression toward the mean’’ (the original sense of the term regression): Imagine
that X is father’s height and Y is son’s height for a sample of father-son pairs.
Suppose, as above, that SY ¼ SX , that Y ¼ X , and that the regression of sons’ heights
on fathers’ heights is linear. Finally, suppose that 0 < rXY < 1 (i.e., fathers’ and sons’
heights are positively correlated, but not perfectly so). Show that the expected height
of a son whose father is shorter than average is also less than average, but to a smaller
extent; likewise, the expected height of a son whose father is taller than average is also
greater than average, but to a smaller extent. Does this result imply a contradiction—
that the standard deviation of a son’s height is in fact less than that of a father’s
height?

(d) What is the expected height for a father whose son is shorter than average? Of a father
whose son is taller than average?

(e) Regression effects in research design: Imagine that educational researchers wish to
assess the efficacy of a new program to improve the reading performance of children.
To test the program, they recruit a group of children who are reading substantially
below grade level; after a year in the program, the researchers observe that the chil-
dren, on average, have improved their reading performance. Why is this a weak
research design? How could it be improved?

Exercise 5.3. 'Show that A0 ¼ Y minimizes the sum of squares

SðA0Þ ¼
Xn

i¼1

ðYi & A0Þ2

Exercise 5.4. Linear transformation of X and Y :

(a) Suppose that the explanatory-variable values in Davis’s regression are transformed
according to the equation X 0 ¼ X & 10 and that Y is regressed on X 0. Without redoing
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the regression calculations in detail, find A0, B0, S0E, and r0. What happens to these
quantities when X 0 ¼ 10X ? When X 0 ¼ 10ðX & 1Þ ¼ 10X & 10?

(b) Now suppose that the response variable scores are transformed according to the for-
mula Y

00 ¼ Y þ 10 and that Y
00

is regressed on X . Find A
00
, B

00
, S

00

E; and r
00
. What hap-

pens to these quantities when Y
00 ¼ 5Y? When Y

00 ¼ 5ðY þ 2Þ ¼ 5Y þ 10?
(c) In general, how are the results of a simple-regression analysis affected by linear trans-

formations of X and Y?

Exercise 5.5. 'Derive the normal equations (Equations 5.7) for the least-squares coefficients of
the general multiple-regression model with k explanatory variables. [Hint: Differentiate the
sum-of-squares function SðA;B1; . . . ;BkÞ with respect to the regression coefficients, and set the
partial derivatives to 0.]

Exercise 5.6. Why is it the case that the multiple-correlation coefficient R2 can never get
smaller when an explanatory variable is added to the regression equation? [Hint: Recall that
the regression equation is fit by minimizing the residual sum of squares, which is equivalent to
maximizing R2 (why?).]

Exercise 5.7. Consider the general multiple-regression equation

Y ¼ Aþ B1X1 þ B2X2 þ * * * þ BkXk þ E

An alternative procedure for calculating the least-squares coefficient B1 is as follows:

1. Regress Y on X2 through Xk , obtaining residuals EY j2 ... k .
2. Regress X1 on X2 through Xk , obtaining residuals E1j2 ... k .
3. Regress the residuals EY j2 ... k on the residuals E1j2 ... k . The slope for this simple regres-

sion is the multiple-regression slope for X1, that is, B1.

(a) Apply this procedure to the multiple regression of prestige on education, income,
and percentage of women in the Canadian occupational prestige data, confirming
that the coefficient for education is properly recovered.

(b) The intercept for the simple regression in Step 3 is 0. Why is this the case?
(c) In light of this procedure, is it reasonable to describe B1 as the ‘‘effect of X1 on Y

when the influence of X2; . . . ;Xk is removed from both X1 and Y ’’?
(d) The procedure in this problem reduces the multiple regression to a series of simple

regressions (in Step 3). Can you see any practical application for this procedure?
(See the discussion of added-variable plots in Section 11.6.1.)

Exercise 5.8. Partial correlation: The partial correlation between X1 and Y ‘‘controlling for’’
X2 through Xk is defined as the simple correlation between the residuals EY j2 ... k and E1j2 ... k ,
given in the previous exercise. The partial correlation is denoted rY 1j2...k .

(a) Using the Canadian occupational prestige data, calculate the partial correlation between
prestige and education, controlling for income and percentage women (see the previous
exercise).
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(b) In light of the interpretation of a partial regression coefficient developed in the previ-
ous exercise, why is rY 1j2 ... k ¼ 0 if and only if B1 (from the multiple regression of Y
on X1 through Xk) is 0?

Exercise 5.9. 'Show that in simple-regression analysis, the standardized slope coefficient B' is
equal to the correlation coefficient r. (In general, however, standardized slope coefficients are
not correlations and can be outside of the range [0, 1].)

Summary

! In simple linear regression

Yi ¼ Aþ BXi þ Ei

the least-squares coefficients are given by

B ¼
P
ðXi & X ÞðYi & Y Þ
P
ðXi & X Þ2

A ¼ Y & BX

The slope coefficient B represents the average change in Y associated with a one-unit
increase in X . The intercept A is the fitted value of Y when X ¼ 0.

! The least-squares coefficients in multiple linear regression

Yi ¼ Aþ B1Xi1 þ B2Xi2 þ * * * þ BkXik þ Ei

are found by solving the normal equations for the intercept A and the slope coefficients
B1, B2; . . . ;Bk . The slope coefficient B1 represents the average change in Y associated
with a one-unit increase in X1 when the other X s are held constant.

! The least-squares residuals, E, are uncorrelated with the fitted values, bY , and with the
explanatory variables, X1; . . . ;Xk .

! The linear regression decomposes the variation in Y into ‘‘explained’’ and ‘‘unex-
plained’’ components: TSS ¼ RegSSþ RSS. This decomposition is called the analysis
of variance for the regression.

! The standard error of the regression, SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

E2
i =ðn& k & 1Þ

p
, gives the ‘‘average’’

size of the regression residuals; the squared multiple correlation, R2 ¼ RegSS=TSS,
indicates the proportion of the variation in Y that is captured by its linear regression on
the X s.

! By rescaling regression coefficients in relation to a measure of variation—such as the
interquartile range or the standard deviation—standardized regression coefficients permit
a limited comparison of the relative impact of incommensurable explanatory variables.
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6 Statistical Inference
for Regression

T he previous chapter developed linear least-squares regression as a descriptive technique
for fitting a linear surface to data. The subject of the present chapter, in contrast, is statis-

tical inference. I will discuss point estimation of regression coefficients, along with elementary
but powerful procedures for constructing confidence intervals and performing hypothesis tests
in simple and multiple regression.1 I will also develop two topics related to inference in regres-
sion: the distinction between empirical and structural relationships and the consequences of
random measurement error in regression.

6.1 Simple Regression

6.1.1 The Simple-Regression Model

Standard statistical inference in simple regression is based on a statistical model, assumed to
be descriptive of the population or process that is sampled:

Yi ¼ αþ βxi þ εi

where Yi is the value of the response variable Y and xi is the value of the explanatory variable
X for the ith of n observations. The coefficients α and β are the population regression para-
meters; the central object of simple-regression analysis is to estimate these coefficients. The
error εi represents the aggregated omitted causes of Y (i.e., the causes of Y beyond the expla-
natory variable X ), other explanatory variables that could have been included in the regression
model (at least in principle), measurement error in Y , and whatever component of Y is inher-
ently random. A Greek letter, epsilon, is used for the errors because, without knowledge of the
values of α and β, the errors are not directly observable. The key assumptions of the simple-
regression model concern the behavior of the errors—or, equivalently, of the distribution of Y
conditional on X :

# Linearity. The expectation of the error—that is, the average value of ε given the value
of X —is 0: EðεiÞ[ EðεjxiÞ ¼ 0. Equivalently, the expected value of the response vari-
able is a linear function of the explanatory variable:

1The focus here is on the procedures themselves: The statistical theory underlying these methods and some extensions
of them are developed in Chapters 9 and 10.
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µi [ EðYiÞ[ EðY jxiÞ ¼ Eðαþ βxi þ εiÞ
¼ αþ βxi þ EðεiÞ
¼ αþ βxi þ 0

¼ αþ βxi

We can remove αþ βxi from the expectation operator because α and β are fixed para-
meters, while the value of X is conditionally fixed to xi.

2

# Constant variance. The variance of the errors is the same regardless of the value of
X : V ðεjxiÞ ¼ σ2

ε . Because the distribution of the errors is the same as the distribution of
the response variable around the population regression line, constant error variance
implies constant conditional variance of Y given X :

V ðY jxiÞ ¼ E½ðYi ' µiÞ
2( ¼ E½ðYi ' α' βxiÞ2( ¼ Eðε2

i Þ ¼ σ2
ε

Note that because the mean of εi is 0, its variance is simply Eðε2
i Þ.

# Normality. The errors are normally distributed: εi ; Nð0; σ2
εÞ. Equivalently, the condi-

tional distribution of the response variable is normal: Yi ; Nðαþ βxi; σ2
εÞ. The assump-

tions of linearity, constant variance, and normality are illustrated in Figure 6.1. It should
be abundantly clear from the graph that these assumptions place very strong constraints
on the structure of the data.

x1 x2 x3 x4 x5

µ5
µ4µ3

µ2µ1

X

Y

p(Y|x)

E(Y) = α + βx

Figure 6.1 The assumptions of linearity, constant variance, and normality in simple regression.
The graph shows the conditional population distributions pðYjxÞ of Y for several val-
ues of the explanatory variable X, labeled x1; . . . ; x5. The conditional means of Y given
x are denoted µ1; . . . ;µ5. (Repeating Figure 2.4 on page 17.)

2I use a lowercase x here to stress that the value xi is fixed—either literally, as in experimental research (see below), or
by conditioning on the observed value xi of Xi.
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# Independence. The observations are sampled independently: Any pair of errors εi and εj

(or, equivalently, of conditional response-variable values Yi and Yj) are independent for
i 6¼ j. The assumption of independence needs to be justified by the procedures of data
collection. For example, if the data constitute a simple random sample drawn from a
large population, then the assumption of independence will be met to a close approxima-
tion. In contrast, if the data comprise a time series, then the assumption of independence
may be very wrong.3

# Fixed X , or X measured without error and independent of the error. Depending on the
design of a study, the values of the explanatory variable may be fixed in advance of data
collection or they may be sampled along with the response variable. Fixed X corre-
sponds almost exclusively to experimental research, in which the value of the explana-
tory variable is under the direct control of the researcher; if the experiment were
replicated, then—at least in principle—the values of X (i.e., the xis) would remain the
same.

Most social research, however, is observational, and therefore, X -values are sampled,
not fixed by design (in which case, we should represent the value of X for the ith obser-
vation as Xi, as is appropriate for a random variable). Under these circumstances, we
assume that the explanatory variable is measured without error and that the explanatory
variable and the error are independent in the population from which the sample is
drawn. That is, the error has the same distribution, Nð0; σ2

εÞ, for every value of X in the
population. This is in an important respect the most problematic of the assumptions
underlying least-squares estimation because causal inference in nonexperimental
research hinges on this assumption and because the assumption cannot be checked
directly from the observed data.4

# X is not invariant. If the explanatory variable is fixed, then its values cannot all be the
same, and if it is random, then there must be variation in X in the population. It is not
possible to fit a line to data in which the explanatory variable is invariant.5

Standard statistical inference for least-squares simple-regression analysis is based on the
statistical model

Yi ¼ αþ βxi þ εi

The key assumptions of the model concern the behavior of the errors εi: (1) Linearity,
EðεiÞ ¼ 0; (2) constant variance, V ðεiÞ ¼ σ2

ε ; (3) normality, εi ; Nð0; σ2
εÞ; (4) indepen-

dence, εi, εj are independent for i 6¼ j; (5) the X values are fixed or, if random, are mea-
sured without error and are independent of the errors; and (6) X is not invariant.

3Chapter 16 discusses regression analysis with time-series data, while Section 15.5 takes up inference for regression in
complex sample surveys. Also see Chapters 23 and 24 on mixed-effects models for hierarchical and longitudinal data.
4See Sections 1.2, 6.3, and 9.7 for further discussion of causal inference from observational data.
5See Figure 5.3 on page 86.
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6.1.2 Properties of the Least-Squares Estimator

Under the strong assumptions of the simple-regression model, the sample least-squares coef-
ficients A and B have several desirable properties as estimators of the population regression
coefficients α and β:6

# The least-squares intercept and slope are linear estimators, in the sense that they are
linear functions of the observations Yi. For example, for fixed explanatory-variable
values xi,

B ¼
Xn

i¼1

miYi

where

mi ¼
xi ' x

Pn
j¼1 ðxj ' xÞ2

While unimportant in itself, this property makes it simple to derive the sampling distri-
butions of A and B.

# The sample least-squares coefficients are unbiased estimators of the population regres-
sion coefficients:

EðAÞ ¼ α

EðBÞ ¼ β

Only the assumption of linearity is required to establish this result.7

# Both A and B have simple sampling variances:

V ðAÞ ¼ σ2
ε

P
x2

i

n
P
ðxi ' xÞ2

V ðBÞ ¼ σ2
εP

ðxi ' xÞ2

The assumptions of linearity, constant variance, and independence are employed in the
derivation of these formulas.8

It is instructive to examine the formula for V ðBÞ more closely to understand the condi-
tions under which least-squares estimation is precise. Rewriting the formula,

V ðBÞ ¼ σ2
ε

ðn' 1ÞS2
X

Thus, the sampling variance of the slope estimate will be small when (1) the error var-
iance σ2

ε is small, (2) the sample size n is large, and (3) the explanatory-variable values

6I will simply state and briefly explain these properties here; derivations can be found in the exercises to this chapter
and in Chapter 9.
7See Exercise 6.1.
8See Exercise 6.2.
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are spread out (i.e., have a large variance, S2
X ). The estimate of the intercept has small

sampling variance under similar circumstances and, in addition, when the X -values are
centered near 0 and, hence,

P
x2

i is not much larger than
P
ðxi ' xÞ2.9

# Of all the linear unbiased estimators, the least-squares estimators are the most effi-
cient—that is, they have the smallest sampling variance and hence the smallest mean-
squared error. This result, called the Gauss-Markov theorem, requires the assumptions
of linearity, constant variance, and independence but not the assumption of normality.10

Under normality, moreover, the least-squares estimators are the most efficient among all
unbiased estimators, not just among linear estimators. This is a much more compelling
result, because the restriction to linear estimators is merely a matter of convenience.
When the error distribution is heavier tailed than normal, for example, the least-squares
estimators may be much less efficient than certain robust-regression estimators, which
are not linear functions of the data.11

# Under the full suite of assumptions, the least-squares coefficients A and B are the
maximum-likelihood estimators of α and β.12

# Under the assumption of normality, the least-squares coefficients are themselves
normally distributed. Summing up,

A ; N α;
σ2
ε

P
x2

i

n
P
ðxi ' xÞ2

" #

B ; N β;
σ2
εP

ðxi ' xÞ2

" #

ð6:1Þ

Even if the errors are not normally distributed, the distributions of A and B are approxi-
mately normal, under very broad conditions, with the approximation improving as the
sample size grows.13

Under the assumptions of the regression model, the least-squares coefficients have cer-
tain desirable properties as estimators of the population regression coefficients. The
least-squares coefficients are linear functions of the data and therefore have simple sam-
pling distributions, unbiased estimators of the population regression coefficients, the
most efficient unbiased estimators of the population regression coefficients, maximum-
likelihood estimators, and normally distributed.

9See Exercise 6.3.
10The theorem is named after the 19th-century German mathematical genius Carl Friedrich Gauss and the 20th-century
Russian mathematician A. A. Markov. Although Gauss worked in the context of measurement error in the physical
sciences, much of the general statistical theory of linear models is due to him.
11See Chapter 19.
12See Exercise 6.5. For an explanation of maximum-likelihood estimation, see online Appendix D on probability and
estimation.
13The asymptotic normality of A and B follows from the central limit theorem, because the least-squares coefficients
are linear functions of the Yis.
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6.1.3 Confidence Intervals and Hypothesis Tests

The distributions of A and B, given in Equations 6.1, cannot be directly employed for statis-
tical inference because the error variance, σ2

ε , is never known in practice. The variance of the
residuals provides an unbiased estimator of σ2

ε :14

S2
E ¼

P
E2

i

n' 2

With the estimated error variance in hand, we can estimate the sampling variances of A
and B:

bV ðAÞ ¼ S2
E

P
x2

i

n
P
ðxi ' xÞ2

bV ðBÞ ¼ S2
EP

ðxi ' xÞ2

As in statistical inference for the mean, the added uncertainty induced by estimating the error
variance is reflected in the use of the t-distribution, in place of the normal distribution, for con-
fidence intervals and hypothesis tests.

To construct a 100ð1' aÞ% confidence interval for the slope, we take

β ¼ B – ta=2SEðBÞ

where ta=2 is the critical value of t with n' 2 degrees of freedom and a probability of a=2 to
the right, and SEðBÞ is the standard error of B [i.e., the square root of bV ðBÞ]. For a 95% confi-
dence interval, t:025 » 2, unless n is very small. Similarly, to test the hypothesis, H0: β ¼ β0,
that the population slope is equal to a specific value (most commonly, the null hypothesis
H0: β ¼ 0), calculate the test statistic

t0 ¼
B' β0

SEðBÞ

which is distributed as t with n' 2 degrees of freedom under the hypothesis H0. Confidence
intervals and hypothesis tests for α are usually of less interest, but they follow the same
pattern.

The standard error of the slope coefficient B in simple regression is

SEðBÞ ¼ SE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi ' xÞ2

q
, which can be used to construct t-tests and t-intervals

for β.

For Davis’s regression of measured on reported weight (described in the preceding chapter),
for example, we have the following results:

14See Section 10.3.
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SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
418:87

101' 2

r
¼ 2:0569

SEðAÞ ¼ 2:0569 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
329;731
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101 · 4539:3
p ¼ 1:7444

SEðBÞ ¼ 2:0569ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4539:3
p ¼ 0:030529

Because t:025 for 101' 2 ¼ 99 degrees of freedom is 1:9842, the 95% confidence intervals for
α and β are

α ¼ 1:7775 – 1:9842 · 1:7444 ¼ 1:777 – 3:461

β ¼ 0:97722 – 1:9842 · 0:030529 ¼ 0:9772 – 0:0606

The estimates of α and β are therefore quite precise. Furthermore, the confidence intervals
include the values α ¼ 0 and β ¼ 1, which, recall, imply unbiased prediction of measured
weight from reported weight.15

6.2 Multiple Regression

Most of the results for multiple-regression analysis parallel those for simple regression.

6.2.1 The Multiple-Regression Model

The statistical model for multiple regression is

Yi ¼ αþ β1xi1 þ β2xi2 þ ) ) ) þ βkxik þ εi

The assumptions underlying the model concern the errors, εi [ εjxi1; . . . ; xik , and are identical
to the assumptions in simple regression:

# Linearity: EðεiÞ ¼ 0.
# Constant variance: V ðεiÞ ¼ σ2

ε .
# Normality: εi ; Nð0; σ2

εÞ.
# Independence: εi; εj are independent for i 6¼ j.
# Fixed X s or X s measured without error and independent of ε:

In addition, we assume that the X s are not invariant in the population and that no X is a perfect
linear function of the others.16

Under these assumptions (or particular subsets of them), the least-squares estimators A,
B1; . . . ;Bk of α, β1; . . . ;βk are

15There is, however, a subtlety here: To construct separate confidence intervals for α and β is not quite the same as
constructing a joint confidence region for both coefficients simultaneously. See Section 9.4.4 for a discussion of confi-
dence regions in regression.
16We saw in Section 5.2.1 that when explanatory variables in regression are invariant or perfectly collinear, the least-
squares coefficients are not uniquely defined.

112 Chapter 6. Statistical Inference for Regression



# linear functions of the data and hence relatively simple,
# unbiased,
# maximally efficient among unbiased estimators,
# maximum-likelihood estimators, and
# normally distributed.

The slope coefficient Bj in multiple regression has sampling variance17

V ðBjÞ ¼
1

1' R2
j

· σ2
εPn

i¼1 ðxij ' xjÞ2

¼ σ2
εPn

i¼1 ðxij ' bxijÞ2
ð6:2Þ

where R2
j is the squared multiple correlation from the regression of Xj on all the other X s, and

the bxij are the fitted values from this auxiliary regression. The second factor in the first line of
Equation 6.2 is similar to the sampling variance of the slope in simple regression, although the
error variance σ2

ε is smaller than before because some of the explanatory variables that were
implicitly in the error in simple regression are now incorporated into the systematic part of the
model. The first factor—called the variance-inflation factor—is new, however. The variance-
inflation factor 1=ð1' R2

j Þ is large when the explanatory variable Xj is strongly correlated with
other explanatory variables. The denominator in the second line of Equation 6.2 is the residual
sum of squares from the regression of Xj on the other X s, and it makes a similar point: When
the conditional variation in Xj given the other X s is small, the sampling variance of Bj is
large.18

We saw in Chapter 5 that when one explanatory variable is perfectly collinear with others,
the least-squares regression coefficients are not uniquely determined; in this case, the variance-
inflation factor is infinite. The variance-inflation factor tells us that strong, although less-
than-perfect, collinearity presents a problem for estimation, for although we can calculate least-
squares estimates under these circumstances, their sampling variances may be very large.
Equation 6.2 reveals that the other sources of imprecision of estimation in multiple regression
are the same as in simple regression: large error variance, a small sample, and explanatory vari-
ables with little variation.19

6.2.2 Confidence Intervals and Hypothesis Tests

Individual Slope Coefficients

Confidence intervals and hypothesis tests for individual coefficients closely follow the pat-
tern of simple-regression analysis: To find the standard error of a slope coefficient, we need to

17Although we are usually less interested in inference about α, it is also possible to find the sampling variance of the
intercept A. See Section 9.3.
18I am grateful to Georges Monette of York University for pointing this out to me.
19Collinearity is discussed further in Chapter 13.
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substitute an estimate of the error variance for the unknown σ2
ε in Equation 6.2. The variance

of the residuals provides an unbiased estimator of σ2
ε :

S2
E ¼

P
E2

i

n' k ' 1

Then, the standard error of Bj is

SEðBjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1' R2
j

q · SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxij ' xjÞ2

q

Confidence intervals and tests, based on the t-distribution with n' k ' 1 degrees of freedom,
follow straightforwardly.

The standard error of the slope coefficient Bj in multiple regression is

SEðBjÞ ¼ SE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1' R2

j Þ
P
ðxij ' xjÞ2

q
. The coefficient standard error can be used in

t-intervals and t-tests for βj.

For example, for Duncan’s regression of occupational prestige on education and income (from
the previous chapter), we have

S2
E ¼

7506:7

45' 2' 1
¼ 178:73

r12 ¼ :72451

SEðB1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1' :724512
p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
178:73
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
38;971
p ¼ 0:098252

SEðB2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1' :724512
p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
178:73
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26;271
p ¼ 0:11967

With only two explanatory variables, R2
1 ¼ R2

2 ¼ r2
12; this simplicity and symmetry are peculiar

to the two-explanatory-variable case. To construct 95% confidence intervals for the slope coef-
ficients, we use t:025 ¼ 2:0181 from the t-distribution with 45' 2' 1 ¼ 42 degrees of free-
dom. Then,

Education : β1 ¼ 0:54583 – 2:0181 · 0:098252 ¼ 0:5459 – 0:1983

Income : β2 ¼ 0:59873 – 2:0181 · 0:11967 ¼ 0:5987 – 0:2415

Although they are far from 0, these confidence intervals are quite broad, indicating that the
estimates of the education and income coefficients are imprecise—as is to be expected in a
sample of only 45 occupations.

All Slopes

We can also test the null hypothesis that all the population regression slopes are 0:

H0 : β1 ¼ β2 ¼ ) ) ) ¼ βk ¼ 0 ð6:3Þ
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Testing this global or ‘‘omnibus’’ null hypothesis is not quite the same as testing the k sepa-
rate hypotheses

H ð1Þ0 : β1 ¼ 0; H ð2Þ0 : β2 ¼ 0; . . . ; H ðkÞ0 : βk ¼ 0

If the explanatory variables are very highly correlated, for example, we might be able to reject
the omnibus hypothesis (Equation 6.3) without being able to reject any of the individual
hypotheses.

An F-test for the omnibus null hypothesis is given by

F0 ¼
RegSS=k

RSS=ðn' k ' 1Þ

¼ n' k ' 1

k
·

R2

1' R2

Under the omnibus null hypothesis, this test statistic has an F-distribution with k and
n' k ' 1 degrees of freedom. The omnibus F-test follows from the analysis of variance for
the regression, and the calculation of the test statistic can be organized in an analysis-of-
variance table, which shows the partition of the total variation of Y into its components:

Note that the degrees of freedom (df) add in the same manner as the sums of squares and that
the residual mean square, RMS, is simply the estimated error variance, S2

E.
It turns out that when the null hypothesis is true, RMS and the regression mean square,

RegMS, provide independent estimates of the error variance, so the ratio of the two mean
squares should be close to 1. When, alternatively, the null hypothesis is false, RegMS estimates
the error variance plus a positive quantity that depends on the βs, tending to make the numera-
tor of F0 larger than the denominator:

EðF0Þ »
EðRegMSÞ
EðRMSÞ ¼

σ2
ε þ positive quantity

σ2
ε

> 1

We consequently reject the omnibus null hypothesis for values of F0 that are sufficiently larger
than 1.20

Source Sum of Squares df Mean Square F

Regression RegSS k
RegSS

k

RegMS

RMS

Residuals RSS n'k'1
RSS

n' k' 1

Total TSS n' 1

20The reasoning here is only approximate because the expectation of the ratio of two independent random variables is
not the ratio of their expectations. Nevertheless, when the sample size is large, the null distribution of the F-statistic
has an expectation very close to 1. See online Appendix D on probability and estimation for information about the
F-distribution.
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An omnibus F-test for the null hypothesis that all the slopes are 0 can be calculated from
the analysis of variance for the regression.

For Duncan’s regression, we have the following analysis-of-variance table:

The p-value for the omnibus null hypothesis—that is, PrðF > 101:2Þ for an F-distribution with
2 and 42 degrees of freedom—is very close to 0.

A Subset of Slopes

It is, finally, possible to test a null hypothesis about a subset of the regression slopes

H0 : β1 ¼ β2 ¼ ) ) ) ¼ βq ¼ 0 ð6:4Þ

where 1 £ q £ k. Purely for notational convenience, I have specified a hypothesis on the first q
coefficients; we can, of course, equally easily test a hypothesis for any q slopes. The ‘‘full’’
regression model, including all the explanatory variables, can be written as

Yi ¼ αþ β1xi1 þ ) ) ) þ βqxiq þ βqþ1xi;qþ1 þ ) ) ) þ βkxik þ εi

If the null hypothesis is correct, then the first q of the βs are 0, yielding the ‘‘null’’ model

Yi ¼ αþ 0xi1 þ ) ) ) þ 0xiq þ βqþ1xi;qþ1 þ ) ) ) þ βkxik þ εi

¼ αþ βqþ1xi;qþ1 þ ) ) ) þ βkxik þ εi

In effect, then, the null model omits the first q explanatory variables, regressing Y on the
remaining k ' q explanatory variables.

An F-test of the null hypothesis in Equation 6.4 is based on a comparison of these two mod-
els. Let RSS1 and RegSS1 represent, respectively, the residual and regression sums of squares
for the full model; similarly, RSS0 and RegSS0 are the residual and regression sums of squares
for the null model. Because the null model is nested within (i.e., is a special case of) the full
model, constraining the first q slopes to 0, RSS0 ‡ RSS1. The residual and regression sums of
squares in the two models add to the same total sum of squares; it follows that
RegSS0 £ RegSS1. If the null hypothesis is wrong and (some of) β1; . . . ;βq are nonzero, then
the incremental (or ‘‘extra’’) sum of squares due to fitting the additional explanatory variables

RSS0 ' RSS1 ¼ RegSS1 ' RegSS0

should be large.

Source Sum of Squares df Mean Square F p

Regression 36181. 2 18090. 101.2 *.0001
Residuals 7506.7 42 178.73

Total 43688. 44
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The F-statistic for testing the null hypothesis in Equation 6.4 is

F0 ¼
ðRegSS1 ' RegSS0Þ=q

RSS1=ðn' k ' 1Þ

¼ n' k ' 1

q
· R2

1 ' R2
0

1' R2
1

where R2
1 and R2

0 are the squared multiple correlations from the full and null models, respec-
tively. Under the null hypothesis, this test statistic has an F-distribution with q and n' k ' 1
degrees of freedom.

The denominator of the incremental F-statistic is the estimated error variance for the full
model, which provides an unbiased estimator of σ2

ε whether or not H0 is true (reader: why?).
More generally, in computing incremental F-tests, we will always estimate the error variance
from the most complete model that we fit to the data.

An F-test for the null hypothesis that a subset of slope coefficients is 0 is based on a
comparison of the regression sums of squares for two models: the full regression model
and a null model that deletes the explanatory variables in the null hypothesis.

The motivation for testing a subset of coefficients will become clear in the next chapter, which
takes up regression models that incorporate qualitative explanatory variables. I will, for the
present, illustrate the incremental F-test by applying it to the trivial case in which q ¼ 1 (i.e., a
single coefficient).

In Duncan’s data set, the regression of prestige on income alone produces RegSS0 ¼30,665,
while the regression of prestige on both income and education produces RegSS1 ¼36,181 and
RSS1 ¼ 7506:7. Consequently, the incremental sum of squares due to education is
36;181' 30;665 ¼ 5516. The F-statistic for testing H0: βEducation ¼ 0 is, then,

F0 ¼
5516=1

7506:7=ð45' 2' 1Þ
¼ 30:86

with 1 and 42 degrees of freedom, for which p < :0001.
When, as here, q ¼ 1, the incremental F-test is equivalent to the t-test obtained by dividing

the regression coefficient by its estimated standard error: F0 ¼ t2
0. For the current example,

t0 ¼
0:54583

0:098252
¼ 5:5554

t2
0¼ 5:55542 ¼ 30:86

(which is the same as F0).

6.3 Empirical Versus Structural Relations

There are two fundamentally different interpretations of regression coefficients, and failure to
distinguish clearly between them is the source of much confusion. Borrowing Goldberger’s
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(1973) terminology, we may interpret a regression descriptively, as an empirical association
among variables, or causally, as a structural relation among variables.

I will deal first with empirical associations because the notion is simpler. Suppose that, in a
population of interest, the relationship between two variables, Y and X1, is well described by
the simple-regression model:21

Y ¼ α0 þ β01X1 þ ε0

That is to say, the conditional mean of Y is a linear function of X . We do not assume that X1

necessarily causes Y or, if it does, that the omitted causes of Y , incorporated in ε0, are indepen-
dent of X1. There is, quite simply, a linear empirical relationship between Y and X1 in the pop-
ulation. If we proceed to draw a random sample from this population, then the least-squares
sample slope B01 is an unbiased estimator of β01.

Suppose, now, that we introduce a second explanatory variable, X2, and that, in the same
sense as before, the population relationship between Y and the two X s is linear:

Y ¼ αþ β1X1 þ β2X2 þ ε

That is, the conditional mean of Y is a linear function of X1 and X2. The slope β1 of the popu-
lation regression plane can, and generally will, differ from β01, the simple-regression slope (see
below). The sample least-squares coefficients for the multiple regression, B1 and B2, are
unbiased estimators of the corresponding population coefficients, β1 and β2.

That the simple-regression slope β01 differs from the multiple-regression slope β1 and that,
therefore, the sample simple-regression coefficient B01 is a biased estimator of the population
multiple-regression slope β1 is not problematic, for these are simply empirical relationships,
and we do not, in this context, interpret a regression coefficient as the effect of an explanatory
variable on the response variable. The issue of specification error—fitting a false model to the
data—does not arise, as long as the linear regression model adequately describes the empirical
relationship between the response variable and the explanatory variables in the population.
This would not be the case, for example, if the relationship in the population were nonlinear.

The situation is different, however, if we view the regression equation as representing a
structural relation—that is, a model of how response-variable scores are determined.22 Imagine
now that response-variable scores are constructed according to the multiple-regression model

Y ¼ αþ β1X1 þ β2X2 þ ε ð6:5Þ

where the error ε satisfies the usual regression assumptions; in particular, EðεÞ ¼ 0, and ε is
independent of X1 and X2.

If we use least squares to fit this model to sample data, we obtain unbiased estimators of β1

and β2. Suppose, however, that instead we fit the simple-regression model

Y ¼ αþ β1X1 þ ε0 ð6:6Þ

where, implicitly, the effect of X2 on Y is absorbed by the error ε0[ εþ β2X2 because X2 is
now among the omitted causes of Y . In the event that X1 and X2 are correlated, there is a corre-
lation induced between X1 and ε0. If we proceed to assume wrongly that X1 and ε0 are

21Because this discussion applies to observational data, where the explanatory variables are random, I use uppercase X s:
22In the interest of clarity, I am making this distinction more categorically than I believe is justified. I argued in
Chapter 1 that it is unreasonable to treat statistical models as literal representations of social processes. Nevertheless, it
is useful to distinguish between purely empirical descriptions and descriptions from which we intend to infer causation.
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uncorrelated, as we do if we fit the model in Equation 6.6 by least squares, then we make an
error of specification. The consequence of this error is that our simple-regression estimator of
β1 is biased: Because X1 and X2 are correlated and because X2 is omitted from the model, part
of the effect of X2 is mistakenly attributed to X1.

To make the nature of this specification error more precise, let us take the expectation of
both sides of Equation 6.5, obtaining

µY ¼ αþ β1µ1 þ β2µ2 þ 0 ð6:7Þ

where, for example, µY is the population mean of Y ; to obtain Equation 6.7, we use the fact
that EðεÞ is 0. Subtracting this equation from Equation 6.5 has the effect of eliminating the
constant α and expressing the variables as deviations from their population means:

Y ' µY ¼ β1ðX1 ' µ1Þ þ β2ðX2 ' µ2Þ þ ε

Next, multiply this equation through by X1 ' µ1:

ðX1 ' µ1ÞðY ' µY Þ ¼ β1ðX1 ' µ1Þ
2 þ β2ðX1 ' µ1ÞðX2 ' µ2Þ þ ðX1 ' µ1Þε

Taking the expectation of both sides of the equation produces

σ1Y ¼ β1σ
2
1 þ β2σ12

where σ1Y is the covariance between X1 and Y , σ2
1 is the variance of X1, and σ12 is the covar-

iance of X1 and X2.23 Solving for β1, we get

β1 ¼
σ1Y

σ2
1

' β2
σ12

σ2
1

ð6:8Þ

Recall that the least-squares coefficient for the simple regression of Y on X1 is B ¼ S1Y=S2
1 .

The simple regression therefore estimates not β1 but rather σ1Y=σ2
1 [β01. Solving Equation 6.8

for β01 produces β01 ¼ β1þ bias, where bias ¼ β2σ12=σ2
1:

It is instructive to take a closer look at the bias in the simple-regression estimator. For the
bias to be nonzero, two conditions must be met: (1) X2 must be a relevant explanatory vari-
able—that is, β2 6¼ 0—and (2) X1 and X2 must be correlated—that is, σ12 6¼ 0. Moreover,
depending on the signs of β2 and σ12, the bias in the simple-regression estimator may be either
positive or negative.

It is important to distinguish between interpreting a regression descriptively, as an
empirical association among variables, and structurally, as specifying causal relations
among variables. In the latter event, but not in the former, it is sensible to speak of bias
produced by omitting an explanatory variable that (1) is a cause of Y and (2) is corre-
lated with an explanatory variable in the regression equation. Bias in least-squares esti-
mation results from the correlation that is induced between the included explanatory
variable and the error by incorporating the omitted explanatory variable in the error.

23This result follows from the observation that the expectation of a mean deviation product is a covariance, and the
expectation of a mean deviation square is a variance (see online Appendix D on probability and estimation).
E½ðX1 ' µ1Þε( ¼ σ1ε is 0 because of the independence of X1 and the error.
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There is one final subtlety: The proper interpretation of the ‘‘bias’’ in the simple-regression
estimator depends on the nature of the causal relationship between X1 and X2. Consider the sit-
uation depicted in Figure 6.2(a), where X2 intervenes causally (or mediates the relationship)
between X1 and Y . Here, the bias term β2σ12=σ2

1 is simply the indirect effect of X1 on Y trans-
mitted through X2, because σ12=σ2

1 is the population slope for the regression of X2 on X1. If,
however, as in Figure 6.2(b), X2 is a common prior cause of both X1 and Y , then the bias term
represents a spurious—that is, noncausal—component of the empirical association between X1

and Y . In the latter event, but not in the former, it is critical to control for X2 in examining the
relationship between Y and X1.24 Indeed, if our goal is to estimate the effect of X1 on Y , then
we should not control statistically for intervening causes, such as X2 in 6.2(a), except to articu-
late the causal mechanism through which X1 affects Y .

An omitted common prior cause that accounts (or partially accounts) for the association
between two variables is sometimes called a ‘‘lurking variable.’’ It is the always possible exis-
tence of lurking variables that makes it difficult to infer causation from observational data.

6.4 Measurement Error in Explanatory Variables*

Variables are rarely—if ever—measured without error.25 Even relatively straightforward char-
acteristics, such as education, income, height, and weight, are imperfectly measured, especially
when we rely on individuals’ verbal reports. Measures of ‘‘subjective’’ characteristics, such as
racial prejudice and conservatism, almost surely have substantial components of error.
Measurement error affects not only characteristics of individuals: As you are likely aware,

(a)

Y

(b)

X1

X2

YX2

X1

Figure 6.2 Two causal schemes relating a response variable to two explanatory variables: In (a)
X2 intervenes causally between X1 and Y, while in (b) X2 is a common prior cause of
both X1 and Y. In the second case, but not in the first, it is important to control for X2

in examining the effect of X1 on Y.

24Note that panels (a) and (b) in Figure 6.2 simply exchange the roles of X1 and X2.
25Indeed, one of the historical sources of statistical theory in the 18th and 19th centuries was the investigation of mea-
surement errors in the physical sciences by great mathematicians like Gauss (mentioned previously) and Pierre Simon
Laplace.
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official statistics relating to crime, the economy, and so on are also subject to a variety of mea-
surement errors.

The regression model accommodates measurement error in the response variable, because
measurement error can be conceptualized as a component of the general error term ε, but the
explanatory variables in regression analysis are assumed to be measured without error. In this
section, I will explain the consequences of violating this assumption. To do so, we will exam-
ine the multiple-regression equation

Y ¼ β1τ þ β2X2 þ ε ð6:9Þ

To keep the notation as simple as possible, all the variables in Equation 6.9 are expressed as
deviations from their expectations, so the intercept α disappears from the regression equation.26

One of the explanatory variables, X2, is measured without error, but the other, τ, is not directly
observable. Instead, we have a fallible indicator X1 of τ:

X1 ¼ τ þ δ ð6:10Þ

where δ represents measurement error.
In addition to the usual assumptions about the regression errors ε; I will assume that the

measurement errors δ are ‘‘random’’ and ‘‘well behaved’’:

# EðδÞ ¼ 0, so there is no systematic tendency for measurements to be too large or too
small.

# The measurement errors δ are uncorrelated with the ‘‘true-score’’ variable τ. This
assumption could easily be wrong. If, for example, individuals who are lighter than
average tend to overreport their weights and individuals who are heavier than average
tend to underreport their weights, then there will be a negative correlation between the
measurement errors and true weight.

# The measurement errors δ are uncorrelated with the regression errors ε and with the
other explanatory variable X2.

Because τ ¼ X1 ' δ, we can rewrite Equation 6.9 as

Y ¼ β1ðX1 ' δÞ þ β2X2 þ ε

¼ β1X1 þ β2X2 þ ðε' β1δÞ
ð6:11Þ

As in the previous section, we can proceed by multiplying Equation 6.11 through by X1 and X2

and taking expectations; because all variables are in mean deviation form, expected products
are covariances and expected squares are variances:27

σY1 ¼ β1σ
2
1 þ β2σ12 ' β1σ

2
δ

σY2 ¼ β1σ12 þ β2σ
2
2 ð6:12Þ

26There is no loss of generality here, because we can always subtract the mean from each variable. See the previous
section.
27See Exercise 6.10.
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Then, solving for the regression coefficients,

β1 ¼
σY1σ

2
2 ' σ12σY 2

σ2
1σ

2
2 ' σ2

12 ' σ2
δσ

2
2

β2 ¼
σY 2σ

2
1 ' σ12σY1

σ2
1σ

2
2 ' σ2

12

' β1σ12σ
2
δ

σ2
1σ

2
2 ' σ2

12

ð6:13Þ

Suppose, now, that we (temporarily) ignore the measurement error in X1 and proceed by least-
squares regression of Y on X1 and X2. The population analogs of the least-squares regression
coefficients are as follows:28

β01 ¼
σY1σ

2
2 ' σ12σY 2

σ2
1σ

2
2 ' σ2

12

β02 ¼
σY2σ

2
1 ' σ12σY 1

σ2
1σ

2
2 ' σ2

12

ð6:14Þ

Comparing Equations 6.13 and 6.14 reveals the consequences of ignoring the measurement error
in X1. The denominator of β1 in Equations 6.13 is necessarily positive, and its component
'σ2

δσ
2
2 is necessarily negative. Ignoring this component therefore inflates the denominator of β01

in Equations 6.14, driving the coefficient β01 toward 0. Put another way, ignoring measurement
error in an explanatory variable tends to attenuate its coefficient, which makes intuitive sense.

The effect of measurement error in X1 on the coefficient of X2 is even more pernicious.
Here, we can write β02 ¼ β2 þ bias, where

bias ¼ β1σ12σ
2
δ

σ2
1σ

2
2 ' σ2

12

The bias term can be positive or negative, toward 0 or away from it. To get a better grasp on
the bias in the least-squares estimand β02, imagine that the measurement error variance σ2

δ

grows larger and larger. Because σ2
δ is a component of σ2

1, this latter quantity also grows larger,
but because the measurement errors δ are uncorrelated with variables other than X1, other var-
iances and covariances are unaffected.29

Using Equations 6.14,

lim
σ2
δ
!‘

β02 ¼
σY2σ

2
1

σ2
1σ

2
2

¼ σY2

σ2
2

which is the population analog of the least-squares slope for the simple regression of Y on X2

alone. Once more, the result is simple and intuitively plausible: Substantial measurement error
in X1 renders it an ineffective statistical control, driving β02 toward the marginal relationship
between X2 and Y , and away from the partial relationship between these two variables.30

Measurement error in an explanatory variable tends to attenuate its regression coefficient
and to make the variable an imperfect statistical control.

28See Exercise 6.11.
29See Exercise 6.12.
30I am grateful to Georges Monette, of York University, for this insight. See Exercise 6.13 for an illustration.
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Although there are statistical methods that attempt to estimate regression equations taking
account of measurement errors, these methods are beyond the scope of the presentation in this
book and, in any event, involve assumptions that often are difficult to justify in practice.31

Perhaps the most important lessons to be drawn from the results of this section are (1) that
large measurement errors in the X s can invalidate a regression analysis; (2) that, therefore,
where measurement errors are likely to be substantial, we should not view the results of a
regression as definitive; and (3) that it is worthwhile to expend effort to improve the quality of
social measurements.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 6.1. +Demonstrate the unbias of the least-squares estimators A and B of α and β in
simple regression:

(a) Expressing the least-squares slope B as a linear function of the observations,
B ¼

P
miYi (as in the text), and using the assumption of linearity, EðYiÞ ¼ αþ βxi,

show that EðBÞ ¼ β. [Hint: EðBÞ ¼
P

miEðYiÞ.]
(b) Show that A can also be written as a linear function of the Yis. Then, show that

EðAÞ ¼ α.

Exercise 6.2. +Using the assumptions of linearity, constant variance, and independence, along
with the fact that A and B can each be expressed as a linear function of the Yis, derive the sam-
pling variances of A and B in simple regression. [Hint: V ðBÞ ¼

P
m2

i V ðYiÞ.]

Exercise 6.3. Examining the formula for the sampling variance of A in simple regression,

V ðAÞ ¼ σ2
ε

P
x2

i

n
P
ðxi ' xÞ2

why is it intuitively sensible that the variance of A is large when the mean of the xs is far from
0? Illustrate your explanation with a graph.

Exercise 6.4. The formula for the sampling variance of B in simple regression,

V ðBÞ ¼ σ2
εP

ðxi ' xÞ2

shows that, to estimate β precisely, it helps to have spread out xs. Explain why this result is
intuitively sensible, illustrating your explanation with a graph. What happens to V ðBÞ when
there is no variation in X ?

Exercise 6.5. +Maximum-likelihood estimation of the simple-regression model: Deriving the
maximum-likelihood estimators of α and β in simple regression is straightforward. Under the

31Measurement errors in explanatory variables are often discussed in the context of structural equation models, which
are multiple-equation regression models in which the response variable in one equation can appear as an explanatory
variable in others. Duncan (1975, Chapters 9 and 10) presents a fine elementary treatment of the topic, part of which I
have adapted for the presentation in this section. A more advanced development may be found in Bollen (1989).
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assumptions of the model, the Yis are independently and normally distributed random variables
with expectations αþ βxi and common variance σ2

ε . Show that if these assumptions hold, then
the least-squares coefficients A and B are the maximum-likelihood estimators of α and β and
that bσ2

ε ¼
P

E2
i =n is the maximum-likelihood estimator of σ2

ε . Note that the MLE of the error
variance is biased. (Hints: Because of the assumption of independence, the joint probability
density for the Yis is the product of their marginal probability densities

pðyiÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2πσ2
ε

p exp 'ðyi ' α' βxiÞ2

2σ2
ε

" #

Find the log-likelihood function; take the partial derivatives of the log likelihood with respect
to the parameters α, β, and σ2

ε ; set these partial derivatives to 0; and solve for the maximum-
likelihood estimators.) A more general result is proved in Section 9.3.3.

Exercise 6.6. Linear transformation of X and Y in simple regression (continuation of
Exercise 5.4):

(a) Suppose that the X -values in Davis’s regression of measured on reported weight are
transformed according to the equation X 0 ¼ 10ðX ' 1Þ and that Y is regressed on X 0.
Without redoing the regression calculations in detail, find SEðB0Þ and t00 ¼ B0=SEðB0Þ.

(b) Now, suppose that the Y values are transformed according to the equation
Y
00 ¼ 5ðY þ 2Þ and that Y

00
is regressed on X . Find SEðB00Þ and t

00

0 ¼ B
00
=SEðB00Þ.

(c) In general, how are hypothesis tests and confidence intervals for β affected by linear
transformations of X and Y?

Exercise 6.7. Consider the regression model Y ¼ αþ β1x1 þ β2x2 þ ε. How can the incremen-
tal sum-of-squares approach be used to test the hypothesis that the two population slopes are
equal to each other, H0: β1 ¼ β2? [Hint: Under H0, the model becomes
Y ¼αþβx1þβx2þ ε¼ Y ¼αþβðx1þ x2Þþε, where β is the common value of β1 and β2.]
Under what circumstances would a hypothesis of this form be meaningful? (Hint: Consider the
units of measurement of x1 and x2.) Now, test the hypothesis that the ‘‘population’’ regression
coefficients for education and income in Duncan’s occupational prestige regression are equal to
each other. Is this test sensible?

Exercise 6.8. Examples of specification error (also see the discussion in Section 9.7):

(a) Describe a nonexperimental research situation—real or contrived—in which failure to
control statistically for an omitted variable induces a correlation between the error and
an explanatory variable, producing erroneous conclusions. (For example: An educa-
tional researcher discovers that university students who study more get lower grades
on average; the researcher concludes that studying has an adverse effect on students’
grades.)

(b) Describe an experiment—real or contrived—in which faulty experimental practice
induces an explanatory variable to become correlated with the error, compromising the
validity of the results produced by the experiment. (For example: In an experimental
study of a promising new therapy for depression, doctors administering the treatments
tend to use the new therapy with patients for whom more traditional approaches have
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failed; it is discovered that subjects receiving the new treatment tend to do worse, on
average, than those receiving older treatments or a placebo; the researcher concludes
that the new treatment is not effective.)

(c) Is it fair to conclude that a researcher is never able absolutely to rule out the possibility
that an explanatory variable of interest is correlated with the error? Is experimental
research no better than observational research in this respect? Explain your answer.

Exercise 6.9. Suppose that the ‘‘true’’ model generating a set of data is Y ¼ αþ β1X1 þ ε,
where the error ε conforms to the usual linear-regression assumptions. A researcher fits the
model Y ¼ αþ β1X1 þ β2X2 þ ε, which includes the irrelevant explanatory variable X2—that
is, the true value of β2 is 0. Had the researcher fit the (correct) simple-regression model, the
variance of B1 would have been V ðB1Þ ¼ σ2

ε=
P
ðXi1 ' X 1Þ2.

(a) Is the model Y ¼ αþ β1X1 þ β2X2 þ ε wrong? Is B1 for this model a biased estimator
of β1?

(b) The variance of B1 in the multiple-regression model is

V ðB1Þ ¼
1

1' r2
12

·
σ2
εP

ðXi1 ' X 1Þ
2

What, then, is the cost of including the irrelevant explanatory variable X2? How does this
cost compare to that of failing to include a relevant explanatory variable?

Exercise 6.10. +Derive Equations 6.12 by multiplying Equation 6.11 through by each of X1

and X2. (Hints: Both X1 and X2 are uncorrelated with the regression error ε. Likewise, X2 is
uncorrelated with the measurement error δ. Show that the covariance of X1 and δ is simply the
measurement error variance σ2

δ by multiplying X1 ¼ τ þ δ through by δ and taking
expectations.)

Exercise 6.11. +Show that the population analogs of the regression coefficients can be written
as in Equations 6.14. (Hint: Ignore the measurement errors, and derive the population analogs
of the normal equations by multiplying the ‘‘model’’ Y ¼ β1X1 þ β2X2 þ ε through by each of
X1 and X2 and taking expectations.)

Exercise 6.12. +Show that the variance of X1 ¼ τ þ δ can be written as the sum of ‘‘true-score
variance,’’σ2

τ , and measurement error variance, σ2
δ . (Hint: Square both sides of Equation 6.10

and take expectations.)

Exercise 6.13. Recall Duncan’s regression of occupational prestige on the educational and
income levels of occupations. Following Duncan, regress prestige on education and income.
Also, perform a simple regression of prestige on income alone. Then add random measurement
errors to education. Sample these measurement errors from a normal distribution with mean 0,
repeating the exercise for each of the following measurement error variances: σ2

δ¼ 102, 252,
502, 1002. In each case, recompute the regression of prestige on income and education. Then,
treating the initial multiple regression as corresponding to σ2

δ ¼ 0, plot the coefficients of edu-
cation and income as a function of σ2

δ . What happens to the education coefficient as measure-
ment error in education grows? What happens to the income coefficient?
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Exercise 6.14. +Instrumental-variable estimation: As explained, when we want to construe a
regression causally, the most potentially problematic of the assumptions underlying the linear
regression model is the assumption that the errors and explanatory variables are independent,
because this assumption cannot be checked against the data. Consider the simple-regression
model Y + ¼ βX + þ ε, where, for simplicity, both Y +[ Y ' EðY Þ and X +[ X ' EðX Þ are
expressed as deviations from their expectations, so that EðY +Þ ¼ EðX +Þ ¼ 0 and the intercept
α is eliminated from the model.

(a) Suppose that X and ε are independent. Show that the ordinary least-squares estimator
of β, BOLS ¼ SXY=S2

X (where SXY is the sample covariance of X and Y , and S2
X is the

sample variance of X ), can be derived by (1) multiplying the model through by X +, (2)
taking the expectation of both sides of the resulting equation, and (3) substituting the
sample variance and covariance for their population analogs. Because the sample var-
iance and covariance are consistent estimators of the population variance and covar-
iance, BOLS is a consistent estimator of β.

(b) Now suppose that it is unreasonable to assume that X and ε are independent, but there
is a third observed variable, Z, that is (1) independent of ε and (2) correlated with X .
Z is called an instrumental variable (or an instrument). Proceeding in a manner similar
to part (a), but multiplying the model through by Z+[ Z ' EðZÞ rather than X +, show
that the instrumental-variable estimator BIV ¼ SZY=SZX is a consistent estimator of β.
Why are both conditions (1) and (2) necessary for the instrumental variable Z to do its
job?

(c) Suggest a substantive application in which it is unreasonable to assume that X is inde-
pendent of other, prior causes of Y but where there is a third variable Z that is both
correlated with X and, arguably, independent of the error.

Instrumental-variables estimation is elaborated in Section 9.8.

Summary

# Standard statistical inference for least-squares regression analysis is based on the statisti-
cal model

Yi ¼ αþ β1xi1 þ ) ) ) þ βkxik þ εi

The key assumptions of the model concern the behavior of the errors εi:

1. Linearity: EðεiÞ ¼ 0:
2. Constant variance: V ðεiÞ ¼ σ2

ε :
3. Normality: εi ; Nð0; σ2

εÞ:
4. Independence: εi; εj are independent for i 6¼ j:
5. The X values are fixed or, if random, are measured without error and are independent

of the errors.
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In addition, we assume that the X s are not invariant and that no X is a perfect linear function
of the others.

# Under these assumptions, or particular subsets of them, the least-squares coefficients
have certain desirable properties as estimators of the population regression coefficients.
The least-squares coefficients are

1. linear functions of the data and therefore have simple sampling distributions,
2. unbiased estimators of the population regression coefficients,
3. the most efficient unbiased estimators of the population regression coefficients,
4. maximum-likelihood estimators, and
5. normally distributed.

# The standard error of the slope coefficient B in simple regression is

SEðBÞ ¼ SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi ' xÞ2

q

The standard error of the slope coefficient Bj in multiple regression is

SEðBjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1' R2
j

q ·
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxij ' xjÞ2

q

In both cases, these standard errors can be used in t-intervals and t-tests for the corre-
sponding population slope coefficients.

# An F-test for the omnibus null hypothesis that all the slopes are 0 can be calculated
from the analysis of variance for the regression:

F0 ¼
RegSS=k

RSS=ðn' k ' 1Þ

The omnibus F-statistic has k and n' k ' 1 degrees of freedom.
# There is an incremental F-test for the null hypothesis that a subset of q slope coefficients

is 0. This test is based on a comparison of the regression sums of squares for the full
regression model (model 1) and for a null model (model 0) that deletes the explanatory
variables in the null hypothesis:

F0 ¼
ðRegSS1 ' RegSS0Þ=q

RSS1=ðn' k ' 1Þ

This F-statistic has q and n' k ' 1 degrees of freedom.
# It is important to distinguish between interpreting a regression descriptively, as an

empirical association among variables, and structurally, as specifying causal relations
among variables. In the latter event, but not in the former, it is sensible to speak of bias
produced by omitting an explanatory variable that (1) is a cause of Y and (2) is corre-
lated with an explanatory variable in the regression equation. Bias in least-squares esti-
mation results from the correlation that is induced between the included explanatory
variable and the error by incorporating the omitted explanatory variable in the error.

# Measurement error in an explanatory variable tends to attenuate its regression coeffcient
and to make the variable an imperfect statistical control.
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7 Dummy-Variable
Regression

A n obvious limitation of multiple-regression analysis, as presented in Chapters 5 and 6, is
that it accommodates only quantitative response and explanatory variables. In this chap-

ter and the next, I will show how qualitative (i.e., categorical) explanatory variables, called fac-
tors, can be incorporated into a linear model.1

The current chapter begins by introducing a dummy-variable regressor, coded to represent a
dichotomous (i.e., two-category) factor. I proceed to show how a set of dummy regressors can
be employed to represent a polytomous (many-category) factor. I next describe how interac-
tions between quantitative and qualitative explanatory variables can be included in dummy-
regression models and how to summarize models that incorporate interactions. Finally, I
explain why it does not make sense to standardize dummy-variable and interaction regressors.

7.1 A Dichotomous Factor

Let us consider the simplest case: one dichotomous factor and one quantitative explanatory
variable. As in the two previous chapters, assume that relationships are additive—that is, that
the partial effect of each explanatory variable is the same regardless of the specific value at
which the other explanatory variable is held constant. As well, suppose that the other assump-
tions of the regression model hold: The errors are independent and normally distributed, with
zero means and constant variance.

The general motivation for including a factor in a regression is essentially the same as for
including an additional quantitative explanatory variable: (1) to account more fully for the
response variable, by making the errors smaller, and (2) even more important, to avoid a biased
assessment of the impact of an explanatory variable, as a consequence of omitting a causally
prior explanatory variable that is related to it.

For concreteness, suppose that we are interested in investigating the relationship between
education and income among women and men. Figure 7.1(a) and (b) represents two small
(idealized) populations. In both cases, the within-gender regressions of income on education
are parallel. Parallel regressions imply additive effects of education and gender on income:
Holding education constant, the ‘‘effect’’ of gender is the vertical distance between the two
regression lines, which—for parallel lines—is everywhere the same. Likewise, holding gender
constant, the ‘‘effect’’ of education is captured by the within-gender education slope, which—
for parallel lines—is the same for men and women.2

1Chapter 14 deals with qualitative response variables.
2I will consider nonparallel within-group regressions in Section 7.3.
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In Figure 7.1(a), the explanatory variables gender and education are unrelated to each other:
Women and men have identical distributions of education scores (as can be seen by projecting
the points onto the horizontal axis). In this circumstance, if we ignore gender and regress
income on education alone, we obtain the same slope as is produced by the separate within-
gender regressions. Because women have lower incomes than men of equal education, how-
ever, by ignoring gender, we inflate the size of the errors.

The situation depicted in Figure 7.1(b) is importantly different. Here, gender and education
are related, and therefore if we regress income on education alone, we arrive at a biased assess-
ment of the effect of education on income: Because women have a higher average level of edu-
cation than men, and because—for a given level of education—women’s incomes are lower,
on average, than men’s, the overall regression of income on education has a negative slope
even though the within-gender regressions have a positive slope.3

In light of these considerations, we might proceed to partition our sample by gender and per-
form separate regressions for women and men. This approach is reasonable, but it has its lim-
itations: Fitting separate regressions makes it difficult to estimate and test for gender
differences in income. Furthermore, if we can reasonably assume parallel regressions for
women and men, we can more efficiently estimate the common education slope by pooling
sample data drawn from both groups. In particular, if the usual assumptions of the regression
model hold, then it is desirable to fit the common-slope model by least squares.

One way of formulating the common-slope model is

(a)

Education

(b)

Education

Men

Women

In
co

m
e

In
co

m
e

Men

Women

Figure 7.1 Idealized data representing the relationship between income and education for popu-
lations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of educa-
tion than men. In both (a) and (b), the within-gender (i.e., partial) regressions (solid
lines) are parallel. In each graph, the overall (i.e., marginal) regression of income on
education (ignoring gender) is given by the broken line.

3That marginal and partial relationships can differ in sign is called Simpson’s paradox (Simpson, 1951). Here, the mar-
ginal relationship between income and education is negative, while the partial relationship, controlling for gender, is
positive.
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Yi =αþ βXi þ γDi þ εi ð7:1Þ

where D, called a dummy-variable regressor or an indicator variable, is coded 1 for men and
0 for women:

Di =
1 for men
0 for women

!

Thus, for women, the model becomes

Yi =αþ βXi þ γð0Þ þ εi =αþ βXi þ εi

and for men

Yi =αþ βXi þ γð1Þ þ εi = ðαþ γÞ þ βXi þ εi

These regression equations are graphed in Figure 7.2.
This is our initial encounter with an idea that is fundamental to many linear models: the dis-

tinction between explanatory variables and regressors. Here, gender is a qualitative explana-
tory variable (i.e., a factor), with categories male and female. The dummy variable D is a
regressor, representing the factor gender. In contrast, the quantitative explanatory variable edu-
cation and the regressor X are one and the same. Were we to transform education, however,
prior to entering it into the regression equation—say, by taking logs—then there would be a
distinction between the explanatory variable (education) and the regressor (log education). In
subsequent sections of this chapter, it will transpire that an explanatory variable can give rise
to several regressors and that some regressors are functions of more than one explanatory
variable.

Returning to Equation 7.1 and Figure 7.2, the coefficient γ for the dummy regressor gives
the difference in intercepts for the two regression lines. Moreover, because the within-gender

X

Y

0

α

α + γ
γ

1

β

1

β

D = 1

D = 0

Figure 7.2 The additive dummy-variable regression model. The line labeled D = 1 is for men; the
line labeled D = 0 is for women.
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regression lines are parallel, γ also represents the constant vertical separation between the lines,
and it may, therefore, be interpreted as the expected income advantage accruing to men when
education is held constant. If men were disadvantaged relative to women with the same level
of education, then γ would be negative. The coefficient α gives the intercept for women, for
whom D = 0, and β is the common within-gender education slope.

Figure 7.3 reveals the fundamental geometric ‘‘trick’’ underlying the coding of a dummy
regressor: We are fitting a regression plane to the data, but the dummy regressor D is defined
only at the values 0 and 1. The regression plane intersects the planes fX ; Y jD = 0g and
fX ; Y jD = 1g in two lines, each with slope β. Because the difference between D = 0 and D = 1
is one unit, the difference in the Y -intercepts of these two lines is the slope of the plane in the
D direction, that is, γ. Indeed, Figure 7.2 is simply the projection of the two regression lines
onto the fX ; Yg plane.

Essentially similar results are obtained if we instead code D equal to 0 for men and 1 for
women, making men the baseline (or reference) category (see Figure 7.4): The sign of γ is
reversed, because it now represents the difference in intercepts between women and men
(rather than vice versa), but its magnitude remains the same. The coefficient α now gives the
income intercept for men. It is therefore immaterial which group is coded 1 and which is coded
0, as long as we are careful to interpret the coefficients of the model—for example, the sign of
γ—in a manner consistent with the coding scheme that is employed.

X

D

Y

0

1
1

1
1

α
β

β

γ

Figure 7.3 The geometric ‘‘trick’’ underlying dummy regression: The linear regression plane is
defined only at D = 0 and D = 1, producing two regression lines with slope β and ver-
tical separation γ. The hollow circles represent women, for whom D = 0, and the solid
circles men, for whom D = 1.
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To determine whether gender affects income, controlling for education, we can test H0:
γ = 0, either by a t-test, dividing the estimate of γ by its standard error or, equivalently, by
dropping D from the regression model and formulating an incremental F-test. In either event,
the statistical-inference procedures of the previous chapter apply.

Although I have developed dummy-variable regression for a single quantitative
regressor, the method can be applied to any number of quantitative explanatory variables, as
long as we are willing to assume that the slopes are the same in the two categories of the fac-
tor—that is, that the regression surfaces are parallel in the two groups. In general, if we fit the
model

Yi =αþ β1Xi1 þ $ $ $ þ βkXik þ γDi þ εi

then, for D = 0, we have

Yi =αþ β1Xi1 þ $ $ $ þ βkXik þ εi

and, for D = 1,

Yi = ðαþ γÞ þ β1Xi1 þ $ $ $ þ βkXik þ εi

A dichotomous factor can be entered into a regression equation by formulating a dummy
regressor, coded 1 for one category of the factor and 0 for the other category. A model
incorporating a dummy regressor represents parallel regression surfaces, with the con-
stant vertical separation between the surfaces given by the coefficient of the dummy
regressor.

X

Y

0

α

α + γ

γ
1

β

1

β

D = 0

D = 1

Figure 7.4 The additive dummy-regression model coding D = 0 for men and D = 1 for women
(cf. Figure 7.2).
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7.2 Polytomous Factors

The coding method of the previous section generalizes straightforwardly to polytomous factors.
By way of illustration, recall (from the previous chapter) the Canadian occupational prestige
data. I have classified the occupations into three rough categories: (1) professional and manage-
rial occupations, (2) ‘‘white-collar’’ occupations, and (3) ‘‘blue-collar’’ occupations.4

Figure 7.5 shows conditioning plots for the relationship between prestige and each of income
and education within occupational types.5 The partial relationships between prestige and the
explanatory variables appear reasonably linear, although there seems to be evidence that the
income slope (and possibly the education slope) varies across the categories of type of occupa-
tion (a possibility that I will pursue in the next section of the chapter). Indeed, this change in
slope is an explanation of the nonlinearity in the relationship between prestige and income that
we noticed in Chapter 4. These conditioning plots do not tell the whole story, however,
because the income and education levels of the occupations are correlated, but they give us a
reasonable initial look at the data. Conditioning the plot for income by level of education (and
vice versa) is out of the question here because of the small size of the data set.

The three-category occupational-type factor can be represented in the regression equation by
introducing two dummy regressors, employing the following coding scheme:

A model for the regression of prestige on income, education, and type of occupation is then

Yi =αþ β1Xi1 þ β2Xi2 þ γ1Di1 þ γ2Di2 þ εi ð7:3Þ

where X1 is income and X2 is education. This model describes three parallel regression planes,
which can differ in their intercepts:

Professional : Yi = ðαþ γ1Þ þ β1Xi1 þ β2Xi2 þ εi

White collar :Yi = ðαþ γ2Þ þ β1Xi1 þ β2Xi2 þ εi

Blue collar : Yi =αþ β1Xi1 þ β2Xi2 þ εi

The coefficient α, therefore, gives the intercept for blue-collar occupations; γ1 represents the
constant vertical difference between the parallel regression planes for professional and blue-
collar occupations (fixing the values of education and income); and γ2 represents the constant
vertical distance between the regression planes for white-collar and blue-collar occupations
(again, fixing education and income). Assuming, for simplicity, that all coefficients are positive
and that γ1 > γ2, the geometry of the model in Equation 7.3 is illustrated in Figure 7.6.

Category D1 D2

Professional and managerial 1 0
White collar 0 1
Blue collar 0 0

(7.2)

4Although there are 102 occupations in the full data set, several are difficult to classify and consequently were dropped
from the analysis. The omitted occupations are athletes, babysitters, farmers, and ‘‘newsboys,’’ leaving us with 98
observations.
5In the preceding chapter, I also included the gender composition of the occupations as an explanatory variable, but I
omit that variable here. Conditioning plots are described in Section 3.3.4.
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Because blue-collar occupations are coded 0 for both dummy regressors, ‘‘blue collar’’
implicitly serves as the baseline category to which the other occupational-type categories are
compared. The choice of a baseline category is essentially arbitrary, for we would fit precisely
the same three regression planes regardless of which of the three occupational-type categories
is selected for this role. The values (and meaning) of the individual dummy-variable coeffi-
cients γ1 and γ2 depend, however, on which category is chosen as the baseline.

It is sometimes natural to select a particular category as a basis for comparison—an experi-
ment that includes a ‘‘control group’’ comes immediately to mind. In this instance, the individ-
ual dummy-variable coefficients are of interest, because they reflect differences between the
‘‘experimental’’ groups and the control group, holding other explanatory variables constant.

In most applications, however, the choice of a baseline category is entirely arbitrary, as it is
for the occupational prestige regression. We are, therefore, most interested in testing the null
hypothesis of no effect of occupational type, controlling for education and income,

H0 : γ1 = γ2 = 0 ð7:4Þ

but the individual hypotheses H0: γ1 = 0 and H0: γ2 = 0—which test, respectively, for differ-
ences between professional and blue-collar occupations, as well as between white-collar and
blue-collar occupations—are of less intrinsic interest.6 The null hypothesis in Equation 7.4 can

X2

Y

1

1

1

1

1

1

β2

β2β2

β2β1

β1

β1

α

α + γ1

α + γ2

X1

Figure 7.6 The additive dummy-regression model with two quantitative explanatory variables X1

and X2 represents parallel planes with potentially different intercepts in the fX1; X2;Yg
space.

6The essential point here is not that the separate hypotheses are of no interest but that they are an arbitrary subset of the
pairwise differences among the categories. In the present case, where there are three categories, the individual hypoth-
eses represent two of the three pairwise group comparisons. The third comparison, between professional and white-
collar occupations, is not directly represented in the model, although it is given indirectly by the difference γ1 % γ2.
See Section 7.2.1 for an elaboration of this point.
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be tested by the incremental sum-of-squares approach, dropping the two dummy variables for
type of occupation from the model.

I have demonstrated how to model the effects of a three-category factor by coding two
dummy regressors. It may seem more natural, however, to treat the three occupational cate-
gories symmetrically, coding three dummy regressors, rather than arbitrarily selecting one cate-
gory as the baseline:

Then, for the jth occupational type, we would have

Yi = ðαþ γ jÞ þ β1Xi1 þ β2Xi2 þ εi

The problem with this procedure is that there are too many parameters: We have used four
parameters (α, γ1, γ2, γ3) to represent only three group intercepts. As a consequence, we could
not find unique values for these four parameters even if we knew the three population regres-
sion lines. Likewise, we cannot calculate unique least-squares estimates for the model because
the set of three dummy variables is perfectly collinear; for example, as is apparent from the
table in (7.5), D3 = 1% D1 % D2.

In general, then, for a polytomous factor with m categories, we need to code m% 1 dummy
regressors. One simple scheme is to select the last category as the baseline and to code Dij = 1
when observation i falls in category j, for j = 1; . . . ;m% 1, and 0 otherwise:

A polytomous factor can be entered into a regression by coding a set of 0/1 dummy
regressors, one fewer than the number of categories of the factor. The ‘‘omitted’’ cate-
gory, coded 0 for all dummy regressors in the set, serves as a baseline to which the other
categories are compared. The model represents parallel regression surfaces, one for each
category of the factor.

When there is more than one factor, and if we assume that the factors have additive effects, we
can simply code a set of dummy regressors for each. To test the hypothesis that the effect of a

Category D1 D2 D3

Professional and managerial 1 0 0
White collar 0 1 0
Blue collar 0 0 1

Category D1 D2 $ $ $ Dm%1

1 1 0 $ $ $ 0
2 0 1 $ $ $ 0
..
. ..

. ..
. ..

.

m%1 0 0 $ $ $ 1
m 0 0 $ $ $ 0

(7.5)

(7.6)
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factor is nil, we delete its dummy regressors from the model and compute an incremental F-test
of the hypothesis that all the associated coefficients are 0.

Regressing occupational prestige ðY Þ on income ðX1Þ and education ðX2Þ produces the fitted
regression equation

bY = % 7:621þ 0:001241X1 þ 4:292X2 R2 = :81400

ð3:116Þ ð0:000219Þ ð0:336Þ

As is common practice, I have shown the estimated standard error of each regression coeffi-
cient in parentheses beneath the coefficient. The three occupational categories differ consider-
ably in their average levels of prestige:

Inserting dummy variables for type of occupation into the regression equation, employing the
coding scheme shown in Equation 7.2, produces the following results:

bY = % 0:6229þ 0:001013X1 þ 3:673X2 þ 6:039D1 % 2:737D2

ð5:2275Þ ð0:000221Þ ð0:641Þ ð3:867Þ ð2:514Þ
R2 = :83486

ð7:7Þ

The three fitted regression equations are, therefore,

Professional : bY = 5:416þ 0:001013X1 þ 3:673X2

White collar : bY =%3:360þ 0:001013X1 þ 3:673X2

Blue collar : bY =%0:623þ 0:001013X1 þ 3:673X2

where the intercept for professional occupations is %0:623þ 6:039 = 5:416, and the intercept
for white-collar occupations is %0:623% 2:737 = % 3:360.

Note that the coefficients for both income and education become slightly smaller when type
of occupation is controlled. As well, the dummy-variable coefficients (or, equivalently, the
category intercepts) reveal that when education and income levels are held constant statisti-
cally, the difference in average prestige between professional and blue-collar occupations
declines greatly, from 67:85% 35:53 = 32:32 points to 6:04 points. The difference between
white-collar and blue-collar occupations is reversed when income and education are held con-
stant, changing from 42:24% 35:53 = þ 6:71 points to %2:74 points. That is, the greater pres-
tige of professional occupations compared to blue-collar occupations appears to be due mostly
to differences in education and income between these two classes of occupations. While white-
collar occupations have greater prestige, on average, than blue-collar occupations, they have
lower prestige than blue-collar occupations of the same educational and income levels.7

Category Number of Cases Mean Prestige

Professional and managerial 31 67.85
White collar 23 42.24
Blue collar 44 35.53

All occupations 98 47.33

7These conclusions presuppose that the additive model that we have fit to the data is adequate, which, as we will see in
Section 7.3.5, is not the case.
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To test the null hypothesis of no partial effect of type of occupation,

H0 : γ1 = γ2 = 0

we can calculate the incremental F-statistic

F0 =
n% k % 1

q
·

R2
1 % R2

0

1% R2
1

=
98% 4% 1

2
· :83486% :81400

1% :83486
= 5:874 ð7:8Þ

with 2 and 93 degrees of freedom, for which p = :0040. The occupational-type effect is there-
fore statistically significant but (examining the coefficient standard errors) not very precisely
estimated. The education and income coefficients are several times their respective standard
errors and hence are highly statistically significant.8

7.2.1 Coefficient Quasi-Variances*

Consider a dummy-regression model with p quantitative explanatory variables and an
m-category factor:

Yi =αþ β1Xi1 þ $ $ $ þ βpXip þ γ1Di1 þ γ2Di2 þ $ $ $ þ γm%1Di;m%1 þ εi

The dummy-variable coefficients γ1; γ2; . . . ; γm%1 represent differences (or contrasts) between
each of the other categories of the factor and the reference category m, holding constant
X1; . . . ;Xp. If we are interested in a comparison between any other two categories, we can sim-
ply take the difference in their dummy-regressor coefficients. Thus, in the preceding example
(letting C1 [ bγ 1 and C2 [ bγ 2 ),

C1 % C2 = 6:039% ð%2:737Þ= 8:776

is the estimated average difference in prestige between professional and white-collar occupa-
tions of equal income and education.

Suppose, however, that we want to know the standard error of C1 % C2. The standard errors
of C1 and C2 are available directly in the regression ‘‘output’’ (Equation 7.7), but to compute
the standard error of C1 % C2, we need in addition the estimated sampling covariance of these
two coefficients. That is,9

SEðC1 % C2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðC1Þ þ bV ðC2Þ % 2 · bCðC1;C2Þ

q

where bV ðCjÞ= SEðCjÞ
# $2

is the estimated sampling variance of coefficient Cj, and bCðC1;C2Þ
is the estimated sampling covariance of C1 and C2. For the occupational prestige regression,
bC ðC1;C2Þ= 6:797, and so

8In classical hypothesis testing, a result is ‘‘statistically significant’’ if the p-value for the null hypothesis is as small as
or smaller than a preestablished level, typically .05. Strictly speaking, then, a result cannot be ‘‘highly statistically sig-
nificant’’—it is either statistically significant or not. I regard the phrase ‘‘highly statistically significant,’’ which appears
commonly in research reports, as a harmless shorthand for a very small p-value, however, and will occasionally, as
here, use it in this manner.
9See online Appendix D on probability and estimation. The computation of regression-coefficient covariances is taken
up in Chapter 9.
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SEðC1 % C2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:867 2 þ 2:5142 % 2 · 6:797

p
= 2:771

We can use this standard error in the normal manner for a t-test of the difference between C1

and C2.10 For example, noting that the difference exceeds twice its standard error suggests that
it is statistically significant.

Although computer programs for regression analysis typically report the covariance matrix
of the regression coefficients if asked to do so, it is not common to include coefficient covar-
iances in published research along with estimated coefficients and standard errors, because
with k þ 1 coefficients in the model, there are kðk þ 1Þ=2 variances and covariances among
them—a potentially large number. Readers of a research report are therefore put at a disadvan-
tage by the arbitrary choice of a reference category in dummy regression, because they are
unable to calculate the standard errors of the differences between all pairs of categories of a
factor.

Quasi-variances of dummy-regression coefficients (Firth, 2003; Firth & De Menezes, 2004)
speak to this problem. Let eV ðCjÞ denote the quasi-variance of dummy coefficient Cj. Then,

SEðCj % Cj 0 Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV ðCjÞ þ eV ðCj 0 Þ

q

The squared relative error of this approximation for the contrast Cj % Cj 0 is

REjj 0 [
eV ðCj % Cj 0 Þ
bV ðCj % Cj 0 Þ

=
eV ðCjÞ þ eV ðCj 0 Þ

bV ðCjÞ þ bV ðCj 0 Þ % 2 · bCðCj;Cj 0 Þ

The approximation is accurate for this contrast when REjj 0 is close to 1 or, equivalently, when

logðREjj 0 Þ= log eV ðCjÞ þ eV ðCj 0 Þ
h i

% log bV ðCjÞ þ bV ðCj 0 Þ % 2 · bCðCj;Cj 0 Þ
h i

is close to 0. The quasi-variances eV ðCjÞ are therefore selected to minimize the sum of squared

log relative errors of approximation over all pairwise contrasts,
P

j < j 0 logðREjj 0 Þ
h i2

. The result-

ing errors of approximation are typically very small (Firth, 2003; Firth & De Menezes, 2004).
The following table gives dummy-variable coefficients, standard errors, and quasi-variances

for type of occupation in the Canadian occupational prestige regression:

I have set to 0 the coefficient (and its standard error) for the baseline category, blue collar. The
negative quasi-variance for the white-collar coefficient is at first blush disconcerting (after all,
ordinary variances cannot be negative), but it is not wrong: The quasi-variances are computed
to provide accurate variance approximations for coefficient differences; they do not apply

Category Cj SE(Cj) eV(Cj)

Professional 6.039 3.867 8.155
White collar %2.737 2.514 %0.4772
Blue collar 0 0 6.797

10Testing all differences between pairs of factor categories raises an issue of simultaneous inference, however. See the
discussion of Scheffé confidence intervals in Section 9.4.4.
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directly to the coefficients themselves. For the contrast between professional and white-collar
occupations, we have

SEðC1 % C2Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:155% 0:4772
p

= 2:771

Likewise, for the contrast between professional and blue-collar occupations,

C1 % C3 = 6:039% 0 = 6:039

SEðC1 % C3Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:155þ 6:797
p

= 3:867

Note that in this application, the quasi-variance ‘‘approximation’’ to the standard error proves
to be exact, and indeed this is necessarily the case when there are just three factor categories,
because there are then just three pairwise differences among the categories to capture.11

7.3 Modeling Interactions

Two explanatory variables are said to interact in determining a response variable when the par-
tial effect of one depends on the value of the other. The additive models that we have consid-
ered thus far therefore specify the absence of interactions. In this section, I will explain how
the dummy-variable regression model can be modified to accommodate interactions between
factors and quantitative explanatory variables.12

The treatment of dummy-variable regression in the preceding two sections has assumed par-
allel regressions across the several categories of a factor. If these regressions are not parallel,
then the factor interacts with one or more of the quantitative explanatory variables. The
dummy-regression model can easily be modified to reflect these interactions.

For simplicity, I return to the contrived example of Section 7.1, examining the regression of
income on gender and education. Consider the hypothetical data shown in Figure 7.7 (and con-
trast these examples with those shown in Figure 7.1 on page 129, where the effects of gender
and education are additive). In Figure 7.7(a) [as in Figure 7.1(a)], gender and education are
independent, because women and men have identical education distributions; in Figure 7.7(b)
[as in Figure 7.1(b)], gender and education are related, because women, on average, have
higher levels of education than men.

It is apparent in both Figure 7.7(a) and Figure 7.7(b), however, that the within-gender regres-
sions of income on education are not parallel: In both cases, the slope for men is larger than
the slope for women. Because the effect of education varies by gender, education and gender
interact in affecting income.

It is also the case, incidentally, that the effect of gender varies by education. Because the
regressions are not parallel, the relative income advantage of men changes (indeed, grows) with
education. Interaction, then, is a symmetric concept—that the effect of education varies by gen-
der implies that the effect of gender varies by education (and, of course, vice versa).

The simple examples in Figures 7.1 and 7.7 illustrate an important and frequently misunder-
stood point: Interaction and correlation of explanatory variables are empirically and logically dis-
tinct phenomena. Two explanatory variables can interact whether or not they are related to one

11For the details of the computation of quasi-variances, see Chapter 15, Exercise 15.11.
12Interactions between factors are taken up in the next chapter on analysis of variance; interactions between quantitative
explanatory variables are discussed in Section 17.1 on polynomial regression.
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another statistically. Interaction refers to the manner in which explanatory variables combine to
affect a response variable, not to the relationship between the explanatory variables themselves.

Two explanatory variables interact when the effect on the response variable of one
depends on the value of the other. Interaction and correlation of explanatory variables
are empirically and logically distinct phenomena. Two explanatory variables can interact
whether or not they are related to one another statistically. Interaction refers to the man-
ner in which explanatory variables combine to affect a response variable, not to the rela-
tionship between the explanatory variables themselves.

7.3.1 Constructing Interaction Regressors

We could model the data in Figure 7.7 by fitting separate regressions of income on educa-
tion for women and men. As before, however, it is more convenient to fit a combined model,
primarily because a combined model facilitates a test of the gender-by-education interaction.
Moreover, a properly formulated unified model that permits different intercepts and slopes in
the two groups produces the same fit to the data as separate regressions: The full sample is
composed of the two groups, and, consequently, the residual sum of squares for the full sample
is minimized when the residual sum of squares is minimized in each group.13

(a)

Education

Men

Women

(b)

Education

Men

Women

In
co

m
e

In
co

m
e

Figure 7.7 Idealized data representing the relationship between income and education for popu-
lations of men (filled circles) and women (open circles). In (a), there is no relationship
between education and gender; in (b), women have a higher average level of educa-
tion than men. In both cases, the within-gender regressions (solid lines) are not paral-
lel—the slope for men is greater than the slope for women—and, consequently,
education and gender interact in affecting income. In each graph, the overall regres-
sion of income on education (ignoring gender) is given by the broken line.

13See Exercise 7.4.
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The following model accommodates different intercepts and slopes for women and men:

Yi =αþ βXi þ γDi þ δðXiDiÞ þ εi ð7:9Þ

Along with the quantitative regressor X for education and the dummy regressor D for gender, I
have introduced the interaction regressor XD into the regression equation. The interaction
regressor is the product of the other two regressors; although XD is therefore a function of X
and D, it is not a linear function, and perfect collinearity is avoided.14

For women, model (7.9) becomes

Yi =αþ βXi þ γð0Þ þ δðXi $ 0Þ þ εi

=αþ βXi þ εi

and for men

Yi =αþ βXi þ γð1Þ þ δðXi $ 1Þ þ εi

= ðαþ γÞ þ ðβþ δÞXi þ εi

These regression equations are graphed in Figure 7.8: The parameters α and β are, respectively,
the intercept and slope for the regression of income on education among women (the baseline
category for gender); γ gives the difference in intercepts between the male and female groups;
and δ gives the difference in slopes between the two groups. To test for interaction, therefore,
we may simply test the hypothesis H0: δ= 0.

X

Y

0

α

α+γ
1

β

1

β+δ

D = 1

D = 0

Figure 7.8 The dummy-variable regression model with an interaction regressor. The line labeled
D = 1 is for men; the line labeled D = 0 is for women.

14If this procedure seems illegitimate, then think of the interaction regressor as a new variable, say Z [ XD. The model
is linear in X, D, and Z. The ‘‘trick’’ of introducing an interaction regressor is similar to the trick of formulating dummy
regressors to capture the effect of a factor: In both cases, there is a distinction between explanatory variables and regres-
sors. Unlike a dummy regressor, however, the interaction regressor is a function of both explanatory variables.
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Interactions can be incorporated by coding interaction regressors, taking products of
dummy regressors with quantitative explanatory variables. The resulting model permits
different slopes in different groups—that is, regression surfaces that are not parallel.

In the additive, no-interaction model of Equation 7.1 and Figure 7.2 (page 130), the dummy-
regressor coefficient γ represents the unique partial effect of gender (i.e., the expected income
difference between men and women of equal education, regardless of the value at which educa-
tion is fixed), while the slope β represents the unique partial effect of education (i.e., the
within-gender expected increment in income for a one-unit increase in education, for both
women and men). In the interaction model of Equation 7.9 and Figure 7.8, in contrast, γ is no
longer interpretable as the unqualified income difference between men and women of equal
education.

Because the within-gender regressions are not parallel, the separation between the regression
lines changes; here, γ is simply the separation at X = 0—that is, above the origin. It is gener-
ally no more important to assess the expected income difference between men and women of 0
education than at other educational levels, and therefore the difference-in-intercepts parameter
γ is not of special interest in the interaction model. Indeed, in many instances (although not
here), the value X = 0 may not occur in the data or may be impossible (as, for example, if X is
weight). In such cases, γ has no literal interpretation in the interaction model (see Figure 7.9).

Likewise, in the interaction model, β is not the unqualified partial effect of education but
rather the effect of education among women. Although this coefficient is of interest, it is not

X

Y

0 x

α

D = 1

D = 0

α + γ

Figure 7.9 Why the difference in intercepts does not represent a meaningful partial effect for a
factor when there is interaction: The difference-in-intercepts parameter γ is negative
even though, within the range of the data, the regression line for the group coded
D = 1 is above the line for the group coded D = 0.
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necessarily more important than the effect of education among men (βþ δ), which does not
appear directly in the model.

7.3.2 The Principle of Marginality

Following Nelder (1977), we say that the separate partial effects, or main effects, of educa-
tion and gender are marginal to the education-by-gender interaction. In general, we neither test
nor interpret the main effects of explanatory variables that interact. If, however, we can rule
out interaction either on theoretical or on empirical grounds, then we can proceed to test, esti-
mate, and interpret the main effects.

As a corollary to this principle, it does not generally make sense to specify and fit models
that include interaction regressors but that omit main effects that are marginal to them. This is
not to say that such models—which violate the principle of marginality—are uninterpretable:
They are, rather, not broadly applicable.

The principle of marginality specifies that a model including a high-order term (such as
an interaction) should normally also include the ‘‘lower-order relatives’’ of that term (the
main effects that ‘‘compose’’ the interaction).

Suppose, for example, that we fit the model

Yi =αþ βXi þ δðXiDiÞ þ εi

which omits the dummy regressor D but includes its ‘‘higher-order relative’’ XD. As shown in
Figure 7.10(a), this model describes regression lines for women and men that have the same

(a)

X

Y

0

α

1
β

1

β + δ
D = 0

D = 1

(b)

X

Y

0

α
α + γ

1

δ

D = 1

D = 0

Figure 7.10 Two models that violate the principle of marginality: In (a), the dummy regressor D
is omitted from the model EðYÞ=αþ βX þ δðXDÞ; in (b), the quantitative explanatory
variable X is omitted from the model EðYÞ=αþ γDþ δðXDÞ. These models violate
the principle of marginality because they include the term XD, which is a higher-
order relative of both X and D (one of which is omitted from each model).
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intercept but (potentially) different slopes, a specification that is peculiar and of no substantive
interest. Similarly, the model

Yi =αþ γDi þ δðXiDiÞ þ εi

graphed in Figure 7.10(b), constrains the slope for women to 0, which is needlessly restrictive.
Moreover, in this model, the choice of baseline category for D is consequential.

7.3.3 Interactions With Polytomous Factors

The method for modeling interactions by forming product regressors is easily extended to
polytomous factors, to several factors, and to several quantitative explanatory variables. I will
use the Canadian occupational prestige regression to illustrate the application of the method,
entertaining the possibility that occupational type interacts both with income (X1) and with edu-
cation (X2):

Yi =αþ β1Xi1 þ β2Xi2 þ γ1Di1 þ γ2Di2

þ δ11Xi1Di1 þ δ12Xi1Di2 þ δ21Xi2Di1 þ δ22Xi2Di2 þ εi ð7:10Þ

We require one interaction regressor for each product of a dummy regressor with a quantitative
explanatory variable. The regressors X1D1 and X1D2 capture the interaction between income
and occupational type; X2D1 and X2D2 capture the interaction between education and occupa-
tional type. The model therefore permits different intercepts and slopes for the three types of
occupations:

Professional : Yi = ðαþ γ1Þ þ ðβ1 þ δ11ÞXi1 þ ðβ2 þ δ21ÞXi2 þ εi

White collar : Yi = ðαþ γ2Þ þ ðβ1 þ δ12ÞXi1 þ ðβ2 þ δ22ÞXi2 þ εi

Blue collar : Yi = α þ β1Xi1 þ β2Xi2 þ εi

ð7:11Þ

Blue-collar occupations, which are coded 0 for both dummy regressors, serve as the baseline
for the intercepts and slopes of the other occupational types. As in the no-interaction model,
the choice of baseline category is generally arbitrary, as it is here, and is inconsequential.
Fitting the model in Equation 7.10 to the prestige data produces the following results:

bY i = 2:276

ð7:057Þ
þ 0:003522X1

ð0:000556Þ
þ 1:713X2

ð0:957Þ
þ 15:35D1

ð13:72Þ
% 33:54D2

ð17:65Þ
% 0:002903X1D1

ð0:000599Þ
% 0:002072X1D2

ð0:000894Þ
þ 1:388X2D1

ð1:289Þ
þ 4:291X2D2

ð1:757Þ
R2 = :8747 ð7:12Þ

This example is discussed further in the following section.

7.3.4 Interpreting Dummy-Regression Models With Interactions

It is difficult in dummy-regression models with interactions (and in other complex statistical
models) to understand what the model is saying about the data simply by examining the

7.3 Modeling Interactions 145



regression coefficients. One approach to interpretation, which works reasonably well in a rela-
tively straightforward model such as Equation 7.12, is to write out the implied regression equa-
tion for each group (using Equations 7.11):

Professional : dPrestige = 17:63þ 0:000619 · Incomeþ 3:101 · Education
White collar : dPrestige =% 31:26þ 0:001450 · Incomeþ 6:004 · Education
Blue collar : dPrestige = 2:276þ 0:003522 · Incomeþ 1:713 · Education

ð7:13Þ

From these equations, we can see, for example, that income appears to make much more differ-
ence to prestige in blue-collar occupations than in white-collar occupations and has even less
impact on prestige in professional and managerial occupations. Education, in contrast, has the
largest impact on prestige among white-collar occupations and has the smallest effect in blue-
collar occupations.

An alternative approach (from Fox, 1987, 2003; Fox & Andersen, 2006) that generalizes
readily to more complex models is to examine the high-order terms of the model. In the illus-
tration, the high-order terms are the interactions between income and type and between educa-
tion and type.

& Focusing in turn on each high-order term, we allow the variables in the term to range
over their combinations of values in the data, fixing other variables to typical values.
For example, for the interaction between type and income, we let type of occupation
take on successively the categories blue collar, white collar, and professional [for which
the dummy regressors D1 and D2 are set to the corresponding values given in the table
(7.5) on page 136], in combination with income values between $1500 and $26,000 (the
approximate range of income in the Canadian occupational prestige data set); education
is fixed to its average value in the data, X 2 = 10:79.

& We next compute the fitted value of prestige at each combination of values of income
and type of occupation. These fitted values are graphed in the ‘‘effect display’’shown in
the upper panel of Figure 7.11; the lower panel of this figure shows a similar effect dis-
play for the interaction between education and type of occupation, holding income at its
average value. The broken lines in Figure 7.11 give – 2 standard errors around the fitted
values—that is, approximate 95% pointwise confidence intervals for the effects.15 The
nature of the interactions between income and type and between education and type is
readily discerned from these graphs.

7.3.5 Hypothesis Tests for Main Effects and Interactions

To test the null hypothesis of no interaction between income and type, H0: δ11 = δ12 = 0, we
need to delete the interaction regressors X1D1 and X1D2 from the full model (Equation 7.10)
and calculate an incremental F-test; likewise, to test the null hypothesis of no interaction
between education and type, H0: δ21 = δ22 = 0, we delete the interaction regressors X2D1 and
X2D2 from the full model. These tests, and tests for the main effects of income, education, and
occupational type, are detailed in Tables 7.1 and 7.2: Table 7.1 gives the regression sums of
squares for several models, which, along with the residual sum of squares for the full model,

15For standard errors of fitted values, see Exercise 9.14.
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RSS1 = 3553, are the building blocks of the incremental F-tests shown in Table 7.2. Table 7.3
shows the hypothesis tested by each of the incremental F-statistics in Table 7.2.

Although the analysis-of-variance table (Table 7.2) conventionally shows the tests for the
main effects of education, income, and type before the education-by-type and income-by-type
interactions, the structure of the model makes it sensible to examine the interactions first:
Conforming to the principle of marginality, the test for each main effect is computed assuming
that the interactions that are higher-order relatives of the main effect are 0 (as shown in Table
7.3). Thus, for example, the test for the income main effect assumes that the income-by-type

Table 7.1 Regression Sums of Squares for Several Models Fit to the Canadian
Occupational Prestige Data

Regression
Model Terms Parameters Sum of Squares df

1 I,E,T,I · T,E · T
α; β1;β2; γ1; γ2;
δ11; δ12; δ21; δ22

24,794. 8

2 I,E,T,I · T
α; β1;β2; γ1; γ2;

δ11; δ12
24,556. 6

3 I,E,T,E · T
α; β1;β2; γ1; γ2;

δ21; δ22
23,842. 6

4 I,E,T α;β1;β2; γ1; γ2 23,666. 4

5 I,E α;β1;β2 23,074. 2

6 I,T,I · T
α; β1; γ1; γ2;

δ11; δ12
23,488. 5

7 E,T,E · T
α; β2; γ1; γ2;

δ21; δ22
22,710. 5

NOTE: These sums of squares are the building blocks of incremental F-tests for the main and

interaction effects of the explanatory variables. The following code is used for ‘‘terms’’ in the

model: I, income; E, education; T, occupational type.

Table 7.2 Analysis-of-Variance Table, Showing Incremental F-Tests for the
Terms in the Canadian Occupational Prestige Regression

Source Models
Contrasted

Sum of
Squares

df F p

Income 3%7 1132. 1 28.35 <.0001
Education 2%6 1068. 1 26.75 <.0001
Type 4%5 592. 2 7.41 <.0011
Income · Type 1%3 952. 2 11.92 <.0001
Education · Type 1%2 238. 2 2.98 .056
Residuals 3553. 89

Total 28,347. 97
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interaction is absent (i.e., that δ11 = δ12 = 0), but not that the education-by-type interaction is
absent (δ21 = δ22 = 0).16

The principle of marginality serves as a guide to constructing incremental F-tests for the
terms in a model that includes interactions.

In this case, then, there is weak evidence of an interaction between education and type of occu-
pation and much stronger evidence of an income-by-type interaction. Considering the small
number of cases, we are squeezing the data quite hard, and it is apparent from the coefficient
standard errors (in Equation 7.12) and from the effect displays in Figure 7.11 that the interac-
tions are not precisely estimated. The tests for the main effects of income, education, and type,
computed assuming that the higher-order relatives of each such term are absent, are all highly
statistically significant. In light of the strong evidence for an interaction between income and
type, however, the income and type main effects are not really of interest.17

The degrees of freedom for the several sources of variation add to the total degrees of free-
dom, but—because the regressors in different sets are correlated—the sums of squares do not
add to the total sum of squares.18 What is important here (and more generally) is that sensible
hypotheses are tested, not that the sums of squares add to the total sum of squares.

7.4 A Caution Concerning Standardized Coefficients

In Chapter 5, I explained the use—and limitations—of standardized regression coefficients. It
is appropriate to sound another cautionary note here: Inexperienced researchers sometimes

Table 7.3 Hypotheses Tested by the Incremental F-Tests in Table 7.2

Source Models Contrasted Null Hypothesis

Income 3–7 β1 = 0 jδ11 = δ12 = 0
Education 2–6 β2 = 0 jδ21 = δ22 = 0
Type 4–5 γ1 = γ2 = 0 jδ11 = δ12 = δ21 = δ22 = 0
Income · Type 1–3 δ11 = δ12 = 0
Education · Type 1–2 δ21 = δ22 = 0

16Tests constructed to conform to the principle of marginality are sometimes called ‘‘Type II’’ tests, terminology intro-
duced by the SAS statistical software package. This terminology and alternative tests are described in the next chapter.
17We tested the occupational type main effect in Section 7.2 (Equation 7.8 on page 138), but using an estimate of error
variance based on Model 4, which does not contain the interactions. In Table 7.2, the estimated error variance is based
on the full model, Model 1. As mentioned in Chapter 6, sound general practice is to use the largest model fit to the data
to estimate the error variance, even when, as is frequently the case, this model includes effects that are not statistically
significant. The largest model necessarily has the smallest residual sum of squares, but it also has the fewest residual
degrees of freedom. These two factors tend to offset one another, and it usually makes little difference whether the esti-
mated error variance is based on the full model or on a model that deletes nonsignificant terms. Nevertheless, using the
full model ensures an unbiased estimate of the error variance.
18See Section 10.2 for a detailed explanation of this phenomenon.
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report standardized coefficients for dummy regressors. As I have explained, an unstandardized
coefficient for a dummy regressor is interpretable as the expected response-variable difference
between a particular category and the baseline category for the dummy-regressor set (control-
ling, of course, for the other explanatory variables in the model).

If a dummy-regressor coefficient is standardized, then this straightforward interpretation is
lost. Furthermore, because a 0/1 dummy regressor cannot be increased by one standard devia-
tion, the usual interpretation of a standardized regression coefficient also does not apply.
Standardization is a linear transformation, so many characteristics of the regression model—
the value of R2, for example—do not change, but the standardized coefficient itself is not
directly interpretable. These difficulties can be avoided by standardizing only the response
variable and quantitative explanatory variables in a regression, leaving dummy regressors in
0/1 form.

A similar point applies to interaction regressors. We may legitimately standardize a quantita-
tive explanatory variable prior to taking its product with a dummy regressor, but to standardize
the interaction regressor itself is not sensible: The interaction regressor cannot change indepen-
dently of the main-effect regressors that compose it and are marginal to it.

It is not sensible to standardize dummy regressors or interaction regressors.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 7.1. Suppose that the values %1 and 1 are used for the dummy regressor D in
Equation 7.1 instead of 0 and 1. Write out the regression equations for men and women, and
explain how the parameters of the model are to be interpreted. Does this alternative coding of
the dummy regressor adequately capture the effect of gender? Is it fair to conclude that the
dummy-regression model will ‘‘work’’ properly as long as two distinct values of the dummy
regressor are employed, one each for women and men? Is there a reason to prefer one coding
to another?

Exercise 7.2. Adjusted means (based on Section 7.2): Let Y 1 represent the (‘‘unadjusted’’)
mean prestige score of professional occupations in the Canadian occupational prestige data, Y 2

that of white-collar occupations, and Y 3 that of blue-collar occupations. Differences among the
Y j may partly reflect differences among occupational types in their income and education lev-
els. In the dummy-variable regression in Equation 7.7, type-of-occupation differences are
‘‘controlled’’for income and education, producing the fitted regression equation

bY = Aþ B1X1 þ B2X2 þ C1D1 þ C2D2

Consequently, if we fix income and education at particular values—say, X1 = x1 and X2 = x2—
then the fitted prestige scores for the several occupational types are given by (treating ‘‘blue
collar’’as the baseline type):
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bY 1 = ðAþ C1Þ þ B1x1 þ B2x2

bY 2 = ðAþ C2Þ þ B1x1 þ B2x2

bY 3 = A þ B1x1 þ B2x2

(a) Note that the differences among the bYj depend only on the dummy-variable coeffi-
cients C1 and C2 and not on the values of x1 and x2. Why is this so?

(b) When x1 = X 1 and x2 = X 2, the bYj are called adjusted means and are denoted eYj .
How can the adjusted means eYj be interpreted? In what sense is eYj an ‘‘adjusted’’
mean?

(c) Locate the ‘‘unadjusted’’ and adjusted means for women and men in each of
Figures 7.1(a) and (b) (on page 129). Construct a similar figure in which the difference
between adjusted means is smaller than the difference in unadjusted means.

(d) Using the results in the text, along with the mean income and education values for the
three occupational types, compute adjusted mean prestige scores for each of the three
types, controlling for income and education. Compare the adjusted with the unadjusted
means for the three types of occupations and comment on the differences, if any,
between them.

Exercise 7.3. Can the concept of an adjusted mean, introduced in Exercise 7.2, be extended to
a model that includes interactions? If so, show how adjusted means can be found for the data
in Figure 7.7(a) and (b) (on page 141).

Exercise 7.4. Verify that the regression equation for each occupational type given in Equations
7.13 (page 146) is identical to the results obtained by regressing prestige on income and educa-
tion separately for each of the three types of occupations. Explain why this is the case.

Summary

& A dichotomous factor can be entered into a regression equation by formulating a dummy
regressor, coded 1 for one category of the variable and 0 for the other category. A model
incorporating a dummy regressor represents parallel regression surfaces, with the con-
stant separation between the surfaces given by the coefficient of the dummy regressor.

& A polytomous factor can be entered into a regression by coding a set of 0/1 dummy
regressors, one fewer than the number of categories of the factor. The ‘‘omitted’’ cate-
gory, coded 0 for all dummy regressors in the set, serves as a baseline to which the other
categories are compared. The model represents parallel regression surfaces, one for each
category of the factor.

& Two explanatory variables interact when the effect on the response variable of one
depends on the value of the other. Interactions can be incorporated by coding interaction
regressors, taking products of dummy regressors with quantitative explanatory variables.
The model permits different slopes in different groups—that is, regression surfaces that
are not parallel.

& Interaction and correlation of explanatory variables are empirically and logically dis-
tinct phenomena. Two explanatory variables can interact whether or not they are related
to one another statistically. Interaction refers to the manner in which explanatory
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variables combine to affect a response variable, not to the relationship between the
explanatory variables themselves.

& The principle of marginality specifies that a model including a high-order term (such as
an interaction) should normally also include the lower-order relatives of that term (the
main effects that ‘‘compose’’ the interaction). The principle of marginality also serves as
a guide to constructing incremental F-tests for the terms in a model that includes interac-
tions and for examining the effects of explanatory variables.

& It is not sensible to standardize dummy regressors or interaction regressors.
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8 Analysis of Variance

I introduced the term analysis of variance in Chapter 5 to describe the partition of the
response-variable sum of squares into ‘‘explained’’ and ‘‘unexplained’’ components, noting

that this decomposition applies generally to linear models. For historical reasons, analysis of
variance (abbreviated ANOVA) also refers to procedures for fitting and testing linear models in
which the explanatory variables are categorical.1

When there is a single factor (also termed a classification), these procedures are called one-
way ANOVA, the subject of the first section of this chapter. Two factors produce two-way
analysis of variance, three factors, three-way ANOVA, and so on. Two-way ANOVA is taken
up in Section 8.2 and higher-way ANOVA in Section 8.3.

The dummy-variable regression model of the previous chapter incorporates both quantitative
and categorical explanatory variables; in Section 8.4, we will examine an alternative formula-
tion of this model called analysis of covariance (ANCOVA).

Finally, I will explain how linear contrasts can be used to ‘‘customize’’ hypothesis tests in
ANOVA and in linear models more generally.

Readers desiring a basic introduction to analysis of variance, bypassing most of the subtle-
ties and details, can, without loss of coherence, read Section 8.1 on one-way ANOVA through
Subsection 8.1.1 and Section 8.2 on two-way ANOVA through Subsection 8.2.2. These parts
of the chapter explain how to perform analysis of variance using dummy-variable regressors.

8.1 One-Way Analysis of Variance

In Chapter 7, we learned how to construct dummy regressors to represent the effects of factors
alongside those of quantitative explanatory variables. Suppose, however, that there are no
quantitative explanatory variables—only a single factor. For example, for a three-category clas-
sification, we have the model

Yi ¼ αþ γ1Di1 þ γ2Di2 þ εi ð8:1Þ

employing the following coding for the dummy regressors:

1The methods and terminology of analysis of variance were introduced by the great British statistician R. A. Fisher
(1925). Fisher’s many other seminal contributions to statistics include the technique of randomization in experimental
design and the method of maximum likelihood.
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The expectation of the response variable in each group (i.e., in each category or level of the
factor) is the population group mean, denoted µj for the jth group. Because the error ε has a
mean of 0 under the usual linear-model assumptions, taking the expectation of both sides of
the model (Equation 8.1) produces the following relationships between group means and model
parameters:

Group 1: µ1 ¼ αþ γ1 · 1þ γ2 · 0 ¼ αþ γ1

Group 2: µ2 ¼ αþ γ1 · 0þ γ2 · 1 ¼ αþ γ2

Group 3: µ3 ¼ αþ γ1 · 0þ γ2 · 0 ¼ α

There are three parameters (α, γ1; and γ2) and three group means, so we can solve uniquely
for the parameters in terms of the group means:

α ¼ µ3

γ1 ¼ µ1 % µ3

γ2 ¼ µ2 % µ3

It is not surprising that α represents the mean of the baseline category (Group 3) and that γ1

and γ2 capture differences between the other group means and the mean of the baseline
category.

One-way ANOVA focuses on testing for differences among group means. The omnibus
F-statistic for the model (Equation 8.1) tests H0: γ1 ¼ γ2 ¼ 0, which corresponds to H0:
µ1 ¼ µ2 ¼ µ3, the null hypothesis of no differences among the population group means. Our
consideration of one-way ANOVA might well end here, but for a desire to develop methods
that generalize easily to more complex situations in which there are several, potentially inter-
acting, factors. Indeed, as I will explain,2 we can employ 0/1 dummy regressors even when
there are two (or more) factors.

One-way ANOVA examines the relationship between a quantitative response variable
and a factor. The omnibus F-statistic for the regression of the response variable on 0/1
dummy regressors constructed from the factor tests for differences in the response means
across levels of the factor.

Group D1 D2

1 1 0
2 0 1
3 0 0

2See Section 8.2.2.
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8.1.1 Example: Duncan’s Data on Occupational Prestige

I will use Duncan’s data on the prestige of 45 U.S. occupations to illustrate one-way
ANOVA.3 Parallel boxplots for prestige in three types of occupations appear in Figure 8.1(a).
Prestige, recall, is a percentage, and the data in Figure 8.1(a) push both the lower and upper
boundaries of 0% and 100%, suggesting the logit transformation in Figure 8.1(b).4 The data
are better behaved on the logit scale, which eliminates the skew in the blue-collar and profes-
sional groups and pulls in all the outlying observations, with the exception of store clerks in
the white-collar category.

Means, standard deviations, and frequencies for prestige within occupational types are as
follows:

Professional occupations therefore have the highest average level of prestige, followed by
white-collar and blue-collar occupations. The order of the group means is the same on the logit
scale:

Prestige

Type of Occupation Mean Standard Deviation Frequency

Professional and managerial 80.44 14.11 18
White collar 36.67 11.79 6
Blue collar 22.76 18.05 21
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Figure 8.1 Parallel boxplots for (a) occupational prestige and (b) the logit of occupational prestige
by type of occupation.

3Duncan’s data were introduced in Chapter 3.
4The logit transformation of proportions was introduced in Section 4.5.
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On both scales, the standard deviation is greatest among the blue-collar occupations and smal-
lest among the white-collar occupations, but the differences are not very large, especially con-
sidering the small number of observations in the white-collar category.5

Using the logit of prestige as the response variable, the one-way ANOVA for the Duncan
data is

We therefore have very strong evidence against the null hypothesis of no difference in average
level of prestige across the occupational types. Occupational types account for nearly three
quarters of the variation in the logit of prestige among these occupations (R2 ¼ 95:550=
134:154 ¼ 0:712).

8.1.2 The One-Way ANOVA Model

The first innovation is notational: Because observations are partitioned according to groups,
it is convenient to let Yij denote the ith observation within the jth of m groups. The number of
observations in the jth group is nj, and therefore the total number of observations is
n ¼

Pm
j¼1 nj. As above, µj [ EðYijÞ represents the population mean in group j.

The one-way ANOVA model is written in the following manner:

Yij ¼ µþ αj þ εij ð8:2Þ

where we would like µ to represent, in some reasonable sense, the general level of the response
variable in the population; αj should represent the effect on the response variable of member-
ship in the jth group; and εij is an error variable that follows the usual linear-model assump-
tions—that is, the εij are independent and normally distributed with zero expectations and
equal variances.

Upon taking expectations, Equation 8.2 becomes

logit(Prestige/100)

Type of Occupation Mean Standard Deviation

Professional and managerial 1.6321 0.9089
White collar %0.5904 0.5791
Blue collar %1.4821 1.0696

Source Sum of
Squares

df Mean
Square

F p

Type of Occupation 95.550 2 47.775 51.98 &.0001
Residuals 38.604 42 0.919

Total 134.154 44

5The assumption of constant error variance implies that the population variances should be the same in the several
groups. See Section 12.4.2 for further discussion of this point and a test for nonconstant variance in ANOVA.
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µj ¼ µþ αj

The parameters of the model are, therefore, underdetermined, for there are mþ 1 parameters
(including µ) but only m population group means. For example, for m ¼ 3, we have four para-
meters but only three equations:

µ1 ¼ µþ α1

µ2 ¼ µþ α2

µ3 ¼ µþ α3

Even if we knew the three population group means, we could not solve uniquely for the
parameters.

Because the parameters of the model (Equation 8.2) are themselves underdetermined, they
cannot be uniquely estimated. To estimate the model, we would need to code one dummy
regressor for each group-effect parameter αj, and—as we discovered in the previous chapter—
the resulting dummy regressors would be perfectly collinear.

One convenient way out of this dilemma is to place a linear restriction on the parameters of
the model, of the form

w0µþ
Xm

j¼1

wjαj ¼ 0

where the ws are prespecified constants, not all equal to 0. It turns out that any such restriction
will do, in the sense that all linear restrictions yield the same F-test for the null hypothesis of
no differences in population group means.6 For example, if we employ the restriction αm ¼ 0,
we are, in effect, deleting the parameter for the last category, making it a baseline category.
The result is the dummy-coding scheme of the previous chapter. Alternatively, we could use
the restriction µ ¼ 0, which is equivalent to deleting the constant term from the linear model,
in which case the ‘‘effect’’ parameters and group means are identical: αj ¼ µj—an especially
simple solution.

There is, however, an advantage in selecting a restriction that produces easily interpretable
parameters and estimates and that generalizes usefully to more complex models. For these rea-
sons, we will impose the constraint

Xm

j¼1

αj ¼ 0 ð8:3Þ

Equation 8.3 is often called a sigma constraint or sum-to-zero constraint. Employing this
restriction to solve for the parameters produces

µ ¼
P

µj

m
[ µ:

αj ¼ µj % µ: ð8:4Þ

The dot (in µ:) indicates averaging over the range of a subscript, here over groups. The grand
or general mean µ, then, is the average of the population group means, while αj gives the

6See Section 10.4 for an explanation of this surprising result.
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difference between the mean of group j and the grand mean.7 It is clear that, under the sigma
constraint, the hypothesis of no differences in group means

H0 : µ1 ¼ µ2 ¼ ' ' ' ¼ µm

is equivalent to the hypothesis that all of the effect parameters are 0:

H0 : α1 ¼ α2 ¼ ' ' ' ¼ αm ¼ 0

All of this is well and good, but how can we estimate the one-way ANOVA model under the
sigma constraint? One approach is to code deviation regressors, an alternative to the dummy-
coding scheme, which (recall) implicitly imposes the constraint αm ¼ 0. We require m% 1
deviation regressors, S1, S2; . . . ; Sm%1, the jth of which is coded according to the following
rule:8

Sj ¼
1 for observations in group j
%1 for observations in group m

0 for observations in all other groups

8
<

:

For example, when m ¼ 3,

For ease of reference, I have shown in parentheses the parameter associated with each devia-
tion regressor.

Writing out the equations for the group means in terms of the deviation regressors demon-
strates how these regressors capture the sigma constraint on the parameters of the model:

Group 1: µ1 ¼ µþ 1 ·α1 þ 0 ·α2 ¼ µþ α1

Group 2: µ2 ¼ µþ 0 ·α1 þ 1 ·α2 ¼ µþ α2

Group 3: µ3 ¼ µ% 1 ·α1 % 1 ·α2 ¼ µ% α1 % α2

The equation for the third group incorporates the sigma constraint because α3 ¼ %α1 % α2 is
equivalent to α1 þ α2 þ α3 ¼ 0.

The null hypothesis of no differences among population group means is tested by the omni-
bus F-statistic for the deviation-coded model: The omnibus F-statistic tests the hypothesis
H0: α1 ¼ α2 ¼ 0, which, under the sigma constraint, implies that α3 is 0 as well.

ðα1) ðα2)
Group S1 S2

1 1 0
2 0 1
3 %1 %1

7There is a subtle distinction between µ: (the mean of the group means) and the overall (i.e., unconditional) mean of Y
in the population. In a real population, µ: and EðY Þ will generally differ if the groups have different numbers of obser-
vations. In an infinite or hypothetical population, we can speak of the grand mean but not of the overall (unconditional)
mean EðY Þ.
8I use Sj (for ‘‘sum-to-zero’’) to distinguish these from the (0; 1) dummy regressors Dj defined previously.
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The one-way ANOVA model Yij ¼ µþ αj þ εij is underdetermined because it uses
mþ 1 parameters to model m group means. This indeterminacy can be removed, how-
ever, by placing a restriction on its parameters. Setting one of the αjs to 0 leads to ð0; 1Þ
dummy-regressor coding. Constraining the αjs to sum to 0 leads to (1, 0, %1) deviation-
regressor coding. The two coding schemes are equivalent in that they provide the same
fit to the data, producing the same regression and residual sums of squares, and hence
the same F-test for differences among group means.

Although it is often convenient to fit the one-way ANOVA model by least-squares regression,
it is also possible to estimate the model and calculate sums of squares directly. The sample
mean Y j in group j is the least-squares estimator of the corresponding population mean µj.
Estimates of µ and the αj may therefore be written as follows (substituting estimates into
Equations 8.4):

M [ bµ ¼
P

Y j

m
¼ Y :

Aj [ bαj ¼ Y j % Y :

Furthermore, the fitted Y values are the group means:

bYij ¼ M þ Aj ¼ Y :þ ðY j % Y :Þ ¼ Y j

and the regression and residual sums of squares therefore take particularly simple forms in
one-way ANOVA:9

RegSS ¼
Xm

j¼1

Xnj

i¼1

ðbYij % Y Þ2 ¼
Xm

j¼1

njðY j % Y Þ2

RSS ¼
Xm

j¼1

Xnj

i¼1

ðYij % bYijÞ2 ¼
XX

ðYij % Y jÞ2

This information can be presented in an ANOVA table, as shown in Table 8.1.10

8.2 Two-Way Analysis of Variance

The inclusion of a second factor permits us to model and test partial relationships, as well as to
introduce interactions. Most issues pertaining to ANOVA can be developed for the two-factor
‘‘design.’’ Before immersing ourselves in the details of model specification and hypothesis test-
ing for two-way ANOVA, however, it is useful to step back and consider the patterns of rela-
tionship that can occur when a quantitative response variable is classified by two factors.

9If the nj are unequal, as is usually the case in observational research, then the mean of the group means Y : generally
differs from the overall sample mean Y of the response variable, for Y ¼ ð

PP
YijÞ=n ¼ ð

P
njY jÞ=n, while

Y : ¼ ð
P

Y jÞ=m. (See Footnote 3 for a similar point with respect to population means.)
10Although the notation may differ, this ANOVA table corresponds to the usual treatment of one-way ANOVA in
introductory statistics texts. It is common to call the regression sum of squares in one-way ANOVA ‘‘the between-
group sum of squares’’ and the residual sum of squares ‘‘the within-group sum of squares.’’
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8.2.1 Patterns of Means in the Two-Way Classification

So as not to confuse ourselves with issues of estimation, we will imagine at the outset that
we have access to population means. The notation for the two-way classification is shown in
the following table:

The factors, R and C (for ‘‘rows’’ and ‘‘columns’’ of the table of means), have r and c cate-
gories, respectively. The factor categories are denoted Rj and Ck .

Within each cell of the design—that is, for each combination of categories fRj;Ckg of the
two factors—there is a population cell mean µjk for the response variable. Extending the dot
notation introduced in the previous section,

µj:[

Pc
k¼1 µjk

c

is the marginal mean of the response variable in row j;

µ:k [

Pr
j¼1 µjk

r

is the marginal mean in column k; and

µ: :[

P
j

P
k µjk

r · c
¼
P

j µj:

r
¼
P

k µ:k
c

is the grand mean.
If R and C do not interact in determining the response variable, then the partial relationship

between each factor and Y does not depend on the category at which the other factor is ‘‘held
constant.’’ The difference in cell means µjk % µj0k across two categories of R (i.e., categories
Rj and Rj0 ) is constant across all the categories of C—that is, this difference is the same for all

Table 8.1 General One-Way Analysis-of-Variance Table

Source Sum of Squares df Mean Square F H0

Groups
P

njðYj % YÞ2 m%1 RegSS

m% 1

RegMS

RMS
α1 ¼ ' ' ' ¼ αm ¼ 0
ðµ1 ¼ ' ' ' ¼ µmÞ

Residuals
PP

ðYij % YjÞ2 n%m
RSS

n%m

Total
PP

ðYij % YÞ2 n%1

C1 C2 ' ' ' Cc

R1 µ11 µ12 ' ' ' µ1c µ1:

R2 µ21 µ22 ' ' ' µ2c µ2:
..
. ..

. ..
. ..

. ..
.

Rr µr1 µr2 ' ' ' µrc µr:

µ:1 µ:2 ' ' ' µ:c µ: :
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k ¼ 1; 2; . . . ; c. Consequently, the difference in cell means across rows is equal to the corre-
sponding difference in the row marginal means:

µjk % µj0k ¼ µjk0 % µj0k0 ¼ µj:% µj0 : for all j; j0 and k; k0

This pattern is illustrated in Figure 8.2(a) for the simple case where r ¼ c ¼ 2. Interaction—
where the row difference µ1k % µ2k changes across columns k ¼ 1, 2—is illustrated in
Figure 8.2(b). Note that no interaction implies parallel ‘‘profiles’’ of cell means. Parallel pro-
files also imply that the column difference µj1 % µj2 for categories C1 and C2 is constant across
rows j ¼ 1; 2 and is equal to the difference in column marginal means µ:1 % µ:2. As we dis-
covered in Chapter 7 on dummy regression, interaction is a symmetric concept: If R interacts
with C, then C interacts with R. When interactions are absent, the partial effect of each fac-
tor—the factor’s main effect—is given by differences in the population marginal means.

Several patterns of relationship in the two-way classification, all showing no interaction, are
graphed in Figure 8.3. Plots of means, incidentally, not only serve to clarify the ideas underly-
ing ANOVA but are also a useful tool for summarizing and presenting data. Indeed, it is very
difficult to inspect, understand, and interpret patterns of means in ANOVA without plotting the
means. In the illustrations, factor C has three levels, which are marked off along the horizontal
axis. Because C is a qualitative variable, the order of its categories and the spacing between

(a) No Interaction

Y

R1

R2

µ11

µ11

µ21

µ21
µ22

µ22

µ12 µ12

µ.2

µ.2

µ.1
µ.1

(b) Interaction

C1 C2

Y

R1

R2

C1 C2

Figure 8.2 Interaction in the two-way classification. In (a), the parallel profiles of means (given
by the white and black circles connected by solid lines) indicate that R and C do not
interact in affecting Y. The R-effect—that is, the difference between the two profiles—
is the same at both C1 and C2. Likewise, the C-effect—that is, the rise in the line from
C1 to C2—is the same for both profiles. In (b), the R-effect differs at the two categories
of C, and the C-effect differs at the two categories of R: R and C interact in affecting Y.
In both graphs, the column marginal means µ:1 and µ:2 are shown as averages of the
cell means in each column (represented by the gray circles connected by broken
lines).
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them are arbitrary.11 Factor R has two categories. The six cell means are plotted as points, con-
nected by lines (profiles) according to the levels of factor R. The separation between the lines
at level Ck (where k is 1, 2, or 3) represents the difference µ1k % µ2k . As noted above, when
there is no interaction, therefore, the separation between the profiles is constant and the profiles
themselves are parallel.

C1 C2 C3

C1 C2 C3 C1 C2 C3

C1 C2 C3

R1

R2

R1

R2

(a) R and C Main Effects
µ j k

µ j k µ j k

µ j k

(b) C Main Effects Only

R1, R2

R1, R2

(c) R Main Effects Only (d) No Effects

Figure 8.3 Several patterns of relationship in the two-way classification. In all these cases, R and
C do not interact. (a) Both R and C main effects. (b) C main effects (R main effects
nil). (c) R main effects (C main effects nil). (d) No effects (both R and C main effects
nil).

11ANOVA is also useful when the levels of a factor are ordered (‘‘low,’’ ‘‘medium,’’ and ‘‘high,’’ for example) or even
discrete and quantitative (e.g., number of bedrooms for apartment dwellers—0, 1, 2, 3, 4), but, in general, I will assume
that factors are simply nominal (i.e., qualitative) variables.
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In Figure 8.3(a), both R and C have nonzero main effects. In Figure 8.3(b), the differences
µ1k % µ2k ¼ µ1:% µ2: are 0, and consequently, the R main effects are nil. In Figure 8.3(c),
the C main effects are nil, because the differences µjk % µjk0 ¼ µ:k % µ:k0 are all 0. Finally, in
Figure 8.3(d), both sets of main effects are nil.

Figure 8.4 shows two different patterns of interactions. It is clear from the previous discus-
sion that R and C interact when the profiles of means are not parallel—that is, when the row
differences µjk % µj0k change across the categories of the column factor or, equivalently, when
the column differences µjk % µjk0 change across the categories of the row factor. In
Figure 8.4(a), the interaction is dramatic: The mean for level R2 is above the mean for R1 at
levels C1 and C3, but at level C2, the mean for R1 is substantially above the mean for R2.
Likewise, the means for the three categories of C are ordered differently within R1 and R2.
Interaction of this sort is sometimes called disordinal. In Figure 8.4(b), in contrast, the profile
for R2 is above that for R1 across all three categories of C, although the separation between the
profiles of means changes. This less dramatic form of interaction can sometimes be trans-
formed away (e.g., by taking logs).

Even when interactions are absent in the population, we cannot expect perfectly parallel pro-
files of sample means: There is, of course, sampling error in sampled data. We have to deter-
mine whether departures from parallelism observed in a sample are sufficiently large to be
statistically significant or whether they could easily be the product of chance. Moreover, in
large samples, we also want to determine whether ‘‘statistically significant’’ interactions are of
sufficient magnitude to be of substantive interest. We may well decide to ignore interactions
that are statistically significant but trivially small.

In general, however, if we conclude that interactions are present and nonnegligible, then we
do not interpret the main effects of the factors—after all, to conclude that two variables interact

(a)

C1 C2 C3 C1 C2 C3

(b)

R1

R2

µ j k µ j k

R2

R1

Figure 8.4 Two patterns of interaction in the two-way classification. In (a), the interaction is
‘‘disordinal’’ in that the order of means for one factor changes across the levels of the
other factor. In (b), the profiles are not parallel, but the order of means does not
change.
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is to deny that they have unique partial effects. This point is a reflection of the principle of
marginality, introduced in Chapter 7 in the context of dummy-variable regression: Here, the R
and C main effects are marginal to the RC interaction.12

Two factors interact when the profiles of population means are not parallel; when the
profiles of means are parallel, the effects of the two factors are additive.

Example: Moore and Krupat’s Conformity Experiment

Table 8.2 shows means, standard deviations, and cell frequencies for data from a social-psy-
chological experiment reported by Moore and Krupat (1971).13 The experiment was designed
to determine how the relationship between conformity and social status is influenced by
‘‘authoritarianism.’’ The subjects in the experiment were asked to make perceptual judgments
of stimuli that were intrinsically ambiguous. On forming an initial judgment, the subjects were
presented with the judgment of another individual (their ‘‘partner’’) who was ostensibly partici-
pating in the experiment; the subjects were then asked for a final judgment. In fact, the part-
ner’s judgments were manipulated by the experimenters so that subjects were faced with nearly
continuous disagreement.

The measure of conformity employed in the study was the number of times in 40 critical
trials that subjects altered their judgments in response to disagreement. This measure is a dis-
guised proportion (but because it does not push the boundaries of 0 and 40, I leave the
response variable untransformed in the analysis reported below). The 45 university student

Table 8.2 Conformity by Authoritarianism and Partner’s Status, for
Moore and Krupat’s (1971) Experiment

Authoritarianism

Partner’s Status Low Medium High

Low Yjk 8.900 7.250 12.63
Sjk 2.644 3.948 7.347
njk 10 4 8

High Yjk 17.40 14.27 11.86
Sjk 4.506 3.952 3.934
njk 5 11 7

NOTE: Each cell shows (from top to bottom) the conformity mean and standard

deviation, as well as the cell frequency.

12In cases of disordinal interaction, such as in Figure 8.4(a), interpreting main effects is clearly misleading because it
makes no sense to average over levels of one factor to examine the effect of the other. In cases such as Figure 8.4(b),
however, there may be some sense to examining the marginal means for one factor averaged over levels of the other,
despite the interaction.
13The data were generously made available by James Moore, Department of Sociology, York University.
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subjects in the study were randomly assigned to two experimental conditions: In one condition,
the partner was described as of relatively high social status (a ‘‘physician’’); in the other condi-
tion, the partner was described as of relatively low status (a ‘‘postal clerk’’).

A standard authoritarianism scale (the ‘‘F-scale’’) was administered to the subjects after the
experiment was completed. This procedure was dictated by practical considerations, but it
raises the possibility that authoritarianism scores were inadvertently influenced by the experi-
mental manipulation of the partner’s status. The authors divided the authoritarianism scores
into three categories—low, medium, and high.14 A chi-square test of independence for the con-
dition-by-authoritarianism frequency table (shown in Table 8.2) produces a p-value of .08,
indicating that there is some ground for believing that the status manipulation affected the
authoritarianism scores of the subjects.

Because of the conceptual-rigidity component of authoritarianism, Moore and Krupat
expected that low-authoritarian subjects would be more responsive than high-authoritarian sub-
jects to the social status of their partner. In other words, authoritarianism and partner’s status
are expected to interact—in a particular manner—in determining conformity. The cell means,
graphed along with the data in Figure 8.5, appear to confirm the experimenters’ expectations.
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Figure 8.5 The data and cell means for Moore and Krupat’s conformity experiment. The black
circles connected by solid lines give the means for the high-status partner condition
(with the data values represented by Hs); the white circles connected by broken lines
give the means for the low-status partner condition (with the data values represented
by Ls). The points are jittered horizontally to reduce overplotting. There are two outly-
ing subjects (Numbers 16 and 19) in the high-authoritarianism, lower-partner status
group.

14Moore and Krupat categorized authoritarianism separately within each condition. This approach is not strictly justi-
fied, but it serves to produce nearly equal cell frequencies—required by the method of computation employed by the
authors—for the six combinations of partner’s status and authoritarianism and yields results similar to those reported
here. It may have occurred to you that the dummy-regression procedures of the previous chapter are applicable here
and do not require the arbitrary categorization of authoritarianism. This analysis appears in Section 8.4. Moore and
Krupat do report the difference between slopes for the within-condition regressions of conformity on authoritarianism.
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The standard deviation of conformity in one cell (high-authoritarian, low-status partner) is
appreciably larger than in the others. Upon inspection of the data, it is clear that the relatively
large dispersion in this cell is due to two subjects, Numbers 16 and 19, who have atypically
high conformity scores of 24 and 23.15

8.2.2 Two-Way ANOVA by Dummy Regression

When there are two factors, we can model their main effects and interactions by coding
dummy regressors for each factor and forming all pairwise products between them. We require
r % 1 dummy regressors to represent the r levels of the row factor R, c% 1 dummy regressors
to represent the c levels of the column factor C, and consequently ðr % 1Þðc% 1Þ interaction
regressors. Including the intercept, there are 1þ ðr % 1Þ þ ðc% 1Þ þ ðr % 1Þðc% 1Þ ¼ r · c
regressors and corresponding parameters, and we can therefore capture any pattern of the r · c
cell means.

For example, when c ¼ 3 and r ¼ 2, applying our usual practice of treating the last level of
each factor as the baseline level, we have the following coding of regressors, corresponding to
the six cells formed from the levels of R and C:

The dummy-coded two-way ANOVA model is then

Yi ¼ αþ β1Ri1 þ γ1Ci1 þ γ2Ci2 þ δ11Ri1Ci1 þ δ12Ri1Ci2 þ εi ð8:5Þ

Each of the six cell means µjk can be written in terms of the parameters of the model; for
example, for j ¼ 1 and k ¼ 1,

µ11 ¼ EðYijR ¼ 1;C ¼ 1Þ
¼ αþ β1 · 1þ γ1 · 1þ γ2 · 0þ δ11 · 1 · 1þ δ12 · 1 · 0

¼ αþ β1 þ γ1 þ δ11

and for j ¼ 2 and k ¼ 3,

µ23 ¼ EðYijR ¼ 2;C ¼ 3Þ
¼ αþ β1 · 0þ γ1 · 0þ γ2 · 0þ δ11 · 0 · 0þ δ12 · 0 · 0

¼ α

We can therefore solve for the six parameters in terms of the cell means:

R C R1 C1 C2 R1 · C1 R1 · C2

1 1 1 1 0 1 0
1 2 1 0 1 0 1
1 3 1 0 0 0 0
2 1 0 1 0 0 0
2 2 0 0 1 0 0
2 3 0 0 0 0 0

15See Exercise 8.12.
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α ¼ µ23

β1 ¼ µ13 % µ23

γ1 ¼ µ21 % µ23

γ2 ¼ µ22 % µ23

δ11 ¼ µ11 % µ13 % µ21 þ µ23

δ12 ¼ µ12 % µ13 % µ22 þ µ23

ð8:6Þ

Although the parameters are linear functions of the cell means, they do not have entirely
straightforward interpretations, particularly for the main effects of R and C.16 Nevertheless, if
we construct incremental F-tests in conformity with the principle of marginality (i.e., ‘‘type II
tests’’), we can test for interaction between the row and column factors and, if interactions are
absent, for row and column main effects.

Applying this approach to Moore and Krupat’s data, where the response variable is confor-
mity, and where R is partner’s status, with two levels, and C is authoritarianism, with three lev-
els, I fit the following models to the data:

producing the two-way ANOVA table,

Thus, the interaction between partner’s status and authoritarianism is statistically significant,
and we would not interpret the tests of the main effect, which are marginal to the interaction
and assume that interaction is absent. As usual, I estimated the error variance, bσ2

ε ¼ 20:968,
from the largest model fit to the data, Model 1.

This approach—coding dummy regressors for the main effects of factors and taking products
to form interaction regressors—can be extended to three- and higher-way ANOVA models. In
three-way ANOVA, for example, with factors A, B, and C, we would form dummy regressors
for each factor and then compute all two-way and three-way products of regressors from differ-
ent sets—that is, for A · B, A · C, B · C, and A · B · C. As long as we compute incremental
F-tests that conform to the principle of marginality (e.g., A after B, C, and BC; AB after A, B, C,

Model Terms Regression Sum of Squares

1 R;C;R · C 391.436
2 R;C 215.947
3 R 204.332
4 C 3.733

Source Models Contrasted SS df MS F p

Partner’s status 2% 4 212.214 1 212.214 10.12 .003
Authoritarianism 2% 3 11.615 2 5.807 0.28 .76
Status · Authoritarianism 1% 2 175.489 2 87.745 4.18 .02
Residuals from Model 1 817.764 39 20.968

Total 1209.200 44

16But see Exercise 8.13.
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AC, and BC; and ABC after A, B, C, AB, AC, and BC), we will test sensible hypotheses about
the main effects, the two-way interactions, and the three-way interaction among the three factors.

As long as we construct tests that conform to the principle of marginality, we can code
main effects in two- and higher-way ANOVA using dummy regressors, forming interac-
tion regressors as all products of main-effect regressors for the main effects marginal to
each interaction.

8.2.3 The Two-Way ANOVA Model

Because interpretation of results in two-way ANOVA depends crucially on the presence or
absence of interaction, our first concern is to test the null hypothesis of no interaction. Based
on the discussion in Section 8.2.1, this hypothesis can be expressed in terms of the cell means:

H0 : µjk % µj0k ¼ µjk0 % µj0k 0 for all j; j0 and k; k0 ð8:7Þ

In words: The row effects are the same within all levels of the column factor. By rearranging
the terms in Equation 8.7, we can write the null hypothesis in the following alternative but
equivalent manner:

H0 : µjk % µjk0 ¼ µj0k % µj0k0 for all j; j0 and k; k0 ð8:8Þ

That is, the column effects are invariant across rows. Once more, we see the symmetry of the
concept of interaction.

It is convenient, following the presentation in the previous section, to express hypotheses
concerning main effects in terms of the marginal means. Thus, for the row classification, we
have the null hypothesis

H0 : µ1: ¼ µ2: ¼ ' ' ' ¼ µr: ð8:9Þ

and for the column classification

H0 : µ:1 ¼ µ:2 ¼ ' ' ' ¼ µ:c ð8:10Þ

Formulated in this manner, the main-effect null hypotheses (Equations 8.9 and 8.10) are testa-
ble whether interactions are present or absent, but these hypotheses are generally of interest
only when the interactions are nil.

The two-way ANOVA model, suitably defined, provides a convenient means for testing the
hypotheses concerning interactions and main effects (in Equations 8.7, 8.9, and 8.10). The
model is

Yijk ¼ µþ αj þ βk þ γ jk þ εijk ð8:11Þ

where Yijk is the ith observation in row j, column k of the RC table; µ is the general mean of
Y ; αj and βk are main-effect parameters, for row effects and column effects, respectively; γ jk

are interaction parameters; and εijk are errors satisfying the usual linear-model assumptions.
Taking expectations, Equation 8.11 becomes
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µjk [ EðYijkÞ ¼ µþ αj þ βk þ γ jk ð8:12Þ

Because there are r · c population cell means and 1þ r þ cþ ðr · cÞ parameters in Equation
8.12, the parameters of the model are not uniquely determined by the cell means. By reasoning
that is familiar from Section 8.1.2 on the one-way ANOVA model, the indeterminacy of
Equation 8.12 can be overcome by imposing 1þ r þ c independent ‘‘identifying’’ restrictions
on its parameters. Although—from one point of view—any restrictions will do, it is convenient
to select restrictions that make it simple to test the hypotheses of interest.

With this purpose in mind, we specify the following sigma constraints on the model
parameters:

Xr

j¼1

αj ¼ 0

Xc

k¼1

βk ¼ 0

Xr

j¼1

γ jk ¼ 0 for all k ¼ 1; . . . ; c

Xc

k¼1

γ jk ¼ 0 for all j ¼ 1; . . . ; r

ð8:13Þ

At first glance, it seems as if we have specified too many constraints, for Equations 8.13 define
1þ 1þ cþ r restrictions. One of the restrictions on the interactions is redundant, however.17

In shorthand form, the sigma constraints specify that each set of parameters sums to 0 over
each of its coordinates.

The constraints produce the following solution for model parameters in terms of population
cell and marginal means:

µ ¼ µ: :

αj ¼ µj:% µ: :

βk ¼ µ:k % µ: :

γ jk ¼ µjk % µ% αj % βk

¼ µjk % µj:% µ:k þ µ: :

ð8:14Þ

The hypothesis of no row main effects (Equation 8.9) is, therefore, equivalent to H0: all
αj ¼ 0, for under this hypothesis

µ1: ¼ µ2: ¼ ' ' ' ¼ µr: ¼ µ: :

Likewise, the hypothesis of no column main effects (Equation 8.10) is equivalent to H0: all
βk ¼ 0, because then

µ:1 ¼ µ:2 ¼ ' ' ' ¼ µ:c ¼ µ: :

Finally, it is not difficult to show that the hypothesis of no interactions (given in Equation 8.7
or 8.8) is equivalent to H0: all γ jk ¼ 0.18

17See Exercise 8.2.
18See Exercise 8.3.
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8.2.4 Fitting the Two-Way ANOVA Model to Data

Because the least-squares estimator of µjk is the sample cell mean

Y jk ¼
Pnjk

i¼1 Yijk

njk

least-squares estimators of the constrained model parameters follow immediately from
Equations 8.14:

M [ bµ ¼ Y :: ¼
PP

Y jk

r · c

Aj [ bαj ¼ Y j % Y :: ¼
P

k Y jk

c
% Y ::

Bk [ bβk ¼ Y :k % Y :: ¼
P

j Y jk

r
% Y ::

Cjk [ bγ jk ¼ Y jk % Y j: % Y :k þ Y ::

The residuals are just the deviations of the observations from their cell means because the fitted
values are the cell means:

Eijk ¼ Yijk % ðM þ Aj þ Bk þ CjkÞ
¼ Yijk % Y jk

In testing hypotheses about sets of model parameters, however, we require incremental sums of
squares for each set, and there is no general way of calculating these sums of squares
directly.19 As in one-way ANOVA, the restrictions on the two-way ANOVA model can be
used to produce deviation-coded regressors. Incremental sums of squares can then be calcu-
lated in the usual manner. To illustrate this procedure, we will first examine a two-row ·
three-column classification. The extension to the general r · c classification is straightforward
and is described subsequently.

In light of the restriction α1 þ α2 ¼ 0 on the row effects of the 2 · 3 classification, α2 can be
deleted from the model, substituting %α1. Similarly, because β1 þ β2 þ β3 ¼ 0, the column
main effect β3 can be replaced by %β1 % β2. More generally, %

Pr%1
j¼1 αj replaces αr, and

%
Pc%1

k¼1 βk replaces βc. Because there are, then, r % 1 independent αj parameters and c% 1
independent βk parameters, the degrees of freedom for row and column main effects are,
respectively, r % 1 and c% 1.

The interactions in the 2 · 3 classification satisfy the following constraints:20

γ11 þ γ12 þ γ13 ¼ 0

γ21 þ γ22 þ γ23 ¼ 0

γ11 þ γ21 ¼ 0

γ12 þ γ22 ¼ 0

γ13 þ γ23 ¼ 0

19An exception occurs when all the cell frequencies are equal—see Section 8.2.6.
20Recall that although there are five such constraints, the fifth follows from the first four—you may want to show
this—and there are therefore only four independent constraints on the interaction parameters.

170 Chapter 8. Analysis of Variance



We can, as a consequence, delete all the interaction parameters except γ11 and γ12, substituting
for the remaining four parameters in the following manner:

γ13 ¼ %γ11 % γ12

γ21 ¼ %γ11

γ22 ¼ %γ12

γ23 ¼ %γ13 ¼ γ11 þ γ12

More generally, we can write all r · c interaction parameters in terms of ðr % 1Þðc% 1Þ of the
γ jks, and there are, therefore, ðr % 1Þðc% 1Þ degrees of freedom for interaction.

These observations lead to the following coding of regressors for the 2 · 3 classification:

That is, for example, according to the third row of this table,

µ13 ¼ µþ α1 % β1 % β2 % γ11 % γ12

¼ µþ α1 þ β3 þ γ13

as required.
I have constructed these regressors to reflect the constraints on the model, but they can also

be coded mechanically by applying these rules:

1. There are r % 1 regressors for the row main effects; the jth such regressor, Rj, is coded
according to the deviation-coding scheme:

Rij ¼
1 if observation i is in row j;
%1 if observation i is in row r the last rowð Þ;

0 if observation i is in any other row:

8
<

:

2. There are c% 1 regressors for the column main effects; the kth such regressor, Ck , is
coded according to the deviation-coding scheme:

Cik ¼
1 if observation i is in column k;
%1 if observation i is in column c ðthe last columnÞ;

0 if observation i is in any other column:

8
<

:

3. There are ðr % 1Þðc% 1Þ regressors for the RC interactions. These interaction regressors
consist of all pairwise products of the r % 1 main-effect regressors for rows and c% 1
main-effect regressors for columns.

Cell ðα1Þ ðβ1Þ ðβ2Þ ðγ11Þ ðγ12Þ

Row Column R1 C1 C2 R1C1 R1C2

1 1 1 1 0 1 0
1 2 1 0 1 0 1
1 3 1 %1 %1 %1 %1
2 1 %1 1 0 %1 0
2 2 %1 0 1 0 %1
2 3 %1 %1 %1 1 1
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The two-way ANOVA model Yijk ¼ µþ αj þ βk þ γ jk þ εijk incorporates the main
effects and interactions of two factors. This model is overparametrized, but it may be fit
to data by placing suitable restrictions on its parameters. A convenient set of restrictions
is provided by sigma constraints, specifying that each set of parameters (αj, βk , and γ jk)
sums to 0 over each of its coordinates. As in one-way ANOVA, sigma constraints lead
to deviation-coded regressors.

8.2.5 Testing Hypotheses in Two-Way ANOVA

I have specified constraints on the two-way ANOVA model so that testing hypotheses about
the parameters of the constrained model is equivalent to testing hypotheses about the interac-
tions and main effects of the two factors. Tests for interactions and main effects can be con-
structed by the incremental sum-of-squares approach.

For ease of reference, I will write SSðα;β; γÞ to denote the regression sum of squares for the
full model, which includes both sets of main effects and the interactions. The regression sums
of squares for other models are similarly represented. For example, for the no-interaction
model, we have SSðα;βÞ, and for the model that omits the column main-effect regressors, we
have SSðα; γÞ. This last model violates the principle of marginality because it includes the
interaction regressors but omits the column main effects. Nevertheless, as I will explain pre-
sently, the model plays a role in constructing the incremental sum of squares for testing the col-
umn main effects.

As usual, incremental sums of squares are given by differences between the regression sums
of squares for alternative models, one of which is ‘‘nested’’ within (i.e., is a special case of)
the other. I will use the following notation for incremental sums of squares in ANOVA:21

SSðγjα;βÞ ¼ SSðα;β; γÞ % SSðα;βÞ
SSðαjβ; γÞ ¼ SSðα;β; γÞ % SSðβ; γÞ
SSðβjα; γÞ ¼ SSðα;β; γÞ % SSðα; γÞ

SSðαjβÞ ¼ SSðα;βÞ % SSðβÞ
SSðβjαÞ ¼ SSðα;βÞ % SSðαÞ

We read SSðγjα;βÞ, for example, as ‘‘the sum of squares for interaction after the main effects’’
and SSðαjβÞ as ‘‘the sum of squares for the row main effects after the column main effects and
ignoring the interactions.’’ The residual sum of squares is

21You may encounter variations of the SS notation. One common approach (used, e.g., in Searle, 1971) is to include
the grand mean µ in the arguments to the sum-of-squares function and to let Rð'Þ denote the ‘‘raw’’ (rather than mean
deviation) sum of squares. Thus, in this scheme, Rðµ;α;βÞ ¼

PPP bY 2
ijk is the raw sum of squares for the no-interac-

tion model, while

Rðα; βjµÞ ¼ Rðµ;α; βÞ % RðµÞ
¼
XXX

ðbYijk % Y Þ2

¼ SSðα; βÞ

is the mean deviation explained sum of squares for the same model. (The bYijk ¼ bYjk are the least-squares fitted values
from the no-interaction model.)
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RSS ¼
XXX

E2
i

¼
XXX

ðYijk % Y jkÞ2

¼ TSS% SSðα;β; γÞ

The incremental sum of squares for interaction, SSðγjα; βÞ, is appropriate for testing the null
hypothesis of no interaction, H0: all γ jk ¼ 0. In the presence of interactions, we can use
SSðαjβ; γÞ and SSðβjα; γÞ to test hypotheses concerning main effects (i.e., differences among
row and column marginal means), but—as I have explained—these hypotheses are usually not
of interest when the interactions are important.

In the absence of interactions, SSðαjβÞ and SSðβjαÞ can be used to test for main effects, but
the use of SSðαjβ; γÞ and SSðβjα; γÞ is also appropriate. If, however, interactions are present,
then F-tests based on SSðαjβÞ and SSðβjαÞ do not test the main-effect null hypotheses H0: all
αj ¼ 0 and H0: all βk ¼ 0; instead, the interaction parameters become implicated in these tests.
These remarks are summarized in Table 8.3.

Certain authors (e.g., Nelder, 1976, 1977) prefer main-effects tests based on SSðαjβÞ and
SSðβjαÞ because, if interactions are absent, tests based on these sums of squares follow from
the principle of marginality and are more powerful than those based on SSðαjβ; γÞ and
SSðβjα; γÞ—indeed, these tests are maximally powerful for the main effects if the interactions
are absent. Other authors (e.g., Hocking & Speed, 1975) prefer SSðαjβ; γÞ and SSðβjα; γÞ
because, in the presence of interactions, tests based on these sums of squares have a straightfor-
ward (if usually uninteresting) interpretation. I believe that either approach is reasonable but

Table 8.3 Two- Way Analysis of Variance, Showing Alternative Tests for Row and
Column Main Effects

Source df Sum of Squares H0

R r21 SS(a|β, g)
SS(a|β)

all αj ¼ 0
ðµj: ¼ µj0 :Þ

all αj ¼ 0 j all γ jk ¼ 0
ðµj: ¼ µj0 : j no interactionÞ

C c21 SS(β|a, g)
SS(β|a)

all βk ¼ 0
ðµ:k ¼ µ:k0 j no interactionÞ

all βk ¼ 0 j all γ jk ¼ 0
ðµ:k ¼ µ:k0 j no interactionÞ

RC (r 2 1)(c 2 1) SS(g|a, β) all γ jk ¼ 0
ðµjk % µj0k ¼ µjk0 % µj0k0Þ

Residuals n2rc TSS2SS(a, β, g)

Total n21 TSS

NOTE: Each incremental F-test is formulated by dividing an effect mean square by the residual

mean square (where each mean square is the corresponding sum of squares divided by its

degrees of freedom). The hypothesis tested by each such F-test is expressed both in terms of

constrained model parameters and (in parentheses) in terms of cell or marginal means.
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have a preference for tests that conform to the principle of marginality—here, those based on
SSðαjβÞ and SSðβjαÞ.22

It is important to understand, however, that while SSðαÞ and SSðβÞ are useful as building
blocks of SSðαjβÞ and SSðβjαÞ, it is, in general, inappropriate to use SSðαÞ and SSðβÞ to test
hypotheses about the R and C main effects: Each of these sums of squares depends on the other
set of main effects (and the interactions, if they are present). A main effect is a partial effect,
so we need to control for rows in assessing the column main effects and vice versa.

Testing hypotheses about the sigma-constrained parameters is equivalent to testing
interaction-effect and main-effect hypotheses about cell and marginal means. There are
two reasonable procedures for testing main-effect hypotheses in two-way ANOVA:
Tests based on SSðαjβ; γÞ and SSðβjα; γÞ (‘‘type III’’ tests) employ models that violate
the principle of marginality, but the tests are valid whether or not interactions are present.
Tests based on SSðαjβÞ and SSðβjαÞ (‘‘type II’’ tests) conform to the principle of mar-
ginality but are valid only if interactions are absent, in which case they are maximally
powerful.

For the Moore and Krupat conformity data, factor R is partner’s status and factor C is authori-
tarianism. Sums of squares for various models fit to the data are as follows:

SSðα;β; γÞ ¼ 391:44

SSðα;βÞ ¼ 215:95

SSðα; γÞ ¼ 355:42

SSðβ; γÞ ¼ 151:87

SSðαÞ ¼ 204:33

SSðβÞ ¼ 3:73

TSS ¼ 1209:20

The ANOVA for the experiment is shown in Table 8.4. The predicted status · authoritarianism
interaction proves to be statistically significant. A researcher would not normally report both
sets of main-effect sums of squares; in this instance, where the interactions probably are not
negligible, SSðαjβÞ and SSðβjαÞ do not test hypotheses about main effects, as I have explained.

8.2.6 Equal Cell Frequencies

Equal cell frequencies simplify—but do not change fundamentally—the procedures of the
preceding section. When all the cell frequencies are the same, the deviation regressors for

22In the SAS statistical computer package, SSðαjβÞ and SSðβjαÞ are called ‘‘Type II’’ sums of squares, while
SSðαjβ; γÞ and SSðβjα; γÞ are called ‘‘Type III’’ sums of squares. This terminology has become widespread.

The sequential sums of squares SSðαÞ, SSðβjαÞ, and SSðγjα;βÞ are similarly termed ‘‘Type I’’ sums of squares.
Some researchers are attracted to the sequential sums of squares because they add to the regression sum of squares for
the full model, SSðα;β; γÞ. This attraction is misguided, however, because SSðαÞ does not test for row main effects.
We should focus on the hypotheses to be tested, not on a superficial property of the sums of squares, such as the fact
that they add up in a simple manner.
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different sets of effects are uncorrelated. Equal-cell-frequencies data are often termed balanced
or orthogonal.23

Uncorrelated main-effect and interaction regressors permit a unique decomposition of the
regression sum of squares for the model, SSðα;β; γÞ, into components due to the three sets of
effects. Indeed, for balanced data,

SSðαjβ; γÞ ¼ SSðαjβÞ ¼ SSðαÞ
SSðβjα; γÞ ¼ SSðβjαÞ ¼ SSðβÞ
SSðγjα;βÞ ¼ SSðγÞ

and hence
SSðα;β; γÞ ¼ SSðαÞ þ SSðβÞ þ SSðγÞ

These results lead to simple direct formulas for the several sums of squares:

SSðαÞ ¼ n0c
Xr

j¼1

ðY j:% Y : :Þ2

SSðβÞ ¼ n0r
Xc

k¼1

ðY :k % Y : :Þ2

SSðγÞ ¼ n0
Xr

j¼1

Xc

k¼1

ðY jk % Y j:% Y :k þ Y : :Þ2

where n0 ¼ n=rc is the number of observations in each cell of the RC table.

8.2.7 Some Cautionary Remarks

R. A. Fisher (1925) originally formulated ANOVA for balanced data. Yet, as early as 1934,
Fisher’s colleague at the Rothamsted Experimental Station in England, Frank Yates, extended

Table 8.4 Analysis-of-Variance Table for Moore and Krupat’s Conformity
Experiment

Source SS df MS F p

Partner’s status 1
αjβ; γ 239.57 239.57 11.43 .002
αjβ 212.22 212.22 10.12 .003

Authoritarianism 2
βjα; γ 36.02 18.01 0.86 .43
βjα 11.62 5.81 0.28 .76

Partner’s status · Authoritarianism 175.49 2 87.74 4.18 .02

Residuals 817.76 39 20.97

Total 1209.2 44

NOTE: Alternative tests are shown for the partner’s status and authoritarianism main effects.

23See Chapter 10, on the geometry of linear models, for an explanation of the term orthogonal.

8.2 Two-Way Analysis of Variance 175



ANOVA to unbalanced data. Apart from approximate methods motivated by the desire to
reduce the effort of calculation, Yates (1934) suggested two approaches to the two-way classi-
fication, naming both for the computational techniques that he developed. The first approach,
which he called ‘‘the method of weighted squares of means,’’ calculates (using my notation)
the main-effect sums of squares SSðαjβ; γÞ and SSðβjα; γÞ, and the interaction sum of squares
SSðγjα;βÞ. Yates’s second approach, which he called ‘‘the method of fitting constants,’’
assumes that interactions are absent and calculates SSðαjβÞ and SSðβjαÞ.

Considering the apparent simplicity of the two-way classification and the lucidity of Yates’s
treatment of it, it is ironic that the analysis of unbalanced data has become the subject of con-
troversy and confusion. While it is not my purpose to present a complete account of the
‘‘debate’’ concerning the proper handling of unbalanced data—and while it is tempting to
ignore this debate altogether—there are two reasons for addressing the topic briefly here: (1)
You may encounter confused applications of ANOVA or may have occasion to consult other
accounts of the method, and (2) computer programs for ANOVA are occasionally misleading
or vague in their documentation and output or even incorrect in their calculations (see Francis,
1973).24

Much of the confusion about the analysis of unbalanced data has its source in the restric-
tions—or other techniques—that are used to solve the ‘‘overparametrized’’ (i.e., unrestricted)
two-way ANOVA model. Imagine, for example, that we use dummy (0; 1) coding rather than
deviation (%1; 0; 1) coding to fit the model to the data, as in Section 8.2.3.

Let SS(ð'Þ denote the regression sum of squares for a dummy-coded model. For the full
model and the main-effects model, we obtain the same sums of squares as before; that is,

SSðα;β; γÞ ¼ SS(ðα;β; γÞ

SSðα;βÞ ¼ SS(ðα;βÞ

Likewise (because they are just the two one-way ANOVAs)

SSðαÞ ¼ SS(ðαÞ
SSðβÞ ¼ SS(ðβÞ

And because these regression sums of squares are the same, so are the incremental sums of
squares that depend on them:

SSðγjα;βÞ ¼ SS(ðγjα;βÞ

SSðαjβÞ ¼ SS(ðαjβÞ

SSðβjαÞ ¼ SS(ðβjαÞ

In general, however,

SSðα; γÞ 6¼ SS(ðα; γÞ

SSðβ; γÞ 6¼ SS(ðβ; γÞ

and, consequently (also in general),

24With respect to the second point, it is good practice to test a computer program with known data before trusting it to
analyze new data. This advice applies not just to ANOVA calculations but generally.
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SSðαjβ; γÞ 6¼ SS(ðαjβ; γÞ

SSðβjα; γÞ 6¼ SS(ðβjα; γÞ

The general lesson to be drawn from these results is that tests that conform to the principle of
marginality [here, those based on SSðγjα;βÞ, SSðαjβÞ, and SSðβjαÞ] do not depend on the spe-
cific restrictions that were employed to identify the model (i.e., remove the indeterminacy in
the overparametrized model), while tests that ‘‘violate’’ the principle of marginality [those
based on SSðαjβ; γÞ and SSðβjα; γÞ] do depend on the specific restrictions.

I showed that SSðαjβ; γÞ and SSðβjα; γÞ, based on the sigma constraints, are appropriate for
testing hypotheses about main effects in the potential presence of interactions. It follows that
SS(ðαjβ; γÞ and SS(ðβjα; γÞ do not properly test these hypotheses. It is important, in this con-
text, to select constraints that test reasonable hypotheses about cell and marginal means. The
SS notation is frequently used carelessly, without attention to the constraints that are employed
and to the hypotheses that follow from them.25

8.3 Higher-Way Analysis of Variance

The methods of the previous section can be extended to any number of factors. I will consider
the three-way classification in some detail before commenting briefly on the general case.

8.3.1 The Three-Way Classification

It is convenient to label the factors in the three-way classification as A, B, and C, with a, b,
and c levels, consecutively. A response-variable observation is represented by Yijkm, where the
first subscript gives the index of the observation within its cell. The number of observations
sampled in cell fj; k;mg is njkm, and µjkm is the population mean in this cell. Quantities such as
µ...;µj::, and µjk: denote marginal means formed by averaging over the dotted subscripts.

The three-way ANOVA model is

Yijkm ¼ µjkm þ εijkm

¼ µþ αAðjÞ þ αBðkÞ þ αCðmÞ þ αABðjkÞ

þ αACðjmÞ þ αBCðkmÞ þ αABCðjkmÞ þ εijkm ð8:15Þ

To avoid the proliferation of symbols, I have introduced a new and easily extended notation
for model parameters: The first set of subscripts (e.g., AB) indicates the factors to which a para-
meter pertains, while the parenthetical subscripts [e.g., ðj; kÞ] index factor categories.

We make the usual linear-model assumptions about the errors εijkm and constrain all sets of
parameters to sum to 0 over every coordinate; for example,

25Further discussions on the points raised in this section may be found in a variety of sources, including Hocking and
Speed (1975); Speed and Hocking (1976); Speed, Hocking, and Hackney (1978); Speed and Monlezun (1979); Searle,
Speed, and Henderson (1981); and Steinhorst (1982). Also see Section 9.1.1 and Exercise 9.15.
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Xa

j¼1

αAðjÞ ¼ 0

Xa

j¼1

αABðjkÞ ¼
Xb

k¼1

αABðjkÞ ¼ 0 for all j; k

Xa

j¼1

αABCðjkmÞ ¼
Xb

k¼1

αABCðjkmÞ ¼
Xc

m¼1

αABCðjkmÞ ¼ 0 for all j; k;m

The sigma constraints for αBðkÞ, αCðmÞ;αACðjmÞ; and αBCðkmÞ follow similar patterns.
The three-way ANOVA model includes parameters for main effects (αAðjÞ;αBðkÞ; and αCðmÞ),

for two-way interactions between each pair of factors (αABðjkÞ;αACðjmÞ; and αBCðkmÞ), and for
three-way interactions among all three factors (αABCðjkmÞ). The two-way interactions have the
same interpretation as in two-way ANOVA: If, for instance, A and B interact, then the effect of
either factor on the response variable varies across the levels of the other factor. Similarly, if
the ABC interaction is nonzero, then the joint effect of any pair of factors (say, A and B) varies
across the categories of the remaining factor (C).

In formulating models and interpreting effects in three-way ANOVA, we may again appeal
to the principle of marginality. Thus, main effects (e.g., of A) are generally not interpreted if
they are marginal to nonnull interactions (AB, AC, or ABC). Likewise, a lower-order interac-
tion (such as AB) is usually not interpreted if it has a nonnull higher-order relative (ABC): If
the joint effects of A and B are different in different categories of C, then it is not generally
sensible to speak of the unconditional AB effects, without reference to a specific category of C.

Deviation regressors for main effects in the three-way classification can be coded as before;
regressors for interactions are formed by taking all possible products of the main effects that
‘‘compose’’ the interaction. Here, for example, is the coding for a ¼ 2; b ¼ 2; and c ¼ 3:

The following points are noteworthy:

) The 12 cell means are expressed in terms of an equal number of independent parameters
(including the general mean, µ), underscoring the point that three-way interactions may

Cell
jkm A B C1 C2 AB AC1 AC2 BC1 BC2 ABC1 ABC2

111 1 1 1 0 1 1 0 1 0 1 0
112 1 1 0 1 1 0 1 0 1 0 1
113 1 1 %1 %1 1 %1 %1 %1 %1 %1 %1
121 1 %1 1 0 %1 1 0 %1 0 %1 0
122 1 %1 0 1 %1 0 1 0 %1 0 %1
123 1 %1 %1 %1 %1 %1 %1 1 1 1 1
211 %1 1 1 0 %1 %1 0 1 0 %1 0
212 %1 1 0 1 %1 0 %1 0 1 0 %1
213 %1 1 %1 %1 %1 1 1 %1 %1 1 1
221 %1 %1 1 0 1 %1 0 %1 0 1 0
222 %1 %1 0 1 1 0 %1 0 %1 0 1
223 %1 %1 %1 %1 1 1 1 1 1 %1 %1
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be required to account for the pattern of cell means. More generally in the three-way
classification, there are abc cells and the same number of independent parameters:

1þða% 1Þ þ ðb% 1Þ þ ðc% 1Þ þ ða% 1Þðb% 1Þ þ ða% 1Þðc% 1Þ þ ðb% 1Þðc% 1Þ
þða% 1Þðb% 1Þðc% 1Þ
¼ abc:

) The degrees of freedom for a set of effects correspond, as usual, to the number of inde-
pendent parameters in the set. There are, for example, a% 1 degrees of freedom for the
A main effects, ða% 1Þðb% 1Þ degrees of freedom for the AB interactions, and
ða% 1Þðb% 1Þðc% 1Þ degrees of freedom for the ABC interactions.

Solving for the constrained parameters in terms of populations means produces the following
results:

µ ¼ µ . . .

αAðjÞ ¼ µj: :% µ . . .

αABðjkÞ ¼ µjk :% µ% αAðjÞ % αBðkÞ

¼ µjk :% µj: :% µ:k :þ µ . . .

αABCðjkmÞ ¼ µjkm % µ% αAðjÞ % αBðkÞ % αCðmÞ % αABðjkÞ % αACðjmÞ % αBCðkmÞ

¼ µjkm % µjk :% µj:m % µ:km þ µj: :þ µ:k :þ µ: :m % µ . . .

(The patterns for αBðkÞ, αCðmÞ, αACðjmÞ; and αBCðkmÞ are similar and are omitted for brevity.)
As in two-way ANOVA, therefore, the null hypothesis

H0 : all αAðjÞ ¼ 0

is equivalent to

H0 : µ1: : ¼ µ2: : ¼ ' ' ' ¼ µa: :

and the hypothesis

H0 : all αABðjkÞ ¼ 0

is equivalent to
H0 : µjk :% µj0k : ¼ µjk0 :% µj0k0 : for all j; j0 and k; k0

Likewise, some algebraic manipulation26 shows that the null hypothesis

H0 : all αABCðjkmÞ ¼ 0

is equivalent to
H0 : ðµjkm % µj0kmÞ % ðµjk0m % µj0k0mÞ

¼ ðµjkm0 % µj0km0Þ % ðµjk0m0 % µj0k 0m0Þ
for all j; j0; k; k0; and m;m0

ð8:16Þ

The second-order differences in Equation (8.16) are equal when the pattern of AB interac-
tions is invariant across categories of factor C—an intuitively reasonable extension of the

26See Exercise 8.4.
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notion of no interaction to three factors. Rearranging the terms in Equation 8.16 produces simi-
lar results for AC and BC, demonstrating that three-way interaction—like two-way interac-
tion—is symmetric in the factors. As in two-way ANOVA, this simple relationship between
model parameters and population means depends on the sigma constraints, which were
imposed on the overparametrized model in Equation 8.15.

Incremental F-tests can be constructed in the usual manner for the parameters of the three-
way ANOVA model. A general ANOVA table, adapting the SS notation of Section 8.2.5 and
showing alternative tests for main effects and lower-order interactions, is sketched in
Table 8.5. Once more, for compactness, only tests involving factor A are shown. Note that a
main-effect hypothesis such as H0: all αAðjÞ ¼ 0 is of interest even when the BC interactions
are present because A is not marginal to BC.

8.3.2 Higher-Order Classifications

Extension of ANOVA to more than three factors is algebraically and computationally
straightforward. The general p-way classification can be described by a model containing terms
for every combination of factors; the highest-order term, therefore, is for the p-way interac-
tions. If the p-way interactions are nonzero, then the joint effects of any p% 1 factors vary
across the levels of the remaining factor. In general, we can be guided by the principle of mar-
ginality in interpreting effects.

Three-way interactions, however, are reasonably complex, and the even greater complexity
of higher-order interactions can make their interpretation difficult. Yet, at times, we may expect
to observe a high-order interaction of a particular sort, as when a specific combination of char-
acteristics predisposes individuals to act in a certain manner.27 On the other hand, it is common
to find that high-order interactions are not statistically significant or that they are negligibly
small relative to other effects.

Table 8.5 General Three-Way ANOVA Table, Showing Incremental Sums of Squares for Terms
Involving Factor A

Source df Sum of Squares H0

A a%1 SS(AjB, C, AB, AC, BC, ABC) αA ¼0
SS(A|B, C, BC) αA ¼ 0 jαAB ¼ αAC ¼ αABC ¼ 0

AB ða% 1Þðb% 1Þ SS(AB|A, B, C, AC, BC, ABC) αAB ¼0
SS(AB|A, B, C, AC, BC) αAB ¼ 0 jαABC ¼0

ABC (a%1)(b%1)(c%1) SS(ABC|A, B, C, AB, AC, BC) αABC ¼0

Residuals n%abc TSS%SS(A, B, C, AB, AC, BC, ABC)

Total n%1 TSS

NOTE: Alternative tests are shown for the A main effects and AB interactions.

27An alternative to specifying a high-order interaction would be simply to introduce a dummy regressor, coded 1 for
the combination of categories in question and 0 elsewhere.
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There is, moreover, no rule of data analysis that requires us to fit and test all possible inter-
actions. In working with higher-way classifications, we may limit our consideration to effects
that are of theoretical interest, or at least to effects that are substantively interpretable. It is
fairly common, for example, for researchers to fit models containing only main effects:

Yijk...r ¼ µþ αAðjÞ þ αBðkÞ þ ' ' ' þ αPðrÞ þ εijk...r

This approach, sometimes called multiple-classification analysis or MCA (Andrews,
Morgan, & Sonquist, 1973),28 is analogous to an additive multiple regression. In a similar
spirit, a researcher might entertain models that include only main effects and two-way
interactions.

The ANOVA model and procedures for testing hypotheses about main effects and inter-
actions extend straightforwardly to three-way and higher-way classifications. In each
case, the highest-order interaction corresponds to the number of factors in the model. It
is not necessary, however, to specify a model that includes all terms through the highest-
order interaction.

Cell means for an illustrative four-way classification appear in Figure 8.6, which shows mean
vocabulary score in the U.S. General Social Surveys as a function of level of education (less
than high school, high school, junior college, bachelor’s degree, or graduate degree), age group
(five bins, from 18–29 to 60 or more), place of birth (foreign born or native born), and sex.29

The 18,665 observations in the data set are therefore divided across 5 · 5 · 2 · 2 ¼ 100 cells.
Most cells have a substantial number of observations, but some—especially among the foreign
born—are sparse, and although there are data in every cell, there is, for example, only one for-
eign-born male, 50 to 59 years of age, with a junior-college education.

The vertical lines in Figure 8.6 represent – 2 standard errors around the means; in cells with
a very small number of observations, some of these intervals extend beyond the range of the
vertical axis (and, indeed, in the cell with only one observation, the interval is infinite).
Discounting the means that are highly variable, the pattern of change in mean vocabulary score
with education appears quite similar across cells, and education seems to have a much stronger
impact on vocabulary score than do the other factors.

Although vocabulary score is discrete and a disguised proportion, its distribution is reason-
ably well behaved, and I therefore proceed with a four-way ANOVA, shown in Table 8.6. The
tests in this ANOVA table conform to the principle of marginality. Thus, for example, the
main-effect sum of squares for education is computed after age, place of birth, sex, and all
two- and three-way interactions among these factors, but ignoring all the interactions of which
education is a lower-order relative.

One of the important uses of a statistical model is to ‘‘smooth’’ the data, eliminating features
of the data that are unimportant.30 In a large data set, such as this one, even trivial effects can

28The term multiple-classification analysis is unfortunate because it is equally descriptive of any ANOVA model fit to
the p-way classification.
29The GSS vocabulary data were introduced in Chapter 3.
30Of course, what counts as ‘‘unimportant’’ varies by context, and in some circumstances, even a relatively minor fea-
ture of the data may prove to be of interest.
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prove to be ‘‘statistically significant,’’ and we may wish to ignore such effects in describing
the data. Chapter 22 presents methods for selecting a statistical model to summarize data based
on considerations other than p-values. Anticipating that discussion, I have settled on a model
for the vocabulary data that includes main effects of sex, place of birth, education, and age
group, and the two-way interaction between place of birth and age group. This model, with
R2 ¼ :267, accounts for almost as much variation in the vocabulary scores as the full model,
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Figure 8.6 Mean vocabulary score by level of education, age group, place of birth, and sex, using
data from the U.S. General Social Surveys. The education levels represented are less
than high school ( < HS), high school (HS), junior college (JC), bachelor’s degree
(Bach), and graduate degree (Grad). The dots represent the cell means. The vertical
line around each dot is – 2 standard errors around the corresponding cell mean. In
some cells, these intervals extend beyond the end points of the vertical axis, while in
other cells, the lines are so short that they are not discernible.

182 Chapter 8. Analysis of Variance



for which R2 ¼ :275, despite the fact that the former has only 15 coefficients and the latter 100
coefficients! Still, given the large sample, an incremental F-test reveals highly statistically sig-
nificant lack of fit:

F0 ¼
18; 665% 100

85
·
:275% :267

1% :267
¼ 2:38

df ¼ 85 and 18; 565

p& :0001

Figure 8.7 shows ‘‘effect displays’’ for the simplified model.31 In computing each effect, other
explanatory variables are held to average values—in the case of factors (and all of the explana-
tory variables here are factors), to their observed distribution in the data. It is apparent from
Figure 8.7 that education is by far the largest influence on vocabulary. The sex main effect, in
contrast, is quite small—only a fraction of a word on the 10-word test. Age apparently makes
more of a difference to the vocabulary scores of the foreign born than of the native born, and
the vocabulary advantage of the native born grows smaller with age.

Computing the Effect Display*

To compute the effects in Figure 8.7, each variable in a high-order term is allowed to range
over its values, while other explanatory variables are set to ‘‘average’’ values. In the case of a
factor, we fix the regressors coding the main effects for the factors to their means, which is

Table 8.6 Four-Way ANOVA of Vocabulary Score by Sex, Place of Birth, Education, and Age
Groups

Source Sum of Squares df Mean Square F p

Sex (S) 127. 1 127.00 37.58 &.0001
Place of Birth (B) 1,122. 1 1122.00 331.13 &.0001
Education (E) 20,556. 4 5139.00 1516.38 &.0001
Age Group (A) 1,211. 4 302.75 89.31 &.0001
S · B 3. 1 3.00 0.80 .37
S · E 62. 4 15.50 4.56 .001
S · A 104. 4 26.00 7.66 < .0001
B · E 102. 4 25.50 7.50 < .0001
B · A 240. 4 60.00 17.73 &.0001
E · A 103. 16 6.44 1.90 .02
S · B · E 37. 4 9.25 2.76 .03
S · B · A 18. 4 4.50 1.32 .26
S · E · A 74. 16 4.63 1.36 .15
B · E · A 110. 16 6.87 2.03 .009
S · B · E · A 98. 16 6.13 1.81 .024
Residuals 62,917. 18,565 3.39

Total 86,833. 18,664

NOTE: The various sums of squares are computed in conformity with the principle of marginality.

31Effect displays were introduced in Section 7.3.4.

8.3 Higher-Way Analysis of Variance 183



equivalent to fixing the distribution of the factor to the sample proportions at its various levels;
interaction regressors are fixed to the products of the main-effect regressors marginal to the
interaction. Effect displays computed in this manner are invariant with respect to the coding of
factors, as long as the model obeys the principle of marginality.

Table 8.7 shows the quantities used to compute two of the fitted values in the effect displays
in Figure 8.7: (1) the effect of membership in the ‘‘graduate degree’’ category for the main
effect of education and (2) the effect of membership in the combination of categories ‘‘foreign
born’’ and ‘‘40–49’’ for the interaction between place of birth and age.
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Figure 8.7 Effect displays for the simplified model fit to the GSS vocabulary data, showing the
main effects of sex and education, as well as the interaction between place of birth
and age—the high-order terms in the model. The broken lines give pointwise 95%
confidence intervals around the estimated effects.
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) To calculate the first effect from Table 8.7, we have

by1 ¼
X15

j¼1

Bjxj1

¼ 6:0350 · 1þ 0:0861 · 0:1442% 2:1247 · % 1:0000

þ ' ' ' þ 0:0389 · % 0:8649 · % 0:0893

¼ 8:0264

Note that in this computation, the regression constant is multiplied by 1 and that because
‘‘graduate degree’’ is the last category of education, all the regressors for education take
on the value %1 by virtue of the sigma constraint on the coefficients of the education main
effect. Other main-effect regressors are set to their mean values and interaction regressors
to the products of the mean values of the main effects composing the interactions.

) Similarly, to compute the second effect,

by2 ¼
X15

j¼1

Bjxj2

¼ 6:0350 · 1þ 0:0861 · 0:1442þ ' ' ' % 0:0738 · 1

þ ' ' ' % 0:1956 · 1þ 0:0389 · 0

¼ 4:9129

Table 8.7 Computation of Effects for the Model Including Main Effects of Sex and Education and
the Interaction Between Place of Birth and Age

Regressor Coefficient
Bj

Regressor
Mean, Xj

Graduate
xj1

Foreign, 40–49
xj2

Constant 6.0350 1.0000 1.0000 1.0000
Sex (Female) 0.0861 0.1442 0.1442 0.1442
Education ( < HS) 22.1247 0.1308 21.0000 0.1308
Education (HS) 20.4778 0.4669 21.0000 0.4669
Education (JC) 20.0431 20.0102 21.0000 20.0102
Education (Bach) 1.0315 0.0817 21.0000 0.0817
Birthplace (Foreign) 20.4490 20.8649 20.8649 1.0000
Age (18–29) 20.4585 0.0018 0.0018 0.0000
Age (30–39) 20.3654 0.0114 0.0114 0.0000
Age (40–49) 20.0738 20.0343 20.0343 1.0000
Age (50–59) 0.2337 20.0893 20.0893 0.0000
Foreign · 18–29 20.0231 — 20.8649 · 0.0018 0.0000
Foreign · 30–39 20.2704 — 20.8649 · 0.0114 0.0000
Foreign · 40–49 20.1956 — 20.8649 · 20.0343 1.0000
Foreign · 50–59 0.0389 — 20.8649 · 20.0893 0.0000

NOTE: The column labeled xj1 contains the values of the regressors used to compute the effects of membership

in the ‘‘graduate degree’’ category of the education factor; the column labeled xj2 contains the values of the

regressors used to compute the effects of membership in the combination of categories ‘‘foreign born’’ and

‘‘40–49’’ for the interaction of place of birth with age.
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Here, the deviation regressor for place of birth takes on the value 1 (i.e., foreign), as do
the regressor for the 40–49 age category and the product regressor for these two
categories.

Because the effects are just weighted sums of the regression coefficients, their standard
errors can be computed from the coefficient sampling variances and covariances.32

8.3.3 Empty Cells in ANOVA

As the number of factors increases, the number of cells grows at a much faster rate: For p
dichotomous factors, for example, the number of cells is 2p. One consequence of this prolifera-
tion is that some combinations of factor categories may not be observed; that is, certain cells in
the p-way classification may be empty.

Nevertheless, we can use our deviation-coding approach to estimation and testing in the pres-
ence of empty cells as long as the marginal frequency tables corresponding to the effects that
we entertain contain no empty cells. For example, in a two-way classification with an empty
cell, we can safely fit the main-effects model (see below), because the one-way frequency
counts for each factor separately contain no 0s. The full model with interactions is not covered
by the rule, however, because the two-way table of counts contains a 0 frequency. By extension,
the rule never covers the p-way interaction when there is a 0 cell in a p-way classification.33

To illustrate the difficulties produced by empty cells, I will develop a very simple example
for a 2 · 2 classification with cell frequencies:

That is, the cell frequency n22 is 0. Because there are no observations in this cell, we cannot
estimate the cell mean µ22. Writing out the other cell means in terms of the sigma-restricted
model parameters produces three equations:

µ11 ¼ µþ α1 þ β1 þ γ11

µ12 ¼ µþ α1 þ β2 þ γ12 ¼ µþ α1 % β1 % γ11

µ21 ¼ µþ α2 þ β1 þ γ21 ¼ µ% α1 þ β1 % γ11

There are, then, four independent parameters (µ, α1, β1; and γ11) but only three population
means in observed cells, so the parameters are not uniquely determined by the means.

C1 C2 Row marginal

R1 n11 n12 n11 + n12

R2 n21 0 n21

Column marginal n11 + n21 n12 n

32See Exercise 9.14.
33It may be possible, however, to estimate and test effects not covered by this simple rule, but determining whether
tests are possible and specifying sensible hypotheses to be tested are considerably more complex in this instance. For
details see, for example, Searle (1971, pp. 318–324), Hocking and Speed (1975, pp. 711–712), and Speed et al. (1978,
pp. 110–111). The advice given in Section 8.2.7 regarding care in the use of computer programs for ANOVA of unba-
lanced data applies even more urgently when there are empty cells.
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Now imagine that we can reasonably specify the absence of two-way interactions for these
data. Then, according to our general rule, we should be able to estimate and test the R and C
main effects because there are observations at each level of R and at each level of C. The equa-
tions relating cell means to independent parameters become

µ11 ¼ µþ α1 þ β1

µ12 ¼ µþ α1 þ β2 ¼ µþ α1 % β1

µ21 ¼ µþ α2 þ β1 ¼ µ% α1 þ β1

Solving for the parameters in terms of the cell means produces34

µ ¼ µ12 þ µ21

2

α1 ¼
µ11 % µ21

2

β1 ¼
µ11 % µ12

2

These results make sense, for, in the absence of interaction:

) The cell means µ12 and µ21 are ‘‘balanced’’ with respect to both sets of main effects,
and therefore their average serves as a suitable definition of the grand mean.

) The difference µ11 % µ21 gives the effect of changing R while C is held constant (at
Level 1), which is a suitable definition of the main effect of R.

) The difference µ11 % µ12 gives the effect of changing C while R is held constant (at
Level 1), which is a suitable definition of the main effect of C.

8.4 Analysis of Covariance

Analysis of covariance (ANCOVA) is a term used to describe linear models that contain both
qualitative and quantitative explanatory variables. The method is, therefore, equivalent to
dummy-variable regression, discussed in the previous chapter, although the ANCOVA model
is parametrized differently from the dummy-regression model.35 Traditional applications of
ANCOVA use an additive model (i.e., without interactions). The traditional additive
ANCOVA model is a special case of the more general model that I present here.

In ANCOVA, an ANOVA formulation is used for the main effects and interactions of the
qualitative explanatory variables (i.e., the factors), and the quantitative explanatory variables
(or covariates) are expressed as deviations from their means. Neither of these variations repre-
sents an essential change, however, for the ANCOVA model provides the same fit to the data
as the dummy-regression model. Moreover, if tests are formulated following the principle of
marginality, then precisely the same sums of squares are obtained for the two parameteriza-
tions. Nevertheless, the ANCOVA parameterization makes it simple to formulate sensible (if

34The 2 · 2 classification with one empty cell is especially simple because the number of parameters in the main-effects
model is equal to (i.e., no fewer than) the number of observed cell means. This is not generally the case, making a gen-
eral analysis considerably more complex.
35Usage here is not wholly standardized, and the terms dummy regression and analysis of covariance are often taken as
synonymous.
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ordinarily uninteresting) tests for lower-order terms in the presence of their higher-order
relatives.

I will use Moore and Krupat’s study of conformity and authoritarianism to illustrate
ANCOVA. When we last encountered these data, both explanatory variables—partner’s status
and authoritarianism—were treated as factors.36 Partner’s status is dichotomous, but authoritar-
ianism is a quantitative score (the ‘‘F-scale’’), which was arbitrarily categorized for the two-
way ANOVA. Here, I will treat authoritarianism more naturally as a covariate.

A dummy-regression formulation, representing authoritarianism by X , and coding D ¼ 1 in
the low partner’s status group and D ¼ 0 in the high partner’s status group produces the fol-
lowing fit to the data (with estimated standard errors in parentheses below the coefficients):

bY ¼ 20:79% 0:1511X % 15:53Dþ 0:2611ðX · DÞ

ð3:26Þ ð0:0717Þ ð4:40Þ ð0:0970Þ
R2 ¼ :2942

ð8:17Þ

It makes sense, in this model, to test whether the interaction coefficient is statistically signifi-
cant (clearly it is), but—as explained in the previous chapter—it is not sensible to construe the
coefficients of X and D as ‘‘main effects’’ of authoritarianism and partner’s status: The coeffi-
cient of X is the authoritarianism slope in the high-status group, while the coefficient of D is
the difference in the regression lines for the two groups at an authoritarianism score of X ¼ 0.

An ANCOVA model for the Moore and Krupat experiment is

Yij ¼ µþ αj þ βðXij % X Þ þ γ jðXij % X Þ þ εij ð8:18Þ

where

) Yij is the conformity score for subject i in category j of partner’s status;
) µ is the general level of conformity;
) αj is the main effect of membership in group j of partner’s status;
) β is the main-effect slope of authoritarianism, X ;
) γ j is the interaction between partner’s status and authoritarianism for group j;
) εij is the error; and
) the mean authoritarianism score X is computed over all the data.

To achieve a concrete understanding of the model in Equation 8.18, let us—as is our usual
practice—write out the model separately for each group:

Low status : Yi1 ¼ µþ α1 þ βðXi1 % X Þ þ γ1ðXi1 % X Þ þ εi1

¼ µþ α1 þ ðβþ γ1ÞðXi1 % X Þ þ εi1

High status : Yi2 ¼ µþ α2 þ βðXi2 % X Þ þ γ2ðXi2 % X Þ þ εi2

¼ µþ α2 þ ðβþ γ2ÞðXi2 % X Þ þ εi2

It is immediately apparent that there are too many parameters: We are fitting one line in each
of two groups, which requires four parameters, but there are six parameters in the model—µ,
α1, α2, β, γ1, and γ2.

36See Section 8.2.

