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Preface

R is a powerful and flexible statistical and graphical environment that is freely
distributed under the GNU Public Licence® for all major computing platforms
(Windows, MacOSX and Linux). This open source licence along with a relatively
simple scripting syntax has promoted diverse and rapid evolution and contribution. As
the broader scientific community continues to gain greater instruction and exposure
to the overall project, the popularity of R as a teaching and research tool continues to
accelerate.

It is now widely acknowledged that R proficiency as a scientific skill set is becoming
increasingly more desirable and useful throughout the scientific community. However,
as with most open source developments, the emphasis of the R project remains on
the expansive development of tools and features. Applied documentation still remains
somewhat sparse and somewhat incomprehensible to the average biologist. Whilst
there are a number of excellent texts on R emerging, the bulk of these texts are devoted
to the R language itself. Any featured examples therein are used primarily for the
purpose of illustrating the suite of commonly used R features and procedures, rather
than to illustrate how R can be used to perform common biostatistical analyses.

Coinciding with the increasing interest in R as both a learning and research tool
for biostatistics, has been the success of a relatively new major biostatistics textbook
(Quinn and Keough, 2002). This text provides detailed coverage of most of the major
statistical concepts and tests that biologists are likely to encounter with an emphasis on
the practical implementation of these concepts with real biological data. Undoubtedly,
alarge part of the appeal of this book is attributable to the extensive use of real biological
examples to augment and reinforce the text. Furthermore, by concentrating on the
information biologists need to implement their research, and avoiding the overuse of
complex mathematical descriptions, the authors have appealed to those biologists who
don’t require (or desire) a knowledge of performing or programming entire analyses
from scratch. Such biologists tend to use statistical software that is already available
and specifically desire information that will help them achieve reliable statistical and
biological outcomes. Quinn and Keough (2002) also advocate a number of alternative

@This is an open source licence that ensured that the application as well as its source code is freely
available to use, modify and redistribute.
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texts that provide more detailed coverage of specific topics and that also adopt this real
example approach.

Typically, most biostatistical texts focus on the principles of design and analysis
without extending into the practical use of software to implement these princi-
ples. Similarly, R/S-plus texts tend to concentrate on documenting and showcasing
the features of R without providing much of a biostatistical account of the princi-
ples behind the features or illustrating how these tools can be extended to achieve
comprehensive real world analyses. Consequently, many biological students and
professionals struggle to translate the theoretical advice into computational out-
comes. Although some of these difficulties can be addressed after extensively reading
through a number of software references, many of the difficulties remain. The incon-
sistency and incompatibility between theory texts and software reference texts is
mainly the result of differing intentions of the two genres and is a source of great
frustration.

The reluctance of biostatistical texts to promote or instruct on any particular
statistical software (except for extremely specialized cases where historically only a
single dedicated program was available) is in part an acknowledgment of the diversity
of software packages available (each of which differs substantially in the range of
features offered as well as the user interface and output provided). Furthermore,
software upgrades generally involve major alternations to the way in which preex-
isting tasks are performed and thus being associated with a single software package
tends to restrict the longevity and audience of the text. In contrast, although con-
tributers are constantly extending the feature set of R environments, overall the
project maintains a consistent user interface. Consequently, there is currently both
a need and opportunity for a text that fills the gap between biostatistics texts and
software texts, so as to assist biologists with the practical side of performing statistical
analysis.

Many biological researchers and students have at one stage or another used one or
other of the major biostatistics texts and gained a good understanding of the principles.
However, from time to time (and particularly when preparing to generate a new design
or analyse a new data set), they require a quick refresher to help remind them of the
issues and principles relevant to their current design and/or analysis scenarios. In most
cases, they do not need to re-read the more discursive texts and in many cases express a
reluctance to invest large amounts of valuable research time doing so. Therefore, there
is also a need for a quick reference that summarizes the key concepts of contemporary
biostatistics and leads users step-wise through each of the analysis procedures and
options. Such a guide would also help users to identify their areas of statistical naivete
and enable them to return to a more comprehensive text with a more focused and
efficient objective.

Therefore, the intended focus of this book will be to highlight the major concepts,
principles and issues in contemporary biostatistics as well as demonstrate how to use R
(as a research design, analysis and presentation tool) to complete examples from major
biostatistics textbooks. In so doing, this proposed text acknowledges the important
role that statistical software and real examples play in reinforcing statistical principles
and practices.
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Hence in summary, the intentions of the book are three-fold

(i) To provide very brief refresher summaries of the main concepts, issues and options involved
in a range of contemporary biostatistical analyses
(i) To provide key guides that steps users through the procedures and options of a range of
contemporary biostatistical analyses
(iii) To provide detailed R scripts and documentation that enable users to perform a range of real
worked examples from statistics texts that are popular among biological and environmental
scientists

Worked examples

Where possible and appropriate, this book will make use the same examples that appear
in the popular biostatistical texts so as to take advantage of the history and information
surrounding those examples as well as any familiarity that users may have with those
examples. Having said this however, access to these other texts will not be necessary to
get good value out of the materials.

Website

This book is augmented by a website (http://www.wiley.com./go/logan/r) which
includes:

* raw data sets and R analysis scripts associated with all worked examples
* the biology package that contains many functions utilized in this book
 an R reference card containing links to pages within the book

Typographical convensions

Throughout this book, all R language objects and functions will be printed in courier
(monospaced) typeface. Commands will begin with the standard R command prompt
(<) and lines continuing on from a previous line will begin with the continuation
prompt (+). In syntax used within the chapter keys, dataset is used as an example
and should be replaced by the name of the actual data frame when used. Similarly, all
vector names should be replaced by the names used to denote the various variables in
your data set.

Acknowledgements

The inspiration for this book came primarily from Gerry Quinn and Mick Keough
towards whom I am both indebted and infuriated (in equal quantities). As authors
of a statistical piece themselves, they should known better than to encourage others



xviii PREFACE

to attempt such an undertaking! I also wish to acknowledge the intellectualizing and
suggestions of Patrick Baker and Andrew Robinson, the former of whom’s regular
supply of ideas remains a constant source of material and torment. Countless numbers
of students and colleagues have also helped refine the materials and format of this
book. As almost all of the worked examples in this book are adapted from the major
biostatistical texts, the contributions of these other authors cannot be overstated.
Finally, I would like to thank Nat, Kara, Saskia and Anika for your support and
tolerance while I wrote this “extremely quite boring book with rid-ic-li-us pictures”
(S. Logan, age 7).
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General key to statistical methods

1 a. Testing a specific null hypothesisoreffects ............................ Goto3
b. Not testing a specific null hypothesis.................................. Goto2
2 a. Statistical or numerical summaries ............. ... ... ... .. ol Chapter 3
b. Graphical summaries......... ... ... .. .. i Chapter 5
3 a. Response variable continuous ............ ..., Goto4
b. Response variable categorical or frequencies.......................... Goto 10
4 a. One or more categorical predictor (independent) variables ............. Goto6

Testing a null hypotheses about group differences
One or more continuous predictor (independent) variables............. Goto5
Investigating relationships

. Single predictor variable and linear relationship . .................... Chapter 8

Correlation and simple linear regression
Multiple predictor variables or curvilinear/complex relationship. . .. .. Chapter 9
Complex regression analysis

6 a. Asingle predictorvariable ........... ... . .. .. L Goto7
b. Multiple predictor variables............ ... ... . .. ..l Goto8
7 a. Predictor variable with two levels (two groups) ...................... Chapter 6

Simple hypothesis testing, ¢-tests
Predictor variable with multiple levels (more than two groups) .. .... Chapter 10
Single factor Analysis of Variance (ANOVA)

. All predictor variables categorical................ .. .. .. .. oL Goto9

Multifactor and complex Analysis of Variance ANOVA
Continuous and categorical predictor variables..................... Chapter 15
Analysis of Covariance

. Alllevels within each predictor variable fully replicated ............. Chapter 12

Multifactor Analysis of Variance ANOVA
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. All predictor variables blocked within a random factor.............. Chapter 13

Unreplicated factorial designs — randomized block and simple repeated measures

. Within and between blocking factors .............................. Chapter 14

Partly nested designs — split-plot and complex repeated measures

Binary response variable (presence/absence, alive/dead, yes/no etc) .. Chapter 17
Logistic regression

. Response variable frequencies .................... ... . ... Chapters 16&17

Counts from classifying units according to one or more categories
Chi-squared test, contingency tables, log-linear modeling.



Introduction to R

1. WhyR?

R is a language and programming environment for statistical analysis and graphics
that is distributed under the GNU General Public License® and is largely modeled on
the powerful proprietary S/Splus (from ATT Bell Laboratories). R provides a flexible
and powerful environment consisting of a core set of integrated tools for classical
data manipulation, analysis and display. An ever expanding library of additional
modules (packages) provide extended functionality for more specialized procedures.
Initially written by Ross Ihaka and Robert Gentleman of the Department of Statistics
at the University of Auckland (NZ), the R project is currently maintained by an
international cooperative (the ‘R Core Team’) who oversee and adjudicate on the
continual development of the project.

The GNU General Public License and flexible language ensure that the R project
has the potential to rapidly support any newly conceived procedures. Consequently,
R has (and will continue to), evolved rapidly as statisticians from a wide range of
scientific backgrounds recognize the power of universally adopted tools and offer
their contributions. Moreover, the universality, freedom and extensibility of R has
resulted in its rapid expansion in popularity among biological teaching and research
professionals and students alike. Source code and binaries (executable files) are also
freely available for the Windows, Mac? and Unix/Linux families of operating systems
from the Comprehensive R Archive Network (CRAN) site at ‘http://cran.r-project.org/’.
Not surprisingly then, R is quickly becoming the universal statistical language of the
international scientific community, and correspondingly, R proficiency skills are
becoming increasingly more valuable.

As R is a copy of S, documentation on either are generally relevant (however, it
should be noted that there are a number of differences between the two dialects). In
particular, Everitt (1994), Pinheiro and Bates (2000) and Venables and Ripley (2002)
are excellent S/S-PLUS references whilst Dalgaard (2002), Fox (2002), Maindonald
and Braun (2003), Crawley (2002, 2007), Murrell (2005) and Zuur et al. (2009) are
excellent R reference texts for biologists. In addition, there is an extensive amount of

@ Under the GNU General Public License, anyone is free to use, modify and (re)distribute the software.
b Support for the Mac OS Classic ended with R 1.7.1.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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information available on-line at the CRAN site (‘http://r-project.org’) and in the help
files packaged with the distributions and extension packages.

1.2 Installing R

At the time of writing the current version of R is R.2.9.1. Since Windows, Unix/Linux
and Mac OS systems differ extensively in areas of user privileges and software
management, different installation files and procedures are required for each of
the systems. Irrespective of the system, the latest version of an installation binary
or the source code can be downloaded from the CRAN. Binary installation files or
compressed source code for version R.2.9.1 can also be found on the accompanying
website www.wiley.com/go/logan/r.

[.2.1  Windows

Obtain a copy of the R installation binary file (e.g. R-2.9.1-win32.exe). Run this self-
extracting and self-installation file as Administrator (right click on the executable and
select Run as Administrator) if you know the appropriate password. This will install R
in the default (and best) location. If you do not know the Administrator password for
the computer (or do not have adequate privileges), R will be installed within your user
account. The installer will guide you through the installation, but for most purposes
the default options are adequate. During the installation process, startup menu and
desktop icon links to RGui.exe (the main R interface) will be automatically created.

[.2.2 Unix/Linux

Obtain a copy of the compressed R source code (e.g. R.2.9.1.tgz) and unpack it to an
appropriate location (typically /usr/local) with:

tar xvfz R.2.9.1.tgz

Note: if you do not have root status, or you wish to have R installed in an alternative
location for some reason, you are referred to the R-admin.html help file included in
the packed source. From the top directory of the unpacked source, issue the following
commands to configure, build and check the system:

./configure
make
make check

If there are no failures, the manuals can be built in dvi, pdf and/or info formats using
the following commands:

make dvi
make pdf
make info
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Install the R tree (and manuals) on your system using the following commands:

make install

make install-dvi

make install-pdf

make install-info

A symbolic link (R) will be added to /usr/local/bin and thus R can be run by
entering R at a terminal command prompt.

[.2.3 MacOSX

Obtain a copy of the R disk image file (e.g. R.2.9.1.tgz). Start the installation by running
(double-clicking on) the disk image file. This will bring up a new Finder window
containing the installation package. Run the installation package (double-click) and
if you are not already logged in as Administrator, you will be prompted for the
administrator password. The installer will then guide you through the installation, but
for most purposes the default options are adequate.

1.3 The R environment
Let’s begin with a few important definitions:

Object R is an object oriented language and everything in R is an object. For example, a
single number is an object, a variable is an object, output is an object, a data set is an
object that is itself a collection of objects, etc.

Vector A collection of one or more objects of the same type (e.g. all numbers or all
characters etc).

Function A set of instructions carried out on one or more objects. Functions are typically
used to perform specific and common tasks that would otherwise require many instructions.
For example, the function mean () is used to calculate the arithmetic mean of the values in
a given numeric vector. Functions consist of a name followed by parentheses containing
either a set of parameters (expressed as arguments) or left empty.

Parameter The kind of information that can be passed to a function. For example, the
mean () function declairs a single required parameter (a valid object for which the mean is
to be calculated is a compulsary) as well as a number of optional parameters that facilitate
finer control over the function.

Argument The specific information passed to a function to determine how the function
should perform its task. Arguments are expressions (in the form of name=value) given
between the parentheses that follow the name of the function. For example, the mean ()
function requires at least one argument - either the name of an object that contains the
values from which the mean is to be generated or a vector of values.

Operator Is a symbol that has a pre-defined meaning. Familiar operators include + - *
and /, which respectively perform addition, subtraction, multiplication and division. The
= operator is used within functions to assign values to arguments. Logical operators are
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queries returning either a TRUE or FALSE response. Familiar logical operators include < (‘is
the left hand side less than the right?’), > (‘greater than?"), <= (‘less than or equal?’) and >=
(‘greater than or equal?’), while less familiar logical operators include == (which translates
to ‘does the entry on the left hand side of the == operator equal the entry on the right
hand side?’), 1= (logical NOT - ‘is the left hand side not equal to the right?’), && (logical
AND - ‘are both left hand and right hand conditions TRUE?") and | | (logical OR - ‘is
either condition TRUE?").

[.3.1 The console (command line)

The R command prompt (>) is where you interact with R by entering commands
(expressions). Commands are evaluated once the Enter key has been pressed, however,
they can also be separated from one another on a single line by a semicolon character ().
A continuation prompt (+) is used by R to indicate that the command on the preceding
line was syntactically incomplete. R ignores all characters on a line that are followed by
a hash character (#). These statements or comments are commonly used in R literature
and scripts for explaining or detailing the surrounding commands.

Enter the following command at the R command prompt (>):

> 5 + 1
[1] 6

R evaluates the command 5+1 (5 plus 1) and returns the value of an object whose
first (and only) element is 6. The [1] indicates that this is the first (and in this case
only) element in the object returned.