188 Chapter 8. Analysis of Variance



We require two restrictions, and to provide them we will place sigma constraints on the αs
and γs:

α1 þ α2 ¼ 0) α2 ¼ %α1

γ1 þ γ2 ¼ 0) γ2 ¼ %γ1

Under these constraints, the two regression equations become

Low status : Yi1 ¼ µþ α1 þ ðβþ γ1ÞðXi1 % X Þ þ εi1

High status : Yi2 ¼ µ% α1 þ ðβ% γ1ÞðXi2 % X Þ þ εi2

The parameters of the constrained model therefore have the following straightforward interpre-
tations (see Figure 8.8):

) µ is midway between the two regression lines above the mean of the covariate, X .
) α1 is half the difference between the two regression lines, again above X .
) β is the average of the slopes βþ γ1 and β% γ1 for the two within-group regression

lines.
) γ1 is half the difference between the slopes of the two regression lines.

Note, in particular, that the constrained parameters α1 and β are reasonably interpreted as
‘‘main effects’’—that is, the partial effect of one explanatory variable averaged over the other
explanatory variable—even when interactions are present in the model. As usual, however,
main effects are likely not of interest when interactions are present.

To fit the model to the data, we need to code a deviation regressor S for partner’s status:

X

Y

0 X

µ

µ + α1
1

1
µ − α1

β − γ1

β + γ1

Group 2

Group 1

Figure 8.8 The analysis-of-covariance model for two groups, permitting different within-group
slopes.
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Then we can regress conformity on S, the mean deviation scores for X , and the product of S
and X % X ,

Yij ¼ µþ α1Sij þ βðXij % X Þ þ γ1½SijðXij % X Þ+ þ εij

producing the following fit to the Moore and Krupat data:

bY ¼12:14% 2:139S % 0:02055ðX % X Þ þ 0:1306½SðX % X Þ+

ð0:68Þ ð0:681Þ ð0:04850Þ ð0:0485Þ
R2 ¼ :2942 ð8:19Þ

Because each set of effects has one degree of freedom, incremental F-tests for the main effects
and interactions are equivalent to the t-tests produced by dividing each coefficient by its stan-
dard error. It is apparent, then, that the partner’s status · authoritarianism interaction is statisti-
cally significant, as is the status main effect, but the authoritarianism main effect is not. You
can verify that the two regression lines derived from the fitted ANCOVA model (8.19) are the
same as those derived from the dummy-regression model (8.17).37

ANCOVA is an alternative parameterization of the dummy-regression model, employing
deviation-coded regressors for factors and expressing covariates as deviations from their
means. The ANCOVA model can incorporate interactions among factors and between
factors and covariates.

8.5 Linear Contrasts of Means

I have explained how the overparametrized ANOVA model can be fit to data by placing a suf-
ficient number of linear restrictions on the parameters of the model. Different restrictions pro-
duce different regressors and hence different parameter estimates but identical sums of
squares—at least for models that conform to the principle of marginality. We have examined
in some detail two schemes for coding regressors for a factor: dummy (0, 1) coding and devia-
tion (1, 0, %1) coding. The coefficients for a set of dummy-coded regressors compare each
level of a factor with the baseline level, while the coefficients for a set of deviation-coded
regressors compare each level (but the last) with the average of the levels.

We do not generally test hypotheses about individual coefficients for dummy-coded or
deviation-coded regressors, but we can do so, if we wish. For dummy-coded regressors in

Partner’s Status S

Low 1
High %1

37See Exercise 8.8.
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one-way ANOVA, a t-test or F-test of H0: α1 ¼ 0, for example, is equivalent to testing for the
difference in means between the first group and the baseline group, H0: µ1 ¼ µm. For devia-
tion-coded regressors, testing H0: α1 ¼ 0 is equivalent to testing for the difference between the
mean of the first group and the average of all the group means, H0: µ1 ¼ µ:.

In this section, I will explain a simple procedure for coding regressors that permits us to test
specific hypotheses about linear contrasts (also called linear comparisons) among group
means.38 Although I will develop this technique for one-way ANOVA, contrast-coded regressors
can also be employed for any factor in a two-way or higher-way ANOVA or in an ANCOVA.39

For concreteness, let us examine the data in Table 8.8, which are drawn from an experimen-
tal study by Friendly and Franklin (1980) of the effects of presentation format on learning and
memory.40 Subjects participating in the experiment read a list of 40 words. Then, after per-
forming a brief distracting task, the subjects were asked to recall as many of the words as pos-
sible. This procedure was repeated for five trials. Thirty subjects were randomly assigned to
three conditions: In the control or ‘‘standard free recall’’ (SFR) condition, the order of presenta-
tion of the words on the list was randomized for each of the five trials of the experiment. In the
two experimental conditions, recalled words were presented in the order in which they were
listed by the subject on the previous trial. In one of these conditions (labeled B), the recalled
words were presented as a group before the forgotten ones, while in the other condition
(labeled M for meshed), the recalled and forgotten words were interspersed. Friendly and
Franklin expected that making the order of presentation contingent on the subject’s previous
performance would enhance recall. The data recorded in the table are the number of words cor-
rectly recalled by each subject for the final trial of the experiment.

Table 8.8 Data From Friendly and Franklin’s
(1980) Experiment on the Effects
of Presentation on Recall

Condition

SFR B M

39 40 40
25 38 39
37 39 34
25 37 37
29 39 40
39 24 36
21 30 36
39 39 38
24 40 36
25 40 30

NOTE: The data in the table are the number of

words correctly recalled by each subject on the

final trial of the experiment.

38A more general treatment of this topic may be found in Section 9.1.2.
39See Exercise 8.11.
40I am grateful to Michael Friendly of York University for providing these data.
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Means and standard deviations for Friendly and Franklin’s memory data are as follows:

The mean number of words recalled is higher in the experimental conditions than in the con-
trol; the control group also has the largest standard deviation. A jittered scatterplot of the num-
ber of words recalled by condition, shown in Figure 8.9(a), reveals a problem with the data:
The data are disguised proportions (number correctly recalled of 40 words), and many sub-
jects—particularly in the B and M conditions—are at or near the maximum. This ‘‘ceiling
effect’’ produces negatively skewed distributions in the two experimental conditions. Logit-
transforming the data helps, as shown in Figure 8.9(b).41 The means and standard deviations
for the transformed data are as follows:
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Figure 8.9 Horizontally jittered scatterplots for the Friendly and Franklin memory data: (a) for
number of words correct; (b) for the logit of the proportion of words correct.

Experimental Condition

SFR B M

Mean 30.30 36.60 36.60
Standard deviation 7.33 5.34 3.03

Experimental Condition

SFR B M

Mean 1.59 3.31 2.86
Standard deviation 1.46 1.71 1.43

41Because some subjects recalled all the words correctly, I mapped the proportions to the interval [.005, .995] prior to
computing the logits, as explained in Section 4.5.
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The logit transformation, therefore, has also made the group standard deviations more similar.
A linear contrast in the group means tests the hypothesis that a particular linear combination

of population group means is 0. For the Friendly and Franklin memory experiment, we might
wish to test the null hypothesis that the mean for the control group is no different from the
average of the means for the experimental groups:42

H0 : µ1 ¼
µ2 þ µ3

2

and the hypothesis that the means for the two experimental groups are the same:

H0 : µ2 ¼ µ3

The first hypothesis can be rewritten as

H0 : 1µ1 % 1
2µ2 % 1

2µ3 ¼ 0

and the second hypothesis as

H0 : 0µ1 þ 1µ2 % 1µ3 ¼ 0

Then, the weights for the group means in these null hypotheses can be used to formulate two
linear-contrast regressors, C1 and C2:

This simple approach to coding linear contrasts will work as long as the following conditions
are satisfied:43

1. We need one linear contrast for each degree of freedom. An m-category factor therefore
requires m% 1 contrasts.

2. Each column of the contrast-coding table must sum to 0.
3. The products of corresponding codes for different contrasts must also sum to 0. For the

illustration,

1 · 0ð Þ þ ð%1
2 · 1Þ þ ð%1

2 · % 1Þ ¼ 0

When there are equal numbers of observations in the groups, these rules ensure that the con-
trast regressors are uncorrelated. As a consequence, the regression sum of squares for the
ANOVA can be decomposed into components due to the contrasts. When the group frequen-
cies are unequal, the regression sum of squares does not decompose in this simple manner, but
properly formulated contrasts are still useful for testing hypotheses about the population group
means. Because each contrast has one degree of freedom, we can test it by a t-test (dividing

Group C1 C2

(1) SFR 1 0

(2) B % 1
2 1

(3) M % 1
2 21

42It would also be reasonable to compare each experimental group with the control group. The comparison could be
easily accomplished by using dummy coding, treating the control group as the baseline category.
43See Section 9.1.2 for an explanation of these rules and for a more flexible and general approach to constructing
contrasts.
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the estimated coefficient for the contrast by its standard error) or—equivalently—by an incre-
mental F-test.

Linear contrasts permit the researcher to test specific hypotheses about means within the
framework of ANOVA. A factor with m categories gives rise to m% 1 contrasts, one for
each degree of freedom. A simple procedure for constructing contrasts requires that the
codes for each contrast sum to 0 and that the products of codes for each pair of contrasts
also sum to 0.

For Friendly and Franklin’s experiment, the fitted model (working with the logits) is

bY ¼ 2:5880% 0:9998C1 þ 0:2248C2

ð0:2804Þ ð0:3966Þ ð0:3434Þ
R2 ¼ :2008

and the ANOVA table is

We therefore have evidence that the two experimental conditions promoted higher levels of
recall than in the control condition (contrast C1), but no evidence for the superiority of one
experimental treatment relative to the other (contrast C2). Because there are equal numbers of
observations in the three groups, the sums of squares for the contrasts add to the sum of
squares for groups (i.e., to the regression sum of squares).

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 8.1. (The usual t-statistic for testing a difference between the means of two indepen-
dently sampled groups, under the assumptions of normality and equal group variances, is

t0 ¼
Y 1 % Y 2

SEðY 1 % Y 2Þ

where

SEðY 1 % Y 2Þ ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r

S2 ¼
Pn1

j¼1 ðYi1 % Y 1Þ
2 þ

Pn2
j¼1 ðYi2 % Y 2Þ

2

n1 þ n2 % 2

Source SS df MS F p

Groups 16.005 2 8.002 3.39 .049
C1 14.994 1 14.994 6.35 .018
C2 1.011 1 1.011 0.43 .52

Residuals 63.696 27 2.359

Total 79.701 29
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Here, Y 1 and Y 2 are the means of the two groups, n1 and n2 are the numbers of observations in
the groups, and Yi1 and Yi2 are the observations themselves. Let F0 be the one-way ANOVA
F-statistic for testing the null hypothesis H0: µ1 ¼ µ2. Prove that t2

0 ¼ F0 and that, conse-
quently, the two tests are equivalent.

Exercise 8.2. (Show that one of the restrictions on the interaction parameters of the two-way
ANOVA model,

Pr

j¼1
γ jk ¼ 0 for k ¼ 1; . . . ; c

Pc

k¼1
γ jk ¼ 0 for j ¼ 1; . . . ; r

is redundant. [Hint: Construct a table of the interaction parameters, labeling the rows
1; 2; . . . ; r % 1, r and the columns 1, 2; . . . ; c. Insert a column for row sums after the last col-
umn and a row for column sums after the last row. At the bottom-right corner of the table is
the overall sum of the interaction parameters,

Pr
j¼1

Pc
k¼1 γ jk . (This table looks much like the

table of cell means on page 187, with γs replacing the µs.) Then place a 0 in each entry of the
column of row sums, corresponding to the r restrictions

Pc
k¼1 γ jk ¼ 0. From these restrictions,

show that
PP

γ jk ¼ 0, and place this 0 in the lower-right corner. Next, specify 0s for all but
the last column sum,

Pr
j¼1 γ jk ¼ 0, for k ¼ 1; . . . ; c% 1. Finally, show that the last column

sum,
Pr

j¼1 γ jc, is necessarily 0.]

Exercise 8.3. (Demonstrate that the hypothesis

H0 : all γ jk ¼ 0

for the sigma-constrained two-way ANOVA model is equivalent to the null hypothesis of no
interaction stated in terms of the cell means:

µjk % µj0k ¼ µjk0 % µj0k 0 for all j; j0 and k; k0

[Hint: Write out each of the interaction parameters γ jk , γ j0k , γ jk0 , and γ j0k0 in terms of the cell
and marginal means (e.g., γ jk ¼ µjk % µj' % µ'k þ µ''). Then show that when the γs are all 0,
γ jk % γ j0k ¼ γ jk0 % γ j0k0 (i.e., 0% 0 ¼ 0% 0) implies that µjk % µj0k ¼ µjk0 % µj0k0 .]

Exercise 8.4. (Show that in the sigma-constrained three-way ANOVA model, the null
hypothesis

H0 : all αABCðjkmÞ ¼ 0

is equivalent to the hypothesis given in Equation 8.16 on page 179. (Hint: See Exercise 8.3.)

Exercise 8.5. The geometry of effects in three-way ANOVA: Contrived parameter values for a
three-way ANOVA model (each set satisfying the sigma constraints) are given in the following
tables:
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Use these parameter values to construct population cell means for each of the following models
(simply sum the parameters that pertain to each of the 12 cells of the design):

(a) Main effects only,

µjkm ¼ µþ αAðjÞ þ αBðkÞ þ αCðmÞ

(b) One two-way interaction,

µjkm ¼ µþ αAðjÞ þ αBðkÞ þ αCðmÞ þ αACðjmÞ

αAB(jk)

B1 B2

A1 %2 2
A2 2 %2

αAC(jm)

C1 C2 C3

A1 1 1 %2
A2 %1 21 2

αBC(km)

C1 C2 C3

B1 0 3 %3
B2 0 23 3

αABC(jkm)

C1 C2 C3

A1B1 1 22 1
A1B2 %1 2 %1
A2B1 %1 2 %1
A2B2 1 22 1

αA(j)

A1 A2

2 %2

αB(k)

B1 B2

%3 3

αC(m)

C1 C2 C3

1 23 2

196 Chapter 8. Analysis of Variance



(c) All three two-way interactions,

µjkm ¼ µþ αAðjÞ þ αBðkÞ þ αCðmÞ þ αABðjkÞ þ αACðjmÞ þ αBCðkmÞ

(d) The full model,

µjkm ¼ µþ αAðjÞ þ αBðkÞ þ αCðmÞ þ αABðjkÞ þ αACðjmÞ þ αBCðkmÞ þ αABCðjkmÞ

For each of these models, do the following:

(i) Draw a graph of the cell means, placing factor C on the horizontal axis. Use
different lines (solid and broken) or line colors for the levels of factor A and
different symbols (e.g., circle and square) for the levels of factor B. Note that
there will be four connected profiles of means on each of these plots, one pro-
file for each combination of categories of A and B across the three levels of C.
Attempt to interpret the graphs in terms of the effects that are included in each
model.

(ii) Using the table of means generated from each of models (c) and (d), plot (for
each model) the six differences across the levels of factor B, µj1m % µj2m, by
the categories of factors A and C. Can you account for the different patterns of
these two graphs in terms of the presence of three-way interactions in the sec-
ond graph but not in the first?

Exercise 8.6. Adjusted means (continued): The notion of an ‘‘adjusted’’ mean was introduced
in Exercises 7.2 and 7.3. Consider the main-effects model for the p-way classification:

µjk...r [ EðYijk...rÞ ¼ µþ αAðjÞ þ αBðkÞ þ ' ' ' þ αPðrÞ

(a) Show that if we constrain each set of effects to sum to 0, then the population marginal
mean for category j of factor A is µj'...' ¼ µþ αAðjÞ.

(b) Let us define the analogous sample quantity, eYj'...'[ M þ AAðjÞ, to be the adjusted
mean in category j of factor A. How is this quantity to be interpreted?

(c) Does the definition of the adjusted mean in part (b) depend fundamentally on the con-
straint that each set of effects sums to 0?

(d) Can the idea of an adjusted mean be extended to ANOVA models that include interac-
tions? (Cf. the discussion of effect displays in this and the preceding chapter.)

Exercise 8.7. ANOVA with equal cell frequencies: In higher-way ANOVA, as in two-
way ANOVA, when cell frequencies are equal, the sum of squares for each set of effects
can be calculated directly from the parameter estimates for the full model or, equivalently, in
terms of cell and marginal means. To get the sum of squares for a particular set of effects, we
simply need to square the parameter estimate associated with each cell, sum over all cells,
and multiply by the common cell frequency, n0. For example, for a balanced three-way
ANOVA,
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SSðαABÞ ¼ n0
Xa

j¼1

Xb

k¼1

Xc

m¼1

A2
ABðjkÞ

¼ n0c
Xa

j¼1

Xb

k¼1

A2
ABðjkÞ

¼ n0c
Xa

j¼1

Xb

k¼1

ðY jk' % Y j' ' % Y 'k' þ Y '''Þ2

Write out similar expressions for SSðαAÞ and SSðαABCÞ in three-way ANOVA. Show that

RSS ¼ ðn0 % 1Þ
Xa

j¼1

Xb

k¼1

Xc

m¼1

S2
jkm

where

S2
jkm ¼

Pn0

i¼1 ðYijkm % Y jkmÞ
2

n0 % 1

is the variance in cell j; k;m of the design.

Exercise 8.8. Calculate the fitted regression equation for each group (low and high partner’s
status) in Moore and Krupat’s conformity data using the dummy regression in Equation 8.17
(page 188). Calculate the fitted regression equation for each group using the analysis of covar-
iance in Equation 8.19. Why must the two sets of equations be the same (within rounding
error)?

Exercise 8.9. Adjusted means (concluded): The notion of an adjusted mean was discussed in
Exercises 7.2, 7.3, and 8.6. Now consider the ANCOVA model for two factors, R and C, and
two covariates, X1 and X2:

Yijk ¼ µþ αj þ βk þ γ jk þ δ1ðXijk1 % X 1Þ þ δ2ðXijk2 % X 2Þ þ εijk

Note that this formulation of the model permits interactions between the factors but not
between the factors and the covariates.

(a) How can the ANCOVA model be used to compute adjusted cell means for the r · c
combinations of levels of the factors R and C?

(b) In computing adjusted means, is anything gained by expressing the covariates as
deviations from their respective means rather than as raw scores?

(c) If the interactions between the factors γ jk are deleted from the model, how can we cal-
culate adjusted means for the r categories of R and the c categories of C?

The calculation of adjusted means in additive ANCOVA models is a traditional use of the
ANCOVA. Further information on adjusted means can be found in Searle, Speed, and Milliken
(1980). Adjusted means are special cases of effect displays, as developed in this and the pre-
ceding chapter.

Exercise 8.10. Testing contrasts using group means: Suppose that we wish to test a hypothesis
concerning a contrast of group means in a one-way ANOVA:
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H0 : c1µ1 þ c2µ2 þ ' ' ' þ cmµm ¼ 0

where c1 þ c2 þ ' ' ' þ ck ¼ 0. Define the sample value of the contrast as

C [ c1Y 1 þ c2Y 2 þ ' ' ' þ cmY m

and let

C
02 [

C2

c2
1

n1
þ c2

2
n2
þ ' ' ' þ c2

m
nm

C
02 is the sum of squares for the contrast.

(a) (Show that under the null hypothesis

(i) EðCÞ ¼ 0.
(ii) V ðCÞ ¼ σ2

εð
c2

1
n1
þ c2

2
n2
þ ' ' ' þ c2

m
nm
Þ.

(iii) t0 ¼ C0=SE follows a t-distribution with n% m degrees of freedom. [Hint: The
Y j are independent, and each is distributed as Nðµj; σ

2
ε=njÞ.]

(d) Using Friendly and Franklin’s memory data, verify that the test statistics obtained by
the method of this exercise [i.e., in (a) (iii)] are the same as those produced by the
incremental sum-of-squares approach, used in the text.

Exercise 8.11. (Contrasts in two-way ANOVA: A simple approach to formulating contrasts in
two-way (and higher-way) ANOVA is first to specify contrasts separately for each set of main
effects, obtaining interaction contrasts by forming all pairwise products of the main-effect con-
trasts. Then, as long as the main-effect contrasts satisfy the rules (on page 193), the interaction
contrasts will as well. Imagine, for example, a 3 · 2 classification arising from an experiment
in which the first factor consists of a control group (R1) and two experimental groups (R2 and
R3). The second factor is, say, gender, with categories male (C1) and female (C2). A possible
set of main-effect contrasts for this experiment is

Column contrast

Gender B

C1 1
C2 %1

Row contrast

Group A1 A2

R1 2 0
R2 %1 1
R3 %1 %1
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The following table shows the full set of main-effect and interaction contrasts for all six cells
of the design (with the parameter for each contrast in parentheses):

Note that we use 2 degrees of freedom for condition main effects, 1 degree of freedom for the
gender main effect, and 2 degrees of freedom for interaction. Explain the meaning of the fol-
lowing null hypotheses:

(a) H0: ζ1 ¼ 0.
(b) H0: ζ2 ¼ 0.
(c) H0: δ1 ¼ 0.
(d) H0: δ2 ¼ 0.
(e) H0: β ¼ 0.

Exercise 8.12. Reanalyze Moore and Krupat’s conformity data eliminating the two outlying
observations, Subjects 16 and 19. Perform both a two-way ANOVA, treating authoritarianism
as a factor, and an ANCOVA, treating authoritarianism as a covariate.

Exercise 8.13. (Equations 8.6 (page 167) show how the parameters in a dummy-coded two-
way ANOVA model can be expressed in terms of the cell means µjk when the number of lev-
els of the row factor R is r ¼ 2 and the number of levels of the column factor C is c ¼ 3.

(a) Explain why the hypotheses H0: β1 ¼ 0 and H0: γ1 ¼ γ2 ¼ 0 cannot reasonably be
construed as tests of the R and C main effects when the interaction parameters δ11 and
δ12 are nonzero.

(b) Now suppose that δ11 and δ12 are zero but that we fit the full model in Equation 8.5 to
the data. Explain why H0: β1 ¼ 0 and H0: γ1 ¼ γ2 ¼ 0 now test hypotheses about the
R and C main effects but do so in a nonoptimal manner (i.e., with low power).

Summary

) One-way ANOVA examines the relationship between a quantitative response variable
and a factor. The omnibus F-statistic for the regression of the response variable on 0/1
dummy regressors constructed from the factor tests for differences in the response means
across levels of the factor.

Cell ðδ1Þ
A1

ðδ1Þ
A2

ðβÞ
B

ðζ1Þ
A1B

ðζ2Þ
A2B

Row Column

1 1 2 0 1 2 0
1 2 2 0 %1 %2 0
2 1 %1 1 1 %1 1
2 2 %1 1 %1 1 %1
3 1 %1 %1 1 %1 %1
3 2 %1 %1 %1 1 1
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) The one-way ANOVA model,

Yij ¼ µþ αj þ εij

is underdetermined because it uses mþ 1 parameters to model m group means. This
indeterminacy can be removed, however, by placing a restriction on its parameters.
Setting one of the αjs to 0 leads to (0, 1) dummy-regressor coding. Constraining the αjs
to sum to 0 leads to (1, 0, %1) deviation-regressor coding. The two coding schemes are
equivalent in that they provide the same fit to the data, producing the same regression
and residual sums of squares.

) As long as we construct tests that conform to the principle of marginality, we can code
main effects in two- and higher-way ANOVA using dummy regressors, forming interac-
tion regressors as all products of main-effect regressors for the main effects marginal to
each interaction.

) The two-way ANOVA model

Yijk ¼ µþ αj þ βk þ γ jk þ εijk

incorporates the main effects and interactions of two factors. The factors interact when
the profiles of population cell means are not parallel. The two-way ANOVA model is
overparametrized, but it can be fit to data by placing suitable restrictions on its para-
meters. A convenient set of restrictions is provided by sigma constraints, specifying that
each set of parameters (αj, βk , and γ jk) sums to 0 over each of its coordinates. Testing
hypotheses about the sigma-constrained parameters is equivalent to testing interaction-
effect and main-effect hypotheses about cell and marginal means. There are two reason-
able procedures for testing main-effect hypotheses in two-way ANOVA: Tests based on
SSðαjβ; γÞ and SSðβjα; γÞ (‘‘type III’’ tests) employ models that violate the principle of
marginality but are valid whether or not interactions are present. Tests based on SSðαjβÞ
and SSðβjαÞ (‘‘type II’’tests) conform to the principle of marginality but are valid only if
interactions are absent, in which case they are maximally powerful.

) The ANOVA model and procedures for testing hypotheses about main effects and inter-
actions extend straightforwardly to three-way and higher-way classifications. In each
case, the highest-order interaction corresponds to the number of factors in the model.
It is not necessary, however, to specify a model that includes all terms through the
highest-order interaction. Effect displays for the high-order terms in a model can clarify
the interpretation of the model.

) It is possible to fit an ANOVA model to a classification containing empty cells when the
marginal frequency tables corresponding to the terms in the model have no empty cells.

) ANCOVA is an alternative parameterization of the dummy-regression model, employing
deviation-coded regressors for factors and expressing covariates as deviations from their
means. The ANCOVA model can incorporate interactions among factors and between
factors and covariates.

) Linear contrasts permit the researcher to test specific hypotheses about means within the
framework of ANOVA. A factor with m categories gives rise to m% 1 contrasts, one for
each degree of freedom. A simple procedure for constructing contrasts requires that the
codes for each contrast sum to 0 and that the products of codes for each pair of contrasts
also sum to 0.
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9 Statistical Theory
for Linear Models*

T he purpose of this chapter is twofold: to deepen your knowledge of linear models and lin-
ear least-squares estimation and to provide a basis for more advanced work in social sta-

tistics—in the remainder of this book and more generally. Relying on the mathematical tools
of linear algebra and elementary calculus,1 we will revisit with greater rigor many of the topics
treated informally in Chapters 5 through 8, developing the statistical theory on which the meth-
ods described in those chapters depend. The chapter concludes with an introduction to instru-
mental-variables estimation and two-stage least squares. The next chapter, on the vector
geometry of linear models, provides intuitive insight into the statistical theory of linear models
and facilitates the formal development of some topics, such as degrees of freedom.

9.1 Linear Models in Matrix Form

The general linear model is given by the equation

Yi ¼ β0 þ β1xi1 þ β2xi2 þ # # # þ βkxik þ εi

I have substituted the notationally more convenient β0 for the regression constant α; I will, for
the time being, suppose that the X -values are fixed, hence the lowercase xij.

2

Collecting the regressors into a row vector, appending a 1 for the constant, and placing the
corresponding parameters in a column vector permits us to rewrite the linear model as

Yi ¼ 1; xi1; xi2; . . . ; xik½ %

β0

β1

β2

..

.

βk

2

66666664

3

77777775

þ εi

¼ x0i
ð1 · kþ1Þ

fl
ðkþ1 · 1Þ

þεi

For a sample of n observations, we have n such equations, which can be combined into a single
matrix equation:

1See online Appendices B and C for introductions to linear algebra and calculus.
2See Section 9.6 for a discussion of random regressors.
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Y1

Y2

..

.

Yn

2

66664

3

77775
¼

1 x11 # # # x1k

1 x21 # # # x2k

..

. ..
. ..

.

1 xn1 # # # xnk

2

66664

3

77775

β0

β1

..

.

βk

2

66664

3

77775
þ

ε1

ε2

..

.

εn

2

66664

3

77775

y
ðn · 1Þ

¼ X
ðn · kþ1Þ

fl
ðkþ1 · 1Þ

þ "
ðn · 1Þ

ð9:1Þ

As we will see, with suitable specification of the contents of X, called the model matrix,
Equation 9.1 serves not only for multiple regression but for linear models generally.3

Because " is a vector random variable, the assumptions of the linear model can be compactly
restated in matrix form. The errors are assumed to be independent and normally distributed
with zero expectation and common variance. Thus, " follows a multivariate-normal distribution

with expectation Eð"Þ ¼ 0
ðn · 1Þ

and covariance matrix V ð"Þ ¼ Eð""0Þ ¼ σ2
εIn; in symbols,

"; Nnð0; σ2
εInÞ. The distribution of y follows immediately:

„[ EðyÞ ¼ EðXflþ "Þ ¼ Xflþ Eð"Þ ¼ Xfl

V ðyÞ ¼ E½ðy( „Þðy( „Þ0% ¼ E½ðy( XflÞðy( XflÞ0%
¼ Eð""0Þ ¼ σ2

εIn

ð9:2Þ

Furthermore, because it is simply a translation of " to a different expectation, y is also nor-
mally distributed: y ; NnðXfl; σ2

εInÞ.

The general linear model can be written in matrix form as y ¼ Xflþ ", where y is an
n · 1 vector of response-variable observations; X is an n · k þ 1 matrix of regressors
(called the model matrix), including an initial column of 1s for the constant regressor; fl
is a k þ 1 · 1 vector of parameters to be estimated; and " is an n · 1 vector of errors. The
assumptions of the linear model can be compactly written as "; Nnð0; σ2

εInÞ.

9.1.1 Dummy Regression and Analysis of Variance

The model matrices for dummy-regression and analysis-of-variance (ANOVA) models—
especially the latter—are strongly patterned. Consider the dummy-regression model

Yi ¼ αþ βxi þ γdi þ δðxidiÞ þ εi

where (for concreteness) Y is income, x is years of education, and the dummy regressor d is
coded 1 for men and 0 for women.4 In matrix form, this model becomes

3The model matrix is often called the design matrix, a term that is especially appropriate in experimental applications
where the explanatory variables, and hence the regressors that compose the X matrix, derive from the design of the
experiment.
4This example was discussed in Chapter 7. Here, x and d are treated as fixed; random regressors are considered in
Section 9.6.
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Y1

..

.

Yn1

Yn1þ1

..

.

Yn

2

66666666666664

3

77777777777775

¼

1 x1 0 0

..

. ..
. ..

. ..
.

1 xn1 0 0

1 xn1þ1 1 xn1þ1

..

. ..
. ..

. ..
.

1 xn 1 xn

2

66666666666664

3

77777777777775

α

β

γ

δ

2

666664

3

777775
þ

ε1

..

.

εn1

εn1þ1

..

.

εn

2

66666666666664

3

77777777777775

y ¼ Xflþ "

To emphasize the pattern of the model matrix, the n1 observations for women (for whom d and
hence xd are 0) precede the n( n1 observations for men.

Now consider the overparametrized one-way ANOVA model5

Yij ¼ µþ αj þ εij for groups j ¼ 1; . . . ;m:

The matrix form of the model is

Y11

..

.

Yn1;1

Y12

..

.

Yn2;2

..

.

Y1;m(1

..

.

Ynm(1;m(1

Y1m

..

.

Ynm;m

2

66666666666666666666666666666664

3

77777777777777777777777777777775

¼

1 1 0 # # # 0 0

..

. ..
. ..

. ..
. ..

.

1 1 0 # # # 0 0

1 0 1 # # # 0 0

..

. ..
. ..

. ..
. ..

.

1 0 1 # # # 0 0

..

. ..
. ..

. ..
. ..

.

1 0 0 # # # 1 0

..

. ..
. ..

. ..
. ..

.

1 0 0 # # # 1 0

1 0 0 # # # 0 1

..

. ..
. ..

. ..
. ..

.

1 0 0 # # # 0 1

2

666666666666666666666666666664

3

777777777777777777777777777775

µ

α1

α2

..

.

αm(1

αm

2

6666666664

3

7777777775

þ

ε11

..

.

εn1;1

ε12

..

.

εn2;2

..

.

ε1;m(1

..

.

εnm(1;m(1

ε1m

..

.

εnm;m

2

66666666666666666666666666666664

3

77777777777777777777777777777775

y ¼ Xflþ "

ð9:3Þ

It is apparent that the model matrix is of rank m, one less than the number of columns,
because the first column of X is the sum of the others. One solution is to delete a column,
implicitly setting the corresponding parameter to 0. Deleting the last column of the model
matrix, for example, sets αm ¼ 0, establishing the last category as the baseline for a dummy-
coding scheme.

Alternatively, imposing the sigma constraint
Pm

j¼1 αj ¼ 0 on the parameters leads to the fol-
lowing full-rank model matrix XF , composed of deviation-coded regressors; labeling each col-
umn of the matrix with the parameter to which it pertains,

5See Section 8.1.
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XF
ðn · mÞ

¼

ðµÞ ðα1Þ ðα2Þ # # # ðαm(1Þ
1 1 0 # # # 0

..

. ..
. ..

. ..
.

1 1 0 # # # 0

1 0 1 # # # 0

..

. ..
. ..

. ..
.

1 0 1 # # # 0

..

. ..
. ..

. ..
.

1 0 0 # # # 1

..

. ..
. ..

. ..
.

1 0 0 # # # 1

1 (1 (1 # # # (1

..

. ..
. ..

. ..
.

1 (1 (1 # # # (1

2

666666666666666666666666666666664

3

777777777777777777777777777777775

ð9:4Þ

There is, then, the following relationship between the group means „ ¼ fµjg and the para-
meters of the constrained model:

µ1

µ2

..

.

µm(1

µm

2

66666664

3

77777775

¼

1 1 0 # # # 0

1 0 1 # # # 0

..

. ..
. ..

. ..
.

1 0 0 # # # 1

1 (1 (1 # # # (1

2

6666664

3

7777775

µ

α1

α2

..

.

αm(1

2

66666664

3

77777775

„
ðm · 1Þ

¼ XB
ðm · mÞ

flF
ðm · 1Þ

ð9:5Þ

In this parametric equation, XB is the row basis of the full-rank model matrix, consisting of
the m unique rows of XF , one for each group, and flF is the parameter vector associated with
the full-rank model matrix.

By construction, the m · m matrix XB is of full column rank and hence nonsingular, allowing
us to invert XB and solve uniquely for the constrained parameters in terms of the cell means:
flF ¼ X(1

B „. The solution follows a familiar pattern:6

µ

α1

α2

..

.

αm(1

2

666664

3

777775
¼

µ:
µ1 ( µ:
µ2 ( µ:

..

.

µm(1 ( µ:

2

666664

3

777775

Let us next examine a two-way ANOVA model. To make the example manageable, suppose
that there are two rows and three columns in the design. Imposing sigma constraints on the
main effects and interactions produces the parametric equation:

6See Exercise 9.1(a) and Section 8.1.
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µ11

µ12

µ13

µ21

µ22

µ23

2

666666666666664

3

777777777777775

¼

1 1 1 0 1 0

1 1 0 1 0 1

1 1 (1 (1 (1 (1

1 (1 1 0 (1 0

1 (1 0 1 0 (1

1 (1 (1 (1 1 1

2

666666664

3

777777775

µ

α1

β1

β2

γ11

γ12

2

666666664

3

777777775

„
ð6 · 1Þ

¼ XB
ð6 · 6Þ

flF
ð6 · 1Þ

ð9:6Þ

As in one-way ANOVA, the row basis of the full-rank model matrix is nonsingular by con-
struction, yielding the following solution for the parameters in terms of the cell means:7

µ

α1

β1

β2

γ11

γ12

2

6666664

3

7777775
¼

µ::
µ1:( µ::
µ:1 ( µ::
µ:2 ( µ::
µ11 ( µ1:( µ:1 þ µ::
µ12 ( µ1:( µ:2 þ µ::

2

6666664

3

7777775

The model matrices for dummy-regression and ANOVA models are strongly patterned.
In ANOVA, the relationship between group or cell means and the parameters of the lin-
ear model is expressed by the parametric equation „ ¼ XBflF , where „ is the vector of
means, XB is the row basis of the full-rank model matrix, and flF is the parameter vector
associated with the full-rank model matrix. Solving the parametric equation for the para-
meters yields flF ¼ X(1

B „.

9.1.2 Linear Contrasts

The relationship between group means and the parameters of the ANOVA model is given by
the parametric equation „ ¼ XBflF ; thus, as I have explained, the parameters are linear func-
tions of the group means, flF ¼ X(1

B „. The full-rank parameterizations of the one-way
ANOVA model that we have considered—dummy coding and deviation coding—permit us to
test the null hypothesis of no differences among group means, but the individual parameters
are not usually of interest. In certain circumstances, however, we can formulate XB so that the
individual parameters of flF incorporate interesting contrasts among group means.8

In Friendly and Franklin’s (1980) memory experiment,9 for example, subjects attempted to
recall words under three experimental conditions:

7See Exercise 9.1(b) and Section 8.2.3.
8Linear contrasts were introduced in Section 8.5.
9See Section 8.5.
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1. the ‘‘standard free recall’’ (SFR) condition, in which words were presented in random order;
2. the ‘‘before’’ (B) condition, in which remembered words were presented before those

forgotten on the previous trial; and
3. the ‘‘meshed’’ (M) condition, in which remembered words were interspersed with for-

gotten words but were presented in the order in which they were recalled.

I defined linear contrasts to test two null hypotheses:

1. H0: µ1 ¼ ðµ2 þ µ3Þ=2, that the mean of the SFR condition does not differ from the
average of the means of the other two conditions and

2. H0: µ2 ¼ µ3, that the means of the B and M conditions do not differ.

These hypotheses can be written as linear functions of the group means: (1)
H0: 1µ1 ( 1

2µ2 ( 1
2µ3 ¼ 0, and (2) H0: 0µ1 þ 1µ2 ( 1µ3 ¼ 0. Then each hypothesis can be

coded in a parameter of the model, employing the following relationship between parameters
and group means:10

µ

ζ1

ζ2

2

64

3

75 ¼

1

3

1

3

1

3

1 ( 1

2
( 1

2
0 1 (1

2

66664

3

77775

µ1

µ2

µ3

2

64

3

75

flF ¼ X(1
B „

ð9:7Þ

One parameter, µ, is used to code the average of the group means, leaving two parameters to
represent differences among the three group means. The hypothesis H0: ζ1 ¼ 0 is equivalent to
the first null hypothesis; H0: ζ2 ¼ 0 is equivalent to the second null hypothesis.

Because the rows of X(1
B in Equation 9.7 are orthogonal, the columns of XB are orthogonal

as well: Each column of XB is equal to the corresponding row of X(1
B divided by the sum of

squared entries in that row;11 thus,

µ1

µ2

µ3

2

64

3

75 ¼
1 2

3 0

1 ( 1
3

1
2

1 ( 1
3 ( 1

2

2

64

3

75
µ

ζ1

ζ2

2

64

3

75

„ ¼ XBflF

The one-to-one correspondence between rows of X(1
B and columns of XB makes it simple to

specify the latter matrix directly. Moreover, we can rescale the columns of the row basis for
more convenient coding, as shown in Equation 9.8, without altering the hypotheses incorpo-
rated in the contrast coefficients: If, for example, ζ1 ¼ 0, then any multiple of ζ1 is 0 as well.

XB ¼
1 2 0
1 (1 1
1 (1 (1

2

4

3

5 ð9:8Þ

Although it is convenient to define contrasts that are orthogonal in the row basis, it is not nec-
essary to do so. It is always possible to work backward from X(1

B (which expresses the

10Because it is natural to form hypotheses as linear combinations of means, I start by specifying X(1
B directly, rather

than XB.
11See Exercise 9.2.
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parameters of the model as linear functions of the population group means) to XB, as long as
the comparisons specified by X(1

B are linearly independent. Linear independence is required to
ensure that X(1

B is nonsingular.12

If there are equal numbers (say n0) of observations in the several groups, then an orthogonal
model-matrix basis XB implies an orthogonal full-rank model matrix XF—because XF is pro-
duced by repeating each of the rows of XB an equal number (n0) of times. The columns of an
orthogonal model matrix represent independent sources of variation in the response variable,
and therefore a set of orthogonal contrasts partitions the regression sum of squares into one-
degree-of-freedom components, each testing a hypothesis of interest. When it is applicable, this
is an elegant approach to linear-model analysis. Linear comparisons may well be of interest,
however, even if group frequencies are unequal, causing contrasts that are orthogonal in XB to
be correlated in XF .13

9.2 Least-Squares Fit

To find the least-squares coefficients, we write the fitted linear model as

y ¼ Xbþ e

where b ¼ ½B0;B1; . . . ;Bk %0 is the vector of fitted coefficients, and e ¼ ½E1;E2; . . . ;En%0 is the
vector of residuals. We seek the coefficient vector b that minimizes the residual sum of
squares, expressed as a function of b:

SðbÞ ¼ +E2
i ¼ e0e ¼ ðy( XbÞ0ðy( XbÞ

¼ y0y( y0Xb( b0X0yþ b0X0Xb

¼ y0y( ð2y0XÞbþ b0ðX0XÞb
ð9:9Þ

Although matrix multiplication is not generally commutative, each product in Equation 9.9 is
ð1 · 1Þ; thus, y0Xb ¼ b0X0y, justifying the transition to the last line of the equation.14

From the point of view of the coefficient vector b, Equation 9.9 consists of a constant, a lin-
ear form in b, and a quadratic form in b. To minimize SðbÞ, we find its vector partial derivative
with respect to b:

∂SðbÞ
∂b
¼ 0( 2X0yþ 2X0Xb

Setting this derivative to 0 produces the matrix form of the normal equations for the linear
model:

X0Xb ¼ X0y ð9:10Þ

There are k þ 1 normal equations in the same number of unknown coefficients. If X0X is nonsin-
gular—that is, of rank k þ 1—then we can uniquely solve for the least-squares coefficients:

b ¼ ðX0XÞ(1X0y

12See Exercise 9.3.
13These conclusions are supported by the vector geometry of linear models, described in Chapter 10.
14See Exercise 9.4.
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The rank of X0X is equal to the rank of X:

) Because the rank of X can be no greater than the smaller of n and k þ 1, for the least-
squares coefficients to be unique, we require at least as many observations (n) as there
are coefficients in the model (k þ 1). This requirement is intuitively sensible: We can-
not, for example, fit a unique line to a single data point, nor can we fit a unique plane to
two data points. In most applications, n greatly exceeds k þ 1.

) The k þ 1 columns of X must be linearly independent. This requirement implies that no
regressor can be a perfect linear function of others and that only the constant regressor
can be invariant.15

In applications, these requirements are usually met: X0X, therefore, is generally nonsingular,
and the least-squares coefficients are uniquely defined.16

The second partial derivative of the sum of squared residuals is

∂2SðbÞ
∂b∂b0

¼ 2X0X

Because X0X is positive-definite when X is of full rank, the solution b ¼ ðX0XÞ(1X0y repre-
sents a minimum of SðbÞ.

If the model matrix X is of full-column rank, then the least-squares coefficients are given
by b ¼ ðX0XÞ(1X0y.

The matrix X0X contains sums of squares and products among the regressors (including the
constant regressor, X0 ¼ 1); the vector X0y contains sums of cross products between the regres-
sors and the response variable. Forming these matrix products and expressing the normal equa-
tions (Equation 9.10) in scalar format yields a familiar pattern:17

B0n þ B1
P

xi1 þ # # # þ Bk
P

xik ¼
P

Yi

B0
P

xi1 þ B1
P

x2
i1 þ # # # þ Bk

P
xi1xik ¼

P
xi1Yi

..

. ..
.

B0
P

xik þ B1
P

xikxi1 þ # # # þ Bk
P

x2
ik ¼

P
xikYi

To write an explicit solution to the normal equations in scalar form would be impractical, even
for small values of k.

For Duncan’s regression of occupational prestige on the income and educational levels of 45
U.S. occupations, the sums of squares and products are as follows:18

15If another regressor is invariant, then it is a multiple of the constant regressor, X0 ¼ 1.
16We will see in Section 13.1, however, that even when X is of rank k þ 1, near-collinearity of its columns can cause
statistical difficulties.
17See Section 5.2.2.
18Cf. the scalar calculations for Duncan’s regression, which appear in Section 5.2.1.
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X0X ¼
45 1884 2365

1884 105; 148 122; 197
2365 122; 197 163; 265

2

4

3

5

X0y ¼
2146

118; 229
147; 936

2

4

3

5

The inverse of X0X is

ðX0XÞ(1 ¼
0:1021058996 (0:0008495732 (0:0008432006
(0:0008495732 0:0000801220 (0:0000476613
(0:0008432006 (0:0000476613 0:0000540118

2

4

3

5

and thus the least-squares regression coefficients are

b ¼ ðX0XÞ(1X0y ¼
(6:06466

0:59873
0:54583

2

4

3

5

9.2.1 Deficient-Rank Parameterization of Linear Models

As I explained, the unconstrained, overparametrized one-way ANOVA model shown in
Equation 9.3 (page 204) has a rank-deficient model matrix X: There are mþ 1 columns in the
model matrix but it is of rank m. In this text, I deal with overparametrized models by placing
sufficient constraints on the parameters of the model to identify the parameters uniquely, incor-
porating these constraints in the coding of the model matrix. For example, placing a sigma con-
straint on the parameters of the one-way ANOVA model reduces the model matrix to full rank,
as in Equation 9.4. Although the least-squares parameter estimates and the interpretation of the
parameters depend on the constraints employed, many fundamental quantities, such as fitted
values by, residuals e, and consequently the regression and residual sums of squares for the
fitted model, do not depend on which constraints are selected. These conclusions extend to
other linear models, such as two-way ANOVA and analysis of covariance.19

An alternative to placing explicit constraints on the parameters is to form the normal equa-
tions using the rank-deficient model matrix X,

X0Xb ¼ X0y

The rank of X0X is the same as the rank of X; the sum-of-squares and products matrix X0X is
therefore singular, and the normal equations do not have a unique solution. We can, however,
select an arbitrary solution to the normal equations by employing a generalized inverse ðX0XÞ(

of X0X:20

b( ¼ ðX0XÞ(X0y

Because the generalized inverse of a singular matrix is not unique, the obtained value of b(

depends on the specific generalized inverse employed. This approach is, therefore, equivalent
to reducing X to full rank by placing constraints on the parameters, with the constraints implicit
in the selection of ðX0XÞ(.

19See Section 10.4 on the vector geometry of ANOVA models.
20Generalized inverses are described in online Appendix B on matrices, linear algebra, and vector geometry.
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Direct application of overparametrized linear models is worth mentioning, if only briefly,
because some statistical software (such as SAS) and some treatments of linear models (such as
Searle, 1971) employ this approach.

9.3 Properties of the Least-Squares Estimator

In this section, I derive a number of fundamental results concerning the least-squares estimator
b of the linear-model parameter vector fl. These results serve several related purposes:

) They establish certain desirable properties of the least-squares estimator that hold under
the assumptions of the linear model.

) They furnish a basis for using the least-squares coefficients to make statistical inferences
about fl.21

) They provide a foundation for generalizing the linear model in several directions.22

9.3.1 The Distribution of the Least-Squares Estimator

With the model matrix X fixed, the least-squares coefficients b result from a linear transfor-
mation of the response variable; that is, b is a linear estimator:

b ¼ ðX0XÞ(1X0y ¼My

defining M [ ðX0XÞ(1X0. The expected value of b is easily established from the expectation of
y (given previously in Equation 9.2 on page 203):

EðbÞ ¼ EðMyÞ ¼MEðyÞ ¼ ðX0XÞ(1X0ðXflÞ ¼ fl

The least-squares estimator b is therefore an unbiased estimator of fl.
The covariance matrix of the least-squares estimator is similarly derived:

V ðbÞ ¼ MV ðyÞM0 ¼ ½ðX0XÞ(1X0%σ2
εIn½ðX0XÞ(1X0%0

Moving the scalar error variance σ2
ε to the front of this expression, and noting that ðX0XÞ(1 is

the inverse of a symmetric matrix and is thus itself symmetric, we get

V ðbÞ ¼ σ2
"ðX

0XÞ(1X0XðX0XÞ(1 ¼ σ2
"ðX

0XÞ(1

The sampling variances and covariances of the regression coefficients, therefore, depend only
on the model matrix and the variance of the errors.

To derive EðbÞ and V ðbÞ, we do not require the assumption of normality—only the assump-
tions of linearity [i.e., EðyÞ ¼ Xfl], constant variance, and independence [V ðyÞ ¼ σ2

"In].23 If y
is normally distributed, however, then so is b, for—as I have explained—b results from a linear
transformation of y:

21See Section 9.4.
22See, for example, Section 12.2.2 and Chapters 14, 15, and 16.
23In general, independence of the observations implies that the elements of y are uncorrelated [i.e., that V ðyÞ is diago-
nal], but the reverse is not the case: The elements of y could be uncorrelated even if the observations are not indepen-
dent. That is, independence is a stronger condition than uncorrelation. For normally distributed y, however,
uncorrelation and independence coincide.
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b ; Nkþ1½fl; σ2
εðX

0XÞ(1%

There is a striking parallel, noted by Wonnacott and Wonnacott (1979) and detailed in
Table 9.1, between the scalar formulas for least-squares simple regression and the matrix for-
mulas for the general linear model (‘‘multiple regression’’). This sort of structural parallel is
common in statistical applications when matrix methods are used to generalize a scalar result:
Matrix notation is productive precisely because of the generality and simplicity that it achieves.

Under the full set of assumptions for the linear model, the distribution of the least-
squares regression coefficients is

b ; Nkþ1½fl; σ2
εðx
0xÞ(1%

9.3.2 The Gauss-Markov Theorem

One of the primary theoretical justifications for least-squares estimation is the Gauss-
Markov theorem, which states that if the errors are independently distributed with zero expecta-
tion and constant variance, then the least-squares estimator b is the most efficient linear
unbiased estimator of fl. That is, of all unbiased estimators that are linear functions of the
observations, the least-squares estimator has the smallest sampling variance and, hence, the
smallest mean-squared error. For this reason, the least-squares estimator is sometimes termed
BLUE, an acronym for best linear unbiased estimator.24

Table 9.1 Comparison Between Simple Regression Using Scalars and Multiple Regression Using
Matrices

Simple Regression Multiple Regression

Model Y ¼ αþ βxþ ε y ¼ Xflþ "

Least-squares estimator B ¼
P

x*Y*P
x*2

b ¼ ðX0XÞ(1X0y

¼
P

x*2ð Þ(1P
x*Y*

Sampling variance VðBÞ ¼ σ2
εP
x*2

VðbÞ ¼ σ2
ε ðX0XÞ

(1

¼ σ2
ε

P
x*2

! "(1

Distribution B ; N½β; σ2
ε ð
P

x*2Þ(1% b ; Nkþ1½fl; σ2
ε ðX0XÞ

(1%

NOTE: Subscripts are suppressed in this table; in particular, x*[ xi ( x and Y*[ Yi ( Y.

SOURCE: Adapted from Wonnacott and Wonnacott (1979, Table 12-1), Econometrics, Second Edition.

Copyright ! John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

24As I explained in Section 6.1.2, the comfort provided by the Gauss-Markov theorem is often an illusion, because the
restriction to linear estimators is artificial. Under the additional assumption of normality, however, it is possible to show
that the least-squares estimator is maximally efficient among all unbiased estimators (see, e.g., Rao, 1973, p. 319). The
strategy of proof of the Gauss-Markov theorem employed in this section is borrowed from Wonnacott and Wonnacott
(1979, pp. 428–430), where it is used in a slightly different context.
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Let eb represent the best linear unbiased estimator of fl. As we know, the least-squares esti-
mator b is also a linear estimator, b ¼My. It is convenient to write eb ¼ ðMþ AÞy, where A
gives the difference between the (as yet undetermined) transformation matrix for the BLUE
and that for the least-squares estimator. To show that the BLUE and the least-squares estimator
coincide—that is, to establish the Gauss-Markov theorem—we need to demonstrate that
A ¼ 0.

Because eb is unbiased,

fl ¼ EðebÞ ¼ E½ðMþ AÞy% ¼ EðMyÞ þ EðAyÞ
¼ EðbÞ þ AEðyÞ ¼ flþ AXfl

The matrix product AXfl, then, is 0, regardless of the value of fl, and therefore AX must
be 0.25

I have, to this point, made use of the linearity and unbias of eb. Because eb is the minimum-
variance linear unbiased estimator, the sampling variances of its elements—that is, the diago-
nal entries of V ðebÞ—are as small as possible.26 The covariance matrix of eb is given by

V ðebÞ ¼ ðMþ AÞV ðyÞðMþ AÞ0

¼ ðMþ AÞσ2
εInðMþ AÞ0

¼ σ2
εðMM0 þMA0 þ AM0 þ AA0Þ

ð9:11Þ

I have shown that AX ¼ 0; consequently, AM0 and its transpose MA0 are 0, for

AM0 ¼ AXðX0XÞ(1 ¼ 0ðX0XÞ(1 ¼ 0

Equation 9.11 becomes

V ðebÞ ¼ σ2
εðMM0 þ AA0Þ

The sampling variance of the coefficient eBj is the jth diagonal entry of V ðebÞ:27

V ðeBjÞ ¼ σ2
ε

Xn

i¼1

m2
ji þ

Xn

i¼1

a2
ji

 !

Both sums in this equation are sums of squares and hence cannot be negative; because V ðeBjÞ
is as small as possible, all the aji must be 0. This argument applies to each coefficient in eb, and
so every row of A must be 0, implying that A ¼ 0. Finally,

eb ¼ ðMþ 0Þy ¼ My ¼ b

demonstrating that the BLUE is the least-squares estimator.

25See Exercise 9.7.
26It is possible to prove a more general result: The best linear unbiased estimator of a0fl (an arbitrary linear combination
of regression coefficients) is a0b, where b is the least-squares estimator (see, e.g., Seber, 1977, p. 49).
27Actually, the variance of the constant eB0 is the first diagonal entry of V ðebÞ; the variance of eBj is therefore the
ðjþ 1Þst entry. To avoid this awkwardness, I will index the covariance matrix of eb (and later, that of b) from 0 rather
than from 1.
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9.3.3 Maximum-Likelihood Estimation

Under the assumptions of the linear model, the least-squares estimator b is also the maxi-
mum-likelihood estimator of fl.28 This result establishes an additional justification for least
squares when the assumptions of the model are reasonable, but even more important, it pro-
vides a basis for generalizing the linear model.29

As I have explained, under the assumptions of the linear model, y ; NnðXfl; σ2
εInÞ. Thus,

for the ith observation, Yi ; Nðx0ifl; σ2
εÞ, where x0i is the ith row of the model matrix X. In equa-

tion form, the probability density for observation i is

pðyiÞ ¼
1

σε

ffiffiffiffiffiffi
2π
p exp (

yi ( x0ifl
! "2

2σ2
ε

" #

Because the n observations are independent, their joint probability density is the product of
their marginal densities:

pðyÞ ¼ 1

σε

ffiffiffiffiffiffi
2π
p! "n exp (

P
yi ( x0ifl
! "2

2σ2
ε

" #

¼ 1

2πσ2
ε

! "n=2
exp (ðy( XflÞ0ðy( XflÞ

2σ2
ε

$ % ð9:12Þ

Although this equation also follows directly from the multivariate-normal distribution of y, the
development from pðyiÞ to pðyÞ will prove helpful when we consider random regressors.30

From Equation 9.12, the log-likelihood is

loge Lðfl; σ2
εÞ ¼ (

n
2

loge 2π( n
2

loge σ
2
ε (

1

2σ2
ε

ðy( XflÞ0ðy( XflÞ ð9:13Þ

To maximize the likelihood, we require the partial derivatives of Equation 9.13 with respect to
the parameters fl and σ2

ε . Differentiation is simplified when we notice that ðy( XflÞ0ðy( XflÞ
is the sum of squared errors:

∂ loge Lðfl; σ2
εÞ

∂fl
¼ ( 1

2σ2
ε

ð2X0Xfl( 2X0yÞ

∂ loge Lðfl; σ2
εÞ

∂σ2
ε

¼ ( n
2

1

σ2
ε

& '
þ 1

2σ4
ε

ðy( XflÞ0ðy( XflÞ

Setting these partial derivatives to 0 and solving for the maximum-likelihood estimators bfl and
bσ2
ε produces

bfl ¼ ðX0XÞ(1X0y;

bσ2
ε ¼
ðy( XbflÞ

0
ðy( XbflÞ

n
¼ e0e

n

The maximum-likelihood estimator bfl is therefore the same as the least-squares estimator b. In
fact, this identity is clear directly from Equation 9.12, without formal maximization of the

28The method of maximum likelihood is introduced in online Appendix D on probability and estimation.
29See, for example, the discussions of transformations in Section 12.5 and of nonlinear least squares in Chapter 17.
30See Section 9.6.
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likelihood: The likelihood is large when the negative exponent is small, and the numerator of
the exponent contains the sum of squared errors; minimizing the sum of squared residuals,
therefore, maximizes the likelihood.

The maximum-likelihood estimator bσ2
ε of the error variance is biased; consequently, we pre-

fer the similar, unbiased estimator S2
E ¼ e0e=ðn( k ( 1Þ to bσ2

ε .
31 As n increases, however, the

bias of bσ2
ε shrinks toward 0: As a maximum-likelihood estimator, bσ2

ε is consistent.

9.4 Statistical Inference for Linear Models

The results of the previous section, along with some to be established in Chapter 10, provide a
basis for statistical inference in linear models.32 I have already shown that the least-squares
coefficients b have certain desirable properties as point estimators of the parameters fl. In this
section, I will describe tests for individual coefficients, for several coefficients, and for general
linear hypotheses.

9.4.1 Inference for Individual Coefficients

We saw that the least-squares estimator b follows a normal distribution with expectation fl
and covariance matrix σ2

εðX0XÞ
(1.33 Consequently, an individual coefficient Bj is normally dis-

tributed with expectation βj and sampling variance σ2
εvjj, where vjj is the jth diagonal entry of

ðX0XÞ(1.34 The ratio ðBj ( βjÞ=σε
ffiffiffiffiffi
vjj
p

, therefore, follows the unit-normal distribution Nð0; 1Þ,
and to test the hypothesis H0: βj ¼ β

ð0Þ
j , we can calculate the test statistic

Z0 ¼
Bj ( β

ð0Þ
j

σε
ffiffiffiffiffi
vjj
p

comparing the obtained value of the statistic to quantiles of the unit-normal distribution. This
result is not of direct practical use, however, because in applications of linear models, we do
not know σ2

ε .
Although the error variance is unknown, we have available the unbiased estimator

S2
E ¼ e0e=ðn( k ( 1Þ. Employing this estimator, we can estimate the covariance matrix of the

least-squares coefficients:

bV ðbÞ ¼ S2
EðX

0XÞ(1 ¼ e0e
n( k ( 1

ðX0XÞ(1

The standard error of the coefficient Bj is, therefore, given by SEðBjÞ ¼ SE
ffiffiffiffiffi
vjj
p

, the square root
of the jth diagonal entry of bV ðbÞ.

It can be shown that ðn( k ( 1ÞS2
E=σ

2
ε ¼ e0e=σ2

ε follows a chi-square distribution with
n( k ( 1 degrees of freedom.35 We recently discovered that ðBj ( βjÞ=σε

ffiffiffiffiffi
vjj
p

is distributed as

31See Section 10.3 for a derivation of the expectation of S2
E .

32The results of this section justify and extend the procedures for inference described in Chapter 6.
33See Section 9.3.1.
34Recall that we index the rows and columns of ðX0XÞ(1 from 0 through k.
35See Section 10.3.
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Nð0; 1Þ. It can be further established that the estimators Bj and S2
E are independent,36 and so

the ratio

t ¼
ðBj ( βjÞ=σε

ffiffiffiffiffi
vjj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0e=σ2

ε

n( k ( 1

r ¼
Bj ( βj

SE
ffiffiffiffiffi
vjj
p

follows a t-distribution with n( k ( 1 degrees of freedom. Heuristically, in estimating σε with
SE, we must replace the normal distribution with the more spread-out t-distribution to reflect
the additional source of variability.

To test the hypothesis H0: βj ¼ β
ð0Þ
j , therefore, we calculate the test statistic

t0 ¼
Bj ( β

ð0Þ
j

SEðBjÞ

comparing the obtained value of t0 with the quantiles of tn(k(1. Likewise, a 100ð1( aÞ% con-
fidence interval for βj is given by

βj ¼ Bj – ta=2;n(k(1SEðBjÞ

where ta=2; n(k(1 is the critical value of tn(k(1 with a probability of a=2 to the right.
For Duncan’s occupational prestige regression, for example, the estimated error variance is

S2
E ¼ 178:73, and so the estimated covariance matrix of the regression coefficients is

bV ðbÞ ¼ 178:73ðX0XÞ(1

¼
18:249387 (0:151844 (0:150705

(0:151844 0:014320 (0:008519

(0:150705 (0:008519 0:009653

2

64

3

75

The standard errors of the regression coefficients are37

SEðB0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:249387
p

¼ 4:272

SEðB1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:014320
p

¼ 0:1197

SEðB2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:009653
p

¼ 0:09825

The estimated covariance matrix of the least-squares coefficients is bV ðbÞ ¼ S2
EðX0XÞ

(1.
The standard errors of the regression coefficients are the square-root diagonal entries of
this matrix. Under the assumptions of the model, ðBj ( βjÞ=SEðBjÞ; tn(k(1, providing a
basis for hypothesis tests and confidence intervals for individual coefficients.

9.4.2 Inference for Several Coefficients

Although we often test regression coefficients individually, these tests may not be sufficient,
for, in general, the least-squares estimators of different parameters are correlated: The

36See Exercise 9.8.
37Compare with the results given in Section 6.1.3.
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off-diagonal entries of V ðbÞ ¼ σ2
εðX0XÞ

(1, giving the sampling covariances of the least-
squares coefficients, are 0 only when the regressors themselves are uncorrelated.38

Furthermore, in certain applications of linear models—such as dummy regression, analysis of
variance, and polynomial regression—we are more interested in related sets of coefficients than
in the individual members of these sets.

Simultaneous tests for sets of coefficients, taking their intercorrelations into account, can be
constructed by the likelihood-ratio principle. Suppose that we fit the model

Y ¼ β0 þ β1x1 þ # # # þ βkxk þ ε ð9:14Þ

obtaining the least-squares estimate b ¼ ½B0;B1; . . . ;Bk %0, along with the maximum-
likelihood estimate of the error variance, bσ2

ε ¼ e0e=n. We wish to test the null hypothesis that a
subset of regression parameters is 0; for convenience, let these coefficients be the first q £ k, so
that the null hypothesis is H0: β1 ¼ # # # ¼ βq ¼ 0. The null hypothesis corresponds to the
model

Y ¼ β0 þ 0x1 þ # # # þ 0xq þ βqþ1xqþ1 þ # # # þ βkxk þ ε

¼ β0 þ βqþ1xqþ1 þ # # # þ βkxk þ ε
ð9:15Þ

which is a specialization (or restriction) of the more general model (9.14). Fitting the restricted
model (9.15) by least-squares regression of Y on xqþ1 through xk , we obtain
b0 ¼ ½B00; 0; . . . ; 0;B0qþ1; . . . ;B0k %

0, and bσ2
ε0
¼ e00e0=n. The coefficients in b0 generally differ

from those in b (hence the primes), and bσ2
ε £ bσ2

ε0
, because both models are fit by least squares.

The likelihood for the full model (9.14), evaluated at the maximum-likelihood estimates, can
be obtained from Equation 9.12 (on page 214):39

L ¼ 2πe
e0e
n

& '(n=2

Likewise, for the restricted model (9.15), the maximized likelihood is

L0 ¼ 2πe
e00e0

n

& '(n=2

The likelihood ratio for testing H0 is, therefore,

L0

L1
¼ e00e0

e0e

& '(n=2

¼ e0e
e00e0

& '2=n

Because e00e0 ‡ e0e, the likelihood ratio is small when the residual sum of squares for the
restricted model is appreciably larger than for the general model—circumstances under which
we should doubt the truth of the null hypothesis. A test of H0 is provided by the generalized

38This point pertains to sampling correlations among the k slope coefficients. The regression constant is correlated with
the slope coefficients unless all the regressors—save the constant regressor—have means of 0 (i.e., are in mean devia-
tion form). Expressing the regressors in mean deviation form, called centering, has certain computational advantages (it
tends to reduce rounding errors in least-squares calculations), but it does not affect the slope coefficients or the sam-
pling covariances among them.
39See Exercise 9.9. The notation here is potentially confusing: e » 2:718 is the mathematical constant; e is the vector of
residuals.
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likelihood-ratio test statistic, G2
0 ¼ (2 logeðL0=L1Þ, which is asymptotically distributed as χ2

q

under the null hypothesis.
It is unnecessary to use this asymptotic result, however, for an exact test can be obtained:40

As mentioned in the previous section, RSS=σ2
ε ¼ e0e=σ2

ε is distributed as χ2 with n( k ( 1
degrees of freedom. By a direct extension of this result, if the null hypothesis is true, then
RSS0=σ2

ε ¼ e00e0=σ2
ε is distributed as χ2 with n( ðk ( qÞ ( 1 ¼ n( k þ q( 1 degrees of free-

dom. Consequently, the difference ðRSS0(RSSÞ=σ2
ε has a χ2 distribution with

ðn( k þ q( 1Þ ( ðn( k ( 1Þ ¼ q degrees of freedom, equal to the number of parameters set
to 0 in the restricted model. It can be shown that ðRSS0 ( RSSÞ=σ2

ε and RSS=σ2
ε are indepen-

dent, and so the ratio

F0 ¼
ðRSS0 ( RSSÞ=q
RSS=ðn( k ( 1Þ

is distributed as F with q and n( k ( 1 degrees of freedom. This is, of course, the incremental
F-statistic.41

Although it is sometimes convenient to find an incremental sum of squares by fitting alterna-
tive linear models to the data, it is also possible to calculate this quantity directly from the
least-squares coefficient vector b and the matrix ðX0XÞ(1 for the full model: Let
b1 ¼ ½B1; . . . ;Bq%0 represent the coefficients of interest selected from among the entries of b;
and let V11 represent the square submatrix consisting of the entries in the q rows and q col-
umns of ðX0XÞ(1 that pertain to the coefficients in b1.42 Then it can be shown that the incre-
mental sum of squares RSS0 ( RSS is equal to b01V(1

11 b1, and thus the incremental F-statistic
can be written F0 ¼ b01V(1

11 b1=qS2
E. To test the more general hypothesis H0: fl1 ¼ fl

ð0Þ
1 (where

flð0Þ1 is not necessarily 0), we can compute

F0 ¼
ðb1 ( flð0Þ1 Þ

0
V(1

11 ðb1 ( flð0Þ1 Þ
qS2

E
ð9:16Þ

which is distributed as Fq;n(k(1 under H0.
Recall that the omnibus F-statistic for the hypothesis H0: β1 ¼ # # # ¼ βk ¼ 0 is

F0 ¼
RegSS=k

RSS=ðn( k ( 1Þ

The denominator of this F-statistic estimates the error variance σ2
ε , whether or not the null

hypothesis is true.43 The expectation of the regression sum of squares, it may be shown,44 is

EðRegSSÞ ¼ fl01ðX
*0X*Þfl1 þ kσ2

ε

where fl1 [ β1; . . . ;βk½ %0 is the vector of regression coefficients, excluding the constant, and
X*ðn · kÞ[ fxij ( xjg is the matrix of mean deviation regressors, omitting the constant regressor.

40The F-test that follows is exact when the assumptions of the model hold—including the assumption of normality. Of
course, the asymptotically valid likelihood-ratio chi-square test also depends on these assumptions.
41See Section 6.1.3.
42Note the difference between the vector b1 (used here) and the vector b0 (used previously): b1 consists of coefficients
extracted from b, which, in turn, results from fitting the full model; in contrast, b0 consists of the coefficients—includ-
ing those set to 0 in the hypothesis—that result from fitting the restricted model.
43See Section 10.3.
44See Seber (1977, Chapter 4).
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When H0 is true (and fl1 ¼ 0), the numerator of the F-statistic (as well at its denominator) esti-
mates σ2

ε , but when H0 is false, E RegSS=kÞ > σ2
ε

!
, because X*0X* is positive definite, and thus

fl01ðX*
0X*Þfl1 > 0 for fl1 6¼ 0. Under these circumstances, we tend to observe numerators that

are larger than denominators and F-statistics that are greater than 1.45

An incremental F-test for the hypothesis H0: β1 ¼ # # # ¼ βq ¼ 0, where 1 £ q £ k, is
given by F0 ¼ ðn( k ( 1ÞðRSS0 ( RSSÞ=q RSS, where RSS is the residual sum of
squares for the full model, and RSS0 is the residual sum of squares for the model that
deletes the q regressors corresponding to the parameters in H0. Under the null hypoth-
esis, F0 ; Fq;n(k(1. The incremental F-statistic can also be computed directly as
F0 ¼ b01V(1

11 b1=qS2
E, where b1 ¼ ½B1; . . . ;Bq%0 contains the coefficients of interest

extracted from among the entries of b, and V11 is the square submatrix of ðX0XÞ(1 con-
sisting of the q rows and columns pertaining to the coefficients in b1.

9.4.3 General Linear Hypotheses

Even more generally, we can test the linear hypothesis

H0: L
ðq · kþ1Þ

fl
ðkþ1 · 1Þ

¼ c
ðq · 1Þ

where L and c contain prespecified constants, and the hypothesis matrix L is of full row rank
q £ k þ 1. The resulting F-statistic,

F0 ¼
Lb( cð Þ0½LðX0XÞ(1L0%

(1
Lb( cð Þ

qS2
E

ð9:17Þ

follows an F-distribution with q and n( k ( 1 degrees of freedom if H0 is true.
To understand the structure of Equation 9.17, recall that b ; Nkþ1½fl; σ2

εðX0XÞ
(1%. As a

consequence,

Lb ; Nq½Lfl; σ2
εLðX0XÞ(1L0%

Under H0, Lfl ¼ c, and thus

ðLb( cÞ0½LðX0XÞ(1L0%(1ðLb( cÞ=σ2
ε ;χ2

q

Equation 9.17 is general enough to encompass all the hypothesis tests that we have considered
thus far, along with others. In Duncan’s occupational prestige regression, for example, to test
the omnibus null hypothesis H0: β1 ¼ β2 ¼ 0, we can take

L ¼ 0 1 0
0 0 1

$ %

45The expectation of F0 is not precisely 1 when H0 is true because the expectation of a ratio of random variables is not
necessarily the ratio of their expectations. See online Appendix D on probability and estimation.
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and c¼ ½0; 0%0. To test the hypothesis that the education and income coefficients are equal,
H0: β1 ¼ β2, which is equivalent to H0: β1 ( β2 ¼ 0, we can take L ¼ ½0; 1;(1% and c ¼ ½0%.46

The F-statistic F0 ¼ ðLb( cÞ0½LðX0XÞ(1L0%(1ðLb( cÞ=qS2
E is used to test the general

linear hypothesis H0: L
ðq · kþ1Þ

fl
ðkþ1 · 1Þ

¼ c
ðq · 1Þ

, where the rank-q hypothesis matrix L and

right-hand-side vector c contain prespecified constants. Under the hypothesis,
F0 ; Fq;n(k(1.

9.4.4 Joint Confidence Regions

The F-test of Equation 9.16 (on page 218) can be inverted to construct a joint confidence
region for fl1. If H0: fl1 ¼ fl

ð0Þ
1 is correct, then

Pr
b1 ( flð0Þ1

( )0
V(1

11 b1 ( flð0Þ1

( )

qS2
E

£ Fa;q;n(k(1

2

64

3

75 ¼ 1( a

where Fa;q;n(k(1 is the critical value of F with q and n( k ( 1 degrees of freedom, corre-
sponding to a right-tail probability of a. The joint confidence region for fl1 is thus

allfl1 for which b1 ( fl1ð Þ0V(1
11 b1 ( fl1ð Þ £ qS2

EFa;q;n(k(1 ð9:18Þ

That is, any parameter vector fl1 that satisfies this inequality is within the confidence region
and is acceptable as a hypothesis; any parameter vector that does not satisfy the inequality is
unacceptable. The boundary of the joint confidence region (obtained when the left-hand side of
the inequality in Equation 9.18 equals the right-hand side) is an ellipsoid centered at the esti-
mates b1 in the q-dimensional space of the parameters fl1.

Like a confidence interval, a joint confidence region is a portion of the parameter space con-
structed so that, with repeated sampling, a preselected percentage of regions will contain the
true parameter values. Unlike a confidence interval, however, which pertains to a single coeffi-
cient βj, a joint confidence region encompasses all combinations of values for the parameters
β1; . . . ; βq that are simultaneously acceptable at the specified level of confidence. The familiar
confidence interval is just a one-dimensional confidence region, and there is a simple

46Examples of these calculations appear in Exercise 9.10. The hypothesis that two regression coefficients are equal is
sensible only if the corresponding explanatory variables are measured on the same scale. This is arguably the case for
income and education in Duncan’s regression, because both explanatory variables are percentages. Closer scrutiny sug-
gests, however, that these explanatory variables are not commensurable: There is no reason to suppose that the percent-
age of occupational incumbents with at least a high school education is on the same scale as the percentage earning in
excess of $3500.
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relationship between the confidence interval for a single coefficient and the confidence region
for several coefficients (as I will explain shortly).

The essential nature of joint confidence regions is clarified by considering the two-dimen-
sional case, which can be directly visualized. To keep the mathematics as simple as possible,
let us work with the slope coefficients β1 and β2 from the two-explanatory-variable model,
Yi ¼ β0 þ β1xi1 þ β2xi2 þ εi. In this instance, the joint confidence region of Equation 9.18
becomes all ðβ1; β2Þ for which

B1 ( β1;B2 ( β2½ %
P

x*2i1

P
x*i1x*i2P

x*i1x*i2
P

x*2i2

$ %
B1 ( β1

B2 ( β2

$ %
£ 2S2

EFa;2;n(3 ð9:19Þ

where the x*ij [ xij ( xj are deviations from the means of X1 and X2, and the matrix V(1
11 con-

tains mean deviation sums of squares and products for the explanatory variables.47 The bound-
ary of the confidence region, obtained when the equality holds, is an ellipse centered at
ðB1;B2Þ in the fβ1;β2g plane.

Illustrative joint confidence ellipses are shown in Figure 9.1. When the explanatory variables
are uncorrelated, the sum of cross-products

P
x*i1x*i2 vanishes, and the axes of the confidence

ellipse are parallel to the axes of the parameter space, as in Figure 9.1(b). When the explana-
tory variables are correlated, in contrast, the ellipse is ‘‘tilted,’’ as in Figure 9.1(a).

Specializing (9.18) to a single coefficient produces the confidence interval for β1:

(a)

0
β1

(B1, B2)

Confidence interval
for β2

(b)

0
β1

β2

(B1, B2)

Confidence interval for β1

Confidence interval
for β2

Confidence interval for β1

β2

Figure 9.1 Illustrative joint confidence ellipses for the slope coefficients β1 and β2 in multiple-
regression analysis. The outer ellipse is drawn at a level of confidence of 95%; the
inner ellipse (the confidence interval–generating ellipse) is drawn so that its perpendi-
cular shadows on the axes are 95% confidence intervals for the individual βs. In (a),
the Xs are positively correlated, producing a joint confidence ellipse that is negatively
tilted. In (b), the Xs are uncorrelated, producing a joint confidence ellipse with axes
parallel to the axes of the parameter space.

47See Exercise 9.11.
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all β1 for which ðB1 ( β1Þ
2

P
x*2i2P

x*2i1

P
x*2i2 (

P
x*i1x*i2

! "2 £ S2
EFa;1;n(3 ð9:20Þ

which is written more conventionally as48

B1 ( ta;n(3
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x*2i1

1( r2
12

s £ β1 £ B1 þ ta;n(3
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x*2i1

1( r2
12

s

The individual confidence intervals for the regression coefficients are very nearly the perpendi-
cular ‘‘shadows’’ (i.e., projections) of the joint confidence ellipse onto the β1 and β2 axes. The
only slippage here is due to the right-hand-side constant: 2S2

EFa;2;n(3 for the joint confidence
region and S2

EFa;1;n(3 for the confidence interval.
Consider a 95% region and interval, for example. If the residual degrees of freedom n( 3

are large, then 2F:05; 2;n(3 »χ2
:05;2 ¼ 5:99, while F:05;1;n(3 »χ2

:05;1 ¼ 3:84. Put another way,
using 5:99S2

E in place of 3:84S2
E produces individual intervals at approximately the

1( Prðχ2
1 > 5:99Þ ¼ :986 (rather than .95) level of confidence (but a joint 95% confidence

region). Likewise, if we construct the joint confidence region using the multiplier 3.84, the
resulting smaller ellipse produces shadows that give approximate 95% confidence intervals for
individual coefficients [and a smaller joint level of confidence of 1( Prðχ2

2 > 3:84Þ ¼ :853].
This confidence interval–generating ellipse is shown along with the joint confidence ellipse in
Figure 9.1.49

Figure 9.1(a) illustrates how correlated regressors can lead to ambiguous inferences:
Because the individual confidence intervals include 0, we cannot reject the separate hypotheses
that either β1 or β2 is 0. Because the point ð0; 0Þ is outside of the joint confidence region, how-
ever, we can reject the hypothesis that both β1 and β2 are 0. In contrast, in Figure 9.1(b), where
the explanatory variables are uncorrelated, there is a close correspondence between inferences
based on the separate confidence intervals and those based on the joint confidence region.

Still more generally, the confidence interval–generating ellipse can be projected onto any
line through the origin of the fβ1, β2g plane. Each such line represents a specific linear combi-
nation of β1 and β2, and the shadow of the ellipse on the line gives the corresponding confi-
dence interval for that linear combination of the parameters.50 This property is illustrated in
Figure 9.2 for the linear combination β1 þ β2; the line representing β1 þ β2 is drawn through
the origin and the point (1, 1), the coefficients of the parameters in the linear combination.
Directions in which the ellipse is narrow, therefore, correspond to linear combinations of the
parameters that are relatively precisely estimated.

It is illuminating to examine more closely the relationship between the joint confidence
region for the regression coefficients and the joint distribution of the X -values. I have already
remarked that the orientation of the confidence region reflects the correlation of the X s, but it
is possible to be much more precise. Consider the quadratic form ðx( xÞ0S(1

XX ðx( xÞ, where x

48See Exercise 9.12.
49The individual intervals constructed from the larger joint confidence ellipse—called Scheffé intervals, after the statis-
tician Henry Scheffé (1959)—can be thought of as incorporating a penalty for examining several coefficients simultane-
ously. The difference between the Scheffé interval—the shadow of the joint confidence region (for which the multiplier
is kS2

EFa; k;n(3)—and the individual confidence interval (for which the multiplier is S2
EFa;1;n(3) grows larger as the num-

ber of coefficients k increases.
50See Monette (1990).
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is a k · 1 vector of explanatory-variable values, x is the vector of means of the X s, and SXX is
the sample covariance matrix of the X s. Setting the quadratic form to 1 produces the equation
of an ellipsoid—called the standard data ellipsoid—centered at the means of the explanatory
variables.

For two explanatory variables, the standard data ellipse has the equation

n(1P
x*2i1

P
x*2i2 (

P
x*i1x*i2ð Þ2

½x1 ( x1; x2 ( x2%

·
P

x*2i2 (
P

x*i1x*i2
(
P

x*i1x*i2
P

x*2i1

$ %
x1 ( x1

x2 ( x2

$ %
¼ 1

ð9:21Þ

representing an ellipse whose horizontal shadow is twice the standard deviation of X1 and
whose vertical shadow is twice the standard deviation of X2. These properties are illustrated in
Figure 9.3, which shows scatterplots for highly correlated and uncorrelated X s. The major axis
of the data ellipse has a positive tilt when the X s are positively correlated, as in Figure 9.3(a).

This representation of the data is most compelling when the explanatory variables are nor-
mally distributed. In this case, the means and covariance matrix of the X s are sufficient statis-
tics for their joint distribution, and the standard data ellipsoid estimates a constant-density
contour of the joint distribution. Even when—as is typical—the explanatory variables are not
multivariate normal, however, the standard ellipsoid is informative because of the role of the
means, variances, and covariances of the X s in the least-squares fit.

β1

β2

  (B1, B2)

(1, 1)

Confidence
interval
for β1 + β2

Figure 9.2 To locate the 95% confidence interval for the linear combination of coefficients
β1 þ β2, find the perpendicular shadow of the confidence interval–generating ellipse
on the line through the origin and the point (1, 1). The regression coefficients ( B1, B2)
and confidence interval–generating ellipse are not the same as in the previous figure.

SOURCE: Adapted from Monette (1990, Figure 5.7A), in Modern Methods of Data Analysis, copyright !1990

by Sage Publications, Inc. Reprinted with permission of Sage Publications, Inc.
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The joint confidence ellipse (Equation 9.19 on page 221) for the slope coefficients and the
standard data ellipse (Equation 9.21) of the X s are, except for a constant scale factor and their
respective centers, inverses of each other—that is, the confidence ellipse is (apart from its size
and location) the 908 rotation of the data ellipse. In particular, if the data ellipse is positively
tilted, reflecting a positive correlation between the X s, then the confidence ellipse is negatively
tilted, reflecting negatively correlated coefficient estimates. Likewise, directions in which the
data ellipse is relatively thick, reflecting a substantial amount of data, are directions in which
the confidence ellipse is relatively thin, reflecting substantial information about the correspond-
ing linear combination of regression coefficients. Thus, when the X s are strongly positively
correlated (and assuming, for simplicity, that the standard deviations of X1 and X2 are similar),
there is a great deal of information about β1 þ β2 but little about β1 ( β2 (as in Figure 9.2).51

The joint confidence region for the q parameters fl1, given by b1 ( fl1ð Þ0V(1
11

b1 ( fl1ð Þ £ qS2
EFa;q;n(k(1, represents the combinations of values of these parameters

that are jointly acceptable at the 1( a level of confidence. The boundary of the joint
confidence region is an ellipsoid in the q-dimensional parameter space, reflecting the cor-
relational structure and dispersion of the X s.

(a)

S1 X1 S1 X1

(X1, X2)
(X1, X2)

(b)

S2 S2

X2 X2

Figure 9.3 Scatterplot and standard data ellipse for (a) two highly correlated regressors and (b)
two uncorrelated regressors, X1 and X2. In each panel, the standard ellipse is centered
at the point of means ðX1; X2Þ; its shadows on the axes give the standard deviations of
the two variables. (The standard deviations are the half-widths of the shadows.) The
data in these figures (along with data on Y) gave rise to the joint confidence ellipses in
Figure 9.1. In each case, the confidence ellipse is the rescaled and translated 908 rota-
tion of the data ellipse. Positively correlated Xs, as in panel (a), produce negatively
correlated coefficients, as in Figure 9.1(a).

SOURCE: Adapted from Monette (1990, Figure 5.7A), in Modern Methods of Data Analysis, copyright ! 1990

by Sage Publications, Inc. Reprinted with permission of Sage Publications, Inc.

51See Exercise 9.3.
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9.5 Multivariate Linear Models

The multivariate linear model accommodates two or more response variables. The theory of
multivariate linear models is developed very briefly in this section. Much more extensive treat-
ments may be found in the recommended reading for this chapter.52

Specification, estimation, and testing of multivariate linear models largely parallel univariate
linear models. The multivariate general linear model is

Y
ðn · mÞ

¼ X
ðn · kþ1Þ

B
ðkþ1 · mÞ

þ E
ðn · mÞ

where Y is a matrix of n observations on m response variables; X is a model matrix with col-
umns for k þ 1 regressors, including an initial column for the regression constant; B is a matrix
of regression coefficients, one column for each response variable; and E is a matrix of errors.53

The contents of the model matrix are exactly as in the univariate linear model and may contain,
therefore, dummy regressors representing factors, interaction regressors, and so on.

The assumptions of the multivariate linear model concern the behavior of the errors: Let e0i
represent the ith row of E. Then "0i ; Nmð0;SÞ, where S is a nonsingular error-covariance
matrix, constant across observations; "0i and "0i0 are independent for i 6¼ i0; and X is fixed or
independent of E.54

The maximum-likelihood estimator of B in the multivariate linear model is equivalent to
equation-by-equation least squares for the individual responses:55

bB ¼ ðX0XÞ(1X0Y

Procedures for statistical inference in the multivariate linear model, however, take account of
the fact that there are several, generally correlated, responses.

Paralleling the decomposition of the total sum of squares into regression and residual sums
of squares in the univariate linear model, there is in the multivariate linear model a decomposi-
tion of the total sum-of-squares-and-cross-products (SSP) matrix into regression and residual
SSP matrices. We have

SSPT
ðm · mÞ

¼ Y0Y( nyy0

¼ bE9bE þ bY9bY ( nyy0
( )

¼ SSPR þ SSPReg

where y is the ðm · 1Þ vector of means for the response variables, bY [ XbB is the matrix of
fitted values, and bE [ Y( bY is the matrix of residuals.

Many hypothesis tests of interest can be formulated by taking differences in SSPReg (or,
equivalently, SSPR) for nested models. Let SSPH represent the incremental SSP matrix for a
hypothesis. Multivariate tests for the hypothesis are based on the m eigenvalues Lj of

52Some applications of multivariate linear models are given in the data analysis exercises for the chapter.
53A typographical note: B and E are, respectively, the uppercase Greek letters Beta and Epsilon. Because these are
indistinguishable from the corresponding Roman letters B and E, I will denote the estimated regression coefficients as
bB and the residuals as bE.
54We can write more compactly that vecðEÞ; Nnmð0; In +SÞ. Here, vecðEÞ ravels the error matrix row-wise into a vec-
tor, and + is the Kronecker-product operator (see online Appendix B on matrices, linear algebra, and vector geometry).
55See Exercise 9.16.
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SSPH SSP(1
R (the hypothesis SSP matrix ‘‘divided by’’ the residual SSP matrix), that is, the val-

ues of L for which56

detðSSPH SSP(1
R ( LImÞ ¼ 0:

The several commonly employed multivariate test statistics are functions of these eigenvalues:

Pillai-Bartlett Trace; TPB ¼
Xm

j¼1

Lj

1( Lj

Hotelling-Lawley Trace; THL ¼
Xm

j¼1

Lj

Wilks’s Lambda; L ¼
Qm

j¼1

1
1þLj

Roy’s Maximum Root; L1

ð9:22Þ

There are F approximations to the null distributions of these test statistics. For example, for
Wilks’s Lambda, let s represent the degrees of freedom for the term that we are testing (i.e.,
the number of columns of the model matrix X pertaining to the term). Define

r [ n( k ( 1( m( sþ 1

2

u [
ms( 2

4

t [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2s2 ( 4
p

m2 þ s2 ( 5
for m2 þ s2 ( 5 > 0

0 otherwise

8
>><

>>:
ð9:23Þ

Rao (1973, p. 556) shows that under the null hypothesis,

F0 [
1( L1=t

L1=t
· rt ( 2u

ms
ð9:24Þ

follows an approximate F-distribution with ms and rt ( 2u degrees of freedom and that this
result is exact if minðm; sÞ£ 2 (a circumstance under which all four test statistics are
equivalent).

Even more generally, suppose that we want to test the linear hypothesis

H0: L
ðq · kþ1Þ

B
ðkþ1 · mÞ

¼ C
ðq · mÞ

ð9:25Þ

where L is a hypothesis matrix of full-row rank q £ k þ 1, and the right-hand-side matrix C
consists of constants (usually zeroes). Then the SSP matrix for the hypothesis is

SSPH ¼ cB0L0 ( C0
( )

LðX0XÞ(1L0
h i(1

LbB ( C
( )

and the various test statistics are based on the p [ minðq;mÞ nonzero eigenvalues of
SSPH SSP(1

R (and the formulas in Equations 9.22, 9.23, and 9.24 are adjusted by substituting p
for m).

56Eigenvalues and determinants are described in online Appendix B on matrices, linear algebra, and vector geometry.
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When a multivariate response arises because a variable is measured on different occasions or
under different circumstances (but for the same individuals), it is also of interest to formulate
hypotheses concerning comparisons among the responses. This situation, called a repeated-
measures design, can be handled by linearly transforming the responses using a suitable model
matrix, for example, extending the linear hypothesis in Equation 9.25 to

H0: L
ðq · kþ1Þ

B
ðkþ1 · mÞ

P
ðm · vÞ

¼ C
ðq · vÞ

Here, the matrix P provides contrasts in the responses (see, e.g., Hand & Taylor, 1987, or
O’Brien & Kaiser, 1985). The SSP matrix for the hypothesis is

SSPH
ðq · qÞ

¼ P9bB9L9( C9
( )

LðX0XÞ(1L0
h i(1

LbBP( C
( )

and test statistics are based on the p [ minðq; vÞ nonzero eigenvalues of SSPHðP0SSPRPÞ(1.

The multivariate linear model accommodates several response variables:

Y ¼ XBþ E

Under the assumption that the rows "0i of the error matrix E are independent and multi-
variately normally distributed with mean 0 and common nonsingular covariance matrix
S, the maximum-likelihood estimators of the regression coefficients are given by

bB ¼ ðX0XÞ(1X0Y

Hypothesis tests for the multivariate linear model closely parallel those for the univariate
linear model, with sum-of-squares-and-products (SSP) matrices in the multivariate case
generalizing the role of sums of squares in the univariate case. Several commonly
employed test statistics are based on the eigenvalues of SSPH SSP(1

R , where SSPH is the
SSP matrix for a hypothesis, and SSPR is the residual SSP matrix.

9.6 Random Regressors

The theory of linear models developed in this chapter has proceeded from the premise that the
model matrix X is fixed. If we repeat a study, we expect the response-variable observations y
to change, but if X is fixed, then the explanatory-variable values are constant across replica-
tions of the study. This situation is realistically descriptive of an experiment, where the expla-
natory variables are manipulated by the researcher. Most research in the social sciences,
however, is observational rather than experimental, and in an observational study (e.g., survey
research57), we would typically obtain different explanatory-variable values on replication of
the study. In observational research, therefore, X is random rather than fixed.

57Randomized comparative experiments can be carried out in the context of a sample survey by varying aspects of
questions asked of respondents. See, e.g., Auspurg and Hinz (in press).
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It is remarkable that the statistical theory of linear models applies even when X is random,
as long as certain assumptions are met. For fixed explanatory variables, the assumptions under-
lying the model take the form "; Nnð0; σ2

εInÞ. That is, the distribution of the error is the same
for all observed combinations of explanatory-variable values represented by the distinct rows
of the model matrix. When X is random, we need to assume that this property holds for all
possible combinations of explanatory-variable values in the population that is sampled: That is,
X and " are assumed to be independent, and thus the conditional distribution of the error for a
sample of explanatory variable values "jX0 is Nnð0; σ2

εInÞ, regardless of the particular sample
X0 ¼ fxijg that is chosen.

Because X is random, it has some (multivariate) probability distribution. It is not necessary
to make assumptions about this distribution, however, beyond (1) requiring that X is measured
without error and that X and " are independent (as just explained), (2) assuming that the distri-
bution of X does not depend on the parameters fl and σ2

ε of the linear model, and (3) stipulat-
ing that the covariance matrix of the X s is nonsingular (i.e., that no X is invariant or a perfect
linear function of the others in the population). In particular, we need not assume that the
regressors (as opposed to the errors) are normally distributed. This is fortunate, for many
regressors are highly non-normal—dummy regressors and polynomial regressors come imme-
diately to mind, not to mention many quantitative explanatory variables.

It would be unnecessarily tedious to recapitulate the entire argument of this chapter, but I
will show that some key results hold, under the new assumptions, when the explanatory vari-
ables are random. The other results of the chapter can be established for random regressors in a
similar manner.

For a particular sample of X -values, X0, the conditional distribution of y is

EðyjX0Þ ¼ E ðXflþ "ÞjX0½ % ¼ X0flþ Eð"jX0Þ
¼ X0fl

Consequently, the conditional expectation of the least-squares estimator is

EðbjX0Þ ¼ E ðX0XÞ(1X0yjX0

h i
¼ ðX00X0Þ(1X00EðyjX0Þ

¼ ðX00X0Þ(1X00X0fl ¼ fl

Because we can repeat this argument for any value of X, the least-squares estimator b is condi-
tionally unbiased for any and every such value; it is therefore unconditionally unbiased as well,
EðbÞ ¼ fl.

Suppose now that we use the procedures of the previous section to perform statistical infer-
ence for fl. For concreteness, imagine that we calculate a p-value for the omnibus null hypoth-
esis H0: β1 ¼ # # # ¼ βk ¼ 0. Because "jX0 ; Nnð0; σ2

εInÞ, as was required when we treated X
as fixed, the p-value obtained is correct for X ¼ X0 (i.e., for the sample at hand). There is,
however, nothing special about a particular X0: The error vector " is independent of X, and so
the distribution of " is Nnð0; σ2

εInÞ for any and every value of X. The p-value, therefore, is
unconditionally valid.

Finally, I will show that the maximum-likelihood estimators of fl and σ2
ε are unchanged

when X is random, as long as the new assumptions hold: When X is random, sampled observa-
tions consist not just of response-variable values (Y1; . . . ; Yn) but also of explanatory-variable
values (x01; . . . ; x0n). The observations themselves are denoted ½Y1; x01%; . . . ; ½Yn; x0n%. Because
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these observations are sampled independently, their joint probability density is the product of
their marginal densities:

pðy;XÞ[ p ½y1; x
0
1%; . . . ; ½yn; x

0
n%

! "
¼ pðy1; x

0
1Þ · # # # · pðyn; x

0
nÞ

Now, the probability density pðyi; x0iÞ for observation i can be written as pðyijx0iÞpðx0iÞ.
According to the linear model, the conditional distribution of Yi given x0i is normal:

pðyijx0iÞ ¼
1

σε

ffiffiffiffiffiffi
2π
p exp (ðyi ( x0iflÞ

2

2σ2
ε

" #

Thus, the joint probability density for all observations becomes

pðy;XÞ ¼
Yn

i¼1

pðx0iÞ
1

σε

ffiffiffiffiffiffi
2π
p exp (ðyi ( x0iflÞ

2

2σ2
ε

" #

¼
Yn

i¼1

pðx0iÞ

" #
1

ð2πσ2
εÞ

n=2
exp (ðy( XflÞ0ðy( XflÞ

2σ2
ε

$ %

¼ pðXÞpðyjXÞ

As long as pðXÞ does not depend on the parameters fl and σ2
ε , we can ignore the joint density

of the X s in maximizing pðy;XÞ with respect to the parameters. Consequently, the maximum-
likelihood estimator of fl is the least-squares estimator, as was the case for fixed X.58

The statistical theory of linear models, formulated under the supposition that the model
matrix X is fixed with respect to repeated sampling, is also valid when X is random, as
long as three additional requirements are satisfied: (1) the model matrix X and the errors
" are independent; (2) the distribution of X, which is otherwise unconstrained, does not
depend on the parameters fl and σ2

ε of the linear model; and (3) the covariance matrix of
the X s is nonsingular.

9.7 Specification Error

To generalize our treatment of misspecified structural relationships,59 it is convenient to work
with probability limits.60 Suppose that the response variable Y is determined by the model

y* ¼ X*flþ " ¼ X*1fl1 þ X*2fl2 þ "

where the error " behaves according to the usual assumptions. I have, for convenience,
expressed each variable as deviations from its expectation [e.g., y*[ fYi ( EðY Þg] and have

58Cf. Section 9.3.3.
59See Section 6.3.
60Probability limits are introduced in online Appendix D.
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partitioned the model matrix into two sets of regressors; the parameter vector is partitioned in
the same manner.61

Imagine that we ignore X*2, so that y* ¼ X*1fl1 þ e", where e"[ X*2fl2 þ ". The least-squares
estimator for fl1 in the model that omits X*2 is

b1 ¼ ðX*1
0X*1Þ

(1X*1
0y*

¼ 1

n
X*1
0X*1

& '(1 1

n
X*1
0y*

¼ 1

n
X*1
0X*1

& '(1 1

n
X*1
0ðX*1fl1 þ X*2fl2 þ "Þ

¼ fl1 þ
1

n
X*1
0X*1

& '(1 1

n
X*1
0X*2fl2 þ

1

n
X*1
0X*1

& '(1 1

n
X*1
0"

Taking probability limits produces

plim b1 ¼ fl1 þ S(1
11 S12fl2 þ S(1

11 σ1ε

¼ fl1 þ S(1
11 S12fl2

where

) S11 [ plimð1=nÞX*10X*1 is the population covariance matrix for X1;
) S12 [ plimð1=nÞX*10X*2 is the matrix of population covariances between X1 and X2; and
) σ1ε [ plimð1=nÞX*10" is the vector of population covariances between X1 and ", which

is 0 by the assumed independence of the error and the explanatory variables.

The asymptotic (or population) covariance of X1 and e" is not generally 0, however, as is read-
ily established:

plim
1

n
X*1
0e" ¼ plim

1

n
X*1
0 X*2fl2 þ "
! "

¼ S12fl2 þ !1ε¼ S12fl2

The estimator b1, therefore, is consistent if S12 is 0—that is, if the excluded regressors in X2

are uncorrelated with the included regressors in X1. In this case, incorporating X*2 in the error
does not induce a correlation between X*1 and the compound error e". The estimated coefficients
b1 are also consistent if fl2 ¼ 0: Excluding irrelevant regressors is unproblematic.62

The omission of regressors from a linear model causes the coefficients of the included
regressors to be inconsistent, unless (1) the omitted regressors are uncorrelated with the
included regressors or (2) the omitted regressors have coefficients of 0 and hence are
irrelevant.

61Expressing the variables as deviations from their expectations eliminates the constant β0.
62Including irrelevant regressors also does not cause the least-squares estimator to become inconsistent; after all, if the
assumptions of the model hold, then b is a consistent estimator of fl even if some of the elements of fl are 0. (Recall,
however, Exercise 6.9.)
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9.8 Instrumental Variables
and Two-Stage Least Squares

Under certain circumstances, instrumental-variables estimation allows us to obtain consistent
estimates of regression coefficients when (some) explanatory variables are correlated with the
regression error. I develop the topic briefly, along with an extension of instrumental-variables
estimation called two-stage least squares, deferring applications to the data analysis exercises.

9.8.1 Instrumental-Variable Estimation in Simple Regression

Let us begin with the simple-regression model, Y ¼ αþ βX þ ε, where ε; Nð0; σ2
εÞ. As in

the preceding section, we can eliminate the intercept α from the model by expressing each of
X and Y as deviations from their expectations, X *[ X ( EðX Þ and Y *[ Y ( EðY Þ:

Y * ¼ βX * þ ε ð9:26Þ

Under the assumption that X and the error ε are independent, multiplying Equation 9.26
through by X * and taking expectations produces the following result:

EðX *Y *Þ ¼ βEðX *2Þ þ EðX *εÞ
σXY ¼ βσ2

X þ 0

where σXY is the population covariance of X and Y , and σ2
X is the variance of X . Because X

and the error are independent, EðX *εÞ, the covariance of X and ε, is 0. Solving for the popula-
tion regression coefficient, β ¼ σXY=σ2

X . Finally, to obtain a consistent estimator of β, we can
substitute the sample covariance SXY and variance S2

X for their population analogs, of which
they are consistent estimators. We obtain BOLS ¼ SXY=S2

X , which we recognize as the ordinary
least-squares (OLS) slope coefficient in simple regression.

Now suppose that it is unreasonable to assume that X and the error are independent but that
there is a third observed variable, Z, that is independent of the error ε but correlated with X , so
that σZε ¼ 0 and σZX 6¼ 0. Then, in the same manner as before, but multiplying Equation 9.26
through by Z*[ Z ( EðZÞ,

EðZ*Y *Þ ¼ βEðZ*X *Þ þ EðZ*εÞ
σZY ¼ βσZX þ 0

and β ¼ σZY=σZX . The variable Z is called an instrumental variable (or instrument).63

Substituting sample for population covariances produces the consistent instrumental-variable
(IV) estimator of β, BIV ¼ SZY=SZX . The requirement that Z be correlated with X (in addition
to being independent of the error) is analogous to the stipulation in OLS estimation that the
explanatory variable X is not invariant. Notice that if the explanatory variable and the instru-
mental variable are the same, Z ¼ X , then BIV ¼ BOLS.64

How might we justify the assumption that Z and ε are not related? The justification requires
substantive reasoning about the research problem at hand—no different, in principle, from

63Instrumental-variable estimation was introduced in the context of the simple-regression model in Exercise 6.14 (page 126).
64Moreover, under these circumstances, the Gauss-Markov theorem (Section 9.3.2) ensures that X is the best instru-
ment, producing the smallest coefficient standard error.
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asserting that X and ε are independent to justify causal inference in OLS regression. For exam-
ple, suppose that an experiment is conducted in which half the first-grade students in a school
district, selected at random, are given vouchers to defray the cost of attending a private school.
At the end of the year, students are administered a standardized exam covering the academic
content of the first grade.

Imagine that the researchers conducting the experiment are interested in the effect of private
school attendance, in comparison to public school attendance, on average student achievement.
If every student who received a voucher attended a private school and every student who did
not receive a voucher attended a public school, analysis of the results of the experiment would
be reasonably straightforward. Let us suppose, however, that this is not the case and that some
students receiving vouchers attended public schools and some not receiving vouchers attended
private schools.

Treating the test scores as a numeric response, Y , and the kind of school actually attended
as a dummy regressor, X , coded 1 for private school attendance and 0 for public school atten-
dance, the coefficient β in Equation 9.26 represents the difference in mean achievement
between comparable students attending private and public schools. The OLS regression of Y
on X is equivalent to a difference-of-means t-test between the group of students attending pri-
vate schools and the group attending public schools.

Under these circumstances, however, it is unreasonable to assume that X and the error—partly
comprising the omitted causes of student achievement, beyond kind of school—are independent,
because the kind of school that the students attend is at least partly determined by their families’
characteristics. For example, students not receiving a voucher might nevertheless be more likely
to attend private schools if their families are relatively wealthy, and children receiving a voucher
might be more likely nevertheless to attend public schools if their families are relatively poor.

On the other hand, the random assignment itself, also treated as a dummy variable, Z, coded
1 if a student receives a voucher and 0 otherwise, is reasonably assumed to be independent of
the error. Because the kind of school that a student attends is also likely to be related to receipt
of a private school voucher, Z can serve as an instrumental variable, to obtain an unbiased esti-
mate of β, the effect on achievement of private versus public school attendance.65

9.8.2 Instrumental-Variables Estimation in Multiple Regression

We can generalize the instrumental-variable estimator to the multiple-regression model, not
bothering this time to center the variables at their expectations and working (as in Section 9.7)
with probability limits. The familiar linear model is

y ¼ Xflþ "
"; Nnð0; σ2

εInÞ
ð9:27Þ

where y is the n · 1 response vector for a sample of n observations; X is the n · k þ 1 model
matrix, with an initial columns of 1s; fl is the k þ 1 · 1 vector of regression coefficients to be
estimated; and " is the n · 1 error vector.

65For further discussion of this imaginary study, see Exercise 9.17. Using random assignment as an instrumental vari-
able for an experimental ‘‘treatment’’ was proposed by Angrist, Imbens, and Rubin (1996), who discuss subtleties that
I have glossed over here.
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If the variables in X were asymptotically uncorrelated with ", we would be able to estimate
fl consistently by OLS regression, but let us imagine that this is not the case. Imagine further,
however, that there exists an n · k þ 1 instrumental-variable matrix Z, also including an initial
columns of 1s (and possibly including some of the other columns of X), such that

plim
1

n
Z0y

& '
¼ sðRÞZY

plim
1

n
Z0X

& '
¼ SðRÞZX ; nonsingular

plim
1

n
Z0"

& '
¼ sðRÞZε ¼ 0

plim
1

n
Z0Z

& '
¼ sðRÞZZ

where the superscript ðRÞ indicates that these are population raw-moment vectors and matrices
of mean sums of squares and cross-products. The requirement that sðRÞZε ¼ 0 stipulates that the
instrumental variables are asymptotically uncorrelated with the errors; the requirement that
SðRÞZX is nonsingular is the IV analog of ruling out perfect collinearity and implies that each of
the X s must be correlated with the Zs.

Multiplying Equation 9.27 through by ð1=nÞZ0 and taking probability limits produces

plim
1

n
Z0y

& '
¼ plim

1

n
Z0X

& '
flþ plim

1

n
Z0e

& '

sðRÞZy ¼ SðRÞZX flþ 0

Then, solving for the population regression coefficients,

fl ¼ SðRÞ(1
ZX !ðRÞZY

Consequently, the IV estimator

bIV [
1

n
Z0X

& '(1 1

n
Z0y

& '

¼ Z0Xð Þ(1Z0y

ð9:28Þ

is a consistent estimator of fl.
The asymptotic covariance matrix of bIV is given by66

VðbIVÞ ¼
σ2
ε

n
SðRÞ(1

ZX SðRÞZZ SðRÞ(1
XZ ð9:29Þ

This result cannot, of course, be applied directly because we do not know either the error var-
iance, σ2

ε , or the population moments. As in least-squares estimation, we can estimate the error
variance from the residuals:

66See Exercise 9.18.
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eIV ¼ y( XbIV

bσ2
ε ¼

e9IVeIV

n( k ( 1

Substituting sample for population moment matrices,

bVðbIVÞ ¼
bσ2
ε

n
1

n
Z0X

& '(1 1

n
Z0Z

1

n
X0Z

& '(1

¼ bσ2
ε Z0Xð Þ(1Z0Z X0Zð Þ(1 ð9:30Þ

Tests and confidence regions can then be based on bIV and bVðbIVÞ.67 Notice that if all the
explanatory variables and the instrumental variables are identical, X ¼ Z, then the IV and OLS
estimators and their respective covariance matrices coincide.68

If (some of) the k þ 1 columns of the model matrix X are correlated with the error " in
the linear model y ¼ Xflþ ", then the OLS estimator of fl is inconsistent. Suppose,
however, that there exists a matrix Z of instrumental variables with k þ 1 columns (some
of which may be the same as columns of X) that are uncorrelated with the error but cor-
related with X. Then, bIV ¼ Z0Xð Þ(1Z0y is a consistent estimator of fl, with estimated
asymptotic covariance matrix bVðbIVÞ ¼ bσ2

ε Z0Xð Þ(1Z0Z X0Zð Þ(1, where bσ2
ε ¼ e0IVeIV=

ðn( k ( 1Þ and eIV ¼ y( XbIV, as in OLS regression.

9.8.3 Two-Stage Least Squares

The instrumental-variables estimator of the preceding section requires that we have exactly
as many instrumental variables in Z as explanatory variables in X—that is, k þ 1 (including
the regression constant). If there are fewer IVs than explanatory variables, then there will be
fewer than k þ 1 IV estimating equations, comprising the rows of

Z0XbIV ¼ Z0y ð9:31Þ

Because there are k þ 1 parameters in fl to estimate, bIV will be underdetermined.
If, alternatively, there are more than k þ 1 IVs in Z, then Equations (9.31) will be overdeter-

mined. It is important to understand, however, that this situation is an embarrassment of riches:
We could obtain consistent IV estimates of fl by discarding IVs until we have just the right
number, k þ 1. To do so, however, would be arbitrary and would waste information that we
could deploy to increase the precision of estimation. Two-stage least-squares (2SLS) estima-
tion, originally developed in the 1950s by the econometricians Theil (cited in Theil, 1971,
p. 452) and Basmann (1957), is a method for reducing the IVs to just the right number, not by
discarding surplus IVs but by combining the available IVs in an advantageous manner.

67As in Sections 9.4.3 and 9.4.4.
68See Exercise 9.19.
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An instrumental variable must be correlated with at least some of the X s while remaining
uncorrelated with the error, and good instrumental variables—those that produce precise esti-
mates of the regression coefficients—must be as correlated as possible with the X s. In the first
stage of 2SLS, we regress the X s on the Zs, computing fitted values, bX s, which are the linear
combinations of the Zs most highly correlated with the original X s. Because the bX s are linear
combinations of the Zs, they too are uncorrelated with the errors.69 The fitted values are
obtained from the multivariate least-squares regression of X on Z:70

bX ¼ ZðZ0ZÞ(1Z0X

In a typical application, some of the columns of X also are among the IVs in Z (this is always
true of the regression constant, for example), and for these explanatory variables, the observed
and fitted values are identical, bX ¼ X .71

In the second stage of 2SLS, we either apply the bX s as instruments or, equivalently, perform
a least-squares regression of Y on the bX s (justifying the name ‘‘two-stage least-squares’’). The
first approach leads to

b2SLS ¼ ðbX9XÞ(1 bX9y ð9:32Þ

while the second approach leads to

b2SLS ¼ ðbX9bXÞ(1 bX9y ð9:33Þ

Showing that bX9X ¼ bX9bX demonstrates the equivalence of the two approaches.72 When the
number of IVs in Z is k þ 1, b2SLS ¼ b2SLS—that is, the two-stage least-squares estimator
(Equation 9.31) and the IV estimator (Equation 9.28) coincide.73

Finally, the covariance matrix of the 2SLS estimator follows from Equation 9.30, with bX in
the role of Z:

bVðb2SLSÞ ¼ bσ2
ε
bX9X
( )(1 bX9bX X9bX

( )(1
ð9:34Þ

The estimated error variance bσ2
ε is computed from the residuals as for any IV estimator.

If there are fewer instrumental variables in the IV matrix Z than regression coefficients
to estimate (corresponding to the k þ 1 columns of model matrix X), then the IV estimat-
ing equations are underdetermined, preventing us from solving uniquely for bIV. If, how-
ever, there are more instrumental variables than regression coefficients, then the IV
estimating equations employed directly will be overdetermined. The surplus information
available in the IVs is used efficiently by the two-stage least-squares estimator
b2SLS ¼ ðbX0XÞ(1 bX0y where bX ¼ ZðZ0ZÞ(1Z0X. The estimated asymptotic covariance

matrix of the 2SLS estimator is bVðb2SLSÞ ¼ bσ2
ε
bX0X
( )(1 bX0 bX X0 bX

( )(1
.

69Because the regression coefficients used to compute the bX s are themselves subject to sampling variation, rather than
fixed values, this argument applies asymptotically as the sample size n grows.
70See Section 9.5.
71See Exercise 9.20(a).
72See Exercise 9.20.
73See Exercise 9.20(c).
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Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 9.1. *Solving the parametric equations in one-way and two-way ANOVA:

(a) Show that the parametric equation (Equation 9.5, page 205) in one-way ANOVA has
the general solution

µ

α1

α2

..

.

αm(1

2

666664

3

777775
¼

µ:
µ1 ( µ:
µ2 ( µ:

..

.

µm(1 ( µ:

2

666664

3

777775

(b) Show that the parametric equation (Equation 9.6, page 205) in two-way ANOVA, with
two rows and three columns, has the solution

µ

α1

β1

β2

γ11

γ12

2

6666664

3

7777775
¼

µ::
µ1:( µ::
µ:1 ( µ::
µ:2 ( µ::
µ11 ( µ1:( µ:1 þ µ::
µ12 ( µ1:( µ:2 þ µ::

2

6666664

3

7777775

Exercise 9.2. *Orthogonal contrasts (see Section 9.1.2): Consider the equation flF ¼ X(1
B „

relating the parameters flF of the full-rank ANOVA model to the cell means „. Suppose that
X(1

B is constructed so that its rows are orthogonal. Show that the columns of the row basis XB

of the model matrix are also orthogonal and further that each column of XB is equal to the cor-
responding row of X(1

B divided by the sum of squared entries in that row. (Hint: Multiply X(1
B

by its transpose.)

Exercise 9.3. Nonorthogonal contrasts: Imagine that we want to compare each of three groups
in a one-way ANOVA with a fourth (control) group. We know that coding three dummy
regressors, treating Group 4 as the baseline category, will accomplish this purpose. Starting
with the equation

µ

γ1

γ2

γ3

2

6664

3

7775 ¼

0 0 0 1

1 0 0 (1

0 1 0 (1

0 0 1 (1

2

6664

3

7775

µ1

µ2

µ3

µ4

2

6664

3

7775

show that the row basis XB ¼ X(1
B

! "(1
of the model matrix is equivalent to dummy coding.

Exercise 9.4. Verify that each of the terms in the sum-of-squares function (see Equation 9.9 on
page 208)

SðbÞ ¼ y0y( y0Xb( b0X0yþ b0X0Xb

is (1 · 1), justifying writing

SðbÞ ¼ y0y( ð2y0XÞbþ b0ðX0XÞb
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Exercise 9.5. Standardized regression coefficients:74

(a) *Show that the standardized coefficients can be computed as b* ¼ R(1
XX rXy, where RXX

is the correlation matrix of the explanatory variables, and rXy is the vector of correla-
tions between the explanatory variables and the response variable. [Hints: Let
ZX
ðn · kÞ

[ fðXij ( X jÞ=Sjg contain the standardized explanatory variables, and let

zy
ðn · 1Þ

[ fðYi ( Y Þ=SYg contain the standardized response variable. The regression

equation for the standardized variables in matrix form is zy ¼ ZX b* þ e*. Multiply
both sides of this equation by Z0X=ðn( 1Þ.]

(b) The correlation matrix in Table 9.2 is taken from Blau and Duncan’s (1967) work on
social stratification. Using these correlations, along with the results in part (a), find the
standardized coefficients for the regression of current occupational status on father’s
education, father’s occupational status, respondent’s education, and the status of the
respondent’s first job. Why is the slope for father’s education so small? Is it reasonable
to conclude that father’s education is unimportant as a cause of the respondent’s occu-
pational status (recall Section 6.3)?

(c) *Prove that the squared multiple correlation for the regression of Y on X1; . . . ;Xk can
be written as

R2 ¼ B*1rr1 þ # # # þ B*krrk ¼ r0yX b*

[Hint: Multiply zy ¼ ZX b* þ e* through by z0y=ðn( 1Þ.] Use this result to calculate the
multiple correlation for Blau and Duncan’s regression.

Exercise 9.6. Using the general result V ðbÞ ¼ σ2
εðX0XÞ

(1, show that the sampling variances of
A and B in simple-regression analysis are

V ðAÞ ¼ σ2
ε

P
X 2

i

n
P
ðXi ( X Þ2

V ðBÞ ¼ σ2
εP

ðXi ( X Þ2

Table 9.2 Correlations for Blau and Duncan’s Stratification Data,
n ’20,700: X1¼Father’s Education; X2¼Father’s
Occupational Status; X3¼Respondent’s Education;
X2¼Status of Respondent’s First Job; Y¼Respondent’s
Current Occupational Status

X1 X2 X3 X4 Y

X1 1.000
X2 .516 1.000
X3 .453 .438 1.000
X4 .332 .417 .538 1.000
Y .322 .405 .596 .541 1.000

SOURCE: Blau and Duncan (1967, p. 169).

74Standardized regression coefficients were introduced in Section 5.2.4.
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Exercise 9.7. *A crucial step in the proof of the Gauss-Markov theorem (Section 9.3.2) uses
the fact that the matrix product AX must be 0 because AXfl ¼ 0. Why is this the case? [Hint:
The key here is that AXβ ¼ 0 regardless of the value of fl. Consider, for example,
fl ¼ ½1; 0; . . . ; 0%0 (i.e., one possible value of fl). Show that this implies that the first row of AX
is 0. Then consider fl ¼ ½0; 1; . . . ; 0%0, and so on.]

Exercise 9.8. *For the statistic

t ¼
Bj ( βj

SE
ffiffiffiffiffi
vjj
p

to have a t-distribution, the estimators Bj and SE must be independent. [Here, vjj is the jth diag-
onal entry of ðX0XÞ(1.] The coefficient Bj is the jth element of b, and SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0e=ðn( k ( 1Þ

p

is a function of the residuals e. Because both b and e are normally distributed, it suffices to
prove that their covariance is 0. Demonstrate that this is the case. [Hint: Use
Cðe; bÞ ¼ E½eðb( flÞ0%, and begin by showing that b( fl ¼ ðX0XÞ(1X0".]

Exercise 9.9. *Using Equation 9.12 (page 214), show that the maximized likelihood for the lin-
ear model can be written as

L ¼ 2πe
e0e
n

& '(n=2

Exercise 9.10. Using Duncan’s regression of occupational prestige on income and education,
and performing the necessary calculations, verify that the omnibus null hypothesis H0:
β1 ¼ β2 ¼ 0 can be tested as a general linear hypothesis, using the hypothesis matrix

L ¼ 0 1 0
0 0 1

$ %

and right-hand-side vector c¼ ½0; 0%0. Then verify that the H0: β1 ¼ β2 can be tested using
L ¼ ½0; 1;(1% and c ¼ ½0%. (Cf. Exercise 6.7.)

Exercise 9.11. *Consider the model Yi ¼ β0 þ β1xi1 þ β2xi2 þ εi. Show that the matrix V(1
11

(see Equation 9.16 on page 218) for the slope coefficients β1 and β2 contains mean deviation
sums of squares and products for the explanatory variables; that is,

V(1
11 ¼

P
x*2i1

P
x*i1x*i2P

x*i1x*i2
P

x*2i2

$ %

Now show, more generally, for the model Yi ¼ β0 þ β1xi1 þ # # # þ βkxik þ εi, that the matrix
V(1

11 for the slope coefficients β1; . . . ;βk contains mean deviation sums of squares and products
for the explanatory variables.

Exercise 9.12. *Show that Equation 9.20 (page 222) for the confidence interval for β1 can be
written in the more conventional form

B1 ( ta;n(3
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x*2i1

1( r2
12

s £ β1 £ B1 þ ta;n(3
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x*2i1

1( r2
12

s

Exercise 9.13. Using Figure 9.2 (on page 223), show how the confidence interval–generating
ellipse can be used to derive a confidence interval for the difference of the parameters β1 ( β2.
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Compare the confidence interval for this linear combination with that for β1 þ β2. Which com-
bination of parameters is estimated more precisely? Why? What would happen if the regressors
X1 and X2 were negatively correlated?

Exercise 9.14. Prediction: One use of a fitted regression equation is to predict response-vari-
able values for particular ‘‘future’’ combinations of explanatory-variable scores. Suppose,
therefore, that we fit the model y ¼ Xflþ ", obtaining the least-squares estimate b of fl. Let
x00 ¼ ½1; x01; . . . ; x0k % represent a set of explanatory-variable scores for which a prediction is
desired, and let Y0 be the (generally unknown, or not yet known) corresponding value of Y .
The explanatory-variable vector x00 does not necessarily correspond to an observation in the
sample for which the model was fit.

(a) *If we use bY0 ¼ x00b to estimate EðY0Þ, then the error in estimation is δ[ bY0 ( EðY0Þ.
Show that if the model is correct, then EðδÞ ¼ 0 [i.e., bY0 is an unbiased estimator of
EðY0Þ] and that V ðδÞ ¼ σ2

εx00ðX0XÞ
(1x0.

(b) *We may be interested not in estimating the expected value of Y0 but in predicting or
forecasting the actual value Y0 ¼ x00flþ ε0 that will be observed. The error in the fore-
cast is then

D [ bY0 ( Y0 ¼ x00b( ðx00flþ ε0Þ ¼ x00ðb( flÞ ( ε0

Show that EðDÞ ¼ 0 and that V ðDÞ ¼ σ2
ε ½1þ x00ðX0XÞ

(1x0%. Why is the variance of
the forecast error D greater than the variance of δ found in part (a)?

(c) Use the results in parts (a) and (b), along with the Canadian occupational prestige
regression (see Section 5.2.2), to predict the prestige score for an occupation with an
average income of $12,000, an average education of 13 years, and 50% women. Place
a 90% confidence interval around the prediction, assuming (i) that you wish to estimate
EðY0Þ and (ii) that you wish to forecast an actual Y0 score. (Because σ2

ε is not known,
you will need to use S2

E and the t-distribution.)
(d) Suppose that the methods of this problem are used to forecast a value of Y for a com-

bination of X s very different from the X values in the data to which the model was fit.
For example, calculate the estimated variance of the forecast error for an occupation
with an average income of $50,000, an average education of 0 years, and 100%
women. Is the estimated variance of the forecast error large or small? Does the var-
iance of the forecast error adequately capture the uncertainty in using the regression
equation to predict Y in this circumstance?

Exercise 9.15. Suppose that the model matrix for the two-way ANOVA model

Yijk ¼ µþ αj þ βk þ γ jk þ εijk

is reduced to full rank by imposing the following constraints (for r ¼ 2 rows and c ¼ 3
columns):

α2 ¼ 0

β3 ¼ 0

γ21 ¼ γ22 ¼ γ13 ¼ γ23 ¼ 0

These constraints imply dummy-variable (0/1) coding of the full-rank model matrix.75

75Cf. the discussion of dummy-coding in two-way ANOVA in Section 8.2.2.

Exercises 239



(a) Write out the row basis of the full-rank model matrix under these constraints.
(b) Solve for the parameters of the constrained model in terms of the cell means. What is

the nature of the hypotheses H0: all αj ¼ 0 and H0: all βk ¼ 0 for this parametrization
of the model? Are these hypotheses generally sensible?

(c) Let SS*ðα; β; γÞ represent the regression sum of squares for the full model, calculated
under the constraints defined above; let SS*ðα;βÞ represent the regression sum of
squares for the model that deletes the interaction regressors; and so on. Using the
Moore and Krupat data (discussed in Section 8.2), confirm that

SS*ðαjβÞ ¼ SSðαjβÞ
SS*ðβjαÞ ¼ SSðβjαÞ

SS*ðγjα;βÞ ¼ SSðγjα;βÞ

but that

SS*ðαjβ; γÞ 6¼ SSðαjβ; γÞ
SS*ðβjα; γÞ 6¼ SSðβjα; γÞ

where SSð#Þ and SSð#j#Þ give regression and incremental sums of squares under the
usual sigma constraints and deviation-coded (1, 0, (1) regressors.

(d) Analyze the Moore and Krupat data using one or more computer programs available
to you. How do the programs calculate sums of squares in two-way ANOVA? Does
the documentation accompanying the programs clearly explain how the sums of
squares are computed?

Exercise 9.16. *Show that the equation-by-equation least-squares estimator bB ¼ ðX0XÞ(1X0Y
is the maximum-likelihood estimator of the regression coefficients B in the multivariate general
linear model Y ¼ XBþ E, where the model matrix X is fixed, and the distribution of the errors
is "i ; Nmð0;SÞ, with ei and ei0 independent for i 6¼ i0. Show that the MLE of the error-covar-
iance matrix is 1

n
bE0bE, where bE ¼ Y( XbB.

Exercise 9.17. Intention to treat: Recall the imaginary example in Section 9.8.1 in which stu-
dents were randomly provided vouchers to defray the cost of attending a private school. In the
text, we imagined that the researchers want to determine the effect of private versus public
school attendance on academic achievement, and straightforward estimation of this effect is
compromised by the fact that some students who received a voucher did not attend a private
school, and some who did not receive a voucher nevertheless did attend a private school. We
dealt with this problem by using provision of a voucher as an instrumental variable. How, if at
all, would the situation change if the goal of the research were to determine the effect on
achievement of providing a voucher rather than the effect of actually attending a private
school? From a social-policy perspective, why might provision of a voucher be the explanatory
variable of more direct interest? This kind of analysis is termed intention to treat.

Exercise 9.18. *The asymptotic covariance matrix of the IV estimator is76

V ¼ 1

n
plim n bIV ( flð Þ bIV ( flð Þ0

* +

76See online Appendix D.4 on asymptotic distribution theory.
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The IV estimator itself (Equation 9.28) can be written as

bIV ¼ flþ ðZ0XÞ(1Z0"

(Reader: Why?) Then,

V ¼ 1

n
plim nðZ0XÞ(1Z0""0ZðX0ZÞ(1

h i

Starting with this formula, show that (repeating Equation 9.29)

VðbIVÞ ¼
σ2
ε

n
SðRÞ(1

ZX SðRÞZZ SðRÞ(1
XZ

Caveat: This relatively simple derivation of VðbIVÞ appears, for example, in Johnston (1972,
Section 9-3), but it (although not the result itself) is technically flawed (see McCallum, 1973).

Exercise 9.19. Show that when the model matrix X is used as the IV matrix Z in instrumental-
variables estimation, the IV and OLS estimators and their covariance matrices coincide. See
Equations 9.28 and 9.29 (on page 233).

Exercise 9.20. Two-stage least-squares estimation:

(a) Suppose that the column x1 in the model matrix X also appears in the matrix Z of
instrumental variables in 2SLS estimation. Explain why bx1 in the first-stage regression
simply reproduces x1; that is, bx1 ¼ x1.

(b) *Show that the two formulas for the 2SLS estimator (Equations 9.32 and 9.33 on page
235) are equivalent by demonstrating that bX0X ¼ bX0 bX.

(c) *Show that when the number of instrumental variables in Z is the same as the number
of columns in the model matrix X (i.e., k þ 1), the 2SLS estimator (Equation 9.32 on
page 235) is equivalent to the direct IV estimator (Equation 9.28 on page 233). (Hint:
It is probably simplest to demonstrate this result using the tools of the next chapter, on
the vector geometry of linear models.)

Summary

) The general linear model can be written in matrix form as y ¼ Xflþ ", where y is an
n · 1 vector of response-variable observations; X is an n · k þ 1 matrix of regressors
(called the model matrix), including an initial column of 1s for the constant regressor; fl
is a k þ 1 · 1 vector of parameters to be estimated; and " is an n · 1 vector of errors.
The assumptions of the linear model can be compactly written as "; Nnð0; σ2

εInÞ.
) The model matrices for dummy-regression and ANOVA models are strongly patterned.

In ANOVA, the relationship between group or cell means and the parameters of the lin-
ear model is expressed by the parametric equation „ ¼ XBflF , where „ is the vector of
means, XB is the row basis of the full-rank model matrix, and flF is the parameter vector
associated with the full-rank model matrix. Solving the parametric equation for the para-
meters yields flF ¼ X(1

B „. Linear contrasts are regressors that are coded to incorporate
specific hypotheses about the group means in the parameters of the model.

) If the model matrix X is of full-column rank, then the least-squares coefficients are
given by b ¼ ðX0XÞ(1X0y. Under the full set of assumptions for the linear model,
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b ; Nkþ1½fl; σ2
εðX0XÞ

(1%. The least-squares estimator is also the most efficient unbiased
estimator of fl and the maximum-likelihood estimator of fl.

) The estimated covariance matrix of the least-squares coefficients is bV ðbÞ ¼ S2
EðX0XÞ

(1.
The standard errors of the regression coefficients are the square-root diagonal entries of
this matrix. Under the assumptions of the model, ðBj ( βjÞ=SEðBjÞ; tn(k(1, providing a
basis for hypothesis tests and confidence intervals for individual coefficients.

) An incremental F-test for the hypothesis H0: β1 ¼ # # # ¼ βq ¼ 0, where 1 £ q £ k, is
given by

F0 ¼
ðRSS0 ( RSS q= Þ
RSS=ðn( k ( 1Þ

where RSS is the residual sum of squares for the full model, and RSS0 is the residual
sum of squares for the model that deletes the q regressors corresponding to the para-
meters in H0. Under the null hypothesis, F0 ; Fq;n(k(1. The incremental F-statistic can
also be computed directly as F0 ¼ b01V(1

11 b1=qS2
E, where b1 ¼ ½B1; . . . ;Bq%0 contains the

coefficients of interest extracted from among the entries of b, and V11 is the square sub-
matrix of ðX0XÞ(1 consisting of the q rows and columns pertaining to the coefficients
in b1.

) The F-statistic

F0 ¼
ðLb( cÞ0½LðX0XÞ(1L0%

(1
ðLb( cÞ

qS2
E

is used to test the general linear hypothesis H0: L
ðq · kþ1Þ

fl
ðkþ1 · 1Þ

¼ c
ðq · 1Þ

, where the rank-q

hypothesis matrix L and right-hand-side vector c contain prespecified constants. Under
the hypothesis, F0 ; Fq;n(k(1.

) The joint confidence region for the q parameters fl1, given by

all fl1 for which ðb1 ( fl1Þ
0V(1

11 ðb1 ( fl1Þ £ qS2
EFa;q;n(k(1

represents the combinations of values of these parameters that are jointly acceptable at
the 1( a level of confidence. The boundary of the joint confidence region is an ellipsoid
in the q-dimensional parameter space, reflecting the correlational structure and disper-
sion of the X s.

) The multivariate linear model accommodates several response variables:

Y ¼ XBþ E

Under the assumption that the rows "0i of the error matrix E are independent and multi-
variately normally distributed with mean 0 and common nonsingular covariance matrix
S, the maximum-likelihood estimators of the regression coefficients are given by

bB ¼ ðX0XÞ(1X0Y

Hypothesis tests for the multivariate linear model closely parallel those for the univariate
linear model, with sum-of-squares-and-products (SSP) matrices in the multivariate case
generalizing the role of sums of squares in the univariate case. Several commonly
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employed test statistics are based on the eigenvalues of SSPH SSP(1
R , where SSPH is the

SSP matrix for a hypothesis, and SSPR is the residual SSP matrix.
) The statistical theory of linear models, formulated under the supposition that the model

matrix X is fixed with respect to repeated sampling, is also valid when X is random, as
long as three additional requirements are satisfied:

1. the model matrix X is measured without error and is independent of the errors ";
2. the distribution of X, which is otherwise unconstrained, does not depend on the

parameters fl and σ2
ε of the linear model; and

3. the covariance matrix of the X s is nonsingular.

) The omission of regressors from a linear model causes the coefficients of the included
regressors to be inconsistent, unless

1. the omitted regressors are uncorrelated with the included regressors or
2. the omitted regressors have coefficients of 0 and hence are irrelevant.

) If (some of) the k þ 1 columns of the model matrix X are correlated with the error " in
the linear model y ¼ Xflþ ", then the OLS estimator of fl is inconsistent. Suppose,
however, that there exists a matrix Z of instrumental variables with k þ 1 columns
(some of which may be the same as columns of X) that are uncorrelated with the error
but correlated with X. Then, bIV ¼ Z0Xð Þ(1Z0y is a consistent estimator of fl, with esti-
mated asymptotic covariance matrix bVðbIVÞ ¼ bσ2

ε Z0Xð Þ(1Z0Z X0Zð Þ(1, where
bσ2
ε ¼ e0IVeIV=ðn( k ( 1Þ and eIV ¼ y( XbIV, as in OLS regression.

) If there are fewer instrumental variables in the IV matrix Z than regression coefficients
to estimate (corresponding to the k þ 1 columns of model matrix X), then the IV esti-
mating equations are underdetermined, preventing us from solving uniquely for bIV. If,
however, there are more instrumental variables than regression coefficients, then the IV
estimating equations employed directly will be overdetermined. The surplus information
available in the IVs is used efficiently by the two-stage least-squares estimator

b2SLS ¼ ðbX0XÞ(1 bX0y where bX ¼ ZðZ0ZÞ(1Z0X. The estimated asymptotic covariance

matrix of the 2SLS estimator is bVðb2SLSÞ ¼ bσ2
ε
bX0X
( )(1 bX0 bX X0 bX

( )(1
.

Recommended Reading

There are many texts that treat the theory of linear models more abstractly, more formally, and
with greater generality than I have in this chapter.

) Seber (1977) is a reasonably accessible text that develops in a statistically more sophisti-
cated manner most of the topics discussed in the last five chapters. Seber also pays more
attention to issues of computation and develops some topics that I do not.

) Searle (1971) presents a very general treatment of linear models, including a much
broader selection of ANOVA models, stressing the analysis of unbalanced data. Searle
directly analyzes model matrices of less than full rank (elaborating the material in
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Section 9.2.1), an approach that—in my opinion—makes the subject more complex than
it needs to be. Despite its relative difficulty, however, the presentation is of exception-
ally high quality.

) Hocking (1985) and Searle (1987) cover much the same ground as Searle (1971) but
stress the use of ‘‘cell-means’’ models, avoiding some of the complications of overpara-
metrized models for ANOVA. These books also contain a very general presentation of
the theory of linear statistical models.

) A fine and accessible paper by Monette (1990) develops in more detail the geometric
representation of regression analysis using ellipses (a topic that is usually treated only in
difficult sources). Friendly, Monette, and Fox (2013) present a comprehensive overview
of the role of elliptical geometry in statistics.

) There are many general texts on multivariate statistical methods. Krzanowski (1988) and
Morrison (2005) provide wide-ranging and accessible introductions to the subject,
including the multivariate linear model. The statistical theory of multivariate linear mod-
els is developed in detail by Anderson (2003) and Rao (1973).

) Instrumental-variables estimation is a standard topic in econometrics texts; see, for
example, Greene (2003, Section 5.4).
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10 The Vector
Geometry of

Linear Models*

A s is clear from the previous chapter, linear algebra is the algebra of linear models.
Vector geometry provides a spatial representation of linear algebra and therefore fur-

nishes a powerful tool for understanding linear models. The geometric understanding of linear
models is venerable: R. A. Fisher’s (1915) development of the central notion of degrees of
freedom in statistics was closely tied to vector geometry, for example.

Few points in this book are developed exclusively in geometric terms. The reader who takes
the time to master the geometry of linear models, however, will find the effort worthwhile:
Certain ideas—including degrees of freedom—are most simply developed or understood from
the geometric perspective.1

The chapter begins by describing the geometric vector representation of simple and multiple
regression. Geometric vectors are then employed (in the spirit of Fisher’s seminal paper) to
explain the connection between degrees of freedom and unbiased estimation of the error var-
iance in linear models. Finally, vector geometry is used to illuminate the essential nature of
overparametrized analysis-of-variance (ANOVA) models.

10.1 Simple Regression

We can write the simple-regression model in vector form in the following manner:

y =α1n þ βxþ " ð10:1Þ

where y [ Y1; Y2; . . . ; Yn½ %0, x [ x1; x2; . . . ; xn½ %0, "[ ε1; ε2; . . . ; εn½ %0, and 1n [ 1; 1; . . . ; 1½ %0; α

and β are the population regression coefficients.2 As before, we will assume that
"; Nnð0; σ2InÞ. The fitted regression equation is, similarly,

y = A1n þ Bxþ e ð10:2Þ

where e [ E1; E2; . . . ;En½ %0 is the vector of residuals, and A and B are the least-squares regres-
sion coefficients. From Equation 10.1, we have

EðyÞ=α1n þ βx

Analogously, from Equation 10.2,
by = A1n þ Bx

1The basic vector geometry on which this chapter depends is developed in online Appendix B.
2Note that the X -values are treated as fixed. As in the previous chapter, the development of the vector geometry of lin-
ear models is simpler for fixed X , but the results apply as well when X is random.
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We are familiar with a seemingly natural geometric representation of fX ; Yg data—the scatter-
plot—in which the axes of a two-dimensional coordinate space are defined by the variables X
and Y and where the observations are represented as points in the space according to their
fxi; Yig coordinates. The scatterplot is a valuable data-analytic tool as well as a device for
thinking about regression analysis.

I will now exchange the familiar roles of variables and observations, defining an n-dimen-
sional coordinate space for which the axes are given by the observations and in which the vari-
ables are plotted as vectors. Of course, because there are generally many more than three
observations, it is not possible to visualize the full vector space of the observations.3 Our inter-
est, however, often inheres in two- and three-dimensional subspaces of this larger n-dimen-
sional vector space. In these instances, as we will see presently, visual representation is both
possible and illuminating. Moreover, the geometry of higher-dimensional subspaces can be
grasped by analogy to the two- and three-dimensional cases.

The two-dimensional variable space (i.e., in which the variables define the axes) and the n-
dimensional observation space (in which the observations define the axes) each contains a
complete representation of the ðn · 2Þ data matrix ½x; y%. The formal duality of these spaces
means that properties of the data, or of models meant to describe them, have equivalent repre-
sentations in both spaces. Sometimes, however, the geometric representation of a property will
be easier to understand in one space than in the other.

The simple-regression model of Equation 10.1 is shown geometrically in Figure 10.1. The
subspace depicted in this figure is of dimension 3 and is spanned by the vectors x, y, and 1n.
Because y is a vector random variable that varies from sample to sample, the vector diagram
necessarily represents a particular sample. The other vectors shown in the diagram clearly lie
in the subspace spanned by x, y, and 1n: EðyÞ is a linear combination of x and 1n (and thus lies

α1n

α1n + βx

1n

 

yε

x

βx

E(y) =

E(ε) = 0

Figure 10.1 The vector geometry of the simple-regression model, showing the three-dimensional
subspace spanned by the vectors x, y, and 1n. Because the expected error is 0, the
expected-Y vector, E(y), lies in the plane spanned by 1n and x.

3See Exercise 10.1 for a scaled-down, two-dimensional example, however.
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in the f1n; xg plane), and the error vector " is y& α1n & βx. Although " is nonzero in this
sample, on average, over many samples, Eð"Þ= 0.

Figure 10.2 represents the least-squares simple regression of Y on X , for the same data as
shown in Figure 10.1. The peculiar geometry of Figure 10.2 requires some explanation: We
know that the fitted values by are a linear combination of 1n and x and hence lie in the f1n; xg
plane. The residual vector e = y& by has length jjejj=

ffiffiffiffiffiffiffiffiffiffiffiP
E2

i

p
—that is, the square root of the

residual sum of squares. The least-squares criterion interpreted geometrically, therefore, speci-
fies that e must be as short as possible. Because the length of e is the distance between y and
by, this length is minimized by taking by as the orthogonal projection of y onto the f1n; xg plane,
as shown in the diagram.

Variables, such as X and Y in simple regression, can be treated as vectors—x and y—in
the n-dimensional space whose axes are given by the observations. Written in vector
form, the simple-regression model is y =α1n þ βxþ ". The least-squares regression,
y = A1n þ Bxþ e, is found by projecting y orthogonally onto the plane spanned by 1n

and x, thus minimizing the sum of squared residuals, jjejj2.

10.1.1 Variables in Mean Deviation Form

We can simplify the vector representation for simple regression by eliminating the constant
regressor 1n and, with it, the intercept coefficient A. This simplification is worthwhile for two
reasons:

e
y

x

Bx

0

A1n

A1n + Bx

1n

y =
∧

Figure 10.2 The vector geometry of least-squares fit in simple regression. Minimizing the residual
sum of squares is equivalent to making the e vector as short as possible. The by vector
is, therefore, the orthogonal projection of y onto the {1n, x} plane.
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1. Our diagram is reduced from three to two dimensions. When we turn to multiple regres-
sion—introducing a second explanatory variable—eliminating the constant allows us to
work with a three-dimensional rather than a four-dimensional subspace.

2. The ANOVA for the regression appears in the vector diagram when the constant is
eliminated, as I will shortly explain.

To get rid of A, recall that Y = Aþ Bx; subtracting this equation from the fitted model
Yi = Aþ Bxi þ Ei produces

Yi & Y ¼ Bðxi & xÞ þ Ei

Expressing the variables in mean deviation form eliminates the regression constant. Defining
y([ fYi & Yg and x([ fxi & xg, the vector form of the fitted regression model becomes

y(= Bx( þ e ð10:3Þ

The vector diagram corresponding to Equation 10.3 is shown in Figure 10.3. By the same argu-
ment as before,4 by([ fbYi & Yg is a multiple of x(, and the length of e is minimized by taking
by( as the orthogonal projection of y( onto x(. Thus,

B =
x( ) y(

jjx(jj2
=

P
ðxi & xÞðYi & Y Þ
P
ðxi & xÞ2

which is the familiar formula for the least-squares slope in simple regression.5

Sums of squares appear on the vector diagram as the squared lengths of vectors. I have
already remarked that

RSS =
X

E2
i = jjejj2

e y*

0

RSS

RegSS

W

TSS

y* = Bx*
∧

x*

Figure 10.3 The vector geometry of least-squares fit in simple regression for variables in mean
deviation form. The analysis of variance for the regression follows from the
Pythagorean theorem. The correlation between X and Y is the cosine of the angle W
separating the x( and y( vectors.

4The mean deviations for the fitted values are fbYi & Yg because the mean of the fitted values is the same as the mean
of Y . See Exercise 10.2.
5See Section 5.1.

248 Chapter 10. The Vector Geometry of Linear Models*



Similarly,

TSS =
X
ðYi & Y Þ2 = jjy(jj2

and

RegSS =
X
ðbYi & Y Þ2 = jjby(jj2

The ANOVA for the regression, TSS = RegSSþ RSS, follows from the Pythagorean theorem.
The correlation coefficient is

r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RegSS

TSS

r
=
jjby(jj
jjy(jj

The vectors by( and y( are, respectively, the adjacent side and hypotenuse for the angle W in
the right triangle whose vertices are given by the tips of 0, y(, and by(. Thus, r = cos W : The
correlation between two variables (here, X and Y ) is the cosine of the angle separating their
mean deviation vectors. When this angle is 0, one variable is a perfect linear function of the
other, and r = cos 0 = 1. When the vectors are orthogonal, r = cos 908 = 0. We will see shortly
that when two variables are negatively correlated, 908 < W £ 1808.6 The correlation r = cos W
can be written directly as7

r =
x( ) y(

jjx(jj jjy(jj
=

P
ðxi & xÞðYi & Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi & xÞ2

P
ðYi & Y Þ2

q ð10:4Þ

Figure 10.4 illustrates an inverse relationship between X and Y . All the conclusions that we
based on Figure 10.3 still hold. Because B is now negative, by(= Bx( is a negative multiple of
the x( vector, pointing in the opposite direction from x(. The correlation is still the cosine of

ey*

0 x*

W

y* = Bx*
∧

Figure 10.4 The vector geometry of least-squares fit for a negative relationship between X and Y.
Here B is negative, so by = Bx points in the direction opposite to x.

6We need only consider angles between 08 and 1808 for we can always examine the smaller of the two angles separat-
ing x( and y(. Because cos W = cos ð3608 &W Þ, this convention is of no consequence.
7This is the alternative formula for the correlation coefficient presented in Section 5.1 (Equation 5.4 on page 90). The
vector representation of simple regression, therefore, demonstrates the equivalence of the two formulas for r—the direct
formula and the definition in terms of sums of squares.
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W , but now we need to take the negative root of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjby(jj2=jjy(jj2

q
if we wish to define r in

terms of vector lengths; Equation 10.4 produces the proper sign because x( ) y( is negative.

Writing X and Y in mean deviation form, as the vectors x( and y(, eliminates the con-
stant term and thus permits representation of the fitted regression in two (rather than
three) dimensions: y(= Bx( þ e. The ANOVA for the regression, TSS = RegSSþ RSS,
is represented geometrically as jjy(jj2 = jjby(jj2 þ jjejj2. The correlation between X and Y
is the cosine of the angle separating the vectors x( and y(.

10.1.2 Degrees of Freedom

The vector representation of simple regression helps clarify the concept of degrees of free-
dom. In general, sums of squares for linear models are the squared lengths of variable vectors.
The degrees of freedom associated with a sum of squares represent the dimension of the sub-
space to which the corresponding vector is confined.

* Consider, first, the vector y in Figure 10.2 (page 247): This vector can be located any-
where in the n-dimensional observation space. The uncorrected sum of squaresP

Y 2
i = jjyjj2, therefore, has n degrees of freedom.

* When we convert Y to mean deviation form (as in Figure 10.3 on page 248), we confine
the y( vector to an ðn& 1Þ-dimensional subspace, ‘‘losing’’ 1 degree of freedom in the
process. This is easily seen for vectors in two-dimensional space: Let y = ½Y1; Y2%0, and
y(= ½Y1 & Y ; Y2 & Y %0. Then, because Y = ðY1 þ Y2Þ=2, we can write

y(= Y1 &
Y1 þ Y2

2
; Y2 &

Y1 þ Y2

2

" #0
=

Y1 & Y2

2
;
Y2 & Y1

2

" #0
= ½Y (1 ;&Y (1 %

0

Thus, all vectors y( lie on a line through the origin, as shown in Figure 10.5: The sub-
space of all vectors y( is one dimensional. Algebraically, by subtracting the mean from
each of its coordinates, we have imposed a linear restriction on y(, ensuring that its
entries sum to zero,

P
ðYi & Y Þ= 0; among the n values of Yi & Y , only n& 1 are line-

arly independent. The total sum of squares TSS = y(k k2 =
P
ðYi & Y Þ2, therefore, has

n& 1 degrees of freedom.

We can extend this reasoning to the residual and regression sums of squares:

* In Figure 10.3, by( is a multiple of x(. The vector x(, in turn, is fixed and spans a one-
dimensional subspace. Because by( necessarily lies somewhere in this one-dimensional
subspace, RegSS = by(k k2 has 1 degree of freedom.

* The degrees of freedom for the residual sum of squares can be determined from either
Figure 10.2 or Figure 10.3. In Figure 10.2, y lies somewhere in the n-dimensional obser-
vation space. The vectors x and 1n are fixed and together span a subspace of dimension
2 within the larger observation space. The location of the residual vector e depends
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on y, but in any event, e is orthogonal to the plane spanned by x and 1n. Consequently,
e lies in a subspace of dimension n& 2 (the orthogonal complement of the subspace
spanned by x and 1n), and RSS = ek k2 has n& 2 degrees of freedom. Algebraically, the
least-squares residuals e satisfy two independent linear restrictions—

P
Ei = 0 (i.e.,

e ) 1n = 0) and
P

Eixi = 0 (i.e., e ) x = 0)—accounting for the ‘‘loss’’ of 2 degrees of
freedom.8

* Alternatively, referring to Figure 10.3, y( lies in the ðn& 1Þ-dimensional subspace of
mean deviations; the residual vector e is orthogonal to x(, both of which also lie in the
ðn& 1Þ-dimensional mean deviation subspace; hence, RSS has ðn& 1Þ & 1 = n& 2
degrees of freedom.

Degrees of freedom in simple regression correspond to the dimensions of subspaces to
which variable vectors associated with sums of squares are confined: (1) The y( vector
lies in the ðn& 1Þ-dimensional subspace of mean deviations but is otherwise uncon-
strained; TSS, therefore, has n& 1 degrees of freedom. (2) The by( vector lies somewhere
along the one-dimensional subspace spanned by x(; RegSS, therefore, has 1 degree of
freedom. (3) The e vector lies in the ðn& 1Þ-dimensional subspace of mean deviations
and is constrained to be orthogonal to x(; RSS, therefore, has ðn& 1Þ & 1 = n& 2
degrees of freedom.

Y2

Y1

(Y*1, Y*2)
subspace

Figure 10.5 When n = 2, the mean deviation vector y(= ½Y1 & Y; Y2 & Y%
0

is confined to a one-
dimensional subspace (i.e., a line) of the two-dimensional observation space.

8It is also the case that
P

Ei bYi = e ) by = 0, but this constraint follows from the other two. See Exercise 10.3.
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10.2 Multiple Regression

To develop the vector geometry of multiple regression, I will work primarily with the two-
explanatory-variable model: Virtually all important points can be developed for this case, and
by expressing the variables in mean deviation form (eliminating the constant regressor), the
subspace of interest is confined to three dimensions and consequently can be visualized.

Consider, then, the fitted model

y = A1n þ B1x1 þ B2x2 þ e ð10:5Þ

where y is, as before, the vector of response-variable observations; x1 and x2 are explanatory-
variable vectors; e is the vector of residuals; and 1n is a vector of 1s. The least-squares regres-
sion coefficients are A, B1, and B2. From each observation of Equation 10.5, let us subtract
Y = Aþ B1x1 þ B2x2, obtaining

y(= B1x(1 þ B2x(2 þ e ð10:6Þ

In Equation 10.6, y(, x(1, and x(2 are vectors of mean deviations.
Figure 10.6(a) shows the three-dimensional vector diagram for the fitted model of

Equation 10.6, while Figure 10.6(b) depicts the explanatory-variable plane. The fitted values
by(= B1x(1 þ B2x(2 are a linear combination of the regressors, and the vector by(, therefore, lies
in the fx(1; x(2g plane. By familiar reasoning, the least-squares criterion implies that the residual
vector e is orthogonal to the explanatory-variable plane and, consequently, that by( is the ortho-
gonal projection of y( onto this plane.

0 0

e

y*

y*

(a) (b)

B1x*1

B1x*1

x*1

x*1

x*2

B2x*2

B2x*2

x*2

∧

y*
∧

Figure 10.6 The vector geometry of least-squares fit in multiple regression, with the variables in
mean deviation form. The vectors y(, x(1, and x(2 span a three-dimensional subspace,
shown in (a). The fitted-Y vector, by(, is the orthogonal projection of y( onto the plane
spanned by x(1 and x(2. The fx(1, x(2g plane is shown in (b). In this illustration, both B1

and B2 are positive, with B1 > 1 and B2 < 1.
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The regression coefficients B1 and B2 are uniquely defined as long as x(1 and x(2 are not colli-
near. This is the geometric version of the requirement that the explanatory variables may not
be perfectly correlated. If the regressors are collinear, then they span a line rather than a plane;
although we can still find the fitted values by orthogonally projecting y( onto this line, as
shown in Figure 10.7, we cannot express by( uniquely as a linear combination of x(1 and x(2.

The ANOVA for the multiple-regression model appears in the plane spanned by y( and by(,
as illustrated in Figure 10.8. The residual vector also lies in this plane (because e = y( & by),
while the regressor plane fx(1; x(2g is perpendicular to it. As in simple-regression analysis,
TSS = y(k k2, RegSS = by(k k2, and RSS = ek k2. The equation TSS = RegSSþ RSS follows
from the Pythagorean theorem.

It is also clear from Figure 10.8 that R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RegSS=TSS

p
= cos W . Thus, the multiple correla-

tion is the simple correlation between the observed and fitted response-variable values, Y and bY .
If there is a perfect linear relationship between Y and the explanatory variables, then y( lies in

0

line spanned
by x*1 and x*2

y*

y* x*1x*2
∧

Figure 10.7 When the explanatory variables are perfectly collinear, x(1 and x(2 span a line rather
than a plane. The by( vector can still be found by projecting y( orthogonally onto this
line, but the regression coefficients B1 and B2, expressing by( as a linear combination
of x(1 and x(2, are not unique.

e

0

RSS

RegSS

W

TSS

y*

edge of plane
spanned by
x*1 and x*2

y*∧

Figure 10.8 The analysis of variance for multiple regression appears in the plane spanned by y(

and by(. The multiple correlation R is the cosine of the angle W separating y( and by(.
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the regressor plane, y(= by(, e = 0, W = 08, and R = 1; if, at the other extreme, there is no linear
relationship between Y and the explanatory variables, then y(= e, by(= 0, W = 908, and R = 0.

The fitted multiple-regression model for two explanatory variables is written in vector
form as y = A1n þ B1x1 þ B2x2 þ e. Putting Y and the X s in mean deviation form elimi-
nates the constant, y(= B1x(1 þ B2x(2 þ e, and permits a representation in three (rather
than four) dimensions. The fitted values, by(= B1x(1 þ B2x(2, are found by projecting y(

orthogonally onto the plane spanned by x(1 and x(2. The ANOVA for the regression,
which is essentially the same as in simple regression, appears in the plane spanned by y(

and by(. The multiple correlation R is the cosine of the angle separating y( and by( and,
consequently, is the simple correlation between the observed and fitted Y values.

Figure 10.9 shows the vector geometry of the incremental F-test for the hypothesis H0: β1 = 0
in a model with k explanatory variables. RegSS—the regression sum of squares from the full
model, where Y is regressed on all the X s—is decomposed into two orthogonal components:
RegSS0 (for the regression of Y on X2; . . . ;Xk) and the incremental sum of squares
RegSS& RegSS0.

The vector representation of regression analysis also helps clarify the relationship between
simple and multiple regression. Figure 10.10(a) is drawn for two positively correlated regres-
sors. The fitted response-variable vector is, from our previous work, the orthogonal projection
of y( onto the fx(1; x(2g plane. To find the multiple-regression coefficient B1, we project by( par-
allel to x(2, locating B1x(1, as shown in Figure 10.10(b), which depicts the regressor plane. The
coefficient B2 is located similarly.

RegSS

RegSS0

RegSS - RegSS0

‘Edge’ of subspace spanned
by x*2,...,x*k

B1x*1

x*1

y*∧

y*0
∧

Figure 10.9 The incremental sum of squares for the hypothesis H0: β1 = 0. The vector by(0 is for
the regression of Y on X2,. . ., Xk (i.e., excluding X1), while the vector by( is for the
regression of Y on all the Xs, including X1.

254 Chapter 10. The Vector Geometry of Linear Models*



To find the slope coefficient B for the simple regression of Y on X1, we need to project y(

onto x(1 alone, obtaining Bx(1; this result also appears in Figure 10.10(a). Because
x(1 ) y(= x(1 ) by(,

9 the vector B1x(1 is also the orthogonal projection of by( onto x(1, as shown in
Figure 10.10(a) and (b). In this instance, projecting by( perpendicular to x(1 (simple regression)
rather than parallel to x(2 (multiple regression) causes the simple-regression slope B to exceed
the multiple-regression slope B1.

The situation changes fundamentally if the explanatory variables X1 and X2 are uncorrelated,
as illustrated in Figure 10.11(a) and (b). Here, B = B1. Another advantage of orthogonal regres-
sors is revealed in Figure 10.11(b): There is a unique partition of the regression sum of squares
into components due to each of the two regressors. We have10

RegSS = by( ) by(= B2
1x(1 ) x

(
1 þ B2

2x(2 ) x
(
2

In contrast, when the regressors are correlated, as in Figure 10.10(b), no such partition is possi-
ble, for then

RegSS = by( ) by(= B2
1x(1 ) x

(
1 þ B2

2x(2 ) x
(
2 þ 2B1B2x(1 ) x

(
2 ð10:7Þ

The last term in Equation 10.7 can be positive or negative, depending on the signs of the
regression coefficients and of the correlation between X1 and X2.11

0
0

y*

(a) (b)

B1x*1 Bx*1

x*2

x*1

y*∧

y*∧

x*2
B2x*2

B1x*1

Bx*1
x*1

Figure 10.10 When the Xs are correlated (here positively), the slope B for the simple regression
of Y on X1 alone generally differs from the slope B1 in the multiple regression of Y
on both X1 and X2. The least-squares fit is in (a), the regressor plane in (b).

9See Exercise 10.5.
10See Exercise 10.6.
11Occasionally, 2B1B2x(1 ) x(2 is interpreted as the variation in Y due to the ‘‘overlap’’ between the correlated explana-
tory variables X1 and X2, and one may even see the terms in Equation 10.7 represented as areas in a Venn diagram.
That this interpretation (and associated Venn diagram representation) is nonsense follows from the observation that the
‘‘overlap’’can be negative.
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When the explanatory variables in multiple regression are orthogonal (uncorrelated), the
regression sum of squares can be partitioned into components due to each explanatory
variable: jjby(jj2 = B2

1jjx(1jj
2 þ B2

2jjx(2jj
2. When the explanatory variables are correlated,

however, no such partition is possible.

As in simple regression, degrees of freedom in multiple regression correspond to the dimension
of subspaces of the observation space. Because the y( vector, as a vector of mean deviations, is
confined to a subspace of dimension n& 1, there are n& 1 degrees of freedom for TSS
= y(k k2. The fitted-value vector by( necessarily lies in the fixed fx(1; x(2g plane, which is a sub-
space of dimension 2; thus, RegSS = by(k k2 has 2 degrees of freedom. Finally, the residual
vector e is orthogonal to the explanatory-variable plane, and, therefore, RSS = ek k2 has
ðn& 1Þ & 2 = n& 3 degrees of freedom.

More generally, k noncollinear regressors in mean deviation form generate a subspace of
dimension k. The fitted response-variable vector by( is the orthogonal projection of y( onto this
subspace, and, therefore, RegSS has k degrees of freedom. Likewise, because e is orthogonal
to the k-dimensional regressor subspace, RSS has ðn& 1Þ & k = n& k & 1 degrees of freedom.

As in simple regression, degrees of freedom in multiple regression follow from the
dimensionality of the subspaces to which the y(, by(, and e vectors are confined.

10.3 Estimating the Error Variance

The connection between degrees of freedom and unbiased variance estimation is subtle but
yields relatively simply to the geometric point of view. This section uses the vector geometry

0 0

y*

y*^

x*2

x*1
x*1

B2x*2

B2x*2

B1x*1 = Bx*1
B1x*1 = Bx*1

(a) (b)

x*2

y*∧

Figure 10.11 When the Xs are uncorrelated, the simple-regression slope B and the multiple-regres-
sion slope B1 are the same. The least-squares fit is in (a), the regressor plane in (b).
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of regression to show that S2
E =

P
E2

i =ðn& k & 1Þ is an unbiased estimator of the error var-
iance, σ2

ε .
Even when the errors in a linear model are independent and normally distributed with zero

means and constant variance, "; Nnð0; σ2
εInÞ, the least-squares residuals are correlated and

generally have different variances, e ; Nnð0; σ2
εQÞ. The matrix Q [ In & XðX0XÞ&1X0 is non-

diagonal, singular, and of rank n& k & 1.12

Following Putter (1967), we can transform the least-squares residuals into an independent
and identically distributed set by selecting an orthonormal basis for the error subspace, defining
transformed residuals in the following manner:

z
ðn&k&1 · 1Þ

[ G
ðn&k&1 · nÞ

e
ðn · 1Þ

The transformation matrix G is selected so that it is orthonormal and orthogonal to X:

GG0= In&k&1

GX = 0
ðn&k&1 · kþ1Þ

The transformed residuals then have the following properties:13

z = Gy

EðzÞ= 0

V ðzÞ= σ2
εIn&k&1

If the elements of " are independent and normally distributed with constant variance, then so
are the elements of z. There are, however, n of the former and n& k & 1 of the latter.
Furthermore, the transformation matrix G (and hence z) is not unique—there are infinitely
many ways of selecting an orthonormal basis for the error subspace.14

Transforming e to z suggests a simple method for deriving an estimator of the error variance
σ2
ε . The entries of z have zero expectations and common variance σ2

ε , so

Eðz0zÞ=
Xn&k&1

i = 1

EðZ2
i Þ= ðn& k & 1Þσ2

ε

Thus, an unbiased estimator of the error variance is given by

S2
E [

z0z
n& k & 1

Moreover, because the Zi are independent and normally distributed,

z0z
σ2
ε

=
ðn& k & 1ÞS2

E

σ2
ε

;χ2
n&k&1

The estimator S2
E can be computed without finding transformed residuals, for the length of the

least-squares residual vector e is the same as the length of the vector of transformed residuals z;
that is,

ffiffiffiffiffiffi
e0e
p

=
ffiffiffiffiffiffi
z0z
p

. This result follows from the observation that e and z are the same vector
represented according to alternative bases: (1) e gives the coordinates of the residuals relative to

12See Exercise 10.10.
13See Exercise 10.11.
14The transformed residuals are useful not only for exploring properties of least-squares estimation but also in diagnos-
ing certain linear-model problems (see, e.g., Putter, 1967; Theil, 1971, chap. 5).
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the natural basis of the n-dimensional observation space; (2) z gives the coordinates of the resi-
duals relative to an arbitrary orthonormal basis for the ðn& k & 1Þ-dimensional error subspace.
A vector does not change its length when the basis changes, and, therefore,

S2
E =

z0z
n& k & 1

=
e0e

n& k & 1

which is our usual estimator of the error variance.
Heuristically, although e contains n elements, there are, as I have explained, k þ 1 linear

dependencies among them. In calculating an unbiased estimator of the error variance, we need
to divide by the residual degrees of freedom rather than by the number of observations.

An unbiased estimator of the error variance σ2
ε can be derived by transforming the n cor-

related residuals e to n& k & 1 independently and identically distributed residuals z,
employing an orthonormal basis G for the ðn& k & 1Þ-dimensional error subspace:
z = Ge. If the errors are independent and normally distributed, with zero means and com-
mon variance σ2

ε , then so are the elements of z. Thus, z0z=ðn& k & 1Þ is an unbiased
estimator of the error variance, and because z and e are the same vector represented
according to alternative bases, z0z=ðn& k & 1Þ= e0e=ðn& k & 1Þ, which is our usual
estimator of error variance, S2

E.

10.4 Analysis-of-Variance Models

Recall the overparametrized one-way ANOVA model15

Yij =µþ αj þ εij for i = 1; . . . ; nj; j = 1; . . . ;m

The X matrix for this model (with parameters labeling the columns) is

X
ðn · mþ1Þ

=

ðµÞ ðα1Þ ðα2Þ ) ) ) ðαm&1Þ ðαmÞ
1 1 0 ) ) ) 0 0
..
. ..

. ..
. ..

. ..
.

1 1 0 ) ) ) 0 0
1 0 1 ) ) ) 0 0
..
. ..

. ..
. ..

. ..
.

1 0 1 ) ) ) 0 0
..
. ..

. ..
. ..

. ..
.

1 0 0 ) ) ) 1 0
..
...
. ..

. ..
.

1 0 0 ) ) ) 1 0
1 0 0 ) ) ) 0 1
..
. ..

. ..
. ..

. ..
.

1 0 0 ) ) ) 0 1

2

66666666666666666666666664

3

77777777777777777777777775

15See Section 8.1.
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The mþ 1 columns of the model matrix span a subspace of dimension m. We can project the
response-variable vector y onto this subspace, locating the fitted-value vector by. Because they
are collinear, the columns of X do not provide a basis for the subspace that they span, and,
consequently, the individual parameter estimates are not uniquely determined. This situation is
illustrated in Figure 10.12 for m = 2. Even in the absence of uniquely determined parameters,
however, we have no trouble calculating the regression sum of squares for the model because
we can find by by picking an arbitrary basis for the column space of X. The dummy-coding and
deviation-coding schemes of Chapter 8 select alternative bases for the column space of the
model matrix: Dummy coding simply deletes the last column to provide a basis for the column
space of X; deviation coding constructs a new basis for the column space of X.

In the overparametrized one-way ANOVA model, Yij =µþ αj þ εij, the mþ 1 columns
of the model matrix X are collinear and span a subspace of dimension m. We can, how-
ever, still find by for the model by projecting y orthogonally onto this subspace, most
simply by selecting an arbitrary basis for the column space of the model matrix.
Conceived in this light, dummy coding and deviation coding are two techniques for con-
structing a basis for the column space of X.

Let us turn next to the overparametrized two-way ANOVA model:16

Yijk = µþ αj þ βk þ γ jk þ εijk for i = 1; . . . ; njk ; j = 1; . . . ; r; k = 1; . . . ; c

We will consider the simplest case, where j = k = 2. It suffices to examine the parametric equa-
tion for the model, relating the four cell means µjk to the nine parameters of the model:

(1,...,1,1,...,1)’

(1,...,1,0,...,0)’

(0,...,0,1,...,1)’

y*

0

y*∧

Figure 10.12 The vector geometry of least-squares fit for the overparametrized one-way ANOVA
model when there are two groups. The mþ1 = 3 columns of the model matrix are
collinear and span a subspace of dimension m = 2.

16See Section 8.2.
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µ11

µ12

µ21

µ22

2

6664

3

7775=

1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

2

6664

3

7775

µ

α1

α2

β1

β2

γ11

γ12

γ21

γ22

2

66666666666666664

3

77777777777777775

„= XBfl

Note that the four columns in XB representing the interactions are linearly independent, and
hence the corresponding columns of X span the full column space of the model matrix. The
subspaces spanned by the main effects, each consisting of two linearly independent columns,
lie in the space spanned by the interaction regressors—the main-effect subspaces are literally
marginal to (i.e., contained in) the interaction subspace. Finally, the constant regressor is mar-
ginal both to the interaction subspace and to each of the main-effect subspaces: The constant
regressor is simply the sum of the interaction regressors or of either set of main-effect regres-
sors. Understood in this light, the deviation-coding method of Chapter 8 selects a convenient
full-rank basis for the model matrix.

In the overparametrized two-way ANOVA model, Yijk =µþ αj þ βk þ γ jk þ εijk , the
interaction regressors provide a basis for the full column space of the model matrix. The
model-matrix columns for the two sets of main effects are therefore marginal to (i.e.,
subspaces of) the interaction space. The column for the constant regressor is marginal to
the main-effect subspaces as well as to the interactions.

Exercises

Exercise 10.1. Here is a very small (contrived) data set with two variables and two
observations:

Construct a scatterplot for the two observations in the fX ; Yg variable space, and then con-
struct a vector diagram showing x and y in the observation space.

Variables

Observations X Y

1 1 2
2 3 5
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Exercise 10.2. Show that the average fitted value, bY , is the same as the average response-vari-
able value, Y . [Hint: Form the sum,

P
Yi =

P
ðbYi þ EiÞ.]

Exercise 10.3. (Show that the constraints e ) x = 0 and e ) 1n = 0 imply that e ) by = 0. (Hint: by
lies in the plane spanned by x and 1n.)

Exercise 10.4. Using Duncan’s occupational prestige data (discussed, e.g., in Chapter 5), con-
struct the geometric vector representation for the regression of prestige on education, showing
the x(, y(, by(, and e vectors drawn to scale. Find the angle between x( and y(.

Exercise 10.5. Prove that x(1 ) y(= x(1 ) by(. (Hint: y(= by( þ e, and e is orthogonal to x(1.)

Exercise 10.6. Show that when X1 and X2 are uncorrelated, the regression sum of squares can
be written as

RegSS = by( ) by(= B2
1x(1 ) x

(
1 þ B2

2x(2 ) x
(
2

(Hint: Use by(= B1x(1 þ B2x(2.)

Exercise 10.7. Exercise 10.4 (continued): Using Duncan’s occupational prestige data, construct
the geometric representation for the regression of prestige Y on income X1 and education X2.
Draw separate graphs for (a) the fx(1; x(2g plane, showing the by( vector, B1, and B2, and (b) the
fy(; by(g plane, showing e. Draw all vectors to scale. (Hint: Calculate the correlation between
X1 and X2 to find the angle between x(1 and x(2.)

Exercise 10.8. Nearly collinear regressors: Construct the geometric vector representation of a
regression with two explanatory variables in mean deviation form, by(= B1x(1 þ B2x(2, distin-
guishing between two cases: (a) X1 and X2 are highly correlated, so that the angle separating
the x(1 and x(2 vectors is small, and (b) X1 and X2 are uncorrelated, so that the x(1 and x(2 vectors
are orthogonal. By examining the regressor plane, show that slight changes in the position of
the by( vector (due, e.g., to sampling fluctuations) can cause dramatic changes in the regression
coefficients B1 and B2 in case (a) but not in case (b). The problem of collinearity is discussed
further in Chapter 13.

Exercise 10.9. Partial correlation (see Exercise 5.8):

(a) Illustrate how the partial correlation rY1j2 can be represented using geometric vectors.
Draw the vectors y(; x(1, and x(2, and define e1 [ fEi1j2g and eY [ fEiY j2g (where i is
the subscript for observations).

(b) (Use the vector diagram in part (a) to show that the incremental F-test for the hypoth-
esis H0: β1 = 0 can be written as

F0 =
ðn& k & 1Þr2

Y 1j2

1& r2
Y1j2

Recalling part (b) of Exercise 5.8, why is this result intuitively plausible?

Exercise 10.10. (Show that the matrix Q = In & XðX0XÞ&1X0 (see Section 10.3) is nondiago-
nal, singular, and of rank n& k & 1. (Hints: Verify that the rows of Q satisfy the k þ 1 con-
straints implied by QX = 0. If Q is singular and diagonal, then some of its diagonal entries
must be 0; show that this is not generally the case.)
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Exercise 10.11. (Prove that when the least-squares residuals are transformed according to the
equation z = Ge, where the n& k & 1 · n transformation matrix G is orthonormal and orthogo-
nal to X, the transformed residuals z have the following properties: z = Gy, EðzÞ= 0; and
V ðzÞ= σ2

εIn&k&1. (See Section 10.3.)

Exercise 10.12. Exercise 9.15 (continued): Let SSð)Þ give sums of squares for the two-way
ANOVA model

Yijk = µþ αj þ βk þ γ jk þ εijk

using deviation-coded regressors (i.e., employing sigma constraints to reduce the model matrix
to full rank), and let SS(ð)Þ give sums of squares for the same model using dummy-coded
regressors. Working with the model for r = 2 rows and c = 3 columns, use the geometric vector
representation of the model to explain why

SS(ðαjβÞ= SSðαjβÞ
SS(ðβjαÞ= SSðβjαÞ

SS(ðγjα;βÞ= SSðγjα;βÞ

but that, in general,

SS(ðαjβ; γÞ 6¼ SSðαjβ; γÞ
SS(ðβjα; γÞ 6¼ SSðβjα; γÞ

[Hints: Show that (i) the subspaces spanned by the deviation and dummy regressors for each
of the two sets of main effects are the same, (ii) the subspaces spanned by the deviation and
dummy regressors for the full set of effects (main effects and interactions) are the same, but
(iii) the subspaces spanned by the deviation and dummy interaction regressors are different.]

Summary

* Variables, such as X and Y in simple regression, can be treated as vectors—x and y—in
the n-dimensional space whose axes are given by the observations. Written in vector
form, the simple-regression model is y =α1n þ βxþ ". The least-squares regression,
y = A1n þ Bxþ e, is found by projecting y orthogonally onto the plane spanned by 1n

and x, thus minimizing the sum of squared residuals jjejj2.
* Writing X and Y in mean deviation form, as the vectors x( and y(, eliminates the con-

stant term and thus permits representation of the fitted regression in two (rather than
three) dimensions: y(= Bx( þ e. The ANOVA for the regression, TSS = RegSSþ RSS,
is represented geometrically as jjy(jj2 = jjby(jj2 þ jjejj2. The correlation between X and
Y is the cosine of the angle separating the vectors x( and y(.

* Degrees of freedom in simple regression correspond to the dimensions of subspaces to
which variable vectors associated with sums of squares are confined:

– The y( vector lies in the ðn& 1Þ-dimensional subspace of mean deviations but is
otherwise unconstrained; TSS = y(k k2, therefore, has n& 1 degrees of freedom.

– The by( vector lies somewhere along the one-dimensional subspace spanned by x(;
RegSS = by(k k2, therefore, has 1 degree of freedom.
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– The e vector lies in the ðn& 1Þ-dimensional subspace of mean deviations and is
constrained to be orthogonal to x(; RSS = ek k2, therefore, has ðn& 1Þ & 1 = n& 2
degrees of freedom.

* The fitted multiple-regression model for two explanatory variables is written in vector
form as y = A1n þ B1x1 þ B2x2 þ e. Putting Y and the X s in mean deviation form elimi-
nates the constant, y(= B1x(1 þ B2x(2 þ e, and permits a representation in three (rather
than four) dimensions. The fitted values, by(= B1x(1 þ B2x(2, are found by projecting y(

orthogonally onto the plane spanned by x(1 and x(2. The ANOVA for the regression,
which is essentially the same as in simple regression, appears in the plane spanned by
y( and by(. The multiple correlation R is the cosine of the angle separating y( and by(,
and, consequently, is the simple correlation between the observed and fitted Y -values.

* When the explanatory variables in multiple regression are orthogonal (uncorrelated), the
regression sum of squares can be partitioned into components due to each explanatory
variable: jjby(jj2 = B2

1jjx(1jj
2 þ B2

2jjx(2jj
2. When the explanatory variables are correlated,

however, no such partition is possible.
* As in simple regression, degrees of freedom in multiple regression follow from the

dimensionality of the subspaces to which the various vectors are confined.

– The y( vector lies in the ðn& 1Þ-dimensional subspace of mean deviations; TSS,
therefore, has n& 1 degrees of freedom.

– The by( vector lies somewhere in the plane spanned by x(1 and x(2; RegSS, therefore,
has 2 degrees of freedom. More generally, k explanatory variables x(1, x(2; . . . ; x(k
span a subspace of dimension k, and by( is the orthogonal projection of y( onto this
subspace; thus, RegSS has k degrees of freedom.

– The e vector is constrained to be orthogonal to the two-dimensional subspace
spanned by x(1 and x(2; RSS, therefore, has ðn& 1Þ & 2 = n& 3 degrees of freedom.
More generally, e is orthogonal to the k-dimensional subspace spanned by x(1,
x(2; . . . ; x(k , and so RSS has ðn& 1Þ & k = n& k & 1 degrees of freedom.

* An unbiased estimator of the error variance σ2
ε can be derived by transforming the n cor-

related residuals e to n& k & 1 independently and identically distributed residuals z,
employing an orthonormal basis G for the ðn& k & 1Þ-dimensional error subspace:
z = Ge. If the errors are independent and normally distributed, with zero means and
common variance σ2

ε , then so are the elements of z. Thus, z0z=ðn& k & 1Þ is an unbiased
estimator of the error variance, and because z and e are the same vector represented
according to alternative bases, z0z=ðn& k & 1Þ= e0e=ðn& k & 1Þ, which is our usual
estimator of error variance, S2

E .
* In the overparametrized one-way ANOVA model, Yij =µþ αj þ εij, the mþ 1 columns

of the model matrix X are collinear and span a subspace of dimension m. We can, how-
ever, still find by for the model by projecting y orthogonally onto this subspace, most
simply by selecting an arbitrary basis for the column space of the model matrix.
Conceived in this light, dummy coding and deviation coding are two techniques for con-
structing a basis for the column space of X.
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* In the overparametrized two-way ANOVA model, Yijk = µþ αj þ βk þ γ jk þ εijk , the
interaction regressors provide a basis for the full column space of the model matrix. The
model-matrix columns for the two sets of main effects are therefore marginal to (i.e.,
subspaces of) the interaction space. The column for the constant regressor is marginal to
the main-effect subspaces as well as to the interactions.

Recommended Reading

* There are several advanced texts that treat linear models from a strongly geometric per-
spective, including Dempster (1969) and Stone (1987). Both these books describe multi-
variate (i.e., multiple response-variable) generalizations of linear models, and both
demand substantial mathematical sophistication. Also see Christensen (2011).

* In a text on matrix algebra, vector geometry, and associated mathematical topics, Green
and Carroll (1976) focus on the geometric properties of linear models and related multi-
variate methods. The pace of the presentation is relatively leisurely, and the strongly
geometric orientation provides insight into both the mathematics and the statistics.

* Wonnacott and Wonnacott (1979) invoke vector geometry to explain a variety of statisti-
cal topics, including some not covered in the present text—such as instrumental-
variables estimation and structural-equation models.
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PART III
Linear-Model Diagnostics



11 Unusual and
Influential Data

A s we have seen, linear statistical models—particularly linear regression analysis—make
strong assumptions about the structure of data, assumptions that often do not hold in

applications. The method of least squares, which is typically used to fit linear models to data,
can be very sensitive to the structure of the data and may be markedly influenced by one or a
few unusual observations.

We could abandon linear models and least-squares estimation in favor of nonparametric
regression and robust estimation.1 A less drastic response is also possible, however: We can
adapt and extend the methods for examining and transforming data described in Chapters 3
and 4 to diagnose problems with a linear model that has been fit to data and—often—to sug-
gest solutions.

I will pursue this strategy in this and the next two chapters:

! The current chapter deals with unusual and influential data.
! Chapter 12 takes up a variety of problems, including nonlinearity, nonconstant error var-

iance, and non-normality.
! Collinearity is the subject of Chapter 13.

Taken together, the diagnostic and corrective methods described in these chapters greatly
extend the practical application of linear models. These methods are often the difference
between a crude, mechanical data analysis and a careful, nuanced analysis that accurately
describes the data and therefore supports meaningful interpretation of them.

Another point worth making at the outset is that many problems can be anticipated and dealt
with through careful examination of the data prior to building a regression model.
Consequently, if you use the methods for examining and transforming data discussed in
Chapters 3 and 4, you will be much less likely to encounter the difficulties detailed in the cur-
rent part of the text on ‘‘postfit’’ linear-model diagnostics.

11.1 Outliers, Leverage, and Influence

In simple regression analysis, an outlier is an observation whose response-variable value is
conditionally unusual given the value of the explanatory variable: See Figure 11.1. In contrast,
a univariate outlier is a value of Y or X that is unconditionally unusual; such a value may or
may not be a regression outlier.

1Methods for nonparametric regression were introduced informally in Chapter 2 and will be described in more detail in
Chapter 18. Robust regression is the subject of Chapter 19.
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Unusual data are problematic in linear models fit by least squares because they can unduly
influence the results of the analysis and because their presence may be a signal that the model
fails to capture important characteristics of the data. Some central distinctions are illustrated in
Figure 11.2 for the simple-regression model Y ¼ αþ βX þ ε.

Regression outliers appear in Figure 11.2(a) and (b). In Figure 11.2(a), the outlying observa-
tion has an X -value that is at the center of the X -distribution; as a consequence, deleting the
outlier has relatively little impact on the least-squares fit, leaving the slope B unchanged and
affecting the intercept A only slightly. In Figure 11.2(b), however, the outlier has an unusually
large X -value, and thus its deletion markedly affects both the slope and the intercept.2 Because
of its unusual X -value, the outlying right-most observation in Figure 11.2(b) exerts strong
leverage on the regression coefficients, while the outlying middle observation in Figure 11.2(a)
is at a low-leverage point. The combination of high leverage with a regression outlier therefore
produces substantial influence on the regression coefficients. In Figure 11.2(c), the right-most
observation has no influence on the regression coefficients even though it is a high-leverage
point, because this observation is in line with the rest of the data—it is not a regression outlier.

The following heuristic formula helps to distinguish among the three concepts of influence,
leverage, and discrepancy (‘‘outlyingness’’):

Influence on coefficients ¼ Leverage · Discrepancy

A simple and transparent example, with real data from Davis (1990), appears in Figure 11.3.
These data record the measured and reported weight of 183 male and female subjects

X

Y

Figure 11.1 The black point is a regression outlier because it combines a relatively large value of
Y with a relatively small value of X, even though neither its X-value nor its Y-value is
unusual individually. Because of the positive relationship between Y and X, points
with small X-values also tend to have small Y-values, and thus the black point is far
from other points with similar X-values.

2When, as here, an observation is far away from and out of line with the rest of data, it is difficult to know what to
make of it: Perhaps the relationship between Y and X in Figure 11.2(b) is nonlinear.
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who engage in programs of regular physical exercise.3 Davis’s data can be treated in two
ways:

! We could regress reported weight (RW ) on measured weight (MW ), a dummy variable
for sex (F, coded 1 for women and 0 for men), and an interaction regressor (formed as
the product MW · F). This specification follows from the reasonable assumption that
measured weight, and possibly sex, can affect reported weight. The results are as follows
(with coefficient standard errors in parentheses):

dRW ¼ 1:36þ 0:990MW þ 40:0F $ 0:725ðMW · FÞ
ð3:28Þ ð0:043Þ ð3:9Þ ð0:056Þ

R2 ¼ 0:89 SE ¼ 4:66

(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 11.2 Leverage and influence in simple regression. In each graph, the solid line gives the
least-squares regression for all the data, while the broken line gives the least-squares
regression with the unusual data point (the black circle) omitted. (a) An outlier near
the mean of X has low leverage and little influence on the regression coefficients. (b)
An outlier far from the mean of X has high leverage and substantial influence on the
regression coefficients. (c) A high-leverage observation in line with the rest of the
data does not influence the regression coefficients. In panel (c), the two regression
lines are separated slightly for visual effect but are, in fact, coincident.

3Davis’s data were introduced in Chapter 2.
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Were these results taken seriously, we would conclude that men are unbiased reporters
of their weights (because A ¼ 1:36 » 0 and B1 ¼ 0:990 » 1), while women tend to over-
report their weights if they are relatively light and underreport if they are relatively
heavy (the intercept for women is 1:36þ 40:0 ¼ 41:4 and the slope is 0:990
$0:725 ¼ 0:265). Figure 11.3(a), however, makes it clear that the differential results for
women and men are due to one female subject whose reported weight is about average
(for women) but whose measured weight is extremely large. Recall that this subject’s
measured weight in kilograms and height in centimeters were erroneously switched.
Correcting the data produces the regression

dRW ¼ 1:36þ 0:990MW þ 1:98F $ 0:0567ðMW · FÞ

ð1:58Þ ð0:021Þ ð2:45Þ ð0:0385Þ
R2¼ 0:97 SE ¼ 2:24

which suggests that both women and men are approximately unbiased reporters of their
weight.

! We could (as in our previous analysis of Davis’s data) treat measured weight as the
response variable, regressing it on reported weight, sex, and their interaction—reflecting
a desire to use reported weight as a predictor of measured weight. For the uncorrected
data,
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Figure 11.3 Regressions for Davis’s data on reported and measured weight for women (F) and

men (M). Panel (a) shows the least-squares linear regression line for each group (the
solid line for men, the broken line for women) for the regression of reported on mea-
sured weight. The outlying observation has a large impact on the fitted line for
women. Panel (b) shows the fitted regression lines for the regression of measured on
reported weight; here, the outlying observation makes little difference to the fit, and
the least-squares lines for men and women are nearly the same.
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dMW ¼ 1:79þ 0:969RW þ 2:07F $ 0:00953ðRW · FÞ

ð5:92Þ ð0:076Þ ð9:30Þ ð0:147Þ
R2 ¼ 0:70 SE ¼ 8:45

The outlier does not have much impact on the coefficients for this regression (both the
dummy-variable coefficient and the interaction coefficient are small) precisely because
the value of RW for the outlying observation is near RW for women [see
Figure 11.3(b)]. There is, however, a marked effect on the multiple correlation and
regression standard error: For the corrected data, R2 ¼ 0:97 and SE ¼ 2:25.

Unusual data are problematic in linear models fit by least squares because they can sub-
stantially influence the results of the analysis and because they may indicate that the
model fails to capture important features of the data. It is useful to distinguish among
high-leverage observations, regression outliers, and influential observations. Influence on
the regression coefficients is the product of leverage and outlyingness.

11.2 Assessing Leverage: Hat-Values

The so-called hat-value hi is a common measure of leverage in regression. These values are so
named because it is possible to express the fitted values bYj (‘‘Y -hat’’) in terms of the observed
values Yi:

bY j ¼ h1jY1 þ h2jY2 þ ' ' ' þ hjjYj þ ' ' ' þ hnjYn ¼
Xn

i¼1

hi jYi

Thus, the weight hij captures the contribution of observation Yi to the fitted value bY j: If hij is
large, then the ith observation can have a considerable impact on the jth fitted value. It can be
shown that hii ¼

Pn
j¼1 h2

ij, and so the hat-value hi [ hii summarizes the potential influence
(the leverage) of Yi on all the fitted values. The hat-values are bounded between 1=n and 1
(i.e., 1=n £ hi £ 1), and the average hat-value is h ¼ ðk þ 1Þ=n (where k is the number of regres-
sors in the model, excluding the constant).4

In simple-regression analysis, the hat-values measure distance from the mean of X :5

hi ¼
1

n
þ ðXi $ X Þ2
Pn

j¼1 ðXj $ X Þ2

In multiple regression, hi measures distance from the centroid (point of means) of the X s, taking
into account the correlational and variational structure of the X s, as illustrated for k ¼ 2
explanatory variables in Figure 11.4. Multivariate outliers in the X -space are thus

4For derivations of this and other properties of leverage, outlier, and influence diagnostics, see Section 11.8.
5See Exercise 11.1. Note that the sum in the denominator is over the subscript j because the subscript i is already in
use.

270 Chapter 11. Unusual and Influential Data



high-leverage observations. The response-variable values are not at all involved in determining
leverage.

For Davis’s regression of reported weight on measured weight, the largest hat-value by far
belongs to the 12th subject, whose measured weight was wrongly recorded as 166 kg:
h12 ¼ 0:714. This quantity is many times the average hat-value, h ¼ ð3þ 1Þ=183 ¼ 0:0219.

Figure 11.5(a) shows an index plot of hat-values from Duncan’s regression of the prestige of
45 occupations on their income and education levels (i.e., a scatterplot of hat-values vs. the
observation indices).6 The horizontal lines in this graph are drawn at twice and three times the
average hat-values, h ¼ ð2þ 1Þ=45 ¼ 0:06667 .7 Figure 11.5(b) shows a scatterplot for the
explanatory variables education and income: Railroad engineers and conductors have high
leverage by virtue of their relatively high income for their moderately low level of education,
while ministers have high leverage because their level of income is relatively low given their
moderately high level of education.

Observations with unusual combinations of explanatory-variable values have high lever-
age in a least-squares regression. The hat-values hi provide a measure of leverage. The
average hat-value is h ¼ ðk þ 1Þ=n.

X2

X1

X2

X1

Figure 11.4 Elliptical contours of constant leverage (constant hat-values hi) for k ¼ 2 explanatory
variables. Two high-leverage points appear, both represented by black circles. One
point has unusually large values for each of X1 and X2, but the other is unusual only
in combining a moderately large value of X2 with a moderately small value of X1.
The centroid (point of means) is marked by the black square. (The contours of con-
stant leverage are proportional to the standard data ellipse, introduced in Chapter 9.)

6Duncan’s regression was introduced in Chapter 5.
7See Section 11.5 on numerical cutoffs for diagnostic statistics.
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11.3 Detecting Outliers: Studentized Residuals

To identify an outlying observation, we need an index of the unusualness of Y given the X s.
Discrepant observations usually have large residuals, but it turns out that even if the errors εi

have equal variances (as assumed in the general linear model), the residuals Ei do not:

V ðEiÞ ¼ σ2
εð1$ hiÞ

High-leverage observations, therefore, tend to have small residuals—an intuitively sensible
result because these observations can pull the regression surface toward them.

Although we can form a standardized residual by calculating

E0i [
Ei

SE
ffiffiffiffiffiffiffiffiffiffiffiffi
1$ hi
p

this measure is slightly inconvenient because its numerator and denominator are not
independent, preventing E0i from following a t-distribution: When jEij is large, the standard error
of the regression, SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
E2

i =ðn$ k $ 1Þ
p

, which contains E2
i , tends to be large as well.

Suppose, however, that we refit the model deleting the ith observation, obtaining an estimate
SEð$iÞ of σε that is based on the remaining n$ 1 observations. Then the studentized residual

E(i [
Ei

SEð$iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1$ hi
p ð11:1Þ

has an independent numerator and denominator and follows a t-distribution with n$ k $ 2
degrees of freedom.
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Figure 11.5 (a) An index plot of hat-values for Duncan’s occupational prestige regression, with
horizontal lines at 2 · h and 3 · h. (b) A scatterplot of education by income, with con-
tours of constant leverage at 2 · h and 3 · h given by the broken lines. (Note that the
ellipses extend beyond the boundaries of the graph.) The centroid is marked by the
black square.
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An alternative, but equivalent, procedure for defining the studentized residuals employs a
‘‘mean-shift’’ outlier model:

Yj ¼ αþ β1Xj1 þ ' ' ' þ βkXjk þ γDj þ εj ð11:2Þ

where D is a dummy regressor set to 1 for observation i and 0 for all other observations:

Dj ¼
1 for j ¼ i
0 otherwise

"

Thus,

EðYiÞ ¼ αþ β1Xi1 þ ' ' ' þ βkXik þ γ

EðYjÞ ¼ αþ β1Xj1 þ ' ' ' þ βkXjk for j 6¼ i

It would be natural to specify the model in Equation 11.2 if, before examining the data, we sus-
pected that observation i differed from the others. Then, to test H0: γ ¼ 0 (i.e., the null hypothesis
that the ith observation is not an outlier), we can calculate t0 ¼ bγ=SEðbγ Þ. This test statistic is dis-
tributed as tn$k$2 under H0 and (it turns out) is the studentized residual E(i of Equation 11.1.

Hoaglin and Welsch (1978) arrive at the studentized residuals by successively omitting each
observation, calculating its residual based on the regression coefficients obtained for the
remaining sample, and dividing the resulting residual by its standard error. Finally, Beckman
and Trussell (1974) demonstrate the following simple relationship between studentized and
standardized residuals:

E(i ¼ E0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n$ k $ 2

n$ k $ 1$ E02i

s

ð11:3Þ

If n is large, then the factor under the square root in Equation 11.3 is close to 1, and the distinc-
tion between standardized and studentized residuals essentially disappears.8 Moreover, for
large n, the hat-values are generally small, and so it is usually the case that

E(i » E0i » Ei

SE

Equation 11.3 also implies that E(i is a monotone function of E0i , and thus the rank order of the
studentized and standardized residuals is the same.

11.3.1 Testing for Outliers in Linear Models

Because in most applications we do not suspect a particular observation in advance, but
rather want to look for any outliers that may occur in the data, we can, in effect, refit the mean-
shift model n times,9 once for each observation, producing studentized residuals E(1,

8Here, as elsewhere in statistics, terminology is not wholly standard: E(i is sometimes called a deleted studentized resi-
dual, an externally studentized residual, or even a standardized residual; likewise, E0i is sometimes called an internally
studentized residual, or simply a studentized residual. It is therefore helpful, especially in small samples, to determine
exactly what is being calculated by a computer program.
9It is not necessary literally to perform n auxiliary regressions. Equation 11.3, for example, permits the computation of
studentized residuals with little effort.
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E(2; . . . ;E(n . Usually, our interest then focuses on the largest absolute E(i , denoted E(max.
Because we have in effect picked the biggest of n test statistics, however, it is not legitimate
simply to use tn$k$2 to find a p-value for E(max: For example, even if our model is wholly ade-
quate, and disregarding for the moment the dependence among the E(i s, we would expect to
obtain about 5% of E(i s beyond t:025 » – 2, about 1% beyond t:005 » – 2:6, and so forth.

One solution to this problem of simultaneous inference is to perform a Bonferroni adjust-
ment to the p-value for the largest absolute E(i .10 The Bonferroni test requires either a special
t-table or, even more conveniently, a computer program that returns accurate p-values for val-
ues of t far into the tail of the t-distribution. In the latter event, suppose that
p0 ¼ Prðtn$k$2 > E(maxÞ. Then the Bonferroni p-value for testing the statistical significance of
E(max is p ¼ 2np0. The factor 2 reflects the two-tail character of the test: We want to detect large
negative as well as large positive outliers.

Beckman and Cook (1983) show that the Bonferroni adjustment is usually exact in testing
the largest studentized residual. A much larger E(max is required for a statistically significant
result than would be the case for an ordinary individual t-test.

In Davis’s regression of reported weight on measured weight, the largest studentized residual
by far belongs to the incorrectly recorded 12th observation, with E(12 ¼ $24:3. Here,
n$ k $ 2 ¼ 183$ 3$ 2 ¼ 178, and Prðt178 > 24:3Þ» 10$58. The Bonferroni p-value for the
outlier test is thus p » 2 · 183 · 10$58 » 4 · 10$56, an unambiguous result.

Put alternatively, the 5% critical value for E(max in this regression is the value of t17 8 with
probability :025=183 ¼ 0:0001366 to the right. That is, E(max ¼ t178; :0001366 ¼ 3:714; this criti-
cal value contrasts with t178; :025 ¼ 1:973, which would be appropriate for testing an individual
studentized residual identified in advance of inspecting the data.

For Duncan’s occupational prestige regression, the largest studentized residual belongs to
ministers, with E(minister ¼ 3:135: The associated Bonferroni p-value is 2 · 45 ·
Prðt45$2$2 > 3:135Þ ¼ :143, showing that it is not terribly unusual to observe a studentized
residual this big in a sample of 45 observations.

11.3.2 Anscombe’s Insurance Analogy

Thus far, I have treated the identification (and, implicitly, the potential correction, removal,
or accommodation) of outliers as a hypothesis-testing problem. Although this is by far the most
common procedure in practice, a more reasonable (if subtle) general approach is to assess the
potential costs and benefits for estimation of discarding an unusual observation.

Imagine, for the moment, that the observation with the largest E(i is simply an unusual data
point but one generated by the assumed statistical model:

Yi ¼ αþ β1Xi1 þ ' ' ' þ βkXik þ εi

with independent errors εi that are each distributed as Nð0; σ2
εÞ. To discard an observation

under these circumstances would decrease the efficiency of estimation, because when the

10See online Appendix D on probability and estimation for a discussion of Bonferroni inequalities and their role in
simultaneous inference. A graphical alternative to testing for outliers is to construct a quantile-comparison plot for the
studentized residuals, comparing the sample distribution of these quantities with the t-distribution for n$ k $ 2 degrees
of freedom. See the discussion of non-normality in the next chapter.
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model—including the assumption of normality—is correct, the least-squares estimators are
maximally efficient among all unbiased estimators of the regression coefficients.11

If, however, the observation in question does not belong with the rest (e.g., because the
mean-shift model applies), then to eliminate it may make estimation more efficient. Anscombe
(1960) developed this insight by drawing an analogy to insurance: To obtain protection against
‘‘bad’’ data, one purchases a policy of outlier rejection, a policy paid for by a small premium in
efficiency when the policy inadvertently rejects ‘‘good’’ data.12

Let q denote the desired premium, say 0:05—that is, a 5% increase in estimator mean-
squared error if the model holds for all of the data. Let z represent the unit-normal deviate cor-
responding to a tail probability of qðn$ k $ 1Þ=n. Following the procedure derived by
Anscombe and Tukey (1963), compute m ¼ 1:4þ 0:85z and then find

E0q ¼ m 1$ m2 $ 2

4ðn$ k $ 1Þ

# $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n$ k $ 1

n

r
ð11:4Þ

The largest absolute standardized residual can be compared with E0q to determine whether the
corresponding observation should be rejected as an outlier. This cutoff can be translated to the
studentized-residual scale using Equation 11.3:

E(q ¼ E0q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n$ k $ 2

n$ k $ 1$ E02q

s
ð11:5Þ

In a real application, of course, we should inquire about discrepant observations rather than
simply throwing them away.13

For example, for Davis’s regression of reported on measured weight, n ¼ 183 and k ¼ 3; so,
for the premium q ¼ 0:05, we have

qðn$ k $ 1Þ
n

¼ 0:05ð183$ 3$ 1Þ
183

¼ 0:0489

From the quantile function of the standard-normal distribution, z ¼ 1:66, from which
m ¼ 1:4þ 0:85 · 1:66 ¼ 2:81. Then, using Equation 11.4, E0q ¼ 2:76, and using Equation
11.5, E(q ¼ 2:81. Because E(max ¼ jE(12j ¼ 24:3 is much larger than E(q , the 12th observation is
identified as an outlier.

In Duncan’s occupational prestige regression, n ¼ 45 and k ¼ 2. Thus, with premium
q ¼ 0:05,

qðn$ k $ 1Þ
n

¼ 0:05ð45$ 2$ 1Þ
45

¼ 0:0467

The corresponding unit-normal deviate is z ¼ 1:68, yielding m ¼ 1:4þ 0:85 · 1:68 ¼ 2:83,
E0q ¼ 2:63, and E(q ¼ 2:85 < E(minister

%% %% ¼ 3:135, suggesting that ministers be rejected as an out-
lier, even though the Bonferroni test did not declare this observation to be a ‘‘statistically sig-
nificant’’ outlier.

11See Chapter 9.
12An alternative is to employ a robust estimator, which is somewhat less efficient than least squares when the model is
correct but much more efficient when outliers are present. See Chapter 19.
13See the discussion in Section 11.7.
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A regression outlier is an observation with an unusual response-variable value given its
combination of explanatory-variable values. The studentized residuals E(i can be used to
identify outliers, through graphical examination, a Bonferroni test for the largest absolute
E(i , or Anscombe’s insurance analogy. If the model is correct (and there are no true outliers),
then each studentized residual follows a t-distribution with n$ k $ 2 degrees of freedom.

11.4 Measuring Influence

As noted previously, influence on the regression coefficients combines leverage and discre-
pancy. The most direct measure of influence simply expresses the impact on each coefficient
of deleting each observation in turn:

Dij ¼ Bj $ Bjð$iÞ for i ¼ 1; . . . ; n and j ¼ 0; 1; . . . ; k

where the Bj are the least-squares coefficients calculated for all the data, and the Bjð$iÞ are the
least-squares coefficients calculated with the ith observation omitted. (So as not to complicate
the notation here, I denote the least-squares intercept A as B0.) To assist in interpretation, it is
useful to scale the Dij by (deleted) coefficient standard errors:

D(ij ¼
Dij

SEð$iÞðBjÞ

Following Belsley, Kuh, and Welsch (1980), the Dij are often termed DFBETAij, and the D(ij
are called DFBETASij.

One problem associated with using the Dij or the D(ij is their large number—nðk þ 1Þ of
each. Of course, these values can be more quickly and effectively examined graphically than in
numerical tables. We can, for example, construct an index plot of the D(ijs for each coefficient,
j ¼ 0, 1; . . . ; k (see below for an example). A more informative, if more complex, alternative is
to construct a scatterplot matrix of the D(ij with index plots (or some other univariate display)
on the diagonal.14 Nevertheless, it is useful to have a single summary index of the influence of
each observation on the least-squares fit.

Cook (1977) has proposed measuring the ‘‘distance’’ between the Bj and the corresponding
Bjð$iÞ by calculating the F-statistic for the ‘‘hypothesis’’ that βj ¼ Bjð$iÞ; for j ¼ 0, 1; . . . ; k.
This statistic is recalculated for each observation i ¼ 1; . . . ; n. The resulting values should not
literally be interpreted as F-tests—Cook’s approach merely exploits an analogy to testing to
produce a measure of distance that is independent of the scales of the X -variables. Cook’s dis-
tance can be written (and simply calculated) as

Di ¼
E
02
i

k þ 1
·

hi

1$ hi

In effect, the first term in the formula for Cook’s D is a measure of discrepancy, and the second
is a measure of leverage. We look for values of Di that stand out from the rest.

14This interesting display was suggested to me by Michael Friendly of York University.
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Observations that combine high leverage with a large studentized residual exert substan-
tial influence on the regression coefficients. Cook’s D statistic provides a summary index
of influence on the coefficients.

Belsley et al. (1980) have suggested the very similar measure15

DFFITSi ¼ E(i

ffiffiffiffiffiffiffiffiffiffiffiffi
hi

1$ hi

s

Except for unusual data configurations, Cook’s Di » DFFITS2
i =ðk þ 1Þ.

Because all the deletion statistics depend on the hat-values and residuals, a graphical alterna-
tive to either of these general influence measures is to plot the E(i against the hi and to look for
observations for which both are big. A slightly more sophisticated (and more informative) ver-
sion of this plot displays circles of area proportional to Cook’s D instead of points (see
Figure 11.6). We can follow up by examining the Dij or D(ij for the observations with the larg-
est few Di, jDFFITSij, or a combination of large hi and jE(i j.

For Davis’s regression of reported weight on measured weight, all the indices of influence
point to the obviously discrepant 12th observation:

Cook’s D12 ¼ 85:9 ðnext largest; D115 ¼ 0:085Þ
DFFITS12 ¼ $38:4 ðnext largest;DFFITS115 ¼ 0:603Þ

DFBETAS0;12 ¼ DFBETAS1;12 ¼ 0

DFBETAS2;12 ¼ 20:0;DFBETAS3;12 ¼ $24:8

Note that the outlying Observation 12, which is for a female subject, has no impact on the male
intercept B0 (i.e., A) and slope B1 but does exert considerable influence on the dummy-variable
coefficient B2 and the interaction coefficient B3.

Turning our attention to Duncan’s occupational prestige regression, Figure 11.6 shows a
‘‘bubble plot’’ of studentized residuals by hat-values, with the areas of the circles proportional
to the Cook’s distances of the observations. Several noteworthy observations are identified on
the plot: ministers and conductors, who combine relatively high leverage with relatively large
studentized residuals; railroad engineers, who have very high leverage but a small studentized
residual; and reporters, who have a relatively large (negative) residual but lower leverage.
Index plots of D(ij for the income and education coefficients in the regression appear in
Figure 11.7: Ministers and conductors serve to decrease the income coefficient and increase
the education coefficient—in the case of ministers by more than one standard error.

11.4.1 Influence on Standard Errors

In developing the concept of influence in regression, I have focused on changes in regression
coefficients. Other regression outputs are also subject to influence, however. One important

15Other global measures of influence are available; see Chatterjee and Hadi (1988, chap. 4) for a comparative
treatment.
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Figure 11.6 ‘‘Bubble plot’’ of Cook’s Ds, studentized residuals, and hat-values, for Duncan’s
regression of occupational prestige on income and education. Each point is plotted
as a circle with area proportional to D. Horizontal reference lines are drawn at stu-
dentized residuals of 0 and – 2; vertical reference lines are drawn at hat-values of 2h
and 3h (see Section 11.5 on numerical cutoffs for diagnostic statistics). Several obser-
vations are identified on the plot: Ministers and conductors have large hat-values
and relatively large residuals; reporters have a relatively large negative residual but a
small hat-value; railroad engineers have a large hat-value but a small residual.
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Figure 11.7 Index plots of D(ij for the (a) income and (b) education coefficients in Duncan’s occu-
pational prestige regression. The horizontal lines in the graphs are drawn at D( ¼ 0
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(see Section 11.5). The observations ministers
and conductors stand out. Railroad engineers are beyond the cutoffs for both coeffi-
cients but do not stand out from the other observations to the same degree.
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regression output is the set of coefficient sampling variances and covariances, which capture
the precision of estimation in regression.

Reexamine, for example, Figure 11.2(c) on page 268, in which a high-leverage observation
exerts no influence on the regression coefficients because it is in line with the rest of the data.
Recall, as well, that the standard error of the least-squares slope in simple regression is16

SEðBÞ ¼ SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðXi $ X Þ2

q

By increasing the variance of X , therefore, a high-leverage but in-line observation serves to
decrease SEðBÞ even though it does not influence the regression coefficients A and B.
Depending on the context, such an observation may be considered beneficial—because it
increases the precision of estimation—or it may cause us to exaggerate our confidence in the
estimate B.

In multiple regression, we can examine the impact of deleting each observation in turn on
the size of the joint confidence region for the regression coefficients.17 The size of the joint
confidence region is analogous to the length of a confidence interval for an individual regres-
sion coefficient, which, in turn, is proportional to the standard error of the coefficient. The
squared length of a confidence interval is, therefore, proportional to the sampling variance of
the coefficient, and, analogously, the squared size of a joint confidence region is proportional
to the ‘‘generalized variance’’ of a set of coefficients.

An influence measure proposed by Belsley et al. (1980) closely approximates the squared
ratio of volumes of the deleted and full-data confidence regions for the regression
coefficients:18

COVRATIO i ¼
1

ð1$ hiÞ
n$k$2þE(2i

n$k$1

& 'kþ1

Observations that increase the precision of estimation have values of COVRATIO that are
larger than 1; those that decrease the precision of estimation have values smaller than 1. Look
for values of COVRATIO, therefore, that differ considerably from 1.

As was true of measures of influence on the regression coefficients, both the hat-value and
the (studentized) residual figure in COVRATIO. A large hat-value produces a large
COVRATIO, however, even when—indeed, especially when—the studentized residual is small
because a high-leverage in-line observation improves the precision of estimation. In contrast, a
discrepant, low-leverage observation might not change the coefficients much, but it decreases
the precision of estimation by increasing the estimated error variance; such an observation,
with small hi and large E(i , produces a COVRATIOi well below 1.

For Davis’s regression of reported weight on measured weight, sex, and their interaction, by
far the most extreme value is COVRATIO12 ¼ 0:0103. The 12th observation, therefore,
decreases the precision of estimation by a factor of 1=0:0103 » 100. In this instance, a very
large leverage, h12 ¼ 0:714, is more than offset by a massive residual, E(12 ¼ $24:3.

16See Chapter 6.
17See Section 9.4.4 for a discussion of joint confidence regions.
18Alternative, similar measures have been suggested by several authors. Chatterjee and Hadi (1988, Chapter 4) provide
a comparative discussion.
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In Duncan’s occupational prestige regression, the smallest and largest values are
COVRATIOminister ¼ 0:682 and COVRATIOrailroad engineer ¼ 1:402. Thus, the discrepant, rela-
tively high-leverage observation minister decreases the precision of estimation, while the in-
line, high-leverage observation railroad engineer increases it.

11.4.2 Influence on Collinearity

Other characteristics of a regression analysis can also be influenced by individual observa-
tions, including the degree of collinearity among the explanatory variables.19 I will not address
this issue in any detail, but the following points may prove helpful:20

! Influence on collinearity is one of the factors reflected in influence on coefficient stan-
dard errors. Measures such as COVRATIO, however, also reflect influence on the error
variance and on the variation of the X s. Moreover, COVRATIO and similar measures
examine the sampling variances and covariances of all the regression coefficients,
including the regression constant, while a consideration of collinearity generally
excludes the constant. Nevertheless, our concern for collinearity reflects its impact on
the precision of estimation, which is precisely what is addressed by COVRATIO.

! Collinearity-influential points are those that either induce or weaken correlations among
the X s. Such points usually—but not always—have large hat-values. Conversely, points
with large hat-values often influence collinearity.

! Individual points that induce collinearity are obviously problematic. More subtly, points
that weaken collinearity also merit examination because they may cause us to be overly
confident in our results—analogous to the increased (or apparently increased) precision
of estimation induced by an usually large X -value for an in-line observation in simple
regression.

! It is frequently possible to detect collinearity-influential points by plotting explanatory
variables against each other, as in a scatterplot matrix or a three-dimensional rotating
plot. This approach may fail, however, if the collinear relations in question involve more
than two or three explanatory variables at a time.

11.5 Numerical Cutoffs for Diagnostic Statistics

I have deliberately refrained from suggesting specific numerical criteria for identifying note-
worthy observations on the basis of measures of leverage and influence: I believe that it is gen-
erally more effective to examine the distributions of these quantities directly to locate unusual
values. For studentized residuals, the hypothesis-testing and insurance approaches provide
numerical cutoffs, but even these criteria are no substitute for graphical examination of the
residuals.

Still, numerical cutoffs can be of some use, as long as they are not given too much weight
and especially when they are employed to enhance graphical displays: A line can be drawn on

19See Chapter 13 for a general treatment of collinearity.
20See Chatterjee and Hadi (1988, Chapters 4 and 5) for more information about influence on collinearity.
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a graph at the value of a numerical cutoff, and observations that exceed the cutoff can be iden-
tified individually.21

Cutoffs for a diagnostic statistic may be derived from statistical theory, or they may result
from examination of the sample distribution of the statistic. Cutoffs may be absolute, or they
may be adjusted for sample size.22 For some diagnostic statistics, such as measures of influ-
ence, absolute cutoffs are unlikely to identify noteworthy observations in large samples. This
characteristic reflects the ability of large samples to absorb discrepant data without markedly
changing the results, but it is still often of interest to identify relatively influential points, even
if no observation has strong absolute influence, because unusual data may prove to be substan-
tively interesting. An outlier, for example, may teach us something unexpected about the pro-
cess under investigation.23

The cutoffs presented below are, as explained briefly here, derived from statistical theory.
An alternative and universally applicable data-based criterion is simply to examine the most
extreme (e.g., 5% of) values of a diagnostic statistic.

11.5.1 Hat-Values

Belsley et al. (1980) suggest that hat-values exceeding about twice the average
h ¼ ðk þ 1Þ=n are noteworthy. This size-adjusted cutoff was derived as an approximation iden-
tifying the most extreme 5% of cases when the X s are multivariate normal, and the number of
regressors k and degrees of freedom for error n$ k $ 1 are relatively large. The cutoff is nev-
ertheless recommended by these authors as a rough general guide even when the regressors are
not normally distributed. In small samples, using 2 · h tends to nominate too many points for
examination, and 3 · h can be used instead.24

11.5.2 Studentized Residuals

Beyond the issues of ‘‘statistical significance’’ and estimator robustness and efficiency dis-
cussed above, it sometimes helps to call attention to residuals that are relatively large. Recall
that, under ideal conditions, about 5% of studentized residuals are outside the range jE(i j £ 2. It
is, therefore, reasonable, for example, to draw lines at – 2 on a display of studentized residuals
to draw attention to observations outside this range.

11.5.3 Measures of Influence

Many cutoffs have been suggested for various measures of influence. A few are presented
here:

21See, for example, Figures 11.5 (page 272) and 11.6 (page 278).
22See Belsley et al. (1980, Chapter 2) for further discussion of these distinctions.
23See the discussion in Section 11.7.
24See Chatterjee and Hadi (1988, Chapter 4) for a discussion of alternative cutoffs for hat-values.
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! Standardized change in regression coefficients. The D(ij are scaled by standard errors,
and, consequently, jD(ijj > 1 or 2 suggests itself as an absolute cutoff. As explained
above, however, this criterion is unlikely to nominate observations in large samples.
Belsley et al. (1980) propose the size-adjusted cutoff 2=

ffiffiffi
n
p

for identifying noteworthy
D(ijs.

! Cook’s D and DFFITS. Several numerical cutoffs have been recommended for Cook’s
D and for DFFITS—exploiting the analogy between D and an F-statistic, for example.
Chatterjee and Hadi (1988) suggest the size-adjusted cutoff25

jDFFITS ij > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ 1

n$ k $ 1

r

Because of the approximate relationship between DFFITS and Cook’s D, it is simple to
translate this criterion into

Di >
4

n$ k $ 1

Absolute cutoffs for D, such as Di > 1, risk missing relatively influential data.
! COVRATIO. Belsley et al. (1980) suggest the size-adjusted cutoff

jCOVRATIOi $ 1j > 3ðk þ 1Þ
n

11.6 Joint Influence

As illustrated in Figure 11.8, subsets of observations can be jointly influential or can offset
each other’s influence. Influential subsets or multiple outliers can often be identified by apply-
ing single-observation diagnostics, such as Cook’s D and studentized residuals, sequentially. It
can be important, however, to refit the model after deleting each point because the presence of
a single influential value can dramatically affect the fit at other points. Still, the sequential
approach is not always successful.

11.6.1 Added-Variable Plots

Although it is possible to generalize deletion statistics to subsets of several points, the very
large number of subsets usually renders this approach impractical.26 An attractive alternative is
to employ graphical methods, and an especially useful influence graph is the added-variable
(or AV) plot (also called a partial-regression plot or a partial-regression leverage plot).

25Also see Cook (1977), Belsley et al. (1980), and Velleman and Welsch (1981).
26(Cook and Weisberg (1980), for example, extend the D statistic to a subset of p observations indexed by the vector
subscript i ¼ ði1; i2; . . . ; ipÞ0:

Di ¼
d0iðX0XÞdi

ðk þ 1ÞS2
E

where di¼ b$ bð$iÞ gives the impact on the regression coefficients of deleting the subset i. See Belsley et al. (1980,
Chapter 2) and Chatterjee and Hadi (1988) for further discussions of deletion diagnostics based on subsets of observations.
There are, however, n!=½p!ðn$ pÞ!* subsets of size p—typically a prohibitively large number, even for modest values of p.
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Let Y ð1Þi represent the residuals from the least-squares regression of Y on all the X s with the
exception of X1—that is, the residuals from the fitted regression equation.

Yi ¼ Að1Þ þ Bð1Þ2 Xi2 þ ' ' ' þ Bð1Þk Xik þ Y ð1Þi

The parenthetical superscript ð1Þ indicates the omission of X1 from the right-hand side of the
regression equation. Likewise, X ð1Þi is the residual from the least-squares regression of X1 on
all the other X s:

Xi1 ¼ Cð1Þ þ Dð1Þ2 Xi2 þ ' ' ' þ Dð1Þk Xik þ X ð1Þi

This notation emphasizes the interpretation of the residuals Y ð1Þ and X ð1Þ as the parts of Y and
X1 that remain when the contributions of X2; . . . ;Xk are ‘‘removed.’’

The residuals Y ð1Þ and X ð1Þ have the following interesting properties:

(a)

X

Y

(b)

X

Y

(c)

X

Y

Figure 11.8 Jointly influential data in simple regression. In each graph, the heavier solid line
gives the least-squares regression for all of the data, the broken line gives the regres-
sion with the black circle deleted, and the lighter solid line gives the regression with
both the black circle and the gray circle deleted. (a) Jointly influential observations
located close to one another: Deletion of both observations has a much greater
impact than deletion of only one. (b) Jointly influential observations located on
opposite sides of the data. (c) Observations that offset one another: The regression
with both observations deleted is the same as for the whole data set (the two lines
are separated slightly for visual effect).
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1. The slope from the least-squares regression of Y ð1Þ on X ð1Þ is simply the least-squares
slope B1 from the full multiple regression.

2. The residuals from the simple regression of Y ð1Þ on X ð1Þ are the same as those from the
full regression; that is,

Y ð1Þi ¼ B1X ð1Þi þ Ei ð11:6Þ

No constant is required here because both Y ð1Þ and X ð1Þ are least-squares residuals and
therefore have means of 0, forcing the regression through the origin.

3. The variation of X ð1Þ is the conditional variation of X1 holding the other X s constant
and, as a consequence, the standard error of B1 in the auxiliary simple regression
(Equation 11.6),

SEðB1Þ ¼
SEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X ð1Þ
2

i

q

is the same as the multiple-regression standard error of B1.27 Unless X1 is uncorrelated
with the other X s, its conditional variation is smaller than its marginal variationP
ðXi1 $ X 1Þ2—much smaller, if X1 is strongly collinear with the other X s (see

Figure 11.9).
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Figure 11.9 The marginal scatterplot (open circles) for Y and X1 superimposed on the added-vari-
able plot (filled circles) for X1 in the regression of Y on X1 and X2. The variables Y and
X1 are centered at their means to facilitate the comparison of the two sets of points.
The arrows show how the points in the marginal scatterplot map into those in the AV
plot. In this contrived data set, X1 and X2 are highly correlated (r12 ¼ :98), and so the
conditional variation in X1 (represented by the horizontal spread of the filled points) is
much less than its marginal variation (represented by the horizontal spread of the open
points). The broken line gives the slope of the marginal regression of Y on X1 alone,
while the solid line gives the slope B1 of X1 in the multiple regression of Y on both Xs.

27There is slight slippage here with respect to the degrees of freedom for error: SE is from the multiple regression, with
n$ k $ 1 degrees of freedom for error. We need not subtract the mean of X ð1Þi to calculate the standard error of the
slope because the mean of these residuals is already 0.
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Plotting Y ð1Þ against X ð1Þ permits us to examine the leverage and influence of the observa-
tions on B1. Because of properties 1 to 3, this plot also provides a visual impression of the pre-
cision of the estimate B1. Similar added-variable plots can be constructed for the other
regressors:28

Plot Y ðjÞ versus X ðjÞ for each j ¼ 1; . . . ; k

Subsets of observations can be jointly influential. Added-variable plots are useful for
detecting joint influence on the regression coefficients. The added-variable plot for the
regressor Xj is formed using the residuals from the least-squares regressions of Xj and Y
on all the other X s.

Illustrative added-variable plots are shown in Figure 11.10, using data from Duncan’s regres-
sion of occupational prestige on the income and educational levels of 45 U.S. occupations.
Recall (from Chapter 5) that Duncan’s regression yields the following least-squares fit:

dPrestige ¼ $6:06þ 0:599 · Incomeþ 0:546 · Education

ð4:27Þ ð0:120Þ ð0:098Þ
R2 ¼ 0:83 SE ¼ 13:4

−40 −20 0 20 40

−30

−20

−10

0

10

20

30

40

(a)

Income | Education

P
re

st
ig

e 
| E

du
ca

tio
n

minister

conductor

RR engineer

−60 −40 −20 0 20 40

−40

−20

0

20

40

60

(b)

Education | Income

P
re

st
ig

e 
| I

nc
om

e

minister

conductor

RR engineer

Figure 11.10 Added-variable plots for Duncan’s regression of occupational prestige on the (a)
income and (b) education levels of 45 U.S. occupations in 1950. Three unusual
observations, ministers, conductors, and railroad engineers, are identified on the
plots. The added-variable plot for the intercept A is not shown.

28We can also construct an added-variable plot for the intercept A, by regressing the ‘‘constant regressor’’ X0 ¼ 1 and
Y on X1 through Xk , with no constant in these regression equations.
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The added-variable plot for income in Figure 11.10(a) reveals three observations that exert sub-
stantial leverage on the income coefficient. Two of these observations serve to decrease the
income slope: ministers, whose income is unusually low given the educational level of the
occupation, and railroad conductors, whose income is unusually high given education. The
third occupation, railroad engineers, is above the fitted regression but is not as discrepant; it,
too, has relatively high income given education. Remember that the horizontal variable in this
added-variable plot is the residual from the regression of income on education, and thus values
far from 0 in this direction are for occupations with incomes that are unusually high or low
given their levels of education.

The added-variable plot for education in Figure 11.10(b) shows that the same three observa-
tions have relatively high leverage on the education coefficient: Ministers and railroad conduc-
tors tend to increase the education slope, while railroad engineers appear to be closer in line
with the rest of the data. Recall that our attention was also called to these occupations when we
examined the individual-observation diagnostic statistics: hat-values, studentized residuals,
Cook’s distances, and so on.

Deleting ministers and conductors produces the fitted regression

dPrestige ¼ $6:41þ 0:867 · Incomeþ 0:332 · Education

ð3:65Þ ð0:122Þ ð0:099Þ
R2 ¼ 0:88 SE ¼ 11:4

which, as expected from the added-variable plots, has a larger income slope and smaller educa-
tion slope than the original regression. The coefficient standard errors are likely optimistic,
however, because relative outliers have been trimmed away. Deleting railroad engineers, along
with ministers and conductors, further increases the income slope and decreases the education
slope, but the change is not dramatic: BIncome ¼ 0:931; BEducation ¼ 0:285.

Added-variable plots can be straightforwardly extended to pairs of regressors in a model
with more than two X s. We can, for example, regress each of X1, X2, and Y on the remaining
regressors, X3; . . . ;Xk , obtaining residuals X ð12Þ

i1 , X ð12Þ
i2 ; and Y ð12Þ

i . We then plot Y ð12Þ against
X ð12Þ

1 and X ð12Þ
2 to produce a dynamic three-dimensional scatterplot on which the partial-regres-

sion plane can be displayed.29

11.6.2 Forward Search

Atkinson and Riani (2000) suggest a fundamentally different approach, termed a forward
search, for locating multiple unusual observations: They begin by fitting a regression model to
a small subset of the data that is almost surely free of outliers and then proceed to add observa-
tions one at a time to this subset, refitting the model at each step and monitoring regression
outputs such as coefficients, t-statistics, residuals, hat-values, and Cook’s distances.

To implement the forward search, Atkinson and Riani (2000) begin with a robust-regression
fit to the data, employing a method that is highly resistant to outliers.30 Residuals from this

29See Cook and Weisberg (1989) for a discussion of three-dimensional added-variable plots. An alternative, two-
dimensional extension of added-variable plots to subsets of coefficients is described in Section 11.8.4.
30The method that they employ, least median of squares (or LMS) regression, is similar in its properties to least-
trimmed-squares (LTS) regression, which is described in Chapter 19 on robust regression.
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resistant fit are computed, and (in a model with k þ 1 regression coefficients) the k þ 1 obser-
vations with the smallest residuals are selected. The least-squares regression coefficients are
then computed for the initial subset of observations, and residuals from this least-squares fit are
computed for all n observations. Because there are equal numbers of observations and para-
meters at the first step, the residuals for the k þ 1 observations employed to obtain the initial
fit are necessarily 0.31 The additional observation with the next smallest residual is added to
the subset, the least-squares regression coefficients are recomputed for the resulting k þ 2
observations, and new residuals are found from the updated fit. Suppose, at any step, that there
are m observations in the subset used to compute the current fit: The mþ 1 observations used
in the subsequent step are those with the smallest residuals from the current fit; usually, but not
necessarily, these will include the m observations used to determine the current least-
squares fit.

Figure 11.11 applies the forward search to Duncan’s occupational prestige regression, moni-
toring the trajectory of the two slope coefficients as observations are added to an initial subset
of k þ 1 ¼ 3 occupations. It is clear from this graph that although the income and education
coefficients are nearly identical to one another in the least-squares fit to all 45 observations (at
the far right),32 this result depends on the presence of just two observations, which enter in the
last two steps of the forward search. It should come as no surprise that these observations are
conductors and ministers. In this instance, therefore, the jointly influential observations were
also revealed by more conventional, and less computationally intensive, methods.
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Figure 11.11 Forward-search trajectories of the coefficients for income and education in
Duncan’s occupational prestige regression. The points added at the last two steps
are for conductors and ministers.

31Care must be taken that the initial subset of k þ 1 observations is not perfectly collinear.
32Because both income and education are percentages (of, recall, relatively high-income earners and high school gradu-
ates), it makes at least superficial sense to compare their coefficients in this manner.
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Atkinson and Riani’s forward search adds observations successively to an initial small
subset that is almost surely uncontaminated by unusual data. By monitoring outputs such
as regression coefficients, this strategy can reveal unusual groups of observations that
are missed by more conventional methods.

11.7 Should Unusual Data Be Discarded?

The discussion thus far in this chapter has implicitly assumed that outlying and influential data
are simply discarded. In practice, although problematic data should not be ignored, they also
should not be deleted automatically and without reflection:

! It is important to investigate why an observation is unusual. Truly ‘‘bad’’ data (e.g., an
error in data entry as in Davis’s data on measured and reported weight) can often be cor-
rected or, if correction is not possible, thrown away. When a discrepant data point is cor-
rect, we may be able to understand why the observation is unusual. For Duncan’s
regression, for example, it makes sense that ministers enjoy prestige not accounted for
by the income and educational levels of the occupation and for a reason not shared by
other occupations. In a case like this, where an outlying observation has characteristics
that render it unique, we may choose to set it aside from the rest of the data.

! Alternatively, outliers, high-leverage points, or influential data may motivate model
respecification, and the pattern of unusual data may suggest the introduction of additional
explanatory variables. We noticed, for example, that both conductors and railroad engi-
neers had high leverage in Duncan’s regression because these occupations combined rela-
tively high income with relatively low education. Perhaps this combination of
characteristics is due to a high level of unionization of these occupations in 1950, when
the data were collected. If so, and if we can ascertain the levels of unionization of all of
the occupations, we could enter this as an explanatory variable, perhaps shedding further
light on the process determining occupational prestige.33 Furthermore, in some instances,
transformation of the response variable or of an explanatory variable may draw apparent
outliers toward the rest of the data, by rendering the error distribution more symmetric or
by eliminating nonlinearity. We must, however, be careful to avoid ‘‘overfitting’’ the
data—permitting a small portion of the data to determine the form of the model.34

! Except in clear-cut cases, we are justifiably reluctant to delete observations or to respe-
cify the model to accommodate unusual data. Some researchers reasonably adopt
alternative estimation strategies, such as robust regression, which continuously down-
weights outlying data rather than simply discarding them. Because these methods assign
zero or very small weight to highly discrepant data, however, the result is generally not

33This example is entirely speculative, but I mean simply to illustrate how unusual data can suggest respecification of a
regression model.
34See the discussion of nonlinearity in Chapter 12.
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very different from careful application of least squares, and, indeed, robust-regression
weights can be used to identify outliers.35

! Finally, in large samples, unusual data substantially alter the results only in extreme
instances. Identifying unusual observations in a large sample, therefore, should be
regarded more as an opportunity to learn something about the data not captured by the
model that we have fit, rather than as an occasion to reestimate the model with the
unusual observations removed.

Outlying and influential data should not be ignored, but they also should not simply be
deleted without investigation. ‘‘Bad’’ data can often be corrected. ‘‘Good’’ observations
that are unusual may provide insight into the structure of the data and may motivate
respecification of the statistical model used to summarize the data.

11.8 Some Statistical Details*

11.8.1 Hat-Values and the Hat-Matrix

Recall, from Chapter 9, the matrix form of the general linear model, y ¼ Xflþ ". The fitted
model is given by y ¼ Xbþ e, in which the vector of least-squares estimates is
b ¼ ðX0XÞ$1X0y.

The least-squares fitted values are therefore a linear function of the observed response-vari-
able values:

by ¼ Xb ¼ XðX0XÞ$1X0y ¼ Hy

Here, H ¼ XðX0XÞ$1X0 is the hat-matrix, so named because it transforms y into by (‘‘y-hat’’).
The hat-matrix is symmetric (H ¼ H0) and idempotent (H2 ¼ H), as can easily be verified.36

Consequently, the diagonal entries of the hat-matrix hi [ hii, which we called the hat-values,
are

hi [ h0ihi ¼
Xn

j¼1

h2
ij ¼ h2

i þ
X

j 6¼i

h2
ij ð11:7Þ

where (because of symmetry) the elements of hi comprise both the ith row and the ith column
of H.

Equation 11.7 implies that 0 £ hi £ 1. If the model matrix X includes the constant regressor
1n, then 1=n £ hi. Because H is a projection matrix,37 projecting y orthogonally onto the
ðk þ 1Þ-dimensional subspace spanned by the columns of X, it follows that

P
hi ¼ k þ 1, and

thus h ¼ ðk þ 1Þ=n (as stated in Section 11.2).

35See Chapter 19 on robust regression.
36See Exercise 11.2.
37See Chapter 10 for the vector geometry of linear models.
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I mentioned as well that when there are several explanatory variables in the model, the lever-
age hi of the ith observation is directly related to the distance of this observation from the cen-
ter of the explanatory-variable point cloud. To demonstrate this property of the hat-values, it is
convenient to rewrite the fitted model with all variables in mean deviation form: y(¼X(b1 þ e,
where y([ fYi $ Yg is the ‘‘centered’’ response-variable vector; X([ fXij $ X jg contains the
centered explanatory variables, but no constant regressor, which is no longer required; and b1

is the vector of least-squares slopes (suppressing the regression intercept). Then the hat-value
for the ith observation is

h(i ¼ h(
0

i h(i ¼ x(
0

i ðX
(0X(Þ$1x(i ¼ hi $

1

n

where x(
0

i ¼ ½Xi1 $ X 1; . . . ;Xik $ X k * is the ith row of X( (and x(i is the ith row of X( written
as a column vector).

As Weisberg (1985, p. 112) has pointed out, ðn$ 1Þh(i is the generalized or Mahalanobis
distance between x0i and x0, where x0 ¼ ½X 1; . . . ;X k * is the mean vector or centroid of the
explanatory variables. The Mahalanobis distances, and hence the hat-values, do not change if
the explanatory variables are rescaled. Indeed, the Mahalanobis distances and hat-values are
invariant with respect to any nonsingular linear transformation of X.

11.8.2 The Distribution of the Least-Squares Residuals

The least-squares residuals are given by

e ¼ y$ by
¼ ðXflþ "Þ $ XðX0XÞ$1X0ðXflþ "Þ
¼ ðI$HÞ "

Thus,
EðeÞ ¼ ðI$HÞEð"Þ ¼ ðI$HÞ0 ¼ 0

and
V ðeÞ ¼ ðI$HÞV ð"ÞðI$HÞ0 ¼ σ2

εðI$HÞ

because I$H, like H itself, is symmetric and idempotent. The matrix I$H is not
diagonal, and therefore the residuals are generally correlated, even when the errors are (as
assumed here) independent. The diagonal entries of I$H generally differ from one another,
and so the residuals generally have different variances (as stated in Section 11.3):38

V ðEiÞ ¼ σ2
εð1$ hiÞ.

11.8.3 Deletion Diagnostics

Let bð$iÞ denote the vector of least-squares regression coefficients calculated with the ith
observation omitted. Then, di [ b$ bð$iÞ represents the influence of observation i on the
regression coefficients. The influence vector di can be calculated efficiently as39

38Balanced ANOVA models are an exception: Here, all the hat-values are equal. See Exercise 11.3.
39See Exercise 11.4.
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di ¼ ðX0XÞ$1xi
Ei

1$ hi
ð11:8Þ

where x0i is the ith row of the model matrix X (and xi is the ith row written as a column
vector).

Cook’s Di is the F-statistic for testing the ‘‘hypothesis’’ that fl ¼ bð$iÞ:

Di ¼
ðb$ bð$iÞÞ0X0Xðb$ bð$iÞÞ

ðk þ 1ÞS2
E

¼
ðby $ byð$iÞÞ

0ðby $ byð$iÞÞ
ðk þ 1ÞS2

E

An alternative interpretation of Di, therefore, is that it measures the aggregate influence of
observation i on the fitted values by . This is why Belsley et al. (1980) call their similar statistic
‘‘DFFITS.’’ Using Equation 11.8,

Di ¼
E2

i

S2
Eðk þ 1Þ

· hi

ð1$ hiÞ2

¼ E
02
i

k þ 1
· hi

1$ hi

which is the formula for Cook’s D given in Section 11.4.

11.8.4 Added-Variable Plots and Leverage Plots

In vector form, the fitted multiple-regression model is

y ¼ A1n þ B1x1 þ B2x2 þ ' ' ' þ Bkxk þ e

¼ by þ e
ð11:9Þ

where the fitted-value vector by is the orthogonal projection of y onto the subspace spanned by
the regressors 1n; x1, x2; . . . ; xk .40 Let yð1Þ and xð1Þ be the projections of y and x1, respectively,
onto the orthogonal complement of the subspace spanned by 1n and x2; . . . ; xk (i.e., the resi-
dual vectors from the least-squares regressions of Y and X1 on the other X s). Then, by the geo-
metry of projections, the orthogonal projection of yð1Þ onto xð1Þ is B1xð1Þ, and yð1Þ $ B1xð1Þ¼ e,
the residual vector from the overall least-squares regression, given in Equation 11.9.41

Sall (1990) suggests the following generalization of added-variable plots, which he terms
leverage plots: Consider the general linear hypothesis42

H0: L
ðq · kþ1Þ

fl
ðkþ1 · 1Þ

¼ 0
ðq · 1Þ

ð11:10Þ

For example, in the regression of occupational prestige (Y ) on education (X1), income (X2),
and type of occupation (represented by the dummy regressors D1 and D2),

40See Chapter 10.
41See Exercises 11.5 and 11.6.
42See Section 9.4.3.
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Y ¼ αþ β1X1 þ β2X2 þ γ1D1 þ γ2D2 þ ε

the hypothesis matrix

L ¼ 0 0 0 1 0
0 0 0 0 1

( )

is used to test the hypothesis H0: γ1 ¼ γ2 ¼ 0 that there is no partial effect of type of
occupation.

The residuals for the full model, unconstrained by the hypothesis in Equation 11.10, are the
usual least-squares residuals, e ¼ y$ Xb. The estimated regression coefficients under the
hypothesis are43

b0¼ b$ ðX0XÞ$1L0u

and the residuals constrained by the hypothesis are given by

e0¼ eþ XðX0XÞ$1L0u

where

u [ LðX0XÞ$1L0*$1Lb

Thus, the incremental sum of squares for H0 is44

jje0 $ ejj2 ¼ b0L0½LðX0XÞ$1L0*$1Lb

The leverage plot is a scatterplot with

vx [ XðX0XÞ$1L0u

on the horizontal axis, and

vy [ vx þ e

on the vertical axis. The leverage plot, so defined, has the following properties:

! The residuals around the horizontal line at Vy ¼ 0 are the constrained least-squares resi-
duals e0 under the hypothesis H0.

! The least-squares line fit to the leverage plot has an intercept of 0 and a slope of 1; the
residuals around this line are the unconstrained least-squares residuals, e. The incremen-
tal sum of squares for H0 is thus the regression sum of squares for the line.

! When the hypothesis matrix L is formulated with a single row to test the coefficient of
an individual regressor, the leverage plot specializes to the usual added-variable plot,
with the horizontal axis rescaled so that the least-squares intercept is 0 and the slope 1.

Leverage plots, however, have the following disquieting property, which limits their useful-
ness: Even when an observation strongly influences the regression coefficients in a hypothesis,
it may not influence the sum of squares for the hypothesis. For example, removing a particular

43For this and other results pertaining to leverage plots, see Sall (1990).
44See Exercise 11.7.
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observation might increase a formerly small regression coefficient and decrease a formerly
large one, so that the F-statistic for the hypothesis that both coefficients are zero is unaltered.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 11.1. (Show that, in simple-regression analysis, the hat-value is

hi ¼
1

n
þ ðXi $ X Þ2
Pn

j¼1 ðXj $ X Þ2

[Hint: Evaluate x0iðX0XÞ
$1xi for x0i ¼ ð1;XiÞ.]

Exercise 11.2. (Show that the hat-matrix H ¼ XðX0XÞ$1X0 is symmetric (H ¼ H0) and idem-
potent (H2 ¼ H).

Exercise 11.3. (Show that in a one-way ANOVA with equal numbers of observations in the
several groups, all the hat-values are equal to each other. By extension, this result implies that
the hat-values in any balanced ANOVA are equal. Why?

Exercise 11.4. (Using Duncan’s regression of occupational prestige on the educational and
income levels of occupations, verify that the influence vector for the deletion of ministers on
the regression coefficients, di ¼ b$ bð$iÞ, can be written as

di ¼ ðX0XÞ$1xi
Ei

1$ hi

where xi is the ith row of the model matrix X (i.e., the row for ministers) written as a column.
[A much more difficult problem is to show that this formula works in general; see, e.g.,
Belsley, et al. (1980, pp. 69–83) or Velleman and Welsch (1981).]

Exercise 11.5. (Consider the two-explanatory-variable linear-regression model, with variables
written as vectors in mean deviation form (as in Section 10.4): y( ¼ B1x(1 þ B2x(2 þ e. Let xð1Þ

and yð1Þ represent the residual vectors from the regression (i.e., orthogonal projection) of x(1
and y(, respectively, on x(2. Drawing the three-dimensional diagram of the subspace spanned
by x(1, x(2; and y(, prove geometrically that the coefficient for the orthogonal projection of yð1Þ

onto xð1Þ is B1.

Exercise 11.6. (Extending the previous exercise, now consider the more general model
y( ¼ B1x(1 þ B2x(2 þ ' ' ' þ Bkx(k þ e. Let xð1Þ and yð1Þ represent the residual vectors from the
projections of x(1 and y(, respectively, onto the subspace spanned by x(2; . . . ; x(k . Prove that the
coefficient for the orthogonal projection of yð1Þ onto xð1Þ is B1.

Exercise 11.7. (Show that the incremental sum of squares for the general linear hypothesis H0:
Lfl ¼ 0 can be written as

jje0 $ ejj2 ¼ b0L0½LðX0XÞ$1L0*$1Lb

[Hint: jje0 $ ejj2 ¼ ðe0 $ eÞ0ðe0 $ eÞ.]
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Summary

! Unusual data are problematic in linear models fit by least squares because they can sub-
stantially influence the results of the analysis and because they may indicate that the
model fails to capture important features of the data.

! Observations with unusual combinations of explanatory-variable values have high lever-
age in a least-squares regression. The hat-values hi provide a measure of leverage. A
rough cutoff for noteworthy hat-values is hi > 2h ¼ 2ðk þ 1Þ=n.

! A regression outlier is an observation with an unusual response-variable value given its
combination of explanatory-variable values. The studentized residuals E(i can be used to
identify outliers, through graphical examination, a Bonferroni test for the largest abso-
lute E(i , or Anscombe’s insurance analogy. If the model is correct (and there are no
‘‘bad’’ observations), then each studentized residual follows a t-distribution with
n$ k $ 2 degrees of freedom.

! Observations that combine high leverage with a large studentized residual exert substan-
tial influence on the regression coefficients. Cook’s D statistic provides a summary
index of influence on the coefficients. A rough cutoff for noteworthy values of D is
Di > 4=ðn$ k $ 1Þ.

! It is also possible to investigate the influence of individual observations on other regres-
sion ‘‘outputs,’’ such as coefficient standard errors and collinearity.

! Subsets of observations can be jointly influential. Added-variable plots are useful for
detecting joint influence on the regression coefficients. The added-variable plot for the
regressor Xj is formed using the residuals from the least-squares regressions of Xj and Y
on all the other X s.

! Atkinson and Riani’s forward search adds observations successively to an initial small
subset that is almost surely uncontaminated by unusual data. By monitoring outputs
such as regression coefficients, this strategy can reveal unusual groups of observations
that are missed by more conventional methods.

! Outlying and influential data should not be ignored, but they also should not simply be
deleted without investigation. ‘‘Bad’’ data can often be corrected. ‘‘Good’’ observations
that are unusual may provide insight into the structure of the data and may motivate
respecification of the statistical model used to summarize the data.

Recommended Reading

There is a large journal literature on methods for identifying unusual and influential data.
Fortunately, there are several texts that present this literature in a more digestible form:45

! Although it is now more than three decades old, Cook and Weisberg (1982) is, in my
opinion, still the best book-length presentation of methods for assessing leverage, out-
liers, and influence. There are also good discussions of other problems, such as nonli-
nearity and transformations of the response and explanatory variables.

45Also see the recommended readings given at the end of the following chapter.
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! Chatterjee and Hadi (1988) is a thorough text dealing primarily with influential data and
collinearity; other problems—such as nonlinearity and nonconstant error variance—are
treated briefly.

! Belsley, Kuh, and Welsch (1980) is a seminal text that discusses influential data and the
detection of collinearity.46

! Barnett and Lewis (1994) present an encyclopedic survey of methods for outlier detec-
tion, including methods for detecting outliers in linear models.

! Atkinson and Riani (2000) describe in detail methods for detecting influential data based
on a ‘‘forward search’’; these methods were presented briefly in Section 11.6.2.

46I believe that Belsley et al.’s (1980) approach to diagnosing collinearity is fundamentally flawed—see the discussion
of collinearity in Chapter 13.
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12
Diagnosing

Non-Normality,
Nonconstant Error

Variance, and
Nonlinearity

C hapters 11, 12, and 13 show how to detect and correct problems with linear models that
have been fit to data. The previous chapter focused on problems with specific observa-

tions. The current chapter and the next deal with more general problems with the specification
of the model.

The first three sections of this chapter take up the problems of non-normally distributed
errors, nonconstant error variance, and nonlinearity. The treatment here stresses simple graphi-
cal methods for detecting these problems, along with transformations of the data to correct
problems that are detected.

Subsequent sections describe tests of nonconstant error variance and nonlinearity for discrete
explanatory variables, diagnostic methods based on embedding the usual linear model in a
more general nonlinear model that incorporates transformations as parameters, and diagnostics
that seek to detect the underlying dimensionality of the regression.

To illustrate the methods described in this chapter, I will primarily use data drawn from the
1994 wave of Statistics Canada’s Survey of Labour and Income Dynamics (SLID). The SLID
data set includes 3,997 employed individuals who were between 16 and 65 years of age and
who resided in Ontario.1 Regressing the composite hourly wage rate (i.e., the wage rate com-
puted from all sources of employment, in dollars per hour) on a dummy variable for sex (code
1 for males), education (in years), and age (also in years) produces the following results:

dWages ¼ "8:124 þ 3:474 · Male þ 0:2613 · Age

ð0:599Þ ð0:2070Þ ð0:0087Þ
þ 0:9296 · Education

ð0:0343Þ
R2 ¼ :3074

ð12:1Þ

The coefficient standard errors, in parentheses below the coefficients, reveal that all the regres-
sion coefficients are precisely estimated (and highly statistically significant), as is to be

1I assumed that individuals for whom the composite hourly wage rate is missing are not employed. There are, in addi-
tion, 150 people who are missing data on education and who are excluded from the analysis reported here.
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expected in a sample of this size. The regression also accounts for more than 30% of the varia-
tion in hourly wages.

Although we will get quite a bit of mileage from this example, it is somewhat artificial: (1) A
careful data analyst (using the methods for examining and transforming data introduced in
Chapters 3 and 4) would not specify the model in this form. Indeed, on substantive grounds, we
should not expect linear relationships between wages and age and, possibly, between wages and
education.2 (2) We should entertain the obvious possibility that the effects of age and education
on income may be different for men and women (i.e., that sex may interact with age and educa-
tion), a possibility that we will pursue later in the chapter. (3) A moderately large sample such
as this presents the opportunity to introduce additional explanatory variables into the analysis.

12.1 Non-Normally Distributed Errors

The assumption of normally distributed errors is almost always arbitrary. Nevertheless, the cen-
tral limit theorem ensures that, under very broad conditions, inference based on the least-
squares estimator is approximately valid in all but small samples. Why, then, should we be
concerned about non-normal errors?

& Although the validity of least-squares estimation is robust—the levels of tests and the
coverage of confidence intervals are approximately correct in large samples even when
the assumption of normality is violated—the efficiency of least squares is not robust:
Statistical theory assures us that the least-squares estimator is the most efficient unbiased
estimator only when the errors are normal. For some types of error distributions, how-
ever, particularly those with heavy tails, the efficiency of least-squares estimation
decreases markedly. In these cases, the least-squares estimator becomes much less effi-
cient than robust estimators (or least-squares augmented by diagnostics).3 To a great
extent, heavy-tailed error distributions are problematic because they give rise to outliers,
a problem that I addressed in the previous chapter.

A commonly quoted justification of least-squares estimation—the Gauss-Markov the-
orem—states that the least-squares coefficients are the most efficient unbiased estimators
that are linear functions of the observations Yi. This result depends on the assumptions
of linearity, constant error variance, and independence but does not require the assump-
tion of normality.4 Although the restriction to linear estimators produces simple formu-
las for coefficient standard errors, it is not compelling in the light of the vulnerability of
least squares to heavy-tailed error distributions.

& Highly skewed error distributions, aside from their propensity to generate outliers in the
direction of the skew, compromise the interpretation of the least-squares fit. This fit is a
conditional mean (of Y given the X s), and the mean is not a good measure of the center
of a highly skewed distribution. Consequently, we may prefer to transform the response
to produce a symmetric error distribution.

2Unfortunately, in my experience, careful data analysis is far from the norm, and it is not hard to find examples of egre-
giously misspecified regressions with large R2s that satisfied the people who performed them.
3Robust estimation is discussed in Chapter 19.
4A proof of the Gauss-Markov theorem appears in Section 9.3.2.
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& A multimodal error distribution suggests the omission of one or more discrete explana-
tory variables that divide the data naturally into groups. An examination of the distribu-
tion of the residuals may, therefore, motivate respecification of the model.

Although there are tests for non-normal errors, I will instead describe graphical methods for
examining the distribution of the residuals, employing univariate displays introduced in
Chapter 3.5 These methods are more useful than tests for pinpointing the nature of the problem
and for suggesting solutions.

One such graphical display is the quantile-comparison plot. Recall from the preceding chap-
ter that we compare the sample distribution of the studentized residuals, E'i , with the quantiles
of the unit-normal distribution, Nð0; 1Þ, or with those of the t-distribution for n" k " 2
degrees of freedom. Unless n is small, of course, the normal and t-distributions are nearly iden-
tical. We choose to plot studentized residuals because they have equal variances and are t-dis-
tributed, but, in larger samples, standardized or raw residuals will convey much the same
impression.

Even if the model is correct, however, the studentized residuals are not an independent ran-
dom sample from tn"k"2: Different residuals are correlated with one another.6 These correla-
tions depend on the configuration of the X -values, but they are generally negligible unless the
sample size is small. Furthermore, at the cost of some computation, it is possible to adjust for
the dependencies among the residuals in interpreting a quantile-comparison plot.7

The quantile-comparison plot is especially effective in displaying the tail behavior of the
residuals: Outliers, skewness, heavy tails, or light tails all show up clearly. Other univariate
graphical displays effectively supplement the quantile-comparison plot. In large samples, a his-
togram with many bars conveys a good impression of the shape of the residual distribution and
generally reveals multiple modes more clearly than does the quantile-comparison plot. In
smaller samples, a more stable impression is formed by smoothing the histogram of the resi-
duals with a nonparametric density estimator (which is also a reasonable display in large
samples).

Figure 12.1 shows the distribution of the studentized residuals from the SLID regression of
Equation 12.1. The broken lines in the quantile-comparison plot [Figure 12.1(a)] represent a
pointwise 95% confidence envelope computed under the assumption that the errors are nor-
mally distributed (according to the method described in Section 12.1.1). The window width for
the kernel density estimate [Figure 12.1(b)] is 3/4 of the ‘‘optimal’’ value for normally distribu-
ted data and was selected by visual trial and error. It is clear from both graphs that the residual
distribution is positively skewed. The density estimate suggests, in addition, that there may be
more than one mode to the distribution.

A positive skew in the residuals can usually be corrected by moving the response variable
down the ladder of powers and roots. Trial and error suggests that the log transformation of
wages renders the distribution of the residuals much more symmetric, as shown in Figure 12.2.

5See the discussion of Box-Cox transformations in Section 12.5.1, however.
6*Different residuals are correlated because the off-diagonal entries of the hat-matrix (i.e., hij for i 6¼ j) are generally
nonzero; see Section 11.8.
7See Section 12.1.1.
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The residuals from the transformed regression appear to be heavy-tailed, a characteristic that in
a small sample would lead us to worry about the efficiency of the least-squares estimator.8

A cube-root transformation (i.e., the 1/3 power, not shown) does an even better job (reduc-
ing the long left tail of the residual distribution in Figure 12.2), but because it produces very
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Figure 12.1 (a) Quantile-comparison plot and (b) kernel-density estimate for the studentized resi-
duals from the SLID regression. The broken lines in the quantile-comparison plot rep-
resent a pointwise 95% simulated confidence envelope (described in Section
12.1.1).
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Figure 12.2 (a) Quantile-comparison plot and (b) kernel-density estimate for the studentized resi-
duals from the SLID regression with wages log-transformed.

8Heavy-tailed error distributions suggest robust estimation, as described in Chapter 19, but in a sample this large, robust
regression produces essentially the same results as least squares.
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similar results in the regression, I prefer the more easily interpreted log transformation. The
fitted regression equation using the log (base 2) of wages is as follows:

dlog2 Wages ¼ 1:585 þ 0:3239 · Male þ 0:02619 · Age

ð0:055Þ ð0:0189Þ ð0:00079Þ
þ 0:08061 · Education

ð0:00313Þ
R2 ¼ 0:3213

ð12:2Þ

We will return to the interpretation of the regression with the log-transformed response after
we fix some other problems with the SLID model.9

Heavy-tailed errors threaten the efficiency of least-squares estimation; skewed and multi-
modal errors compromise the interpretation of the least-squares fit. Non-normality can
often be detected by examining the distribution of the least-squares residuals and fre-
quently can be corrected by transforming the data.

12.1.1 Confidence Envelopes by Simulated Sampling*

Atkinson (1985) has suggested the following procedure for constructing an approximate con-
fidence ‘‘envelope’’ in a residual quantile-comparison plot, taking into account the correlational
structure of the explanatory variables. Atkinson’s procedure employs simulated sampling and
uses the assumption of normally distributed errors.10

1. Fit the regression model as usual, obtaining fitted values bYi and the estimated regression
standard error SE.

2. Construct m samples, each consisting of n simulated Y values; for the jth such sample,
the simulated value for observation i is

Y s
ij ¼ bYi þ SEZij

where Zij is a random draw from the unit-normal distribution. In other words, we sample
from a ‘‘population’’ in which the expectation of Yi is bYi ; the true standard deviation of
the errors is SE; and the errors are normally distributed.

3. Regress the n simulated observations for sample j on the X s in the original sample,
obtaining simulated studentized residuals, E'1j, E'2j; . . . ;E'nj. Because this regression
employs the original X -values, the simulated studentized residuals reflect the correla-
tional structure of the X s.

9For the present, recall that increasing log2 wages by 1 implies doubling wages; more generally, adding x to log2 wages
multiplies wages by 2x.
10The notion of simulated sampling from a population constructed from the observed data is the basis of ‘‘bootstrap-
ping,’’ discussed in Chapter 21. Atkinson’s procedure described here is an application of the parametric bootstrap.
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4. Order the studentized residuals for sample j from smallest to largest, as required by a
quantile-comparison plot: E'ð1Þj, E'ð2Þj; . . . ;E'ðnÞj.

5. To construct an estimated ð100" aÞ% confidence interval for E'ðiÞ (the ith ordered stu-
dentized residual), find the a=2 and 1" a=2 empirical quantiles of the m simulated val-
ues E'ðiÞ1, E'ðiÞ2; . . . ;E'ðiÞm. For example, if m ¼ 20 and a ¼ :05, then the smallest and
largest of the E'ð1Þj provide a 95% confidence interval for E'ð1Þ: ½E

'
ð1Þð1Þ;E

'
ð1Þð20Þ).

11 The
confidence limits for the n ordered studentized residuals are graphed as a confidence
envelope on the quantile-comparison plot, along with the studentized residuals
themselves.

A weakness of Atkinson’s procedure is that the probability of some studentized residual stray-
ing outside the confidence limits by chance is greater than a, which is the probability that an
individual studentized residual falls outside its confidence interval. Because the joint distribu-
tion of the studentized residuals is complicated, however, to construct a correct joint-confi-
dence envelope would require even more calculation. As well, in small samples, where there
are few residual degrees of freedom, even radical departures from normally distributed errors
can give rise to apparently normally distributed residuals; Andrews (1979) presents an example
of this phenomenon, which he terms ‘‘supernormality.’’

12.2 Nonconstant Error Variance

As we know, one of the assumptions of the regression model is that the variation of the
response variable around the regression surface—the error variance—is everywhere the same:

V ðεÞ ¼ V ðY jx1; . . . ; xkÞ ¼ σ2
ε

Constant error variance is often termed homoscedasticity; similarly, nonconstant error variance
is termed heteroscedasticity. Although the least-squares estimator is unbiased and consistent
even when the error variance is not constant, the efficiency of the least-squares estimator is
impaired, and the usual formulas for coefficient standard errors are inaccurate—the degree of
the problem depending on the degree to which error variances differ, the sample size, and the
configuration of the X -values in the regression. In this section, I will describe graphical meth-
ods for detecting nonconstant error variances and methods for dealing with the problem when
it is detected.12

12.2.1 Residual Plots

Because the regression surface is k-dimensional and embedded in a space of k þ 1 dimen-
sions, it is generally impractical to assess the assumption of constant error variance by direct

11Selecting the smallest and largest of the 20 simulated values corresponds to our simple convention that the proportion
of the data below the jth of m order statistics is ðj" 1=2Þ=m. Here, ð1" 1=2Þ=20 ¼ :025 and ð20" 1=2Þ=20 ¼ :975,
defining 95% confidence limits. Atkinson uses a slightly different convention. To estimate the confidence limits more
accurately, it helps to make m larger and perhaps to use a more sophisticated version of the bootstrap (see Chapter 21).
The envelopes in Figures 12.1(a) and 12.2(a) are based on m ¼ 100 replications.
12Tests for heteroscedasticity are discussed in Section 12.4 on discrete data and in Section 12.5 on maximum-likelihood
methods.
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graphical examination of the data when k is larger than 1 or 2. Nevertheless, it is common for
error variance to increase as the expectation of Y grows larger, or there may be a systematic
relationship between error variance and a particular X . The former situation can often be
detected by plotting residuals against fitted values and the latter by plotting residuals against
each X .13

Plotting residuals against Y (as opposed to bY ) is generally unsatisfactory because the plot is
‘‘tilted’’: Y ¼ bY þ E, and consequently the linear correlation between the observed response Y
and the residuals E is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" R2
p

.14 In contrast, the least-squares fit ensures that the correlation
between the fitted values bY and E is precisely 0, producing a plot that is much easier to exam-
ine for evidence of nonconstant spread.

Because the least-squares residuals have unequal variances even when the assumption of
constant error variance is correct, it is preferable to plot studentized residuals against fitted val-
ues. A pattern of changing spread is often more easily discerned in a plot of absolute studen-
tized residuals, jE'i j, or squared studentized residuals, E'2i , against bY . Finally, if the values of
bY are all positive, then we can plot logjE'i j (log spread) against log bY (log level). A line, with
slope b fit to this plot, suggests the variance-stabilizing transformation Y ðpÞ, with p ¼ 1" b.15

Figure 12.3 shows a plot of studentized residuals against fitted values and a spread-level plot
of studentized residuals for the SLID regression of Equation 12.1 (page 296); several points
with negative fitted values were omitted. It is apparent from both graphs that the residual
spread tends to increase with the level of the response, suggesting transforming the response
down the ladder of powers and roots. The slope of the line fit to the spread-level plot in
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Figure 12.3 (a) Plot of studentized residuals versus fitted values and (b) spread-level plot for stu-
dentized residuals. The solid line in panel (a) is fit by lowess, with a span of 0.4. The
line in panel (b) is produced by robust linear regression. The points are plotted in
gray to avoid obscuring the lines.

13These displays are not infallible, however: See Cook (1994) and the discussion in Section 12.6.
14See Exercise 12.1.
15This is an application of Tukey’s rule for selecting a transformation, introduced in Section 4.4. Other analytic meth-
ods for choosing a variance-stabilizing transformation are discussed in Section 12.5.
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Figure 12.3(b) is b ¼ 0:9994, corresponding to the power transformation 1" 0:9994 ¼ 0:0006
» 0 (i.e., the log transformation).16

In the previous section, the log transformation of wages made the distribution of the studen-
tized residuals more symmetric. The same transformation approximately stabilizes the residual
variance, as illustrated in diagnostic plots shown in Figure 12.4. This outcome is not surprising
because the heavy right tail of the residual distribution and nonconstant spread are both com-
mon consequences of the lower bound of 0 for the response variable.

Transforming Y changes the shape of the error distribution, but it also alters the shape of the
regression of Y on the X s. At times, eliminating nonconstant spread also makes the relationship
of Y to the X s more nearly linear, but this is not a necessary consequence of stabilizing the
error variance, and it is important to check for nonlinearity following transformation of the
response variable. Of course, because there is generally no reason to suppose that the regres-
sion is linear prior to transforming Y , we should check for nonlinearity in any event.17

Nonconstant residual spread sometimes is symptomatic of the omission of important effects
from the model. Suppose, for example, that there is an omitted categorical explanatory vari-
able, such as urban versus rural residence, that interacts with education in affecting wages; in
particular, suppose that the education slope, although positive in both urban and rural areas, is
steeper in urban areas. Then the omission of urban/rural residence and its interaction with edu-
cation could produce a fan-shaped residual plot even if the errors from the correct model have
constant variance.18 The detection of this type of specification error requires insight into the
process generating the data and cannot rely on diagnostics alone.
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Figure 12.4 (a) Plot of studentized residuals versus fitted values and (b) spread-level plot for stu-
dentized residuals following log transformation of wages in the SLID regression.

16The line in Figure 12.3(b) was fit by M estimation using the Huber weight function—a method of robust regression
described in Chapter 19. In this example, however, nearly the same results are provided by least-squares, for which
b ¼ 0:9579. The plots in Figures 12.3(a) and 12.4(a) suggest that there is some unmodeled nonlinearity. Although plot-
ting residuals versus fitted values may, as here, reveal a problem with the specified functional form of a regression
model, the indication is insufficiently specific to know where precisely the problem or problems lie and how to deal
with them, an issue to which we will turn in Section 12.3.
17See Section 12.3.
18See Exercise 12.2 for an illustration of this phenomenon.
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12.2.2 Weighted-Least-Squares Estimation*

Weighted-least-squares (WLS) regression provides an alternative approach to estimation in
the presence of nonconstant error variance. Suppose that the errors from the linear regression
model y ¼ Xflþ " are independent and normally distributed, with zero means but different
variances: εi ; Nð0; σ2

i Þ. Suppose further that the variances of the errors are known up to a
constant of proportionality σ2

ε , so that σ2
i ¼ σ2

ε=w2
i . Then, the likelihood for the model is19

Lðfl ; σ2
εÞ ¼

1

ð2πÞn=2jSj1=2
exp " 1

2
ðy" XflÞ0S"1ðy" XflÞ

" #

where S is the covariance matrix of the errors,

S¼ σ2
ε · diagf1=w2

1; . . . ; 1=w2
ng[ σ2

ε · W"1

The maximum-likelihood estimators of fl and σ2
ε are then

bfl ¼ ðX0WXÞ"1X0Wy

bσ2
ε ¼

P
ðwiEiÞ2

n

where the residuals are defined in the usual manner as the difference between the observed
response and the fitted values, e ¼ fEig ¼ y" Xbfl . This procedure is equivalent to minimiz-
ing the weighted sum of squares

P
w2

i E2
i , according greater weight to observations with

smaller variance—hence the term weighted least squares. The estimated asymptotic covariance
matrix of bfl is given by

bVðbflÞ ¼ bσ2
εðX

0WXÞ"1

In practice, we would need to estimate the weights Wi or know that the error variance is sys-
tematically related to some observable variable. In the first instance, for example, we could use
the residuals from a preliminary ordinary-least-squares (OLS) regression to obtain estimates of
the error variance within different subsets of observations, formed by partitioning the data
according to one or more categorical variables. Basing the weights on a preliminary estimate of
error variances can, however, seriously bias the estimated covariance matrix bVðbflÞ , because
the sampling error in the estimates should reflect the additional source of uncertainty.20

In the second instance, suppose that inspection of a residual plot for the preliminary OLS fit
suggests that the magnitude of the errors is proportional to the first explanatory variable, X1.
We can then use 1=Xi1 as the weights Wi. Dividing both sides of the regression equation by Xi1

produces

Yi

Xi1
¼ α

1

Xi1
þ β1 þ β2

Xi2

Xi1
þ * * * þ βk

Xik

Xi1
þ εi

Xi1
ð12:3Þ

Because the standard deviations of the errors are proportional to X1, the ‘‘new’’ errors
ε0i [ εi=Xi1 have constant variance, and Equation 12.3 can be estimated by OLS regression of

19See Exercise 12.3 for this and other results pertaining to weighted-least-squares estimation; also see the discussion of
generalized least squares in Section 16.1.
20In this case, it is probably better to obtain an honest estimate of the coefficient covariance matrix from the bootstrap,
described in Chapter 21, or to estimate the within-group variances simultaneously with the regression parameters.
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Y=X1 on 1=X1, X2=X1; . . . ;Xk=X1. Note that the constant from this regression estimates β1,
while the coefficient of 1=X1 estimates α; the remaining coefficients are straightforward.

12.2.3 Correcting OLS Standard Errors for Nonconstant
Variance*

The covariance matrix of the OLS estimator is

V ðbÞ ¼ ðX0XÞ"1X0V ðyÞXðX0XÞ"1 ð12:4Þ

Under the standard assumptions, including the assumption of constant error variance,
V ðyÞ ¼ σ2

εIn, Equation 12.4 simplifies to the usual formula, V ðbÞ ¼ σ2
εðX0XÞ

"1.21 If, however,
the errors are heteroscedastic but independent, then S [ V ðyÞ ¼ diagfσ2

1; . . . ; σ2
ng, and

V ðbÞ ¼ ðX0XÞ"1X0SXðX0XÞ"1

Because EðεiÞ ¼ 0, the variance of the ith error is σ2
i ¼ Eðε2

i Þ, which suggests the possibility
of estimating V ðbÞ by

eV ðbÞ ¼ ðX0XÞ"1X0 bSXðX0XÞ"1 ð12:5Þ

with bS ¼ diagfE2
1; . . . ;E2

ng, where Ei is the OLS residual for observation i. White (1980)
shows that Equation 12.5 provides a consistent estimator of V ðbÞ.22

Subsequent work has suggested small modifications to White’s coefficient-variance estima-
tor, and in particular simulation studies by Long and Ervin (2000) support the use of

eV 'ðbÞ ¼ ðX0XÞ"1X0 bS'XðX0XÞ"1 ð12:6Þ

where bS' ¼ diagfE2
i =ð1" hiÞ2g and hi is the hat-value associated with observation i.23 In

large samples, in which individual hat-values are almost surely very small, the distinction
between the coefficient-variance estimators in Equations 12.5 and 12.6 essentially disappears.

For the original SLID regression model in Equation 12.1 (on page 296), coefficient standard
errors computed by the usual formula, by White’s approach (in Equation 12.5), and by the
modification to White’s approach (in Equation 12.6) are as follows:

21See Section 9.3.
22White’s coefficient-variance estimator is sometimes called a sandwich estimator because the matrix X0 bSX is ‘‘sand-
wiched between’’ the two occurrences of ðX0XÞ"1 in Equation 12.5. Coefficient standard errors computed by this
approach are also often termed Huber-White standard errors, because of their introduction in an earlier paper by Huber
(1967).
23See Sections 11.2 and 11.8 for a discussion of hat-values. Long and Ervin call the coefficient-variance estimator in
Equation 12.6 ‘‘HC3’’ for ‘‘heteroscedasticity-consistent’’ estimator number 3—one of several such estimators consid-
ered in their paper. Cribari-Neto (2004) suggests using

bS' ¼ diag E2
i =ð1" hiÞdi

n o

where di ¼ minð4; hi=!hÞ, producing a coefficient-covariance matrix estimator that he terms ‘‘HC4’’; the HC4 estimator
can perform better in small samples with influential observations.
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In this instance, therefore, the adjusted standard errors are very close to the usual OLS stan-
dard errors—despite the strong evidence that we uncovered of nonconstant error variance.

An advantage of White’s approach for coping with heteroscedasticity is that knowledge of
the pattern of nonconstant error variance (e.g., increased variance with the level of Y or with
an X ) is not required. If, however, the heteroscedasticity problem is severe, and the corrected
coefficient standard errors therefore are considerably larger than those produced by the usual
formula, then discovering the pattern of nonconstant variance and taking account of it—by a
transformation or WLS estimation—offers the possibility of more efficient estimation. In any
event, as the next section shows, unequal error variance typically distorts statistical inference
only when the problem is severe.

12.2.4 How Nonconstant Error Variance Affects the OLS
Estimator*

The impact of nonconstant error variance on the efficiency of the OLS estimator and on the
validity of least-squares inference depends on several factors, including the sample size, the
degree of variation in the σ2

i , the configuration of the X -values, and the relationship between
the error variance and the X s. It is therefore not possible to develop wholly general conclusions
concerning the harm produced by heteroscedasticity, but the following simple case is neverthe-
less instructive.

Suppose that Yi ¼ αþ βXi þ εi, where the errors are independent and normally distributed,
with zero means but with different standard deviations proportional to X , so that σi ¼ σεXi

(where all of the Xi > 0). Then the OLS estimator B is less efficient than the WLS estimator bβ,
which, under these circumstances, is the most efficient unbiased estimator of β.24

Formulas for the sampling variances of B and bβ are easily derived.25 The efficiency of the
OLS estimator relative to the optimal WLS estimator is given by V ðbβÞ=V ðBÞ, and the relative
precision of the OLS estimator is the square root of this ratio, that is, SDðbβÞ =SDðBÞ (interpre-
table, e.g., as the relative width of confidence intervals for the two estimators).

Now suppose that X is uniformly distributed over the interval ½x0; ax0), where both x0 and a
are positive numbers, so that a is the ratio of the largest to the smallest value of X (and,

Standard Error of Coefficient

Coefficient Traditional OLS White-Adjusted Modified White-Adjusted

Constant 0.5990 0.6358 0.6370
Male 0.2070 0.2071 0.2074
Age 0.008664 0.008808 0.008821
Education 0.03426 0.03847 0.03854

24This property of the WLS estimator requires the assumption of normality. Without normal errors, the WLS estimator
is still the most efficient linear unbiased estimator—an extension of the Gauss-Markov theorem. See Exercise 12.4.
25V ðBÞ here is the correct sampling variance of the OLS estimator, taking heteroscedasticity into account, not the var-
iance of B computed by the usual formula, which assumes constant error variance. See Exercise 12.5 for this and other
results described in this section.
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consequently, of the largest to the smallest σi). The relative precision of the OLS estimator sta-
bilizes quickly as the sample size grows and exceeds 90% when a ¼ 2 and 85% when a ¼ 3,
even when n is as small as 20. For a ¼ 10, the penalty for using OLS is greater, but even here
the relative precision of OLS exceeds 65% for n ‡ 20.

The validity of statistical inferences based on OLS estimation (as opposed to the efficiency
of the OLS estimator) is even less sensitive to common patterns of nonconstant error variance.
Here, we need to compare the expectation of the usual estimator bV ðBÞ of V ðBÞ, which is typi-
cally biased when the error variance is not constant, with the true sampling variance of B. The
square root of E½bV ðBÞ)=V ðBÞ expresses the result in relative standard deviation terms. For the
illustration, where the standard deviation of the errors is proportional to X , and where X is uni-
formly distributed, this ratio is 98% when a ¼ 2, 97% when a ¼ 3, and 93% when a ¼ 10, all
for n ‡ 20

The results in this section suggest that nonconstant error variance is a serious problem only
when the magnitude (i.e., the standard deviation) of the errors varies by more than a factor of
about 3—that is, when the largest error variance is more than about 10 times the smallest.
Because there are other distributions of the X s for which the deleterious effects of heterosce-
dasticity can be more severe, a safer rule of thumb is to worry about nonconstant error variance
when the magnitude of the errors varies by more than a factor of about 2—or, equivalently,
when the ratio of largest to smallest error variance exceeds 4. One cautious approach is always
to compare (modified) White-adjusted coefficient standard errors with the usual standard errors,
preferring the former (or, if the pattern is known, correcting for nonconstant error variance)
when the two disagree.

It is common for the variance of the errors to increase with the level of the response vari-
able. This pattern of nonconstant error variance (‘‘heteroscedasticity’’) can often be
detected in a plot of residuals against fitted values. Strategies for dealing with noncon-
stant error variance include transformation of the response variable to stabilize the var-
iance, the substitution of weighted-least-squares estimation for ordinary least squares,
and the correction of coefficient standard errors for heteroscedasticity. A rough rule is
that nonconstant error variance seriously degrades the least-squares estimator only when
the ratio of the largest to smallest variance is about 10 or more (or, more conservatively,
about 4 or more).

12.3 Nonlinearity

The assumption that the average error, EðεÞ, is everywhere 0 implies that the specified regres-
sion surface accurately reflects the dependency of the conditional average value of Y on the
X s. Conversely, violating the assumption of linearity implies that the model fails to capture the
systematic pattern of relationship between the response and explanatory variables. The term
nonlinearity, therefore, is not used in the narrow sense here, although it includes the possibility
that a partial relationship assumed to be linear is, in fact, nonlinear: If, for example, two expla-
natory variables specified to have additive effects instead interact, then the average error is not
0 for all combinations of X -values, constituting nonlinearity in the broader sense.
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If nonlinearity, in the broad sense, is slight, then the fitted model can be a useful approxima-
tion even though the regression surface EðY jX1; . . . XkÞ is not captured precisely. In other
instances, however, the model can be seriously misleading.

The regression surface is generally high dimensional, even after accounting for regressors
(such as dummy variables, interactions, polynomial terms, and regression-spline terms) that are
functions of a smaller number of fundamental explanatory variables.26 As in the case of non-
constant error variance, therefore, it is necessary to focus on particular patterns of departure
from linearity. The graphical diagnostics discussed in this section are two-dimensional (and
three-dimensional) projections of the ðk þ 1Þ-dimensional point cloud of observations
fYi;Xi1; . . . ;Xikg:

12.3.1 Component-Plus-Residual Plots

Although it is useful in multiple regression to plot Y against each X (e.g., in one row of a
scatterplot matrix), these plots often do not tell the whole story—and can be misleading—
because our interest centers on the partial relationship between Y and each X (‘‘controlling’’
for the other X s), not on the marginal relationship between Y and an individual X (‘‘ignoring’’
the other X s). Residual-based plots are consequently more promising for detecting nonlinearity
in multiple regression.

Plotting residuals or studentized residuals against each X , perhaps augmented by a nonpara-
metric-regression smoother, is frequently helpful for detecting departures from linearity. As
Figure 12.5 illustrates, however, simple residual plots cannot distinguish between monotone
and nonmonotone nonlinearity. This distinction is lost in the residual plots because the least-
squares fit ensures that the residuals are linearly uncorrelated with each X . The distinction is
important because monotone nonlinearity frequently can be ‘‘corrected’’ by simple transforma-
tions.27 In Figure 12.5, for example, case (a) might be modeled by Y ¼ αþ β

ffiffiffiffi
X
p
þ ε, while

case (b) cannot be linearized by a power transformation of X and might instead be dealt with
by the quadratic regression, Y ¼ αþ β1X þ β2X 2 þ ε.28

In contrast to simple residual plots, added-variable plots, introduced in the previous chapter
for detecting influential data, can reveal nonlinearity and suggest whether a relationship is
monotone. These plots are not always useful for locating a transformation, however: The
added-variable plot adjusts Xj for the other X s, but it is the unadjusted Xj that is transformed in
respecifying the model. Moreover, as Cook (1998, Section 14.5) shows, added-variable plots
are biased toward linearity when the correlations among the explanatory variables are large.
Component-plus-residual (CR) plots, also called partial-residual plots, are often an effective

26Polynomial regression—for example, the model Y ¼ αþ β1X þ β2X 2 þ ε—is discussed in Section 17.1. In this sim-
ple quadratic model, there are two regressors (X and X 2) but only one explanatory variable (X ). Regression splines,
discussed in Section 17.2, similarly construct several regressors from an X .
27Recall the material in Section 4.3 on linearizing transformations.
28Case (b) could, however, be accommodated by a more complex transformation of X , of the form
Y ¼ αþ βðX " γÞλ þ ε. In the illustration, γ could be taken as X and λ as 2. More generally, γ and λ could be esti-
mated from the data, for example, by nonlinear least squares (as described in Section 17.1). I will not pursue this
approach here because there are other obstacles to estimating this more general transformation (see, e.g., Exercise
17.2).
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alternative. Component-plus-residual plots are not as suitable as added-variable plots for
revealing leverage and influence, however.

Define the partial residual for the jth explanatory variable as

EðjÞi ¼ Ei þ BjXij

In words, add back the linear component of the partial relationship between Y and Xj to the
least-squares residuals, which may include an unmodeled nonlinear component. Then plot EðjÞ

versus Xj. By construction, the multiple-regression coefficient Bj is the slope of the simple lin-
ear regression of EðjÞ on Xj, but nonlinearity may be apparent in the plot as well. Again, a non-
parametric-regression smoother may help in interpreting the plot.

Figure 12.6 shows component-plus-residual plots for age and education in the SLID regres-
sion of log wages on these variables and sex (Equation 12.2 on page 300). Both plots look
nonlinear: It is not entirely clear whether the partial relationship of log wages to age is mono-
tone, simply tending to level off at the higher ages, or whether it is nonmonotone, turning back
down at the far right. In the former event, we should be able to linearize the relationship by
moving age down the ladder of powers because the bulge points to the left. In the latter event,
a quadratic partial regression might work. In contrast, the partial relationship of log wages to

(a)

X

Y

X

E

0

(b)

X

Y

X

E

0

Figure 12.5 The residual plots of E versus X (in the lower panels) are identical, even though the
regression of Y on X in (a) is monotone while that in (b) is nonmonotone.
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education is clearly monotone, and the departure from linearity is not great—except at the low-
est levels of education, where data are sparse; we should be able to linearize this partial rela-
tionship by moving education up the ladder of powers, because the bulge points to the right.

Trial-and-error experimentation suggests that the quadratic specification for age works better
than a transformation; a quadratic in age, along with squaring education, produces the follow-
ing fit to the data:29

dlog2 Wages ¼ 0:5725 þ 0:3195 · Male þ 0:1198 · Age

ð0:0834Þ ð0:0180Þ ð0:0046Þ
" 0:001230 · Age2 þ 0:002605 · Education2

ð0:000059Þ ð0:000113Þ
R2 ¼ :3892

ð12:7Þ

I will consider the interpretation of this model shortly, but first let us examine component-plus-
residual plots for the new fit. Because the model is now nonlinear in both age and education,
there are two ways to proceed:

1. We can plot partial residuals for each of age and education against the corresponding
explanatory variable. In the case of age, the partial residuals are computed as

EðAgeÞ
i ¼ 0:1198 · Age i " 0:001230 · Age2

i þ Ei ð12:8Þ

and for education,

EðEducation Þ
i ¼ 0:002605 · Education2

i þ Ei ð12:9Þ
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Figure 12.6 Component-plus-residual plots for age and education in the SLID regression of log
wages on these variables and sex. The solid lines are for lowess smooths with spans
of 0.4, and the broken lines are for linear least-squares fits.

29See Exercise 12.7 for the alternative of transforming age.
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The corresponding component-plus-residual plots are shown in the upper panels of
Figure 12.7. The solid lines in these graphs are the partial fits (i.e., the components) for
the two explanatory variables,

bY ðAgeÞ
i ¼ 0:1198 · Agei " 0:001230 · Age2

i

bY ðEducationÞ
i ¼ 0:002605 · Education2

i

ð12:10Þ

The broken lines are lowess smooths, computed with span ¼ 0:4. We look for the com-
ponents to be close to the lowess smooths.

2. We can plot the partial residuals (as defined in Equations 12.8 and 12.9) against the
partial fits (Equation 12.10) for the two variables. These plots are in the two lower
panels of Figure 12.7. Here, the solid lines are least-squares lines, and, as before, the
broken lines are lowess smooths. We look for the lowess smooths to be close to the
least-squares lines.

It is apparent from the component-plus-residual plots in Figure 12.7 that the respecified model
has done a good job of capturing the nonlinearity in the partial relationships of log wages with
age and education—except possibly at the very highest ages, where the quadratic fit for age
may exaggerate the downturn in wages.

To this point, then, we have log-transformed wages to make the distribution of the residuals
more symmetric and to stabilize the error variance, and we have fit a quadratic regression in
age and power-transformed education to linearize the relationship of log wages to these vari-
ables. The result is the fitted model in Equation 12.7. Two of its characteristics make this
model difficult to interpret:

1. The transformations of wages and education move these variables from their familiar
scales (i.e., dollars per hour and years, respectively).

2. Because the linear term in age is marginal to the squared term, the two terms are not
separately interpretable. More precisely, the coefficient of the linear term, 0:1198, is
the slope of the regression surface in the direction of age at age 0—clearly not a mean-
ingful quantity—and twice the coefficient of the squared term in age,
2 · ð"0:001230Þ ¼ "0:002460, is the change in the age slope per year of age; the slope
consequently declines with age and eventually becomes negative.30

Interpretation is therefore greatly facilitated by graphing the partial regressions, using the
effect-display framework developed in Chapters 7 and 8. Effect displays for age and education
appear in Figure 12.8. In the effect display for age, for example, education and the dummy
regressor for sex are set to their average values (which, in the latter case, represents the propor-
tion of men in the SLID data set). The effects are graphed on the log-wages scale employed in
the model, but I show wages in dollars on the axis at the right of each panel. An alternative

30*The slope of the partial fit for age is the derivative dð0:1198 · Age " 0:001230 · Age2Þ=dAge ¼
0:1198" 0:002460Age. These points are developed in more detail in the discussion of polynomial regression in
Section 17.1.
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would be to graph the effects directly on the dollar scale. The 95% pointwise confidence envel-
opes around the effects show that they are precisely estimated.31
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Figure 12.7 Component-plus-residual plots for age [panels (a) and (b)] and education [panels (c)
and (d)] in the respecified model fit to the SLID data. In panels (a) and (c), partial
residuals for age and education are plotted against the corresponding explanatory
variable, with the component for the explanatory variable graphed as a solid line. In
panels (b) and (d), the partial residuals are plotted against each component, and the
solid line is a least-squares line. In all four panels, the broken line represents a low-
ess smooth with a span of 0.4.

31I could have shown an effect display for sex as well, but this effect is readily ascertained directly from the coefficient:
Holding age and education constant, men earn on average 20:319 5 ¼ 1:248 times as much as (i.e., 25% more than)
women.
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12.3.2 Component-Plus-Residual Plots for Models With
Interactions

Traditionally, component-plus-residual plots are applied to additive terms in a linear model,
but these displays can be adapted to models with interactions. Suppose, for example, that we
augment the SLID regression model with interactions between sex and age and between sex
and education, retaining (at least tentatively) the quadratic specification of the age effect and
the square of education. Estimated coefficients and standard errors for the new model are in
Table 12.1. The R2 for this model is :4029. The two interactions are highly statistically signifi-
cant by incremental F-tests: For the interaction of sex with age, we have F0 ¼ 31:33, with 2
and 3989 degrees of freedom, for which p+ :0001, and for the interaction of sex with educa-
tion, we have F0 ¼ 28:26 with 1 and 3989 degrees of freedom, for which p+ :0001 as well.32
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Figure 12.8 Effect displays for age and education in the model in Equation 12.7 (page 310). The
lighter lines give 95% pointwise confidence envelopes around the fits.

Table 12.1 Coefficients for the Regression of Log
Wages on Sex, Age, Education and the
Interactions Between Sex and Age and
Between Sex and Education

Coefficient Estimate Standard Error

Constant 0.8607 0.1155
Male "0.3133 0.1641
Age 0.1024 0.0064
Age2 "0.001072 0.000083
Education2 "0.003230 0.000166
Male · Age "0.03694 0.00910
Male · Age2 "0.0003392 0.0001171
Male · Education2 "0.001198 0.000225

32The latter test could be computed from the t-value obtained by dividing the Male · Education2 coefficient by its stan-
dard error.
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The complex structure of the model makes it difficult to interpret directly from the coeffi-
cients: For example, the coefficient for the sex dummy variable is the log-income advantage of
men at age 0 and education 0. Effect displays for the high-order terms in the model, shown in
Figure 12.9, are straightforward, however: At average education, men’s and women’s average
income is similar at the lowest ages, but men’s income initially rises more rapidly and then
falls off more rapidly at the highest ages. Likewise, at average age, men’s income advantage is
greatest at the lowest levels of education and the advantage declines, while average income
itself rises as education goes up.

To construct component-plus-residual plots for this model, we can divide the data by sex
and, for each sex, plot partial residuals against the partial fit. The results, shown in
Figures 12.10 and 12.11, suggest that the model fits the data adequately (although the quadratic
specification for age may exaggerate the decline in income at the highest ages).

It is straightforward to extend component-plus-residual plots to three dimensions by forming
partial residuals for two quantitative explanatory variables simultaneously and plotting the par-
tial residuals against these X s. A 3D component-plus-residual plot can reveal not only nonli-
nearity in the partial relationship of Y to each of two X s but also unmodeled interaction
between the X s.33 An alternative is to ‘‘slice’’ the data by one X and then to represent two X s
simultaneously in a sequence of two-dimensional scatterplots, allocating partial residuals to the
slice to which they are closest and plotting against the unsliced X . This approach can be gener-
alized to more than two X s simultaneously.34

12.3.3 When Do Component-Plus-Residual Plots Work?

Circumstances under which regression plots, including component-plus-residual plots, are
informative about the structure of data have been extensively studied.35 It is unreasonable to
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Figure 12.9 Effect displays for (a) the interaction between sex and age and (b) the interaction
between sex and education, in the model summarized in Table 12.1.

33See Cook (1998) and Cook and Weisberg (1994, 1999).
34This approach is implemented by Sanford Weisberg and me in the effects package for the R statistical computing
environment.
35Much of this work is due to Cook and his colleagues; see, in particular, Cook (1993), on which the current section is
based, and Cook (1994). Cook and Weisberg (1994, 1999) provide accessible summaries.
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expect that lower-dimensional displays can always uncover structure in a higher-dimensional
problem. We may, for example, discern an interaction between two explanatory variables in a
three-dimensional scatterplot, but it is not possible to do so in two separate two-dimensional
plots, one for each explanatory variable.

It is important, therefore, to understand when graphical displays work and why they some-
times fail: First, understanding the circumstances under which a plot is effective may help us
to produce those circumstances. Second, understanding why plots succeed and why they fail
may help us to construct more effective displays. Both of these aspects will be developed
below.
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Figure 12.10 Component-plus-residual plots for the sex-by-age interaction. The solid lines give
the partial fit (i.e., the component), while the broken lines are for a lowess smooth
with a span of 0.4.
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Figure 12.11 Component-plus-residual plots for the sex-by-education interaction.
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To provide a point of departure for this discussion, imagine that the following model accu-
rately describes the data:

Yi ¼ αþ f ðXi1Þ þ β2Xi2 þ * * * þ βkXik þ εi ð12:11Þ

That is, the partial relationship between Y and X1 is (potentially) nonlinear, characterized by
the function f ðX1Þ, while the other explanatory variables, X2; . . . ;Xk , enter the model linearly.

We do not know in advance the shape of the function f ðX1Þ and indeed do not know that
the partial relationship between Y and X1 is nonlinear. Instead of fitting the true model
(Equation 12.11) to the data, therefore, we fit the ‘‘working model’’:

Yi ¼ α0 þ β01Xi1 þ β02Xi2 þ * * * þ β0kXik þ ε0i

The primes indicate that the estimated coefficients for this model do not, in general, estimate
the corresponding parameters of the true model (Equation 12.11), nor is the ‘‘error’’ of the
working model the same as the error of the true model.

Suppose, now, that we construct a component-plus-residual plot for X1 in the working
model. The partial residuals estimate

ε
ð1Þ
i ¼ β01Xi1 þ ε0i ð12:12Þ

What we would really like to estimate, however, is f ðXi1Þ þ εi, which, apart from random
error, will tell us the partial relationship between Y and X1. Cook (1993) shows that
ε
ð1Þ
i ¼ f ðXi1Þ þ εi, as desired, under either of two circumstances:

1. The function f ðX1Þ is linear after all, in which case the population analogs of the partial
residuals in Equation 12.12 are appropriately linearly related to X1.

2. The other explanatory variables X2; . . . ;Xk are each linearly related to X1. That is,

EðXijÞ ¼ αj1 þ βj1Xi1 for j ¼ 2; . . . ; k ð12:13Þ

If, in contrast, there are nonlinear relationships between the other X s and X1, then
the component-plus-residual plot for X1 may not reflect the true partial regression
f ðX1Þ.36

The second result suggests a practical procedure for improving the chances that component-
plus-residual plots will provide accurate evidence of nonlinearity: If possible, transform the
explanatory variables to linearize the relationships among them (using, e.g., the unconditional
Box-Cox procedure described in Section 4.6). Evidence suggests that weak nonlinearity is not
especially problematic, but strong nonlinear relationships among the explanatory variables can
invalidate the component-plus-residual plot as a useful diagnostic display.37

Mallows (1986) has suggested a variation on the component-plus-residual plot that some-
times reveals nonlinearity more clearly. I will focus on X1, but the spirit of Mallows’s sugges-
tion is to draw a plot for each X in turn. First, construct a working model with a quadratic term
in X1 along with the usual linear term:

36Note that each of the other X s is regressed on X1, not vice versa.
37See Exercise 12.6.
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Yi ¼ α0 þ β01Xi1 þ γ1X 2
i1 þ β02Xi2 þ * * * þ β0kXik þ ε0i

Then, after fitting the working model, form the ‘‘augmented’’ partial residual

E
0ð1Þ
i ¼ E0i þ B01Xi1 þ C1X 2

i1

Note that B01 generally differs from the regression coefficient for X1 in the original model,
which does not include the squared term. Finally, plot E

0ð1Þ versus X1.
The circumstances under which the augmented partial residuals accurately capture the true

partial-regression function f ðX1Þ are closely analogous to the linear case (see Cook, 1993);
either

1. the function f ðX1Þ is a quadratic in X1
38 or

2. the regressions of the other explanatory variables on X1 are quadratic:

EðXijÞ ¼ αj 1 þ βj 1Xi 1 þ γ j 1X 2
i1 for j ¼ 2; . . . ; k ð12:14Þ

This is a potentially useful result if we cannot transform away nonlinearity among the
explanatory variables—as is the case, for example, when the relationships among the
explanatory variables are not monotone.

Mallows’s approach can be generalized to higher-order polynomials.
The premise of this discussion, expressed in Equation 12.11, is that Y is a nonlinear function

of X1 but linearly related to the other X s. In real applications of component-plus-residual plots,
however, it is quite possible that there is more than one nonlinear partial relationship, and we
typically wish to examine each explanatory variable in turn. Suppose, for example, that the
relationship between Y and X1 is linear, that the relationship between Y and X2 is nonlinear,
and that X1 and X2 are correlated. The component-plus-residual plot for X1 can, in this situa-
tion, show apparent nonlinearity—sometimes termed a ‘‘leakage’’ effect. If more than one
component-plus-residual plot shows evidence of nonlinearity, it may, therefore, be advisable to
refit the model and reconstruct the component-plus-residual plots after correcting the most dra-
matic instance of nonlinearity.39

Applied to the SLID regression of log wages on sex, age, and education, Mallows’s augmented
component-plus-residual plots look very much like traditional component-plus-residual plots.40

Simple forms of nonlinearity can often be detected in component-plus-residual plots.
Once detected, nonlinearity can frequently be accommodated by variable transformations
or by altering the form of the model (to include a quadratic term in an explanatory vari-
able, for example). Component-plus-residual plots reliably reflect nonlinearity when
there are not strong nonlinear relationships among the explanatory variables in a
regression.

38This condition covers a linear partial relationship as well—that is where γ1 ¼ 0.
39An iterative formalization of this procedure provides a basis for fitting nonparametric additive regression models, dis-
cussed in Section 18.2.2.
40See Exercise 12.8.
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CERES Plots*

Cook (1993) provides a still more general procedure, which he calls CERES (for
‘‘Combining conditional Expectations and RESiduals’’): Let

bXij ¼ bgj1ðXi1Þ

represent the estimated regression of Xj on X1, for j ¼ 2; . . . ; k. These regressions may be lin-
ear (as in Equation 12.13), quadratic (as in Equation 12.4), or nonparametric. Of course, the
functions bg j1 ðX1Þ will generally be different for different Xjs. Once the regression functions
for the other explanatory variables are found, form the working model

Y i ¼ α
00þ β

00

2 Xi2 þ * * * þ β
00

k Xik þ γ 12
bXi2 þ * * * þ γ 1k

bXik þ ε
00

i

The residuals from this model are then combined with the estimates of the γs,

E
00ð1Þ
i ¼ E

00

i þ C12 bX i2 þ * * * þ C1k bX ik

and plotted against X1.
CERES plots for the SLID regression of log wages on sex, age, and education are very simi-

lar to traditional component-plus-residual plots.41

12.4 Discrete Data

As explained in Chapter 3, discrete explanatory and response variables often lead to plots that
are difficult to interpret, a problem that can be partially rectified by ‘‘jittering’’ the plotted
points.42 A discrete response variable also violates the assumption that the errors in a linear
model are normally distributed. This problem, like that of a limited response variable (i.e., one
that is bounded below or above), is only serious in extreme cases—for example, when there
are very few distinct response values or where a large proportion of the data assumes a small
number of unique values, conditional on the values of the explanatory variables. In these cases,
it is best to use statistical models for categorical response variables.43

Discrete explanatory variables, in contrast, are perfectly consistent with the general linear
model, which makes no distributional assumptions about the X s, other than independence
between the X s and the errors. Indeed, because it partitions the data into groups, a discrete X
(or combination of X s) facilitates straightforward tests of nonlinearity and nonconstant error
variance.

12.4.1 Testing for Nonlinearity (‘‘Lack of Fit’’)

Recall the data on vocabulary and education from the U.S. General Social Survey, intro-
duced in Chapter 3. Years of education in this data set range between 0 and 20. Suppose that
we model the relationship between vocabulary score and education in two ways:

41See Exercise 12.8.
42See Section 3.2.
43See Chapter 14.
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1. Fit a linear regression of vocabulary on education:

Yi ¼ αþ βXi þ εi ð12:15Þ

2. Model education in a one-way ANOVA with a set of dummy regressors. There are 21
distinct values of education, yielding 20 dummy regressors (treating 0 years of educa-
tion as the baseline category):

Yi ¼ α0 þ γ1Di1 þ γ2Di2 þ * * * þ γ20Di;20 þ ε0i ð12:16Þ

Figure 12.12 contrasts these two models visually, showing the mean vocabulary score at each
level of education (corresponding to Equation 12.16) and the least-squares regression line (cor-
responding to Equation 12.15). The area of the points representing the means is proportional to
the number of observations at each educational level.

Contrasting the two models produces a test for nonlinearity because the model in Equation
12.5, specifying a linear relationship between vocabulary and education, is a special case of the
model given in Equation 12.16, which can capture any pattern of relationship between EðY Þ
and X . The resulting incremental F-test for nonlinearity appears in Table 12.2. There is, there-
fore, very strong evidence of a departure from linearity. Nevertheless, the linear regression of
vocabulary on education accounts for almost all the variation among the means: The R2 for the
linear regression is 25; 340=101; 436 ¼ 0:2498, and for the more general one-way ANOVA
(i.e., dummy regression), R2 ¼ 26; 099=101; 436 ¼ 0:2573. In such a large sample, with more
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Figure 12.12 Mean vocabulary score by years of education. The size of the points is proportional
to the number of observations at each educational level. The broken line is for the
least-squares regression of vocabulary on education.
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than 20,000 observations, even this relatively small difference is statistically significant. Small
though it may be, the departure from linearity in Figure 12.12 nevertheless makes some sub-
stantive sense: Discounting the means at very low levels of education where there are little
data, there are small jumps in average vocabulary scores at 12 and 16 years of education—cor-
responding to graduation from high school and university.

The incremental F-test for nonlinearity can easily be extended to a discrete explanatory vari-
able—say X1—in a multiple-regression model. Here, we need to contrast the general model

Yi ¼ α0 þ γ1Di1 þ * * * þ γm"1Di;m"1 þ β2Xi2 þ * * * þ βkXik þ εi
0

with the model specifying a linear effect of X1

Yi ¼ α þ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

where D1; . . . ;Dm"1 are dummy regressors constructed to represent the m distinct values of X1.
Consider, by way of illustration, the additive model that we fit in the previous section to the

SLID data (Equation 12.7 on page 310), regressing log wages on sex, a second-degree polyno-
mial in age, and the square of education. Does this specification adequately capture the shape
of the partial regressions of log wages on age and education? Because both age and education
are discrete, we can fit a model that treats age and education as factors, with 50 and 21 levels,
respectively. We contrast this larger model with two null models: one that treats age as a sec-
ond-order polynomial and the other that includes the square of education, producing the fol-
lowing regression sums of squares and degrees of freedom:

The residual sum of squares for the full model is RSS ¼ 1249:10 on 3,926 degrees of freedom,
and consequently incremental F-tests for lack of fit are

Table 12.2 Analysis of Variance for Vocabulary Test Scores, Showing
the Incremental F-Test for Nonlinearity of the Relationship
Between Vocabulary and Education

Source SS df F p

Education
(Model 12.6) 26,099. 20 374.44 +.0001

Linear
(Model 12.15) 25,340. 1 7270.99 +.0001
Nonlinear
(‘‘lack of fit’’) 759. 19 11.46 +.0001

Error
(‘‘pure error’’) 75,337. 21,617

Total 101,436. 21,637

Model RegSS df

Sex, Age (as factor), Education (as factor) 855.64 70
Sex, Age (as quadratic), Education (as factor) 827.02 23
Sex, Age (as factor), Education2 847.53 51
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Age: F0 ¼

855:64" 827:02

70" 23
1249:10

3926

¼ 1:91; df ¼ 47; 3926; p ¼ :0002

Education : F0 ¼

855:64" 847:53

70" 51
1249:10

3926

¼ 1:34; df ¼ 19; 3926; p ¼ :15

The lack of fit from the specified partial relationship of log wages to age is statistically signifi-
cant, while the lack of fit for education is not. Even in the case of age, however, lack of fit is
substantively small: For the full model R2 ¼ :4065 and for the model treating age as a second-
degree polynomial R2 ¼ :3929. That this difference of about 1% in explained variation is sta-
tistically significant is testimony to the power of the test in a moderately large sample.44

A slightly more elaborate example uses the model for the SLID data in Table 12.1 (in the
previous section, on page 313). This model specifies a regression of log wages on sex, a quad-
ratic for age, and the square of education but also permits interactions between sex and age and
between sex and education. To test for lack of fit, we contrast the following models:

These models, especially the full model in which both age and education are treated as factors,
have many parameters to estimate, but with nearly 4000 observations, we can spend many
degrees of freedom on the model and still have plenty left to estimate the error variance: The
residual sum of squares for the full model is RSS ¼ 1201:64 on 3,858 degrees of freedom.
Incremental F-tests for lack of fit are as follows:

Age (and its interaction with Sex):

F0 ¼

903:10" 858:72

138" 44
1201:64

3858

¼ 1:51; df ¼ 94; 3858; p ¼ :0011

Education (and its interaction with Sex):

F0 ¼

903:10" 893:14

138" 101
1201:64

3858

¼ 0:86; df ¼ 37; 3858; p ¼ :70

Thus, as in the preceding example, there is a small but statistically significant lack of fit
entailed by using a quadratic for age (the R2 for the full model is .4291 versus .4080 for the

Model RegSS df

Sex, Age (as factor), Education (as factor), with interactions 903.10 138
Sex, Age (as quadratic), Education (as factor), with interactions 858.72 44
Sex, Age (as factor), Education2, with interactions 893.14 101

44All alternative to testing for nonlinearity is to use a model-selection criterion that takes the parsimony of the models
into account. Model-selection criteria are discussed in Section 22.1, and I invite the reader to apply, for example, the
AIC and BIC to examples in the current section.
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much more parsimonious model with a quadratic in age), and there is no evidence of lack of fit
using the square of education in the regression.45

Another approach to testing for nonlinearity exploits the fact that a polynomial of degree
m" 1 can perfectly capture the relationship between Y and a discrete X with m categories,
regardless of the specific form of this relationship. We remove one term at a time from the
model

Yi ¼ αþ β1Xi þ β2X 2
i þ * * * þ βm"1X m"1

i þ εi

beginning with X m"1. If the decrement in the regression sum of squares is nonsignificant (by an
incremental F-test on 1 degree of freedom), then we proceed to remove X m"2, and so on.46 This
‘‘step-down’’ approach has the potential advantage of parsimony because we may well require
more than one term (i.e., a linear relationship) but fewer than m" 1 terms (i.e., a relationship of
arbitrary form). High-degree polynomials, however, are usually difficult to interpret.47

12.4.2 Testing for Nonconstant Error Variance

A discrete X (or combination of X s) partitions the data into m groups (as in analysis of var-
iance). Let Yij denote the ith of nj response-variable scores in group j. If the error variance is
constant across groups, then the within-group sample variances

S2
j ¼

Pnj

i¼1 ðYij " Y jÞ
2

nj " 1

should be similar. Tests that examine the S2
j directly, such as Bartlett’s (1937) classic (and

commonly employed) test, do not maintain their validity well when the distribution of the
errors is non-normal.

Many alternative tests have been proposed. In a large-scale simulation study, Conover,
Johnson, and Johnson (1981) found that the following simple F-test (called ‘‘Levene’s test’’) is
both robust and powerful:48 Calculate the values

Zij [ jYij " eY j j

where eYj is the median response-variable value in group j. Then perform a one-way analysis
of variance of the Zij over the m groups. If the error variance is not constant across the groups,
then the group means Zj will tend to differ, producing a large value of the F-test statistic.49

45We could, in principle, go further in testing for lack of fit, specifying a model that divides the data by combinations
of levels of sex, age, and education and comparing this model with our current model for the SLID data. We run into
the ‘‘curse of dimensionality,’’ however (see Section 2.2 and Chapter 18): There are 2 · 50 · 21 ¼ 2100 combinations
of values of the three explanatory variables and ‘‘only’’ about 4,000 observations in the data set.
46As usual, the estimate of error variance in the denominator of these F-tests is taken from the full model with all
m" 1 terms.
47*There is a further, technical difficulty with this procedure: The several powers of X are usually highly correlated,
sometimes to the point that least-squares calculations break down. A solution is to orthogonalize the power regressors
prior to fitting the model. See the discussion of polynomial regression in Section 17.1.
48An alternative, less robust, version of Levene’s test uses deviations from the group means rather than from the group
medians.
49This test ironically exploits the robustness of the validity of the F-test in one-way ANOVA. (The irony lies in the
common use of tests of constant variance as a preliminary to tests of differences in means.)
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For the vocabulary data, for example, where education partitions the 21,638 observations
into m ¼ 21 groups, this test gives F0 ¼ 4:26, with 20 and 21,617 degrees of freedom, for
which p+ :0001. There is, therefore, strong evidence of nonconstant spread in vocabulary
across the categories of education, though, as revealed in Figure 12.13, the within-group stan-
dard deviations are not very different (discounting the small numbers of individuals with very
low levels of education).50

Discrete explanatory variables divide the data into groups. A simple incremental F-test
for nonlinearity compares the sum of squares accounted for by the linear regression of Y
on X with the sum of squares accounted for by differences in the group means.
Likewise, tests of nonconstant variance can be based on comparisons of spread in the
different groups.

12.5 Maximum-Likelihood Methods*

A statistically sophisticated approach to selecting a transformation of Y or an X is to embed
the usual linear model in a more general nonlinear model that contains a parameter for the
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Figure 12.13 Standard deviation of vocabulary scores by education. The relative size of the
points is proportional to the number of respondents at each level of education.

50The tendency of the standard deviations to decline slightly with increasing education is likely due to a ‘‘ceiling’’
effect—at higher levels of education, the vocabulary scores push toward the upper boundary of 10.
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transformation. If several variables are potentially to be transformed, or if the transformation is
complex, then there may be several such parameters.51

Suppose that the transformation is indexed by a single parameter λ (e.g., the power transfor-
mation Y ! Y λ) and that we can write down the likelihood for the model as a function of the
transformation parameter and the usual regression parameters: Lðλ;α; β1; . . . ; βk ; σ

2
εÞ.

52

Maximizing the likelihood yields the maximum-likelihood estimate of λ along with the MLEs
of the other parameters. Now suppose that λ ¼ λ0 represents no transformation (e.g., λ0 ¼ 1
for the power transformation Y λ). A likelihood-ratio test, Wald test, or score test of H0: λ ¼ λ0

assesses the evidence that a transformation is required.
A disadvantage of the likelihood-ratio and Wald tests in this context is that they require find-

ing the MLE, which usually necessitates iteration (i.e., a repetitive process of successively
closer approximations). In contrast, the slope of the log-likelihood at λ0—on which the score
test depends—generally can be assessed or approximated without iteration and therefore is
faster to compute.

Often, the score test can be formulated as the t-statistic for a new regressor, called a con-
structed variable, to be added to the linear model. An added-variable plot for the constructed
variable then can reveal whether one or a small group of observations is unduly influential in
determining the transformation or, alternatively, whether evidence for the transformation is
spread throughout the data.

12.5.1 Box-Cox Transformation of Y

Box and Cox (1964) suggested a power transformation of Y with the object of normalizing
the error distribution, stabilizing the error variance, and straightening the relationship of Y to
the X s.53 The general Box-Cox model is

Y ðλÞi ¼ αþ β1Xi1 þ * * * þ βkXik þ εi

where the errors εi are independently Nð0; σ2
εÞ, and

Y ðλÞi ¼
Y λ

i " 1

λ
for λ 6¼ 0

loge Yi for λ ¼ 0

(

For the Box-Cox transformation to make sense, all the Yi must be positive.54

For a particular choice of λ, the conditional maximized log-likelihood is55

51Models of this type are fundamentally nonlinear and can be treated by the general methods of Chapter 17 as well as
by the methods described in the present section.
52See online Appendix D for a general introduction to maximum-likelihood estimation.
53Subsequent work (Hernandez & Johnson, 1980) showed that Box and Cox’s method principally serves to normalize
the error distribution.
54Strictly speaking, the requirement that the Yi are positive precludes the possibility that they are normally distributed
(because the normal distribution is unbounded), but this is not a serious practical difficulty unless many Y values stack
up near 0. If there are 0 or negative values of Y , we can use a start to make all the Y -values positive, or we can use the
Yeo-Johnson family of modified power transformations described in Exercise 4.4.
55See Exercise 12.9. Equation 12.17 is not technically a log-likelihood because if the distribution of Y λ is normal for
some particular value (say, λ0) of λ, it is not normal for other values of λ 6¼ λ0. Box and Cox’s method is, therefore,
strictly speaking analogous to maximum likelihood. I am grateful to Sanford Weisberg for pointing this out to me.
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loge Lðα;β1; . . . ;βk ; σ
2
ε jλÞ ¼ "

n
2
ð1þ loge 2πÞ

" n
2

loge bσ2
εðλÞ þ ðλ" 1Þ

Xn

i¼1

loge Yi

ð12:17Þ

where bσ2
εðλÞ ¼

P
E2

i ðλÞ=n and where the EiðλÞ are the residuals from the least-squares regres-
sion of Y ðλÞ on the X s. The least-squares coefficients from this regression are the maximum-
likelihood estimates of α and the βs, conditional on the value of λ.

A simple procedure for finding the maximum-likelihood estimator bλ, then, is to evaluate the
maximized loge L (called the profile log-likelihood) for a range of values of λ, say between "2
and þ2. If this range turns out not to contain the maximum of the log-likelihood, then the
range can be expanded. To test H0: λ ¼ 1, calculate the likelihood-ratio statistic

G2
0 ¼ "2½loge Lðλ ¼ 1Þ " loge Lðλ ¼ bλÞ )

which is asymptotically distributed as χ2 with one degree of freedom under H0.
Alternatively (but equivalently), a 95% confidence interval for λ includes those values for
which

loge LðλÞ > loge Lðλ ¼ bλÞ " 1:92

The number 1.92 comes from 1
2 ·χ2

1; :0 5 ¼ 1
2 · 1:962.

Figure 12.14 shows a plot of the profile log-likelihood against λ for the original SLID
regression of composite hourly wages on sex, age, and education (Equation 12.1 on page 296).
In constructing this graph, I have ‘‘zeroed in’’ on the maximum-likelihood estimate of λ: I
originally plotted the profile log-likelihood over the wider range λ ¼ "2 to λ ¼ 2. The maxi-
mum-likelihood estimate of λ is bλ ¼ 0:09, and a 95% confidence interval, marked out by the
intersection of the line near the top of the graph with the profile log-likelihood, runs from 0.04
to 0.13. Recall that we previously employed a log transformation for these data (i.e., λ ¼ 0) to
make the residual distribution more nearly normal and to stabilize the error variance. Although
λ ¼ 0 is outside the confidence interval, it represents essentially the same transformation of
wages as λ ¼ 0:09 (indeed, the correlation between log wages and wages0:09 is 0.9996). I pre-
fer the log transformation for interpretability.

Atkinson (1985) proposed an approximate score test for the Box-Cox model, based on the
constructed variable

Gi ¼ Yi loge
Yi

eY

$ %
" 1

" #

where eY is the geometric mean of Y :56

eY [ ðY1 · Y2 · * * * · YnÞ1=n

This constructed variable is obtained by a linear approximation to the Box-Cox
transformation Y ðλÞ evaluated at λ ¼ 1. The augmented regression, including the constructed
variable, is then

Yi ¼ α0 þ β01Xi1 þ * * * þ β0kXik þ φGi þ ε0i

56It is more practical to compute the geometric mean as eY ¼ exp½ð
P

loge YiÞ=n).
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The t-test of H0: φ ¼ 0, that is, t0 ¼ bφ=SEðbφÞ, assesses the need for a transformation. The
quantities bφ and SEðbφÞ are obtained from the least-squares regression of Y on X1; . . . ;Xk and G.
An estimate of λ (though not the MLE) is given by eλ ¼ 1" bφ; and the added-variable plot for
the constructed variable G shows influence and leverage on bφ and hence on the choice of λ.

Atkinson’s constructed-variable plot for the SLID regression is shown in Figure 12.15.
Although the trend in the plot is not altogether linear, it appears that evidence for the transfor-
mation of Y is spread generally through the data and does not depend unduly on a small num-
ber of observations. The coefficient of the constructed variable in the regression is bφ ¼ 1:454,
with SEðbφÞ ¼ 0:026, providing overwhelmingly strong evidence of the need to transform Y .
The suggested transformation, eλ ¼ 1" 1:454 ¼ "0:454, is far from the MLE.

12.5.2 Box-Tidwell Transformation of the Xs

Now, consider the model

Yi ¼ αþ β1X γ1
i1 þ * * * þ βkX γk

ik þ εi

where the errors are independently distributed as εi ; Nð0; σ2
εÞ and all the Xij are positive. The

parameters of this model—α, β1; . . . ;βk , γ1; . . . ; γk , and σ2
ε—could be estimated by general

λ
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Figure 12.14 Box-Cox transformations for the SLID regression of wages on sex, age, and educa-
tion. The maximized (profile) log-likelihood is plotted against the transformation
parameter λ. The intersection of the line near the top of the graph with the profile
log-likelihood curve marks off a 95% confidence interval for λ. The maximum of
the log-likelihood corresponds to the MLE of λ.
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nonlinear least squares, but Box and Tidwell (1962) suggest instead a computationally more
efficient procedure that also yields a constructed-variable diagnostic:57

1. Regress Y on X1; . . . ;Xk , obtaining A, B1; . . . ;Bk .
2. Regress Y on X1; . . . ;Xk and the constructed variables X1 loge X1, . . . , Xk loge Xk ,

obtaining A0;B01; . . . ;B0k and D1; . . . ;Dk . Because of the presence of the constructed
variables in this second regression, in general A 6¼ A0 and Bj 6¼ B0j. As in the Box-Cox
model, the constructed variables result from a linear approximation to X

γ j

j evaluated at
γ j ¼ 1.58

3. The constructed variable Xj loge Xj can be used to assess the need for a transformation
of Xj by testing the null hypothesis H0: δj ¼ 0, where δj is the population coefficient of
Xj loge Xj in Step 2. Added-variable plots for the constructed variables are useful for
assessing leverage and influence on the decision to transform the X s.

4. A preliminary estimate of the transformation parameter γ j (not the MLE) is given by

eγ j ¼ 1þ Dj

Bj

Recall that Bj is from the initial (i.e., Step 1) regression (not from Step 2).

This procedure can be iterated through Steps 1, 2, and 4 until the estimates of the transforma-
tion parameters stabilize, yielding the MLEs bγ j.

By way of example, I will work with the SLID regression of log wages on sex, education,
and age. The dummy regressor for sex is not a candidate for transformation, of course, but I
will consider power transformations of age and education. Recall that we were initially
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Figure 12.15 Constructed-variable plot for the Box-Cox transformation of wages in the SLID
regression. The least-squares line is shown on the plot.

57Nonlinear least-squares regression is described in Section 17.4.
58See Exercise 12.10.
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undecided about whether to model the age effect as a quadratic or as a transformation down
the ladder of powers and roots. To make power transformations of age more effective, I use a
negative start of 15 (where age ranges from 16 to 65). As well, there are a few 0 values of edu-
cation, and so I will use a start of 1 for education. Adding constants to the values of age and
education changes the intercept but not the age and education coefficients in the initial
regression.

The coefficients of ðAge "15Þ· logeðAge "15Þ and ðEducation þ1Þ · logeðEducation þ1Þ
in the step-2 augmented model are, respectively, DAge ¼ "0:04699 with SEðDAgeÞ ¼ 0:00231,
and DEducation ¼ 0:05612 with SEðDEducationÞ ¼ 0:01254. Although both score tests are, conse-
quently, statistically significant, there is much stronger evidence of the need to transform age
than education.

The first-step estimates of the transformation parameters are

eγAge ¼ 1þ DAge

BAge
¼ 1þ"0:04699

0:02619
¼ "0:79

eγEducation ¼ 1þ DEducation

BEducation
¼ 1þ 0:05612

0:08061
¼ 1:69

The fully iterated MLEs of the transformation parameters are bγAge ¼ 0:051 and
bγ Education ¼ 1:89—very close to the log transformation of started-age and the square of
education.

Constructed-variable plots for the transformation of age and education, shown in
Figure 12.16, suggest that evidence for the transformation of age is spread throughout the data
but that there are some high-leverage, and hence potentially influential, observations determin-
ing the transformation of education. Accordingly, I proceeded to remove observations for
which the education constructed variable exceeds 1 and found that when I did this, I obtained a
similar estimate of the transformation parameter for education (bγ Education ¼ 2:40).
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Figure 12.16 Constructed-variable plots for the Box-Tidwell transformation of (a) age and (b) edu-
cation in the SLID regression of log wages on sex, age, and education.
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A statistically sophisticated general approach to selecting a transformation of Y or an X
is to embed the linear-regression model in a more general model that contains a para-
meter for the transformation. The Box-Cox procedure selects a power transformation of
Y to normalize the errors. The Box-Tidwell procedure selects power transformations of
the X s to linearize the regression of Y on the X s. In both cases, ‘‘constructed-variable’’
plots help us to decide whether individual observations are unduly influential in deter-
mining the transformation parameters.

12.5.3 Nonconstant Error Variance Revisited

Breusch and Pagan (1979) developed a score test for heteroscedasticity based on the
specification

σ2
i [ V ðεiÞ ¼ gðγ0 þ γ1Zi1 þ * * * þ γpZipÞ

where Z1; . . . ; Zp are known variables and where the function gð*Þ is quite general (and need
not be explicitly specified). The same test was independently derived by Cook and Weisberg
(1983). The score statistic for the hypothesis that the σ2

i are all the same, which is equivalent to
H0: γ1 ¼ * * * ¼ γp ¼ 0, can be formulated as an auxiliary-regression problem.

Let Ui [ E2
i =bσ2

ε, where bσ2
ε ¼

P
E2

i =n is the MLE of the error variance.59

The Ui are a type of standardized squared residuals. Regress U on the Zs:

Ui ¼ η0 þ η1Zi1 þ * * * þ ηpZip þ ωi ð12:18Þ

Breusch and Pagan (1979) show that the score statistic

S2
0 ¼

P
ð bU i " UÞ

2

2

is asymptotically distributed as χ2 with p degrees of freedom under the null hypothesis of con-
stant error variance. Here, the bUi are fitted values from the regression of U on the Zs, and thus
S2

0 is half the regression sum of squares from fitting Equation 12.18.
To apply this result, it is, of course, necessary to select Zs, the choice of which depends on

the suspected pattern of nonconstant error variance. If several patterns are suspected, then sev-
eral score tests can be performed. Employing X1; . . . ;Xk in the auxiliary regression (Equation
12.8), for example, permits detection of a tendency of the error variance to increase with the
values of one or more of the explanatory variables in the main regression.

Likewise, Cook and Weisberg (1983) suggest regressing U on the fitted values from the
main regression (i.e., fitting the auxiliary regression Ui ¼ η0 þ η1

bY i þ ωi), producing a one-
degree-of-freedom score test to detect the common tendency of the error variance to increase
with the level of the response variable. When the error variance follows this pattern, the auxili-
ary regression of U on bY provides a more powerful test than the more general regression of U

59Note the division by n rather than by n" 1 in bσ2
ε. See Section 9.3.3 on maximum-likelihood estimation of the linear

model.
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on the X s. A similar, but more complex, procedure was described by Anscombe (1961), who
suggests correcting detected heteroscedasticity by transforming Y to the Box-Cox power Y ðeλÞ
with eλ ¼ 1" 1

2 bη1Y .
Finally, White (1980) proposed a score test based on a comparison of his heteroscedasticity-

corrected estimator of coefficient sampling variance with the usual estimator of coefficient var-
iance.60 If the two estimators are sufficiently different, then doubt is cast on the assumption of
constant error variance. White’s test can be implemented as an auxiliary regression of the
squared residuals from the main regression, E2

i , on all the X s together with all the squares and
pairwise products of the X s. Thus, for k ¼ 2 explanatory variables in the main regression, we
would fit the model

E2
i ¼ δ0 þ δ1Xi1 þ δ2Xi2 þ δ11X 2

i1 þ δ22X 2
i2 þ δ12Xi1Xi2 þ yi

In general, there will be p ¼ kðk þ 3Þ=2 terms in the auxiliary regression, plus the constant.
The score statistic for testing the null hypothesis of constant error variance is S2

0 ¼ nR2, where
R2 is the squared multiple correlation from the auxiliary regression. Under the null hypothesis,
S2

0 follows an asymptotic χ2 distribution with p degrees of freedom.
Because all these score tests are potentially sensitive to violations of model assumptions

other than constant error variance, it is important, in practice, to supplement the tests with gra-
phical diagnostics, as suggested by Cook and Weisberg (1983). When there are several Zs, a
simple diagnostic is to plot Ui against bU i, the fitted values from the auxiliary regression. We
can also construct added-variable plots for the Zs in the auxiliary regression. When Ui is
regressed on bY i, these plots convey essentially the same information as the plot of studentized
residuals against fitted values proposed in Section 12.2.

Simple score tests are available to determine the need for a transformation and to test for
nonconstant error variance.

Applied to the initial SLID regression of wages on sex, age, and education, an auxiliary regres-
sion of U on bY yields bU ¼ "0:3449þ 0:08652bY , and S2

0 ¼ 567:66=2 ¼ 283:83 on 1 degree
of freedom. There is, consequently, very strong evidence that the error variance increases with
the level of the response variable. The suggested variance-stabilizing transformation using
Anscombe’s rule is eλ ¼ 1" 1

2 ð0:08652Þð15:545Þ ¼ 0:33. Compare this value with those pro-
duced by the Box-Cox model (bλ ¼ 0:09, in Section 12.5.1) and by trial and error or a spread-
level plot (λ ¼ 0, i.e., the log transformation, in Section 12.2).

An auxiliary regression of U on the explanatory variables in the main regression yields
S2

0 ¼ 579:08=2 ¼ 289:54 on k ¼ 3 degrees of freedom and thus also provides strong evidence
against constant error variance. The score statistic for the more general test is not much larger
than that for the regression of U on bY , implying that the pattern of nonconstant error variance
is indeed for the spread of the errors to increase with the level of Y .

To perform White’s test, I regressed the squared residuals from the initial SLID model on
the dummy regressor for sex, age, education, the squares of age and education, and the pair-
wise products of the variables. It does not, of course, make sense to square the dummy

60White’s coefficient-variance estimator is described in Section 12.2.3.

330 Chapter 12. Diagnosing Non-Normality, Nonconstant Error Variance, and Nonlinearity



regressor for sex. The resulting regression produced an R2 of .03989 and thus a score statistic
of S2

0 ¼ 3997 · 0:03989 ¼ 159:5 on p ¼ 8 degrees of freedom, which also provides very
strong evidence of nonconstant error variance.

12.6 Structural Dimension

In discussing the use and potential failure of component-plus-residual plots as a diagnostic for
nonlinearity, I explained that it is unreasonable to expect that a collection of two- or three-
dimensional graphs can, in every instance, adequately capture the dependence of Y on the X s:
The surface representing this dependence lies, after all, in a space of k þ 1 dimensions.
Relying primarily on Cook (1994), I will now briefly consider the geometric notion of dimen-
sion in regression analysis, along with the implications of this notion for diagnosing problems
with regression models that have been fit to data.61 The structural dimension of a regression
problem corresponds to the dimensionality of the smallest subspace of the X s required to repre-
sent the dependency of Y on the X s.

Let us initially suppose that the distribution of Y is completely independent of the explana-
tory variables X1; . . . ;Xk . Then, in Cook and Weisberg’s (1994) terminology, an ‘‘ideal sum-
mary’’ of the data is simply the univariate, unconditional distribution of Y —represented, say,
by the density function pðyÞ. In a sample, we could compute a density estimate, a histogram, or
some other univariate display. In this case, the structural dimension of the data is 0.

Now suppose that Y depends on the X s only through the linear regression

Y ¼ αþ β1X1 þ * * * þ βkXk þ ε

where EðεÞ ¼ 0 and the distribution of the error is independent of the X s. Then the expectation
of Y conditional on the X s is a linear function of the X s:

EðY jx1; . . . ; xkÞ ¼ αþ β1x1 þ * * * þ βkxk

A plot of Y against αþ β1X1 þ * * * þ βkXk , therefore, constitutes an ideal summary of the data.
This two-dimensional plot shows the systematic component of Y in an edge-on view of the
regression hyperplane and also shows the conditional variation of Y around the hyperplane
(i.e., the variation of the errors). Because the subspace spanned by the linear combination
αþ β1X1 þ * * * þ βkXk is one-dimensional, the structural dimension of the data is 1. In a sam-
ple, the ideal summary is a two-dimensional scatterplot of Yi against bY i ¼ Aþ
B1Xi1 þ * * * þ BkXik ; the regression line in this plot is an edge-on view of the fitted least-
squares surface.

The structural dimension of the data can be 1 even if the regression is nonlinear or if the
errors are not identically distributed, as long as the expectation of Y and the distribution of the
errors depend only on a single linear combination of the X s—that is, a subspace of dimension
1. The structural dimension is 1, for example, if

EðY jx1; . . . ; xkÞ ¼ f ðαþ β1x1 þ * * * þ βkxkÞ ð12:19Þ

and

61An extended discussion of structural dimension, at a more elementary level than Cook (1994), may be found in Cook
and Weisberg (1994, 1999).
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V ðY jx1; . . . ; xkÞ ¼ gðαþ β1x1 þ * * * þ βkxkÞ ð12:20Þ

where the mean function f ð*Þ and the variance function gð*Þ, although generally
different functions, depend on the same linear function of the X s. In this case, a plot of Y against
αþ β1X1 þ * * * þ βkXk is still an ideal summary of the data, showing the nonlinear dependency
of the expectation of Y on the X s, along with the pattern of nonconstant error variance.

Similarly, we hope to see these features of the data in a sample plot of Y against bY from the
linear regression of Y on the X s (even though the linear regression does not itself capture the
dependency of Y on the X s). It turns out, however, that the plot of Y against bY can fail to reflect
the mean and variance functions accurately if the X s themselves are not linearly related—even
when the true structural dimension is 1 (i.e., when Equations 12.19 and 12.20 hold).62 This,
then, is another context in which linearly related explanatory variables are desirable.63 Linearly
related explanatory variables are not required here if the true regression is linear—something
that, however, we are typically not in a position to know prior to examining the data.

The structural dimension of a regression is the dimensionality of the smallest subspace of
the explanatory variables required, along with the response variable, to represent the depen-
dence of Y on the X s. When Y is completely independent of the X s, the structural dimen-
sion is 0, and an ideal summary of the data is simply the unconditional distribution of Y .
When the linear-regression model holds—or when the conditional expectation and variance
of Y are functions of a single linear combination of the X s—the structural dimension is 1.

The structural dimension of the data exceeds 1 if Equations 12.19 and 12.20 do not both hold.
If, for example, the mean function depends on one linear combination of the X s,

EðY jx1; . . . ; xkÞ ¼ f ðαþ β1x1 þ * * * þ βkxkÞ

and the variance function on a different linear combination

V ðY jx1; . . . ; xkÞ ¼ gðγ þ δ1x1 þ * * * þ δkxkÞ

then the structural dimension is 2.
Correspondingly, if the mean function depends on two different linear combinations of the

X s, implying interaction among the X s,

EðY jx1; . . . ; xkÞ ¼ f ðαþ β1x1 þ * * * þ βkxk ; γ þ δ1x1 þ * * * þ δkxkÞ

while the errors are independent of the X s, then the structural dimension is also 2. When the
structural dimension is 2, a plot of Y against bY (from the linear regression of Y on the X s) is
necessarily incomplete.

62See Exercise 12.11.
63The requirement of linearity here is, in fact, stronger than pairwise linear relationships among the X s: The regression
of any linear function of the X s on any set of linear functions of the X s must be linear. If the X s are multivariate nor-
mal, then this condition is necessarily satisfied (although it may be satisfied even if the X s are not normal). It is not
possible to check for linearity in this strict sense when there are more than two or three X s, but there is some evidence
that checking pairs—and perhaps triples—of X s is usually sufficient. See Cook and Weisberg (1994). Cf. Section
12.3.3 for the conditions under which component-plus-residual plots are informative.
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These observations are interesting, but their practical import—beyond the advantage of line-
arly related regressors—is unclear: Short of modeling the regression of Y on the X s nonpara-
metrically, we can never be sure that we have captured all the structure of the data in a lower-
dimensional subspace of the explanatory variables.

There is, however, a further result that does have direct practical application: Suppose that
the explanatory variables are linearly related and that there is one-dimensional structure. Then
the inverse regressions of each of the explanatory variables on the response variable have the
following properties:

EðXjjyÞ ¼ µj þ ηjmðyÞ
V ðXjjyÞ » σ2

j þ η2
j vðyÞ

ð12:21Þ

Equation 12.21 has two special features that are useful in checking whether a one-dimensional
structure is reasonable for a set of data:64

1. Most important, the functions mð*Þ and vð*Þ, through which the means and variances of
the X s depend on Y , are the same for all the X s. Consequently, if the scatterplot of X1

against Y shows a linear relationship, for example, then the scatterplots of each of
X2; . . . ;Xk against Y must also show linear relationships. If one of these relationships is
quadratic, in contrast, then the others must be quadratic. Likewise, if the variance of X1

increases linearly with the level of Y , then the variances of the other X s must also be
linearly related to Y . There is only one exception: The constant ηj can be 0, in which
case the mean and variance of the corresponding Xj are unrelated to Y .

2. The constant ηj appears in the formula for the conditional mean of Xj and η2
j in the for-

mula for its conditional variance, placing constraints on the patterns of these relation-
ships. If, for example, the mean of X1 is unrelated to Y , then the variance of X1 should
also be unrelated to Y .

The sample inverse regressions of the X s on Y can be conveniently examined in the first col-
umn of the scatterplot matrix for fY ;X1; . . . ;Xkg. An illustrative application is shown in
Figure 12.17, for the regression of prestige on education, income, and percent women, for the
Canadian occupational prestige data.65 Here, I have log-transformed income and taken the logit
of percent women to make the relationships among the explanatory variables more nearly lin-
ear. The inverse-response plots in the first column of the scatterplot matrix show roughly simi-
lar patterns, as required for a one-dimensional structure.

If the structural dimension is 1, and if the explanatory variables are linearly related to
one another, then the inverse regressions of the explanatory variables on the response
variable all have the same general form.

64Equation 12.21 is the basis for formal dimension-testing methods, such as sliced inverse regression (Duan & Li,
1991) and related techniques. See Cook and Weisberg (1994, 1999) for an introductory treatment of dimension testing
and for additional references.
65This data set was introduced in Chapter 2 and used for an example of multiple regression in Chapter 4.
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Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 12.1. 'Show that the correlation between the least-squares residuals Ei and the
response-variable values Yi is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" R2
p

. [Hint: Use the geometric vector representation of multiple
regression (developed in Chapter 10), examining the plane in which the e; y'; and by ' vectors lie.]
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Figure 12.17 Scatterplot matrix for prestige, log of income, education, and logit of percent
women in the Canadian occupational prestige data. The inverse response plots are
in the first column of the scatterplot matrix. In each panel, the solid line is for a
lowess smooth with span 3/4, while the broken line is the least-squares line.
Kernel-density estimates are given on the diagonal, with the rug-plot at the bottom
of each diagonal panel showing the location of the observations.
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Exercise 12.2. Nonconstant variance and specification error: Generate 100 observations
according to the following model:

Y ¼ 10þ ð1 · X Þ þ ð1 · DÞ þ ð2 · X · DÞ þ ε

where ε; Nð0; 102Þ; the values of X are 1; 2; . . . ; 50; 1; 2; . . . ; 50; the first 50 values of D are
0; and the last 50 values of D are 1. Then regress Y on X alone (i.e., omitting D and XD),
Y ¼ Aþ BX þ E. Plot the residuals E from this regression against the fitted values bY . Is the
variance of the residuals constant? How do you account for the pattern in the plot?

Exercise 12.3. 'Weighted-least-squares estimation: Suppose that the errors from the linear
regression model y ¼ Xflþ " are independent and normally distributed, but with different var-
iances, εi ; Nð0; σ2

i Þ, and that σ2
i ¼ σ2

ε=w2
i . Show that:

(a) The likelihood for the model is

Lðfl; σ2
εÞ ¼

1

ð2πÞn=2jSj1=2
exp " 1

2
ðy" XflÞ

0
Sðy" XflÞ

" #

where

S ¼ σ2
ε · diagf1=w2

1; . . . ; 1=w2
ng[ σ2

εW"1

(b) The maximum-likelihood estimators of fl and σ2
ε are

bfl ¼ ðX0WXÞ"1X0Wy

bσ2
ε ¼

P
ðEi=wiÞ2

n

where e ¼ fEig ¼ y" Xbfl.

(c) The MLE is equivalent to minimizing the weighted sum of squares
P

w2
i E2

i .
(d) The estimated asymptotic covariance matrix of bfl is given by

bVðbβÞ ¼ bσ2
εðX

0WXÞ"1

Exercise 12.4. 'Show that when the covariance matrix of the errors is

S ¼ σ2
ε · diagf1=W 2

1 ; . . . ; 1=W 2
n g[ σ2

εW
"1

the weighted-least-squares estimator

bfl ¼ ðX0WXÞ"1X0Wy

¼ My

is the minimum-variance linear unbiased estimator of fl (Hint: Adapt the proof of the Gauss-
Markov theorem for OLS estimation given in Section 9.3.2.)

Exercise 12.5. 'The impact of nonconstant error variance on OLS estimation: Suppose that
Yi ¼ αþ βxi þ εi, with independent errors, εi ; Nð0; σ2

i Þ, and σi ¼ σεxi. Let B represent the
OLS estimator and bβ the WLS estimator of β.
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(a) Show that the sampling variance of the OLS estimator is

V ðBÞ ¼
P
ðXi " X Þ2σ2

i
P
ðXi " X Þ2

h i2

and that the sampling variance of the WLS estimator is

V ðbβÞ ¼ σ2
εP

w2
i ðXi " eX Þ

2

where eX [ ð
P

w2
i XiÞ=ð

P
w2

i Þ. (Hint: Write each slope estimator as a linear function
of the Yi.)

(b) Now suppose that x is uniformly distributed over the interval ½x0; ax0), where x0 > 0
and a > 0, so that a is the ratio of the largest to the smallest σi. The efficiency of the
OLS estimator relative to the optimal WLS estimator is V ðbβ Þ=V ðBÞ, and the relative
precision of the OLS estimator is the square root of this ratio, that is, SDðbβ Þ=SDðBÞ.
Calculate the relative precision of the OLS estimator for all combinations of a ¼ 2, 3,
5, 10 and n ¼ 5, 10, 20, 50, 100. For example, when a ¼ 3 and n ¼ 10, you can take
the x-values as 1, 1.222, 1:444; . . . ; 2:778, 3. Under what circumstances is the OLS
estimator much less precise than the WLS estimator?

(c) The usual variance estimate for the OLS slope (assuming constant error variance) is

bV ðBÞ ¼ S2
EP

ðXi " X Þ2

where S2
E ¼

P
E2

i =ðn" 2Þ. Kmenta (1986, Section 8.2) shows that the expectation of
this variance estimator (under nonconstant error variance σ2

i ) is

E½bV ðBÞ) ¼ σ2

P
ðXi " X Þ2

"
P
ðXi " X Þ2ðσ2

i " σ2Þ
ðn" 2Þ½

P
ðXi " X Þ2)2

where σ2 [
P

σ2
i =n. (*Prove this result.) Kmenta also shows that the true variance of

the OLS slope estimator, V ðBÞ [derived in part (a)], is generally different from

E½bV ðBÞ). If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½bV ðBÞ)=V ðBÞ

q
is substantially below 1, then the usual formula for the

standard deviation of B will lead us to believe that the OLS estimator is more precise

than it really is. Calculate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½bV ðBÞ)=V ðBÞ

q
under the conditions of part (b), for a ¼ 5,

10, 20, 50 and n ¼ 5, 10, 20, 50, 100. What do you conclude about the robustness of
validity of OLS inference with respect to nonconstant error variance?

Exercise 12.6. Experimenting with component-plus-residual plots: Generate random samples
of 100 observations according to each of the following schemes. In each case, construct the
component-plus-residual plots for X1 and X2. Do these plots accurately capture the partial rela-
tionships between Y and each of X1 and X2? Whenever they appear, ε and δ are Nð0; 1Þ and
independent of each other and of the other variables.
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(a) Independent X s and a linear regression: X1 and X2 independent and uniformly distribu-
ted on the interval ½0; 1); Y ¼ X1 þ X2 þ 0:1ε.

(b) Linearly related X s and a linear regression: X1 uniformly distributed on the interval
½0; 1); X2 ¼ X1 þ 0:1δ; Y ¼ X1 þ X2 þ 0:1ε.

(c) Independent X s and a nonlinear regression on one X : X1 and X2 independent and uni-
formly distributed on the interval ½0; 1); Y ¼ 2ðX1 " 0:5Þ2 þ X2 þ 0:1ε.

(d) Linearly related X s and a nonlinear regression on one X : X1 uniformly distributed on
the interval ½0; 1); X2 ¼ X1 þ 0:1δ; Y ¼ 2ðX1 " 0:5Þ2 þ X2 þ 0:1ε. (Note the ‘‘leak-
age’’ here from X1 to X2.)

(e) Nonlinearly related X s and a linear regression: X1 uniformly distributed on the interval
½0; 1); X2 ¼ jX1 " 0:5j; Y ¼ X1 þ X2 þ 0:02ε.

(f) Nonlinearly related X s and a linear regression on one X : X1 uniformly distributed on
the interval ½0; 1); X2 ¼ jX1 " 0:5j; Y ¼ 2ðX1 " 0:5Þ2 þ X2 þ 0:02ε. (Note how strong
a nonlinear relationship between the X s and how small an error variance in the regres-
sion are required for the effects in this example to be noticeable.)

Exercise 12.7. Consider an alternative analysis of the SLID data in which log wages is
regressed on sex, transformed education, and transformed age—that is, try to straighten the
relationship between log wages and age by a transformation rather than by a quadratic regres-
sion. How successful is this approach? (Hint: Use a negative start, say age "15, prior to trans-
forming age.)

Exercise 12.8. Apply Mallows’s procedure to construct augmented component-plus-residual
plots for the SLID regression of log wages on sex, age, and education. *Then apply Cook’s
CERES procedure to this regression. Compare the results of these two procedures with each
other and with the ordinary component-plus-residual plots in Figure 12.6. Do the more com-
plex procedures give clearer indications of nonlinearity in this case?

Exercise 12.9. 'Box-Cox transformations of Y : In matrix form, the Box-Cox regression model
given in Section 12.5.1 can be written as

yðλÞ ¼ Xfl þ "

(a) Show that the probability density for the observations is given by

pðyÞ ¼ 1

ð2πσ2
εÞ

n=2
exp "

Pn
i¼1 ðY

ðλÞ
i " x0iflÞ

2

2σ2
ε

" #
Yn

i¼ 1

Y λ"1
i

where x0i is the ith row of X. (Hint: Y λ"1
i is the Jacobian of the transformation from Yi

to εi.)
(b) For a given value of λ, the conditional maximum-likelihood estimator of fl is the

least-squares estimator

bλ ¼ ðX0XÞ"1X0yðλÞ

(Why?) Show that the maximized log-likelihood can be written as
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loge Lðα;β1; . . . ;βk ; σ
2
ε jλÞ

¼ " n
2
ð1þ loge 2πÞ " n

2
loge bσ2

εðλÞ þ ðλ" 1Þ
Xn

i¼1

loge Yi

as stated in the text.

Recall from footnote 55 (page 324) that the distribution of Y λ cannot really be normal for
more than one value of λ.

Exercise 12.10. 'Box-Tidwell transformations of the X s: Recall the Box-Tidwell model

Yi ¼ αþ β1X γ1
i1 þ * * * þ βkX γk

ik þ εi

and focus on the first regressor, X1. Show that the first-order Taylor-series approximation for
X γ1

1 at γ1 ¼ 1 is

X γ1
1 » X1 þ ðγ1 " 1ÞX1 loge X1

providing the basis for the constructed variable X1 loge X1.

Exercise 12.11. 'Experimenting with structural dimension: Generate random samples of 100
observations according to each of the following schemes. In each case, fit the linear regression
of Y on X1 and X2, and plot the values of Y against the resulting fitted values bY . Do these plots
accurately capture the dependence of Y on X1 and X2? To decide this question in each case, it
may help (1) to draw graphs of EðY jx1; x2Þ ¼ f ðαþ β1x1 þ β2x2Þ and V ðY jx1; x2Þ ¼
gðαþ β1x1 þ β2x2Þ over the observed range of values for αþ β1X1 þ β2X2 and (2) to plot a
nonparametric-regression smooth in the plot of Y against bY . Whenever they appear, ε and δ

are Nð0; 1Þ and independent of each other and of the other variables.

(a) Independent X s, a linear regression, and constant error variance: X1 and X2 indepen-
dent and uniformly distributed on the interval ½0; 1); EðY jx1; x2Þ ¼ x1 þ x2;
V ðY jx1; x2Þ ¼ 0:1ε.

(b) Independent X s, mean and variance of Y dependent on the same linear function of the
X s: X1 and X2 independent and uniformly distributed on the interval ½0; 1);
EðY jx1; x2Þ ¼ ðx1 þ x2 " 1Þ2; V ðY jx1; x2Þ ¼ 0:1 · jx1 þ x2 " 1j · ε.

(c) Linearly related X s, mean and variance of Y dependent on the same linear function of
the X s: X1 uniformly distributed on the interval ½0; 1); X2 ¼ X1 þ 0:1δ;
EðY jx1; x2Þ ¼ ðx1 þ x2 " 1Þ2; V ðY jx1; x2Þ ¼ 0:1 · jx1 þ x2 " 1j · ε.

(d) Nonlinearly related X s, mean and variance of Y dependent on the same linear function
of the X s: X1 uniformly distributed on the interval ½0; 1); X2 ¼ jX1 " 0:5j;
EðY jx1; x2Þ ¼ ðx1 þ x2 " 1Þ2; V ðY jx1; x2Þ ¼ 0:1 · jx1 þ x2 " 1j · ε.

Summary

& Heavy-tailed errors threaten the efficiency of least-squares estimation; skewed and mul-
timodal errors compromise the interpretation of the least-squares fit. Non-normality can
often be detected by examining the distribution of the least-squares residuals and fre-
quently can be corrected by transforming the data.
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& It is common for the variance of the errors to increase with the level of the response
variable. This pattern of nonconstant error variance (‘‘heteroscedasticity’’) can often be
detected in a plot of residuals against fitted values. Strategies for dealing with noncon-
stant error variance include transformation of the response variable to stabilize the var-
iance, the substitution of weighted-least-squares estimation for ordinary least squares,
and the correction of coefficient standard errors for heteroscedasticity. A rough rule is
that nonconstant error variance seriously degrades the least-squares estimator only when
the ratio of the largest to smallest variance is about 10 or more (or, more conservatively,
about 4 or more).

& Simple forms of nonlinearity can often be detected in component-plus-residual plots.
Once detected, nonlinearity can frequently be accommodated by variable transforma-
tions or by altering the form of the model (to include a quadratic term in an explanatory
variable, for example). Component-plus-residual plots reliably reflect nonlinearity when
there are not strong nonlinear relationships among the explanatory variables in a regres-
sion. More complex versions of these displays, such as augmented component-plus-resi-
dual plots and CERES plots, are more robust.

& Discrete explanatory variables divide the data into groups. A simple incremental F-test
for nonlinearity compares the sum of squares accounted for by the linear regression of Y
on X with the sum of squares accounted for by differences in the group means.
Likewise, tests of nonconstant variance can be based on comparisons of spread in the
different groups.

& A statistically sophisticated general approach to selecting a transformation of Y or an X
is to embed the linear-regression model in a more general model that contains a para-
meter for the transformation. The Box-Cox procedure selects a power transformation of
Y to normalize the errors. The Box-Tidwell procedure selects power transformations of
the X s to linearize the regression of Y on the X s. In both cases, ‘‘constructed-variable’’
plots help us to decide whether individual observations are unduly influential in deter-
mining the transformation parameters.

& Simple score tests are available to determine the need for a transformation and to test for
nonconstant error variance.

& The structural dimension of a regression is the dimensionality of the smallest subspace
of the explanatory variables required, along with the response variable, to represent the
dependence of Y on the X s. When Y is completely independent of the X s, the structural
dimension is 0, and an ideal summary of the data is simply the unconditional distribu-
tion of Y . When the linear-regression model holds—or when the conditional expectation
and variance of Y are functions of a single linear combination of the X s—the structural
dimension is 1. If the structural dimension is 1, and if the explanatory variables are line-
arly related to one another, then the inverse regressions of the explanatory variables on
the response variable all have the same general form.

Recommended Reading

Methods for diagnosing problems in regression analysis and for visualizing regression data
have been the subject of a great deal of research in statistics. The following texts summarize
the state of the art and include extensive references to the journal literature.

Recommended Reading 339



& Cook and Weisberg (1994, 1999) present a lucid and accessible treatment of many of
the topics discussed in this chapter. They also describe a freely available computer pro-
gram written in Lisp-Stat, called Arc, that implements the graphical methods presented
in their books (and much more). See Cook (1998) for a more advanced treatment of
much the same material. Also see Weisberg (2014) for an accessible account of these
methods.

& Cleveland (1993) describes novel graphical methods for regression data, including two-
dimensional, three-dimensional, and higher-dimensional displays.

& Atkinson (1985) has written an interesting, if somewhat idiosyncratic, book that stresses
the author’s important contributions to regression diagnostics. There is, therefore, an
emphasis on diagnostics that yield constructed-variable plots. This text includes a strong
treatment of transformations and a discussion of the extension of least-squares diagnos-
tics to generalized linear models (e.g., logistic regression, as described in Chapters 14
and 1566).

66See, in particular, Section 15.4.
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13 Collinearity
and Its Purported

Remedies

A s I have explained, when there is a perfect linear relationship among the regressors in a
linear model, the least-squares coefficients are not uniquely defined.1 A strong, but less-

than-perfect, linear relationship among the X s causes the least-squares coefficients to be
unstable: Coefficient standard errors are large, reflecting the imprecision of estimation of the
βs; consequently, confidence intervals for the βs are broad, and hypothesis tests have low
power. Small changes in the data—even, in extreme cases, due to rounding errors—can greatly
alter the least-squares coefficients, and relatively large changes in the coefficients from the
least-squares values hardly increase the sum of squared residuals from its minimum (i.e., the
least-squares coefficients are not sharply defined).

This chapter describes methods for detecting collinearity and techniques that are often
employed for dealing with collinearity when it is present. I would like to make three important
points at the outset, however:

1. Except in certain specific contexts—such as time-series regression2 or regression with
aggregated data—collinearity is a comparatively rare problem in social science applica-
tions of linear models. Insufficient variation in explanatory variables, small samples,
and large error variance (i.e., weak relationships) are much more frequently the source
of imprecision in estimation.

2. Methods that are commonly employed as cures for collinearity—in particular, biased
estimation and variable selection—can easily be worse than the disease. A principal
goal of this chapter is to explain the substantial limitations of this statistical snake oil.

3. It is not at all obvious that the detection of collinearity in data has practical implica-
tions. There are, as mentioned in Point 1, several sources of imprecision in estimation,
which can augment or partially offset each other. The standard errors of the regression
coefficients are the ‘‘bottom line’’: If the coefficient estimates are sufficiently precise,
then the degree of collinearity is irrelevant; if the estimated coefficients are insufficiently
precise, then knowing that the culprit is collinearity is of use only if the study can be
redesigned to decrease the correlations among the X s. In observational studies, where
the X s are sampled along with Y , it is usually impossible to influence their correlational

1See Sections 5.2 and 9.2.
2See the example developed below. Chapter 16 describes methods for time-series regression that take account of depen-
dence among the errors.
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structure, but it may very well be possible to improve the precision of estimation by
increasing the sample size or by decreasing the error variance.3

13.1 Detecting Collinearity

We have encountered the notion of collinearity at several points, and it is therefore useful to
summarize what we know:

! When there is a perfect linear relationship among the X s,

c1Xi1 þ c2Xi2 þ # # # þ ckXik ¼ c0

where the constants c1; c2; . . . ; ck are not all 0,

1. the least-squares normal equations do not have a unique solution, and
2. the sampling variances of the regression coefficients are infinite.

Perfect collinearity is usually the product of some error in formulating the linear model,
such as failing to employ a baseline category in dummy regression.
*Points 1 and 2 follow from the observation that the matrix X0X of sums of squares and
products is singular. Moreover, because the columns of X are perfectly collinear, the
regressor subspace is of deficient dimension.

! When collinearity is less than perfect:

1. The sampling variance of the least-squares slope coefficient Bj is

V ðBjÞ ¼
1

1' R2
j

·
σ2
ε

ðn' 1ÞS2
j

where R2
j is the squared multiple correlation for the regression of Xj on the other

X s, and S2
j ¼

P
ðXij ' X jÞ2=ðn' 1Þ is the variance of Xj. The term 1=ð1' R2

j Þ,
called the variance-inflation factor (VIF), directly and straightforwardly indicates
the impact of collinearity on the precision of Bj. Because the precision of estimation
of βj is most naturally expressed as the width of the confidence interval for this
parameter, and because the width of the confidence interval is proportional to the
standard deviation of Bj (not its variance), I recommend examining the square root
of the VIF in preference to the VIF itself. Figure 13.1 reveals that the linear relation-
ship among the X s must be very strong before collinearity seriously impairs the pre-
cision of estimation: It is not until Rj approaches .9 that the precision of estimation
is halved.

Because of its simplicity and direct interpretation, the VIF (or its square root) is
the basic diagnostic for collinearity. It is not, however, applicable to sets of related

3The error variance can sometimes be decreased by improving the procedures of the study or by introducing additional
explanatory variables. The latter remedy may, however, increase collinearity and may change the nature of the research.
It may be possible, in some contexts, to increase precision by increasing the variation of the X s, but only if their values
are under the control of the researcher, in which case collinearity could also be reduced. Sometimes, however, research-
ers may be able to exert indirect control over the variational and correlational structure of the X s by selecting a research
setting judiciously or by designing an advantageous sampling procedure.

342 Chapter 13. Collinearity and Its Purported Remedies



regressors, such as sets of dummy-variable coefficients, or coefficients for polyno-
mial regressors.4

2. When X1 is strongly collinear with the other regressors, the residuals X ð1Þ from the
regression of X1 on X2; . . . ;Xk show little variation—most of the variation in X1 is
accounted for by its regression on the other X s. The added-variable plot graphs the
residuals from the regression of Y on X2; . . . ;Xk against X ð1Þ, converting the multi-
ple regression into a simple regression.5 Because the explanatory variable in this
plot, X ð1Þ, is nearly invariant, the slope B1 is subject to substantial sampling
variation.6

3. *Confidence intervals for individual regression coefficients are projections of
the confidence interval–generating ellipse. Because this ellipse is the inverse—that
is, the rescaled, 908 rotation—of the data ellipse for the explanatory variables, the
individual confidence intervals for the coefficients are wide. If the correlations
among the X s are positive, however, then there is considerable information in the
data about the sum of the regression coefficients, if not about individual
coefficients.7

0.0 0.2 0.4 0.6 0.8 1.0

Rj
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3
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1

V
IF

j

Figure 13.1 Precision of estimation (square root of the variance-inflation factor) of βj as a func-
tion of the multiple correlation Rj between Xj and the other explanatory variables. It
is not until the multiple correlation gets very large that the precision of estimation is
seriously degraded.

4Section 13.1.2 describes a generalization of variance inflation to sets of related regressors.
5More precisely, the multiple regression is converted into a sequence of simple regressions, for each X in turn. Added-
variable plots are discussed in Section 11.6.1, particularly Figure 11.9 (page 284).
6See Stine (1995) for a nice graphical interpretation of this point.
7See the discussion of joint confidence regions for regression coefficients in Section 9.4.4 and in particular Figure 9.2
(page 223).
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When the regressors in a linear model are perfectly collinear, the least-squares coeffi-
cients are not unique. Strong, but less-than-perfect, collinearity substantially increases
the sampling variances of the least-squares coefficients and can render them useless as
estimators. The variance-inflation factor VIFj ¼ 1=ð1' R2

j Þ indicates the deleterious
impact of collinearity on the precision of the estimate Bj.

Collinearity is sometimes termed multicollinearity, which has the virtue of emphasizing that colli-
near relationships are not limited to strong correlations between pairs of explanatory variables.

Figures 13.2 and 13.3 provide further insight into collinearity, illustrating its effect on esti-
mation when there are two explanatory variables in a regression. The black and gray dots in

X1

X2

X2

X2

X1

Y
Y

Y

X1

(a)

(c)

(b)
Alternative

least-squares
planes

Figure 13.2 The impact of collinearity on the stability of the least-squares regression plane. In (a),
the correlation between X1 and X2 is small, and the regression plane therefore has a
broad base of support. In (b), X1 and X2 are perfectly correlated; the least-squares
plane is not uniquely defined. In (c), there is a strong, but less-than-perfect, linear
relationship between X1 and X2; the least-squares plane is uniquely defined, but it is
not well supported by the data.
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Figure 13.2 represent the data points (the gray dots are below the regression plane), while the
white dots represent fitted values lying in the regression plane; the þs show the projection of
the data points onto the fX1;X2g plane. Figure 13.3 shows the sum of squared residuals as a
function of the slope coefficients B1 and B2. The residual sum of squares is at a minimum, of
course, when the Bs are equal to the least-squares estimates; the vertical axis is scaled so that
the minimum is at the ‘‘floor’’ of the graphs.8

(a) (b)

(c)

B2

B2

B2

B1

B1

B1

RSS RSS

RSS

Figure 13.3 The residual sum of squares as a function of the slope coefficients B1 and B2. In each
graph, the vertical axis is scaled so that the least-squares value of RSS is at the bot-
tom of the axis. When, as in (a), the correlation between the explanatory variables X1

and X2 is small, the residual sum of squares has a well-defined minimum, much like
a deep bowl. When there is a perfect linear relationship between X1 and X2, as in (b),
the residual sum of squares is flat at its minimum, above a line in the {B1, B2} plane:
The least-squares values of B1 and B2 are not unique. When, as in (c), there is a
strong, but less-than-perfect, linear relationship between X1 and X2, the residual sum
of squares is nearly flat at its minimum, so values of B1 and B2 quite different from
the least-squares values are associated with residual sums of squares near the
minimum.

8For each pair of slopes B1 and B2, the intercept A is chosen to make the residual sum of squares as small as possible.
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In Figure 13.2(a), the correlation between the explanatory variables X1 and X2 is slight, as
indicated by the broad scatter of points in the fX1;X2g plane. The least-squares regression
plane, also shown in this figure, therefore has a firm base of support. Correspondingly, Figure
13.3(a) shows that small changes in the regression coefficients are associated with relatively
large increases in the residual sum of squares—the sum-of-squares function is like a deep bowl,
with steep sides and a well-defined minimum.

In Figure 13.2(b), X1 and X2 are perfectly collinear. Because the explanatory-variable obser-
vations form a line in the fX1;X2g plane, the least-squares regression plane, in effect, also
reduces to a line. The plane can tip about this line without changing the residual sum of
squares, as Figure 13.3(b) reveals: The sum-of-squares function is flat at its minimum along a
line defining pairs of values for B1 and B2—rather like a sheet of paper with two corners
raised—and thus there are an infinite number of pairs of coefficients ðB1;B2Þ that yield the
minimum RSS.

Finally, in Figure 13.2(c), the linear relationship between X1 and X2 is strong, although not
perfect. The support afforded to the least-squares plane is tenuous, so that the plane can be
tipped without causing large increases in the residual sum of squares, as is apparent in Figure
13.3(c)—the sum-of-squares function is like a shallow bowl with a nearly flat bottom and
hence a poorly defined minimum.

Illustrative data on Canadian women’s labor force participation in the postwar period, drawn
from B. Fox (1980), are shown in Figure 13.4. These are time-series data, with yearly observa-
tions from 1946 through 1975. Fox was interested in determining how women’s labor force
participation (measured here as the percentage of adult women in the workforce) is related to
several factors indicative of the supply of and demand for women’s labor. The explanatory
variables in the analysis include the total fertility rate (the expected number of births to a
cohort of 1000 women who proceed through their childbearing years at current age-specific
fertility rates), men’s and women’s average weekly wages (expressed in constant 1935 dollars
and adjusted for current tax rates), per-capita consumer debt (also in constant dollars), and the
prevalence of part-time work (measured as the percentage of the active workforce working 34
hours a week or less). Women’s wages, consumer debt, and the prevalence of part-time work
were expected to affect women’s labor force participation positively, while fertility and men’s
wages were expected to have negative effects.

The time-series plots in Figure 13.4 do not bode well for the regression of women’s labor
force participation on the other variables: Several of the explanatory variables evidence strong
linear trends over time and consequently are highly correlated with one another. Moreover, to
control for factors that change regularly with time but are not included explicitly in the regres-
sion model, the author also included time (years, from 1 to 30) as an explanatory variable.9

Correlations among the variables in the data set, including time, are given in Table 13.1; some
of these correlations are very large. As mentioned previously, time-series regression is a
research context in which collinearity problems are common.

9The specification of time as an explanatory variable in a time-series regression is a common (if crude) strategy. As
well, the use of time-series data in regression casts doubt on the assumption that errors from different observations are
independent because the observation for one period is likely to share unmeasured characteristics with observations from
other periods close to it in time. In the present case, however, examination of the least-squares residuals supports the
reasonableness of the assumption of independent errors. Time-series regression is taken up at greater depth in
Chapter 16.
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The plot of the total fertility rate in Figure 13.4(b) also suggests a possible error in the data:
There is an unusual jump in the total fertility rate for 1973. As it turns out, the TFR for this
year was misrecorded as 2931; the correct value is 1931. This correction is reflected in the
analysis reported below.10

The results of a least-squares regression of women’s labor force participation on the several
explanatory variables prove disappointing despite a very large R2 of :9935. Table 13.2 shows
estimated regression coefficients, standard errors, and p-values for the slope coefficients (for
the hypothesis that each coefficient is 0). All the coefficients have the anticipated signs, but
some are small (taking into account their units of measurement, of course), and most have very
large standard errors despite the large multiple correlation.

Square-root variance-inflation factors for the slope coefficients in the model are as follows:

All are large, and most are very large, contributing to the big standard errors that I noted.

13.1.1. Principal Components*

The method of principal components, introduced by Karl Pearson (1901) and Harold
Hotelling (1933), provides a useful representation of the correlational structure of a set of vari-
ables. I will describe the method briefly here, with particular reference to its application to

Table 13.1 Correlations Among the Variables in B. Fox’s Canadian Women’s Labor Force Data

L F M W D P T

Labor-Force
Participation 1.0000

Fertility '.9011 1.0000
Men’s Wages .9595 '.8118 1.0000
Women’s Wages .9674 '.8721 .9830 1.0000
Consumer Debt .9819 '.8696 .9861 .9868 1.0000
Part-Time Work .9504 '.8961 .8533 .8715 .8875 1.0000
Time .9531 '.7786 .9891 .9637 .9805 .8459 1.0000

Fertility Men’s Wages Women’s Wages

3.89 10.67 8.21

Consumer Debt Part-Time Work Time

11.47 2.75 9.75

10This example illustrates once again the importance of examining data prior to their analysis. Apparently, I had not
learned that lesson sufficiently when I used these data in the 1980s.
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collinearity in regression; more complete accounts can be obtained from texts on multivariate
statistics (e.g., Morrison, 2005, chap. 8). Because the material in this section is relatively com-
plex, the section includes a summary; you may, on first reading, wish to pass lightly over most
of the section and refer primarily to the summary and to the two-variable case, which is treated
immediately prior to the summary.11

We begin with the vectors of standardized regressors, z1, z2; . . . ; zk . Because vectors have
length equal to the square root of their sum of squared elements, each zj has length

ffiffiffiffiffiffiffiffiffiffiffi
n' 1
p

. As
we will see, the principal components w1, w2; . . . ;wp provide an orthogonal basis for the
regressor subspace.12 The first principal component, w1, is oriented so as to account for maxi-
mum collective variation in the zjs; the second principal component, w2, is orthogonal to w1

and—under this restriction of orthogonality—is oriented to account for maximum remaining
variation in the zjs; the third component, w3, is orthogonal to w1 and w2; and so on. Each prin-
cipal component is scaled so that its variance is equal to the combined regressor variance for
which it accounts.

There are as many principal components as there are linearly independent regressors:
p [ rankðZX Þ, where ZX [ z1; z2; . . . ; zk½ ). Although the method of principal components is
more general, I will assume throughout most of this discussion that the regressors are not per-
fectly collinear and, consequently, that p ¼ k.

Because the principal components lie in the regressor subspace, each is a linear combination
of the regressors. Thus, the first principal component can be written as

w1
ðn · 1Þ

¼ A11z1 þ A21z2 þ # # # þ Ak1zk

¼ ZX
ðn · kÞ

a1
ðk · 1Þ

The variance of the first component is

S2
W1
¼ 1

n' 1
w01w1 ¼

1

n' 1
a01Z0X ZX a1 ¼ a01RXX a1

where RXX [ ½1=ðn' 1Þ)Z0X ZX is the correlation matrix of the regressors.

Table 13.2 Regression of Women’s Labor Force Participation on Several
Explanatory Variables

Coefficient Estimate Standard Error p

Constant 16.80 3.72
Fertility '0.000001949 0.0005011 .99
Men’s Wages '0.02919 0.1502 .85
Women’s Wages 0.01984 0.1744 .91
Consumer Debt 0.06397 0.01850 .0021
Part-Time Work 0.6566 0.0821 *.0001
Time 0.004452 0.1107 .97

11Online Appendix B on matrices, linear algebra, and vector geometry provides background for this section.
12It is also possible to find principal components of the unstandardized regressors x1, x2; . . . ; xk , but these are not gen-
erally interpretable unless all the X s are measured on the same scale.

13.1 Detecting Collinearity 349



We want to maximize S2
W1

, but, to make maximization meaningful, it is necessary to con-
strain the coefficients a1. In the absence of a constraint, S2

W1
can be made arbitrarily large sim-

ply by picking large coefficients. The normalizing constraint

a01a1 ¼ 1 ð13:1Þ

proves convenient, but any constraint of this general form would do.13

We can maximize S2
W1

subject to the restriction of Equation 13.1 by employing a Lagrange
multiplier L1, defining14

F1 [ a01RXX a1 ' L1ða01a1 ' 1Þ

Then, differentiating this equation with respect to a1 and L1,

∂F1

∂a1
¼ 2RXX a1 ' 2L1a1

∂F1

∂L1
¼ 'ða01a1 ' 1Þ

Setting the partial derivatives to 0 produces the equations

ðRXX ' L1IkÞa1 ¼ 0

a01a1 ¼ 1
ð13:2Þ

The first line of Equations 13.2 has nontrivial solutions for a1 only when ðRXX ' L1IkÞ is sin-
gular—that is, when jRXX ' L1Ik j ¼ 0. The multiplier L1, therefore, is an eigenvalue of RXX ,
and a1 is the corresponding eigenvector, scaled so that a01a1 ¼ 1.

There are, however, k solutions to Equations 13.2, corresponding to the k eigenvalue-eigen-
vector pairs of RXX , so we must decide which solution to choose. From the first line of
Equations 13.2, we have RXX a1 ¼ L1a1. Consequently,

S2
W1
¼ a01RXX a1 ¼ L1a01a1 ¼ L1

Because our purpose is to maximize S2
W1

(subject to the constraint on a1), we must select the
largest eigenvalue of RXX to define the first principal component.

The second principal component is derived similarly, under the further restriction that it is
orthogonal to the first; the third that it is orthogonal to the first two; and so on.15 It turns out
that the second principal component corresponds to the second-largest eigenvalue of RXX , the
third to the third-largest eigenvalue, and so on. We order the eigenvalues of RXX so that16

L1 ‡ L2 ‡ # # # ‡ Lk > 0

The matrix of principal-component coefficients

13Normalizing the coefficients so that a01a1 ¼ 1 causes the variance of the first principal component to be equal to the
combined variance of the standardized regressors accounted for by this component, as will become clear presently.
14See online Appendix C on calculus for an explanation of the method of Lagrange multipliers for constrained
optimization.
15See Exercise 13.1.
16Recall that we are assuming that RXX is of full rank, and hence none of its eigenvalues is 0. It is possible, but
unlikely, that two or more eigenvalues of RXX are equal. In this event, the orientation of the principal components cor-
responding to the equal eigenvalues is not unique, although the subspace spanned by these components—and for which
they constitute a basis—is unique.
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A
ðk · kÞ

[ a1; a2; . . . ; ak½ )

contains normalized eigenvectors of RXX . This matrix is, therefore, orthonormal:
A0A ¼ AA0 ¼ Ik .

The principal components

W
ðn · kÞ

¼ ZX
ðn · kÞ

A
ðk · kÞ

ð13:3Þ

have covariance matrix

1

n' 1
W0W ¼ 1

n' 1
A0Z0X ZX A

¼ A0RXX A ¼ A0AL ¼ L

where L [ diag½L1; L2; . . . ; Lk ) is the diagonal matrix of eigenvalues of RXX ; the covariance
matrix of the principal components is, therefore, orthogonal, as required. Furthermore,

traceðLÞ ¼
Xk

j¼1

Lj ¼ k ¼ traceðRXX Þ

and thus the principal components partition the combined variance of the standardized vari-
ables Z1, Z2; . . . ; Zk .

Solving Equation 13.3 for ZX produces

ZX ¼WA'1 ¼WA0

and, consequently,

RXX ¼
1

n' 1
Z0X ZX ¼

1

n' 1
AW0WA0 ¼ ALA0

Finally,

R'1
XX ¼ ðA

0Þ'1L'1A'1 ¼ AL'1A0 ð13:4Þ

We will use this result presently in our investigation of collinearity.

Two Variables

The vector geometry of principal components is illustrated for two variables in Figure 13.5.
The symmetry of this figure is peculiar to the two-dimensional case. The length of each
principal-component vector is the square root of the sum of squared orthogonal projections of
z1 and z2 on the component. The direction of w1 is chosen to maximize the combined length
of these projections and hence to maximize the length of w1. Because the subspace spanned
by z1 and z2 is two-dimensional, w2 is simply chosen to be orthogonal to w1. Note that

wj

"" ""2 ¼ Ljðn' 1Þ.17

17There is a small subtlety here: The subspace spanned by each component is one-dimensional, and the length of each
component is fixed by the corresponding eigenvalue, but these factors determine the orientation of the component only
up to a rotation of 1808—that is, a change in sign.
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It is clear from the figure that as the correlation between Z1 and Z2 increases, the first princi-
pal component grows at the expense of the second; thus, L1 gets larger and L2 smaller. If, alter-
natively, z1 and z2 are orthogonal, then w1k k ¼ w2k k ¼

ffiffiffiffiffiffiffiffiffiffiffi
n' 1
p

and L1 ¼ L2 ¼ 1.
The algebra of the two-variable case is also quite simple. The eigenvalues of RXX are the

solutions of the characteristic equation

1' L r12

r12 1' L

####

#### ¼ 0

that is,

ð1' LÞ2 ' r2
12 ¼ L2 ' 2Lþ 1' r2

12 ¼ 0

Using the quadratic formula to find the roots of the characteristic equation yields

L1 ¼ 1þ
ffiffiffiffiffiffi
r2

12

q

L2 ¼ 1'
ffiffiffiffiffiffi
r2

12

q
ð13:5Þ

And so, consistent with the geometry of Figure 13.5, as the magnitude of the correlation
between the two variables increases, the variation attributed to the first principal component
also grows. If r12 is positive, then solving for A from the relation RXX A ¼ LA under the
restriction A0A ¼ I2 gives18

A ¼

ffiffiffi
2
p

2

ffiffiffi
2
p

2
ffiffiffi
2
p

2
'

ffiffiffi
2
p

2

2

6664

3

7775 ð13:6Þ

A12w2

A11w1

w2

w1

z1

z2

Figure 13.5 Vector geometry of principal components for two positively correlated standardized
variables z1 and z2.

18Exercise 13.2 derives the solution for r12 < 0.
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The generalization to k standardized regressors is straightforward: If the variables are ortho-
gonal, then all Lj ¼ 1 and all wj

"" "" ¼
ffiffiffiffiffiffiffiffiffiffiffi
n' 1
p

. As collinearities among the variables increase,
some eigenvalues become large while others grow small. Small eigenvalues and the corre-
sponding short principal components represent dimensions along which the regressor subspace
has (nearly) collapsed. Perfect collinearities are associated with eigenvalues of 0.

The Data Ellipsoid

The principal components have an interesting interpretation in terms of the standard data
ellipsoid for the Zs.19 The data ellipsoid is given by the equation

z0R'1
XX z ¼ 1

where z [ ðZ1; . . . ; ZkÞ0 is a vector of values for the k standardized regressors. Because the
variables are standardized, the data ellipsoid is centered at the origin, and the shadow of the
ellipsoid on each axis is of length 2 (i.e., 2 standard deviations). It can be shown that the prin-
cipal components correspond to the principal axes of the data ellipsoid, and, furthermore, that
the half-length of each axis is equal to the square root of the corresponding eigenvalue Lj of
RXX .20 These properties are depicted in Figure 13.6 for k ¼ 2. When the variables are uncorre-
lated, the data ellipse becomes circular, and each axis has a half-length of 1.