Command history

Each time a command is entered at the R command prompt, the command is also
added to a list known as the command history. The up and down arrow keys scroll
backward and forward respectively through the session’s command history list and
place the top most command at the current R command prompt. Scrolling through
the command history enables previous commands to be rapidly re-executed, reviewed
or modified and executed.

1.4 Object names

All objects have unique names to which they are refered. Names given to any object
in R can comprise virtually any sequence of letters and numbers providing that the
following rules are adhered to:

* Names must begin with a letter (names beginning with numbers or operators are not
permitted)

* Names cannot contain the following characters; space , - + * / # $ & [ 1 {}
() -~
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Whilst the above rules are necessary, the following naming conventions are also
recommended:

* Avoid names that are the names of common predefined functions as this can provide a
source of confusion for both you and R. For example, to represent the mean of a head length
variable, use something like MEAN . HEAD . LENGTH of MeanHeadLength rather than mean.

* In R, all commands are case sensitive and thus A and a are different and refer to
different objects. Almost all inbuilt names in R are lowercase. Therefore, one way to reduce
the likelihood of assigning a name that is already in use by an inbuilt object is to only use
uppercase names for any objects that you create. This is a convention practiced in this book.

* Names should reflect the content of the object. One of the powerful features of R is that
there is virtually no limit to the number of objects (variables, datasets, results, models, etc)
that can be in use at a time. However, without careful name management, objects can
rapidly become misplaced or ambiguous. Therefore, the name of an object should reflect
what it is, and what has happened to it. For example, the name Log.FISH.WTS might be
given to an object that contains log transformed fish weights.

* Although there are no restrictions on the length of names, shorter names are quicker to type
and provide less scope for typographical errors and are therefore recommended (of course
within the restrictions of the point above).

* Separate any words in names by a decimal point. For example, the name HEAD . LENGTH
might be used to represent a numeric vector of head lengths.

Attempts have been made to always adhere to the above naming conventions
throughout the rest of the worked examples in this book, so as to provide a more
extensive guide to good naming practices.

1.5 Expressions, Assignment and Arithmetic

An expression is a command that is entered at the R command prompt, evaluated by
R, printed to the current output device (usually the screen), and then discarded. For
example:

> 2 + 3 <— an expression
[1] 5 < the evaluated output

Assignment assigns a name to a new object that may be the result of an evaluated
expression or any other object. The assignment operator <- is interpreted by R as
‘evaluate the expression on the right hand side and assign it the name supplied on the
left hand side’. If the object on the left hand side does not already exist, then it is
created, otherwise the object’s contents are replaced. The contents of the object can be
viewed (printed) by entering the name of the object at the command prompt.

> VAR1l <- 2 + 3 <— assign expression to the object VAR1
> VAR1 <— print the contents of the object VAR1
[1] 5 < evaluated output

¢ Assignment can also be made left to right using the -> assignment operator.
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A single command may be spread over multiple lines. If either a command is not
complete by the end of a line, or a carriage return is entered before R considers that
the command syntax is complete, the following line will begin with the prompt + to
indicate that the command is incomplete.

> VAR2 <- <— an incomplete assignment/expression

+ 2+ 3 <— assignment/expression completed

> VAR2 <— print the contents of VAR2, the evaluated output
[11 5

When the contents of a vector are numeric (see section 1.10 below), standard arithmetic
procedures can be applied.

> VAR2 - 1 < print the contents of VAR2 minus 1

[1] 4

> ANS1 <- VARl * VAR2 < evaluated expression assigned to ANS1

> ANS1 <— print the contents of ANS1 the evaluated output
[1] 25

Objects can be concatenated (joined together) to create objects with multiple entries
using the c () (concatenation) function.

> c(l, 2, 6) < concatenate 1, 2 and 6

[11 1 2 6 < printed output

> c(VAR1, ANS1) < concatenate VAR1 and ANS1 contents
[1] 5 25 < printed output

In addition to the typical addition, subtraction, multiplication and division operators,
there are a number of special operators, the simplest of which are the quotient or
integer divide operator (%/%) and the remainder or modulus operator (%%).

> 7/3
[1] 2.333333

> 7%/%3

[1]1 2
> 7%%3
[11 1

1.6 R Sessions and workspaces
[.6.1 Cleaning up

So far we have created a number of objects. To view a list of all current objects that
have been created:

> 1s() < list current objects in R environment
[1] "ANS1" "VAR1" "VAR2"
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The 1s () function is also useful for searching for the name of objects that you created
and can’t remember:

> ls(pat = "VAR") < list objects that begin with VAR

[1] "VARL" "VAR2"

> ls(pat = "A*1") < list objects that contain an A and a 1 with
[1] "ANS1" "VARL" any number of characters in between.

Since objects are easily created (and forgotten about) in R, an R session’s workspace
can rapidly become cluttered with extraneous and no longer required objects. To avoid
this, it is good practice to remove objects as they become obsolete. This is done with
the rm () function.

> rm(VARL, VAR2) <— remove the VAR1 and VAR2 objects

> rm(list = 1s()) < remove all user defined objects

1.6.2 Workspaces

Throughout an R session, all objects (including loaded packages, see section 1.19) that
have been added are stored within the R global environment, called the workspace.
Occasionally, it is desirable to save the workspace and thus all those objects (vectors,
functions, etc) that were in use during a session so that they are automatically available
during subsequent sessions. This can be done using the save.image () function.
Note, this will save the workspace to a file called .RData in the current working
directory (usually the R startup directory, see section 1.6.3), unless a filename (and
path) is supplied as an argument to the save.image () function. A previously saved
workspace can be loaded by providing a full path and filename as an argument to the
load () function. Whilst saving a workspace image can sometimes be convenient, it
can also contribute greatly to organizational problems associated with large numbers
of obsolete or undocumented objects.

1.6.3 Current working directory

By default, files are read and written to the current working directory-the R startup
directory (location of the R executable file) unless otherwise specified. To enable read
and write operations to take place in other locations, the current working directory can
be changed with the setwd () function which requires a single argument (the full path
of the directory?). The current working directory can be reviewed using the getwd ()
function

> setwd ("~/Documents/") < set the current working directory
> getwd () < review the current working directory
[1] "/home/murray/Documents"

4 Note that R using the Unix/Linux style directory subdivision markers. That is, R uses the forward
slash / in path names rather than the regular \ of Windows.
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> list.files(getwd())
[1] "addressbook.vcf"

[2] "Introduction.rnw" < listallin the current working directory
[3] "Introduction.rnw.map"

[4] "Rplots.ps"

[5] "Rscripts.R"

[.6.4 Quitting R

To quit R elegantly, use the g () function. You will be asked whether or not you wish to
save the workspace image. If you answer yes (v), the current state of your environment
or workspace (including all the objects and packages® that were added during the
session) will be stored within the current working directory.

1.7 Getting help

There are a variety of ways to obtain help on either specific functions or more general
procedures within the R environment. Specific information on any inbuilt and add-in
objects (such as functions) as well as the R language can be obtained by either providing
the name of the object as a character string argument for the help () function or by
using the name of the object as a suffix to a 2 character/. As an example, the following
two statements both display the R manual page on the mean () function:

> help (mean)

> ?mean

Help files are in a standard format such that they all include a description of the
object(s), a template of how the object(s) are used, a description of all the arguments
and options, more information on any important specific details of the use of the
object(s), a list of authors, a list of similar objects and finally a set of examples that
illustrate the use of the object(s).

The examples within a manual page can also be run on the R command line using
the example () function. To see an example use of the mean function:

> example (mean)

R includes some inbuilt demonstration scripts that showcase the general use of
functions on certain topics. The demo () function provides a user-friendly interface for
running these demonstrations. For example, to get an overview of the use of some of
the basic graphical procedures in R, run the graphics demo:

> demo (graphics)

¢ Packages provide a flexible means of extending the functionality of R, see section 1.19.
/Help on objects within a package is only available when the package is loaded.
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Calling the demo () function without any arguments returns a list of demonstration
topics available on your system:

> demo ()

The apropos () function returns a set of object names from the current search list that
match a specific pattern, and is therefore useful for recalling the name of functions. For
example, the following expression returns the name of all currently available objects
that contain the characters "mea" in their names.

> apropos ("mea")

[1] "colMeans" "influence.measures"
[3] "kmeans" "mean"

[5] "mean.data.frame" "mean.Date"

[7] "mean.default" "mean.difftime"

[9] "mean.POSIXct" "mean.POSIXI1t"

[11] "rowMeans" "weighted.mean"

The help.search() and help.start () functions both provide ways of searching
through all the installed R manuals on your system for specific terms. The name of the
term or ‘keyword’ is provided as a character string argument to the help.search ()
function which returns a list of relevant manual pages and their brief descrip-
tions.

> help.search("mean")

The help.start () function is a more comprehensive and general help system that
launches a web browser that displays various local HTML documents containing
specific R documentation, a search engine and links to other resources.

There are also numerous books written on the use of R (and/or S/PLUS), see
section 1.22 for a list of recent publications.

1.8 Functions

Functions are sets of commands that are conveniently wrapped together such that they
can be initiated via a single command that encapsulates all the user inputs to any of the
internal commands. Hence, functions provide a friendly way to interact with a set of
commands. Most functions require one or more inputs (called arguments), and, while
a particular function may have a number of arguments, not all need to be specified each
time the function is called. Consider the seq () function, which generates a sequence
of values (a vector) according to the values of the arguments. This function has the
following common usage structures:

> seqg(from, to) < a sequence of numbers from ' £rom' to
"to' incrementing by 1
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> seqg(from, to, by =) < a sequence of numbers from ' from' to
"to' incrementing by 'by="

> seqg(from, to, length.out =) e—asapwnceqf'length.out'nunﬂwm
from ' from' to 'to'

If only the first two arguments are provided (as in the first form above), the result is a
sequence of integers from ' from' to 'to'. Note that this is equivalent to the sequence
generator of the form ' from: to'. When the arguments are provided unnamed (such
as seq(5,9)), the order of arguments is assumed to be as provided in the usage
structure. Therefore, the following two expressions do not yield the same sequences:

> seq(5, 9)
> seqg(9, 5)

Named arguments are used to distinguish between alternative uses of a function. For
example, in the expression seq(2,10,4), the 4 could mean either that the sequence
should increment by 4 (by=4) or that the sequence should consist of 4 numbers
(length.out=4). Furthermore, when named arguments are provided, the order in
which the arguments are included is no longer important. Thus, the following are
equivalent:

> seqg(from = 5, to = 9, by

1l
[\

> seqg(to =9, by = 2, from

1l
ul

Argument names can also be truncated provided the names are not ambiguous.
Therefore, the above examples could be shortened to seq(£f=5, t=9, b=2).If a
function had the arguments length and letter, for that particular function, the
arguments could be truncated to 1len and let respectively.

Many functions also provide default values for some compulsory arguments. The
default values represent the ‘typical’ conditions under which the function is used, and
these arguments are only required if they are to be different from the default. For
example, the mean function calculates the arithmetic mean of one or more numbers. In
addition to an argument that specifies an object containing numbers (to be averaged),
the function has the arguments trim=0 and na . rm=FALSE which respectively indicate
what fraction of the data to trim to calculate the trimmed mean and whether or not
to remove missing entries before calculation. The expression mean (x) is therefore
equivalent tomean (X, trim=0, na.rm=FALSE).

1.9 Precedence

The rules of operator precedence are listed (highest to lowest) in Table 1.1. Addi-
tionally, expressions within parentheses ‘() always have precedence. Arguments and
expressions within a function are always evaluated before the function. Consider the
following set of commands that use the c () (concatenation) function to generate a
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Table 1.1 Precedence and description of operators within R listed from highest to lowest.

Operator Description

[ [ indexing
: name space
$ component
exponentiation (evaluated right to left)
-+ sign (unary)
: sequence
%special$% special operators (e.g. /%, %%)
* 0\ multiplication, division
- addition and subtraction
1= ordering and comparison
logical negation (not)
&& logical AND
|| logical OR
formula
-> > assignment (left to right)
argument assignment (right to left)
<- <<- assignment (right to left)
? help

> <= >

- A+

r— R

vector of two numbers (2 and 4) and then use the rep () (repeat) function to repeat
the vector thrice.

> X <- c(2, 4)
> rep (X, 3)
[1] 2 4 2 4 2 4

Alternatively, by nesting the c () function within the rep () function, the same result
can be achieved with a single command:

> rep(c(2, 4), 3)
[1] 2 4 2 4 2 4

1.10 Vectors - variables

The basic data storage unit in R is called a vector. A vector is a collection of one or
more entries of the same class (type). Table 1.2 below defines the four major vector
classes and provides simple examples of their use. Vectors are one-dimensional arrays
of entries. That is, a vector is a single column (or row) of entries whose length is the
number of rows in the column or vice versa. Each entry has a unique index number
that is equivalent to a row number that can be used to refer to that particular entry
within the vector.
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Table 1.2 Object vector classes in R. The operator : is used to generate a sequence of integers.
The function called c () is short (very short) for concatenate and can be used to generate a
vectors. The operator == evaluates whether the left hand side is equal to the right hand side.

Vector class Example
integer > 2:4 #vector of integers from 2 to 4
(Whole numbers) [1] 2 3 4
>c(1,3,9) #vector of integers
[11 1 3 9
numeric >c(8.4, 2.1) #vector of real numbers
(Real numbers) [1] 8.4 2.1
character >c('A', 'ABC'") #vector of letters
(Letters) [1] "A" "ABC"
logical >c(2:4)==3 #evaluate the expression

(TRUE or FALSE) [1] FALSE TRUE FALSE #the printed logical vector

Biological variables are collections of observations of the same kind (e.g. a temper-
ature variable contains a collection of temperature measurements) and are therefore,
appropriately represented by vectors. Continuous biological variables are represented
by numeric vectors, whereas, categorical variables are best represented by character
vectors. For example, a numeric vector (variable) might represent the air temperature
within ten (10) quadrats.

> TEMPERATURE <- c(36.1, 30.6, 31, 36.3, 39.9, 6.5,
+ 11.2, 12.8, 9.7, 15.9)
> TEMPERATURE
[1] 36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

[.10.1 Regular or patterned sequences

Inclusive sequences of integers can be generated using the : operator

> #a sequence from 10 to 18 inclusive
> 10:18

[1] 10 11 12 13 14 15 16 17 18

> #a sequence from 18 to 10 inclusive
> 18:10

[1] 18 17 16 15 14 13 12 11 10

The seq () function is used to generate numeric sequences

> #every 4th number from 2 to <= 20
> seqg(from=2, to=20, by=4)
[11] 2 6 10 14 18
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> seqg(from = 2, to = 20, length = 5)
[1] 2.0 6.5 11.0 15.5 20.0

Sequences of repeated entries are supported with the rep () function.