1

1

Z1

Z2

Figure 13.6 The principal components for two standardized variables Z1 and Z2 are the principal
axes of the standard data ellipse z0RXX

'1z ¼ 1. The first eigenvalue L1 of RXX gives
the half-length of the major axis of the ellipse; the second eigenvalue L2 gives the
half-length of the minor axis. In this illustration, the two variables are correlated
r12 ¼ .8, so L1 is large and L2 is small.

19The standard data ellipsoid was introduced in Section 9.4.4.
20See Exercise 13.3. These relations also hold for unstandardized variables. That is, the principal components calcu-
lated from the covariance matrix SXX give the principal axes of the standard data ellipsoid ðx' xÞ0S'1

XX ðx' xÞ, and the
half-length of the jth principal axis of this ellipsoid is equal to the square root of the jth eigenvalue of SXX .
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Summary

! The principal components of the k standardized regressors ZX are a new set of k vari-
ables derived from ZX by a linear transformation: W ¼ ZX A, where A is the ðk · kÞ
transformation matrix.

! The transformation A is selected so that the columns of W are orthogonal—that is, the
principal components are uncorrelated. In addition, A is constructed so that the first
component accounts for maximum variance in the Zs, the second for maximum variance
under the constraint that it is orthogonal to the first, and so on. Each principal compo-
nent is scaled so that its variance is equal to the variance in the Zs for which it accounts.
The principal components therefore partition the variance of the Zs.

! The transformation matrix A contains (by columns) normalized eigenvectors of RXX , the
correlation matrix of the regressors. The columns of A are ordered by their correspond-
ing eigenvalues: The first column corresponds to the largest eigenvalue and the last col-
umn to the smallest. The eigenvalue Lj associated with the jth component represents the
collective variation in the Zs attributable to that component.

! If there are perfect collinearities in ZX , then some eigenvalues of RXX will be 0, and
there will be fewer than k principal components, the number of components correspond-
ing to rankðZX Þ ¼ rankðRXX Þ. Near collinearities are associated with small eigenvalues
and correspondingly short principal components.

Principal components can be used to explicate the correlational structure of the explana-
tory variables in regression. The principal components are a derived set of variables that
form an orthogonal basis for the subspace of the standardized X s. The first principal
component spans the one-dimensional subspace that accounts for maximum variation in
the standardized X s. The second principal component accounts for maximum variation
in the standardized X s, under the constraint that it is orthogonal to the first. The other
principal components are similarly defined; unless the X s are perfectly collinear, there
are as many principal components as there are X s. Each principal component is scaled to
have variance equal to the collective variance in the standardized X s for which it
accounts. Collinear relations among the explanatory variables, therefore, correspond to
very short principal components, which represent dimensions along which the regressor
subspace has nearly collapsed.

A principal-components analysis for the explanatory variables in B. Fox’s Canadian
women’s labor force regression is summarized in Table 13.3, which shows the coefficients of
the principal components (i.e., the elements of A), along with the eigenvalues of the correlation
matrix of the explanatory variables and the cumulative percentage of variation in the X s
accounted for by the principal components. The first two principal components account for
almost 98% of the variation in the six explanatory variables.

The principal-components analysis is graphed in Figure 13.7. Here, the variables—including
the two principal components—are standardized to common length, and the variables are
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projected orthogonally onto the subspace spanned by the first two principal components.
Because the first two components account for almost all the variation in the variables, the vec-
tors for the variables lie very close to this subspace. Consequently, the projections of the vec-
tors are almost as long as the vectors themselves, and the cosines of the angles between the
projected vectors closely approximate the correlations between the variables. The projected
vectors for women’s wages and consumer debt are nearly coincident, reflecting the near-perfect
correlation between the two variables.

It is clear that the explanatory variables divide into two subsets: time, men’s wages,
women’s wages, and consumer debt (which are all highly positively correlated) in one subset,
as well as fertility and part-time work (which are strongly negatively correlated) in the other.
Correlations between the two sets of variables are also quite high. In effect, the subspace of the
explanatory variables has collapsed into two dimensions.

Table 13.3 Principal-Components Coefficients for the Explanatory Variables in B. Fox’s
Regression

Principal Component

Variable W1 W2 W3 W4 W5 W6

Fertility 0.3849 0.6676 0.5424 0.2518 '0.1966 '0.0993
Men’s Wages '0.4159 0.3421 '0.0223 0.1571 0.7055 '0.4326
Women’s Wages '0.4196 0.1523 '0.2658 0.7292 '0.2791 0.3472
Consumer Debt '0.4220 0.1591 '0.0975 '0.2757 '0.6188 '0.5728
Part-Time Work '0.3946 '0.4693 0.7746 0.1520 '0.0252 '0.0175
Time '0.4112 0.4106 0.1583 '0.5301 0.0465 0.5951
Eigenvalue 5.5310 0.3288 0.1101 0.0185 0.0071 0.0045
Cumulative percentage 92.18 97.66 99.50 99.81 99.93 100.00

Component 1

Fertility

Men’s Wages
Women’s Wages

Consumer Debt

Part–Time Work

Time

Component 2

Figure 13.7 Orthogonal projections of the six explanatory variables onto the subspace spanned
by the first two principal components. All the variables, including the components,
are standardized to common length. The projections of the vectors for women’s
wages and consumer debt are nearly coincident (the two vectors are essentially on
top of one another).
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Diagnosing Collinearity

I explained earlier that the sampling variance of the regression coefficient Bj is

V ðBjÞ ¼
σ2
ε

ðn' 1ÞS2
j

· 1

1' R2
j

It can be shown that VIFj ¼ 1=ð1' R2
j Þ is the jth diagonal entry of R'1

XX (see Theil, 1971,
p. 166). Using Equation 13.4, the variance inflation factors can be expressed as functions of
the eigenvalues of RXX and the principal components; specifically,

VIFj ¼
Xk

l¼1

A2
jl

Ll

Thus, it is the small eigenvalues that contribute to large sampling variance, but only for those
regressors that have large coefficients associated with the corresponding short principal compo-
nents. This result is sensible, for small eigenvalues, and their short components correspond to
collinear relations among the regressors; regressors with large coefficients for these compo-
nents are the regressors implicated in the collinearities (see below).

The relative size of the eigenvalues serves as an indicator of the degree of collinearity pres-
ent in the data. The square root of the ratio of the largest to smallest eigenvalue, K [

ffiffiffiffiffiffiffiffiffiffiffiffi
L1=Lk

p
,

called the condition number, is a commonly employed standardized index of the global
instability of the least-squares regression coefficients: A large condition number (say, 10 or
more) indicates that relatively small changes in the data tend to produce large changes in the
least-squares solution. In this event, RXX is said to be ill conditioned.

It is instructive to examine the condition number in the simplified context of the two-
regressor model. From Equations 13.5 (page 352),

K ¼
ffiffiffiffiffi
L1

L2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffi
r2

12

p

1'
ffiffiffiffiffiffi
r2

12

p

s

and thus K ¼ 10 corresponds to r2
12 ¼ :9608, for which VIF ¼ 26 (and

ffiffiffiffiffiffiffiffi
VIF
p

» 5).
Belsley, Kuh, and Welsh (1980, chap. 3) define a condition index Kj [

ffiffiffiffiffiffiffiffiffiffiffi
L1=Lj

p
for each

principal component of RXX .21 Then, the number of large condition indices points to the num-
ber of different collinear relations among the regressors.

21Primarily for computational accuracy, Belsley et al. (1980, chap. 3) develop diagnostic methods for collinearity in
terms of the singular-value decomposition of the regressor matrix, scaled so that each variable has a sum of squares of
1. I employ an equivalent eigenvalue-eigenvector approach because of its conceptual simplicity and broader familiarity.
The eigenvectors of RXX , it turns out, are the squares of the singular values of ð1=

ffiffiffiffiffiffiffiffiffiffiffi
n' 1
p

ÞZX . Indeed, the condition
number K defined here is actually the condition number of ð1=

ffiffiffiffiffiffiffiffiffiffiffi
n' 1
p

ÞZX (and hence of ZX ). Information on the
singular-value decomposition and its role in linear-model analysis can be found in Belsley et al. (1980, chap. 3) and in
Mandel (1982).

A more substantial difference between my approach and that of Belsley et al. is that they base their analysis not on
the correlation matrix of the X s but rather on eX0 eX, where eX is the regressor matrix, including the constant regressor,
with columns normed to unit length. Consider an explanatory variable that is uncorrelated with the others but that has
scores that are far from 0. Belsley et al. would say that this explanatory variable is ‘‘collinear with the constant
regressor.’’ This seems to me a corruption of the notion of collinearity, which deals fundamentally with the inability to
separate the effects of highly correlated explanatory variables and should not change with linear transformations of
individual explanatory variables. See Belsley (1984) and the associated commentary for various points of view on this
issue.

356 Chapter 13. Collinearity and Its Purported Remedies



The condition indices for B. Fox’s Canadian women’s labor force regression, reported in
Table 13.2 (on page 349), are as follows:

The last three condition indices are therefore very large, suggesting an unstable regression.
Chatterjee and Price (1991, chap. 7) employ the principal-component coefficients to estimate

near collinearities: A component wl associated with a very small eigenvalue Ll » 0 is itself
approximately equal to the zero vector; consequently,

A1lz1 þ A2lz2 þ # # # þ Aklzk » 0

and we can use the large Ajls to specify a linear combination of the Zs that is approximately
equal to 0.22

13.1.2 Generalized Variance Inflation*

The methods for detecting collinearity described thus far are not fully applicable to models
that include related sets of regressors, such as dummy regressors constructed from a polyto-
mous categorical variable or polynomial regressors. The reasoning underlying this qualification
is subtle but can be illuminated by appealing to the vector representation of linear models.23

The correlations among a set of dummy regressors are affected by the choice of baseline
category. Similarly, the correlations among a set of polynomial regressors in an explanatory
variable X are affected by adding a constant to the X -values. Neither of these changes alters
the fit of the model to the data, however, so neither is fundamental. It is, indeed, always possi-
ble to select an orthogonal basis for the dummy-regressor or polynomial-regressor subspace
(although such a basis does not employ dummy variables or simple powers of X ). What is fun-
damental is the subspace itself and not the arbitrarily chosen basis for it.24

We are not concerned, therefore, with the ‘‘artificial’’ collinearity among dummy regressors
or polynomial regressors in the same set. We are instead interested in the relationships between
the subspaces generated to represent the effects of different explanatory variables. As a conse-
quence, we can legitimately employ variance-inflation factors to examine the impact of colli-
nearity on the coefficients of numerical regressors, or on any single-degree-of-freedom effects,
even when sets of dummy regressors or polynomial regressors are present in the model.

Fox and Monette (1992) generalize the notion of variance inflation to sets of related regres-
sors. Rewrite the linear model as

K1 K2 K3 K4 K5 K6

1:00 4:10 7:09 17:27 27:99 35:11

22See Exercise 13.4 for an application to B. Fox’s regression.
23The vector geometry of linear models is developed in Chapter 10.
24A specific basis may be a poor computational choice, however, if it produces numerically unstable results.
Consequently, researchers are sometimes advised to pick a category with many cases to serve as the baseline for a set
of dummy regressors or to subtract the mean from X prior to constructing polynomial regressors; the latter procedure is
called centering. Neither of these practices fundamentally alters the model but may lead to more accurate calculations.
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ðn · 1Þ

¼ α 1
ðn · 1Þ

þ X1
ðn · pÞ

fl1
ðp · 1Þ

þ X2
ðn · k'pÞ

fl2
ðk'p · 1Þ

þ "
ðn · 1Þ

where the p regressors of interest (e.g., a set of dummy regressors) are in X1, while the remain-
ing k ' p regressors (with the exception of the constant) are in X2. Fox and Monette (1992)
show that the squared ratio of the size (i.e., length when p ¼ 1, area when p ¼ 2, volume when
p ¼ 3, or hyper-volume when p > 3) of the joint confidence region for fl1 to the size of the
same region for orthogonal but otherwise similar data is

GVIF1 ¼
det R11det R22

det R
ð13:7Þ

Here, R11 is the correlation matrix for X1, R22 is the correlation matrix for X2, and R is the
matrix of correlations among all the variables.25 The generalized variance-inflation factor
(GVIF) is independent of the bases selected for the subspaces spanned by the columns of each
of X1 and X2. If X1 contains only one column, then the GVIF reduces to the familiar variance-
inflation factor. To make generalized variance-inflation factors comparable across dimensions,
Fox and Monette suggest reporting GVIFp=2—analogous to reporting

ffiffiffiffiffiffiffiffi
VIF
p

for a single
coefficient.

The notion of variance inflation can be extended to sets of related regressors, such as
dummy regressors and polynomial regressors, by considering the size of the joint confi-
dence region for the related coefficients.

13.2 Coping With Collinearity: No Quick Fix

Consider the regression of a response variable Y on two explanatory variables X1 and X2:
When X1 and X2 are strongly collinear, the data contain little information about the impact of
X1 on Y holding X2 constant statistically because there is little variation in X1 when X2 is
fixed.26 (Of course, the same is true for X2 fixing X1.) Because B1 estimates the partial effect
of X1 controlling for X2, this estimate is imprecise.

Although there are several strategies for dealing with collinear data, none magically extracts
nonexistent information from the data. Rather, the research problem is redefined, often subtly
and implicitly. Sometimes the redefinition is reasonable; usually it is not. The ideal solution to
the problem of collinearity is to collect new data in such a manner that the problem is
avoided—for example, by experimental manipulation of the X s, or through a research setting
(or sampling procedure) in which the explanatory variables of interest are not strongly related.
Unfortunately, these solutions are rarely practical. Several less adequate strategies for coping
with collinear data are briefly described in this section.

25An interesting observation is that Equation 13.7 can alternatively be applied to the correlation matrix of the estimated
regression coefficients, rather than to the correlation matrix of the X s, yielding exactly the same result: See Exercise
13.5. This observation provides a basis for generalizing variance inflation beyond linear models: See, e.g., Section
15.4.3. I am grateful to Henric Nilsson for pointing this out to me.
26This observation again invokes the added-variable plot; see, e.g., Figure 11.9 (page 284).
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13.2.1 Model Respecification

Although collinearity is a data problem, not (necessarily) a deficiency of the model, one
approach to the problem is to respecify the model. Perhaps, after further thought, several
regressors in the model can be conceptualized as alternative indicators of the same underlying
construct. Then these measures can be combined in some manner, or one can be chosen to rep-
resent the others. In this context, high correlations among the X s in question indicate high
reliability—a fact to be celebrated, not lamented. Imagine, for example, an international analy-
sis of factors influencing infant mortality, in which gross national product per capita, energy
use per capita, and hours of Internet use per capita are among the explanatory variables and are
highly correlated. A researcher may choose to treat these variables as indicators of the general
level of economic development.

Alternatively, we can reconsider whether we really need to control for X2 (for example) in
examining the relationship of Y to X1. Generally, though, respecification of this variety is pos-
sible only where the original model was poorly thought out or where the researcher is willing
to abandon some of the goals of the research. For example, suppose that in a time-series regres-
sion examining determinants of married women’s labor force participation, collinearity makes
it impossible to separate the effects of men’s and women’s wage levels. There may be good
theoretical reason to want to know the effect of women’s wage level on their labor force partic-
ipation, holding men’s wage level constant, but the data are simply uninformative about this
question. It may still be of interest, however, to determine the partial relationship between gen-
eral wage level and women’s labor force participation, controlling for other explanatory vari-
ables in the analysis.27

13.2.2 Variable Selection

A common, but usually misguided, approach to collinearity is variable selection, where some
automatic procedure is employed to reduce the regressors in the model to a less highly corre-
lated set.28 Forward-selection methods add explanatory variables to the model one at a time.
At each step, the variable that yields the largest increment in R2 is selected. The procedure
stops, for example, when the increment is smaller than a preset criterion.29 Backward-elimina-
tion methods are similar, except that the procedure starts with the full model and deletes vari-
ables one at a time. Forward/backward—or stepwise—methods combine the two approaches,
allowing variables to enter or leave at each step. Often the term stepwise regression is used for
all these variations.

These methods frequently are abused by naive researchers who seek to interpret the order of
entry of variables into the regression equation as an index of their ‘‘importance.’’ This practice
is potentially misleading: For example, suppose that there are two highly correlated explanatory
variables that have nearly identical large correlations with Y ; only one of these explanatory

27In the example developed in this chapter, however, men’s and women’s wages are not only highly correlated with
each other but with other variables (such as time) as well.
28Variable selection methods are discussed in a more general context and in greater detail in Chapter 22.
29Often, the stopping criterion is calibrated by the incremental F for adding a variable to the model or by using an
index of model quality, such as those discussed in Chapter 22.
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variables will enter the regression equation because the other can contribute little additional
information. A small modification to the data, or a new sample, could easily reverse the result.

A technical objection to stepwise methods is that they can fail to turn up the optimal subset
of regressors of a given size (i.e., the subset that maximizes R2). Advances in computer power
and in computing procedures make it feasible to examine all subsets of regressors even when k
is quite large.30 Aside from optimizing the selection criterion, subset techniques also have the
advantage of revealing alternative, nearly equivalent models and thus avoid the misleading
appearance of producing a uniquely ‘‘correct’’ result.31

Figure 13.8 shows the result of applying an all-subset method of variable selection to the
Canadian women’s labor force regression. For each subset size of p ¼ 1 to 6 explanatory vari-
ables, up to 10 ‘‘best’’ models are displayed.32 The criterion of model quality employed in this
graph is the Bayesian information criterion (or BIC): Smaller values indicate a better-fitting
model. Unlike the R2, which never declines when an additional variable is added to the model,
the BIC ‘‘penalizes’’ the fit for the number of parameters in the model and therefore can prefer
a smaller model to a larger one.33 According to the BIC, the best model includes the two expla-
natory variables consumer debt and part-time work.34 There are several models with three
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Figure 13.8 Variable selection for B. Fox’s Canadian women’s labor force regression. Up to the
10 ‘‘best’’ subsets of each size are shown, using the BIC model selection criterion.

30For k explanatory variables, the number of subsets, excluding the null subset with no predictors, is 2k ' 1. See
Exercise 13.6.
31There are algorithms available to find the optimal subset of a given size without examining all possible subsets (see,
e.g., Furnival & Wilson, 1974). When the data are highly collinear, however, the optimal subset of a given size may be
only trivially ‘‘better’’ than many of its competitors.
32The numbers of distinct subsets of one to six explanatory variables are 6, 15, 20, 15, 6, and 1, consecutively.
33See Chapter 22 for a discussion of the BIC and other model selection criteria.
34*Not surprisingly, this best subset of size 2 includes one variable from each of the two highly correlated subsets that
were identified in the principal-components analysis of the preceding section; these are also the two explanatory vari-
ables whose coefficients are statistically significant in the initial regression.
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explanatory variables that are slightly worse than the best model of size 2 but that are essen-
tially indistinguishable from each other; the same is true for models with four and five explana-
tory variables.35

In applying variable selection, it is essential to keep the following caveats in mind:

! Most important, variable selection results in a respecified model that usually does not
address the research questions that were originally posed. In particular, if the original
model is correctly specified, and if the included and omitted variables are correlated,
then coefficient estimates following variable selection are biased.36 Consequently, these
methods are most useful for pure prediction problems, in which the values of the regres-
sors for the data to be predicted will be within the configuration of X -values for which
selection was employed. In this case, it is possible to get good estimates of EðY Þ even
though the regression coefficients themselves are biased. If, however, the X -values for a
new observation differ greatly from those used to obtain the estimates, then the predicted
Y can be badly biased.

! When regressors occur in sets (e.g., of dummy variables), then these sets should gener-
ally be kept together during selection. Likewise, when there are hierarchical relations
among regressors, these relations should be respected: For example, an interaction
regressor should not appear in a model that does not contain the main effects marginal
to the interaction.

! Because variable selection optimizes the fit of the model to the sample data, coefficient
standard errors calculated following explanatory-variable selection—and hence confi-
dence intervals and hypothesis tests—almost surely overstate the precision of results.
There is, therefore, a very considerable risk of capitalizing on chance characteristics of
the sample.37

! As discussed in Chapter 22, variable selection has applications to statistical modeling
even when collinearity is not an issue. For example, it is generally not problematic to
eliminate regressors that have small, precisely estimated coefficients, thus producing a
more parsimonious model. Indeed, in a very large sample, we may feel justified in delet-
ing regressors with trivially small but ‘‘statistically significant’’ coefficients.

13.2.3 Biased Estimation

Still another general approach to collinear data is biased estimation. The essential idea here
is to trade a small amount of bias in the coefficient estimates for a large reduction in coefficient
sampling variance. The hoped-for result is a smaller mean-squared error of estimation of the βs
than is provided by the least-squares estimates. By far the most common biased estimation
method is ridge regression (due to Hoerl & Kennard, 1970a, 1970b).

35Raftery (1995) suggests that a difference in BIC less than 2 provides ‘‘weak’’ evidence for the superiority of one
model relative to another; similarly, a difference between 2 and 6 provides ‘‘positive’’ evidence, between 6 and 10
‘‘strong’’ evidence, and greater than 10 ‘‘very strong’’ evidence for the relative superiority of a model. In the current
application, the difference in BIC between the best-fitting models of sizes 2 and 3 is 3.3. Again, see Chapter 22 for a
more extensive discussion of the BIC.
36See Sections 6.3, 9.7, and 13.2.5.
37This issue is pursued in Chapter 22 on model selection.
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Like variable selection, biased estimation is not a magical panacea for collinearity. Ridge
regression involves the arbitrary selection of a ‘‘ridge constant’’, which controls the extent to
which ridge estimates differ from the least-squares estimates: The larger the ridge constant, the
greater the bias and the smaller the variance of the ridge estimator. Unfortunately, but as one
might expect, to pick an optimal ridge constant—or even a good one—generally requires
knowledge about the unknown βs that we are trying to estimate. My principal reason for men-
tioning biased estimation here is to caution against its routine use.

Ridge Regression*

The ridge-regression estimator for the standardized regression coefficients is given by

b+d [ ðRXX þ dIkÞ'1rXy ð13:8Þ

where RXX is the correlation matrix for the explanatory variables, rXy is the vector of correla-
tions between the explanatory variables and the response, and d ‡ 0 is a scalar constant. When
d ¼ 0, the ridge and least-squares estimators coincide: b+0 ¼ b+ ¼ R'1

XX rXy. When the data are
collinear, some off-diagonal entries of RXX are generally large, making this matrix ill condi-
tioned. Heuristically, the ridge-regression method improves the conditioning of RXX by inflat-
ing its diagonal entries.

Although the least-squares estimator b+ is unbiased, its entries tend to be too large in abso-
lute value, a tendency that is magnified as collinearity increases. In practice, researchers work-
ing with collinear data often compute wildly large regression coefficients. The ridge estimator
may be thought of as a ‘‘shrunken’’ version of the least-squares estimator, correcting the ten-
dency of the latter to produce coefficients that are too far from 0.

The ridge estimator of Equation 13.8 can be rewritten as38

b+d ¼ Ub+ ð13:9Þ

where U [ ðIk þ dR'1
XX Þ
'1. As d increases, the entries of U tend to grow smaller, and, there-

fore, b+d is driven toward 0. Hoerl and Kennard (1970a) show that for any value of d > 0, the
squared length of the ridge estimator is less than that of the least-squares estimator:
b+d
0b+d < b+0b+.
The expected value of the ridge estimator can be determined from its relation to the least-

squares estimator, given in Equation 13.9; treating the X -values, and hence RXX and U, as
fixed,

Eðb+dÞ ¼ UEðb+Þ ¼ Ufl+

The bias of b+d is, therefore,

biasðb+dÞ[ Eðb+dÞ ' fl
+ ¼ ðU' IkÞfl+

and because the departure of U from Ik increases with d, the bias of the ridge estimator is an
increasing function of d.

The variance of the ridge estimator is also simply derived:39

38See Exercise 13.8.
39See Exercise 13.9.
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V ðb+dÞ ¼
σ+2ε

n' 1
ðRXX þ dIkÞ'1RXX ðRXX þ dIkÞ'1 ð13:10Þ

where σ+2ε is the error variance for the standardized regression. As d increases, the inverted
term ðRXX þ dIkÞ'1 is increasingly dominated by dIk . The sampling variance of the ridge esti-
mator, therefore, is a decreasing function of d. This result is intuitively reasonable because the
estimator itself is driven toward 0.

The mean-squared error of the ridge estimator is the sum of its squared bias and sampling
variance. Hoerl and Kennard (1970a) prove that it is always possible to choose a positive value
of the ridge constant d so that the mean-squared error of the ridge estimator is less than the
mean-squared error of the least-squares estimator. These ideas are illustrated heuristically in
Figure 13.9. As mentioned, however, the optimal value of d depends on the unknown popula-
tion regression coefficients.

The central problem in applying ridge regression is to find a value of d for which the trade-
off of bias against variance is favorable. In deriving the properties of the ridge estimator, I
treated d as fixed. If d is determined from the data, however, it becomes a random variable,
casting doubt on the conceptual basis for the ridge estimator. A number of methods have been
proposed for selecting d. Some of these are rough and qualitative, while others incorporate

0

Ridge Variance

Ridge MSE OLS MSE and Variance

Ridge  Bias2

Ridge Constant, d

Figure 13.9 Trade-off of bias and against variance for the ridge-regression estimator. The horizon-
tal line gives the variance of the least-squares (OLS) estimator; because the OLS esti-
mator is unbiased, its variance and mean-squared error are the same. The broken
line shows the squared bias of the ridge estimator as an increasing function of the
ridge constant d. The dotted line shows the variance of the ridge estimator. The
mean-squared error (MSE) of the ridge estimator, given by the heavier solid line, is
the sum of its variance and squared bias. For some values of d, the MSE error of the
ridge estimator is below the variance of the OLS estimator.
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specific formulas or procedures for estimating the optimal value of d. All these methods, how-
ever, have only ad hoc justifications.40

There have been many random-sampling simulation experiments exploring the properties of
ridge estimation along with other methods meant to cope with collinear data. While these stud-
ies are by no means unanimous in their conclusions, the ridge estimator often performs well in
comparison with least-squares estimation and in comparison with other biased-estimation meth-
ods. On the basis of evidence from simulation experiments, it would, however, be misleading
to recommend a particular procedure for selecting the ridge constant d, and, indeed, the depen-
dence of the optimal value of d on the unknown regression parameters makes it unlikely that
there is a generally best way of finding d. Several authors critical of ridge regression (e.g.,
Draper & Smith, 1998, p. 395) have noted that simulations supporting the method generally
incorporate restrictions on parameter values especially suited to ridge regression.41

Because the ridge estimator is biased, standard errors based on Equation 13.10 cannot be
used in the normal manner for statistical inferences concerning the population regression coef-
ficients. Indeed, as Obenchain (1977) has pointed out, under the assumptions of the linear
model, confidence intervals centered at the least-squares estimates paradoxically retain their
optimal properties regardless of the degree of collinearity: In particular, they are the shortest
possible intervals at the stated level of confidence (Scheffé, 1959, chap. 2). An interval cen-
tered at the ridge estimate of a regression coefficient is, therefore, wider than the corresponding
least-squares interval, even if the ridge estimator has smaller mean-squared error than the least-
squares estimator.

13.2.4 Prior Information About the Regression Coefficients

A final approach to estimation with collinear data is to introduce additional prior information
(i.e., relevant information external to the data at hand) that reduces the ambiguity produced by
collinearity. There are several different ways in which prior information can be brought to bear
on a regression, including Bayesian analysis,42 but I will present a very simple case to illustrate
the general point. More complex methods are beyond the scope of this discussion and are, in
any event, difficult to apply in practice.43

Suppose that we wish to estimate the model

Y ¼ αþ β1X1 þ β2X2 þ β3X3 þ ε

where Y is savings, X1 is income from wages and salaries, X2 is dividend income from stocks,
and X3 is interest income. Imagine that we have trouble estimating β2 and β3 because X2 and
X3 are highly correlated in our data. Suppose further that we have reason to believe that
β2 ¼ β3, and denote the common quantity β+. If X2 and X3 were not so highly correlated, then

40Exercise 13.10 describes a qualitative method proposed by Hoerl and Kennard in their 1970 papers.
41See Section 13.2.5. Simulation studies of ridge regression and other biased estimation methods are too numerous to
cite individually here. References to and comments on this literature can be found in many sources, including Draper
and Van Nostrand (1979), Vinod (1978), and Hocking (1976). Vinod and Ullah (1981) present an extensive treatment
of ridge regression and related methods.
42Bayesian inference is introduced in online Appendix D on probability and estimation.
43See, for example, Belsley et al. (1980, pp. 193–204) and Theil (1971, pp. 346–352).
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we could reasonably test this belief as a hypothesis. In the current situation, we can fit the
model

Y ¼ αþ β1X1 þ β+ðX2 þ X3Þ þ ε

incorporating our belief in the equality of β2 and β3 in the specification of the model and thus
eliminating the collinearity problem (along with the possibility of testing the belief that the two
coefficients are equal).44

13.2.5 Some Comparisons

Although I have presented them separately, the several approaches to collinear data have
much in common:

! Model respecification can involve variable selection, and variable selection, in effect,
respecifies the model.

! Variable selection implicitly constrains the coefficients of deleted regressors to 0.
! Variable selection produces biased coefficient estimates if the deleted variables have

nonzero βs and are correlated with the included variables (as they will be for collinear
data).45 As in ridge regression and similar biased estimation methods, we might hope
that the trade-off of bias against variance is favorable, and that, therefore, the mean-
squared error of the regression estimates is smaller following variable selection than
before. Because the bias and hence the mean-squared error depend on the unknown
regression coefficients, however, we have no assurance that this will be the case. Even
if the coefficients obtained following selection have smaller mean-squared error, their
superiority can easily be due to the very large variance of the least-squares estimates
when collinearity is high than to acceptably small bias. We should be especially careful
about removing a variable that is causally prior to an explanatory variable of central
interest.

! Certain types of prior information (as in the hypothetical example presented in the previ-
ous section) result in a respecified model.

! It can be demonstrated that biased-estimation methods like ridge regression place prior
constraints on the values of the βs. Ridge regression imposes the restrictionPk

j¼1 B+2j £ c, where c is a decreasing function of the ridge constant d; the ridge estima-
tor finds least-squares coefficients subject to this constraint (Draper & Smith, 1998,
pp. 392–393). In effect, large absolute standardized coefficients are ruled out a priori,
but the specific constraint is imposed indirectly through the choice of d.

The primary lesson to be drawn from these remarks is that mechanical model selection and
modification procedures disguise the substantive implications of modeling decisions.

44To test H0: β2 ¼ β3 simply entails contrasting the two models (see Exercise 6.7). In the present context, however,
where X2 and X3 are very highly correlated, this test has virtually no power: If the second model is wrong, then we can-
not, as a practical matter, detect it. We need either to accept the second model on theoretical grounds or to admit that
we cannot estimate β2 and β3.
45Bias due to the omission of explanatory variables is discussed in a general context in Sections 6.3 and 9.7.
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Consequently, these methods generally cannot compensate for weaknesses in the data and are
no substitute for judgment and thought.

Several methods have been proposed for dealing with collinear data. Although these
methods are sometimes useful, none can be recommended generally: When the X s are
highly collinear, the data contain little information about the partial relationship between
each X and Y , controlling for the other X s. To resolve the intrinsic ambiguity of colli-
near data, it is necessary either to introduce information external to the data or to rede-
fine the research question asked of the data. Neither of these general approaches should
be undertaken mechanically. Methods that are commonly (and, more often than not,
unjustifiably) employed with collinear data include model respecification, variable selec-
tion (stepwise and subset methods), biased estimation (e.g., ridge regression), and the
introduction of additional prior information. Comparison of the several methods shows
that they have more in common than it appears at first sight.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 13.1. +The second principal component is

w2
ðn · 1Þ

¼ A12z1 þ A22z2 þ # # # þ Ak2zk

¼ ZX
ðn · kÞ

a2
ðk · 1Þ

with variance

S2
W2
¼ a02RXX a2

We need to maximize this variance subject to the normalizing constraint a02a2 ¼ 1 and the
orthogonality constraint w01w2 ¼ 0. Show that the orthogonality constraint is equivalent to
a01a2 ¼ 0. Then, using two Lagrange multipliers, one for the normalizing constraint and the
other for the orthogonality constraint, show that a2 is an eigenvector corresponding to the
second-largest eigenvalue of RXX . Explain how this procedure can be extended to derive the
remaining k ' 2 principal components.

Exercise 13.2. +Find the matrix A of principal-component coefficients when k ¼ 2 and r12 is
negative. (Cf. Equation 13.6 on page 352.)

Exercise 13.3. +Show that when k ¼ 2, the principal components of RXX correspond to the
principal axes of the data ellipse for the standardized regressors Z1 and Z2; show that the half-
length of each axis is equal to the square root of the corresponding eigenvalue of RXX . Now
extend this reasoning to the principal axes of the data ellipsoid for the standardized regressors
when k > 2.
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Exercise 13.4. +Use the principal-components analysis of the explanatory variables in B. Fox’s
time-series regression, given in Table 13.3, to estimate the nearly collinear relationships among
the variables corresponding to small principal components. Which variables appear to be
involved in each nearly collinear relationship?

Exercise 13.5. +Show that Equation 13.7 (page 358) applied to the correlation matrix of the
least-squares regression coefficients, computed from the coefficient covariance matrix
S2

EðX0XÞ
'1, produces the same generalized variance-inflation factor as when it is applied to the

correlation matrix of the X s.

Exercise 13.6. Why are there 2k ' 1 distinct subsets of k explanatory variables? Evaluate this
quantity for k ¼ 2, 3; . . . ; 15.

Exercise 13.7. Apply the backward, forward, and forward/backward stepwise regression meth-
ods to B. Fox’s Canadian women’s labor force participation data. Compare the results of these
procedures with those shown in Figure 13.8, based on the application of the BIC to all subsets
of predictors.

Exercise 13.8. +Show that the ridge-regression estimator of the standardized regression
coefficients,

b+d ¼ ðRXX þ dIkÞ'1rXy

can be written as a linear transformation b+d ¼ Ub+ of the usual least-squares estimator
b+ ¼ R'1

XX rXy, where the transformation matrix is U [ Ik þ dR'1
XX

$ %'1
.

Exercise 13.9. +Show that the variance of the ridge estimator is

V ðb+dÞ ¼
σ+2ε

n' 1
ðRXX þ dIkÞ'1RXX ðRXX þ dIkÞ'1

[Hint: Express the ridge estimator as a linear transformation of the standardized response vari-
able, b+d ¼ ðRXX þ dIkÞ'1½1=ðn' 1Þ)Z0X zy.]

Exercise 13.10. +Finding the ridge constant d: Hoerl and Kennard suggest plotting the entries
in b+d against values of d ranging between 0 and 1. The resulting graph, called a ridge trace,
both furnishes a visual representation of the instability due to collinearity and (ostensibly) pro-
vides a basis for selecting a value of d. When the data are collinear, we generally observe dra-
matic changes in regression coefficients as d is gradually increased from 0. As d is increased
further, the coefficients eventually stabilize and then are driven slowly toward 0. The estimated
error variance, S+2E , which is minimized at the least-squares solution (d ¼ 0), rises slowly with
increasing d. Hoerl and Kennard recommend choosing d so that the regression coefficients are
stabilized and the error variance is not unreasonably inflated from its minimum value. (A num-
ber of other methods have been suggested for selecting d, but none avoids the fundamental dif-
ficulty of ridge regression—that good values of d depend on the unknown βs.) Construct a
ridge trace, including the regression standard error S+E, for B. Fox’s Canadian women’s labor
force participation data. Use this information to select a value of the ridge constant d, and com-
pare the resulting ridge estimates of the regression parameters with the least-squares estimates.
Make this comparison for both standardized and unstandardized coefficients. In applying ridge
regression to these data, B. Fox selected d ¼ 0:05.
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Summary

! When the regressors in a linear model are perfectly collinear, the least-squares coeffi-
cients are not unique. Strong, but less-than-perfect, collinearity substantially increases
the sampling variances of the least-squares coefficients and can render them useless as
estimators.

! The sampling variance of the least-squares slope coefficient Bj is

V ðBjÞ ¼
1

1' R2
j

·
σ2
ε

ðn' 1ÞS2
j

where R2
j is the squared multiple correlation for the regression of Xj on the other X s, and

S2
j ¼

P
ðXij ' X jÞ2=ðn' 1Þ is the variance of Xj. The variance-inflation factor

VIFj ¼ 1=ð1' R2
j Þ indicates the deleterious impact of collinearity on the precision of

the estimate Bj. The notion of variance inflation can be extended to sets of related regres-
sors, such as dummy regressors and polynomial regressors, by considering the size of
the joint confidence region for the related coefficients.

! Principal components can be used to explicate the correlational structure of the explana-
tory variables in regression. The principal components are a derived set of variables that
form an orthogonal basis for the subspace of the standardized X s. The first principal
component spans the one-dimensional subspace that accounts for maximum variation in
the standardized X s. The second principal component accounts for maximum variation
in the standardized X s, under the constraint that it is orthogonal to the first. The other
principal components are similarly defined; unless the X s are perfectly collinear, there
are as many principal components as there are X s. Each principal component is scaled
to have variance equal to the collective variance in the standardized X s for which it
accounts. Collinear relations among the explanatory variables, therefore, correspond to
very short principal components, which represent dimensions along which the regressor
subspace has nearly collapsed.

! Several methods have been proposed for dealing with collinear data. Although these
methods are sometimes useful, none can be recommended generally: When the X s are
highly collinear, the data contain little information about the partial relationship between
each X and Y , controlling for the other X s. To resolve the intrinsic ambiguity of colli-
near data, it is necessary either to introduce information external to the data or to rede-
fine the research question asked of the data (or, as is usually impractical, to collect more
informative data). Neither of these general approaches should be undertaken mechani-
cally. Methods that are commonly (and, more often than not, unjustifiably) employed
with collinear data include model respecification, variable selection (stepwise and subset
methods), biased estimation (e.g., ridge regression), and the introduction of additional
prior information. Comparison of the several methods shows that they have more in
common than it appears at first sight.

368 Chapter 13. Collinearity and Its Purported Remedies



PART IV
Generalized Linear Models



14
Logit and Probit

Models for
Categorical

Response
Variables

T his chapter and the next deal with generalized linear models—the extension of linear
models to variables that have specific non-normal conditional distributions:

! Rather than dive directly into generalized linear models in their full generality, the cur-
rent chapter takes up linear logit and probit models for categorical response variables.
Beginning with this most important special case allows for a gentler introduction to the
topic, I believe. As well, I develop some models for categorical data that are not sub-
sumed by the generalized linear model described in the next chapter.

! Chapter 15 is devoted to the generalized linear model, which has as special cases the lin-
ear models of Part II of the text and the dichotomous logit and probit models of the cur-
rent chapter. Chapter 15 focuses on generalized linear models for count data and
develops diagnostic methods for generalized linear models that parallel many of the
diagnostics for linear models fit by least-squares, introduced in Part III.

All the statistical models described in previous chapters are for quantitative response variables. It is
unnecessary to document the prevalence of qualitative/categorical data in the social sciences. In
developing the general linear model, I introduced qualitative explanatory variables through the
device of coding dummy-variable regressors.1 There is no reason that qualitative variables should
not also appear as response variables, affected by other variables, both qualitative and quantitative.

This chapter deals primarily with logit models for qualitative and ordered-categorical
response variables, although related probit models are also briefly considered. The first section
of the chapter describes logit and probit models for dichotomous response variables. The sec-
ond section develops similar statistical models for polytomous response variables, including
ordered categories. The third and final section discusses the application of logit models to con-
tingency tables, where the explanatory variables, as well as the response, are categorical.

14.1 Models for Dichotomous Data

Logit and probit models express a qualitative response variable as a function of several expla-
natory variables, much in the manner of the general linear model. To understand why these

1See Chapter 7.
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models are required, let us begin by examining a representative problem, attempting to apply
linear least-squares regression to it. The difficulties that are encountered point the way to more
satisfactory statistical models for qualitative data.

In September 1988, 15 years after the coup of 1973, the people of Chile voted in a plebiscite
to decide the future of the military government headed by General Augusto Pinochet. A yes
vote would yield 8 more years of military rule; a no vote would set in motion a process to
return the country to civilian government. As you are likely aware, the no side won the plebis-
cite, by a clear if not overwhelming margin.

Six months before the plebiscite, the independent research center FLACSO/Chile conducted
a national survey of 2700 randomly selected Chilean voters.2 Of these individuals, 868 said
that they were planning to vote yes, and 889 said that they were planning to vote no. Of the
remainder, 558 said that they were undecided, 187 said that they planned to abstain, and 168
did not answer the question. I will look here only at those who expressed a preference.3

Figure 14.1 plots voting intention against a measure of support for the status quo. As seems
natural, voting intention appears as a dummy variable, coded 1 for yes, 0 for no. As we will
see presently, this coding makes sense in the context of a dichotomous response variable.
Because many points would otherwise be overplotted, voting intention is jittered in the graph
(although not in the calculations that follow). Support for the status quo is a scale formed from
a number of questions about political, social, and economic policies: High scores represent
general support for the policies of the miliary regime. (For the moment, disregard the lines
plotted in this figure.)

We are used to thinking of a regression as a conditional average. Does this interpretation
make sense when the response variable is dichotomous? After all, an average between 0 and 1
represents a ‘‘score’’ for the dummy response variable that cannot be realized by any individ-
ual. In the population, the conditional average EðY jxiÞ is simply the proportion of 1s among
those individuals who share the value xi for the explanatory variable—the conditional probabil-
ity πi of sampling a yes in this group;4 that is,

πi [ PrðYiÞ[ PrðY ¼ 1jX ¼ xiÞ

and, thus,

EðY jxiÞ ¼ πið1Þ þ ð1& πiÞð0Þ ¼ πi ð14:1Þ

If X is discrete, then in a sample we can calculate the conditional proportion for Y at each
value of X . The collection of these conditional proportions represents the sample nonpara-
metric regression of the dichotomous Y on X . In the present example, X is continuous, but we

2FLACSO is an acronym for Facultad Latinoamericana de Ciencias Sociales, a respected institution that conducts social
research and trains graduate students in several Latin American countries. During the Chilean military dictatorship,
FLACSO/Chile was associated with the opposition to the military government. I worked on the analysis of the survey
described here as part of a joint project between FLACSO in Santiago, Chile, and the Centre for Research on Latin
America and the Caribbean at York University, Toronto.
3It is, of course, difficult to know how to interpret ambiguous responses such as ‘‘undecided.’’ It is tempting to infer
that respondents were afraid to state their opinions, but there is other evidence from the survey that this is not the case.
Few respondents, for example, uniformly refused to answer sensitive political questions, and the survey interviewers
reported little resistance to the survey.
4Notice that πi is a probability, not the mathematical constant π » 3:14159. A Greek letter is used because πi can be
estimated but not observed directly.
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can nevertheless resort to strategies such as local averaging, as illustrated in Figure 14.1.5 At
low levels of support for the status quo, the conditional proportion of yes responses is close to
0; at high levels, it is close to 1; and in between, the nonparametric regression curve smoothly
approaches 0 and 1 in a gentle, elongated S-shaped pattern.

14.1.1 The Linear-Probability Model

Although nonparametric regression works here, it would be useful to capture the dependency
of Y on X as a simple function. To do so will be especially helpful when we introduce addi-
tional explanatory variables. As a first effort, let us try linear regression with the usual
assumptions:

Yi ¼ αþ βXi þ εi ð14:2Þ

where εi ; Nð0; σ2
εÞ, and εi and εi0 are independent for i 6¼ i0. If X is random, then we assume

that it is independent of ε.
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Figure 14.1 Scatterplot of voting intention (1 represents yes, 0 represents no) by a scale of support
for the status quo, for a sample of Chilean voters surveyed prior to the 1988 plebis-
cite. The points are jittered vertically to minimize overplotting. The solid straight line
shows the linear least-squares fit; the solid curved line shows the fit of the logistic-
regression model (described in the next section); the broken line represents a non-
parametric kernel regression with a span of 0.4.

5The nonparametric-regression line in Figure 14.1 was fit by kernel regression—a method based on locally weighted
averaging, which is similar to locally weighted regression (lowess, which was introduced in Chapter 2 for smoothing
scatterplots). Unlike lowess, however, the kernel estimator of a proportion cannot be outside the interval from 0 to 1.
Both the kernel-regression estimator and other nonparametric-regression methods that are more appropriate for a
dichotomous response are described in Chapter 18. The span for the kernel regression (i.e., the fraction of the data
included in each local average) is 0.4.
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Under Equation 14.2, EðYiÞ ¼ αþ βXi, and so, from Equation 14.1,

πi ¼ αþ βXi

For this reason, the linear-regression model applied to a dummy response variable is called the
linear-probability model. This model is untenable, but its failure will point the way toward
more adequate specifications:

! Because Yi can take on only the values 0 and 1, the conditional distribution of the error
εi is dichotomous as well—and, hence, is not normally distributed, as assumed: If
Yi ¼ 1, which occurs with probability πi, then

εi ¼ 1& EðYiÞ ¼ 1& ðαþ βXiÞ ¼ 1& πi

Alternatively, if Yi ¼ 0, which occurs with probability 1& πi, then

εi ¼ 0& EðYiÞ ¼ 0& ðαþ βXiÞ ¼ 0& πi ¼ &πi

Because of the central limit theorem, however, the assumption of normality is not critical
to least-squares estimation of the normal-probability model, as long as the sample size is
sufficiently large.

! The variance of ε cannot be constant, as we can readily demonstrate: If the assumption
of linearity holds over the range of the data, then EðεiÞ ¼ 0. Using the relations just
noted,

V ðεiÞ ¼ πið1& πiÞ2 þ ð1& πiÞð&πiÞ2 ¼ πið1& πiÞ

The heteroscedasticity of the errors bodes ill for ordinary least-squares estimation of the
linear probability model, but only if the probabilities πi get close to 0 or 1.6 Goldberger
(1964, pp. 248–250) has proposed a correction for heteroscedasticity employing
weighted least squares.7 Because the variances V ðεiÞ depend on the πi, however, which,
in turn, are functions of the unknown parameters α and β, we require preliminary esti-
mates of the parameters to define weights. Goldberger obtains ad hoc estimates from a
preliminary OLS regression; that is, he takes bV ðεiÞ ¼ bYið1& bYiÞ. The fitted values from
an OLS regression are not constrained to the interval [0,1], and so some of these ‘‘var-
iances’’ may be negative.

! This last remark suggests the most serious problem with the linear-probability model:
The assumption that EðεiÞ ¼ 0—that is, the assumption of linearity—is only tenable
over a limited range of X -values. If the range of the X s is sufficiently broad, then the
linear specification cannot confine π to the unit interval ½0; 1(. It makes no sense, of
course, to interpret a number outside the unit interval as a probability. This difficulty is
illustrated in Figure 14.1, in which the least-squares line fit to the Chilean plebiscite data
produces fitted probabilities below 0 at low levels and above 1 at high levels of support
for the status quo.

6See Exercise 14.1. Remember, however, that it is the conditional probability, not the marginal probability, of Y that
is at issue: The overall proportion of 1s can be near .5 (as in the Chilean plebiscite data), and yet the conditional pro-
portion can still get very close to 0 or 1, as is apparent in Figure 14.1.
7See Section 12.2.2 for a discussion of weighted-least-squares estimation.
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Dummy-regressor variables do not cause comparable difficulties because the general linear
model makes no distributional assumptions about the regressors (other than independence from
the errors). Nevertheless, for values of π not too close to 0 or 1, the linear-probability model
estimated by least squares frequently provides results similar to those produced by the more
generally adequate methods described in the remainder of this chapter.

It is problematic to apply least-squares linear regression to a dichotomous response vari-
able: The errors cannot be normally distributed and cannot have constant variance. Even
more fundamentally, the linear specification does not confine the probability for the
response to the unit interval.

One solution to the problems of the linear-probability model—though not a good general solu-
tion—is simply to constrain π to the unit interval while retaining the linear relationship
between π and X within this interval:

π ¼
0 for 0 >αþ βX
αþ βX for 0 £αþ βX £ 1
1 for αþ βX > 1

8
<

: ð14:3Þ

Figure 14.2 shows the fit of this model to the Chilean plebiscite data, with the parameters α

and β estimated by maximum likelihood. Although this constrained linear-probability model
cannot be dismissed on logical grounds, the model has certain unattractive features: Most
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Figure 14.2 The solid line shows the constrained linear-probability model, fit by maximum likeli-
hood to the Chilean plebiscite data. The broken line is for a nonparametric kernel
regression with a span of 0.4.
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important, the abrupt changes in slope at π ¼ 0 and π ¼ 1 are usually unreasonable. A
smoother relationship between π and X (as characterizes the nonparametric regression in
Figure 14.1) is more generally sensible. Moreover, numerical instability can make the con-
strained linear-probability model difficult to fit to data, and the statistical properties of estima-
tors of the model are hard to derive because of the discontinuities in the slope.8

14.1.2 Transformations of …: Logit and Probit Models

A central difficulty of the unconstrained linear-probability model is its inability to ensure
that π stays between 0 and 1. What we require to correct this problem is a positive monotone
(i.e., nondecreasing) function that maps the linear predictor η ¼ αþ βX into the unit interval.
A transformation of this type will allow us to retain the fundamentally linear structure of the
model while avoiding the contradiction of probabilities below 0 or above 1. Any cumulative
probability distribution function (CDF) meets this requirement.9 That is, we can respecify the
model as

πi ¼ PðηiÞ ¼ Pðαþ βXiÞ ð14:4Þ

where the CDF Pð)Þ is selected in advance, and α and β are then parameters to be estimated.
If we choose Pð)Þ as the cumulative rectangular distribution, for example, then we obtain the

constrained linear-probability model (Equation 14.3).10 An a priori reasonable Pð)Þ should be
both smooth and symmetric and should approach π ¼ 0 and π ¼ 1 gradually.11 Moreover, it is
advantageous if Pð)Þ is strictly increasing (which requires that π ¼ 0 and π ¼ 1 be approached
as asymptotes), for then the transformation in Equation 14.4 is one to one, permitting us to
rewrite the model as

P&1ðπiÞ ¼ ηi ¼ αþ βXi ð14:5Þ

where P&1ð)Þ is the inverse of the CDF Pð)Þ (i.e., the quantile function for the distribution).12

Thus, we have a linear model (Equation 14.5) for a transformation of π, or—equivalently—a
nonlinear model (Equation 14.4) for π itself.

The transformation Pð)Þ is often chosen as the CDF of the unit-normal distribution, Nð0; 1Þ,

FðzÞ ¼ 1ffiffiffiffiffiffi
2π
p

Z z

&‘
expð& 1

2
Z2ÞdZ ð14:6Þ

or, even more commonly, of the logistic distribution

8*Consider the strong constraints that the data place on the maximum-likelihood estimators of α and β: If, as in the
illustration, bβ > 0, then the rightmost observation for which Y ¼ 0 can have an X -value no larger than ð1& bαÞ=bβ,
which is the point at which the estimated regression line hits bπ ¼ 1, because any 0 to the right of this point would pro-
duce a 0 likelihood. Similarly, the leftmost observation for which Y ¼ 1 can have an X -value no smaller than &bα=bβ,
the point at which the regression line hits bπ ¼ 0. As the sample size grows, these extreme values will tend to move,
respectively, to the right and left, making bβ smaller.
9See online Appendix D on probability and estimation.
10See Exercise 14.2.
11This is not to say, however, that Pð)Þ needs to be symmetric in every case, just that symmetric Pð)Þs are more appro-
priate in general. For an example of an asymmetric choice of Pð)Þ, see the discussion of the complementary log-log
transformation in Chapter 15.
12If, alternatively, the CDF levels off (as is the case, e.g., for the rectangular distribution), then the inverse of the CDF
does not exist.
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LðzÞ ¼ 1

1þ e&z
ð14:7Þ

In these equations, π » 3:141 and e » 2:718 are the familiar mathematical constants.13

! Using the normal distribution Fð)Þ yields the linear probit model:

πi ¼ Fðαþ βXiÞ

¼ 1ffiffiffiffiffiffi
2π
p

Z αþβXi

&‘
exp & 1

2
Z2

" #
dZ

! Using the logistic distribution Lð)Þ produces the linear logistic-regression or linear logit
model:

πi ¼ Lðαþ βXiÞ

¼ 1

1þ exp½&ðαþ βXiÞ(
ð14:8Þ

Once their variances are equated—the logistic distribution has variance π2=3, not 1—the logit
and probit transformations are so similar that it is not possible, in practice, to distinguish
between them without a great deal of data, as is apparent in Figure 14.3. It is also clear from
this graph that both functions are nearly linear over much of their range, say between about

−4 −2 0

η = α + βX

π

Normal Logistic

1.0

0.8

0.6

0.4

0.2

0.0

2 4

Figure 14.3 Once their variances are equated, the cumulative logistic and cumulative normal
distributions—used here to transform η ¼ αþ βX to the unit interval—are virtually
indistinguishable.

13A note to the reader for whom calculus is unfamiliar: An integral, represented by the symbol
R

in Equation 14.6, rep-
resents the area under a curve, here the area between Z ¼ &‘ and Z ¼ z under the curve given by the function

exp & 1
2 Z2

$ %
. The constant 1=

ffiffiffiffiffiffi
2π
p

ensures that the total area under the normal density function ‘‘integrates’’ (i.e., adds
up) to 1.
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π ¼ :2 and π ¼ :8. This is why the linear-probability model produces results similar to the
logit and probit models, except for extreme values of πi.

Despite their essential similarity, there are two practical advantages of the logit model com-
pared to the probit model:

1. The equation of the logistic CDF (Equation 14.7) is very simple, while the normal CDF
(Equation 14.6) involves an unevaluated integral. This difference is trivial for dichoto-
mous data because very good closed-form approximations to the normal CDF are avail-
able, but for polytomous data, where we will require the multivariate logistic or normal
distribution, the disadvantage of the probit model is somewhat more acute.14

2. More important, the inverse linearizing transformation for the logit model, L&1ðπÞ, is
directly interpretable as a log-odds, while the inverse transformation for the probit
model, the quantile function of the standard-normal distribution, F&1ðπÞ, does not have
a direct interpretation. Rearranging Equation 14.8, we get

πi

1& πi
¼ expðαþ βXiÞ ð14:9Þ

The ratio πi=ð1& πiÞ is the odds that Yi ¼ 1 (e.g., the odds of voting yes), an expres-
sion of relative chances familiar from gambling (at least to those who engage in this
vice). Unlike the probability scale, odds are unbounded above (though bounded below
by 0). Taking the log of both sides of Equation 14.9 produces

loge
πi

1& πi
¼ αþ βXi

The inverse transformation L&1ðπÞ ¼ loge½π=ð1& πÞ(, called the logit of π, is therefore the
log of the odds that Y is 1 rather than 0. As the following table shows, if the odds are
‘‘even’’—that is, equal to 1, corresponding to π ¼ :5—then the logit is 0. The logit is sym-
metric around 0, and unbounded both above and below, making the logit a good candidate for
the response variable in a linear-like model. In contrast, probabilities are bounded both below
and above (at 0 and 1); odds are unbounded above but bounded below by 0.

Probability Odds Logit

π
π

1& π
loge

π

1& π

.01 1/99 ¼ 0.0101 &4.60

.05 5/95 ¼ 0.0526 &2.94

.10 1/9 ¼ 0.1111 &2.20

.30 3/7 ¼ 0.4286 &0.85

.50 5/5 ¼ 1 0.00

.70 7/3 ¼ 2.3333 0.85

.90 9/1 ¼ 9 2.20

.95 95/5 ¼ 19 2.94

.99 99/1 ¼ 99 4.60

14See Section 14.2.1. Computation of multivariate-normal probabilities is, however, feasible, so this is not a serious
obstacle to fitting probit models to polytomous data.
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The logit model is a linear, additive model for the log odds, but (from Equation 14.9) it is also
a multiplicative model for the odds:

πi

1& πi
¼ expðαþ βXiÞ ¼ expðαÞexpðβXiÞ

¼ eα eβ
$ %Xi

So, increasing X by 1 changes the logit by β and multiplies the odds by eβ. For example, if
β ¼ 2, then increasing X by 1 increases the odds by a factor of e2 » 2:7182 ¼ 7:389.15

Still another way of understanding the parameter β in the logit model is to consider the slope
of the relationship between π and X , given by Equation 14.8. Because this relationship is non-
linear, the slope is not constant; the slope is βπð1& πÞ and hence is at a maximum when
π ¼ 1

2, where the slope is β1
2ð1&

1
2Þ ¼ β=4, as illustrated in the following table:16

Notice that the slope of the relationship between π and X does not change very much between
π ¼ :2 and π ¼ :8, reflecting the near linearity of the logistic curve in this range.

The least-squares line fit to the Chilean plebiscite data in Figure 14.1, for example, has the
equation

bπyes ¼ 0:492þ 0:394 · Status quo ð14:10Þ

As I have pointed out, this line is a poor summary of the data. The logistic-regression model,
fit by the method of maximum likelihood (to be developed presently), has the equation

loge
bπyes

bπno
¼ 0:215þ 3:21 · Status quo

As is apparent from Figure 14.1, the logit model produces a much more adequate summary of
the data, one that is very close to the nonparametric regression. Increasing support for the status
quo by one unit multiplies the odds of voting yes by e3:21 ¼ 24:8. Put alternatively, the slope
of the relationship between the fitted probability of voting yes and support for the status quo at

π βπð1&πÞ

.01 β· .0099

.05 β· .0475

.10 β· .09

.20 β· .16

.50 β· .25

.80 β· .16

.90 β· .09

.95 β· .0475

.99 β· .0099

15The exponentiated coefficient eβ is sometimes called an ‘‘odds ratio’’ because it represents the ratio of the odds of
response at two X -values, with the X -value in the numerator one unit larger than that in the denominator.
16See Exercise 14.3.
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bπyes ¼ :5 is 3:21=4 ¼ 0:80. Compare this value with the slope (B ¼ 0:39) from the linear
least-squares regression in Equation 14.10.17

14.1.3 An Unobserved-Variable Formulation

An alternative derivation of the logit or probit model posits an underlying regression for a
continuous but unobservable response variable j (representing, e.g., the ‘‘propensity’’ to vote
yes), scaled so that

Yi ¼
0 when ji £ 0
1 when ji > 0

&
ð14:11Þ

That is, when j crosses 0, the observed discrete response Y changes from no to yes. The latent
variable j is assumed to be a linear function of the explanatory variable X and the (usual)
unobservable error variable ε:

ji ¼ αþ βXi & εi ð14:12Þ

(It is notationally convenient here—but otherwise inconsequential—to subtract the error ε

rather than to add it.) We want to estimate the parameters α and β but cannot proceed by least-
squares regression of j on X because the latent response variable (unlike Y ) is not observed.

Using Equations 14.11 and 14.12,

πi [ PrðYi ¼ 1Þ ¼ Prðji > 0Þ ¼ Prðαþ βXi & εi > 0Þ
¼ Prðεi <αþ βXiÞ

If the errors are independently distributed according to the unit-normal distribution,
εi ; Nð0; 1Þ, then

πi ¼ Prðεi <αþ βXiÞ ¼ Fðαþ βXiÞ

which is the probit model.18 Alternatively, if the εi follow the similar logistic distribution, then
we get the logit model

πi ¼ Prðεi <αþ βXiÞ ¼ Lðαþ βXiÞ

We will have occasion to return to the unobserved-variable formulation of logit and probit
models when we consider models for ordinal categorical data.19

17As I have explained, the slope for the logit model is not constant: It is steepest at π ¼ :5 and flattens out as π

approaches 0 and 1. The linear probability model, therefore, will agree more closely with the logit model when the
response probabilities do not (as here) attain extreme values. In addition, in this example, we cannot interpret
3:21=4 ¼ 0:80 as an approximate effect on the probability scale when bπ is close to .5 because the coefficient is too
large: 0:5þ 0:80 ¼ 1:30 > 1.
18The variance of the errors is set conveniently to 1. This choice is legitimate because we have not yet fixed the unit of
measurement of the latent variable j. The location of the j scale was implicitly fixed by setting 0 as the point at which
the observable response changes from no to yes. You may be uncomfortable assuming that the errors for an unobserva-
ble response variable are normally distributed, because we cannot check the assumption by examining residuals, for
example. In most instances, however, we can ensure that the error distribution has any form we please by transforming
j to make the assumption true. We cannot, however, simultaneously ensure that the true regression is linear. If the
latent-variable regression is not linear, then the probit model will not adequately capture the relationship between the
dichotomous Y and X . See Section 15.4.2 for a discussion of nonlinearity diagnostics for logit, probit, and other gener-
alized linear model.
19See Section 14.2.3.
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14.1.4 Logit and Probit Models for Multiple Regression

Generalizing the logit and probit models to several explanatory variables is straightforward.
All we require is a linear predictor (ηi in Equation 14.13) that is a function of several regres-
sors. For the logit model,

πi ¼ LðηiÞ ¼ Lðαþ β1Xi1 þ β2Xi2 þ ) ) ) þ βkXikÞ

¼ 1

1þ exp½&ðαþ β1Xi1 þ β2Xi2 þ ) ) ) þ βkXikÞ(
ð14:13Þ

or, equivalently,

loge
πi

1& πi
¼ αþ β1Xi1 þ β2Xi2 þ ) ) ) þ βkXik

For the probit model,

πi ¼ FðηiÞ ¼ Fðαþ β1Xi1 þ β2Xi2 þ ) ) ) þ βkXikÞ

Moreover, the X s can be as general as in the general linear model, including, for example:

! quantitative explanatory variables,
! transformations of quantitative explanatory variables,
! polynomial (or regression-spline) regressors formed from quantitative explanatory

variables,20

! dummy regressors representing qualitative explanatory variables, and
! interaction regressors.

Interpretation of the partial-regression coefficients in the general linear logit model (Equation
14.13) is similar to the interpretation of the slope in the logit simple-regression model, with the
additional provision of holding other explanatory variables in the model constant. For example,
expressing the model in terms of odds,

πi

1& πi
¼ expðαþ β1Xi1 þ ) ) ) þ βkXikÞ

¼ eα eβ1
$ %Xi1 ) ) ) eβk

$ %Xik

Thus, eβj is the multiplicative effect on the odds of increasing Xj by 1, holding the other X s
constant. Similarly, βj=4 is the slope of the logistic regression surface in the direction of Xj at
π ¼ :5.

More adequate specifications than the linear probability model transform the linear pre-
dictor ηi ¼ αþ β1Xi1 þ ) ) ) þ βkXik smoothly to the unit interval, using a cumulative
probability distribution function Pð)Þ. Two such specifications are the probit and the logit
models, which use the normal and logistic CDFs, respectively. Although these models
are very similar, the logit model is simpler to interpret because it can be written as a lin-
ear model for the log odds, loge½πi=ð1& πiÞ( ¼ αþ β1Xi1 þ ) ) ) þ βkXik , or, exponentiat-
ing the coefficients, as a multiplicative model for the odds, πi=ð1& πiÞ ¼
eα eβ1ð ÞXi1 ) ) ) eβkð ÞXik .

20See Chapter 17.
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The general linear logit and probit models can be fit to data by the method of maximum likeli-
hood. I will concentrate here on outlining maximum-likelihood estimation for the logit model.
Details are given in the next section.

Recall that the response variable Yi takes on the two values 1 and 0 with probabilities πi and
1& πi, respectively. Using a mathematical ‘‘trick,’’ the probability distribution for Yi can be
compactly represented as a single equation:21

pðyiÞ[ PrðYi ¼ yiÞ ¼ π
yi
i ð1& πiÞ1&yi

where yi can be 0 or 1.
Now consider a particular sample of n independent observations, y1, y2; . . . ; yn (comprising

a specific sequence of 0s and 1s). Because the observations are independent, the joint probabil-
ity for the data is the product of the marginal probabilities:

pðy1; y2; . . . ; ynÞ ¼ pðy1Þpðy2Þ ) ) ) pðynÞ ð14:14Þ

¼
Yn

i¼1

pðyiÞ

¼
Yn

i¼1

π
yi
i ð1& πiÞ1&yi

¼
Yn

i¼1

πi

1& πi

" #yi

ð1& πiÞ

From the general logit model (Equation 14.13),

πi

1& πi
¼ expðαþ β1Xi1 þ ) ) ) þ βkXikÞ

and (after some manipulation)22

1& πi ¼
1

1þ expðαþ β1Xi1 þ ) ) ) þ βkXikÞ

Substituting these results into Equation 14.14 expresses the probability of the data in terms of
the parameters of the logit model:

pðy1; y2; . . . ; ynÞ

¼
Yn

i¼1

½expðα þ β1Xi1 þ ) ) ) þ βkXikÞ(yi

·
1

1þ expðαþ β1Xi1 þ ) ) ) þ βkXikÞ

' (1&yi

Thinking of this equation as a function of the parameters, and treating the data (y1, y2; . . . ; yn)
as fixed, produces the likelihood function, Lðα;β1; . . . ;βkÞ for the logit model. The values of
α;β1; . . . ; βk that maximize Lðα; β1; . . . ;βkÞ are the maximum-likelihood estimates A,
B1; . . . ;Bk .

21See Exercise 14.4.
22See Exercise 14.5.
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Hypothesis tests and confidence intervals follow from general procedures for statistical infer-
ence in maximum-likelihood estimation.23 For an individual coefficient, it is most convenient
to test the hypothesis H0: βj ¼ β

ð0Þ
j by calculating the Wald statistic

Z0 ¼
Bj & β

ð0Þ
j

SEðBjÞ

where SEðBjÞ is the asymptotic (i.e., large-sample) standard error of Bj. To test the most
common hypothesis, H0: βj ¼ 0, simply divide the estimated coefficient by its standard error to
compute Z0 ¼ Bj=SEðBjÞ; these tests are analogous to t-tests for individual coefficients in the
general linear model. The test statistic Z0 follows an asymptotic standard-normal distribution
under the null hypothesis, an approximation that is usually reasonably accurate unless the sam-
ple size is small.24 Similarly, an asymptotic 100ð1& aÞ% confidence interval for βj is given by

βj ¼ Bj – za=2SEðBjÞ

where za=2 is the value from Z ; Nð0; 1Þ with probability a=2 to the right. Wald tests and joint
confidence regions for several coefficients can be formulated from the estimated asymptotic
variances and covariances of the coefficients.25

It is also possible to formulate a likelihood-ratio test for the hypothesis that several coeffi-
cients are simultaneously 0, H0: β1 ¼ ) ) ) ¼ βq ¼ 0. We proceed, as in least-squares regression,
by fitting two models to the data: the full model (Model 1),

logitðπÞ ¼ αþ β1X1 þ ) ) ) þ βqXq þ βqþ1Xqþ1 þ ) ) ) þ βkXk

and the null model (Model 0),

logitðπÞ ¼ αþ 0X1 þ ) ) ) þ 0Xq þ βqþ1Xqþ1 þ ) ) ) þ βkXk

¼ αþ βqþ1Xqþ1 þ ) ) ) þ βkXk

Fitting each model produces a maximized likelihood: L1 for the full model, L0 for the null
model. Because the null model is a specialization of the full model, L1 ‡ L0. The likelihood-
ratio test statistic for the null hypothesis is

G2
0 ¼ 2ðloge L1 & loge L0Þ

Under the null hypothesis, this test statistic has an asymptotic chi-square distribution with q
degrees of freedom.

By extension, a test of the omnibus null hypothesis H0: β1 ¼ ) ) ) ¼ βk ¼ 0 is obtained by
specifying a null model that includes only the regression constant, logitðπÞ ¼ α. At the other
extreme, the likelihood-ratio test can, of course, be applied to a single coefficient, H0: βj ¼ 0,
and this test can be inverted to provide a confidence interval for βj: For example, the 95% con-
fidence interval for βj includes all values β0j for which the hypothesis H0: βj ¼ β0j is acceptable
at the .05 level—that is, all values of β0j for which 2ðloge L1 & loge L0Þ £χ2

:05;1 ¼ 3:84, where

23These general procedures are discussed in online Appendix D on probability and estimation.
24Under certain circumstances, however, tests and confidence intervals based on the Wald statistic can break down in
logistic regression (see Hauck & Donner, 1977). Tests and confidence intervals based on the likelihood-ratio statistic,
described immediately below, are more reliable but more time-consuming to compute.
25See Section 14.1.5.
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loge L1 is (as before) the maximized log-likelihood for the full model, and loge L0 is the maxi-
mized log-likelihood for a model in which βj is constrained to the value β0j.

An analog to the multiple-correlation coefficient can also be obtained from the log-
likelihood. The maximized log-likelihood for the fitted model can be written as26

loge L ¼
Xn

i¼1

yi loge Pi þ ð1& yiÞ logeð1& PiÞ½ (

where Pi is the fitted probability that Yi ¼ 1,27 that is,

Pi ¼
1

1þ exp½&ðAþ B1Xi1 þ ) ) ) þ BkXikÞ(

Thus, if the fitted model can perfectly predict the Y values (Pi ¼ 1 whenever yi ¼ 1, and
Pi ¼ 0 whenever yi ¼ 0), then loge L ¼ 0 (i.e., the maximized likelihood is L ¼ 1).28 To the
extent that predictions are less than perfect, loge L < 0 (and 0 < L < 1).

By comparing loge L0 for the model containing only the constant to loge L1 for the full
model, we can measure the degree to which using the explanatory variables improves the pre-
dictability of Y . The quantity G2 [ & 2 loge L, called the residual deviance under the model, is
a generalization of the residual sum of squares for a linear model.29 Thus,

R2 [ 1& G2
1

G2
0

¼ 1& loge L1

loge L0

is analogous to R2 for a linear model.30

The dichotomous logit model can be fit to data by the method of maximum likelihood.
Wald tests and likelihood-ratio tests for the coefficients of the model parallel t-tests and
incremental F-tests for the general linear model. The deviance for the model, defined as
G2 ¼ &2 · the maximized log-likelihood, is analogous to the residual sum of squares
for a linear model.

To illustrate logistic regression, I turn once again to the 1994 wave of the Statistics Canada
Survey of Labour and Income Dynamics (the ‘‘SLID’’).31 Confining our attention to married
women between the ages of 20 and 35, I examine how the labor force participation of these

26See Exercise 14.6.
27In a particular sample, yi is either 0 or 1, so we can interpret this fitted probability as the estimated population propor-
tion of individuals sharing the ith person’s characteristics for whom Y is 1. Other interpretations are also possible, but
this is the most straightforward.
28Because, for the logit model, π never quite reaches 0 or 1, the predictions cannot be perfect, but they can approach
perfection in the limit.
29See Exercise 14.7 and Chapter 15 on generalized linear models.
30For alternative R2 measures for logit and probit models, see, for example, Veall and Zimmermann (1996).
31The SLID was introduced in Chapter 2.
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women (defined as working outside the home at some point during the year of the survey) is
related to several explanatory variables:

! the region of the country in which the woman resides;
! the presence of children between 0 and 4 years of age in the household, coded as absent

or present;
! the presence of children between 5 and 9 years of age;
! the presence of children between 10 and 14 years of age;
! family after-tax income, excluding the woman’s own income (if any);32 and
! education, defined as number of years of schooling.

The SLID data set includes 1936 women with valid data on these variables. Some
information about the distribution of the variables appears in Table 14.1. Recall that the five-
number summary includes the minimum, first quartile, median, third quartile, and maximum of
a variable.

In modeling these data, I want to allow for the possibility of interaction between presence of
children and each of family income and education in determining women’s labor force partici-
pation. Table 14.2 shows the residual deviances and number of parameters for each of a series
of models fit to the SLID data. These models are formulated so that likelihood-ratio tests of
terms in the full model can be computed by taking differences in the residual deviances for the
models, in conformity with the principle of marginality, producing ‘‘Type II’’ tests.33 The resi-
dual deviances are the building blocks of likelihood-ratio tests, much as residual sums of
squares are the building blocks of incremental F-tests in linear models. The tests themselves,
with an indication of the models contrasted for each test, appear in an analysis-of-deviance
table in Table 14.3, closely analogous to an ANOVA table for a linear model.

It is clear from the likelihood-ratio tests in Table 14.3 that none of the interactions
approaches statistical significance. Presence of children 4 years old and younger and education
have very highly statistically significant coefficients; the terms for region, children 5 to 9 years
old, and family income are also statistically significant, while that for children 10 through 14 is
not.

Table 14.1 Distributions of Variables in the SLID Data Set

Variable Summary

Labor-Force Participation Yes, 79%
Region (R) Atlantic, 23%; Quebec, 13; Ontario, 30; Prairies, 26; BC, 8
Children 0–4 (K04) Yes, 53%
Children 5–9 (K59) Yes, 44%
Children 10–14 (K1014) Yes, 22%
Family Income (I, $1000s) 5-number summary: 0, 18.6, 26.7, 35.1, 131.1
Education (E, years) 5-number summary: 0, 12, 13, 15, 20

32I excluded from the analysis two women for whom this variable is negative.
33See Sections 7.3.5 and 8.2.5.
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Estimated coefficients and standard errors for a summary model including the statistically
significant terms are given in Table 14.4. The residual deviance for this model, 1810.444, is
only a little larger than the residual deviance for the original model, 1807.376. The Atlantic
provinces are the baseline category for the region effects in this model. The column of the table
labeled eBj represents multiplicative effects on the odds scale. Thus, for example, holding the
other explanatory variables constant, having children 0 to 4 years old in the household reduces
the odds of labor force participation by 100ð1& 0:379Þ ¼ 62:1%, and increasing education by
1 year increases the odds of labor force participation by 100ð1:246& 1Þ ¼ 24:6%. As
explained, as long as a coefficient is not too large, we can also express effects on the probabil-
ity scale near π ¼ :5 by dividing the coefficient by 4: For example (and again, holding other
explanatory variables constant), if the probability of labor force participation is near .5 with
children 0 to 4 absent, the presence of children of this age decreases the probability by approxi-
mately 0:9702=4 ¼ 0:243 or 24.3%, while an additional year of education increases the prob-
ability by approximately 0:2197=4 ¼ :0549 or 5.5%.

Table 14.2 Models Fit to the SLID Labor Force Participation Data

Model Terms in the Model Number of
Parameters

Residual
Deviance

0 C 1 1988.084
1 C, R, K04, K59, K1014, I, E, K04 · I, K59 · I,

K1014 · I,K04 · E, K59 · E, K1014 · E
16

1807.376
2 Model 1 & K04 · I 15 1807.378
3 Model 1 & K59 · I 15 1808.600
4 Model 1 & K1014 · I 15 1807.834
5 Model 1 & K04 · E 15 1807.407
6 Model 1 & K59 · E 15 1807.734
7 Model 1 & K1014 · E 15 1807.938
8 Model 1 & R 12 1824.681
9 C, R, K04, K59, K1014, I, E, K59 · I,

K1014 · I, K59 · E, K1014 · E
14

1807.408
10 Model 9 & K04 13 1866.689
11 C, R, K04, K59, K1014, I, E, K04 · I,

K1014 · I,K04 · E, K1014 · E
14 1809.268

12 Model 11 & K59 13 1819.273
13 C, R, K04, K59, K1014, I, E, K04 · I, K59 · I,

K04 · E, K59 · E
14

1808.310
14 Model 13 & K1014 13 1808.548
15 C, R, K04, K59, K1014, I, E, K04 · E, K59 · E,

K1014 · E
13 1808.854

16 Model 15 & I 12 1817.995
17 C, R, K04, K59, K1014, I, E, K04 · I, K59 · I,

K1014 · I
13 1808.428

18 Model 17 & E 12 1889.223

NOTE: ‘‘C’’ represents the regression constant; codes for other variables in the model are given in Table 14.1.
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Still another strategy for interpreting a logit model is to graph the high-order terms in the
model, producing effect displays, much as we did for linear models.34 The final model for the
SLID labor force participation data in Table 14.4 has a simple structure in that there are no
interactions or polynomial terms. Nevertheless, it helps to see how each explanatory variable
influences the probability of the response holding other explanatory variables to their average
values. In Figure 14.4, I plot the terms in the model on the logit scale (given by the left-hand
axis in each graph), preserving the linear structure of the model, but I also show corresponding
fitted probabilities of labor force participation (on the right-hand axis)—a more familiar scale
on which to interpret the results. The vertical axis is the same in each graph, facilitating com-
parison of the several partial effects.

Table 14.3 Analysis of Deviance Table for the SLID Labor Force Participation
Logit Model

Term Models Contrasted df G2
0 p

Region (R) 8-1 4 17.305 .0017
Children 0–4 (K04) 10-9 1 59.281 +.0001
Children 5–9 (K59) 12-11 1 10.005 .0016
Children 10–14 (K1014) 14-12 1 0.238 .63
Family Income (I) 16-15 1 9.141 .0025
Education (E) 18-17 1 80.795 +.0001
K04 · I 2-1 1 0.002 .97
K59 · I 3-1 1 1.224 .29
K1014 · I 4-1 1 0.458 .50
K04 · E 5-1 1 0.031 .86
K59 · E 6-1 1 0.358 .55
K1014 · E 7-1 1 0.562 .45

Table 14.4 Estimates for a Final Model Fit to the SLID Labor Force
Participation Data

Coefficient Estimate (Bj) Standard Error eBj

Constant &0.3763 0.3398
Region: Quebec &0.5469 0.1899 0.579
Region: Ontario 0.1038 0.1670 1.109
Region: Prairies 0.0742 0.1695 1.077
Region: BC 0.3760 0.2577 1.456
Children 0–4 &0.9702 0.1254 0.379
Children 5–9 &0.3971 0.1187 0.672
Family income ($1000s) &0.0127 0.0041 0.987
Education (years) 0.2197 0.0250 1.246

Residual deviance 1810.444

34See the discussion of effect displays for linear models in Sections 7.3.4 and 8.3.2. Details of effect displays for logit
models are developed in a more general context in the next chapter (Section 15.3.4).
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We should not forget that the logit model fit to the SLID data is a parametric model, assum-
ing linear partial relationships (on the logit scale) between labor force participation and the two
quantitative explanatory variables, family income and education. There is no more reason to
believe that relationships are necessarily linear in logit models than in linear least-squares
regression. I will take up diagnostics, including nonlinearity diagnostics, for logit models and
other generalized linear models in the next chapter.35
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Figure 14.4 Effect displays for the summary logit model fit to the SLID labor force participation
data. The error bars and envelopes give pointwise 95% confidence intervals around
the estimated effects. The plots for family income and education range between the
10th and 90th percentiles of these variables.

35See Section 15.4.
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Woes of Logistic-Regression Coefficients

Just as the least-squares surface flattens out at its minimum when the X s are collinear, the
likelihood surface for a logistic regression flattens out at its maximum in the presence of colli-
nearity, so that the maximum-likelihood estimates of the coefficients of the model are not
uniquely defined. Likewise, strong, but less-than-perfect, collinearity causes the coefficients to
be imprecisely estimated.

Paradoxically, problems for estimation can also occur in logit models when the explanatory
variables are very strong predictors of the dichotomous response. One such circumstance, illu-
strated in Figure 14.5, is separability. When there is a single X , the data are separable if the
‘‘failures’’ (0s) and ‘‘successes’’ (1s) fail to overlap [as in Figure 14.5(a)]. In this case, the
maximum-likelihood estimate of the slope coefficient β is infinite (either &‘ or þ‘, depending
on the direction of the relationship between X and Y ), and the estimate of the intercept α is not
unique. When there are two X s, the data are separable if there is a line in the fX1;X2g plane
that separates successes from failures [as in Figure 14.5(b)]. For three X s, the data are separ-
able if there is a separating plane in the three-dimensional space of the X s, and the generaliza-
tion to any number of X s is a separating hyperplane—that is, a linear surface of dimension
k & 1 in the k-dimensional X space.

Still another circumstance that yields infinite coefficients is that of data in which some of the
responses become perfectly predictable even in the absence of complete separability. For exam-
ple, if at one level of a factor all observations are successes, the estimated probability of suc-
cess for an observation at this level is 1, and the odds of success are 1=0 ¼ ‘.

Statistical software may or may not detect these problems for estimation. The problems may
manifest themselves in failure of the software to converge to a solution, in wildly large esti-
mated coefficients, or in very large coefficient standard errors.
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Figure 14.5 Separability in logistic regression: (a) with one explanatory variable, X; (b) with two
explanatory variables, X1 and X2. In panel (b), the solid dots represent observations
for which Y ¼ 1 and the hollow dots observations for which Y ¼ 0.
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14.1.5 Estimating the Linear Logit Model*

In this section, I will develop the details of maximum-likelihood estimation for the general
linear logit model (Equation 14.13 on page 380). It is convenient to rewrite the model in vector
form as

πi ¼
1

1þ expð&x0iflÞ

where x0i [ ð1;Xi1; . . . ;XikÞ is the ith row of the model matrix X, and fl[ ðα;β1; . . . ;βkÞ
0 is

the parameter vector. The probability of n independently sampled observations of Y conditional
on X is, therefore,

pðy1; . . . ; ynjXÞ ¼
Yn

i¼1

½expðx0iflÞ(
yi

1

1þ expðx0iflÞ

' (

and the log-likelihood function is

loge LðflÞ ¼
Xn

i¼1

Yix
0
ifl&

Xn

i¼1

loge½1þ expðx0iflÞ(

The partial derivatives of the log-likelihood with respect to fl are

∂ loge LðflÞ
∂fl

¼
Xn

i¼1

Yixi &
Xn

i¼1

expðx0iflÞ
1þ expðx0iflÞ

' (
xi

¼
Xn

i¼1

Yixi &
Xn

i¼1

1

1þ expð&x0iflÞ

' (
xi ð14:15Þ

Setting the vector of partial derivatives to 0 to maximize the likelihood yields estimating
equations

Xn

i¼1

1

1þ expð&x0ibÞ

' (
xi ¼

Xn

i¼1

Yixi ð14:16Þ

where b ¼ ðA;B1; . . . ;BkÞ0 is the vector of maximum-likelihood estimates.
The estimating equations (14.16) have the following intuitive justification:

Pi [
1

1þ expð&x0ibÞ

is the fitted probability for observation i (i.e., the estimated value of πi). The estimating equa-
tions, therefore, set the ‘‘fitted sum’’

P
Pixi equal to the corresponding observed sum

P
Yixi.

In matrix form, we can write the estimating equations as X0p ¼ X0y, where p ¼ ðP1; . . . ;PnÞ0

is the vector of fitted values. Note the essential similarity to the least-squares estimating equa-
tions X0Xb ¼ X0y, which can be written X0by ¼ X0y.

Because b is a maximum-likelihood estimator, its estimated asymptotic covariance matrix
can be obtained from the inverse of the information matrix36

36See online Appendix D on probability and estimation.
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IðflÞ ¼ &E
∂2 loge LðflÞ

∂fl∂fl0

' (

evaluated at fl ¼ b. Differentiating Equation 14.15 and making the appropriate substitutions,37

bVðbÞ ¼
Xn

i¼1

expð&x0ibÞ
½1þ expð&x0ibÞ(

2 xix
0
i

( )&1

¼
Xn

i¼1

Pið1& PiÞxix
0
i

" #&1

¼ ðX0VXÞ&1

where V [ diagfPið1& PiÞg contains the estimated variances of the Yis. The square roots of
the diagonal entries of bVðbÞ are the asymptotic standard errors, which can be used, as
described in the previous section, for Wald-based inferences about individual parameters of the
logit model.

As for the linear model estimated by least squares, general linear hypotheses about the parameters
of the logit model can be formulated as H0: Lfl ¼ c, where L is a ðq · k þ 1Þ hypothesis matrix of
rank q £ k þ 1 and c is a q · 1 vector of fixed elements, typically 0.38 Then the Wald statistic

Z2
0 ¼ ðLb& cÞ0½LbVðbÞL0(&1ðLb& cÞ

follows an asymptotic chi-square distribution with q degrees of freedom under the hypothesis
H0. For example, to test the omnibus hypothesis H0: β1 ¼ ) ) ) ¼ βk ¼ 0, we take

L
ðk · kþ1Þ

¼

0 1 0 ) ) ) 0
0 0 1 ) ) ) 0
..
. ..

. ..
. . .

. ..
.

0 0 0 ) ) ) 1

2

664

3

775 ¼ ½ 0
ðk · 1Þ

; Ik (

and c ¼ 0
ðk · 1Þ

.

Likewise, the asymptotic 100ð1& aÞ% joint confidence region for a subset of q parameters
fl1 takes the form

ðb1 & fl1Þ
0V&1

11 ðb1 & fl1Þ £χ2
q;a

Here, V11 is the ðq · qÞ submatrix of bV ðbÞ that pertains to the estimates b1 of fl1, and χ2
q;a is

the critical value of the chi-square distribution for q degrees of freedom with probability a to
the right.

Unlike the normal equations for a linear model, the logit-model estimating equations (14.16)
are nonlinear functions of b and, therefore, require iterative solution. One common approach to
solving the estimating equations is the Newton-Raphson method, which can be described as
follows:39

37See Exercise 14.8.
38See Section 9.4.3.
39This approach was first applied by R. A. Fisher, in the context of a probit model, and is sometimes termed Fisher
scoring in his honor.
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1. Select initial estimates b0; a simple choice is b0 ¼ 0.
2. At each iteration l þ 1, compute new estimates

blþ1 ¼ bl þ ðX0VlXÞ&1X0ðy& plÞ ð14:17Þ

where pl [ f1=½1þ expð&x0iblÞ(g is the vector of fitted values from the previous itera-
tion and Vl [ diag Plið1& PliÞf g.

3. Iterations continue until blþ1 » bl to the desired degree of accuracy. When convergence
takes place,

ðX0VlXÞ&1X0ðy& plÞ » 0

and thus the estimating equations X0p ¼ X0y are approximately satisfied. Conversely, if
the fitted sums X0pl are very different from the observed sums X0y, then there will be a
large adjustment in b at the next iteration. The Newton-Raphson procedure conveniently
produces the estimated asymptotic covariance matrix of the coefficients bVðbÞ ¼
ðX0VXÞ&1 as a by-product.

Suppose, now, that we have obtained complete convergence of the Newton-Raphson procedure
to the maximum-likelihood estimator b. From Equation 14.17, we have

b ¼ bþ ðX0VXÞ&1X0ðy& pÞ

which we can rewrite as

b ¼ ðX0VXÞ&1X0Vy*

where40

y*[ Xbþ V&1ðy& pÞ

These formulas suggest an analogy between maximum-likelihood estimation of the linear logit
model and weighted-least-squares regression. The analogy is the basis of an alternative method
for calculating the maximum-likelihood estimates called iterative weighted least squares
(IWLS):41

1. As before, select arbitrary initial values b0.
2. At each iteration l, calculate fitted values pl [ f1=½1þ expð&x0iblÞ(g, the variance

matrix Vl [ diag Plið1& PliÞf g, and the ‘‘pseudoresponse variable’’ y*l [ Xblþ
V&1

l ðy& plÞ.
3. Calculate updated estimates by weighted-least-squares regression of the pseudoresponse

on the X s, using the current variance matrix for weights:

blþ1 ¼ ðX0VlXÞ&1X0Vly
*
l

4. Repeat Steps 2 and 3 until the coefficients converge.

40See Exercise 14.9.
41This method is also called iteratively reweighted least squares (IRLS). See Section 12.2.2 for an explanation of
weighted-least-squares estimation. In fact, the IWLS algorithm is an alternative implementation of the Newton-
Raphson method and leads to the same history of iterations.
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14.2 Models for Polytomous Data

A limitation of the logit and probit models of the previous section is that they apply only to
dichotomous response variables. In the Chilean plebiscite data, for example, many of the voters
surveyed indicated that they were undecided, and some said that they planned to abstain or
refused to reveal their voting intentions. Polytomous data of this sort are common, and it is
desirable to model them in a natural manner—not simply to ignore some of the categories
(e.g., restricting attention to those who responded yes or no) or to combine categories arbitra-
rily to produce a dichotomy.

In this section, I will describe three general approaches to modeling polytomous data:42

1. modeling the polytomy directly as a set of unordered categories, using a generalization
of the dichotomous logit model;

2. constructing a set of nested dichotomies from the polytomy, fitting an independent logit
or probit model to each dichotomy; and

3. extending the unobserved-variable interpretation of the dichotomous logit and probit
models to ordered polytomies.

14.2.1 The Polytomous Logit Model

It is possible to generalize the dichotomous logit model to a polytomy by employing the
multivariate logistic distribution. This approach has the advantage of treating the categories of
the polytomy in a nonarbitrary, symmetric manner (but the disadvantage that the analysis is rel-
atively complex).43

Suppose that the response variable Y can take on any of m qualitative values, which, for
convenience, we number 1, 2; . . . ;m. To anticipate the example employed in this section, a
voter in the 2001 British election voted for (1) the Labour Party, (2) the Conservative Party, or
(3) the Liberal Democrats (disregarding smaller and regional parties). Although the categories
of Y are numbered, we do not, in general, attribute ordinal properties to these numbers: They
are simply category labels. Let πij denote the probability that the ith observation falls in the jth
category of the response variable; that is, πij [ PrðYi ¼ jÞ, for j ¼ 1; . . . ;m.

We have available k regressors, X1; . . . ;Xk , on which the πij depend. More specifically, this
dependence is modeled using the multivariate logistic distribution:

πij ¼
expðγ0j þ γ1jXi1 þ ) ) ) þ γkjXikÞ

1þ
Pm&1

l¼1 expðγ0l þ γ1lXi1 þ ) ) ) þ γklXikÞ
for j ¼ 1; . . . ;m & 1 ð14:18Þ

πim ¼ 1&
Xm&1

j¼1

πij ðfor category mÞ ð14:19Þ

42Additional statistical models for polytomous data are described, for example, in Agresti (2012).
43A similar probit model based on the multivariate-normal distribution is slightly more difficult to estimate because of
the necessity of evaluating a multivariate integral but is sometimes preferred to the polytomous logit model developed
in this section (see Exercise 14.12).
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This model is sometimes called the multinomial logit model.44 There is, then, one set of
parameters, γ0j, γ1j; . . . ; γkj, for each response category but the last. The last category (i.e.,
category m) functions as a type of baseline. The use of a baseline category is one way of avoid-
ing redundant parameters because of the restriction, reflected in Equation 14.19, that the
response category probabilities for each observation must sum to 1:45

Xm

j¼1

πij ¼ 1

The denominator of πij in Equation 14.18 imposes this restriction.
Some algebraic manipulation of Equation 14.18 produces46

loge
πij

πim
¼ γ0j þ γ1jXi1 þ ) ) ) þ γkjXik for j ¼ 1; . . . ;m& 1

The regression coefficients, therefore, represent effects on the log-odds of membership in cate-
gory j versus the baseline category m. It is also possible to form the log-odds of membership in
any pair of categories j and j 0 (other than category m):

loge
πij

πij 0
¼ loge

πij=πim

πij 0=πim

" #
ð14:20Þ

¼ loge
πij

πim
& loge

πij 0

πim

¼ ðγ0j & γ0j 0Þ þ ðγ1j & γ1j 0ÞXi1 þ ) ) ) þ ðγkj & γkj 0ÞXik

Thus, the regression coefficients for the logit between any pair of categories are the differences
between corresponding coefficients for the two categories.

To gain further insight into the polytomous logit model, suppose that the model is specia-
lized to a dichotomous response variable. Then, m ¼ 2, and

loge
πi1

πi2
¼ loge

πi1

1& πi1
¼ γ01 þ γ11Xi1 þ ) ) ) þ γk1Xik

When it is applied to a dichotomy, the polytomous logit model is, therefore, identical to the
dichotomous logit model of the previous section.

44I prefer to reserve the term multinomial logit model for a version of the model that can accommodate counts for the
several categories of the response variable in a contingency table formed by discrete explanatory variables. I make a
similar distinction between binary and binomial logit models, with the former term applied to individual observations
and the latter to counts of ‘‘successes’’ and ‘‘failures’’ for a dichotomous response. See the discussion of the application
of logit models to contingency tables in Section 14.3.
45An alternative is to treat the categories symmetrically:

πij ¼
expðγ0j þ γ1jXi1 þ ) ) ) þ γkjXikÞPm
l¼1 expðγ0l þ γ1lXi1 þ ) ) ) þ γklXikÞ

but to impose a linear restriction—analogous to a sigma constraint in an ANOVA model (see Chapter 8)—on the
parameters of the model. This approach produces somewhat more difficult computations, however, and has no real
advantages. Although the choice of baseline category is essentially arbitrary and inconsequential, if one of the response
categories represents a natural point of comparison, one might as well use it as the baseline.
46See Exercise 14.10.
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The following example is adapted from work by Andersen, Heath, and Sinnott (2002) on the
2001 British election, using data from the final wave of the 1997–2001 British Election Panel
Study (BEPS) (also see Fox & Andersen, 2006). The central issue addressed in the data analy-
sis is the potential interaction between respondents’ political knowledge and political attitudes
in determining their vote. The response variable, vote, has three categories: Labour,
Conservative, and Liberal Democrat; individuals who voted for smaller and regional parties are
excluded from the analysis. There are several explanatory variables:

! Attitude toward European integration, an 11-point scale, with high scores representing a
negative attitude (so-called Euroskepticism).

! Knowledge of the platforms of the three parties on the issue of European integration,
with integer scores ranging from 0 through 3. (Labour and the Liberal Democrats sup-
ported European integration, the Conservatives were opposed.)

! Other variables included in the model primarily as ‘‘controls’’—age, gender,
perceptions of national and household economic conditions, and ratings of the three
party leaders.

The coefficients of a polytomous logit model fit to the BEPS data are shown, along with their
standard errors, in Table 14.5. This model differs from those I have described previously in this
text in that it includes the product of two quantitative explanatory variables, representing the
linear-by-linear interaction between these variables:47 Focusing on the Conservative/Liberal
Democrat logit, for example, when political knowledge is 0, the slope for attitude toward
European integration (‘‘Euroskepticism’’) is &0:068. With each unit increase in political
knowledge, the slope for Euroskepticism increases by 0:183, thus becoming increasingly posi-
tive. This result is sensible: Those with more knowledge of the parties’ positions are more
likely to vote in conformity with their own position on the issue. By the same token, at low
levels of Euroskepticism, the slope for political knowledge is negative, but it increases by
0:183 with each unit increase in Euroskepticism. By a Wald test, this interaction coefficient is
highly statistically significant, with Z ¼ 0:183=0:028 ¼ 6:53, for which p+ :0001.

A Type II analysis-of-deviance table for the model appears in Table 14.6. Note that each
term has two degrees of freedom, representing the two coefficients for the term, one for the
Labour/Liberal Democrat logit and the other for the Conservative/Liberal Democrat logit. All
the terms in the model are highly statistically significant, with the exception of gender and per-
ception of household economic position.

Although we can therefore try to understand the fitted model by examining its coefficients,
there are two obstacles to doing so: (1) As explained, the interaction between political
knowledge and attitude toward European integration requires that we perform mental
gymnastics to combine the estimated coefficient for the interaction with the coefficients for the
‘‘main-effect’’ regressors that are marginal to the interaction. (2) The structure of the polyto-
mous logit model, which is for log-odds of pairs of categories (each category versus the base-
line Liberal Democrat category), makes it difficult to formulate a general understanding of the
results.

47For more on models of this form, see Section 17.1 on polynomial regression.
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Table 14.5 Polytomous Logit Model Fit to the BEPS Data

Labour/Liberal Democrat

Coefficient Estimate Standard Error

Constant &0.155 0.612
Age &0.005 0.005
Gender (male) 0.021 0.144
Perception of Economy 0.377 0.091
Perception of Household Economic Position 0.171 0.082
Evaluation of Blair (Labour leader) 0.546 0.071
Evaluation of Hague (Conservative leader) &0.088 0.064
Evaluation of Kennedy (Liberal Democrat leader) &0.416 0.072
Euroscepticism &0.070 0.040
Political Knowledge &0.502 0.155
Euroscepticism · Knowledge 0.024 0.021

Conservative/Liberal Democrat

Coefficient Estimate Standard Error

Constant 0.718 0.734
Age 0.015 0.006
Gender (male) &0.091 0.178
Perception of Economy &0.145 0.110
Perception of Household Economic Position &0.008 0.101
Evaluation of Blair (Labour leader) &0.278 0.079
Evaluation of Hague (Conservative leader) 0.781 0.079
Evaluation of Kennedy (Liberal Democrat leader) &0.656 0.086
Euroscepticism &0.068 0.049
Political Knowledge &1.160 0.219
Euroscepticism · Knowledge 0.183 0.028

Table 14.6 Analysis of Deviance for the Polytomous Logit Model Fit to the BEPS Data

Source df G2
0 p

Age 2 13.87 .0009
Gender 2 0.45 .78
Perception of Economy 2 30.60 +.0001
Perception of Household Economic Position 2 5.65 .059
Evaluation of Blair 2 135.37 +.0001
Evaluation of Hague 2 166.77 +.0001
Evaluation of Kennedy 2 68.88 +.0001
Euroskepticism 2 78.03 +.0001
Political Knowledge 2 55.57 +.0001
Euroskepticism · Knowledge 2 50.80 +.0001
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Once more, a graphical representation of the fitted model can greatly aid in its interpretation.
An effect plot for the interaction of attitude toward European integration with political knowl-
edge is shown in Figure 14.6. The strategy for constructing this plot is the usual one, adapted
to the polytomous logit model: Compute the fitted probability of membership in each of the
three categories of the response variable, letting Euroskepticism and knowledge range in com-
bination over their values, while the other explanatory variables are fixed to average values. It
is apparent that as political knowledge increases, vote conforms more closely to the respon-
dent’s attitude toward European integration.
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Figure 14.6 Effect display for the interaction between attitude toward European integration and
political knowledge in the polytomous logit model for vote in the 2001 British
election.
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Details of Estimation*

To fit the polytomous logit model given in Equation 14.18 (on page 392) to data, we may
again invoke the method of maximum likelihood. Recall that each Yi takes on its possible val-
ues 1; 2; . . . ;m with probabilities πi1, πi2; . . . ;πim. Following Nerlove and Press (1973), let us
define indicator variables Wi1; . . . ;Wim so that Wij ¼ 1 if Yi ¼ j, and Wij ¼ 0 if Yi 6¼ j; thus,

pðyiÞ ¼ πwi1
i1 πwi2

i2 ) ) )π
wim
im

¼
Ym

j¼1

π
wij

ij

If the observations are sampled independently, then their joint probability distribution is given
by

pðy1; . . . ; ynÞ ¼ pðy1Þ · ) ) ) · pðynÞ

¼
Yn

i¼1

Ym

j¼1

π
wij

ij

For compactness, define the following vectors:

x0i [ ð1;Xi1; . . . ;XikÞ
!j [ ðγ0j; γ1j; . . . ; γkjÞ

0

and the model matrix

X
ðn · kþ1Þ

[

x01
x02
..
.

x0n

2

6664

3

7775

It is convenient to impose the restriction
Pm

j¼1 πij ¼ 1 by setting !m ¼ 0 (making category m
the baseline, as explained previously). Then, employing Equations 14.18 and 14.19,

pðy1; . . . ; ynjXÞ ¼
Yn

i¼1

Ym

j¼1

expðx0i!jÞ
1þ

Pm&1
l¼1 expðx0i!lÞ

" #wij

ð14:21Þ

and the log-likelihood is

loge Lð!1; . . . ;!m&1Þ ¼
Xn

i¼1

Xm

j¼1

Wij x0i!j & loge 1þ
Xm&1

l¼1

expðx0i!lÞ

" #( )

¼
Xn

i¼1

Xm&1

j¼1

Wijx
0
i!j &

Xn

i¼1

loge 1þ
Xm&1

l¼1

expðx0i!lÞ

" #

because
Pm

j¼1 Wij ¼ 1 and !m ¼ 0; setting !m ¼ 0 accounts for the 1 in the denominator of
Equation 14.21, because expðx0i0Þ ¼ 1.

Differentiating the log-likelihood with respect to the parameters, and setting the partial deri-
vatives to 0, produces the nonlinear estimating equations:48

48See Exercise 14.11.
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Xn

i¼1

Wijxi ¼
Xn

i¼1

xi
expðx0icjÞ

1þ
Pm&1

l¼1 expðx0iclÞ
for j ¼ 1; . . . ;m& 1

¼
Xn

i¼1

Pijxi

ð14:22Þ

where cj [ b! j are the maximum-likelihood estimators of the regression coefficients, and the

Pij [
expðx0icjÞ

1þ
Pm&1

l¼1 expðx0iclÞ

are the fitted probabilities. As in the dichotomous logit model, the maximum-likelihood estima-
tor sets observed sums equal to fitted sums. The estimating equations (14.22) are nonlinear
and, therefore, require iterative solution.

Let us stack up all the parameters in a large vector:

!
½ðm&1Þðkþ1Þ · 1(

[

!1

..

.

!m&1

2

64

3

75

The information matrix is49

Ið!Þ
ðm&1Þðkþ1Þ · ðm&1Þðkþ1Þ½ (

¼

I11 I12 ) ) ) I 1;m&1

I21 I22 ) ) ) I 2;m&1

..

. ..
. . .

. ..
.

Im&1;1 Im&1;2 ) ) ) Im&1;m&1

2

6664

3

7775

where

I jj
ðkþ1Þ · ðkþ1Þ½ (

¼ &E
∂2logeLð!Þ
∂!j∂!

0
j

" #

¼
Xn

i¼1

xix0iexpðx0i!jÞ½1þ
Pm&1

l¼1 expðx0i!lÞ & expðx0i!jÞ(

½1þ
Pm&1

l¼1 expðx0i!lÞ(
2

ð14:23Þ

and

I jj 0

ðkþ1Þ · ðkþ1Þ½ (
¼ &E

∂2logeLð!Þ
∂!j ∂!

0
j 0

" #

¼ &
Xn

i¼1

xix0iexp½x0ið!j 0 þ !jÞ(

½1þ
Pm&1

l¼1 expðx0i!lÞ(
2

ð14:24Þ

The estimated asymptotic covariance matrix of

c [

c1

..

.

cm&1

2

64

3

75

is obtained from the inverse of the information matrix, replacing ! with c.

49See Exercise 14.11.
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14.2.2 Nested Dichotomies

Perhaps the simplest approach to polytomous data—because it employs the already familiar
dichotomous logit or probit model—is to fit separate models to each of a set of dichotomies
derived from the polytomy. These dichotomies are constructed so that the likelihood for the
polytomous response variable is the product of the likelihoods for the dichotomies—that is, the
models are statistically independent even though they are fitted to data from the same sample.
The likelihood is separable in this manner if the set of dichotomies is nested.50 Although the
system of nested dichotomies constitutes a model for the polytomy, and although this model
often yields fitted probabilities that are very similar to those associated with the polytomous
logit model of the previous section, the two models are not equivalent.

A nested set of m& 1 dichotomies is produced from an m-category polytomy by successive
binary partitions of the categories of the polytomy. Two examples for a four-category variable
are shown in Figure 14.7. In part (a) of this figure, the dichotomies are f12; 34g (i.e., the com-
bination of Categories 1 and 2 vs. the combination of Categories 3 and 4); f1; 2g (Category 1
vs. Category 2); and f3; 4g (Category 3 vs. Category 4). In part (b), the nested dichotomies are
f1; 234g, f2; 34g, and f3; 4g. This simple—and abstract—example illustrates a key property of
nested dichotomies: The set of nested dichotomies selected to represent a polytomy is not
unique. Because the results of the analysis (e.g., fitted probabilities under the model) and their
interpretation depend on the set of nested dichotomies that is selected, this approach to polyto-
mous data is reasonable only when a particular choice of dichotomies is substantively compel-
ling. If the dichotomies are purely arbitrary, or if alternative sets of dichotomies are equally
reasonable and interesting, then nested dichotomies should probably not be used to analyze the
data.

Nested dichotomies are an especially attractive approach when the categories of the polyt-
omy represent ordered progress through the stages of a process. Imagine, for example, that the
categories in Figure 14.7(b) represent adults’ attained level of education: (1) less than high
school, (2) high school graduate, (3) some postsecondary, or (4) postsecondary degree.
Because individuals normally progress through these categories in sequence, the dichotomy
f1; 234g represents the completion of high school; f2; 34g the continuation to postsecondary

1 2

2

3

3

3

4

4

4

1

1

2

2

3

3

4

4

(a) (b)

Figure 14.7 Alternative sets of nested dichotomies [(a) and (b)] for a four-category polytomous
response variable.

50A proof of this property of nested dichotomies will be given presently.
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education, conditional on high school graduation; and f3; 4g the completion of a degree condi-
tional on undertaking a postsecondary education.51

Why Nested Dichotomies Are Independent*

For simplicity, I will demonstrate the independence of the nested dichotomies f12; 3g and
f1; 2g. By repeated application, this result applies generally to any system of nested dichoto-
mies. Let Wi1, Wi2; and Wi3 be dummy variables indicating whether the polytomous response
variable Yi is 1, 2, or 3. For example, Wi1 ¼ 1 if Yi ¼ 1, and 0 otherwise. Let Y 0i be a dummy
variable representing the first dichotomy, f12; 3g: That is, Y 0i ¼ 1 when Yi ¼ 1 or 2, and
Y 0i ¼ 0 when Yi ¼ 3. Likewise, let Yi

00 be a dummy variable representing the second dichot-
omy, f1; 2g: Yi

00 ¼ 1 when Yi ¼ 1, and Yi
00 ¼ 0 when Yi ¼ 2; Yi

00 is undefined when Yi ¼ 3.
We need to show that pðyiÞ ¼ pðy0iÞpðyi

00Þ. [To form this product, we adopt the convention that
pðyi

00Þ[ 1 when Yi ¼ 3.]
The probability distribution of Y 0i is given by

pðy0iÞ ¼ πi1 þ πi2ð Þy
0
iπ

1&y0i
i3

¼ πi1 þ πi2ð Þwi1þwi2πwi3
i3

ð14:25Þ

where πij [ PrðYi ¼ jÞ for j ¼ 1, 2, 3. To derive the probability distribution of Yi
00, note that

PrðYi
00 ¼ 1Þ ¼ PrðYi ¼ 1jYi 6¼ 3Þ ¼ πi1

πi1 þ πi2

PrðYi
00 ¼ 0Þ ¼ PrðYi ¼ 2jYi 6¼ 3Þ ¼ πi2

πi1 þ πi2

and, thus,

pðyi
00Þ ¼ πi1

πi1 þ πi2

" #yi
00

πi2

πi1 þ πi2

" #1&yi
00

¼ πi1

πi1 þ πi2

" #wi1 πi2

πi1 þ πi2

" #wi2

ð14:26Þ

Multiplying Equation 14.25 by Equation 14.26 produces

pðy0iÞpðyi
00Þ ¼ πwi1

i1 πwi2
i2 πwi3

i3 ¼ pðyiÞ

which is the required result.
Because the dichotomies Y 0 and Y 00 are independent, it is legitimate to combine models for

these dichotomies to form a model for the polytomy Y . Likewise, we can sum likelihood-ratio
or Wald test statistics for the two dichotomies.

14.2.3 Ordered Logit and Probit Models

Imagine (as in Section 14.1.3) that there is a latent (i.e., unobservable) variable j that is a
linear function of the X s plus a random error:

51Fienberg (1980, pp. 110–116) terms ratios of odds formed from these nested dichotomies continuation ratios. An
example employing nested dichotomies for educational attainment is developed in the data analysis exercises for this
chapter.
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ji ¼ αþ β1Xi1 þ ) ) ) þ βkXik þ εi

Now, however, suppose that instead of dividing j into two regions to produce a dichotomous
response, j is dissected by m& 1 thresholds (i.e., boundaries) into m regions. Denoting the
thresholds by α1 <α2 < ) ) ) <αm&1, and the resulting response by Y , we observe

Yi ¼

1 if ji £α1

2 if α1 < ji £α2

..

.

m& 1 if αm&2 < ji £αm&1

m if αm&1 < ji

8
>>>>><

>>>>>:

ð14:27Þ

The thresholds, regions, and corresponding values of j and Y are represented graphically in
Figure 14.8. As in this graph, the thresholds are not in general uniformly spaced.

Using Equation 14.27, we can determine the cumulative probability distribution of Y :

PrðYi £ jÞ ¼ Prðji £αjÞ
¼ Prðαþ β1Xi1 þ ) ) ) þ βkXik þ εi £αjÞ
¼ Prðεi £αj & α& β1Xi1 & ) ) ) & βkXikÞ

If the errors εi are independently distributed according to the standard normal distribution, then
we obtain the ordered probit model.52 If the errors follow the similar logistic distribution, then
we get the ordered logit model. In the latter event,

logit ½PrðYi £ jÞ( ¼ loge
PrðYi £ jÞ
PrðYi > jÞ

¼ αj & α& β1Xi1 & ) ) ) & βkXik

Equivalently,

logit ½PrðYi > jÞ( ¼ loge
PrðYi > jÞ
PrðYi £ jÞ

¼ ðα& αjÞ þ β1Xi1 þ ) ) ) þ βkXik

ð14:28Þ

for j ¼ 1, 2; . . . ;m& 1:
The logits in Equation 14.28 are for cumulative categories—at each point contrasting cate-

gories above category j with category j and below. The slopes for each of these regression
equations are identical; the equations differ only in their intercepts. The logistic-regression

α1 α2 αm−2 αm−1

ξ
. . .

1 m Ym − 12

Figure 14.8 The thresholds α1 <α2 < ) ) ) <αm&1 divide the latent continuum j into m regions, cor-
responding to the values of the observable variable Y.

52As in the dichotomous case, we conveniently fix the error variance to 1 to set the scale of the latent variable j. The
resulting ordered probit model does not have the proportional-odds property described below.
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surfaces are, therefore, horizontally parallel to each other, as illustrated in Figure 14.9 for
m ¼ 4 response categories and a single X . (For the more general case, just replace X by the
linear predictor η ¼ β1X1 þ ) ) ) þ βkXk .)

Put another way, for a fixed set of X s, any two different cumulative log-odds (i.e., logits)—
say, at categories j and j 0—differ only by the constant ðαj 0 & αjÞ. The odds, therefore, are pro-
portional to one another; that is,

oddsj

oddsj 0
¼ exp logitj & logitj 0

$ %
¼ expðαj 0 & αjÞ ¼

eαj 0

eαj

where, for example, oddsj [ PrðYi > jÞ=PrðYi £ jÞ and logitj [ loge½PrðYi > jÞ=PrðYi £ jÞ(. For
this reason, the model in Equation 14.28 is called the proportional-odds logit model.

There are ðk þ 1Þ þ ðm& 1Þ ¼ k þ m parameters to estimate in the proportional-odds
model, including the regression coefficients α, β1; . . . ;βk and the category thresholds
α1; . . . ;αm&1. There is, however, an extra parameter in the regression equations (Equation
14.28) because each equation has its own constant, &αj; along with the common constant α. A
simple solution is to set α ¼ 0 (and to absorb the negative sign into αj), producing53

logit ½PrðYi > jÞ( ¼ αj þ β1Xi1 þ ) ) ) þ βkXik ð14:29Þ

In this parameterization, the intercepts αj are the negatives of the category thresholds.

P
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0.8

0.6

0.4

0.2

0.0

Pr(y > 1) Pr(y > 2) Pr(y > 3)

Figure 14.9 The proportional-odds model for four response categories and a single explanatory
variable X. The logistic regression curves are horizontally parallel.

SOURCE: Adapted from Agresti (1990, Figure 9.1), Categorical Data Analysis. Copyright ! 1990 John Wiley &

Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

53Setting α ¼ 0 implicitly establishes the origin of the latent variable j (just as fixing the error variance establishes its
unit of measurement). An alternative would be to fix one of the thresholds to 0. These choices are arbitrary and
inconsequential.
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Figure 14.10 illustrates the proportional-odds model for m ¼ 4 response categories and a sin-
gle X . The conditional distribution of the latent variable j is shown for two representative val-
ues of the explanatory variable, x1 [where PrðY > 3Þ ¼ PrðY ¼ 4Þ is about .2] and x2 [where
PrðY ¼ 4Þ is about .98]. McCullagh (1980) explains how the proportional-odds model can be
fit by the method of maximum likelihood (and discusses alternatives to this model).

To illustrate the use of the proportional-odds model, I draw on data from the World Values
Survey (WVS) of 1995–1997 (European Values Study Group and World Values Survey
Association, 2000).54 Although the WVS collects data in many countries, to provide a manage-
able example, I will restrict attention to only four: Australia, Sweden, Norway, and the United
States.55 The combined sample size for these four countries is 5381. The response variable in
the analysis is the answer to the question ‘‘Do you think that what the government is doing for
people in poverty is about the right amount, too much, or too little?’’ There are, therefore, three

X

x1 x2

α1

α3

α2

ξ Y

4

3

2

1

E(ξ) = α + βx

Pr(Y = 4|x2)

Pr (Y = 4|x1)

Figure 14.10 The proportional-odds model for four response categories and a single explanatory
variable X. The latent response variable j has a linear regression on X. The latent
continuum j and thresholds αj appear at the left of the graph, the observable
response Y at the right. The conditional logistic distribution of the latent variable is
shown for two values of the explanatory variable, x1 and x2. The shaded area in
each distribution gives the conditional probability that Y ¼ 4.

SOURCE: Adapted from Agresti (1990, Figure 9.2), Categorical Data Analysis. Copyright ! 1990 John Wiley &

Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

54This illustration is adapted from Fox and Andersen (2006).
55Using data from a larger number of countries, we could instead entertain hierarchical mixed-effects models for poly-
tomous data, analogous to the linear and generalized linear mixed-effects models introduced in Chapters 23 and 24.
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ordered categories: too little, about right, and too much. There are several explanatory vari-
ables: gender (represented by a dummy variable coded 1 for men and 0 for women), whether or
not the respondent belonged to a religion (coded 1 for yes, 0 for no), whether or not the respon-
dent had a university degree (coded 1 for yes and 0 for no), age (in years, ranging from 18–
87), and country (entered into the model as a set of three dummy regressors, with Australia as
the baseline category). Preliminary analysis of the data suggested a roughly linear age effect.

Table 14.7 shows the analysis of deviance for an initial model fit to the data incorporating
interactions between country and each of the other explanatory variables. As usual, the likeli-
hood-ratio tests in the table are computed by contrasting the deviances for alternative models,
with and without the terms in question. These tests were formulated in conformity with the
principle of marginality (i.e., Type II tests). So, for example, the test for the country-by-age
interaction was computed by dropping this term from the full model, and the test for the coun-
try main effect was computed by dropping the dummy regressors for country from a model that
includes only main effects.

With the exception of the interaction between country and gender, all these interactions
prove to be statistically significant. Estimated coefficients and their standard errors for a final
model, removing the nonsignificant interaction between country and gender, appear in
Table 14.8. This table also shows the estimated thresholds between response categories, which
are, as explained, the negatives of the intercepts of the proportional-odds model.

Interpretation of the estimated coefficients for the proportional-odds model in Table 14.8 is
complicated by the interactions in the model and by the multiple-category response. I will use
the interaction between age and country to illustrate: We can see that the age slope is positive
in the baseline country of Australia (suggesting that sympathy for the poor declines with age in
Australia) and that this slope is nearly zero in Norway (i.e., adding the coefficient for Norway
· Age to the baseline Age coefficient), smaller in Sweden than in Australia, and very slightly
larger in the United States than in Australia, but a more detailed understanding of the age-by-
country interaction is hard to discern from the coefficients alone. Figures 14.11 and 14.12 show
alternative effect displays of the age-by-country interaction. The strategy for constructing these
displays is the usual one—compute fitted values under the model, letting age and country range
over their values while other explanatory variables (i.e., gender, religion, and education) are

Table 14.7 Analysis of Deviance Table for the Proportional-Odds Model Fit to
the World Values Survey Data

Source df G2
0 p

Country 3 250.881 +.0001
Gender 1 10.749 .0010
Religion 1 4.132 .042
Education 1 4.284 .038
Age 1 49.950 +.0001
Country · Gender 3 3.049 .38
Country · Religion 3 21.143 < .0001
Country · Education 3 12.861 .0049
Country · Age 3 17.529 .0005
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held to average values. Figure 14.11 plots the fitted probabilities of response (as percentages)
by age for each country; Figure 14.12 plots the fitted value of the latent response variable by
age for each country and shows the intercategory thresholds.

The proportional-odds model (Equation 14.29 on page 402) constrains corresponding slopes
for the m& 1 cumulative logits to be equal. By relaxing this strong constraint, and fitting a
model to the cumulative logits that permits different slopes along with different intercepts, we
can test the proportional-odds assumption:

logit ½PrðYi > jÞ( ¼ αj þ βj1Xi1 þ ) ) ) þ βjkXik ; for j ¼ 1; . . . ;m& 1 ð14:30Þ

Like the polytomous logit model (14.18 on page 392), this new model has ðm& 1Þðk þ 1Þ
parameters, but the two models are for different sets of logits. The deviances and numbers of
parameters for the three models fit to the World Values Survey data are as follows:

Table 14.8 Estimated Proportional-Odds Model Fit to the World
Values Survey Data

Coefficient Estimate Standard Error

Gender (Men) 0.1744 0.0532
Country (Norway) 0.1516 0.3355
Country (Sweden) &1.2237 0.5821
Country (United States) 1.2225 0.3068
Religion (Yes) 0.0255 0.1120
Education (Degree) &0.1282 0.1676
Age 0.0153 0.0026
Country (Norway) · Religion &0.2456 0.2153
Country (Sweden) · Religion &0.9031 0.5125
Country (United States) · Religion 0.5706 0.1733
Country (Norway) · Education 0.0524 0.2080
Country (Sweden) · Education 0.6359 0.2141
Country (United States) · Education 0.3103 0.2063
Country (Norway) · Age &0.0156 0.0044
Country (Sweden) · Age &0.0090 0.0047
Country (United States) · Age 0.0008 0.0040

Thresholds

&bα1 (Too Little j About Right) 0.7699 0.1491
&bα2 (About Right j Too Much) 2.5372 0.1537

Model Residual
Deviance

Number of
Parameters

Proportional-Odds Model (Equation 14.29) 10,350.12 18
Cumulative Logits, Unconstrained

Slopes (Equation 14.30)
9,961.63 34

Polytomous Logit Model (Equation 14.18) 9,961.26 34
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The likelihood-ratio statistic for testing the assumption of proportional odds is therefore
G2

0 ¼ 10;350:12& 9;961:63 ¼ 388:49, on 34& 18 ¼ 16 degrees of freedom. This test statistic
is highly statistically significant, leading us to reject the proportional-odds assumption for these
data. Note that the deviance for the model that relaxes the proportional-odds assumption is
nearly identical to the deviance for the polytomous logit model. This is typically the case, in
my experience.56
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Figure 14.11 Effect display for the interaction of age with country in the proportional-odds model
fit to the World Values Survey data. The response variable is assessment of govern-
ment action for people in poverty.

56Consequently, if you are working with software that does not compute the unconstrained-slopes model for cumulative
logits, it is generally safe to use the polytomous logit model to formulate an approximate likelihood-ratio test for pro-
portional odds. There is also a score test and a Wald test for the proportional-odds assumption (discussed, e.g., in
Long, 1997, Section 5.5).
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14.2.4 Comparison of the Three Approaches

Several approaches can be taken to modeling polytomous data, including (1) modeling
the polytomy directly using a logit model based on the multivariate logistic distribution,
(2) constructing a set of m& 1 nested dichotomies to represent the m categories of the
polytomy, and (3) fitting the proportional-odds model to a polytomous response variable
with ordered categories.

The three approaches to modeling polytomous data—the polytomous logit model, logit mod-
els for nested dichotomies, and the proportional-odds model—address different sets of log-
odds, corresponding to different dichotomies constructed from the polytomy. Consider, for
example, the ordered polytomy f1; 2; 3; 4g—representing, say, four ordered educational
categories:

! Treating Category 4 as the baseline, the coefficients of the polytomous logit model
apply directly to the dichotomies f1; 4g, f2; 4g, and f3; 4g and indirectly to any pair of
categories.
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Figure 14.12 Alternative effect display for the proportional-odds model fit to the World Values
Survey data, showing fitted values of the latent response. Intercategory thresholds
and the corresponding response categories are given at the right of the graph and
by the lighter horizontal lines.
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! Forming continuation dichotomies (one of several possibilities), the nested-dichotomies
approach models f1; 234g, f2; 34g, and f3; 4g.

! The proportional-odds model applies to the cumulative dichotomies f1; 234g, f12; 34g,
and f123; 4g, imposing the restriction that only the intercepts of the three regression
equations differ.

Which of these models is most appropriate depends partly on the structure of the data and
partly on our interest in them. If it fits well, the proportional-odds model would generally be
preferred for an ordered response on grounds of parsimony, but this model imposes strong
structure on the data and may not fit well. Nested dichotomies should only be used if the par-
ticular choice of dichotomies makes compelling substantive sense for the data at hand. The
implication, then, is that of these three models, the polytomous logit model has the greatest
general range of application.57

14.3 Discrete Explanatory Variables and Contingency
Tables

When the explanatory variables—as well as the response—are discrete, the joint sample distri-
bution of the variables defines a contingency table of counts: Each cell of the table records the
number of observations possessing a particular combination of characteristics. An example,
drawn from The American Voter (Campbell, Converse, Miller, & Stokes, 1960), a classical
study of electoral behavior, appears in Table 14.9. This table, based on data from sample sur-
veys conducted during the 1956 U.S. presidential election campaign and after the election,
relates voting turnout in the election to strength of partisan preference (classified as weak,
medium, or strong) and perceived closeness of the election (one-sided or close).

Table 14.9 Voter Turnout by Perceived Closeness of the Election and
Intensity of Partisan Preference, for the 1956 U.S.
Presidential Election

Perceived
Closeness

Intensity of
Preference

Turnout Logit

Voted Did Not Vote loge

Voted

Did Not Vote

One-sided Weak 91 39 0.847
Medium 121 49 0.904
Strong 64 24 0.981

Close Weak 214 87 0.900
Medium 284 76 1.318
Strong 201 25 2.084

NOTE: Frequency counts are shown in the body of the table.

57But see Exercise 14.12.
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The last column of Table 14.9 gives the empirical logit for the response variable,

loge
Proportion voting

Proportion not voting

for each of the six combinations of categories of the explanatory variables.58 For example,

logitðvotedjone-sided; weak preferenceÞ ¼ loge
91=130

39=130
¼ loge

91

39
¼ 0:847

Because the conditional proportions voting and not voting share the same denominator, the
empirical logit can also be written as

loge
Number voting

Number not voting

The empirical logits from Table 14.9 are graphed in Figure 14.13, much in the manner of pro-
files of cell means for a two-way ANOVA.59 Perceived closeness of the election and intensity
of preference appear to interact in affecting turnout: Turnout increases with increasing intensity
of preference, but only if the election is perceived to be close. Those with medium or strong
preference who perceive the election to be close are more likely to vote than those who
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Figure 14.13 Empirical logits for voter turnout by intensity of partisan preference and perceived
closeness of the election, for the 1956 U.S. presidential election.

58This calculation will fail if there is a 0 frequency in the table because, in this event, the proportion voting or not vot-
ing for some combination of explanatory-variable values will be 0. A simple remedy is to add 0.5 to each of the cell
frequencies. Adding 0.5 to each count also serves to reduce the bias of the sample logit as an estimator of the corre-
sponding population logit. See Cox and Snell (1989, pp. 31–32).
59See Section 8.2.1.

14.3 Discrete Explanatory Variables and Contingency Tables 409



perceive the election to be one-sided; this difference is greater among those with strong parti-
san preference than those with medium partisan preference.

The methods of this chapter are fully appropriate for tabular data. When, as in Table 14.9,
the explanatory variables are qualitative or ordinal, it is natural to use logit or probit models
that are analogous to ANOVA models. Treating perceived closeness of the election as the
‘‘row’’ factor and intensity of partisan preference as the ‘‘column’’ factor, for example, yields
the model60

logitπjk ¼ µþ αj þ βk þ γ jk ð14:31Þ

where

! πjk is the conditional probability of voting in combination of categories j of perceived
closeness and k of preference (i.e., in cell jk of the explanatory-variable table),

! µ is the general level of turnout in the population,
! αj is the main effect on turnout of membership in the jth category of perceived

closeness,
! βk is the main effect on turnout of membership in the kth category of preference, and
! γ jk is the interaction effect on turnout of simultaneous membership in categories j of per-

ceived closeness and k of preference.

When all the variables—explanatory as well as response—are discrete, their joint distri-
bution defines a contingency table of frequency counts. It is natural to employ logit mod-
els that are analogous to ANOVA models to analyze contingency tables.

Under the usual sigma constraints, Equation 14.31 leads to deviation-coded regressors, as in
ANOVA. Adapting the SS()) notation of Chapter 8,61 likelihood-ratio tests for main effects and
interactions can then be constructed in close analogy to the incremental F-tests for the two-
way ANOVA model. Residual deviances under several models for the American Voter data are
shown in Table 14.10, and the analysis-of-deviance table for these data is given in Table
14.11. The log-likelihood-ratio statistic for testing H0: all γ jk ¼ 0, for example, is

G2
0ðγjα;βÞ ¼ G2ðα;βÞ & G2ðα;β; γÞ

¼ 1363:552& 1356:434

¼ 7:118

with 6& 4 ¼ 2 degrees of freedom, for which p ¼ :028. The interaction discerned in
Figure 14.13 is, therefore, statistically significant, but not overwhelmingly so.

60This formulation assumes the sigma-constrained two-way ANOVA model discussed in Section 8.2.3. Alternatively,
we can proceed by coding dummy regressors for the main effects and interaction, as in Section 8.2.2, as long as we
restrict ourselves to Type II tests.
61In Chapter 8, we used SS()) to denote the regression sum of squares for a model including certain terms. Because the
deviance is analogous to the residual sum of squares, we need to take differences of deviances in the opposite order.
Again, as long as we confine ourselves to Type II tests, obeying the principle of marginality (i.e., the main-effect tests
for αjβ and βjα in Table 14.11), we can employ dummy regressors instead of deviation-coded regressors.
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14.3.1 The Binomial Logit Model*

Although the models for dichotomous and polytomous response variables described in this
chapter can be directly applied to tabular data, there is some advantage in reformulating these
models to take direct account of the replication of combinations of explanatory-variable values.
In analyzing dichotomous data, for example, we previously treated each observation individu-
ally, so the dummy response variable Yi takes on either the value 0 or the value 1.

Suppose, instead, that we group all the ni observations that share the specific combination of
explanatory-variable values x0i ¼ ½xi1; xi2; . . . ; xik(. Let Yi count the number of these observations
that fall in the first of the two categories of the response variable; we arbitrarily term these obser-
vations successes. The count Yi can take on any integer value between 0 and ni. Let m denote
the number of distinct combinations of the explanatory variables (e.g., m ¼ 6 in Table 14.9 on
page 408). To take this approach, the explanatory variables need not be qualitative, as long as
they are discrete, so that there are replicated combinations of values of the explanatory variables.

As in our previous development of the dichotomous logit model, let πi represent
PrðsuccessjxiÞ. Then the success count Yi follows the binomial distribution:

Table 14.10 Residual Deviances for Models Fit to the American Voter
Data. Terms: a, Perceived Closeness; β, Intensity of
Preference; g, Closeness · Preference Interaction

Model Terms kþ1 Deviance: G2

1 α, β, γ 6 1356.434
2 α, β 4 1363.552
3 α, γ 4 1368.042
4 β, γ 5 1368.554
5 α 2 1382.658
6 β 3 1371.838

NOTE: The column labeled kþ1 gives the number of parameters in the model, includ-

ing the constant µ.

Table 14.11 Analysis-of-Deviance Table for the American Voter Data

Source Models Contrasted df G2
0 p

Perceived closeness 1
αjβ 6&2 8.286 .0040
αjβ; γ 4&1 12.120 .0005

Intensity of preference 2
βjα 5&2 19.106 < .0001
βjα; γ 3&1 11.608 .0030

Closeness · Preference 2
γjα;β 2&1 7.118 .028

NOTE: The table shows alternative likelihood-ratio tests for the main effects of

perceived closeness of the election and intensity of partisan preference.
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pðyiÞ ¼
ni

yi

" #
π

yi
i ð1& πiÞni&yi

¼
ni

yi

" #
πi

1& πi

" #yi

ð1& πiÞni

ð14:32Þ

To distinguish grouped dichotomous data from ungrouped data, I will refer to the former as
binomial data and the latter as binary data.62

Suppose, next, that the dependence of the response probabilities πi on the explanatory vari-
ables is well described by the logit model

loge
πi

1& πi
¼ x0ifl

Substituting this model into Equation 14.32, the likelihood for the parameters is

LðflÞ ¼
Ym

i¼1

ni

yi

" #
½expðx0iflÞ(

yi
1

1þ expðx0iflÞ

" #ni

Maximizing the likelihood leads to precisely the same maximum-likelihood estimates, coeffi-
cient standard errors, and statistical tests as the binary logit model of Section 14.1.5.63 The
binomial logit model nevertheless has the following advantages:

! Because we deal with m binomial observations rather than the larger n ¼
Pm

i¼1 ni binary
observations, computations for the binomial logit model are more efficient, especially
when the ni are large.

! The overall residual deviance for the binomial logit model, &2 loge LðbÞ, implicitly con-
trasts the model with a saturated model that has one parameter for each of the m combi-
nations of explanatory-variable values (e.g., the full two-way ‘‘ANOVA’’ model with
main effects and interactions fit in the previous section to the American Voter data). The
saturated model necessarily recovers the m empirical logits perfectly and, consequently,
has a likelihood of 1 and a log-likelihood of 0. The residual deviance for a less-than-
saturated model, therefore, provides a likelihood-ratio test, on m& k & 1 degrees of free-
dom, of the hypothesis that the functional form of the model is correct.64 In contrast, the
residual deviance for the binary logit model cannot be used for a statistical test because
the residual degrees of freedom n& k & 1 (unlike m& k & 1) grow as the sample size n
grows.

! As long as the frequencies ni are not very small, many diagnostics are much better
behaved for the cells of the binomial logit model than for individual binary observations.
For example, the individual components of the deviance for the binomial logit model,

Gi [ –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

&2 Yi loge
niPi

Yi
þ ðni & YiÞ loge

nið1& PiÞ
ni & Yi

' (s

can be compared with the unit-normal distribution to locate outlying cells. Here
Pi ¼ 1=½1þ expð&x0ibÞ( is the fitted probability of ‘‘success’’ for cell i, and, therefore,

62Binary data can be thought of as a limiting case of binomial data, for which all ni ¼ 1.
63See Exercise 14.13.
64This test is analogous to the test for ‘‘lack of fit’’ in a linear model with discrete explanatory variables, described in
Section 12.4.1.
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bYi ¼ niPi is the expected number of ‘‘successes’’ in this cell. The sign of Gi is selected
to agree with that of the simple cell residual, Ei ¼ Yi & bYi.

65

Although the binary logit model can be applied to tables in which the response variable
is dichotomous, it is also possible to use the equivalent binomial logit model; the bino-
mial logit model is based on the frequency counts of ‘‘successes’’ and ‘‘failures’’ for
each combination of explanatory-variable values. When it is applicable, the binomial
logit model offers several advantages, including efficient computation, a test of the fit of
the model based on its residual deviance, and better-behaved diagnostics.

Polytomous data can be handled in a similar manner, employing the multinomial distribution.66

Consequently, all the logit and probit models discussed in this chapter have generalizations
to data in which there are repeated observations for combinations of values of the explanatory
variables. For example, the multinomial logit model generalizes the polytomous logit
model (Equation 14.8 on page 376); indeed, even when it is fit to individual observations, the
polytomous logit model is often called the ‘‘multinomial logit model’’ (as I previously
mentioned).67

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 14.1. Nonconstant error variance in the linear-probability model: Make a table show-
ing the variance of the error V ðεÞ ¼ πð1& πÞ for the following values of π:

:001; :01; :05; :1; :3; :5:; :7; :9; :95; :99; :999

When is the heteroscedasticity problem serious?

Exercise 14.2. Show that using the cumulative rectangular distribution as Pð)Þ in the general
model

πi ¼ PðηiÞ ¼ Pðαþ βXiÞ

produces the constrained linear-probability model. (See Section 14.1.2.)

Exercise 14.3. *Show that the slope of the logistic-regression curve, π ¼ 1= 1þ e&ðαþβX Þ) *
,

can be written as βπð1& πÞ. (Hint: Differentiate π with respect to X , and then substitute for
expressions that equal π and 1& π.)

Exercise 14.4. Substitute first yi ¼ 0 and then yi ¼ 1 into the expression

65Diagnostics for logit models and other generalized linear models are discussed in Section 15.4.
66See Exercise 14.14.
67As in the case of binary data, we can think of individual polytomous observations as multinomial observations in
which all the total counts are ni ¼ 1.
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pðyiÞ[ PrðYi ¼ yiÞ ¼ π
yi
i ð1& πiÞ1&yi

to show that this equation captures pð0Þ ¼ 1& πi and pð1Þ ¼ πi.

Exercise 14.5. *Show that, for the logit multiple-regression model,

πi ¼
1

1þ exp½&ðαþ β1Xi1 þ β2Xi2 þ ) ) ) þ βkXikÞ(

the probability that Yi ¼ 0 can be written as

1& πi ¼
1

1þ expðαþ β1Xi1 þ ) ) ) þ βkXikÞ

Exercise 14.6. *Show that the maximized likelihood for the fitted logit model can be written as

loge L ¼
Xn

i¼1

yi loge Pi þ ð1& yiÞ logeð1& PiÞ½ (

where

Pi ¼
1

1þ exp½&ðAþ B1Xi1 þ ) ) ) þ BkXikÞ(

is the fitted probability that Yi ¼ 1. [Hint: Use pðyiÞ ¼ π
yi
i ð1& πiÞ1&yi .]

Exercise 14.7. *Residual deviance in least-squares regression: The log-likelihood for the linear
regression model with normal errors can be written as

loge Lðα;β1; . . . ;βk ; σ
2
εÞ ¼ &

n
2

loge 2πσ2
ε

$ %
&
Pn

i¼1 ε
2
i

2σ2
ε

where εi ¼ Yi & ðαþ β1Xi1 þ ) ) ) þ βkXikÞ (see Section 9.3.3). Let l represent the maximized
log-likelihood, treated as a function of the regression coefficients α, β1; . . . ;βk but not of the
error variance σ2

ε , which is regarded as a ‘‘nuisance parameter.’’ Let l0 ¼ &ðn=2Þ logeð2πσ2
εÞ

represent the log-likelihood for a model that fits the data perfectly (i.e., for which all εi ¼ 0).
Then the residual deviance is defined as &2σ2

εðl & l0Þ. Show that, by this definition, the resi-
dual deviance for the normal linear model is just the residual sum of squares. (For the logit
model, there is no nuisance parameter, and l0 ¼ 0; the residual deviance for this model is,
therefore, &2 loge L, as stated in the text. See Chapter 15 for further discussion of the
deviance.)

Exercise 14.8. *Evaluate the information matrix for the logit model,

IðflÞ ¼ &E
∂2 loge LðflÞ

∂fl∂fl0

' (

and show that the estimated asymptotic covariance matrix of the coefficients is

bVðbÞ ¼
Xn

i¼1

expð&x0ibÞ
½1þ expð&x0ibÞ(2

xix
0
i

" #&1

Exercise 14.9. *Show that the maximum-likelihood estimator for the logit model can be writ-
ten as
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b ¼ ðX0VXÞ&1X0Vy*

where

y*[ Xbþ V&1ðy& pÞ

(Hint: Simply multiply out the equation.)

Exercise 14.10. *Show that the polytomous logit model (Equation 14.18, page 392) can be
written in the form

loge
πij

πim
¼ γ0j þ γ1jXi1 þ ) ) ) þ γkjXik for j ¼ 1; . . . ;m& 1

Exercise 14.11. *Derive the estimating equations (Equations 14.22 on page 398) and the infor-
mation matrix (Equations 14.23 and 14.24) for the polytomous logit model.

Exercise 14.12. Independence from irrelevant alternatives: In the polytomous logit model dis-
cussed in Section 14.2.1, the logit for a particular pair of categories depends on the coefficients
for those categories but not on those for other categories in the model. Show that this is the
case. (Hint: See Equation 14.2.1.) In the context of a discrete-choice model (e.g., Greene,
2003, chap. 21; or Alvarez & Nagler, 1998), this property can be interpreted to mean that the
relative odds for a pair of categories is independent of the other categories in the choice set.
Why is this often an implausible assumption? (Hint: Consider a multiparty election in a juris-
diction, such as Canada or the United Kingdom, where some parties field candidates in only
part of the country, or what happens to the electoral map when a new party is formed.) For this
reason, models such as the polytomous probit model that do not assume independence from
irrelevant alternatives are sometimes preferred.

Exercise 14.13. *Derive the maximum-likelihood estimating equations for the binomial logit
model. Show that this model produces the same estimated coefficients as the dichotomous (bin-
ary) logit model of Section 14.1. (Hint: Compare the log-likelihood for the binomial model
with the log-likelihood for the binary model; by separating individual observations sharing a
common set of X -values, show that the former log-likelihood is equal to the latter, except for a
constant factor. This constant is irrelevant because it does not influence the maximum-likeli-
hood estimator; moreover, the constant disappears in likelihood-ratio tests.)

Exercise 14.14. *Use the multinomial distribution (see online Appendix D) to specify a polyto-
mous logit model for discrete explanatory variables (analogous to the binomial logit model),
where combinations of explanatory-variable values are replicated. Derive the likelihood under
the model and the maximum-likelihood estimating equations.

Summary

! It is problematic to apply least-squares linear regression to a dichotomous response vari-
able: The errors cannot be normally distributed and cannot have constant variance. Even
more fundamentally, the linear specification does not confine the probability for the
response to the unit interval.
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! More adequate specifications transform the linear predictor ηi ¼ αþ β1Xi1 þ ) ) ) þ
βkXik smoothly to the unit interval, using a cumulative probability distribution function
Pð)Þ. Two such specifications are the probit and the logit models, which use the normal
and logistic CDFs, respectively. Although these models are very similar, the logit model
is simpler to interpret because it can be written as a linear model for the log odds,

loge
πi

1& πi
¼ αþ β1Xi1 þ ) ) ) þ βkXik

or, exponentiating the coefficients, as a multiplicative model for the odds,

πi

1& πi
¼ eα eβ1

$ %Xi1 ) ) ) eβk
$ %Xik

! The dichotomous logit model can be fit to data by the method of maximum likelihood.
Wald tests and likelihood-ratio tests for the coefficients of the model parallel t-tests and
incremental F-tests for the general linear model. The residual deviance for the model,
defined as G2 ¼ &2 · the maximized log-likelihood, is analogous to the residual sum
of squares for a linear model.

! Several approaches can be taken to modeling polytomous data, including:

1. modeling the polytomy directly using a logit model based on the multivariate
logistic distribution,

2. constructing a set of m& 1 nested dichotomies to represent the m categories of the
polytomy, and

3. fitting the proportional-odds model to a polytomous response variable with ordered
categories.

! When all the variables—explanatory as well as response—are discrete, their joint distri-
bution defines a contingency table of frequency counts. It is natural to employ logit
models that are analogous to ANOVA models to analyze contingency tables. Although
the binary logit model can be applied to tables in which the response variable is dichoto-
mous, it is also possible to use the equivalent binomial logit model; the binomial logit
model is based on the frequency counts of ‘‘successes’’ and ‘‘failures’’ for each combi-
nation of explanatory-variable values. When it is applicable, the binomial logit model
offers several advantages, including efficient computation, a test of the fit of the model
based on its residual deviance, and better-behaved diagnostics. There are analogous logit
and probit models, such as the multinomial logit model, for polytomous responses.

Recommended Reading

The topics introduced in this chapter could easily be expanded to fill several books, and there
is a large literature—both in journals and texts—dealing with logit and related models for cate-
gorical response variables and with the analysis of contingency tables.68

68Also see the references on generalized linear models given at the end of the next chapter, which briefly describes log-
linear models for contingency tables.
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! Agresti (2012) presents an excellent and comprehensive overview of statistical methods
for qualitative data. The emphasis is on logit and loglinear models for contingency
tables, but there is some consideration of logistic regression models and other topics.
Also see Agresti (2007) for a briefer and lower-level treatment of much of this material.

! Fienberg’s (1980) widely read text on the analysis of contingency tables provides an
accessible and lucid introduction to loglinear models and related subjects, such as logit
models and models for ordered categories.

! The second edition of Cox and Snell’s (1989) classic text concentrates on logit models
for dichotomous data but also includes some discussion of polytomous nominal and
ordinal data.

! Collett (2003) also focuses on the binary and binomial logit models. The book is note-
worthy for its extensive review of diagnostic methods for logit models.

! Greene (2003, chap. 21) includes a broad treatment of models for categorical responses
from the point of view of ‘‘discrete choice models’’ in econometrics.

! Long (1997) and Powers and Xie (2008) both present high-quality, accessible exposi-
tions for social scientists of statistical models for categorical data.

Recommended Reading 417



15 Generalized
Linear Models

D ue originally to Nelder and Wedderburn (1972), generalized linear models are a remark-
able synthesis and extension of familiar regression models such as the linear models

described in Part II of this text and the logit and probit models described in the preceding chap-
ter. The current chapter begins with a consideration of the general structure and range of appli-
cation of generalized linear models; proceeds to examine in greater detail generalized linear
models for count data, including contingency tables; briefly sketches the statistical theory
underlying generalized linear models; describes the extension of regression diagnostics to gen-
eralized linear models; and concludes with a discussion of design-based statistical inference for
complex sample surveys.

The unstarred sections of this chapter are perhaps more difficult than the unstarred material
in preceding chapters. Generalized linear models have become so central to effective statistical
data analysis, however, that it is worth the additional effort required to acquire at least a basic
understanding of the subject.

15.1 The Structure of Generalized Linear Models

A generalized linear model (or GLM1) consists of three components:

1. A random component, specifying the conditional distribution of the response variable,
Yi (for the ith of n independently sampled observations), given the values of the expla-
natory variables in the model. In Nelder and Wedderburn’s original formulation, the
distribution of Yi is a member of an exponential family, such as the Gaussian (normal),
binomial, Poisson, gamma, or inverse-Gaussian families of distributions. Subsequent
work, however, has extended GLMs to multivariate exponential families (such as the
multinomial distribution), to certain nonexponential families (such as the two-parameter
negative-binomial distribution), and to some situations in which the distribution of Yi is
not specified completely. Most of these ideas are developed later in the chapter.

2. A linear predictor—that is, a linear function of regressors

ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βkXik

As in the linear model, and in the logit and probit models of Chapter 14, the regressors
Xij are prespecified functions of the explanatory variables and therefore may include

1Some authors use the acronym ‘‘GLM’’ to refer to the ‘‘general linear model’’—that is, the linear regression model
with normal errors described in Part II of the text—and instead employ ‘‘GLIM’’ to denote generalized linear models
(which is also the name of a computer program used to fit GLMs).

418



quantitative explanatory variables, transformations of quantitative explanatory variables,
polynomial or regression-spline regressors, dummy regressors, interactions, and so on.
Indeed, one of the advantages of GLMs is that the structure of the linear predictor is the
familiar structure of a linear model.

3. A smooth and invertible linearizing link function gð#Þ, which transforms the expectation
of the response variable, µi [ EðYiÞ, to the linear predictor:

gðµiÞ ¼ ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βkXik

Because the link function is invertible, we can also write

µi ¼ g&1ðηiÞ ¼ g&1ðαþ β1Xi1 þ β2Xi2 þ # # # þ βkXikÞ

and, thus, the GLM may be thought of as a linear model for a transformation of the
expected response or as a nonlinear regression model for the response. The inverse link
g&1ð#Þ is also called the mean function. Commonly employed link functions and their
inverses are shown in Table 15.1. Of these, the identity link simply returns its argument
unaltered, ηi ¼ gðµiÞ ¼ µi, and thus µi ¼ g&1ðηiÞ ¼ ηi.

The last four link functions in Table 15.1 are for binomial data, where Yi represents the
observed proportion of ‘‘successes’’ in ni independent binary trials; thus, Yi can take on
any of the ni þ 1 values 0; 1=ni; 2=ni; . . . ; ðni & 1Þ=ni; 1. Recall from Section 14.3.1 that
binomial data also encompass binary data, where all the observations represent ni ¼ 1 trial,
and consequently, Yi is either 0 or 1. The expectation of the response µi ¼ EðYiÞ is then
the probability of success, which we symbolized by πi in the previous chapter. The logit,
probit, log-log, and complementary log-log links are graphed in Figure 15.1. In contrast to
the logit and probit links (which, as we noted previously, are nearly indistinguishable once
the variances of the underlying normal and logistic distributions are equated), the log-log
and complementary log-log links approach the asymptotes of 0 and 1 asymmetrically.2

Table 15.1 Some Common Link Functions and Their Inverses

Link ηi ¼ gðµiÞ µi ¼ g&1ðηiÞ

Identity µi ηi

Log logeµi eηi

Inverse µ&1
i η&1

i

Inverse-square µ&2
i η

&1=2
i

Square-root
ffiffiffiffiffi
µi
p

η2
i

Logit loge
µi

1& µi

1

1þ e&ηi

Probit F&1ðµiÞ FðηiÞ
Log-log &loge½&logeðµiÞ( exp½&expð&ηiÞ(

Complementary log-log loge½&logeð1&µiÞ( 1&exp½&exp ðηiÞ(

NOTE: µi is the expected value of the response, ηi is the linear predictor, and Fð#Þ
is the cumulative distribution function of the standard-normal distribution.

2Because the log-log link can be obtained from the complementary log-log link by exchanging the definitions of ‘‘suc-
cess’’ and ‘‘failure,’’ it is common for statistical software to provide only one of the two—typically, the complementary
log-log link.
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Beyond the general desire to select a link function that renders the regression of Y on the X s
linear, a promising link will remove restrictions on the range of the expected response. This is
a familiar idea from the logit and probit models discussed in Chapter 14, where the object was
to model the probability of ‘‘success,’’ represented by µi in our current more general notation.
As a probability, µi is confined to the unit interval [0,1]. The logit, probit, log-log, and comple-
mentary log-log links map this interval to the entire real line, from &‘ to þ‘. Similarly, if the
response Y is a count, taking on only nonnegative integer values, 0, 1, 2, . , and consequently
µi is an expected count, which (though not necessarily an integer) is also nonnegative, the log
link maps µi to the whole real line. This is not to say that the choice of link function is entirely
determined by the range of the response variable, just that the link should behave reasonably in
relation to the range of the response.

A generalized linear model (or GLM) consists of three components:

1. A random component, specifying the conditional distribution of the response vari-
able, Yi (for the ith of n independently sampled observations), given the values of
the explanatory variables in the model. In the initial formulation of GLMs, the distri-
bution of Yi was a member of an exponential family, such as the Gaussian, binomial,
Poisson, gamma, or inverse-Gaussian families of distributions.

2. A linear predictor—that is, a linear function of regressors,

ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βkXik
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Figure 15.1 Logit, probit, log-log, and complementary log-log links for binomial data. The var-
iances of the normal and logistic distributions have been equated to facilitate the
comparison of the logit and probit links [by graphing the cumulative distribution
function of N(0,π2=3) for the probit link].
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3. A smooth and invertible linearizing link function gð#Þ, which transforms the expecta-
tion of the response variable, µi ¼ EðYiÞ, to the linear predictor:

gðµiÞ ¼ ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βkXik

A convenient property of distributions in the exponential families is that the conditional var-
iance of Yi is a function of its mean µi [say, nðµiÞ] and, possibly, a dispersion parameter φ.
The variance functions for the commonly used exponential families appear in Table 15.2. The
conditional variance of the response in the Gaussian family is a constant, φ, which is simply
alternative notation for what we previously termed the error variance, σ2

ε . In the binomial and
Poisson families, the dispersion parameter is set to the fixed value φ ¼ 1.

Table 15.2 also shows the range of variation of the response variable in each family and the
so-called canonical (or ‘‘natural’’) link function associated with each family. The canonical
link simplifies the GLM,3 but other link functions may be used as well. Indeed, one of the
strengths of the GLM paradigm—in contrast to transformations of the response variable in lin-
ear regression—is that the choice of linearizing transformation is partly separated from the dis-
tribution of the response, and the same transformation does not have to both normalize the
distribution of Y and make its regression on the X s linear.4 The specific links that may be used
vary from one family to another and also—to a certain extent—from one software implementa-
tion of GLMs to another. For example, it would not be promising to use the identity, log,
inverse, inverse-square, or square-root links with binomial data, nor would it be sensible to use
the logit, probit, log-log, or complementary log-log link with nonbinomial data.

Table 15.2 Canonical Link, Response Range, and Conditional
Variance Function for Exponential Families

Family Canonical Link Range of Yi VðYijηiÞ

Gaussian Identity ð&‘;þ‘Þ φ

Binomial Logit
0;1; :::; ni

ni

µið1& µiÞ
ni

Poisson Log 0,1,2,::: µi

Gamma Inverse (0,‘) φµ2
i

Inverse-Gaussian Inverse-square (0,‘) φµ3
i

NOTE: φ is the dispersion parameter, ηi is the linear predictor, and µi is the

expectation of Yi (the response). In the binomial family, ni is the number of

trials.

3This point is pursued in Section 15.3.
4There is also this more subtle difference: When we transform Y and regress the transformed response on the X s, we
are modeling the expectation of the transformed response,

E½gðYiÞ( ¼ αþ β1xi1 þ β2xi2 þ # # # þ βkxik

In a GLM, in contrast, we model the transformed expectation of the response,

g½EðYiÞ( ¼ αþ β1xi1 þ β2xi2 þ # # # þ βkxik

While similar in spirit, this is not quite the same thing when (as is true except for the identity link) the link function
gð#Þ is nonlinear. It is also the case that we can address nonlinearity in the relationship of Y to the X s in other ways
than through transformation of the response or the expected response—for example, by transforming the X s or by
employing polynomial regressors or regression splines.
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I assume that the reader is generally familiar with the Gaussian and binomial families and
simply give their distributions here for reference. The Poisson, gamma, and inverse-Gaussian
distributions are perhaps less familiar, and so I provide some more detail:5

) The Gaussian distribution with mean µ and variance σ2 has density function

pðyÞ ¼ 1

σ
ffiffiffiffiffiffi
2π
p exp

ðy& µÞ2

2σ2

" #

ð15:1Þ

) The binomial distribution for the proportion Y of successes in n independent binary
trials with probability of success µ has probability function

pðyÞ ¼ n
ny

" #
µnyð1& µÞnð1&yÞ ð15:2Þ

Here, ny is the observed number of successes in the n trials, and nð1& yÞ is the number
of failures, and

n
ny

" #
¼ n!

ðnyÞ!½nð1& yÞ(!

is the binomial coefficient.
) The Poisson distributions are a discrete family with probability function indexed by the

rate parameter µ > 0:

pðyÞ ¼ µy ·
e&µ

y!
for y ¼ 0; 1; 2; . . .

The expectation and variance of a Poisson random variable are both equal to µ. Poisson
distributions for several values of the parameter µ are graphed in Figure 15.2. As we
will see in Section 15.2, the Poisson distribution is useful for modeling count data. As µ

increases, the Poisson distribution grows more symmetric and is eventually well approxi-
mated by a normal distribution.

) The gamma distributions are a continuous family with probability-density function
indexed by the scale parameter ω > 0 and shape parameter c > 0:

pðyÞ ¼ y
ω

$ %c&1
·

exp
&y
ω

$ %

ωGðcÞ
for y > 0 ð15:3Þ

where Gð#Þ is the gamma function.6 The expectation and variance of the gamma distribu-
tion are, respectively, EðY Þ ¼ ωc and V ðY Þ ¼ ω2c. In the context of a generalized lin-
ear model, where, for the gamma family, V ðY Þ ¼ φµ2 (recall Table 15.2 on page 421),
the dispersion parameter is simply the inverse of the shape parameter, φ ¼ 1=c. As the

5The various distributions used in this chapter are described in a general context in online Appendix D on probability
and estimation.
6*The gamma function is defined as

GðxÞ ¼
Z ‘

0
e&zzx&1dz

and may be thought of as a continuous generalization of the factorial function in that when x is a nonnegative integer,
x! ¼ Gðxþ 1Þ.
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Figure 15.2 Poisson distributions for various values of the rate parameter µ.
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names of the parameters suggest, the scale parameter in the gamma family influences the
spread (and, incidentally, the location) but not the shape of the distribution, while the
shape parameter controls the skewness of the distribution. Figure 15.3 shows gamma
distributions for scale ω ¼ 1 and several values of the shape parameter c. (Altering the
scale parameter would change only the labeling of the horizontal axis in the graph.) As
the shape parameter gets larger, the distribution grows more symmetric. The gamma dis-
tribution is useful for modeling a positive continuous response variable, where the condi-
tional variance of the response grows with its mean but where the coefficient of
variation of the response, SDðY Þ=µ, is constant.

) The inverse-Gaussian distributions are another continuous family indexed by two para-
meters, µ and λ, with density function

pðyÞ ¼

ffiffiffiffiffiffiffiffiffiffi
λ

2πy3

s

exp & λðy& µÞ2

2yµ2

" #

for y > 0

The expectation and variance of Y are EðY Þ ¼ µ and V ðY Þ ¼ µ3=λ. In the context of a GLM,
where, for the inverse-Gaussian family, V ðY Þ ¼ φµ3 (as recorded in Table 15.2 on page 421),
λ is the inverse of the dispersion parameter φ. Like the gamma distribution, therefore, the var-
iance of the inverse-Gaussian distribution increases with its mean but at a more rapid rate.
Skewness also increases with the value of µ and decreases with λ. Figure 15.4 shows several
inverse-Gaussian distributions.

A convenient property of distributions in the exponential families is that the conditional
variance of Yi is a function of its mean µi and, possibly, a dispersion parameter φ. In
addition to the familiar Gaussian and binomial families (the latter for proportions), the
Poisson family is useful for modeling count data, and the gamma and inverse-Gaussian
families for modeling positive continuous data, where the conditional variance of Y
increases with its expectation.
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Figure 15.3 Several gamma distributions for scale ω ¼1 and various values of the shape para-
meter c.
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15.1.1 Estimating and Testing GLMs

GLMs are fit to data by the method of maximum likelihood, providing not only estimates of
the regression coefficients but also estimated asymptotic (i.e., large-sample) standard errors of

the coefficients.7 To test the null hypothesis H0: βj ¼ β
ð0Þ
j , we can compute the Wald statistic

Z0 ¼ Bj & β
ð0Þ
j

$ %
=SEðBjÞ, where SEðBjÞ is the asymptotic standard error of the estimated coef-

ficient Bj. Under the null hypothesis, Z0 follows a standard normal distribution.8

As explained, some of the exponential families on which GLMs are based include an
unknown dispersion parameter φ. Although this parameter can, in principle, be estimated by
maximum likelihood as well, it is more common to use a ‘‘method of moments’’ estimator,
which I will denote eφ.9

As is familiar from the preceding chapter on logit and probit models, the ANOVA for linear
models has a close analog in the analysis of deviance for GLMs. In the current more general
context, the residual deviance for a GLM is

Dm [ 2ðloge Ls & loge LmÞ

where Lm is the maximized likelihood under the model in question and Ls is the maximized
likelihood under a saturated model, which dedicates one parameter to each observation and
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Figure 15.4 Inverse-Gaussian distributions for several combinations of values of the mean µ and
inverse-dispersion λ.

7Details are provided in Section 15.3.2. The method of maximum likelihood is introduced in online Appendix D on
probability and estimation.
8For models with an estimated dispersion parameter, we can instead compare the Wald statistic to the t-distribution
with n& k & 1 degrees of freedom. Wald chi-square and F-tests of more general linear hypotheses are described in
Section 15.3.2.
9Again, see Section 15.3.2.
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consequently fits the data as closely as possible. The residual deviance is analogous to (and,
indeed, is a generalization of) the residual sum of squares for a linear model.

In GLMs for which the dispersion parameter is fixed to 1 (i.e., binomial and Poisson
GLMs), the likelihood-ratio test statistic is simply the difference in the residual deviances for
nested models. Suppose that Model 0, with k0 þ 1 coefficients, is nested within Model 1, with
k1 þ 1 coefficients (where, then, k0 < k1); most commonly, Model 0 would simply omit some
of the regressors in Model 1. We test the null hypothesis that the restrictions on Model 1 repre-
sented by Model 0 are correct by computing the likelihood-ratio test statistic

G2
0 ¼ D0 & D1

Under the hypothesis, G2
0 is asymptotically distributed as chi-square with k1 & k0 degrees of

freedom.
Likelihood-ratio tests can be turned around to provide confidence intervals for coefficients;

as mentioned in Section 14.1.4 in connection with logit and probit models, tests and intervals
based on the likelihood-ratio statistic tend to be more reliable than those based on the Wald sta-
tistic. For example, the 95% confidence interval for βj includes all values β0j for which the
hypothesis H0: βj ¼ β0j is acceptable at the .05 level—that is, all values of β0j for which
2ðloge L1 & loge L0Þ£χ2

:05;1 ¼ 3:84, where loge L1 is the maximized log-likelihood for the full
model, and loge L0 is the maximized log-likelihood for a model in which βj is constrained to
the value β0j. This procedure is computationally intensive because it required ‘‘profiling’’ the
likelihood—refitting the model for various fixed values β0j of βj.

For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and
inverse-Gaussian GLMs), we can instead compare nested models by an F-test,

F0 ¼

D0 & D1

k1 & k0

eφ

where the estimated dispersion eφ, analogous to the estimated error variance for a linear model, is
taken from the largest model fit to the data (which is not necessarily Model 1). If the largest
model has k þ 1 coefficients, then, under the hypothesis that the restrictions on Model 1 repre-
sented by Model 0 are correct, F0 follows an F-distribution with k1 & k0 and n& k & 1 degrees
of freedom. Applied to a Gaussian GLM, this is simply the familiar incremental F-test. The resi-
dual deviance divided by the estimated dispersion, D*[ D=eφ, is called the scaled deviance.10

As we did for logit and probit models,11 we can base a GLM analog of the squared multiple
correlation on the residual deviance: Let D0 be the residual deviance for the model including
only the regression constant α—termed the null deviance—and D1 the residual deviance for
the model in question. Then,

R2 [ 1& D1

D0

represents the proportion of the null deviance accounted for by the model.

10Usage is not entirely uniform here, and either the residual deviance or the scaled deviance is often simply termed
‘‘the deviance.’’
11See Section 14.1.4.
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GLMs are fit to data by the method of maximum likelihood, providing not only esti-
mates of the regression coefficients but also estimated asymptotic standard errors of the
coefficients.

The ANOVA for linear models has an analog in the analysis of deviance for GLMs.
The residual deviance for a GLM is Dm ¼ 2ðloge Ls & loge LmÞ, where Lm is the maxi-
mized likelihood under the model in question and Ls is the maximized likelihood under
a saturated model. The residual deviance is analogous to the residual sum of squares for
a linear model.

In GLMs for which the dispersion parameter is fixed to 1 (binomial and Poisson
GLMs), the likelihood-ratio test statistic is the difference in the residual deviances for
nested models and is asymptotically distributed as chi-square under the null hypothesis.
For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and
inverse-Gaussian GLMs), we can instead compare nested models by an incremental
F-test.

15.2 Generalized Linear Models for Counts

The basic GLM for count data is the Poisson model with the log link. Consider, by way of
example, Michael Ornstein’s data on interlocking directorates among 248 dominant Canadian
firms, previously discussed in Chapters 3 and 4. The number of interlocks for each firm is the
number of ties that a firm maintained by virtue of its board members and top executives also
serving as board members or executives of other firms in the data set. Ornstein was interested
in the regression of the number of interlocks on other characteristics of the firms—specifically,
on their assets (measured in billions of dollars), nation of control (Canada, the United States,
the United Kingdom, or another country), and the principal sector of operation of the firm (10
categories, including banking, other financial institutions, heavy manufacturing, etc.).

Examining the distribution of number of interlocks (Figure 15.5) reveals that the variable is
highly positively skewed and that there are many 0 counts. Although the conditional distribu-
tion of interlocks given the explanatory variables could differ from its marginal distribution,
the extent to which the marginal distribution of interlocks departs from symmetry bodes ill for
least-squares regression. Moreover, no transformation will spread out the 0s.12

The results of the Poisson regression of number of interlocks on assets, nation of control,
and sector are summarized in Table 15.3. I set the United States as the baseline category for
nation of control, and Construction as the baseline category for sector—these are the categories
with the smallest fitted numbers of interlocks controlling for the other variables in the regres-
sion, and the dummy-regressor coefficients are therefore all positive.

12Ornstein (1976) in fact performed a linear least-squares regression for these data, although one with a slightly differ-
ent specification from that given here. He cannot be faulted for having done so, however, inasmuch as Poisson regres-
sion models—and, with the exception of loglinear models for contingency tables, other specialized models for
counts—were not typically in sociologists’ statistical toolkit at the time.
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The residual deviance for this model is DðAssets, Nation, SectorÞ ¼ 1887:402 on
n& k & 1 ¼ 248& 13& 1 ¼ 234 degrees of freedom. Deleting each explanatory variable in
turn from the model produces the following residual deviances and degrees of freedom:
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Figure 15.5 The distribution of number of interlocks among 248 dominant Canadian
corporations.

Table 15.3 Estimated Coefficients for the Poisson Regression of Number of
Interlocks on Assets, Nation of Control, and Sector, for Ornstein’s
Canadian Interlocking-Directorate Data

Coefficient Estimate Standard Error eB

Constant 0.8791 0.2101 —
Assets 0.02085 0.00120 1.021
Nation of Control (baseline: United States)
Canada 0.8259 0.0490 2.284
Other 0.6627 0.0755 1.940
United Kingdom 0.2488 0.0919 1.282
Sector (baseline: construction)
Wood and paper 1.331 0.213 3.785
Transport 1.297 0.214 3.658
Other financial 1.297 0.211 3.658
Mining, metals 1.241 0.209 3.459
Holding companies 0.8280 0.2329 2.289
Merchandising 0.7973 0.2182 2.220
Heavy manufacturing 0.6722 0.2133 1.959
Agriculture, food, light industry 0.6196 0.2120 1.858
Banking 0.2104 0.2537 1.234
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Taking differences between these deviances and the residual deviance for the full model yields
the following analysis-of-deviance table:

All the terms in the model are therefore highly statistically significant.
Because the model uses the log link, we can interpret the exponentiated coefficients (i.e., the

eBj , also shown in Table 15.3) as multiplicative effects on the expected number of interlocks.
Thus, for example, holding nation of control and sector constant, increasing assets by 1 billion
dollars (the unit of the assets variable) multiplies the estimated expected number of interlocks
by e0:02085 ¼ 1:021—that is, an increase of just over 2%. Similarly, the estimated expected
number of interlocks is e0:8259 ¼ 2:284 times as high in a Canadian-controlled firm as in a
comparable U.S.-controlled firm.

As mentioned, the residual deviance for the full model fit to Ornstein’s data is
D1 ¼ 1887:402; the deviance for a model fitting only the constant (i.e., the null deviance) is
D0 ¼ 3737:010. Consequently, R2 ¼ 1& 1887:402=3737:010 ¼ :495, revealing that the model
accounts for nearly half the deviance in number of interlocks.

The Poisson-regression model is a nonlinear model for the expected response, and I there-
fore find it generally simpler to interpret the model graphically using effect displays than to
examine the estimated coefficients directly. The principles of construction of effect displays for
GLMs are essentially the same as for linear models and for logit and probit models:13 We usu-
ally construct one display for each high-order term in the model, allowing the explanatory vari-
ables in that term to range over their values, while holding other explanatory variables in the
model to typical values. In a GLM, it is advantageous to plot effects on the scale of the esti-
mated linear predictor, bη, a procedure that preserves the linear structure of the model. In a
Poisson model with the log link, the linear predictor is on the log-count scale. We can, how-
ever, make the display easier to interpret by relabeling the vertical axis in the scale of the
expected response, bµ, most informatively by providing a second vertical axis on the right-hand
side of the plot. For a Poisson model, the expected response is a count.

Effect displays for the terms in Ornstein’s Poisson regression are shown in Figure 15.6. This
model has an especially simple structure because each high-order term is a main effect—there
are no interactions in the model. The effect display for assets shows a one-dimensional

Explanatory Variables Residual Deviance df

Nation, Sector 2278.298 235
Assets, Sector 2216.345 237
Assets, Nation 2248.861 243

Source G2
0 df p

Assets 390.90 1 +.0001
Nation 328.94 3 +.0001
Sector 361.46 9 +.0001

13See Section 15.3.4 for details.
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scatterplot (a ‘‘rug-plot’’) for this variable at the bottom of the graph, revealing that the distri-
bution of assets is highly skewed to the right. Skewness produces some high-leverage observa-
tions and suggests the possibility of a nonlinear effect for assets, points that I pursue later in
the chapter.14

15.2.1 Models for Overdispersed Count Data

The residual deviance for the Poisson-regression model fit to the interlocking-directorate
data, D ¼ 1887:4, is much larger than the 234 residual degrees of freedom for the model. If the
Poisson model fits the data reasonably, we would expect the residual deviance to be roughly
equal to the residual degrees of freedom.15 That the residual deviance is so large suggests that
the conditional variation of the expected number of interlocks exceeds the variation of a
Poisson-distributed variable, for which the variance equals the mean. This common occurrence
in the analysis of count data is termed overdispersion.16 Indeed, overdispersion is so common
in regression models for count data, and its consequences are potentially so severe, that models
such as the quasi-Poisson and negative-binomial GLMs discussed in this section should be
employed as a matter of course in preference to the Poisson GLM.

The Quasi-Poisson Model

A simple remedy for overdispersed count data is to introduce a dispersion parameter into the
Poisson model, so that the conditional variance of the response is now V ðYijηiÞ ¼ φµi. If
φ > 1, therefore, the conditional variance of Y increases more rapidly than its mean. There is no
exponential family corresponding to this specification, and the resulting GLM does not imply a
specific probability distribution for the response variable. Rather, the model specifies the condi-
tional mean and variance of Yi directly. Because the model does not give a probability distribu-
tion for Yi, it cannot be estimated by maximum likelihood. Nevertheless, the usual procedure
for maximum-likelihood estimation of a GLM yields the so-called quasi-likelihood estimators
of the regression coefficients, which share many of the properties of maximum-
likelihood estimators.17

As it turns out, the quasi-likelihood estimates of the regression coefficients are identical to
the maximum-likelihood (ML) estimates for the Poisson model. The estimated coefficient stan-
dard errors differ, however: If eφ is the estimated dispersion for the model, then the coefficient
standard errors for the quasi-Poisson model are eφ1=2 times those for the Poisson model. In the
event of overdispersion, therefore, where eφ > 1, the effect of introducing a dispersion parameter
and obtaining quasi-likelihood estimates is (realistically) to inflate the coefficient standard

14See Section 15.4 on diagnostics for GLMs.
15That is, the ratio of the residual deviance to degrees of freedom can be taken as an estimate of the dispersion para-
meter φ, which, in a Poisson model, is fixed to 1. This deviance-based estimator of the dispersion can perform poorly,
however. A generally preferable ‘‘method of moments’’ estimator is given in Section 15.3.
16Although it is much less common, it is also possible for count data to be underdispersed—that is, for the conditional
variation of the response to be less than the mean. The remedy for underdispsered count data is the same as for overdis-
persed data; for example, we can fit a quasi-Poisson model with a dispersion parameter, as described immediately
below.
17See Section 15.3.2.
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errors. Likewise, F-tests for terms in the model will reflect the estimated dispersion parameter,
producing smaller test statistics and larger p-values.

As explained in the following section, we use a method-of-moments estimator for the disper-
sion parameter. In the quasi-Poisson model, the dispersion estimator takes the form

eφ ¼ 1

n& k & 1

X ðYi & bµiÞ
2

bµi

where bµi ¼ g&1ðbηiÞ is the fitted expectation of Yi. Applied to Ornstein’s interlocking-
directorate regression, for example, we get eφ ¼ 7:9435, and, therefore, the standard errors of
the regression coefficients for the Poisson model in Table 15.3 are each multiplied byffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7:9435
p

¼ 2:818.
I note in passing that there is a similar quasi-binomial model for overdispersed proportions,

replacing the fixed dispersion parameter of 1 in the binomial distribution with a dispersion
parameter φ to be estimated from the data. Overdispersed binomial data can arise, for example,
when individuals who share the same values of the explanatory variables nevertheless differ in
their probability µ of success, a situation that is termed unmodeled heterogeneity. Similarly,
overdispersion can occur when binomial ‘‘trials’’ are not independent, as required by the bino-
mial distribution—for example, when the trials for each binomial observation are for related
individuals, such as members of a family.

The Negative-Binomial Model

There are several routes to models for counts based on the negative-binomial distribution
(see, e.g., Long, 1997, Section 8.3; McCullagh & Nelder, 1989, Section 6.2.3). One approach
(following McCullagh & Nelder, 1989, p. 233) is to adopt a Poisson model for the count Yi but
to suppose that the expected count µ*i is itself an unobservable random variable that is gamma-
distributed with mean µi and constant scale parameter ω (implying that the gamma shape para-
meter is ci ¼ µi=ω

18). Then the observed count Yi follows a negative-binomial distribution,19

pðyiÞ ¼
Gðyi þ ωÞ

y!GðωÞ
· µ

yi
i ω

ω

ðµi þ ωÞµiþω ð15:4Þ

with expected value E Yið Þ ¼ µi and variance V ðYiÞ ¼ µi þ µ2
i =ω. Unless the parameter ω is

large, therefore, the variance of Y increases more rapidly with the mean than the variance of a
Poisson variable. Making the expected value of Yi a random variable incorporates additional
variation among observed counts for observations that share the same values of the explanatory
variables and consequently have the same linear predictor ηi.

With the gamma scale parameter ω fixed to a known value, the negative-binomial distribu-
tion is an exponential family (in the sense of Equation 15.15 in Section 15.3.1), and a GLM
based on this distribution can be fit by iterated weighted least squares (as developed in the next
section). If instead—and as is typically the case—the value of ω is unknown and must there-
fore be estimated from the data, standard methods for GLMs based on exponential families do
not apply. We can, however, obtain estimates of both the regression coefficients and ω by the
method of maximum likelihood. Applied to Ornstein’s interlocking-directorate regression and

18See Equation 15.3 on page 422.
19A simpler form of the negative-binomial distribution is given in online Appendix D on probability and estimation.
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using the log link, the negative-binomial GLM produces results very similar to those of the
quasi-Poisson model (as the reader may wish to verify). The estimated scale parameter for the
negative-binomial model is bω ¼ 1:312, with standard error SEðbωÞ ¼ 0:143; we have, there-
fore, strong evidence that the conditional variance of the number of interlocks increases more
rapidly than its expected value.20

Zero-Inflated Poisson Regression

A particular kind of overdispersion obtains when there are more 0s in the data than is consis-
tent with a Poisson (or negative-binomial) distribution, a situation that can arise when only cer-
tain members of the population are ‘‘at risk’’ of a nonzero count. Imagine, for example, that
we are interested in modeling the number of children born to a woman. We might expect that
this number is a partial function of such explanatory variables as marital status, age, ethnicity,
religion, and contraceptive use. It is also likely, however, that some women (or their partners)
are infertile and are distinct from fertile women who, though at risk for bearing children, hap-
pen to have none. If we knew which women are infertile, we could simply exclude them from
the analysis, but let us suppose that this is not the case. To reiterate, there are two sources of 0s
in the data that cannot be perfectly distinguished: women who cannot bear children and those
who can but have none.

Several statistical models have been proposed for count data with an excess of 0s, including
the zero-inflated Poisson regression (or ZIP) model, due to Lambert (1992). The ZIP model
consists of two components: (1) A binary logistic-regression model for membership in the
latent class of individuals for whom the response variable is necessarily 0 (e.g., infertile indi-
viduals),21 and (2) a Poisson-regression model for the latent class of individuals for whom the
response may be 0 or a positive count (e.g., fertile women).22

Let πi represent the probability that the response Yi for the ith individual is necessarily 0.
Then

loge
πi

1& πi
¼ γ0 þ γ1zi1 þ γ2zi2 þ # # # þ γpzip ð15:5Þ

where the zij are regressors for predicting membership in the first latent class, and

loge µi ¼ αþ β1xi1 þ β2xi2 þ # # # þ βkxik

p yijx1; . . . ; xkð Þ ¼ µ
yi
i e&µi

yi!
for yi ¼ 0; 1; 2; . . .

ð15:6Þ

where µi [ EðYiÞ is the expected count for an individual in the second latent class, and the xij

are regressors for the Poisson submodel. In applications, the two sets of regressors—the X s
and the Zs—are often the same, but this is not necessarily the case. Indeed, a particularly sim-
ple special case arises when the logistic submodel is loge πi=ð1& πiÞ ¼ γ0, a constant, imply-
ing that the probability of membership in the first latent class is identical for all observations.

20See Exercise 15.1 for a test of overdispersion based on the negative-binomial GLM.
21See Section 14.1 for a discussion of logistic regression.
22Although this form of the zero-inflated count model is the most common, Lambert (1992) also suggested the use of
other binary GLMs for membership in the zero latent class (i.e., probit, log-log, and complementary log-log models)
and the alternative use of the negative-binomial distribution for the count submodel (see Exercise 15.2).
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The probability of observing a 0 count is

pð0Þ[ PrðYi ¼ 0Þ ¼ πi þ ð1& πiÞe&µi

and the probability of observing any particular nonzero count yi is

pðyiÞ ¼ ð1& πiÞ ·
µ

yi
i e&µi

yi!

The conditional expectation and variance of Yi are

EðYiÞ ¼ ð1& πiÞµi

V ðYiÞ ¼ ð1& πiÞµið1þ πiµiÞ

with V ðYiÞ > EðYiÞ for πi > 0 [unlike a pure Poisson distribution, for which
V ðYiÞ ¼ EðYiÞ ¼ µi].

23

*Estimation of the ZIP model would be simple if we knew to which latent class each
observation belongs, but, as I have pointed out, that is not true. Instead, we must maximize
the somewhat more complex combined log-likelihood for the two components of the ZIP
model:24

loge Lðfl;gÞ ¼
X

yi¼0

loge exp z0ig
& '

þ exp &expðx0iflÞ
( )* +

þ
X

yi>0

yix
0
ifl& expðx0iflÞ

( )

&
Xn

i¼1

loge 1þ expðz0igÞ
( )

&
X

yi>0

logeðyi!Þ
ð15:7Þ

where z0i [ ½1; zi1; . . . ; zip(, x0i [ ½1; xi1; . . . ; xik (, g [ ½γ0; γ1; . . . ; γp(
0, and fl[ ½α;β1; . . . ;βk (

0.

The basic GLM for count data is the Poisson model with log link. Frequently, however,
when the response variable is a count, its conditional variance increases more rapidly
than its mean, producing a condition termed overdispersion and invalidating the use of
the Poisson distribution. The quasi-Poisson GLM adds a dispersion parameter to handle
overdispersed count data; this model can be estimated by the method of quasi-likelihood.
A similar model is based on the negative-binomial distribution, which is not an exponen-
tial family. Negative-binomial GLMs can nevertheless be estimated by maximum likeli-
hood. The zero-inflated Poisson regression model may be appropriate when there are
more zeroes in the data than is consistent with a Poisson distribution.

15.2.2 Loglinear Models for Contingency Tables

The joint distribution of several categorical variables defines a contingency table. As dis-
cussed in the preceding chapter,25 if one of the variables in a contingency table is treated as the

23See Exercise 15.2.
24See Exercise 15.2.
25See Section 14.3.
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response variable, we can fit a logit or probit model (e.g., for a dichotomous response, a bino-
mial GLM) to the table. Loglinear models, in contrast, which are models for the associations
among the variables in a contingency table, treat the variables symmetrically—they do not dis-
tinguish one variable as the response. There is, however, a relationship between loglinear
models and logit models that I will develop later in this section. As we will see as well,
loglinear models have the formal structure of two-way and higher-way ANOVA models26 and
can be fit to data by Poisson regression.

Loglinear models for contingency tables have many specialized applications in the social
sciences—for example to ‘‘square’’ tables, such as mobility tables, where the variables in the
table have the same categories. The treatment of loglinear models in this section merely
scratches the surface.27

Two-Way Tables

I will examine contingency tables for two variables in some detail, for this is the simplest
case, and the key results that I establish here extend straightforwardly to tables of higher
dimension. Consider the illustrative two-way table shown in Table 15.4, constructed from data
reported in the American Voter (Campbell, Converse, Miller, & Stokes, 1960), introduced in
the previous chapter.28 The table relates intensity of partisan preference to voting turnout in the
1956 U.S. presidential election. To anticipate my analysis, the data indicate that voting turnout
is positively associated with intensity of partisan preference.

More generally, two categorical variables with r and c categories, respectively, define an
r · c contingency table with r rows and c columns, as shown in Table 15.5, where Yij is the
observed frequency count in the i; j th cell of the table. I use a ‘‘ + ’’ to represent summation
over a subscript; thus, Yiþ[

Pc
j¼1 Yij is the marginal frequency in the ith row, Yþj [

Pr
i¼1 Yij

is the marginal frequency in the jth column, and n ¼ Yþþ[
Pr

i¼1

Pc
j¼1 Yij is the number of

observations in the sample.

Table 15.4 Voter Turnout by Intensity of Partisan
Preference, for the 1956 U.S. Presidential
Election

Voter Turnout

Intensity of Preference Voted Did Not Vote Total

Weak 305 126 431
Medium 405 125 530
Strong 265 49 314

Total 975 300 1275

26See Sections 8.2.3 and 8.3.
27More extensive accounts are available in many sources, including Agresti (2012), Fienberg (1980), and Powers and
Xie (2008).
28Table 14.9 (page 408) examined the relationship of voter turnout to intensity of partisan preference and perceived
closeness of the election. The current example collapses the table for these three variables over the categories of per-
ceived closeness to examine the marginal table for turnout and preference. I return below to the analysis of the full
three-way table.
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I assume that the n observations in Table 15.5 are independently sampled from a population
with proportion πij in cell i; j and therefore that the probability of sampling an individual obser-
vation in this cell is πij. Marginal probability distributions πiþ and πþj may be defined as
above; note that πþþ ¼ 1. If the row and column variables are statistically independent in the
population, then the joint probability πij is the product of the marginal probabilities for all i
and j: πij ¼ πiþπþj.

Because the observed frequencies Yij result from drawing a random sample, they are random
variables that generally take on different values in different samples. The expected frequency in
cell i; j is µij [ EðYijÞ ¼ nπij. If the variables are independent, then we have µij ¼ nπiþπþj.
Moreover, because µiþ ¼

Pc
j¼1 nπij ¼ nπiþ and µþj ¼

Pr
i¼1 nπij ¼ nπþj, we may write

µij ¼ µiþµþj=n. Taking the log of both sides of this last equation produces

ηij [ loge µij ¼ loge µiþ þ loge µþj & loge n ð15:8Þ

That is, under independence, the log expected frequencies ηij depend additively on the logs of
the row marginal expected frequencies, the column marginal expected frequencies, and the
sample size. As Fienberg (1980, pp. 13–14) points out, Equation 15.8 is reminiscent of a main-
effects two-way ANOVA model, where & loge n plays the role of the constant, loge µiþ and
loge µþj are analogous to ‘‘main-effect’’ parameters, and ηij appears in place of the response-
variable mean. If we impose ANOVA-like sigma constraints on the model,29 we may repara-
meterize Equation 15.8 as follows:

ηij ¼ µþ αi þ βj ð15:9Þ

where αþ[
P

αi ¼ 0 and βþ[
P

βj ¼ 0. Equation (15.9) is the loglinear model for inde-
pendence in the two-way table. Solving for the parameters of the model, we obtain

µ ¼ ηþþ
rc

αi ¼
ηiþ
c
& µ

βj ¼
ηþj

r
& µ

ð15:10Þ

It is important to stress that although the loglinear model is formally similar to an ANOVA
model, the meaning of the two models differs importantly: In analysis of variance, the αi and

Table 15.5 General Two-Way Frequency
Table

Variable C

Variable R 1 2 # # # c Total

1 Y11 Y12 # # # Y1c Y1 +

2 Y21 Y22 # # # Y2c Y2 +
..
. ..

. ..
. ..

. ..
.

r Yr1 Yr2 # # # Yrc Yr +

Total Y+ 1 Y+ 2 # # # Y+ c n

29See Section 8.2.3.
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βj are main-effect parameters, specifying the partial relationship of the (quantitative) response
variable to each explanatory variable. The loglinear model in Equation 15.9, in contrast, does
not distinguish a response variable and, because it is a model for independence, specifies that
the row and column variables in the contingency table are unrelated; for this model, the αi and
βj merely express the relationship of the log expected cell frequencies to the row and column
marginals. The model for independence describes rc expected frequencies in terms of

1þ ðr & 1Þ þ ðc& 1Þ ¼ r þ c& 1

independent parameters.
By analogy to the two-way ANOVA model, we can add parameters to extend the loglinear

model to data for which the row and column classifications are not independent in the popula-
tion but rather are related in an arbitrary manner:

ηij ¼ µþ αi þ βj þ γ ij ð15:11Þ

where αþ ¼ βþ ¼ γ iþ ¼ γþj ¼ 0 for all i and j. As before, we may write the parameters of the
model in terms of the log expected counts ηij. Indeed, the solutions for µ; αi, and βj are the
same as in Equations 15.10, and

γ ij ¼ ηij & µ& αi & βj

By analogy to the ANOVA model, the γ ij in the loglinear model are often called ‘‘interac-
tions,’’ but this usage is potentially confusing. I will therefore instead refer to the γ ij as associ-
ation parameters because they represent deviations from independence.

Under the model in Equation 15.11, called the saturated model for the two-way table, the
number of independent parameters is equal to the number of cells in the table,

1þ ðr & 1Þ þ ðc& 1Þ þ ðr & 1Þðc& 1Þ ¼ rc

The model is therefore capable of capturing any pattern of association in a two-way table.
Remarkably, maximum-likelihood estimates for the parameters of a loglinear model (i.e., in

the present case, either the model for independence in Equation 15.9 or the saturated model in
Equation 15.11) may be obtained by treating the observed cell counts Yij as the response vari-
able in a Poisson GLM; the log expected counts ηij are then just the linear predictor for the
GLM, as the notation suggests.30

The constraint that all γ ij ¼ 0 imposed by the model of independence can be tested by a like-
lihood-ratio test, contrasting the model of independence (Equation 15.9) with the more general

30*The reason that this result is remarkable is that a direct route to a likelihood function for the loglinear model leads
to the multinomial distribution (discussed in online Appendix D on probability and estimation), not to the Poisson dis-
tribution. That is, selecting n independent observations from a population characterized by cell probabilities πij results
in cell counts following the multinomial distribution,

pðy11; . . . ; yrcÞ ¼
n!

Qr

i¼1

Qc

j¼1
yij!

Yr

i¼1

Yc

j¼1

π
nij

ij

¼ n!
Qr

i¼1

Qc

j¼1
yij!

Yr

i¼1

Yc

j¼1

µij

n

$ %nij

Noting that the expected counts µij are functions of the parameters of the loglinear model leads to the multinomial like-
lihood function for the model. It turns out that maximizing this multinomial likelihood is equivalent to maximizing the
likelihood for the Poisson GLM described in the text (see, e.g., Fienberg, 1980, app. II).
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model (Equation 15.11). Because the latter is a saturated model, its residual deviance is neces-
sarily 0, and the likelihood-ratio statistic for the hypothesis of independence H0: γ ij ¼ 0 is sim-
ply the residual deviance for the independence model, which has ðr & 1Þðc& 1Þ residual
degrees of freedom. Applied to the illustrative two-way table for the American Voter data, we
get G2

0 ¼ 19:428 with ð3& 1Þð2& 1Þ ¼ 2 degrees of freedom, for which p < :0001, suggesting
that there is strong evidence that intensity of preference and turnout are related.31

Maximum-likelihood estimates of the parameters of the saturated loglinear model are shown
in Table 15.6. It is clear from the estimated association parameters bγ ij that turning out to vote,
j ¼ 1, increases with partisan preference (and, of course, that not turning out to vote, j ¼ 2,
decreases with preference).

Three-Way Tables

The saturated loglinear model for a three-way (a · b · c) table for variables A, B; and C is
defined in analogy to the three-way ANOVA model, although, as in the case of two-way
tables, the meaning of the parameters is different:

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ þ αABðijÞ þ αACðikÞ þ αBCðjkÞ þ αABCðijkÞ ð15:12Þ

with sigma constraints specifying that each set of parameters sums to 0 over each subscript; for
example, αAðþÞ ¼ αABðiþÞ ¼ αABCðijþÞ ¼ 0. Given these constraints, we may solve for the para-
meters in terms of the log expected counts, with the solution following the usual ANOVA pat-
tern; for example,

µ ¼ ηþþþ
abc

αAðiÞ ¼
ηiþþ
bc
& µ

αABðijÞ ¼
ηijþ

c
& µ& αAðiÞ & αBðjÞ

αABCðijkÞ ¼ ηijk & µ& αAðiÞ & αBðjÞ & αCðkÞ & αABðijÞ & αACðikÞ & αBCðjkÞ

Table 15.6 Estimated Parameters for
the Saturated Loglinear
Model Fit in Table 15.4

bγ ij

i j ¼ 1 j ¼ 2 bαi

1 &0.183 0.183 0.135
2 &0.037 0.037 0.273
3 0.219 &0.219 &0.408

bβj 0.625 &0.625 bµ ¼5.143

31This test is very similar to the usual Pearson chi-square test for independence in a two-way table. See Exercise 15.3
for details, and for an alternative formula for calculating the likelihood-ratio test statistic G2

0 directly from the observed
frequencies, Yij, and estimated expected frequencies under independence, bµij.
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The presence of the three-way term aABC in the model implies that the relationship between
any pair of variables (say, A and B) depends on the category of the third variable (say, C).32

Other loglinear models are defined by suppressing certain terms in the saturated model, that
is, by setting parameters to 0. In specifying a restricted loglinear model, we will be guided by
the principle of marginality:33 Whenever a high-order term is included in the model, its
lower-order relatives are included as well. Loglinear models of this type are often called
hierarchical. Nonhierarchical loglinear models may be suitable for special applications, but
they are not sensible in general (see Fienberg, 1980). According to the principle of marginality,
for example, if aAB appears in the model, so do aA and aB.

) If we set all of aABC;aAB;aAC; and aBC to 0, we produce the model of mutual indepen-
dence, implying that the variables in the three-way table are completely unrelated:

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ

) Setting aABC;aAC; and aBC to 0 yields the model

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ þ αABðijÞ

which specifies (1) that variables A and B are related, controlling for (i.e., within cate-
gories of) variable C; (2) that this partial relationship is constant across the categories of
variable C; and (3) that variable C is independent of variables A and B taken jointly—
that is, if we form the two-way table with rows given by combinations of categories of A
and B and columns given by C, the two variables in this table are independent. Note that
there are two other models of this sort: one in which aAC is nonzero and another in
which aBC is nonzero.

) A third type of model has two nonzero two-way terms; for example, setting aABC and
aBC to 0, we obtain

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ þ αABðijÞ þ αACðikÞ

This model implies that (1) variables A and B have a constant partial relationship across
the categories of variable C, (2) variables A and C have a constant partial relationship
across the categories of variable B, and (3) variables B and C are independent within
categories of variable A. Again, there are two other models of this type.

) Finally, consider the model that sets only the three-way term aABC to 0:

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ þ αABðijÞ þ αACðikÞ þ αBCðjkÞ

This model specifies that each pair of variables (e.g., A and B) has a constant partial
association across the categories of the remaining variable (e.g., C).

These descriptions are relatively complicated because the loglinear models are models of
association among variables. As we will see presently, however, if one of the variables in a

32Here and below I use the shorthand notation aABC to represent the whole set of αABCðijkÞ parameters and similarly for
the other terms in the model.
33See Section 7.3.2.
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table is taken as the response variable, then the loglinear model is equivalent to a logit model
with a simpler interpretation.

Table 15.7 shows a three-way table cross-classifying voter turnout by perceived closeness of
the election and intensity of partisan preference, elaborating the two-way table for the
American Voter data presented earlier in Table 15.4.34 I have fit all hierarchical loglinear mod-
els to this three-way table, displaying the results in Table 15.8. Here I employ a compact nota-
tion for the high-order terms in each fitted model: For example, AB represents the two-way
term aAB and implies that the lower-order relatives of this term—µ, aA, and aB—are also in
the model. As in the loglinear model for a two-way table, the saturated model has a residual

Table 15.7 Voter Turnout by Perceived Closeness of the
Election and Intensity of Partisan Preference, for
the 1956 U.S. Presidential Election

(A) Perceived
Closeness

(B) Intensity of
Preference

(C) Turnout

Voted Did Not Vote

One-sided Weak 91 39
Medium 121 49
Strong 64 24

Close Weak 214 87
Medium 284 76
Strong 201 25

Table 15.8 Hierarchical Loglinear Models Fit to Table 15.7

Residual Degrees of Freedom

High-Order
Terms General Table 15.7 G2

0 p

A,B,C (a&1)(b&1)þ(a&1)(c&1)(b&1)(c&1) 7 36.39 +.0001
þ(a&1)(b&1)(c&1)

AB,C (a&1)(c&1)þ(b&1)(c&1)þ(a&1)(b&1)(c&1) 5 34.83 +.0001
AC,B (a&1)(b&1)þ(b&1)(c&1)þ(a&1)(b&1)(c&1) 5 16.96 .0046
A,BC (a&1)(b&1) + (a&1)(c&1)þ(a&1)(b&1)(c&1) 6 27.78 .0001
AB,AC (b&1)(c&1)þ(a&1)(b&1)(c&1) 3 15.40 .0015
AB,BC (a&1)(c&1)þ(a&1)(b&1)(c&1) 4 26.22 < .0001
AC,BC (a&1)(b&1)þ(a&1)(b&1)(c&1) 4 8.35 .079
AB,AC,BC (a&1)(b&1)(c&1) 2 7.12 .028
ABC 0 0 0.0 —

NOTE: The column labeled G2
0 is the likelihood-ratio statistic for testing each model against the saturated

model.

34This table was also discussed in Chapter 14 (see Table 14.9 on page 408).
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deviance of 0, and consequently, the likelihood-ratio statistic to test any model against the satu-
rated model (within which all of the other models are nested and which is the last model
shown) is simply the residual deviance for the unsaturated model.

The first model in Table 15.8 is the model of complete independence, and it fits the data
very poorly. At the other end, the model with high-order terms AB;AC; and BC, which may be
used to test the hypothesis of no three-way association, H0: all αABCðijkÞ ¼ 0, also has a statisti-
cally significant likelihood-ratio test statistic (though not overwhelmingly so), suggesting that
the association between any pair of variables in the contingency tables varies over the levels of
the remaining variable.

This approach generalizes to contingency tables of any dimension, although the interpreta-
tion of high-order association terms can become complicated.

Loglinear Models and Logit Models

As I explained, the loglinear model for a contingency table is a model for association
among the variables in the table; the variables are treated symmetrically, and none is distin-
guished as the response variable. When one of the variables in a contingency table is regarded
as the response, however, the loglinear model for the table implies a logit model (identical to
the logit model for a contingency table developed in Chapter 14), the parameters of which bear
a simple relationship to the parameters of the loglinear model for the table.

For example, it is natural to regard voter turnout in Table 15.7 as a dichotomous response
variable, potentially affected by perceived closeness of the election and by intensity of partisan
preference. Indeed, this is precisely what we did previously when we analyzed this table using
a logit model.35 With this example in mind, let us return to the saturated loglinear model for
the three-way table (repeating Equation 15.12):

ηijk ¼ µþ αAðiÞ þ αBðjÞ þ αCðkÞ þ αABðijÞ þ αACðikÞ þ αBCðjkÞ þ αABCðijkÞ

For convenience, I suppose that the response variable is variable C, as in the illustration. Let
Oij symbolize the response-variable logit within categories i; j of the two explanatory variables;
that is,

Oij ¼ loge
πij1

πij2
¼ loge

nπij1

nπij2
¼ loge

µij1

µij2

¼ ηij1 & ηij2

Then, from the saturated loglinear model for ηijk ,

Oij ¼ αCð1Þ & αCð2Þ
( )

þ αACði1Þ & αACði2Þ
( )

þ αBCðj1Þ & αBCðj2Þ
( )

þ αABCðij1Þ & αABCðij2Þ
( ) ð15:13Þ

Noting that the first bracketed term in Equation 15.13 does not depend on the explanatory vari-
ables, that the second depends only on variable A, and so forth, let us rewrite this equation in
the following manner:

35See Section 14.3.
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Oij ¼ ωþ ωAðiÞ þ ωBðjÞ þ ωABðijÞ ð15:14Þ

where, because of the sigma constraints on the αs,

ω[αCð1Þ & αCð2Þ ¼ 2αCð1Þ

ωAðiÞ[αACði1Þ & αACði2Þ ¼ 2αACði1Þ

ωBðjÞ[αBCðj1Þ & αBCðj2Þ ¼ 2αBCðj1Þ

ωABðijÞ[αABCðij1Þ & αABCðij2Þ ¼ 2αABCðij1Þ

Furthermore, because they are defined as twice the αs, the ωs are also constrained to sum to 0
over any subscript:

ωAðþÞ ¼ ωBðþÞ ¼ ωABðiþÞ ¼ ωABðþjÞ ¼ 0; for all i and j

Note that the loglinear model parameters for the association of the explanatory variables A
and B do not appear in Equation 15.3. This equation (or, equivalently, Equation 15.14), the
saturated logit model for the table, therefore shows how the response-variable log odds depend
on the explanatory variables and their interactions. In light of the constraints that they satisfy,
the ωs are interpretable as ANOVA-like effect parameters, and indeed we have returned to the
binomial logit model for a contingency table introduced in the previous chapter: For example,
the likelihood-ratio test for the three-way term in the loglinear model for the American Voter
data (given in the penultimate line of Table 15.8) is identical to the likelihood-ratio test for the
interaction between closeness and preference in the logit model for turnout fit to these data
(see Table 14.11 on page 411).

A similar argument may also be pursued with respect to any unsaturated loglinear model for
the three-way table: Each such model implies a model for the response-variable logits.
Because, however, our purpose is to examine the effects of the explanatory variables on the
response and not to explore the association between the explanatory variables, we generally
include aAB and its lower-order relatives in any model that we fit, thereby treating the associa-
tion (if any) between variables A and B as given. Furthermore, a similar argument to the one
developed here can be applied to a table of any dimension that has a response variable and to a
response variable with more than two categories. In the latter event, the loglinear model is
equivalent to a multinomial logit model for the table, and in any event, we would generally
include in the loglinear model a term of dimension one less than the table corresponding to all
associations among the explanatory variables.

Loglinear models for contingency tables bear a formal resemblance to analysis-
of-variance models and can be fit to data as Poisson generalized linear models with a log
link. The loglinear model for a contingency table, however, treats the variables in the
table symmetrically—none of the variables is distinguished as a response variable—and
consequently the parameters of the model represent the associations among the variables,
not the effects of explanatory variables on a response. When one of the variables is con-
strued as the response, the loglinear model reduces to a binomial or multinomial logit
model.
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15.3 Statistical Theory for Generalized Linear Models*

In this section, I revisit with greater rigor and more detail many of the points raised in the pre-
ceding sections.36

15.3.1 Exponential Families

As much else in modern statistics, the insight that many of the most important distributions
in statistics could be expressed in the following common ‘‘linear-exponential’’ form was due to
R. A. Fisher:

pðy; θ;φÞ ¼ exp
yθ & bðθÞ

aðφÞ þ cðy;φÞ
, -

ð15:15Þ

where

) pðy; θ; φÞ is the probability-mass function for the discrete random variable Y or the prob-
ability-density function for continuous Y .

) að#Þ; bð#Þ, and cð#Þ are known functions that vary from one exponential family to another
(see below for examples).

) θ ¼ gcðµÞ, the canonical parameter for the exponential family in question, is a function
of the expectation µ [ EðY Þ of Y ; moreover, the canonical link function gcð#Þ does not
depend on φ.

) φ> 0 is a dispersion parameter, which, in some families, takes on a fixed, known value,
while in other families it is an unknown parameter to be estimated from the data along
with θ.

Consider, for example, the normal or Gaussian distribution with mean µ and variance σ2, the
density function for which is given in Equation 15.1 (on page 422). To put the normal distribu-
tion into the form of Equation 15.15 requires some heroic algebraic manipulation, eventually
producing37

pðy; θ;φÞ ¼ exp
yθ & θ2=2

φ
& 1

2

y2

φ
þ logeð2πφÞ

, -. /

with θ ¼ gcðµÞ ¼ µ; φ ¼ σ2 ; aðφÞ ¼ φ; bðθÞ ¼ θ2=2; and cðy;φÞ ¼ &1
2 y2=φþ½ logeð2πφÞ(.

Thus, gcð#Þ is the identity link.
Now consider the binomial distribution in Equation 15.2 (page 422), where Y is the propor-

tion of ‘‘successes’’ in n independent binary trials, and µ is the probability of success on an
individual trial. Written after more algebraic gymnastics as an exponential family,38

36The exposition here owes a debt to Chapter 2 of McCullagh and Nelder (1989), which has become the standard
source on GLMs, and to the remarkably lucid and insightful briefer treatment of the topic by Firth (1991).
37See Exercise 15.4.
38See Exercise 15.5.
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pðy; θ;φÞ ¼ exp
yθ & logeð1þ eθÞ

1=n
þ loge

n
ny

" #, -

with θ ¼ gcðµÞ ¼ loge½µ=ð1& µÞ(; φ ¼ 1; aðφÞ ¼ 1=n; bðθÞ ¼ logeð1þ eθÞ; and cðy;φÞ ¼

loge
n
ny

" #
. The canonical link is therefore the logit link.

Similarly, the Poisson, gamma, and inverse-Gaussian families can all be put into the form of
Equation 15.15, using the results given in Table 15.9.39

The advantage of expressing diverse families of distributions in the common exponential
form is that general properties of exponential families can then be applied to the individual
cases. For example, it is true in general that

b0ðθÞ[ dbðθÞ
dθ
¼ µ

and that

V ðY Þ ¼ aðφÞb00ðθÞ ¼ aðφÞ d
2bðθÞ
dθ2 ¼ aðφÞvðµÞ

leading to the results in Table 15.2 (on page 441)40. Note that b0ð#Þ is the inverse of the canoni-
cal link function. For example, for the normal distribution,

b0ðθÞ ¼ dðθ2=2Þ
dθ

¼ θ ¼ µ

aðφÞb00ðθÞ ¼ φ · 1 ¼ σ2

vðµÞ ¼ 1

and for the binomial distribution,

Table 15.9 Functions að#Þ, bð#Þ, and cð#Þ for Constructing the Exponential Families

Family aðφÞ bðθÞ cðy;φÞ

Gaussian φ θ2=2 &1
2 y2=φþ logeð2πφÞ½ (

Binomial 1/n loge(1 + eθ) loge
n
ny

" #

Poisson 1 eθ &loge y!

Gamma φ &logeð&θÞ φ&1logeðy=φÞ&log ey&logeGðφ&1Þ

Inverse-Gaussian φ &
ffiffiffiffiffiffiffiffiffi
&2θ
p

&1
2 logeðπφy3Þ þ 1=ðφyÞ
( )

NOTE: In this table, n is the number of binomial trials, and Gð#Þ is the gamma function.

39See Exercise 15.6.
40See Exercise 15.7.
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b0ðθÞ ¼ d½logeð1þ eθÞ(
dθ

¼ eθ

1þ eθ
¼ 1

1þ e&θ
¼ µ

aðφÞb00ðθÞ ¼ 1

n
· eθ

1þ eθ
& eθ

1þ eθ

" #2
" #

¼ µð1& µÞ
n

vðµÞ ¼ µð1& µÞ

The Gaussian, binomial, Poisson, gamma, and inverse-Gaussian distributions can all be
written in the common linear-exponential form:

pðy; θ;φÞ ¼ exp
yθ & bðθÞ

aðφÞ þ cðy;φÞ
, -

where að#Þ; bð#Þ, and cð#Þ are known functions that vary from one exponential family to
another; θ ¼ gcðµÞ is the canonical parameter for the exponential family in question;
gcð#Þ is the canonical link function; and φ> 0 is a dispersion parameter, which takes on a
fixed, known value in some families. It is generally the case that µ ¼ EðY Þ ¼ b0ðθÞ and
that V ðY Þ ¼ aðφÞb00ðθÞ.

15.3.2 Maximum-Likelihood Estimation of Generalized Linear
Models

The log-likelihood for an individual observation Yi follows directly from Equation 15.5
(page 433):

loge Lðθi;φ; YiÞ ¼
yiθi & bðθiÞ

aiðφÞ
þ cðYi;φÞ

For n independent observations, we have

loge Lð!; φ; yÞ ¼
Xn

i¼1

Yiθi & bðθiÞ
aiðφÞ

þ cðYi;φÞ ð15:16Þ

where ![ fθig and y [ fYig.
Suppose that a GLM uses the link function gð#Þ, so that41

gðµiÞ ¼ ηi ¼ β0 þ β1Xi1 þ β2Xi2 þ # # # þ βkXik

The model therefore expresses the expected values of the n observations in terms of a much
smaller number of regression parameters. To get estimating equations for the regression para-
meters, we have to differentiate the log-likelihood with respect to each coefficient in turn. Let
li represent the ith component of the log-likelihood. Then, by the chain rule,

41It is notationally convenient here to write β0 for the regression constant α.
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∂li
∂βj
¼ ∂li

∂θi
·

dθi

dµi
·

dµi

dηi
·
∂ηi

∂βj
for j ¼ 0; 1; . . . ; k ð15:17Þ

After some work, we can rewrite Equation 15.17 as42

∂li
∂βj
¼ yi & µi

aiðφÞvðµiÞ
· dµi

dηi
· xij

Summing over observations, and setting the sum to 0, produces the maximum-likelihood esti-
mating equations for the GLM,

Xn

i¼1

Yi & µi

aivðµiÞ
·

dµi

dηi
· xij ¼ 0; for j ¼ 0; 1; . . . ; k ð15:18Þ

where ai [ aiðφÞ=φ does not depend on the dispersion parameter, which is constant across
observations. For example, in a Gaussian GLM, ai ¼ 1, while in a binomial GLM, ai ¼ 1=ni.

Further simplification can be achieved when gð#Þ is the canonical link. In this case, the maxi-
mum-likelihood estimating equations become

Xn

i¼1

Yixij

ai
¼
Xn

i¼1

µixij

ai

setting the ‘‘observed sum’’ on the left of the equation to the ‘‘expected sum’’ on the right. We
noted this pattern in the estimating equations for logistic-regression models in the previous
chapter.43 Nevertheless, even here the estimating equations are (except in the case of the
Gaussian family paired with the identity link) nonlinear functions of the regression parameters
and generally require iterative methods for their solution.

Iterative Weighted Least Squares

Let

Zi [ ηi þ ðYi & µiÞ
dηi

dµi

¼ ηi þ ðYi & µiÞg0ðµiÞ

Then

EðZiÞ ¼ ηi ¼ β0 þ β1Xi1 þ β2Xi2 þ # # # þ βkXik

and

V ðZiÞ ¼ g0ðµiÞ½ (2aivðµiÞ

If, therefore, we could compute the Zi, we would be able to fit the model by weighted least-
squares regression of Z on the X s, using the inverses of the V ðZiÞ as weights.44 We cannot,
however, proceed in this manner, because we do not know the values of the µi and ηi, which,
indeed, depend on the regression coefficients that we wish to estimate—that is, the argument is

42See Exercise 15.8.
43See Sections 14.1.5 and 14.2.1.
44See Section 12.2.2 for a general discussion of weighted least squares.
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essentially circular. This observation suggested to Nelder and Wedderburn (1972) the possibil-
ity of estimating GLMs by iterative weighted least squares (IWLS), cleverly turning the circu-
larity into an iterative procedure:

1. Start with initial estimates of the bµi and the bηi ¼ gðbµiÞ, denoted bµð0Þi and bηð0Þi . A sim-
ple choice is to set bµð0Þi ¼ Yi.

45

2. At each iteration l, compute the working response variable Z using the values of bµ and
bη from the preceding iteration,

Zðl&1Þ
i ¼ η

ðl&1Þ
i þ Yi & µ

ðl&1Þ
i

$ %
g0 µ

ðl&1Þ
i

$ %

along with weights

W ðl&1Þ
i ¼ 1

g0 µ
ðl&1Þ
i

$ %h i2
aiv µ

ðl&1Þ
i

$ %

3. Fit a weighted least-squares regression of Zðl&1Þ on the X s, using the W ðl&1Þ as weights.
That is, compute

bðlÞ ¼ X0Wðl&1ÞX
$ %&1

X0Wðl&1Þzðl&1Þ

where bðlÞ
ðkþ1 · 1Þ

is the vector of regression coefficients at the current iteration, X
ðn · kþ1Þ

is

(as usual) the model matrix, Wðl&1Þ
ðn · nÞ

[ diag W ðl&1Þ
i

n o
is the diagonal weight matrix, and

zðl&1Þ
ðn · 1Þ

[ Zðl&1Þ
i

n o
is the working-response vector.

4. Repeat Steps 2 and 3 until the regression coefficients stabilize, at which point b con-
verges to the maximum-likelihood estimates of the βs.

Applied to the canonical link, IWLS is equivalent to the Newton-Raphson method (as we dis-
covered for a logit model in the previous chapter); more generally, IWLS implements Fisher’s
‘‘method of scoring.’’

Estimating the Dispersion Parameter

We do not require an estimate of the dispersion parameter to estimate the regression coeffi-
cients in a GLM. Although it is in principle possible to estimate φ by maximum likelihood as
well, this is rarely done. Instead, recall that V ðYiÞ ¼ φaivðµiÞ. Solving for the dispersion para-
meter, we get φ ¼ V ðYiÞ=aivðµiÞ, suggesting the method of moments estimator

45In certain settings, starting with bµð0Þi ¼ Yi can cause computational difficulties. For example, in a binomial GLM,
some of the observed proportions may be 0 or 1—indeed, for binary data, this will be true for all the observations—
requiring us to divide by 0 or to take the log of 0. The solution is to adjust the starting values, which are in any event
not critical, to protect against this possibility. For a binomial GLM, where Yi ¼ 0, we can take bµð0Þi ¼ 0:5=ni, and
where Yi ¼ 1, we can take bµð0Þi ¼ ðni & 0:5Þ=ni. For binary data, then, all the bµð0Þi are 0:5.
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eφ ¼ 1

n& k & 1

X ðYi & bµiÞ
2

aivðbµiÞ
ð15:19Þ

The estimated asymptotic covariance matrix of the coefficients is then obtained from the last
IWLS iteration as

bVðbÞ ¼ eφ X0WXð Þ&1 ð15:20Þ

Because the maximum-likelihood estimator b is asymptotically normally distributed, bVðbÞ
may be used as the basis for Wald tests of the regression parameters.

The maximum-likelihood estimating equations for generalized linear models take the
common form

Xn

i¼1

Yi & µi

aivðµiÞ
·

dµi

dηi
· xij ¼ 0; for j ¼ 0; 1; . . . ; k

These equations are generally nonlinear and therefore have no general closed-form solu-
tion, but they can be solved by IWLS. The estimating equations for the coefficients do
not involve the dispersion parameter, which (for models in which the dispersion is not
fixed) then can be estimated as

eφ ¼ 1

n& k & 1

X ðYi & bµiÞ
2

aivðbµiÞ

The estimated asymptotic covariance matrix of the coefficients is

bVðbÞ ¼ eφ X0WXð Þ&1

where b is the vector of estimated coefficients and W is a diagonal matrix of weights
from the last IWLS iteration.

Quasi-Likelihood Estimation

The argument leading to IWLS estimation rests only on the linearity of the relationship
between η ¼ gðµÞ and the X s, as well as on the assumption that V ðY Þ depends in a particular
manner on a dispersion parameter and µ. As long as we can express the transformed mean of Y
as a linear function of the X s and can write down a variance function for Y (expressing the con-
ditional variance of Y as a function of its mean and a dispersion parameter), we can apply the
‘‘maximum-likelihood’’ estimating equations (Equation 15.8 on page 436) and obtain estimates
by IWLS—even without committing ourselves to a particular conditional distribution for Y .

This is the method of quasi-likelihood estimation, introduced by Wedderburn (1974), and it
has been shown to retain many of the properties of maximum-likelihood estimation: Although
the quasi-likelihood estimator may not be maximally asymptotically efficient, it is consistent
and has the same asymptotic distribution as the maximum-likelihood estimator of a GLM in an
exponential family.46 We can think of quasi-likelihood estimation of GLMs as analogous to

46See, for example, McCullagh and Nelder (1989, chap. 9) and McCullagh (1991).
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least-squares estimation of linear regression models with potentially non-normal errors: Recall
that as long as the relationship between Y and the X s is linear, the error variance is constant,
and the observations are independently sampled, the theory underlying OLS estimation
applies—although the OLS estimator may no longer be maximally efficient.47

The maximum-likelihood estimating equations, and IWLS estimation, can be applied
whenever we can express the transformed mean of Y as a linear function of the X s and
can write the conditional variance of Y as a function of its mean and (possibly) a disper-
sion parameter—even when we do not specify a particular conditional distribution for Y .
The resulting quasi-likelihood estimator shares many of the properties of maximum-
likelihood estimators.

15.3.3 Hypothesis Tests

Analysis of Deviance

Originally (in Equation 15.6 on page 433), I wrote the log-likelihood for a GLM as a func-
tion loge Lð!; φ; yÞ of the canonical parameters ! for the observations. Because µi ¼ g&1

c ðθiÞ,
for the canonical link gcð#Þ, we can equally well think of the log-likelihood as a function of the
expected response and therefore can write the maximized log-likelihood as loge Lðb„; φ; yÞ. If
we then dedicate a parameter to each observation, so that bµi ¼ Yi (e.g., by removing the con-
stant from the regression model and defining a dummy regressor for each observation), the
log-likelihood becomes loge Lðy;φ; yÞ. The residual deviance under the initial model is twice
the difference in these log-likelihoods:

Dðy; b„Þ[ 2½loge Lðy;φ; yÞ & loge Lðb„;φ; yÞ(

¼ 2
Xn

i¼1

½loge LðYi;φ; YiÞ & loge Lðbµi;φ; YiÞ(

¼ 2
Xn

i¼1

Yi gðYiÞ & gðbµiÞ½ ( & b gðYiÞ½ ( þ b gðbµiÞ½ (
ai

ð15:21Þ

Dividing the residual deviance by the estimated dispersion parameter produces the scaled
deviance, D*ðy; b„Þ[ Dðy; b„Þ=eφ. As explained in Section 15.1.1, deviances are the building
blocks of likelihood-ratio chi-square and F-tests for GLMs.

Applying Equation 15.21 to the Gaussian distribution, where gcð#Þ is the identity link,
ai ¼ 1, and bðθÞ ¼ θ2=2, produces (after some simplification)

47See Chapter 9.
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Dðy; b„Þ ¼
X
ðYi & bµÞ2

that is, the residual sum of squares for the model. Similarly, applying Equation 15.21 to the
binomial distribution, where gcð#Þ is the logit link, ai ¼ ni, and bðθÞ ¼ logeð1þ eθÞ, we get
(after quite a bit of simplification)48

Dðy; b„Þ ¼ 2
X

ni Yi loge
Yi

bµi
þ ð1& YiÞ loge

1& Yi

1& bµi

, -

The residual deviance for a model is twice the difference in the log-likelihoods for the
saturated model, which dedicates one parameter to each observation, and the model in
question:

Dðy; b„ Þ[ 2½loge Lðy;φ; yÞ & loge Lðb„;φ; yÞ(

¼ 2
Xn

i¼1

Yi gðYiÞ & gðbµiÞ½ ( & b gðYiÞ½ ( þ b gðbµiÞ½ (
ai

Dividing the residual deviance by the estimated dispersion parameter produces the scaled
deviance, D*ðy; b„Þ[ Dðy; b„Þ=eφ.

Testing General Linear Hypotheses

As was the case for linear models,49 we can formulate a test for the general linear hypothesis

H0: L
ðq · kþ1Þ

fl
ðkþ1 · 1Þ

¼ c
ðq · 1Þ

where the hypothesis matrix L and right-hand-side vector c contain prespecified constants; usu-
ally, c ¼ 0. For a GLM, the Wald statistic

Z2
0 ¼ Lb& cð Þ0½LbVðbÞL0(&1 Lb& cð Þ

follows an asymptotic chi-square distribution with q degrees of freedom under the hypothesis.
The simplest application of this result is to the Wald statistic Z0 ¼ Bj=SEðBjÞ, testing that an
individual regression coefficient is 0. Here, Z0 follows a standard-normal distribution under
H0: βj ¼ 0 (or, equivalently, Z2

0 follows a chi-square distribution with 1 degree of freedom).
Alternatively, when the dispersion parameter is estimated from the data, we can calculate the

test statistic

F0 ¼
Lb& cð Þ0½L bVðbÞL0(

&1
Lb& cð Þ

q

which is distributed as Fq;n&k&1 under H0. Applied to an individual coefficient,
t0 ¼ –

ffiffiffiffiffi
F0
p

¼ Bj=SEðBjÞ produces a t-test on n& k & 1 degrees of freedom.

48See Exercise 15.9, which also develops formulas for the deviance in Poisson, gamma, and inverse-Gaussian models.
49See Section 9.4.3.
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To test the general linear hypothesis H0: Lfl ¼ c, where the hypothesis matrix L has q
rows, we can compute the Wald chi-square test statistic Z2

0 ¼ Lb& cð Þ0½LbV ðbÞL0(&1

Lb& cð Þ, with q degrees of freedom. Alternatively, if the dispersion parameter is esti-
mated from the data, we can compute the F-test statistic F0 ¼ Lb& cð Þ0½LbV ðbÞL0(&1

Lb& cð Þ=q on q and n& k & 1 degrees of freedom.

Testing Nonlinear Hypotheses

It is occasionally of interest to test a hypothesis or construct a confidence interval for a non-
linear function of the parameters of a linear or generalized linear model. If the nonlinear func-
tion in question is a differentiable function of the regression coefficients, then an approximate
asymptotic standard error may be obtained by the delta method.50

Suppose that we are interested in the function

γ [ f ðfl Þ ¼ f ðβ0;β1; . . . ;βkÞ

where, for notational convenience, I have used β0 to denote the regression constant. The
function f ðfl Þ need not use all the regression coefficients (see the example below). The
maximum-likelihood estimator of γ is simply bγ ¼ f ðbflÞ (which, as an MLE, is also asymptoti-
cally normal), and the approximate sampling variance of bγ is then

bVðbγÞ »
Xk

j¼0

Xk

j0¼0

vjj0 ·
∂bγ
∂bβj

·
∂bγ
∂bβj0

where vjj0 is the j; j0th element of the estimated asymptotic covariance matrix of the coefficients,
bVðbflÞ.

To illustrate the application of this result, imagine that we are interested in determining the
maximum or minimum value of a quadratic partial regression.51 Focusing on the partial rela-
tionship between the response variable and a particular X , we have an equation of the form

EðY Þ ¼ # # # þ β1X þ β2X 2 þ # # #

Differentiating this equation with respect to X , we get

dEðY Þ
dX

¼ β1 þ 2β2X

Setting the derivative to 0 and solving for X produces the value at which the function reaches
a minimum (if β2 is positive) or a maximum (if β2 is negative),

50The delta method (Rao, 1973) is described in online Appendix D on probability and estimation. The method employs a
first-order (i.e., linear) Taylor-series approximation to the nonlinear function. The delta method is appropriate here because
the maximum-likelihood (or quasi-likelihood) estimates of the coefficients of a GLM are asymptotically normally distribu-
ted. Indeed, the procedure described in this section is applicable whenever the parameters of a regression model are nor-
mally distributed and can therefore be applied in a wide variety of contexts—such as to the nonlinear regression models
described in Chapter 17. In small samples, however, the delta-method approximation to the standard error may not be ade-
quate, and the bootstrapping procedures described in Chapter 21 will usually provide more reliable results.
51See Section 17.1 for a discussion of polynomial regression. The application of the delta method to finding the mini-
mum or maximum of a quadratic curve is suggested by Weisberg (2014, Section 7.6).
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X ¼ & β1

2β2

which is a nonlinear function of the regression coefficients β1 and β2:
For example, in Section 12.3.1, using data from the Canadian Survey of Labour and Income

Dynamics (the ‘‘SLID’’), I fit a least-squares regression of log wage rate on a quadratic in age,
a dummy regressor for sex, and the square of education, obtaining (repeating, and slightly rear-
ranging, Equation 12.7 on page 310):

dlog2Wages ¼ 0:5725 þ 0:1198 · Age & 0:001230 · Age2

ð0:0834Þ ð0:0046Þ ð0:000059Þ
þ 0:3195 · Male þ 0:002605 · Education2

ð0:0180Þ ð0:000113Þ
R2 ¼ :3892

Imagine that we are interested in the age γ [ & β1=ð2β2Þ at which wages are at a maximum,
holding sex and education constant. The necessary derivatives are

∂bγ
∂B1
¼ & 1

2B2
¼ & 1

2ð&0:001230Þ
¼ 406:5

∂bγ
∂B2
¼ B1

2B2
2

¼ 0:1198

2ð&0:001230Þ2
¼ 39; 593

Our point estimate of γ is

bγ ¼ & B1

2B2
¼ & 0:1198

2 · 0:001230
¼ 48:70 years

The estimated sampling variance is bV ðB1Þ ¼ 2:115 · 10&5 of the age coefficient and bV ðB2Þ ¼
3:502 · 10&9 of the coefficient of age-squared; the estimated sampling covariance for
the two coefficients is bCðB1;B2Þ¼&2:685·10&7. The approximate estimated variance of bγ is
then

bVðbγÞ » 2:115 · 10&5
& '

· 406:52 & 2:685 · 10&7
& '

· 406:5 · 39;593

& 2:685 · 10&7
& '

· 406:5 · 39;593þ 3:502 · 10&9
& '

· 39;5932

¼ 0:3419

Consequently, the approximate standard error of bγ is SEðbγÞ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3419
p

¼ 0:5847 , and an
approximate 95% confidence interval for the age at which income is highest on average is
γ ¼ 48:70 – 1:96ð0:5847Þ ¼ ð47:55; 49:85Þ.

The delta method may be used to approximate the standard error of a nonlinear function
of regression coefficients in a GLM. If γ [ f ðβ0;β1; . . . ;βkÞ, then

bVðbγÞ »
Xk

j¼0

Xk

j0¼0

vjj0
∂bγ
∂bβj

∂bγ
∂bβj0
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15.3.4 Effect Displays

Let us write the GLM in matrix form, with linear predictor

·
ðn · 1Þ

¼ X
ðn · kþ1Þ

fl
ðkþ1 · 1Þ

and link function gð„ Þ ¼ ·, where „ is the expectation of the response vector y. As described
in Section 15.3.2, we compute the maximum-likelihood estimate b of fl, along with the esti-
mated asymptotic covariance matrix bV ðbÞ of b.

Let the rows of X* include regressors corresponding to all combinations of values of expla-
natory variables appearing in a high-order term of the model (or, for continuous explanatory
variables, values spanning the ranges of the variables), along with typical values of the remain-
ing regressors. The structure of X* with respect to interactions, for example, is the same as that
of the model matrix X. Then the fitted values b·* ¼ X*b represent the high-order term in ques-
tion, and a table or graph of these values—or, alternatively, of the fitted values transformed to
the scale of the response variable, g&1ðb·* Þ—is an effect display. The standard errors of b·*,
available as the square-root diagonal entries of X* bVðbÞX*0, may be used to compute pointwise
confidence intervals for the effects, the endpoints of which may then also be transformed to the
scale of the response. Even more generally, we can compute an effect display for a subset of
explanatory variables, whether or not they correspond to a high-order term in the model.

For example, for the Poisson regression model fit to Ornstein’s interlocking-directorate data,
the effect display for assets in Figure 15.6(a) (page 430) is constructed by letting assets range
between its minimum value of 0.062 and maximum of 147.670 billion dollars, fixing the
dummy variables for nation of control and sector to their sample means—that is, to the
observed proportions of the data in each of the corresponding categories of nation and sector.
As noted previously, this is an especially simple example, because the model includes no inter-
actions. The model was fit with the log link, and so the estimated effects, which in general are
on the scale of the linear predictor, are on the log-count scale; the right-hand axis of the graph
shows the corresponding count scale, which is the scale of the response variable.

Effect displays for GLMs are based on the fitted values b·* ¼ X*b, representing a high-
order term in the model; that is, X* has the same general structure as the model matrix
X, with the explanatory variables in the high-term order ranging over their values in the
data while other explanatory variables are set to typical values. The standard errors of
b·*, given by the square-root diagonal entries of X* bV ðbÞX*0, may be used to compute
pointwise confidence intervals for the effects.

15.4 Diagnostics for Generalized Linear Models

Most of the diagnostics for linear models presented in Chapters 11 and 12 extend relatively
straightforwardly to GLMs. These extensions typically take advantage of the computation of
maximum-likelihood and quasi-likelihood estimates for GLMs by iterated weighted least
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squares, as described in Section 15.3.2. The final weighted-least-squares fit linearizes the
model and provides a quadratic approximation to the log-likelihood. Approximate diagnostics
are then either based directly on the WLS solution or are derived from statistics easily calcu-
lated from this solution. Seminal work on the extension of linear least-squares diagnostics to
GLMs was done by Pregibon (1981); Landwehr, Pregibon, and Shoemaker (1980); Wang
(1985, 1987); and Williams (1987). In my experience, and with the possible exception of
added-variable plots for non-Gaussian GLMs, these extended diagnostics typically work rea-
sonably well.

15.4.1 Outlier, Leverage, and Influence Diagnostics

Hat-Values

Hat-values, hi, for a GLM can be taken directly from the final iteration of the IWLS proce-
dure for fitting the model,52 and have the usual interpretation—except that, unlike in a linear
model, the hat-values in a GLM depend on the response variable Y as well as on the configura-
tion of the X s.

Residuals

Several kinds of residuals can be defined for GLMs:

) Most straightforwardly (but least usefully), response residuals are simply the differences
between the observed response and its estimated expected value: Yi & bµi, where

bµi ¼ g&1ðbηiÞ ¼ g&1ðAþ B1Xi1 þ B2Xi2 þ # # # þ BkXikÞ

) Working residuals are the residuals from the final WLS fit. These may be used to define
partial residuals for component-plus-residual plots (see below).

) Pearson residuals are casewise components of the Pearson goodness-of-fit statistic for
the model:53

bφ
1=2
ðYi & bµiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðYijηiÞ

q

where eφ is the estimated dispersion parameter for the model (Equation 15.9 on 436) and
V ðyijηiÞ is the conditional variance of the response (given in Table 15.2 on page 421).

) Standardized Pearson residuals correct for the conditional response variation and for
the differential leverage of the observations:

52*The hat-matrix is

H ¼W1=2XðX0WXÞ&1X0W1=2

where W is the weight matrix from the final IWLS iteration.
53The Pearson statistic, an alternative to the deviance for measuring the fit of the model to the data, is the sum of
squared Pearson residuals.
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RPi [
Yi & bµiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bV ðYijηiÞð1& hiÞ
q

) Deviance residuals, Gi, are the square roots of the casewise components of the residual
deviance (Equation 15.21 on page 449), attaching the sign of the corresponding
response residual.

) Standardized deviance residuals are

RGi [
Giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eφ ð1& hiÞ
q

) Several different approximations to studentized residuals have been proposed. To calcu-
late exact studentized residuals would require literally refitting the model deleting each
observation in turn and noting the decline in the deviance, a procedure that is computa-
tionally unattractive. Williams suggests the approximation

E*i [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1& hiÞR2

Gi þ hiR2
Pi

q

where, once again, the sign is taken from the response residual. A Bonferroni outlier test
using the standard normal distribution may be based on the largest absolute studentized
residual.

Influence Measures

An approximation to Cook’s distance influence measure, due to Williams (1987), is

Di [
R2

Pi

k þ 1
·

hi

1& hi

Approximate values of influence measures for individual coefficients, DFBETAij and
DFBETASij, may be obtained directly from the final iteration of the IWLS procedure.

Wang (1985) suggests an extension of added-variable plots to GLMs that works as follows:
Suppose that the focal regressor is Xj. Refit the model with Xj removed, extracting the working
residuals from this fit. Then regress Xj on the other X s by WLS, using the weights from the last
IWLS step, obtaining residuals. Finally, plot the working residuals from the first regression
against the residuals for Xj from the second regression.

Figure 15.7 shows hat-values, studentized residuals, and Cook’s distances for the quasi-
Poisson model fit to Ornstein’s interlocking directorate data. One observation—number 1, the
corporation with the largest assets—stands out by combining a very large hat-value with the
biggest absolute studentized residual.54 This point is not a statistically significant outlier, how-
ever (indeed, the Bonferroni p-value for the largest studentized residual exceeds 1). As shown
in the DFBETA plot in Figure 15.8, Observation 1 makes the coefficient of assets substantially
smaller than it would otherwise be (recall that the coefficient for assets is 0:02085 ).55 In this
case, the approximate DFBETA is quite accurate: If Observation 1 is deleted, the assets

54Unfortunately, the data source does not include the names of the firms, but Observation 1 is the largest of the
Canadian banks, which, in the 1970s, was (I believe) the Royal Bank of Canada.
55I invite the reader to plot the DFBETA values for the other coefficients in the model.
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coefficient increases to 0:02602. Before concluding that Observation 1 requires special treat-
ment, however, consider the check for nonlinearity in the next section.

15.4.2 Nonlinearity Diagnostics

Component-plus-residual and CERES plots also extend straightforwardly to GLMs.
Nonparametric smoothing of the resulting scatterplots can be important to interpretation,
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Figure 15.7 Hat-values, studentized residuals, and Cook’s distances from the quasi-Poisson
regression for Ornstein’s interlocking-directorate data. The areas of the circles are
proportional to the Cook’s distances for the observations. Horizontal lines are drawn
at &2, 0, and 2 on the studentized-residual scale, vertical lines at twice and three
times the average hat-value.
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especially in models for binary response variables, where the discreteness of the response
makes the plots difficult to examine. Similar (if typically less extreme) effects can occur for
binomial and count data.

Component-plus-residual and CERES plots use the linearized model from the last step of the
IWLS fit. For example, the partial residual for Xj adds the working residual to BjXij; the com-
ponent-plus-residual plot then graphs the partial residual against Xj. In smoothing a compo-
nent-plus-residual plot for a non-Gaussian GLM, it is generally preferable to use a nonrobust
smoother.

A component-plus-residual plot for assets in the quasi-Poisson regression for the
interlocking-directorate data is shown in Figure 15.9. Assets is so highly positively skewed that
the plot is difficult to examine, but it is nevertheless apparent that the partial relationship
between number of interlocks and assets is nonlinear, with a much steeper slope at the left than
at the right. Because the bulge points to the left, we can try to straighten this relationship by
transforming assets down the ladder of power and roots. Trial and error suggests the log trans-
formation of assets, after which a component-plus-residual plot for the modified model (Figure
15.10) is unremarkable.

Box-Tidwell constructed-variable plots56 also extend straightforwardly to GLMs: When con-
sidering the transformation of Xj, simply add the constructed variable Xj loge Xj to the model
and examine the added-variable plot for the constructed variable. Applied to assets in
Ornstein’s quasi-Poisson regression, this procedure produces the constructed-variable plot in
Figure 15.11, which suggests that evidence for the transformation is spread throughout the
data. The coefficient for assets · logeassets in the constructed-variable regression is &0:02177
with a standard error of 0:00371; the t-statistic for the constructed variable,
t0 ¼ &0:02177=0:00371 ¼ &5:874 , therefore indicates strong evidence for the transformation
of assets. By comparing the coefficient of assets in the original quasi-Poisson regression
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Figure 15.9 Component-plus-residual plot for assets in the interlocking-directorate quasi-Poisson
regression. The broken line shows the least-squares fit to the partial residuals; the
solid line is for a nonrobust lowess smooth with a span of 0.9.

56See Section 12.5.2.
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(0:02085) with the coefficient of the constructed variable, we get the suggested power
transformation

eλ ¼ 1þ&0:02177

0:02085
¼ &0:044

which is essentially the log transformation, λ ¼ 0.
Finally, it is worth noting the relationship between the problems of influence and nonlinear-

ity in this example: Observation 1 was influential in the original regression because its very
large assets gave it high leverage and because unmodeled nonlinearity put the observation
below the erroneously linear fit for assets, pulling the regression surface toward it. Log-
transforming assets fixes both these problems.
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Figure 15.10 Component-plus-residual plot following the log transformation of assets. The lowess
fit is for a span of 0.6.
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Figure 15.11 Constructed variable plot for the transformation of assets in the interlocking-
directorate quasi-Poisson regression.
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Alternative effect displays for assets in the transformed model are shown in Figure 15.12.
Panel (a) in this figure graphs assets on its ‘‘natural’’ scale; on this scale, of course, the fitted
partial relationship between log interlocks and assets is nonlinear. Panel (b) uses a log scale for
assets, rendering the partial relationship linear.

15.4.3 Collinearity Diagnostics*

I mentioned in Chapter 13 that generalized variance-inflation factors, and consequently
individual-coefficient variance-inflation factors, can be computed from the correlation matrix
of the estimated regression coefficients.57 This result can be applied to generalized linear mod-
els, where the correlations among the coefficients are obtained from their covariance matrix,
given in Equation 15.20 (page 448).

For example, for the quasi-Poisson model fit to Ornstein’s interlocking-directorate data, with
assets log-transformed, I computed the following generalized variance-inflation factors:
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Figure 15.12 Effect displays for assets in the quasi-Poisson regression model in which assets has
been log-transformed. Panel (a) plots assets on its ‘‘natural’’ scale, while panel (b)
uses a log scale for assets. Rug-plots for assets appear at the bottom of the graphs.
The broken lines give pointwise 95% confidence intervals around the estimated
effect.

Term GVIF df GVIF
1

2df

log(Assets) 2.617 1 1.618
Nation of Control 1.619 3 1.084
Sector 3.718 9 1.076

57See footnote 25 on page 358.
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As explained in Section 13.1.2, taking the 2df root of the GVIF is analogous to taking the
square root of the VIF and makes generalized variance-inflation factors comparable across
dimensions. None of these GVIFs are very large.

Most of the standard diagnostics for linear models extend relatively straightforwardly to
GLMs. These extensions typically take advantage of the computation of maximum-
likelihood and quasi-likelihood estimates for GLMs by iterated weighted least squares.
Available diagnostics include studentized residuals, hat-values, Cook’s distances,
DFBETA and DFBETAS, added-variable plots, component-plus-residual plots, and the
constructed-variable plot for transforming an explanatory variable.

15.5 Analyzing Data From Complex Sample Surveys

The purpose of this section is to introduce basic ideas about analyzing data from complex sam-
ple surveys. An in-depth consideration of statistical inference in complex surveys is well
beyond the scope of this text, and I refer the reader to the recommended readings for details.
While the placement of this material in the present chapter is essentially arbitrary—after all,
the considerations raised here apply equally to all of the statistical models considered in this
book—generalized linear models provide a suitably rich context in which to develop the topic.

In Chapter 1, I mentioned in passing the distinction between model-based and design-based
inference: In model-based inference, we seek to draw conclusions (as I argued, at least in the
first instance, descriptive conclusions) about the process generating the data. In design-based
inference, the object is to estimate characteristics of a real population. Suppose, for example,
that we are interested in establishing the difference in mean income between employed women
and men. If the object of inference is the real population of employed Canadians at a particular
point in time, then we could in principle compute the mean difference in income between
women and men exactly if we had access to a census of the whole population. If, on the other
hand, we are interested in the social process that generated the population, even a value com-
puted from a census would represent an estimate, inasmuch as that process could have
produced a different observed outcome. The methods discussed in this section deal with
design-based inference about a real, finite population from which a survey sample is drawn.
Consequently, the objects of inference are characteristics such as regression coefficients that
could in principle be computed exactly with access to the whole population.

Other than in this section, the methods of statistical inference discussed in this book are
appropriate for design-based inference only for independent random samples, that is, samples
in which the observations are drawn with equal probability from the population and entirely
independently of each other. Independence implies that once drawn into the sample, an individ-
ual is replaced in the population and therefore could in principle be selected more than once.

In practice, survey samples are never drawn with replacement, and the most basic survey-
sampling design is simple random sampling, in which individuals are drawn with equal prob-
ability from those yet to be selected—that is, equal-probability random sampling without
replacement. Letting N represent the number of individuals in the population and n the number
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in the sample, in simple random sampling, all subsets of n individuals are equally likely to con-
stitute the sample that is selected. Unless the sample size is a substantial fraction of the popula-
tion size, however, the dependencies induced among observations in a simple random sample
are trivially small, and data from such a sample may, as a practical matter, be analyzed as if they
constituted an independent random sample. If, alternatively, the sampling fraction n=N is larger
than about 5%, simple random sampling will be noticeably more efficient than independent ran-
dom sampling: Standard errors of statistics in a simple random sample are deflated by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1& n=NÞ
p

, called the finite population correction. In the extreme, if the entire population is
surveyed, then n ¼ N , there is no sampling uncertainty, and the finite population correction is 0.

Complex survey samples often employ unequal probabilities of selection, stratification,
clustering, and multistage sampling, all of which complicate the analysis of the data:

) In both independent random sampling and simple random sampling, each individual in
the population has an equal probability n=N of being selected into the sample. This is
not true, however, of all random sampling designs, and for a variety of reasons, different
individuals may have different probabilities of selection.58 For example, in the 2011
Canadian Election Study (CES) campaign-period survey,59 individuals in small prov-
inces had by design a higher probability of selection than those in more populous prov-
inces to increase the precision of interprovincial comparisons. Random sampling
requires that each individual in the population has a knowable nonzero probability of
selection, not that these probabilities are all equal.

In design-based inference, where, as explained, the object is to estimate characteristics
of a real population, unequal probabilities of selection are compensated by differential
weighting in the computation of estimates and their sampling variability: To produce
unbiased estimates of population characteristics, sampled observations with a higher
probability of selection are down-weighted relative to those with a lower probability of
selection, with the weight for each observation inversely proportional to its probability
of selection.60

Survey weights can also be employed to compensate both for sampling variation and
for differential global nonresponse by matching samples to known characteristics of the
population obtained, for example, from the census, beyond those characteristics
employed to define strata. This procedure is termed postweighting.

) In stratified sampling, the population is divided into subpopulations, called strata, and a
sample of predetermined size is selected from each stratum. The strata sample sizes may
be proportional to population size, in which case the sampling fractions in the various
strata are equal, or they may be disproportional, as in the CES survey. With strata sub-
samples proportional to population size, a stratified sample is usually modestly more

58Some complex survey samples are explicitly designed to ensure that each individual in the population has an equal
probability of selection; such designs are termed self-weighting.
59The 2011 Canadian Election Study campaign-period survey is used for an example later in this section. See Fournier,
Cutler, Soroka, and Stolle (2013) and Northrup (2012) for information on the CES.
60Sampling weights are often confused with the inverse-variance weights employed to deal with nonconstant error var-
iance in weighted-least-squares regression (as discussed in Section 12.2.2), where high-variance observations are
down-weighted relative to low-variance observations. The two sets of weights have distinct purposes, and in general,
WLS regression cannot be employed to obtain correct coefficient standard errors from weighted sample-survey data,
although WLS usually produces correct point estimates of regression coefficients.
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efficient (i.e., produces samples more representative of the population and consequently
lower-variance estimates) than a simple random of equivalent size. Stratification induces
typically small dependencies among the observations in a sample.

) In cluster sampling, individuals (or other sampled units) are selected into the sample in
related subgroups, called clusters. For example, in the CES survey, a cluster comprises
all eligible voters in a household. Individuals in a cluster tend to be more similar to one
another than unrelated randomly selected individuals. These intracluster dependencies
are typically substantial, and thus a cluster sample that includes more than one individ-
ual in each cluster is almost always considerably less efficient than a simple random
sample of the same size. Clustering may be employed for reasons of cost—for example,
to reduce the travel costs associated with face-to-face interviewing, where a cluster may
comprise several adjacent households—or to facilitate sample selection—as, for exam-
ple, in the CES, where the number of eligible individuals in each household is unknown
prior to selection of a household cluster into the sample.61

) In a multistage sampling design, there is more than one step involving random selection.
The CES campaign-period survey, for example, had a relatively simple two-stage
design: In Stage 1, the Canadian population was divided into provincial strata, and
random-digit dialing was employed to select a sample of household phone numbers in
each stratum. If there was more than one eligible individual in a contacted household, a
random procedure was employed in Stage 2 to select one of these individuals.
Consequently, individuals’ probability of selection into the sample was at the second
stage of sampling inversely proportional to the number of eligible voters in their house-
holds; the survey weights for the CES take this factor into account, along with dispro-
portional sampling by strata.

To illustrate design-based inference, I will use data drawn from the preelection survey of
the 2011 Canadian Election Study. As I have explained, this survey employed a two-stage
stratified-sampling design with household clusters selected in the first stage and an eligible
individual selected from each sampled household in the second stage. Because only one indi-
vidual was interviewed in each cluster, dependencies among observations in the sample are
small and one could, in my opinion, reasonably analyze the data using either model-based or
design-based inference. The principal difference between the two approaches to the CES data
is the use of substantially different sampling weights employed in the design-based approach.

The CES survey included a direct question about abortion rights: ‘‘Should abortion be
banned?’’ with responses ‘‘yes’’ and ‘‘no.’’ The (unweighted) number of individuals answering
this question, along with others used as explanatory variables (see below), was 2231; of these,
both the weighted and unweighted percentages answering yes were 18.5%.

I fit two straightforward additive logistic regressions to the data, for which the answer to the
abortion-rights question is the response variable: one model employing maximum-likelihood
estimates computed assuming independently sampled observations and the other computing
estimates and standard errors based on the design of the CES survey.62 The explanatory vari-
ables for these logistic regressions, selected after some exploration of the data, are

61Clustering may itself be a key characteristic of data collection and statistical modeling, not simply a complication of
sampling: See the discussion of mixed-effects models in Chapter 23 and 24.
62I used the survey package for the R statistical computing environment (Lumley, 2010) to perform the design-based
computations.
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) The answer to the question, ‘‘In your life, would you say religion is very important,
somewhat important, not very important, or not important at all?’’ Individuals who said
that they had no religion were not asked this question and were assigned the response
‘‘not important at all.’’ Four dummy regressors were generated from this variable, with
‘‘not important at all’’ as the baseline category.

) Gender, coded as female or male, with the latter as the baseline category for a dummy
regressor.

) Education, with levels less than high school, high school graduate, some postsecondary,
community college or technical school graduate, bachelor’s degree, and postgraduate
degree, represented by four dummy regressors, with less than high school as the baseline
category.

) Urban or rural residence, represented by a dummy regressor with rural residence as the
baseline category.

Table 15.10 compares the coefficient estimates and standard errors obtained by the two
approaches. The coefficient estimates are reasonably similar, but the design-based standard errors
are 12% to 23% larger than the corresponding model-based standard errors. Controlling for the
other explanatory variables, agreement with banning abortion increases with the reported impor-
tance of religion, declines with education, and is lower for women and for urban residents. Table
15.11 shows Wald chi-square tests for the terms in the logistic-regression models, computed from
the coefficient estimates and their estimated variances and covariances.63 As a consequence
of their larger standard errors, the p-values for the design-based tests are larger than for the

Table 15.10 Model-Based and Design-Based Estimates of Logistic Regressions for Agreement
With Banning Abortion, Using the 2011 Canadian Election Study Survey

Model-Based Design-Based

Coefficient Estimate Std. Error Estimate Std. Error

Intercept 22.170 0.269 2 2.270 0.321
Importance of Religion

Not very important 0.442 0.310 0.458 0.348
Somewhat important 1.203 0.235 1.327 0.271
Very important 2.977 0.225 3.141 0.262

Gender
Female 20.375 0.127 2 0.328 0.148

Education
High school 2 0.322 0.194 2 0.445 0.238
Some postsecondary 2 0.651 0.235 2 0.852 0.290
College degree 20.508 0.199 2 0.562 0.240
Bachelor’s degree 2 0.901 0.208 2 0.980 0.250
Postgraduate degree 20.937 0.266 2 0.675 0.309

Urban/Rural Residence
Urban 20.306 0.136 20.283 0.166

63See Section 15.3.3. I show Wald tests rather than likelihood-ratio tests for the model-based approach for greater com-
parability to the design-based results, where likelihood-ratio tests are not available.
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model-based tests, and the effect of urban versus rural residence is not statistically significant in
the design-based model (by a two-sided test).

Design-based inference in sample surveys has as its object the estimation of characteris-
tics of a real, finite population based on a sample drawn so that all individuals in the
population have known, nonzero, though not necessarily equal, probabilities of selection
into the sample. When probabilities of selection are unequal, survey weights are
employed to obtain unbiased estimates of population values. Survey samples are often
characterized by stratification of the population into subpopulations prior to sample
selection, by random selection of clusters of related individuals, and by multistage sam-
pling, in which there is more than one step involving random selection.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 15.1. Testing overdisperison: Let δ[ 1=ω represent the inverse of the scale parameter
for the negative-binomial regression model (see Equation 15.4 on page 432). When δ ¼ 0, the
negative-binomial model reduces to the Poisson regression model (why?), and consequently a
test of H0: δ ¼ 0 against the one-sided alternative hypothesis Ha: δ > 0 is a test of overdisper-
sion. A Wald test of this hypothesis is straightforward, simply dividing bδ by its standard error.
We can also compute a likelihood-ratio test contrasting the deviance under the more specific
Poisson regression model with that under the more general negative-binomial model. Because
the negative-binomial model has one additional parameter, we refer the likelihood-ratio test sta-
tistic to a chi-square distribution with 1 degree of freedom; as Cameron and Trivedi (1998,
p. 78) explain, however, the usual right-tailed p-value obtained from the chi-square distribution
must be halved. Apply this likelihood-ratio test for overdispersion to Ornstein’s interlocking-
directorate regression.

Table 15.11 Wald Tests for Terms in the Logistic Regressions Fit to the 2011 Canadian Election
Study Survey

Model-Based Design-Based

Term df Wald Chi-square p-value Wald Chi-square p-value

Importance of Religion 3 311.32 +.0001 253.61 +.0001
Gender 1 8.67 .0032 4.89 .0270
Education 5 25.28 .0001 17.83 .0032
Urban/Rural Residence 1 5.08 .0241 2.90 .0885
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Exercises 15.2. *Zero-inflated count regression models:

(a) Show that the mean and variance of the response variable Yi in the zero-inflated
Poisson (ZIP) regression model, given in Equations 15.5 and 15.6 on page 433, are

EðYiÞ ¼ ð1& πiÞµi

V ðYiÞ ¼ ð1& πiÞµið1þ πiµiÞ

(Hint: Recall that there are two sources of 0s: observations in the first latent class,
whose value of Yi is necessarily 0, and observations in the second latent class, whose
value may be 0. Probability of membership is πi in the first class and 1& πi in the sec-
ond.) Show that V ðYiÞ > EðYiÞ when πi > 0.

(b) Derive the log-likelihood for the ZIP model, given in Equation 15.7 (page 434).
(c) The zero-inflated negative-binomial (ZINB) regression model substitutes a

negative-binomial GLM for the Poisson-regression submodel of Equations 15.6 on
page 433:

loge µi ¼ αþ β1xi1 þ β2xi2 þ # # # þ βkxik

p yijx1; . . . ; xkð Þ ¼ Gðyi þ ωÞ
y!GðωÞ

· µ
yi
i ω

ω

ðµi þ ωÞµiþω

Show that EðYiÞ ¼ ð1& πiÞµi (as in the ZIP model) and that

V ðYiÞ ¼ ð1& πiÞµi½1þ µiðπi þ 1=ωÞ(

When πi > 0, the conditional variance is greater in the ZINB model than in the stan-
dard negative-binomial GLM, V ðYiÞ ¼ µi þ µ2

i =ω; why? Derive the log-likelihood for
the ZINB model. [Hint: Simply substitute the negative-binomial GLM for the Poisson-
regression submodel in Equation 15.7 (page 434)].

Exercise 15.3. The usual Pearson chi-square statistic for testing for independence in a two-way
contingency table is

X 2
0 ¼

Xr

i¼1

Xc

j¼1

Yij & bµij

& '2

bµij

where the Yij are the observed frequencies in the table, and the bµij are the estimated expected
frequencies under independence. The estimated expected frequencies can be computed from
the maximum-likelihood estimates for the loglinear model of independence, or they can be
computed directly as bµij ¼ YiþYþj=n. The likelihood-ratio statistic for testing for independence
can also be computed from the estimated expected counts as

G2
0 ¼ 2

Xr

i¼1

Xc

j¼1

Yij loge
Yij

bµij

Both test statistics have ðr & 1Þðc& 1Þ degrees of freedom. The two tests are asymptotically
equivalent and usually produce similar results. Applying these formulas to the two-way table
for voter turnout and intensity of partisan preference in Table 15.4 (page 435), compute both
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test statistics, verifying that the direct formula for G2
0 produces the same result as given in the

text. Do the Pearson and likelihood-ratio tests agree?

Exercise 15.4. *Show that the normal distribution can be written in exponential form as

pðy; θ;φÞ ¼ exp
yθ & θ2=2

φ
& 1

2

y2

φ
þ logeð2πφÞ

, -. /

where θ ¼ gcðµÞ ¼ µ; φ ¼ σ2 ; aðφÞ ¼ φ; bðθÞ ¼ θ2=2; and cðy;φÞ ¼ &1
2 y2=φþ loge½ ð2πφÞ(.

Exercise 15.5. *Show that the binomial distribution can be written in exponential form as

pðy; θ;φÞ ¼ exp
yθ & logeð1þ eθÞ

1=n
þ loge

n
ny

" #, -

where θ ¼ gcðµÞ ¼ loge½µ=ð1& µÞ(, φ ¼ 1; aðφÞ ¼ 1=n, bðθÞ ¼ logeð1þ eθÞ, and

cðy;φÞ ¼ loge
n
ny

" #
.

Exercise 15.6. *Using the results given in Table 15.9 (on page 444), verify that the Poisson,
gamma, and inverse-Gaussian families can all be written in the common exponential form

pðy; θ;φÞ ¼ exp
yθ & bðθÞ

aðφÞ
þ cðy;φÞ

, -

Exercise 15.7. *Using the general result that the conditional variance of a distribution in an
exponential family is

V ðY Þ ¼ aðφÞ d
2bðθÞ
dθ2

and the values of að#Þ and bð#Þ given in Table 15.9 (on page 444), verify that the variances of
the Gaussian, binomial, Poisson, gamma, and inverse-Gaussian families are, consecutively, φ,
µð1& µÞ=n, µ, φµ2, and φµ3.

Exercise 15.8. *Show that the derivative of the log-likelihood for an individual observation
with respect to the regression coefficients in a GLM can be written as

∂li
∂βj
¼ yi & µi

aiðφÞvðµiÞ
· dµi

dηi
· xij; for j ¼ 0; 1; . . . ; k

(See Equation 15.17 on page 446.)

Exercise 15.9. *Using the general expression for the residual deviance,

Dðy; b„Þ ¼ 2
Xn

i¼1

Yi gðYiÞ & gðbµiÞ½ ( & b gðYiÞ½ ( þ b gðbµiÞ½ (
ai

show that the deviances for the several exponential families can be written in the following
forms:
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Exercise 15.10. *Using the SLID data, Table 12.1 (on page 313) reports the results of a regres-
sion of log wages on sex, the square of education, a quadratic in age, and interactions between
sex and education-squared, as well as between sex and the quadratic for age.

(a) Estimate the age γ1 at which women attain on average their highest level of wages,
controlling for education. Use the delta method to estimate the standard error of bγ 1.
Note: You will need to fit the model yourself to obtain the covariance matrix for the
estimated regression coefficients, which is not given in the text.

(b) Estimate the age γ2 at which men attain on average their highest level of wages, con-
trolling for education. Use the delta method to estimate the standard error of bγ 2.

(c) Let γ3 [ γ1 & γ2, the difference between the ages at which men and women attain
their highest wage levels. Compute bγ 3. Use the delta method to find the standard error
of bγ 3 and then test the null hypothesis H0: γ3 ¼ 0.

Exercises 15.11. Coefficient quasi-variances: Coefficient quasi-variances for dummy-variable
regressors were introduced in Section 7.2.1. Recall that the object is to approximate the stan-
dard errors for pairwise differences between categories,

SEðCj & Cj0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðCjÞ þ bV ðCj0Þ & 2 · bCðCj;Cj0Þ

q

where Cj and Cj0 are two dummy-variable coefficients for an m-category polytomous explana-
tory variable, bV ðCjÞ is the estimated sampling variance of Cj, and bCðCj;Cj0Þ is the estimated
sampling covariance of Cj and Cj0 . By convention, we take Cm (the coefficient of the baseline
category) and its standard error, SEðCmÞ, to be 0. We seek coefficient quasi-variances eV ðCjÞ,
so that

SEðCj & Cj0Þ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV ðCjÞ þ eV ðCj0Þ

q

for all pairs of coefficients Cj and Cj0 , by minimizing the total log relative error of approxima-
tion,

P
j < j0 logðREjj0Þ
( )2

, where

REjj0 [
eV ðCj & Cj0Þ
bV ðCj & Cj0Þ

¼
eV ðCjÞ þ eV ðCj0Þ

bV ðCjÞ þ bV ðCjÞ & 2 · bCðCj;Cj0Þ

Family Residual Deviance

Gaussian
P
ðYi & bµiÞ

2

Binomial 2
P

niYiloge

Yi

bµi
þ nið1& YiÞloge

1& Yi

1& bµi

, -

Poisson 2
P

Yiloge

Yi

bµi
& ðYi & bµiÞ

, -

Gamma 2
P
&loge

Yi

bµi
þ Yi & bµi

bµi

, -

Inverse-Gaussian
P ðYi & bµiÞ

2

Yi bµ2
i
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Firth (2003) cleverly suggests implementing this criterion by fitting a GLM in which the
response variable is Yjj0 [ loge½bV ðCj & Cj0Þ( for all unique pairs of categories j and j0; the lin-
ear predictor is ηjj0 [ βj þ βj0 ; the link function is the exponential link, gðµÞ ¼ expðµÞ (which
is, note, not one of the common links in Table 15.1); and the variance function is constant,
V ðY jηÞ ¼ φ. The quasi-likelihood estimates of the coefficients βj are the quasi-variances
eV ðCjÞ. For example, for the Canadian occupational prestige regression described in Section
7.2.1, where the dummy variables pertain to type of occupation (professional and managerial,
white collar, or blue collar), we have

and model matrix

X ¼

ðβ1Þ ðβ2Þ ðβ3Þ
1 1 0
1 0 1
0 1 1

2

664

3

775

With three unique pairs and three coefficients, we should get a perfect fit: As I mentioned in
Section 7.2.1, when there are only three categories, the quasi-variances perfectly recover the
estimated variances for pairwise differences in coefficients. Demonstrate that this is the case by
fitting the GLM. Some additional comments:

) The computation outlined here is the basis of Firth’s qvcalc package (described in Firth,
2003) for the R statistical programming environment.

) The computation of quasi-variances applies not only to dummy regressors in linear mod-
els but also to all models with a linear predictor for which coefficients and their esti-
mated covariance matrix are available—for example, the GLMs described in this
chapter.

) Quasi-variances may be used to approximate the standard error for any linear combina-
tion of dummy-variable coefficients, not just for pairwise differences.

) Having found the quasi-variance approximations to a set of standard errors, we can then
compute and report the (typically small) maximum relative error of these approxima-
tions. Firth and De Menezes (2004) give more general results for the maximum relative
error for any contrast of coefficients.

Summary

) A generalized linear model (or GLM) consists of three components:

1. A random component, specifying the conditional distribution of the response vari-
able, Yi (for the ith of n independently sampled observations), given the values of

Pair (j,j0) Yjj0 ¼ loge½ bV ðCj & Cj0 Þ(

Professional, White Collar loge(2.7712)¼2.038
Professional, Blue Collar loge(3.8672)¼2.705
White Collar, Blue Collar loge(2.5142)¼1.844
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the explanatory variables in the model. In the initial formulation of GLMs, the dis-
tribution of Yi was a member of an exponential family, such as the Gaussian (nor-
mal), binomial, Poisson, gamma, or inverse-Gaussian families of distributions.

2. A linear predictor—that is, a linear function of regressors,

ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βikXk

3. A smooth and invertible linearizing link function gð#Þ, which transforms the expec-
tation of the response variable, µi [ EðYiÞ, to the linear predictor:

gðµiÞ ¼ ηi ¼ αþ β1Xi1 þ β2Xi2 þ # # # þ βikXk

) A convenient property of distributions in the exponential families is that the conditional
variance of Yi is a function of its mean µi and, possibly, a dispersion parameter φ. In
addition to the familiar Gaussian and binomial families (the latter for proportions), the
Poisson family is useful for modeling count data and the gamma and inverse-Gaussian
families for modeling positive continuous data, where the conditional variance of Y
increases with its expectation.

) GLMs are fit to data by the method of maximum likelihood, providing not only esti-
mates of the regression coefficients but also estimated asymptotic standard errors of the
coefficients.

) The ANOVA for linear models has an analog in the analysis of deviance for GLMs.
The residual deviance for a GLM is Dm [ 2ðloge Ls & loge LmÞ, where Lm is the maxi-
mized likelihood under the model in question, and Ls is the maximized likelihood under
a saturated model. The residual deviance is analogous to the residual sum of squares for
a linear model.

) In GLMs for which the dispersion parameter is fixed to 1 (binomial and Poisson
GLMs), the likelihood-ratio test statistic is the difference in the residual deviances for
nested models and is asymptotically distributed as chi-square under the null hypothesis.
For GLMs in which there is a dispersion parameter to estimate (Gaussian, gamma, and
inverse-Gaussian GLMs), we can instead compare nested models by an incremental
F-test.

) The basic GLM for count data is the Poisson model with log link. Frequently, however,
when the response variable is a count, its conditional variance increases more rapidly
than its mean, producing a condition termed overdispersion and invalidating the use of
the Poisson distribution. The quasi-Poisson GLM adds a dispersion parameter to handle
overdispersed count data; this model can be estimated by the method of quasi-
likelihood. A similar model is based on the negative-binomial distribution, which is not
an exponential family. Negative-binomial GLMs can nevertheless be estimated by maxi-
mum likelihood. The zero-inflated Poisson regression model may be appropriate when
there are more zeroes in the data than is consistent with a Poisson distribution.

) Loglinear models for contingency tables bear a formal resemblance to ANOVA models
and can be fit to data as Poisson GLMs with a log link. The loglinear model for a con-
tingency table, however, treats the variables in the table symmetrically—none of the
variables is distinguished as a response variable—and consequently the parameters of
the model represent the associations among the variables, not the effects of explanatory
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variables on a response. When one of the variables is construed as the response, the log-
linear model reduces to a binomial or multinomial logit model.

) The Gaussian, binomial, Poisson, gamma, and inverse-Gaussian distributions can all be
written in the common linear-exponential form:

pðy; θ;φÞ ¼ exp
yθ & bðθÞ

aðφÞ
þ cðy;φÞ

, -

where að#Þ; bð#Þ, and cð#Þ are known functions that vary from one exponential family to
another; θ ¼ gcðµÞ is the canonical parameter for the exponential family in question;
gcð#Þ is the canonical link function; and φ > 0 is a dispersion parameter, which takes on a
fixed, known value in some families. It is generally the case that µ ¼ EðY Þ ¼ b0ðθÞ and
that V ðY Þ ¼ aðφÞb00ðθÞ.

) The maximum-likelihood estimating equations for generalized linear models take the
common form

Xn

i¼1

Yi & µi

aivðµiÞ
·

dµi

dηi
· xij ¼ 0; for j ¼ 0; 1; . . . ; k

These equations are generally nonlinear and therefore have no general closed-form solu-
tion, but they can be solved by iterated weighted least squares (IWLS). The estimating
equations for the coefficients do not involve the dispersion parameter, which (for models
in which the dispersion is not fixed) then can be estimated as

eφ ¼ 1

n& k & 1

X ðYi & bµiÞ
2

aivðbµiÞ

The estimated asymptotic covariance matrix of the coefficients is

bVðbÞ ¼ eφ X0WXð Þ&1

where b is the vector of estimated coefficients and W is a diagonal matrix of weights
from the last IWLS iteration.

) The maximum-likelihood estimating equations, and IWLS estimation, can be applied
whenever we can express the transformed mean of Y as a linear function of the X s and
can write the conditional variance of Y as a function of its mean and (possibly) a disper-
sion parameter—even when we do not specify a particular conditional distribution for
Y . The resulting quasi-likelihood estimator shares many of the properties of maximum-
likelihood estimators.

) The residual deviance for a model is twice the difference in the log-likelihoods for the
saturated model, which dedicates one parameter to each observation, and the model in
question:

Dðy; b„ Þ[ 2½loge Lðy;φ; yÞ & loge Lðb„;φ; yÞ(

¼ 2
Xn

i¼1

Yi gðYiÞ & gðbµiÞ½ ( & b gðYiÞ½ ( þ b gðbµiÞ½ (
ai

Dividing the residual deviance by the estimated dispersion parameter produces the scaled
deviance, D*ðy; b„ Þ[ Dðy; b„Þ=eφ.
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) To test the general linear hypothesis H0: Lfl ¼ c, where the hypothesis matrix L has q
rows, we can compute the Wald chi-square test statistic

Z2
0 ¼ Lb& cð Þ0½LbVðbÞL0(&1 Lb& cð Þ

with q degrees of freedom. Alternatively, if the dispersion parameter is estimated from
the data, we can compute the F-test statistic

F0 ¼
Lb& cð Þ0½L bVðbÞL0(

&1
Lb& cð Þ

q

on q and n& k & 1 degrees of freedom.
) The delta method may be used to approximate the standard error of a nonlinear function

of regression coefficients in a GLM. If γ [ f ðβ0;β1; . . . ;βkÞ, then

bVðbγÞ »
Xk

j¼0

Xk

j0¼0

vjj0 ·
∂bγ
∂bβj

· ∂bγ
∂bβj0

) Effect displays for GLMs are based on the fitted values b·* ¼ X*b, representing a high-
order term in the model; that is, X* has the same general structure as the model matrix
X, with the explanatory variables in the high-term order ranging over their values in the
data, while other explanatory variables are set to typical values. The standard errors of
b·* , given by the square-root diagonal entries of X* bV ðbÞX*0, may be used to compute
pointwise confidence intervals for the effects.

) Most of the standard diagnostics for linear models extend relatively straightforwardly to
GLMs. These extensions typically take advantage of the computation of maximum-
likelihood and quasi-likelihood estimates for GLMs by iterated weighted least squares.
Available diagnostics include studentized residuals, hat-values, Cook’s distances,
DFBETA and DFBETAS, added-variable plots, component-plus-residual plots, and the
constructed-variable plot for transforming an explanatory variable.

) Design-based inference in sample surveys has as its object the estimation of characteris-
tics of a real, finite population based on a sample drawn so that all individuals in the
population have known, nonzero, though not necessarily equal, probabilities of selection
into the sample. When probabilities of selection are unequal, survey weights are
employed to obtain unbiased estimates of population values. Survey samples are often
characterized by stratification of the population into subpopulations prior to sample
selection, by random selection of clusters of related individuals, and by multistage sam-
pling in which there is more than one step involving random selection.

Recommended Reading

) McCullagh and Nelder (1989), the ‘‘bible’’ of GLMs, is a rich and interesting—if gener-
ally difficult—text.

) Dobson (2001) presents a much briefer overview of generalized linear models at a more
moderate level of statistical sophistication.
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) Aitkin, Francis, and Hinde’s (2005) text, geared to the statistical computer package
GLIM for fitting GLMs, is still more accessible.

) A chapter by Firth (1991) is the best brief treatment of generalized linear models that I
have read.

) Long (1997) includes an excellent presentation of regression models for count data
(though not from the point of view of GLMs); an even more extensive treatment may be
found in Cameron and Trivedi (1998).

) Groves et al. (2009) present a wide-ranging overview of survey-research methods,
Fuller (2009) describes the details of estimation in complex sample surveys, and
Lumley (2010) offers an accessible, compact treatment of the topic, focused on the sur-
vey package for R but of more general interest. Also see the edited volume by Skinner,
Holt, and Smith (1989) on analyzing data from complex sample surveys.
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PART V
Extending Linear and
Generalized Linear Models



16
Time-Series

Regression and
Generalized

Least Squares*

T his part of the book introduces several important extensions of linear least-squares regres-
sion and generalized linear models:

! The current chapter describes the application of linear regression models to time-series
data in which the errors are correlated over time rather than independent.

! Nonlinear regression, the subject of Chapter 17, fits a specific nonlinear function of the
explanatory variables by least squares.

! Chapter 18 develops nonparametric regression analysis, introduced in Chapter 2, which
does not assume a specific functional form relating the response variable to the explana-
tory variables (as do traditional linear, generalized linear, and nonlinear regression
models).

! Chapter 19 takes up robust regression analysis, which employs criteria for fitting a linear
model that are not as sensitive as least squares to unusual data.

Taken together, the methods in the first four chapters of Part V considerably expand the range
of application of regression analysis.

The standard linear model of Chapters 5 through 10 assumes independently distributed
errors. The assumption of independence is rarely (if ever) quite right, but it is often a reason-
able approximation. When the observations comprise a time series, however, dependencies
among the errors can be very strong.

In time-series data, a single unit of observation (person, organization, nation, etc.) is tracked
over many time periods or points of time.1 These time periods or time points are usually evenly
spaced, at least approximately, and I will assume here that this is the case. Economic statistics
for Canada, for example, are reported on a daily, monthly, quarterly, and yearly basis. Crime
statistics, likewise, are reported on a yearly basis. Later in this section, we will use yearly time
series for the period 1931 to 1968 to examine the relationship between Canadian women’s
crime rates and fertility, women’s labor force participation, women’s participation in higher
education, and men’s crime rates.

It is not generally reasonable to suppose that the errors in a time-series regression are inde-
pendent: After all, time periods that are close to one another are more likely to be similar than
time periods that are relatively remote. This similarity may well extend to the errors, which

1Temperature, for example, may be recorded at evenly spaced time points. Gross national product is cumulated over
the period of a year. Most social data are collected in time periods rather than at time points.
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represent (most important) the omitted causes of the response variable. Although the time
dependence among the errors may turn out to be negligible, it is unwise to assume a priori that
this is the case.

In time-series data, a single individual is tracked over many time periods or points of
time. It is not generally reasonable to suppose that the errors in a time-series regression
are independent.

16.1 Generalized Least-Squares Estimation

I will first address dependencies among the errors in a very general context. Consider the usual
linear model,

y
ðn · 1Þ

¼ X
ðn · kþ1Þ

fl
ðkþ1 · 1Þ

þ "
ðn · 1Þ

Rather than assuming that the errors are independently distributed, however, let us instead
assume that

"; Nnð0;SεεÞ

where the order-n matrix Sεε is symmetric and positive definite. Nonzero off-diagonal entries
in the covariance matrix Sεε correspond to correlated errors.2

To capture serial dependence among the errors in the regression model y ¼ Xflþ ε, we
drop the assumption that the errors are independent of one another; instead, we assume
that "; Nnð0;SεεÞ, where nonzero off-diagonal entries in the error covariance matrix
Sεε correspond to correlated errors.

Let us assume unrealistically (and only temporarily) that we know Sεε. Then the log-likelihood
for the model is3

loge LðflÞ ¼ & n
2

loge 2π& 1

2
logeðdet SεεÞ &

1

2
ðy& XflÞ0S&1

εε ðy& XflÞ ð16:1Þ

It is clear that the log-likelihood is maximized when the generalized sum of squares
ðy& XflÞ0S&1

εε ð y& XflÞ is minimized.4 Differentiating the generalized sum of squares with

2Because of the assumption of normality, dependence implies correlation. Like the standard linear model with indepen-
dent errors, however, most of the results of this section do not require the assumption of normality. Unequal diagonal
entries of Sεε correspond to unequal error variances, a problem discussed in Section 12.2. Indeed, weighted least-
squares regression (Section 12.2.2) is a special case of generalized least-squares estimation, where Sεε is a diagonal
matrix.
3See Exercise 16.1 for this and other results described in this section.
4Recall that Sεε is assumed to be known.
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respect to fl, setting the partial derivatives to 0, and solving for fl produces the generalized
least-squares (GLS) estimator

bGLS ¼ ðX0S&1
εε XÞ&1X0S&1

εε y ð16:2Þ

It is simple to show that the GLS estimator is unbiased, EðbGLSÞ ¼ fl; that its sampling
variance is

V ðbGLSÞ ¼ ðX0S&1
εε XÞ&1

and that, by an extension of the Gauss-Markov theorem, bGLS is the minimum-variance linear
unbiased estimator of fl.5 None of these results (with the exception of the one establishing the
GLS estimator as the ML estimator) requires the assumption of normality.

Here is another way of thinking about the GLS estimator: Let Gðn · nÞ be a ‘‘square-root’’ of
S&1

εε , in the sense that G0G ¼ S&1
εε .6 From Equation 16.2,

bGLS ¼ ðX0G0GXÞ&1X0G0Gy

¼ ðX'0X'Þ&1X'0y'

where X'[ GX and y'[ Gy. Thus, the GLS estimator is the ordinary-least-squares (OLS)
estimator for the regression of y' on X'—that is, following the linear transformation of y and
X using the transformation matrix G.

If the error covariance matrix Sεε is known, then the maximum-likelihood (ML) estima-
tor of fl is the generalized least-squares estimator bGLS ¼ ðX0S&1

εε XÞ&1X0S&1
εε y. The sam-

pling variance-covariance matrix of bGLS is V ðbGLSÞ ¼ ðX0S&1
εε XÞ&1. The generalized

least-squares estimator can also be expressed as the OLS estimator ðX'0X'Þ&1X'0y' for
the transformed variables X'[ GX and y'[ Gy, where the transformation matrix G is a
square root of S&1

εε .

16.2 Serially Correlated Errors

I have, thus far, left the covariance matrix of the errors Sεε very general: Because of its sym-
metry, there are nðnþ 1Þ=2 distinct elements in Sεε. Without further assumptions concerning
the structure of this matrix, we cannot hope to estimate its elements from only n observations
if—as is always the case in real applications of time-series regression—Sεε is not known.

Suppose, however, that the process generating the errors is stationary. Stationarity means
that the errors all have the same expectation (which, indeed, we have already assumed to be 0),
that the errors have a common variance (σ2

ε), and that the covariance of two errors depends
only on their separation in time. Let εt denote the error for time period t and εtþs the error for

5The Gauss-Markov theorem is discussed in Section 9.3.2 in the context of ordinary least-squares regression.
6Because S&1

εε is nonsingular, it is always possible to find a square-root matrix, although the square root is not in gen-
eral unique; see online Appendix B on matrices and linear algebra.
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time period t þ s (where s is an integer—positive, negative, or 0). Stationarity implies that, for
any t, the covariance between εt and εtþs is

Cðεt; εtþsÞ ¼ EðεtεtþsÞ ¼ σ2
εrs ¼ Cðεt; εt&sÞ

where rs, called the autocorrelation (or serial correlation) at lag s, is the correlation between
two errors separated by sj j time periods.

The error covariance matrix, then, has the following pattern:

S εε ¼ σ2
ε

1 r1 r2 ( ( ( rn&1

r1 1 r1 ( ( ( rn&2

r2 r1 1 ( ( ( rn&3

..

. ..
. ..

. . .
. ..

.

rn&1 rn&2 rn&3 ( ( ( 1

2

666664

3

777775
¼ σ2

εP ð16:3Þ

The situation is much improved, but it is not good enough: There are now n distinct parameters
to estimate in S εε—that is, σ2

ε and r1; . . . ; rn&1—still too many.

When, more realistically, the error covariance matrix Sεε is unknown, we need to esti-
mate its contents along with the regression coefficients fl. Without restricting its form,
however, Sεε contains too many distinct elements to estimate directly. Assuming that the
errors are generated by a stationary time-series process reduces the number of indepen-
dent parameters in Sεε to n, including the error variance σ2

ε and the autocorrelations at
various lags, r1; . . . ; rn&1.

16.2.1 The First-Order Autoregressive Process

To proceed, we need to specify a stationary process for the errors that depends on fewer
parameters. The process that is by far most commonly used in practice is the first-order autore-
gressive process, abbreviated AR(1):

εt ¼ rεt&1 þ nt ð16:4Þ

where the error in time period t depends directly only on the error in the previous time period,
εt&1, and on a random contemporaneous ‘‘shock’’ nt. Unlike the regression errors εt, we will
assume that the random shocks nt are independent of each other (and of εs from earlier time
periods) and that nt ; Nð0; σ2

nÞ. Serial correlation in the regression errors, therefore, is wholly
generated by the partial dependence of each error on the error of the previous time period.
Because of its importance in applications and its simplicity, I will describe the AR(1) process
in some detail.

For Equation 16.4 to specify a stationary process, it is necessary that jrj < 1. Otherwise, the
errors will tend to grow without bound. If the process is stationary, and if all errors have 0
expectations and common variance, then

σ2
ε [ V ðεtÞ ¼ Eðε2

t Þ
¼ V ðεt&1Þ ¼ Eðε2

t&1Þ
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Squaring both sides of Equation 16.4 and taking expectations,

Eðε2
t Þ ¼ r2Eðε2

t&1Þ þ Eðn2
t Þ þ 2rEðεt&1ntÞ

σ2
ε ¼ r2σ2

ε þ σ2
n

because Eðεt&1ntÞ ¼ Cðεt&1; ntÞ ¼ 0. Solving for the variance of the regression errors yields

σ2
ε ¼

σ2
n

1& r2

It is also a simple matter to find the autocorrelation at lag s. For example, at lag 1, we have the
autocovariance

Cðεt; εt&1Þ ¼ Eðεtεt&1Þ
¼ E½ðrεt&1 þ ntÞεt&1*
¼ rσ2

ε

So the autocorrelation at lag 1 is just

r1 ¼
Cðεt; εt&1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðεtÞ · V ðεt&1Þ
p

¼ rσ2
ε

σ2
ε

¼ r

Likewise, at lag 2,

Cðεt; εt&2Þ ¼ Eðεtεt&2Þ
¼ Ef½rðrεt&2 þ nt&1Þ þ nt*εt&2g
¼ r2σ2

ε

and, therefore, r2 ¼ r2.
More generally, for the first-order autoregressive process, rs ¼ rs, and because jrj < 1, the

autocorrelations of the errors decay exponentially toward 0 as the lag s gets larger. This beha-
vior is apparent in the examples in Figure 16.1, which shows AR(1) autocorrelation functions
for r ¼ :9 and r ¼ &:7. Note that the autocorrelation at lag 0 is r0 ¼ 1.

To reduce the number of parameters in Sεε further, we can adopt a specific time-series
model for the errors. The most commonly employed such model is the first-order autore-
gressive process εt ¼ rεt&1 þ nt, where jrj < 1 and the random shocks nt are indepen-
dently distributed as Nð0; σ2

nÞ. Under this specification, two errors, εt and εtþs, separated
by s time periods have autocovariance rsσ2

ε and autocorrelation rs. The variance of the
regression errors is σ2

ε ¼ σ2
n=ð1& r2Þ.

Some ‘‘realizations’’of time series generated by Equation 16.4, with nt ; Nð0; 1Þ, are shown in
Figure 16.2. In Figure 16.2(a), r ¼ 0 and, consequently, the εt are uncorrelated, a time-series
process sometimes termed white noise. In Figure 16.2(b), r ¼ :9; note how values of the series
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close to one another tend to be similar. In Figure 16.2(c), r ¼ &:7; note here how the series tends
to bounce from negative to positive values. Negatively autocorrelated series are not common in
the social sciences. Finally, Figure 16.2(d) illustrates a nonstationary process, with r ¼ 1:01.

Figure 16.2(b) also provides some intuitive insight into the problems for estimation posed
by autocorrelated errors:

! Because errors that are close in time are likely to be similar, there is much less informa-
tion in a highly autocorrelated time series than in an independent random sample of the
same size. It is, for example, often unproductive to proliferate observations by using
more closely spaced time periods (e.g., monthly or quarterly rather than yearly data7).
To do so will likely increase the autocorrelation of the errors.8

! Over a relatively short period of time, a highly autocorrelated series is likely to rise or to
fall—that is, show a positive or negative trend. This is true even though the series is sta-
tionary and, therefore, will eventually return to its expectation of 0. If, for example, our
sample consisted only of the first 50 observations in Figure 16.2(b), then there would be
a negative trend in the errors; if our sample consisted of observations 60 to 75, then
there would be a positive trend.
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Figure 16.1 Theoretical autocorrelations rs for the first-order autoregressive process
εt ¼ rεt&1 þ nt , with (a) r ¼.9 and (b) r ¼ &.7.

7Monthly or quarterly data also raise the possibility of ‘‘seasonal’’ effects. One simple approach to seasonal effects is
to include dummy regressors for months or quarters. Likewise, dummy regressors for days of the week might be appro-
priate for some daily time series. More sophisticated approaches to seasonal effects are described in most texts on time-
series analysis, such as Harvey (1990, Section 7.6) and Judge, Griffiths, Hill, Lütkepohl, and Lee (1985, Sections 7.2.4
and 7.7.2).
8This point is nicely illustrated by considering the sampling variance of the sample mean Y . From elementary statistics,
we know that the variance of Y in an independent random sample of size n is σ2=n, where σ2 is the population variance.
If instead we sample observations from a first-order autoregressive process with parameter r, the variance of Y is

σ2

n
· 1þ r

1& r

The sampling variance of Y is, therefore, much larger than σ2=n when the autocorrelation r is close to 1. Put another
way, the ‘‘effective’’ number of observations is nð1& rÞ=ð1þ rÞ rather than n. I am grateful to Robert Stine of the
University of Pennsylvania for suggesting this illustration.
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Because explanatory variables in a time-series regression also often manifest directional
trends, a rise or fall in the errors of a short time series can induce a correlation between
an explanatory variable and the errors in a specific sample. It is important, however, to
understand that there is no implication that the OLS estimates are biased because of cor-
relation between the explanatory variables and the errors: Over many samples, there
will sometimes be negative correlations between the errors and the explanatory
variables, sometimes positive correlations, and sometimes virtually no correlation. The
correlations—sometimes negative, sometimes positive—that occur in specific samples
can markedly increase the variance of the OLS estimator, however.9
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(c)  ρ = −0.7 (d)  ρ = 1.01

Figure 16.2 Four realizations, each of sample size n¼100, of the first-order autoregressive pro-
cess εt ¼ rεt&1þnt: (a) r ¼ 0 (‘‘white noise’’), (b) r ¼.9, (c) r ¼ &.7, and (d) r ¼ 1.01
(a nonstationary process). In each case, nt ; Nð0;1Þ.

9The effect of autocorrelated errors on OLS estimation is explored in Exercise 16.3.
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! Finally, because the OLS estimator forces 0 sample correlations between the explanatory
variables and the residuals (as opposed to the unobserved errors), the sampling variances
of the OLS coefficients may be grossly underestimated by S2

EðX0XÞ
&1. Recall that in a

short series, highly autocorrelated errors will often manifest a trend in a particular sample.

16.2.2 Higher-Order Autoregressive Processes

The AR(1) process is the simplest member of the family of autoregressive processes. In the
pth-order autoregressive process [abbreviated ARðpÞ], εt depends directly on the previous p
errors and a random shock nt:

εt ¼ φ1εt&1 þ φ2εt&2 þ ( ( ( þ φpεt&p þ nt ð16:5Þ

(where I use φ rather than r because the autoregression coefficients are no longer correlations).
It is rare in time-series regression to go beyond p ¼ 2, that is, the AR(2) process,

εt ¼ φ1εt&1 þ φ2εt&2 þ nt ð16:6Þ

For this process to be stationary, the roots β of the quadratic equation

1& φ1β& φ2β
2 ¼ 0

must both have modulus exceeding 1.10

Multiplying Equation 16.6 through by εt&1 and taking expectations produces

Cðεt; εt&1Þ ¼ φ1Eðε2
t&1Þ þ φ2Eðεt&1εt&2Þ

¼ φ1σ
2
ε þ φ2Cðεt; εt&1Þ

because Eðε2
t&1Þ ¼ σ2

ε and Eðεt&1εt&2Þ ¼ Cðεt&1; εt&2Þ ¼ Cðεt; εt&1Þ. Solving for the
autocovariance,

σ1 [ Cðεt; εt&1Þ ¼
φ1

1& φ2
σ2
ε

Similarly, for s > 1,

σs [ Cðεt; εt&sÞ ¼ φ1Eðεt&1; t&sÞ þ φ2Eðεt&2εt&sÞ
¼ φ1σs&1 þ φ2σs&2

and thus we can find the autocovariances recursively. For example, for j ¼ 2,

σ2 ¼ φ1σ1 þ φ2σ0

¼ φ1σ1 þ φ2σ
2
ε

(where σ0 ¼ σ2
ε), and for j ¼ 3,

σ3 ¼ φ1σ2 þ φ2σ1

Autocorrelations for the AR(2) process follow upon division of the autocovariances by σ2
ε :

10In general, the roots can be complex numbers, of the form β ¼ β1 þ β2i. The modulus of β is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

1 þ β2
2

q
. This statio-

narity condition generalizes to higher-order AR processes; see, for example, Chatfield (2003, Section 3.2). For an
example, see Exercise 16.7.
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lag 0 : r0 ¼ 1

lag 1 : r1 ¼
φ1

1& φ2

lag 2 : r2 ¼ φ1r1 þ φ2

lag 3 : r3 ¼ φ1r2 þ φ2r1

lag j > 3 : rj ¼ φ1rj&1 þ φ2rj&2

If the process is stationary, then these autocorrelations decay toward 0, although the pattern of
decay may be more or less complex depending on the values and signs of the autoregressive
parameters φ1 and φ2. Two examples appear in Figure 16.3.

16.2.3 Moving-Average and Autoregressive-Moving-Average
Processes

Although autoregressive processes are the most frequently employed in time-series regres-
sion, moving-average (MA) and combined autoregressive-moving-average (ARMA) processes
sometimes can provide simplification. That is, a low-order MA or ARMA process may repre-
sent the data as well as a much higher-order AR process.

In the order-q moving-average process [MAðqÞ], the error at time t depends on the random
shock at time t and on the shocks in the previous q time periods:11
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Figure 16.3 Theoretical autocorrelations rs for the AR(2) process εt ¼ φ1εt&1þφ2εt&2þnt, with (a)
φ1 ¼ 0.7, φ2 ¼ 0.4, and (b) φ1 ¼ 1.2, φ2 ¼ &0.85.

11It is common to write the MAðqÞ model as

εt ¼ nt & θ1nt&1 & θ2nt&2 & ( ( ( & θqnt&q

that is, subtracting, rather than adding the terms θsnt&s, and therefore reversing the signs of the MA parameters θs. I
believe that the notation that I employ is slightly easier to follow. A similar point applies to the MA terms in
ARMAðp; qÞ models, described below.
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εt ¼ nt þ θ1nt&1 þ θ2nt&2 þ ( ( ( þ θqnt&q

It is unusual to specify q > 2. Applying the same tools that we used to analyze AR processes,12

we find that the MA(1) process

εt ¼ nt þ θnt&1

has autocorrelations

r1 ¼
θ

1þ θ2

rs ¼ 0; for s > 1

For the MA(2) process,

εt ¼ nt þ θ1nt&1 þ θ2nt&2

we have,

r1 ¼
θ1 þ θ1θ2

1þ θ2
1 þ θ2

2

r2 ¼
θ2

1þ θ2
1 þ θ2

2

rs ¼ 0; for s > 2

More generally, in the MAðqÞ process, rs ¼ 0 for s > q.
MA processes are stationary without restrictions on the parameters θs, but for there to be a

one-to-one correspondence between an MAðqÞ process and a particular autocorrelation func-
tion, it is necessary that the process satisfy a condition termed invertibility. This condition is
closely analogous to the condition for stationarity on the parameters of an AR process, as
described above. In particular, for an MA(1) process, we require that θj j < 1, and for an MA(2)
process, we require that the roots of the equation

1þ θ1βþ θ2β
2 ¼ 0

both have modulus larger than 1.
As its name implies, the autoregressive-moving-average process ARMAðp; qÞ combines

autoregressive and MA components:

εt ¼ φ1εt&1 þ φ2εt&2 þ ( ( ( þ φpεt&p þ nt þ θ1nt&1 þ θ2nt&2 þ ( ( ( þ θqnt&q

These more general ARMA processes are capable of parsimoniously modeling a wider variety
of patterns of autocorrelation, but it is rare to go beyond ARMA(1, 1),13

εt ¼ φεt&1 þ nt þ θnt&1

This process is stationary if φj j < 1 and invertible if θj j < 1.
The autocorrelations for the ARMA(1, 1) process are14

12See Exercise 16.2.
13For further details, see, for example, Judge et al. (1985, chaps. 7 and 8) and Chatfield (2003, Section 3.4).
14See Exercise 16.2.
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r1 ¼
ð1þ φθÞðφþ θÞ

1þ θ2 þ 2φθ

rs ¼ φrs&1; for s > 1

The autocorrelations, consequently, decay exponentially as the lag s grows. Some examples are
shown in Figure 16.4.

Higher-order autoregressive processes, moving-average processes, and mixed
autoregressive-moving-average processes can be used to model more complex forms of
serial dependence in the errors.
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Figure 16.4 Theoretical autocorrelations for the ARMA(1, 1) process, with (a) φ ¼ 0.6, θ ¼ 0.4;
(b) φ ¼ 0.6, θ ¼ &0.4; (c) φ ¼ &0.8, θ ¼ 0.55; and (d) φ ¼ 0.5, θ ¼ &0.9.
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16.2.4 Partial Autocorrelations

Let r's represent the partial correlation between εs and εt&s ‘‘controlling for’’
εt&1; . . . ; εt&sþ1.15 Suppose that εt follows an ARðsÞ process (as given in Equation 16.5 on
page 481). Multiplying through successively by εt&1; εt&2; . . . ; εt&s, taking expectations, and
dividing by the variance σ2

ε produces the so-called Yule-Walker equations:

r1 ¼ φ1 þ φ2r1 þ ( ( ( þ φsrs&1

r2 ¼ φ1r1 þ φ2 þ ( ( ( þ φsrs&2

..

.

rs ¼ φ1rs&1 þ φ2rs&2 þ ( ( ( þ φs

ð16:7Þ

or, in matrix form, r ¼ P`. Solving for the autoregressive parameters in terms of the autocor-
relations yields ` ¼ P&1r. The partial autocorrelation r's is the last autoregression coefficient,
φs. Setting s in turn to the values 1; 2; . . . and forming and solving the resulting sets of Yule-
Walker equations produces the partial autocorrelations r'1; r

'
2; . . .. It is apparent from this mode

of computation that for an ARðpÞ process, r's ¼ 0 for s > p.
The partial autocorrelations can also be computed for MA and ARMA processes, but rather

than falling abruptly to 0, the partial autocorrelations decay exponentially in a more or less com-
plex pattern depending on the order and signs of the coefficients of the MA or ARMA process.
Put another way, the partial autocorrelations of an MA process behave much like the autocorre-
lations of an AR process. Indeed, this link between MA and AR processes is more than superfi-
cial: An MA process may be represented as an AR process of infinite order and vice versa.16

The partial autocorrelations of an ARðpÞ process fall abruptly to 0 after lag p; those of
MA and ARMA processes decay toward 0 in a pattern determined by the coefficients of
the process. The distinctive features of the autocorrelation and partial-autocorrelation
functions of AR, MA, and ARMA processes may be used to help select a process to
model a particular time series.

16.3 GLS Estimation With Autocorrelated Errors

If the errors follow a first-order autoregressive process, then the covariance matrix of the regres-
sion errors, given in general form in Equation 16.3 (page 477), takes the relatively simple form

Sεεðr; σ2
nÞ ¼

σ2
n

1& r2

1 r r2 ( ( ( rn&1

r 1 r ( ( ( rn&2

r2 r 1 ( ( ( rn&3

..

. ..
. ..

. . .
. ..

.

rn&1 rn&2 rn&3 ( ( ( 1

2

666664

3

777775
ð16:8Þ

15Partial correlations were introduced in Exercise 5.8.
16See, for example, Chatfield (2003, Section 3.4).
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As the notation implies, the error covariance matrix depends on only two parameters: r and
σ2

n—or, alternatively, on r and σ2
ε ¼ σ2

n=ð1& r2Þ. If we knew the values of these parameters,
then we could form Sεε and proceed directly to GLS estimation.

Recall that GLS estimation can be realized as OLS following a transformation of y and X.
In the present case (ignoring a constant factor), the transformation matrix is17

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
0 0 ( ( ( 0 0

&r 1 0 ( ( ( 0 0
0 &r 1 ( ( ( 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 ( ( ( &r 1

2

666664

3

777775

Then the transformed variables are

y' ¼ Gy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
Y1

Y2 & rY1

..

.

Yn & rYn&1

2

6664

3

7775 ð16:9Þ

and

X' ¼ GX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
X11 ( ( (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
X1k

1& r X21 & rX11 ( ( ( X2k & rX1k

..

. ..
. ..

.

1& r Xn1 & rXn&1;1 ( ( ( Xnk & rXn&1; k

2

6664

3

7775 ð16:10Þ

where the first column of X' is the transformed constant regressor.
Except for the first observation, Y 't ¼ Yt & rYt&1 and X 'tj ¼ Xtj & rXt&1; j. These transforma-

tions have the following intuitive interpretation: Write out the regression equation in scalar
form as

Yt ¼ αþ β1Xt1 þ ( ( ( þ βkXtk þ εt

¼ αþ β1Xt1 þ ( ( ( þ βkXtk þ rεt&1 þ nt
ð16:11Þ

For the previous observation (t & 1), we have, similarly,

Yt&1 ¼ αþ β1Xt&1;1 þ ( ( ( þ βkXt&1; k þ εt&1 ð16:12Þ

Multiplying Equation 16.12 through by r and subtracting the result from Equation 16.11
produces

Yt & rYt&1 ¼ αð1& rÞ þ β1ðXt1 & rXt&1;1Þ
þ ( ( ( þ βkðXtk & rXt&1; kÞ þ nt

Y 't ¼ α1' þ β1X 't1 þ ( ( ( þ βkX 'tk þ nt for t ¼ 2; . . . ; n

ð16:13Þ

Because the errors in Equation 16.3 are the nt, which are independent of each other and of the
X 's, the transformed equation can legitimately be fit by OLS regression. The only slippage

17See Exercise 16.4.
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here is that the first observation is lost, for there are no data at t & 1 ¼ 1& 1 ¼ 0. Applying
OLS to Equation 16.3 is, therefore, not quite the same as GLS.

Qualitatively similar, but more complex, results apply to higher-order AR processes and to
MA and ARMA processes for the errors.

16.3.1 Empirical GLS Estimation

All of this presupposes that we know the value of the error autocorrelation r. In practice, of
course, we need to estimate r along with the regression parameters α, β1; . . . ;βk and the var-
iance of the random shocks σ2

n (or, alternatively, the variance of the regression errors σ2
ε). One

approach to this problem is first to estimate r. Then, using the estimate (say br) as if r were
known, we can calculate GLS estimates and their standard errors—either directly or, equiva-
lently, by OLS following transformation of y and X. This approach is called empirical general-
ized least squares (EGLS).

An especially simple option is to base the estimate of r on the lag-1 sample autocorrelation
of the residuals from the OLS regression of y on X:18

r1 ¼
Pn

t¼2 EtEt&1Pn
t¼1 E2

t
ð16:14Þ

where the Et are the OLS residuals. The sum in the numerator of Equation 16.14 is over obser-
vations t ¼ 2; . . . ; n (because Et&1—i.e., E0—is unavailable for t ¼ 1). Using br ¼ r1 in
Equations 16.9 and 16.10 produces transformed variables from which to calculate the EGLS
estimates by OLS regression. The variance of the residuals from this OLS regression estimates
σ2

n.
This procedure can be extended to more complex processes for the errors.19

16.3.2 Maximum-Likelihood Estimation

It is preferable to estimate all of the parameters—r, σ2
n; and fl—directly and simultaneously,

by maximum likelihood, thereby acknowledging the additional uncertainty produced by having
to estimate the parameters of the error process—uncertainty that is ignored by the EGLS esti-
mator. We just have to think of the log-likelihood as a function of all of the parameters (adapt-
ing Equation 16.1 on page 475):

loge Lðfl; r; σ2
nÞ ¼ &

n
2

loge 2π& 1

2
logeðdet SεεÞ &

1

2
ðy& XflÞ0S&1

εε ðy& XflÞ

where Sεε for AR(1) errors is determined by the parameters r and σ2
n according to Equation

16.8 (page 485). This approach is, moreover, quite general, because any AR, MA, or ARMA
process provides an expression for Sεε as a function of the parameters of the error process. An
illustrative application using an AR(2) process for the errors is described in the next section.

18Although there are other methods to obtain a preliminary estimate of r, none holds a particular advantage. For details,
see, for example, Judge et al. (1985, Section 8.2.1).
19See, for example, Judge et al. (1985, Section 8.2).
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To apply GLS estimation to a regression model with AR(1) errors, we can first estimate
the autocorrelation of the errors from the sample autocorrelation of the OLS residuals:
br ¼ r1 ¼

Pn
t¼2 EtEt&1

" #
=
Pn

t¼1 E2
t

" #
. We can then use br to form an estimate of the cor-

relation matrix of the errors or to transform y and X. Except for the first observation,
these transformations take a very simple form: Y 't ¼ Yt & brYt&1 and X 'tj ¼ Xtj & brXt&1; j.
This procedure is called empirical GLS estimation. Empirical GLS can be extended to
more complex time-series models for the errors. A better approach, however, is to esti-
mate the parameters of the error process along with the regression coefficients by the
method of maximum likelihood.

16.4 Correcting OLS Inference for Autocorrelated
Errors

The OLS estimator b ¼ ðX0XÞ&1X0y of the regression coefficients fl in the linear model
y ¼ Xfl þ " is unbiased and consistent even when the errors " are autocorrelated, with covar-
iance matrix Sεε. When the errors are correlated, however, the covariance matrix of b is given by

V ðbÞ ¼ ðX0XÞ&1X0SεεXðX0XÞ&1 ð16:15Þ

rather than by σ2
εðX0XÞ

&1, as it would be for independent errors with constant variance.20

An alternative approach to estimation and inference in time-series regression is therefore to
retain the OLS estimator but to base statistical inference on an estimate of V ðbÞ in
Equation 16.15.

This approach was suggested by Newey and West (1987) (among others) and is similar in
spirit and form to White’s heteroscedasticity-consistent (HC) coefficient covariance-matrix esti-
mator.21 The Newey-West estimator is termed a heteroscedasticity and autocorrelation consis-
tent (HAC) estimator because it potentially accounts both for nonconstant error variance and
for autocorrelated errors. The details of the Newey-West and closely related coefficient covar-
iance-matrix estimators are substantially more complicated than White’s HC estimator—in par-
ticular, in time-series regression, the off-diagonal elements of Sεε are generally nonzero—and
so I will simply sketch the basic ideas here.22

Let us rewrite Equation 16.15 as

V ðbÞ ¼ ðX0XÞ&1FðX0XÞ&1 ð16:16Þ

where F [ X0SεεX, and let

VtðflÞ[ xtðYt&x0tflÞ ¼ xtεt

where x0t is the tth row of the model matrix X. At the OLS solution fl ¼ b,23

20See Exercise 16.3; in this exercise, it is assumed that the errors are generated by a first-order autoregressive process,
but the formula for V ðbÞ in Equation 16.15 is more general.
21White’s estimator is discussed in Section 12.2.3.
22See Exercise 16.8 for an application, and Andrews (1991) for a general treatment of the topic.
23See Exercise 16.8.
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Xn

t¼1

bVt [
X

VtðbÞ ¼ 0 ð16:17Þ

The Newey-West and similar estimators of V ðbÞ estimate F at the center of the ‘‘sandwich’’ in
Equation 16.16 by

bF ¼
Xn

t¼1

Xn

t0¼1

wðjt & t0jÞbvtbv0t0

where the weights wðjt & t0jÞ decline with jt & t0j; in Newey and West’s scheme, for example,
the weights decay linearly to some maximum lag L,

wðjt & t0jÞ ¼ 1& jt & t0j
Lþ 1

and are 0 thereafter. A common simple choice, traceable to Newey and West (1987), is to take
L as n1=4 rounded to the next integer.24 Finally, it is also common to ‘‘correct’’ the estimated
coefficient covariance matrix for degrees of freedom, producing

bV ðbÞ ¼ n
n& k & 1

ðX9XÞ&1 bFðX9XÞ&1

where, as usual, there are k þ 1 coefficients in the coefficient vector fl.

An alternative to generalized-least-squares estimation, suggested by Newey and West
(1987), is to retain the ordinary least-squares estimator—which is unbiased and consis-
tent in the presence of autocorrelated errors—but to replace the usual OLS coefficient
covariance-matrix estimator with a covariance-matrix estimator that is consistent when
the errors are autocorrelated (and, incidentally, when the error variance is not constant).

16.5 Diagnosing Serially Correlated Errors

We need to ask whether the data support the hypothesis that the errors are serially correlated,
because, in the absence of serially correlated errors, we can legitimately employ OLS estimation.
As usual, our key to the behavior of the unobservable errors is the least-squares residuals.25

Figure 16.5, based on data from Fox and Hartnagel (1979), shows a yearly time-series plot
of the female indictable-offense conviction rate (FCR) per 100,000 Canadian women aged 15
years and older, for the period 1931 to 1968.26 The conviction rate rose from the mid-1930s
until 1940, then declined until the mid-1950s, and subsequently rose again.

24See Newey and West (1994) for a more sophisticated approach to selecting L and Andrews (1991) for alternative
weighting schemes.
25We used the least-squares residuals to learn about the errors in the discussion of regression diagnostics in Chapters
11 and 12.
26Because the basis for reporting convictions changed in 1949, the data for the period 1950 to 1968 have been adjusted.
The adjustment used here is very slightly different from the one employed by Fox and Hartnagel (1979). Indictable
offenses are relatively serious crimes. I am grateful to Timothy Hartnagel of the University of Alberta for helping me
to assemble the data for this example.
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Fox and Hartnagel were interested in relating variations in women’s crime rates to changes
in their position within Canadian society. To this end, they regressed women’s conviction rate
on the following explanatory variables:

! The total fertility rate (TFR)—the number of births to an imaginary cohort of 1000
women who live through their childbearing years at current age-specific fertility rates.

! Women’s labor-force participation rate (LFPR) per 1000 population.
! Women’s postsecondary-degree rate (PSDR) per 10,000 population.
! Men’s indictable-offense conviction rate (MCR) per 100,000 population. This explana-

tory variable was meant to represent factors affecting women’s conviction rate that are
not specifically included in the model.

The results from the OLS regression of women’s conviction rate on these explanatory variables
are as follows (with standard errors in parentheses below the estimated coefficients):

dFCR ¼127:6& 0:04657 · TFRþ 0:2534 · LFPR

ð59:9Þ ð0:00803Þ ð0:1152Þ
& 0:2120 · PSDR þ 0:05911 · MCR

ð0:2115Þ ð0:04515Þ
R2 ¼:6948

ð16:18Þ

The coefficients are not estimated very precisely—after all, the data set is quite small—and
those for PSDR and MCR are not statistically significantly different from 0.27

A useful next step is to plot the residuals against time, as is done for Fox and Hartnagel’s
regression in Figure 16.6. It is clear from this graph that the residuals are positively autocorre-
lated, but another problem is apparent as well: The model is not doing a very good job during
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Figure 16.5 Canadian women’s indictable-offense conviction rate per 100,000 population, for
the period 1931 to 1968.

27Exercise 16.7 addresses the adequacy of the model.
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the Second World War, accounting neither for the jump in female crime at the beginning of the
war nor for its subsequent decline.

After examining the OLS residuals, we can calculate sample autocorrelations for the
residuals:

rs ¼
Pn

t¼sþ1 EtEt&sPn
t¼1 E2

t

for lags s ¼ 1, 2; . . . ;m, where the maximum lag m should be no larger than about n=4. We
can also compute sample partial autocorrelations, r's at various lags, using the sample analogs
of the Yule-Walker equations (given in Equations 16.7 on page 485). If the residuals were
independently distributed (which, recall, they are not—even when the errors are indepen-
dent28), then the standard error of each rs and r's would be approximately 1=

ffiffiffi
n
p

, and the auto-
correlations and partial autocorrelations would be asymptotically normally distributed.29

The pattern of the sample autocorrelations and partial autocorrelations of the residuals can
help us to identify a time-series process to use in modeling serial dependency among the errors.
If the errors follow a first-order autoregressive process, for example, then the residual correla-
tions should (roughly) decay exponentially toward 0, and only the first partial autocorrelation
should be large.

Graphs of the residual autocorrelations and partial autocorrelations (called correlograms) for
the OLS regression using Fox and Hartnagel’s data are shown in Figure 16.7. As a rough guide
to the ‘‘statistical significance’’of the residual autocorrelations and partial autocorrelations, I
have placed reference lines in the correlograms at – 2=

ffiffiffi
n
p

.30 The pattern is clearly indicative
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Figure 16.6 Time-series plot of residuals from the OLS regression of female conviction rate on
several explanatory variables.

28See Section 11.8.2.
29See, for example, Chatfield (2003, Section 4.1).
30A further reason for caution in interpreting the correlogram is that there are many sample autocorrelations that are
themselves correlated, creating a problem of simultaneous inference.
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of an AR(2) process, with a positive autoregression coefficient at lag 1 and negative coefficient
at lag 2.

Because simple tests for autocorrelation based on the rs and r's are, at best, rough, more pre-
cise methods have been proposed. A common approach to testing for autocorrelated errors is
due to Durbin and Watson (1950, 1951). Durbin and Watson’s test statistic is based on the
assumption that the errors follow a first-order autoregressive process and tests the null hypoth-
esis that the autoregression parameter r is 0:31

D [

Pn
t¼2 ðEt & Et&1Þ2Pn

t¼1 E2
t

When n is large, D » 2ð1& r1Þ.32 If the null hypothesis is correct, therefore, we expect to
observe values of D close to 2; if the null hypothesis is wrong, and the errors are positively
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Figure 16.7 Autocorrelations and partial autocorrelations for the residuals from the OLS regres-
sion of female conviction rate on several explanatory variables.

31The Durbin-Watson statistic can be generalized to lags s > 1: Ds [
Pn

t¼sþ1 ðEt & Et&sÞ2=
Pn

t¼1 E2
t . For this and other

tests of autocorrelated errors, see, for example, Judge et al. (1985, Section 8.4).
32See Exercise 16.6.
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autocorrelated (i.e., r > 0), then we expect to observe values of D that are substantially smaller
than 2. The range of D values is 0 to 4. Although it is applied more broadly, the Durbin-
Watson test is most powerful when the true error-generating process is AR(1).

The sampling distribution of the Durbin-Watson statistic is complex and, unfortunately,
depends on the configuration of the explanatory variables. Durbin and Watson initially calcu-
lated critical values of D for two extreme scenarios: the X configuration producing the smallest
critical value and the X configuration producing the largest critical value. This approach leads
to an extensive set of tables (because different critical values are required for different combi-
nations of sample size n and number of explanatory variables k) and to ambiguous results if—
as is common—the observed value of D falls between the two extreme critical values.33

Modern statistical software for time-series regression, however, typically calculates a p-value
for D based on the X -values in the sample at hand. For Fox and Hartnagel’s regression, for
example, D ¼ 0:617, for which the two-sided p-value is much less than :0001, strongly sup-
porting the conclusion that the errors are autocorrelated.

Reestimating Fox and Hartnagel’s model by ML, assuming AR(2) errors, produces the fol-
lowing estimates and coefficient standard errors:

dFCR ¼ 83:34& 0:03999 · TFRþ 0:2876 · LFPR

ð59:47Þ ð0:00928Þ ð0:1120Þ
& 0:2098 · PSDRþ 0:07569 · MCR

ð0:2066Þ ð0:03501Þ
bφ1 ¼ 1:068

bφ2 ¼ &0:5507

ð16:19Þ

With the exception of the regression constant,34 neither the coefficients nor their standard
errors change much from the OLS results in Equation 16.18.

The following table compares the maximized log-likelihood for three nested models, in
which the error process is ARðpÞ, with p set successively to 2 through 0 [where ARð0Þ corre-
sponds to the initial OLS regression]:

Because these models are nested, comparing adjacent lines of the table produces likelihood-
ratio tests of the hypotheses H ð2Þ0 : φ2 ¼ 0 and H ð1Þ0 : φ1 ¼ 0 j φ2 ¼ 0. The chi-square test statis-
tics, each on one degree of freedom, are G2

2 ¼ 2ð149:21& 144:71Þ ¼ 9:00 and
G2

1 ¼ 2ð163:50& 149:21Þ ¼ 28:58, for which the p-values are, respectively, :0027 and
+ :0001, strongly supporting the inclusion of φ1 and φ2 in the model.

p Log-likelihood

2 2144.71
1 2149.21
0 2163.50

33Tables of critical values of D were published by Durbin and Watson (1951) and are widely reproduced (e.g., in
Harvey, 1990, pp. 362–363).
34The constant is very imprecisely estimated: After all, setting all of the explanatory variables to 0 extrapolates the
regression far beyond the observed range of the data.
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To diagnose serial correlation in the errors, we can examine correlograms of the OLS
residuals, calculating the sample autocorrelations rs ¼

Pn
t¼sþ1 EtEt&s

" #
=
Pn

t¼1 E2
t

" #
and

partial autocorrelations r's for a number of lags s ¼ 1, 2; . . . ;m. If, for example, the
serial dependence of the residuals is well described by a first-order autoregressive pro-
cess, then the autocorrelations should decay exponentially toward 0, and partial autocor-
relations after the first should be negligible. The Durbin-Watson statistic D [Pn

t¼2 ðEt & Et&1Þ2
h i

=
Pn

t¼1 E2
t

" #
» 2ð1& r1Þ can be used to test for serial correlation of

the errors.

16.6 Concluding Remarks

It is tempting to conclude that the theoretical advantage of GLS regression should mandate its
use, especially if the residuals are significantly autocorrelated, but several factors suggest
caution:35

! The extent to which GLS estimation is more efficient than OLS estimation and the
extent to which the usual formula for OLS standard errors produces misleading results
depend on a number of complex factors, including the process generating the errors, the
degree of autocorrelation of the errors, and the distribution of the explanatory-variable
values.36

! When the errors are highly autocorrelated and follow a first-order autoregressive process
and when explanatory-variable values manifest a linear trend, the advantage of GLS esti-
mation can be strongly dependent on retaining the first observation (i.e., using the trans-
formation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
of the first observation).37 Precisely in these circumstances, the first

observation can become influential in the transformed regression, however. The comfort
that we derive from GLS may therefore be tenuous. It is, consequently, useful to exam-
ine influential-data diagnostics for the transformed equation.38 This point extends to
other error processes.

! Many of the properties of GLS, EGLS, and ML estimators depend on asymptotic results,
but time-series data sets are usually quite small.39 Moreover, long time series raise the
possibility that regression relationships—for example, the slope associated with a partic-
ular explanatory variable—may themselves change over time. There is no generally
satisfactory method for detecting such changes, although it may help to plot residuals
against time.40

35For an elaboration of some of these points, see, for example, the discussion in Judge et al. (1985, chap. 8).
36See Exercise 16.3.
37See Exercise 16.3.
38See Chapter 11.
39Bootstrapping, discussed in Chapter 21, can prove helpful in this context.
40This is not to say, however, that there are no methods for detecting changes in regression coefficients over time; see,
for example, Brown, Durbin, and Evans (1975).
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! The performance of a method like GLS estimation may depend crucially on getting the
error-generating process right. If the process is not AR(1), for example, basing estima-
tion on this process may cause more harm than good. Real social processes do not, in
any event, unfold according to AR, MA, or ARMA processes that, at best, produce rea-
sonable descriptive summaries. We have to be careful not to construe time-series regres-
sion models too literally.

Three further cautionary notes are in order:

! Because time-series data often manifest strong trends, the explanatory variables in a
time-series regression can be strongly collinear. This problem can be exacerbated when
time itself (i.e., the regressor Xt ¼ t) is included in the regression to capture a linear
trend. The general rationale for employing time as a regressor is to control statistically
for omitted factors that change smoothly with time and that are correlated with the
explanatory variables included in the model.

! The models discussed in this chapter assume contemporaneous effects. That is, all of
the variables in the model are measured at time t. It is sometimes reasonable to suppose,
however, that the effect of an explanatory variable (say, X1) will occur after an interval
of time has elapsed, for example, after one time period. The time-series regression
model would then take the form

Yt ¼ αþ β1Xt&1;1 þ β2Xt2 þ ( ( ( þ βkXtk þ εt

Aside from the loss of the first observation (because Xt&1;1 is typically unavailable when
t ¼ 1 and hence t & 1 ¼ 0), specifications of this form pose no new problems. If, how-
ever, we do not know in advance that the effect of X1 is lagged some specific number of
time periods and rather want to consider effects at several lags, then autocorrelation of
X1 can induce serious collinearity. Special techniques of estimation (called ‘‘distributed
lags’’41) exist to deal with this situation, but these methods require that we know in
advance something about the form of the lagged effects of X1 on Y .

! Finally, the methods of this chapter are generally inappropriate (in the presence of auto-
correlated errors) when the response variable appears as a lagged effect on the right-
hand side of the model,42 as in

Yt ¼ αþ βYt&1 þ β1Xt1 þ ( ( ( þ βkXtk þ εt

There are several practical and theoretical difficulties that limit the effectiveness and
range of application of EGLS and ML estimation of time-series regression models.

41See, for example, the discussion of distributed lags in Judge et al. (1985, chaps. 9 and 10).
42See, for example, Harvey (1990, chap. 8) for a discussion of regression with a lagged response on the right-hand side
of the model.
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Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 16.1. 'Generalized least squares: For the linear model y ¼ Xfl þ " with
"; Nnð0;SεεÞ, where the error covariance matrix Sεε is known:

(a) Show that the log-likelihood for the model is

loge Lðfl Þ ¼ & n
2

loge 2π& 1

2
logeðdet SεεÞ &

1

2
ðy& XflÞ0S&1

εε ðy& XflÞ

(Hint: Use the formula for the multivariate normal distribution.)
(b) Show that the ML estimator of fl is

bGLS ¼ ðX9 S&1
εε XÞ&1X9 S&1

εε y

and that its sampling variance is

V ðbGLSÞ ¼ ðX0S&1
εε XÞ&1

(c) Prove the Gauss-Markov theorem for the GLS estimator. That is, show that under the
assumptions Eð"Þ ¼ 0 and V ð"Þ ¼ Sεε, bGLS is the minimum-variance linear unbiased
estimator of fl . (Hints: See Section 9.3.2 and Exercise 12.4 on page 335.)

Exercise 16.2. 'Autocorrelations for MA and ARMA processes:

(a) Show that the MA(1) process εt ¼ nt þ θnt&1 has autocorrelations

r1 ¼
θ

1þ θ2

rs ¼ 0; for s > 1

(b) Show that the MA(2) process εt ¼ nt þ θ1nt&1 þ θ2nt&2 has autocorrelations

r1 ¼
θ1 þ θ1θ2

1þ θ2
1 þ θ2

2

r2 ¼
θ2

1þ θ2
1 þ θ2

2

rs ¼ 0; for s > 2

(c) Show that the ARMA(1, 1) process εt ¼ φεt&1 þ nt þ θnt&1 has autocorrelations

r1 ¼
ð1þ φθÞðφþ θÞ

1þ θ2 þ 2φθ

rs ¼ φrs&1; for s > 1

(Hint: To find the autocovariance at lag 1, multiply through the equation for the process by
εt&1 and take expectations. Divide by the variance of εt to get r1. Repeat this procedure for
other lags.)
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Exercise 16.3. Autocorrelated errors and OLS estimation: Assume that y ¼ Xfl þ " and that
the errors follow an AR(1) process, εt ¼ rεt&1 þ nt, where nt ; Nð0; σ2

nÞ.

(a) Show that the OLS estimator b ¼ ðX0XÞ&1X0y is unbiased despite the autocorrelation
of the errors. [Hint: Recall the proof that EðbÞ ¼ fl from Section 9.3.1.]

(b) Show that the variance of the OLS estimator is

V ðbÞ ¼ ðX0XÞ&1X0 S εεXðX0XÞ&1

where Sεε is given by Equation 16.8 (page 485).
(c) Suppose that we fit the simple-regression model Yt ¼ αþ βxt þ εt; that the x-values

are 1, 2; . . . ; 10; that the errors follow an AR(1) process; and that the variance of the
random shocks nt is 1. [Recall that the variance of the errors is σ2

ε ¼ σ2
n=ð1& r2Þ.]

Calculate (1) the true sampling variance of the OLS estimator; (2) the sampling var-
iance of the OLS estimator according to the usual formula, σ2

εðX0XÞ
&1, appropriate

when the errors are independent; and (3) the sampling variance of the GLS estimator,
using the formula

V ðbGLSÞ ¼ ðX0 S&1
εε XÞ&1

Pay particular attention to the sampling variance of the estimators of the slope β. What
do you conclude from these calculations? Perform the calculations assuming succes-
sively that r ¼ 0, r ¼ :5, and r ¼ :9.

(d) 'Now suppose that the first observation is dropped and that we perform the regression
in (c) using t ¼ 2; . . . ; 10. Working with the transformed scores x't ¼ xt & rxt&1 and
again employing the three different values of r, find the sampling variance of the
resulting estimator of β. How does the efficiency of this estimator compare to that of
the true GLS estimator? With the OLS estimator? What would happen if there were
many more observations?

(e) Repeat (c) [and (d)], but with xt ¼ ðt & 5Þ2 for t ¼ 1, 2; . . . ; 9.

Exercise 16.4. 'Show that the appropriate GLS transformation matrix for AR(1) errors is

G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
0 0 ( ( ( 0 0

&r 1 0 ( ( ( 0 0
0 &r 1 ( ( ( 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 ( ( ( &r 1

2

666664

3

777775

[Hints: First show that

1

1& r2

1 &r 0 ( ( ( 0 0
&r 1þ r2 &r ( ( ( 0 0
0 &r 1þ r2 ( ( ( 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 ( ( ( 1þ r2 &r
0 0 0 ( ( ( &r 1

2

66666664

3

77777775

is the inverse of
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P ¼

1 r r2 ( ( ( rn&1

r 1 r ( ( ( rn&2

r2 r 1 ( ( ( rn&3

..

. ..
. ..

. . .
. ..

.

rn&1 rn&2 rn&3 ( ( ( 1

2

666664

3

777775

Then show that P&1 ¼ ½1=ð1& r2Þ*G0G. The constant 1=ð1& r2Þ can be ignored in forming
the square-root matrix G. Why?]

Exercise 16.5. 'Maximum-likelihood estimation with AR(1) errors: Assume that y ¼ Xflþ "
and that the errors follow an AR(1) process but that the autoregression parameter r and the var-
iance of the random shocks σ2

y are unknown. Show that the log-likelihood under this model
can be written in the following form:

loge Lðfl; r; σ2
yÞ ¼ &

n
2

loge 2π& n
2

loge σ
2
y þ

1

2
logeð1& r2Þ

& 1

2σ2
y

ðy' & X'flÞ0ðy' & X'flÞ

where y' ¼ Gy and X' ¼ GX. [Hints: Start with Equation 16.1 (on page 475) for the log-likeli-
hood of the general model with error covariance matrix Sεε. Then use Sεε ¼ ð1=σ2

yÞG
0G, not-

ing that det Sεε ¼ ð1=σ2
yÞ

nðdet GÞ2 and that det G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& r2

p
.]

Exercise 16.6. Show that when n is large, the Durbin-Watson statistic D is approximately
equal to 2ð1& r1Þ, where r1 is the lag-1 autocorrelation of the OLS residuals. (Hint: When n is
large,

Pn
t¼1 E2

t »
Pn

t¼2 E2
t »
Pn

t¼2 E2
t&1.)

Exercise 16.7. With reference to Fox and Hartnagel’s regression of Canadian women’s convic-
tion rates on several explanatory variables:

(a) Use regression diagnostics, as described in Part III of the text, to explore the adequacy
of the preliminary OLS regression fit to these data (Equation 16.18 on page 490). If
you detect any problems, try to correct them, and then repeat the subsequent analysis
of the data.

(b) Show that the estimated parameters of the AR(2) process fit to the errors, bφ1 ¼ 1:068
and bφ2 ¼ &0:5507 (see Equation 16.19 on page 493), correspond to a stationary time-
series process. (Hint: Use the quadratic formula to solve the equation
1& 1:068βþ 0:5507β2 ¼ 0, and verify that both roots have modulus greater than 1.)

(c) Reestimate Fox and Hartnagel’s regression with AR(2) errors by EGLS, comparing
your results with those produced by the method of maximum likelihood (in Equation
16.19). Obtain estimates of the error autoregression parameters φ1 and φ2 by solving
the Yule-Walker equations (see Equations 16.7 on page 485)

r1 ¼ bφ þ bφ2r1

r2 ¼ bφ1r1 þ bφ2

where r1 and r2 are the lag-1 and lag-2 sample autocorrelations of the OLS residuals.
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Exercise 16.8. Newey-West coefficient standard errors:

(a) Explain why (repeating Equation 16.17 from page 489)

Xn

t¼1

bvt [
X

VtðbÞ ¼ 0

where b is the OLS coefficient vector and VtðbÞ ¼ xtðYt & x0tbÞ. (Hint: Show that these
are simply the OLS estimating equations.)

(b) Apply Newey and West’s procedure to compute HAC standard errors for the OLS
coefficients in Fox and Hartnagel’s time-series regression. Do the results differ from
those employing the usual OLS standard errors? Do the results differ from those
obtained by GLS?

Summary

! In time-series data, a single individual is tracked over many time periods or points of
time. It is not generally reasonable to suppose that the errors in a time-series regression
are independent.

! To capture serial dependence among the errors in the regression model y ¼ Xflþ ", we
drop the assumption that the errors are independent of one another; instead, we assume
that "; Nnð0;SεεÞ, where nonzero off-diagonal entries in the error covariance matrix
Sεε correspond to correlated errors.

! If the error covariance matrix Sεε is known, then the maximum-likelihood estimator of
fl is the generalized least-squares estimator

bGLS ¼ ðX0 S&1
εε XÞ&1X0 S&1

εε y

The sampling variance-covariance matrix of bGLS is

V ðbGLSÞ ¼ ðX0S&1
εε XÞ&1

The generalized least-squares estimator can also be expressed as the OLS estimator
ðX'0X'Þ&1X'0y' for the transformed variables X'[ GX and y'[ Gy, where the transfor-
mation matrix G is a square root of S&1

εε .
! When, more realistically, the error covariance matrix Sεε is unknown, we need to esti-

mate its contents along with the regression coefficients fl. Without restricting its form,
however, Sεε contains too many distinct elements to estimate directly. Assuming that
the errors are generated by a stationary time-series process reduces the number of inde-
pendent parameters in Sεε to n, including the error variance σ2

ε and the autocorrelations
at various lags, r1; . . . ; rn&1.

! To reduce the number of parameters in Sεε further, we can adopt a specific time-series
model for the errors. The most commonly employed such model is the first-order autore-
gressive process εt ¼ rεt&1 þ nt, where jrj < 1 and the random shocks nt are indepen-
dently distributed as Nð0; σ2

nÞ. Under this specification, two errors, εt and εtþs, separated
by s time periods have autocovariance rsσ2

ε and autocorrelation rs. The variance of the
regression errors is σ2

ε ¼ σ2
n=ð1& r2Þ.
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! Higher-order autoregressive processes, moving-average processes, and mixed autore-
gressive-moving-average processes can be used to model more complex forms of serial
dependence in the errors.

! The partial autocorrelations of an ARðpÞ process fall abruptly to 0 after lag p; those of
MA and ARMA processes decay toward 0 in a pattern determined by the coefficients of
the process. The distinctive features of the autocorrelation and partial-autocorrelation
functions of AR, MA, and ARMA processes may be used to help select a process to
model a particular time series.

! To apply GLS estimation to a regression model with AR(1) errors, we can first estimate
the autocorrelation of the errors from the sample autocorrelation of the OLS residuals:

br ¼ r1 ¼
Pn

t¼2 EtEt&1Pn
t¼1 E2

t

We can then use br to form an estimate of the correlation matrix of the errors or to trans-
form y and X. Except for the first observation, these transformations take a very simple
form: Y 't ¼ Yt & brYt&1 and X 'tj ¼ Xtj & brXt&1; j. This procedure is called empirical GLS
estimation. Empirical GLS can be extended to more complex time-series models for the
errors. A better approach, however, is to estimate the parameters of the error process
along with the regression coefficients by the method of maximum likelihood.

! An alternative to generalized least-squares estimation, suggested by Newey and West
(1987), is to retain the ordinary least-squares estimator—which is unbiased and consis-
tent in the presence of autocorrelated errors—but to replace the usual OLS coefficient
covariance-matrix estimator with a covariance-matrix estimator that is consistent when
the errors are autocorrelated (and, incidentally, when the error variance is not constant).

! To diagnose serial correlation in the errors, we can examine correlograms of the OLS
residuals, calculating the autocorrelations

rs ¼
Pn

t¼sþ1 EtEt&sPn
t¼1 E2

t

and partial autocorrelations r's for a number of lags s ¼ 1; 2; . . . ;m. If, for example, the
serial dependence of the residuals is well described by a first-order autoregressive pro-
cess, then the autocorrelations should decay exponentially toward 0, and partial autocor-
relations after the first should be negligible. The Durbin-Watson statistic

D [

Pn
t¼2 ðEt & Et&1Þ2Pn

t¼1 E2
t

» 2ð1& r1Þ

can be used to test for serial correlation of the errors.
! Several practical and theoretical difficulties limit the effectiveness and range of applica-

tion of EGLS and ML estimation of time-series regression models.

Recommended Reading

! Time-series analysis—including, but not restricted to, time-series regression—is a deep
and rich topic, well beyond the scope of the discussion in this chapter. A good, rela-
tively brief, general introduction to the subject may be found in Chatfield (2003).
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! Most econometric texts include some treatment of time-series regression. The emphasis
is typically on a formal understanding of statistical models and methods of estimation
rather than on the use of these techniques in data analysis. Wonnacott and Wonnacott
(1979), for example, present an insightful, relatively elementary treatment of time-series
regression and generalized least squares. Judge et al.’s (1985) presentation of the subject
is more encyclopedic, with many references to the literature. An extensive treatment also
appears in Harvey (1990). Greene (2003, chaps. 10, 11, and 20) includes a good over-
view of GLS estimation, regression with autocorrelated errors, and time-series models
more generally.

! The current chapter merely scratches the surface of time-series regression models. A
compact, accessible, and much more general treatment may be found in Pickup (2014),
which includes many examples, most drawn from political science.
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17 Nonlinear
Regression

A s I have explained, there is a distinction between explanatory variables and regressors.1

The general linear model is linear in the regressors but not necessarily in the explanatory
variables that generate these regressors.

In dummy-variable regression, for example, categorical explanatory variables do not appear
directly in the model; a single polytomous explanatory variable gives rise to several dummy
regressors. Likewise, in polynomial regression, a single quantitative explanatory variable gen-
erates several regressors (e.g., linear, quadratic, and cubic terms). Interaction regressors are
functions of two or more explanatory variables. We can also transform quantitative explanatory
variables or the response variable prior to formulating a linear model.

In its least restrictive form, then, we can write the general linear model as

f ðYiÞ ¼ β0f0ðx0iÞ þ β1f1ðx0iÞ þ % % % þ βpfpðx0iÞ þ εi

Y 0i ¼ β0X 0i0 þ β1X 0i1 þ % % % þ βpX 0ip þ εi

where

& Yi is the response variable for the ith observation;
& x0i ¼ ðXi1; . . . ;XikÞ is a vector of k (not necessarily quantitative) explanatory variables;2

& β0, β1; . . . ;βp are parameters to estimate;
& the εi are independent and normally distributed errors, with zero expectations and con-

stant variance; and
& the functions f ð%Þ; f0ð%Þ; . . . ; fpð%Þ do not involve unknown parameters.

For the least-squares estimates of the βs to be unique, the regressors X 00; . . . ;X 0p cannot be per-
fectly collinear. If, as is usually the case, the model includes the constant regressor, then X 0i0 [
f0ðx0iÞ ¼ 1. An X 0j can be a function of more than one explanatory variable, encompassing mod-
els such as

Y ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2 þ β5X1X2 þ ε ð17:1Þ

In an application, the functions f ð%Þ, f0ð%Þ; . . . ; fpð%Þ may be suggested by prior theoretical con-
siderations or by examination of the data, as when we transform an explanatory variable to lin-
earize its relationship to Y .

1See Chapters 7 and 8.
2If you are not familiar with vector notation, simply think of x0i as a list of the explanatory variables for the ith
observation.
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Nonlinear regression models that are linear in the parameters, for example, the quadratic
regression model Y ¼ β0 þ β1X1 þ β2X2 þ β3X 2

1 þ β4X 2
2 þ β5X1X2 þ ε, can be fit by

linear least squares.

17.1 Polynomial Regression

Polynomial regression is an important form of nonlinear regression that is accommodated by
the general linear model. We have already seen how a quadratic function can be employed to
model a [-shaped (or \-shaped) relationship.3 Similarly, a cubic function can be used to model
a relationship in which the direction of curvature changes. More generally, a polynomial of
order p can have p' 1 ‘‘bends.’’ Polynomials of degree greater than 3 are rarely employed in
data analysis, however.

Polynomial regressors are especially useful when a quantitative explanatory variable is dis-
crete. As we know,4 we can capture any—potentially nonlinear—partial relationship between
Y and Xj by constructing m' 1 dummy regressors to represent the m distinct values of Xj. The
powers Xj, X 2

j ; . . . ;X m'1
j can be thought of as an alternative coding of the discrete variable Xj,

providing the same fit to the data as the dummy regressors (in the same sense as dummy cod-
ing and deviation coding are equivalent).5

We can then ‘‘step down’’ through the powers X m'1
j , X m'2

j ; . . . ;X 2
j , X 1

j , testing the contribu-
tion of each term to the model, omitting the term if it proves unnecessary, and refitting the
model. We stop dropping terms when one proves to be important. Thus, if the model includes
a cubic term, it will also generally include the lower-order quadratic and linear terms.6 Even if
the relationship between Y and Xj is nonlinear, it is usually possible to represent this relation-
ship with a polynomial of degree less than m' 1.7

Polynomials in two or more explanatory variables can be used to model interactions between
quantitative explanatory variables. Consider, for example, the full quadratic model for two
explanatory variables given in Equation 17.1 above. As illustrated in Figure 17.1(a), this
model represents a curved surface relating EðY Þ to X1 and X2. Of course, certain specific char-
acteristics of the regression surface—such as direction of curvature and monotonicity—depend
on the parameters of the model and on the range of values for X1 and X2.8 The partial relation-
ships of Y to each of X1 and X2 are apparent in the lines drawn on the regression surfaces in
Figure 17.1:

3See, for example, the nonlinear partial relationship between log wages and age in the Canadian Survey of Labour and
Income Dynamics data, discussed in Section 12.3.
4See Section 12.4.
5See Section 8.1. *Put another way, the powers Xj, X 2

j ; . . . ;X m'1
j provide an alternative—and hence equivalent—basis

for the subspace spanned by the dummy regressors.
6This is an application of the principle of marginality, introduced in Section 7.3.2. If, in a polynomial in X of order p,
all lower-order terms are included, the fit of the model is invariant with respect to linear transformations of X —pro-
duced, for example, by subtracting the mean from each value, Xi ' X (i.e., centering X ). If lower-order terms are
omitted, however, this invariance does not hold.
7Also see Exercise 17.2 for a discussion of orthogonal polynomial contrasts.
8See Exercise 17.3.
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& For the full quadratic of Equation 17.1, shown in panel (a), the partial-regression lines
are curved, and each quadratic partial relationship changes with the value of the other
explanatory variable. Hence, X1 and X2 interact in their effect on Y .

& Panel (b) represents the equation

EðY Þ ¼ β0 þ β1X1 þ β2X2 þ β3X1X2

Here, the partial relationships are linear, but the partial relationship between Y and each
X changes with the value of the other X , inducing a bend in the regression surface, rep-
resenting the interaction between the two explanatory variables.

(a) (b)

E(Y)

(c)

X2 X2

X2

X1

X1

X1

E(Y) E(Y)

Figure 17.1 The model EðYÞ ¼ β0 þ β1X1 þ β2X2 þ β3X2
1 þ β4X2

2 þ β5X1X2, illustrated in (a), rep-
resents a curved surface in which the quadratic partial relationship of Y to X1

changes with the value of X2 (and the quadratic partial relationship of Y to X2

changes with the value of X1). The model EðYÞ ¼ β0 þ β1X1 þ β2X2 þ β3X1X2 in (b)
represents a curved surface in which the slope of the linear partial relationship of Y
to X1 changes with the value of X2 (and the slope of the linear partial relationship of
Y to X2 changes with the value of X1). The model EðYÞ ¼ β0 þ β1X1þ
β2X2 þ β3X2

1 þ β4X2
2 in (c) represents a curved surface in which the quadratic partial

relationship of Y to X1 is the same at different levels of X2 (and the quadratic
partial relationship of Y to X2 is the same at different levels of X1).
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& The regression equation

EðY Þ ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2

is illustrated in panel (c). Here, the partial relationships are nonlinear, but, for example,
the quadratic partial relationship of Y to X1 does not depend on the value at which X2 is
‘‘held constant,’’ reflecting the absence of interaction between the two explanatory
variables.

To illustrate quadratic regression and also to make the point that the method is applicable to
any statistical model with a linear predictor, I will develop an application in logistic regression,
taken from research by Cowles and Davis (1987) on volunteering for psychological experi-
ments. The response variable in the study is dichotomous: whether or not each of 1421 subjects
volunteered to participate in an experiment.9

The authors modeled the data in a logistic regression of volunteering on the factor sex, the
personality dimensions neuroticism and extraversion, and the product of neuroticism and extra-
version. The personality variables each can take on integer values between 0 and 24.
Preliminary work suggests that sex does not interact with the personality dimensions and that
squared terms in neuroticism and extraversion are not needed,10 producing the estimated coeffi-
cients and standard errors in Table 17.1.

An effect display for the neuroticism-by-extraversion interaction is shown in Figure 17.2,
setting the dummy regressor for sex to 0.45—the proportion of men in the data set (the dummy
variable for sex is coded 1 for men and 0 for women). The graph shows the relationship
between volunteering and extraversion at representative values of neuroticism. At low levels of
neuroticism, volunteering rises with extraversion; this relationship becomes weaker as neuroti-
cism grows, and at the highest level of neuroticism, the relationship between volunteering and
extraversion is negative. Because the fitted values are plotted on the logit scale, the partial
regression lines relating volunteering to extraversion are straight [and are produced by slicing
the regression surface in the direction of extraversion; cf. Figure 17.1(b)]; note that the lines
meet at a point—a characteristic of a model of this structure.11

Table 17.1 Cowles and Davis’s Logistic Regression for
Volunteering

Coefficient Estimate Standard Error

Constant '2.358 0.501
Sex (Male) '0.2471 0.1116
Neuroticism 0.1108 0.0376
Extraversion 0.1668 0.0377
Neuroticism · Extraversion '0.008552 0.002934

9These data were used in Fox (1987). I am grateful to Michael Cowles and Caroline Davis of York University for mak-
ing the data available.
10See Exercise 17.4.
11See Exercise 17.5.
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17.1.1 A Closer Look at Quadratic Surfaces*

The essential structure of nonlinear models is often clarified by differentiating the model
with respect to each explanatory variable.12 Differentiating the equation for the full quadratic
model (repeating Equation 17.1),

Y ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2 þ β5X1X2 þ ε

produces

∂EðY Þ
∂X1

¼ β1 þ 2β3X1 þ β5X2

∂EðY Þ
∂X2

¼ β2 þ 2β4X2 þ β5X1

The slope of the partial relationship between Y and X1, therefore, depends not only on the level
of X1 but also on the specific value at which X2 is held constant—indicating that X1 and X2

interact in affecting Y . Moreover, the shape of the partial relationship between Y and X1 is
quadratic, fixing the value of X2. Because of the symmetry of the model, similar statements
apply to the partial relationship between Y and X2, holding X1 constant.

In contrast, although the model

Y ¼ β0 þ β1X1 þ β2X2 þ β3X1X2 þ ε
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Figure 17.2 Fitted logit and probability of volunteering as a function of neuroticism and extraver-
sion, from Cowles and Davis’s logistic regression of volunteering on sex, neuroti-
cism, extraversion, and the product of neuroticism and extraversion. To construct
this effect display, the dummy regressor for sex was set to 0.45, which is the propor-
tion of men in the data set.

12See Exercise 17.1.
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also represents a curved surface [an illustration appears in Figure 17.1(b)], the slices of this surface
in the direction of each explanatory variable, holding the other constant, are, as I noted, linear:

∂EðY Þ
∂X1

¼ β1 þ β3X2

∂EðY Þ
∂X2

¼ β2 þ β3X1

Thus, for example, the slope of the relationship between Y and X1 is different at different levels
of X2, but at each fixed level of X2, the relationship between Y and X1 is linear.

Finally, the model

Y ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2 þ ε

[illustrated in Figure 17.1(c)] represents a curved surface in which the quadratic partial relation-
ship between Y and each of the explanatory variables is invariant across the levels of the other
explanatory variable:

∂EðY Þ
∂X1

¼ β1 þ 2β3X1

∂EðY Þ
∂X2

¼ β2 þ 2β4X2

17.2 Piece-wise Polynomials and Regression Splines

A potential problem with polynomial-regression fits is that they can be highly nonlocal: Data in
one region, including outlying values, can seriously affect the fit in another region. Moreover,
polynomials are inappropriate for regressions that approach an asymptote. As illustrated in
Figure 17.3, these problems can be especially acute with high-degree polynomials: Here, I have
fit a fifth-degree polynomial to the United Nations (UN) infant-mortality data.13 The other
regression curve drawn on this plot is for a natural regression spline (described later in this sec-
tion) with 6 degrees of freedom—the same number of degrees of freedom as for the polynomial.
It is clear that the regression spline does a much better job of following the pattern of the data.

As an alternative to a global polynomial regression, we can partition the data into bins, fit-
ting a different polynomial regression in each bin—a generalization of the idea of binning and
averaging (described in Chapter 2). Indeed, as shown in Figure 17.4(a), binning and averaging
can be thought of as fitting a degree-0 polynomial in each bin. The data in this graph, and in
the other panels of Figure 17.4, were artificially generated.14

In Figure 17.4(b), a least-squares line—that is, a degree-1 polynomial—is fit in each bin.
Finally, in Figure 17.4(c), a line is fit in each bin, but the lines are constrained to be continuous
at the bin boundaries. Continuity can be imposed by fitting the model15

13These data were introduced in Chapter 3. In Section 4.3, we discovered that the relationship between infant mortality
and gross domestic product (GDP) can be rendered nearly linear by log-transforming both variables. The regression-
spline fit in Figure 17.3 is reasonably similar to the lowess fit in Figure 3.14 (on page 45).
14The data were generated according to the regression equation Y = 1

5 X þ cos X þ 1ð Þ þ ε; where cos(X + 1) is evalu-
ated with X measured in radians and where the errors were sampled from N(0, 0.52). The 50 X-values were drawn from
a uniform distribution on the interval [0,10]. This example was inspired by a similar one in Hastie, Tibshirani, and
Friedman (2009, pp. 118–119)
15See Exercise 17.6 for this and other results in this section.
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Yi ¼ αþ β1Xi1 þ β2Xi2 þ β3Xi3 þ εi

where Xi1 [ Xi;

Xi2 [
0 for Xi £ k1

Xi ' k1 for Xi > k1

!

and

Xi3 [
0 for Xi £ k2

Xi ' k2 for Xi > k2

!

The points at which the lines join, at X ¼ k1 and X ¼ k2, are called knots.
This approach can be generalized to higher-order polynomials, as illustrated for cubic poly-

nomials in Figure 17.5 (using the same artificial data as in Figure 17.4). In panel (a), a separate
cubic is fit to each bin, and consequently the fit is discontinuous at the bin boundaries. In panel
(b), the cubics are constrained to join at the knots, by fitting the regression

Yi ¼αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β21Xi2 þ β22X 2
i2 þ β23X 3

i2

þ β31Xi3 þ β32X 2
i3 þ β33X 3

i3 þ εi

where X1;X2, and X3 are defined as above. In Figure 17.5(c), the cubic regressions are further
constrained to have equal slopes at the knots by omitting the second and third linear terms from
the model:

Yi ¼ αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β22X 2
i2 þ β23X 3

i2 þ β32X 2
i3 þ β33X 3

i3 þ εi

Finally, in Figure 17.5(d), not only the slopes but also the curvature of the regressions are
matched at the knots, fitting the equation16
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Figure 17.3 Infant-mortality rate by GDP per capita. The broken line is for an order-5 polynomial
fit by least squares; the solid line is for a natural regression spline with 6 degrees of
freedom, also fit by least squares.

16*The slope is the first derivative of the regression function, while the curvature depends on the second derivative.
Thus, not only the regression curve but also its first and second derivatives are continuous at the knots in Figure
17.5(d).
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Yi ¼ αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β23X 3
i2 þ β33X 3

i3 þ εi ð17:2Þ

Note that as the regression curve is progressively constrained in this manner, it grows
smoother.

Equation 17.2 is called a cubic regression spline.17 More generally, if we fit a cubic regres-
sion spline with k knots, dividing the data into k þ 1 bins, the resulting regression model uses
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Figure 17.4 (a) Piece-wise constant, (b) piece-wise discontinuous-linear, and (c) piece-wise
continuous-linear fits to artificially generated data. The data are binned at the values
X ¼ k1 and X ¼ k2. The broken line in each graph is the ‘‘true’’ regression function
used to generate the data.

17A spline is a flexible tool used in drafting to draw smooth, continuous curves. Spline functions in mathematics are
piece-wise continuous and smooth polynomials traditionally used for interpolation.
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k þ 4 degrees of freedom (i.e., has k þ 4 parameters): 1 for the constant; 3 for the linear, quad-
ratic, and cubic terms in the first bin; and k for the additional cubic terms, one for each remain-
ing bin. In practice, the regressors in the generalization of Equation 17.2 can become highly
correlated, and it is therefore advantageous to fit the model with an alternative, but equivalent,
set of less correlated regressors.18
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Figure 17.5 Piece-wise cubic fits to artificially generated data: (a) discontinuous, (b) continuous,
(c) continuous with continuous slopes, and (d) continuous with continuous slopes
and curvature. The broken line in each graph is the ‘‘true’’ regression function used
to generate the data.

18*In the language of Chapters 9 and 10, we select a different basis for the subspace spanned by the cubic-regression-
spline regressors. The B-spline basis is frequently used in practice; the details are beyond this discussion, but see, for
example, Hastie et al., (2009, pp. 160–161). Because of their behavior near the boundaries of the data, B-splines pro-
duce a slightly different fit than the simple regression splines described in this section.
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I have yet to address how to select the number and placement of the knots in fitting a regres-
sion spline to data. This is a key point, because with the values of the knots fixed, a regression
spline is a linear model and, as such, provides a fully parametric fit to the data. The issue is less
critical, however, than it may appear: It almost always suffices to use 4 or 5 knots and to distri-
bute the knots at evenly spaced quantiles of the explanatory variable: Thus, for example, 4
knots divide the data into 5 bins and can be placed at the 20th, 40th, 60th, and 80th percentiles
of X . Moreover, this strategy extends in a straightforward manner to multiple regression analy-
sis, where individual quantitative explanatory variables in the model can be represented by
regression splines.

Cubic regression splines can behave erratically near the boundaries of the data. A simple fix
is to constrain the regression function to be linear at and beyond the left and right boundaries.
These additional constraints produce what is termed a natural cubic regression spline; the
boundary constraints account for 2 degrees of freedom, and therefore with k knots, a natural
regression spline uses only k þ 2 degrees of freedom, counting the regression constant.19

An illustration, using data from the Canadian Survey of Labour and Income Dynamics, is
shown in Figure 17.6. The effect displays in this graph are for the regression of log wages on
years of education, years of age, and a dummy regressor for sex (the effect of which is not
shown). Age and education are modeled using natural splines, each with k ¼ 4 knots (and,
hence, 5 degrees of freedom each, not counting the regression constant).20

Spline regression models are a bridge between the linear and generalized linear models of
Parts II and IV of the text and the nonparametric regression models to be discussed in Chapter
18: Regression splines fit comfortably into the parametric linear-predictor toolbox of linear
and generalized linear models; yet, like nonparametric-regression models, they are flexible and
therefore can conform to local characteristics of the data.
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Figure 17.6 Effect displays for age and education in the regression of log wages on these variables
and sex. Age and education are represented by natural splines, each with k ¼ 4
knots. The lighter lines give pointwise 95% confidence envelopes around the fits.

19The natural cubic regression spline can be written as a regression equation in much the same manner as the cubic
regression spline of Equation 17.2. The formulation of the regressors is complicated, however; see Hastie et al. (2009,
Section 5.2.1).
20Compare these effect displays with those in Figure 12.8 (page 313), where I used a quadratic specification for the age
effect and squared education to linearize the regression.
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Regression splines are piece-wise cubic polynomials that are continuous at join-points,
called knots, and that are constrained to have equal slopes and curvature on either side
of a knot. Although fully parametric, regression splines generally do a good job of
responding to local aspects of the data and can be incorporated as building blocks into
linear and generalized linear models.

17.3 Transformable Nonlinearity

As explained in the previous section, linear statistical models effectively encompass models
that are linear in the parameters, even if they are nonlinear in the variables. The forms of non-
linear relationships that can be expressed as linear models are, therefore, very diverse. In cer-
tain circumstances, however, theory dictates that we fit models that are nonlinear in their
parameters. This is a relatively rare necessity in the social sciences, primarily because our the-
ories are seldom mathematically concrete, although nonlinear models arise in some areas of
demography, economics, and psychology and occasionally in sociology, political science, and
other social sciences.

Some models that are nonlinear in the parameters can be transformed into linear models and,
consequently, can be fit to data by linear least squares. A model of this type is the so-called
gravity model of migration, employed in human geography (see Abler, Adams, & Gould,
1971, pp. 221–233). Let Yij represent the number of migrants moving from city i to city j, let
Dij represent the geographical distance between these cities, and let Pi and Pj represent their
respective populations.

The gravity model of migration is built in rough analogy to the Newtonian formula for gravi-
tational attraction between two objects, where population plays the role of mass and migration
the role of gravity. The analogy is loose, in part because gravitational attraction is symmetric,
while there are two migration streams of generally different sizes between a pair of cities: one
from city i to city j and the other from j to i.

The gravity model is given by the equation

Yij ¼ α
Pβ

i Pγ
j

Dδ
ij

εij

¼ ~Y ijεij

ð17:3Þ

where α, β, γ, and δ are unknown parameters to be estimated from the data, and εij is a neces-
sarily positive multiplicative error term that reflects the imperfect determination of migration
by distance and population size. When εij is 1, Yij is equal to its ‘‘predicted’’ value ~Yij, given
by the systematic part of the model; when εij is less than 1, Yij is smaller than ~Yij; and when εij

is greater than 1, Yij exceeds ~Yij.
21 I will say more about the error presently.

21Because of the multiplicative form of the gravity model, ~Yij is not EðYijÞ—hence the use of the term predicted rather
than expected value.
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Although the gravity model (17.3) is nonlinear in its parameters, it can be transformed into a
linear equation by taking logs:22

log Yij ¼ logαþ β log Pi þ γ log Pj ' δ log Dij þ log εij

Y 0ij ¼ α0 þ βP0i þ γP0j þ δD0ij þ ε0ij ð17:4Þ

where

α0[ log α

P0i [ log Pi

P0j [ log Pj

D0ij [ ' log Dij

ε0ij [ log εij

If we can make the usual linear-model assumptions about the transformed errors ε0ij, then we
are justified in fitting the transformed model (17.4) by linear least squares. In the gravity
model, it is probably unrealistic to assume that the transformed errors are independent, because
individual cities are involved in many different migration streams. A particularly attractive city,
for example, might have positive errors for each of its in-migration streams and negative errors
for each of its out-migration streams.23

Our ability to linearize the model given in Equation 17.3 by a log transformation depends on
the multiplicative errors in this model. The multiplicative error specifies that the general magni-
tude of the difference between Yij and ~Yij is proportional to the size of the latter: The model
tends to make larger absolute errors in predicting large migration streams than in predicting
small ones. This assumption appears reasonable here. In most cases, we would prefer to specify
a form of error—additive or multiplicative—that leads to a simple statistical analysis—
supposing, of course, that the specification is sensible. A subsequent analysis of residuals per-
mits us to subject these assumptions to scrutiny.

Another form of multiplicative model is

Yi ¼ α expðβ1Xi1Þ expðβ2Xi2Þ % % % expðβkXikÞεi

¼ α expðβ1Xi1 þ β2Xi2 þ % % % þ βkXikÞεi ð17:5Þ

Taking logs produces the linear equation

Y 0i ¼ α0 þ β1Xi1 þ β2Xi2 þ % % % þ βkXik þ ε0i

with

Y 0i [ loge Yi

α0[ loge α

ε0i [ loge εi

22The log transformation requires that Yij;α;Pi;Pj;Dij; and εij are all positive, as is the case for the gravity model of
migration.
23See Exercise 17.7 for an illustrative application of the gravity model.
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In Equation 17.5, the impact on Y of increasing Xj by one unit is proportional to the level of
Y . The effect of rescaling Y by taking logs is to eliminate interaction among the X s. A similar
result is, at times, achievable empirically through other power transformations of Y .24

Some nonlinear models can be rendered linear by a transformation. For example, the
multiplicative gravity model of migration,

Yij ¼ α
Pβ

i Pγ
j

Dδ
ij

εij

(where Yij is the number of migrants moving from location i to location j, Pi is the popu-
lation at location i, Dij is the distance separating the two locations, and εij is a multiplica-
tive error term), can be linearized by taking logs.

Multiplicative models provide the most common instance of transformable nonlinearity, but
there are also other models to which this approach is applicable. Consider, for example, the
model

Yi ¼
1

αþ βXi þ εi
ð17:6Þ

where εi is a random error satisfying the standard assumptions. Then, if we take Y 0i [ 1=Yi, we
can rewrite the model as the linear equation Y 0i ¼ αþ βXi þ εi. This model is illustrated in
Figure 17.7 (for a positive β and positive values of X ).25

X

Y

0

1
α + βX

Figure 17.7 The model Y ¼ 1=ðαþ βXiþεiÞ, for X > 0 and β >0.

24The use of power transformations to promote additivity was pioneered by Tukey (1949); also see, for example,
Emerson and Hoaglin (1983).
25The graph shows the systematic part of the model, eY ¼ 1=ðαþ βX Þ, but because the transformation of Y that line-
arizes the model is not a linear transformation, the curve does not give the expectation of Y .
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17.4 Nonlinear Least Squares*

Models that are nonlinear in the parameters and that cannot be rendered linear by a transforma-
tion are called essentially nonlinear. The general nonlinear model is given by the equation

Yi ¼ f ðfl
ðp · 1Þ

; x0iÞ
ð1 · kÞ

þεi ð17:7Þ

in which

& Yi is the response-variable value for the ith of n observations,
& fl is a vector of p parameters to be estimated from the data,
& x0i is a row vector of scores for observation i on the k explanatory variables (some of

which may be qualitative), and
& εi is the error for the ith observation.

It is convenient to write the model in matrix form for the full sample of n observations as

y
ðn · 1Þ

¼ f ðfl
ðp · 1Þ

; XÞ
ðn · kÞ

þ "
ðn · 1Þ

I will assume, as in the general linear model, that "; Nnð0; σ2
εInÞ.26

An illustrative essentially nonlinear model is the logistic population-growth model (Shryock,
Siegel, & Associates, 1973, pp. 382–385):

Yi ¼
β1

1þ expðβ2 þ β3XiÞ
þ εi ð17:8Þ

where Yi is population size, and Xi is time; for equally spaced observations, it is conventional
to take Xi ¼ i' 1, and so X ¼ 0; 1; 2; . . .. Because the logistic growth model is fit to time-
series data, the assumption of independent errors is problematic: It may well be the case that
the errors are autocorrelated—that is, that errors close in time tend to be similar.27 The addi-
tive form of the error is also questionable here, for errors may well grow larger in magnitude
as population size increases.28 Despite these potential difficulties, the logistic population-
growth model can provide a useful, if gross and preliminary, representation of the data.

Under the assumption of independent and normally distributed errors, with 0 expectations
and common variance, the general nonlinear model (Equation 17.7) has likelihood

Lðfl; σ2
εÞ ¼

1

ð2πσ2
εÞ

n=2
exp '

Pn
i¼1 ½Yi ' f ðfl; x0iÞ)

2

2σ2
ε

( )

¼ 1

ð2πσ2
εÞ

n=2
exp ' 1

2σ2
ε

SðflÞ
" #

where SðflÞ is the sum-of-squares function

26For multiplicative errors, we can put the model in the form of Equation 17.7 by taking logs.
27See the discussion of time-series regression in Chapter 16.
28See Exercise 17.9.
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SðflÞ[
Xn

i¼1

½Yi ' f ðfl; x0iÞ)
2

As for the general linear model, we therefore maximize the likelihood by minimizing the sum
of squared errors SðflÞ.

To derive estimating equations for the nonlinear model, we need to differentiate SðflÞ,
obtaining

∂SðflÞ
∂fl

¼ '2
X

Yi ' f fl; x0i
$ %& ' ∂f fl; x0i

$ %

∂fl

Setting these partial derivatives to 0 and replacing the unknown parameters fl with the estima-
tor b produces the nonlinear least-squares estimating equations. It is convenient to write the
estimating equations in matrix form as

Fðb;XÞ½ )0 y' fðb; xÞ½ ) ¼ 0 ð17:9Þ

where F
ðn · pÞ
ðb;XÞ is the matrix of derivatives, with i, jth entry

Fij [
∂f b; x0i
$ %

∂Bj

The solution b of Equation 17.9 is the maximum-likelihood estimate of fl. If there is more than
one root to the estimating equations, then we choose the solution associated with the smallest
residual sum of squares SðbÞ.

Nonlinear models of the form Yi ¼ f ðfl; x0iÞ þ εi can be estimated by nonlinear least
squares, finding the value of b that minimizes SðbÞ ¼

Pn
i¼1 ½Yi ' f ðb; x0iÞ)

2.

17.4.1 Minimizing the Residual Sum of Squares

Because the estimating equations (17.9) arising from a nonlinear model are, in general,
themselves nonlinear, their solution is often difficult. It is, for this reason, unusual to obtain
nonlinear least-squares estimates by explicitly solving the estimating equations. Instead, it is
more common to work directly with the sum-of-squares function.

There are several practical methods for obtaining nonlinear least-squares estimates. I will
pursue in some detail a technique called steepest descent. Although the method of steepest des-
cent usually performs poorly relative to alternative procedures, the rationale of the method is
simple. Furthermore, many general aspects of nonlinear least-squares calculations can be
explained clearly for the steepest-descent procedure. Because of the practical limitations of
steepest descent, however, I will also briefly describe two superior procedures—the Gauss-
Newton method and the Marquardt method—without developing their rationales.29

The method of steepest descent, like other methods for calculating nonlinear least-squares
estimates, begins with a vector bð0Þ of initial estimates. These initial estimates can be obtained

29See the recommended readings at the end of the chapter for details.
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in a variety of ways. We can, for example, choose p ‘‘typical’’ observations, substitute their
values into the model given in Equation 17.7 (page 515), and solve the resulting system of p
nonlinear equations for the p parameters.

Alternatively, we can select a set of reasonable trial values for each parameter, find the resi-
dual sum of squares for every combination of trial values, and pick as initial estimates the com-
bination associated with the smallest residual sum of squares. It is sometimes possible to
choose initial estimates on the basis of prior research, hypothesis, or substantive knowledge of
the process being modeled.

It is unfortunate that the choice of starting values for the parameter estimates may prove con-
sequential: Iterative methods such as steepest descent generally converge to a solution more
quickly for initial values that are close to the final values, and even more important, the sum-
of-squares function SðbÞ may have local minima different from the global minimum (as illu-
strated in Figure 17.8).

Let us denote the gradient (i.e., derivative) vector for the sum-of-squares function as

dðbÞ ¼ ∂SðbÞ
∂b

The vector dðbð0ÞÞ gives the direction of maximum increase of the sum-of-squares function
from the initial point fbð0Þ; Sðbð0ÞÞg; the negative of this vector, 'dðbð0ÞÞ, therefore, gives the
direction of steepest descent. Figure 17.8 illustrates these relations for the simple case of one
parameter, where we can move either left or right from the initial estimate Bð0Þ.

If we move in the direction of steepest descent, then we can find a new estimated parameter
vector

bð1Þ ¼ bð0Þ 'M0dðbð0ÞÞ

for which Sðbð1ÞÞ< Sðbð0ÞÞ: Because SðbÞ is, by definition, decreasing in the direction of stee-
pest descent, unless we are already at a minimum, we can always choose a number M0 small

B

1
d(B(0))

B(1) B(0)

S(B)

Figure 17.8 The method of steepest descent for one estimated parameter, B. Because the slope of
the sum-of-squares function S(B) is positive above the initial estimate Bð0Þ, the first
step is to the left, to Bð1Þ.
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enough to improve the residual sum of squares. We can, for instance, first try M0 ¼ 1; if this
choice does not lead to a decrease in SðbÞ, then we can take M0 ¼ 1

2 and so on.
Our new estimate bð1Þ can subsequently be improved in the same manner, by finding

bð2Þ ¼ bð1Þ 'M1dðbð1ÞÞ

so that Sðbð2ÞÞ< Sðbð1ÞÞ. This procedure continues iteratively until it converges on a solution
b—that is, until the changes in SðbðlÞÞ and bðlÞ from one iteration to the next are negligible. In
practice, however, the method of steepest descent often converges painfully slowly and at times
falls prey to other computational difficulties.

At each iteration, we need to compute the gradient vector dðbÞ for the current value of
b ¼ bðlÞ. From our previous work in this section, we have

'dðbÞ ¼ 2½Fðb;XÞ)0½y' fðb; xÞ)

¼ 2
Xn

i¼1

∂f ðb; x0iÞ
∂b

" #
½Yi ' f ðb; x0iÞ)

ð17:10Þ

The partial derivatives ∂f ðb; x0iÞ=∂Bj either can be supplied analytically (which is generally pre-
ferable) or can be evaluated numerically [i.e., approximated by finding the slope of f ðb; x0iÞ in
a small interval around the current value of Bj]. For example, for the logistic growth model
(Equation 17.8 on page 515) discussed earlier in this section, the analytic derivatives are

∂f ðb;XiÞ
∂B1

¼ ½1þ expðB2 þ B3XiÞ)'1

∂f ðb;XiÞ
∂B2

¼ 'B1½1þ expðB2 þ B3XiÞ)'2expðB2 þ B3XiÞ

∂f ðb;XiÞ
∂B3

¼ 'B1½1þ expðB2 þ B3XiÞ)'2expðB2 þ B3XiÞXi

In the method of steepest descent, we take

bðlþ1Þ ¼ bðlÞ þMlF
0
le
ðlÞ

where Fl [ FðbðlÞ;XÞ and eðlÞ ¼ y' fðbðlÞ;XÞ (and the constant 2 in Equation 17.10 is
absorbed into Ml). The Gauss-Newton method, in contrast, calculates

bðlþ1Þ ¼ bðlÞ þMlðF0lFlÞ'1F0le
ðlÞ

As for steepest descent, the step-size Ml is selected so that Sðbðlþ1ÞÞ< SðbðlÞÞ; we first try
Ml ¼ 1, then Ml ¼ 1

2, and so on. The direction chosen in the Gauss-Newton procedure is based
on a first-order Taylor-series expansion of SðbÞ around SðbðlÞÞ.

In the Marquardt procedure,

bðlþ1Þ ¼ bðlÞ þ ðF0lFl þMlIpÞ'1F0le
ðlÞ

Initially, M0 is set to some small number, such as 10'8. If Sðbðlþ1ÞÞ< SðbðlÞÞ, then we accept
the new value of bðlþ1Þ and proceed to the next iteration, with Mlþ1 ¼ Ml=10; if, however,
Sðbðlþ1ÞÞ > SðbðlÞÞ, then we increase Ml by a factor of 10 and try again. When M is small, the
Marquardt procedure is similar to Gauss-Newton; as M grows larger, Marquardt approaches
steepest descent. Marquardt’s method is thus an adaptive compromise between the other two
approaches.
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Estimated asymptotic sampling covariances for the parameter estimates can be obtained by
the maximum-likelihood approach and are given by30

bVðbÞ ¼ S2
E Fðb;XÞ½ )0Fðb;XÞ
( )'1 ð17:11Þ

We can estimate the error variance from the residuals e ¼ y' fðb;XÞ, according to the
formula31

S2
E ¼

e0e
n' p

Note the similarity of Equation 17.11 to the familiar linear least-squares result,
bV ðbÞ ¼ S2

EðX0XÞ
'1. Indeed, Fðb;XÞ ¼ X for the linear model y ¼ Xflþ ".

Iterative methods for finding the nonlinear least-squares estimates include the method of
steepest descent and, more practically, the Gauss-Newton and Marquardt methods.
Estimated asymptotic covariances for the coefficients are given by

bVðbÞ ¼ S2
E Fðb;XÞ½ )0Fðb;XÞ
( )'1

where Fðb;XÞ is the matrix of derivatives, with i; jth entry ∂f ðb; x0iÞ=∂Bj, and
S2

E ¼
P

E2
i =ðn' pÞ is the estimated error variance.

17.4.2 An Illustration: U.S. Population Growth

Decennial population data for the United States appear in Table 17.2 for the period from
1790 to 2010; the data are plotted in Figure 17.9(a). Let us fit the logistic growth model
(Equation 17.8 on page 515) to these data using nonlinear least squares.

The parameter β1 of the logistic growth model gives the asymptote that expected population
approaches as time increases. In 2010, when Y ¼ 308:746 (million), population did not appear
to be near an asymptote;32 so as not to extrapolate too far beyond the data, I will arbitrarily set
Bð0Þ1 ¼ 350. At time X1 ¼ 0, we have

Y1 ¼
β1

1þ expðβ2 þ β30Þ þ ε1 ð17:12Þ

Ignoring the error, using Bð0Þ1 ¼ 350, and substituting the observed value of Y1 ¼ 3:929 into
Equation 17.12, we get expðBð0Þ2 Þ ¼ ð350=3:929Þ ' 1, or Bð0Þ2 ¼ loge 88:081 ¼ 4:478 » 4:5. At
time X2 ¼ 1,

Y2 ¼
β1

1þ expðβ2 þ β31Þ þ ε2

30See Bard (1974, pp. 176–179).
31Alternatively, we can use the maximum-likelihood estimator of the error variance, without the correction for ‘‘degrees
of freedom,’’ bσ2

ε ¼ e0e=n.
32That population in 2010 did not appear to be near an asymptote suggests that we might not need to fit an asymptotic
growth model to the data; see Exercise 17.10.
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Again ignoring the error, and making appropriate substitutions, expð4:5þ Bð0Þ3 Þ ¼
ð350=5:308Þ ' 1, or Bð0Þ3 ¼ loge 64:938' 4:5 ¼ '0:327 » ' 0:3.

The Gauss-Newton iterations based on these start values are shown in Table 17.3.
Asymptotic standard errors for the coefficients also appear in this table and indicate that (with
the exception of the population asymptote β1) the parameters are estimated precisely. Although
the logistic model captures the major trend in U.S. population growth, the residuals from the

Table 17.2 Population of the United States,
in Millions, 1790–2010

Year Population Year Population

1790 3.929 1900 75.995
1800 5.308 1910 91.972
1810 7.240 1920 105.711
1820 9.638 1930 122.775
1830 12.866 1940 131.669
1840 17.069 1950 150.697
1850 23.192 1960 179.323
1860 31.443 1970 203.302
1870 39.818 1980 226.542
1880 50.156 1990 248.718
1890 62.948 2000 281.425

2010 308.746

SOURCE: U.S. Bureau of the Census (2006, 2011).
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Figure 17.9 Panel (a) shows the population of the United States from 1790 through 2010; the line
represents the fitted logistic growth model. Residuals from the logistic growth model
are plotted against time in panel (b).
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least-squares fit [plotted against time in Figure 17.9(b)] suggest that the error variance is not
constant and that the residuals are autocorrelated.33 Note as well the large drop in the residual
for 1940 and the large increase for 1960 (when Alaska and Hawaii were first included in the
population count) and again in 2000.

An example of an essentially nonlinear model, which requires nonlinear least squares, is
the logistic population-growth model

Yi ¼
β1

1þ expðβ2 þ β3XiÞ
þ εi

where Yi is population size, and Xi is time.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 17.1. *Interpreting effects in nonlinear models (based on Stolzenberg, 1979): For sim-
plicity, disregard the error and let Y represent the systematic part of the response variable.
Suppose that Y is a function of two explanatory variables, Y ¼ f ðX1;X2Þ.

& The metric effect of X1 on Y is defined as the partial derivative ∂Y=∂X1.
& The effect of proportional change in X1 on Y is defined as X1ð∂Y=∂X1Þ.
& The instantaneous rate of return of Y with respect to X1 is ð∂Y=∂X1Þ=Y .
& The point elasticity of Y with respect to X1 is ð∂Y=∂X1ÞðX1=Y Þ.

Table 17.3 Gauss-Newton Iterations for the Logistic Growth Model Fit to the U.S.
Population Data

Coefficients

Iteration Residual Sum of Squares B1 B2 B3

0 13,374.54 350.0 4.5 '0.3
1 5,378.14 387.65 3.7000 '0.20173
..
.

5 512.77 487.66 4.0628 '0.20753
Final 512.77 487.65 4.0629 '0.20754

Standard error 35.60 0.0630 0.00886

NOTE: Asymptotic standard errors are given below the final coefficient estimates.

33See Exercise 17.8.
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Find each of these four measures of the effect of X1 in each of the following models. Which
measure yields the simplest result in each case? How can the several measures be interpreted?
How would you fit each model to data, assuming convenient forms for the errors [e.g., additive
errors for models (a), (b), and (c)]?