> rep(4, 5) #repeat the number 4 five times
[1] 4 4 4 4 4

> rep("no", 4) #repeat the word 'no' four times
[l] n no n " no n " no n n no "
> rep(c(2, 5), 3) #repeat the series 2 & 5 three times

[1] 252525

> rep(c(2, 5), c(3, 2)) #repeat the number 2 three times
[1] 2 2 2 5 5 # and then the number 5 twice

Note that in the two examples immediately above, there are functions within functions.
That is the ¢ () function is used within the rep () function. When there are functions
within functions, the inner most function is evaluated first. Hence in the above
examples, the c () function is evaluated and expanded first and then the rep()
function uses the resulting object(s) as an argument.

[.10.2 Character vectors

Names of experimental or sampling units (such as sites, quadrats, individuals...) can
be stored into character vectors.

> QUADRATS <- C("Ql", "Q2", "Q3 "1 "Q4"1 "Q5"1 "Q6",
+ "Q7", "Q8", "Q9", quou)
> QUADRATS

[1] quu ||Q2|| ||Q3|| ||Q4|| ||Q5|| I|Q6I| uQ7 " ||Q8n ||Q9n
[10] quO"

A more elegant way to generate the above character vector is to use the paste () func-
tion. This function converts multiple vectors into character vectors before combining
the elements of each vector together into a single character vector. A sep= argument
is used to indicate a separation character (or set of characters) to appear between
combined vector elements:

> QUADRATS <- paste("Q", 1:10, sep = "")
> QUADRATS

[1] "Ql" Q2" "Q3" Q4" Q5" "Q6" "Q7" Q8" "Q9"
[10] "Qi0"

> paste("Quad", 1:10, sep = ".")
[1] "Quad.l" "Quad.2" "Quad.3" "Quad.4" "Quad.b"
[6] "Quad.6" "Quad.7" "Quad.8" "Quad.9" "Quad.1l0"
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Such a character vector can then be used to name the elements of a vector. For example,
we could use the names () function to name the elements of the TEMPERATURE vector
according to their quadrat labels:

> names (TEMPERATURE) <- QUADRATS
> TEMPERATURE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 010
36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

The paste() function can also be used in conjunction with other functions to
generate lists of labels. For example, we could combine a vector in which the letters
A, B, C, D and E (generated with the LETTERS constant) are each repeated twice
consecutively (using the rep () function) with a vector that contains a 1 and a 2 to
produce a character vector that labels sites in which the quadrats may have occurred.

> SITE <- paste(rep(LETTERS[1:5], each = 2), 1:2,
+ sep = "")
> SITE
[1] "ai" "ap2" "B1"™ "B2" "Cl1" "C2" "D1" "D2" "E1" "E2"

The substr () function is used to extract parts of string (set of characters) entries
within character vectors and thus is useful for making truncated labels (particularly for
graphical summaries). For example, if we had a character vector containing the names
of the Australian capital cities and required abbreviations (first 3 characters) for graph
labels:

> AUST <- c("Adelaide", "Brisbane", "Canberra",
+ "Darwin", "Hobart", "Melbourne", "Perth",
+ "Sydney")

> substr (AUST, 1, 3)
[l] n Ade n "Bri n "Cal’l n n Dar" n Hob n |lMe1 n |lPer|l n Syd"

Alternatively, we could use the abbreviate () function.

> abbreviate (AUST, minlength = 3)

Adelaide Brisbane Canberra Darwin Hobart Melbourne
"AQL" "Brs" "Cnb" "Drw" "Hpr " "M1b"
Perth Sydney
"Prt" "Syd"

Categorical variables with discrete levels can be represented by character vectors. For
example, a character vector might represent whether or not each of the quadrats
(from which the above temperatures were measured) were shaded. The first entry
in each vector (the numerical temperature vector and the categorical shade vector),
corresponds to the first quadrat measured, and so on such that both vectors (variables)
are of the same length.
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> SHADE <- c¢("no", "no", "no", "no", "no", "full",
+ vfull", "full", "full", "full")
> SHADE
[1] "no" "no" "no" "no" "no" "full" "full" "full"

[9] "full" "full"
[.10.3 Factors

To properly accommodate factorial (categorical) variables, R has an additional class
of vector called a factor which stores the vector along with a list of the levels of the
factorial variable. The factor () function converts a vector into a factor vector.

> SHADE <- factor (SHADE)
> SHADE

[1] no no no no no full full full full full
Levels: full no

Note the differences between the output of the factor vector and the previous character
vector. Firstly, the absence of quotation marks indicate that the vector is no longer a
character vector. Internally, the factor vector (SHADE) is actually a numeric variable
containing only I’s and 2’s and in which 1 is defined as the level ‘full’ and 2 is defined
as the level ‘no’ (levels of a factor are defined alphabetically by default). Hence, when
printed, each entry is represented by a label and the levels contained in the factor are
listed below.

There are a number of more convenient ways to generate factors in R. Combinations
of the rep () function and concatenation (c () ) function can be used in a variety of
ways to produce identical results:

> SHADE <- factor(c(rep("no", 5), rep("full", 5)))
> SHADE <- factor(rep(c("no", "full"), c(5, 5)))

> SHADE <- factor(rep(c("no", "full"), each = 5))
> SHADE

[1] no no no no no full full full full full
Levels: full no

Another convenient method of generating a factor when each level of the factor has
an equal number of entries (replicates) is to use the g1 () function. The gl () function
requires the number of factor levels, the number of consecutive replicates per factor
level, the total length of the factor, and a list of factor level labels, as arguments.

#generate a factor with the levels 'no' and 'full', each repeated

times in a row

> SHADE <- gl(2, 5, 10, c("no", "full"))
> SHADE

[1] no no no no no full full full full full
Levels: no full
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> SHADE <- gl(2, 1, 10, c("no", "full"))
> SHADE

[1] no full no full no full no full no full
Levels: no full

Notice that by default, the factor () function arranges the factor levels in alphabetical
order, whereas the g1 () function orders the factor levels in the order in which they
are included in the expression. Issues relating to the ordering of factor levels will be
covered in section 2.6.1.

I.11 Matrices, lists and data frames
[.11.1 Matrices

A vector has only a single dimension — it has length. However, a vector can be converted
into a matrix (2 dimensional array), whereupon it will display height and width. For
example, we could convert the TEMPERATURE vector into a matrix by specifying the
number of rows (or columns) within the matrix () function:

> matrix (TEMPERATURE, nrow = 5)

(
[ 11 [,2]
[1,] 36.1 6.5
[2,] 30.6 11.2
[3,] 31.0 12.8
[4,] 36.3 9.7
[5,] 39.9 15.9

By default, the matrix is filled by columns. The optional argument byrow=T, causes
filling by rows instead.

Matrices can also be used to represent the binding of two or more vectors of equal
length (and class®). For example, we may have the X and Y coordinates for five quadrats
within a grid. Vectors are combined into a single matrix using the cbind () (combine
by columns) or rbind () (combine by rows) functions:

X <- c(16.92, 24.03, 7.61, 15.49, 11.77)
Y <- ¢(8.37, 12.93, 16.65, 12.2, 13.12)
XY <- cbind (X, Y)

XY

vV V. V V

X Y
.92 8.37
.03 12.93
.61 16.65
.49 12.20
.77 13.12

R 03 o

¢ when vectors of different types are combined, they are all be converted into a suitable common type.
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> rbind (X, Y)

[,1] [,2] [,3] [,4] [,5]
X 16.92 24.03 7.61 15.49 11.77
Y 8.37 12.93 16.65 12.20 13.12

Row and column names can be set (and viewed) using the rownames () and col-
names () functions:

> colnames (XY)

[11] n"x" "y"
> rownames (XY) <- LETTERS[1:5]
> XY

X Y

16.92 8.37
24.03 12.93

7.61 16.65

15.49 12.20

11.77 13.12

[ B @ T v B

The object, LETTERS, is a 26 character vector inbuilt into R that contains the
uppercase letters of the English alphabet. Similarly, 1etters, contains the equivalent
lowercase letters.

[.11.2 Lists

Whilst matrices store vectors of the same type (class) and length, lists are used to store
collections of objects that can be of differing lengths and types. Lists are constructed
using the 1ist () function. For example, we have previously created a number of
isolated vectors (temperature, shade and names and coordinates of sites) that may
actually represent data or information from a single experiment. These objects can be
grouped together such that they all become components of a list object:

> EXPERIMENT <- list(SITE = SITE, COORDINATES = paste (X,
+ Y, sep = ","), TEMPERATURE = TEMPERATURE,

+ SHADE = SHADE)

> EXPERIMENT

SSITE

[l] "AT"™ "AQM wRI" "B2" "C1" "C2" "D1" "D2" "El" "E2"

SCOORDINATES
[1] "16.92,8.37" "24.03,12.93" "7.61,16.65" "15.49,12.2"
[5] "11.77,13.12"

STEMPERATURE
Q1 Q2 03 04 Q5 Q6 Q7 Q8 Q9 010
36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9
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SSHADE
[1] no full no full no full no full no full
Levels: no full

Note that this list consists of four components made up of two character vectors
(s1TE and COORDINATES: a vector of XY coordinates for sites A, B, C, D and E), a
numeric vector (TEMPERATURE) and a factor (SHADE). Note also that while three of
the components have a length of 10, the COORDINATES component has only five.

[.11.3 Data frames - data sets

Rarely are single biological variables collected in isolation. Rather, data are usually
collected in sets of variables reflecting investigations of patterns between and/or among
the different variables. Consequently, data sets are best organized into matricies of
variables (vectors) all of the same lengths yet not necessarily of the same type. Hence,
neither lists nor matrices represent natural storages for data sets. This is the role of
data frames which are used to store a list of vectors of the same length (yet potentially
different types) in a rectangular matrix.

Data frames are generated by combining multiple vectors together such that each
vector becomes a separate column in the data frame. In this way, a data frame is similar
to a matrix in which each column can represent a different vector type. For a data
frame to faithfully represent a data set, the sequence in which observations appear in
the vectors must be the same for each vector, and each vector should have the same
number of observations. For example, the first, second, third...etc entries in each vector
must represent respectively, the observations collected from the first, second, third...etc
sampling units.

Since the focus of this book is in the exploration, analysis and summary of data sets,
and data sets are accommodated in R by data frames, the generation, importation/
exportation, manipulation and management of data frames receives extensive coverage
in chapter 2.

1.12 Object information and conversion
[.12.1  Object information

Everything in R is an object and all objects are of a certain type or class. The class of an
object can be examined using the class () function. For example:

> class (TEMPERATURE)

[1] "numeric"

There is also a family of functions prefixed with is. that evaluate whether or not an
object is of a particular class (or type) or not. Table 1.3 lists the common object query
functions. All object query functions return a logical vector. Enter methods (is) for a
more comprehensive list.
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Table 1.3 Common object query functions and their corresponding return values.

Function Returns TRUE:
is.numeric (x) if all elements of x are numeric or integer (x <-c(1,-3.5))
is.null (x) if x is NULL (the object has no length) (x <-NULL)
is.logical (x) if all elements of x are logical (x <- ¢ (TRUE, FALSE))
is.character (x) if all elements of x are character strings
(X <- c(,A,,,Quad,H
is.vector (x) if the object x is a vector (a single dimension). Returns FALSE if
object has any attributes other than names
is.factor (x) if the object x is a factor
is.matrix(x) if the object x is a matrix (2 dimensions but not a data frame)
is.list (x) if the object x is a list
is.data.frame(x) if the object x is a data frame
is.na(x) for each missing (Na) element in x (x <- ¢ (NA,2))

! (‘not’) character as a prefix converts the above functions into

‘is.not.’

Many R objects also have a set of attributes, the number and type of which are
specific to each class of object. For example, a matrix object has a specific number
of dimensions as well as row and column names. The attributes of an object can be
viewed using the attributes () function:

> attributes (XY)
Sdim
[1] 5 2

Sdimnames
Sdimnames[[1]]
[l] IIAII |IB|I "C" |ID|I |IE|I

Sdimnames[[2]]
[l] IIXII |IY|I

Similarly, the attr () function can be used to view and set individual attributes of
an object, by specifying the name of the object and the name of the attribute (as a
character string) as arguments. For example:

> attr(Xy, "dim")

[1] 5 2
> attr (XY, "description") <- "coordinates of quadrats"
> XY
X Y
A 16.92 8.37

w

24.03 12.93
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Cc 7.61 16.65

D 15.49 12.20

E 11.77 13.12

attr(, "description")

[1] "coordinates of quadrats"

Note that in the above example, the attribute "description" is not a inbuilt attribute
of a matrix. When a new attribute is set, this attribute is displayed along with the object.
This provides a useful way of attaching a description to an object, thereby reducing the
risks of the object becoming unfamiliar.

[.12.2 Object conversion

Objects can be converted or coerced into other objects using a family of functions
with a as. prefix. Note that there are some obvious restrictions on these conversions
as most objects cannot be completely accommodated by all other object types, and
therefore some information (such as certain attributes) may be lost or modified during
the conversion. Objects and elements that cannot be successfully coerced are returned
as Na. Table 1.4 lists the common object coercion functions. Use methods (as) for a
more comprehensive list.

Table 1.4 Common object coercion functions and their corresponding return values.

Function Converts object to

as.numeric (x) a numeric vector (‘integer’ or ‘real’). Factors converted to integers.

as.null (x) a NULL

as.logical (x) a logical vector. Values of >1 converted to TRUE, otherwise FALSE

as.character (x) a character vector

as.vector (x) a vector. All attributes (including names) are removed.

as.factor (x) a factor. This is an abbreviated version of factor

as.matrix(x) a matrix. Any non-numeric elements result in all matrix elements
being converted to character strings

as.list(x) a list

as.data.frame(x) adata frame. Matrix columns and list columns are converted into a
separate vectors of the data frame, and character vectors are
converted into factors. All previous attributes are removed

1.13 Indexing vectors, matrices and lists

This section makes use of a number of objects created in earlier sections. Impor-
tantly, the TEMPERATURE object is a named vector and thus output will differ
slightly from unnamed vectors in that returned elements are headed by their row
names.
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[.13.1 Vector indexing

It is possible to print or refer to a subset of a vector by appending an index vector
(enclosed in square brackets, [ 1), to the vector name. There are four common forms
of vector indexing used to extract a sub-set of vectors:

(i) Vector of positive integers. A set of integers that indicate which elements of the
vector are to be selected. Selected elements are concatenated in the specified order.
~ Select the n'" element

> TEMPERATURE[2]
Q2
30.6

- Select elements n through m

> TEMPERATURE([2:5]
02 03 04 05
30.6 31.0 36.3 39.9

- Select a specific set of elements

> TEMPERATURE[c (1, 5, 6, 9)]
01 Q5 Q6 Q9
36.1 39.9 6.5 9.7

(i) Vector of negative integers. A set of integers that indicate which elements of the
vector are to be excluded from concatenation.
— Select all but the n'" element

> TEMPERATURE[-2]
o1 Q3 Q4 Q5 Q6 Q7 08 Q9 010
36.1 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

(iii) Vector of character strings. This form of vector indexing is only possible for vectors
whose elements have been named. A vector of element names can be used to select
elements for concatenation.