(a) Y ¼ αþ β1X1 þ β2X2.
(b) Y ¼ αþ β1X1 þ β2X 2

1 þ β3X2.
(c) Y ¼ αþ β1X1 þ β2X2 þ β3X1X2.
(d) Y ¼ expðαþ β1X1 þ β2X2).
(e) Y ¼ αX β1

1 X β2
2 .

Exercise 17.2. *Orthogonal polynomial contrasts: The polynomial regressors X , X 2; . . . ; X m'1

generated to represent a quantitative, discrete X with values 1, 2; . . . ;m are substantially corre-
lated. It is convenient (but by no means essential) to remove these correlations. Suppose that
there are equal numbers of observations in the different levels of X , so that it suffices to make
the columns of the row basis of the model matrix for X orthogonal. Working with the row
basis, begin by subtracting the mean from X , calling the result X *. Centering X in this manner
makes X * orthogonal to the constant regressor 1. (Why?) X 2 can be made orthogonal to the
constant and X * by projecting the X 2 vector onto the subspace generated by 1 and X *; call the
residual from this projection X *2. The remaining columns X *3; . . . ;X *m'1 of the new row basis
are formed in a similar manner, each orthogonal to the preceding ones.

(a) Show that the orthogonal polynomial contrasts 1, X *; . . . ;X *m'1 span the same sub-
space as the original polynomial regressors 1, X ; . . . ;X m'1.

(b) Show that the incremental sum of squares for each orthogonal contrast X *, X *2; . . . ;
X *m'1 is the same as the step-down sum of squares for the corresponding regressor
among the original (correlated) polynomial terms, X m'1; . . . ;X 2, X . ( Hint: Remember
that X *, X *2; . . . ;X *m'1 are uncorrelated.)

(c) What, then, is the advantage of orthogonal polynomial contrasts?
(d) Can the same approach be applied to a continuous quantitative explanatory variable—

defining, for example, a quadratic component that is orthogonal to the linear compo-
nent and a cubic component orthogonal to both the linear and quadratic components?

Exercise 17.3. Working with the full quadratic regression model

EðY Þ ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2 þ β5X1X2

and a three-dimensional graphics program, draw pictures of the regression surface (similar to
Figure 17.1 on page 504) for various values of the parameters β1; . . . ; β5 and various values of
the explanatory variables X1 and X2. You will derive a better impression of the flexibility of
this model if you experiment freely, but the following suggestions may prove useful:

& Try both positive and negative values of the parameters.
& Try cases in which there are both positive and negative X s, as well as cases in which

the X s are all positive.
& Try setting some of the parameters to 0.
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Exercises 17.4. Cowles and Davis’s logistic regression of volunteering on sex, neuroticism,
extraversion and the product of neuroticism and extraversion is discussed in Section 17.1.
Show that ðaÞ interactions between sex and the other factors and ðbÞ squared terms in neuroti-
cism and extraversion are not required in this model.

Exercise 17.5. *Show that in the model

EðY Þ ¼ β0 þ β1X1 þ β2X2 þ β3X1X2

the lines for the regression of Y on X1 at various fixed values of X2 all cross at a point (as in
Figure 17.2 for Cowles and Davis’s logistic regression).

Exercise 17.6. *Properties of piece-wise fits and regression splines:

(a) For the regression equation

Yi ¼ αþ β1Xi1 þ β2Xi2 þ β3Xi3 þ εi

where Xi1 [ Xi;

Xi2 [
0 for Xi £ k1

Xi ' k1 for Xi > k1

!

and

Xi3 [
0 for Xi £ k2

Xi ' k2 for Xi > k2

!

show that the regression lines in the three bins are continuous (i.e., join at knots on the
bin boundaries at X ¼ k1 and X ¼ k2).

(b) Similarly, show that the cubics in the regression equation

Yi ¼αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β21Xi2 þ β22X 2
i2 þ β23X 3

i2

þ β31Xi3 þ β32X 2
i3 þ β33X 3

i3 þ εi

are continuous, that the cubics in the regression equation

Yi ¼ αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β22X 2
i2 þ β23X 3

i2 þ β32X 2
i3 þ β33X 3

i3 þ εi

are both continuous and have continuous slopes at the knots, and that the cubics in the
regression-spline equation

Yi ¼ αþ β11Xi1 þ β12X 2
i1 þ β13X 3

i1 þ β23X 3
i2 þ β33X 3

i3 þ εi

join at the knots, have continuous slopes, and have continuous curvature.

Exercise 17.7. Table 17.4 reports interprovincial migration in Canada for the period 1966 to
1971. Also shown in this table are the 1966 and 1971 provincial populations. Table 17.5 gives
road distances among the major cities in the 10 provinces. Averaging the 1966 and 1971 popu-
lation figures, fit the gravity model of migration (Equation 17.3 on page 512) to the interpro-
vincial migration data. Display the residuals from the fitted model in a 10 · 10 table. Can you
account for the pattern of residuals? How might the model be modified to provide a more
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satisfactory fit to the data? (Why can’t we simply use dummy regressors to incorporate prov-
ince effects for the source and destination provinces?)

Exercise 17.8. Calculate the autocorrelation for the residuals from the logistic growth model fit
to the U.S. population data in Section 17.4.2. Recalling the discussion of autocorrelated errors in
linear regression (in Chapter 16), does autocorrelation appear to be a serious problem here?

Exercise 17.9 Using nonlinear least squares, refit the logistic growth model to the U.S. popula-
tion data (given in Table 17.2) assuming multiplicative rather than additive errors:

Yi ¼
β1

1þ expðβ2 þ β3XiÞ
εi

Which form of the model appears more adequate for these data?

Exercise 17.10. As mentioned in Section 17.4.2, the population of the United States in the year
2010 did not seem to be near an asymptote. As an alternative to the logistic growth model, we
might entertain the exponential growth model for the period 1790 to 2010; assuming multipli-
cative errors, this model takes the form

Yi ¼ αexpðβXiÞεi

where, as in the text, Yi is population, and Xi ¼ 0; 1; . . . ; 21 is time. Because of the multiplica-
tive errors, this model can be transformed to linearity by taking the log of both sides:

loge Yi ¼ α0 þ βXi þ ε0i

where α0[ loge α and ε0i [ loge εi. Fit the exponential growth model to the data by linear
least-squares regression and graph the fit as in Figure 17.9. [Hint: transform the fitted values
back to the original population scale as exp bY i

* +
]. Plot fitted values for the exponential growth

model against those for the logistic growth model. Which model appears to do a better job of
representing the data?

Table 17.5 Road Distances in Miles Among Major Canadian Cities

City NL PE NS NB QC ON MB SK AB BC

St. John’s, NL 0 924 952 1119 1641 1996 3159 3542 4059 4838
Charlottetown, PE 924 0 164 252 774 1129 2293 2675 3192 3972
Halifax, NS 952 164 0 310 832 1187 2351 2733 3250 4029
Fredericton, NB 1119 252 310 0 522 877 2041 2423 2940 3719
Montreal, QC 1641 774 832 522 0 355 1519 1901 2418 3197
Toronto, ON 1996 1129 1187 877 355 0 1380 1763 2281 3059
Winnipeg, MB 3159 2293 2351 2041 1519 1380 0 382 899 1679
Regina, SK 3542 2675 2733 2423 1901 1763 382 0 517 1297
Edmonton, AB 4059 3192 3250 2940 2418 2281 899 517 0 987
Vancouver, BC 4838 3972 4029 3719 3197 3059 1679 1297 987 0

SOURCE: Canada (1962).

Exercises 525



Exercise 17.11. Recall the Box-Tidwell regression model,

Yi ¼ αþ β1X γ1
i1 þ % % % þ βkX γk

ik þ εi

In Section 12.5.2, I described a procedure for fitting the Box-Tidwell model that relies on con-
structed variables. I applied this procedure to data from the Canadian Survey of Labour and
Income Dynamics to fit the model

log2 wages ¼ αþ β1ageγ1 þ β2educationγI þ β3maleþ ε

where male is a dummy regressor coded 1 for men and 0 for women. Fit this model to the data
by general nonlinear least squares. Are there any advantages to using general nonlinear least
squares in place of Box and Tidwell’s procedure? Any disadvantages? Can the two approaches
be combined?

Summary

& Nonlinear regression models that are linear in the parameters, for example, the quadratic
regression model

Y ¼ β0 þ β1X1 þ β2X2 þ β3X 2
1 þ β4X 2

2 þ β5X1X2 þ ε

can be fit by linear least squares.
& Regression splines are piece-wise cubic polynomials that are continuous at join-points,

called knots, and that are constrained to have equal slopes and curvature on either side
of a knot. Although fully parametric, regression splines generally do a good job of
responding to local aspects of the data and can be incorporated as building blocks into
linear and generalized linear models.

& Some nonlinear models can be rendered linear by a transformation. For example, the
multiplicative gravity model of migration,

Yij ¼ α
Pβ

i Pγ
j

Dδ
ij

εij

(where Yij is the number of migrants moving from location i to location j, Pi is the popu-
lation at location i, Dij is the distance separating the two locations, and εij is a multiplica-
tive error term) can be linearized by taking logs.

& More generally, nonlinear models of the form Yi ¼ f ðfl; x0iÞ þ εi (in which fl is a vector
of p parameters to be estimated, and x0i is a vector of explanatory-variable values) can be
estimated by nonlinear least squares, finding the value of b that minimizes

SðbÞ ¼
Xn

i¼1

E2
i ¼

Xn

i¼1

Yi ' f ðb; x0iÞ
& '2

& Iterative methods for finding the nonlinear least-squares estimates include the method of
steepest descent and, more practically, the Gauss-Newton and Marquardt methods.
Estimated asymptotic covariances for the coefficients are given by

bVðbÞ ¼ S2
E Fðb;XÞ½ )0Fðb;XÞ
( )'1
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where Fðb;XÞ is the matrix of derivatives, with i; jth entry ∂f ðb; x0iÞ=∂Bj, and
S2

E ¼
P

E2
i =ðn' pÞ is the estimated error variance.

& An example of an essentially nonlinear model, which requires nonlinear least squares, is
the logistic population-growth model,

Yi ¼
β1

1þ expðβ2 þ β3XiÞ
þ εi

where Yi is population size and Xi is time.

Recommended Reading

& Hastie et al. (2009, chap. 5) provide a rigorous treatment of regression splines, explain-
ing their relationship to smoothing splines for nonparametric regression.34 Regression
splines also figure prominently in Harrell (2001).

& Further discussion of nonlinear least squares can be found in many sources, including
Gallant (1975), Draper and Smith (1998, chap. 24), Greene (2003, chap. 9), Bard
(1974), and Bates and Watts (1988) in rough order of increasing detail and difficulty.

& Draper and Smith (1998, chapts. 12 and 22) also discuss polynomial and orthogonal-
polynomial regression models.

34Nonparametric regression is taken up in the next chapter.
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18 Nonparametric
Regression

T he essential idea of nonparametric-regression analysis was introduced in Chapter 2: to
examine the conditional distribution of the response variable—or some aspect of that dis-

tribution, such as its center—as a function of one or more explanatory variables, without
assuming in advance what form that function takes. This chapter elaborates that simple idea,
developing methods of nonparametric simple and multiple regression for quantitative response
variables, along with generalized nonparametric-regression models for categorical responses,
for count data, and for non-normal quantitative response variables. Taken together, these meth-
ods provide a more flexible alternative to the parametric linear, generalized linear, and non-
linear regression models described in the earlier chapters of the book.

18.1 Nonparametric Simple Regression:
Scatterplot Smoothing

This section presents several methods of nonparametric simple regression: kernel regression;
local-polynomial regression, which generalizes kernel regression; and smoothing splines.
Because kernel regression and local-polynomial regression are mathematically simpler than
smoothing splines, I will emphasize these methods in developing some of the statistical theory
underlying nonparametric regression.

Nonparametric simple regression is useful in its own right and for its extension to and use in
nonparametric multiple-regression and additive-regression models. A principal application of
nonparametric simple regression is to examine the relationship between two quantitative vari-
ables in a scatterplot, and these methods are therefore often called ‘‘scatterplot smoothers.’’
Indeed, in the preceding chapters, I have often used the lowess local-regression smoother to
facilitate the interpretation of scatterplots.

18.1.1 Kernel Regression

Kernel regression generalizes the simple local-averaging method of nonparametric regres-
sion described in Chapter 2.1 Suppose that we wish to estimate the regression function
Y ¼ f ðxÞ þ ε at a particular value of the explanatory variable, X ¼ x0. As in linear and

1See Section 2.3. It would be useful to reread that section now and generally to review the material in Chapter 2.
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nonlinear regression models, we will assume that the error ε is normally and independently dis-
tributed with an expectation of 0 and constant variance σ2

ε .2 As well, although the regression
function f ð%Þ is left unspecified, we will assume that it is smooth and continuous.3

The basic idea of kernel regression is that in estimating f ðx0Þ, it is desirable to give greater
weight to observations that are close to the focal x0 and less weight to those that are remote.
Let zi [ ðxi & x0Þ=h denote the scaled, signed distance between the X -value for the ith observa-
tion and the focal x0. As I will explain shortly, the scale factor h, called the bandwidth of the
kernel estimator, plays a role similar to the window width of a local average and controls the
smoothness of the kernel estimator.

We need a kernel function KðzÞ that attaches greatest weight to observations that are close to
the focal x0 and then falls off symmetrically and smoothly as jzj grows.4 Given these character-
istics, the specific choice of a kernel function is not critical. Having calculated weights
wi ¼ K½ðxi & x0Þ=h(, we proceed to compute a fitted value at x0 by weighted local averaging of
the Y values:

bf ðx0Þ ¼ bY jx0 ¼
Pn

i¼1 wiYiPn
i¼1 wi

Two popular choices of kernel functions, illustrated in Figure 18.1, are the Gaussian or normal
kernel and the tricube kernel:

−2 −1 0 1 2
Z

K
(Z

)

1.0

0.0

0.8

0.6

0.4

0.2

Figure 18.1 Tricube (light solid line), normal (broken line), and rectangular (heavy solid line) ker-
nel functions. The normal kernel is rescaled to facilitate comparison.

2For simplicity of exposition, I will treat the explanatory variables in this chapter as fixed rather than random. As in lin-
ear regression, this stipulation can be relaxed by assuming that the errors are independent of the explanatory variables.
See Chapter 6 and Section 9.6.
3This assumption of smoothness is common to all of the methods of nonparametric regression considered in the chap-
ter. There are methods of nonparametric regression that can, for example, deal with discontinuities (such as wavelet
regression—see, e.g., Nason & Silverman, 2000), but they are beyond the scope of the current discussion.
4Kernel functions were introduced in Section 3.1.2 in connection with nonparametric density estimation, which may be
thought of as a univariate analog of kernel and local-polynomial regression.
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) The Gaussian kernel is simply the standard-normal density function,

KN ðzÞ ¼
1ffiffiffiffiffiffi
2π
p e&z2=2

Here, the bandwidth h is the standard deviation of a normal distribution centered at x0.
Observations at distances greater than 2h from the focal value therefore receive nearly 0
weight, because the normal density is small beyond 2 standard deviations from the mean.

) The tricube kernel is

KT ðzÞ ¼ ð1& jzj3Þ3 for jzj < 1
0 for jzj ‡ 1

"

For the tricube kernel, h is the half-width of a window centered at the focal x0.
Observations that fall outside of the window receive 0 weight.

) Using a rectangular kernel (also shown in Figure 18.1)

KRðzÞ ¼
1 for jzj < 1
0 for jzj ‡ 1

"

gives equal weight to each observation in a window of half-width h centered at x0 and 0
weight to observations outside of this window, producing an unweighted local average.5

I have implicitly assumed that the bandwidth h is fixed, but the kernel estimator is easily
adapted to nearest-neighbor bandwidths, which include a constant number or proportion of the
data. The adaptation is simplest for kernel functions, like the tricube kernel, that fall to 0:
Simply adjust hðxÞ so that a constant number of observations m is included in the window. The
fraction m=n is called the span of the kernel smoother. It is common to evaluate the kernel esti-
mator either at a number of values evenly distributed across the range of X or at the ordered
observations xðiÞ.

Nearest-neighbor kernel estimation is illustrated in Figure 18.2 for the relationship between
the prestige and income levels of 102 Canadian occupations in 1971.6 Panel (a) shows a neigh-
borhood containing 40 observations centered on the 80th ordered X -value. Panel (b) shows the
tricube weight function defined on the window; the bandwidth h½xð80Þ( is selected so that the
window accommodates the 40 nearest neighbors of the focal xð80Þ. Thus, the span of the
smoother is 40=102 » 0:4. Panel (c) shows the locally weighted average, bYð80Þ ¼ bY jxð80Þ; note
that this is the fitted value associated with xð80Þ, not the 80th ordered fitted value. Finally, panel
(d) connects the fitted values above the xðiÞ to obtain the kernel estimate of the regression of
prestige on income. In comparison to the local-average regression (Figure 2.8 on page 24), the
kernel estimate is smoother, but it still exhibits artificial flattening at the boundaries (called
boundary bias). Varying the span of the kernel estimator controls the smoothness of the
estimated regression function: Larger spans produce smoother results. A simple approach to

5This is the local-averaging estimator described in Section 2.3.
6The Canadian occupational prestige data set was introduced in Chapter 2.
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selecting the span is to pick the smallest value that produces an acceptably smooth fit to the
data.7
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Figure 18.2 The kernel estimator applied to the Canadian occupational prestige data: (a) a win-
dow containing the m ¼ 40 nearest X neighbors of the focal value x(80); (b) the tri-
cube weight function and weights for observations within the window; (c) the
weighted average bYð80Þ of the Y values in the window; (d) the nonparametric regres-
sion line connecting the locally weighted averages centered at each x(i).

7Choice of bandwidth or span is discussed in more detail in connection with local polynomial regression in the next
section. See Exercise 18.1 for the effect on the kernel estimator of varying the span in the regression of occupational
prestige on income.

18.1 Nonparametric Simple Regression: Scatterplot Smoothing 531



Kernel regression estimates the regression function at a focal value x0 of the explanatory
variable by weighted local averaging of Y :

bf ðx0Þ ¼ bY jx0 ¼
Pn

i¼1 wiYiPn
i¼1 wi

The weights are provided by a kernel function, wi ¼ K½ðxi & x0Þ=h(, which takes on its
largest value at Kð0Þ and falls symmetrically toward 0 as jðxi & x0Þ=hj grows.
Observations close to the focal x0 therefore receive greatest weight. The kernel estimator
is evaluated at representative focal values of X or at the ordered X -values, xðiÞ. The band-
width h of the kernel estimator can be fixed or can be adjusted to include a fixed propor-
tion of the data, called the span of the kernel estimate. The larger the span, the smoother
the kernel regression.

18.1.2 Local-Polynomial Regression

Local-polynomial regression corrects some of the deficiencies of kernel estimation. It pro-
vides a generally adequate method of nonparametric regression that extends straightforwardly
to multiple regression, additive regression, and generalized nonparametric regression (as
described later in this chapter).

We are familiar with polynomial regression,8 where a pth-degree polynomial in an explana-
tory variable X ,

Yi ¼ aþ b1xi þ b2x2
i þ % % % þ bpxp

i þ εi

is fit to data; p ¼ 1 corresponds to a linear fit, p ¼ 2 to a quadratic fit, and so on. Fitting a con-
stant (i.e., the mean) corresponds to p ¼ 0.

Local-polynomial regression extends kernel estimation to a polynomial fit at the focal value
x0, using local kernel weights, wi ¼ K½ðxi & x0Þ=h(. The resulting weighted least-squares
(WLS) regression9 fits the equation

Yi ¼ Aþ B1ðxi & x0Þ þ B2ðxi & x0Þ2 þ % % % þ Bpðxi & x0Þp þ Ei

to minimize the weighted residual sum of squares,
Pn

i¼1 wiE2
i . Once the WLS solution is

obtained, the fitted value at the focal x0 is just bY jx0 ¼ A. As in kernel regression, this proce-
dure is repeated for representative focal values of X or at the observations xi.

Also as in kernel regression, we can employ a fixed bandwidth or adjust the bandwidth to
include a fixed proportion—or span—of nearest neighbors to the focal value x0. Nearest-neigh-
bor local-polynomial regression is often called lowess (an acronym for locally weighted scatter-
plot smoother, alternatively rendered as loess, for local regression)—a term with which we are
already familiar.

Selecting p ¼ 1 produces a local-linear fit, the most common case. The ‘‘tilt’’ of the local-
linear fit promises reduced bias in comparison to the kernel estimator of the previous section,

8See Section 17.1.
9Weighted-least-squares regression is developed in Section 12.2.2. Centering at x0, by employing xi & x0, is convenient
(but inessential) in that the fitted value at x0 is then simply the intercept A (see below).
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which corresponds to p ¼ 0. This advantage is most apparent at the boundaries, where the ker-
nel estimator tends to flatten. The values p ¼ 2 or p ¼ 3, local quadratic or cubic fits, produce
more flexible regressions. Greater flexibility has the potential to reduce bias further, but flexi-
bility also entails the cost of greater sampling variation. There is, it turns out, a theoretical
advantage to odd-order local polynomials, so p ¼ 1 is generally preferred to p ¼ 0 and p ¼ 3
to p ¼ 2. These issues are explored below.

Figure 18.3 illustrates the computation of a local-linear-regression fit to the Canadian occupa-
tional prestige data, using the tricube kernel function and nearest-neighbor bandwidths. Panel (a)
shows a window accommodating the 40 nearest neighbors of the focal value xð80Þ, corresponding
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Figure 18.3 Nearest-neighbor local linear regression of prestige on income. The window in (a)
includes the m ¼ 40 nearest neighbors of the focal value x(80). The tricube weights
for this window are shown in (b) and the locally weighted least-squares line in (c),
producing the fitted value bYð80Þ. Fitted values for all the observations are connected
in (d) to produce the nonparametric local-polynomial regression line.
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to a span of 40=102 » 0:4. Panel (b) shows the tricube weight function defined on this window.
The locally weighted linear fit appears in panel (c). Fitted values calculated at each observed X -
value are connected in panel (d). There is no flattening of the fitted regression function at the
boundaries, as there was for kernel estimation (cf. Figure 18.2 on page 531).

Local-polynomial regression extends kernel estimation to a polynomial fit at the focal
value x0, using local kernel weights, wi ¼ K½ðxi & x0Þ=h(. The resulting WLS regression
fits the equation

Yi ¼ Aþ B1ðxi & x0Þ þ B2ðxi & x0Þ2 þ % % % þ Bpðxi & x0Þp þ Ei

to minimize the weighted residual sum of squares,
Pn

i¼1 wiE2
i . The fitted value at the focal

x0 is just bY jx0 ¼ A. This procedure is repeated for representative focal values of X , or at
the observations xi. We can employ a fixed bandwidth or adjust the bandwidth for a fixed
span. Nearest-neighbor local-polynomial regression is often called lowess (or loess).

Selecting the Span

I will assume nearest-neighbor bandwidths, so bandwidth choice is equivalent to selecting
the span of the local-regression smoother. I will also assume a locally linear fit. The methods
of this section generalize in an obvious manner to fixed-bandwidth and higher-order polyno-
mial smoothers.

A generally effective approach to selecting the span is guided trial and error. The span
s ¼ 0:5 is often a good point of departure. If the fitted regression looks too rough, then try
increasing the span; if it looks smooth, then see if the span can be decreased without making
the fit too rough. We want the smallest value of s that provides a smooth fit.

The terms smooth and rough are admittedly subjective, and a sense of what I mean here is
probably best conveyed by example. An illustration, for the Canadian occupational prestige
data, appears in Figure 18.4. For these data, selecting s ¼ 0:5 or s ¼ 0:7 appears to provide a
reasonable compromise between smoothness and fidelity to the data.

More sophisticated methods for selecting the span will be described presently.10 The visual
approach usually works very well, however, and visual trial and error should be performed
even if more sophisticated approaches are used to provide an initial value of s.

A generally effective visual approach to selecting the span in local-polynomial regression
is guided trial and error. The span s ¼ 0:5 is often a good point of departure. If the fitted
regression looks too rough, then try increasing the span; if it looks smooth, then see if
the span can be decreased without making the fit too rough. We want the smallest value
of s that provides a smooth fit.

10Also see Exercise 18.2.
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Figure 18.4 Nearest-neighbor local linear regression of prestige on income, for several values of
the span s. The value s ¼ 0.5 or 0.7 appears to reasonably balance smoothness with
fidelity to the data.
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Statistical Issues in Local Regression*

I will again assume local-linear regression. The results in this section extend to local-polynomial
fits of higher degree, but the linear case is simpler.

Figure 18.5 demonstrates why the locally linear estimator has a bias advantage in compari-
son to the kernel estimator. In both panels (a) and (b), the true regression function (given by
the heavy line) is linear in the neighborhood of the focal value x0.

) In panel (a), the X -values in the window are symmetrically distributed around the focal
x0 at the center of the window. As a consequence, the weighted average µ of the Y s in
the window (or, indeed, the simple average of the Y s in the window) provides an
unbiased estimate of µjx0 [ EðY jx0Þ; the local regression line also provides an unbiased
estimate of µjx0 because it estimates the true local regression function.

) In panel (b), in contrast, there are relatively more observations at the right of the win-
dow. Because the true regression function has a positive slope in the window, µ exceeds
µjx0— that is, the kernel estimator is biased. The local-linear regression, however, still
estimates the true regression function and therefore provides an unbiased estimate of
µjx0. The boundaries are regions in which the observations are asymmetrically distribu-
ted around the focal x0, accounting for the boundary bias of the kernel estimator, but the
point is more general.

Of course, if the true regression in the window is nonlinear, then both the kernel estimate and
the locally linear estimate will usually be biased, if to varying degrees.11 The conclusion to be
drawn from these pictures is that the bias of the kernel estimate depends on the distribution of
X -values, while the bias of the locally linear estimate does not. Because the locally linear

µ = µ|x0

(a)

X

Y

x0

(b)

X

Y

x0

µ|x0

µ

bi
as

µ = f(X) µ = f(X)

Figure 18.5 (a) When the relationship is linear in the neighborhood of the focal x0 and the obser-
vations are symmetrically distributed around x0, both the kernel estimator (which esti-
mates µ) and the local-linear estimator (which, because the relationship is linear in
the window, directly estimates µjx0) are unbiased. (b) When the regression is linear in
the neighborhood, but the observations are not symmetrically distributed around x0,
the local-linear estimator is still unbiased, but the kernel estimator is biased.

11It is possible that µ ¼ µjx0 by good fortune, but this is an unusual occurrence.
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estimate can adapt to a ‘‘tilt’’ in the true regression function, it generally has smaller bias when
the X -values are unevenly distributed and at the boundaries of the data. Because the kernel and
locally linear estimators have the same asymptotic variance, the smaller bias of the locally lin-
ear estimator translates into smaller mean-squared error.

These conclusions generalize to local-polynomial regressions of even degree p and odd
degree pþ 1 (e.g., p ¼ 2 and pþ 1 ¼ 3): Asymptotically, the bias of the odd member of the
pair is independent of the distribution of X -values, while the bias of the even member is not.
The bias of the odd member of the pair is generally smaller than that of the even member,
while the variance is the same. Asymptotically, therefore, the odd member of the pair (e.g., the
local cubic estimator) has a smaller mean-squared error than the even member (e.g., the local
quadratic estimator).

A Closer Look at the Bandwidth of the Local-Regression Smoother*

As the bandwidth h of the local-regression estimator decreases, the bias of the estimator
decreases and its sampling variance increases. Suppose that we evaluate the local regression at
the focal value x0:

) At one extreme, h ¼ 0 and only observations with X -values exactly equal to x0 contrib-
ute to the local fit. In this case, it is not possible to fit a unique local regression line, but
we could still find the fitted value at x0 as the average Y value for X ¼ x0; if there are
no tied values of x0, then the fit is exact, bY0 ¼ Y0, and the local-regression estimator
simply joins the points in the scatterplot. Because EðY jx0Þ ¼ µjx0, the bias of the esti-
mator is 0; its variance—equal to the conditional variance σ2

ε of an individual observa-
tion—is large, however.

) At the other extreme, h ¼ ‘. Then, the scaled distances of explanatory-variable values
xi from the focal x0, that is, xi ¼ ðxi & x0Þ=h, are all 0, and the weights wi ¼ KðziÞ are
all equal to the maximum (e.g., 1 for the tricube kernel function). With equal weights
for all the observations, the fit is no longer local. In effect, we fit a global least-squares
line to the data. Now the bias is large (unless, of course, the true regression really is
globally linear), but the sample-to-sample variance of the fit is small.

The bottom line is the mean-squared error of the estimator,

MSEðbY jx0Þ[ E½ðbY jx0 & µjx0Þ2(

¼ E bY jx0 & EðbY jx0Þ
h i2
" #

þ EðbY jx0Þ & µjx0

h i2

which is the sum of variance and squared bias. We seek the bandwidth h* at x0 that minimizes
the mean-squared error (MSE), providing an optimal trade-off of bias against variance (see
below). Of course, we need to repeat this process at each focal value of X for which
f ðxÞ ¼ µjx is to be estimated, adjusting the bandwidth as necessary to minimize MSE.

The expectation and variance of the local-linear smoother at the focal value x0 are

EðbY jx0Þ » f ðx0Þ þ
h2

2
s2

Kf 00ðx0Þ

V ðbY jx0Þ »
σ2
εa2

K

nhpX ðx0Þ

ð18:1Þ
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where (as before)

) bY jx0 [ bf ðx0Þ is the fitted value at X ¼ x0;
) σ2

ε ¼ V ðεÞ is the variance of the errors, that is, the conditional (constant) variance of Y
around the true regression function;

) h is the bandwidth;
) n is the sample size;

and

) f 00ðx0Þ is the second derivative of the true regression function at the focal x0 (indicative
of the curvature of the regression function, that is, the rapidity with which the slope of
the regression function is changing at x0);

) pX ðx0Þ is the probability density for the distribution of X at x0 (large values of which,
therefore, indicate an x0 near which many observations will be made);12

) s2
K and a2

K are positive constants that depend on the kernel function.13

The bias at x0 is

biasðbY jx0Þ[ EðbY jx0Þ & f ðx0Þ »
h2

2
s2

Kf 00ðx0Þ

The bias of the estimator is large, therefore, when the bandwidth h and curvature f 00ðx0Þ of the
regression function are large. In contrast, the variance of the estimator (from Equations 18.1) is
large when the error variance σ2

ε is large, when the sample size n is small, when the bandwidth
h is small, and where data are sparse [i.e., pX ðx0Þ is small].14

Because making h larger increases the bias but decreases the variance, bias and variance, as
usual, work at cross-purposes. The value of h that minimizes the MSE—the sum of squared
bias and variance—at x0 is

h*ðx0Þ ¼
a2

K

s4
K

· σ2
ε

npX ðx0Þ f 00ðx0Þ½ (2

" #1
5

ð18:2Þ

Note that where the curvature f 00ðx0Þ is 0, the optimal bandwidth h*ðx0Þ is infinite, suggesting
a globally linear fit to the data.15 Nearest-neighbor bandwidths, which employ a fixed span,

12In contrast to the rest of the presentation, here the explanatory variable X is treated as a random variable.
13These formulas are derived in Bowman and Azzalini (1997, pp. 72– 73). The two constants are

s2
K ¼

Z
z2KðzÞdZ

a2
K ¼

Z
½KðzÞ(2dZ

If the kernel KðzÞ is a probability density function symmetric around 0, such as the standard-normal distribution, then
s2

K is the variance of this distribution. For the standard-normal kernel, for example, s2
K ¼ 1 and a2

K ¼ 0:282. For the tri-
cube kernel (which is not a density function), s2

K ¼ 1=6 and a2
K ¼ 0:949.

14The expected effective sample size contributing to the estimate at x ¼ x0 is proportional to nhpX ðx0Þ, the denominator
of the variance.
15See Exercise 18.4 for an illustration of these points.
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adjust for the factor npX ðx0Þ but do not take account of the local curvature of the regression
function.

To assess the overall accuracy of the nearest-neighbor local-regression estimator, we need
some way of cumulating mean-squared error over observed X -values. One way of doing so is
to calculate the average squared error (ASE):

ASEðsÞ ¼
Pn

i¼1 ½bY iðsÞ & µi(
2

n
ð18:3Þ

where µi [ EðY jxiÞ is the ‘‘true’’ expected value of the response for the ith observation, and
bYiðsÞ is the ith fitted value for span s. Some points to note are the following:

) The squared error is evaluated at the observed X -values and then averaged over the n
observations.

) The ASE is calculated for a particular set of data, not as an expectation with respect to
repeated sampling.16

) To calculate the ASE requires knowledge of the true regression function, and the ASE
therefore cannot be used in practice to select the span. The cross-validation function,
described in the next section, estimates the ASE.

The bias and variance of the local-linear estimator at the focal value x0 are both a func-
tion of the bandwidth h, as well as of properties of the data and the kernel function:

biasðbY jx0Þ »
h2

2
s2

Kf 00ðx0Þ

V ðbY jx0Þ »
σ2
εa2

K

nhpX ðx0Þ

where s2
K and a2

K are constants that depend on the kernel function, f 00ðx0Þ is the second
derivative (‘‘curvature’’) of the regression function at x0, and pX ðx0Þ is the probability-
density of X -values at x0. We would ideally like to choose the value of h at each focal
value that minimizes the mean-squared error of estimation—that is, the sum of squared
bias and variance.

Selecting the Span by Cross-Validation

A conceptually appealing, but complex, approach to bandwidth selection is formally to esti-
mate the optimal bandwidth h*. We need to estimate h*ðx0Þ for each value x0 of X at which
bY jx is to be evaluated or to estimate an optimal average value to be used with the fixed-band-
width estimator. A similar approach is applicable to the nearest-neighbor local-regression
estimator.17

16See Exercise 18.5 for an illustration.
17*The so-called plug-in estimate of h* proceeds by estimating its components—σ2

ε , f 00ðx0Þ, and pX ðx0Þ; we need not
estimate the other quantities in Equation 18.2 (on page 538), because the sample size n is known, and the constants a2

K
and s4

K can be calculated from the kernel function. Estimating σ2
ε and f 00ðx0Þ requires a preliminary estimate of the

regression function.
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A simpler approach, applicable to both the fixed-bandwidth and the nearest-neighbor estima-
tors, is to estimate the optimal bandwidth or span by cross-validation.18 I will consider the
nearest-neighbor estimator; the development for the fixed-bandwidth estimator is similar. In
cross-validation, we evaluate the regression function at the observations xi.

The key idea in cross-validation is to omit the ith observation from the local regression at
the focal value xi. We denote the resulting estimate of EðY jxiÞ as bY&ijxi. Omitting the ith obser-
vation makes the fitted value bY&ijxi independent of the observed value Yi.

The cross-validation function is

CVðsÞ[

Pn
i¼1

bY &iðsÞ & Yi

h i2

n

where bY&iðsÞ is bY&ijxi for span s. The object is to find the value of s that minimizes CVðsÞ. In
practice, we can compute CVðsÞ for a range of values of s.

Figure 18.6(a) shows CVðsÞ for the regression of occupational prestige on income. In this
case, the cross-validation function provides little specific help in selecting the span, suggesting
simply that s should be relatively large. Compare this with the value s » :6 that we arrived at by
visual trial and error.

The cross-validation function CVðsÞ can be costly to compute because it requires refitting
the model n times for each candidate value of the span s.19 For this reason, approximations
have been proposed, one of which is termed generalized cross-validation, abbreviated GCV
(Wahba, 1985).20 In the present context, the GCV criterion is
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Figure 18.6 (a) Cross-validation function and (b) generalized cross-validation function for the
local-linear regression of prestige on income.

18The more general use of cross-validation for model selection is discussed in Chapter 22.
19In the current context, we typically want to evaluate the local regression at each observation anyway, but computa-
tional short-cuts (such as interpolation for closely spaced values of X ) make the point valid. Moreover, the computa-
tional burden imposed by cross-validation extends to other contexts as well.
20The GCV criterion also exhibits a desirable invariance property that the CV criterion does not share. See, for exam-
ple, Wood (2006, Section 4.5.3).
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GCVðsÞ[ n · RSSðsÞ
dfresðsÞ½ (2

ð18:4Þ

where RSSðsÞ is the residual sum of squares and dfresðsÞ the ‘‘equivalent’’ residual degrees of
freedom for the local-regression model with span s.21 The GCV function for the example
appears in Figure 18.6(b). In this case, GCVðsÞ provides an excellent approximation to CVðsÞ.

The cross-validation function

CVðsÞ[

Pn
i¼1

bY &iðsÞ & Yi

h i2

n

can be used to select the span s in local-polynomial regression, picking s to minimize
CVðsÞ. The fitted value at each observation bY&iðsÞ is computed from a local regression
that omits that observation. Because the cross-validation function CVðsÞ can be costly to
compute, approximations such as generalized cross-validation have been proposed. The
GCV criterion is

GCVðsÞ ¼ n · RSSðsÞ
dfresðsÞ½ (2

where RSSðsÞ is the residual sum of squares and dfresðsÞ the ‘‘equivalent’’ residual
degrees of freedom for the local-regression smoother with span s.

A Closer Look at Cross-Validation* The cross-validation function is a kind of estimate of
the mean (i.e., expected) ASE at the observed X s,22

MASEðsÞ[ E

Pn
i¼1

bYiðsÞ & µi

h i2

n

8
><

>:

9
>=

>;

Because of the independence of bY&i and Yi, the expectation of CVðsÞ is

E½CVðsÞ( ¼

Pn
i¼1 E bY&iðsÞ & Yi

h i2

n
» MASEðsÞ þ σ2

ε

21See below (page 546) for an explanation of degrees of freedom in local-polynomial regression.
22Alternatively, rather than averaging over the observed X -values, we could integrate over the probability-density of X ,
producing the mean integrated square error (MISE):

MISEðsÞ ¼
Z

E½bY jxðsÞ( & µjx
n o

pðxÞdX

We can think of MASE as a discrete version of MISE.
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The substitution of Yi for µi increases the expectation of CVðsÞ by σ2
ε , but because σ2

ε is a
constant, the value of s that minimizes E½CV(sÞ( is (approximately) the value that minimizes
MASEðsÞ.

To understand why it is important in this context to omit the ith observation in calculating
the fit at the ith observation, consider what would happen were we not to do this. Then, setting
the span to 0 would minimize the estimated MASE, because (in the absence of tied X -values)
the local-regression estimator simply interpolates the observed data: The fitted and observed
values are equal, and dMASEð0Þ ¼ 0.

Although cross-validation is often a useful method for selecting the span in local-polynomial
regression, it should be appreciated that CVðsÞ is only an estimate and is therefore subject to
sampling variation. Particularly in small samples, this variability can be substantial. Moreover,
the approximations to the expectation and variance of the local-regression estimator in
Equation 18.1 (page 537) are asymptotic, and in small samples, CVðsÞ often tends to provide
values of s that are too small.

Statistical Inference for Local-Polynomial Regression

In parametric regression—for example, linear least-squares regression—the central objects
of estimation are the regression coefficients. Statistical inference naturally focuses on these
coefficients, typically taking the form of confidence intervals or hypothesis tests.23 In nonpara-
metric regression, in contrast, there are no regression coefficients. Instead, the central object of
estimation is the regression function, and inference focuses on the regression function directly.

Many applications of simple nonparametric regression have as their goal visual smoothing
of a scatterplot. In these instances, statistical inference is at best of secondary interest.
Inference becomes more prominent in nonparametric multiple regression.24

The current section takes up several aspects of statistical inference for local-polynomial
regression with one explanatory variable. I start by explaining how to construct an approximate
confidence envelope for the regression function. Then, I present a simple approach to hypoth-
esis testing, based on an analogy to procedures for testing hypotheses in linear least-squares
regression. The statistical theory behind these relatively simple methods is subsequently
examined.

A general caveat concerns the selection of the span s: Because s is typically selected on
examination of the data—either visually or by employing a criterion such as CV or GCV— the
validity of classical statistical inference is compromised. The methods of this section are there-
fore best regarded as rough guides.25

Confidence Envelopes Consider the local-polynomial estimate bf ðxÞ ¼ bY jx of the regression
function f ðxÞ. For notational convenience, I assume that the regression function is evaluated at
the observed X -values, x1; x2; . . . ; xn, although the line of reasoning to be developed here is
more general.

23See Chapter 6.
24See Section 18.2.
25Issues of model selection are addressed more generally in Chapter 22.
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The fitted value bYi ¼ bY jxi results from a locally weighted least-squares regression of Y on
X . This fitted value is therefore a weighted sum of the observations:26

bYi ¼
Xn

j¼1

sijYj ð18:5Þ

where the weights sij are functions of the X -values. For the tricube weight function, for exam-
ple, sij is 0 for any observations outside the neighborhood of the focal xi. Because (by assump-
tion) the Yis are independently distributed, with common conditional variance
V ðY jX ¼ xiÞ ¼ V ðYiÞ ¼ σ2

ε , the sampling variance of the fitted value bYi is

V ðbYiÞ ¼ σ2
ε

Xn

j¼1

s2
ij

To apply this result, we require an estimate of σ2
ε . In linear least-squares simple regression, we

estimate the error variance as

S2
E ¼

P
E2

i

n& 2

where Ei ¼ Yi & bYi is the residual for observation i, and n& 2 is the degrees of freedom associ-
ated with the residual sum of squares. We ‘‘lose’’ 2 degrees of freedom as a consequence of
estimating two regression parameters—the intercept α and the slope β.27

We can calculate residuals in nonparametric regression in the same manner—that is,
Ei ¼ Yi & bYi, where, of course, the fitted value bYi is from the nonparametric regression. To
complete the analogy, we require the equivalent number of parameters or equivalent degrees
of freedom for the model, dfmod, from which we can obtain the equivalent residual degrees of
freedom, dfres ¼ n& dfmod. Then, the estimated error variance is

S2
E ¼

P
E2

i

dfres

and the estimated variance of the fitted value bYi is

bV ðbYiÞ ¼ S2
E

Xn

j¼1

s2
ij ð18:6Þ

Assuming normally distributed errors, or a sufficiently large sample, a 95% confidence interval
for EðY jxiÞ ¼ f ðxiÞ is approximately

bYi – 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðbY iÞ

q
ð18:7Þ

Putting the confidence intervals together for X ¼ x1; x2; . . . ; xn produces a pointwise 95% con-
fidence band or confidence envelope for the regression function.

An example, employing the local-linear regression of prestige on income in the Canadian
occupational prestige data (with span s ¼ 0:6), appears in Figure 18.7. Here, dfmod ¼ 5:006,
and S2

E ¼ 12; 004:72=ð102& 5:006Þ ¼ 123:77. The nonparametric-regression smooth therefore

26See the starred material in this section for this and other results.
27See Section 18.2.
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uses the equivalent of about five parameters—roughly the same as a fourth-degree polynomial.
The fit to the data, however, can differ substantially from that of fourth-degree polynomial,
which is much less sensitive to local characteristics of the regression function.28

Although this procedure for constructing a confidence band has the virtue of simplicity, it is
not quite correct, due to the bias in bY jx as an estimate of EðY jxÞ. If we have chosen the span
and degree of the local-polynomial estimator judiciously, however, the bias should be small.
Bias in bY jx has the following consequences:

) S2
E is biased upward, tending to overstate the error variance and making the confidence

interval too wide.29

) The confidence interval is on average centered in the wrong location.

These errors tend to offset each other. Because bY jx is biased, it is more accurate to describe
the envelope around the sample regression constructed according to Equation 18.7 as a ‘‘varia-
bility band’’ rather than as a confidence band.30

The fitted values in a local-polynomial regression are linear functions of the observa-
tions, bYi ¼

Pn
j¼1 sijYj. Estimating the error variance as S2

E ¼
P

E2
i =dfres, where dfres is

the equivalent residual degrees of freedom for the model, the estimated variance of a
fitted value is bV ðbYiÞ ¼ S2

E

Pn
j¼1 s2

ij. An approximate 95% pointwise confidence band

around the regression curve evaluated at the fitted values may be formed as
bY i – 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðbY iÞ

q
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Figure 18.7 Local-linear regression of occupational prestige on income, showing an approximate
pointwise 95% confidence envelope. The span of the smoother is s ¼ 0.6.

28See Exercise 18.7.
29Bowman and Azzalini (1997, Section 4.3) consider alternative approaches to estimating the error variance σ2

ε .
30We could, moreover, make the same point about confidence intervals for fitted values in linear least-squares regres-
sion, when the assumption of linearity is not exactly correct. Indeed, the bias in estimates of EðY jxÞ is likely to be less
in nonparametric regression than in linear regression.
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Hypothesis Tests In linear least-squares regression, F-tests of hypotheses are formulated by
comparing alternative nested models. To say that two models are nested means that one, the
more specific model, is a special case of the other, more general model.31 For example, in lin-
ear least-squares simple regression, the F-statistic

F0 ¼
TSS& RSS

RSS

n& 2

with 1 and n& 2 degrees of freedom tests the hypothesis of no linear relationship between Y
and X . Here, the total sum of squares, TSS ¼

P
ðYi & Y Þ2, is the variation in Y associated

with the null model of no relationship, Yi ¼ aþ εi, and the residual sum of squares, RSS ¼P
ðYi & bYiÞ2, represents the variation in Y conditional on the linear relationship between Y

and X , based on residuals from the model Yi ¼ aþ bxi þ εi. Because the null model is a spe-
cial case of the linear model, with β ¼ 0, the two models are nested.

An analogous, but more general, F-test of no relationship for the nonparametric-regression
model is

F0 ¼

TSS& RSS

dfmod & 1
RSS

dfres

ð18:8Þ

with dfmod & 1 and dfres ¼ n& dfmod degrees of freedom. Here RSS is the residual sum of
squares for the nonparametric-regression model. Applied to the local-linear regression of prestige
on income, where n ¼ 102, TSS ¼ 29;895:43, RSS ¼ 12;004:72, and dfmod ¼ 5:006, we have

F0 ¼

29;895:43& 12;004:72

5:006& 1
12;004:72

102& 5:006

¼ 36:08

with 5:006& 1 ¼ 4:006 and 102& 5:006 ¼ 96:994 degrees of freedom. The resulting p-value
is much smaller than .0001, casting strong doubt on the null hypothesis of no relationship
between prestige and income of occupations.

A test of nonlinearity is simply constructed by contrasting the nonparametric-regression
model with the linear simple-regression model.32 The models are properly nested because a lin-
ear relationship is a special case of a general, potentially nonlinear, relationship. Denoting the
residual sum of squares from the linear model as RSS0 and the residual sum of squares from
the more general nonparametric-regression model as RSS1, we have

F0 ¼

RSS0 & RSS1

dfmod & 2
RSS1

dfres

31See Section 6.2.2.
32Cf. the test for ‘‘lack of fit’’ described in Section 12.4.1.
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with dfmod & 2 and dfres ¼ n& dfmod degrees of freedom. This test is constructed according to
the rule that the most general model—here the nonparametric-regression model—is employed
for estimating the error variance in the denominator of the F-statistic, S2

E ¼ RSS1=dfres. For the
regression of occupational prestige on income, RSS0 ¼ 14;616:17, RSS1 ¼ 12;004:72, and
dfmod ¼ 5:006; thus,

F0 ¼

14;616:17& 12;004:72

5:006& 2
12;004:72

102& 5:006

¼ 7:02

with 5:006& 2 ¼ 3:006 and 102& 5:006 ¼ 96:994 degrees of freedom. The corresponding p-
value, :0003, suggests that the relationship between the two variables is significantly nonlinear.

Approximate incremental F-tests for hypotheses in local-polynomial regression are
formulated by contrasting nested models, in analogy to similar tests for linear models
fit by least squares. For example, to test the hypothesis of no relationship in the
nonparametric-regression model, we can compute the F-test statistic

F0 ¼

TSS& RSS

dfmod & 1
RSS

dfres

where dfmod and dfres ¼ n& dfmod are respectively the equivalent degrees of freedom
for the regression model and for error, and RSS is the residual sum of squares for the
model.

Similarly, to test for nonlinearity, we can contrast the fitted nonparametric-regression
model with a linear model, computing

F0 ¼

RSS0 & RSS1

dfmod & 2
RSS1

dfres

where RSS0 is the residual sum of squares for the linear regression and RSS1 the
residual sum of squares for the more general nonparametric regression.

Degrees of Freedom* As noted, the fitted values bYi in local-polynomial regression are
weighted sums of the observed Y values (repeating Equation 18.5 on page 543):

bYi ¼
Xn

j¼1

sijYj

Let us collect the weights sij into the smoother matrix
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S
ðn · nÞ

[

s11 s12 % % % s1i % % % s1n

s21 s22 % % % s2i % % % s2n

..

. ..
. . .

. ..
. ..

.

si1 si2 % % % sii % % % sin

..

. ..
. ..

. . .
. ..

.

sn1 sn2 % % % sni % % % snn

2

66666664

3

77777775

Then,

by
ðn · 1Þ

¼ S y
ðn · 1Þ

where by ¼ ½by1;by2; . . . ;byn(
0 is the vector of fitted values, and y ¼ ½y1; y2; . . . ; yn(0 is the vector

of observed response values.
The covariance matrix of the fitted values is

V ðbyÞ ¼ SV ðyÞS0 ¼ σ2
εSS0 ð18:9Þ

This result follows from the assumptions that the conditional variance of Yi is constant (σ2
εÞ

and that the observations are independent, implying that V ðyÞ ¼σ2
εIn. Equation 18.6 (page 543)

for the variance of bYi is just an expansion of the ith diagonal entry of V ðbyÞ.
The smoother matrix S is analogous to the hat-matrix H [ XðX0XÞ&1X0 in linear least-

squares regression, where X is the model matrix for the linear model.33 The residuals in linear
least-squares regression are

e ¼ y& by ¼ ðIn &HÞy

The corresponding expression in local regression is

e ¼ y& by ¼ ðIn & SÞy

To determine the smoother matrix S, recall that bYi results from a locally weighted polynomial
regression of Y on X :

Yj ¼ Ai þ B1iðxj & xiÞ þ B2iðxj & xiÞ2 þ % % % þ Bpiðxj & xiÞp þ Eji

where the weights wji ¼ K½ðxj & xiÞ=h( decline with distance from the focal xi. The local-
regression coefficients are chosen to minimize

Pn
j¼1 wjiE2

ji. The fitted value bYi is just the
regression constant Ai. In matrix form, the local regression is

y ¼ Xibi þ ei

The model matrix Xi contains the regressors in the local-regression equation (including an ini-
tial column of 1s for the constant), and the coefficient vector bi contains the regression
coefficients.

Define the diagonal matrix Wi [ diagf ffiffiffiffiffiffi
wji
p g of square-root kernel weights. Then, the local-

regression coefficients are

33See Section 11.8.
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bi ¼ ðX0iWiXiÞ&1X0iWiy

and the ith row of the smoother matrix is the first row of ðX0iWiXiÞ&1X0iWi (i.e., the row that
determines the constant, Ai ¼ bYi). To construct S, we need to repeat this procedure for
i ¼ 1; 2; . . . ; n.

In linear least-squares regression, the degrees of freedom for the model can be defined in a
variety of equivalent ways. Most directly, assuming that the model matrix X is of full column
rank, the degrees of freedom for the model are equal to the number of regressors k þ 1 (includ-
ing the regression intercept). The degrees of freedom for the model are also equal to the
following:

) the rank and trace of the hat matrix, H,
) the trace of HH0, and
) the trace of 2H&HH0.

These alternative expressions follow from the fact that the hat-matrix is symmetric and idempo-
tent—that is, H ¼ H0 and H ¼ HH. The degrees of freedom for error in least-squares linear
regression are

dfres ¼ rankðIn &HÞ ¼ traceðIn &HÞ ¼ n& traceðHÞ ¼ n& k & 1

because In &H projects y onto the orthogonal complement of the column space of X to obtain
the residuals: e ¼ ðIn &HÞy.34

Analogous degrees of freedom for the local-regression model are obtained by substituting
the smoother matrix S for the hat-matrix H. The analogy is not perfect, however, and in general
traceðSÞ 6¼ traceðSS0Þ 6¼ traceð2S& SS0Þ

) Defining dfmod ¼ traceðSÞ is an attractive choice because it is easy to calculate.
) In a linear model, the degrees of freedom for the model are equal to the sum of var-

iances of the fitted values divided by the error variance,
Pn

i¼1 V ðbY iÞ
σ2
ε

¼ k þ 1

In the current context (from Equation 18.9),
Pn

i¼1 V ðbY iÞ
σ2
ε

¼ trace SS0ð Þ

motivating the definition, dfmod ¼ traceðSS0Þ.
) The expectation of the residual sum of squares in local-polynomial regression is35

EðRSSÞ ¼ σ2
ε ½n& traceð2S& SS0Þ( þ bias2

where bias2 ¼
Pn

i¼1 ½EðbYiÞ & f ðxiÞ(2 is the cumulative bias in the local regression evalu-
ated at the observed X -values. If the bias is negligible, then RSS=½n& traceð2S& SS0Þ(
is an estimator of the error variance σ2

ε , suggesting that n& traceð2S& SS0Þ is a suitable
definition of the degrees of freedom for error and that dfmod ¼ traceð2S& SS0Þ. This last

34The vector geometry of linear least-squares regression is developed in Chapter 10.
35See Hastie and Tibshirani (1990, Sections 3.4–3.5).
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definition is possibly the most attractive theoretically, but it is relatively difficult to
compute.36

The smoother matrix S in nonparametric local-polynomial regression plays a role analo-
gous to the hat-matrix H in linear least-squares regression. Like the hat-matrix, the
smoother matrix linearly transforms the observations into the fitted values: by ¼ Sy.
Pursuing this analogy, the equivalent degrees of freedom for the nonparametric-regression
model can variously be defined as dfmod ¼ traceðSÞ, traceðSS0Þ, or traceð2S& SS0Þ.

18.1.3 Smoothing Splines*

In contrast with regression splines—which are parametric regression models37—smoothing
splines arise as the solution to the following nonparametric-regression problem: Find the func-
tion bf ðxÞ with two continuous derivatives that minimizes the penalized sum of squares,

SS*ðhÞ ¼
Xn

i¼1

Yi & f ðxiÞ½ (2 þ h
Z xmax

xmin

f 00ðxÞ½ (2dx ð18:10Þ

where h is a smoothing constant, analogous to the bandwidth of a kernel or local-polynomial
estimator.

) The first term in Equation 18.10 is the residual sum of squares.
) The second term is a roughness penalty, which is large when the integrated second deri-

vative of the regression function f 00ðxÞ is large—that is, when f ðxÞ is rough. The end-
points of the integral enclose the data: xmin < xð1Þ and xmax > xðnÞ.

) At one extreme, if the smoothing constant is set at h ¼ 0 (and if all the X -values are dis-
tinct), then bf ðxÞ simply interpolates the data.

) At the other extreme, if h is very large, then bf will be selected so that bf 00ðxÞ is every-
where 0, which implies a globally linear least-squares fit to the data.

It turns out, surprisingly and elegantly, that the function bf ðxÞ that minimizes Equation 18.10 is
a natural cubic spline with knots at the distinct observed values of X . Although this result
seems to imply that n parameters are required (when all X -values are distinct), the roughness
penalty imposes additional constraints on the solution, typically reducing the equivalent num-
ber of parameters for the smoothing spline considerably and preventing bf ðxÞ from interpolating

36Hastie and Tibshirani (1990, Section 3.5) demonstrate a simple relationship between traceð2S& SS0Þ and traceðSÞ
that allows the latter to be used to approximate the former. The software used for most of the examples in the current
chapter (the gam package for R: Hastie & Tibshirani, 1990; Hastie, 1992) takes this approach. Further discussion
of these issues may be found in Hastie and Tibshirani (1990, Section 3.5) and in Cleveland, Grosse, and Shyu
(1992, Section 8.4.1). Hastie and Tibshirani (1990, Sections 3.8– 3.9) show how incremental F-tests can be made
more precise by adjusting the degrees of freedom used in finding p-values. Similar procedures can be applied to
improve the performance of confidence bands for the regression curve, using the t-distribution in the calculation
of margins of error.
37See Section 17.2.
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the data. Indeed, it is common practice to select the smoothing constant h indirectly by setting
the equivalent number of parameters for the smoother.

An illustration, for the regression of occupational prestige on income, appears in
Figure 18.8, comparing a smoothing spline with a local-linear fit employing the same equiva-
lent number of parameters (degrees of freedom). The two fits are nearly identical.

Precisely the same considerations arise in the selection of h for smoothing splines as in the
selection of the bandwidth or span for local-polynomial smoothers: We can proceed, for exam-
ple, by visual trial and error or by cross-validation or generalized cross-validation.

Smoothing splines offer certain small advantages in comparison to local-polynomial smooth-
ers. Both smoothers are linear, in the sense that they can be written in the form by ¼ Sy for a
suitably defined smoother matrix S. The smoother matrix for smoothing splines is slightly bet-
ter behaved, however, and if smoothing splines are employed as building blocks of an additive
regression model, then the backfitting algorithm that can be used to fit this model is guaranteed
to converge, a property that does not hold for the local-polynomial smoother.38 On the negative
side, smoothing splines are more difficult to generalize to multiple regression.39

18.2 Nonparametric Multiple Regression

18.2.1 Local-Polynomial Multiple Regression

Local-polynomial regression extends straightforwardly from simple to multiple regression.
The method also has an intuitively appealing rationale, and it is relatively simple to implement.
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Figure 18.8 Nonparametric regression of occupational prestige on income, using a smoothing
spline (solid line) and local-linear regression (broken line), both with five equivalent
parameters.

38Additive regression models and the backfitting algorithm are described in Section 18.2.2.
39This is not to say that spline-based methods for multiple regression are either impossible or unattractive, just that their
development is relatively complex. See, for example, Green and Silverman (1994) or Wood (2006).
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Moreover, local-polynomial regression generalizes easily to binary and other non-normal
data.40

Kernel Weights in Multiple Regression

As a formal matter, it is simple to extend the local-polynomial estimator to several explana-
tory variables. To obtain a fitted value bY jx at the focal point x0 ¼ ðx01; x02; . . . ; x0kÞ0 in the
space of the explanatory variables, we perform a weighted-least-squares polynomial regression
of Y on the X s, emphasizing observations close to the focal point.41

) A local-linear fit therefore takes the following form:

Yi ¼ Aþ B1ðxi1 & x01Þ þ B2ðxi2 & x02Þ þ % % % þ Bkðxik & x0kÞ þ Ei

) For k ¼ 2 explanatory variables, a local-quadratic fit takes the form

Yi ¼Aþ B1ðxi1 & x01Þ þ B2ðxi2 & x02Þ þ B11ðxi1 & x01Þ2 þ B22ðxi2 & x02Þ2

þ B12ðxi1 & x01Þðxi2 & x02Þ þ Ei

including linear, quadratic, and cross-product terms for the X s. When there are several
explanatory variables, the number of terms in the local-quadratic regression grows large.
As a consequence, we will not consider cubic or higher-order polynomials, which con-
tain even more terms.

In either the linear or quadratic case, we find local-regression coefficients by minimizing the
weighted residual sum of squares

Pn
i¼1 wiE2

i for suitably defined weights wi. The fitted value
at the focal point in the X -space is then the regression constant, bY jx0 ¼ A.

Figure 18.9 shows the scatterplot for two variables, X1 and X2, sampled from a bivariate-
normal distribution with means µ1 ¼ µ2 ¼ 20, standard deviations σ1 ¼ 8 and σ2 ¼ 4, and
covariance σ12 ¼ 25 [producing the correlation r12 ¼ 25=ð8 · 4Þ ¼ :78]. As illustrated in this
figure, there are two straightforward ways to extend kernel weighting to local-polynomial mul-
tiple regression:

1. Calculate marginal weights separately for each X , and then take the product of the mar-
ginal weights. That is, for the jth explanatory variable and observation i, calculate the
marginal kernel weight

wij ¼ K
xij & x0j

hj

$ %

where x0j is the focal value for explanatory variable Xj, and hj is the marginal bandwidth
for this variable. As in local-polynomial simple regression, we can use a fixed band-
width or we can adjust the bandwidth to include a constant number of nearest neighbors
of x0j. Having found marginal weights for the k explanatory variables, the final weight
attributed to observation i in the local regression is their product:

40See Section 18.3.
41If you are unfamiliar with vector notation, think of x simply as the collection of values of the explanatory variables.
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wi ¼ wi1wi2 % % %wik

Product-marginal weights define a rectangular neighborhood around the focal x0.
Figure 18.9(a) shows such a neighborhood for the artificially generated data.42
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Figure 18.9 Defining neighborhoods for local-polynomial multiple regression: In each case, the
focal point is marked by a black square at the center of the bivariate window.
(a) Product-marginal weights, each for span ¼ 0.7; (b) standardized Euclidean dis-
tances, span ¼ 0.5; (c) standardized Euclidean distances plotted on the unstandar-
dized scales for the two variables; (d) generalized distances, span ¼ 0.5.

42The explanatory variables in Figure 18.9(a) are standardized for comparability with the other parts of the figure (see
below). Standardization does not affect the product-marginal weights.
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2. Measure the distance Dðxi;x0Þ in the X -space between the explanatory-variable values
xi for observation i and the focal x0. Then, kernel weights can be calculated directly
from these distances,

wi ¼ K
Dðxi;x0Þ

h

& '

As before, the bandwidth h can either be fixed or adjusted to include a constant number
of nearest neighbors of the focal point. There is, however, more than one way to define
distances between points in the X space:

) Simple Euclidean distance:

DEðxi;x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

j¼1

ðxij & x0jÞ2
vuut

Euclidean distances only make sense when the X s are measured in the same units,
and even in this case, we may prefer another approach. An obvious application of
Euclidean distance is to spatially distributed data, where the two explanatory vari-
ables X1 and X2 represent coordinates on a map, and the regression surface traces
how the average value of Y changes spatially—a ‘‘topographical’’ map where alti-
tude represents the average level of the response.

) Scaled Euclidean distance: Scaled distances adjust each X by a measure of disper-
sion to make values of the explanatory variables roughly comparable. We could use
a robust measure of spread, such as the median absolute deviation from the median
or the interquartile range, but the standard deviation is typically used. It is also com-
mon to center the X s by subtracting the mean from each value; centering does not
affect distances, however. The first step, then, is to standardize the X s,

zij ¼
xij & xj

sj

where xj and sj are respectively the mean and standard deviation of Xj. The scaled
Euclidean distance between an observation xi and the focal point x0 is

DSðxi;x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

j¼1

ðzij & z0jÞ2
vuut

This is the most common approach to defining distances.

For two X s, scaled Euclidean distances generate a circular neighborhood around the
focal point in the standardized X space [see Figure 18.9(b)]. Plotted in the original,
unscaled X -space, the neighborhood is elliptical, with axes parallel to the X1 and X2

axes [Figure 18.9(c)].
) Generalized distance: *Generalized distances adjust not only for the dispersion of

the X s but also for their correlational structure:

DGðxi; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi & x0Þ0V&1ðxi & x0Þ

q
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where V is the covariance matrix of the X s, perhaps estimated robustly.43

Figure 18.9(d) illustrates generalized distances for k ¼ 2 explanatory variables.
Here, the neighborhood around the focal point is elliptical, with axes reflecting the
correlation between the X s.

As mentioned, simple Euclidean distances do not make sense unless the explanatory variables
are on the same scale. Beyond that point, the choice of product marginal weights, weights
based on scaled Euclidean distances, or weights based on generalized distances usually does
not make a great deal of difference.

Generalizing local-polynomial regression to multiple regression is conceptually and com-
putationally straightforward. For example, to obtain the fitted value for a local-linear
regression at the focal point x0 ¼ ðx01; x02; . . . ; x0kÞ0 in the space of the explanatory vari-
ables, we perform a weighted-least-squares regression of Y on the X s,

Yi ¼ Aþ B1ðxi1 & x01Þ þ B2ðxi2 & x02Þ þ % % % þ Bkðxik & x0kÞ þ Ei

emphasizing observations close to the focal point by minimizing the weighted residual
sum of squares,

Pn
i¼1 wiE2

i . The fitted value at the focal point in the X -space is then
bY jx0 ¼ A. The weights wi can be computed in several ways, including by multiplying
marginal kernel weights for the several explanatory variables or by basing kernel weights
on one or another measure of distance between the focal x0 and the observed X -values,
xi. Given a distance measure Dðxi;x0Þ, the kernel weights are calculated as
wi ¼ K Dðxi;x0Þ=h½ (.

Span Selection, Statistical Inference, and Order Selection

Methods of span selection for local-polynomial multiple regression are essentially the same
as the methods for simple regression discussed in Section 18.1.2; they are, briefly:

) Visual Trial and Error: We can vary the span and examine the resulting regression sur-
face, balancing smoothness against detail. We seek the smallest span that produces a
smooth regression surface.

) Cross-Validation: For a given span s, we fit the model omitting each observation in
turn, obtaining a fitted value bY&iðsÞ ¼ bY jxi at the omitted observation. Then, we select
the span that minimizes the cross-validation function

CVðsÞ ¼

Pn
i¼1

bY&iðsÞ & Yi

h i2

n

or the generalized cross-validation function

GCVðsÞ ¼ n · RSSðsÞ
dfresðsÞ½ (2

43Methods such as M estimation, to be introduced in Chapter 19 on robust regression, can be adapted to estimate the
mean vector and covariance matrix for a vector of variables.
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It is, in addition, possible to derive an expression for the mean-square error of estimation in
local-polynomial multiple regression.44 One could in principle proceed to estimate the MSE
and to select the span that minimizes the estimate. As far as I know, this more complex
approach has not been implemented for multiple regression.

Inference for local-polynomial multiple regression also closely parallels local-polynomial
simple regression. At each observation xi, the fitted value bYi ¼ bY jxi results from a weighted-
least-squares regression and is therefore a linear function of the response,

bYi ¼
Xn

j¼1

sijYj

) Degrees of Freedom: *As in local-polynomial simple regression, equivalent degrees of
freedom for the model come from the smoother matrix S, where

by
ðn · 1Þ

¼ S
ðn · nÞ

y
ðn · 1Þ

and are variously defined as dfmod ¼ traceðSÞ, traceðSS0Þ, or traceð2S& SS0Þ.
) Error Variance: The error variance σ2

ε can be estimated as

S2
E ¼

P
E2

i

dfres

where the Ei ¼ Yi & bYi are the residuals from the model, and dfres ¼ n& dfmod.
) Confidence Intervals: The estimated variance of the fitted value bYi at xi is

bV ðbYiÞ ¼ S2
E

Xn

j¼1

s2
ij

Then, an approximate 95% confidence interval for the population regression surface
above xi is

bYi – 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðbY iÞ

q

) Hypothesis Tests: Incremental F-tests can be formulated by fitting alternative models to
the data and comparing residual sums of squares and degrees of freedom. For example,
to test for the effect of a particular explanatory variable Xj, we can omit the variable
from the model, taking care to adjust the span to reflect the reduced dimensionality of
the regression problem.45 Let RSS1 represent the residual sum of squares for the full
model, which has df1 equivalent degrees of freedom, and RSS0 represent the residual
sum of squares for the model omitting the jth explanatory variable, which has df0
degrees of freedom. Then, under the null hypothesis that Y has no partial relationship
to Xj,

44See Fan and Gijbels (1996, Section 7.8) and Simonoff (1996, Section 5.7) for the local-linear case.
45That is, if the span for the multiple regression is s and there are k explanatory variables, then (by appealing, e.g., to
product-marginal weighting) the ‘‘span per explanatory variable’’ is

ffiffi
sk
p

. Therefore, if one X is dropped from the model,
the span should be adjusted to sðk&1Þ=k . For example, for k ¼ 2 and s ¼ 0:25, on dropping one X from the model, the
adjusted span becomes 0:251=2 ¼ 0:5.
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F0 ¼

RSS0 & RSS1

df1 & df0
RSS1

dfres

follows an approximate F-distribution with df1 & df0 and dfres ¼ n& df1 degrees of free-
dom. In general, and as usual, we use the most complete model fit to the data for the
error-variance estimate in the denominator of the incremental F-statistic.

As explained previously, because of proliferation of terms, it is typical to consider only local-
linear (Order 1) and quadratic (Order 2) regressions. A local-quadratic fit is indicated if the cur-
vature of the regression surface changes too quickly to be captured adequately by the local-lin-
ear estimator. To a certain extent, however, the order of the local regressions can be traded off
against their span, because a local-linear regression can be made more flexible by reducing the
span. To decide between the local-linear and quadratic fits, we can compare them visually, or
we can perform an incremental F-test of the hypothesis that the additional terms in the local
quadratic model are necessary.

Methods for selecting the span in local-polynomial multiple regression are much the
same as in local-polynomial simple regression: We can proceed visually by trial and
error or apply a criterion such as CVðsÞ or GCVðsÞ. Similarly, approximate pointwise
confidence limits for the fitted regression can be calculated as in local-polynomial simple
regression, as can incremental F-tests comparing nested models.

Obstacles to Nonparametric Multiple Regression

Although, as a formal matter, it is therefore simple to extend local-polynomial estimation to
multiple regression, there are two flies in the ointment:

1. The ‘‘curse of dimensionality’’:46 As the number of explanatory variables increases, the
number of points ‘‘near’’ a focal point tends to decline rapidly. To include a fixed number
of observations in the local fit as the number of X s grows therefore requires making the
neighborhood around the focal point less and less local. A general assumption of local-poly-
nomial regression is that observations close in the X -space to the focal x0 are informative
about f ðx0Þ; increasing the size of the neighborhood around the focal point therefore poten-
tially decreases the quality of the estimate of f ðx0Þ by inflating the bias of the estimate.

The problem is illustrated in Figure 18.10 for k ¼ 2 explanatory variables. This figure
represents a ‘‘best-case’’ scenario, where the X s are independent and uniformly dis-
tributed. As we have seen, neighborhoods constructed by product-marginal weighting
correspond to rectangular (here, square) regions in the graph. Neighborhoods defined
by distance from a focal point correspond to circular (more generally, if the distances
are scaled, elliptical) regions in the graph. To include half the observations in a square

46The curse of dimensionality was introduced in Section 2.2.
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neighborhood centered on a focal x0, we need to define marginal neighborhoods for
each of X1 and X2 that include roughly

ffiffiffiffiffiffiffiffi
1=2

p
» 0:71 of the data; for k ¼ 10 explana-

tory variables, the marginal neighborhoods corresponding to a hyper-cube that
encloses half the observations would each include about

ffiffiffiffiffiffiffiffi
1=210

p
» 0:93 of the data. A

circular neighborhood in two dimensions enclosing half the data has diameter
2
ffiffiffiffiffiffiffiffiffiffiffiffi
0:5=π

p
» 0:8 along each axis; the diameter of the hyper-sphere enclosing half the

data also grows with dimensionality, but the formula is too complicated to warrant
presentation here.

2. Difficulties of interpretation: Because nonparametric regression does not provide an
equation relating the average response to the explanatory variables, we must display the
response surface graphically. This is no problem, of course, when there is only one X ,
because the scatterplot relating Y to X is two-dimensional, and the regression ‘‘surface’’
is just a curve. When there are two X s, the scatterplot is three-dimensional, and the
regression surface is two-dimensional. Here, we can represent the regression surface in
an isometric or perspective plot, as a contour plot, or by slicing the surface. These stra-
tegies are illustrated in the example developed immediately below. As I will explain,
there are obstacles to extending graphical displays of the regression surface beyond two
or three explanatory variables.

These problems motivate the additive regression model, described in Section 18.2.2.

The curse of dimensionality and the difficulty of visualizing high-dimensional surfaces
limit the practical application of unrestricted nonparametric multiple regression when
there are more than a very small number of explanatory variables.
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Figure 18.10 The ‘‘curse of dimensionality’’: 1,000 observations for independent, uniformly dis-
tributed random variables X1 and X2. The 500 nearest neighbors of the focal point
x0 ¼ (0.5, 0.5)

0
are highlighted, along with the circle (of diameter » 0.8) that

encloses them. Also shown is the square centered on x0 (with sides ¼
ffiffiffiffiffiffiffiffi
1=2

p
)

enclosing about half the data.
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An Illustration: Data From the Survey of Labour and Income Dynamics

To illustrate local-polynomial multiple regression, I return to data from the Statistics Canada
Survey of Labour and Income Dynamics, regressing the log (base 2) of the n ¼ 3997 respon-
dents’ composite hourly wage rate on their age and years of education.47 I selected a span of
0.25 for a local-linear regression after examining the generalized cross-validation criterion.48

Figures 18.11 to 18.14 show three graphical representations of the local-linear fit:

) Figure 18.11 is a perspective plot (perspective projection) of the fitted regression sur-
face. I find it relatively easy to visualize the general relationship of wages to age and
education but hard to make precise visual judgments: I can see that at fixed levels of
age, wages generally rise with education (though not at the youngest age levels—see
below); likewise, wages first rise and then fall somewhat with age at fixed levels of edu-
cation. But it is difficult to discern, for example, the fitted value of log wages for a 40-
year-old individual with 10 years of education. Perspective plots are even more effective
when they can be dynamically rotated on a computer, allowing us to view the regression
surface from different angles and conveying a greater sense of depth.

) Figure 18.12 is a contour plot of the data, showing ‘‘iso-log-wages’’ lines for combina-
tions of values of age and education. I find it difficult to visualize the regression surface
from a contour plot (perhaps hikers and mountain climbers do better), but it is relatively
easy to see, for example, that our hypothetical 40-year-old with 10 years of education
has fitted log wages of about 3.8 (i.e., fitted wages of 23:8 ¼ $13:93 per hour).
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Figure 18.11 Perspective plot for the local-linear regression of log wages on age and education.
The span of the local regression is s ¼ 0.25.

47We previously encountered these data in Chapter 12, where I dealt with nonlinearity in the regression of log wages
on age and education by specifying a quadratic in age and transforming education, and in Chapter 17, where I fit
regression splines in the two explanatory variables.
48The GCV criterion is lowest between about s ¼ 0:1 and s ¼ 0:2 and rises very gradually thereafter. Using, for exam-
ple, s ¼ 0:15 produces a regression surface that looks rough, so I opted for somewhat more smoothing.
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) Figure 18.13 is a conditioning plot or ‘‘coplot,’’49 showing the fitted relationship
between log wages and age for several levels of education. The levels at which educa-
tion is ‘‘held constant’’ are given in each panel of the figure, which shows the fit at a
particular level of education. The lines in the panels of the coplot are lines on the regres-
sion surface in the direction of income (fixing education) in Figure 18.11 but displayed
two-dimensionally. The broken lines in Figure 18.13 give pointwise 95% confidence
envelopes around the fitted regression surface. The confidence envelopes are wide
where data are sparse—for example, for 0 years of education. That the shape of the par-
tial relationship of log wages to age varies somewhat with education is indicative of
interaction between age and education in affecting income. Figure 18.14 shows a similar
coplot displaying the fitted relationship between log wages and education controlling for
age. Note that at age 16, the higher levels of education are not possible (a point that
could also have been made with respect to the preceding coplot), making the fit in this
region a meaningless extrapolation beyond the data. It is useful to display both coplots
because both partial relationships are of interest. Again, a small amount of interaction
between education and age is apparent in the fit (after all, interaction is a symmetric con-
cept). As well, the degree of nonlinearity in the partial relationships of log wages to edu-
cation at fixed age levels appears slight in most of the partial plots.

Is log wages significantly related to both age and education? We can answer this question by
dropping each explanatory variable in turn and noting the increase in the residual sum of
squares. Because the span for the local-linear multiple-regression fit is s ¼ 0:25, the corre-
sponding simple-regression models use spans of s ¼

ffiffiffiffiffiffiffiffiffi
0:25
p

¼ 0:5:50
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Figure 18.12 Contour plot for the local-liner regression of log-wages on age and education.

49See Section 3.3.4.
50The heuristic here is as follows: In product-marginal kernel weighting of uniformly distributed data, marginal spans
of 0.5 produce a neighborhood including roughly 0:52 ¼ 0:25 of the data. This rough reasoning is also supported by
the degrees of freedom for the models in the table in Equation 18.11: The model with the age effect and an intercept
has 4.3 degrees of freedom, and the model with the education effect and an intercept has 4.9 degrees of freedom.
Therefore, a comparable model that allows age and education to interact should have roughly 4:3 · 4:9 ¼ 21:1 degrees
of freedom—close to the 18.6 degrees of freedom for the local-linear multiple regression with span 0.25.
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F-tests for age and education are as follows:

FAgejEducation ¼

1880:918& 1348:592

18:6& 4:9
1348:592

3997& 18:6

¼ 114:63

FEducationjAge ¼

1547:237& 1348:592

18:6& 4:3
1348:592

3997& 18:6

¼ 40:98

FAgejEducation, for example, is to be read as the incremental F-statistic for age ‘‘after’’ education.
These F-statistics have, respectively, 13.7 and 3978.4 degrees of freedom, and 14.3 and
3978.4 degrees of freedom. Both p-values are close to 0, supporting the partial relationship of
log wages to both age and education.

Extension of these displays beyond two or three explanatory variables presents difficulties:

) Perspective plots and contour plots cannot easily be generalized to more than two expla-
natory variables: Although three-dimensional contour plots can be constructed, they are
very difficult to understand, in my opinion, and higher-dimensional contour plots are
out of the question.

) One can draw two-dimensional perspective or contour plots for two explanatory vari-
ables at fixed combinations of values of other explanatory variables, but the resulting
displays are usually confusing.

) Coplots can be usefully constructed for three explanatory variables by arranging combi-
nations of values of two of the variables in a rectangular array and focusing on the fitted
relationship of the response to the third explanatory variable. A complete set of coplots
rotates the role of the third variable, producing three such displays.

) Coplots can in principle be extended to any number of explanatory variables by focusing
on each variable in turn, but the resulting proliferation of graphs quickly gets unwieldy.

When there are two explanatory variables, the fitted nonparametric-regression surface
can be visualized in a three-dimensional perspective plot, in a contour plot, or in coplots
for each explanatory variable at fixed levels of the other variable. Coplots can be gener-
alized to three or more explanatory variables but quickly become unwieldy.

Model dfmod RSS

Age and Education 18.6 1348.592
Age (alone) 4.3 1547.237
Education (alone) 4.9 1880.918

(18.11)
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18.2.2 Additive Regression Models

In unrestricted nonparametric multiple regression, we model the conditional average value of
Y as a general, smooth function of several X s,

EðY jx1; x2; . . . ; xkÞ ¼ f ðx1; x2; . . . ; xkÞ

In linear-regression analysis, in contrast, the average value of the response variable is modeled
as a linear function of the explanatory variables,

EðY jx1; x2; . . . ; xkÞ ¼ αþ β1x1 þ β2x2 þ % % % þ βkxk

Like the linear model, the additive regression model specifies that the average value of Y is the
sum of separate terms for each explanatory variable, but these terms are merely assumed to be
smooth functions of the X s:

EðY jx1; x2; . . . ; xkÞ ¼ αþ f1ðx1Þ þ f2ðx2Þ þ % % % þ fkðxkÞ

Because it excludes interactions among the X s, the additive regression model is more restric-
tive than the general nonparametric-regression model but more flexible than the standard
linear-regression model.

An advantage of the additive regression model in comparison to the general nonparametric-
regression model is that the additive model reduces to a series of two-dimensional partial-
regression problems. This is true both in the computational sense and, even more important,
with respect to interpretation:

) Because each partial-regression problem is two-dimensional, we can estimate the partial
relationship between Y and Xj by using a suitable scatterplot smoother, such as local-
polynomial regression or a smoothing spline. We need somehow to remove the effects
of the other explanatory variables, however—we cannot simply smooth the marginal
scatterplot of Y on Xj ignoring the other X s. Details are given later in this section.

) A two-dimensional plot suffices to examine the estimated partial-regression function bfj

relating Y to Xj holding the other X s constant. Interpretation of additive regression mod-
els is therefore relatively simple—assuming that the additive model adequately captures
the dependence of Y on the X s.

The additive regression model

EðY jx1; x2; :::; xkÞ ¼ αþ f1ðx1Þ þ f2ðx2Þ þ % % % þ fkðxkÞ

expresses the average value of the response variable as the sum of smooth functions of
several explanatory variables. The additive model is therefore more restrictive than the
general nonparametric-regression model but more flexible than the linear-regression
model.

Figure 18.15 shows estimated partial-regression functions for the additive regression of log
wages on age and education in the SLID data. Each partial-regression function was fit by a
nearest-neighbor local-linear smoother, using span s ¼ 0:5. The points in each graph are partial
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residuals for the corresponding explanatory variable, removing the effect of the other explana-
tory variable. The broken lines mark off pointwise 95% confidence envelopes for the partial
fits (both of which are very precisely estimated in this moderately large data set).

The component-plus-residual plot, which graphs partial residuals against an explanatory
variable, is a standard diagnostic for nonlinearity in regression.51 The additive model extends
the notion of partial residuals by subtracting the potentially nonlinear fits for the other X s from
the response; for example, for X1,

Ei½1( ¼ Yi & A& bf2ðxi2Þ & % % % & bfkðxikÞ

Then, E½1( is smoothed against X1 to estimate f1. (To apply this idea, we need an estimate A of
α and estimates of the other partial-regression functions, f2 through fk—see below.)

Figure 18.16 is a three-dimensional perspective plot of the fitted additive-regression surface
relating log wages to age and education. Slices of this surface in the direction of age (i.e., hold-
ing education constant at various values) are all parallel; likewise, slices in the direction of edu-
cation (holding age constant) are parallel: This is the essence of the additive model, ruling out
interaction between the explanatory variables. Because all the slices in a given direction are
parallel, we need only view one of them edge-on, as in Figure 18.15. Compare the additive-
regression surface with the fit of the unrestricted nonparametric-regression model in
Figure 18.11 (on page 558).

20 30 40 50 60

(a)

Age (years)

P
ar

tia
l R

es
id

ua
ls

0 10 15 20

(b)

Education (years)

P
ar

tia
l R

es
id

ua
ls

2

1

0

−1

−2

−3

3

2

1

0

−1

−2

−3

5

Figure 18.15 Plots of the estimated partial-regression functions for the additive regression of log
wages on (a) age and (b) education. Each partial regression uses a local-linear
smoother with span s ¼ 0.5. The points in the graphs represent partial residuals for
each explanatory variable. The broken lines give pointwise 95% confidence envel-
opes for the partial fits.

51See Section 12.3.1 for a discussion of component-plus-residual plots. The notation for partial residuals here differs
from that used in Section 12.3.1, however, by denoting the explanatory variable in question by a bracketed subscript
rather than a parenthetical superscript. In the development of additive regression below, I will use a parenthetical super-
script for an iteration counter.
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Is anything lost in moving from the general nonparametric-regression model to the more
restrictive additive model? Residual sums of squares and equivalent numbers of parameters
(degrees of freedom) for the two models are as follows:

An approximate F-test comparing the two models is

F0 ¼

1377:801& 1348:592

18:6& 8:2
1348:592

3997& 18:6

¼ 8:29

with 10.4 and 3978.4 degrees of freedom, for which p+ :0001. There is, therefore, strong evi-
dence of lack of fit for the additive model; nevertheless, the additive model may be a reason-
able, if simplified, summary of the data: The proportion of variation accounted for by the
additive model is only slightly smaller than for the general model,

General: R2 ¼ 1& 1348:592

2104:738
¼ 0:3593

Additive : R2 ¼ 1& 1377:801

2104:738
¼ 0:3454

where 2104:738 is the total sum of squares for log wages.52

Model dfmod RSS

General 18.6 1348.592
Additive 8.2 1377.801
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Figure 18.16 Perspective plot of the fitted additive regression of log wages on age and education.

52Issues of model selection are discussed in a general context in Chapter 22.
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To test the contribution of each explanatory variable to the additive model, we compare the
full additive model with models omitting each variable in turn:

Then,

FAgejEducation ¼

1880:918& 1377:801

8:2& 4:9
1348:592

3997& 18:6

¼ 449:76

FEducationjAge ¼

1547:237& 1377:801

8:2& 4:3
1348:592

3997& 18:6

¼ 128:16

with, respectively, 3.3 and 3978.4, and 3.9 and 3978.4 degrees of freedom; both F-statistics
have p-values close to 0. Because there are only two explanatory variables, the second and
third models in the table are the same as we employed to test the contribution of each explana-
tory variable to the general nonparametric-regression model (see the table in Equation 18.11
on page 561). The error-variance estimate in the denominator of the F-statistic is based on the
largest model that we fit to the data—the general nonparametric-regression model of the pre-
ceding section.

Fitting the Additive Regression Model

For simplicity, consider the case of two explanatory variables, as in the regression of log
wages on age and education; the generalization to several explanatory variables is immediate
(as is described subsequently):

Yi ¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ εi

Suppose, unrealistically, that the partial-regression function f2 is known but that f1 is not.
Rearranging the regression equation,

Yi & f2ðxi2Þ ¼ αþ f1ðxi1Þ þ εi

So smoothing Yi & f2ðxi2Þ against xi1 will produce an estimate of αþ f1ðxi1Þ.
The regression constant α is a bit of a nuisance here. We could absorb α into one of the

partial-regression functions. Or—somewhat more gracefully—we could force the partial-
regression functions evaluated at the observed xijs to sum to 0; in this case, α becomes the
unconditional expectation of Y , estimated by Y . Then, we estimate f1 by smoothing
Yi & Y & f2ðxi2Þ against xi1. Of course, in a real application, neither f1 nor f2 is known.

Model dfmod RSS

Additive 8.2 1377.801
Age (alone) 4.3 1547.237
Education (alone) 4.9 1880.918
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1. Let us start, then, with preliminary estimates of the partial-regression functions, denoted
bf ð0Þ1 and bf ð0Þ2 , based on the linear least-squares regression of Y on the X s:

Yi & Y ¼ B1ðxi1 & x1Þ þ B2ðxi2 & x2Þ þ Ei

[The parenthetical superscript (0) indicates that these are ‘‘Step 0’’ estimates in an itera-
tive (repetitive) process of estimation.] Then,

bf ð0Þ1 ðxi1Þ ¼ B1ðxi2 & x2Þ
bf ð0Þ2 ðxi2Þ ¼ B2ðxi2 & x2Þ

Expressing the variables as deviations from their means ensures that the partial-
regression functions sum to 0.

2. Form the partial residual

Eð1Þi½1( ¼ Yi & Y & B2ðxi2 & x2Þ

¼ Ei þ B1ðxi1 & x1Þ

which removes from Y its linear relationship to X2 but retains the linear relationship
between Y and X1, possibly along with a nonlinear relationship in the least-squares resi-

duals Ei.
53 Smoothing Eð1Þi½1( against Xi1 provides a new estimate bf ð1Þ1 of f1. [The parenthe-

tical superscript (1) in Eð1Þi½1( and bf ð1Þ1 indicates that these quantities pertain to iteration 1;

the bracketed subscript [1] in Eð1Þi½1( indicates that these are the partial residuals for the

first explanatory variable, X1.]
3. Using the updated estimate bf ð1Þ1 , form partial residuals for X2:

Eð1Þi½2( ¼ Yi & Y & bf ð1Þ1 ðxi1Þ

Smoothing Eð1Þi½2( against xi2 yields a new estimate bf ð1Þ2 of f2.
4. The new estimate bf ð1Þ2 , in turn, is used to calculate updated partial residuals Eð2Þi½1( for X1,

which, when smoothed against xi1, produce the updated estimate bf ð2Þ1 of f1. This itera-
tive process, called backfitting, continues until the estimated partial-regression functions
stabilize.

The additive regression model can be fit to data by the method of backfitting, which
iteratively smooths the partial residuals for each explanatory variable by using current
estimates of the regression functions for other explanatory variables.

Some Statistical Details*

More on Backfitting Backfitting implicitly solves the following set of estimating equations:

53These are simply the familiar partial residuals used for component-plus-residual plots in linear regression (described
in Section 12.3.1).
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where

) A is the estimate of the regression intercept, α.
) 0n is an n · 1 column-vector of 0s, and thus 00n is a 1 · n row-vector of 0s.
) 1n is an n · 1 vector of 1s.
) In is the order-n identity matrix.
) Sj is the smoother matrix for the jth explanatory variable.54

) bf j ¼ fbfjðxijÞg is the n · 1 vector of partial-regression estimates for the jth explanatory
variable, evaluated at the observed values, xij.

The first estimating equation simply specifies that A ¼ 1
n 10ny ¼ Y . The remaining matrix equa-

tions, composing the rows of Equation 18.12, are each of the form

bf j þ Sj

X

r 6¼j

bf r ¼ Sjy

Solving for bf j, the fitted partial-regression function is the smoothed partial residual:

bf j ¼ Sj y&
X

r 6¼j

bf r

 !

The estimating equations (18.12) are a system of knþ 1 linear equations in an equal number of
unknowns. As long as the composite smoother matrix S is nonsingular—which would normally
be the case—these equations have the explicit solution

bf ¼ S&1Qy ¼ Ry ð18:13Þ

(defining R [ S&1Q). The size of this system of equations, however, makes it impractical to
solve it directly by inverting S. Backfitting is a practical, iterative procedure for solving the
estimating equations.

Statistical Inference It is apparent from Equation 18.13 that the fitted partial-regression func-
tions are linear functions of the response variable. Focusing on the fit for the jth explanatory
variable, therefore,

V ðbf jÞ ¼ RjV ðyÞR0j ¼ σ2
εRjR

0
j

where Rj comprises the rows of R that produce bf j.

54The smoother matrix was introduced on page 548.
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To apply this result, we require an estimate of the error variance (to be addressed presently).
A more immediate obstacle is that we must compute Rj, which is difficult to obtain directly.
Notice that Rj, which takes into account relationships among the X s, is different from the
smoother matrix Sj, which depends only on the jth X . A simple expedient, which works reason-
ably well if the explanatory variables are not strongly related, is simply to use Sj in place of
Rj. To construct a confidence envelope for the fit, we require only the variances of the ele-
ments of bfj, which, in turn depend only on the diagonal entries of Sj, and so the burden of
computation is not onerous.55

To estimate the error variance σ2
ε , we need the degrees of freedom for error. Any of the

approaches described previously could be adapted here,56 substituting the matrix R from the
solution of the estimating equations for the smoother matrix S. For example, working from the
expectation of the residual sum of squares produces

dfres ¼ n& traceð2R & RR0Þ

Then, the estimated error variance is S2
E ¼ RSS=ðn& dfresÞ.

Because, as mentioned, finding R is computationally demanding, a simpler, if rougher,
solution is to take the degrees of freedom for each explanatory variable as dfj ¼
traceð2Sj & SjS0jÞ & 1 or even as dfj ¼ traceðSjÞ & 1. Then, define dfres ¼ n&

Pk
j¼1 dfj & 1.

Note that 1 is subtracted from the degrees of freedom for each explanatory variable because of
the constraint that the partial-regression function for the variable sums to 0, and 1 is subtracted
from the residual degrees of freedom to account for the constant α in the model.

F-tests for the contributions of the several explanatory variables are based on incremental
sums of squares and differences in degrees of freedom. The incremental sum of squares for Xj

is easily found:

SSj ¼ RSS&j & RSS

where RSS is the residual sum of squares for the full model, and RSS&j is the residual sum of
squares for the model deleting the jth explanatory variable. The degrees of freedom for the
effect of Xj are then

dfj ¼ traceð2R & RR0Þ & traceð2R&j & R&jR
0
&jÞ

where R&j comes from the solution of the estimating equations in the absence of variable j.
Alternatively, dfj can be approximated, as above.

Semiparametric Models and Models With Interactions

This section develops two straightforward relatives of additive regression models:

1. Semiparametric models are additive regression models in which some terms enter non-
parametrically while others enter linearly. These models are therefore hybrids of the
additive regression model and the linear regression model.

2. Models in which some of the explanatory variables are permitted to interact, for exam-
ple in pairwise fashion.

55Hastie and Tibshirani (1990, Section 5.4.4) suggest a more sophisticated procedure to calculate the Rj.
56See Section 18.1.2.
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It is also possible to combine these strategies, so that some terms enter linearly, others addi-
tively, and still others are permitted to interact.

The semiparametric regression model is written

Yi ¼ αþ β1xi1 þ % % % þ βrxir þ frþ1ðxi;rþ1Þ þ % % % þ fkðxikÞ þ εi

where the errors εi are, as usual, assumed to be independently and normally distributed with
constant variance. The first r regressors, therefore, enter the model linearly, while the partial
relationships of Y to the remaining k & r explanatory variables are simply assumed to be
smooth. The semiparametric model can be estimated by backfitting. At each iteration, all of the
linear terms can be estimated in a single step: Form partial residuals that remove the current
estimates of the nonparametric terms, and then regress these partial residuals on X1; :::;Xr to
obtain updated estimates of the βs.

The semiparametric model is applicable whenever there is reason to believe that one or more
X s enter the regression linearly:

) In rare instances, there may be prior reasons for believing that this is the case, or exami-
nation of the data might suggest a linear relationship, perhaps after transforming an X .57

) More commonly, if some of the X s are dummy regressors—representing the effects of
one or more categorical explanatory variables—then it is natural to enter the dummy
regressors as linear terms.58

) Finally, we can test for nonlinearity by contrasting two models, one of which treats an
explanatory variable nonparametrically and the other linearly. For example, to test for
nonlinearity in the partial relationship between Y and X1, we contrast the additive model

Yi ¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ % % % þ fkðxikÞ þ εi

with the semiparametric model

Yi ¼ αþ β1xi1 þ f2ðxi2Þ þ % % % þ fkðxikÞ þ εi

To illustrate this last procedure, let us return to the SLID data, fitting three models for the
regression of log income on age and education:

Model 1 is the additive regression model (fit previously); Model 2 is a semiparametric model
containing a linear term for age and a nonparametric term for education; Model 3 is a semi-
parametric model with a linear term for education and a nonparametric term for age.

Contrasting Models 1 and 2 produces a test for nonlinearity in the partial relationship of log
income to age—that is, a test of the null hypothesis that this partial relationship is linear; contrast-
ing Models 1 and 3 produces a test for nonlinearity in the relationship of log income to education:

Model dfmod RSS

1 Additive 8.2 1377.801
2 Age linear 5.9 1523.883
3 Education linear 5.3 1390.481

57Transformations for linearity are discussed in Chapters 4 and 12.
58Dummy regressors are introduced in Chapter 7.
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FAgeðnonlinearÞ ¼

1523:883& 1377:801

8:2& 5:9
1348:592

3997& 18:6

¼ 187:37

FEducationðnonlinearÞ ¼

1390:481& 1377:801

8:2& 5:3
1348:592

3997& 18:6

¼ 12:90

The first of these F-test statistics has 2.3 and 3978.4 degrees of freedom, for which p » 0; the
second has 2.9 and 3978.4 degrees of freedom, for which p+ :0001. Once again, the
estimated error variance in the denominator of these F-statistics comes from the general non-
parametric-regression model, which is the largest model that we have entertained. There is,
therefore, reliable evidence of nonlinearity in both partial relationships, but the nonlinearity in
the partial relationship of log wages to education is not great, as we can see in Figure 18.15
(page 564) and by comparing the proportion of variation accounted for by the three models:

Additive : R2 ¼ 1& 1377:801

2104:738
¼ 0:3454

Age linear : R2 ¼ 1& 1523:883

2104:738
¼ 0:2760

Education linear : R2 ¼ 1& 1390:481

2104:738
¼ 0:3394

While semiparametric regression models make the additive model more restrictive, incorporat-
ing interactions makes the model more flexible. For example, the following model permits
interaction (nonadditivity) in the partial relationship of Y to X1 and X2:

Yi ¼ αþ f12ðxi1; xi2Þ þ f3ðxi3Þ þ % % % þ fkðxikÞ þ εi

Once again, this model can be estimated by backfitting, employing a multiple-regression
smoother (such as local-polynomial multiple regression) to estimate f12. Contrasting this model
with the more restrictive additive model produces an incremental F-test for the interaction
between X1 and X2. This strategy can, in principle, be extended to models with higher-order
interactions—for example, f123ðxi1; xi2; xi3Þ—but the curse of dimensionality and difficulty of
interpretation limit the utility of such models.

Semiparametric models are additive regression models in which some terms enter non-
parametrically while others enter linearly:

Yi ¼ αþ β1xi1 þ % % % þ βrxir þ frþ1ðxi;rþ1Þ þ % % % þ fkðxikÞ þ εi

Linear terms may be used, for example, to incorporate dummy regressors in the model.
Interactions may be included in an otherwise additive regression model by employing a
multiple-regression smoother for interacting explanatory variables, such as X1 and X2 in
the model

Yi ¼ αþ f12ðxi1; xi2Þ þ f3ðxi3Þ þ % % % þ fkðxikÞ þ εi
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18.3 Generalized Nonparametric Regression

Generalized nonparametric regression bears the same relationship to the nonparametric-regres-
sion models discussed previously in the chapter that generalized linear models bear to linear
models,59 expanding the range of application of nonparametric regression to a wide variety of
response variables. I consider two kinds of generalized nonparametric-regression models in this
section: unconstrained generalized nonparametric regression fit by local-likelihood estimation,
an extension of the local-polynomial regression models described in Sections 18.1.2 and
18.2.1, and generalized additive models, which are extensions of the additive regression mod-
els described in Section 18.2.2.

18.3.1 Local Likelihood Estimation*

Figure 18.17 illustrates generalized regression (and, incidentally, shows why scatterplot
smoothing is particularly helpful for dichotomous responses). This graph displays data from a
survey conducted prior to the 1989 Chilean plebiscite, where the response variable represents
voting intention (1 ¼ yes, 0 ¼ no), and the explanatory variable is a scale indicating support
for the status quo (i.e., support for the policies of the military government of Augusto
Pinochet, who was then in power).60

The points in Figure 18.17 are ‘‘jittered’’ vertically to minimize overplotting. The summary
curves on the graph, however, are fit to the unjittered data. Two fitted regressions are shown:

1. The broken line shows the linear logistic regression of voting intention on support for
the status quo. The relationship appears to be positive, as expected. Fitted values
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Figure 18.17 Scatterplot of voting intention in the Chilean plebiscite (1 ¼ yes, 0 ¼ no) by support
for the status quo. The points are vertically jittered to minimize overplotting. The
broken line shows the fit of a linear logistic regression; the solid line shows the fit
of a local-linear logistic regression with a span of 0.3.

59Generalized linear models are the subject of Part IV of the text.
60A yes vote was a vote to extend military rule in Chile. The Chilean plebiscite data were introduced in Section 14.1.
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between 0 and 1 are interpretable as the estimated proportion of yes voters at various
levels of support for the status quo.

2. The solid line shows a local-linear logistic regression of the kind to be described in this
section. The fit in this case is very similar to that of the linear logistic regression, lend-
ing credibility to the latter.

Generalized linear models are typically estimated by the method of maximum likelihood.61

The log-likelihood for these models takes the general form

loge L ¼
Xn

i¼1

lðµi;f; YiÞ

where the Yi are the observations on the response variable, φ is a dispersion parameter (which
takes on fixed values for some generalized linear models, such as binomial and Poisson-regres-
sion models, where φ ¼ 1), and

µi [ EðYiÞ ¼ g&1ðαþ β1xi1 þ β2xi2 þ % % % þ βkxikÞ

Here, g&1ð%Þ is the inverse of the link function. For example, for a binary logistic-regression
model, the components of the log-likelihood are

lðµi; YiÞ ¼ Yi loge µi þ ð1& YiÞ logeð1& µiÞ

and the expected value of Y is

µi ¼ g&1ðαþ β1xi1 þ β2xi2 þ % % % þ βkxikÞ

¼ 1

1þ exp½&ðαþ β1xi1 þ β2xi2 þ % % % þ βkxikÞ(

The maximum-likelihood estimates of the parameters are the values bα; bβ1; . . . ; bβk that maxi-
mize loge L.

In local-polynomial generalized nonparametric regression, we estimate the regression func-
tion at some set of focal values of the explanatory variables. For simplicity, suppose that there
is one X , that the response variable is dichotomous, and that we want to estimate µjx0 at the
focal value x0. We can perform a logistic polynomial regression of the form

loge
µi

1& µi
¼ αþ β1ðxi & x0Þ þ β2ðxi & x0Þ2 þ % % % þ βpðxi & x0Þp

maximizing the weighted log-likelihood

loge Lw ¼
Xn

i¼1

wilðµi; YiÞ

where the wi ¼ K½ðxi & x0Þ=h( are kernel weights. Then, bµjx0 ¼ g&1ðbαÞ.
To trace the estimated regression curve, as in Figure 18.17, we repeat this procedure for rep-

resentative values of X or at the observed xi. As in local-polynomial least-squares regression,
the window half-width h can be fixed or adjusted to include a fixed number of nearest neigh-
bors of the focal x0.

61See Chapters 14 and 15. You may wish to review this material prior to proceeding.
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Other characteristics of local-polynomial regression generalize readily as well. For example,
as in a generalized linear model, the residual deviance under a generalized local-regression
model is twice the difference between the log-likelihood for a saturated model that fits the
response perfectly and for the model in question:62

Dðy; b„Þ[ 2½loge Lðy;φ; yÞ & loge Lðb„;φ; yÞ(

where y [ fYig is the response vector, and b„[ fbµig is the vector of fitted values—that is, the
local generalized regression evaluated at the observed X -values. Note that this log-
likelihood is not the weighted likelihood used to get individual fitted values but is rather based
on those fitted values.

Approximate hypothesis tests can be formulated from the deviance and equivalent degrees
of freedom (obtaining the latter, e.g., from the trace of SS0), much as in a generalized linear
model. Similarly, the GCV criterion (Equation 18.4 on page 541) becomes

GCVðsÞ[ n · DðsÞ
dfresðsÞ½ (2

ð18:14Þ

where D is the deviance and s is the span of the local generalized-regression smoother.63

Applied to the Chilean plebiscite data, the GCV criterion suggested a span of 0.13, which
produced a fitted regression curve that looked too rough. I adjusted the span visually to
s ¼ 0:3. The deviance and equivalent degrees of freedom associated with the local logistic-
regression model for s ¼ 0:3 are, respectively, D ¼ 746:33 and dfmod ¼ 6:2. The deviance and
degrees of freedom for the linear logistic-regression model, in comparison, are D ¼ 752:59
and dfmod ¼ 2. A likelihood-ratio chi-square test for lack of fit in the linear logistic-regression
model is therefore G2

0 ¼ 752:59& 746:33 ¼ 6:26 on 6:2& 2 ¼ 4:2 degrees of freedom, for
which p ¼ :20, suggesting that this model fits the data adequately.

The extension of this approach to multiple regression is straightforward, although the curse
of dimensionality and the difficulty of interpreting higher-dimensional fits are no less a prob-
lem than in local least-squares regression.

The method of local likelihood can be used to fit generalized local-polynomial
nonparametric-regression models, where, as in generalized linear models, the conditional
distribution of the response variable can be a member of an exponential family—such as
a binomial or Poisson distribution. Statistical inference can then be based on the
deviance and equivalent degrees of freedom for the model, formulating likelihood-ratio
chi-square or F-tests as in a generalized linear model. Other aspects of local-polynomial
nonparametric regression also generalize readily, such as the selection of the span by
generalized cross-validation.

62See Section 15.3.2.
63In generalized regression models for distributional families in which the dispersion is fixed, such as the binomial or
Poisson families, an alternative is to minimize the unbiased risk estimator (UBRE) criterion. See Wood (2006, Section
4.5).
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18.3.2 Generalized Additive Models

The generalized additive model (or GAM) replaces the parametric terms in the generalized
linear model with smooth terms in the explanatory variables:

ηi ¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ % % % þ fkðxikÞ

where the additive predictor ηi plays a role analogous to the linear predictor in a generalized
linear model. Local likelihood (described in the preceding section), however, cannot be easily
employed to estimate the generalized additive model. An alternative is to adapt the method of
iterated weighted least squares (IWLS), which is typically used to obtain maximum-likelihood
estimates for generalized linear models.64

To keep the level of difficulty relatively low, I will focus on binary logistic regression.
Results for other generalized regression models follow a similar pattern. To estimate the addi-
tive logistic-regression model,

loge
µi

1& µi
¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ % % % þ fkðxikÞ

IWLS estimation can be combined with backfitting (introduced in Section 18.2.2):

1. Pick starting values of the regression constant and the partial-regression functions, such as

αð0Þ ¼ loge

P
Yi

n&
P

Yi

all f ð0Þj ðxijÞ ¼ 0

2. Using these initial values, calculate working-response values,

Zð0Þi ¼ η
ð0Þ
i þ

Yi & µ
ð0Þ
i

µ
ð0Þ
i 1& µ

ð0Þ
i

( )

and weights,

W ð0Þ
i ¼ µ

ð0Þ
i 1& µ

ð0Þ
i

( )

using the additive predictor (in place of the linear predictor of a generalized linear
model):

η
ð0Þ
i ¼ αð0Þ þ f ð0Þ1 ðxi1Þ þ f ð0Þ2 ðxi2Þ þ % % % þ f ð0Þk ðxikÞ

µ
ð0Þ
i ¼

1

1þ exp &ηð0Þi

( )

64See Section 15.3.2. For a different approach to estimating GAMs, see Wood (2006).
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3. Find new values αð1Þ and f ð1Þ1 ; . . . ; f ð1Þk by applying the backfitting procedure to the
weighted additive regression of Zð0Þ on the X s, using the W ð0Þ

i as weights.
4. Return to Step 2 to compute new working-response values and weights based on the

updated values αð1Þ and f ð1Þ1 ; . . . ; f ð1Þk . Repeat this procedure until the estimates stabi-
lize, producing bα and bf1; . . . ; bfk .

Notice that this estimation procedure is doubly iterative, because each backfitting step (Step 3)
requires iteration.

Statistical Inference

Once again, I will concentrate on binary logistic regression, with similar results applying to
other generalized additive models.

After the IWLS-backfitting procedure converges, the fitted values on the scale of the addi-
tive predictor η can be written as linear functions of the working-response values,

bηi ¼ ri1Z1 þ ri2Z2 þ % % % þ rinZn ¼
Xn

j¼1

rijZj

The working response Zj has estimated asymptotic variance 1=½bµjð1& bµjÞ(, and because the
observations are asymptotically independent, the estimated asymptotic variance of bηi is65

bVðbηiÞ ¼
Xn

j¼1

r2
ij

bµjð1& bµjÞ

An approximate pointwise 95% confidence band for the fitted regression surface follows as

bηi – 2
ffiffiffiffiffiffiffiffiffiffiffiffi
bVðbηiÞ

q

If desired, the endpoints of the confidence band can be transformed to the probability scale by
using the inverse of the logit link, µ ¼ 1=½1þ expð&ηÞ(. Approximate confidence bands can
also be constructed for the individual partial-regression functions, fj.

The deviance for a generalized additive model can be calculated in the usual manner; for a
binary logit model, this is

Dð„; yÞ ¼ &2
Xn

i¼1

½Yi loge bµi þ ð1& YiÞ logeð1& bµiÞ(

with degrees of freedom equal to n minus the equivalent number of parameters in the model.

65There are complications here: The working response is itself a function of the fitted values,

Zi ¼ bηi þ
Yi & bµi

bµi 1& bµið Þ

and, unlike in the additive regression model, the coefficients rij for transforming the working response depend on the
observed Yis. The results given here hold asymptotically, however. See Hastie and Tibshirani (1990, Section 6.8.2).
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The generalized additive model (or GAM) replaces the parametric terms in the general-
ized linear model with smooth terms in the explanatory variables:

ηi ¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ % % % þ fkðxikÞ

where the additive predictor ηi plays the same role as the linear predictor in a generalized
linear model. GAMs can be fit to data by combining the backfitting algorithm used for
additive regression models with the iterated weighted-least-squares algorithm for fitting
generalized linear models. Approximate pointwise confidence intervals around the fitted
regression surface and statistical tests based on the deviance of the fitted model follow in
a straightforward manner.

An Illustration: Labor Force Participation in the SLID

To illustrate generalized additive modeling, I will examine young married women’s labor
force participation using data from the Canadian Survey of Labour and Income Dynamics
(SLID).66 The response variable is dichotomous: whether or not the woman worked outside the
home at some point during the year preceding the survey. The explanatory variables include a
factor representing region (Atlantic Canada, Quebec, Ontario, the prairie provinces, and British
Columbia); factors representing the presence in the woman’s household of children between 0
and 4 years of age and between 5 and 9 years of age; the woman’s after-tax family income,
excluding her own income; and the woman’s years of education.

I fit a semiparametric generalized additive model to these data, including dummy regressors
for region and the two presence-of-children factors, as well as local-linear terms for family
income and education, choosing the span for each of these terms by simultaneous generalized
cross-validation. That is, I performed a ‘‘grid search’’ over combinations of values of the spans
for these two explanatory variables, selecting the combination of spans—as it turned out,
s ¼ 0:7 in both cases—that together minimize the GCV criterion (given in Equation 18.4 on
page 541). The resulting model uses the equivalent of 3.4 degrees of freedom for the family
income effect and 2.9 degrees of freedom for the education effect. The coefficients for the
region and presence-of-children terms are similar to those of a linear logistic regression fit to
these data (see Table 14.4 on page 386) and so are not given here.

Partial plots for family income and education are shown in Figure 18.18. Even discounting
the rise at the right—where the very small number of observations (see the rug-plot at the bot-
tom of the graph) is reflected in very broad confidence limits—the partial plot for family
income in panel (a) of this figure suggests some nonlinearity, with labor force participation first
rising slightly and then falling with family income. Similarly discounting the region at the left
of panel (b), where data are sparse, the partial plot suggests modest nonlinearity in the partial
relationship between labor force participation and education.

To test these impressions, I fit three models to the data: the initial semiparametric general-
ized additive model just described and two other semiparametric models in which income and

66This example was used to illustrate linear logistic regression in Section 14.1.4, where the data are described in more
detail.
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education, in turn, enter linearly, producing the following equivalent degrees of freedom and
deviances:

Likelihood-ratio chi-square tests for nonlinearity in the family income and education effects are
as follows:

G2
IncomeðnonlinearÞ ¼ 1800:406& 1787:007 ¼ 13:40

G2
EducationðnonlinearÞ ¼ 1797:112& 1787:007 ¼ 10:11

on, respectively, 2.4 and 1.9 degrees of freedom, for which p ¼ :0020 and p ¼ :010. Both tests
are therefore statistically significant, but there is stronger evidence of nonlinearity in the rela-
tionship between labor force participation and family income.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.
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Figure 18.18 Partial plots for family income and education in the generalized semiparametric
regression of young married women’s labor force participation on region, presence
of children 0 to 4 years, presence of children 5 to 9 years, family income, and edu-
cation. The dotted lines in each plot give approximate pointwise 95% confidence
envelopes around the fit. The rug-plot at the bottom of each graph shows the distri-
bution of the corresponding explanatory variable.

Model dfmod Residual Deviance

1 Initial model 13.3 1787.007
2 Income linear 10.9 1800.406
3 Education linear 11.4 1797.112
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Exercise 18.1. Vary the span of the kernel estimator for the regression of prestige on income
in the Canadian occupational prestige data. Does s ¼ 0:4 appear to be a reasonable choice?

Exercise 18.2. Selecting the span by smoothing residuals: A complementary visual approach
to selecting the span in local-polynomial regression is to find the residuals from the fit from
the local regression, Ei ¼ Yi & bYi, and to smooth the residuals against the xi. If the data have
been oversmoothed, then there will be a systematic relationship between the average residual
and X ; if the fit does not oversmooth the data, then the average residual will be approximately
0 regardless of the value of X . We seek the largest value of s that yields residuals that are unre-
lated to X . Apply this approach to the regression of prestige on income in the Canadian occu-
pational prestige data by smoothing the residuals from local-linear regressions with various
spans. An examination of the scatterplots in Figure 18.4 suggested picking s » 0:6. Is this
choice supported by smoothing the residuals?

Exercise 18.3. Comparing the kernel and local-linear estimators: To illustrate the reduced bias
of the local-linear estimator in comparison to the kernel estimator, generate n ¼ 100 observa-
tions of artificial data according to the cubic regression equation

Y ¼ 100& 5
x

10
& 5

( )
þ x

10
& 5

( )3
þ ε ð18:15Þ

where the X -values are sampled from the uniform distribution X ; Uð0; 100Þ, and the errors
are sampled from the normal distribution ε; Nð0; 202Þ. Draw a scatterplot of the data showing
the true regression line EðY Þ ¼ 100& 5 x=10& 5ð Þ þ x=10& 5ð Þ3. Then, use both kernel
regression and local-linear regression to estimate the regression of Y on X , in each case adjust-
ing the span to produce a smooth regression curve. Which estimator has less bias? Why?67

Save the data from this exercise, or generate the data in a manner that can be replicated.

Exercise 18.4. *Bias, variance, and MSE as a function of bandwidth: Consider the artificial
regression function introduced in the preceding exercise. Using Equation 18.1 (page 537), write
down expressions for the expected value and variance of the local-linear estimator as a function
of the bandwidth h of the estimator. Employing these results, compute the variance, bias, and
mean-squared error of the local-linear estimator at the focal value x0 ¼ 10 as a function of h,
allowing h to range between 1 and 20. What value of h produces the smallest MSE? Does this
agree with the optimal bandwidth h*ð10Þ from Equation 18.2? Then, using Equation 18.2,
graph the optimal bandwidth h*ðx0Þ as a function of the focal value x0, allowing x0 to range
between 0 and 100. Relate the resulting function to the regression function.

Exercise 18.5. *Employing the artificial data generated in Exercise 18.3, use Equation 18.3 (on
page 539) to compute the average squared error (ASE) of the local-linear regression estimator
for various spans between s ¼ 0:05 and s ¼ 0:95, drawing a graph of ASEðsÞ versus s. What
span produces the smallest ASE? Does this confirm your visual selection of the span of the
local-linear estimator in Exercise 18.3?

Exercise 18.6. *Continuing with the artificial data from Exercise (8.3), graph the cross-
validation function CVðsÞ and generalized cross-validation function GCVðsÞ as a function of
span, letting the span range between s ¼ 0:05 and s ¼ 0:95.

67I am using the term bias slightly loosely here, because we are examining the performance of each of these estimators
for a particular sample, rather than averaged over all samples, but the point is nevertheless valid.
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(a) Compare the shape of CVðsÞ with the average squared error ASEðsÞ function from the
preceding exercise. Are the shapes similar?

(b) Now compare the level of CVðsÞ to that of ASEðsÞ. Are the levels different? Why?
(c) Does GCVðsÞ do a good job of approximating CVðsÞ?
(d) Do CVðsÞ and GCVðsÞ provide useful guidance for selecting the span in this problem?

Exercise 18.7. Comparing polynomial and local regression:

(a) The local-linear regression of prestige on income with span s ¼ 0:6 (in Figure 18.7 on
page 543) has 5:006 equivalent degrees of freedom, very close to the number of
degrees of freedom for a global fourth-order polynomial. Fit a fourth-order polynomial
to these data and compare the resulting regression curve with the local-linear
regression.

(b) Now, consider the local-linear regression of infant mortality on GDP per capita for
193 nations shown in Figure 3.14 (page 45), which is for a span of s ¼ 0:5 and which
has 5.9 equivalent degrees of freedom. Fit a fifth-order polynomial to these data and
compare the fitted regression curve to the local-linear regression.

(c) What do you conclude from these two examples?

Exercise 18.8. Equivalent kernels: One way of comparing linear smoothers like local-polyno-
mial estimators and smoothing splines is to think of them as variants of the kernel estimator,
where fitted values arise as weighted averages of observed response values. This approach is
illustrated in Figure 18.19, which shows equivalent kernel weights at two focal X -values in the
Canadian occupational prestige data: One value, xð5Þ, is near the boundary of the data; the
other, xð60Þ, is closer to the middle of the data. The figure shows tricube-kernel weights [panels
(a) and (b)], along with the equivalent kernel weights for the local-linear estimator with
span ¼ 0:6 (or five equivalent parameters) [panels (c) and (d)] and the smoothing spline with
five equivalent parameters [in panels (e) and (f)]. Compare and contrast the equivalent kernel
weights for the three estimators. Are there any properties of the equivalent kernels for the
local-linear and smoothing-spline estimators that you find surprising?

Summary

) Kernel regression estimates the regression function at a focal value x0 of the explanatory
variable by weighted local averaging of Y :

bf ðx0Þ ¼ bY jx0 ¼
Pn

i¼1 wiYiPn
i¼1 wi

The weights are provided by a kernel function, wi ¼ K½ðxi & x0Þ=h(, which takes on its
largest value at Kð0Þ and falls symmetrically toward 0 as jðxi & x0Þ=hj grows.
Observations close to the focal x0 therefore receive greatest weight. The kernel estimator
is evaluated at representative focal values of X or at the ordered X -values, xðiÞ. The
bandwidth h of the kernel estimator can be fixed or can be adjusted to include a fixed
proportion of the data, called the span of the kernel estimate. The larger the span, the
smoother the kernel regression.
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Figure 18.19 Equivalent kernels for three nonparametric estimators of the regression of occupa-
tional prestige on income: (a) and (b) nearest-neighbor tricube kernel estimator,
with span ¼ 0.6; (c) and (d) nearest-neighbor local-linear estimator, with span ¼
0.6 (five equivalent parameters); and (e) and (f) smoothing spline, with five equiva-
lent parameters. The focal point, marked at the top of each graph, is x(5) in (a), (c),
and (e) and x(60) in (b), (d), and (f).
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) Local-polynomial regression extends kernel estimation to a polynomial fit at the focal
value x0, using local kernel weights, wi ¼ K½ðxi & x0Þ=h(. The resulting WLS regression
fits the equation

Yi ¼ Aþ B1ðxi & x0Þ þ B2ðxi & x0Þ2 þ % % % þ Bpðxi & x0Þp þ Ei

to minimize the weighted residual sum of squares,
Pn

i¼1 wiE2
i . The fitted value at the focal

x0 is just bY jx0 ¼ A. This procedure is repeated for representative focal values of X or at
the observations xi. We can employ a fixed bandwidth or adjust the bandwidth for a fixed
span. Nearest-neighbor local-polynomial regression is often called lowess (or loess).

) A generally effective visual approach to selecting the span in local-polynomial regres-
sion is guided trial and error. The span s ¼ 0:5 is often a good point of departure. If the
fitted regression looks too rough, then try increasing the span; if it looks smooth, then
see if the span can be decreased without making the fit too rough. We want the smallest
value of s that provides a smooth fit.

) The bias and variance of the local-linear estimator at the focal value x0 are both a func-
tion of the bandwidth h, as well as of properties of the data and the kernel function:

biasðbY jx0Þ »
h2

2
s2

Kf 00ðx0Þ

V ðbY jx0Þ »
σ2
εa

2
K

nhpX ðx0Þ

where s2
K and a2

K are constants that depend on the kernel function, f 00ðx0Þ is the second
derivative (‘‘curvature’’) of the regression function at x0, and pX ðx0Þ is the probability-
density of X -values at x0. We would ideally like to choose the value of h at each focal
value that minimizes the mean-squared error of estimation—that is, the sum of squared
bias and variance.

) The cross-validation function

CVðsÞ ¼

Pn
i¼1

bY &iðsÞ & Yi

h i2

n

can be used to select the span s in local-polynomial regression, picking s to minimize
CVðsÞ. The fitted value at each observation bY&iðsÞ is computed from a local regression
that omits that observation. Because the cross-validation function CVðsÞ can be costly to
compute, approximations such as generalized cross-validation have been proposed. The
GCV criterion is

GCVðsÞ ¼ n · RSSðsÞ
dfresðsÞ½ (2

where RSSðsÞ is the residual sum of squares and dfresðsÞ the ‘‘equivalent’’ residual
degrees of freedom for the local-regression smoother with span s.

) The fitted values in a local-polynomial regression are linear functions of the observations,
bYi ¼

Pn
j¼1 sijYj. Estimating the error variance as S2

E ¼
P

E2
i =dfres, where dfres is the

equivalent residual degrees of freedom for the model, the estimated variance of a fitted

582 Chapter 18. Nonparametric Regression



value is bV ðbYiÞ ¼ S2
E

Pn
j¼1 s2

ij. An approximate 95% pointwise confidence band around the

regression curve evaluated at the fitted values may be formed as bYi – 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bV ðbY iÞ

q
.

) Approximate incremental F-tests for hypotheses in local-polynomial regression are for-
mulated by contrasting nested models, in analogy to similar tests for linear models fit by
least squares. For example, to test the hypothesis of no relationship in the nonpara-
metric-regression model, we can compute the F-test statistic

F0 ¼

TSS& RSS

dfmod & 1
RSS

dfres

where dfmod and dfres ¼ n& dfmod are respectively the equivalent degrees of freedom for
the regression model and for error, and RSS is the residual sum of squares for the model.
Similarly, to test for nonlinearity, we can contrast the fitted nonparametric-regression
model with a linear model, computing

F0 ¼

RSS0 & RSS1

dfmod & 2
RSS1

dfres

where RSS0 is the residual sum of squares for the linear regression and RSS1 the resi-
dual sum of squares for the more general nonparametric regression.

) The smoother matrix S in nonparametric local-polynomial regression plays a role ana-
logous to the hat-matrix H in linear least-squares regression. Like the hat-matrix, the
smoother matrix linearly transforms the observations into the fitted values: by ¼ Sy.
Pursuing this analogy, the equivalent degrees of freedom for the nonparametric-
regression model can variously be defined as dfmod ¼ traceðSÞ, traceðSS0Þ, or
traceð2S& SS0Þ.

) Generalizing local-polynomial regression to multiple regression is conceptually and
computationally straightforward. For example, to obtain the fitted value for a local-linear
regression at the focal point x0 ¼ ðx01; x02; :::; x0kÞ0 in the space of the explanatory vari-
ables, we perform a weighted-least-squares regression of Y on the X s,

Yi ¼ Aþ B1ðxi1 & x01Þ þ B2ðxi2 & x02Þ þ % % % þ Bkðxik & x0kÞ þ Ei

emphasizing observations close to the focal point by minimizing the weighted residual
sum of squares,

Pn
i¼1 wiE2

i . The fitted value at the focal point in the X -space is then
bY jx0 ¼ A. The weights wi can be computed in several ways, including by multiplying
marginal kernel weights for the several explanatory variables or by basing kernel
weights on one or another measure of distance between the focal x0 and the observed X -
values, xi. Given a distance measure Dðxi;x0Þ, the kernel weights are calculated as
wi ¼ K Dðxi;x0Þ=h½ (.

) Methods for selecting the span in local-polynomial multiple regression are much the
same as in local-polynomial simple regression: We can proceed visually by trial and
error or apply a criterion such as CVðsÞ or GCVðsÞ. Similarly, approximate pointwise
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confidence limits for the fitted regression can be calculated as in local-polynomial sim-
ple regression, as can incremental F-tests comparing nested models.

) The curse of dimensionality and the difficulty of visualizing high-dimensional surfaces
limit the practical application of unrestricted nonparametric multiple regression when
there are more than a very small number of explanatory variables.

) When there are two explanatory variables, the fitted nonparametric-regression
surface can be visualized in a three-dimensional perspective plot, in a contour plot, or
in coplots for each explanatory variable at fixed levels of the other variable. Coplots
can be generalized to three or more explanatory variables but quickly become
unwieldy.

) The additive regression model

EðY jx1; x2; :::; xkÞ ¼ αþ f1ðx1Þ þ f2ðx2Þ þ % % % þ fkðxkÞ

expresses the average value of the response variable as the sum of smooth functions of
several explanatory variables. The additive model is therefore more restrictive than the
general nonparametric-regression model but more flexible than the linear-regression
model.

) The additive regression model can be fit to data by the method of backfitting, which
iteratively smooths the partial residuals for each explanatory variable using current esti-
mates of the regression functions for other explanatory variables.

) Semiparametric models are additive regression models in which some terms enter non-
parametrically while others enter linearly:

Yi ¼ αþ β1xi1 þ % % % þ βrxir þ frþ1ðxi;rþ1Þ þ % % % þ fkðxikÞ þ εi

Linear terms may be used, for example, to incorporate dummy regressors in the model.
Interactions may be included in an otherwise additive regression model by employing a
multiple-regression smoother for interacting explanatory variables, such as X1 and X2 in
the model

Yi ¼ αþ f12ðxi1; xi2Þ þ f3ðxi3Þ þ % % % þ fkðxikÞ þ εi

) The method of local likelihood can be used to fit generalized local-polynomial nonpara-
metric-regression models, where, as in generalized linear models, the conditional distri-
bution of the response variable can be a member of an exponential family—such as a
binomial or Poisson distribution. Statistical inference can then be based on the deviance
and equivalent degrees of freedom for the model, formulating likelihood-ratio chi-square
or F-tests as in a generalized linear model. Other aspects of local-polynomial nonpara-
metric regression also generalize readily, such as the selection of the span by generalized
cross-validation.

) The generalized additive model (or GAM) replaces the parametric terms in the general-
ized linear model with smooth terms in the explanatory variables:

ηi ¼ αþ f1ðxi1Þ þ f2ðxi2Þ þ % % % þ fkðxikÞ

where the additive predictor ηi plays the same role as the linear predictor in a general-
ized linear model. GAMs can be fit to data by combining the backfitting algorithm used
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for additive regression models with the iterated weighted-least-squares algorithm for fit-
ting generalized linear models. Approximate pointwise confidence intervals around the
fitted regression surface and statistical tests based on the deviance of the fitted model
follow in a straightforward manner.

Recommended Reading

There are many fine sources on nonparametric regression and smoothing.

) Hastie and Tibshirani’s (1990) text on generalized additive models includes a wealth of
valuable material. Most of the book is leisurely paced and broadly accessible, with many
effective examples. As a preliminary to generalized additive models, Hastie and
Tibshirani include a fine treatment of scatterplot smoothing.

) Wood (2006) also presents an excellent and wide-ranging treatment of generalized addi-
tive models that stresses smoothing splines and automatic selection of smoothing
parameters.

) A briefer presentation by Hastie of generalized additive models appears in an edited
book (Chambers & Hastie, 1992) on statistical modeling in the S computing environ-
ment (also implemented in R). This book includes a chapter by Cleveland, Grosse, and
Shyu on local regression models.

) Cleveland’s (1993) text on data visualization presents information on local regression in
two and more dimensions.

) Härdle (1991) gives an overview of nonparametric regression, stressing kernel smooth-
ers for bivariate scatterplots.

) Additional details may be found in Fan and Gijbels (1996), Simonoff (1996), and
Bowman and Azzalini (1997).

) Much of the exposition in the current chapter was adapted from Fox (2000a, 2000b),
which presents the topic in greater detail (and which omits some newer material).
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19 Robust
Regression*

T he efficiency of least-squares regression is seriously impaired by heavy-tailed error distri-
butions; in particular, least squares is vulnerable to outlying observations at high-leverage

points.1 One response to this problem is to employ diagnostics for high-leverage, influential,
and outlying data; if unusual data are discovered, then these can be corrected, removed, or oth-
erwise accommodated.

Robust estimation is an alternative approach to outliers and the heavy-tailed error distribu-
tions that tend to generate them. Properly formulated, robust estimators are almost as efficient
as least squares when the error distribution is normal and much more efficient when the errors
are heavy tailed. Robust estimators hold their efficiency well because they are resistant to out-
liers. Rather than simply discarding discrepant data, however, robust estimation (as we will
see) down-weights them.

Much of the chapter is devoted to a particular strategy of robust estimation, termed M esti-
mation, due originally to Huber (1964). I also describe two other approaches to robust estima-
tion: bounded-influence regression and quantile regression. Finally, I briefly present robust
estimators for generalized linear models.

19.1 M Estimation

19.1.1 Estimating Location

Although our proper interest is in robust estimation of linear models, it is helpful to narrow
our focus initially to a simpler setting: robust estimation of location—that is, estimation of the
center of a distribution. Let us, then, begin our exploration of robust estimation with the mini-
mal linear model

Yi ¼ µþ εi

where the observations Yi are independently sampled from some symmetric distribution with
center µ (and hence the errors εi are independently and symmetrically distributed around 0).2

If the distribution from which the observations are drawn is normal, then the sample mean
bµ ¼ Y is the maximally efficient estimator of µ, producing the fitted model

1See Chapter 11.
2In the absence of symmetry, what we mean by the center of the distribution becomes ambiguous.
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Yi ¼ Y þ Ei

The mean minimizes the least-squares objective function:

Xn

i¼1

rLSðEiÞ ¼
Xn

i¼1

rLSðYi % bµÞ[
Xn

i¼1

ðYi % bµÞ2

The mean, however, is very sensitive to outliers, as is simply demonstrated: I drew a sample of
six observations from the standard-normal distribution, obtaining

Y1¼ %0:068 Y2 ¼ %1:282 Y3 ¼ 0:013

Y4¼ 0:141 Y5 ¼ %0:980 Y6 ¼ 1:263

The mean of these six values is Y ¼ %0:152. Now, imagine adding a seventh observation, Y7,
allowing it to take on all possible values from %10 to þ10 (or, with greater imagination, from
%‘ to þ‘). The result, called the influence function of the mean, is graphed in Figure 19.1(a).
It is apparent from this figure that as the discrepant seventh observation grows more extreme,
the sample mean chases it.

The shape of the influence function for the mean follows from the derivative of the least-
squares objective function with respect to E:

cLSðEÞ[ r0LSðEÞ ¼ 2E

Influence, therefore, is proportional to the residual E. It is convenient to redefine the least-
squares objective function as rLSðEÞ[ 1

2 E2, so that cLSðEÞ ¼ E.
Now consider the sample median as an estimator of µ. The median minimizes the least-

absolute-values (LAV) objective function:3
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Figure 19.1 The influence functions for the mean (a) and median (b) for the sample Y1 ¼ %0:068;
Y2 ¼ %1:282;Y3 ¼ 0:013;Y4 ¼ 0:141; Y5 ¼ %0:980; Y6 ¼ 1:263. The influence func-
tion for the median is bounded, while that for the mean is not. Note that the vertical
axes for the two graphs have different scales.

3See Exercise 19.1.
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Xn

i¼1

rLAVðEiÞ ¼
Xn

i¼1

rLAVðYi % bµÞ[
Xn

i¼1

Yi % bµj j

As a result, the median is much more resistant than the mean to outliers. The influence function
of the median for the illustrative sample is shown in Figure 19.1(b). In contrast to the mean,
the influence of a discrepant observation on the median is bounded. Once again, the derivative
of the objective function gives the shape of the influence function:4

cLAVðEÞ[ r0LAVðEÞ ¼
1 for E > 0
0 for E ¼ 0
%1 for E < 0

8
<

:

Although the median is more resistant than the mean to outliers, it is less efficient than the
mean if the distribution of Y is normal. When Y ; Nðµ; σ2Þ, the sampling variance of the
mean is σ2=n, while the variance of the median is πσ2=2n: That is, π=2 » 1:57 times as large as
for the mean. Other objective functions combine resistance to outliers with greater robustness
of efficiency. Estimators that can be expressed as minimizing an objective function

Pn
i¼1 rðEÞ

are called M estimators.5

Two common choices of objective functions are the Huber and Tukey’s biweight (or bis-
quare) functions:

& The Huber objective function is a compromise between least squares and least absolute
values, behaving like least squares in the center and like least absolute values in the
tails:

rH ðEÞ ¼
1
2 E2 for jEj £ k
kjEj% 1

2 k2 for jEj > k

!

The Huber objective function rH and its derivative, the influence function cH , are
graphed in Figure 19.2:6

cH ðEÞ ¼
k for E > k
E for jEj £ k
%k for E <% k

8
<

:

The value k; which defines the center and tails, is called a tuning constant.

It is most natural to express the tuning constant as a multiple of the scale (i.e., the
spread) of the variable Y , that is, to take k ¼ cS, where S is a measure of scale. The sam-
ple standard deviation is a poor measure of scale in this context because it is even more
affected than the mean by outliers. A common robust measure of scale is the median
absolute deviation (MAD):

MAD [ medianjYi % bµj

4Strictly speaking, the derivative of rLAV is undefined at E ¼ 0, but setting cLAVð0Þ[ 0 is convenient.
5Estimators that can be written in this form can be thought of as generalizations of maximum-likelihood estimators,
hence the term M estimator. The maximum-likelihood estimator is produced by taking rMLðy% µÞ[ % loge pðy% µÞ
for an appropriate probability or probability density function pð'Þ.
6My terminology here is loose but convenient: Strictly speaking, the c-function is not the influence function, but it has
the same shape as the influence function.
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The estimate bµ can be taken, at least initially, as the median value of Y . We can then
define S [ MAD=0:6745, which ensures that S estimates the standard deviation σ when
the population is normal. Using k ¼ 1:345S (i.e., 1:345=0:6745 » 2 MADs) produces
95% efficiency relative to the sample mean when the population is normal, along with
considerable resistance to outliers when it is not. A smaller tuning constant can be
employed for more resistance.

& The biweight (or bisquare) objective function levels off at very large residuals:7

rBWðEÞ[

k2

6
1% 1% E

k

" #2
" #3

8
<

:

9
=

; for jEj £ k

k2

6
for jEj > k

8
>>>><

>>>>:

The influence function for the biweight estimator, therefore, ‘‘redescends’’ to 0, completely dis-
counting observations that are sufficiently discrepant:

cBWðEÞ ¼ E 1% E
k

" #2
" #2

for jEj £ k

0 for jEj > k

8
><

>:

The functions rBW and cBW are graphed in Figure 19.3. Using k ¼ 4:685S (i.e., 4:685=
0:6745 » 7 MADs) produces 95% efficiency when sampling from a normal population.
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Figure 19.2 Huber objective function rH (a) and ‘‘influence function’’ cH (b). To calibrate these
graphs, the tuning constant is set to k ¼ 1. (See the text for a discussion of the tuning
constant.)

7The term bisquare applies literally to the c-function and to the weight function (hence biweight) to be introduced pre-
sently—not to the objective function.
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Robust M estimators of location, for the parameter µ in the simple model Yi ¼ µþ εi,
minimize the objective function

Pn
i¼1 rðEiÞ ¼

Pn
i¼1 rðYi % bµÞ, selecting rð'Þ so that the

estimator is relatively unaffected by outlying values. Two common choices of objective
function are the Huber and the biweight (or bisquare). The sensitivity of an M estimator
to individual observations is expressed by the influence function of the estimator, which
has the same shape as the derivative of the objective function, cðEÞ[ r0ðEÞ.

Calculation of M estimators usually requires an iterative procedure (although iteration is not
necessary for the mean and median, which, as we have seen, fit into the M estimation frame-
work). An estimating equation for bµ is obtained by setting the derivative of the objective func-
tion (with respect to bµ) to 0, obtaining

Xn

i¼1

c Yi % bµð Þ ¼ 0 ð19:1Þ

There are several general approaches to solving Equation 19.1; probably the most straightfor-
ward, and the simplest to implement computationally, is to reweight the mean iteratively—a
special case of iterative weighted least squares (IWLS):8
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Figure 19.3 Biweight objective function rBW (a) and ‘‘influence function’’ cBW (b). To calibrate
these graphs, the tuning constant is set to k ¼ 1. The influence function ‘‘redescends’’
to 0 when jEj is large.

8In Chapter 15, we employed IWLS estimation for generalized linear models. The method is also called iteratively
reweighted least squares (IRLS).
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1. Define the weight function wðEÞ[ cðEÞ=E. Then, the estimating equation becomes

Xn

i¼1

Yi % bµð Þwi ¼ 0 ð19:2Þ

where

wi [ w Yi % bµð Þ

The solution of Equation 19.2 is the weighted mean

bµ ¼
P

wiYiP
wi

The weight functions corresponding to the least-squares, LAV, Huber, and bisquare
objective functions are shown in Table 19.1 and graphed in Figure 19.4. The least-
squares weight function accords equal weight to each observation, while the bisquare
gives 0 weight to observations that are sufficiently outlying; the LAV and Huber weight
functions descend toward 0 but never quite reach it.

2. Select an initial estimate bµð0Þ, such as the median of the Y values.9 Using bµð0Þ, calcu-
late an initial estimate of scale Sð0Þ and initial weights wð0Þi ¼ wðYi % bµð0ÞÞ. Set the
iteration counter l ¼ 0. The scale is required to calculate the tuning constant k ¼ cS
(for prespecified c).

3. At each iteration l, calculate bµðlÞ ¼
P

wðl%1Þ
i Yi=

P
wðl%1Þ

i . Stop when the change in
bµðlÞ is negligible from one iteration to the next.

An estimating equation for bµ is obtained by setting the derivative of the objective func-
tion (with respect to bµ) to 0, obtaining

Pn
i¼1 c Yi % bµð Þ ¼ 0. The simplest procedure for

solving this estimating equation is by iteratively reweighted means. Defining the weight
function as wðEÞ[ cðEÞ=E, the estimating equation becomes

Pn
i¼1 Yi % bµð Þwi ¼ 0,

from which bµ ¼
P

wiYi=
P

wi. Starting with an initial estimate bµð0Þ, initial weights are
calculated, and the value of bµ is updated. This procedure continues iteratively until the
value of bµ converges.

Table 19.1 Weight Functions wðEÞ ¼ c(E)=E for
Several M Estimators

Estimator Weight Function w(E)

Least squares 1
Least absolute values 1=jEj (for E 6¼0)
Huber 1 for jEj£ k

k=jEj for jEj> k

Bisquare (biweight) 1% E

k

" #2
" #2

for jEj£ k

0 for jEj> k

9Because the estimating equation for redescending M estimators, such as the bisquare, can have more than one root,
the selection of an initial estimate might be consequential.
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19.1.2 M Estimation in Regression

With the exception of one significant caveat, to be addressed in the next section, the general-
ization of M estimators to regression is immediate. We now wish to estimate the linear model

Yi ¼ αþ β1Xi1 þ ' ' ' þ βkXik þ εi

¼ x0i
ð1 · kþ1Þ

fl
ðkþ1 · 1Þ

þεi
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Figure 19.4 Weight functions w(E) for the (a) least-squares, (b) least-absolute-values, (c) Huber, and
(d) biweight estimators. The tuning constants for the Huber and biweight estimators are
taken as k ¼ 1. Note that the vertical axis in the graph for the LAV estimator and the
horizontal axis in the graph for the Huber estimator are different from the others.
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The estimated model is

Yi ¼ Aþ B1Xi1 þ ' ' ' þ BkXik þ Ei

¼ x0ibþ Ei

The general M estimator minimizes the objective function

Xn

i¼1

rðEiÞ ¼
Xn

i¼1

rðYi % x0ibÞ

Differentiating the objective function and setting the derivative to 0 produces

Xn

i¼1

cðYi % x0ibÞxi ¼ 0 ð19:3Þ

which is a system of k þ 1 estimating equations in the k þ 1 elements of b.

M estimation for the regression model Yi ¼ x0iflþ εi is a direct extension of M estima-
tion of location: We seek to minimize an objective function of the regression residuals,Pn

i¼1 rðEiÞ ¼
Pn

i¼1 rðYi % x0ibÞ. Differentiating the objective function and setting the
derivatives to 0 produces the estimating equations

Pn
i¼1 cðYi % x0ibÞxi ¼ 0.

Using the weight function wðEÞ[ cðEÞ=E and letting wi [ wðEiÞ, the estimating equations
become

Xn

i¼1

wiðYi % x0ibÞxi ¼ 0

The solution to these estimating equations minimizes the weighted sum of squares
P

wiE2
i .10

Because the weights depend on the residuals, the estimated coefficients depend on the weights,
and the residuals depend on the estimated coefficients, an iterative solution is required. The
IWLS algorithm for regression is as follows:

1. Select initial estimates bð0Þ and set the iteration counter l ¼ 0. Using the initial esti-
mates, find residuals Eð0Þi ¼ Yi % x0ib

ð0Þ, and from these, calculate the estimated scale of
the residuals Sð0Þ and the weights wð0Þi ¼ wðEð0Þi Þ.

2. At each iteration l, solve the estimating equations using the current weights, minimizingP
wðl%1Þ

i E2
i to obtain bðlÞ. The solution is conveniently expressed as

bðlÞ ¼ ðX0WXÞ%1X0Wy

where the model matrix X
ðn · kþ1Þ

has x0i as its ith row, and W
ðn · nÞ

[ diagfwðl%1Þ
i g.

Continue until bðlÞ % bðl%1Þ » 0.11

10See the discussion of weighted-least-squares regression in Section 12.2.2.
11As in the location problem, it is possible that the estimating equations for a redescending estimator have more than
one root. If you use the bisquare estimator, for example, it is prudent to pick a good start value, such as provided by
the Huber estimator.
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Using the weight function, the estimating equations can be written as

Xn

i¼1

wiðYi % x0ibÞx
0
i ¼ 0

The solution of the estimating equations then follows by weighted least squares:

b ¼ ðX0WXÞ%1X0Wy

where W is the diagonal matrix of weights. The method of iterated weighted least
squares starts with initial estimates bð0Þ, calculates initial residuals from these estimates,
and calculates initial weights from the residuals. The weights are used to update the para-
meter estimates, and the procedure is iterated until it converges.

The asymptotic covariance matrix of the M estimator is given by

VðbÞ ¼ Eðc2Þ
½Eðc0Þ)2

ðX0XÞ%1

Using
P

cðEiÞ½ )2=n to estimate Eðc2Þ and
P

c0ðEiÞ=n½ )2 to estimate ½Eðc0Þ)2 produces the
estimated asymptotic covariance matrix bV ðbÞ. Research suggests, however, that these sampling
variances are not to be trusted unless the sample size is large.12

To illustrate M estimation, recall Duncan’s regression of occupational prestige on income
and education. In our previous analysis of these data, we discovered two influential observa-
tions: ministers and railroad conductors.13 Another observation, reporters, has a relatively
large residual but is not influential; still another observation, railroad engineers, is at a high-
leverage point but is not discrepant. Table 19.2 summarizes the results of estimating Duncan’s
regression using four M estimators, including ordinary least squares. (The least-squares

Table 19.2 M Estimates for Duncan’s Regression of
Occupational Prestige on Income and
Education for 45 U.S. Occupations

Coefficient

Estimator Constant Income Education

Least squares %6.065 0.5987 0.5458
Least squares* %6.409 0.8674 0.3322
Least absolute values %6.408 0.7477 0.4587
Huber %7.111 0.7014 0.4854
Bisquare (biweight) %7.412 0.7902 0.4186

NOTE: The estimator marked ‘‘Least squares*’’ omits ministers

and railroad conductors.

12See Li (1985, pp. 300–301). For an alternative approach that may have better small-sample properties, see Street,
Carroll, and Ruppert (1988). Also see the discussion of bootstrap methods in Chapter 21.
13See Chapter 11.
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estimates obtained after deleting ministers and railroad conductors are also shown for compari-
son.) The three robust estimators produce quite similar results, with a larger income coefficient
and smaller education coefficient than least squares. The redescending bisquare estimator is
most different from least squares (and most similar to least squares after removing the two dis-
crepant observations).

Figure 19.5 shows the final weights for the bisquare estimator applied to Duncan’s data.
Railroad conductors, reporters, and (especially) ministers have comparatively small weights,
although some other occupations are down-weighted as well. Rather than simply regarding
robust regression as a procedure for automatically down-weighting outliers, the method can
often be used effectively, as here, to identify outlying observations.

19.2 Bounded-Influence Regression

The flies in the ointment of M estimation in regression are high-leverage outliers. In the loca-
tion problem, M estimators such as the Huber and the bisquare bounded the influence of indi-
vidual discrepant observations, but this is not the case in regression—if we admit the
possibility of X -values with high leverage. High-leverage observations can force small resi-
duals even when these observations depart from the pattern of the rest of the data.14

A key concept in assessing influence is the breakdown point of an estimator: The breakdown
point is the fraction of arbitrarily ‘‘bad’’ data that the estimator can tolerate without being
affected to an arbitrarily large extent. In the location problem, for example, the mean has a
breakdown point of 0, because a single bad observation can change the mean by an arbitrary
amount. The median, in contrast, has a breakdown point of 50%, because fully half the data
can be bad without causing the median to become completely unstuck.15 It is disquieting that
in regression analysis, all M estimators have breakdown points of 0.
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Figure 19.5 Final weights for the bisquare estimator applied to Duncan’s regression of occupa-
tional prestige on income and education.

14For an illustration of this phenomenon, see Exercise 19.3.
15See Exercise 19.2.
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There are regression estimators, however, that have breakdown points of nearly 50%. One
such bounded-influence estimator is least-trimmed-squares (LTS) regression.16

Return to the fitted regression model Yi ¼ x0ibþ Ei, ordering the squared residuals from
smallest to largest:17 ðE2Þð1Þ, ðE2Þð2Þ; . . . ; ðE2ÞðnÞ. Then, select b to minimize the sum of the
smaller ‘‘half’’ of the squared residuals—that is,

Xm

i¼1

ðE2ÞðiÞ ð19:4Þ

for m ¼ ðnþ k þ 2Þ=2b c (where the ‘‘floor’’ brackets indicate rounding down to the next smal-
lest integer).

The LTS criterion is easily stated, but the LTS estimate is not so easily computed. One
approach is to consider all subsets of observations of size k þ 1 for which the vectors x0i are
distinct. Let the ðk þ 1Þ· ðk þ 1Þ model matrix for a particular such subset be represented as
X*. Because the rows of X* are all different, it is almost surely the case that the matrix X* is of
full rank, and we can compute the regression coefficients for this subset as b* ¼ X*%1y* (where
y* contains the corresponding entries of the response vector).18 For each such subset, we com-
pute the LTS criterion in Equation 19.4 and take as the LTS estimator bLTS the value of b* that
minimizes this criterion.

If there are no repeated rows in the model matrix X , then the number of subsets of observa-
tions of size k þ 1 is

n
k þ 1

" #
¼ n!

ðn% k % 1Þ!ðk þ 1Þ!

which is a very large number unless n is small. Even with highly efficient computational meth-
ods, it quickly becomes impractical, therefore, to find the LTS estimator by this approach. But
we can compute a close approximation to bLTS by randomly sampling many (but not unma-
nageably many) subsets of observations and minimizing the LTS criterion over the sampled
subsets.

In the case of Duncan’s occupational prestige regression, it is feasible to compute all subsets
of size k þ 1 ¼ 3 of the n ¼ 45 observations, of which there are

45
3

" #
¼ 45!

42!3!
¼ 14;190

The LTS estimates, it turns out, are similar to the bisquare estimates given in the previous sec-
tion (Table 19.2 on page 594):

dPrestige ¼ %5:764þ 0:8023 · Incomeþ 0:4098 · Education

16The LTS estimator, the MM estimator introduced below, and other bounded-influence estimators in regression are
described in detail by Rousseeuw and Leroy (1987).
17Lest the notation appear confusing, note that it is the squared residuals E2

i that are ordered from smallest to largest,
not the residuals Ei themselves.
18See Exercise 19.4.
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Unlike the M estimator of location, the M estimator in regression is vulnerable to high-
leverage observations. Bounded-influence estimators limit the impact of high-leverage
observations. One such bounded-influence estimator is LTS, which selects the regression
coefficients to minimize the smaller ‘‘half’’ of the squared residuals,

Pm
i¼1 ðE2ÞðiÞ (where

m ¼ ðnþ k þ 2Þ=2b c). The LTS estimator can be computed by calculating the regression
coefficients for all subsets of observations of size k þ 1 and selecting the regression coef-
ficients from the subset that minimizes the LTS criterion. If there are too many such sub-
sets, then a manageable number can be sampled randomly.

LTS and other bounded-influence estimators are not a panacea for linear-model estimation,
because they can give unreasonable results for some data configurations.19 As well, the LTS
estimator has much lower efficiency than the M estimators that we considered if the errors are
in fact normal.

The latter problem can be addressed by combining bounded-influence estimation with M esti-
mation, producing a so-called MM estimator, which retains the high breakdown point of the
bounded-influence estimator and the high efficiency under normality of the M estimator. The
MM estimator uses a bounded-influence estimator for start values in the computation of an M
estimate and also to estimate the scale of the errors. For example, starting with the LTS estimator
of the Duncan regression and following with the bisquare estimator yields the MM estimates

dPrestige ¼ %7:490þ 0:8391 · Incomeþ 0:3935 · Education

The MM estimator combines the high breakdown point of bounded-influence regression
with the high efficiency of M estimation for normally distributed errors. The MM estima-
tor uses start values and a scale estimate obtained from a preliminary bounded-influence
regression.

19.3 Quantile Regression

Quantile regression, due to Koenker and Bassett (1978), is a conceptually straightforward gen-
eralization of LAV regression. As I have explained, LAV regression estimates the conditional
median (i.e., 50th percentile) of the response variable as a function of the explanatory variables.
Quantile regression extends this approach to estimating other conditional quantiles of the
response, such as the quartiles.

The LAV criterion in linear regression is written most directly as

Xn

i¼1

rLAVðYi % x0ibÞ[
Xn

i¼1

Yi % x0ib
$$ $$

The LAV estimator, bLAV, is the value of b that minimizes this criterion. An equivalent expres-
sion, the motivation for which will become clear presently, is

19See Stefanski (1991).
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Xn

i¼1

rLAVðYi % x0ibÞ ¼ 0:5 ·
X

i: ðYi%x0ibÞ < 0

Yi % x0ib
$$ $$ þ 0:5 ·

X

i: ðYi%x0ibÞ > 0

Yi % x0ib
$$ $$

that is, the LAV criterion consists of two components: The first component includes observa-
tions producing negative residuals and the second, observations producing positive residuals;
residuals in these two classes are weighted equally.

Koenker and Bassett show that estimating the conditional q quantile (where 0 < q < 1) is
equivalent to minimizing

Xn

i¼1

rqðYi % x0ibÞ ¼ q ·
X

i: ðYi%x0ibÞ < 0

Yi % x0ib
$$ $$ þ ð1% qÞ ·

X

i: ðYi%x0ibÞ > 0

Yi % x0ib
$$ $$

(i.e., a sum of differentially weighted negative and positive residuals) and that, furthermore,
finding the value b ¼ bq that minimizes this criterion is a straightforward linear programming
problem.20 They proceed to derive the asymptotic covariance matrix of the estimated quantile
regression coefficients as21

V ðbqÞ ¼ σ2
qðX

0XÞ%1

where

σ2
q [

qð1% qÞ
p½P%1ðqÞ)

Here, pð'Þ is the probability density function for the error distribution, and P%1ð'Þ is the quan-
tile function for the errors (supposing, as may not be the case, that the errors are identically dis-
tributed). Thus, p½P%1ðqÞ) is the density at the q quantile of the error distribution.22 Note that
σ2

q plays the same role as the error variance σ2
ε does in the formula for the covariance matrix of

the least-squares estimates.23 In applications, σ2
q is estimated from the distribution of the

residuals.

Quantile regression estimates a linear model for the conditional quantile q of the
response variable by minimizing the criterion

Pn

i¼1
rqðYi % x0ibÞ ¼

P
i: ðYi%x0ibÞ < 0

q · Yi % x0ib
$$ $$þ

P
i: ðYi%x0ibÞ > 0

ð1% qÞ · Yi % x0ib
$$ $$

The asymptotic covariance matrix of the quantile regression estimator bq is
V ðbqÞ ¼ σ2

qðX0XÞ
%1, where σ2

q [ qð1% qÞ= p½P%1ðqÞ)
% &

and p½P%1ðqÞ) is the density at
the q quantile of the error distribution.

20Linear programming is a common type of optimization problem, for which there are well-understood and efficient
methods. See, for example, Gass (2003).
21Koenker and Bassett (1978) also give exact finite-sample results, but these are too computationally demanding to
prove useful in practice. An alternative to using the asymptotic standard errors is to base inference for quantile regres-
sion on the bootstrap, as described in Chapter 21.
22See the formula for the standard error of an order statistic given in Equation 3.4 (page 39).
23See Section 9.3.1.
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Figure 19.6 illustrates quantile regression by applying it to data from the Canadian Survey
of Labour and Income Dynamics (SLID). I previously fit a model in which the log of the com-
posite hourly wage rate for individuals in the sample was regressed on a dummy variable for
sex, a quadratic in age, and the square of education.24 For example, the estimated regression
equation for the conditional median (i.e., the .5 quantile) is

dMedian Wages ¼ %13:44 þ 3:066 · Male þ 0:9564 · Age
ð0:69Þ ð0:216Þ ð0:0485Þ

% 0:009567 · Age2 þ :03213 · Education2

ð0:000679Þ ð0:00157Þ

Asymptotic standard errors are in parentheses below the coefficients. Note in Figure 19.6 how
the regression quantiles spread apart at higher values of age and education, where the median
level of wages is relatively high, and how, for the most part, the conditional distribution of
wages is positively skewed, with the upper quantiles more spread out than the lower ones.
These characteristics, recall, motivated the log transformation of wages in least-squares regres-
sions for these data.

Quantile regression is an attractive method not only because of its robustness relative to least
squares but also because of its simple interpretation and because of its focus on the whole
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Figure 19.6 Effect displays for (a) age and (b) education in the quantile regression of wages on
these variables and sex in the SLID data. In each case, the conditional .1, .25, .5, .75,
and .9 quantiles are estimated. To construct each effect display, the other quantita-
tive explanatory variable is set to its median value in the data, and the dummy
regressor for sex is set to 0.5.

24See Section 12.3. There is, however, a subtle change here: We were careful on log-transforming wages to make sure
that the form in which age and education entered the model adequately captured the dependence of the conditional
mean response on these explanatory variables. Because the log transformation is not linear, a quadratic in age and the
square of education may not be appropriate for the conditional median of untransformed wages. I could, of course,
compute instead the quantile regression for log wages (and I invite the reader to do so), but I wanted to illustrate how
quantile regression can reveal asymmetry and nonconstant spread in the conditional distribution of the response.
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conditional distribution of the response. Moreover, quantile regression extends naturally
beyond linear models, for example, to nonlinear regression and to nonparametric regression.25

19.4 Robust Estimation of Generalized
Linear Models

The maximum-likelihood or quasi-likelihood estimating equations for a generalized linear
model can be written as

Xn

i¼1

1

ai
ðYi % µiÞ xi

ðkþ1 · 1Þ
¼ 0
ðkþ1 · 1Þ

ð19:5Þ

where Yi is the response variable for the ith of n observations, µi ¼ g%1ðx0iflÞ is the conditional
expectation of the response given the values of the regressors x0i for observation i, fl is the para-
meter vector of k þ 1 regression coefficients to be estimated, and g%1ð'Þ is the inverse of the
link function (i.e., the mean function) for the model. The constants ai depend on the distribu-
tional family used to model the response; for example, for the Gaussian family ai ¼ 1, while
for the binomial family ai ¼ 1=ni (the inverse of the number of binomial trials).26 Because it
depends directly on the difference between the observed and fitted response, the maximum-
likelihood or quasi-likelihood estimator based on these estimating equations is generally not
robust.

Cantoni and Ronchetti (2001) suggest replacing Equation 19.5 by estimating equations of
the form

Xn

i¼1

cðYi;µiÞ ¼ 0 ð19:6Þ

where cð'Þ is selected to produce high resistance to outliers. Equation 19.6 is a generalization
of the estimating equations for M estimators in linear regression (Equation 19.3 on page 593).
Bounded influence is achieved by down-weighting high-leverage observations: The weights
employed are the product of (1) weights measuring the discrepancy between the observed and
fitted response and (2) weights accounting for the leverage of the observations.27 The details
are beyond the scope of this presentation and are developed in Cantoni and Ronchetti’s (2001)
study.

Because the response variable in a binomial generalized linear model is bounded by 0 and 1,
it is rare (but not impossible) to find highly influential observations in a logit or probit regres-
sion. GLMs for count data and for non-normal continuous responses are another matter, and
robust estimation for these models is potentially useful. My limited experience with Cantoni

25See Koenker (2005).
26See Section 15.3.
27A simple choice of leverage-based weights is

ffiffiffiffiffiffiffiffiffiffiffiffi
1% hi
p

, where hi is the hat-value for the ith observation (see Section
11.2). A higher breakdown point can be achieved, however, by using a robust covariance matrix for the X s to judge
the unusualness of observations in the X -space; using a robust covariance matrix is not sensible when the model matrix
includes dummy regressors or other contrasts. Applied to linear regression, bounded-influence estimators using weights
based on the product of leverage and discrepancy are called GM (generalized-M) estimators (see Rousseeuw & Leroy,
1987, Chapter 1).
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and Ronchetti’s estimator, however, suggests that it is not entirely reliable for detecting and
discounting influential data.28

Robust bounded-influence estimators for generalized linear models can be obtained by
replacing the usual maximum-likelihood or quasi-likelihood estimating equations for
GLMs by

Pn
i¼1 cðYi;µiÞ ¼ 0, where cð'Þ is selected to produce high resistance to out-

liers. Bounded influence is achieved by down-weighting observations that have large
residuals or large leverage.

19.5 Concluding Remarks

A final caution concerning robust regression: Robust estimation is not a substitute for close
examination of the data. Although robust estimators can cope with heavy-tailed error distribu-
tions and outliers, they cannot correct nonlinearity, for example. Indeed, one use of robust esti-
mation is to employ it as a routine diagnostic for unusual data in small- to medium-size
samples, comparing the results obtained for a robust estimator with those of least-squares
regression and investigating when the two estimators produce substantially different estimates
(see, e.g., the discussion of the final weights for the Duncan regression displayed in
Figure 19.5 on page 595).

As I have pointed out with respect to quantile regression, robust estimators can be extended
to other settings. For example, it is a simple matter, and indeed common, to employ M estima-
tor ‘‘robustness weights’’ in local-polynomial nonparametric regression, multiplying these
weights by the neighborhood weights for the usual local-polynomial estimator, thereby render-
ing the local-polynomial estimator resistant to outliers.29

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 19.1. *Prove that the median minimizes the least-absolute-values objective function:

Xn

i¼1

rLAVðEiÞ ¼
Xn

i¼1

Yi % bµj j

Exercise 19.2. Breakdown: Consider the contrived data set

Y1 ¼ %0:068 Y2 ¼ %1:282 Y3 ¼ 0:013 Y4 ¼ 0:141

Y5 ¼ %0:980

28See, for example, Exercise 19.5.
29See Chapter 18.
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(an adaptation of the data used to construct Figure 19.1). Show that more than two values must
be changed to influence the median of the five values to an arbitrary degree. (Try, e.g., to make
the first two values progressively and simultaneously larger, graphing the median of the altered
data set against the common value of Y1 and Y2; then, do the same for the first three
observations.)

Exercise 19.3. The following contrived data set (discussed in Chapter 3) is from Anscombe
(1973):

(a) Graph the data and confirm that the third observation is an outlier. Find the least-
squares regression of Y on X , and plot the least-squares line on the graph.

(b) Fit a robust regression to the data using the bisquare or Huber M estimator. Plot the
fitted regression line on the graph. Is the robust regression affected by the outlier?

(c) Omitting the third observation f13; 12:74g, the line through the rest of the data has the
equation Y ¼ 4þ 0:345X , and the residual of the third observation from this line is
4.24. (Verify these facts.) Generate equally discrepant observations at X -values of 23
and 33 by substituting these values successively into the equation Y ¼ 4þ 0:345X
þ4:24: Call the resulting Y values Y 03 and Y 003 . Redo parts (a) and (b), replacing the
third observation with the point f23; Y 03g. Then, replace the third observation with the
point f33; Y 003 g. What happens?

(d) Repeat part (c) using the LTS bounded-influence estimator. Do it again with the MM
estimator.

Exercise 19.4. Computing the LTS estimator: Why is it almost surely the case that the
ðk þ 1Þ· ðk þ 1Þ matrix X*, with rows selected from among those of the complete model
matrix X, is of full rank when all its rows are different? (Put another way, how is it possible
that X* would not be of full rank?) Thinking in terms of the ðk þ 1Þ-dimensional scatterplot of
Y against X1; . . . ;Xk , what does the hyperplane defined by b* ¼ X*%1y* represent?

Exercise 19.5. In Chapter 15, I fit a Poisson regression of number of interlocks on assets,
nation of control, and sector for Ornstein’s Canadian interlocking-directorate data. The results
from this regression are given in Table 15.3 (page 428). Influential-data diagnostics (see, e.g.,

X Y

10 7.46
8 6.77

13 12.74
9 7.11

11 7.81
14 8.84
6 6.08
4 5.39

12 8.15
7 6.42
5 5.73
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Figure 15.7 on page 456) suggest that the first observation in the data set is quite influential; in
particular, the coefficient of assets changes considerably when the first observation is removed.
Perform a robust Poisson regression for this model. How do the results compare to removing
the first observation from the data set? (Recall, however, that the influence of the first observa-
tion depends on unmodeled nonlinearity in the relationship between interlocks and assets—a
problem that I ultimately addressed in Chapter 15 by log-transforming assets.)

Summary

& Robust M estimators of location, for the parameter µ in the simple model Yi ¼ µþ εi,
minimize the objective function

Xn

i¼1

rðEiÞ ¼
Xn

i¼1

rðYi % bµÞ

selecting rð'Þ so that the estimator is relatively unaffected by outlying values. Two com-
mon choices of objective function are the Huber and the biweight (or bisquare).

& The sensitivity of an M estimator to individual observations is expressed by the influ-
ence function of the estimator, which has the same shape as the derivative of the objec-
tive function, cðEÞ[ r0ðEÞ.

& An estimating equation for bµ is obtained by setting the derivative of the objective func-
tion (with respect to bµ) to 0, obtaining

Pn
i¼1 c Yi % bµð Þ ¼ 0. The simplest procedure for

solving this estimating equation is by iteratively reweighted means. Defining the weight
function as wðEÞ[ cðEÞ=E, the estimating equation becomes

Pn
i¼1 Yi % bµð Þwi ¼ 0,

from which bµ ¼
P

wiYi=
P

wi. Starting with an initial estimate bµð0Þ, initial weights are
calculated, and the value of bµ is updated. This procedure continues iteratively until the
value of bµ converges.

& M estimation for the regression model Yi ¼ x0iflþ εi is a direct extension of M estima-
tion of location: We seek to minimize an objective function of the regression residuals:

Xn

i¼1

rðEiÞ ¼
Xn

i¼1

rðYi % x0ibÞ

Differentiating the objective function and setting the derivatives to 0 produces the esti-
mating equations

Xn

i¼1

cðYi % x0ibÞx
0
i ¼ 0

& Using the weight function, the estimating equations can be written as

Xn

i¼1

wiðYi % x0ibÞx
0
i ¼ 0

The solution of the estimating equations then follows by weighted least squares:

b ¼ ðX0WXÞ%1X0Wy
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where W is the diagonal matrix of weights. The method of iterated weighted least
squares starts with initial estimates bð0Þ, calculates initial residuals from these estimates,
and calculates initial weights from the residuals. The weights are used to update the
parameter estimates, and the procedure is iterated until it converges.

& Unlike the M estimator of location, the M estimator in regression is vulnerable to high-
leverage observations. Bounded-influence estimators limit the effect of high-leverage
observations. One such bounded-influence estimator is LTS, which selects the regres-
sion coefficients to minimize the smaller ‘‘half’’of the squared residuals

Pm
i¼1 ðE2ÞðiÞ

(where m ¼ ðnþ k þ 2Þ=2b c). The LTS estimator can be computed by calculating the
regression coefficients for all subsets of observations of size k þ 1 and selecting the
regression coefficients from the subset that minimizes the LTS criterion. If there are too
many such subsets, then a manageable number can be sampled randomly.

& The MM estimator combines the high breakdown point of bounded-influence regression
with the high efficiency of M estimation for normally distributed errors. The MM esti-
mator uses start values and a scale estimate obtained from a preliminary bounded-influ-
ence regression.

& Quantile regression estimates a linear model for the conditional quantile q of the
response variable by minimizing the criterion

Xn

i¼1

rqðYi % x0ibÞ ¼
X

i: ðYi%x0ibÞ < 0

q · Yi % x0ib
$$ $$ þ

X

i: ðYi%x0ibÞ > 0

ð1% qÞ · Yi % x0ib
$$ $$

The asymptotic covariance matrix of the quantile regression estimator bq is
V ðbqÞ ¼ σ2

qðX0XÞ
%1, where σ2

q [ qð1% qÞ= p½P%1ðqÞ)
% &

, and p½P%1ðqÞ) is the density at
the q quantile of the error distribution.

& Robust bounded-influence estimators for generalized linear models can be obtained by
replacing the usual maximum-likelihood or quasi-likelihood estimating equations for
GLMs by

Pn
i¼1 cðYi;µiÞ ¼ 0, where cð'Þ is selected to produce high resistance to out-

liers. Bounded influence is achieved by down-weighting observations that have large
residuals or large leverage.

Recommended Reading

& In a volume on robust and exploratory methods, edited by Hoaglin, Mosteller, and
Tukey (1983), Goodall (1983) presents a high-quality, readable treatment of M estima-
tors of location.

& A fine chapter by Li on M estimators for regression appears in a companion volume
(Hoaglin, Mosteller, & Tukey, 1985).

& Another good source on M estimators is Wu (1985).
& Rousseeuw and Leroy’s (1987) book on robust regression and outlier detection empha-

sizes bounded-influence, high-breakdown estimators.
& Andersen (2007) presents a broad and largely accessible overview of methods of robust

regression, including a discussion of robust estimation for generalized linear models.
& Koenker (2005) offers an extensive treatment of quantile regression by the originator of

the method.
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20 Missing Data in
Regression

Models

M issing data are a regrettably common feature of data sets in the social sciences. Despite
this fact, almost all statistical methods in widespread use, including the methods intro-

duced in the previous chapters of this book, assume that the data in hand are complete.
The current chapter provides a basic introduction to modern methods for handling missing

data. The first section of the chapter draws some basic distinctions concerning the processes
that generate missing data. The second section briefly describes traditional methods for coping
with missing data and explains why they are problematic. The third section shows how the
method of maximum likelihood (ML) can be used to estimate the parameters of statistical mod-
els in the presence of missing data. The fourth section introduces multiple imputation of miss-
ing data—a general, flexible, and convenient method for dealing with missing data that can
perform well in certain circumstances. The final section of the chapter introduces methods for
handling selection bias and censored data, which are special kinds of missing data.

Data may be missing for a variety of reasons:

! In survey research, for example, certain respondents may be unreachable or may refuse
to participate in the survey, giving rise to global or unit nonresponse.

! Alternatively, again in survey research, some respondents may not know the answers to
specific questions or may refuse to respond to them, giving rise to item nonresponse.

! Missing data may also be produced by errors in data collection—as when an interviewer
fails to ask a question of a survey respondent—or in data processing.

! In some cases, missing data are built into the design of a study, as when particular ques-
tions in a survey are asked only of a random subset of respondents.

! It is sometimes the case that data values in a study are censored. The most common
example of censored data occurs in survival analysis (also called event-history analysis,
duration analysis, or failure-time analysis), which concerns the timing of events. In a
prototypical biomedical application, subjects in a clinical trial are followed for a fixed
period of time, and their survival times are recorded at their deaths. Some subjects, how-
ever, happily live beyond the termination of the study, and their survival times are there-
fore censored. Survival analysis is beyond the scope of this book,1 but censored data
can occur in other contexts as well—as, for example, in an exam with a fixed number of
questions where it is not possible to score fewer than 0 nor more than the total number
of questions correct, no matter how little or much an individual knows.

1There are many texts on survival analysis. For example, see Allison (2014) for a brief introduction to survival analysis
or Hosmer and Lemeshow (1999) for a more extensive treatment.
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Missing data, in the sense that is developed in this chapter, should be distinguished from data
that are conditionally undefined. A survey respondent who has no children, for example, cannot
report their ages. Conditionally undefined data do not threaten the representativeness of a sam-
ple as truly missing data do. Sometimes, however, the distinction between missing and condi-
tionally undefined data is not entirely clear-cut: Voters in a postelection survey who did not
vote cannot be asked for whom they voted, but they could be (and may not have been) asked
whether and for whom they had a preference. Similarly, some respondents asked to state an
opinion on an issue may not have an opinion. Are these data missing or simply nonexistent?

It is important to realize at the outset that there is no magic cure for missing data, and it is
generally impossible to proceed in a principled manner without making at least partly unverifi-
able assumptions about the process that gives rise to the missing information. As King Lear
said, ‘‘Nothing will come of nothing’’ (although he applied this insight unwisely).

20.1 Missing Data Basics

Rubin (1976) introduced some key distinctions concerning missing data.2 Let the matrix X
ðn · pÞ

represent the complete data for a sample of n observations on p variables.3 Some of the entries
of X, denoted by Xmis, are missing, and the remaining entries, Xobs, are observed.4

! Missing data are said to be missing completely at random (MCAR) if the missing data (and
hence the observed data) can be regarded as a simple random sample of the complete data.
Put alternatively, the probability that a data value is missing, termed missingness, is unre-
lated to the data value itself or to any other value, missing or observed, in the data set.

! If, however, missingness is related to the observed data but—conditioning on the observed
data—not to the missing data, then missing data are said to be missing at random (MAR).
In a survey, for example, certain individuals may refuse to report their income, and these
people may even differ systematically in income from the sample as a whole.
Nevertheless, if the observations are independently sampled, so that one respondent’s
decision to withhold information about income is independent of others’ responses, and if,
conditional on the information that the respondent does provide (e.g., education, occupa-
tion), failure to provide information on income is independent of income itself, then the
data are MAR. MCAR is a stronger condition—and a special case—of MAR.

! Finally, if missingness is related to the missing values themselves—that is, if the prob-
ability that a data value is missing depends on missing data (including, and indeed usu-
ally, the data value itself), even when the information in the observed data is taken into
account—then missing data are said to be missing not at random (MNAR). For example,
if conditional on all the observed data, individuals with higher incomes are more likely
than others to withhold information about their incomes, then the missing income data
are MNAR.

2Although Rubin’s terminology is potentially confusing, it is in common use and has guided most subsequent work on
missing data by statisticians. It would therefore be a mistake, I think, to introduce different terms for these concepts.
3If you are unfamiliar with matrix notation, simply think of the matrix X as a rectangular table of data, with the obser-
vations given by the n rows of the table and the variables by the p columns.
4Despite the notation, Xmis and Xobs are not really matrices; they are, rather, subsets of the complete data matrix X.
Together, Xmis and Xobs comprise X.
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These distinctions are important because they affect the manner in which missing data can be
properly handled. In particular, if the data are MCAR or MAR, then it is not necessary to
model the process that generates the missing data to accommodate the missing data. When data
are MCAR or MAR, the ‘‘mechanism’’ that produces the missing data is therefore ignorable.
In contrast, when data are MNAR, the missing-data mechanism is nonignorable, and it
becomes necessary to model this mechanism to deal with the missing data in a valid manner.

Except in some special situations, it is not possible to know whether data are MCAR, MAR,
or MNAR. We may be able to show that missingness on some variable in a data set is related
to observed data on one or more other variables, in which case we can rule out MCAR, but the
converse is not the case—that is, demonstrating that missingness in a variable is not related to
observed data in other variables does not prove that the missing data are MCAR (because, e.g.,
nonrespondents in a survey may be differentiated from respondents in some unobserved man-
ner). If, on the other hand, a survey question is asked of a random subset of respondents, then
data are MCAR by design of the study.

Missing data are missing completely at random (MCAR) if the missing data can be
regarded as a simple random sample of the complete data. If missingness is related to the
observed data but not to the missing data (conditional on the observed data), then data are
missing at random (MAR). If missingness is related to the missing values themselves, even
when the information in the observed data is taken into account, then data are missing not
at random (MNAR). When data are MCAR or MAR, the process that produces missing
data is ignorable, in the sense that valid methods exist to deal with the missing data with-
out explicitly modeling the process that generates them. In contrast, when data are MNAR,
the process producing missing data is nonignorable and must be modeled. Except in spe-
cial situations, it is not possible to know whether data are MCAR, MAR, or MNAR.

20.1.1 An Illustration

To clarify these distinctions, let us consider the following example (adapted from Little &
Rubin, 1990): We have a data set with n ¼ 250 observations and two variables. The first vari-
able, X1, is completely observed, but some of the observations on X2 are missing. This pat-
tern—where one variable has missing data and all others (in this instance, one other variable)
are completely observed—is called univariate missing data. Univariate missing data are espe-
cially easy to handle. For example, while general patterns of missing data may require iterative
techniques (as described later in this chapter), univariate missing data do not. Nevertheless, we
will get a great deal of mileage out of this simple example.

For concreteness, suppose that the complete data are sampled from a bivariate-normal distri-
bution with means µ1 ¼ 10, µ2 ¼ 20, variances σ2

1 ¼ 9, σ2
2 ¼ 16, and covariance σ12 ¼ 8.5

The population correlation between X1 and X2 is therefore r12 ¼ 8=
ffiffiffiffiffiffiffiffiffiffiffiffi
9 · 16
p

¼ 2=3; the slope
for the regression of X1 on X2 is b12 ¼ 8=16 ¼ 1=2, and the slope for the regression of X2 on
X1 is b21 ¼ 8=9 » 0:889.

5The bivariate-normal distribution is described in online Appendix D on probability and estimation.
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Consider the following three mechanisms for generating missing data in the sample of 250
observations:

1. One hundred of the observations on X2 are selected at random and set to missing. This
situation is illustrated in Figure 20.1(a), where the data points represented by black cir-
cles are fully observed, and those represented by gray triangles are missing X2. Here,
the missing values of X2 are MCAR, and the subset of valid observations is a simple
random sample of the full data set.
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Figure 20.1 The 250 observations in each scatterplot were sampled from a bivariate-normal dis-
tribution; in each case, the observations shown as gray triangles have missing data
on X2. In panel (a), the 100 observations with missing data were sampled at random,
and the missing data on X2 are therefore missing completely at random (MCAR). In
(b), the probability that an observation has a missing value on X2 is related to its
value on X1, and so the missing data on X2 are missing at random (MAR). In (c), the
probability that an observation has a missing value on X2 is related to its value on X2,
and so the missing data on X2 are missing not at random (MNAR).
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2. In Figure 20.1(b), an observation’s missingness on X2 is related to its (observed) value
of X1:

PrðXi2 is missingÞ ¼ 1

1þ exp 1
2þ

2
3 ðXi1 & 10Þ

" # ð20:1Þ

We recognize Equation 20.1 as a logistic-regression equation,6 with the probability that
X2 is missing declining as X1 grows larger. The regression coefficients were calibrated
so that approximately 100 observations will have missing data on X2 (and for the sam-
ple in Figure 20.1(b), there are, as it turned out, 109 missing values produced by simu-
lating the missing-data-generating process). X1 and X2 are positively correlated, and
consequently, there are relatively fewer small values of X2 in the observed data than in
the complete data; moreover, if we look only at the observations with valid data on both
X1 and X2, this subset of observations also has relatively few small values of X1.
Because X1, recall, is fully observed, the missing data on X2 are MAR.

3. In Figure 20.1(c), an observation’s missingness on X2 is related to the (potentially unob-
served) value of X2 itself:

PrðXi2 is missingÞ ¼ 1

1þ exp 1
2þ

1
2 ðXi2 & 20Þ

" # ð20:2Þ

For our data set, the simulation of this process produced exactly 100 observations with
missing data on X2. Here, too, and indeed more directly, there are relatively few small
values of X2 (and, incidentally, if we exclude the observations with missing data on X2,
of X1 also). Because missingness on X2 depends directly on the value of X2, the missing
data are MNAR.

As mentioned, except in those relatively rare instances where missing data are built into the
design of a study, it is not possible to verify from the data whether they are MCAR or even
MAR—that is, whether the missing-data mechanism is ignorable. Indeed, it is fair to say that
missing data are almost always MNAR. Nevertheless, if we can argue plausibly that the depar-
ture from MAR is likely small, then dealing with missing data becomes a much more tractable
problem. Furthermore, unless we are willing to discard the data, we have to proceed in some
manner. Rather than requiring perfection, which is probably unattainable, we may have to set-
tle for a solution that simply gets us closer to the truth.

20.2 Traditional Approaches to Missing Data

In evaluating missing-data methods, there are three general questions to answer:

1. Does the method provide consistent estimates of population parameters, or does it intro-
duce systematic biases into the results?

2. Does the method provide valid statistical inferences, or are confidence intervals and
p-values distorted?

6See Section 14.1.
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3. Does the method use the observed data efficiently or does it profligately discard
information?

The answers to these questions depend partly on the methods themselves, partly on the nature
of the process generating missing data, and partly on the statistics of interest.

There are many ad hoc methods that have been proposed for dealing with missing data; I
will briefly describe several of the most common here and will explain why, in which respects,
and under what circumstances they are problematic. This discussion is far from complete, how-
ever: For example, I have omitted discussion of methods based on reweighting the data.7

Complete-case analysis (also called listwise or casewise deletion of missing data), probably
the most widely used approach, simply ignores observations with any missing data on the vari-
ables included in the analysis. Complete-case analysis has its advantages: It is simple to imple-
ment, provides consistent estimates and valid inferences when the data are missing completely
at random, and provides consistent estimates of regression coefficients and valid inferences
when missingness on all the variables in a regression does not depend on the response variable
(even if data are not MCAR). Because it discards some valid data, however, complete-case
analysis generally does not use the information in the data efficiently. This problem can
become acute when there are many variables, each with some missing data. For example, sup-
pose each of 10 variables is missing 5% of observations and that missingness in different vari-
ables is independent.8 Then, we would expect only 100 · :9510 » 60% of the observations to be
completely observed. Furthermore, when data are MAR or MNAR, complete-case analysis
usually provides biased results and invalid inferences.

Available-case analysis (also called pairwise deletion of missing data) uses all nonmissing
observations to compute each statistic of interest. In a least-squares regression analysis, for
example, the regression coefficients can be calculated from the means, variances, and covar-
iances of the variables (or, equivalently, from their means, variances, and correlations). To
apply available-case analysis to least-squares regression, each mean and variance is calculated
from all observations with valid data for a variable and the covariance of two variables from
all observations that have valid data for both.9 Available case analysis appears to use more
information than complete-case analysis, but in certain instances, this is an illusion: That is,
estimators based on available cases can be less efficient than those based on complete cases.10

Moreover, by basing different statistics on different subsets of the data, available-case analysis
can lead to nonsensical results, such as covariances that are inconsistent with one another or
correlations outside the range from &1 to þ1.11 Finally, except in simple applications, such as
linear least-squares regression, it is not obvious how to apply the available-case approach.

7As a general matter, relatively simple weighting schemes can reduce bias in estimates but do not provide valid infer-
ences. See, for example, Little and Rubin (2002, Section 3.3).
8This is not a generally realistic condition: Missingness on different variables is probably positively associated, produc-
ing a result not quite as dismal as the one described here. The general point is valid, however: With many variables
subject to missing data, there are typically many fewer complete cases than valid observations on individual variables.
9This description is slightly ambiguous: In computing the covariance, for example, do we use the means for each vari-
able computed from all valid data for that variable or (as is more common and as I have done in the example reported
below) recompute the means for each pair using observations with valid data for both variables in the pair?
10An example is estimating the difference between the means of two highly correlated variables (as in a paired t-test):
See Little and Rubin (1990, pp. 378–380).
11See Exercise 20.1.
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Several methods attempt to fill in missing data, replacing missing values with plausible
imputed values. The resulting completed data set is then analyzed using standard methods. One
such approach, termed unconditional mean imputation (or mean substitution) replaces each
missing value with the mean of the observed data for the variable in question. Although mean
imputation preserves the means of variables, it makes their distributions less variable and tends
to weaken relationships between variables. One consequence is that mean imputation generally
yields biased regression coefficients and invalid inferences even when data are MCAR. In addi-
tion, by treating the missing data as if they were observed, mean imputation exaggerates the
effective size of the data set, further distorting statistical inference—a deficiency that it shares
with other simple imputation methods.

A more sophisticated approach, called conditional-mean imputation, replaces missing data
with predicted values obtained, for example, from a regression equation (in which case the
method is also called regression imputation). Using available data, we regress each variable
with missing data on other variables in the data set; the resulting regression equation is used to
produce predicted values that replace the missing data.12 A problem with regression imputation
is that the imputed observations tend to be less variable than real data because they lack resi-
dual variation; another problem is that we have failed to account for uncertainty in the estima-
tion of the regression coefficients used to obtain the imputed values. The first of these
problems can be addressed, for example, by adding a randomly sampled residual to each filled-
in value. The second problem leads naturally to Bayesian multiple imputation of missing val-
ues, described below.13 Regression imputation improves on unconditional mean imputation,
but it is far from a perfect technique, generally providing biased estimates and invalid infer-
ences even for missing data that are MCAR.

I applied several methods of handling missing data to the artificial data sets graphed in
Figure 20.1 (page 608) and described in the preceding section. The results are shown in
Table 20.1. Recall that the data for this example were sampled from a bivariate-normal distri-
bution (with parameters shown at the top of the table). Statistics for the complete data set of
n ¼ 250 observations are also shown (near the top of the table). Some of the results—for
example, the equivalence of complete-case analysis, available-case analysis, and mean imputa-
tion for the slope coefficient B12 of the regression of X1 (the completely observed variable) on
X2—are peculiar to univariate missing data.14 Other characteristics are more general, such as
the reasonable results produced by complete-case analysis when missingness does not depend
on the response variable (i.e., for the coefficient β12 when data are MCAR or, for this example,
MNAR, and for the coefficient β21 when, again for this example, data are MAR). Note that
ML estimation and multiple imputation are the only methods that provide uniformly good
results for all parameters in both the MCAR and MAR data sets.

To illustrate further the properties of the various missing-data methods, I conducted a small
simulation study, drawing 1000 samples from the bivariate-normal distribution described
above, producing from each sample a data set in which missing data were MAR, and applying
complete-case analysis, unconditional-mean imputation, regression imputation, and Bayesian

12Because the predictor variables in each of these auxiliary regressions may themselves have missing data, the imple-
mentation of regression imputation can be complicated, requiring us to fit different regression equations for different
patterns of missing information. The basic idea, however, is straightforward.
13See Section 20.4.
14See Exercise 20.2.
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multiple imputation to each data set. The results are given in Table 20.2.15 To simplify the
table, I have not shown results for available-case analysis or for ML estimation (which pro-
duces results similar to those for multiple imputation). In addition, I have focused on the means
and regression coefficients, which are the parameters that are usually of most direct interest.

Table 20.2 shows not only the average parameter estimates for each method (in the upper
panel), which are useful for assessing bias, but also the RMSE of each estimator (i.e., the
square root of the mean-square error, expressing the efficiency of the estimator), as well as (in
the lower panel) the coverage and average interval width of nominally 95% confidence inter-
vals for each method. If a confidence interval is valid, then the coverage should be close to
.95. The results generally support the observations that I made above, and in particular, the
only method that does uniformly well for all parameters—producing unbiased estimates, valid
confidence intervals, and relatively efficient estimates—is multiple imputation.

Table 20.1 Parameter Estimates Obtained by Several Methods of Handling Missing Data Under
Different Conditions

µ1 µ2 σ2
1 σ2

2 σ12 r12 β12 β21

Parameter 10.000 20.000 9.000 16.000 8.000 .667 0.500 0.889

Complete data (n ¼ 250)

Estimates 10.002 19.976 9.432 16.731 8.114 .646 0.485 0.860

MCAR data set
Complete cases 10.210 20.400 9.768 17.114 7.673 .593 0.448 0.785
Available cases 10.002 20.400 9.432 17.114 7.673 .604 0.448 0.813
Mean imputation 10.002 20.400 9.432 10.241 4.591 .467 0.448 0.487
Regression imputation 10.002 20.237 9.432 12.454 7.409 .683 0.595 0.785
Maximum likelihood 10.002 20.237 9.394 16.809 7.379 .587 0.439 0.785
Multiple imputation 10.002 20.269 9.432 16.754 7.415 .590 0.443 0.786

MAR data set
Complete cases 11.615 21.349 6.291 14.247 5.456 .576 0.383 0.867
Available cases 10.002 21.349 9.432 14.247 5.456 .508 0.383 0.578
Mean imputation 10.002 21.385 9.432 8.010 3.068 .353 0.383 0.325
Regression imputation 10.002 19.950 9.432 12.443 8.179 .755 0.657 0.867
Maximum likelihood 10.002 20.000 9.394 17.044 8.103 .640 0.475 0.863
Multiple imputation 10.002 19.914 9.432 17.493 8.342 .649 0.477 0.884

MNAR data set
Complete cases 10.811 21.833 8.238 12.823 6.389 .622 0.498 0.776
Available cases 10.002 21.833 9.432 12.823 6.389 .581 0.498 0.677
Mean imputation 10.002 21.833 9.432 7.673 3.823 .449 0.498 0.405
Regression imputation 10.002 21.206 9.432 10.381 7.315 .739 0.705 0.776
Maximum likelihood 10.002 17.891 9.394 9.840 5.421 .564 0.551 0.577
Multiple imputation 10.002 21.257 9.432 13.167 7.154 .642 0.543 0.758

NOTES: The data were sampled from a bivariate-normal distribution with means, variances, and covariance as

shown. The ML and multiple-imputation methods are described later in the chapter.

15Similar but more extensive simulations appear in Schafer and Graham (2002). Also see Exercise 20.3.
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Traditional methods of handling missing data include complete-case analysis, available-
case analysis, and unconditional and conditional mean imputation. Complete-case analy-
sis produces consistent estimates and valid statistical inferences when data are MCAR
(and in certain other special circumstances), but even in this advantageous situation, it
does not use information in the sample efficiently. The other traditional methods suffer
from more serious problems.

20.3 Maximum-Likelihood Estimation for Data Missing
at Random*

The method of maximum likelihood can be applied to parameter estimation in the presence of
missing data. Doing so requires making assumptions about the distribution of the complete data

Table 20.2 Mean Parameter Estimates and Confidence Interval Coverage for a Simulation
Experiment With Data Missing at Random (MAR)

Parameter Complete Cases Mean Imputation Regression Imputation Multiple Imputation

Mean parameter estimate (RMSE)
µ1 ¼ 10 11.476 10.001 10.001 10.001

(1.489) (0.189) (0.189) (0.189)
µ2 ¼ 20 21.222 21.322 20.008 20.008

(1.355) (1.355) (0.326) (0.344)
β12 ¼ 0.5 0.391 0.391 0.645 0.498

(0.117) (0.117) (0.151) (0.041)
β21 ¼ 0.889 0.891 0.353 0.891 0.890

(0.100) (0.538) (0.100) (0.106)

Confidence-interval coverage (mean interval width)
µ1 0 .951 .951 .951

(0.792) (0.750) (0.750) (0.746)
µ2 .005 0 .823 .947

(1.194) (0.711) (0.881) (1.451)
β12 .304 .629 .037 .955

(0.174) (0.246) (0.140) (0.175)
β21 .953 0 .661 .939

(0.396) (0.220) (0.191) (0.463)

NOTES: The root-mean-square error (RMSE) of the parameter estimates is shown in parentheses below the

mean estimates; the mean width of the confidence intervals is shown in parentheses below the coverage.

Confidence intervals were constructed at a nominal level of .95.
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and about the process producing missing data. If the assumptions hold, then the resulting ML
estimates have their usual optimal properties, such as consistency and asymptotic efficiency.16

Let pðX;!Þ ¼ pðXobs;Xmis;!Þ represent the joint probability density for the complete data
X, which as before, is composed of observed and missing components denoted, respectively,
as Xobs and Xmis. The vector ! contains the unknown parameters on which the complete-data
distribution depends. For example, if the variables in X are multivariately normally distributed
(a case that I will examine presently), then ! includes the population means and covariances
among the variables.

In a seminal paper on statistical methods for missing data—the same paper in which he
introduced distinctions among data that are MCAR, MAR, and MNAR—Rubin (1976) showed
that the ML estimate b! of ! can be obtained from the marginal distribution of the observed
data, if missing data are missing at random. In the general case that I am considering here, we
can find the marginal distribution for the observed data by integrating over the missing data,
producing

pðXobs;!Þ ¼
Z

pðXobs;Xmis;!ÞdXmis

Although it may be difficult to apply this result directly, simplification is possible in certain
cases. Moreover, as I will explain shortly, it is, as a practical matter, possible to find b! in the
general case by iterative techniques.17 As usual, the likelihood function Lð!; XobsÞ is the same
as the probability density function for the data but treats the observed data as fixed and the
unknown parameters as variable. Once we have found the ML parameter estimates b!, we
can proceed with statistical inference in the usual manner; for example, we can compute
likelihood-ratio tests of nested models and construct Wald tests or confidence intervals for the
elements of ! based on estimated asymptotic variances for b! obtained from the inverse of the
observed information matrix

Ið!; XobsÞ ¼ &
∂2 logeLð!; XobsÞ

∂!∂!0

Consider, for example, bivariately normally distributed variables X1 and X2; as in the previous
section, X1 is completely observed in a sample of n observations, but X2 has m < n observations
missing at random, which for notational convenience, I will take as the first m observations.18

Then, from the univariate-normal distribution,

p1ðxi1; µ1; σ
2
1Þ ¼

1

σ1

ffiffiffiffiffiffi
2π
p exp & xi1 & µ1ð Þ2

2σ2
1

" #

is the marginal probability density for observation i on variable X1, and from the bivariate-nor-
mal distribution,

p12ðxi1; xi2; µ1;µ2; σ
2
1; σ

2
2; σ12Þ ¼

1

2π
ffiffiffiffiffiffi
det
p

S
exp & 1

2
xi & „ð ÞS&1 xi & „ð Þ

$ %
ð20:3Þ

16For a general introduction to the method of maximum likelihood, see online Appendix D on probability and
estimation.
17See Section 20.3.1 on the expectation-maximization (EM) algorithm.
18This is the univariate pattern of missing data employed in the examples of the preceding sections.
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is the joint probability density for observation i on variables X1 and X2. In Equation 20.3,
xi [ ðxi1; xi2Þ0 is a vector giving a pair of values for Xi1 and Xi2, „[ ðµ1;µ2Þ

0 is the vector of
means for the two variables, and

S [
σ2

1 σ12

σ12 σ2
2

$ %

is their covariance matrix. Using results in Little and Rubin (1990, pp. 382–383; 2002, chap. 7),
the log-likelihood for the observed data is

loge Lðµ1;µ2; σ
2
1; σ

2
2; σ12Þ ¼

Xm

i¼1

loge p1ðxi1; µ1; σ
2
1Þ

þ
Xn

i¼mþ1

loge p12ðxi1; xi2; µ1;µ2; σ
2
1; σ

2
2; σ12Þ

ð20:4Þ

The log-likelihood in Equation 20.4 can easily be maximized numerically, but there is also a
simple analytic solution. The statistics

X
'
1 [

Pn
i¼mþ1 Xi1

n& m

X
'
2 [

Pn
i¼mþ1 Xi2

n& m

S2'
1 [

Pn
i¼mþ1 Xi1 & X

'
1

& '2

n& m

S2'
2 [

Pn
i¼mþ1 Xi2 & X

'
2

& '2

n& m

S'12 [

Pn
i¼mþ1 Xi1 & X

'
1

& '
Xi2 & X

'
2

& '

n& m

ð20:5Þ

are the means, variances, and covariance for the two variables computed from the n& m com-
plete cases, and

X 1 [

Pn
i¼1 Xi1

n

S2
1 [

Pn
i¼1 Xi1 & X 1

& '2

n

are the mean and variance of X1 computed from all n available cases.19 The ML estimators of
the parameters of the bivariate-normal model are

19Note that the denominators for the variances and covariance are the number of observations, n&m or n, rather than
degrees of freedom n& m& 1 or n& 1. Recall that ML estimators of variance are biased but consistent. (See online
Appendix D on probability and estimation.)
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bµ1 ¼ X 1

bµ2 ¼ X
'
2 þ

S'12

S2'
1

X 1 & X
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bσ2
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( )

ð20:6Þ

Thus, the ML estimates combine information from the complete-case and available-case
statistics.20

The method of ML can be applied to parameter estimation in the presence of missing
data. If the assumptions made concerning the distribution of the complete data and the
process generating missing data hold, then ML estimates have their usual optimal proper-
ties, such as consistency and asymptotic efficiency. When data are MAR, the ML esti-
mate b! of the parameters ! of the complete-data distribution can be obtained from the
marginal distribution of the observed data, integrating over the missing data:

pðXobs;!Þ ¼
Z

pðXobs;Xmis;!ÞdXmis

Although it may be difficult to apply this result directly, simplification is possible in cer-
tain cases. Once we have found the ML parameter estimates, we can proceed with statis-
tical inference in the usual manner, for example, computing likelihood-ratio tests of
nested models and constructing Wald tests or confidence intervals.

20.3.1 The EM Algorithm

Arbitrary patterns of missing data do not yield simple expressions for the log-likelihood
(such as in Equation 20.4 on page 615 for a univariate missing-data pattern in bivariate-normal
data) no closed-form equations for the ML estimates (such as in Equation 20.6). The
expectation-maximization (EM) algorithm, due to Dempster, Laird, and Rubin (1977), is a gen-
eral iterative method for finding ML estimates in the presence of arbitrary patterns of missing
data. Although the EM algorithm is broadly applicable, generally easy to implement, and effec-
tive, it has the disadvantage that it does not produce the information matrix and therefore does
not yield standard errors for the estimated parameters. The version of the EM algorithm that I
will describe here is for ignorable missing data (and is adapted from Little & Rubin, 2002,
chaps. 8 and 11). The algorithm can also be applied to problems for which data are MNAR
and hence are nonignorable.21

20See Exercise 20.4 for further interpretation of the ML estimators in Equation 20.6.
21See, for example, Little and Rubin (2002, chap. 15).
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As before, let X represent the complete data, composed of the observed data Xobs and the
missing data Xmis. The likelihood based on the complete data is Lð!; XÞ, where recall, ! con-
tains the parameters for the distribution of X. Let !ðlÞ represent the parameter estimates at the
lth iteration of the EM algorithm. Starting values !ð0Þ may be obtained from the complete
cases, for example. Each iteration of the EM algorithm comprises two steps: an E (expectation)
step and an M (maximization) step. Hence the name ‘‘EM.’’

! In the E step, we find the expectation of the complete-data log-likelihood, integrating
over the missing data, given the observed data and the current estimates of the
parameters:

E loge Lð!; XÞj!ðlÞ
h i

¼
Z

loge Lð!; XÞp XmisjXobs;!
ðlÞ

* +
dXmis

! In the M step, we find the values !ðlþ1Þ of ! that maximize the expected log-likelihood
E loge Lð!; XÞj!ðlÞ
h i

; these are the parameter estimates for the next iteration.

When the parameter values stop changing from one iteration to the next (to an acceptable toler-
ance), they converge to the ML estimates b!.

Suppose, for example, that the complete data X, consisting of n observations on p variables,
is multivariately normally distributed, with mean vector „ and covariance matrix S. The sums
and sums of squares and cross-products of the variables are a set of sufficient statistics for
these parameters:

Tj [
Xn

i¼1

Xij for j ¼ 1; . . . ; p

Tjj0 [
Xn

i¼1

XijXij 0 for j; j 0 ¼ 1; . . . ; p

Had we access to the complete data, then the ML estimates of the parameters could be com-
puted from the sufficient statistics:

bµj ¼
Tj

n

bσ jj0 ¼
Tjj 0

n
& bµj bµj 0

(where the estimated variance of Xj is bσ2
j ¼ bσ jj).

Now, imagine that some of the data in X are MAR but in an arbitrary pattern. Then, in the E
step, we find expected sums and sums of products by filling in the missing data with their condi-
tional expected values, given the observed data and current estimates of the parameters. That is,

E TjjXobs;„
ðl&1Þ;Sðl&1Þ

* +
¼
Xn

i¼1

X ðlÞij

E Tjj 0 jXobs;„
ðl&1Þ;Sðl&1Þ

* +
¼
Xn

i¼1

X ðlÞij X ðlÞij0 þ CðlÞijj 0

* +

where
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X ðlÞij ¼
Xij if Xij is observed

E XijjXobs;„ðl&1Þ;Sðl&1Þ
* +

if Xij is missing

(

and

CðlÞijj 0 ¼
0 if either Xij or Xij0 is observed

C Xij;Xij 0 jXobs;„ðl&1Þ;Sðl&1Þ
* +

if both Xij and Xij0 are missing

(

ð20:7Þ

Finally, E XijjXobs;„ðlÞ;S
ðlÞ

* +
is obtained as the fitted value from the regression of Xj on the

other X s, using the current estimates „ðlÞ and SðlÞ to obtain the regression coefficients, and
C Xij;Xij 0 jXobs;„ðlÞ;S

ðlÞÞ
*

is the covariance of the fitted values for Xij and Xij 0 obtained from
the multivariate regression of Xj and Xj0 on the other X s, again at current values of the
parameters.22

Once we have the expected sums and sums of cross-products, the M step is straightforward:

µ
ðlÞ
j ¼

Pn
i¼1 X ðlÞij

n

σ
ðlÞ
jj0 ¼

Pn
i¼1 X ðlÞij X ðlÞij 0 þ CðlÞijj 0

* +

n
& µ

ðlÞ
j µ

ðlÞ
j 0

Consider the comparatively simple case of bivariate-normal data where the variable X1 is com-
pletely observed and the first m of n observations on X2 are missing. Take as starting values
the means, variances, and covariance computed from the n& m complete cases (given in
Equation 20.5 on page 615). Then, because X1 is completely observed,

E T1jXobs;„
ð0Þ;Sð0Þ

* +
¼
Xn

i¼1

Xi1

E T11jXobs;„
ð0Þ;Sð0Þ

* +
¼
Xn

i¼1

X 2
i1

ð20:8Þ

and, for sums involving X2, which has m missing values,

E T2jXobs;µ
ð0Þ;Sð0Þ

* +
¼
Xm

i¼1

bXi2 þ
Xn

i¼mþ1

Xi2

E T22jXobs;µ
ð0Þ;Sð0Þ

* +
¼
Xm

i¼1

bX 2
i2 þ S2ð0Þ

2j1

* +
þ
Xn

i¼mþ1

X 2
i2

E T12jXobs;µ
ð0Þ;Sð0Þ

* +
¼
Xm

i¼1

Xi1 bX 2
i2

* +
þ
Xn

i¼mþ1

Xi1Xi2

ð20:9Þ

where bXi2 is the fitted value from the complete-case regression of X2 on X1, and S2ð0Þ
2j1 is the

residual variance from this regression. The M-step estimates computed from these expectations
are just the ML estimates previously given in Equation 20.6.23 That is, in the simple case of
monotone missing data, the EM algorithm converges to the ML estimates in a single iteration.

22In multivariate regression, there is more than one response variable. In the current context, the role of the response
variables is played by Xj and Xj0 . See Section 9.5 and Exercise 20.5.
23See Exercise 20.6.
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The EM algorithm is a general iterative procedure for finding ML estimates—but not
their standard errors—in the presence of arbitrary patterns of missing data. When data
are MAR, iteration l of the EM algorithm consists of two steps: (1) In the E (expectation)
step, we find the expectation of the complete-data log-likelihood, integrating over the
missing data, given the observed data and the current estimates of the parameters:

E loge Lð!; XÞj!ðlÞ
h i

¼
Z

loge Lð!; XÞp XmisjXobs;!
ðlÞ

* +
dXmis

(2) In the M (maximization) step, we find the values !ðlþ1Þ of ! that maximize the
expected log-likelihood E loge Lð!; XÞj!ðlÞ

h i
; these are the parameter estimates for the

next iteration. At convergence, the EM algorithm produces the ML estimates b! of !.

20.4 Bayesian Multiple Imputation

Bayesian multiple imputation (abbreviated as MI) is a flexible and general method for dealing
with missing data that are MAR. Like ML estimation, multiple imputation begins with a speci-
fication of the distribution of the complete data (assumed to be known except for a set of para-
meters to be estimated from the data).

The essential idea of multiple imputation is to reflect the uncertainty associated with missing
data by imputing several values for each missing value, each imputed value drawn from the
predictive distribution of the missing data and, therefore, producing not one but several com-
pleted data sets. Standard methods of statistical analysis are then applied in parallel to the com-
pleted data sets. Parameters of interest are estimated along with their standard errors for each
imputed data set. Estimated parameters are then averaged across completed data sets; standard
errors are also combined across imputed data sets, taking into account the variation among the
estimates in the several data sets, thereby capturing the added uncertainty due to having to
impute the missing data.

A multivariate-normal model for the complete data is both relatively simple and useful in
applications. Indeed, because the model assumed to describe the complete data is used just to
obtain imputed values for the missing data, it turns out that the method of multiple imputation
is usually not terribly sensitive to the assumption of multivariate normality.24

Suppose that X1 and X2 are bivariately normally distributed and that, as in previously devel-
oped examples, there is a univariate pattern of missing data, with X1 completely observed and
m of the n observations on X2 MAR. For convenience, and again as before, let us order the data
so that the missing observations on X2 are the first m observations. Let A'2j1 and B'2j1 represent
the intercept and slope for the complete-case least-squares regression of X2 on X1.25 In regres-
sion imputation, recall, we replace the missing values with the fitted values

24See, for example, Schafer (1997, chap. 5). As described in Section 20.4.3, however, there are some pitfalls to be
avoided.
25The results of the preceding section imply that A'2j1 and B'2j1 are the ML estimators of α2j1 and β2j1. See Exercise
20.6.
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bXi2 ¼ A'2j1 þ B'2j1Xi1 ð20:10Þ

Recall as well that a defect of this procedure is that it ignores residual variation in X2 condi-
tional on X1. A more sophisticated version of regression imputation adds a randomly generated
residual to the fitted value, taking the imputed value as bXi2 þ Ei2j1, where Ei2j1 is drawn ran-
domly from the normal distribution Nð0; S'22j1Þ, and where

S'22j1 [

Pn
i¼mþ1 ðXi2 & bX i2Þ

2

n& m

is the ML estimator of the residual variance of X2 given X1 (based on the n& m complete
cases).

There is still a problem, however: The fitted values and generated residuals on which the
imputations are based fail to take into account the fact that the regression coefficients A'2j1 and
B'2j1 and the residual variance S'22j1 are themselves estimates that are subject to sampling varia-
tion. MI draws values of the regression parameters and the error variance—let us call these val-
ues eα2j1, eβ2j1, and eσ2

2j1—from the posterior distribution of the parameters, typically assuming
a noninformative prior distribution.26

As Little and Rubin (1990, pp. 386–387) explain, we may proceed as follows:

1. Given a random draw Z2 from the chi-square distribution with n& m& 2 degrees of
freedom, find

bσ2
2j1 [

Pn
i¼mþ1 ðXi2 & bX i2Þ

2

Z2

2. With eσ2
2j1in hand, draw a random slope eβ2j1 from the normal distribution

N B'2j1;
eσ2

2j1

ðn& mÞS2
1

" #2

 !

Here, S2
1 [

Pn
i¼1 ðXi1 & X 1Þ2=n is the ML estimate of the variance of X1, and

X 1 [
Pn

i¼1 Xi1=n is the ML estimate of the mean of X1, based on all n cases.
3. Using the previously obtained values of eσ2

2j1 and eβ2j1, draw a random intercept eα2j1
from the normal distribution

N bµ2 & eβ2j1X 1;
eσ2

2j1

ðn& mÞ2

 !

where bµ2 is the ML estimate of the mean of X2 (given in Equation 20.6 on page 616).
4. Finally, replace the missing values in X2 by

eXi2 [ bα2j1 þ eβ2j1Xi1 þ eEi

where eEi is sampled from Nð0; eσ2
2j1Þ.

26Think of the posterior distribution of the parameters as capturing our uncertainty about the values of the parameters.
Basic concepts of Bayesian statistical inference, including the notions of prior and posterior distributions, are described
in online Appendix D on probability and estimation.
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In multiple imputation, this procedure is repeated g times, producing g completed data sets.
More generally, we have a complete data set X comprising n cases and p multivariately nor-

mally distributed variables; some of the entries of X are MAR in an arbitrary pattern. In this
more general case, there is no fully adequate closed-form procedure for sampling from the pre-
dictive distribution of the data to impute missing values. Instead, simulation methods must be
employed to obtain imputations. Two such methods are data augmentation (described in
Schafer, 1997) and importance sampling (described in King, Honaker, Joseph, & Scheve,
2001). General descriptions of these methods are beyond the scope of this chapter.27

Raghunathan, Lepkowski, Van Hoewyk, and Solenberger (2001) and van Buuren and
Oudshoorn (1999) (also see van Buuren, 2012) suggest a simpler approach that cycles itera-
tively through a set of regression equations for the variables containing missing data. The for-
mal properties of this approach have not been established, although it appears to work well in
practice.28 Multiple imputation can be extended beyond the multivariate-normal distribution to
other models for the complete data, such as the multinomial distribution for a set of categorical
variables, and mixed multinomial-normal models for data sets containing both quantitative and
categorical data.29

20.4.1 Inference for Individual Coefficients

Having obtained g completed data sets, imagine that we have analyzed the data sets in paral-
lel, producing g sets of regression coefficients, BðlÞ0 ;B

ðlÞ
1 ; . . . ;BðlÞk for l ¼ 1; . . . ; g (where, for

notational convenience, I have represented the regression constant as B0). We also find the
coefficient standard errors, SEðBðlÞ0 Þ; SEðBðlÞ1 Þ; . . . ; SEðBðlÞk Þ, computed in the usual manner for
each completed data set. Rubin (1987) provides simple rules for combining information across
multiple imputations of the missing data, rules that are valid as long as the sample size is suffi-
ciently large for the separate estimates to be approximately normally distributed. The context
here is quite general: The regression coefficients and their standard errors might be produced
by linear least-squares regression, but they might also be produced by ML estimation of a
logistic-regression model, by nonlinear least squares, or by any parametric method of regres-
sion analysis.

Point estimates of the population regression coefficients are obtained by averaging across
imputations:

eβj [

Pg
l¼1 BðlÞj

g
ð20:11Þ

The standard errors of the estimated coefficients are obtained by combining information about
within- and between-imputation variation in the coefficients:

27Multiple imputation by data augmentation is implemented in Schafer’s software, available for SAS, S-PLUS, R, and
in stand-alone programs. Multiple imputation by importance sampling is implemented in King’s software, available for
R and in a stand-alone program.
28This approach is implemented in the IVEware (imputation and variance estimation) software for SAS, as a stand-
alone program; in the MICE (multivariate imputation by chained equations) software for S-PLUS and R, as well as in a
stand-alone program; and in the mi package for R (Su, Gelman, Hill, & Yajima, 2011). Access to convenient software
for multiple imputation is important because the method is computationally intensive.
29See, for example, Schafer (1997, chaps. 7–9).
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fSEðeβjÞ[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðW Þj þ g þ 1

g
V ðBÞj

s

ð20:12Þ

where the within-imputation component is

V ðW Þj [

Pg
l¼1 SE2 BðlÞj

* +

g

and the between-imputation component is

V ðBÞj [

Pg
l¼1 BðlÞj & eβj

* +2

g & 1

Inference based on eβj and fSEðeβjÞ uses the t-distribution, with degrees of freedom determined
by

dfj ¼ ðg & 1Þ 1þ g
g þ 1

·
V ðW Þj

V ðBÞj

 !2

For example, to construct a 95% confidence interval for βj,

βj ¼ eβj – t:025;dfj
fSEðeβjÞ

Let γ j denote the relative amount of information about the parameter βj that is missing. This is
not quite the same as the fraction of observations that are missing on the explanatory variable
Xj because, unless Xj is uncorrelated with the other variables in the data set, there will be infor-
mation in the data relevant to imputing the missing values and because data missing on one
variable influence all the regression estimates. The estimated rate of missing information is

bγ j ¼
Rj

Rj þ 1
ð20:13Þ

where

Rj [
g þ 1

g
·

V ðBÞj

V ðW Þj

The efficiency of the multiple-imputation estimator relative to the maximally efficient ML esti-
mator—that is, the ratio of sampling variances of the ML estimator to the MI estimator—is
REðeβjÞ ¼ g=ðg þ γ jÞ. If the number of imputations g is infinite, MI is therefore as efficient as
ML, but even when the rate of missing information is quite high and the number of imputations
modest, the relative efficiency of the MI estimator hardly suffers. Suppose, for example, that
γ j ¼ 0:5 (a high rate of missing information) and that g ¼ 5; then REðeβjÞ ¼ 5=
ð5þ 0:5Þ ¼ 0:91. Expressed on the scale of the standard error of eβj, which is proportional to
the length of the confidence interval for βj, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
REðeβjÞ

q
¼ 0:95.30

30See Exercise 20.7.
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Bayesian multiple imputation (MI) is a flexible and general method for dealing with data
that are missing at random. The essential idea of multiple imputation is to reflect the
uncertainty associated with missing data by imputing g values for each missing value,
drawing each imputed value from the predictive distribution of the missing data (a pro-
cess that usually requires simulation) and therefore producing not one but g completed
data sets. Standard methods of statistical analysis are then applied in parallel to the com-
pleted data sets.

! According to Rubin’s rules, MI estimates (e.g., of a population regression coefficient
βj) are obtained by averaging over the imputed data sets:

eβj ¼
Pg

l¼1 BðlÞj

g

where BðlÞj is the estimate of βj from imputed data set l.
! Standard errors of the estimated coefficients are obtained by combining information

about within- and between-imputation variation in the coefficients,

fSEðeβjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðW Þj þ g þ 1

g
V ðBÞj

s

where the within-imputation component is

V ðW Þj ¼

Pg
l¼1 SE2 BðlÞj

* +

g

and the between-imputation component is

V ðBÞj ¼

Pg
l¼1 BðlÞj & eβj

* +2

g & 1

Here, SE BðlÞj

* +
is the standard error of Bj computed in the usual manner for the lth

imputed data set.
! Inference based on eβj and fSEðeβjÞ uses the t-distribution, with degrees of freedom

determined by

dfj ¼ ðg & 1Þ 1þ g
g þ 1

·
V ðW Þj

V ðBÞj

 !2

Inference for several coefficients proceeds in a similar, if more complex, manner.
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20.4.2 Inference for Several Coefficients*

The generalization of Rubin’s rules to simultaneous tests or confidence regions for several
coefficients entails some complications.31 Suppose that we wish to test the hypothesis
H0: fl1 ¼ fl0, where fl1

ðs · 1Þ
is a subset of s > 1 of the k þ 1 elements of the parameter vector fl;

typically, this would be the hypothesis H0: fl1 ¼ 0. Were it not for the missing data, we could
base the hypothesis test on the Wald chi-square statistic,

Z2
0 ¼ ðb1 & fl0Þ

0 bV&1ðb1Þðb1 & fl0Þ

where the vector b1 contains the estimated coefficients and bVðb1Þ is the estimated asymptotic
covariance matrix of b1.32

In the present context, we have estimates for several completed data sets in which the miss-
ing data have been imputed, and so we first average the estimates, obtaining

efl1 [
1

g

Xg

l¼1

bðlÞ1

Then we compute the between- and within-imputation components of the covariance matrix of
these estimates:

VðW Þ[
1

g

Xg

l¼1

bV bðgÞ1

* +

VðBÞ[
1

g & 1

Xg

l¼1

bðgÞ1 & efl1

* +
bðgÞ1 & efl1

* +0

In analogy to the single-coefficient case, we could compute the total covariance matrix

V [ VðW Þ þ g þ 1

g
VðBÞ

Basing a test on V, however, turns out to be complicated.
Instead, simplification of the problem leads to the test statistic

F0 [
ðefl1 & fl0Þ9 VðW Þ

& '&1ðefl1 & fl0Þ9
sð1þ RÞ

where

R [
g þ 1

g
·

trace VðBÞ VðW Þ
& '&1

h i

s

The test statistic F0 follows an approximate F-distribution, with s degrees of freedom in the
numerator and denominator given by

31The results that I give here, and alternative procedures, are explained in greater detail in Rubin (1987, chaps. 3 and 4)
and in Schafer (1997, Section 4.3.3).
32See, for example, the discussion of Wald tests for generalized linear models in Section 15.3.3.
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df ¼
4þ ½sðg & 1Þ & 4) 1þ 1

R
·

sðg & 1Þ & 2

sðg & 1Þ

$ %
when sðg & 1Þ > 4

1
2 ðg & 1Þðsþ 1Þ 1þ 1

R

( )2

when sðg & 1Þ £ 4

8
>>><

>>>:

20.4.3 Practical Considerations

Although the multivariate-normal model can prove remarkably useful in providing multiple
imputations even when the data are not normally distributed, multiple imputation cannot pre-
serve features of the data that are not represented in the imputation model. How essential it is
to preserve particular features of the data depends on the statistical model used to analyze the
multiply imputed data sets. It is therefore important in formulating an imputation model to
ensure that the imputation model is consistent with the intended analysis. The following points
should assist in this endeavor:

! Try to include variables in the imputation model that make the assumption of ignorable
missingness reasonable. Think of imputation as a pure prediction problem, not as a sta-
tistical model subject to substantive interpretation. If we are able to do a good job of
predicting missing values (and missingness), then the assumption that data are MAR is
more credible. Finding variables that are highly correlated with a variable that has miss-
ing data, but for which data are available, therefore, will likely improve the quality of
imputations, as will variables that are related to missingness. In particular, it is perfectly
acceptable, and indeed desirable, to include variables in the imputation model that are
not used in the subsequent statistical analysis, alongside the variables that are used in
the data analysis.33 There is also nothing wrong with using the variable that is ultimately
to be treated as a response to help impute missing data in variables that are to be treated
as explanatory variables. To reiterate, the model used for imputation is essentially a pre-
diction model—not a model to be interpreted substantively.

! If possible, transform variables to approximate normality.34 After the imputed data are
obtained, the variables can be transformed back to their original scales, if desired, prior
to analyzing the completed data sets.

! Adjust the imputed data to resemble the original data. For example, imputed values of
an integer-valued variable can be rounded to the nearest integer. Ordinal variables can
be handled by providing integer codes and then rounding the imputed values to integers.
Occasional negative imputed values of a nonnegative variable can be set to 0. Imputed
values of a 0/1 dummy variable can be set to 0 if less than or equal to 0.5 and to 1 if
greater than 0.5. These steps may not be necessary to analyze the imputed data, but they
should not hurt in any event.

! Make sure that the imputation model captures relevant features of the data. What is rel-
evant depends on the use to which the imputed data will be put. For example, the multi-
variate-normal distribution ensures that regressions of one variable on others are linear

33See Collins, Schafer, and Kam (2001), who present evidence supporting what they term an inclusive strategy for for-
mulating imputation models.
34The material in Section 4.2 on transformations for symmetry and in Section 4.6 on Box-Cox transformations for mul-
tivariate normality is particularly relevant here.
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and additive. Using the multivariate-normal distribution for imputations, therefore, will
not preserve nonlinear relationships and interactions among the variables, unless we
make special provision for these features of the data.

Suppose, for example, that we are interested in modeling the potential interaction
between gender and education in determining income. Because gender is likely com-
pletely observed, but there may well be missing data on both education and income, we
could divide the data set into two parts based on gender, obtaining multiply imputed
data sets separately for each part and combining them in our analysis of the completed
data sets. This approach runs into problems, however, if we find it necessary to divide
the data set into too many parts or if the categorical variable or variables used to parti-
tion the data are themselves not completely observed.

Allison (2002) suggests forming interaction regressors and polynomial regressors as part
of the data set to which the imputation model is applied. The imputed interaction and
polynomial regressors are then used in the analysis of the completed data sets. Although
such variables are not normally distributed, there is some evidence that multiple imputa-
tion based on the multivariate-normal model nevertheless works well in these
circumstances.

Although, as explained, the multivariate-normal model can be used to impute a dummy regres-
sor for a dichotomous factor, it is not obvious how to proceed with a polytomous factor.
Allison (2002) proposes the following procedure: For an m-category factor, select an arbitrary
baseline category (say the last), and code m& 1 dummy regressors,35 including these dummy
variables in the multiple-imputation process. From the imputed values for the ith observation
in the lth imputation, DðlÞi1 ;D

ðlÞ
i2 ; . . . ;DðlÞi;m&1, compute DðlÞim ¼ 1&

Pm&1
j¼1 DðlÞij . Assign the ith

observation to the category (1; 2; . . . ;m) for which DðlÞij is largest.

Multiple imputation based on the multivariate-normal distribution can be remarkably
effective in practice, even when the data are not normally distributed. To apply multiple
imputation effectively, however, it is important to include variables in the imputation
model that make the assumption of ignorable missingness reasonable; to transform vari-
ables to approximate normality, if possible; to adjust the imputed data so that they resem-
ble the original data; and to make sure that the imputation model captures features of the
data, such as nonlinearities and interactions, to be used in subsequent data analysis.

20.4.4 Example: A Regression Model for Infant Mortality

Figure 20.2 (repeating Figure 3.14 from page 45) shows the relationship between infant mor-
tality (number of infant deaths per 1000 live births) and gross domestic product per capita (in
U.S. dollars) for 193 nations, part of a larger data set of 207 countries compiled by the United

35See Chapter 7 for a general discussion of dummy-variable regressors.
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Nations. The amount of missing data in Figure 20.2 is therefore relatively small, comprising
only about 7% of the cases.

Let us now consider the regression of infant mortality not only on GDP per capita but also
on the percentage of married women practicing contraception and the average number of years
of education for women. To linearize the regression, I log-transformed both infant mortality
and GDP.36 A complete-case analysis includes only 62 of the 207 countries and produces the
results shown in the upper panel of Table 20.3.

The number of observations with missing data for each of the variables in the analysis is as
follows:

Infant Mortality GDP Contraception Female Education

6 10 63 131

There are, however, other variables in the full data set that are highly correlated with contra-
ception and female education, such as the total fertility rate and the illiteracy rate for women. I
decided to base imputations on a multivariate-normal model with the four variables in the
regression plus the total fertility rate, the expectation of life for women, the percentage of
women engaged in economic activity outside the home, and the illiteracy rate for women.
Preliminary examination of the data suggested that the multivariate-normal model could be
made more appropriate for the data by transforming several of these variables. In particular—
as in the regression model in Table 20.3—I log-transformed infant mortality and GDP. I also
took the square root of the total fertility rate; cubed female expectation of life, after subtracting
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Figure 20.2 Scatterplot for infant mortality and GDP per capita for 193 nations. The line is for a
lowess smooth with a span of 1/2. Several nations with high infant mortality for their
levels of GDP are identified.

36See Exercise 20.8.
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a start of 35 from each value; and took the 1/4 power of female illiteracy. The resulting data
set did not look quite multivariate-normal, but several of the variables were more symmetri-
cally distributed than before.

To get a sense of the possible influence of missing data on conclusions drawn from the data,
I computed the complete-case estimates of the means and standard deviations of the four vari-
ables to be used in the regression, along with ML estimates, obtained by the EM algorithm
applied to the eight variables to be used in the imputation model. These results are given in
Table 20.4. As one might expect, the means for the complete cases show lower average infant
mortality, higher GDP per capita, higher rates of contraception, and a higher level of female
education than the ML estimates assuming ignorable missing data; the two sets of standard
deviations, however, are quite similar.

Using Schafer’s data augmentation method and employing the multivariate-normal model, I
obtained imputations for 10 completed data sets.37 Then, applying Equations 20.11, 20.12, and

Table 20.3 Estimated Coefficients and Standard Errors for the Regression of Infant Mortality on
GDP Per Capita, Percentage Using Contraception, and Average Female Education,
for 207 Nations (62 Complete Cases)

Intercept loge GDP Contraception Female Education

Complete-case analysis
Coefficient, Bj 6.88 &0.294 &0.0113 &0.0770
SE(Bj) (0.29) (0.058) (0.0042) (0.0338)

Multiple-imputation analysis
Coefficient, eβ j 6.57 &0.234 &0.00953 &0.105
fSEðeβjÞ (0.18) (0.049) (0.00294) (0.033)
Missing Information, bγ j 0.20 0.61 0.41 0.69

Table 20.4 Means and Standard Deviations of Variables in the Infant Mortality Regression,
Complete-Case, and Maximum-Likelihood Estimates

loge Infant Mortality loge GDP Contraception Female Education

Estimates based on Complete Cases

Mean 3.041 8.151 50.90 11.30
SD (1.051) (1.703) (23.17) (3.55)

Maximum-Likelihood Estimates

Mean 3.300 7.586 44.36 10.16
SD (1.022) (1.682) (24.01) (3.51)

37Data augmentation employs a Markov-chain Monte-Carlo (MCMC) method to sample from the predictive distribution
of the data. Using Schafer’stextbfnorm package for the R statistical computing environment for these computations, I
set the number of steps for the data augmentation algorithm to 20. Technical aspects of the data augmentation algorithm
are discussed in Schafer (1997) and, in less detail, in Allison (2002).
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20.13 (on pages 621–622), I computed the estimated coefficients, standard errors, and esti-
mated rate of missing information for each coefficient, shown in the lower panel of Table 20.3.
With the exception of the female education coefficient, the standard errors from the multiple-
imputation analysis are noticeably smaller than those from the complete-case analysis. In addi-
tion, the coefficients for GDP and female education differ between the two analyses by about
one standard error; the coefficients for contraception, in contrast, are very similar. Finally, the
rates of missing information for the three slope coefficients are all large. Because 10 imputa-
tions were employed, however, the square-root relative efficiency of the estimated coefficients
based on the multiply imputed data is at worst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10=ð10þ 0:69Þ

p
¼ 0:97.

20.5 Selection Bias and Censoring

When missing data are not ignorable (i.e., MNAR), consistent estimation of regression models
requires an explicit auxiliary model for the missingness mechanism. Accommodating nonignor-
able missing data is an intrinsically risky venture because the resulting regression estimates can
be very sensitive to the specifics of the model assumed to generate the missing data.

This section introduces two models in wide use for data that are MNAR: Heckman’s
model to overcome selection bias in regression and the so-called tobit model (and related
models) for a censored response variable in regression. Before examining these models, how-
ever, it is useful to develop some basic ideas concerning truncated- and censored-normal
distributions.

20.5.1 Truncated- and Censored-Normal Distributions

The distinction between truncation and censoring is illustrated in Figure 20.3. In each case,
there is an unobserved variable j that follows the standard-normal distribution, Nð0; 1Þ. The
observed variable Z in panel (a) truncates this distribution on the left by suppressing all values
of j below j ¼ &0:75; that is, there are no observations below the truncation point. The den-
sity function pðzÞ of Z still must enclose an area of 1, and so this density is given by

pðzÞ ¼ φðzÞ
1& Fð&0:75Þ

¼ φðzÞ
Fð0:75Þ

for z ‡ & 0:75

where φð*Þ is the density function and Fð*Þ the cumulative distribution function of the stan-
dard-normal distribution. In panel (b), where the distribution of j is left-censored rather than
truncated,

Z ¼ &0:75 for j £ & 0:75
j for j > & 0:75

,

Consequently, PrðZ ¼ &0:75Þ ¼ Fð&0:75Þ, that is, the area to the left of &0:75 under the
standard-normal density function φð*Þ.

It will be useful to have expressions for the mean and variance of a truncated-normal distri-
bution. Suppose now that j is normally distributed with an arbitrary mean µ and variance
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σ2—that is, j ; Nðµ; σ2Þ—and that this distribution is left-truncated at the threshold a, giving
rise to the observable variable Y . Then, the mean and variance of Y are38

EðY Þ ¼ Eðj j j ‡ aÞ ¼ µþ σmðzaÞ
V ðY Þ ¼ V ðj j j ‡ aÞ ¼ σ2 1& dðzaÞ½ )

ð20:14Þ

where

za [
a& µ

σ

mðzaÞ[
φðzaÞ

1& FðzaÞ
¼ φðzaÞ

Fð&zaÞ
dðzaÞ[ mðzaÞ mðzaÞ & za½ )

ð20:15Þ

The quantity mðzaÞ, called the inverse Mills ratio, is a function of the standardized threshold; it
will figure prominently in the remainder of this section. As a general matter, the mean of the
left-truncated variable Y exceeds that of j by an amount that depends on the standardized
threshold and the standard deviation σ of the untruncated distribution; similarly, the variance
of Y is smaller than the variance of j by a factor dependent on the standardized threshold.39

The inverse Mills ratio is graphed against za in Figure 20.4: As the threshold moves to the
right, the relationship between the inverse Mills ratio and za becomes more linear.
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Figure 20.3 (a) Truncated- and (b) censored-normal distributions. In both cases, the underlying
distribution is standard normal, N(0,1). In (a), there are no values of Z observed
below Z ¼ &0.75, and the remaining density is rescaled (see the upper curve) to an
area of 1. In (b), values below &0.75 are set to Z ¼ &0.75; the probability of obser-
ving this value is represented by the ‘‘spike’’ topped by a circle.

38The derivation of these results, and of some other results in this section, is beyond the level of the text, even in starred
material or exercises. See Johnson, Kotz, and Balakrishnan (1994) and Kotz, Balakrishnan, and Johnson (1994).
39See Exercise 29.4 for the mean and variance of a right-truncated normal variable.
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The expectation and variance of a censored-normal variable follow straightforwardly.
Suppose that j ; Nðµ; σ2Þ is left-censored at j ¼ a, so that

Y ¼ a for j £ a
j for j > a

,

Then,40

EðY Þ ¼ aFðzaÞ þ µþ σmðzaÞ½ ) 1& FðzaÞ½ )

V ðY Þ ¼ σ2 1& FðzaÞ½ ) 1& dðzaÞ þ za & mðzaÞ½ )2FðzaÞ
n o ð20:16Þ

A variable can be truncated or censored at the right as well as at the left or can be truncated or
censored at both ends simultaneously (the latter is termed interval censoring). The analysis of
right-censored or interval-censored data is essentially similar to the analysis of left-censored
data, making adjustments to the formulas in Equations 20.16.41

Finally, suppose that the unobservable variables j and ζ follow a bivariate-normal distribu-
tion, with means µj and µζ, variances σ2

j and σ2
ζ , and correlation r (so that the covariance of j

and ζ is σjζ ¼ rσjσζ). Imagine that, as before, Y is a truncated version of j, but now the trun-
cation depends not on the value of j itself but rather on that of ζ, so that Y ¼ j when ζ ‡ a and
Y is unobserved when ζ < a. This process is called incidental truncation or selection. The mean
and variance for the incidentally truncated variable Y are

EðY Þ ¼ Eðj j ζ ‡ aÞ ¼ µj þ σjrmðzaÞ
V ðY Þ ¼ V ðj j ζ ‡ aÞ ¼ σ2

j 1& r2dðzaÞ
" # ð20:17Þ

where za [ ða& µζÞ=σζ and mð*Þ and dð*Þ are defined as in Equations 20.15. The effect of
incidental truncation depends, therefore, not only on the standardized threshold za but also on
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Figure 20.4 The inverse Mills ratio m(za) as a function of the standardized threshold za.

40See Exercise 20.10.
41See Exercise 20.11.
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the correlation r between the latent variables j and ζ. For example, if these variables are posi-
tively correlated, then EðY Þ > EðjÞ and V ðY Þ < V ðjÞ.

The distribution of a variable is truncated when values below or above a threshold (or
outside a particular range) are unobserved. The distribution of a variable is censored
when values below or above a threshold (or outside a particular range) are set equal to
the threshold. The distribution of a variable is incidentally censored if its value is unob-
served when another variable is below or above a threshold (or outside a particular
range). Simple formulas exist for the mean and variance of truncated- and censored-
normal distributions and for the mean and variance of an incidentally truncated variable
in a bivariate-normal distribution.

20.5.2 Heckman’s Selection-Regression Model

The model and methods of estimation described in this section originated with James
Heckman (e.g., Heckman, 1974, 1976), whose work on selection bias won him a Nobel Prize
in economics. Heckman’s selection-regression model consists of two parts:

1. A regression equation for a latent response variable j:

ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

¼ ηi þ εi
ð20:18Þ

2. A selection equation that determines whether or not j is observed:

ζi ¼ γ0 þ γ1Zi1 þ γ2Zi2 þ * * * þ γpZip þ δi

¼ ci þ δi
ð20:19Þ

where the observed response variable

Yi ¼
missing for ζi £ 0

ji for ζi > 0

,

The explanatory variables in Equation 20.19 (i.e., the Zs) are intended to predict miss-
ingness; they need not be the same as the explanatory variables used in the regression
equation of principal interest (Equation 20.18), but in applications, there is usually con-
siderable overlap between the Zs and the X s. The observed response, for example,
might represent earnings for married women, which is missing when they are not in the
paid labor force; the latent variable would then represent a notional ‘‘potential earn-
ings.’’ An example based on this idea is developed below.

It is assumed that the two error variables εi and δi follow a bivariate-normal distribution with
means EðεiÞ ¼ EðδiÞ ¼ 0, variances σ2

ε [ V ðεiÞ and V ðδiÞ ¼ 1, and correlation rεδ. Errors for
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different observations are assumed to be independent. Equation 20.19, together with the
assumption that the errors δ are normally distributed, specifies a probit model for
nonmissingness.42

As we will see presently, estimating the regression equation (Equation 20.18) just for com-
plete cases—simply omitting observations for which Y is missing—generally produces incon-
sistent estimates of the regression coefficients. In addition, because of the correlation of the
two error variables, the missing data are not ignorable, and so it would be inappropriate, for
example, to generate multiple imputations of the missing values of Y as if they were MAR.

Restricting our attention to the complete cases,

EðYijζi > 0Þ ¼ ηi þ Eðεi j ζi > 0Þ
¼ ηi þ Eðεi j δi > & ciÞ

The conditional expectation of the error εi follows from Equations 20.17 for the incidentally
truncated bivariate-normal distribution:43

Eðεijδi > & ciÞ ¼ σεrεδm &cið Þ

Therefore,

EðYijζi > 0Þ ¼ ηi þ σεrεδm &cið Þ
¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ βλλi

where βλ [ σεrεδ and λi [ m &cið Þ.
Letting ni [ Yi & EðYijζi > 0Þ, we can write the regression equation for the complete cases as

Yijζi > 0ð Þ ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ βλλi þ ni

Regressing Y on the X s using only the complete cases omits the explanatory variable λi, which
is the inverse Mills ratio based on the negative of the linear predictor ci from the selection
equation (Equation 20.19). Ignoring the missingness mechanism, therefore, can be conceptua-
lized as a kind of omitted-variable specification error.44 If the errors from the regression and
selection equations are uncorrelated (i.e., rεδ ¼ 0), then βλ ¼ 0, and ignoring λi is inconse-
quential. Similarly, if λi were uncorrelated with the X s, then we could ignore it without
threatening the consistency of the least-squares estimators of the regression coefficients.
Uncorrelation of λi and the X s is unlikely, however: The selection and regression equations
typically contain many of the same explanatory variables, and unless the degree of selection is
low, the inverse Mills ratio is nearly a linear function of the linear predictor (recall Figure 20.4
on page 631). Indeed, high correlation between λi and the X s can make consistent estimation
of the regression coefficients (by the methods described immediately below) unstable. Note, as
well, that the variance of the errors ni is not constant.45

There are two common strategies for estimating Heckman’s regression-selection model:
direct application of ML estimation and employing an estimate of λi as an auxiliary regressor.

42For a general treatment of probit regression, see Section 14.1. Recall that we can arbitrarily set the threshold above
which Y is observed and below which it is missing to 0 and the error variance δ to 1, to fix the origin and scale of the
latent variable.
43See Exercise 20.12.
44See Sections 6.3 and 9.7.
45The variance of ni follows from Equations 20.17 for the variance of an incidentally truncated variable in the
bivariate-normal distribution: See Exercise 20.13.
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! ML Estimation*: Let fl[ ðα;β1; . . . ;βkÞ
0 be the vector of regression coefficients in the

regression equation (Equation 20.18); let g [ ðγ0; γ1; . . . ; γpÞ
0 be the vector of regres-

sion coefficients in the selection equation (Equation 20.19); let x0i [ ð1;Xi1; . . . ;XikÞ be
the ith row of the model matrix for the regression equation; and let z0i [ ð1; Zi1; . . . ; ZipÞ
be the ith row of the model matrix for the selection equation. For notational conveni-
ence, order the data so that the missing observations on Y are the first m of n observa-
tions. Then the log-likelihood for Heckman’s model can be formulated as follows:46

loge Lðfl;g;σ2
ε ; rεδÞ ¼

Xm

i¼1

loge F z0ig
& '

þ
Xn

i¼mþ1

loge
1

σε

φ
Yi & x0ifl

σε

( )
F

z0ig þ rεδ

Yi & x0ifl
σεffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1& rεδ

σε

r

0

BB@

1

CCA

2

664

3

775

ð20:20Þ

This log-likelihood can be maximized numerically.
! Two-Step Estimation: Heckman (1979) also proposed a simple and widely used two-step

procedure for estimating his regression-selection model.

Step 1: Define the dichotomous response variable

Wi ¼
1 if Yi is observed
0 if Yi is missing

,

Perform a probit regression of Wi on the Zs, estimating the γs in the usual manner by
ML,47 and finding fitted values on the probit scale,

bci ¼ bγ 0 þ bγ 1Zi1 þ bγ 2Zi2 þ * * * þ bγ pZip

bci is simply the estimated linear predictor from the probit model. For each observation,
compute the estimated inverse Mills ratio

bλi ¼ mð&bciÞ ¼
φð&bciÞ

1& Fð&bciÞ
¼ φðbciÞ

FðbciÞ

Step 2: Use bλ as an auxiliary regressor in the least-squares regression of Yi on the X s
for the complete cases,

Yi ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ βbλ
bλi þ n'i ;

for i ¼ mþ 1; . . . ; n
ð20:21Þ

This least-squares regression provides consistent estimates of the regression coefficients,
α;β1;β2; . . . ;βk . The heteroscedasticity of the errors, however, requires an adjustment
to the usual OLS standard errors.48

46See Exercise 20.14.
47As described in Chapters 14 and 15.
48See Exercise 20.15.
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To illustrate the application of Heckman’s selection-regression model, I will return to the
Canadian Survey of Labour and Income Dynamics (the SLID),49 examining the relationship
between women’s earnings and their education, age, and the region in which they reside,
restricting attention to married women between the ages of 18 and 65. Earnings is represented
by the women’s composite hourly wage rate, which is missing if they are not in the paid labor
force. Preliminary examination of the data suggested regressing the log of composite hourly
wages on the square of years of education and a quadratic in age, along with four dummy
regressors for five regions of Canada (the Atlantic provinces, Quebec, Ontario, the prairie prov-
inces, and British Columbia, taking the Atlantic provinces as the baseline category).

Of the 6427 women in the sample, 3936 were in the paid labor force.50 Because women
whose potential earnings are relatively low may very well be less likely to work outside the
home, there is a potential for selection bias if we simply ignore the 2491 women who are not
in the labor force, causing us to underestimate the effects of the explanatory variables on
(potential) earnings.51

I formulated a selection model in which labor-force participation is regressed on region
dummy variables; dummy regressors for the presence in the household of children 0 to 4 and 5
to 9 years of age; family income less the woman’s own income, if any (in thousands of dol-
lars); education (in years); and a quadratic in age (in years). The results are shown in
Table 20.5. At the left of the table are ordinary least-squares estimates ignoring the selection
process. The table also shows two-step and ML estimates for the Heckman model, both for the
regression equation and for the selection equation. For the two-step estimation procedure, the
selection equation was estimated in a preliminary probit regression.

In this application, the two-step/probit and ML estimates are very similar and are not terribly
different from the OLS estimates based on the complete cases. Moreover, the ML estimate of
the correlation between the errors of the regression and selection equations is fairly small:
brεδ ¼ :320. The degree of collinearity induced by the introduction of the inverse Mills ratio
regressor in the second step of the two-step procedure is not serious, as shown in Table 20.6,
which compares generalized variance inflation factors for the model as estimated by OLS and
Heckman’s two-step procedure.52

49In Chapter 12, I used the SLID for a regression of earnings on sex, age, and education. In Chapter 14, the SLID pro-
vided data for a logistic regression of young married women’s labor force participation on region, presence of children,
family income, and education.
50The complete SLID sample of married women between 18 and 65 years of age consists of 6900 respondents. I
omitted the relatively small number of observations (comprising about 7% of the sample) with missing data on vari-
ables other than earnings.
51If, however, our goal is to describe the regression of earnings on the explanatory variables for those who are in the
paid labor force, then an analysis based on women who have earnings should be perfectly fine, as long as we are care-
ful to ensure the descriptive accuracy of the model—for example, by using component-plus-residual plots to check for
nonlinearity (see Chapter 12).
52Generalized variance-inflation factors (GVIFs), introduced in Section 13.1.2, are appropriate for terms in a model that
have more than 1 degree of freedom, such as the region and age terms in this model. When a term has 1 degree of free-
dom, the GVIF reduces to the usual variance inflation factor (VIF, also discussed in Chapter 13). Taking the 1=ð2df Þ
power of the GVIF makes values roughly comparable across different degrees of freedom. Treating the linear and quad-
ratic components of the age term as a set is important here because otherwise there would be artifactual collinearity
induced by the high correlation between Age and Age2.
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As is seldom a bad idea, I will leave the last word on Heckman-type adjustments for selec-
tion bias to John Tukey (1986), who states,53

I think that an important point that we have to come back to at intervals is that knowl-
edge always comes from a combination of data and assumptions. If the assumptions
are too important, many of us get unhappy. I think one thing we were told in this last
discussion was that all the formal ways that have been found for attacking this prob-
lem ended up being very dependent upon these assumptions. Therefore, people like
me have to be very uncomfortable about the results. (p. 58)

Table 20.5 Least-Squares, Heckman Two-Step, and Heckman ML Estimates for the Regression of
Women’s Composite Hourly Wages on Region, Education, and Age

OLS Two-Step/Probit ML

Estimate SE Estimate SE Estimate SE

Coefficient Regression Equation

Constant 1.10 0.15 0.442 0.227 0.755 0.177
Quebec 0.223 0.031 0.205 0.033 0.214 0.032
Ontario 0.303 0.026 0.332 0.028 0.319 0.027
Prairies 0.126 0.027 0.147 0.029 0.137 0.027
B.C. 0.371 0.036 0.392 0.038 0.382 0.037
Education2 0.00442 0.00013 0.00492 0.00018 0.00469 0.00014
Age 0.0687 0.0074 0.0917 0.0096 0.0807 0.0081
Age2 &0.000717 0.000088 &0.00105 0.00012 &0.000892 0.000099
Inv. Mills Ratio 0.361 0.088

Selection Equation

Constant &1.46 0.30 &1.44 0.30
Quebec &0.0665 0.0533 &0.0674 0.0533
Ontario 0.193 0.048 0.194 0.048
Prairies 0.117 0.049 0.117 0.049
B.C. 0.145 0.067 0.150 0.067
Children 0–4 &0.414 0.050 &0.439 0.049
Children 5–9 &0.261 0.043 &0.251 0.042
Family Income &0.00399 0.00097 &0.00475 0.00097
Education 0.0815 0.0061 0.0817 0.0060
Age 0.0878 0.0135 0.0882 0.0134
Age2 &0.00145 0.00015 &0.00145 0.00015

53Tukey made these comments about a paper delivered by Heckman and Robb (1986) to a symposium on statistical
methods for self-selected samples (collected in a volume edited by Wainer, 1986). The models introduced by Heckman
and Robb are not the same as Heckman’s selection-regression model discussed in this section, but they are similarly
motivated and structured.
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Heckman’s regression model consists of two parts:

1. A regression equation for a latent response variable j:

ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

2. A selection equation that determines whether or not j is observed:

ζi ¼ γ0 þ γ1Zi1 þ γ2Zi2 þ * * * þ γpZip þ δi ¼ ci þ δi

where the observed response variable

Yi ¼
missing for ζi £ 0

ji for ζi > 0

,

It is assumed that the two error variables εi and δi follow a bivariate-normal distribution
with means EðεiÞ ¼ EðδiÞ ¼ 0, variances V ðεiÞ ¼ σ2

ε and V ðδiÞ ¼ 1, and correlation rεδ

and that errors for different observations are independent. Heckman’s model can be con-
sistently estimated by ML or by a two-step procedure. In the first step of the two-step
procedure, the selection equation is estimated as a probit model; in the second step, the
regression equation is estimated by OLS after incorporating the auxiliary regressor
bλi ¼ φðbciÞ=FðbciÞ, where bci is the fitted value from the first-step probit equation, φð*Þ is
the density function of the standard-normal distribution, and Fð*Þ is the distribution func-
tion of the standard-normal distribution.

20.5.3 Censored-Regression Models

When the response variable Y in a regression is censored, values of Y cannot be observed
outside a certain range—say, the interval ða; bÞ. We can detect, however, whether an observa-
tion falls below the lower threshold a or above the upper threshold b, and consequently, we
have some information about the censored values.

Let us assume, in particular, that the latent response variable j is linearly related to the
regressors X1;X2; . . . ;Xk , so that

Table 20.6 Generalized Variance Inflation Factors for Terms in the OLS and
Heckman Two-Step Regression of Log Hourly Wages on Region,
Education, and Age

GVIF1= 2dfð Þ

Term df OLS Estimates Heckman Two-Step Estimates

Region 4 1.003 1.024
Education2 1 1.025 1.402
Age (quadratic) 2 1.012 1.347
Inverse Mills Ratio 1 – 2.202
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ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi ð20:22Þ

and that the other assumptions of the normal-regression model hold: εi ; Nð0; σ2
εÞ, and εi; εi 0

are independent for i 6¼ i0. We cannot observe j directly, however, but instead we collect data
on the censored response variable Y , where

Yi ¼
a for ji £ a
ji for a < ji < b
b for ji ‡ b

8
<

: ð20:23Þ

Equations 20.22 and 20.23 define the censored-regression model. A model of this type was
first proposed by James Tobin (1958), for data censored to the left at 0—that is, for a ¼ 0 and
b ¼ ‘. Left-censored regression models are called tobit models, in honor of Tobin (another
Nobel Prize winner in economics). The censored-regression model can be estimated by the
method of ML.54

*Rewriting the regression equation in vector form for compactness as ji ¼ x0iflþ εi, the
log-likelihood for the censored-regression model in Equations 20.22 and 2.23 is

loge Lðfl; σ2
εÞ ¼

X

Yi¼a

loge F
a& x0ifl

σε

( )
þ
X

a < Yi < b

loge
1

σε

φ
Yi & x0ifl

σε

( )$ %

þ
X

Yi¼b

loge F
x0ifl& b

σε

( )

The log-likelihood therefore comprises terms for left-censored, fully observed, and right-
censored observations.55

For an example of censored regression, I turn once again to the Canadian SLID data. We last
encountered the SLID in the previous section, where the earnings of married women were
regressed on region, education, and age. I employed Heckman’s selection-regression model
because earnings were unavailable for women who were not in the paid labor force. I will now
develop a similar example in which the response variable is hours worked in the year preceding
the survey. This variable is left-censored at the value 0, producing a classic tobit regression
model.56 The explanatory variables are region, the presence in the household of children 0 to 4
and 5 to 9 years old, family income less the woman’s own income (if any), education, and a
quadratic in age. The SLID data set includes 6340 respondents with valid data on the variables
employed in this example.

Preliminary examination of the data suggested a square-root transformation of hours worked.
This transformation does not, of course, serve to spread out the values of the response variable
for the 31% of respondents who reported 0 hours worked—that is, the transformed response
for all censored observations is

ffiffiffi
0
p
¼ 0. OLS and ML tobit estimates for the regression model

are shown in Table 20.7. The OLS estimates are consistently smaller in magnitude than the
corresponding tobit estimates.57

54An alternative is to employ Heckman’s two-step procedure, described in the preceding section.
55Estimation is facilitated by reparameterization. See, for example, Greene (2003, Section 22.3.3).
56The latent response variable therefore represents ‘‘propensity’’ to work outside the home; presumably, if that propen-
sity is above the threshold 0, we observe positive hours worked.
57See Exercise 20.16.
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In the censored-regression model, the latent response variable j is linearly related to the
regressors X1;X2; . . . ;Xk :

ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

where εi ; Nð0; σ2
εÞ, and εi; εi 0 are independent for i 6¼ i0. We cannot observe j directly

but instead collect data on the censored response variable Y :

Yi ¼
a for ji £ a
ji for a < ji < b
b for ji ‡ b

8
<

:

When Y is left-censored at 0 (i.e., a ¼ 0 and b ¼ ‘), the censored-regression model is
called a tobit model in honor of James Tobin. The censored-regression model can be
estimated by maximum likelihood.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 20.1. Consider the following contrived data set for the variables X1, X2, and X3, where
the question marks indicate missing data:

Table 20.7 OLS and ML Tobit Estimates for the Regression of Square-
Root Hours Worked on Several Explanatory Variables

OLS Tobit

Coefficient Estimate SE Estimate SE

Constant &20.3 3.8 &58.7 5.4
Quebec &0.745 0.710 &1.58 1.01
Ontario 3.55 0.63 5.02 0.89
Prairies 3.64 0.65 5.36 0.91
B.C. 2.09 0.88 3.73 1.23
Children 0–4 (present) &6.56 0.65 &8.63 0.91
Children 5–9 (present) &5.05 0.56 &6.91 0.79
Family Income ($1000s) &0.0977 0.0128 &0.139 0.018
Education (years) 1.29 0.08 1.87 0.11
Age (years) 2.32 0.17 3.84 0.25
Age2 &0.0321 0.0019 &0.0529 0.0028
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(a) Using available cases (and recomputing the means and standard deviations for each
pair of variables), find the pairwise correlations among the three variables and explain
why the correlations are not consistent with each other.

(b) Compute the correlation between X1 and X2 using means and standard deviations com-
puted separately from the valid observations for each variable. What do you find?

(c) 'Show that the available-case correlation matrix among the variables X1, X2, and X3 is
not positive semidefinite.

Exercise 20.2. 'In univariate missing data, where there are missing values for only one vari-
able in a data set, some of the apparently distinct methods for handling missing data produce
identical results for certain statistics. Consider Table 20.1 on page 612, for example, where
data are missing on the variable X2 but not on X1. Note that the complete-case, available-case,
and mean-imputation estimates of the slope β12 for the regression of X1 on X2 are identical.
Prove that this is no accident. Are there are any other apparent agreements between or among
methods in the table? If so, can you determine whether they are coincidences?

Exercise 20.3. 'Duplicate the small simulation study reported in Table 20.2 on page 613, com-
paring several methods of handling univariate missing data that are MAR. Then repeat the
study for missing data that are MCAR and for missing data that are MNAR (generated as in
Figure 20.1 on page 608). What do you conclude? Note: This is not a conceptually difficult
project, but it is potentially time-consuming; it also requires some programming skills and sta-
tistical software that can generate and analyze simulated data.

Exercise 20.4. 'Equation 20.6 (on page 616) gives the ML estimators for the parameters µ1,
µ2, σ2

1, σ2
2, and σ12 in the bivariate-normal model with some observations on X2 missing at ran-

dom but X1 completely observed. The interpretation of bµ1 and bσ2
1 is straightforward: They are

the available-case mean and variance for X1. Noting that S'12=S2'
1 is the complete-case slope for

the regression of X2 and X1, offer interpretations for the other ML estimators.

Exercise 20.5. 'Multivariate linear regression fits the model

Y
ðn · mÞ

¼ X
ðn · kþ1Þ

B
ðkþ1 · mÞ

þ E
ðn · mÞ

where Y is a matrix of response variables; X is a model matrix (just as in the univariate linear
model); B is a matrix of regression coefficients, one column per response variable; and E is a

X1 X2 X3

1 1 ?
1 ? 1
&1 &1 ?
&1 ? &1

? 1 &1
? &1 1
5 ? ?
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matrix of errors. The least-squares estimator of B is bB ¼ ðX0XÞ&1X0Y (equivalent to what one
would get from separate least squares regressions of each Y on the X s). See Section 9.5 for a
discussion of the multivariate linear model.

(a) Show how bB can be computed from the means of the variables, bµY and bµX , and from
their covariances, bSXX and bSXY (among the X s and between the X s and Y s,
respectively).

(b) The fitted values from the multivariate regression are bY ¼ XbB. It follows that the
fitted values bYij and bYij0 for the ith observation on response variables j and j0 are both
linear combinations of the ith row of the model matrix, x0i. Use this fact to find an
expression for the covariance of bYij and bYij0 .

(c) Show how this result can be used in Equation 20.7 (on page 618), which applies the
EM algorithm to multivariate-normal data with missing values.

Exercise 20.6. 'Consider once again the case of univariate missing data MAR for two bivari-
ately normal variables, where the first variable, X1; is completely observed, and m observations
(for convenience, the first m) on the second variable, X2, are missing.

(a) Let A'2j1 and B'2j1 represent the intercept and slope for the complete-case least-squares
regression of X2 on X1. Show that A'2j1 and B'2j1 are the ML estimators of α2j1 and β2j1.
(Hint: Use Equations 20.6 giving the ML estimators of µ1, µ2, σ2

1, σ2
2, and σ12.)

(b) Show that the M step from the first iteration of the EM algorithm (see Equations 20.8
and 20.9 on page 618 for the E step) produces the ML estimates (given in Equations
20.6 on page 616). That is, demonstrate that the EM algorithm converges in a single
iteration.

Exercise 20.7. As explained in Section 20.4.1, the efficiency of the multiple-imputation esti-

mator of a coefficient eβj relative to the ML estimator bβj is REðeβjÞ ¼ g=ðg þ γ jÞ, where g is

the number of imputations employed and γ j is the rate of missing information for coefficient

βj. The square root of REðeβjÞ expresses relative efficiency on the coefficient standard-error

scale. Compute REðeβjÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
REðeβjÞ

q
for combinations of values of g ¼ 1; 2; 3; 5; 10; 20; and

100, and γ j ¼ :05; :1; :2; :5; :9; and :99. What do you conclude about the number of imputa-

tions required for efficient inference?

Exercise 20.8. Examine the United Nations data on infant mortality and other variables for 207
countries, discussed in Section 20.4.4.

(a) Perform a complete-case linear least-squares regression of infant mortality on GDP per
capita, percentage using contraception, and female education. Does it appear reason-
able to log-transform infant mortality and GDP to linearize this regression? What about
contraception and education?

(b) 'Examine a scatterplot matrix (Section 3.3.1) for the variables used in the imputation
example. What do you find? Then apply the multivariate Box-Cox procedure described
in Section 4.6 to these variables. Remember first to subtract 35 from female expecta-
tion of life (why?). Do the results that you obtain support the transformations
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employed in the text? Apply the transformations and reexamine the data. Do they
appear more nearly normal?

Exercise 20.9. Truncated normal distributions:

(a) Suppose that j ; Nð0; 1Þ. Using Equations 20.14 (page 630) for the mean and variance
of a left-truncated normal distribution, calculate the mean and variance of j j j > a for
each of a ¼ &2;&1; 0; 1; and 2.

(b) 'Find similar formulas for the mean and variance of a right-truncated normal distribu-
tion. What happens to the mean and variance as the threshold moves to the left?

Exercise 20.10. 'Suppose that j ; Nðµ; σ2Þ is left-censored at j ¼ a, so that

Y ¼ a for j £ a
j for j > a

,

Using Equations 20.14 (on page 630) for the truncated normal distribution, show that (repeat-
ing Equations 20.16 on page 631)

EðY Þ ¼ aFðzaÞ þ µþ σmðzaÞ½ ) 1& FðzaÞ½ )

V ðY Þ ¼ σ2 1& FðzaÞ½ ) 1& dðzaÞ þ za & mðzaÞ½ )2FðzaÞ
n o

Exercise 20.11. 'Equations 20.16 (on page 631) give formulas for the mean and variance of a
left-censored normally distributed variable. (These formulas are also shown in the preceding
exercise.) Derive similar formulas for (a) a right-censored and (b) an interval-censored nor-
mally distributed variable.

Exercise 20.12. 'Using Equations 20.17 (page 631) for the incidentally truncated bivariate-nor-
mal distribution, show that the expectation of the error εi in the Heckman regression model
(Equations 20.18 and 20.19 on page 632) conditional on Y being observed is

Eðεi j ζi > 0Þ ¼ Eðεijδi > & ciÞ ¼ σεrεδm &cið Þ

Exercise 20.13. 'As explained in the text, the Heckman regression model (Equations 20.18
and 20.19, page 632) implies that

ðYijζi > 0Þ ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ βλλi þ ni

where βλ [ σεrεδ, λi [ m &cið Þ, and

ci ¼ γ0 þ γ1Zi1 þ γ2Zi2 þ * * * þ γpZip

Show that the errors ni are heteroscedastic, with variance

V ðniÞ ¼ σ2
ε 1& r2

εδλiðλi þ ciÞ
" #

where σ2
ε is the error variance in the regression equation (Equation 20.18), and rεδ is the corre-

lation between the errors of the regression and selection equations. (Hint: See Equations 20.17
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on page 631 for the variance of an incidentally truncated variable in a bivariate-normal
distribution.)

Exercise 20.14. 'The log-likelihood for the Heckman regression-selection model is given in
Equation 20.20 (page 634). Derive this expression. (Hint: The first sum in the log-likelihood,
for the observations for which Y is missing, is of the log-probability that each such Yi is miss-
ing; the second sum is of the log of the probability density at the observed values of Yi times
the probability that each such value is observed.)

Exercise 20.15. 'Explain how White’s coefficient-variance estimator (see Section 12.2.3),
which is used to correct the covariance matrix of OLS regression coefficients for heteroscedas-
ticity, can be employed to obtain consistent coefficient standard errors for the two-step estima-
tor of Heckman’s regression-selection model—the second step of which entails an OLS
regression with heteroscedastic errors (Equation 20.21 on page 634). (Hint: Refer to Exercise
20.13 for the variance of the errors in the second-step OLS regression.)

Exercise 20.16. Greene (2003 p. 768) remarks that the ML estimates bβj of the regression coef-
ficients in a censored-regression model are often approximately equal to the OLS estimates Bj

divided by the proportion P of uncensored observations; that is, bβj » Bj=P. Does this pattern
hold for the hours-worked regression in Table 20.7 (page 639), where P ¼ :69?

Summary

! Missing data are missing completely at random (MCAR) if they can be regarded as a sim-
ple random sample of the complete data. If missingness is related to the observed data
but not to the missing data (conditional on the observed data), then data are missing at
random (MAR). If missingness is related to the missing values themselves, even when
the information in the observed data is taken into account, then data are missing not at
random (MNAR). When data are MCAR or MAR, the process that produces missing data
is ignorable, in the sense that valid methods exist to deal with the missing data without
explicitly modeling the process that generates them. In contrast, when data are MNAR,
the process producing missing data is nonignorable and must be modeled. Except in spe-
cial situations, it is not possible to know whether data are MCAR, MAR, or MNAR.

! Traditional methods of handling missing data include complete-case analysis, available-
case analysis, and unconditional and conditional mean imputation. Complete-case analy-
sis produces consistent estimates and valid statistical inferences when data are MCAR
(and in certain other special circumstances), but even in this advantageous situation, it
does not use information in the sample efficiently. The other traditional methods suffer
from more serious problems.

! The method of maximum likelihood (ML) can be applied to parameter estimation in the
presence of missing data. If the assumptions made concerning the distribution of the
complete data and the process generating missing data hold, then ML estimates have
their usual optimal properties, such as consistency and asymptotic efficiency. When data
are MAR, the ML estimate b! of the parameters ! of the complete-data distribution can
be obtained from the marginal distribution of the observed data, by integrating over the
missing data,
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pðXobs;!Þ ¼
Z

pðXobs;Xmis;!ÞdXmis

Although it may be difficult to apply this result directly, simplification is possible in cer-
tain cases. Once we have found the ML parameter estimates, we can proceed with statis-
tical inference in the usual manner, for example, by computing likelihood-ratio tests of
nested models and constructing Wald tests or confidence intervals.

! The EM algorithm is a general iterative procedure for finding ML estimates—but not
their standard errors—in the presence of arbitrary patterns of missing data. When data
are MAR, iteration l of the EM algorithm consists of two steps: (1) In the E (expecta-
tion) step, we find the expectation of the complete-data log-likelihood, integrating over
the missing data, given the observed data and the current estimates of the parameters:

E loge Lð!; XÞj!ðlÞ
h i

¼
Z

loge Lð!; XÞp XmisjXobs;!
ðlÞ

* +
dXmis

(2) In the M (maximization) step, we find the values !ðlþ1Þ of ! that maximize the
expected log-likelihood E loge Lð!; XÞj!ðlÞ

h i
; these are the parameter estimates for the

next iteration. At convergence, the EM algorithm produces the ML estimates b! of !.
! Bayesian multiple imputation (MI) is a flexible and general method for dealing with data

that are missing at random. The essential idea of multiple imputation is to reflect the
uncertainty associated with missing data by imputing g values for each missing value,
drawing each imputed value from the predictive distribution of the missing data (a pro-
cess that usually requires simulation), and therefore producing not one but g completed
data sets. Standard methods of statistical analysis are then applied in parallel to the com-
pleted data sets.

2 According to Rubin’s rules, MI estimates (e.g., of a population regression coeffi-
cient βj) are obtained by averaging over the imputed data sets:

eβj ¼
Pg

l¼1 BðlÞj

g

where BðlÞj is the estimate of βj from imputed data set l.
2 Standard errors of the estimated coefficients are obtained by combining information

about within- and between-imputation variation in the coefficients,

fSEðeβjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðW Þj þ g þ 1

g
V ðBÞj

s

where the within-imputation component is

V ðW Þj ¼

Pg
l¼1 SE2 BðlÞj

* +

g

and the between-imputation component is
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V ðBÞj ¼

Pg
l¼1 BðlÞj & eβj

* +2

g & 1
Here, SE BðlÞj

* +
is the standard error of Bj computed in the usual manner for the lth

imputed data set.
– Inference based on bβj and fSEðeβjÞ uses the t-distribution, with degrees of freedom

determined by

dfj ¼ ðg & 1Þ 1þ g
g þ 1

·
V ðW Þj

V ðBÞj

 !2

Inference for several coefficients proceeds in a similar, if more complex, manner.
! Multiple imputation based on the multivariate-normal distribution can be remarkably

effective in practice, even when the data are not normally distributed. To apply multiple
imputation effectively, however, it is important to include variables in the imputation
model that make the assumption of ignorable missingness reasonable; to transform vari-
ables to approximate normality, if possible; to adjust the imputed data so that they resem-
ble the original data; and to make sure that the imputation model captures features of the
data, such as nonlinearities and interactions, to be used in subsequent data analysis.

! The distribution of a variable is truncated when values below or above a threshold (or
outside a particular range) are unobserved. The distribution of a variable is censored
when values below or above a threshold (or outside a particular range) are set equal to
the threshold. The distribution of a variable is incidentally censored if its value is unob-
served when another variable is below or above a threshold (or outside a particular
range). Simple formulas exist for the mean and variance of truncated- and censored-
normal distributions and for the mean and variance of an incidentally truncated variable
in a bivariate-normal distribution.

! Heckman’s regression model consists of two parts:

1. A regression equation for a latent response variable j,

ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

2. A selection equation that determines whether or not j is observed,

ζi ¼ γ0 þ γ1Zi1 þ γ2Zi2 þ * * * þ γpZip þ δi ¼ ci þ δi

where the observed response variable

Yi ¼
missing for ζi £ 0

ji for ζi > 0

,

It is assumed that the two error variables εi and δi follow a bivariate-normal distribu-
tion with means EðεiÞ ¼ EðδiÞ ¼ 0, variances V ðεiÞ ¼ σ2

ε and V ðδiÞ ¼ 1, and corre-
lation rεδ, and that errors for different observations are independent.

Heckman’s model can be consistently estimated by ML or by a two-step procedure.
In the first step of the two-step procedure, the selection equation is estimated as a
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probit model; in the second step, the regression equation is estimated by OLS after
incorporating the auxiliary regressor bλi ¼ φðbciÞ=FðbciÞ, where bci is the fitted value
from the first-step probit equation, φð*Þ is the density function of the standard-nor-
mal distribution, and Fð*Þ is the distribution function of the standard-normal
distribution.

! In the censored-regression model, the latent response variable j is linearly related to the
regressors X1;X2; . . . ;Xk :

ji ¼ αþ β1Xi1 þ β2Xi2 þ * * * þ βkXik þ εi

where εi ; Nð0; σ2
εÞ, and εi; εi0 are independent for i 6¼ i0. We cannot observe j directly

but instead collect data on the censored response variable Y ,

Yi ¼
a for ji £ a
ji for a < ji < b
b for ji ‡ b

8
<

:

When Y is left-censored at 0 (i.e., a ¼ 0 and b ¼ ‘), the censored-regression model is
called a tobit model in honor of James Tobin. The censored-regression model can be
estimated by ML.

Recommended Reading

! Little and Rubin (2002), central figures in the recent development of more adequate
methods for handling missing data, present a wide-ranging and largely accessible over-
view of the field. A briefer treatment by the same authors appears in Little and Rubin
(1990).

! Another fine, if mathematically more demanding, book on handling missing data is
Schafer (1997). Also see the overview paper by Schafer and Graham (2002).

! van Buuren (2012) is an accessible, book-length presentation of the simpler chained-
equations approach to multiple imputation of missing data.

! Allison’s (2002) monograph on missing data is clear, comprehensive, and directed to
social scientists (as is the paper by King et al., 2001).

! The edited volume by Wainer (1986) on sample-selection issues contrasts the points of
view of statisticians and econometricians—in particular in an exchange between John
Tukey and James Heckman. Also see the paper by Stolzenberg and Relles (1997) and
the review paper by Winship and Mare (1992).
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21 Bootstrapping
Regression

Models

B ootstrapping is a nonparametric approach to statistical inference that substitutes computa-
tion for more traditional distributional assumptions and asymptotic results.1

Bootstrapping offers a number of advantages:

! The bootstrap is quite general, although there are some cases in which it fails.
! Because it does not require distributional assumptions (such as normally distributed

errors), the bootstrap can provide more accurate inferences when the data are not well
behaved or when the sample size is small.

! It is possible to apply the bootstrap to statistics with sampling distributions that are diffi-
cult to derive, even asymptotically.

! It is relatively simple to apply the bootstrap to complex data collection plans (such as
many complex sample surveys).

21.1 Bootstrapping Basics

My principal aim is to explain how to bootstrap regression models (broadly construed to
include generalized linear models, etc.), but the topic is best introduced in a simpler context:
Suppose that we draw an independent random sample from a large population.2 For concrete-
ness and simplicity, imagine that we sample four working, married couples, determining in
each case the husband’s and wife’s income, as recorded in Table 21.1. I will focus on the dif-
ference in incomes between husbands and wives, denoted as Yi for the ith couple.

We want to estimate the mean difference in income between husbands and wives in the pop-
ulation. Please bear with me as I review some basic statistical theory: A point estimate of this
population mean difference µ is the sample mean,

Y ¼
P

Yi

n
¼ 6# 3þ 5þ 3

4
¼ 2:75

Elementary statistical theory tells us that the standard deviation of the sampling distribution of
sample means is SDðY Þ ¼ σ=

ffiffiffi
n
p

, where σ is the population standard deviation of Y .

1The term bootstrapping, coined by Efron (1979), refers to using the sample to learn about the sampling distribution of
a statistic without reference to external assumptions—as in ‘‘pulling oneself up by one’s bootstraps.’’
2Recall from Section 15.5 that in an independent random sample, each element of the population can be selected more
than once. In a simple random sample, in contrast, once an element is selected into the sample, it is removed from the
population, so that sampling is done ‘‘without replacement.’’ When the population is very large in comparison to the
sample (say, at least 20 times as large), the distinction between independent and simple random sampling becomes
inconsequential.
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If we knew σ, and if Y were normally distributed, then a 95% confidence interval for µ

would be

µ ¼ Y – 1:96
σffiffiffi
n
p

where z:025 ¼ 1:96 is the standard normal value with a probability of .025 to the right. If Y is
not normally distributed in the population, then this result applies asymptotically. Of course,
the asymptotics are cold comfort when n ¼ 4.

In a real application, we do not know σ. The usual estimator of σ is the sample standard
deviation,

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðYi # Y Þ2

n# 1

s

from which the standard error of the mean (i.e., the estimated standard deviation of Y ) is
SEðY Þ ¼ S=

ffiffiffi
n
p

. If the population is normally distributed, then we can take account of the
added uncertainty associated with estimating the standard deviation of the mean by substituting
the heavier-tailed t-distribution for the normal distribution, producing the 95% confidence
interval

µ ¼ Y – tn#1; :025
Sffiffiffi
n
p

Here, tn#1; :025 is the critical value of t with n# 1 degrees of freedom and a right-tail probability
of .025.

In the present case, S ¼ 4:031, SEðY Þ ¼ 4:031=
ffiffiffi
4
p
¼ 2:015, and t3; :025 ¼ 3:182. The 95%

confidence interval for the population mean is thus

µ ¼ 2:75 – 3:182 · 2:015 ¼ 2:75 – 6:41

or, equivalently,

# 3:66 < µ < 9:16

As one would expect, this confidence interval—which is based on only four observations—is very
wide and includes 0. It is, unfortunately, hard to be sure that the population is reasonably close to
normally distributed when we have such a small sample, and so the t-interval may not be valid.3

Table 21.1 Contrived ‘‘Sample’’ of Four Married Couples, Showing
Husbands’ and Wives’ Incomes in Thousands of Dollars

Observation Husband’s Income Wife’s Income Difference Yi

1 34 28 6
2 24 27 #3
3 50 45 5
4 54 51 3

3To say that a confidence interval is ‘‘valid’’ means that it has the stated coverage. That is, a 95% confidence interval
is valid if it is constructed according to a procedure that encloses the population mean in 95% of samples.

648 Chapter 21. Bootstrapping Regression Models



Bootstrapping begins by using the distribution of data values in the sample (here,
Y1 ¼ 6; Y2 ¼ #3; Y3 ¼ 5; Y4 ¼ 3) to estimate the distribution of Y in the population.4 That is,
we define the random variable Y ' with distribution5

from which

E'ðY 'Þ ¼
X

all y'
y'pðy'Þ ¼ 2:75 ¼ Y

and

V 'ðY 'Þ ¼
X
½y' # E'ðY 'Þ)2pðy'Þ

¼ 12:187 ¼ 3

4
S2 ¼ n# 1

n
S2

Thus, the expectation of Y ' is just the sample mean of Y , and the variance of Y ' is [except for
the factor ðn# 1Þ=n, which is trivial in larger samples] the sample variance of Y .

We next mimic sampling from the original population by treating the sample as if it were
the population, enumerating all possible samples of size n ¼ 4 from the probability distribution
of Y '. In the present case, each bootstrap sample selects four values with replacement from
among the four values of the original sample. There are, therefore, 44 ¼ 256 different bootstrap
samples,6 each selected with probability 1/256. A few of the 256 samples are shown in
Table 21.2. Because the four observations in each bootstrap sample are chosen with replace-
ment, particular bootstrap samples usually have repeated observations from the original sample.
Indeed, of the illustrative bootstrap samples shown in Table 21.2, only sample 100 does not
have repeated observations.

Let us denote the bth bootstrap sample7 as y'b ¼ ½Y 'b1, Y 'b2, Y 'b3, Y 'b4)
0, or more generally,

y'b ¼ ½Y 'b1, Y 'b2; . . . ; Y 'bn)
0, where b ¼ 1, 2; . . . ; nn. For each such bootstrap sample, we calculate

the mean,

y' p'ðy'Þ

6 .25
23 .25

5 .25
3 .25

4An alternative would be to resample from a distribution given by a nonparametric density estimate (see, e.g.,
Silverman & Young, 1987). Typically, however, little if anything is gained by using a more complex estimate of the
population distribution. Moreover, the simpler method explained here generalizes more readily to more complex situa-
tions in which the population is multivariate or not simply characterized by a distribution.
5The asterisks on p'ð*Þ; E'; and V ' remind us that this probability distribution, expectation, and variance are condi-
tional on the specific sample in hand. Were we to select another sample, the values of Y1, Y2, Y3; and Y4 would change
and—along with them—the probability distribution of Y ', its expectation, and variance.
6Many of the 256 samples have the same elements but in different order—for example, [6, 3, 5, 3] and [3, 5, 6, 3]. We
could enumerate the unique samples without respect to order and find the probability of each, but it is simpler to work
with the 256 orderings because each ordering has equal probability.
7If vector notation is unfamiliar, then think of y'b simply as a list of the bootstrap observations Y 'bi for sample b.
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Y
'
b ¼

Pn
i¼1 Y 'bi

n

The sampling distribution of the 256 bootstrap means is shown in Figure 21.1.
The mean of the 256 bootstrap sample means is just the original sample mean, Y ¼ 2:75.

The standard deviation of the bootstrap means is

SD'ðY 'Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnn

b¼1 Y
'
b # Y

" #2

nn

s

¼ 1:745

Table 21.2 A Few of the 256 Bootstrap Samples for
the Data Set [6, 23, 5, 3], and the
Corresponding Bootstrap Means, Y

'
b

Bootstrap Sample
b Y'b1 Y'b2 Y'b3 Y'b4 Y

'
b

1 6 6 6 6 6.00
2 6 6 6 #3 3.75
3 6 6 6 5 5.75
..
. ..

. ..
.

100 #3 5 6 3 2.75
101 #3 5 #3 6 1.25

..

. ..
. ..

.

255 3 3 3 5 3.50
256 3 3 3 3 3.00

Y = 2.75

Bootstrap Mean
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Figure 21.1 Graph of the 256 bootstrap means from the sample [6, #3, 5, 3]. The broken vertical
line gives the mean of the original sample, Y ¼ 2.75, which is also the mean of the
256 bootstrap means.
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We divide here by nn rather than by nn # 1 because the distribution of the nn ¼ 256 bootstrap
sample means (Figure 21.1) is known, not estimated. The standard deviation of the bootstrap
means is nearly equal to the usual standard error of the sample mean; the slight slippage is due
to the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn# 1Þ

p
, which is typically negligible (though not when n ¼ 4):8

SEðY Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

n
n# 1

r
SD'ðY 'Þ

2:015 ¼
ffiffiffi
4

3

r
· 1:745

This precise relationship between the usual formula for the standard error and the bootstrap
standard deviation is peculiar to linear statistics (i.e., linear functions of the data) like the
mean. For the mean, then, the bootstrap standard deviation is just a more complicated way to
calculate what we already know, but

! bootstrapping might still provide more accurate confidence intervals, as I will explain
presently, and

! bootstrapping can be applied to nonlinear statistics for which we do not have standard-
error formulas or for which only asymptotic standard errors are available.

Bootstrapping exploits the following central analogy:

The population is to the sample
as

the sample is to the bootstrap samples.

Consequently,

! the bootstrap observations Y 'bi are analogous to the original observations Yi,
! the bootstrap mean Y

'
b is analogous to the mean of the original sample Y ,

! the mean of the original sample Y is analogous to the (unknown) population mean µ, and
! the distribution of the bootstrap sample means is analogous to the (unknown) sampling

distribution of means for samples of size n drawn from the original population.

Bootstrapping uses the sample data to estimate relevant characteristics of the population.
The sampling distribution of a statistic is then constructed empirically by resampling
from the sample. The resampling procedure is designed to parallel the process by which
sample observations were drawn from the population. For example, if the data represent
an independent random sample of size n (or a simple random sample of size n from a
much larger population), then each bootstrap sample selects n observations with replace-
ment from the original sample. The key bootstrap analogy is the following: The popula-
tion is to the sample as the sample is to the bootstrap samples.

8See Exercise 21.1.
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The bootstrapping calculations that we have undertaken thus far depend on very small sample
size, because the number of bootstrap samples (nn) quickly becomes unmanageable: Even for
samples as small as n ¼ 10, it is impractical to enumerate all the 1010 ¼ 10 billion bootstrap
samples. Consider the ‘‘data’’ shown in Table 21.3, an extension of the previous example. The
mean and standard deviation of the differences in income Y are Y ¼ 4:6 and S ¼ 5:948. Thus,
the standard error of the sample mean is SEðY Þ ¼ 5:948=

ffiffiffiffiffi
10
p

¼ 1:881.
Although we cannot (as a practical matter) enumerate all the 1010 bootstrap samples, it is

easy to draw at random a large number of bootstrap samples. To estimate the standard devia-
tion of a statistic (here, the mean)—that is, to get a bootstrap standard error—100 or 200 boot-
strap samples should be more than sufficient. To find a confidence interval, we will need a
larger number of bootstrap samples, say 1000 or 2000.9

A practical bootstrapping procedure, therefore, is as follows:

1. Let r denote the number of bootstrap replications—that is, the number of bootstrap
samples to be selected.

2. For each bootstrap sample b ¼ 1; . . . ; r, randomly draw n observations Y 'b1, Y 'b2; . . . ; Y 'bn

with replacement from among the n sample values, and calculate the bootstrap sample
mean,

Y
'
b ¼

Pn
i¼1 Y 'bi

n

Table 21.3 Contrived ‘‘Sample’’ of 10 Married Couples, Showing
Husbands’ and Wives’ Incomes in Thousands of Dollars

Difference
Observation Husband’s Income Wife’s Income Yi

1 34 28 6
2 24 27 #3
3 50 45 5
4 54 51 3
5 34 28 6
6 29 19 10
7 31 20 11
8 32 40 #8
9 40 33 7

10 34 25 9

9Results presented by Efron and Tibshirani (1993, chap. 19) suggest that basing bootstrap confidence intervals
on 1000 bootstrap samples generally provides accurate results, and using 2000 bootstrap replications should be very
safe.
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3. From the r bootstrap samples, estimate the standard deviation of the bootstrap means:10

SE'ðY 'Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr

b¼1 Y
'
b # Y

'$ %2

r # 1

vuut

where

Y
'

[

Pr
b¼1 Y

'
b

r

is the mean of the bootstrap means. We can, if we wish, ‘‘correct’’ SE'ðY 'Þ for degrees
of freedom, multiplying by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn# 1Þ

p
.

To illustrate this procedure, I drew r ¼ 2000 bootstrap samples, each of size n ¼ 10, from the
‘‘data’’ given in Table 21.3, calculating the mean, Y

'
b, for each sample. A few of the 2000

bootstrap replications are shown in Table 21.4, and the distribution of bootstrap means is
graphed in Figure 21.2.

We know from statistical theory that were we to enumerate all the 1010 bootstrap samples
(or, alternatively, to sample infinitely from the population of bootstrap samples), the average
bootstrap mean would be E'ðY 'Þ ¼ Y ¼ 4:6, and the standard deviation of the bootstrap means
would be

SE'ðY 'Þ ¼ SEðY Þ
ffiffiffiffiffiffiffiffiffiffiffi
n# 1

n

r
¼ 1:881

ffiffiffiffiffi
9

10

r
¼ 1:784

For the 2000 bootstrap samples that I selected, Y
'
¼ 4:693 and SEðY 'Þ ¼ 1:750—both quite

close to the theoretical values.
The bootstrapping procedure described in this section can be generalized to derive the

empirical sampling distribution for an estimator bθ of the parameter θ:

Table 21.4 A Few of the r ¼ 2000 Bootstrap Samples Drawn From the Data Set
[6, #3, 5, 3, 6, 10, 11, #8, 7, 9] and the Corresponding Bootstrap
Means, Y

'
b

b Y'b1 Y'b2 Y'b3 Y'b4 Y'b5 Y'b6 Y'b7 Y'b8 Y'b9 Y'b10 Y
'
b

1 6 10 6 5 #8 9 9 6 11 3 5.7
2 9 9 7 7 3 3 #3 #3 #8 6 3.0
3 9 #3 6 5 10 6 10 10 10 6 6.9
..
. ..

. ..
.

1999 6 9 6 3 11 6 6 7 3 9 6.6
2000 7 6 7 3 10 6 9 3 10 6 6.7

10It is important to distinguish between the ‘‘ideal’’ bootstrap estimate of the standard deviation of the mean, SD'ðY 'Þ,
which is based on all nn bootstrap samples, and the estimate of this quantity, SE'ðY 'Þ, which is based on r randomly
selected bootstrap samples. By making r large enough, we seek to ensure that SE'ðY 'Þ is close to SD'ðY 'Þ. Even
SD'ðY 'Þ ¼ SEðY Þ is an imperfect estimate of the true standard deviation of the sample mean SDðY Þ, however, because
it is based on a particular sample of size n drawn from the original population.
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1. Specify the data collection scheme S that gives rise to the observed sample when
applied to the population:11

SðPopulationÞ) Sample

The estimator bθ is some function Sð*Þ of the observed sample. In the preceding example,
the data collection procedure is independent random sampling from a large population.

2. Using the observed sample data as a ‘‘stand-in’’ for the population, replicate the data
collection procedure, producing r bootstrap samples:

SðSampleÞ

) Bootstrap sample1

) Bootstrap sample2

..

.

) Bootstrap sampler

8
>>><

>>>:

3. For each bootstrap sample, calculate the estimate bθ'b ¼ SðBootstrap samplebÞ.
4. Use the distribution of the bθ'bs to estimate properties of the sampling distribution of bθ.

For example, the bootstrap standard error of bθ is SE'ðbθ'Þ (i.e., the standard deviation of
the r bootstrap replications bθ'b):12

Bootstrap Mean
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Figure 21.2 Histogram of r ¼ 2000 bootstrap means, produced by resampling from the ‘‘sam-
ple’’ [6, #3, 5, 3, 6, 10, 11, #8, 7, 9]. The heavier broken vertical line gives the sam-
ple mean, Y ¼ 4.6; the lighter broken vertical lines give the boundaries of the 95%
percentile confidence interval for the population mean µ based on the 2000 boot-
strap samples. The procedure for constructing this confidence interval is described in
the next section.

11The ‘‘population’’ can be real—the population of working married couples—or hypothetical—the population of con-
ceivable replications of an experiment. What is important in the present context is that the sampling procedure can be
described concretely.
12We may want to apply the correction factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn# 1Þ

p
.
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SE'ðbθ'Þ[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr

b¼1 ðbθ'b # θ
'Þ

2

r # 1

s

where

θ
'

[

Pr
b¼1
bθ'b

r

21.2 Bootstrap Confidence Intervals

21.2.1 Normal-Theory Intervals

Most statistics, including sample means, are asymptotically normally distributed; in large
samples, we can therefore use the bootstrap standard error, along with the normal distribution,
to produce a 100ð1# aÞ% confidence interval for θ based on the estimator bθ:

θ ¼ bθ – za=2SE'ðbθ'Þ ð21:1Þ

In Equation 21.1, za=2 is the standard normal value with probability a=2 to the right. This
approach will work well if the bootstrap sampling distribution of the estimator is approximately
normal, and so it is advisable to examine a normal quantile-comparison plot of the bootstrap
distribution.

There is no advantage to calculating normal-theory bootstrap confidence intervals for linear
statistics like the mean, because in this case, the ideal bootstrap standard deviation of the statis-
tic and the standard error based directly on the sample coincide. Using bootstrap resampling in
this setting just makes for extra work and introduces an additional small random component
into standard errors.

Having produced r bootstrap replicates bθ'b of an estimator bθ, the bootstrap standard
error is the standard deviation of the bootstrap replicates: SE'ðbθ'Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr

b¼1 ðbθ'b # θ
'Þ

2
=ðr # 1Þ

q
, where θ

'
is the mean of the bθ'b. In large samples, where we

can rely on the normality of bθ, a 95% confidence interval for θ is given by
bθ – 1:96 SE'ðbθ'Þ.

21.2.2 Percentile Intervals

Another very simple approach is to use the quantiles of the bootstrap sampling distribution of
the estimator to establish the end points of a confidence interval nonparametrically. Let bθ'ðbÞ rep-
resent the ordered bootstrap estimates, and suppose that we want to construct a ð100# aÞ% con-
fidence interval. If the number of bootstrap replications r is large (as it should be to construct a
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percentile interval), then the a=2 and 1# a=2 quantiles of bθ'b are approximately bθ'ðlowerÞ and
bθ'ðupperÞ, where lower ¼ ra=2 and upper ¼ rð1# a=2Þ. If lower and upper are not integers, then
we can interpolate between adjacent ordered values bθ'ðbÞ or round off to the nearest integer.

A nonparametric confidence interval for θ can be constructed from the quantiles of the
bootstrap sampling distribution of bθ'. The 95% percentile interval is bθ'ðlowerÞ < θ < bθ'ðupperÞ,
where the bθ'ðbÞ are the r ordered bootstrap replicates; lower ¼ :025 · r and
upper ¼ :975 · r.

A 95% confidence interval for the r ¼ 2000 resampled means in Figure 21.2, for example, is
constructed as follows:

lower ¼ 2000ð:05=2Þ ¼ 50

upper ¼ 2000ð1# :05=2Þ ¼ 1950

Y
'
ð50Þ ¼ 0:7

Y
'
ð1950Þ ¼ 7:8

0:7 < µ < 7:8

The endpoints of this interval are marked in Figure 21.2. Because of the skew of the bootstrap
distribution, the percentile interval is not quite symmetric around Y ¼ 4:6. By way of compari-
son, the standard t-interval for the mean of the original sample of 10 observations is

µ ¼ Y – t9; :025SEðY Þ

¼ 4:6 – 2:262 · 1:881

¼ 4:6 – 4:255

0:345 < µ < 8:855

In this case, the standard interval is a bit wider than the percentile interval, especially at the
top.

21.2.3 Improved Bootstrap Intervals

I will briefly describe an adjustment to percentile intervals that improves their accuracy.13

As before, we want to produce a 100ð1# aÞ% confidence interval for θ having computed the
sample estimate bθ and bootstrap replicates bθ'b; b ¼ 1; . . . ; r. We require za=2, the unit-normal
value with probability a=2 to the right, and two ‘‘correction factors,’’ Z and A, defined in the
following manner:

13The interval described here is called a ‘‘bias-corrected, accelerated’’ (or BCa) percentile interval. Details can be found
in Efron and Tibshirani (1993, chap. 14); also see Stine (1990) for a discussion of different procedures for constructing
bootstrap confidence intervals.
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! Calculate

Z [F#1
#
r

b¼1
ðbθ'b < bθÞ

r

2

664

3

775

where F#1ð*Þ is the inverse of the standard-normal distribution function (i.e., the
standard-normal quantile function), and #ðbθ'b < bθÞ=r is the proportion of bootstrap repli-
cates below the estimate bθ . If the bootstrap sampling distribution is symmetric and if bθ
is unbiased, then this proportion will be close to :5, and the ‘‘correction factor’’ Z will
be close to 0.

! Let bθð#iÞ represent the value of bθ produced when the ith observation is deleted from the
sample;14 there are n of these quantities. Let θ represent the average of the bθð#iÞ; that is,
θ[

Pn
i¼1
bθð#iÞ=n. Then calculate

A [

Pn
i¼1 ðθ # bθð#iÞÞ

3

6
Pn

i¼1 ðθ # bθð#iÞÞ
2

h i3=2
ð21:2Þ

With the correction factors Z and A in hand, compute

A1 [F Z þ
Z # za=2

1# AðZ # za=2Þ

& '

A2 [F Z þ
Z þ za=2

1# AðZ þ za=2Þ

& '

where Fð*Þ is the standard-normal cumulative distribution function. When the correction
factors Z and A are both 0, A1 ¼ Fð#za=2Þ ¼ a=2, and A2 ¼ Fðza=2Þ ¼ 1# a=2. The
values A1 and A2 are used to locate the endpoints of the corrected percentile confidence
interval. In particular, the corrected interval is

bθ'ðlower'Þ < θ <bθ'ðupper'Þ

where lower* ¼ rA1 and upper* ¼ rA2 (rounding or interpolating as required).

The lower and upper bounds of percentile confidence intervals can be corrected to
improve the accuracy of these intervals.

Applying this procedure to the ‘‘data’’ in Table 21.3, we have z:05=2 ¼ 1:96 for a 95%
confidence interval. There are 926 bootstrapped means below Y ¼ 4:6, and so
Z ¼ F#1ð926=2000Þ ¼ #0:09288. The Y ð#iÞ are 4:444, 5:444; . . . ; 4:111; the mean of these

14The bθð#iÞ are called the jackknife values of the statistic bθ. The jackknife values can also be used as an alternative to
the bootstrap to find a nonparametric confidence interval for θ. See Exercise 21.2.
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values is Y ¼ Y ¼ 4:6,15 and (from Equation 21.2) A ¼ #0:05630. Using the correction fac-
tors z and A,

A1 ¼ F #0:09288þ #0:09288# 1:96

1# ½#:05630ð#0:09288# 1:96Þ)

( )

¼ Fð#2:414Þ ¼ 0:007889

A2 ¼ F #0:09288þ #0:09288þ 1:96

1# ½#:05630ð#0:09288þ 1:96Þ)

( )

¼ Fð1:597Þ ¼ 0:9449

Multiplying by r, we have 2000 · :0:007889 » 16 and 2000 · :0:9449 » 1890, from which

Y
'
ð16Þ < µ < Y

'
ð1890Þ

#0:4 < µ < 7:3
ð21:3Þ

Unlike the other confidence intervals that we have calculated for the ‘‘sample’’ of 10 differ-
ences in income between husbands and wives, the interval given in Equation 21.3 includes 0.

21.3 Bootstrapping Regression Models

The procedures of the previous section can be easily extended to regression models. The most
straightforward approach is to collect the response-variable value and regressors for each
observation,

z0i [ ½Yi;Xi1; . . . ;Xik )

Then the observations z01, z02; . . . ; z0n can be resampled, and the regression estimator computed
for each of the resulting bootstrap samples, z'b1

0, z'b2
0 ; . . . ; z'bn

0, producing r sets of bootstrap
regression coefficients, b'b ¼ ½A'b, B'b1; . . . ;B'bk )

0. The methods of the previous section can be
applied to compute standard errors or confidence intervals for the regression estimates.

Directly resampling the observations z0i implicitly treats the regressors X1; . . . ;Xk as random
rather than fixed. We may want to treat the X s as fixed (if, e.g., the data derive from an experi-
mental design). In the case of linear regression, for example,

1. Estimate the regression coefficients A;B1; . . . ;Bk for the original sample, and calculate
the fitted value and residual for each observation:

bY i ¼ Aþ B1xi1 þ * * * þ Bkxik

Ei ¼ Yi # bY i

2. Select bootstrap samples of the residuals, e'b ¼ ½E'b1, E'b2; . . . ;E'bn)
0, and from these, cal-

culate bootstrapped Y values, y'b ¼ ½Y 'b1, Y 'b2; . . . ; Y 'bn)
0, where Y 'bi ¼ bYi þ E'bi.

3. Regress the bootstrapped Y values on the fixed X -values to obtain bootstrap regression
coefficients.

15The average of the jackknifed estimates is not, in general, the same as the estimate calculated for the full sample, but
this is the case for the jackknifed sample means. See Exercise 21.2.
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*If, for example, estimates are calculated by least-squares regression, then
b'b ¼ ðX0XÞ

#1X0y'b for b ¼ 1; . . . ; r.
4. The resampled b'b ¼ ½A'b;B'b1; . . . ;B'bk )

0 can be used in the usual manner to construct
bootstrap standard errors and confidence intervals for the regression coefficients.

Bootstrapping with fixed X draws an analogy between the fitted value bY in the sample and the
conditional expectation of Y in the population, as well as between the residual E in the sample
and the error ε in the population. Although no assumption is made about the shape of the error
distribution, the bootstrapping procedure, by constructing the Y 'bi according to the linear model,
implicitly assumes that the functional form of the model is correct.

Furthermore, by resampling residuals and randomly reattaching them to fitted values,
the procedure implicitly assumes that the errors are identically distributed. If, for example, the
true errors have nonconstant variance, then this property will not be reflected in the resampled
residuals. Likewise, the unique impact of a high-leverage outlier will be lost to the
resampling.16

Regression models and similar statistical models can be bootstrapped by (1) treating the
regressors as random and selecting bootstrap samples directly from the observations
z0i ¼ ½Yi;Xi1; . . . ;Xik ), or (2) treating the regressors as fixed and resampling from the resi-
duals Ei of the fitted regression model. In the latter instance, bootstrap observations are
constructed as Y 'bi ¼ bYi þ E'bi, where the bYi are the fitted values from the original regres-
sion, and the E'bi are the resampled residuals for the bth bootstrap sample. In each boot-
strap sample, the Y 'bi are then regressed on the original X s. A disadvantage of fixed-
X resampling is that the procedure implicitly assumes that the functional form of the
regression model fit to the data is correct and that the errors are identically distributed.

To illustrate bootstrapping regression coefficients, I will use Duncan’s regression of occupa-
tional prestige on the income and educational levels of 45 U.S. occupations.17 The Huber M
estimator applied to Duncan’s regression produces the following fit, with asymptotic standard
errors shown in parentheses beneath each coefficient:18

dPrestige ¼ #7:289þ 0:7104 Incomeþ 0:4819 Education

ð3:588Þ ð0:1005Þ ð0:0825Þ

Using random-X resampling, I drew r ¼ 2000 bootstrap samples, calculating the Huber estima-
tor for each bootstrap sample. The results of this computationally intensive procedure are sum-
marized in Table 21.5. The distributions of the bootstrapped regression coefficients for income
and education are graphed in Figure 21.3(a) and (b), along with the percentile confidence inter-
vals for these coefficients. Figure 21.3(c) shows a scatterplot of the bootstrapped coefficients

16For these reasons, random-X resampling may be preferable even if the X -values are best conceived as fixed. See
Exercise 21.3.
17These data were discussed in Chapter 19 on robust regression and at several other points in this text.
18M estimation is a method of robust regression described in Section 19.1.
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for income and education, which gives a sense of the covariation of the two estimates; it is
clear that the income and education coefficients are strongly negatively correlated.19

The bootstrap standard errors of the income and education coefficients are much larger than
the asymptotic standard errors, underscoring the inadequacy of the latter in small samples. The
simple normal-theory confidence intervals based on the bootstrap standard errors (and formed
as the estimated coefficients – 1:96 standard errors) are reasonably similar to the percentile
intervals for the income and education coefficients; the percentile intervals differ slightly from
the adjusted percentile intervals. Comparing the average bootstrap coefficients A

'
, B
'
1, and B

'
2

with the corresponding estimates A, B1, and B2 suggests that there is little, if any, bias in the
Huber estimates.20

21.4 Bootstrap Hypothesis Tests*

In addition to providing standard errors and confidence intervals, the bootstrap can also be used
to test statistical hypotheses. The application of the bootstrap to hypothesis testing is more or
less obvious for individual coefficients because a bootstrap confidence interval can be used to
test the hypothesis that the corresponding parameter is equal to any specific value (typically 0
for a regression coefficient).

More generally, let T [ tðzÞ represent a test statistic, written as a function of the sample z.
The contents of z vary by context. In regression analysis, for example, z is the n · k þ 1 matrix
½y;X) containing the response variable and the regressors.

For concreteness, suppose that T is the Wald-like test statistic for the omnibus null hypoth-
esis H0: β1 ¼ * * * ¼ βk ¼ 0 in a robust regression, calculated using the estimated asymptotic
covariance matrix for the regression coefficients. That is, let V11

ðk · kÞ
contain the rows and

Table 21.5 Statistics for r ¼ 2000 Bootstrapped Huber Regressions Applied to Duncan’s
Occupational Prestige Data

Coefficient

Constant Income Education

Average bootstrap estimate #7.001 0.6903 0.4918
Bootstrap standard error 3.165 0.1798 0.1417
Asymptotic standard error 3.588 0.1005 0.0825
Normal-theory interval (#13.423,#1.018) (0.3603,1.0650) (0.2013,0.7569)
Percentile interval (#13.150,#0.577) (0.3205,1.0331) (0.2030,0.7852)
Adjusted percentile interval (#12.935,#0.361) (0.2421,0.9575) (0.2511,0.8356)

NOTES: Three bootstrap confidence intervals are shown for each coefficient. Asymptotic standard errors are

also shown for comparison.

19The negative correlation of the coefficients reflects the positive correlation between income and education (see
Section 9.4.4). The hint of bimodality in the distribution of the income coefficient suggests the possible presence of
influential observations. See the discussion of Duncan’s regression in Section 4.6.
20For the use of the bootstrap to estimate bias, see Exercise 21.4.
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columns of the estimated asymptotic covariance matrix bVðbÞ that pertain to the k slope coeffi-

cients b1 ¼ ½B1; . . . ;Bk )0. We can write the null hypothesis as H0 : fl1 ¼ 0. Then the test statis-
tic is

T ¼ b01V#1
11 b1

We could compare the obtained value of this statistic to the quantiles of χ2
k , but we are loath to

do so because we do not trust the asymptotics. We can, instead, construct the sampling distri-
bution of the test statistic nonparametrically, using the bootstrap.

Let T'b [ tðz'bÞ represent the test statistic calculated for the bth bootstrap sample, z'b. We have
to be careful to draw a proper analogy here: Because the original-sample estimates play the role
of the regression parameters in the bootstrap ‘‘population’’ (i.e., the original sample), the
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Figure 21.3 Panels (a) and (b) show histograms and kernel density estimates for the r ¼ 2000
bootstrap replicates of the income and education coefficients in Duncan’s occupa-
tional prestige regression. The regression model was fit by M estimation using the
Huber weight function. Panel (c) shows a scatterplot of the income and education
coefficients for the 2000 bootstrap samples.
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bootstrap analog of the null hypothesis—to be used with each bootstrap sample—is
H0 : β1 ¼ B1; . . . ;βk ¼ Bk . The bootstrapped test statistic is, therefore,

T'b ¼ ðb
'
b1 # b1Þ0V'#1

b;11ðb
'
b1 # b1Þ

Having obtained r bootstrap replications of the test statistic, the bootstrap estimate of the
p-value for H0 is simply21

bp' ¼
#r

b¼1 T 'b ‡ T
" #

r

Note that for this chi-square-like test, the p-value is entirely from the upper tail of the distribu-
tion of the bootstrapped test statistics.

Bootstrap hypothesis tests proceed by constructing an empirical sampling distribution for
the test statistic. If T represents the test statistic computed for the original sample, and
T 'b is the test statistic for the bth of r bootstrap samples, then (for a chi-square-like test
statistic) the p-value for the test is #ðT'b ‡ TÞ=r.

21.5 Bootstrapping Complex Sampling Designs

One of the great virtues of the bootstrap is that it can be applied in a natural manner to more
complex sampling designs.22 If, for example, the population is divided into S strata, with ns

observations drawn from stratum s, then bootstrap samples can be constructed by resampling
ns observations with replacement from the sth stratum. Likewise, if observations are drawn into
the sample in clusters rather than individually, then the bootstrap should resample clusters
rather than individuals. We can still calculate estimates and test statistics in the usual manner
using the bootstrap to assess sampling variation in place of the standard formulas, which are
appropriate for independent random samples but not for complex survey samples.

When different observations are selected for the sample with unequal probabilities, it is com-
mon to take account of this fact by differentially weighting the observations in inverse propor-
tion to their probability of selection.23 Thus, for example, in calculating the (weighted) sample
mean of a variable Y , we take

Y
ðwÞ ¼

Pn
i¼1 wiYiPn

i¼1 wi

and to calculate the (weighted) correlation of X and Y , we take

21There is a subtle point here: We use the sample estimate b1 in place of the hypothesized parameter flð0Þ1 to calculate
the bootstrapped test statistic T'b regardless of the hypothesis that we are testing—because in the central bootstrap ana-
logy b1 stands in for fl1 (and the bootstrapped sampling distribution of the test statistic is computed under the assump-
tion that the hypothesis is true). See Exercise 21.5 for an application of this test to Duncan’s regression.
22Analytic methods for statistical inference in complex surveys are described briefly in Section 15.5.
23These ‘‘case weights’’ are to be distinguished from the variance weights used in weighted least-squares regression
(see Section 12.2.2). Survey case weights are described in Section 15.5.
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rðwÞXY ¼
P

wiðXi # X ÞðYi # Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
P

wiðXi # X Þ2)½
P

wiðYi # Y Þ2)
q

Other statistical formulas can be adjusted analogously.24

The case weights are often scaled so that
P

wi ¼ n, but simply incorporating the weights in
the usual formulas for standard errors does not produce correct results. Once more, the boot-
strap provides a straightforward solution: Draw bootstrap samples in which the probability of
inclusion is proportional to the probability of inclusion in the original sample, and calculate
bootstrap replicates of the statistics of interest using the case weights.

The essential ‘‘trick’’ of using the bootstrap in these (and other) instances is to resample
from the data in the same way as the original sample was drawn from the population. Statistics
are calculated for each bootstrap replication in the same manner as for the original sample.

The bootstrap can be applied to many complex sampling designs (involving, e.g., stratifi-
cation, clustering, and case weighting) by resampling from the sample data in the same
manner as the original sample was selected from the population.

Social scientists frequently analyze data from complex sampling designs as if they originate
from independent random samples (even though there are often nonnegligible dependencies
among the observations) or employ ad hoc adjustments (e.g., by weighting). A tacit defense of
common practice is that to take account of the dependencies in complex sampling designs is
too difficult. The bootstrap provides a simple solution.25

21.6 Concluding Remarks

If the bootstrap is so simple and of such broad application, why isn’t it used more in the social
sciences? Beyond the problem of lack of familiarity (which surely can be remedied), there are,
I believe, three serious obstacles to increased use of the bootstrap:

1. Common practice—such as relying on asymptotic results in small samples or treating
dependent data as if they were independent—usually understates sampling variation
and makes results look stronger than they really are. Researchers are understandably
reluctant to report honest standard errors when the usual calculations indicate greater
precision. It is best, however, not to fool yourself, regardless of what you think about
fooling others.

2. Although the conceptual basis of the bootstrap is intuitively simple and although the
calculations are straightforward, to apply the bootstrap, it is necessary to write or find
suitable statistical software. There is some bootstrapping software available, but the
nature of the bootstrap—which adapts resampling to the data collection plan and

24See Exercise 21.6.
25Alternatively, we can use sampling-variance estimates that are appropriate to complex survey samples, as described
in Section 15.5.
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statistics employed in an investigation—apparently precludes full generality and makes
it difficult to use traditional statistical computer packages. After all, researchers are not
tediously going to draw 2000 samples from their data unless a computer program can
fully automate the process. This impediment is much less acute in programmable statis-
tical computing environments.26

3. Even with good software, the bootstrap is computationally intensive. This barrier to
bootstrapping is more apparent than real, however. Computational speed is central to
the exploratory stages of data analysis: When the outcome of one of many small steps
immediately affects the next, rapid results are important. This is why a responsive com-
puting environment is especially useful for regression diagnostics, for example. It is not
nearly as important to calculate standard errors and p-values quickly. With powerful,
yet relatively inexpensive, desktop computers, there is nothing to preclude the machine
from cranking away unattended for a few hours (although that is rarely necessary—a
few minutes is more typical). The time and effort involved in a bootstrap calculation
are usually small compared with the totality of a research investigation—and are a small
price to pay for accurate and realistic inference.

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 21.1. 'Show that the mean of the nn bootstrap means is the sample mean

E'ðY 'Þ ¼
Pnn

b¼1 Y
'
b

nn
¼ Y

and that the standard deviation (standard error) of the bootstrap means is

SE'ðY 'Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnn

b¼1 ðY
'
b # Y Þ2

nn

s

¼ Sffiffiffiffiffiffiffiffiffiffiffi
n# 1
p

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðYi # Y Þ2=ðn# 1Þ
q

is the sample standard deviation. (Hint: Exploit the fact
that the mean is a linear function of the observations.)

Exercise 21.2. The jackknife: The ‘‘jackknife’’ (suggested for estimation of standard errors by
Tukey, 1958) is an alternative to the bootstrap that requires less computation, but that often
does not perform as well and is not quite as general. Efron and Tibshirani (1993, chap. 11)
show that the jackknife is an approximation to the bootstrap. Here is a brief description of the
jackknife for the estimator bθ of a parameter θ:

1. Divide the sample into m independent groups. In most instances (unless the sample size
is very large), we take m ¼ n, in which case each observation constitutes a ‘‘group.’’ If
the data originate from a cluster sample, then the observations in a cluster should be
kept together.

26See, for example, the bootstrapping software for the S and R statistical computing environments described by Efron
and Tibshirani (1993, appendix) and by Davison and Hinkley (1997, chap. 11). General bootstrapping facilities are also
provided in the Stata programming environment.
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2. Recalculate the estimator omitting the jth group, j ¼ 1; . . . ;m, denoting the resulting
value of the estimator as bθð#jÞ. The pseudo-value associated with the jth group is

defined as bθ'j [ mbθ # ðm# 1Þbθð#jÞ.
3. The average of the pseudo-values, bθ'[ ð

Pm
j¼1
bθ'j Þ=m, is the jackknifed estimate of θ. A

jackknifed 100ð1# aÞ% confidence interval for θ is given by

θ ¼ bθ' – ta=2;m#1
S'ffiffiffi

n
p

where ta=2;m#1 is the critical value of t with probability a=2 to the right for m# 1

degrees of freedom, and S'[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 ðbθ'j # bθ
'
Þ

2
=ðm# 1Þ

q
is the standard deviation of

the pseudo-values.

(a) 'Show that when the jackknife procedure is applied to the mean with m ¼ n, the
pseudo-values are just the original observations, bθ'i ¼ Yi; the jackknifed estimate
bθ' is, therefore, the sample mean Y ; and the jackknifed confidence interval is the
same as the usual t confidence interval.

(b) Demonstrate the results in part (a) numerically for the contrived ‘‘data’’ in
Table 21.3. (These results are peculiar to linear statistics like the mean.)

(c) Find jackknifed confidence intervals for the Huber M estimator of Duncan’s
regression of occupational prestige on income and education. Compare these inter-
vals with the bootstrap and normal-theory intervals given in Table 21.5.

Exercise 21.3. Random versus fixed resampling in regression:

(a) Recall (from Chapter 2) Davis’s data on measured and reported weight for 101 women
engaged in regular exercise. Bootstrap the least-squares regression of reported weight
on measured weight, drawing r ¼ 1000 bootstrap samples using (1) random-X resam-
pling and (2) fixed-X resampling. In each case, plot a histogram (and, if you wish, a
density estimate) of the 1000 bootstrap slopes, and calculate the bootstrap estimate of
standard error for the slope. How does the influential outlier in this regression affect
random resampling? How does it affect fixed resampling?

(b) Randomly construct a data set of 100 observations according to the regression model
Yi ¼ 5þ 2xi þ εi, where xi ¼ 1; 2; . . . ; 100, and the errors are independent (but seri-
ously heteroscedastic), with εi ; Nð0; x2

i Þ. As in (a), bootstrap the least-squares regres-
sion of Y on x, using (1) random resampling and (2) fixed resampling. In each case,
plot the bootstrap distribution of the slope coefficient, and calculate the bootstrap esti-
mate of standard error for this coefficient. Compare the results for random and fixed
resampling. For a few of the bootstrap samples, plot the least-squares residuals against
the fitted values. How do these plots differ for fixed versus random resampling?

(c) Why might random resampling be preferred in these contexts, even if (as is not the
case for Davis’s data) the X -values are best conceived as fixed?

Exercise 21.4. Bootstrap estimates of bias: The bootstrap can be used to estimate the bias of
an estimator bθ of a parameter θ, simply by comparing the mean of the bootstrap distribution θ

'

(which stands in for the expectation of the estimator) with the sample estimate bθ (which stands
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in for the parameter); that is, dbias ¼ θ
' # bθ. (Further discussion and more sophisticated meth-

ods are described in Efron & Tibshirani, 1993, chap. 10.) Employ this approach to estimate the
bias of the maximum-likelihood estimator of the variance, bσ2 ¼

P
ðYi # Y Þ2=n, for a sample

of n ¼ 10 observations drawn from the normal distribution Nð0; 100Þ. Use r ¼ 500 bootstrap
replications. How close is the bootstrap bias estimate to the theoretical value
#σ2=n ¼ #100=10 ¼ #10?

Exercise 21.5. 'Test the omnibus null hypothesis H0: β1 ¼ β2 ¼ 0 for the Huber M estimator
in Duncan’s regression of occupational prestige on income and education.

(a) Base the test on the estimated asymptotic covariance matrix of the coefficients.
(b) Use the bootstrap approach described in Section 21.4.

Exercise 21.6. Case weights:

(a) 'Show how case weights can be used to ‘‘adjust’’ the usual formulas for the least-
squares coefficients and their covariance matrix. How do these case-weighted formulas
compare with those for weighted-least-squares regression (discussed in Section
12.2.2.)?

(b) Using data from a sample survey that employed disproportional sampling and for
which case weights are supplied, estimate a least-squares regression (1) ignoring the
case weights, (2) using the case weights to estimate both the regression coefficients
and their standard errors (rescaling the case weights, if necessary, so that they sum to
the sample size), and (3) using the case weights but estimating coefficient standard
errors with the bootstrap. Compare the estimates and standard errors obtained in (1),
(2), and (3).

Exercise 21.7. 'Bootstrapping time-series regression: Bootstrapping can be adapted to time-
series regression but, as in the case of fixed-X resampling, the procedure makes strong use of
the model fit to the data—in particular, the manner in which serial dependency in the data is
modeled. Suppose that the errors in the linear model y ¼ Xflþ " follow a first-order autore-
gressive process (see Chapter 16), εi ¼ rεi#1 þ yi; the yi are independently and identically dis-
tributed with 0 expectations and common variance σ2

y . Suppose further that we use the method
of maximum likelihood to obtain estimates br and bfl. From the residuals e ¼ y# Xbfl, we can
estimate yi as Vi ¼ Ei # brEi#1 for i ¼ 2; . . . ; n; by convention, we take V1 ¼ E1. Then, for
each bootstrap replication, we sample n-values with replacement from the Vi; call them V 'b1,
V 'b2; . . . ;V 'bn. Using these values, we construct residuals E'b1 ¼ V 'b1 and E'bi ¼ brE'b; i#1 þ V 'bi for
i ¼ 2; . . . ; n; and from these residuals and the original fitted values bYi ¼ x0ibfl, we construct
bootstrapped Y -values, Y 'bi ¼ bYi þ E'bi. The Y 'bi are used along with the original x0i to obtain
bootstrap replicates bfl'b of the ML coefficient estimates. (Why are the x0i treated as fixed?)
Employ this procedure to compute standard errors of the coefficient estimates in the time-series
regression for the Canadian women’s crime rate data (discussed in Chapter 16), using an
AR(1) process for the errors. Compare the bootstrap standard errors with the usual asymptotic
standard errors. Which standard errors do you prefer? Why? Then describe a bootstrap proce-
dure for a time-series regression model with AR(2) errors, and apply this procedure to the
Canadian women’s crime rate regression.
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Summary

! Bootstrapping is a broadly applicable, nonparametric approach to statistical inference
that substitutes intensive computation for more traditional distributional assumptions
and asymptotic results. The bootstrap can be used to derive accurate standard errors,
confidence intervals, and hypothesis tests for most statistics.

! Bootstrapping uses the sample data to estimate relevant characteristics of the population.
The sampling distribution of a statistic is then constructed empirically by resampling
from the sample. The resampling procedure is designed to parallel the process by which
sample observations were drawn from the population. For example, if the data represent
an independent random sample of size n (or a simple random sample of size n from a
much larger population), then each bootstrap sample selects n observations with replace-
ment from the original sample. The key bootstrap analogy is the following: The popula-
tion is to the sample as the sample is to the bootstrap samples.

! Having produced r bootstrap replicates bθ'b of an estimator bθ, the bootstrap standard error
is the standard deviation of the bootstrap replicates:

SE'ðbθ'Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr

b¼1 ðbθ'b # θ
'Þ

2

r # 1

s

where θ
'

is the mean of the bθ'b. In large samples, where we can rely on the normality of
bθ, a 95% confidence interval for θ is given by bθ – 1:96 SE'ðbθ'Þ.

! A nonparametric confidence interval for θ can be constructed from the quantiles of the
bootstrap sampling distribution of bθ'. The 95% percentile interval is bθ'ðlowerÞ < θ < bθ'ðupperÞ,
where the bθ'ðbÞ are the r ordered bootstrap replicates; lower ¼ :025 · r and upper
¼ :975 · r.

! The lower and upper bounds of percentile confidence intervals can be corrected to
improve the accuracy of these intervals.

! Regression models can be bootstrapped by (1) treating the regressors as random and
selecting bootstrap samples directly from the observations z0i ¼ ½Yi;Xi1; . . . ;Xik ), or (2)
treating the regressors as fixed and resampling from the residuals Ei of the fitted regres-
sion model. In the latter instance, bootstrap observations are constructed as
Y 'bi ¼ bYi þ E'bi, where the bYi are the fitted values from the original regression, and the
E'bi are the resampled residuals for the bth bootstrap sample. In each bootstrap sample,
the Y 'bi are then regressed on the original X s. A disadvantage of fixed-X resampling is
that the procedure implicitly assumes that the regression model fit to the data is correct
and that the errors are identically distributed.

! Bootstrap hypothesis tests proceed by constructing an empirical sampling distribution
for the test statistic. If T represents the test statistic computed for the original sample
and T 'b is the test statistic for the bth of r bootstrap samples, then (for a chi-square-like
test statistic) the p-value for the test is #ðT'b ‡ TÞ=r.

! The bootstrap can be applied to many complex sampling designs (involving, e.g., strati-
fication, clustering, and case weighting) by resampling from the sample data in the same
manner as the original sample was selected from the population.
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Recommended Reading

Bootstrapping is a rich topic; the presentation in this chapter has stressed computational proce-
dures at the expense of a detailed account of statistical properties and limitations.

! Although Efron and Tibshirani’s (1993) book on the bootstrap contains some relatively
advanced material, most of the exposition requires only modest statistical background
and is eminently readable.

! Davison and Hinkley (1997) is another statistically sophisticated, comprehensive treat-
ment of bootstrapping.

! A briefer source on bootstrapping, addressed to social scientists, is Stine (1990), which
includes a fine discussion of the rationale of bootstrap confidence intervals.

! Young’s (1994) paper and the commentary that follows it focus on practical difficulties
in applying the bootstrap.
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22 Model Selection,
Averaging, and

Validation

T his chapter addresses practical issues in building statistical models. The first section of
the chapter discusses criteria for selecting among statistical models—criteria that move

beyond hypothesis tests for terms in a model.
The second section deals with an alternative approach, termed model averaging, that com-

bines information from different statistical models fit to the same data.
Model validation, which is described in the third section of the chapter, provides a simple

basis for honest statistical inference when—as is typically the case in a careful investigation—
we need to examine the data to formulate a descriptively adequate statistical model. In valida-
tion, the data are divided at random into two parts: One part is used for data exploration and
model formulation (including, possibly, model selection); the second part is used to evaluate
the model, thus preserving the integrity of statistical inferences.

22.1 Model Selection

I have touched, in passing, on issues of model selection at several points in the text, often sim-
plifying a model after preliminary statistical hypothesis tests.1 Issues of model search extend
beyond the selection of explanatory variables or terms to include in a regression model to ques-
tions such as the removal of outliers and variable transformations. The strategy of basing model
selection on hypothesis tests is problematic for a number of reasons (largely familiar from ele-
mentary statistics):

! Simultaneous inference: If we are testing many terms simultaneously, the probability of
rejecting one or more true null hypotheses by chance (i.e., the probability of committing
a Type I error) is larger—possibly much larger—than the level of any individual test.2

! The fallacy of affirming the consequent: Failing to reject a null hypothesis is to be dis-
tinguished from demonstrating that the null hypothesis is supported by the data. For
example, the power of the test may be weak. It is important to distinguish, therefore, a
small coefficient that is precisely estimated (where, e.g., the confidence interval for the
coefficient is narrow and includes 0) from a coefficient that is imprecisely estimated
(where, e.g., the size of the estimated coefficient may be large, but the confidence inter-
val includes zero). Eliminating an imprecisely estimated term from a model can

1In addition, the Bayesian information criterion (BIC) was used for model selection in Section 13.2.2, and cross-
validation and generalized cross-validation were discussed in the context of nonparametric regression in Chapter 18.
2See Exercise 22.1.
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seriously bias other estimates if the population coefficient is large and the variable in
question is strongly related to others in the model.3

! The impact of large samples on hypothesis tests: In the social sciences, we rarely expect
a null hypothesis to be exactly correct, and given a sufficiently large sample, a false
hypothesis—even one that is nearly correct—will be rejected with high probability.
Thus, hypothesis testing may lead us to include terms in a model because they are ‘‘sta-
tistically significant’’ even when they are trivially small.

! Exaggerated precision: Coefficient standard errors computed after model selection tend
to overstate the precision of estimation when terms correlated with those retained in the
model are eliminated. Consequently, confidence intervals are artificially narrow and
p-values artificially small.

There are several general strategies for addressing these concerns:

! Using alternative model-selection criteria: One approach—namely, to employ a criter-
ion other than statistical significance to decide questions of model selection—is the prin-
cipal subject of this section.

! Compensating for simultaneous inference: We can seek to compensate for simultaneous
inference by employing a Bonferroni adjustment, for example, or by holding back some
of our data to validate a statistical model selected by another approach.4

! Avoiding model selection: Still another strategy, which preserves the integrity of classi-
cal statistical inference, is to specify and interpret a maximally complex and flexible
model without seeking to simplify it.5 Although this is a defensible approach, it encoun-
ters two general difficulties, in my opinion: (1) We are often not in a position to specify
a fully adequate model, even a maximally complex one, prior to examining the data,
and (2) retaining what prove to be unnecessary terms in a model contradicts a common
goal of statistical data analysis, which is permissible simplification (possibly begging
the question of what is ‘‘permissible’’).

! Model averaging: Rather than selecting a single model and discarding all others, model-
averaging techniques seek to account for model uncertainty by weighting contending
models according to their relative degree of support from the data.6

It is problematic to use statistical hypothesis tests for model selection. Doing so leads to
issues of simultaneous inference, can produce biased results, tends to yield complicated
models in large samples, and exaggerates the precision of results.

3See the discussions of ‘‘specification errors’’ in Sections 6.3 and 9.7.
4Model validation is the subject of Section 22.3. For an example of the use of Bonferroni adjustment in model selec-
tion, see Foster and Stine (2004).
5This strategy is advocated, for example, by Harrell (2001).
6See Section 22.2.
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22.1.1 Model Selection Criteria

Model selection is conceptually simplest when our goal is prediction—that is, the develop-
ment of a regression model that will predict new data as accurately as possible. Although pre-
dictive accuracy is a desirable characteristic in any statistical model, most interesting statistical
problems in the social sciences are not pure prediction problems, and a more typical objective
is to use a statistical model for substantive interpretation, data summary, and explanation.

When our goal is prediction, we need not be concerned about the consequences for interpre-
tation of eliminating an explanatory variable that is highly correlated with one included in the
model, because the excluded variable would typically lend little additional predictive power to
the model. This conclusion assumes that the configuration of explanatory variables will be sim-
ilar in the data for which predictions are desired as in the data used to calibrate the model.
Likewise, where the aim is prediction, we need have no qualms about including among the
predictor variables (note, in this context, not ‘‘explanatory’’ variables) symptoms (i.e., effects)
of the response variable. Indeed, the inclusion of symptoms as predictors is standard in areas
such as differential diagnosis in medicine.

Because of the current expansion of computer power and the availability of very large data
sets (e.g., in genomics and in ‘‘big data’’ collected on the Internet), model selection problems
in the context of prediction are receiving a great deal of attention in statistics: Once an epithet,
‘‘data mining’’ is now a topic of serious study.7

This section describes several criteria that have been suggested for selecting among compet-
ing statistical models.8 I assume that we have n observations on a response variable Y and
associated predictors, X s, producing a set of m contending statistical models
M ¼ M1;M2; . . . ;Mmf g for Y .

Corrected R2

The squared multiple correlation ‘‘corrected’’ (or ‘‘adjusted’’) for degrees of freedom is an
intuitively reasonable criterion for comparing linear-regression models with different numbers
of parameters.9 Suppose that model Mj is one of the models under consideration. If Mj has sj

regression coefficients (including the regression constant) and is fit to a data set with n obser-
vations, then the corrected R2 for the model is

eR2
j [ 1# SðjÞ2E

S2
Y

¼ 1# n# 1

n# sj
·

RSSj

TSS

where RSSj is the residual sum of squares under the model, TSS ¼
P
ðYi # Y Þ2 is the total

sum of squares for the response variable Y , and SðjÞ2E ¼ RSSj=ðn# sjÞ is the estimated error
variance. Consequently, models with relatively large numbers of parameters are penalized for

7See, for example, Hastie, Tibshirani, and Friedman (2009).
8This presentation is by no means exhaustive. For example, I have omitted a promising information-theoretic approach
described in Stine (2004).
9The corrected R2 was introduced in Section 5.2.3.
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their lack of parsimony. Beyond this intuitive rationale, however, there is no deep justification
for using eR2 as a model selection criterion.

Mallows’s Cp Statistic

One approach to subset selection in least-squares regression is based on the total (normed)
mean-squared error (MSE) of estimating the expected values of the response, EðYiÞ, from the
fitted values, bYi—that is, using the fitted regression to estimate the population regression sur-
face over the observed X s:

γ j [
1

σ2
ε

Xn

i¼1

MSE bY ðjÞi

! "

¼ 1

σ2
ε

Xn

i¼1

V bY ðjÞi

! "
þ E bY ðjÞi

! "
# E Yið Þ

h i2
# $ ð22:1Þ

where the fitted values bY ðjÞi are based on model Mj, which contains sj £ k þ 1 regressors (count-
ing the constant, which is always included in the model) and where k is the number of regres-
sors (less the constant) in the largest model under consideration. Using the error in estimating
EðY Þ as a criterion for model quality is reasonable if the goal is literally to predict Y from the
X s and if new observations on the X s for which predictions are required will be similar to
those included in the data. An implicit assumption is that the full model, with all k þ 1 regres-
sors, accurately captures the dependence of Y on the X s.

The term E bY ðjÞi

! "
# E Yið Þ

h i2
in Equation 22.1 represents the squared bias of bY ðjÞi as an esti-

mator of the population regression surface EðYiÞ. When collinear regressors are deleted from
the model, for example, the variance of the fitted value, V bY ðjÞi

! "
, will usually decrease, but—

depending on the configuration of data points and the true βs for the deleted regressors—bias
may be introduced into the fitted values. Because the prediction MSE is the sum of variance
and squared bias, the essential question is whether the decrease in variance offsets any increase
in bias.

Mallows’s Cp statistic (Mallows, 1973) estimates γ j as

Cpj [

P
EðjÞ2i

S2
E

þ 2sj # n

¼ ðk þ 1# sjÞðFj # 1Þ þ sj

where the residuals EðjÞi are from model Mj; the error variance estimate S2
E is based on the full

model fit to the data, containing all k þ 1 regressors; and Fj is the incremental F-statistic for
testing the hypothesis that the regressors omitted from model Mj have population coefficients
of 0.10 If this hypothesis is true, then EðFjÞ » 1, and thus EðCpjÞ » sj. A good model, therefore,
has Cpj close to or below sj. As well, minimizing Cp for models of a given size minimizes the
sum of squared residuals and thus maximizes R2. For the full model, Cp necessarily equals
k þ 1.

10See Exercise 22.2.
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Cross-Validation and Generalized Cross-Validation

We previously encountered cross-validation in Chapter 18 on nonparametric regression as a
method for selecting the smoothing parameter in a local-polynomial or smoothing-spline
regression model. Cross-validation can be applied more generally to model selection.

As before, suppose that model Mj is one of m models under consideration. In leave-one-out
cross-validation, we fit the model n times, omitting the ith observation at step i and using the
resulting fitted model to obtain a predicted value for the omitted observation, bY ðjÞ#i . The cross-
validation criterion estimates the mean-squared prediction error for model Mj as

CVj [

Pn
i¼1

bY ðjÞ#i # Yi

! "2

n
ð22:2Þ

We prefer the model with the smallest value of CVj.
11

In linear least-squares regression, there are efficient procedures for computing the leave-one-
out fitted values bY ðjÞ#i that do not require literally refitting the model.12 In other applications,
however, leave-one-out cross-validation can be computationally expensive. An alternative is to
divide the data into a relatively small number of subsets (e.g., 10) of roughly equal size and to
fit the model omitting each subset in turn, obtaining fitted values for all observations in the
omitted subset. With p subsets, this method is termed p-fold cross-validation. The cross-
validation criterion is calculated as in Equation 22.2, using the fitted values from the p omitted sub-
sets. Still another possibility is to approximate CV by the generalized cross-validation criterion

GCVj [
n · RSSj

df 2
resj

where RSSj is the residual sum of squares and dfresj ¼ n# sj are the residual degrees of free-
dom for model Mj—an approach similar to that taken in the adjusted R2.13

The Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC)

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC), also
called Schwarz’s Bayesian criterion (Schwarz, 1978), are currently the most commonly used
model selection criteria beyond classical hypothesis tests. Both are members of a more general
family of penalized model-fit statistics (let us call them ‘‘*IC’’), applicable to regression mod-
els fit by maximum likelihood, that take the form

'ICj ¼ #2 loge Lðb!jÞ þ csj

where Lðb!jÞ is the maximized likelihood under model Mj; !j is the vector of parameters of the
model,14 including, for example, regression coefficients and an error variance or dispersion

11The numerator of CVð jÞ, that is,
Pn

i¼1
bY ðjÞ#i # Yi

! "2
, is called the prediction sum of squares (or PRESS).

12Recall the discussion of deletion diagnostics in Chapter 11.
13But see Exercise 22.3.
14If you are not familiar with vector notation, simply think of !j as a list of the parameters in the model; for example,
in a linear regression model with normal errors, !j contains the regression coefficients, αðjÞ;βðjÞ1 ; . . . ; βðjÞk and the error
variance σ

ðjÞ2
ε .
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parameter [and b!j is the vector of maximum-likelihood estimates (MLEs) of the parameters]; sj

is the number of parameters in !j; and c is a constant that differs from one model selection cri-
terion to another. The first term, #2 loge Lðb!jÞ, is the residual deviance under the model (or
differs from the residual deviance by a constant); for a linear model with normal errors, it is
simply the residual sum of squares. The magnitude of *IC is not generally interpretable, but
differences between values for different models are of interest, and the model with the smallest
*IC is the one that receives most support from the data.

The AIC and BIC are defined as follows:

AICj [ # 2 loge Lðb!jÞ þ 2sj

BICj [ # 2 loge Lðb!jÞ þ sj loge n

For example, in a linear model with normal errors, the MLE of the regression coefficients is
the least-squares estimator, and the MLE of the error variance is bσ ðjÞ2ε ¼

P
EðjÞ2i

! "
=n, where

the EðjÞi are the least-squares residuals for model Mj;
15 then,

AICj ¼ n loge bσ ðjÞ2ε þ 2sj

BICj ¼ n loge bσ ðjÞ2ε þ sj loge n

The lack-of-parsimony penalty for the BIC grows with the sample size, while that for the AIC
does not. The penalty for the BIC is also larger than that for the AIC (when n ‡ 8), and the BIC
therefore tends to nominate models with fewer parameters. Although the AIC and BIC are
often justified by vague appeals to parsimony, both statistics are based on deeper statistical
considerations, to which I now turn.16

Model selection criteria, some applicable to regression models fit by least squares and
others more general:

! The squared multiple correlation adjusted for degrees of freedom,

eR2 ¼ 1# n# 1

n# s
· RSS

TSS

where n is the number of observations, s is the number of regression coefficients in
the model, RSS is the residual sum of squares under the model, and TSS is the total
sum of squares.

! Mallows’s Cp statistic,

Cp ¼ ðk þ 1# sÞðF # 1Þ þ s

where k is the number of predictors in the full model fit to the data and F is the incre-
mental F-statistic for the hypothesis that the k þ 1# s predictors excluded from the
model are 0. A good model has Cp close to or below s.

15See Section 9.3.3.
16The exposition of the AIC is adapted from Burnham and Anderson (2004) and of the BIC from Raftery (1995).

674 Chapter 22. Model Selection, Averaging, and Validation



! The cross-validation criterion,

CV ¼

Pn
i¼1

bY #i # Yi

! "2

n

where bY#i is the fitted value for observation i obtained when the model is fit with
observation i omitted.

! The generalized cross-validation criterion,

GCV ¼ n · RSS

df 2
res

where dfres is the residual degrees of freedom under the model.
! The Akaike information criterion (AIC),

AIC ¼ #2 loge Lðb!Þ þ 2s

where loge Lðb!Þ is the maximized log-likelihood under the model (and ! is the para-
meter vector for the model).

! The Bayesian information criterion (BIC),

BIC ¼ #2 loge Lðb!Þ þ s loge n

For both the AIC and the BIC, the model with the smallest value is the one most sup-
ported by the data.

A Closer Look at the AIC* Let pðyÞ represent the ‘‘true’’ probability distribution or density
function for the response vector y in a regression model. The response y can be quite gen-
eral—certainly including all the models fit by the method of maximum likelihood in this
book.17 The ‘‘true model’’ generating the data need not be among the models that we are com-
paring, and, indeed, we do not have to commit ourselves to the existence of a true model: The
probability distribution of the data could be generated by a complex process that cannot be cap-
tured precisely by a statistical model.18

Imagine, as before, that we have a set of m statistical models under consideration, each with
parameters to be estimated from the data, !j for model Mj, and implying the probability distri-
bution pjðyj!jÞ for the data, which can be thought of as an approximation to the true distribu-
tion pðyÞ of y.19 The ‘‘best’’ model is the one that provides the most accurate approximation.

Kullback-Leibler information is a measure of the ‘‘distance’’ between two distributions, rep-
resenting the information ‘‘lost’’ when the second distribution is used to approximate the first.
The AIC applies Kullback-Leibler information to the difference between pðyÞ and each
pjðyj!jÞ:

17The range of application of the AIC (and the BIC) is wider still—to virtually any class of statistical models fit by
maximum likelihood.
18This notion is consistent with the view of statistical models presented in Chapter 1.
19pjð(Þ is subscripted here by the index of the model because we wish to consider the distribution of the data under dif-
ferent models.
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Iðp; pjÞ[
Z

all y
pðyÞ loge

pðyÞ
pjðyj!jÞ

dy ð22:3Þ

¼
Z

all y
pðyÞ loge pðyÞdy#

Z

all y
pðyÞ loge pjðyj!jÞdy

¼ Ep loge pðyÞ½ * # Ep loge pjðyj!jÞ
% &

¼ φ# Ep loge pjðyj!jÞ
% &

The object, then, is to find the model Mj that minimizes the information loss. The value
φ[ Ep loge pðyÞ½ *, in the last line of Equation 22.3, is a constant that does not depend on the
model and is therefore irrelevant to model comparisons; the expectation in the term
Ep loge pjðyj!jÞ
% &

is with respect to the true probability distribution pðyÞ.
The AIC focuses on the quantity

EyEy' loge pj y'jb!jðyÞ
h in o

Here, y' is a notional second, independently selected sample of values of the response variable

(though, in an application, we have only the sample y), b!jðyÞ is the maximum-likelihood esti-
mator of !j based on the original sample y, and the expectation is taken with respect to both

samples. The quantity Ey' loge pj y'jb!jðyÞ
h in o

is similar to Ep loge pjðyj!jÞ
% &

, substituting the

MLE b!jðyÞ for !j, and loge pj y'jb!jðyÞ
h i

is the new-sample log-likelihood under the model Mj

evaluated at the MLE for the original sample. The maximized log-likelihood loge Lðb!jjyÞ ¼

loge pj yjb!jðyÞ
h i

is an upwardly biased estimate of EyEy' loge pj y'jb!jðyÞ
h in o

, with asymptotic

bias approximately equal to the number of parameters sj in !j. This is an intuitively reasonable

result because we expect the new-sample (i.e., predicted) log-likelihood loge pj y'jb!jðyÞ
h i

to be

smaller than the maximized log-likelihood loge pj yjb!jðyÞ
h i

for the original sample [for which

b!jðyÞ is the optimal value].
For a large sample and a distribution pjð(Þ that is close to pð(Þ, therefore,

bEb! j
½Iðp; bpjÞ* »φ# loge Lðb!jjyÞ þ sj

where bEb! j
½Iðp; bpjÞ* is the estimated expected Kullback-Leibler information loss, and bpj repre-

sents pjð(j!jÞ evaluated at !j ¼ b!j. The constant φ is not estimable but, as noted, it does not fig-
ure in model comparisons. The AIC, therefore, which is used for model comparison, ignores φ

and is defined as
AICj [ # 2 loge Lðb!jjyÞ þ 2sj

The factor 2 is inessential but puts the AIC on the same scale as the deviance.
An improvement on the AIC, called the bias-corrected AIC, or AICc, reduces small-sample bias:

AICcj [ # 2 loge Lðb!jjyÞ þ 2sj þ
2sjðsj þ 1Þ
n# sj # 1

ð22:4Þ
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The correction (i.e., the last term in Equation 22.4) gets smaller as the ratio of sample size to
number of parameters grows and is negligible when n=sj is large (say more than about 40). As
Burnham and Anderson (2004) suggest, however, one could simply use AICc in all applications.

The AIC is based on the Kullback-Leibler information comparing the true distribution of
the data pðyÞ to the distribution of the data pjðyj!jÞ under a particular model Mj.

A Closer Look at the BIC* The BIC has its origin in Bayesian hypothesis testing, which
compares the relative weight of evidence for each of two competing hypotheses. I will broadly
sketch the rationale for the BIC here.20 Suppose, as before, that we are considering a set of m
models for the response variable y and that model Mj has parameter vector !j with sj elements.
The probability or probability density for y under model Mj given the values of the parameters
is pjðyj!jÞ. Let pjð!jÞ represent the prior distribution for !j. Then, the marginal distribution of
y under the model Mj is

pjðyÞ ¼
Z

all !j

pjðyj!jÞd!j

and the posterior distribution of !j is

pjð!jjyÞ ¼
pjðyj!jÞpjð!jÞ

pjðyÞ

Let us focus initially on two of the models, M1 and M2, and assume that one of these is the
‘‘correct’’ model for the data.21 The posterior probability that M1 is the correct model is

pðM1jyÞ ¼
pðyjM1ÞpðM1Þ

pðyjM1ÞpðM1Þ þ pðyjM2ÞpðM2Þ

Here, pðMjÞ is the prior probability assigned to model Mj, and pðyjMjÞ is the marginal prob-
ability of the data under model Mj (also called the predictive probability of the data):

pðyjMjÞ ¼
Z

all !j

pjðyj!jÞpjð!jÞd!j ð22:5Þ

A direct formula for pðM2jyÞ is similar, but because there are just two models under consider-
ation, it is also the case that pðM2jyÞ ¼ 1# pðM1jyÞ.

After observing the data, the relative support for model M2 versus M1 is given by the poster-
ior odds

pðM2jyÞ
pðM1jyÞ

¼ pðyjM2Þ
pðyjM1Þ

·
pðM2Þ
pðM1Þ

The posterior odds are, therefore, the product of two terms: the ratio of marginal probabilities
of the data under the competing models, pðyjM2Þ=pðyjM1Þ, called the Bayes factor for model

20This section assumes an acquaintance with the general principles of Bayesian statistical inference, which are
described in online Appendix D on probability and estimation.
21It is possible to develop the BIC by making an argument based on accuracy of out-of-sample prediction without
assuming that one of the models is the ‘‘true’’ model for the data. See, for example, Kass and Raftery (1995).
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M2 versus M1, and pðM2Þ=pðM1Þ, the ratio of prior probabilities for the models. It seems fair to
set equal prior probabilities, pðM1Þ ¼ pðM2Þ,22 in which case the posterior odds are simply the
Bayes factor.

An important point concerning the posterior odds is that there are two prior distributions to con-
sider: (1) the prior probabilities pðMjÞ for the models under consideration and (2) the prior distri-
bution pjð!jÞ for the parameters in each model, on which the marginal probability of the data
under the model depends (Equation 22.5). As mentioned, it seems evenhanded to accord the vari-
ous models equal prior probability, at least in the absence of a convincing argument to the con-
trary, but the priors pjð!jÞ on the parameters are another question entirely. In Bayesian estimation,
the importance of the prior distribution on the parameters fades as the sample size grows; thus,
unless the sample size is small and there is a sound basis for specific prior beliefs, the argument
for so-called noninformative or vague priors can be compelling. This is not the case, however, in
Bayesian hypothesis testing, where the prior distribution on the parameters of each model affects
the marginal probability of the data, and through it the Bayes factor, even in large samples.

The BIC is an approximation to the Bayes factor, employing a particular choice of prior dis-
tribution on the parameters of each model (see below).23 It is convenient to introduce the
function

f ð!jÞ[ loge pjðyjθjÞpjð!jÞ
% &

ð22:6Þ

which is the log of the integrand in Equation 22.5. Let e!j represent the value of the parameter
vector that maximizes f ð!jÞ for the observed data y. A second-order Taylor-series expansion of
f ð!jÞ around e!j is24

f ð!jÞ » f ðe!jÞ þ ð!j # e!jÞ0
∂f ðe!jÞ
∂e!j

þ 1
2ð!j # e!jÞ0

∂f ðe!jÞ
∂e!j∂e!0j

ð!j # e!jÞ

» f ðe!jÞ þ 1
2ð!j # e!jÞ0

∂f ðe!jÞ
∂e!j∂e!0j

ð!j # e!jÞ

The second term in the expansion vanishes because the first-order partial derivatives
∂f ðe!jÞ=∂e!j are 0 at the maximum of fð!jÞ. Given sufficient data, we expect e!j to be close to !j

and expect that the likelihood pjðyj!jÞ will decline rapidly as !j departs from e!j. Under these
circumstances, the marginal probability of the data (from Equation 22.5) is approximately

pðyjMjÞ » exp f ðe!jÞ
h i Z

exp 1
2ð!j # e!jÞ

0 ∂2f ðe!jÞ
∂e!j∂e!0j

ð!j # e!jÞ

" #

d!j ð22:7Þ

A clever trick facilitates the evaluation of the integral in Equation (22.7). With the exception of

the absence of the multiplicative factor ð2πÞ#sj=2 det eS
! "#1=2

, where

eS [ # ∂2f ðe!jÞ
∂e!j∂e!0j

" ##1

22With only two models under consideration, we therefore have pðM1Þ ¼ pðM2Þ ¼ 1=2.
23The development here is quite dense, even for starred material; the reader may wish to skip to the key result given in
Equation 22.11 (on page 680).
24If the sample size is sufficiently large, then higher-order terms in the Taylor expansion should be negligible.
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the integrand in this equation looks like the formula of the multivariate-normal density, with !j

playing the role of the vector random variable, e!j the role of the mean vector, and eS the role
of the covariance matrix;25 note that this is simply an analogy that will help us evaluate the
integral in Equation 22.7. Because the multivariate-normal density integrates to 1, the integral

evaluates to the inverse of the missing constant, ð2πÞsj=2 det eS
! "1=2

. Consequently,

pðyjMjÞ » exp f ðe!jÞ
h i

ð2πÞsj=2 det eS
! "1=2

and (using Equation 22.6)

loge pðyjMjÞ » f ðe!jÞ þ
sj

2
loge 2πþ 1

2 loge det eS
! "

» loge pjðyje!jÞ þ loge pjðe!jÞ þ
sj

2
loge 2πþ 1

2 loge det eS
! " ð22:8Þ

If the sample size is large, then we would expect the posterior mode b!j to be close to the
maximum-likelihood estimator b!j of !j. Substituting b!j for e!j,

eS
#1

» bS
#1
¼ #

∂f ðb!jÞ
∂b!j∂b!0j

¼ #n · Ey
∂2 loge pðY jθjÞ

∂!j∂!
0
j

'''''!j ¼ b!j

" #

¼ n · Iðb!jÞ

The matrix

Iðb!jÞ[ # Ey
∂2 loge pðY j!jÞ

∂!j∂!
0
j

'''''!j ¼ b!j

" #

is the expected Fisher information associated with a single observation Y on the response vari-

able. Noting that in a large sample det bS » # nsj det Iðb!jÞ
h i#1

and substituting this approxi-
mation into Equation 22.8 gives

loge pðyjMjÞ » loge pjðyjb!jÞ þ loge pjðb!jÞ þ
sj

2
loge 2π# sj

2
loge n# 1

2 loge det Iðb!jÞ
h i

ð22:9Þ

The BIC uses the unit-information prior distribution !j ; Nsj
b!j; Iðb!jÞ
h i

—quite a diffuse prior
centered on the MLE of !j; under this prior,26

loge pjðb!jÞ ¼ #
sj

2
loge 2πþ 1

2 loge det Iðb!jÞ
h i

Substituting this result into Equation 22.9 produces

loge pðyjMjÞ » loge pjðyjb!jÞ #
sj

2
loge n ð22:10Þ

On the basis of the preceding work, the log-Bayes factor for model M2 relative to model M1

can then be approximated as

25See online Appendix D on probability and estimation for a discussion of the multivariate-normal distribution.
26It is also possible to construe the BIC as an approximation to the Bayes factor under an unspecified prior, but then
the quality of the approximation can be much worse. See, for example, Raftery (1995).
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loge
pðyjM2Þ
pðyjM1Þ

» loge p2ðyjb!2Þ # loge p1ðyjb!1Þ # 1
2ðs2 # s1Þ loge n ð22:11Þ

Recall that the choice of the unit-information prior to obtain this approximation is not necessa-
rily benign: Different priors produce different Bayes factors.27 Moreover, several approxima-
tions were made in arriving at this result, and for some classes of models, more accurate
approximations are available.28

The BIC for model Mj is defined as

BICj [ # 2 loge pjðyjb!jÞ þ sj loge n

Given this definition, twice the log-Bayes factor for any pair of models Mj and Mj0 is approxi-
mated by the difference in their BICs:

2 · loge
pðyjMjÞ
pðyjMj0Þ

» BICj0 # BICj ð22:12Þ

Under the unit-information prior, the difference in BIC therefore expresses the relative support
in the data for model Mj versus Mj0 , and the model with the smallest BIC is the one that receives
most support from the data. A BIC difference of 0, for example, is equivalent to a Bayes factor
of exp 1

2 · 0
( )

¼ 1—that is, equal support in the data for the two models; if these are the only
models under consideration (and if the prior probabilities for the two models are equal), there-
fore, we would have posterior probabilities pðM2jyÞ ¼ pðM1jyÞ ¼ 1

2. Similarly, a BIC of 2 is
equivalent to a Bayes factor of exp 1

2 · 2
( )

» 2:718 in favor of model M2, or pðM2jyÞ » :73 and
pðM1jyÞ » :27—that is, relatively weak evidence in favor of M2. Table 22.1, adapted from
Raftery (1995), extends these interpretations to various differences in BIC.29

Like classical testing, then, the BIC is based on the notion of a statistical hypothesis test.
What, then, accounts for the difference between the two approaches, and, in particular, why
does the BIC tend to prefer more parsimonious models? Part of the difference between the BIC
and classical testing lies in the role of prior distributions for the parameters of the models in
the formulation of the BIC, but even more fundamentally, the two kinds of tests treat evidence

Table 22.1 Relative Support for Model M2 Versus M1 as a
Function of Differences in BIC

Difference in BIC Bayes Factor p( M2 j y) Evidence for M2

0–2 1–3 .50–.75 ‘‘Weak’’
2–6 3–20 .75–.95 ‘‘Positive’’

6–10 20–150 .95–.99 ‘‘Strong’’
> 10 > 150 > .99 ‘‘Conclusive’’

SOURCE: Adapted from Raftery (1995, Table 6).

27Burnham and Anderson (2004) show, for example, that the AIC can be derived as an approximation to the log of the
Bayes factor using a prior different from the unit-information prior. Consequently, the choice of AIC or BIC as a model
selection criterion cannot simply be construed as a contest between ‘‘frequentist’’ and Bayesian approaches to the prob-
lem of model selection.
28See, for example, the results given in Raftery (1996) for generalized linear models and the general discussion in Kass
and Raftery (1995).
29See Exercise 22.4.
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differently. Suppose, for example, that we test model M2 versus M1, where M2 is nested within
M1 (as is the case when M2 is derived from M1 by setting certain parameters to 0). In this
instance, the classical test is of the null hypothesis that the parameter restrictions on M1 pro-
ducing M2 are correct, against the alternative that they are wrong, and the two models play an
asymmetric role in the formulation of the test: The p-value for the null hypothesis is the prob-
ability of obtaining data as extreme as or more extreme than the observed data assuming the
truth of M2. In the Bayesian test (to which the BIC is an approximation), the two models play
a symmetric role, with the Bayes factor weighing the relative strength of evidence for the mod-
els in the observed data; data more extreme than those observed do not figure in the test, lend-
ing greater support to the null hypothesis than it has in the classical test.

The BIC has its basis in Bayesian hypothesis testing, comparing the degree of support in
the data for two models. The BIC is an approximation to twice the log of the Bayes fac-
tor comparing a particular model to the saturated model, where the Bayes factor is the
ratio of the marginal probability of the data under the two models. When the prior prob-
abilities for the two models are the same, the posterior odds for the models are equal to
the Bayes factor. Differences in BIC approximate twice the log of the Bayes factor com-
paring two models to each other. The BIC approximation to the Bayes factor is accurate
for a particular choice of prior distribution over the parameters of the models, called the
unit-information prior, but may not be accurate for other priors. Differences in BIC of
about 6 or more represent strong evidence in favor of the model with the smaller BIC.

22.1.2 An Illustration: Baseball Salaries

To illustrate model selection, I will use data on major-league baseball players’ salaries from
the 1987 season, excluding pitchers and restricting attention to players who were active during
the 1986 season.30 In addition to the player’s name and the team for which he played at the
beginning of the 1987 season, the data source also included the player’s annual salary (in thou-
sands of dollars) at the start of the 1987 season and information on number of times at bat
(AB), number of hits (H), number of home runs (HR), number of runs scored (R), number of
runs batted in (RBI), and number of walks (bases on balls, BB), both for the 1986 season and
during the player’s career; the player’s number of put-outs (PO), assists (A), and errors (E) dur-
ing the 1986 season; the player’s position (or positions) in the field during the 1986 season;
and the player’s number of years in the major leagues.31

30The data set originated in a 1988 poster session sponsored by the Statistical Graphics Section of the American
Statistical Association and was used, for example, by Friendly (2002) in a paper on graphical display of correlation
matrices. The version used here has a number of errors corrected.

My apologies to readers who are unfamiliar with baseball: Even a superficial explanation of that subtle sport would
require more space than the rest of the chapter. I expect that the general sense of the example will be clear even if nuan-
ces are missed.
31The abbreviations (e.g., AB for at-bats) are standard. There was, in addition, information on the player’s team and the
division and league (i.e., National or American) in which he played. I decided not to use this information in predicting
salary, because I thought that it would weaken interest in the example: One could argue that playing for a high-paying
team is a reflection of a player’s earning potential.
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From these variables, I derived several additional potential predictors of salary: the player’s
1986 and career batting average (AVG—i.e., number of hits divided by number of at-bats),
1986 and career on-base percentage (OBP ¼ 100 · [hits + walks]/[at-bats + walks]), and the
numbers of at-bats, hits, home runs, runs scored, and runs batted in recorded per year over the
player’s career (e.g., number of career home runs divided by number of years in the majors).
Rather than create 24 dummy variables for the 25 positions and combinations of positions that
appear in the data set, I created four 0/1 dummy variables, coded 1 for players who consistently
played second base or shortstop (i.e., middle infielders, MI), catcher (C), center field (CF), or
designated hitter (DH). Middle infield, catcher, and center field are generally considered high-
skill positions; designated hitters (a role available only in the American League) bat but do not
play the field. After 3 years in the major leagues, players are eligible for salary arbitration, and
after 6 years they are eligible for free agency (i.e., can negotiate a contract with any team). I
consequently created two 0/1 dummy variables, one coded 1 for players with between 3 and 5
years of major-league experience and the other coded 1 for players with 6 or more years in the
majors.32

Preliminary examination of the data suggested log-transforming salary (the response vari-
able), number of years in the majors, and career at-bats. I also decided to drop one player (Pete
Rose) from the data set because of his high leverage in the regressions.33 These modeling deci-
sions could be made a formal part of the model selection process, but to do so would further
complicate an already complicated example.

The data set to be analyzed includes 262 players and 33 variables. A linear least-squares
regression of log salary on the 32 predictors accounts for most of the variation in the response
variable, R2 ¼ :861, but as one might expect, the regression proves difficult to interpret. There
are several ‘‘statistically significant’’ regression coefficients (for BB, MI, C, career AB,
career H, career R, career BB, and eligibility for free agency), but the degree of collinearity is
very high, with variance-inflation factors topping out at more than 500 (for career H) and a
condition number of 133.34

Figure 22.1 shows the predictors in the ‘‘best’’ model of each size, selected according to the
BIC.35 Table 22.2 includes all models, regardless of size, within 2 of the minimum BIC, dis-
playing the signs of the coefficients for the predictors in each model, the model R2, and the dif-
ference in BIC compared to the ‘‘best’’ model.36 An entry of 0 indicates that the corresponding
predictor does not appear in the model; only predictors appearing in at least one of the 13 mod-
els are shown. The coefficient signs, it turns out, are consistent across models in the table, but
not all signs make substantive sense: Why, for example, should number of career hits, which is
present in all 13 models, have a negative coefficient, controlling for the other predictors in the

32A disclaimer: This is not a serious investigation of baseball salaries. Such an investigation would take into account
additional information about the players’ situations, such as whether they were free agents prior to the 1987 season.
Moreover, if prediction is the goal, salary in the previous season is obviously relevant. Finally, it was later established
that during this period, baseball owners colluded illegally to limit the salaries of free agents.
33Fans of baseball will find this decision ironic: Pete Rose, baseball’s all-time hits leader, was banned for life from the
sport because of his gambling activities.
34Variance-inflation factors and the condition number are described in Section 13.1. Two of the ‘‘significant’’ predic-
tors—career H and career BB—have unexpectedly negative coefficients.
35See Exercise 22.5 for the application of other model selection criteria to the baseball data.
36Some pairs of models (e.g., 1 and 5) with the same number of predictors and the same R2 have slightly different BIC
values. The apparent discrepancy is due to rounding of R2 to three decimal places.
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models? It is necessary to remind ourselves that the goal here is to select models that produce
accurate predictions.

This example is elaborated in the following section.

22.1.3 Comments on Model Selection

I have stressed the point that automatic model selection methods—stepwise and optimal-
subset regression, for example—attend to the predictive adequacy of regression models and are
blind to their substantive interpretability. I believe that in most instances, researchers would be
better served by judiciously selecting the setting within which to conduct an investigation,
thinking carefully about the social process under study and the questions to be put to the data,
and focusing on a relatively small number of explanatory variables, with the level of detail
growing with the sample size.

Model selection criteria such as the AIC and BIC are not limited to comparing models
selected by automatic methods, however, and one of the currently popular applications of the
BIC is to justify the removal of small but ‘‘statistically significant’’ terms in regression models
fit to large samples of data. Though largely benign, I believe that this practice slightly misses
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an essential point: Researchers should feel free to remove ‘‘statistically significant’’ terms from
a statistical model based on the substantive judgment that these terms are too small to be of
interest. It may be nice that the BIC supports this judgment, but that is by no means essential,
and in very large samples, even the BIC may point toward models that are unnecessarily com-
plex for summarizing data cogently.

Although I have drawn a clear distinction between prediction and interpretation, in some
cases, the line between the two is blurred. It is common, for example, for interest to center on
one or a small number of explanatory variables; other explanatory variables are regarded as sta-
tistical ‘‘controls’’—causally prior variables included in the analysis to avoid spurious results.37

In this setting, one might be tempted to specify a model in which the explanatory variables of
primary interest are necessarily included but for which other explanatory variables are selected
by an automatic procedure. Unfortunately, this approach is flawed: Control variables that are
highly correlated with the focal explanatory variables will likely be excluded from the model,
and it is precisely the exclusion of these variables that raises the specter of spuriousness. In
most cases, therefore, if simply controlling for all the variables thought to be important turns
out to be impractical, then the data are probably insufficiently informative to answer the ques-
tions posed by the researcher.

When the focus is on interpretation rather than prediction, researchers should feel free to
simplify a statistical model on the basis of substantive considerations, even if that means
removing small but ‘‘statistically significant’’ terms from the model. Penalized model
selection criteria, such as the BIC, often provide an unnecessary excuse for doing so.

22.2 Model Averaging*

Model selection, described in the preceding section, implies uncertainty about the ‘‘best’’ statis-
tical model for the data.38 Often there are several—or even many—models that are roughly
equally supported by the data, providing small justification for choosing among them.
Uncertainty can arise from other sources as well, such as the selection of transformations of the
response or explanatory variables in a regression or the removal of outliers. Model averaging
seeks to acknowledge model uncertainty explicitly by combining information from competing
statistical models rather than discarding all models but one. As I will argue at the end of this
section, I believe that model averaging (like model selection) is most sensible when the goal of
a statistical investigation is prediction.

I will describe an approach to model averaging based on the BIC.39 As previously explained,
under the unit-information prior, the difference in BIC for two competing models—say models

37See the discussion of specification errors in Sections 6.3 and 9.7.
38This section is starred not because of its difficulty but because it depends on starred material in Section 22.1.1.
39Bayesian model averaging based on the BIC is described in several sources, such as Kass and Raftery (1995),
Raftery (1995), and Hoeting, Madigan, Raftery, and Volinsky (1999). The exposition in this section is close to Raftery
(1995). There are other approaches to model averaging. See, for example, Exercise 22.6 for model averaging based on
the AIC.
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M1 and M2—approximates twice the log Bayes factor for the two models;40 using the notation
of Section 22.1.1,

BIC2 # BIC1 » 2 · loge
pðyjM1Þ
pðyjM2Þ

Consequently, if the prior probabilities for the two models are equal and if attention is
restricted to these models, then the posterior probability for model M1 is41

pðM1jyÞ »
exp #1

2BIC1

( )

exp #1
2BIC1

( )
þ exp #1

2BIC2

( )

The extension to a set of modelsM ¼ M1;M2; . . . ;Mmf g is immediate:

pðMjjyÞ » pj [
exp #1

2BICj
( )

Pm
j0¼1 exp #1

2BICj0
( ) ð22:13Þ

The approximate posterior probabilities pj can be used to determine the strength of evidence
for including a particular predictor, say X‘, in the model and for estimating model ‘‘outputs’’
such as coefficients and predicted values. The posterior probability that the coefficient β‘ of X‘
is not 0 is

Pr β‘ 6¼ 0jyð Þ »
X

j:Mj2A‘

pj

where A‘ is the subset of models M that include the predictor X‘. Restricting attention to this
subset of models, the posterior distribution of β‘ assuming that the coefficient is not 0 is

p β‘jy;β‘ 6¼ 0ð Þ »
X

j:Mj2A‘

pðβ‘jy;MjÞp0j

where

p0j [
pjP

j0:Mj0 2A‘ pj0

Likewise, conditional on β‘ 6¼ 0, the posterior mean and variance of β‘ can be approximated as

E β‘jy;β‘ 6¼ 0ð Þ » eβ‘ [
X

j:Mj2A‘

p0jbβ
ðjÞ
‘

V β‘jy;β‘ 6¼ 0ð Þ »
X

j:Mj2A‘

p0j bV bβðjÞ‘
! "

þ bβðjÞ2‘

h i
# eβ2

‘

where bβðjÞ‘ is the MLE of β‘ and eV bβðjÞ‘
! "

is the estimated sampling variance of this coefficient
in model Mj.

A practical obstacle to applying these results is the possibly very large number of candidate
models in M. For the baseball salary regression, for example, where there are k ¼ 32

40See Equation 22.12 on page 680.
41See Exercise 22.7.
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predictors, the number of models is m¼ 232 » 4:3 · 109 or about 4 billion! Most of these
models, however, have posterior probabilities very close to 0. To deal with this problem,
Madigan and Raftery (1994) suggest excluding from consideration (1) models with BIC more
than 6 units higher than the smallest BIC (i.e., with posterior odds relative to the model most
supported by the data of about 1/20 or smaller) and (2) models that have a more probable
model nested within them (i.e., models for which eliminating one or more terms produces a
model with a smaller BIC). Madigan and Raftery call this rule ‘‘Occam’s window.’’42 Posterior
probabilities are computed according to Equation 22.13 but excluding models falling outside
the window. Evidence suggests that applying only the first part of the rule tends to produce
more accurate predictions; in this case, the window of acceptable models is termed symmetric
rather than strict. Efficient methods exist for locating the subset of models in Occam’s window
without enumerating and fitting all possible models.

22.2.1 Application to the Baseball Salary Data

I applied Bayesian model averaging to the baseball salary regression, with the results given
in Table 22.3, using 175 models falling in the symmetric Occam’s window that encompasses
all models with BIC within 6 of the ‘‘best’’ model. The regression intercept was included in all
the models. The best 13 of these models appeared in Table 22.2 (on page 684).

Many variables conventionally used to measure players’ performance (such as career batting
average and career on-base percentage) have very low probabilities of inclusion in the model.
Figure 22.2 shows the posterior distribution of the regression coefficients for the nine predic-
tors that have probability of inclusion in the model greater than .5. The vertical line visible in
some of the graphs shows the probability that the corresponding coefficient is 0. Two of the
coefficients (for career hits and free-agency eligibility) have clearly bimodal posterior
distributions.

22.2.2 Comments on Model Averaging

By combining information from many models and thereby avoiding what is typically the
illusion of a single ‘‘best’’ predictive model, model averaging holds out the promise of more
accurate predictions. Indeed, one can average predictions directly, not just regression
coefficients.

Nevertheless, because the meaning of a partial regression coefficient depends on the other
explanatory variables in the model [what Mosteller and Tukey (1977, especially chap. 13)
termed the ‘‘stock’’ of explanatory variables in the regression], model-averaged regression
coefficients can be difficult to interpret. This point is drawn into focus when the distribution of
a coefficient across models is bi- or multimodal (as was the case for at least two of the coeffi-
cients in Figure 22.2, for example), but the point is more general. Although a proponent of

42‘‘Occam’s razor,’’ due to the English philosopher William of Occam (1285–1329), is an early and famous expression
of the principle of parsimony. The principle appeared frequently in Occam’s writings, including in the form, ‘‘Plurality
is not to be assumed without necessity’’ (see Moody, 1972).
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model averaging might well reply that this kind of ambiguity is simply the reflection of model
uncertainty, mechanically averaging regression coefficients is not a substitute for thinking
about the substantive content of a regression equation.

Table 22.3 Probability of Inclusion in the Model and Posterior Expectation and Standard
Deviation if Nonzero for the Predictors in the Baseball Salary Data

Predictor Prðβ‘ 6¼0jyÞ Eðβ‘jy,β‘ 6¼0Þ SDðβ‘jy,β‘ 6¼0Þ

Constant — #0.586 0.671
Career AB 1.000 0.831 0.129
Career H 1.000 #0.00109 0.00041
Free-agency eligible 1.000 0.403 0.201
AB/year .985 #0.00717 0.00151
H/year .985 0.0259 0.0052
BB .920 0.00659 0.00260
C .680 0.145 0.120
Career BB .636 #0.000680 0.000648
Career R .518 0.000816 0.000884
RBI/year .450 0.00412 0.00488
Arbitration eligible .416 0.113 0.155
MI .408 0.0739 0.1093
Career RBI .397 0.000424 0.000563
BB/year .232 0.00267 0.00553
HR/year .123 0.00220 0.00616
DH .109 #0.0232 0.0773
A .089 #0.0000531 0.0001902
R/year .073 0.000693 0.002741
H .067 0.000302 0.000188
CareerHR .046 0.0000667 0.0004581
CF .032 #0.00424 0.02770
AB .022 #0.0000356 0.0005514
PO .021 0.00000278 0.00002306
HR .019 #0.000129 0.001087
R .015 0.0000713 0.0006055
OBP .010 #0.000629 0.007083
Career OBP .009 0.000429 0.005555
RBI .007 #0.0000111 0.0001894
Career AVG .007 0.0559 0.6650
E .004 #0.0000155 0.0003528
AVG .000 — —
Years .000 — —
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The posterior probability for each model Mj in a set of models M ¼ M1;M2; . . . ;Mmf g
can be approximated using the BIC:

pðMjjyÞ » pj ¼
exp # 1

2 BICj
( )

Pm
j0¼1 exp # 1

2 BICj 0
( )

Then, for a model output such as the regression coefficient β‘ of the predictor X‘, the
posterior probability that β‘ is not 0 is
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Figure 22.2 Posterior distributions for coefficients in the baseball salary regression. Only coeffi-
cients with probability of inclusion in the model exceeding .5 are shown. The verti-
cal line visible in some panels represents the probability that the corresponding
coefficient is 0; the vertical axis is scaled so that the highest point of the density
curve is the probability that the coefficient is nonzero.

22.2 Model Averaging* 689



Pr β‘ 6¼ 0jyð Þ »
X

j:Mj2A‘

pj

where A‘ is the subset of models that include the predictor X‘. Conditional on β‘ 6¼ 0,
the posterior mean and variance of β‘ are approximately

E β‘jy;β‘ 6¼ 0ð Þ » eβ‘ ¼
X

j:Mj2A‘

p0jbβ
ðjÞ
‘

V β‘jy;β‘ 6¼ 0ð Þ »
X

j:Mj2A‘

p0j bV bβðjÞ‘
! "

þ bβðjÞ2‘

h i
# eβ2

‘

where bβðjÞ‘ is the MLE of β‘, bV bβðjÞ‘
! "

is the estimated sampling variance of this coeffi-

cient in model Mj, and p0j ¼ pj=
P

j0:Mj0 2A‘ pj0 . Because the number of candidate models

can be extremely large, there is an advantage to restricting attention only to models with
relatively large posterior probabilities, such as those with BIC within 6 of the ‘‘best’’
model; these models are said to fall within ‘‘Occam’s window.’’ Because the meaning of
a partial regression coefficient depends on the other explanatory variables in the model,
however, model-averaged regression coefficients can be difficult to interpret.

22.3 Model Validation

In model validation, part of the data (called the ‘‘training’’ or ‘‘exploratory’’ subsample) is used
to specify a statistical model, which is then evaluated using the other part of the data (the ‘‘vali-
dation’’ or ‘‘confirmatory’’ subsample). Cross-validation, already discussed, is an application
of this very simple—but powerful—idea, where the roles of training and validation subsamples
are interchanged or rotated.43

I have stressed the importance of descriptive adequacy in statistical modeling, and—in sup-
port of this goal—I have described a variety of methods for screening data and for evaluating
and, if necessary, modifying statistical models. This process of data exploration, model fitting,
model criticism, and model respecification is often iterative, requiring several failed attempts
before an adequate description of the data is achieved. In the process, variables may be
dropped from the model, terms such as interactions may be incorporated or deleted, variables
may be transformed, and unusual data may be corrected, removed, or otherwise
accommodated.

The outcome should be a model that more accurately reflects the principal characteristics of
the data at hand, but the risk of iterative modeling is that we will capitalize on chance—overfit-
ting the data and overstating the strength of our results. The same risk inheres in the model
selection and model-averaging strategies described in this chapter (although the use of pena-
lized model selection criteria such as the AIC and BIC at least partly mitigates this risk). It is
obviously problematic to employ the same data both to explore and to validate a statistical

43The term cross-validation often is also used for the validation procedure described in the current section, but I believe
that it makes more semantic sense to reserve that term for applications in which the roles of training and validation
samples are reversed or rotated–hence ‘‘crossed.’’
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model, but the apparent alternative of analyzing data blindly, simply to preserve the ‘‘purity’’
of classical statistical inference, is surely worse.

An ideal solution to this dilemma would be to collect new data with which to validate a
model, but this solution is often impractical. Lack of funds or other constraints may preclude
the collection of new data, and, in certain circumstances—for example, the examination of his-
torical records—it is impossible even in principle to collect new data.