- Select the named element

> TEMPERATURE["Q1"]
01
36.1

- Select the names elements
> TEMPERATURE[c ("Q1l", "Q4")]

Q1L 04
36.1 36.3
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(iv) Vector of logical values. The vector of logical values must be the same length as

the vector being sub-setted and usually are the result of an evaluated condition. Logical
values of T (TRUE) and F indicate respectively to include and exclude corresponding
elements of the main vector from concatenation.

- Select elements for which the logical condition is true

> TEMPERATURE [TEMPERATURE < 15]
Q6 Q7 08 Q9
6.5 11.2 12.8 9.7

> TEMPERATURE [SHADE == "no"]
Q1 Q3 Q5 Q7 Q9

36.1 31.0 39.9 11.2 9.7

— Select elements for which multiple logical conditions are true

> TEMPERATURE [TEMPERATURE < 34 & SHADE == "no"]
Q3 Q7 Q9
31.0 11.2 9.7

- Select elements for which one or other logical conditions are true

> TEMPERATURE [TEMPERATURE < 10 | SHADE == "no"]
Q1 Q@3 Q5 Q6 Q7 Q9
36.1 31.0 39.9 6.5 11.2 9.7

[.13.2 Matrix indexing

Like vectors, matrices can be indexed from vectors of positive integers, negative
integers, character strings and logical values. However, whereas vectors have only
a single dimension (length) (thus enabling each element to be indexed by a single
number), matrices have two dimensions (height and width) and, therefore, require
a set of two numbers for indexing. Consequently, matrix indexing takes on the
form of [row.indices, col.indices], where row.indices and col.indices
respectively represent sequences of row and column indices of the form described for
vectors in section 1.13.1.

Before proceeding, re-examine the Xy matrix generated in section 1.11.1:

A

D
E

XY

16.
24.

7.
15.
11.

X Y
92 8.37
03 12.93
61 16.65
49 12.20
77 13.12

attr(, "description")
[1]

"coordinates of quadrats"



INTRODUCTION TO R 23

The following examples will illustrate the variety of matrix indexing possibilities:

> XY[3, 2] # select the element at row 3,
[1] 16.65 column 2
> XY[3, 1] # select the entire 3rd row
X Y
7.61 16.65
> XY[, 2] # select the entire 2nd column
A B C D E

8.37 12.93 16.65 12.20 13.12

> XY[, -2] # select all columns except the
A B C D E 2nd
16.92 24.03 7.61 15.49 11.77

> XY["A", 1:2] #select columns 1 through 2 for
X Y row A

16.92 8.37

> XY[, "X"] #select the column named 'X'
A B C D E

16.92 24.03 7.61 15.49 11.77

> XY[XY[, "X"] > 12, ] #select all rows for which the
X Y value of the column X is
A 16.92 8.37 greater than 12

B 24.03 12.93
D 15.49 12.20

[.13.3 List indexing

Lists consist of collections of objects that need not be of the same size or type. The
objects within a list are indexed by appending an index vector (enclosed in double
square brackets, [ [11]), to the list name. A single object within a list can also be referred
to by appending a string character ($) followed by the name of the object to the list
names (e.g. 1istSobject). The elements of objects within a list are indexed according
to the object type. Vector indices to objects within other objects (lists) are placed within
their own square brackets outside the list square brackets:

Recall the EXPERIMENT list generated in section 1.11.2

> EXPERIMENT
SSITE
[l] "ATM" "AQM WRIM WRBQM® wQlMm owCQQ2n o wplm wpQ2M "El" "E2M
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SCOORDINATES
[1] "16.92,8.37" "24.03,12.93" "7.61,16.65" "15.49,12.2"
[5] "11.77,13.12"

STEMPERATURE
01 Q2 Q3 Q4 Q5 Q6 Q7 08 Q9 Q10
36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

$SHADE
[1] no full no full no full no full no full

Levels: no full
The following examples illustrate a variety of list indexing possibilities:

> #select the first object in the list
> EXPERIMENT[[1]]
[l] I|Al n IIA2 " IlBlll IIB2 " Ilclll "C2" |ID1|I |ID2 n |IE1|I IIE2II

> #select the object named 'TEMPERATURE' within the list
> EXPERIMENT /[ [ ' TEMPERATURE']]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

> #select the first 3 elements of 'TEMPERATURE' within
> #'EXPERIMENT'
> EXPERIMENT|[ [ ' TEMPERATURE']][1:3]
Q1 Q2 Q3
36.1 30.6 31.0

> #select only those 'TEMPERATURE' values which correspond

> #to SITE's with a 'l' as the second character in their name

> EXPERIMENTSTEMPERATURE [substr (EXPERIMENTSSITE,2,2) == '1']
Q1 Q3 Q5 Q7 Q9

36.1 31.0 39.9 11.2 9.7

1.14 Pattern matching and replacement (character search and replace)

It is often desirable to select a subset of data on the basis of character entries that match
more general patterns. Furthermore, the ability to search and replace character strings
within a character vector can be very useful.

[.14.1 grep - pattern searching

The grep () function searches within a vector for matches to a pattern and returns the
index of all matching entries.
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# select only those 'SITE' values that contain an 'A'
> grep("A", EXPERIMENTSSITE)

[11 1 2

> EXPERIMENTSSITE[grep ("A", EXPERIMENTSSITE) ]

[1] "Al" "A2"

By default, the pattern comprises any valid regular expression” which provides great
pattern searching flexibility.

# convert the EXPERIMENT list into a data frame
> EXP <- as.data.frame (EXPERIMENT)
# select only those rows that contain correspond to a 'SITE'
value of either an A, B or C followed by a '1'
> grep("[A-C]1", EXPSSITE)
[1] 1 3 5
> EXP[grep("[A-C]1l", EXPSSITE), ]
SITE COORDINATES TEMPERATURE SHADE

01 Al 16.92,8.37 36.1 no
Q3 Bl 7.61,16.65 31.0 no
Q5 cl 11.77,13.12 39.9 no

[.14.2 regexpr - position and length of match

Rather than return the indexes of matching entries, the regexpr () function returns
the position of the match within each string as well as the length of the pattern

within each string (-1 values correspond to entries in which the pattern is not
found).

#recall the AUST character vector that lists the Australian

capital cities

> AUST
[1] "Adelaide" "Brisbane" "Canberra" "Darwin"
[5] "Hobart" "Melbourne" "Perth" "Sydney"

#get the position and length of string of characters containing
an 'a' and an 'e' separated by any number of characters

> regexpr("a.*e", AUST)

[1] 5 6 2 -1 -1 -1 -1 -1

attr(, "match.length")

(117 4 3 4 -1 -1 -1 -1 -1

"' A regular expression is a formal computer language consisting of normal printing characters and
special metacharacters (which represent wildcards and other features) that together provide a concise
yet flexible way of matching strings.
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[.14.3 gsub - pattern replacement

The gsub () function replaces all instances’ of an identified pattern within a character
vector with an alternative set of characters.

> gsub("no", "Not shaded", EXP$SHADE)
[1] "Not shaded" "full" "Not shaded" "full"
[5] "Not shaded" "full" "Not shaded" "full"

[9] "Not shaded" "full"

It is also possible to extend the functionality to accomodate perl-compatible regular
expressions.

#convert all the capital values entries into uppercase identify

(and store) all words (\\w) convert stored pattern (\\1l) to

)
(

uppercase (\\U)
> gsub (" (\\w) ", "\\U\\1", AUST, perl = TRUE)
[1] "ADELAIDE" "BRISBANE" "CANBERRA" "DARWIN"
[5] "HOBART" "MELBOURNE" "PERTH" "SYDNEY "

1.15 Data manipulation
[.15.1 Sorting

The sort () function is used to sort vector entries in increasing (or decreasing)
order. Note that the elements of the TEMPERATURE vector were earlier named (see
section 1.10.2). This assists in the distinction of the following functions, however it
does result in slightly different format (each element has a name above it, and the
braced index is absent).

> sort (TEMPERATURE)
Q6 Q9 Q7 Q8 Q10 Q2 03 01 04 Q5
6.5 9.7 11.2 12.8 15.9 30.6 31.0 36.1 36.3 39.9

> sort (TEMPERATURE, decreasing = T)
Q5 Q4 Q1 Q3 Q2 Q10 08 Q7 Q9 Q6
39.9 36.3 36.1 31.0 30.6 15.9 12.8 11.2 9.7 6.5

The order () function is also used to sort vector entries in increasing (or decreasing)
order, but rather than return a sorted vector, it returns the position (order) or the
sorted entries in the original vector. For example:

> order (TEMPERATURE)
(1] 6 9 7 810 2 3 1 4 5

The similar sub () function replaces only the first match of a pattern within a vector.
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Indicating that the smallest entry in the TEMPERATURE vector was at position (index)
6 and so on.
The rank () function is used to indicate the ranking of each entry in a vector:

> rank (TEMPERATURE)
QL Q02 03 04 05 06 Q7 08 Q9 Q10
8 6 7 9 10 1 3 4 2 5

Indicating that the first entry in the TEMPERATURE vector was ranked eighth in
increasing order. Ranks from decreasing order can be produced by then reversing the
returned vector using the rev () function.

> rev (rank (TEMPERATURE) )
Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 01
5 2 4 3 1 10 9 7 6 8

[.15.2 Formatting data
Rounding

The ceiling () function rounds vector entries up to the nearest integer

> ceiling (TEMPERATURE)
Q1 02 03 04 05 06 Q7 08 Q9 010
37 31 31 37 40 7 12 13 10 16

The £loox () function rounds vector entries down to the nearest integer

> floor (TEMPERATURE)
QL Q02 03 04 05 06 Q7 08 Q9 Q10
36 30 31 36 39 6 11 12 9 15

The trunc () function rounds vector entries to the nearest integer towards ‘0’ (zero)

> trunc(seqg(-2, 2, by = 0.5))
[1] -2 -1 -1 0 0O O 1 1 2

The round () function rounds vector entries to the nearest numeric with the specified
number of decimal places. Digits of 5 are rounded off to the nearest even digit.

> round (TEMPERATURE)
Q1 Q2 03 04 05 06 Q7 08 Q9 010
36 31 31 36 40 6 11 13 10 16

> round(seqg (-2, 2, by = 0.5))
[1] -2 -2 -1 0 0 O 1 2 2



28 CHAPTER |

> round (TEMPERATURE/2.2, 2)
01 Q2 Q3 04 Q5 Q6 Q7 08 Q9 Q10
16.41 13.91 14.09 16.50 18.14 2.95 5.09 5.82 4.41 7.23

> round (TEMPERATURE, -1)
Q1 02 03 04 05 06 Q7 08 Q9 010
40 30 30 40 40 10 10 10 10 20

Other formating

Occasionally (mainly for graphical displays), it is necessary to be able to adjust the
other aspects of the formatting of vector entries. For example, you may wish to have
numbers expressed in scientific notation (2.93e-04 rather than 0.000293) or insert
commas every 3 digits left of the decimal point. These procedures are supported via
the formatcC () function.

> seqg(pi, pi * 10000, length = 5)
[1] 3.141593 7856.337828 15709.534064 23562.730300
[5] 31415.926536

# scientific notation

> formatC(seq(pi, pi * 10000, length = 5), format = "e",

+ digits = 2)

[1] "3.14e+00" "7.86e+03" "1.57e+04" "2.36e+04" "3.14e+04"

# scientific notation only if it saves space

> formatC(seq(pi, pi * 10000, length = 5), format = "g",
+ digits = 2)
[1] "3.1" "7.9e+03" "1.6e+04" "2.4e+04" "3.le+04"

# floating point format with 1000's indicators

> formatC(seq(pi, pi * 10000, length = 5), format = "f",
+ big.mark = ",", digits = 2)
[1] "3.14" "7,856.34" "15,709.53" "23,562.73"

[5] "31,415.93"

1.16 Functions that perform other functions repeatedly

The replicate() function repeatedly performs the function specified in the second
argument the number of times indicated by the first argument. The important
distinction between the replicate () function and the rep () functions described in
section 1.10.1, is that the former repeatedly performs the function whereas the later
performs the function only once and then duplicates the result multiple times. Since
most functions produce the same result each time they are performed, for many uses,
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both functions produce identical results. The one group of functions that do not
produce identical results each time, are those involved in random number generation.
Hence, the replicate () functionis usually used in conjunction with random number
generators (such as runif (), which will be described in greater detail in chapter 4)
to produce sets of random numbers. Consider first the difference between rep () and
replicate():

> rep(runif (1), 5)
[1] 0.4194366 0.4194366 0.4194366 0.4194366 0.4194366

> replicate(5, runif (1))
[1] 0.467324683 0.727337794 0.797764456 0.007025032
[5] 0.155971928

When the function being run within runif () itself produces a vector of length > 1,
the runif () function combines each of the vectors together as separate columns in a
matrix:

> replicate (5, runif (5))

[,1] [.2] [.31] [, 4] [,5]
[1,] 0.3266058 0.3313832 0.2113326 0.4744742 0.257732622
[2,] 0.5241960 0.9801652 0.6642341 0.5292882 0.799982207
[3,] 0.1894848 0.8300792 0.7178351 0.7262750 0.698298026
[4,] 0.1464055 0.6758495 0.9940731 0.3015559 0.288537242
[5,]1 0.5491748 0.4052211 0.9923927 0.4074775 0.002170782

[.16.1 Along matrix margins

The apply () function applies a function to the margins (1=row margins and 2=column
margins) of a matrix. For example, we might have a matrix that represents the
abundance of three species of moth from three habitat types:

MOTH <- cbind(SpA = c (25, 6, 3), SpB = c(12, 12,
3), SpC = c(7, 2, 19))

rownames (MOTH) <- paste("Habitat", 1:3, sep = "")

MOTH

vV V. + VvV

SpA SpB SpC
Habitatl 25 12 7
Habitat2 6 12 2
Habitat3 3 3 19

The apply () function could be used to calculate the column means (mean abundance
of each species across habitat types):

> apply (MOTH, 2, mean)
SPA SpB SpC
11.333333 9.000000 9.333333
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[.16.2 By factorial groups

The tapply () function applies a function to the vector separately for each level of a
factor combination. This provides a convenient way to calculate group statistics (pivot
tables). For example, if we wanted to calculate the mean TEMPERATURE for each level
of the SHADE factor:

> tapply (TEMPERATURE, SHADE, mean)
no full
25.58 20.42

[.16.3 By objects

The lapply () and sapply () functions apply a function separately to each of the
objects in a list and return a list and vector/matrix respectively. For example, to find
out the length of each of the objects within the EXPERIMENT list:

> lapply (EXPERIMENT, length)
SSITE
[1] 10

SCOORDINATES
[1]1 5

STEMPERATURE
[1] 10

$SHADE
[1] 10

> sapply (EXPERIMENT, length)
SITE COORDINATES TEMPERATURE SHADE
10 5 10 10

1.17 Programming in R

Although the library of built-in and add-on tools available for the R environment
is extensive (and continues to grow at an incredible rate), occasionally there is the
need to perform a task for which there are no existing functions. Since R is itself
a programming language (in fact most of the available functions are written in R),
extending its functionality to accommodate additional procedures can be a relatively
simple exercise (depending of course, on the complexity of the procedure and your
level of R proficiency).
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[.17.1 Grouped expressions

Multiple commands can be issued on a single line by separating each command by
a semicolon (;). When doing so, commands are evaluated in order from left to
right:

> A <- 1; B <- 2; C <- A+ B
> C
[11 3

When a series of commands are grouped together between braces (such as {command1 ;
command2; . . .}), the whole group of commands are evaluated as a single expression
and the value of the last evaluated command within the group is returned:

> D <- {A<-1; 2 -> B; C <- A + B}
> D
[1]1 3

Grouped expressions are useful for wrapping up sets of commands that work together
to produce a single result and since they are treated as a single expression, they too can
be further nested within braces as part of a larger grouped expression.