Model validation simulates the collection of new data by randomly dividing the data that we
have in hand into two, possibly equal, parts—the first part to be used for exploration and
model formulation, the second for checking the adequacy of the model, formal estimation, and
testing. This is such a simple idea that it hardly requires detailed explanation. Perhaps the only
subtle point is that the division of the data into exploratory and validation subsamples can
exploit the sampling structure of the data. If, for example, the data are collected in a social sur-
vey employing a stratified sample, each stratum can be randomly divided between the two sub-
samples; of course, methods of analysis appropriate to a stratified sample should be
employed.44

When the same data are employed for selecting a statistical model and for drawing statis-
tical inferences based on the model, the integrity of the inferences is compromised.
Validation is a general strategy for protecting the accuracy of statistical inference
when—as is typically the case—it is not possible to collect new data with which to
assess the model. In model validation, the data at hand are divided at random into two
subsamples: a training subsample, which is used to select a statistical model for the data,
and a validation subsample, which is used for formal statistical inference.

22.3.1 An Illustration: Refugee Appeals

To illustrate model validation, I will present an abbreviated account of some research that I
conducted on the Canadian refugee determination process, employing data that were collected
and described by Greene and Shaffer (1992).45 Greene and Shaffer’s data pertain to decisions
of the Canadian Federal Court of Appeal on cases filed by claimants who were refused refugee
status by the Immigration and Refugee Board. The court either granted or denied leave to
appeal the board’s decision, and a single judge (rather than the usual tribunal) heard the request
for leave to appeal.

During the period of the study, the 10 judges who adjudicated these cases varied widely in
the rates with which they approved requests for leave to appeal negative decisions of the
Refugee Board—with approval rates ranging from 13% to 56% of cases. The cases were not
assigned randomly to judges, however, but rather were heard on a rotating basis. Although it
seems unlikely that this procedure would introduce systematic differences into the leave
requests processed by different judges, it is conceivable that this is the case. In defending the
fairness of the existing procedure, the Crown therefore contended that it was insufficient

44See Section 15.5 for a discussion of analyzing data from complex survey samples.
45Also see Section 1.2. The analysis of the refugee data reported in the current section uses a larger subset of cases.
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simply to demonstrate large and statistically significant differences among the rates of approval
for the 10 judges.

To determine whether systematic differences among the cases heard by the judges could
account for differences in their judgments, I controlled statistically for several factors that—it
was suggested—might influence the decisions, including the following:

1. the rate of success of leave applications from the applicant’s country,
2. whether or not this country was identified as a ‘‘high refugee producing’’ country,
3. the region of the world in which the applicant’s country is located (Latin America,

Europe, Africa, the Middle East, or Asia and the Pacific Islands), and
4. the date of the applicant’s case.

These explanatory variables were included in a logistic regression, along with dummy variables
identifying the judge who heard the case. The response variable was whether or not leave to
appeal was granted. Prior to constructing the logistic regression model, the roughly 800 cases
meeting the criteria for inclusion in the study were randomly divided into training and valida-
tion subsamples. The data in the training subsample were carefully examined, and several var-
iations of the analysis were undertaken. For example, the date of the case was treated both as a
quantitative variable with a linear effect and categorically, divided into five quarters (the period
of the study was slightly in excess of 1 year).

Wald tests for terms in two of the models fit to the data in the exploratory subsample are
shown in Table 22.4.46 Model 1 contains two explanatory variables—national rate of success

Table 22.4 Wald Tests for Terms in the Linear-Logit Model for the Canadian
Refugee Data Training and Validation Subsamples

Subsample

Training Validation

Model 1 Model 2 Model 3

Term df Z2 p Z2 p Z2 p

Country success 1 14.55 .0001 15.72 .0001 25.64 < .0001
High-refugee country 1 0.09 .77
Region 4 6.47 .17

Latin America 1 4.44 .035 4.98 .026 0.58 .45
Time period 4 9.24 .055

Linear 1 6.46 .011 5.74 .017 0.98 .32
Quadratic 1 1.73 .19
Cubic 1 0.16 .69
Quartic 1 0.19 .67

Judge 9 29.75 .0005 29.67 .0005 37.45 < .0001

NOTE: Z2 is the Wald test statistic.

46Were I to do this analysis now, I would prefer likelihood-ratio to Wald tests.
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and judge—that are highly statistically significant, high-refugee country has a small and non-
significant coefficient, and the region and time-period effects are relatively small but approach
statistical significance. Examination of the region coefficients suggested that applicants from
Latin America might be treated differently from those from other regions; likewise, the resolu-
tion of time period into orthogonal polynomial components suggested a possible linear effect
of time. Model 2 is a final model for the exploratory subsample, incorporating a dummy
regressor for Latin America and a linear trend over the five time periods, both of which appear
to be statistically significant.

The last columns of Table 22.4 (for Model 3) show the result of refitting Model 2 to the data
from the validation subsample. The national rate of success and judge are both still highly sta-
tistically significant, but neither the coefficient for Latin America nor the linear time trend
proves to be statistically significant. That these latter two coefficients appeared to be statisti-
cally significant in the exploratory subsample illustrates the risk of selecting and testing a
model on the same data. Most notably, however, differences among judges (not shown) are
essentially the same before and after controlling for the other explanatory variables in the
analysis.

22.3.2 Comments on Model Validation

Like the bootstrap (described in the preceding chapter), model validation is a good, simple,
broadly applicable procedure that is rarely used in social research.47 I believe that researchers
resist the idea of dividing their data in half. In very small samples, division of the data is usu-
ally not practical. Even in samples of moderate size, however (such as the refugee-appeal data
discussed in the previous section), halving the sample size makes it more difficult to find ‘‘sta-
tistically significant’’ results.

Yet, if statistical inference is to be more than an incantation spoken over the data, it is neces-
sary to conduct research honestly. This is not to say that procedures of inference cannot be
approximate—simplifying abstraction of some sort is unavoidable—but it is easy to introduce
substantial errors of inference when the same data are used both to formulate and to test a sta-
tistical model.

Model validation is not a panacea for these problems, but it goes a long way toward solving
them. Issues such as variable selection and choice of transformation are neatly handled by vali-
dation. Problems such as influential data are less easily dealt with, because these problems are
particular to specific observations: That we locate an outlier in the training subsample, for
example, does not imply that an outlier is present in the validation subsample. The reverse
could be true as well, of course. We can, however, use the distribution of residuals in the train-
ing subsample to help us decide whether to use a method of estimation in the validation sub-
sample that is resistant to unusual data or to adopt a rule for rejecting outliers.

47Barnard (1974, p. 133) put it nicely: ‘‘The simple idea of splitting a sample into two and then developing the hypoth-
esis on the basis of one part and testing it on the remainder may perhaps be said to be one of the most seriously
neglected ideas in statistics, if we measure the degree of neglect by the ratio of the number of cases where a method
could give help to the number where it is actually used.’’
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Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 22.1. Variable selection with randomly generated ‘‘noise’’ (adapted from Freedman,
1983):

(a) Sampling from the standard normal distribution, independently generate 500 observa-
tions for 101 variables. Call the first of these variables the response variable Y and the
other variables the predictors X1;X2; . . . ;X100. Perform a linear least-squares regression
of Y on X1;X2; . . . ;X100. Are any of the individual regression coefficients ‘‘statistically
significant’’? Is the omnibus F-statistic for the regression ‘‘statistically significant’’? Is
this what you expected to observe? (Hint: What are the ‘‘true’’ values of the regression
coefficients β1; β2; . . . ; β100?)

(b) Retain the three predictors in part (a) that have the largest absolute t-values, regressing
Y only on these variables. Are the individual coefficients ‘‘statistically significant’’?
What about the omnibus F? What happens to the p-values compared to part (a)?

(c) Using any method of variable selection (stepwise regression or subset regression with
any criterion), find the ‘‘best’’ model with three explanatory variables. Obtain the indi-
vidual t-statistics and omnibus F for this model. How do these tests compare to those
in part (a)?

(d) Using the methods of model selection discussed in this chapter, find the ‘‘best’’ model
for these data. How does that model compare to the true model that generated the data?

(e) Validation: Generate a new set of 500 observations as in part (a), and use that new data
set to validate the models that you selected in parts (b), (c), and (d). What do you
conclude?

(f) Repeat the entire experiment several times.

Exercise 22.2. 'Prove that Mallows’s Cp statistic,

Cpj ¼
RSSj

S2
E
þ 2sj # n

can also be written

Cpj ¼ ðk þ 1# sjÞðFj # 1Þ þ sj

where RSSj is the residual sum of squares for model Mj; sj is the number of parameters (includ-
ing the constant) in model Mj; n is the number of observations; S2

E is the usual estimate of error
variance for the full model, which has k coefficients (excluding the constant); and Fj is the
incremental F-statistic for testing the null hypothesis that the k þ 1# sj coefficients missing
from model Mj are 0.

Exercise 22.3. Both the adjusted R2,

eR2 ¼ 1# n# 1

n# s
· RSS

TSS

and the generalized cross-validation criterion
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GCV ¼ n · RSS

n# sð Þ2

penalize models that have large numbers of predictors. (Here, n is the number of observations,
s the number of parameters in the model, RSS the residual sum of squares under the model,
and TSS the total sum of squares.) Do these two criteria necessarily rank a set of models in the
same order? That is, if one model has a larger eR2 than another, does it necessarily also have a
smaller GCV?

Exercise 22.4. Show that the differences in BIC values given in the first column of Table 22.1
(page 680) correspond roughly to the Bayes factors and posterior model probabilities given in
columns 2 and 3 of the table.

Exercise 22.5. Perform model selection for the baseball salary regression using a criterion or
criteria different from the BIC, examining the ‘‘best’’ model of each size, and the ‘‘best’’ 10 or
15 models regardless of size. Are the models similar to those nominated by the BIC? Why did
you obtain these results?

Exercise 22.6. 'Burnham and Anderson (2004) suggest the following procedure for model
averaging based on the AIC: Let AICmin represent the smallest AIC among a set of models
M ¼ M1;M2; . . . ;Mmf g, and let AIC'j [ AICj# AICmin. Then Akaike model weights are
given by

wj [
exp #1

2AIC'j

! "

Pm
j 0¼1 exp #1

2AIC'j 0
! "

Model-averaged regression coefficients and their sampling variances are defined using these
weights:

eβ‘ [
Xm

j¼1

wjbβðjÞ‘

eV eβ‘
! "

[
Xm

j¼1

wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bV bβðjÞ‘
! "

þ bβðjÞ‘ # eβ‘
! "2

r" #2

where bβðjÞ‘ is the MLE of β‘ and bV bβðjÞ‘
! "

is the estimated sampling variance of this coefficient
in model Mj.

(a) How does this procedure compare with model averaging based on the BIC, as
described in Section 22.2?

(b) Restricting attention to the subset of models with AIC within 6 of the ‘‘best’’ model
(i.e., applying the idea of Occam’s window to the AIC), find the model-averaged
regression coefficients and their estimated variances for the baseball salary regression.
Burnham and Anderson indicate that model averaging based on the AIC and BIC
tends to produce results that are more similar than model selection based on the two
criteria. Does that hold true here? Note: Following Burnham and Anderson, include 0
coefficients (with variances of 0) in the averages.
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Exercise 22.7. 'Show that when there are only two models M1 and M2 under consideration,
the approximate posterior probability of the first model is

pðM1jyÞ »
exp #1

2BIC1

( )

exp #1
2BIC1

( )
þ exp #1

2BIC2

( )

Extend this result to the posterior probability of model Mj in the set of models
M ¼ M1;M2; . . . ;Mmf g:

pðMjjyÞ »
exp #1

2BICj
( )

Pm
j 0¼1 exp #1

2BICj0
( )

Summary

! It is problematic to use statistical hypothesis tests for model selection. Doing so leads to
issues of simultaneous inference, can produce biased results, tends to yield complicated
models in large samples, and exaggerates the precision of results.

! Several criteria are employed for comparing statistical models with differing numbers of
parameters, some applicable to regression models fit by least squares and others more
general:

2 The squared multiple correlation adjusted for degrees of freedom,

eR2 ¼ 1# n# 1

n# s
· RSS

TSS

where n is the number of observations, s is the number of regression coefficients in
the model, RSS is the residual sum of squares under the model, and TSS is the total
sum of squares for the response variable.

2 Mallows’s Cp statistic,

Cp ¼ ðk þ 1# sÞðF # 1Þ þ s

where k is the number of predictors in the full model fit to the data and F the incre-
mental F-statistic for the hypothesis that the k þ 1# s predictors excluded from the
model are 0. Cp is an estimate of the total MSE of prediction for the model. A good
model has Cp close to or below s.

2 The cross-validation criterion,

CV ¼

Pn
i¼1

bY #i # Yi

! "2

n

where bY#i is the fitted value for observation i obtained when the model is fit with
observation i omitted.

2 The generalized cross-validation criterion,

GCV ¼ n · RSS

df 2
res

where dfres is the residual degrees of freedom under the model.
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2 The AIC,

AIC ¼ #2 loge Lðb!Þ þ 2s

where loge Lðb!Þ is the maximized log-likelihood under the model (and ! is the para-
meter vector for the model).

2 The BIC,

BIC ¼ #2 loge Lðb!Þ þ s loge n

For both the AIC and the BIC, the model with the smallest value is the one most
supported by the data.

! The AIC is based on the Kullback-Leibler information comparing the true distribution
of the data pðyÞ to the distribution of the data pjðyj!jÞ under a particular model Mj.

! The BIC has its basis in Bayesian hypothesis testing, comparing the degree of support in
the data for two models. The BIC is an approximation to twice the log of the Bayes fac-
tor comparing a particular model to the saturated model, where the Bayes factor is the
ratio of the marginal probability of the data under the two models. When the prior prob-
abilities for the two models are the same, the posterior odds for the models are equal to
the Bayes factor. Differences in BIC approximate twice the log of the Bayes factor com-
paring two models to each other. The BIC approximation to the Bayes factor is accurate
for a particular choice of prior distribution over the parameters of the models, called the
unit-information prior, but may not be accurate for other priors. Differences in BIC of
about 6 or more represent strong evidence in favor of the model with the smaller BIC.

! When the focus is on interpretation rather than prediction, researchers should feel free to
simplify a statistical model on the basis of substantive considerations, even if that means
removing small but statistically significant terms from the model. Penalized model selec-
tion criteria, such as the BIC, often provide an unnecessary excuse for doing so.

! The posterior probability for each model Mj in a set of modelsM ¼ fM1; M2; . . . ;Mmg
can be approximated using the BIC:

pðMjjyÞ » pj ¼
exp #1

2BICj
( )

Pm
j 0¼1 exp #1

2BICj0
( )

Then, for a model output such as the regression coefficient β‘ of the predictor X‘, the
posterior probability that β‘ is not 0 is

Pr β‘ 6¼ 0jyð Þ »
X

j:Mj2A‘

pj

where A‘ is the subset of models that include the predictor X‘. Conditional on β‘ 6¼ 0,
the posterior mean and variance of β‘ are approximately

E β‘jy;β‘ 6¼ 0ð Þ » eβ‘ ¼
X

j:Mj2A‘

p0jbβ
ðjÞ
‘

V β‘jy;β‘ 6¼ 0ð Þ »
X

j:Mj2A‘

p0j bV bβðjÞ‘
! "

þ bβðjÞ2‘

h i
# eβ2

‘
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where bβðjÞ‘ is the MLE of β‘, bV bβðjÞ‘
! "

is the estimated sampling variance of this coeffi-

cient in model Mj, and p0j ¼ pj=
P

j0:Mj0 2A‘
pj0 . Because the number of candidate models

can be extremely large, there is an advantage to restricting attention only to models with
relatively large posterior probabilities, such as those with BIC within 6 of the best
model; these models are said to fall within Occam’s window. Because the meaning of a
partial regression coefficient depends on the other explanatory variables in the model,
however, model-averaged regression coefficients can be difficult to interpret.

! When the same data are employed for selecting a statistical model and for drawing sta-
tistical inferences based on the model, the integrity of the inferences is compromised.
Validation is a general strategy for protecting the accuracy of statistical inference
when—as is typically the case—it is not possible to collect new data with which to
assess the model. In model validation, the data at hand are divided at random into two
subsamples: a training subsample, which is used to select a statistical model for the data,
and a validation subsample, which is used for formal statistical inference.

Recommended Reading

! There is a vast literature in statistics on automatic methods of model selection, most
recently under the rubric of ‘‘data mining.’’ Hastie, Tibshirani, and Friedmann (2009),
all of whom have made important contributions in this area, provide a broad overview.

! Several interesting papers on model selection appeared in the November 2004 issue of
Sociological Methods and Research (Volume 33, Number 2). See, in particular,
Burnham and Anderson’s paper on the AIC and Stine’s paper on information-theoretic
methods of model selection.

! Burnham and Anderson (1998) present an extended exposition of the use of the AIC in
model selection and its roots in information theory.

! Raftery (1995) provides a largely accessible introduction to the BIC; Kass and Raftery
(1995) cover much of the same ground but provide greater statistical detail. These
papers also discuss Bayesian model averaging.

! Weakliem (1999) presents a critique of the use of the BIC in model selection; his paper
is followed by commentary from several authors, including Raftery.

! Bailey, Harding, and Smith (1989) give an overview of model validation. Some more
detail can be found in Mosteller and Tukey (1968, 1977).
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23
Linear

Mixed-Effects
Models for

Hierarchical and
Longitudinal Data

R ecall the standard linear model1

Yi ¼ β1 þ β2Xi2 þ # # # þ βpXip þ εi

εi ; Nð0; σ2
εÞ

εi; εi0 independent for i 6¼ i0

Here, I use β1 in preference to α for the regression constant to simplify the notation later in this
chapter. The standard linear model has one random effect, the error term εi, and one variance
component, σ2

ε ¼ V ðεiÞ. When the assumptions of the linear model hold, ordinary least-
squares (OLS) regression provides maximum-likelihood estimates of the regression coeffi-
cients, B1;B2; . . . ;Bp. The MLE of the error variance σ2

ε is

bσ2
ε ¼

P
E2

i

n

where the residual Ei is

Ei ¼ Yi & ðB1 þ B2Xi2 þ # # # þ BpXipÞ

Because bσ2
ε is a biased estimator of σ2

ε , recall that we usually prefer the unbiased estimator

S2
E ¼

P
E2

i

n& p

with the difference between bσ2
ε and S2

E vanishing as the sample size n grows.2

The standard linear model and OLS regression are generally inappropriate for dependent
observations. In Chapter 16, I pursued an alternative to OLS regression when the observations
are ordered in time, and in Section 15.5, I discussed briefly the complications arising in com-
plex survey-sampling designs, partly because of dependencies that are induced among observa-
tions. One pattern of dependency is clustering, where the observations are divided into related
subgroups (clusters). Clustered data arise in many contexts (including, incidentally, complex
survey samples), the two most common of which are hierarchical data and longitudinal data.

1The standard linear model is developed in Part II of the text.
2These basic results for the linear model are developed in Section 9.3.
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The current chapter deals with linear models for hierarchical and longitudinal data when
there is a quantitative response variable. The following chapter develops generalized linear
mixed-effects models for non-normal response variables and fundamentally nonlinear mixed-
effects models for quantitative responses.

23.1 Hierarchical and Longitudinal Data

Hierarchical data arise when data collection takes place at two or more levels, one nested
within the other. Some examples of hierarchical data:

' Schools are sampled from a population of schools, and then students are sampled within
each school. Here there are two levels, with schools at the higher level (‘‘Level 2’’), and
students nested within schools at the lower level (‘‘Level 1’’).

' Schools are sampled from a population of schools, classrooms are sampled within each
school, and data are collected on students within classrooms. Here there are three
levels—schools, classrooms, students—with students at the lowest level.

' Individuals are sampled within nations, a two-level hierarchy with nations at Level 2
and individuals at Level 1.3

' Individuals are sampled within communities within nations, a three-level hierarchy.
' Patients are sampled within physicians (two levels).
' Patients are sampled within physicians within hospitals (three levels).

There are also nonnested multilevel data—for example, high school students who each have
multiple teachers. Such situations give rise to mixed-effects models with crossed random
effects, a topic not pursued in this text.4

Longitudinal data are collected when individuals (or other multiple units of observation) are
followed over time. Some examples of longitudinal data:

' Annual data on vocabulary growth among children
' Biannual data on weight preoccupation and exercise among adolescent girls
' Data collected at irregular intervals on recovery of IQ among coma patients
' Annual data on employment and income for a sample of adult Canadians

In all of these cases of hierarchical and longitudinal data, it is unreasonable to assume that
observations within the same higher-level unit, or longitudinal observations within the same
individual, are independent of one another. Longitudinal data also raise the possibility of seri-
ally correlated errors,5 in addition to dependency due to clustering. Linear mixed-effect models,
the subject of this chapter, take account of dependencies in hierarchical, longitudinal, and other
dependent data. Unlike the standard linear model, linear mixed-effect models include more
than one source of random variation—that is, more than one random effect.

3It is unlikely that the nations in a study would literally be sampled from a larger population of nations, an issue that I
address briefly below.
4But see the references given at the end of the chapter.
5Serially correlated errors were discussed in the context of time-series regression in Chapter 16.
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Clustered data commonly arise in two contexts: hierarchical data, in which lower-level
units, such as individual students, are nested within higher-level units, such as schools,
and longitudinal data, in which individuals (or other multiple units of observation) are
followed over time. In both cases, observations within a cluster—lower-level units
within higher-level units or different measurement occasions for the same individual—
cannot reasonably be treated as statistically independent. Mixed-effect models take
account of dependencies in hierarchical, longitudinal, and other dependent data.

An important general point about mixed-effects models is that clustering should not simply be
construed as a nuisance: Clustered data often allow us to address questions that cannot be
answered effectively with completely independent observations—such as questions concerning
trajectories of individual change over time or the contextual effects of characteristics of higher-
level units (such as schools) on lower-level units (such as individual students).

Mixed-effects models have been developed in a variety of disciplines, with varying names
and terminology: random-effects models (statistics, econometrics), variance and covariance-
component models (statistics), hierarchical linear models (education), multilevel models (sociol-
ogy), contextual-effects models (sociology, political science), random-coefficient models (econo-
metrics), and repeated-measures models (statistics, psychology).6 Mixed-effects models also
have a long history, dating to Fisher’s (1925) and Yates’s (1935) work on ‘‘split-plot’’ agricul-
tural experiments. What distinguishes modern mixed models from their predecessors, however,
is generality—for example, the ability to accommodate irregular and missing observations.

23.2 The Linear Mixed-Effects Model

This section introduces a very general linear mixed (or mixed-effects) model (abbreviated
LMM), which I will adapt to particular circumstances. Please do not be put off by the complex-
ity of the model: Not all parts of the model are used for particular applications, and I will pre-
sently introduce a variety of relatively simple instances of linear mixed models.

The Laird-Ware form of the linear mixed model (so called because it was introduced by
Laird and Ware, 1982) is as follows:

Yij ¼ β1 þ β2X2ij þ # # # þ βpXpij þ δ1iZ1ij þ # # # þ δqiZqij þ εij

δki ; Nð0;c2
kÞ;Cðδki; δk0iÞ ¼ ckk0

ð23:1Þ

δki; δk0i0 are independent for i 6¼ i0

εij ; Nð0; σ2
ελijjÞ;Cðεij; εij0Þ ¼ σ2

ελijj0

εij; εi0j0 are independent for i 6¼ i0

δki; εi0j are independent for all i; i0; k; j (including i ¼ i0Þ

6There is variation not only in terminology in different disciplines but also in estimation strategies. For example, rather
than the likelihood-based methods emphasized in this and the next chapter, econometricians often use approaches based
on generalized least squares (see Section 16.1) to estimate random-coefficient regression models, and psychologists
often employ traditional approaches based on univariate and multivariate analysis of variance.
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where

' Yij is the value of the response variable for the jth of ni observations in the ith of m
groups or clusters.

' β1;β2; . . . ;βp are the fixed-effect coefficients, which are identical for all groups.
' X2ij; . . . ;Xpij are the fixed-effect regressors for observation j in group i; there is also

implicitly a constant regressor, X1ij ¼ 1.
' δ1i; . . . ; δqi are the random-effect coefficients for group i, assumed to be (multivariately)

normally distributed and independent of the random effects of other groups. The random
effects, therefore, vary by group. The δki are thought of as random variables, not as para-
meters, and are similar in this respect to the errors εij: Were the study repeated, different
clusters would be sampled (at least in principle) and thus the random effects would
change. For example, if the clusters represent schools, with individual students observed
within their schools, a replication of the study could, and likely would, sample different
schools. Arguably, mixed-effects models may also apply even when the identity of the
clusters (e.g., nations) would not change on replication of the study, if we can reason-
ably regard cluster effects as the outcome of a partly random process.7 I use the Greek
letter δ to symbolize the random effects because, though they are random variables, the
random effects are not directly observable.8

' Z1ij; . . . ; Zqij are the random-effect regressors. The Zs are almost always a subset of the
X s and may include all of the X s. When, as is frequently the case, there is a random
intercept term, Z1ij ¼ 1.

' c2
k are the variances and ckk0 the covariances among the random effects, assumed to be

constant across groups. In some applications, the cs are parametrized in terms of a
smaller number of fundamental parameters, as we will see later in this chapter.

' εij is the error for observation j in group i. The errors for group i are assumed to be
(multivariately) normally distributed and independent of errors in other groups and of
the random effects.

' σ2
ελijj0 are the covariances among the errors in group i. Generally, the λijj0 are parame-

trized in terms of a few basic parameters, and their specific form depends on context.
When observations are sampled independently within groups and are assumed to have
constant error variance (as is typical in hierarchical models), λijj ¼ 1, λijj0 ¼ 0 (for
j 6¼ j0), and thus the only free parameter to estimate is the common individual-level error
variance, σ2

ε . If, alternatively, the observations in a ‘‘group’’ represent longitudinal data
on a single individual, then the structure of the λs may be specified to capture serial
(i.e., over-time) dependencies among the errors.9

There are, then, two properties that distinguish the linear mixed model from the standard linear
model: (1) There are structured cluster-level random effects δki in the linear mixed model, in
addition to the individual-level errors εij, and (2) the mixed model can accommodate certain
forms of nonconstant error variance and dependencies among the errors.

7This is implicitly the point of view that we take when we try to model Level 1 random effects as a function of Level 2
characteristics, as in Section 23.3.4.
8Although notation in the literature on mixed models is not entirely standardized, more commonly the lowercase
Roman letter b is used to represent random effects.
9See Section 23.3.4.
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The linear mixed-effects model (LMM) is applicable both to hierarchical and longitudi-
nal data; in Laird-Ware form, the model is written

Yij ¼ β1 þ β2X2ij þ # # # þ βpXpij þ δ1iZ1ij þ # # # þ δqiZqij þ εij

δki ; Nð0;c2
kÞ;Cðδki; δk0iÞ ¼ ckk 0

δki; δk0i0 are independent for i 6¼ i0

εij ; Nð0; σ2
ελijjÞ;Cðεij; εij 0Þ ¼ σ2

ελijj 0

εij; εi0j0 are independent for i 6¼ i0

δki; εi0j are independent for all i; i0; k; j ðincluding i ¼ i0Þ

Here, Yij is the value of the response variable for the jth of ni observations in the ith of m
clusters, the βs are fixed-effect coefficients, the X s are fixed-effect regressors, the δs are
random-effect coefficients, the Zs are random-effect regressors, and the εs are errors for
individuals within clusters. The cs and λs, which capture the dependencies among the
random effects and errors within clusters, are typically expressed in terms of a small
number of fundamental variance- and covariance-component parameters.

23.3 Modeling Hierarchical Data

Applications of mixed models to hierarchical data have become common in the social sciences
and nowhere more so than in research on education. I will restrict myself to two-level models
(students within schools, in the example developed below), but three or more levels (e.g., stu-
dents within classrooms within schools) can also be handled through an extension of the Laird-
Ware model. The two-level case, however, will allow me to develop the essential ideas.

The following example is borrowed from Raudenbush and Bryk (2012) and has been used by
others as well. There are disadvantages as well as advantages to employing such a well-worn
data set, but we will learn something about the data that apparently has not been noticed before.

The data are from the 1982 ‘‘High School and Beyond’’ survey and pertain to 7185 U.S.
high school students from 160 schools—about 45 students on average per school. Seventy of
the high schools are Catholic schools and 90 are public schools. An object of the data analysis
is to determine how students’ math achievement scores on a standard test are related to their
family socioeconomic status (SES).

I will entertain the possibility that the general level of math achievement and the relationship
between achievement and SES vary among schools. If there is evidence of variation among
schools, I will examine whether this variation is systematically related to school characteris-
tics—specifically, whether the school is a public school or a Catholic school and the average
SES of students in the school.

Just because we intend to fit a mixed-effects model to the data does not mean that we should
forget data craft, and a good point of departure is to examine the relationship between math
achievement and SES separately for each school. One hundred sixty schools are too many to
look at individually, so I sampled 18 Catholic school and 18 public schools at random.
Scatterplots of math achievement by SES for the sampled schools are in Figure 23.1.
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Figure 23.1 Math achievement by SES for students in 18 randomly selected Catholic high schools
(upper panel) and 18 randomly selected public high schools (lower panel). SES is
centered at the mean of each school. The broken line in each panel is the least-
squares line, the solid line is for a nonparametric-regression smooth.
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In each panel, the broken line is the linear least-squares fit to the data, while the solid
line gives a nonparametric-regression fit.10 The number at the top of each panel is the ID
number of the school. Taking into account the modest number of students in each school,
the linear regressions seem to do a reasonable job of summarizing the relationship between
math achievement and SES within schools. Although there is substantial variation in the
regression lines among schools, there also seems to be a systematic difference between
Catholic and public schools: The lines for the public schools appear to have steeper slopes on
average.

SES in these scatterplots is expressed as deviations from the school mean SES. That is, the
average SES for students in a particular school is subtracted from each individual student’s
SES. Centering SES in this manner makes the within-school intercept from the regression of
math achievement on SES equal to the average math achievement score in the school. In the
ith school, we have the regression equation11

mathachij ¼ α0i þ α1iðsesij & sesi#Þ þ εij ð23:2Þ

where

sesi# ¼
Pni

j¼1 sesij

ni

Then the least-squares estimate of the intercept is

bα0i ¼ mathachi# ¼
Pni

j¼1 mathachij

ni

A more general point is that it is helpful for interpretation of hierarchical (and other!) models
to scale the explanatory variables so that the parameters of the model represent quantities of
interest.12

Having satisfied myself that linear regressions reasonably represent the within-school rela-
tionship between math achievement and SES, I fit this model by least squares to the data from
each of the 160 schools. Here are two displays of the least-squares regression coefficients:
Figure 23.2 shows 95% confidence intervals for the intercept and slope estimates separately for
Catholic and public schools, while Figure 23.3 shows boxplots of the intercepts and slopes for
Catholic and public schools, facilitating the comparison between the two categories of schools.
It is apparent that the individual slopes and intercepts are not estimated very precisely, not sur-
prising given the relatively small number of students in each school, and there is also a great
deal of variation in the regression coefficients from school to school. On average, however,
Catholic schools have larger intercepts (i.e., a higher average level of math achievement) and
lower slopes (i.e., less of a relationship between math achievement and SES) than public
schools do.

10Methods of nonparametric regression are described in Chapter 18.
11As in Chapter 8 on analysis of variance, a dot in a subscript indicates averaging over the corresponding index; thus,
sesi# averages over individuals j in the ith school.
12See Section 23.7 for a discussion for centering explanatory variables in mixed-effects models and related subtle
issues.
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Figure 23.2 Ninety-five percent confidence intervals for least-squares intercepts (left) and slopes
(right) for the within-school regressions of math achievement on school-centered
SES: 70 Catholic high schools (top) and 90 public high schools (bottom). In compar-
ing coefficients for Catholic and public schools, note that the scales of the coeffi-
cients in the top and bottom panels are not the same.
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Type of school—Catholic or public—is a contextual variable, characteristic of the higher-
level units in the study, schools; the effect, if any, of type of school on individual students’ math
achievement is a contextual effect. The average level of SES in each school is also a characteris-
tic of the school, but it is derived from the lower-level units—the individual students. Average
SES is therefore a compositional variable; a compositional variable can also have a contextual
effect, in this instance distinct from the effect of students’ individual family SES.13 Figure 23.4
shows the relationship between the within-school intercepts and slopes and mean school SES.
There is a moderately strong and reasonably linear relationship between the within-school inter-
cepts (i.e., average math achievement) and the average level of SES in the schools. The slopes,
however, are weakly and, apparently, nonlinearly related to average SES. As far as I know,
despite the ubiquity of the High School and Beyond data in the literature on mixed-effects mod-
els, the nonlinear relationship between slopes and mean SES has not been noticed previously.

23.3.1. Formulating a Mixed Model

We already have a Level 1 model relating individual students’ math achievement to their
families’ socioeconomic status (from Equation 23.2):

Catholic Public

5
10

15
20

Intercepts

Catholic Public

−2
0

2
4

6

Slopes

Figure 23.3 Boxplots of within-school coefficients for the least-squares regression of math
achievement on school-centered SES, for 70 Catholic and 90 public schools: inter-
cepts (left) and slopes (right).

13The distinction between contextual and compositional variables is not standard, and both kinds of variables are often
called ‘‘contextual variables.’’ I believe, however, that it is conceptually useful to make this distinction.

Moreover, the contextual effect of a compositional variable—understood, in our example, as the expected difference
in achievement for students with the same individual SES in two schools that differ by 1 in mean SES—is not esti-
mated by the coefficient of school-mean SES in the model in which individual-student SES is centered at the school
mean: See Section 23.7 on centering for an explanation of this and related points.
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mathachij ¼ α0i þ α1icsesij þ εij

where, for notational compactness, csesij [ sesij& sesi# (i.e., school-centered SES).
A Level 2 model relates the coefficients in the Level 1 model to characteristics of the

schools. Our exploration of the data (in Figure 23.4) suggests the following Level 2 model:

α0i ¼ γ00 þ γ01sesi# þ γ02sectori þ ω0i

α1i ¼ γ10 þ γ11sesi# þ γ12ses2
i# þ γ13sectori þ ω1i

ð23:3Þ

where sector is a dummy regressor, coded 1 (say) for Catholic schools and 0 for public schools.
The linear specification for the Level 1 intercepts α0i and quadratic specification for the
Level 1 slopes α1i follow from the patterns in Figure 23.4.

Substituting the school-level equation into the individual-level equation produces the com-
bined or composite model:

mathachij ¼ γ00 þ γ01sesi# þ γ02sectori þ ω0ið Þ
þ γ10 þ γ11sesi# þ γ12ses2

i# þ γ13sectori þ ω1i
! "

csesij þ εij

¼γ00 þ γ01sesi# þ γ02sectori þ γ10csesij

þ γ11sesi# · csesij þ γ12ses2
i# · csesij þ γ13sectori · csesij

þ ω0i þ ω1icsesij þ εij

ð23:4Þ

Notice that the coefficients of the contextual and compositional variables in the Level 2 equa-
tions of the hierarchical form of the mixed model (e.g., γ13sectori in Equations 23.3) appear as
coefficients of cross-level interactions in the composite form of the model (e.g.,
γ13sectori · csesij in Equation 23.4). Except for notation, this is a mixed model in Laird-Ware
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Figure 23.4 Within-school intercepts (left) and slopes (right) by school-mean SES. In each panel,
the broken line is the linear least-squares fit, and the solid line is from a nonpara-
metric regression.
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form, as we can see by replacing γs with βs, ωs with δs, and the various regressors with X s
and Zs:

Yij ¼ β1 þ β2X2ij þ β3X3ij þ β4X4ij þ β5X5ij þ β6X6ij þ β7X7ij þ δ1i þ δ2iZ2ij þ εij

For example, X4ij ¼ Z2ij ¼ csesij.
All of the regressors in the Laird-Ware form of the model carry subscripts i for schools and j

for individuals within schools, even when the explanatory variable in question is constant
within schools. Thus, for example, X2ij ¼ sesi# (and so all individuals in the same school share
a common value of school-mean SES). There is both a data management issue here and a con-
ceptual point: With respect to data management, software that fits the Laird-Ware form of the
model requires that Level 2 explanatory variables (here sector and school-mean SES, which are
characteristics of schools) appear in the Level 1 (i.e., student) data set. The conceptual point is
that the model can incorporate contextual effects of contextual variables such as sector and
compositional variables like school-mean SES—characteristics of the Level 2 units can influ-
ence the Level 1 response variable.

In modeling hierarchical data, it is often natural to formulate an individual-level model
within clusters and then to treat the coefficients of that model as random effects that
appear as the responses in a higher-level model. The models at the two levels can be
combined as an LMM in Laird-Ware form. Contextual variables describe higher-level
units; compositional variables also describe higher-level units but are derived from
lower-level units (e.g., by averaging).

Rather than proceeding directly with this relatively complicated model, let us first investigate
some simpler mixed-effects models derived from it.14

23.3.2 Random-Effects One-Way Analysis of Variance

Consider the following Level 1 and Level 2 models:

mathachij ¼ α0i þ εij

α0i ¼ γ00 þ ω0i

The combined model is

mathachij ¼ γ00 þ ω0i þ εij

or, in Laird-Ware form,

Yij ¼ β1 þ δ1i þ εij

This is a random-effects one-way ANOVA model with one fixed effect, β1, representing the
general population mean of math achievement, and two random effects, δ1i, representing the
deviation of math achievement in school i from the general mean—that is, the mean math

14I adopt the general strategy of exposition here, if not the details, from Raudenbush and Bryk (2012, chap. 4).
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achievement for all students in school i, not just those students sampled, is µi ¼ β1 þ δ1i, and
εij, representing the deviation of individual j’s math achievement in school i from the school
mean, εij ¼ Yij & µi. Moreover, two observations, Yij and Yij0 , in the same school i are not inde-
pendent because they share the random effect, δ1i.

There are also two variance components for this model: c2
1 [ V ðδ1iÞ is the variance among

school means, and σ2
ε [ V ðεijÞ is the variance among individuals in the same school. The ran-

dom effect δ1i and the errors εij are assumed to be independent, and therefore variation in math
scores among individuals can be decomposed into these two variance components:

V ðYijÞ ¼ E ðδ1i þ εijÞ2
h i

¼ c2
1 þ σ2

ε

because Eðδ1iÞ ¼ EðεijÞ ¼ 0, and hence EðYijÞ ¼ β1.
The intraclass correlation coefficient r is the proportion of variation in individuals’ scores

due to differences among schools:

r [
c2

1

V ðYijÞ
¼ c2

1

c2
1 þ σ2

ε

The intraclass correlation can also be interpreted as the correlation between the math scores of
two individuals selected at random from the same school. That is,

CðYij; Yij0Þ ¼ E ðδ1i þ εijÞðδ1i þ εij0Þ
# $

¼ Eðδ2
1iÞ ¼ c2

1

V ðYijÞ ¼ V ðYij0Þ ¼ c2
1 þ σ2

ε

CorðYij; Yij0Þ ¼
CðYij; Yij0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ðYijÞ · V ðYij0Þ
p ¼ c2

1

c2
1 þ σ2

ε

¼ r

There are two common methods for estimating linear mixed-effects models:15

' Full maximum-likelihood (ML) estimation maximizes the likelihood with respect to all
of the parameters of the model simultaneously (i.e., both the fixed-effects parameters
and the variance components).

' Restricted (or residual) maximum-likelihood (REML) estimation integrates the fixed
effects out of the likelihood and estimates the variance components; given the resulting
estimates of the variance components, estimates of the fixed effects are recovered.

A disadvantage of ML estimates of variance components is that they are biased downward in
small samples (much as the ML estimate of the error variance in the standard linear model is
biased downward). The REML estimates, in contrast, correct for loss of degrees of freedom
due to estimating the fixed effects. The difference between the ML and REML estimates can
be important when the number of clusters (i.e., Level 2 units) is small.

LMMs can be estimated by maximum likelihood (ML) or by restricted maximum likeli-
hood (REML). When the number of clusters is small, REML tends to produce less
biased estimates of variance components.

15Estimation is discussed in greater detail in Section 23.9.1.
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ML and REML estimates for the random-effects one-way ANOVA model in the current exam-
ple, where there are 160 schools (Level 2 units), are nearly identical:

Here and elsewhere in the chapter, I show the standard deviations in preference to the variances
of the random effects. It is generally simpler to interpret the standard deviations because they
are on the scale of the response variable—in this case, math achievement.

The estimated intraclass correlation coefficient in this example is

br ¼ 2:9352

2:9352 þ 6:2572 ¼ :180

and so 18% of the variation in students’ math achievement scores is ‘‘attributable’’ to differ-
ences among schools. The estimated intercept, bβ1 ¼ 12:637, represents the average level of
math achievement in the population of schools.

23.3.3 Random-Coefficients Regression Model

Having established that there is variation among schools in students’ math achievement, let
us introduce school-centered SES into the Level 1 model as an explanatory variable,

mathachij ¼ α0i þ α1icsesij þ εij

and allow for random intercepts and slopes in the Level 2 model:

α0i ¼ γ00 þ ω0i

α1i ¼ γ10 þ ω1i

The combined model is now

mathachij ¼ γ00 þ ω0ið Þ þ γ10 þ ω1ið Þ csesij þ εij

¼ γ00 þ γ10csesij þ ω0i þ ω1icsesij þ εij

In Laird-Ware form,
Yij ¼ β1 þ β2X2ij þ δ1i þ δ2iZ2ij þ εij ð23:5Þ

This model is a random-coefficients regression model. The fixed-effects coefficients β1 and β2

represent, respectively, the average within-schools population intercept and slope. Moreover,
because SES is centered within schools, the intercept β1 represents the general level of math
achievement in the population (in the sense of the average within-school mean).

The model has four variance-covariance components:

' c2
1 [ V ðδ1iÞ is the variance among school intercepts (i.e., school means, because SES is

school-centered).

Parameter ML Estimate REML Estimate

β1 12.637 12.637
c1 2.925 2.935
σε 6.257 6.257
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' c2
2 [ V ðδ2iÞ is the variance among within-school slopes.

' c12 [ Cðδ1i; δ2iÞ is the covariance between within-school intercepts and slopes.
' σ2

ε [ V ðεijÞ is the error variance around the within-school regressions.

The composite error for individual j in school i is

ζij [ δ1i þ δ2iZ2ij þ εij

The variance of the composite error is

V ðζijÞ ¼ Eðζ2
ijÞ ¼ E ðδ1i þ δ2iZ2ij þ εijÞ2

h i
¼ c2

1 þ Z2
2ijc

2
2 þ 2Z2ijc12 þ σ2

ε ð23:6Þ

and the covariance of the composite errors for two individuals j and j 0 in the same school is

Cðζij; ζij 0Þ ¼ Eðζij · ζij 0Þ ¼ E ðδ1i þ δ2iZ2ij þ εijÞðδ1i þ δ2iZ2ij 0 þ εij 0Þ
# $

¼ c2
1 þ Z2ijZ2ij 0c

2
2 þ ðZ2ij þ Z2ij 0Þc12

ð23:7Þ

The composite errors consequently have nonconstant variance, and errors for individuals in the
same school are correlated. But the composite errors for two individuals in different schools
are independent.

ML and REML estimates for the model are as follows:

Again, the ML and REML estimates are very close.
I have shown standard errors only for the fixed effects. Standard errors for variance and cov-

ariance components can be obtained in the usual manner from the inverse of the information
matrix,16 but tests and confidence intervals based on these standard errors tend to be inaccurate.
We can, however, test variance and covariance components by a likelihood-ratio test, contrast-
ing the (restricted) log-likelihood for the fitted model with that for a model removing the ran-
dom effects in question. For example, for the current model (Model 1), removing δi2Z2ij from
the model (producing Model 0) implies that the SES slope is identical across schools. Notice
that removing δi2Z2ij from the model eliminates two variance-covariance parameters, c2

2 and

Parameter ML Estimate Std. Error REML Estimate Std. Error

β1 12.636 0.244 12.636 0.245
β2 2.193 0.128 2.193 0.128
c1 2.936 2.946
c2 0.824 0.833

c12 0.041 0.042
σε 6.058 6.058

16See online Appendix D for an introduction to maximum-likelihood estimation.
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c12. A likelihood-ratio chi-square test (based on the REML estimates) for these parameters on
2 degrees of freedom suggests that they should not be omitted from the model:17

loge L1 ¼ &23; 357:12

loge L0 ¼ &23; 362:00

G2
0 ¼ 2ðloge L1 & loge L0Þ ¼ 9:76; df ¼ 2; p ¼ :008

Cautionary Remark

Because REML estimates are calculated integrating out the fixed effects,18 one cannot legiti-
mately perform likelihood-ratio tests across models with different fixed effects when the mod-
els are estimated by REML. Likelihood-ratio tests for variance-covariance components across
nested models with identical fixed effects are perfectly fine, however. A common source of
estimation difficulties in mixed models is the specification of overly complex random effects.
Because interest usually centers on the fixed effects, it often pays to try to simplify the ran-
dom-effect part of the model.

23.3.4 Coefficients-as-Outcomes Model

The regression-coefficients-as-outcomes model introduces explanatory variables at Level 2
to account for variation among the Level 1 regression coefficients. This returns us to the model
that I originally formulated for the math achievement data: at Level 1,

mathachij ¼ α0i þ α1icsesij þ εij

and, at Level 2,

α0i ¼ γ00 þ γ01sesi# þ γ02sectori þ ω0i

α1i ¼ γ10 þ γ11sesi# þ γ12ses2
i# þ γ13sectori þ ω1i

ð23:8Þ

The combined model is

mathachij ¼ γ00 þ γ01sesi# þ γ02sectori

þ γ10csesij þ γ11sesi# · csesij þ γ12ses2
i# · csesij þ γ13sectori · csesij

þ ω0i þ ω1icsesij þ εij

ð23:9Þ

or, in Laird-Ware form,

Yij ¼ β1 þ β2X2ij þ β3X3ij þ β4X4ij þ β5X5ij þ β6X6ij þ β7X7ij þ δ1i þ δ2iZ2ij þ εij ð23:10Þ

17A more careful formulation of this test takes into account the fact that the null hypothesis places the variance compo-
nent c2

2 ¼ 0 on a boundary of the parameter space—of course, a variance cannot be negative. In contrast, the covar-
iance component in the null hypothesis, c12 ¼ 0, is not on a boundary of the parameter space. Under these
circumstances, the distribution of the likelihood-ratio test statistic G2

0 under H0 is a mixture of chi-square distributions,
not simply χ2

2. I will examine the computation of p-values for tests of variance and covariance components more care-
fully in Section 23.6.
18If you are unfamiliar with calculus, think of ‘‘integrating out’’ the fixed effects, as summing over the possible values
of the fixed effects, with the values weighted by their likelihood.
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This model has more fixed effects than the preceding random-coefficients regression model
(Equation 23.5) but the same random effects and variance-covariance components:
c2

1 [ V ðδ1iÞ, c2
2 [ V ðδ2iÞ, c12 [ Cðδ1i; δ2iÞ, and σ2

ε [ V ðεijÞ.
After fitting this model to the data by REML, let us check whether random intercepts and

slopes are still required:19

The test for random intercepts, contrasting Models 1 and 2, is highly statistically significant,

G2
0 ¼ 2½ð&23; 247:70Þ & ð&23; 357:86Þ) ¼ 220:32; df ¼ 2; p » 0

but the test for random slopes is not,

G2
0 ¼ 2½ð&23; 247:70Þ & ð&23; 247:93Þ) ¼ 0:46; df ¼ 2; p ¼ :80

Apparently, the Level 2 explanatory variables do a sufficiently good job of accounting for dif-
ferences in slopes among schools that the variance component for slopes, and with it, the cov-
ariance component for slopes and intercepts, are no longer needed.

Refitting the model removing δi2Z2ij produces the following REML estimates:

More often than not, primary interest inheres in the fixed effects—that is, the average effects of
the explanatory variables across Level 1 units. The fixed-effects estimates, all of which exceed
twice their standard errors and hence are statistically significant, have the following
interpretations:20

Model Omitting loge L

1 — –23, 247.70
2 c2

1;c12 –23, 357.86
3 c2

2;c12 –23, 247.93

Parameter Term REML Estimate Std. Error

β1 intercept 12.128 0.199
β2 sesi# 5.337 0.369
β3 sectori 1.225 0.306
β4 csesij 3.140 0.166
β5 sesi# · csesij 0.755 0.308
β6 ses2

i# · csesij –1.647 0.575
β7 sectori · csesij –1.516 0.237
c1 SD(intercept) 1.542
σε SD(εij) 6.060

19Again, because c2
1 ¼ 0 and c2

2 ¼ 0 are on the boundaries of the parameter space, the p-values reported here are not
quite correct; see Section 23.6 for a procedure to compute more accurate p-values in this situation.
20See Sections 23.5 and 23.9.2 for more careful consideration of Wald tests for the fixed effects in an LMM.
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' bβ1 ¼ 12:128 is the estimated general level of students’ math achievement in public
schools (where the dummy regressor for sector is coded 0) at mean school SES. The
interpretation of this coefficient depends on the fact that sesi# (school SES) is itself cen-
tered to a mean of 0 across schools.

' bβ2 ¼ 5:337 is the estimated increase in students’ mean math achievement associated
with a 1-unit increase in school SES.

' bβ3 ¼ 1:225 is the estimated difference in students’ mean math achievement between
Catholic and public schools at fixed levels of school SES. The fixed-effects coefficients
bβ1, bβ2, and bβ3, therefore, describe the between-schools regression of mean math
achievement on school characteristics.

' Figure 23.4 shows how the coefficients bβ4, bβ5, bβ6, and bβ7 combine to produce the
Level 1 (i.e., within-school) coefficient for SES.21 At fixed levels of school SES, indi-
vidual SES is more positively related to math achievement in public than in Catholic
schools. The maximum positive effect of individual SES is in schools with a slightly
higher than average SES level; the effect declines at low and high levels of school SES,
and—for Catholic schools—becomes negative at the lowest levels of school SES.

An alternative and possibly more intuitive representation of the fitted model is shown in
Figure 23.6, which graphs the estimated within-school regression of math achievement on
school-centered SES for Catholic and public schools at three levels of school SES: &0:7 (the
approximate 5th percentile of school SES among the 160 schools), 0 (the median), and 0:7 (the
95th percentile). The equations of these regression lines are derived by substituting the three
levels of school SES into the Level 2 model of Equation 23.8, along with 0 (public) or 1
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Figure 23.5 The Level 1 effect bα1 of school-centered SES as a function of type of school (Catholic
or public) and mean school SES.

21From Equations 23.8, 23.9, and 23.10.
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(Catholic) for the sector dummy regressor.22 Figure 23.6 constitutes an ‘‘effect display’’ for the
fixed effects of type of school, individual SES, and mean school SES.23

The coefficients-as-outcomes model relates regression coefficients of lower-level units
within clusters to characteristics of the clusters. Simpler hierarchical models include the
random-effects one-way ANOVA model, in which each cluster has its own mean, treated
as a random effect, and the random-coefficients regression model, in which several
regression coefficients can vary randomly across clusters. In the random-effects one-way
ANOVA model, the intraclass correlation measures the proportion of individual-level
variation that is due to differences among clusters, r ¼ c2

1=ðc2
1 þ σ2

εÞ, where c2
1 is the

variance component for clusters and σ2
ε is the error variance.

23.4 Modeling Longitudinal Data

In most respects, modeling longitudinal data—where there are multiple observations on indi-
viduals who are followed over time—is similar to modeling hierarchical data: We can think of
individuals as analogous to Level 2 units and measurement occasions as analogous to Level 1
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Figure 23.6 Fitted within-school regressions of math achievement on centered SES for public and
Catholic schools at three levels of mean school SES.

22See Exercise 23.1.
23Effect displays for linear models were introduced in Section 7.3.4.
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units. Just as it is generally unreasonable to suppose in hierarchical data that observations for
individuals in the same Level 2 unit are independent, so it is generally unreasonable to suppose
that observations taken on different occasions for the same individual are independent.

An additional complication in longitudinal data is that it may no longer be reasonable to
assume that the Level 1 errors εij are independent of each other, because observations taken
close in time on the same individual may well be more similar than observations farther apart
in time. When this happens, we say that the errors are autocorrelated. The linear mixed model
introduced in Section 23.2 makes provision for autocorrelated Level 1 errors. We encountered
a similar phenomenon in time-series regression.24 We can think of longitudinal data as com-
prising time series for each of a number of individuals, and indeed longitudinal data are some-
times described as cross-sectional time series. That said, the number of measurement occasions
in longitudinal data is typically much smaller than in time-series data.

In composing a mixed model for longitudinal data, we can work either with the hierarchical
form of the model or with the composite (Laird-Ware) form. Consider the following example,
drawn from work by Davis, Blackmore, Katzman, and Fox (2005) on the exercise histories of
138 teenaged girls who were hospitalized for eating disorders and of 93 ‘‘control’’ subjects
who did not suffer from eating disorders.25 There are several observations for each subject, but
because the girls were hospitalized at different ages, the number of observations and the age at
the last observation vary. The data include the subject’s age, in years, at the time of observa-
tion, along with the amount of exercise in which the subject engaged, expressed as hours per
week. All but the last observation for each subject were collected retrospectively at intervals of
2 years, starting at age 8. The age at the last observation is recorded to the nearest day.

It is of interest here to determine the typical trajectory of exercise over time and to establish
whether this trajectory differs between eating-disordered and control subjects. Preliminary
examination of the data suggests a log transformation of exercise, but because about 12% of the
data values are 0, it is necessary to add a small constant to the data before taking logs. I used
5=60 ¼ 1=12 (i.e., 5 minutes). Figure 23.7 reveals that the original exercise scores are highly
skewed, but that the log-transformed scores are much more symmetrically distributed. An alter-
native to transformation of Y would be to fit a model that takes explicit account of the nonnega-
tive character of the response variable or that accounts explicitly for the 0s in the data.26

Figure 23.8 shows the exercise trajectories for 20 randomly selected control subjects and 20
randomly selected patients. The small number of observations per subject and the substantial
irregular intrasubject variation make it hard to draw conclusions, but there appears to be a more
consistent pattern of increasing exercise among patients than among the controls. With so few
observations per subject, and without clear evidence that it is inappropriate, we should be loath
to fit a within-subject model more complicated than a linear trend.

A linear ‘‘growth curve’’ characterizing subject i’s trajectory suggests the Level 1 model

log -exerciseij ¼ α0i þ α1iðageij & 8Þ þ εij

24See Chapter 16.
25I am grateful to Caroline Davis and Elizabeth Blackmore of York University, Toronto, for providing the data for this
example. The analysis here is simplified from the original source, which took into account the age of onset of eating
disorder for the patients: See the data analysis exercises for this chapter.
26For example, we might extend to mixed-effects models the approach to censored data described in Section 20.5.
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I have subtracted 8 from age, and so α0i represents the level of exercise at 8 years of age—the
start of the study. I fit this model by least-squares regression separately to the data for each
subject. Because of the small number of observations per subject, we should not expect very
good estimates of the within-subject regression coefficients. Indeed, one of the advantages of
mixed models is that they can provide improved estimates of the within-subject coefficients
(the random effects) by pooling information across subjects.27 Boxplots of the resulting regres-
sion coefficients are shown in Figure 23.9. As expected, there is a great deal of variation in
both the intercepts and the slopes. The median intercepts are similar for patients and controls,
but there is somewhat more variation among patients. The slopes are higher on average for
patients than for controls, for whom the median slope is close to 0.

Our interest in detecting differences in exercise histories between subjects and controls sug-
gests the Level 2 model

α0i ¼ γ00 þ γ01groupi þ ω0i

α1i ¼ γ10 þ γ11groupi þ ω1i
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Figure 23.7 Boxplots of exercise (left) and log exercise (right) for controls and patients, for mea-
surements taken on all occasions. Logs are to the base 2, and 5 minutes was added
to the exercise times to avoid 0 values.

27Pooled ‘‘estimates’’ of the random effects provide so-called empirical best-linear-unbiased predictors (or EBLUPs)
of these coefficients. I put ‘‘estimates’’ in quotation marks because random effects are not formally parameters.

In the present example, it is possible to compute the least-squares estimates of the regression coefficients separately
for each subject only because all subjects are observed at least twice. More generally, it may not be possible to fit the
Level 1 model directly to the data for each individual. The mixed-effects model can nevertheless use (‘‘pool’’) the
information from all subjects to provide ‘‘estimates’’ of the random effects even for individuals with insufficient data to
estimate the regression coefficients directly by least squares. For more on BLUPs and EBLUPs, see Section 23.8.
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Figure 23.8 Exercise trajectories for 20 randomly selected patients (top) and 20 randomly
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control subjects: intercepts (left) and slopes (right).
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where group is a dummy variable coded 1 for subjects and 0 for controls. Substituting the
Level 2 model into the Level 1 model produces the combined model

log -exerciseij ¼ ðγ00 þ γ01groupi þ ω0iÞ þ ðγ10 þ γ11groupi þ ω1iÞðageij & 8Þ þ εij

¼ γ00 þ γ01groupi þ γ10ðageij & 8Þ
þ γ11groupi · ðageij & 8Þ þ ω0i þ ω1iðageij & 8Þ þ εij

that is, the Laird-Ware model

Yij ¼ β1 þ β2X2ij þ β3X3ij þ β4X4ij þ δ1i þ δ2iZ2ij þ εij ð23:11Þ

Fitting this model to the data by REML produces the following estimates of the fixed effects
and variance-covariance components:

Letting Model 1 represent Equation 23.11, let us test whether random intercepts or random
slopes can be omitted from the model:28

Both likelihood-ratio tests are highly statistically significant (particularly the one for random
intercepts), suggesting that both random intercepts and random slopes are required:

For H0: c2
1 ¼ 0; c12 ¼ 0;G2

0 ¼ 2½&1807:07& ð&1911:04Þ) ¼ 207:94; df ¼ 2; p » 0

For H0: c2
2 ¼ 0; c12 ¼ 0;G2

0 ¼ 2½&1807:07& ð&1816:13Þ) ¼ 18:12; df ¼ 2; p ¼ :0001

The model that I have fit to the Davis et al. data (Equation 23.11) assumes independent
Level 1 errors, εij. The composite errors, ζij ¼ δ1i þ δ2iZ2ij þ εij, are correlated within individ-
uals, however, as I previously established for mixed models applied to hierarchical data. In the

Parameter Term REML Estimate Std. Error

β1 intercept &0:2760 0:1824
β2 groupi &0:3540 0:2353
β3 ageij & 8 0:0640 0:0314
β4 groupi · ðageij & 8Þ 0:2399 0:0394
c1 SD(intercept) 1:4435
c2 SD(ageij & 8) 0:1648
c12 C(intercept, ageij & 8) &0:0668
σε SD(εij) 1:2441

Model Omitting REML loge L

1 — &1807:07
2 c2

1;c12(random intercepts) &1911:04
3 c2

2;c12(random slopes) &1816:13

28As in the preceding section, because testing that variance components are 0 places parameters on the boundary of the
parameter space, the p-values reported here are not quite correct. See Section 23.6 for more careful tests of variance
components.
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current context, Z2ij is the time of observation (i.e., age minus 8 years), and the variance and
covariances of the composite errors are (from Equations 23.6 and 23.7 on page 713)

V ðζijÞ ¼ c2
1 þ Z2

2ijc
2
2 þ 2Z2ijc12 þ σ2

ε

Cðζij; ζij0Þ ¼ c2
1 þ Z2ijZ2ij0c

2
2 þ ðZ2ij þ Z2ij0Þc12

The observations are not taken at entirely regular intervals (in that age at the last observation
varies and is given to the nearest day), but assume that we have observations for subject i taken
at Z2i1 ¼ 0; Z2i2 ¼ 2; z2i3 ¼ 4; and Z2i4 ¼ 6 (i.e., at 8, 10, 12, and 14 years of age). Then the
estimated covariance matrix for the composite errors is

bV ðζi1; ζi2; ζi3; ζi4Þ ¼

3:631 1:950 1:816 1:683
1:950 3:473 1:900 1:875
1:816 1:900 3:532 2:068
1:683 1:875 2:068 3:808

2

664

3

775

and the correlations of the composite errors are

dCorðζi1; ζi2; ζi3; ζi4Þ ¼

1:0 :549 :507 :453
:549 1:0 :543 :516
:507 :543 1:0 :564
:453 :516 :564 1:0

2

664

3

775

The correlations across composite errors are moderately high, and the pattern is what we would
expect: The correlations decline with the time separation between occasions. This pattern of
declining correlations, however, does not have to hold: The correlations depend on the values
of the estimated cs.

Recall that the linear mixed model allows for correlated Level 1 errors εij within individuals.
From Equations 23.1 (page 702),

V ðεijÞ ¼ σ2
ελijj

Cðεij; εij0Þ ¼ σ2
ελijj0

For a model with correlated individual-level errors to be estimable, however, the λijj0 cannot
consist of independent parameters; instead, these values are expressed in terms of a much
smaller number of fundamental parameters.

For example, for equally spaced occasions, a very common model for the intraindividual
errors is the first-order autoregressive [or AR(1)] process:29

εij ¼ φεi; j&1 þ yij

where yij ; Nð0; σ2
yÞ, φj j < 1, and yij and yij0 are independent for j 6¼ j0. Then the autocorrela-

tion between two errors for the same individual one time period apart (i.e., at lag 1) is
rð1Þ ¼ φ, and the autocorrelation between two errors s time periods apart (at lag s) is
rðsÞ ¼ φjsj.

The occasions of measurement for the Davis et al. data are not all equally spaced, however.
For data such as these, a frequently useful model is the continuous first-order autoregressive
process, with the property that

29The AR(1) process is introduced in the context of time-series regression in Section 16.2.1.
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Corðεit; εi;tþsÞ ¼ rðsÞ ¼ φjsj

and where the time interval between observations, s, need not be an integer.

In modeling longitudinal data, it is often sensible to allow for serial correlation in the
errors. A common error-generating process for equally spaced observations is the first-
order autoregressive process, AR(1), εij ¼ φεi; j&1 þ yij, where yij ; Nð0; σ2

yÞ, φj j < 1, and
yij and yij0 are independent for j 6¼ j0. In the AR(1) process, the autocorrelation between
two errors s time periods apart is rðsÞ ¼ φjsj. When the errors are unequally spaced, we
may instead specify a continuous first-order autoregressive process, for which similarly
Corðεit; εi;tþsÞ ¼ rðsÞ ¼ φjsj, but where the time interval between observations, s, need
not be an integer.

I tried to fit the same mixed-effects model to the data as before (Equation 23.11), except allow-
ing for first-order autoregressive Level 1 errors. The estimation process did not converge, how-
ever, and a close inspection suggests that the model has redundant parameters.30 I then fit two
additional models, retaining autocorrelated within-subject errors but omitting in turn random
slopes and random intercepts. These models are not nested, so they cannot be compared via
likelihood-ratio tests, but we can still compare the fit of the models to the data:

Thus, the random-intercept model with autocorrelated within-subject errors (Model 2) produces
the best fit to the data, according to both the AIC and BIC.31 Trading off parameters for the
dependence of the within-subject errors against random effects is a common pattern: In this
case, all three models produce similar estimates of the fixed effects.32

Estimates for a final model, incorporating random intercepts and autocorrelated errors, are as
follows:

Model Description REML Log-Likelihood df BIC AIC

1 Independent within-subject errors,
random intercepts and slopes

–1807.1 8 3668.9 3630.1

2 Correlated within-subject
errors, random intercepts

–1795.5 7 3638.9 360.0

3 Correlated within-subject errors,
random slopes

–1802.3 7 3653.8 3619.8

30Overly elaborate random-effects models often produce convergence problems because of effectively redundant para-
meters. In the current example, as I showed, the mixed model with independent intraindividual errors produces compo-
site errors with a reasonable pattern of declining correlation over time, roughly similar to an AR(1) process.
31The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were introduced in Section 22.1.1.
32It is often happily the case that estimates of fixed effects are relatively insensitive to the details of specification of var-
iance and covariance components.
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Comparing the coefficients to their standard errors, the fixed-effect slope for the control
group (bβ3)—that is, the average slope for individuals in this group—is statistically significant,
and the difference in slopes between the patient group and the controls (bβ4) is highly statisti-
cally significant. In contrast, the initial difference between the groups (i.e., bβ2, the estimated
difference at age 8) is nonsignificant.33 An effect plot for the fixed effects, translating back
from log exercise to the exercise scale (and subtracting the 5 minutes that were added prior to
taking logs), appears in Figure 23.10.

23.5 Wald Tests for Fixed Effects

As I have explained, it is inappropriate to perform likelihood-ratio tests for fixed effects when
the model is fit by REML. It is sometimes recommended that ML be used in place of REML
to facilitate tests of fixed effects, but when there are relatively few Level 2 units, ML estimates
can be substantially biased.

An alternative is to perform Wald tests of fixed effects, which do not require fitting and con-
trasting alternative models. For an individual coefficient, for example, we can compute the test
statistic Z0k ¼ bβk=SEðbβkÞ for the null hypothesis H0: βk ¼ 0, referring the obtained value of
Z0k to the standard normal distribution. I performed such tests implicitly when I contrasted esti-
mated coefficients to their standard errors in the examples developed above: Coefficients that
exceeded twice their standard errors in magnitude were deemed ‘‘statistically significant’’ at
the .05 level for a two-sided test. When there are relatively few Level 2 units, however, the dis-
tribution of the Wald statistic Z0k may be sufficiently far from normal to render the resulting
p-value inaccurate. Similarly, more complex Wald chi-square tests on several degrees of free-
dom may also yield inaccurate p-values.34

We could attempt a straightforward substitution of Wald t and F tests for normal and chi-
square tests, as we did for the linear model,35 but these tests, naively constructed, may run up
against two difficulties: (1) Straightforwardly computed coefficient standard errors can have
substantial downward bias, and (2) straightforwardly computed denominator degrees of free-
dom are too large. The first problem can be addressed by a method suggested by Kenward and
Roger (1997) for bias-corrected standard errors, while the second problem can be addressed by

Parameter Term REML Estimate Std. Error

β1 intercept &0:3070 0:1895
β2 groupi &0:2838 0:2447
β3 ageij & 8 0:0728 0:0317
β4 groupi · ðageij & 8Þ 0:2274 0:0397
c1 SD(intercept) 1:1497
σε SDðεijÞ 1:5288
φ error autocorrelation at lag1 0:6312

33The next section examines Wald tests for fixed-effects coefficients more carefully.
34See Section 23.9.2 for Wald tests of general linear hypotheses in the LMM.
35See Section 9.4.

724 Chapter 23. Linear Mixed-Effects Models for Hierarchical and Longitudinal Data



applying Satterthwaite’s (1946) method for determining approximate degrees of freedom.
These solutions are commonly implemented in combination in computer software for mixed-
effects models.36

In the case of the mixed-effects model fit to the High School and Beyond data,37 for exam-
ple, the Kenward and Roger adjusted coefficient standard errors are virtually identical to the
naive standard errors, and degrees of freedom for Wald t statistics computed for all coefficients
are sufficiently large (at worst 154, approximately equal to the number of schools, 160) that
statistical inferences are unaffected. This outcome is typical of applications that have a large
number of Level 2 units.

When there are relatively few Level 2 units, naively computed Wald t and F tests, confi-
dence intervals, and confidence regions for fixed-effects coefficients estimated by REML
can be inaccurate. Inference based on Wald statistics can be rendered more accurate by
employing the Kenward-Roger adjustment to coefficient standard errors and
Satterthwaite degrees of freedom.
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Figure 23.10 Fitted exercise as a function of age and group, with average trajectories based on
the fixed effects. The vertical bars show approximate pointwise 95% confidence
intervals around the fits at selected ages. The bars are displaced slightly horizontally
to avoid overplotting.

36Yet another, more computationally intensive, approach to statistical inference for both fixed effects and variance-
covariance components is to use bootstrapping (introduced in Chapter 21).
37See Section 23.3; for the linear mixed model fit to Davis et al.’s longitudinal data, see the data analysis exercises for
the chapter.
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23.6 Likelihood-Ratio Tests of Variance and Covariance
Components

I remarked in passing that likelihood-ratio tests for variance and covariance parameters should
take account of the fact that the null hypothesis for a variance parameter specifies a value
(i.e., 0) at the boundary of the parameter space.38 Suppose that the null hypothesis is simply
H0: c2

1 ¼ 0, that is, that the random effects δ1i are all 0 in a model that includes just this one
random-effect term (in addition to the errors εij). We cannot observe a negative estimate of c2

1,
and so the usual p-value obtained from Prðχ2

1 > G2
0Þ must be halved, where G2

0 is the likeli-
hood-ratio test statistic for the hypothesis. In the rare circumstance that bc2

1 ¼ 0, and thus
G2

0 ¼ 0, we take p-value ¼ 1.
The other common situation is one in which removing a random-effect term δki from the

model removes not only the corresponding variance component c2
k but all variance/covariance

parameters ckk0 , k0 ¼ 1; . . . ; q, where, recall, q is the number of random effects in the model.
The p-value for the hypothesis can then be computed as

p ¼
Prðχ2

q > G2
0Þ þ Prðχ2

q&1 > G2
0Þ

2

For the High School and Beyond data, for example, I entertained the null hypothesis
H0: c2

2 ¼ c12 ¼ 0, produced by removing the random effects δ2i from the model but retaining
δ1i. Here q ¼ 2, and I computed G2

0 ¼ 9:76; thus,

p ¼ Prðχ2
2 > 9:76Þ þ Prðχ2

1 > 9:76Þ
2

¼ :00760þ :00178

2
¼ :0047

which is smaller than the p-value that we would report (.0076) using χ2
2.

When the LMM is estimated by REML, it is inappropriate to use likelihood-ratio tests
that compare models that differ in their fixed effects, even when the fixed effects for the
two models are nested. We can, however, perform likelihood-ratio tests for variance and
covariance components, as long as we are careful to take account of the fact that the null
value of 0 for a variance parameter is on the boundary of the parameter space. If we
delete one of q random effects from the model, that removes a variance component and
q& 1 covariance components. The p-value for the resulting likelihood-ratio test statistic
is computed as p ¼ Prðχ2

q > G2
0Þ þ Prðχ2

q&1 > G2
0Þ

h i
=2.

38See footnotes 17 (page 714), 19 (page 715), and 28 (page 721). I invite the reader to recompute p-values for the like-
lihood-ratio tests of variance-covariance reported earlier in this chapter.
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23.7 Centering Explanatory Variables, Contextual
Effects, and Fixed-Effects Models

I will focus on the random-intercept regression model with a single quantitative explanatory
variable X . The conclusions that we draw from this simple setting are, however, more
general.39

Let us initially consider the following models:

where

X i#[

P
j Xij

ni

is the mean of X in group i,

X [

P
i

P
j Xij

n
¼
P

i niX i#

n

is the overall mean of X , and

X :: ¼
P

i X i#

m

is the mean of the group means. Each of these models has two variance components:
V ðδ1iÞ ¼ c2

1 and V ðεijÞ ¼ σ2
ε . To make the models less abstract, we can appeal to the example

in Section 23.3, imagining that the observations are for students grouped by school, that Yij is
the math achievement score for the jth student in the ith school, and that Xij is the student’s
family socioeconomic status.40

The last three of these models define fixed origins for X . In Model 2, X is uncentered; in
Model 3, X is centered at the overall mean for all students; and in Model 4, it is centered at the
mean of the school means, which generally differs from the overall mean when there are
unequal numbers of students in the various schools. These three models are observationally

1. X centered at the group means:

Yij ¼ β
ð1Þ
1 þ δ

ð1Þ
1i þ β

ð1Þ
2 Xij & X i#
! "

þ εij

2. X uncentered:

Yij ¼ β
ð2Þ
1 þ δ

ð2Þ
1i þ β

ð2Þ
2 Xij þ εij

3. X centered at its overall mean:

Yij ¼ β
ð3Þ
1 þ δ

ð3Þ
1i þ β

ð3Þ
2 Xij & X
! "

þ εij

4. X centered at the mean of the group means:

Yij ¼ β
ð4Þ
1 þ δ

ð4Þ
1i þ β

ð4Þ
2 Xij & X ##
! "

þ εij

39As I explain below, the interpretation of the parameters of these models depends on the fact that the expectation of
the random effects for the intercept is 0. This would be true for random slopes as well—the expected deviation from
the fixed-effect slope parameter is 0.
40Raudenbush and Bryk (2012, chap. 5) present a more extensive discussion of these issues using the High School and
Beyond Data as an example.
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equivalent: They produce the same fit to the data (e.g., the same SES slope, the same maxi-
mized likelihood, and the same fitted values). The models are simply reparameterizations of
one another: β

ð2Þ
2 ¼ β

ð3Þ
2 ¼ β

ð4Þ
2 and, for example, β

ð2Þ
1 ¼ β

ð3Þ
1 & β

ð3Þ
2 X . This result is likely

unsurprising, because we are accustomed to models being fundamentally invariant with respect
to the origin of an explanatory variable. Because the three models are equivalent, I will limit
further consideration to Model 2, where X is uncentered.

In contrast, the first model, with X centered differently in each group at the group mean, is
not observationally equivalent to the other models. I expect that this result is surprising.41

Consider, however, the different meaning of the parameters in Models 1 and 2: In Model 1, the
expected advantage (or disadvantage) of student j in school i over student j0 in school i0

depends on the students’ location relative to their school means and is
β
ð1Þ
2 Xij & X i#
! "

& Xi0j0 & X i0#
! "# $

. In Model 2, in contrast, the expected advantage of student j in
school i over student j0 in school i0 depends on the difference in the two students’ family SES
and is β

ð2Þ
2 ðXij & Xi0j0Þ.42 Unless the two schools have the same mean SES, X i# ¼ X i0#, the mod-

els have distinct implications for the expected difference in math achievement between the
students.

This result is illustrated in Figure 23.11, for two schools, 1 and 2, differing by 1 in their
mean X -values; the graphs are drawn setting the random effects equal to their expectation,
δ11 ¼ δ12 ¼ 0. Figure 23.11(a) illustrates Model 1, with the X -values centered at the school
means, while Figure 23.11(b) illustrates Model 2, with X uncentered. The population-data
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Figure 23.11 Effect of centering on the random-intercept regression model. In panel (a), socioe-
conomic status X is centered at the group means (Model 1), while in panel (b), X is
uncentered (Model 2). The expected within-school population data are shown as
ellipses for two schools that differ by 1 in their average X-values.

41I know that the result was surprising to me when I first encountered it. I also recall a discussion with one of the early
developers of generalized linear mixed models in which he too found the lack of invariance with respect to within-
group centering disquieting.
42The difference in scores between the students will also depend on the random effects δ1i and δ1i0 for the two schools and
on the errors εij and εi0 j0 for the two students, but as mentioned, the expectations of the random effects and errors are 0.
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ellipses in these graphs represent the expected data in each school.43 Were we to take account
of the random effects (i.e., if δ11 and δ12 were nonzero), the data ellipses would each be ran-
domly displaced vertically, but the two models would still not be equivalent.

The situation changes fundamentally if we add the compositional variable X i# to each model,
obtaining

Now all four models are equivalent, including Model 1 with X centered at the group means.
The meaning of the coefficient β3 of the compositional variable X i: varies, however; this coef-
ficient is identical for Models 2, 3, and 4 but takes on a different value in Model 1. Again, I
will compare Models 1 and 2. In Model 1, the expected advantage (or disadvantage) of student
j in school i over student j0 in school i0 is

β
ð1Þ
2 Xij & X i#
! "

& Xi0j0 & X i0#
! "# $

þ β
ð1Þ
3 X i# & X i0#
! "

¼ β
ð1Þ
2 Xij & Xi0j0
! "

þ β
ð1Þ
3 & β

ð1Þ
2

& '
X i# & X i0#
! " ð23:12Þ

while in Model 2, this expected advantage is

β
ð2Þ
2 ðXij & Xi0j0Þ þ β

ð2Þ
3 X i# & X i0#
! "

ð23:13Þ

Thus, βð2Þ2 ¼ β
ð1Þ
2 and β

ð2Þ
3 ¼ β

ð1Þ
3 & β

ð1Þ
2 . Equations 23.12 and 23.13 suggest that βð2Þ3 (not βð1Þ3 )

is interpretable as the contextual effect of the compositional variable school SES on individual
students’ math achievement—that is, the expected advantage in math achievement of a student
whose school is 1 unit of SES higher than that of another student at the same level of individ-
ual SES. This situation is illustrated in Figure 23.12. The coefficient βð1Þ3 of X i# in Model 1 is
the sum of the contextual effect of X i# and the individual-level effect of X . At the risk of some
terminological confusion, we might term β

ð1Þ
3 ¼ β

ð2Þ
2 þ β

ð2Þ
3 the compositional effect of X : That

is, βð1Þ3 represents the difference in means Y 2# & Y 1# between the two schools, which reflects
not only the effect of the compositional variable X i# for students of equal family SES (i.e., βð2Þ2 )
but also the fact that students in School 2 are on average 1 unit higher in individual SES than
those in School 1 (i.e., βð2Þ3 ).

1. X centered at the group means:

Yij ¼ β
ð1Þ
1 þ δ

ð1Þ
1i þ β

ð1Þ
2 Xij & X i#
! "

þ β
ð1Þ
3 X i# þ εij

2. X uncentered:

Yij ¼ β
ð2Þ
1 þ δ

ð2Þ
1i þ β

ð2Þ
2 Xij þ β

ð2Þ
3 X i# þ εij

3. X centered at its overall mean:

Yij ¼ β
ð3Þ
1 þ δ

ð3Þ
1i þ β

ð3Þ
2 Xij & X
! "

þ β
ð3Þ
3 X i# þ εij

4. X centered at the mean of the group means:

Yij ¼ β
ð4Þ
1 þ δ

ð4Þ
1i þ β

ð4Þ
2 Xij & X ##
! "

þ β
ð4Þ
3 X i# þ εij

43In Section 9.4.4, I used the data ellipse to visualize the sample standard deviations and covariance for two variables,
as well as the least-squares regression of one variable on the other. Here, the same representation is applied to the popu-
lation standard deviations and covariance. As in sample data, the population regression line goes through the points of
vertical tangency to the ellipse.
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23.7.1 Fixed Versus Random Effects

It is instructive to compare the mixed-effects models that we have just considered to analo-
gous fixed-effects models in which the intercept can vary systematically across groups but in
which the only random effect is the individual-level error:

These models are equivalent to dummy-variable regression or analysis-of-covariance models
treating group as a factor,44 and the models can be fit by ordinary least-squares regression.
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Figure 23.12 When the compositional explanatory variable Xi# is included in the model, center-
ing X at the group means does not fundamentally alter the model, but the meaning
of the parameter β3 associated with Xi# changes. These graphs are for two schools
that differ by 1 in their X (SES) means. The model with X centered at the school
means (Model 1) is represented in panel (a), while the model with uncentered X
(Model 2) is represented in panel (b).

1. X centered at the group means:

Yij ¼ β
ð1Þ
1i þ β

ð1Þ
2 Xij & X i#
! "

þ εij

2. X uncentered:

Yij ¼ β
ð2Þ
1i þ β

ð2Þ
2 Xij þ εij

3. X centered at its overall mean:

Yij ¼ β
ð3Þ
1i þ β

ð3Þ
2 Xij & X
! "

þ εij

4. X centered at the mean of the group means:

Yij ¼ β
ð4Þ
1i þ β

ð4Þ
2 Xij & X ##
! "

þ εij

44See Chapter 7 and Section 8.4.
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Moreover, without random intercepts, all four models are observationally equivalent. This con-
clusion continues to hold when we add varying fixed-effect slopes for the groups, for example,

Yij ¼ β
ð1Þ
1i þ β

ð1Þ
2i Xij & X i#
! "

þ εij ð23:14Þ

The resulting model is equivalent to a dummy regression or analysis of covariance with
interactions.

Perhaps even more interesting is the inability of the fixed-effects model with different group
intercepts to incorporate a term for the contextual variable, β3X i#, because X i# is perfectly colli-
near with the regressors representing the intercepts. This conclusion is general: Fixed-effects
models with a different intercept for each group cannot incorporate contextual or compositional
variables because these variables are invariant within groups. Indeed, this property is some-
times touted as an advantage of the fixed-effects model, because the model implicitly controls
for all within-group-invariant explanatory variables, including those that are not available—or
even known—to the researcher.

Consider, however, the following, likely surprising, fact: The least-squares estimate of the
coefficient βð1Þ2 in fixed-effects Model 1 (or the corresponding coefficients in Model 2, 3, or 4)
is the same as the estimate of βð5Þ2 in the following model, in which the intercept βð5Þ1 is con-
stant across groups, but in which the compositional variable X i# is added as a regressor:45

5: Yij ¼ β
ð5Þ
1 þ β

ð5Þ
2 Xij & X i#
! "

þ β
ð5Þ
3 X i# þ εij

Although Model 5 is not observationally equivalent to fixed-effects Models 1 through 4—
Model 5 has many fewer parameters—if our object is to estimate the individual-level coeffi-
cient β2 of X , controlling for all group-level differences, it suffices to control for the within-
group means, X i#.

The test that βð5Þ3 , the coefficient of the compositional variable, is 0 is related to the so-called
Hausman test (introduced by Hausman, 1978), which is often used to decide whether to fit a
fixed-effects model with differing group intercepts or a mixed-effects model with random inter-
cepts, typically in the context of longitudinal data. The Hausman test, however, is more gen-
eral: It can be applied whenever we have two estimators of a coefficient, one of which is
known to be consistent and the other of which may be consistent—and, if so, is more effi-
cient—if more restrictive assumptions are correct. In the current context, the coefficient of
interest is β2; the more general consistent estimator of β2 is obtained from the fixed-effects
model

Yij ¼ β
ðf Þ
1i þ β

ðf Þ
2 Xij þ εij

and the possibly consistent and more efficient estimator is obtained from the mixed-effects
model

Yij ¼ β
ðmÞ
1 þ δ

ðmÞ
1i þ β

ðmÞ
2 Xij þ εij

If there are omitted group-constant explanatory variables correlated with X , the estimator of β2

from the mixed-effects model will be inconsistent, but the estimator from the fixed-effects
model will still be consistent as a consequence of fitting a different intercept for each group. If,
on the other hand, there are no such omitted variables, then both models provide consistent

45For the proof of this fact, see Exercise 23.3.
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estimators of β2, but by virtue of its many fewer parameters, the mixed-effects estimator will
be more efficient. The Hausman test statistic is

Z2
0 ¼

bβðf Þ2 & bβ
ðmÞ
2

& '2

bV bβðf Þ2

& '
& bV bβðmÞ2

& '

where bV bβðf Þ2

& '
is the estimated sampling variance of the fixed-effects estimator and

bV bβðmÞ2

& '
is the estimated sampling variance of the mixed-effects estimator; under the hypoth-

esis that the mixed-effects model is correct, Z2
0 is distributed as χ2

1.46 Inclusion of the composi-
tional variable X i: in the model renders the Hausman test effectively irrelevant.

The choice between random and fixed effects should reflect our view of the process that
generates the data. If groups are literally sampled from a larger population of groups—as, for
example, schools might be sampled from a population of schools—then it is natural to construe
group effects as random. Similarly, if it is possible in principle to repeat a study with a differ-
ent selection of groups, then it arguably makes sense to treat group effects as random, even if
the groups are not literally sampled. This, or the previous situation, is commonly the case for
longitudinal data on individuals and may be the case for hierarchical data. Finally, even when
we cannot in principle repeat the study with different groups—as, for example, when the
groups are the nations of the world—it may make sense to treat group effects as random, if it
does not strain credulity to conceptualize the group-level data that we observe as the result of a
partly random process, which may, therefore, have turned out differently. This is implicitly the
point of view we take when we construct a hierarchical model for variation in individual-level
coefficients across higher-level units such as nations.

In a mixed-effects model, centering an explanatory variable at the cluster means pro-
duces a different fit to the data—and a model with different interpretation—than center-
ing the variable at a fixed value or leaving it uncentered. An exception occurs when the
models include the compositional explanatory variable computed from the cluster means,
in which case the models are observationally equivalent. Including the compositional
variable also renders irrelevant an advantage that is often attributed to fixed-effects mod-
els: that is, that fixed-effects models control for all explanatory variables that are invar-
iant within clusters, including unobserved cluster-invariant variables (but at the expense
of being incapable of estimating the contextual effects of these variables).

46*More generally, we may be interested in obtaining consistent estimates of several regression coefficients. Let us col-
lect these coefficients in a parameter vector fl1, which therefore will contain a common subset of parameters that appear
in both the fixed- and mixed-effects models. Let the estimates of these parameters be respectively bflðf Þ1 and bflðmÞ1 , with
estimated covariance matrices bV bflðf Þ1

& '
and bV bflðmÞ1

& '
. The Hausman test statistic is then

Z2
0 ¼ bflðmÞ1 & bflðf Þ1

& '0 bV bflðf Þ1

& '
& bV bflðmÞ1

& 'h i&1 bflðmÞ1 & bflðf Þ1

& '

which, under the hypothesis that the mixed-effects model is correct, is distributed as chi-square with degrees of freedom
equal to the number of coefficients in fl1. In the event that the difference in coefficient covariance matrices is singular,

we can use a generalized inverse of bV bflðf Þ1

& '
& bV bflðmÞ1

& 'h i
, and the degrees of freedom for the test are reduced to the

rank of this matrix.
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23.8 BLUPs

Most social science applications of mixed-effects models focus on estimates of the fixed effects
and, possibly, the variance components. ‘‘Estimating’’ the random effects for each higher-level
unit is less frequently of direct interest, but considering how one goes about this process sheds
light on mixed-effects models more generally, and consequently, I will address the topic briefly
in this section. Recall that ‘‘estimating’’ is placed in quotation marks (with which I will dis-
pense below) because the random effects are not parameters.

If the variance and covariance components were known, we could compute estimates of the
fixed effects and random effects by generalized least-squares (GLS) regression.47 It is instruc-
tive to examine the simplest instance of an LMM, the random effects one-way ANOVA model
(introduced in Section 23.3.2):

Yij ¼ β1 þ δ1i þ εij

The variance components for this model are V ðδ1iÞ ¼ c2
1 and V ðεijÞ ¼ σ2

ε . Because
Eðδ1iÞ ¼ EðεijÞ ¼ 0, we can take the mean in each group, Y i# as an independent, unbiased esti-
mator of β1, with variance σ2

ε=ni. Furthermore, any weighted average of the group means

bβ1 ¼
Pm

i¼1 wiY i#Pm
i¼1 wi

for nonnegative weights wi, not all 0, provides an unbiased estimator of β1. The GLS estimator
of β1 uses weights inversely proportional to the variances of the group means, most directly,
wi ¼ ni, which amounts simply to bβ1 ¼ Y , the unweighted average of the Yij. The GLS
weights minimize the sampling variance of bβ1, making the GLS estimator the best linear
unbiased estimator (BLUE) of β1.48

Consider next how we could go about estimating δ1i. One estimate is based on the group
mean, bδð1Þ1i ¼ Y i# & Y , which has variance σ2

ε=ni if we condition on the estimated fixed effect
bβ1 ¼ Y . Another estimate is simply the expected value of δ1i, that is bδð2Þ1i ¼ 0, which has var-
iance c2

1. As above, combining these two estimates optimally to produce the best linear
unbiased predictor (BLUP) of δ1i entails weighting the separate estimates inversely to their var-
iances, yielding

bδ1i ¼
Y i# & Y

1þ σ2
ε

nic
2
1

Because the denominator of bδ1i exceeds 1, the BLUP will always be closer to 0 than is the
direct estimate Y i# & Y , with the difference dependent on how large σ2

ε=ni (i.e., the variance of
bδð1Þ1i ) is relative to c2

1. Substituting estimates of σ2
ε and c2

1 for the variance components pro-
duces the empirical best linear unbiased predictor (EBLUP) of δ1i.

47See Section 23.9.1.
48See Exercise 23.2. This is a consequence of the generalization to GLS of the Gauss-Markov theorem, presented in
Section 9.3.2.
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The BLUP is sometimes called a ‘‘shrinkage’’ estimator because it shrinks the estimated
effect of membership in the ith group, Y i# & Y , toward 0. More generally, BLUPs combine
information from a particular group with information from other groups, weighting the various
sources of information inversely to their variances; ‘‘shrinkage’’ more generally is therefore to
the rest of the data, not necessarily toward 0. For example, the BLUP of the mean of the ith
group, bµi ¼ Y þ bδ1i, ‘‘shrinks’’ Y i# toward the general mean Y .

23.9 Statistical Details*

23.9.1 The Laird-Ware Model in Matrix Form

Like the linear model,49 the Laird-Ware mixed model (Equation 23.1 on page 702) can be
represented much more compactly and simply in matrix form:

yi ¼ Xiflþ Zi–i þ "i

–i ; Nqð0;CÞ
–i; –i0 are independent for i 6¼ i0

"i ; Nnið0; σ2
εLiÞ

"i; "i0 are independent for i 6¼ i0

"i; –i0 are independent for all i; i0 including i ¼ i0

where

' yi is the ni · 1 response vector for observations in the ith of m groups;
' Xi is the ni · p model matrix for the fixed effects of observations in group i, of full col-

umn rank p;
' fl is the p · 1 vector of fixed-effect coefficients, common to all groups;
' Zi is the ni · q model matrix for the random effects of observations in group i, of full

column rank q;
' –i is the q · 1 vector of random-effect coefficients for group i;
' "i is the ni · 1 vector of errors for observations in group i;
' c is the q · q covariance matrix for the random effects; and
' s2

εLi is the ni · ni covariance matrix for the errors in group i and is σ2
εIni if the within-

group errors have constant variance and are independent of each other.

Estimating Linear Mixed Models

Let n [
Pm

i¼1 ni represent the total number of observations over all m groups. It is conveni-
ent to write the model for all n observations simultaneously as

y ¼ Xflþ Z–þ " ð23:16Þ

where

(23.15)

49See Chapter 9.
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' y
ðn · 1Þ

[ y01; y
0
2; . . . ; y0m)

0 stacks up the response vectors yi for the m groups in one long

column vector;
' similarly, "

ðn · 1Þ
[ ½"01; "02; . . . ; "0m)

0 is the stacked-up error vector;

' fl
ðp · 1Þ

is, as before, the fixed-effects parameter vector, common to all m groups;

' the model matrix for the fixed effects is

X
ðn · pÞ

[

X1

X2

..

.

Xm

2

6664

3

7775

and is of rank p;
' the model matrix for the random effects is block-diagonal,

Z
ðn · mqÞ

[

Z1 0 # # # 0
0 Z2 # # # 0
..
. ..

. . .
. ..

.

0 0 # # # Zm

2

6664

3

7775

of rank mq, and each component 0 matrix is of order ni · q;
' –

ðmq · 1Þ
[ –01; –

0
2; . . . ; –0m)

0 is the stacked-up vector of random effects;

' and let

C*
ðmq · mqÞ

[

C 0 # # # 0
0 C # # # 0
..
. ..

. . .
. ..

.

0 0 # # # C

2

664

3

775

Notice the different structures of the fixed-effects and random-effects model matrices (X and
Z, respectively): Because the fixed effects are common to all groups, it suffices simply to stack
up the model matrices for the groups into X. In contrast, the block-diagonal structure of Z
ensures that the proper random effects –i enter the model for each group. As well, because the
covariance matrix of the random effects c is the same for all groups, the diagonal blocks of c*

are identical.
For the model in Equation 23.16, we have

E
–
"

( )
¼ 0

0

( )
ð23:17Þ

and, because the random effects – and the errors " are independent of each other,

V
–
"

( )
¼ C* 0

0 σ2
εL

( )
ð23:18Þ

where
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σ2
ε L
ðn · nÞ

[ σ2
ε

L1 0 # # # 0
0 L2 # # # 0
..
. ..

. . .
. ..

.

0 0 # # # L2

2

6664

3

7775

is the block-diagonal covariance matrix for the errors. In hierarchical data with observations
sampled independently within groups and with constant error variance, V ðεÞ ¼ σ2

εIn. From
Equations 23.17 and 23.18, the covariance matrix of the response is50

Q
ðn · nÞ

[ V ðyÞ ¼ ZC*Z0 þ σ2
εL

Summarizing, y ; NnðXfl;QÞ.
Suppose unrealistically, for the purpose of argument, that all of the variance and covariance

parameters in C and σ2
εL, and thus Q, are known. Treating the random effects – as if they

were parameters, we could obtain estimates of fl and – by generalized least squares (GLS),
solving the estimating equations51

X0L&1X X0L&1Z
Z0L&1X Z0L&1Zþ σ2

εC
*&1

( ) bfl
b–

( )
¼ X0L&1y

Z0L&1y

( )
ð23:19Þ

and producing

bfl ¼ ðX0Q&1XÞ&1X0Q&1y

b– ¼ C*Z 0Q&1ðy& XbflÞ
ð23:20Þ

The maximum-likelihood estimator of fl is bfl, and b– contains the BLUPs of the random effects.
Pursuing the application of GLS, the covariance matrix of the fixed-effects estimates is

V ðbflÞ ¼ ðX0Q&1XÞ&1

As mentioned, y is multivariate normal with expectation Xfl and covariance matrix Q. Writing
out its density in detail,52

pðyjfl;QÞ ¼ 1

ð2πÞn=2 ffiffiffiffiffiffiffiffiffiffiffi
det Q
p exp ðy& XflÞ0Q&1ðy& XflÞ

# $
ð23:21Þ

Suppose now, and once again unrealistically, that the variance and covariance components are
unknown but that the fixed effects fl are known. Collect the independent variance- and covar-
iance-component parameters in a vector !. For example, the original hierarchical model that I
entertained for the High School and Beyond data (Equation 23.10 on page 714) has variance
and covariance components c2

1 ¼ V ðδ1iÞ, c2
2 ¼ V ðδ2iÞ, c12 ¼ Cðδ1i; δ2iÞ, and σ2

ε ¼ V ðεijÞ , and
thus ![ ½c2

1;c
2
2;c12; σ

2
ε )
0. The covariance matrix Q of y is a function of ! [say, Qð!Þ], and

the log-likelihood for these parameters is53

50See Exercise 23.4.
51See Section 16.1 for generalized least-squares estimation and Exercise 23.5 for the derivation of the LMM estimating
equations and their solution, along with the coefficient covariance matrix for the fixed-effects estimates. The covariance
matrix for the random effects also follows from these results but is too complicated for me to write it out explicitly
here.
52See online Appendix D on probability and estimation for a description of the multivariate-normal distribution.
53See Exercise 23.6.
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loge Lðσjfl; yÞ ¼ & n
2

logeð2πÞ &
1

2
loge det Qð!Þ½ ) & 1

2
ðy& XflÞQ&1ðσÞðy& XflÞ ð23:22Þ

We could estimate ! by maximizing this log-likelihood.
These observations suggest the basis of a procedure for maximum-likelihood estimation of

all parameters in the LMM, along with the EBLUPs of the random effects:

1. Start with preliminary estimates of the variance- and covariance-component parameters,
b!0.

2. Use bQ0 ¼ Qðb!0Þ to obtain corresponding estimates of the fixed effects, bfl0, according
to the first line of Equations 23.20.

3. Use the preliminary estimates of the fixed effects bfl0 to estimate the variance and covar-
iance components, maximizing Equation 23.22 and obtaining b!1.

4. Iterate (i.e., repeat) Steps 2 and 3 until the estimates of fl and ! converge.

REML estimation of the linear mixed model is similar, except that the REML log-likelihood is

loge LREMLð!jfl; yÞ ¼ &
n& p

2
logeð2πÞ &

1

2
loge det Qð!Þ½ )

& 1

2
loge det X0Q&1ð!ÞX

# $* +
& 1

2
ðy& XflÞ0Q&1ð!Þðy& XflÞ

EBLUPs of the random effects can be computed by substituting estimates of the fixed effects
and the variance and covariance components (obtained either by ML or by REML) into the
second line of Equations 23.20.

23.9.2 Wald Tests Revisited

A linear hypothesis for the fixed effects in an LMM takes the following form:54

H0: L
ðr · pÞ

fl
ðp · 1Þ

¼ 0
ðr · 1Þ

where the hypothesis matrix L is formulated so that it is of full row rank r. In the simplest case,
L consists of r ¼ 1 row with one nonzero unit entry, such as L ¼ ð0; 1; 0; . . . ; 0Þ, correspond-
ing to the hypothesis H0: β2 ¼ 0.

The estimated covariance matrix of the fixed-effects coefficients follows from the solution
of the mixed-model estimating equations (given in Equations 23.20):

bV ðbflÞ ¼ X0 bQ
&1

X
& '&1

where, recall, Q ¼ ZC*Z0 þ σ2
εL is the covariance matrix of the response vector y. The esti-

mate bQ, therefore, is computed from bσ2
ε , bc* , and bL, which, in turn, typically depend on a

small number of estimated variance and covariance parameters. Using bV ðbflÞ, a naive Wald
F-statistic for the hypothesis is

54Cf. Section 9.4.3 for linear hypotheses in linear models.
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F0 ¼
1

r
bflL0 LbV ðbflÞL0

h i&1
Lbfl

with r and n& p degrees of freedom. For example, for the simple hypothesis H0: β2 ¼ 0,
where L ¼ ð0; 1; 0; . . . ; 0Þ,

F0 ¼
bβ2

2

bV ðbβ2Þ

with 1 and n& p degrees of freedom, and thus

t0 ¼
ffiffiffiffiffi
F0

p
¼

bβ2

SEðbβ2Þ

with n& p degrees of freedom.
As mentioned,55 however, these F- and t-test statistics run up against two problems: (1) The

estimated covariance matrix bV ðbflÞ can be substantially biased, tending to produce coefficient
standard errors that are too small, and (2) the degrees of freedom n& p do not take account of
the dependencies among the observations and consequently are too large. Taken together, these
problems imply that naive Wald tests and confidence intervals tend to exaggerate the statistical
significance and precision of estimation of the fixed effects.

Kenward and Roger (1997) suggest a method to correct for the downward bias in the
estimated coefficient variances by inflating the coefficient covariance matrix bV ðbflÞ.
Satterthwaite’s (1946) method can then be applied to the adjusted coefficient covariance matrix
to get corrected denominator degrees of freedom for Wald t- and F- tests.56

Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 23.1. Using the estimated fixed effects in the table on page 717 for the model fit to
the High School and Beyond data, find the fixed-effect regression equations for typical low,
medium, and high mean SES Catholic and public schools, as plotted in Figure 23.6.

Exercise 23.2. *BLUPs: As discussed in Section 23.8, show that for the random-effects one-
way ANOVA model, Yij ¼ β1 þ δ1i þ εij, the weights wi ¼ ni minimize the variance of the
estimator

bβ1 ¼
Pm

i¼1 wiY i#Pm
i¼1 wi

and thus that this choice provides the best linear unbiased estimator (BLUE) of β1. Then
explain why

55In Section 23.5.
56The details are sufficiently complex that I will not present them here, but see, for example, Stroup (2013, Section
5.4).
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bδ1i ¼
Y i# & Y

1þ σ2
ε

nic
2
1

is the best linear unbiased predictor (BLUP) of δ1i.

Exercise 23.3. *Prove that the least-squares estimates of the coefficient β2 for Xij is the same
in the following two fixed-effects models (numbered as in Section 23.7.1):

Recall the context: The data are divided into groups i ¼ 1; . . . ;m, with individuals
j ¼ 1; . . . ; ni in the ith group. The first model (Model 1) fits a different intercept βð1Þ1i in each
group, along with the common slope β

ð1Þ
2 . The second model (Model 5) fits a common inter-

cept β
ð5Þ
1 and common slope β

ð5Þ
2 but controls for the compositional variable X i#. (Hint:

Consider the added-variable plot that determines the coefficient bβ2.57 In Model 1, this added-
variable plot is the scatterplot for residuals from the regressions of Yij and Xij & X i# on a set of
m dummy regressors for groups. In Model 5, the added-variable plot is the scatterplot for resi-
duals from the regressions of Yij and Xij & X i# on the compositional variable X i# and the inter-
cept, but the compositional variable is itself the projection of Xij onto the space spanned by the
group dummy regressors—that is, the group means X i# are of course perfectly determined by
the groups.)

Exercise 23.4. *Using

V
–
"

( )
¼ c* 0

0 σ2
εL

( )

show that the covariance matrix of the response variable in the compact form of the LMM,
y ¼ Xflþ Z–þ ", can be written as V ðyÞ ¼ Zc*Z0 þ σ2

εL.58

Exercise 23.5. *Derive the generalized least-squares estimating equations for the LMM
(repeating Equation 23.19 from page 736),

X0L&1X X0L&1Z
Z0L&1X Z0L&1Zþ σ2

εC*&1

( ) bfl
b–

( )
¼ X0L&1y

Z0L&1y

( )

and show that the solution can be written as

bfl ¼ ðX0Q&1XÞ&1X0Q&1y

b– ¼C*Z 0Q&1ðy& XbflÞ

where Q [ V ðyÞ ¼ ZC*Z0 þ σ2
εL. Then show that V ðbflÞ ¼ ðX0Q&1XÞ&1. An even more-chal-

lenging exercise: Find an explicit expression for the covariance matrix of the BLUPs b–. (Hint:
Invert the partitioned matrix on the left-hand side of the GLS estimating equations for the
LMM in Equations 23.19.)

1. Yij ¼ β
ð1Þ
1i þ β

ð1Þ
2 Xij & X i#
! "

þ εij

5. Yij ¼ β
ð5Þ
1 þ β

ð5Þ
2 Xij & X i#
! "

þ β
ð5Þ
3 X i# þ εij

57See Section 11.6.1 and Exercises 11.5 and 11.6 for information on added-variable plots.
58See Section 23.9.1
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Exercise 23.6. *Show that the log-likelihood for the variance-covariance-component para-
meters ! given the fixed effects fl can be written as (repeating Equation 23.22 from page 737)

loge Lð!jfl; yÞ ¼ & n
2

logeð2πÞ &
1

2
loge det Qð!Þ½ ) & 1

2
ðy& XflÞQ&1ð!Þðy& XflÞ

Summary

' Clustered data commonly arise in two contexts: hierarchical data, in which lower-level
units, such as individual students, are nested within higher-level units, such as schools,
and longitudinal data, in which individuals (or other multiple units of observation) are
followed over time. In both cases, observations within a cluster—lower-level units
within higher-level units or different measurement occasions for the same individual—
cannot reasonably be treated as statistically independent. Mixed-effect models take
account of dependencies in hierarchical, longitudinal, and other dependent data.

' The linear mixed-effects model (LMM) is applicable both to hierarchical and longitudi-
nal data; in Laird-Ware form, the model is written

Yij ¼ β1 þ β2X2ij þ # # # þ βpXpij þ δ1iZ1ij þ # # # þ δqiZqij þ εij

δki ; Nð0;c2
kÞ;Cðδki; δk0iÞ ¼ ckk0

δki; δk0i0 are independent for i 6¼ i0

εij ; Nð0; σ2
ελijjÞ;Cðεij; εij0Þ ¼ σ2

ελijj0

εij; εi0j0 are independent for i 6¼ i0

δki; εi0j are independent for all i; i0; k; j ðincluding i ¼ i0Þ

Here, Yij is the value of the response variable for the jth of ni observations in the ith of
m clusters, the βs are fixed-effect coefficients, the X s are fixed-effect regressors, the δs
are random-effect coefficients, the Zs are random-effect regressors, and the εs are errors
for individuals within clusters. The cs and λs, which capture the dependencies among
the random effects and errors within clusters, are typically expressed in terms of a small
number of fundamental variance- and covariance-component parameters.

' In modeling hierarchical data, it is often natural to formulate an individual-level model
within clusters and then to treat the coefficients of that model as random effects that
appear as the responses in a higher-level model. The models at the two levels can be
combined as an LMM in Laird-Ware form. Contextual variables describe higher-level
units; compositional variables also describe higher-level units but are derived from
lower-level units (e.g., by averaging).

' The coefficients-as-outcomes model relates regression coefficients of lower-level units
within clusters to characteristics of the clusters. Simpler hierarchical models include the
random-effects one-way ANOVA model, in which each cluster has its own mean,
treated as a random effect, and the random-coefficients regression model, in which sev-
eral regression coefficients can vary randomly across clusters. In the random-effects
one-way ANOVA model, the intraclass correlation measures the proportion of individ-
ual-level variation that is due to differences among clusters, r ¼ c2

1=ðc2
1 þ σ2

εÞ, where
c2

1 is the variance component for clusters and σ2
ε is the error variance.
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' LMMs can be estimated by maximum likelihood (ML) or by restricted maximum likeli-
hood (REML). When the number of clusters is small, REML tends to produce less
biased estimates of variance components.

' In modeling longitudinal data, it is often sensible to allow for serial correlation in the
errors. A common error-generating process for equally spaced observations is the first-
order autoregressive process, AR(1), εij ¼ φεi;j&1 þ yij, where yij ; Nð0; σ2

yÞ, φj j < 1, and
yij and yij0 are independent for j 6¼ j0. In the AR(1) process, the autocorrelation between
two errors s time periods apart is rðsÞ ¼ φjsj. When the errors are unequally spaced, we
may instead specify a continuous first-order autoregressive process, for which similarly
Corðεit; εi;tþsÞ ¼ rðsÞ ¼ φjsj, but where the time interval between observations, s, need
not be an integer.

' When there are relatively few Level 2 units, naively computed Wald t- and F-tests, con-
fidence intervals, and confidence regions for fixed-effects coefficients estimated by
REML can be inaccurate. Inference based on Wald statistics can be rendered more accu-
rate by employing the Kenward-Roger adjustment to coefficient standard errors and
Satterthwaite degrees of freedom.

' When the LMM is estimated by REML, it is inappropriate to use likelihood-ratio tests
that compare models that differ in their fixed effects, even when the fixed effects for the
two models are nested. We can, however, perform likelihood-ratio tests for variance and
covariance components, as long as we are careful to take account of the fact that the null
value of 0 for a variance parameter is on the boundary of the parameter space. If we
delete one of q random effects from the model, that removes a variance component and
q& 1 covariance components. The p-value for the resulting likelihood-ratio test statistic
is computed as p ¼ Prðχ2

q > G2
0Þ þ Prðχ2

q&1 > G2
0Þ

h i
=2.

' In a mixed-effects model, centering an explanatory variable at the cluster means pro-
duces a different fit to the data—and a model with different interpretation—than center-
ing the variable at a fixed value or leaving it uncentered. An exception occurs when the
models include the compositional explanatory variable computed from the cluster
means, in which case the models are observationally equivalent. Including the composi-
tional variable also renders irrelevant an advantage that is often attributed to fixed-
effects models: that is, that fixed-effects models control for all explanatory variables that
are invariant within clusters, including unobserved cluster-invariant variables (but at the
expense of being incapable of estimating the contextual effects of these variables).

Recommended Reading

There are many books on mixed-effects models, and the subject can certainly profit from a
more extensive treatment than I have been able to give it in this (and the next) chapter. I find
the following sources especially useful:

' Snijders and Bosker (2012) provide a highly accessible treatment of mixed-effects mod-
els, emphasizing hierarchical data and linear mixed models. Careful attention is paid to
the practice of mixed-effects modeling, and there are numerous examples from the social
sciences.
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' Raudenbush and Bryk (2012) also emphasize hierarchical data but provide greater for-
mal detail. They do so, however, in a manner that builds insight and supports intuitive
understanding of the statistical results. Examples are drawn from the social sciences,
with a focus on educational research.

' Gelman and Hill (2007) present multilevel models in the more general context of regres-
sion analysis. Their treatment carefully balances the theoretical underpinnings of statisti-
cal models with a sensitivity to the data and stresses Bayesian methods.
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24
Generalized

Linear and
Nonlinear

Mixed-Effects
Models

T he range of application of linear models is greatly expanded by considering non-normal
conditional distributions of the response variable, producing the class of generalized lin-

ear models developed in Part IV of the text. The same is true of linear mixed models, and the
first section of the current chapter introduces generalized linear mixed models for non-normal
responses. Generalized nonlinear mixed models are useful, for example, for modeling clustered
categorical responses and count data. The second section of the chapter takes up fundamentally
nonlinear mixed-effects models for clustered data, generalizing the treatment of the topic in
Chapter 17, where I developed nonlinear models for independent observations.

24.1 Generalized Linear Mixed Models

Recall that a generalized linear model consists of three components:1

! a random component, specifying the conditional distribution—or simply the conditional
mean and variance—of the response variable Yi for observation i, given the regressors,
Xi1;Xi2; . . . ;Xik ; traditionally, but not necessarily, the random component is a member
of an exponential family of distributions—the normal (Gaussian), binomial, Poisson,
gamma, or inverse-Gaussian families;

! a linear predictor,

ηi ¼ αþ β1Xi1 þ $ $ $ þ βkXik

on which the expected value µi of the response variable depends; and
! a link function gðµiÞ ¼ ηi, which transforms the expectation of the response to the linear

predictor; the inverse of the link function is the mean function: g'1ðηiÞ ¼ µi.

The generalized linear mixed-effects model (GLMM) is a straightforward extension of the gen-
eralized linear model, adding random effects to the linear predictor and expressing the expected
value of the response conditional on the random effects: The link function gð$Þ is the same as
in generalized linear models. In the GLMM, the conditional distribution of Yij, the response for

1See Chapter 15.

743



observation j in group i, given the random effects, is (most straightforwardly) a member of an
exponential family, with mean µij, variance

V ðYijÞ ¼ φvðµijÞλij

and covariances

CðYij; Yij0Þ ¼ φ
ffiffiffiffiffiffiffiffiffiffiffiffi
vðµijÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
vðµij 0Þ

q
λijj0

where φ is a dispersion parameter and the function vðµijÞ depends on the distributional family
to which Y belongs. Recall, for example, that in the binomial and Poisson families, the disper-
sion is fixed to 1, and that in the Gaussian family, vðµÞ ¼ 1.

We will make the same assumptions about the random effects δki in the GLMM that we made
in the LMM: that they are multivariate normal with 0 means, that they may be correlated for a
particular observation and may have unequal variances, but that they are independent across
observations. That is, δki ; Nð0;c2

kÞ; Cðδki; δk0iÞ ¼ ckk0 , and δki; δk0i0 are independent for i 6¼ i0.
The generalized linear mixed model is fit by maximum-likelihood estimation when the con-

ditional distribution of the response is a member of an exponential family or quasi-likelihood
when it is not. Although it is not difficult to write down the likelihood for the model,2 the like-
lihood is difficult to maximize because it is necessary to integrate out (i.e., ‘‘sum over’’) the
unobservable random effects. Consequently, statistical software for GLMMs resorts to various
approximations, including (in ascending order of general accuracy) penalized quasi-likelihood,
the Laplace approximation, and Gauss-Hermite quadrature. Bayesian approaches are also com-
monly employed but are beyond the scope of this chapter, as are the details of the differences
among the various approximate ML methods.3

The generalized linear mixed-effects model (GLMM) may be written as

ηij ¼ β1 þ β2X2ij þ $ $ $ þ βpXpij þ δ1iZ1ij þ $ $ $ þ δqiZqij

gðµijÞ ¼ EðYijjδ1i; . . . ; δqiÞ ¼ ηij

δki ; Nð0;c2
kÞ; Cðδki; δk 0iÞ ¼ ckk0

δki; δk0i0 are independent for i 6¼ i0

V ðYijÞ ¼ φvðµijÞλij

CðYij; Yij0Þ ¼ φ
ffiffiffiffiffiffiffiffiffiffiffiffi
vðµijÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
vðµij0Þ

q
λijj0

Yij; Yij0 are independent for i 6¼ i0

where ηij is the linear predictor for observation j in cluster i; the fixed-effect coefficients
(βs), random-effect coefficients (δs), fixed-effect regressors (X s), and random-effect
regressors (Zs) are defined as in the LMM; and the dispersion parameter φ and variance
function nð$Þ depend on the distributional family to which Y belongs; alternatively, for
quasi-likelihood estimation, nð$Þ can be given directly. The GLMM is estimated by
approximate maximum likelihood.

2See Section 24.1.2.
3But see the references given at the end of the chapter.
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24.1.1 Example: Migraine Headaches

In an effort to reduce the severity and frequency of migraine headaches through the use of bio-
feedback training, Tammy Kostecki-Dillon, a psychologist, collected longitudinal data on
migraine headache sufferers.4 The 133 patients who participated in the study were each given
four weekly sessions of biofeedback training. The patients were asked to keep daily logs of their
headaches for a period of 30 days prior to training, during training, and after training, to 100 days
after training began. Compliance with these instructions was low, and there is therefore quite a
bit of missing data; for example, only 55 patients kept a log prior to training. On average, sub-
jects recorded information on 31 days, with the number of days ranging from 7 to 121. Subjects
were divided into three self-selected groups: those who discontinued their migraine medication
during the training and posttraining phase of the study, those who continued their medication but
at a reduced dose, and those who continued their medication at the previous dose.

I will use a binomial GLMM—specifically, a binary logit model—to analyze the incidence
of headaches during the period of the study. Examination of the data suggested that the inci-
dence of headaches was invariant during the pretraining phase of the study, increased (as was
expected by the investigator) at the start of training, and then declined at a decreasing rate. I
decided to fit a linear trend prior to the start of training (before time 0), possibly to capture a
trend that I failed to detect in my exploration of the data and to transform time at time 0 and
later (which, for simplicity, I term time posttreatment) by taking the square root.5 In addition to
the intercept, representing the level of headache incidence at the end of the pretraining period,
I included a dummy regressor coded 1 posttreatment and 0 pretreatment to capture the antici-
pated increase in headache incidence at the start of training, dummy regressors for levels of
medication, and interactions between medication and treatment, as well as between medication
and the pre- and posttreatment time trends. Thus, the fixed-effects part of the model is

logitðπijÞ ¼ β1 þ β2M1i þ β3M2i þ β4Pij þ β5T0ij þ β6

ffiffiffiffiffiffiffi
T1ij

p

þ β7M1iPij þ β8M2iPij þ β9M1iT0ij þ β10M2iT0ij

þ β11M1i

ffiffiffiffiffiffiffi
T1ij

p
þ β12M2i

ffiffiffiffiffiffiffi
T1ij

p
ð24:1Þ

where

! πij is the probability of a headache for individual i ¼ 1; . . . ; 133, on occasion
j ¼ 1; . . . ; ni;

! M1i is a dummy regressor coded 1 if individual i continued taking migraine medication
at a reduced dose posttreatment, and M2i is a dummy regressor coded 1 if individual i
continued taking medication at its previous dose posttreatment;

! Pij is a dummy regressor coded 1 posttreatment (i.e., after time 0) and 0 pretreatment;
! T0ij is time (in days) pretreatment, running from '29 through 0, and coded 0 after treat-

ment began;
! T1ij is time (in days) posttreatment, running from 1 through 99, and coded 0

pretreatment.

4The data are described by Kostecki-Dillon, Monette, and Wong (1999) and were generously made available to me by
Georges Monette. The data were also used in a different context by Gao (2007).
5The original analysis of the data by Georges Monette used regression splines for time trends, with results generally
similar to those reported here: See Exercise 24.1.
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I included patient random effects for the intercept (i.e., the level of headache incidence pretreat-
ment), for the posttreatment dummy regressor, and for the pre- and posttreatment time-trend
regressors.

Wald tests for the fixed effects reveal that all of the interactions are nonsignificant, along
with the pretreatment trend, while the medication and treatment effects, along with the post-
treatment trend, are highly statistically significant:6

Even without explicit temporal autocorrelation, the random effects are relatively complex for
such a small data set, and it would be desirable to be able to simplify this part of the model. To
this end, I dropped each random effect in turn and performed likelihood-ratio tests for the cor-
responding variance and covariance components; in each case, one variance and three covar-
iance components are removed from the model, and p-values are computed using the approach
described in Section 23.6:

On the basis of these tests for the fixed and random effects, I specified a final model for the
migraine data that eliminates the fixed-effect interactions with medication and the pretreatment
trend fixed and random effects, obtaining the following estimates for the fixed effects and var-
iance components. I number the fixed-effect parameters and corresponding variance compo-
nents as in the original model (Equation 24.1), show the variance components as standard
deviations, and suppress the covariance components:

Term Wald Chi-square df p

Medication ðM1;M2Þ 22:07 2 < :0001
Treatment ðPÞ 16:09 1 < :0001
Pretreatment Trend ðT0Þ 0:35 1 :55
Posttreatment Trend

ffiffiffiffiffi
T1
p" #

37:87 1 ( :0001
Medication · Treatment 2:50 2 :29
Medication · Pretreatment Trend 1:85 2 :40
Medication · Posttreatment Trend 0:07 2 :97

Random Effect Removed G2 p

Intercept 19:70 :0004
Treatment 12:08 :012
Pretreatment Trend 5:79 :17
Posttreatment Trend 16:21 :0019

6These tests are constructed conforming to the principle of marginality. For example, the test for medication is com-
puted assuming that the interactions are nil. See Sections 7.3.5 and 8.2.5 for further discussion, in the context of linear
models, of formulating hypothesis tests when terms in the model are related by marginality.
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Figure 24.1 shows the estimated fixed effects plotted on the probability scale; as a conse-
quence, the posttreatment trends for the three medication conditions are not parallel, as they
would be if plotted on the logit scale. It is apparent from this graph that after an initial increase
at the start of treatment, the incidence of headaches declined to substantially below its pretreat-
ment level. As well, the incidence of headaches was lowest among the patients who discontin-
ued their medication and highest among those who reduced their medication; patients who
continued their medication at pretraining levels were intermediate in headache incidence.7

Of course, self-selection of the medication groups renders interpretation of this pattern
ambiguous.

Term Parameter Estimate Std. Error

Intercept β1 20.246 0:344
c1 1.306 —

Medication (reduced) β2 2.049 0:467
(continuing) β3 1.156 0:383

Treatment β4 1.059 0:244
c2 1.313 —

Posttreatment Trend β6 20.268 0:045
c4 0.239 —
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Figure 24.1 Fixed effects from a binomial GLMM fit to the migraine data. Treatment started at
Time 1.

7See Exercise 24.1 for the construction of this graph.
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24.1.2 Statistical Details*

The Generalized Linear Mixed Model in Matrix Form

In matrix form, the GLMM is

·i ¼ Xiflþ Zi–i

gð„iÞ ¼ g½Eðyij–iÞ* ¼ ·i

–i ; Nqð0;CÞ
–i; –i0 are independent for i 6¼ i0

Eðyij–iÞ ¼ „i

V ðyij –iÞ ¼ φv1=2ðµiÞLv1=2ð„iÞ
yi; yi0 are independent for i 6¼ i0

where

! yi is the ni · 1 response vector for observations in the ith of m groups;
! „i is the ni · 1 expectation vector for the response, conditional on the random effects;
! ·i is the ni · 1 linear predictor for the elements of the response vector;
! gð$Þ is the link function, transforming the conditional expected response to the linear

predictor;
! Xi is the ni · p model matrix for the fixed effects of observations in group i;
! fl is the p · 1 vector of fixed-effect coefficients;
! Zi is the ni · q model matrix for the random effects of observations in group i;
! –i is the q · 1 vector of random-effect coefficients for group i;
! C is the q · q covariance matrix of the random effects;
! Li is ni · ni and expresses the dependence structure for the conditional distribution of

the response within each group—for example, if the observations are sampled indepen-
dently in each group, Li ¼ Ini ;

! v1=2ð„iÞ[ diag½
ffiffiffiffiffiffiffiffiffiffiffiffi
vðµijÞ

q
*, with the form of the variance function vð$Þ depending on the

distributional family to which yi belongs; and
! φ is the dispersion parameter.

Alternatively, for quasi-likelihood estimation, the variance function vð$Þ can be given directly,
without assuming an exponential family for Y .8

Estimating Generalized Linear Mixed Models

Estimation of the GLMM is considerably more complex than estimation of the LMM, and
so I will avoid the details. As in the case of the LMM, it is convenient to rewrite the GLMM
(Equation 24.2) for all n ¼

P
ni observations simultaneously:

· ¼ Xflþ Z–

gð„Þ ¼ g½Eðyj–Þ* ¼ ·

(24.2)

(24.3)

(24.4)

8As in the generalized linear model; see Section 15.3.
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where the fixed-effects model matrix X, the random-effects model matrix Z, the response vec-
tor y, the fixed-effects coefficients fl, and the random-effects coefficients – are similar to the
analogous terms in the LMM (Equation 23.16 on page 734). The linear predictor

·
ðn · 1Þ

[ ½·01;·
0
2; . . . ;·0m*

0

is likewise the stacked-up column vector of linear predictors, and

„
ðn · 1Þ

[ ½„01;„
0
2; . . . ;„0m*

0

is the stacked-up conditional expectation vector of the response. As in the linear mixed model,
the random effects are multivariately normally distributed, –; Nmqð0;C+Þ, where C+ is a
block-diagonal matrix with C on the diagonal blocks. The variance-covariance matrix of the
response conditional on the random effects is

V ðyj–Þ ¼ φv1=2ð„ÞLv1=2ð„Þ

where L is an n · n block-diagonal matrix with the Li on the diagonal blocks, and v1=2ð„Þ[
diag½

ffiffiffiffiffiffiffiffiffiffiffiffi
vðµijÞ

q
* is an n · n diagonal matrix.

The distribution of the random effects – is multivariate normal:

pð–jCÞ ¼ 1

ð2πÞmq=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det C+p exp ð–0C+'1–Þ

The distribution of the response conditional on the random effects, pðyjfl; φ; –Þ, depends on the
distributional family from which the response is drawn.9 To obtain the marginal distribution of
the data, we must integrate over the random effects,

pðyjfl;φÞ ¼
Z

–
pðyjfl;φ; –Þpð–jCÞd– ð24:5Þ

Then, maximizing pðyjfl;φÞ produces maximum-likelihood estimates of the fixed effects fl,
along with the dispersion parameter φ. The integral in Equation 24.5 is difficult to evaluate,
however, leading to the approximate methods mentioned in Section 24.1: penalized quasi-
likelihood (PQL), the Laplace approximation, and Gauss-Hermite quadrature (in order of
increasing general accuracy). Because better methods are now widely available in statistical
software, it is in particular a good idea to avoid estimation by PQL. Gauss-Hermite quadrature
was used to fit a binomial GLMM to the headache data in Section 24.1.1.10

24.2 Nonlinear Mixed Models*

For the ith of n independent observations, the nonlinear regression model is

Yi ¼ f ðfl ; x0iÞ þ εi

where Yi is the response variable, fl is a vector of regression coefficients, x0i is a vector of
explanatory variables, and εi is the error. We assume that εi ; Nð0; σ2

εÞ and that εi and εi0 are
independent for i 6¼ i0. The nonlinear regression function f ð$Þ is specified explicitly as part of

9See Section 15.3.1.
10I employed the glmer function in the lme4 package for R for these computations.
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the model. Under these assumptions, maximum-likelihood estimates for the parameters of the
model are provided by nonlinear least squares.11

One extension of the nonlinear regression model to include random effects, due to Pinheiro
and Bates (2000), is as follows (but with different notation than in the original source):

yi ¼ f ð!i;XiÞ þ "i

!i ¼ Aiflþ Bi–i
ð24:6Þ

where

! yi is the ni · 1 response vector for the ni observations in the ith of m groups.
! Xi is a ni · s matrix of explanatory variables (some of which may be categorical) for

observations in group i.
! "i ; Nnið0;σ2

εLiÞ is a ni · 1 vector of multivariately normally distributed errors for obser-
vations in group i; the matrix Li, which is ni · ni, is typically parametrized in terms of a
much smaller number of parameters, and Li ¼ Ini if the observations are independently
sampled within groups.

! !i is a ni · 1 composite coefficient vector for the observations in group i, incorporating
both fixed and random effects.

! fl is the p · 1 vector of fixed-effect parameters.
! –i ; Nqð0;CÞ is the q · 1 vector of random-effect coefficients for group i.
! Ai and Bi are, respectively, ni · p and ni · q matrices of known constants for combining

the fixed and random effects in group i. These will often be ‘‘incidence matrices’’ of 0s
and 1s but may also include Level 1 explanatory variables, treated as conditionally fixed
(as in the standard linear model).

Like fundamentally nonlinear fixed-effects regression models, nonlinear mixed-effects models
(NLMMs) are uncommon in the social and behavioral sciences. Variable transformations,
regression splines, and polynomial regressors allow us to fit a wide variety of nonlinear rela-
tionships within the ambit of the LMM. Nevertheless, as in the following example, it is occa-
sionally more natural to specify a nonlinear mixed model, especially when the parameters of
the model have compelling substantive interpretations.

The nonlinear mixed-effects model (NLMM) takes the form

yi ¼ f ð!i;XiÞ þ "i

!i ¼ Aiflþ Bi–i

where yi is the response vector for the ith cluster; Xi is a matrix of explanatory variables,
also for the ith cluster; !i is the composite coefficient vector for the observations in
cluster i; fl is the vector of fixed-effect parameters; –i ; Nqð0;CÞ is the vector of ran-
dom-effect coefficients for cluster i; and Ai and Bi are matrices of known constants for
combining the fixed and random effects, typically containing 0s and 1s along with Level
1 explanatory variables. Like the GLMM, the NLMM is estimated by approximate
maximum likelihood.

11Fundamentally nonlinear models for independent observations and nonlinear least-squares estimation are developed
in Section 17.4.
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24.2.1 Example: Recovery From Coma

The data and model for this example are taken from Wong, Monette, and Weiner (2001).12

The data pertain to 200 patients who sustained traumatic brain injuries resulting in comas of
varying duration. After awakening from their comas, patients were periodically administered a
standard IQ test. In this section, I will examine recovery of ‘‘performance IQ’’ (‘‘ PIQ’’) post-
coma; the data set also includes a measure of verbal IQ.13

About half of the patients in the study (107) completed a single IQ test, but the remainder
were measured on two to five irregularly timed occasions, raising the possibility of tracing the
trajectory of IQ recovery postcoma. A mixed-effects model is very useful here because it
allows us to pool the information in the small number of observations available per patient to
estimate the typical within-subject trajectory of recovery along with variation in this trajectory.

After examining the data, Wong et al. posited the following asymptotic growth model for IQ
recovery:

Yij ¼ θ1i þ θ2ie
'θ3iX1ij þ εij

θ1i ¼ β1 þ β2

ffiffiffiffiffiffi
X2i

p
þ δ1i

θ2i ¼ β3 þ β4

ffiffiffiffiffiffi
X2i

p
þ δ2i

θ3i ¼ β5

ð24:7Þ

where the variables and parameters of the model have the following interpretations (see
Figure 24.2):

! Yij is the PIQ of the ith patient measured on the jth occasion, j ¼ 1; . . . ; ni; as men-
tioned, ni ¼ 1 for about half the patients.

! X1ij is the time postcoma (in days) for the ith patient at the jth occasion.
! X2i is the duration of the coma (in days) for the ith patient.
! θ1i is the eventual, recovered level of PIQ for patient i, specified to depend linearly on

the square root of the length of the coma, with fixed-effect parameters β1 and β2, as well
as a random-effect component δ1i. Were patients to recover PIQ fully, the average value
of θ1i would be 100, assuming that coma patients are representative of the general popu-
lation in their precoma average level of IQ. Thus, the fixed-effect intercept β1 is inter-
pretable as the expected eventual level of PIQ for a patient in a coma of zero days
duration.

! θ2i is the negative of the amount of PIQ eventually regained by patient i, beginning at
the point of recovery from coma. Like θ1i, the coefficient θ2i has a fixed-effect compo-
nent depending linearly on length of coma, with parameters β3 and β4, and a random-
effect component, δ2i.

12I am grateful to Georges Monette for making the data and associated materials available to me. The analysis reported
here is very similar to that in the original source.
13See Exercise 24.2 for a parallel analysis of the data on verbal IQ.
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! θ3i is the recovery rate for patient i, treated as a fixed effect, β5, with ðloge 2Þ=θ3i repre-
senting the time required to recover half the difference between final and (expected) ini-
tial postcoma PIQ (the ‘‘half-recovery’’ time), that is, 'θ2i=2.14

! εij is the error for patient i on occasion j.

There are, therefore, four variance-covariance components in this model, V ðεijÞ ¼ σ2
ε ,

V ðδ1iÞ ¼ c2
1, V ðδ2iÞ ¼ c2

2, and Cðδ1i; δ2iÞ ¼ c12. Although the data are longitudinal, there are
too few observations per patient to entertain a model with serially correlated errors.

Before fitting this model, I will examine the data, both to determine whether the posited
model seems reasonable and to provide rough guesses for the fixed-effects parameters. As in
nonlinear least squares,15 initial guesses of the fixed-effects parameters provide a starting point
for the iterative process of maximizing the likelihood in the NLMM.

Figure 24.3 is a scatterplot of PIQ versus number of days postcoma, with the observations
for each patient connected by lines. Forty of the 331 measurements were taken after 1000 days
postcoma, and these are omitted from the graph to allow us to discern more clearly the general
pattern of the data. The line on the plot is drawn by local linear regression.16 Mixing together
the observations from all patients makes the scatterplot difficult to interpret, but on the other
hand, there are too few observations for each patient to establish clear individual trajectories.

0 Time

PIQ

0

θ1i

− θ2i

− θ2i 2

( loge2) θ3i

Figure 24.2 The asymptotic growth model for recovery of IQ following coma,
Yij ¼ θ1i þ θ2ie'θ3iX1ij þ εij, where Yij is the PIQ and X1ij is the time postcoma for sub-
ject i on occasion j. The parameter θ1i represents the eventual level of PIQ for subject
i, 'θ2i is the amount of PIQ recovered by subject i, and θ3 is the rate of recovery for
subject i (fixed across subjects), with ðloge 2Þ=θ3 representing the time to
half-recovery.

14It makes substantive sense to treat the patients’ recovery rates as potentially variable—that is, as a random effect—
but doing so introduces three additional parameters (a variance component and two covariance components) yet leaves
the likelihood essentially unchanged. The very small number of observations per patient produces very little informa-
tion in the data for estimating patient-specific recovery rates.
15See Section 17.4.
16See Section 18.1.2.
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Nevertheless, the asymptotic growth model is roughly consistent with the general pattern of
the data, and the patients for whom there are multiple observations do tend to improve over time.

Figure 24.4 is a scatterplot of the initial PIQ measurement for each patient against the length
of the patient’s coma (in days, on the square-root scale). These initial measurements were taken
at varying times postcoma and therefore should not be interpreted as the PIQ at time of awa-
kening (i.e., time 0) for each patient. The relationship of initial PIQ to square-root length of
coma appears to be reasonably linear.

These two graphs also provide a basis for obtaining initial values of the fixed-effects para-
meters in the mixed model of Equations 24.7:

! Figure 24.3 leads me to expect that the average eventual level of recovered IQ will be
less than 100, but Figure 24.4 suggests that the average eventual level for those who
spent fewer days in a coma should be somewhat higher; I therefore use the start value
β
ð0Þ
1 ¼ 100.

! The slope of the least-squares line in Figure 24.4, relating initial PIQ to the square-root
of length of coma, is '1:9, and thus I take β

ð0Þ
2 ¼ '2.

! The parameter β3 represents the negative of the expected eventual gain in PIQ for a
patient who spent 0 days in a coma. On the basis of Figure 24.3, I will guess that such
patients start on average at a PIQ of 90 and eventually recover to an average of 100,
suggesting the start value β

ð0Þ
3 ¼ '10.

! The parameter β4 represents the change in expected eventual PIQ gain with a 1-unit
increase in the length of the coma on the square-root scale. My examination of the data does
not provide a basis for guessing the value of this parameter, and so I will take β

ð0Þ
4 ¼ 0.

! Recall that the time to half-recovery is ðloge 2Þ=β5. From Figure 24.3, it seems reason-
able to guess that the half-recovery time is around 100 days. Thus, β

ð0Þ
5 ¼ ðloge 2Þ=

100 ¼ 0:007.
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Figure 24.3 Scatterplot for PIQ versus days since awakening from coma. Observations beyond
1000 days are not shown, and the observations for each patient are connected by
gray lines. The heavier black line is for a nonparametric regression smooth.
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With these start values for the fixed effects, maximum-likelihood estimation of the model con-
verges rapidly to the following parameter estimates:17

All of the estimated fixed-effects parameters are considerably larger than their standard errors.
The estimated correlation between the random effects δ1i and δ2i is very high; however,
rδ1δ2 ¼ '35:67=ð13:77 · 2:606Þ ¼ ':994. We might either simplify the model, say by elimi-
nating random effects δ2i from the equation for θ2i, or by reparameterizing the model to reduce
the correlation between the random effects.

The estimates of the fixed effects suggest that the average final level of recovered PIQ for indi-
viduals in a coma of 0 days duration is bβ1 ¼ 97:1. This level declines, as anticipated, with the
length of the coma, bβ2 ¼ '1:25. On average, patients who spend 0 days in a coma recover
'bβ3 ¼ 11:1 PIQ points, and the average size of the recovery increases with the length of the
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Figure 24.4 Scatterplot of the initial PIQ measurement for each patient (not necessarily taken at
day 0) versus the number of days the patient spent in a coma (on the square-
root scale). The broken line is a least-squares line, while the solid line is a
nonparametric-regression smooth.

Parameter ML Estimate Std. Error

β1 97.09 2.04
β2 21.245 0.480
β3 211.15 3.21
β4 23.248 1.077
β5 0.008251 0.001651
σε 6.736
c1 13.77
c2 2.606

c12 235.67

17But REML estimates do not converge without simplifying the random effects.
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coma, 'bβ4 ¼ 3:25. The estimated half-recovery time is ðloge 2Þ=bβ5 ¼ ðloge 2Þ=0:00825 ¼ 84
days. The fixed-effect display in Figure 24.5, similar to one reported in the original paper by Wong
et al., shows how typical PIQ recovery varies as a function of days postcoma and length of coma.

24.2.2 Estimating Nonlinear Mixed Models

As in the LMM, it is convenient to write the NLMM simultaneously for all n ¼
P

ni

observations:

y ¼ f ð!;XÞ þ "
! ¼ Aflþ B–

where y is the n · 1 stacked-up response vector, " is the n · 1 stacked-up vector of errors, – is
the n · 1 stacked-up vector of random effects, ! is the stacked-up n · 1 composite coefficient
vector, X is the stacked-up n · s explanatory-variable matrix, and A and B are the stacked-up
n · p and n · mq ‘‘incidence matrices’’ respectively for the fixed and random effects. The inci-
dence matrix for the random effects has a block-diagonal structure:

B
ðn · mqÞ

[

B1 0 $ $ $ 0
0 B2 $ $ $ 0
..
. ..

. . .
. ..

.

0 0 $ $ $ Bm

2

6664

3

7775

The assumed distributions of the errors and the random effects are the same as in the LMM:18

Days Post Coma

A
ve

ra
ge

 P
IQ

20
40

60
80

10
0

20
40

60
80

10
0

0 200 400 600 800 1000

1

10
20

50

100

200

Length
of Coma

Figure 24.5 Fixed-effect plot of average PIQ by days since recovery from coma and length
of coma in days, based on the NLMM fit to the coma-recovery data.

SOURCE: Adapted from Wong et al. (2001).

18See Section 23.9.1.
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"; Nnð0; σ2
εLÞ

–; Nmqð0;C+Þ

where

L
ðn · nÞ

[

L1 0 $ $ $ 0
0 L2 $ $ $ 0
..
. ..

. . .
. ..

.

0 0 $ $ $ L2

2

6664

3

7775

C+
ðmq · mqÞ

[

C 0 $ $ $ 0
0 C $ $ $ 0
..
. ..

. . .
. ..

.

0 0 $ $ $ C

2

664

3

775

The distribution of the random effects is therefore the same as for a linear mixed model, with
multivariate-normal density

pð–Þ ¼ 1

ð2πÞmq=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det C+p exp 1

2–
0C+'1–

" #

Because the individual-level errors " have 0 expectations, the expectation and covariance
matrix of y, conditional on the random effects, are

Eðyj–Þ ¼ !
V ðyj–Þ ¼ σ2

εL

and the multivariate-normal conditional density of y is

pðyj–Þ ¼ 1

ð2πÞN=2
σε

ffiffiffiffiffiffiffiffiffiffiffi
det L
p exp

1

2σ2
ε

ðy' !Þ0L'1ðy' !Þ
$ %

The marginal density of y, integrating over the random effects, is therefore

pðyÞ ¼
Z

–
pðyj–Þpð–Þd–

¼
Z

–

1

ð2πÞN=2
σε

ffiffiffiffiffiffiffiffiffiffiffi
det L
p exp

1

2σ2
ε

ðy' θÞ0L'1ðy' !Þ
$ %

·
1

ð2πÞmq=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det C+p exp

1

2
–0C+'1–

& '
d–

ð24:8Þ

Treating this formula as a function of the parameters fl, σ2
ε , L, and C produces the likelihood

for the NLMM. Because the integral in Equation 24.8 is not tractable analytically, numerical
methods of approximation, similar to those used for GLMMs,19 are required to maximize the
likelihood.

19See Section 24.1.2.
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Exercises

Please find data analysis exercises and data sets for this chapter on the website for the book.

Exercise 24.1. Further on migraine headaches:

(a) A graph of the fixed effects for the mixed-effects logit model fit to the migraine head-
aches data is shown in Figure 24.1 (page 747), and the estimated parameters of the
model are given on page 746. Explain how the lines on the graph, showing how the
fitted probability of headache occurrence depends on medication group and time, can
be computed from the estimates of the fixed effects.

(b) As mentioned (footnote 5 on page 745), the original analysis of the migraine head-
aches data used a regression spline, rather than a square-root transformation, for time
posttreatment. Reanalyze the data using a regression spline for time posttreatment, and
compare the results to those produced by the model employed in the text.20

Exercise 24.2. Further on recovery from coma:

(a) The example in Section 24.2.1 on recovery from coma uses data on performance IQ.
The original analysis of the data by Wong et al. (2001) also examined verbal
IQ. Repeat the analysis using verbal IQ as the response variable, employing the non-
linear mixed-effects model in Equations 24.7. Compare the results for postcoma recov-
ery of performance and verbal IQ.

(b) Figure 24.5 (page 755) shows the trajectory of postcoma performance IQ as a function
of length of coma and days postcoma, with days postcoma on the horizontal axis of
the graph and lines drawn for selected values of length of coma. Using the estimates
of the fixed effects (given on page 754), draw an alternative graph with length of coma
on the horizontal axis and different lines for selected values of days postcoma. Then
draw a 3D plot of the fitted regression surface, with average PIQ on the vertical axis
and length of coma and days postcoma as the ‘‘horizontal’’ axes.

Summary

! The generalized linear mixed-effects model (GLMM) may be written as

ηij ¼ β1 þ β2X2ij þ $ $ $ þ βpXpij þ δ1iZ1ij þ $ $ $ þ δqiZqij

gðµijÞ ¼ EðYijjδ1i; . . . ; δqiÞ ¼ ηij

δki ; Nð0;c2
kÞ; Cðδki; δk0iÞ ¼ ckk0

δki; δk0i0 are independent for i 6¼ i 0

V ðYijÞ ¼ φvðµijÞλij

CðYij; Yij0Þ ¼ φ
ffiffiffiffiffiffiffiffiffiffiffiffi
vðµijÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
vðµij0Þ

q
λijj 0

Yij; Yij0 are independent for i 6¼ i 0

20See Section 17.2 for information on regression splines.
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where ηij is the linear predictor for observation j in cluster i; the fixed-effect coefficients
(βs), random-effect coefficients (δs), fixed-effect regressors (X s), and random-effect
regressors (Zs) are defined as in the LMM; and the dispersion parameter φ and variance
function nð$Þ depend on the distributional family to which Y belongs; alternatively, for
quasi-likelihood estimation, nð$Þ can be given directly. The GLMM is estimated by
approximate maximum likelihood.

! The nonlinear mixed-effects model (NLMM) takes the form

yi ¼ f ð!i;XiÞ þ "i

!i ¼ Aiflþ Bi–i

where yi is the response vector for the ith cluster; Xi is a matrix of explanatory variables,
also for the ith cluster; !i is the composite coefficient vector for the observations in clus-
ter i; fl is the vector of fixed-effect parameters; –i ; Nqð0;CÞ is the vector of random-
effect coefficients for cluster i; and Ai and Bi are matrices of known constants for com-
bining the fixed and random effects, typically containing 0s and 1s along with Level 1
explanatory variables. Like the GLMM, the NLMM is estimated by approximate maxi-
mum likelihood.

Recommended Reading

! Of the recommended readings in the previous chapter, Raudenbush and Bryk (2002)
have the most extensive coverage of generalized linear mixed models.

! Stroup (2013) strongly emphasizes the generalized linear mixed model, treating other
statistical models—linear models, generalized linear models, and linear mixed-effects
models—as special cases. The presentation is considerably more demanding than in the
other recommended sources in this and the preceding chapter, and Stroup derives all of
the basic results for linear and generalized linear mixed models. The examples in the
text are not oriented toward the social sciences.
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Appendix A______________________________________

Notation

S pecific notation is introduced at various points in the appendices and chapters.
Throughout the text, I adhere to the following general conventions, with few exceptions.

(Examples are shown in brackets.)

! Known scalar constants (including subscripts) are represented by lowercase italic letters
[a; b; xi; x"1].

! Observable scalar random variables are represented by uppercase italic letters [X , Yi, B
0

0]
or if the names contain more than one character, by Roman letters, the first of which is
uppercase [RegSS, RSS0]. Where it is necessary to make the distinction, specific values
of random variables are represented as constants [x, yi, b

0

0].
! Scalar parameters are represented by lowercase Greek letters [α, β, β"j , γ2]. (See the

Greek alphabet in Table 1.) Their estimators are generally denoted by ‘‘corresponding’’
italic characters [A, B, B"j , C2] or by Greek letters with diacritics [bα, bβ].

! Unobservable scalar random variables are also represented by lowercase Greek letters
[εi].

! Vectors and matrices are represented by boldface characters––lowercase for vectors
[x1, fl] and uppercase for matrices [X, S12]. Roman letters are used for constants and
observable random variables [y, x1, X]. Greek letters are used for parameters and unob-
servable random variables [fl,S12, "]. It is occasionally convenient to show the order of
a vector or matrix below the matrix [ "

ðn · 1Þ
, X
ðn · kþ1Þ

]. The order of an identity matrix is

given by a subscript [In]. A zero matrix or vector is represented by a boldface 0 [0]; a
vector of 1s is represented by a boldface 1, possibly subscripted with its number of ele-
ments [1n]. Vectors are column vectors, unless they are explicitly transposed [column:

x; row: x
0
].

! Diacritics and symbols such as " (asterisk) and
0

(prime) are used freely as modifiers to
denote alternative forms [X", β

0
, eε].
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! The symbol [ can be read as ‘‘is defined by’’ or ‘‘is equal to by definition’’
[X [ ð

P
XiÞ=n].

! The symbol » means ‘‘is approximately equal to’’ [1=3 » 0:333].
! The symbol& means ‘‘much less than’’ [p& :0001].
! The symbol ; means ‘‘is distributed as’’ [εi ; Nð0; σ2

εÞ].
! The symbol 2 denotes membership in a set [1 2 f1; 2; 3g].
! The operator Eð Þ denotes the expectation of a scalar, vector, or matrix random variable

[EðYiÞ, Eð"Þ, EðXÞ].
! The operator V ð Þ denotes the variance of a scalar random variable or the variance-

covariance matrix of a vector random variable [V ðεiÞ, V ðbÞ].
! Estimated variances or variance-covariance matrices are indicated by a circumflex

(‘‘hat’’) placed over the variance operator [bV ðεiÞ, bV ðbÞ].
! The operator Cð Þ gives the covariance of two scalar random variables or the covariance

matrix of two vector random variables [CðX ; Y Þ, Cðxi; "Þ].

Table 1 The Greek Alphabet With Roman ‘‘Equivalents’’

Greek Letter Roman Equivalent

Lowercase Uppercase Phonetic Other

α A alpha a
β B beta b
γ G gamma g, n c
δ D delta d
ε E epsilon e
ζ Z zeta z
η H eta e
θ Y theta th
i I iota i
k K kappa k
λ L lambda l
µ M mu m
n N nu n
j X xi x
o O omicron o
π P pi p
r P rho r
σ S sigma s
τ T tau t
y Y upsilon y, u
φ F phi ph
χ X chi ch x
c C psi ps
ω O omega o w
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! The operators Eð Þ and Vð Þ denote asymptotic expectation and variance, respectively.
Their usage is similar to that of Eð Þ and V ð Þ [EðBÞ, VðbflÞ, bVðBÞ].

! Probability limits are specified by plim [plim b ¼ β].
! Standard mathematical functions are shown in lowercase [cos W , trace (A)]. The base of

the log function is always specified explicitly, unless it is irrelevant [loge L, log10 X ].
The exponential function expðxÞ represents ex.

! The summation sign
P

is used to denote continued additionPn
i¼1 Xi [ X1 þ X2 þ ( ( ( þ Xn)

!
. Often, the range of the index is suppressed if it is clear

from the context [
P

i Xi], and the index may be suppressed as well [
P

Xi]. The symbolQ
similarly indicates continued multiplication

Qn
i¼1 pðYiÞ[ pðY1ÞðY2Þ· ( ( (

!
· pðYnÞ).

The symbol # indicates a count [#n
i¼1ðT "b ‡ TÞ].

! To avoid awkward and repetitive phrasing in the statement of definitions and results, the
words ‘‘if’’ and ‘‘when’’ are understood to mean ‘‘if and only if,’’ unless explicitly indi-
cated to the contrary. Terms are generally set in italics when they are introduced. (‘‘Two
vectors are orthogonal if their inner product is 0.’’)
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in multivariate linear model, 225
in nonparametric regression, 23–24, 529–530, 

532–534, 537–540, 543, 546–547, 551, 
554–555, 574, 576, 580

and regression diagnostics, 270, 289, 291,  
302–303

vector geometry of, 247–248, 252–253, 256,  
259, 261 

Fitting constants, Yates’s method of, for  
ANOVA, 176

Five-number summary, Tukey’s, 41–42
Fixed effects, 703, 710, 755

models, 730, 739
Fixed explanatory variables, 108, 112, 187, 

658–659, 665
Forward search, 286–287
Forward selection, 359
F-tests:

in analysis of variance, 154, 157–158, 160, 167, 
173, 180, 190–191, 194–195

for constant error variance, 322–323
for contrasts, 194
and Cook’s D-statistic, 276, 282, 291
in dummy regression, 132, 137–138, 146, 148–149
for general linear hypothesis, 219, 450
for generalized linear models, 426, 432, 

449–450
and joint confidence regions, 220–222
for linear mixed models, 737–738
and Mallows’s Cp -statistic, 672, 694
for multiple imputation, 624–625
in multiple regression, 115–117, 217–219, 

254–256, 545
for nonlinearity (lack of fit), 319–322
for nonparametric regression, 545–546, 549, 

555–556, 561, 565–566, 569–571
step-down, for polynomial regression, 322, 522
vector geometry of, 254–256, 261

Gamma distribution, 418, 421–422, 424, 426, 
432, 444, 466–467, 743

Gamma function, 422, 444
Gaussian distribution. See Normal distribution
Gaussian (normal) kernel function, 35–36,  

529–530, 538
Gauss-Markov theorem, 110, 212–213, 231, 238, 

297, 335, 476, 496, 733

Gauss-Newton method, for nonlinear least 
squares, 518, 520–521

Generalized additive models (GAMs), 576–578
Generalized cross validation (GCV), 540–542, 

554, 574, 673, 694–695
Generalized least squares (GLS), 475–476, 

485–487, 496
bootstrapping, 666
empirical (EGLS), 487
limitations of, 494–495
and mixed-effects models, 702, 733, 736, 739
See also Weighted least squares

Generalized linear model (GLM), 418–420, 
diagnostic methods for, 453–460
robust estimation of, 600–601
saturated, 425–426, 437–442
See also Logit models; Poisson regression; 

Probit models
Generalized linear mixed-effects model (GLMM), 

743–744, 748
estimation of, 748–749

Generalized variance, 279
Generalized variance-inflation factor (GVIF), 

357–358, 367, 459–460, 635, 647
General linear model, 202, 212, 289, 502–503, 700

Multivariate, 225–227, 240
vs. generalized linear model, 418
See also Analysis of covariance; Analysis of 

variance; Dummy-variable regression; 
Multiple-regression analysis; Polynomial 

regression; Simple-regression analysis
General nonlinear model, 515
Geometric mean, 37, 77, 325
Global (unit) nonresponse, 461, 605
GLS. See Generalized least squares
Gravity model of migration, 512–513,  

523–525
Greek alphabet, 760

Hat-matrix, 289–290, 293, 298, 454, 547–548
Hat-values, 270–273, 277–281, 289–290, 293, 

305, 454–456, 600
Hausman test, 731–732
Heavy-tailed distributions, 16–17, 39, 41,  

297–299, 586, 601
Heckman’s selection-regression model, 632–634

cautions concerning, 636
Heteroscedasticity. See Non-constant error 

variance; 
See also Constant error variance; Weighted 

least squares;
“White” corrected (White-Huber) standard 

errors
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Hierarchical data, 700–701
modeling, 704–717

Hierarchical linear model, 702
See also Linear mixed-effects model

Higher-way ANOVA. See Analysis of variance, 
higher-way

Hinges (quartiles), 39, 42–44, 60–61, 70, 597
Hinge-spread (interquartile range), 32, 36, 39, 43, 

70–71, 101, 553
Histograms, 14, 30–34

See also Density estimate; Stem-and-leaf 
display

Homoscedasticity. See Constant error variance
See also Non-constant error variance

Hotelling-Lawley trace test statistic, 226
Huber objective and weight functions, 588–589, 

591–592
Hypothesis tests:

in ANCOVA, 190
in ANOVA, 154, 157–158, 160, 167, 173, 180, 

190–191, 194–195
Bayesian, 677–678
bootstrap, 660–662
for Box-Cox transformation, 78, 325
for Box-Tidwell transformation, 327
for constant error variance, 322–323,  

329–331
for contrasts, 190–194, 198–200, 206–208
for difference in means, 194
in dummy-variable regression, 135–136, 138, 

142, 146, 148–149
for equality of regression coefficients, 124, 220, 

364–365
for general linear hypothesis, 219–220,  

226–227, 291–293, 390, 450, 737
for general nonlinear hypothesis, 451–452
in generalized linear models, 425–426,  

437–438, 440–442, 448–452
impact of large samples on, 670
for “lack of fit”, 318–322, 
for linearity, 318–322, 545–546, 570–571
in logit models, 382–383, 390
in mixed-effects models, 713–714, 724–726, 

731–732, 737–738
for multiple imputation, 621–625
in multivariate linear model, 225–227
in nonparametric regression, 545–546,  

555–556, 570–571, 574
for outliers, 273–274
for overdispersion, 464
for least-squares regression coefficients, 111, 

113–117, 124, 215–220, 228, 254
for serially correlated errors, 492–493

“step-down”, for polynomial terms, 322,  
503, 522

See also F-tests; Likelihood-ratio test; score 
test; t-tests; Wald tests

Identity link function, 419, 421, 443, 449
Ignorable missing data, 607, 609, 616, 625,  

629, 633
Ill conditioning, 356, 362

See also Collinearity
Incremental sum of squares:

in ANOVA, 167, 172–174, 176–177, 180, 190, 
239–240

in dummy regression, 132, 136–138, 146, 
148–149

for equality of regression coefficients, 124
in least-squares analysis, 116–117, 217–218
for linear hypothesis, 218
for nonlinearity, 318–320
in nonparametric regression, 545–546, 549, 

555–556, 561, 569, 571
vector geometry of, 254, 261
See also F-tests

Incremental sum-of-squares-and-products matrix, 
225–226

Independence:
assumption of, 16, 108–110, 112, 123–124, 

128, 156, 203, 211–212, 214, 225,  
229–230, 240, 257, 297, 304–306, 324, 
326, 346, 381, 389, 397, 401, 418, 445, 
460–462, 474, 477, 479, 488, 502, 586, 
662–663, 666, 700–703, 718, 734,  
743–744, 749–750

of nested dichotomies, 400
from irrelevant alternatives, 415

Independent random sample, 16, 460–461, 647, 
654, 662–663

Index plots, 271–272, 276–278
Indicator variables, 130

for polytomous logit model,397
See also Dummy-variable regression

Indirect effect. See Intervening variable
Influence function, 587–590
Influential observations, 29, 276–289, 290–293
Information matrix for logit models, 389–390, 

398, 414–415
Initial estimates (start values), 391, 447, 516–517, 

519–520, 591, 593, 597, 752–753
Instrumental-variables (IV) estimation, 126, 

231–234
Intention to treat, 240
Interaction effects:

in ANCOVA, 188–190
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in ANOVA, 161, 163–164, 166–181
and association parameters in log-linear 

models, 437
and component-plus-residual plots,  

313–314
cross-level, in linear mixed-effects model, 709
disordinal, 163–164
distinguished from correlation, 140–141
in dummy regression, 140–149
in generalized linear models, 419
linear-by-linear, 394
in logit models, 380, 410
and multiple imputation, 626
in nonparametric regression, 559, 569, 571
in polynomial regression, 504, 506
and structural dimension, 332
and variable selection, 361
See also Effect displays; Marginality,  

principle of 
Interquartile range. See Hinge-spread
Intervening variable, 7, 120
Intraclass correlation, 711
Invariant explanatory variables, 7, 120
Inverse link (mean) function, 419, 573, 576,  

600, 743
Inverse Mills ratio, 630–631, 633–635
Inverse regression, 333
Inverse-Gaussian distribution, 418, 421, 424–426, 

444, 466–467, 743
Inverse-square link function, 419, 421
Invertibility of MA and ARMA processes, 483
Irrelevant regressors, 6, 119, 125, 230
Item nonreponse, 605
Iteratively weighted (reweighted) least squares 

(IWLS, IRLS), 391, 447–448, 454–455, 457, 
575–576, 590–591, 593

Jackknife, 657, 664–665
Joint confidence regions. See Confidence regions, 

joint
Jointly influential observations, 282–286

Kenward-Roger standard errors, 724–725, 738
Kernel smoothing:

in nonparametric density estimation, 34–37
in nonparametric regression, 528–531,  

536–539, 580–581
Kullback-Leibler information, 675–676

Ladder of powers and roots, 56–57
See also Transformations, family of powers and 

roots
Lagged variables, 495

Least-absolute-values (LAV), 84–85, 587–588, 
591–592, 597–598

Least squares:
criterion, 84–85
estimators, properties of, 109–110
nonlinear, 515–519
objective function, 587
vector geometry of, 246–247, 252
See also Generalized least squares; Multiple-

regression analysis; 
Ordinary least-squares regression;  

Simple-regression analysis; 
Weighted least squares

Least-trimmed-squares (LTS) regression,  
596–597, 602

Levene’s test for constant error variance, 322–323
Leverage of observations. See Hat-values
Leverage plot, 291–293
Likelihood-ratio tests:

for fixed effects estimated by REML, invalidity 
of, 714, 724

for generalized linear model, 426, 449
for generalized nonparametric regression,  

574, 578
for independence, 465–466
for linear model, 217–218
for logit models, 382, 384, 404, 410–412
for log-linear models, 437–438, 440–442
and missing data, 614
for overdispersion, 464
of proportional-odds assumption, 405–406
to select transformation, 77–78, 324–325
for variance and covariance components,  

713–714, 721, 726, 746
See also Analysis of deviance

Linear estimators, 109–110, 211–213, 297
Linear hypothesis. See Hypothesis tests, for 

general linear hypothesis
Linear model. See General linear model
Linear predictor, 375, 380, 418–419, 429, 453, 

505, 743, 748–749
Linearity:

assumption of, 16–17, 106–107, 109–110, 112, 
211, 307–308

among explanatory variables, 316–317
See also Nonlinearity

Linear mixed-effects model (LMM) 702–704
estimation of, 734–737

Laird-Ware form of, 702–704, 709–710, 712, 714, 
718, 721, 734

Linear-probability model, 372–374
constrained, 374–375

Link function, 419–420, 743
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canonical, 421, 443–444, 446–447, 449
vs. linearizing transformation of response, 421
See also Complementary log-log link function; 

Identity link function; 
Inverse link function; Inverse-square link 

function; Log link function; 
Logit link function; Log-log link function; Probit 

link function; 
Square-root link function

Local averaging, in nonparametric regression, 
22–23

Local likelihood estimation, 572–574
Local linear regression. See Local-polynomial 

regression
Local-polynomial regression, 532–534, 550–557, 

573–574, 601
Loess. See Lowess smoother
Log odds. See Logit
Logarithm, as “zeroth” power, 57
Logit (log odds), 73–75, 377

empirical, 309
link function, 419–421

Logit models:
binomial, 411–413
for contingency tables, 408–413, 441–442
dichotomous, 375–383
estimation of, 381, 389–392, 397–398, 412, 

414–415
interpretation of, 377–378, 380
and log-linear model, 441–442
mixed-effects model, 745
multinomial, 393, 413, 415, 442
See also Logit models, polytomous
for nested dichotomies, 399–400,  

407–408
nonparametric, 572–574
ordered (proportional-odds), 401–403,  

406–408
polytomous, 392–393, 397–398, 407–408, 415
problems with coefficients in, 388
saturated, 412
unobserved-variable formulation of, 379, 401

Logistic distribution, 375–376
Logistic population-growth model, 515, 519–521
Logistic regression. See Logit models
Log-linear model, 434–441

relationship to logit model, 441–442
Log-log link function, 419–420
Longitudinal data, 700–701, 703, 745

modeling, 717–724
Lowess (loess) smoother, 23, 532

See also Local-polynomial regression
Lurking variable, 120

M estimator:
of location, 586–592
in regression, 592–595

MA. See Moving-average process
Main effects, 144, 146, 148–150, 161–164,  

166–184, 186–190
Mallows’s Cp-statistic, 672, 694
MAR. See Missing data, missing at random
Marginal means in ANOVA, 160
Maginal vs. partial relationship, 48, 94, 122,  

129, 308
Marginality, principle of, 144–145, 148–149, 164, 

167–168, 172–174, 177–178, 180–181, 184, 
187, 190, 384, 404, 410, 439, 503

Marquardt method, for nonlinear least squares, 518
MASE. See Mean average squared error
Maximum-likelihood estimation:

of Box-Cox transformation, 76–77, 324–326, 
337–338

of Box-Tidwell transformation, 326–328, 338
of constrained linear-probability model, 374
EM algorithm for, with missing data, 616–618
of error variance, 214–215, 217, 329, 700, 711
of general nonlinear model, 416–419
of generalized additive models, 575–576
and generalized least squares, 475–476
of generalized linear mixed-effects model,  

744, 748–749
of generalized linear model, 425, 445–448
of Heckman’s selection-regression model, 634
of linear mixed-effects model, 711,  

736–737, 740
   of linear regression model, 110, 113,  

123–124, 214–215, 228–229, 700
of logit models, 381, 389–391, 397–398,  

411–412, 414–415
of log-linear models, 438
with missing data, 613–619
of multivariate linear model, 225, 240
of nonlinear mixed-effects model, 756
with random regressors, 228–229
restricted (REML), 711, 737
in time-series regression, 487, 498
of transformation parameters in regression, 

323–329
and weighted least squares, 304, 335
of zero-inflated negative-binomial (ZINB) 

model, 465
of zero-inflated Poisson (ZIP) model, 433–434

MCAR. See Missing data, missing completely at 
random

Mean average squared error (MASE) in local 
regression, 541–542
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Mean function, 331–332, 419, 743
Mean-deviation form, vector geometry of, 

247–250
See also Centering

“Mean-shift” outlier model, 273
Mean-squared error:

and biased estimation, 361–363
and Cp-statistic, 672
and cross-validation, 673
of least-squares estimator, 110, 212
in nonparametric regression, 537, 539, 555
and outlier rejection, 274–275
of ridge estimator, 363

Mean squares, 115
Measurement error, 120–123, 125
Median, 18, 32, 39, 42–44, 60–61, 70–71, 322, 

587–590, 595, 597, 601–602
Median absolute deviation (MAD), 588–589
Method-of-moments estimator of dispersion 

parameter, 425, 431–432, 447–448
Missing data:

available-case analysis (pair-wise deletion) of, 
610–612

complete-case analysis (list-wise, case-wise 
deletion) of, 610–613

conditional mean (regression) imputation of, 611
missing at random (MAR), 606–614, 617, 619, 

621, 625
missing completely at random (MCAR),  

606–612, 614
missing not at random (MNAR), 606–612, 614, 

616, 629
multiple imputation of, 619–626
unconditional mean imputation of, 611
univariate, 607, 611, 640

Missing information, rate of, 622
MM estimator, 597
MNAR. See Missing data, missing not at random
Model averaging, 685–687

based on AIC, 695
comments on, 687–688

Model matrix, 203–204, 208, 210–211, 225, 227, 
232, 259, 289, 389, 397, 447, 453, 593, 
734–735, 748–749

row basis of, 205–206, 208, 236, 240–241, 260
Model respecification and collinearity, 359, 365
Model selection:

avoiding, 670
and collinearity, 359, 365
comments on, 683, 685
criteria for, 671–674
and fallacy of affirming the consequent, 669
vs. model averaging, 670

and simultaneous inference, 669
See also Akaike information criterion; Bayesian 

information criterion; 
Correlation, multiple, adjusted for degrees of 

freedom; Cross validation; 
Mallows’s Cp-statistic; Model averaging
Model validation, 690–691, 693
Modes, multiple, in error distribution, 16, 298
Moving-average process (MA), 482–483,  

485–487, 496
Multicollinearity, 344

See also Collinearity
Multinomial distribution, 413, 415, 418, 437, 621
Multinomial logit model. See Logit models, 

multinomial; Logit models, polytomous
Multiple correlation. See Correlation, multiple
Multiple imputation of missing data, 619–626
Multiple outliers, 282
Multiple regression analysis, 92–98, 104,  

112–117, 202–203, 212, 270
and instrumental-variables estimation, 232–234
model for, 112
nonparametric, 550–571
vs. simple regression analysis, 94
vector geometry of, 252–256

Multiple-classification analysis (MCA), 181
Multiplicative errors, 512–513, 515
Multistage sampling, 461–462
Multivariate linear models, 225–227, 640–641, 702
Multivariate logistic distribution, 377, 392
Multivariate-normal distribution:

Box-Cox transformation to, 76–78
EM algorithm for, 617–618
and likelihood for linear model, 214
of errors in linear model, 203, 225
multiple imputation for, 619–621, 625–626
nonignorable, 607, 616, 629
and polytomous probit model, 392
of random effects in the nonlinear mixed-

effects model, 756
of regression coefficients, 211–212, 215
of response in linear model, 203
singular, of residuals, 257, 261

Negative binomial distribution, 418, 432
Negative-binomial regression model, 432–433

zero-inflated (ZINB), 465
Nested dichotomies, 399–400
Newey-West standard errors, 488–489, 499
Newton-Raphson method, 390–391, 447
Nonconstant error variance or spread, 17

and bootstrap, 659
correction for, 305–306
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detection of, 301–304
and dummy response variable, 373, 413
effect on OLS estimator, 306–307,  

335–336
in linear mixed-effects model, 703
and quantile regression, 599
and specification error, 303, 335
tests for, 322–323, 329–331
transforming, 70–72, 301–303
and weighted least squares (WLS),  

304–305, 335
Nonignorable missing data, 607, 616, 629
Nonlinear least squares, 515–519, 750
Nonlinear mixed-effects model (NLMM), 750

estimating, 755–756
Nonlinearity, 17

and correlation coefficient, 89–90
detection of, 307–318, 456–459
and dummy response variable, 373
essential, 515
monotone vs. nonmonotone, 64, 66
and multiple imputation, 625–626
tests for, 318–320, 545–546, 570–571
transformable, 512–514
transformation of, 63–66, 326–327,  

456–458
See also Linearity, assumption of; Nonlinear 

least squares; Nonparametric  
regression

Non-normality of errors:
detection of, 297–301
and dummy response variable, 373
See also Normality; Skewness

Nonorthogonal contrasts, 236
Nonparametric regression:

generalized, 572–578
by local averaging, 22–23
naive, 18–22
obstacles to, 556–557
See also Kernel smoothing; Local-polynomial 

regression; Splines, smoothing
Normal (Gaussian) distributions:

family of, in generalized linear mixed model, 
743–744

family of, in generalized linear model, 418, 
421–422, 426, 433, 444, 446, 449–450, 
466–467

as kernel function, 34–36, 529–530, 538
of regression coefficients, 110, 113, 215
to transform probabilities,74, 376–377,  

379, 401
See also Censored-normal distribution; 

Multivariate-normal distribution; 

Non-normality of errors; Normality, assumption 
of; Quantile-comparison plots; 

Truncated-normal distribution
Normal equations, 85, 93, 96–97, 104, 125, 

208–210, 342
Normality, assumption of, 16–17, 107, 109, 112, 

203, 212, 214, 275, 502, 515, 570, 632–633, 
638, 647

See also Non-normality of errors
Normalization, in principal-components  

analysis, 350
Normal-probability plots. See Quantile-

comparison plots
Notation, 759–761

Objective function. See Least absolute values; 
Least squares criterion; 

Huber objective and weight functions; 
Biweight (bisquare) objective and weight 

functions
Observation space, 246, 250–251, 256–258, 260
Observational vs. experimental research, 4–8, 10
Occam’s window, 687
Odds, 377–378, 380, 385, 388, 402

posterior, 677–678, 687
Omnibus null hypothesis, 115, 154, 158, 218–219, 

228, 238, 382, 390, 660
Omitted-variable bias. See Specification error
One-way ANOVA. See Analysis of variance,  

one-way
Order statistics, 37, 39, 60–61, 301, 598
Ordinal data, 400–407
Ordinary-least-squares (OLS) regression:

and generalized-least-squares, 476,  
486–487, 494

and instrumental-variables estimation,  
126, 241

for linear-probability model, 373
and nonconstant error variance, 305–307, 

335–336
vs. ridge estimator, 363
in time-series regression, 480–481, 497
and weighted least squares, 304
See also Generalized least squares; Least 

squares; Multiple regression analysis;
Simple regression analysis; Weighted least 

squares
Orthogonal contrasts, 208, 236, 522
Orthogonal data in ANOVA, 174–175, 197–198
Orthogonal (uncorrelated) regressors, 255–256

in polynomial regression, 522
Orthonormal basis for error subspace,  

257–258, 262
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Outliers, 19, 23, 26, 32, 42–43, 266–270, 272–274, 
288–289, 298, 454–455,586–589, 659

Anscombe’s insurance analogy for, 274–276
multivariate, 270–271
See also Unusual data, discarding

Overdispersion, 431–434, 464
Overfitting, 288, 690

Parametric equation, in ANOVA, 205–206,  
236, 259–260

Partial autocorrelation, 485
Partial correlation. See Correlation, partial
Partial regression functions, 317, 563–564,  

566–569, 575–576
Partial vs. marginal relationship, 48, 94, 122,  

129, 308
Partial-regression plots. See Added-variable plots; 

Leverage plot
Partial-residual plots. See Component-plus-

residual plots
Penalized sum of squares, 549
Perspective plot of regression surface, 557–558, 

561, 564–565
Pillai-Bartlett trace test statistic, 226
Poisson distribution, 418, 421–423, 426–435, 444, 

464, 466–467, 743–744
and multinomial distribution, 437

Poisson regression model, 427–430
zero-inflated (ZIP), 433–434

Polynomial regression, 28, 64, 308, 311, 317, 
320–322, 357, 451–452, 503–507, 522

piece-wise, 507–512, 523
See also Local-polynomial regression

Polytomous explanatory variables in dummy 
regression, 133, 135–136, 138–139, 145

Polytomous response variables, 392–408
Prediction in regression, 239, 361, 625, 671–673, 

677, 682–683, 685, 687
Predictive distribution of the data, 619, 621,  

628, 677
Premium-protection approach to outliers, 274–275
Principal-components analysis, 348–354, 366

and diagnosing collinearity, 356–357
Prior cause, common, 7, 120
Prior information and collinearity, 364–365
Probit:

and Heckman’s selection-regression model, 
633–634

link function, 419–420
models, 376, 379–380, 392, 399, 401, 415
transformation, 74–75

Profile log-likelihood, 325–326
Proportional-odds model, 400–403, 407–408

Pseudoresponse variable in logit model, 391
Pseudo-values in jackknife, 665

Quadratic regression. See Polynomial regression
Quadratic surfaces, 503–505
Quantile function, 38
Quantile regression, 597–598
Quantile-comparison plots, 37–40, 274,  

298–301, 655
Quartiles. See Hinges
Quasi-binomial models, 432
Quasi-likelihood estimation, 431–432, 448–449, 

744, 748
Quasi-Poisson regression model, 431–432
Quasi-variances of dummy-variable coefficients, 

138–140, 467–468

Random-coefficients regression model, 702, 
712–714

See also Linear mixed-effects model
Random effects, 700–701, 703, 710, 750, 755

crossed, 701
models, 702
See also Generalized linear mixed-effects 

model; Linear mixed-effects model; 
Nonlinear mixed-effects model

Random explanatory variables, 108, 118,  
227–230, 658, 655

Random-intercept regression model, 727
Randomization in experimental design,  

4–6, 9, 153
Raw moments, 233
Rectangular kernel function, 530
Reference category. See Baseline category
Regression of X on Y, 91, 103
Regression toward the mean, 103
Regressors, distinguished from explanatory 

variables, 130, 142, 502
Repeated-measures models, 227, 702

See also Linear mixed-effects model
Residual standard error. See Standard error of the 

regression
Residuals, 3, 83–85, 92–93, 208, 245, 247, 

252–253
augmented partial, 317
deviance, 455
distribution of, 290
in generalized linear models, 454–455, 457
partial, 308–314, 316–317, 454, 457, 564, 

567–568, 570
Pearson, 454
plot of, vs. fitted values, 302
quantile-comparison plot for, 298, 300–301
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response, 454
standardized, 272–273, 275
standardized deviance, 455
standardized Pearson, 454–455
studentized, 272–274, 280–281, 298–302, 455
supernormality of, 301
working, 454

Resistance (to outliers), 85, 286, 586, 588–589, 
600–601

Restricted maximum likelihood (REML). See 
Maximum likelihood, restricted

Restrictions (constraints) on parameters:
in ANCOVA, 189
in ANOVA, 157–158, 169, 177–178, 195, 204
in logit models for contingency tables, 410
in log-linear models, 436, 438
in polytomous logit model, 393
and ridge regression, 365
sigma, 157–158, 169, 178, 180, 186, 189,  

195, 204–205, 240, 262, 393, 410, 436, 
438, 442

Ridge regression, 362–365, 367
Ridge trace, 367
Robust regression. See Generalized linear model, 

robust estimation of; 
Least-trimmed-squares regression; M estimator; 

MM estimator; Quantile regression
Robustness of efficiency and validity, 297
Roy’s maximum root test statistic, 226
Rug plot, 35

Sampling fraction, 461
Sampling variance:

of fitted values, 543
of the generalized-least-squares estimator,  

476, 496
of least-squares estimators, 109, 113, 123, 212, 

215, 237, 306, 342, 356, 363, 497
of the mean, 588
of the mean of an AR(1) process, 479
of the median, 588
of a nonlinear function of coefficients, 451
of nonparametric regression, 20, 537
of ridge-regression estimator, 363
of weighted-least-squares estimator, 336
See also Asymptotic standard errors; Standard 

errors; Variance-covariance matrix
Sandwich coefficient covariance estimator,  

305, 489
Scatterplot matrices, 48–49, 333–334
Scatterplots, 13–14, 44–45

coded, 50
jittering, 36
one-dimensional, 35

smoothing, 23, 44–45, 528–550
three-dimensional, 50–51
vs. vector representation, 246, 260

Scheffé intervals, 222
Score test:

of constant error variance, 329–330
of proportional-odds assumption, 406
to select transformation, 324–325

Scoring, Fisher’s method of , 447
Seasonal effects, 479
Semiparametric regression models, 569–571
Separability in logit models, 388
Serially correlated errors, 476–485

diagnosing, 489–493
effect on OLS estimation, 497
estimation with, 485–487
in mixed-effects models, 718, 746

Sigma constraints. See Restrictions on parameters, 
sigma

Simple random sample, 108, 460–462, 606, 647
Simple regression analysis, 83–87, 106–112,

and instrumental variable estimation, 126, 
231–232

model for, 106–108, 245
vector geometry of, 245–252

Simpson’s paradox, 129
Skewness, 13, 16, 36, 39–41, 44, 72, 192,  

297–298, 424
See also Transformations, to correct skewness

Smoother matrix, 546–548, 550, 555, 568–569
Smoothing. See Density estimation; Lowess 

smoother; Local-polynomial regression; 
Scatterplots, smoothing; Splines, smoothing

Span of smoother, 22–24, 530–532, 534–535, 
538–544, 552, 554–556, 574, 579

See also Bandwidth; Window
Specification error, 118–119, 124–125, 229–230, 

303, 335, 633, 670, 685
Splines:

regression, 507–512, 523
smoothing, 549–550

Spread-level plot, 70–71, 302–303
Spurious association, 7, 120, 685
Square-root link function, 419, 421
SS notation for ANOVA, 172–175, 180,  

240, 262
adapted to logit models, 410

Standard error(s):
bootstrap, 653–655
of coefficients in generalized linear models, 

425, 431
of coefficients in Heckman’s selection-

regression model, 634, 643
of coefficients in logit models, 382, 388, 390
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of coefficients in regression, 111, 113–114, 215, 
279, 284, 301

collinearity, impact of, on, 341
of differences in dummy-variable coefficients, 

138–139, 467–468
of effect displays, 146, 186, 453
influence on, 277, 279
Kenward-Roger, 724–725, 738
of the mean, 648
and model selection, 670
from multiple imputations, 621–622
Newey-West, 488–489, 499
for nonlinear function of coefficients, 451–452
of order statistics, 39
of the regression, 87–88, 98, 272
of transformation-parameter estimates, 77
of two-stage least-squares estimator, 235
   “White” corrected, 305
See also Asymptotic standard errors;  

Variance-covariance matrix
Standardized regression coefficients, 100–102, 

105, 237
misuse of, 102, 149–150

“Start” for power transformation, 58–59, 79
Start values, See Initial estimates (start values)
Stationary time series, 476–477, 479–483, 498
Statistical models, limitations of, 1–4
Steepest descent, method of, for nonlinear least 

squares, 516–518
Stem-and-leaf display, 30–32
Stepwise regression, 359–360, 683
Stratified sampling, 461–462, 691
Structural dimension, 331–333, 338
Structural-equation models, 3, 123
Studentized residuals. See Residuals, studentized
Subset regression, 360, 367, 672
Sum of squares:

between-group, 159
for contrasts, 199, 208
generalized, 475
for orthogonal regressors, 255, 261
penalized, 549
prediction (PRESS), 673
raw, 172
regression (RegSS), 89, 98–99, 104, 113, 

115–117, 141, 159–160, 172, 174–176, 
193–194, 208, 218–219, 240, 248–250, 
253–256, 259, 261, 292, 322

residual (RSS), 85, 89, 98–99, 115, 149, 
159–160, 172–173, 198, 208, 217–218, 
247–251, 253, 256, 345–346, 414, 450, 
516–518, 532, 541, 543, 545, 548–549, 
551, 555–556, 569, 671, 673–674,  
694–695 

total (TSS), 89, 98–99, 115–116, 149, 173, 180, 
248–250, 253, 256, 545, 671

“Types I, II, and III”, 149, 167, 174, 384, 410
uncorrected, 250
vector geometry of, 248–249, 250–251,  

253–256, 262
weighted, 304, 335, 532, 551, 593
within-group, 159
See also Incremental sum of squares; SS 

notation
Sum-of-squares-and-products (SSP) matrices, 

225–227
Survey samples, complex, 460–464, 662–663

Tables. See Contingency tables
Three-way ANOVA. See Analysis of variance, 

three-way
Time-series data, 346, 474, 495
Time-series regression. See Generalized least 

squares
Tobit model, 638
Training subsample, 690
Transformable nonlinearity, 512–514
Transformations:

arcsine-square-root, 74
Box-Cox, 55–56, 76–77, 79, 324–325, 330, 337
Box-Tidwell, 326–327, 338, 457, 526
constructed variables for, 324–328,  

457–458
to correct nonconstant spread, 70–72, 303
to correct nonlinearity, 63–69, 308–309
to correct skewness, 59–63, 298
family of powers and roots, 55–59
“folded” powers and roots, 74
and generalized least squares, 476, 486–487, 

494, 497–498
linear, effect of, on regression coefficients, 

103–104, 124
logarithms (logs), 51–52, 69
logit, 73–74
normalizing, See Transformations, Box-Cox
of probabilities and proportions, 72–75
probit, 74
Yeo-Johnson, 79, 324

Trend in time series, 346, 479–481, 494–495
Tricube kernel function, 529–531, 533–534, 

537–538, 543, 580–581
Truncated normal distribution, 629–630, 642
Truncation, 629–630
t-tests and confidence intervals:

for constructed variable, 325–326, 328
for contrasts in ANOVA, 193–194
for difference of means, 194–195, 232, 610
in multiple imputation, 622
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for regression coefficients, 111, 114, 117, 132, 
139, 190–191, 216, 238, 450, 738

for studentized residuals (outliers), 272–274, 298
Tuning constant, 588–592
Two-stage least-squares (2SLS) estimation, 

234–235, 241
Two-way ANOVA. See Analysis of variance,  

two-way

Unbias of least-squares estimators, 109–110, 113, 
118, 123, 211–213, 228, 275, 297, 301, 306, 
362, 497

Univariate missing data, 607, 611, 640–641
Unmodeled heterogeneity, 432
Unusual data, discarding, 288–289

See also Influential observations; Leverage of 
observations; Outliers

Validation. See Cross-validation; Model validation
Validation subsample, 690
Variable-selection methods in regression. See 

Model selection
Variance components, 700, 711, 721, 727
Variance-covariance components, 712–713, 733
Variance-covariance matrix:

of errors, 188, 225, 240, 304, 335, 475,  
485–486, 496, 498

of fitted values, 547
of fixed effects in the linear mixed-effects 

model, 737–738
of generalized least-squares estimator, 476
of generalized linear model coefficients, 448
of instrumental-variables estimator, 233–234, 

240–241
of least-squares estimator, 211, 215, 305
of logit-model coefficients, 390–391, 398, 414
of M estimator coefficients, 594
of principal components, 351
of quantile-regression coefficients, 598
of ridge-regression estimator, 362–363, 367
sandwich estimator of, 305, 489
of two-stage least-squares estimator, 235
of weighted-least-squares estimator, 304, 335
See also Asymptotic standard errors; Standard 

errors
Variance-inflation factors (VIF), 113, 342–343, 

356, 459
generalized (GVIF), 357–358, 459–460, 635

Vector geometry:
of added-variable plots, 291, 293
of analysis of variance, 259–260
of correlation, 249–250, 253–254
of multiple regression, 252–256, 334, 357
of principal components, 349–352
of simple regression, 245–251

Wald tests:
bootstrapping, 660
in complex survey samples, 463
for generalized linear models, 425–426,  

448, 450
for logit models, 382, 390, 400
with missing data, 614, 624
for mixed-effects models, 715, 724–725, 

737–738
for overdispersion, 464
for proportional odds, 406
of transformation parameters, 77–78, 324

Weighted least squares (WLS), 304–306,  
335–336, 461, 475, 662, 666

estimation of linear probability model, 373
See also Iteratively weighted least squares; 

Local-polynomial regression;  
M estimator

Weighted squares of means, method of, for 
ANOVA, 176

“White” corrected (White-Huber) standard errors, 
305–307, 448, 643

White noise, 478
Wilks’s lambda test statistic, 226
Window:

in density estimation, 34–37
in nonparametric regression, 22–24, 529–531, 

533–534, 536, 552, 573
Occam’s, 687
See also Bandwidth; Span of smoother

Working response, 447, 575–576

Yeo-Johnson family of transformations,  
79, 324

Yule-Walker equations, 485, 491

Zero-inflated negative-binomial (ZINB) 
regression model, 465

Zero-inflated Poisson (ZIP) regression model, 
433–434, 465
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