[.17.2 Conditional execution — if and ifelse

Conditional execution is when a sequence of tasks is determined by whether a condition
is met (TRUE) or not (FALSE), and is useful when writing code that needs to be able to
accommodate more than one set of circumstances. In R, conditional execution has the
forms:

if (condition) true.task
if (condition) true.task else false.task

ifelse(condition) true.task false.task

If condition returns a TRUE, the statement true. task is evaluated, otherwise the
false.taskis evaluated (if provided). If condition cannot be coerced into a logical
(a yes/no answer), an error will be reported.

To illustrate the use of the if conditional execution, imagine that you were writing
code to calculate means and you anticipated that you may have to accommodate two
different classes of objects (vectors and matrices). I will use the vector TEMPERATURE
and the matrix MOTH:

> NEW.OBJECT <- TEMPERATURE

> if (is.vector (NEW.OBJECT)) mean (NEW.OBJECT)
+ else apply (NEW.OBJECT, 2, mean)

[1]1 23
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> NEW.OBJECT <- MOTH

> ifelse(is.vector (NEW.OBJECT), mean (NEW.OBJECT),
+ apply (NEW.OBJECT, 2, mean))

[1] 11.33333

[.17.3 Repeated execution — looping

Looping enables sets of commands to be performed (executed) repeatedly.

for

A for loop iteratively loops through a vector of integers (a counter), each time

executing the set of commands, and takes on the general form of:

for (counter in sequence) task

where counter is a loop variable, whose value is incremented according to the
integer vector defined by sequence. The task is a single expression or grouped
expression (see section 1.17.1) that utilizes the incrementing variable to perform a
specific operation on a sequence of objects. For a simple example of a for loop, consider
the following snippet that counts to six:

> for (i in 1:6) print(i)

[11 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6

As a more applied example, let’s say we wanted to calculate the distances between
each pair of sites in the XY matrix generated in section 1.11.1. The distance between any
two sites (e.g. 'A' and 'B') could be determined using Pythagoras’ theorem
(a* 4+ b* = ).
sgrt ((XY["A", "X"] - XY["B", "X"])"2 + (XY["A",

"Yr] - XY["B", "Y"])"2)

\

+

# OR equivalently

sgrt ((XY[1, 1] - XY[2, 1])"2 + (XY[1, 2] - XY[2,
+ 21)72)

[1] 8.446638

\

A for loop can be used to produce a 5 x 5 matrix of pairwise distances between each of
the sites:

# Create empty object
> DISTANCES <- NULL
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> for (i in 1:5) {
+ X.DIST <- (XY[i, 1] - XY[, 11)"2
+ Y.DIST <- (XY[i, 2] - XY[, 2]1)"2
+ DISTANCES <- cbind(DISTANCES, sqrt(X.DIST +
+ Y.DIST))
+ )
> colnames (DISTANCES) <- rownames (DISTANCES)
> DISTANCES
A B C D E

0.000000 8.446638 12.459314
8.446638 0.000000 16.836116

A .088251 7.006069
B

C 12.459314 16.836116 0.000000

D

E

.571143 12.261472
.049691 5.455868
.000000 3.832075
.832075 0.000000

4.088251 8.571143 9.049691
7.006069 12.261472 5.455868

W O WOV o i

A while loop executes a set of commands repeatedly while a condition is TRUE and
exits when the condition evaluates to FALSE, and takes the general form:

> while (condition) task

where task is a single expression or grouped expression (see section 1.17.1) that
performs a specific operation as long as condition evaluates to TRUE.

To illustrate the use of a while loop, consider the situation where a procedure needs
to generate a temporary object, but you want to be sure that no existing objects are
overwritten. A simple solution is to append the object name with a number. A while
loop can be used to repeatedly assess whether an object name (TEMP) already exists in
the current R environment (each time incrementing a suffix) and eventually generate
a unique name. The first three commands in the following syntax are included purely
to generate a couple of existing names and confirm their existence.

> TEMP <- NULL
> TEMP1l <- NULL

> 1s()
[1] "A" "AUST" "B" "cn
[5] "D "DISTANCES" "EXP" "EXPERIMENT"
[9] "in "MOTH" "NEW.OBJECT" "op"
[13] "QUADRATS" "SHADE" "SITE" "TEMP"
[17] "TEMP1" "TEMPERATURE" "X" "X.DIST"
[21] "Xy" "y" "Y.DIST"

#object name suffix, initially empty
> j <- NULL

# proposed temporary object

> NAME <- "TEMP"

# iteratively search for a unique name
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> while (exists(Nm <- paste(NAME, j, sep = ""))) {
+ ifelse(is.null(j), j <- 1, J <- J + 1)
+ }
# assign the unigque name to a numeric vector
> assign(Nm, c(1, 3, 3))
# Reexamine list of objects, note the new object, TEMP2
> 1s()
[1] A" "AUST" "B" "c
[5] "D "DISTANCES" "EXP" "EXPERIMENT"
[97 "ir "y "MOTH" "NAME"
[13] "NEW.OBJECT" "Nm" "op" "QUADRATS"
[17] "SHADE" "SITE" "TEMP" "TEMPL"
[21] "TEMP2" "TEMPERATURE" "X" "X.DIST"
[25] "Xy" "y "Y.DIST"

The exists () function assesses whether an object of the given name already exists and
assign () function makes the first argument an object name and assigns it the value of
the second argument.

[.17.4 Writing functions

For all but the most trivial cases, lines of R code should be organized into a new function
which can then be used in the same way as the built in functions. Functions are defined
using the function () function:

> name <- function(argumentl, argument2, ...) expression

The new function (called name) will use the arguments (argumentl, argument2,
.. .) to evaluate the expression (usually grouped expressions — see section 1.17.1) and
return the result of the evaluated expression. Once defined, the function is called by
issuing a statement in the form:

> name (argumentl, argument2, ...)

Functions not only provide a more elegant way to interact with a procedure (as all
arguments are provided in one location, and the internal workings are hidden from
view), they form a reusable extension of the R environment. As such, there are a couple
of general programming conventions that are worth adhering to. Firstly, each function
should only perform a single task. If a series of tasks are required, consider writing a
number of functions that in turn are called from another function. Secondly, where
possible, provide default options, thereby simplifying the use of the function for most
regular occasions. Thirdly, user defined functions should be in either upper case or
camel case so as to avoid conflicting with functions built into R or one of the many
extension packages.

For example, we could extend the functionality of R by writing a function that
estimates the standard error of the mean. The standard error of the mean can be
estimated using the formula sd//n — 1, where sd is the standard deviation of the
sample and 7 is the number of observations.
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> SEM <- function(x, na.rm = FALSE) {
+ if (na.rm == TRUE)

+ VAR <- x[!is.na(x)]

+ else VAR <- x

+ SD <- sd(VAR)

+ N <- length(VAR)

+ SD/sqgrt (N - 1)

+ )

The function first assesses whether missing values (values of 'Na ') should be removed
(based on the value of na.rm supplied by the function user). If the function is called
with na.rm=TRUE, the is.na () function is used to deselect such values, before the
standard deviation and length are calculated using the s& and length functions.
Finally, the standard error of the mean is calculated and returned. This function
could then be used to calculate the standard error of the mean for the TEMPERATURE
vector:

> SEM (TEMPERATURE)
[1] 4.30145

1.18 An introduction to the R graphical environment

In addition to providing a highly adaptable statistical environment, R is also a graphical
environment in which figures suitable for publication can be generated. The R graphical
environment consists of one or more graphical devices along with an extensive library
of functions for manipulating objects on these devices. A graphical device is an output
stream such as a window, file or printer that is capable of receiving and interpreting
graphical/plotting instructions. The exhaustive number of graphical functions can be
broadly broken down into three categories:

» High-level graphics (plotting) functions are used to generate a new plot on a graphical
device, and, unless directed otherwise, accompanying axes, labels and the appropriate (yet
basic) points/bars/boxes etc are also automatically generated. When these functions are
issued, a graphical device (a window unless otherwise specified) is opened and activated.
If the device is already active, the previous plot will be overwritten. Whilst these functions
form the basis of all graphics in R, they are rarely used in isolation to produced graphs, as
they offer only limited potential for customization.

* Low-level graphics functions are used to customize and enhance existing plots by adding
more objects and information, such as additional points, lines, words, axes, colors etc.

* Interactive graphics functions allow information to be added or extracted interactively
from existing plots using the mouse. For example, a label may be added to a plot at
the location of the mouse pointer, thereby simplifying the interaction with the graphical
device’s coordinate system.

JThe sd function returns a 'NA' when a vector containing missing values is encountered.
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The R graphical environment also includes a set of graphical parameters that operate
over and above these functions to control the settings of the graphical device, such as
its dimensions and where a plot is positioned within the device.

As this section aims to provide only an introductory overview of the R graphical
environment, documentation will be limited to just some high level graphics functions.
Documentation on low level and interactive graphical functions as well as graphical
parameters will be reserved until chapter 5.

[.18.1 Theplot () function

Theplot () function is actually a generic function that produces different types of plots
depending on the class of objects upon which itis acting. The plot () function evaluates
the class of the arguments and then passes the objects on to the plotting function most
appropriate for those objects. Notice that the first time a plotting statement is issued, a
graphical device (window) is opened and a plot generated. Thereafter, the plots on this
graphical device are replaced.

40
1
o

35

plot (x) — if x is a numeric vector this form
oftheplot () function produces a time series
plot, a plot of x against index numbers.

TEMPERATURE
25

> plot (TEMPERATURE) o | o

plot (~x) —if x is a numeric vector this form
of the plot () function produces a stripchart
for x. The same could be achieved with the
stripplot () function. The ~ indicates a
formula in which the left side is modeled
against the right.

0o ooo o m o o

> plot (~TEMPERATURE)

10 15 20 25 30 35 40



INTRODUCTION TOR

plot (x,y) — if x and y are numeric vectors
this form of the plot () function produces a
scatterplot of y against x.

> plot (X, Y)

plot (y~expr) — if vy is a numeric vector
and expr is an expression, this form of the
plot () function plots y against each vector
in the expression.

> plot (Y ~ X)

plot (xy) — if xy is a either a two-column
matrix or a list containing the entries x and
vy, this form of the plot () function produces
a plot of y (column 2) against x (column 1).
If x is numeric, this will be a scatterplot,
otherwise it will be a boxplot.

> plot (XY)
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plot (fact) —if fact is a factor vector, this
form of the plot () function produces a bar
graph (bar chart) with the height of bars
representing the number of entries of each
level of the factor. The same could be achieved
with the barplot () function.

> plot (SHADE)

plot (fact, dv) —if fact is a factor vector
and dv is a numeric vector, this form of
theplot () function produces boxplots of dv
for each level of fact. The same could be
achieved with the boxplot () function.

> plot (SHADE, TEMPERATURE)

plot (dv~fact) — if fact is a factor vector
and dv is a numeric vector, this form of
theplot () function produces boxplots of dv
for each level of fact.

> plot (TEMPERATURE ~ SHADE)

TEMPERATURE

15 20 25 30 35 40

10

15 20 25 30 35 40

10

no

full

no

full

no

SHADE

full

There are a limited number of options available to modify the appearance of these

plots. Consider the following example:
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16

ylab= and xlab= — these arguments specify
the labels used on the vertical and horizontal

14

. £ o
axes respectively. £ o
8 o o
o
> plot (X, Y, ylab = "Y coordinate", ~
+ xlab = "")
o |
o
T T T
10 15 20

Other useful high-level plotting functions and options will be illustrated in chapter 5.

1.18.2 Graphical devices

By default, R uses the window () graphical device (x11 () in UNIX/Linux and typically
quartz () in MacOSX), which provides a representation of graphics on the screen
within the R application. However, it is often necessary to produce graphics that
can be printed or used within other applications. This is achieved by starting an
alternative device (such as a graphics file) driver, redirecting graphical commands to
this alternative device, and finally completing the process by closing the alternative
device driver. The device driver is responsible for converting the graphical command(s)
into a format that is appropriate for that sort of device.

Most installations of R come complete with a number of alternative graphics devices,
each of which have their own set of options. A list of graphics devices available on
your installation can be obtained by examining the Devices help file after issuing the
following command.

> ?Devices

Table 1.5 lists some of the major alternative graphics devices and illustrates the
common options used for each. Note that in all cases, unless full path names are
supplied in the filenames, files are written to the current working directory’

The bitmap () function can also be used to provide a consistent interface to a
number of device drivers. The type= argument can be used to select from a large

kA function name preceded by a question mark (?) instruct R to bring up the help file on that
function. Help files are introduced in section 1.7.

""The current working directory is the location in which files user files are read and written. The
working directory can be altered to any available directory on your system and is discussed in
section 1.6.3.
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Table 1.5 List of useful alternative R graphical devices®.

Device Example of use

ipeg > jpeg(file="figurel.jpg",
+ width=500, height=500, dimensions of device (pixels)
+ quality=75) degree of non-compression
> ... graphical commands
> dev.off () close the device

postscript > postscript (file="figurel.ps",

+ width=6, height=6, dimensions of graphics region (inches)

+ paper="special", size of the device, if paper=
"special"

+ horiz=F, portrait orientation

+ family="Helvetica") font family to use

> ... graphical commands

> dev.off () close the device

pdf > pdf (file="figurel.pdf",

+ width=6, height=6, dimensions of graphics region (inches)

+ paper="special", size of the device, if paper=
"special"

+ family="Helvetica") font family to use

R graphical commands
> dev.off () close the device

“Not all graphical devices are available on all systems.

range of device types including, "jpeg", "pcx256", "bmp256" and "png256". This
function has a modest set of arguments (options), the most important of which are the
device dimensions (width and height) that are specified in inches.

The dev2bitmap () function converts a screen graphics device into a graphics file
device, thereby providing a simple (yet restrictive) way to save a completed graphic to
file without the need to reissue the commands. This function takes the same argument
set as the bitmap () function.

[.18.3 Multiple graphics devices

It is also possible to have multiple devices (of the same or different type) open at once,
thereby enabling multiple graphics to be viewed and/or modified concurrently. Each
opened graphics device is given a number™ (starting with 2) and the number reflects
the order in which it was created.

To create multiple devices, issue the dev.set (1) function multiple times. Multiple
blank windows will be created, the most recently created of which will be the active

" Graphical device 1 is a null device — an indicator that there are no currently opened devices.
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device (the device in which graphical functions will next act). To view the list of
currently open devices, issue the following:

> dev.set (1)

null device

1

> dev.list()
pdf pdf
2 3

This indicates that there are currently two pdf graphics devices open in my current
session. To list the currently active device:

> dev.cur ()
pdf
3

To make a graphical device active and thus ready to accept the next graphical function,
specify the device number as an argument to the dev. set () function. For example, to
make graphical device 2 the active device:

> dev.set (2)
pdf
2

R returns the type and number of the device as confirmation. The active device can
be closed by issuing the dev.off () function without an argument, whereas a specific
device can be closed by specifying the device number as the argument.

A graphics device can be copied from one open device to another (or even to a
new device) using the dev.copy () function. To copy the active device to graphics
device 3 (assuming that there is a device numbered 3 and that this is not the active
device):

> dev.copy (which = 3)
pdf
3

To copy the active device to a new display device (e.g. window, X11 or quartz), specify
the device type as an argument:

> dev.copy(device = X11)

The dev.copy () function can also be used to copy the active device to other device
types, such as graphics files. To do so, the dev.copy () function is able to receive and
forward arguments on to the relevant graphics device driver function (see Table 1.5).

> dev.copy(device = jpeg, file = "figurel.jpg",
+ height = 600, width = 600)
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Note that the jpeg graphics file will not be written until the device has been closed by
specifying the device number as an argument to the dev.off () function.

As an alternative, the dev.print () function can be used. This operates identically
to the dev.copy () function except that it closes the new device once the graphic has
been copied to it. In this way, it is similar to the dev2bitmap () function and is also
useful for sending graphics to a printer.

1.19 Packages

The functionality of the core R system is extended through an ever expanding library
of add-on packages. As new procedures are developed, they can be supported by
specific add-on packages rather than necessitating re-writes of the entire application.
Packages define a set of functions designed to perform more specific statistical or
graphical tasks. Packages also include help files, example data sets and command
scripts to provide information about the full use of the functions. All packages that
are made available through the official Comprehensive R Archive Network (CRAN)
and its many mirror sites, must comply with very specific regulations set and enforced
by the R core development team. Authors of packages are also encouraged not to
‘reinvent the wheel’, but rather make use of the functionality of other packages where
possible. These factors help maximize stability, uniformity and consistency across and
between R and all of its packages, thereby ensuring that users of R who have attained a
reasonable level of proficiency can rapidly master new packages.

The modularized nature of R also means that only the packages that are necessary to
perform the current tasks need to be loaded into memory at any one time. This results
in a very ‘light-weight’, fast statistical and graphical system.

As with procedures for installing and running R itself, procedures for installing
packages differ between operating systems and are usually best performed with
Administrator (super user) privileges”.

[.19.1 Manual package management
Obtaining packages

The core R system includes only a subset of the available packages — those packages that
have been identified by the R core development team as essential for supporting the
common and traditional data exploration, analysis and summary procedures. Addi-
tional packages can be obtained from the CRAN web site (http://cran.r-project.org) by
following the ‘packages’ hyperlink and locating the specific package(s). Windows users

" Installing with Administrator rites ensures that installations take place in the correct locations (with
system wide access). Regular users typically do not have write access to these locations and thus
installations with lesser privileges result in packages being installed in the users data directories. In
Windows, R can be run as an Administrator by right clicking on the RGui.exe file, folder or shortcut
and selecting Run As Administrator from the drop-down menu. Linux and MacOSX users usually
know how to act as a super user.
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should download the .zip versions, Unix/Linux users download the .tar.gz versions and
MacOSX users download .tgz versions.

Note that the philosophy of cross-package reliance to reduce the number of replicated
procedures, means that many packages depend on other packages. A package’s
dependencies are listed in the package description. Ensure that when downloading a
package, all other packages that are required have either been previously acquired or
are also downloaded. The library () function without any arguments returns a list
of installed and currently available packages on your system. This can be useful for
checking potential dependency violations.

Installing packages

Windows

To install packages directly from one of the CRAN mirrors or Bioconductor (Bioinfor-
matics packages) repositories, start by selecting the Packages menu from within RGui.
For CRAN repositories, select the most local CRAN mirror to you from the list that
appears after selecting Set CRAN miirror... from the Packages menu. Anytime there-
after you can install packages from that mirror by selecting the Install package(s)...
submenu and then selecting the desired package(s) from the list. To install packages
from the Bioconductor packages repository, first alter the repository via the Select
repositories... submenu.

It is also possible to install packages from pre-downloaded package binaries. Select
the Packages menu, then the Install from local zip files.. submenu and locate the
downloaded .zip file(s) and click the OK button.

Unix/Linux

Typically only root (or a superuser) can install packages. As root, and from the
directory containing the compressed package, enter the following command at a
terminal prompt:

R CMD INSTALL package_name.tar.gz

where package_name is the name of the package to be installed.

MacOSX

The MacOSX port of R is able to install packages from source packages using the
methods outlined for Unix/Linux systems. However, it is also able to install from
pre-packaged binary packages. Whilst the latter is sometimes (for some packages)
specific to which OS version is in use (typically only the latest), no other additional
compiler tools are required for installation. Hence, installation from binary packages
is the simplest method.

To install packages directly from one of the CRAN mirrors or Bioconductor
(Bioinformatics packages) repositories, after selecting the Package Installer submenu,
select the appropriate repository and package type (typically CRAN (binaries)) before
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pressing Get List. Select the package(s) you want installed, check the “Install Depen-
dencies” check-box just below the “Install Selected” button to ensure all the necessary
dependencies’ are also retrieved. You are also able to chose where the packages are
installed. There are four radio buttons corresponding to the possible locations. The
default is “At System Level (in R framework)”. For those with Administrator privileges
and password, this is recommended. The others are “At User Level”, “In Other Loca-
tion (Will Be Asked Upon Installation)”, and “As Defined by .libpaths()” Finally, click
the Install Selected button.

To install from downloaded binary packages, select the Package Installer submenu
from the Packages & Data menu. Selecting Local Source Package and pressing Install
will bring up a new Finder window form which you should navigate to and select the
downloaded package(s).

Package management within R

The R statistical and graphical environment is equipped with a number of tools to help
install and update packages on your system. A list of all the currently installed packages
can be obtained by issuing:

> installed.packages ()

Package LibPath Version Priority Bundle Contains
abind "abind" "/usr/local/lib/R/site-library" "1.1-0 NA NA NA
akima "akima" "/usr/local/lib/R/site-library" "0.5-2" NA NA NA
alr3 "alr3" "/usr/local/lib/R/site-library" "1.1.7 NA NA NA
Biobase "Biobase" "/usr/local/lib/R/site-library" "2.4.1 NA NA NA
biology "biology" "/usr/local/lib/R/site-library" "1.0" NA NA NA
bitops "bitops" "/usr/local/lib/R/site-library" "1.0-4.1" NA NA NA

Depends Imports Suggests Enhances OS_type Built
abind "R (>= 1.5.0)" NA NA NA NA "2.6.2"
akima NA NA NA NA NA "2.9.1"
alr3 NA NA NA NA NA "2.6.2"
Biobase "R (>= 2.7.0), methods, utils" NA "tools, tkWidgets, ALL" NA NA "2.9.1"
biology "car" NA NA NA NA "2.9.1"
bitops NA NA NA NA NA "2.9.1"

Note, I have included only the first six packages to save space. The installed
.packages () function returns the name of the installed packages as well as information
about the packages including the version number, dependencies and the version of R
on which the package was built.

Packages are often updated in the CRAN repositories. The easiest way to update the
installed packages is to use the update.packages () function

> update.packages ()

¢ In the spirit of modularization, many packages build upon functions contributed by other packages.
Consequently, packages that depend on function within other packages list those packages as
dependencies. For a given package to install correctly, all its dependencies must already be installed.
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You will be prompted for a repository mirror (web locations that provide copies
of the official R repositories). You should select the mirror closest to you. The
update.packages () function will then compare your currently installed packages to
those on the repositories, download any updated packages and install them on your
system. It is also possible to provide a repos= argument in order to explicitly specify
the base URL of the repository you wish to access the package from.

Individual packages can also be installed from a CRAN mirror. The name of the
package (without the version codes) is supplied as an argument to the install
.packages () function. As described above, the repos= argument can be used. The
following syntax could be used to install the car (Companion to Applied Regression)
package from the University of Melbourne CRAN mirror.

> install.packages(car, repos = "http://cran.ms.unimelb.edu.au")
[.19.2 Loading packages

Although packages only need to be installed once, before a package can be used in a
session, it needs to be loaded into memory. This ensures that while you may have
a very large number of packages installed on your system, only those packages that
are actually required to perform the current tasks are taking up valuable resources.
A package is loaded by providing the name of the package (without any extensions)
as an argument for the library () function. For example, to load the package gdata
which provides various data manipulation functions:

> library (gdata)
Loading required package: gtools

In this case R, informs you that it first loaded a package called gtools that gdata
depends on.

1.20 Working with scripts

One of the advantages of command driven software is that if the commands used
to perform certain tasks can be stored, then the tasks can be easily repeated exactly.
A collection of one or more commands is called a script. In R, a script is a plain text
file with a separate command on each line and can be created and read in any text
editor. A script is read into R by providing the full filename (and path if not in the
current working directory — see section 1.6.3) of the script file as an argument in the
source () function. By convention, filenames for R scripts end in the extension .R.
For example:

> source("filename.R")
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A typical script may look like the following:

Temperature.R script
Written by Murray Logan Aug09

Sets up temperature and shade variables and calculates mean

e

temperature in and out of shade

# Generates a numeric vector called TEMPERATURE

TEMPERATURE <- c¢(36.1, 30.6, 31.0, 36.3, 39.9, 6.5, 11.2, 12.8,
9.7, 15.9)

# Define quadrat labels for row names

names (TEMPERATURE) <- paste('Q', 1:10, sep="")

# Generate a factor with the levels 'no' and 'full’
SHADE <- gl(2,5,10,c('no", 'full"'))

# Calculate the mean TEMPERATURE for each level of SHADE
tapply (TEMPERATURE, SHADE, mean)

The above script illustrates a couple of important points about R scripts. Firstly,
commands within scripts do not begin with a (>) prompt. Expressions can be split
over multiple lines (and a ‘+’ prompt is not required) and extra spaces and tabs
are completely ignored by R. Finally, the benefits of regular comments throughout
a script cannot be overstated. Since scripts are so valuable as a lasting record of
analyses, it is of vital importance that each step be thoroughly documented for future
reference.

When a script is sourced, each line of the script is parsed” (checked for errors),
interpreted, and run as if it had been typed directly at the R command prompt. This
is an extremely useful feature as it enables complicated and/or lengthy sequences of
commands to be stored, modified and reused rapidly as well as acting as a record
of data analysis and a repository of analysis techniques. All the commands used in
this book are provided as scripts on the accompanying website www.wiley.com/go/
logan/r.

1.21 Citing R in publications

The full R citation (and convenient BibTeX entry) is obtained by issuing the following:

> citation()

To cite R in publications use:

P Parsing is a process by which information is first verified before use.
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R Development Core Team (2009). R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL http://www.R-project.org.

A BibTeX entry for LaTeX users is

@Manual{,
title = {R: A Language and Environment
for Statistical Computing},
author = {{R Development Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
vear = {2009},
note = {{ISBN} 3-900051-07-0},
url = {http://www.R-project.org},

We have invested a lot of time and effort in creating
R, please cite it when using it for data analysis.
See also 'citation("pkgname")' for citing R packages.

1.22 Further reading

Crawley, M. J. (2002). Statistical computing: an introduction to data analysis using S-PLUS.
John Wiley & Sons, UK.

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.
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Thaka, R., and R. Gentleman. (1996). R: A Language for Data Analysis and Graphics. Journal
of Computational and Graphical Statistics 5:299—-314.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS. Springer-
Verlag, New York.

R Development Core Team, (2005). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS, 4th edn.
Springer-Verlag, New York.
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Data sets

2.1 Constructing data frames

Data frames are generated by amalgamating vectors of the same length together. To
illustrate the translation of a data set (collection of variables) into an R data frame
(collection of vectors), a portion of a real data set by Mac Nally (1996) in which the
bird communities were investigated from 37 sites across five habitats in southeastern
Australia will be used. Although the original data set includes the measured maximum
density of 102 bird species from the 37 sites, for simplicity’s sake only two bird
species (GST: gray shrike thrush, EYR: eastern yellow robin) and the first eight of
the sites will be included. The truncated data set, comprises a single factorial (or
categorical) variable, two continuous variables, and a set of site (row) names, and is as
follows:

Site HABITAT GST EYR
Reedy Lake  Mixed 34 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Cranbourne Gipps.Manna 3.0 5.0
Lysterfield  Mixed 56 5.6
Red Hill Mixed 8.1 4.1
Devilbend Mixed 8.3 7.1
Olinda Mixed 46 53

Firstly, generate the three variables (excluding the site labels as they are not variables)
separately:

> HABITAT <- factor(c("Mixed", "Gipps.Manna", "Gipps.Manna",
+ "Gipps.Manna", "Mixed", "Mixed", "Mixed", "Mixed"))

> GST <- c(3.4, 3.4, 8.4, 3, 5.6, 8.1, 8.3, 4.6)

> EYR <- c(0, 9.2, 3.8, 5, 5.6, 4.1, 7.1, 5.3)

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Next, use the names of the vectors as arguments in the data.frame () function to
amalgamate the three separate variables into a single data frame (data set) which we
will call MACNALLY (after the author).

> MACNALLY <-
MACNALLY

HABITAT

Mixed

\

Gipps.Manna
Gipps.Manna
Gipps.Manna
Mixed
Mixed
Mixed
Mixed

o J o Uk WD

data.frame (HABITAT, GST, EYR)

GST EYR

S 0 0 Ul W o W W
N Y S
U oUW v o
Wk Ek oo N O

Notice that each vector (variable) becomes a column in the data frame and that each
row represents a single sampling unit (in this case, each row represents a different site).
By default, the rows are named using numbers corresponding to the number of rows
in the data frame. However, these can be altered to reflect the names of the sampling
units by assigning a list of alternative names to the row.names () property of the data

frame.

> row.names (MACNALLY) <- c("Reedy Lake", "Pearcedale", "Warneet",
+ "Cranbourne", "Lysterfield", "Red Hill", "Devilbend",

+ "Olinda")

> MACNALLY

Reedy Lake Mixed 3.4
Pearcedale Gipps.Manna 3.4
Warneet Gipps.Manna 8.4
Cranbourne Gipps.Manna 3.0
Lysterfield Mixed 5.6
Red Hill Mixed 8.1
Devilbend Mixed 8.3
Olinda Mixed 4.6

HABITAT GST

EYR

U J s U1 U1 WO O
W B P o0 O 00 N O

2.2 Reviewing a data frame - £ix()

As with all other objects, a data frame can be viewed by issuing the name of the data
frame. A data frame can also be viewed as a simple spreadsheet in a separate window
by using the name of the data frame as an argument in the fix () function. The £ix ()
function also enables simple editing of the data frame. The arrow keys are used for
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navigating the spreadsheet and any alterations will be made to the data frame when the
window is closed. Try the following:

> fix (MACNALLY)

Warning - only make alterations to numeric variables, alterations to the entries of
factorial variables will not update the factors list of levels and thus the factor will appear
to act irrationally in analysis and graphical procedures.

2.3 Importing (reading) data

Generally, statistical systems are not very well suited to tasks of data entry and
management. This is the roll of spreadsheets, of which there are many available.
Although the functionality of R continues to expand, it is unlikely that R itself will
ever duplicate the extensive spreadsheet and database capabilities of other software”.
R development has roots in the Unix/Linux programming philosophy that dictates
that tools should be dedicated to performing specific tasks that they perform very well
and rely on other tools to perform other tasks. Consequently, the emphasis of R is, and
will continue to be, purely an environment for statistical and graphical procedures. It
is expected that other software will be used to generate and maintain data sets.

Unfortunately, data importation into R can be a painful exercise that overshadows
the benefits of using R for new users. In part, this is because there are a large number
of competing methods that can be used to import data and from a wide variety of
sources. This section does not intend to cover all the methods. Rather, it will highlight
the simplest and most robust methods of importing data from the most popular
sources.

Unless file path names are specified, all data reading functions search for files in
the current working directory. Refer to section 1.6.3 for information of reviewing and
altering the current working directory.

2.3.1 Import from text file

The easiest form of importation is from a pure text file. Since most software that accepts
file input can read plain text files, they can be created in all spreadsheet, database and
statistical software packages and are also the default outputs of most data collection
devices. In a text file, data are separated or delimited by a specific character, which
in turn defines what sort of text file it is. The text file should broadly represent the
format of the data frame. That is, variables should be in columns and sampling units
in rows. The first row should contain the variable names and if there are row names,
these should be in the first column.

“ However, there are numerous projects in early stages of development that are being designed to
offer an interface to R from within major spreadsheet packages.
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The following examples illustrate the format of the abbreviated Mac Nally (1996)
data set created as both comma delimited (left) and tab delimited (right) files as well
as the corresponding read. table () commands used to import the files.

Comma delimited text file *.csv Tab delimited text file *.txt
HABITAT, GST, EYR HABITAT GST EYR
Reedy Lake,Mixed,3.4,0.0 Reedy Lake Mixed 3.4 0.0
Pearcedale,Gipps.Manna,3.4,9.2 Pearcedale Gipps.Manna 3.4 9.2
Warneet,Gipps.Manna,8.4,3.8 Warneet Gipps.Manna 8.4 3.8
Cranbourne, Gipps.Manna,3.0,5.0 Cranbourne Gipps.Manna 3.0 5.0

> MACNALLY <- read.table( > MACNALLY <- read.table(

+ 'macnally.csv', header=T, + 'macnally.txt', header=T,

+ row.names=1, sep=',"') + row.names=1, sep='\t')

The first argument to the read.table () function specifies the name (in quotation
marks) of the text file to be imported (and path if not in the current working directory,
see section 1.6.3). The header=T argument indicates that the first row of the file is a
header that defines the variable (vector) names. The row.names= argument indicates
which column in the data set contains the row names. If there are no row names in
the data set, then the row.names= argument should be omitted. Finally, the sep=
argument specifies which character is used as the delimiter to separate data entries.
The syntax ('\t') indicates a tab character. Field (data) separators are not restricted
to commas or tabs, just about any character can be defined as a separator.

2.3.2 Importing from the clipboard

The read.table() function can also be used to import data (into a data frame)
that has been placed on the clipboard’ by other software, thereby providing a very
quick and convenient way of obtaining data from spreadsheets. Simply replace the
filename argument with the word 'clipboard' and indicate a tab field separator
(\t). For example, to import data placed on the clipboard from Microsoft Excel, use
the following syntax;

> MACNALLY <- read.table("clipboard", header = T, row.names = 1,
+ sep = "\t")

2.3.3 Import from other software

As previously stated, virtually all software packages are able to export data in text file
format and usually with a choice of delimiters. However, the foreign package offers

b The clipboard is allocated space in virtual memory from which information can be copied and
pasted within and between different applications.
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more direct import of native file formats from a range of other popular statistical
packages. To illustrate the use of the various relevant functions within the foreign
package, importation of a subset of the Mac Nally (1996) data set from the various
formats will be illustrated.

Systat®

> library(foreign)
> MACNALLY <- read.systat("macnally.syd", to.data.frame = T)

Spss

> library(foreign)

> MACNALLY <- read.spss("macnally.sav", to.data.frame = T)
Minitab

> library(foreign)
> MACNALLY <- as.data.frame(read.mtp("macnally.mtp"))

Note, the file must be in Minitab Portable Worksheet format.

Sas

> library (foreign)
> MACNALLY <- read.xport("macnally")

Note, the file must be in the SAS XPORT format. If there is only a single dataset in
the XPORT format library, then the read.xport () function will return a data frame,
otherwise it will return a list of data frames.

Excel

Excel is more than just a spreadsheet — it contains macros, formulae, multiple
worksheets and formatting. The easiest ways to import data from Excel is either to save
the worksheet as a text file (comma or tab delimited) and import the data as a text
file (see section 2.3.3), or to copy the data to the clipboard in Excel and import the
clipboard data into R (see section 2.3.2).

2.4 Exporting (writing) data
Although plain text files are not the most compact storage formats, they do offer two
very important characteristics. Firstly, they can be read by a wide variety of other

applications, ensuring that the ability to retrieve the data will continue indefinitely.

¢ Cannot be used to import files produced with the MacOS version of SYSTAT due to incompatible
file formats.
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Secondly, as they are neither compressed nor encoded, a corruption to one section of
the file does not necessarily reduce the ability to correctly read other parts of the file.
Hence, this is also an important consideration for the storage of datasets.

Thewrite.table () function is used to save data frames. Although there are a large
number of optional arguments available for controlling the exact format of the output
file, typically only a few are required. The following example illustrates the exportation
of the Mac Nally (1996) data set as a comma delimited text file.

> write.table (MACNALLY, "macnally.csv", quote = F, row.names = T,

+ sep = u’u)

The first and second arguments specify respectively the name of the data frame and
filename (and path if necessary) to be exported. The quote=F argument indicates that
words and factor entries should not be exported with surrounding double quotation
marks. The row.names=T argument indicates that the row names in the data frame
are also to be exported (they will be the first column in the file). If there are no defined
row names in the data frame, alter the argument to row.names=F. Finally, specify the
field separator for the file (comma specified in above example).

2.5 Saving and loading of R objects

Any object in R (including data frames) can also be saved into a native R workspace
image file (*.RData) either individually, or as a collection of objects using the save ()
function. For example;

#save just the MACNALLY data frame
save (MACNALLY, file='macnally.RData')
#calculate the mean GST

meanGST <- mean (MACNALLYSGST)
#display the mean GST

VvV V. V VvV V

> meanGST

[1] 4.878378

> #save the MACNALLY data frame as well as the mean GST object
> save (MACNALLY, meanGST, file='macnallystats.RData')

The saved object(s) can be loaded during subsequent sessions by providing the name
of the saved workspace image file as an argument to the load() function. For
example;

> load("macnallystats.RData")

Similarly, a straight un-encoded text version of an object (including a dataframe) can
be saved or added to a text file using the dump () function.

> dump ("MACNALLY", file = "macnally")

If the file character string is left empty, the text representation of the object will be
written to the console. This can then be viewed or copied and pasted into a script file,
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thereby providing a convenient way to bundle together data sets along with graphical
and analysis commands that act on the data sets.

> dump ("MACNALLY", file = "")

Thereafter, the dataset is automatically included when the script is sourced and cannot
accidentally become separated from the script.

2.6 Data frame vectors

In generating a data frame from individual vectors (such as above), copies of the
original vectors, rather than the actual original vectors themselves are amalgamated.
Consequently, while the vectors contained in the data frame contain the same infor-
mation (entries) as the original vectors, they are completely distinct from the original
vectors. So from the examples above, the R workspace will contain the vectors HABITAT,
GST and EYR as well as HABITAT, GST and EYR within the MACNALLY data frame.

To refer to a vector within a data frame, the name of the vector is proceeded by the
name of the data frame and the two names are separated by a $ character. For example,
to refer to the GST vector of the MACNALLY data frame:

> MACNALLYS$SGST

(1] 3.4 3.4 8.4 3.0 5.6 8.1 8.3 4.6 3.2 4.6 3.7 3.8
[13] 5.4 3.1 3.8 9.6 3.4 5.6 1.7 4.7 14.0 6.0 4.1 6.5
[25] 6.5 1.5 4.7 7.5 3.1 2.7 4.4 3.0 2.1 2.6 3.0 7.1

]

[37 4.3

Modification made to the original vectors will not affect the vectors within a data
frame. Therefore, it is important to remember to use the data frame prefix. To avoid
confusion, it is generally recommended that following the successful generation of the
data frame from individual vectors, the original vectors should be deleted.

> rm (HABITAT, GST, EYR)

Thereafter, any inadvertent reference to the original vector (GST) rather than vector
within the data frame (MACNALLY$GST) will result in a error informing that the object
does not exist.

> GST
Error: Object "GST" not found

2.6.1 Factor levels
When factors are generated directly using the factor () function or a data set

is imported using one of the above importation methods (which themselves use
the factor() function to convert character vectors into factors), factor levels
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are automatically arranged alphabetically. For example, examine the levels of the
MACNALLY$HABITAT factor;

> levels (MACNALLYSHABITAT)
[1] "Box-Ironbark" "Foothills Woodland" "Gipps.Manna"

[4] "Mixed" "Montane Forest" "River Red Gum"

Although the order of factor levels has no bearing on most statistical procedures and
for many applications, alphabetical ordering is as valid as any other arrangement, for
some analyses (particularly those involving contrasts, see section 7.3) it is necessary to
know the arrangement of factor levels. Furthermore, for graphical summaries of some
data, alphabetical factor levels might not represent the natural trends among groups.
Consider a dataset that includes a factorial variable with the levels 'high', 'medium’
and 'low'. Presented alphabetically, the levels of the factor would be 'high' 'low'
'medium'. Those data would probably be more effectively presented in the more
natural order of 'high' 'medium' 'low' or 'low' 'medium' 'high'.

When creating a factor, the order of factor levels can be specified as a list of labels.
For example, consider a factor with the levels ' low', medium' and 'high':

> FACTOR <- gl(3, 2, 6, c("low", "medium", "high"))
> FACTOR

[1] low low medium medium high high

Levels: low medium high

The order of existing factor levels can also be altered by redefining a factor:

> # examine the default order of levels

> levels (MACNALLYSHABITAT)

[1] "Box-Ironbark" "Foothills Woodland" "Gipps.Manna"
[4] "Mixed" "Montane Forest" "River Red Gum"

> # redefine the order of levels

> MACNALLYSHABITAT<-factor (MACNALLYSHABITAT, levels=c(

+ 'Montane Forest', 'Foothills Woodland', 'Mixed', 'Gipps.Manna',
+ 'Box-Ironbark', 'River Red Gum'))

> # examine the new order of levels

> levels (MACNALLYSHABITAT)

[1] "Montane Forest" "Foothills Woodland" "Mixed"

[4] "Gipps.Manna" "Box-Ironbark" "River Red Gum"

In addition, some analyses perform different operations on factors that are defined
as ‘ordered’ compared to ‘unordered’ factors. Regardless of whether you have altered
the ordering of factor levels or not, by default all factors are implicitly considered
‘unordered’ until otherwise defined using the ordered () function®.

4 Alternatively, the argument ordered=TRUE can be supplied to the factor function when defining
a vector as a factor.
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> FACTOR <- ordered (FACTOR)

> FACTOR

[1] low low medium medium high high
Levels: low < medium < high

2.7 Manipulating data sets

2.7.1 Subsets of data frames — data frame indexing

Indexing of data frames follows the format of data frame[rows,columns], see
Table 2.1.
As an alternative to data frame indexing, the subset () function can be used:

> #extract all the bird densities from sites that have GST values
> f#greater than 3
> subset (MACNALLY, GST>3)

HABITAT GST EYR

Reedy Lake Mixed 3.4 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Lysterfield Mixed 5.6 5.6
Red Hill Mixed 8.1 4.1
Table 2.1 Data frame indexing.
Action Example indexing syntax
Indexing by rows Select the first 5 rows of each of the vectors in the data frame
(sampling units) > MACNALLY[1:5, ]

Select each of the vectors for the row called "Pearcedale’ from the
data frame
> MACNALLY [ 'Pearcedale', ]

Indexing by columns Select all rows but just the second and forth vector of the data
(variables) frame
> MACNALLY[,c(2,4)]

Select the GST and EYR vectors for all sites from the dataframe
> MACNALLY[,c('GST', 'EYR') ]

Indexing by conditions  Select the data for sites that have GST values greater than 3
> MACNALLY [MACNALLYS$GST>3, ]

Select data for ‘Mixed’ habitat sites that have GST values greater
than 3

> MACNALLY [MACNALLY$GST>3 &

+ MACNALLY$HABITAT=='Mixed', ]
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Devilbend Mixed 8.3 7.1
Olinda Mixed 4.6 5.3
Fern Tree Gum Montane Forest 3.2 5.2
Sherwin Foothills Woodland 4.6 1.2

> f#extract the GST and EYR densities from sites in which GST
> #is greater than 3
> subset (MACNALLY, GST>3, select=c('GST',6 'EYR'))

GST EYR
Reedy Lake 3.4 0.0
Pearcedale 3.4 9.2
Warneet 8.4 3.8
Lysterfield 5.6 5.6
Red Hill 8.1 4.1
Devilbend 8.3 7.1
Olinda 4.6 5.3
Fern Tree Gum 3.2 5.2
Sherwin 4.6 1.2

The subset () function can be used within many other analysis functions and there-
fore provides a convenient way of performing data analysis on subsets of larger data sets.

2.7.2 The %in% matching operator
It is often desirable to subset according to multiple alternative conditions. The $in%

operator searches through all of the entries in the object on the lefthand side for matches
with any of the entries within the vector on the righthand side.

> #subset the MACNALLY dataset according to those rows that
> #correspond to HABITAT 'Montane Forest' or 'Foothills Woodland'
> MACNALLY [MACNALLYS$SHABITAT %in% c("Montane Forest",
+ "Foothills Woodland"), ]
HABITAT GST EYR
Fern Tree Gum Montane Forest 3.2 5.2
Sherwin Foothills Woodland 4.6 1.2
Heathcote Ju Montane Forest 3.7 2.5
Warburton Montane Forest 3.8 6.5
Panton Gap Montane Forest 3.8 3.8
St Andrews Foothills Woodland 4.7 3.6
Nepean Foothills Woodland 14.0 5.6
Tallarook Foothills Woodland 4.3 2.9

Convieniently, the $in% operator can also be used in the subset function.
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2.7.3 Pivot tables and aggregating datasets

Sometimes it is necessary to calculate summary statistics of a vector separately for
different levels of a factor. This is achieved by specifying the numeric vector, the factor
(or list of factors) and the summary statistic function (such as mean) as arguments in
the tapply () function.

> #calculate the mean GST densities per HABITAT
> tapply (MACNALLYS$SGST, MACNALLYSHABITAT, mean)

Montane Forest Foothills Woodland Mixed
3.625000 6.900000 5.035294
Gipps.Manna Box-Ironbark River Red Gum
5.325000 4.575000 3.300000

When it is necessary to calculate the summary statistic for multiple variables at a time,
or to retain the dataset format to facilitate subsequent analyses or graphical summaries,
the aggregate () function is very useful.

> #calculate the mean GST and EYR densities per habitat
> aggregate (MACNALLY[c('GST', 'EYR"') ],
+ list (Habitat=MACNALLYSHABITAT), mean)

Habitat GST EYR

1 Montane Forest 3.625000 4.500000
2 Foothills Woodland 6.900000 3.325000
3 Mixed 5.035294 4.264706
4 Gipps.Manna 5.325000 6.925000
5 Box-Ironbark 4.575000 1.450000
6 River Red Gum 3.300000 0.000000

Alternatively, the gsummary () functon within the nlme and 1med4 packages performs
similarly. The gsummary () function performs more conveniently than aggregate ()
on grouped data (data containing hierarchical blocking or nesting).

> library (nlme)

> gsummary (MACNALLY [c ("GST", "EYR")], groups = MACNALLYSHABITAT)
GST EYR

Montane Forest 3.625000 4.500000

Foothills Woodland 6.900000 3.325000

Mixed 5.035294 4.264706

Gipps.Manna 5.325000 6.925000

Box-Ironbark 4.575000 1.450000

River Red Gum 3.300000 0.000000

2.7.4 Sorting datasets

Often it is necessary to rearrange or sort datasets according to one or more variables.
This is done by using the order () function to generate the row indices. By default,
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data are sorted in increasing order, however this can be reversed by supplying the
decreasing=T argument to the order () function. It is possible to sort according to
multiple variables simply by specifying a comma separated list of the vector names (see
example below), whereby the data are sorted first by the first supplied vector, then the
next and so on. Note however, when multiple vectors are supplied, all are sorted in the
same direction.

> MACNALLY [order (MACNALLYSHABITAT, MACNALLYSGST), ]

HABITAT GST EYR

Fern Tree Gum Montane Forest 3.2 5.2
Heathcote Ju Montane Forest 3.7 2.5
Warburton Montane Forest 3.8 6.5
Panton Gap Montane Forest 3.8 3.8
Tallarook Foothills Woodland 4.3 2.9
Sherwin Foothills Woodland 4.6 1.2
St Andrews Foothills Woodland 4.7 3.6
Nepean Foothills Woodland 14.0 5.6
Donna Buang Mixed 1.5 0.0

To appreciate how this is working, examine just the order component

> order (MACNALLYSHABITAT, MACNALLY$GST)
[1] 9 11 12 15 37 10 20 21 26 19 35 14 1 17 23 8 27 13 5 18
[21] 22 28 6 7 16 4 2 24 3 33 34 25 36 30 32 29 31

Hence when this sequence is applied as row indices to MACNALLY, it would be
interpreted as ‘display row 13, then row 27, 29 etc’.

2.7.5 Accessing and evaluating expressions within the context of a dataframe

For times when you find it necessary to repeatedly include the name of the dataframe
within functions and expressions, the with() function is very convenient. This
function evaluates an expression (which can include functions) within the context of
the dataframe. Hence, the above order () illustration could also be performed as:

> with (MACNALLY, order (HABITAT, GST))
[1] 9 11 12 15 37 10 20 21 26 19 35 14 1 17 23 8 27 13 5 18
[21] 22 28 6 7 16 4 2 24 3 33 34 25 36 30 32 29 31

2.7.6 Reshaping dataframes

Data sets are typically constructed such that variables (vectors) are in columns and
replicates are in rows. This standard format (known as long format) allows a huge variety
of graphical and numerical summaries and analyses to be performed with minimal need
for data alterations. Nevertheless, there are a small number of analyses (such as paired
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t-tests, repeated measures and multivariate analysis of variance (MANOVA)) that can
be performed on, or else require data to be arranged in wide format. In wide format,
the rows represent blocks or individuals and the repeated measurements (responses
to treatments within each block) are arranged in columns. Conversion between long
and wide data formats is provided by the reshape () function. To illustrate, we will
use the Walter and O’Dowd (1992) randomized block dataset in which the number
of mites encountered on leaves with and without domatia blocked within plants were
modelled.

> walter<-read.table('walter.csv', header=TRUE, sep=',6 ")
> #view first six rows of the walter data set
> head(walter)

LEAVES BLOCK TREAT MITE

1 al 1 1 9
2 a2 1 2 1
3 bl 2 1 2
4 b2 2 2 1
5 cl 3 1 0
6 c2 3 2 2

Using the reshape () function to convert the long format into wide format:

> walter.wide <- reshape(walter, v.names = "MITE",
+ timevar = "TREAT", idvar = "BLOCK", direction = "wide",
+ drop = "LEAVES")

> walter.wide
BLOCK MITE.1 MITE.2

1 1 9 1
3 2 2 1
5 3 0 2
7 4 12 4
9 5 15 2
11 6 3 1
13 7 11 0
15 8 6 0
17 9 7 1
19 10 6 0
21 11 5 1
23 12 8 1
25 13 3 1
27 14 6 0

In the above, v.names= specifies the names of vectors from the long format whose
values will fill the repeated measures columns of the wide format, timevar= specifies
the names of categorical vectors in the long format whose levels will define the separate
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repeated measures columns, idvar= specifies the names of categorical vectors in the
long format that define the blocks or individuals. The direction= argument specifies
the format of the resulting dataframe and drop= specifies the name of any vectors in
the long format that can be removed prior to reshaping. Similarly, the reshape ()
function can be used to convert wide to long format. Reshaping from wide to long
format is often desirable, since while the long format is necessary for most analysis
and summaries, the wide format is typically more compact and suitable for field data
collection sheets and spreadsheet entry. For the purpose of an example, the following
wide data set represents seal counts from ten sites at three different times of the day
(08:00, 12:00 and 16:00). The researcher wishes to reshape it to long format to facilitate
analyses.

> seals <- data.frame(Seal = paste("Site", 1:10, sep = ""),

+ T8.00 = c (10, 35, 67, 2, 49, 117, 26, 85, 20,

+ 15), T12.00 = c(15, 47, 88, 3, 46, 132, 41,

+ 101, 36, 18), T16.00 = c(9, 31, 62, 0, 39,

+ 86, 11, 3, 14, 7))

> seals.long <- reshape(seals, varying = c("T8.00",

+ "T12.00", "T16.00"), v.names = "Count", timevar = "TIME",
+ times = paste("T", seq(8, 16, by = 4), sep = ""),

+ idvar = "Seal", direction = "long")

> seals.long

Seal TIME Count

Sitel.T8 Sitel T8 10
Site2.T8 Site2 T8 35
Site3.T8 Site3 T8 67
Sited . T8 Site4d T8 2
Site5.T8 Siteb T8 49
Site6.T8 Siteb T8 117
Site7.T8 Site7 T8 26
Site8.T8 Site8 T8 85
Site9.T8 Site9 T8 20
Sitel0.T8 SitelO T8 15
Sitel.T12 Sitel T12 15
Site2.T12 Site2 T12 47
Site3.T12 Site3 TI12 88
Sited.T12 Sited TI12 3
Site5.T12 Siteb5 TI12 46
Site6.T12 Site6 T12 132
Site7.T12 Site7 TI12 41
Site8.T12 Site8 T12 101
Site9.T12 Site9 T12 36
Sitel0.T12 Sitel0 T12 18
Sitel.T16 Sitel T16 9

Site2.T16 Site2 T16 31
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Site3.T16 Site3 Tl6 62
Sited.T16 Sited Tl6 0
Site5.T16 Site5 Tl6 39
Site6.T16 Site6 Tl6 86
Site7.T16 Site7 T16 11
Site8.T16 Site8 Tl6 3
Site9.T1l6 Site9 T16 14
Sitel0.T16 Sitel0d T16 7

2.8 Dummy data sets - generating random data

Most statisticians strongly recommend that research questions be designed around
sets of well defined statistical procedures. This ensures that the eventual data analyses
remain possible and relatively straightforward. Furthermore, many would recommend
the generation and mock analysis of dummy data sets that approximate the anticipated
structure and variability of the anticipated data. This enables many of the common
data analysis problems to be anticipated, thereby allowing solutions to be considered
prior to data collection. Dummy data sets are usually created by filling the response
variable(s) (and continuous predictor variables) with random data.

R uses the Mersenne-Twister Random Number Generator (RNG) with a random
number sequence cycle of 2197 — 1. All random number generators have what is
known as a ‘seed’. This is a number that uniquely identifies a series of random number
sequences. Strictly, computer generated random numbers are ‘pseudo-random’ as
the sequences themselves are predefined. However, with such a large number of
possible sequences (2!°°37 — 1), for all intents and purposes they are random.

By default, the initial random seed is generated from the computer clock (mil-
liseconds field) and is therefore unbiased. However, it is also possible to specify a
random seed. This is often useful for error-checking functions. Additionally, it also
facilitates learning how to perform randomizations, as the same outcomes can be
repeated.

R has a family of functions (see Table 2.2) that extract random numbers from a
range of mathematical distributions that represent the common sampling and statistical
distributions encountered in biology.

For example, imagine that you were interested in examining the effect of four
different nitrogen treatments (N1, N2, N3, N4) on the growth rate of a particular
species of plant. An ANOVA (see chapter 10) appeared suitable for your intended
experimental design, and you prudently decided to run a mock analysis prior to
data collection. Previous studies had indicated that the growth rate of the plant
species was normally distributed with a mean of around 250 mm per year with a
standard deviation of about 20 mm, and you had decided (for whatever reason) to
have 10 replicates of each treatment. Using these criteria it is possible to generate a
dummy data set.
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Table 2.2 Random number generation functions for different sampling distributions.

Distribution

Example syntax

Normal

Log-Normal

Uniform

Poisson

Binomial

Negative
binomial

Exponential

# generate 5 random numbers from a normal

# distribution with a mean of 10 and a standard

rnorm(5,mean=10, sd=1)

>
>

> # deviation of 1

>

[1] 11.564555 9.732885 8.357070 8.690451 12.272846

# generate 5 random numbers from a log-normal
# distribution whose logarithm has a mean of 2 and a
# standard deviation
# of 1

rlnorm(5,mean=2,sd=1)

1] 8.157636 30.914781 20.175299 5.071559 16.364014

vV V.V VYV

# generate 5 random numbers from a uniform

>
> # distribution with a minimum of 2 and a
> # maximum of 10

> runif (5,min=1,max=10)

[1] 4.710560 8.155589 8.272690 6.898405 4.226496

> # generate 5 random numbers from a Poisson
> # distribution with a lambda parameter of 4
> rpois(5,min=1,max=10)

[1] 4 4 2 61

# generate 5 random numbers from a binomial

# distribution based on 10 Bernoulli trials and
# a prob. of 0.5

rbinom(5,size=10,prob=.5)

11 4 41 4 6

V V.V V

# generate 5 random numbers from a negative binomial

# distribution based on 10 Bernoulli trials and

rnbinom (5, size=10,mu=4)

>
>
> # an alternative parameterization (mu) of 4
>
[1] 57145

> # generate 5 random numbers from a exponential

> # distribution with a lambda rate of 2

> rexp (5, rate=2)

[1] 0.3138283 1.1896221 0.2466995 0.4090852 1.1757822
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# create the response variable with four sets of 10 random

# numbers from a normal distribution

GROWTH.RATE <- c(rnorm(10, 250,20), rnorm(10, 250,20),

rnorm (10, 250,20),rnorm(10, 250,20))

# create the nitrogen treatment factor with four levels each
# replicated 10 times

TREATMENT <- gl(4,10,40,c('N1l', 'N2', 'N3', 'N4'))

# combine the vectors into a dataframe

NITROGEN <- data.frame (GROWTH.RATE, TREATMENT)

vV V.V V V + V V V

For multifactor designs, the expand.grid () function provides a convenient way to
generate dataframes containing all combinations of one or more factors. Following
from the previous example, imagine you now wanted to create mock data for a two
factor (nitrogen treatment and season) ANOVA design. A dummy data set could be
created as follows:

# create the nitrogen treatment factor with four levels
TREATMENT <- c("N1","N2","N3","N4")

# create the season factor with two levels

SEASON <- Cc("WINTER", "SUMMER")

# use the expand.grid function to create a dataframe with each
# combination replicated 5 times

TS<-expand.grid (TREATMENT=TREATMENT, SEASON=SEASON, reps=1:5)

# combine a normally distributed response variable to the

# factor combinations using the data.frame function
NITROGEN<-data. frame (TS, GROWTH.RATE=rnorm(40,250,20))

vV V.V V V V V VvV V V

The data can now be subject to the statistical and graphical procedures. Dummy data
sets are also useful for examining the possible impacts of missing data and unbalanced
designs.



3

Introductory statistical principles

Statistics is a branch of mathematical sciences that relates to the collection, analysis,
presentation and interpretation of data and is therefore central to most scientific
pursuits. Fundamental to statistics is the concept that samples are collected and
statistics are calculated to estimate populations and their parameters.

Statistical populations can represent natural biological populations (such as the
Victorian koala population), although more typically they reflect somewhat artificial
constructs (e.g. Victorian male koalas). A statistical population strictly refers to all the
possible observations from which a sample (a subset) can be drawn and is the entity
about which you wish to make conclusions.

The population parameters are the characteristics (such as population mean, variabil-
ity etc) of the population that we are interested in drawing conclusions about. Since it
is usually not possible to observe an entire population, the population parameters must
be estimated from corresponding statistics calculated from a subset of the population
known as a sample (e.g sample mean, variability etc). Provided the sample adequately
represents the population (is sufficiently large and unbiased), the sample statistics
should be reliable estimates of the population parameters of interest. It is primarily for
this reason that most statistical procedures assume that sample observations have been
drawn randomly from populations (to maximize the likelihood that the sample will
truly represent the population). Additional terminology fundamental to the study of
biometry are listed in Table 3.1.

In addition to estimating population parameters, various statistical functions (or
statistics) are often calculated to express the relative magnitude of trends within and
between populations. For example, the degree of difference between two populations is
usually described by a ¢-statistic (see chapter 6). Another important concept in statistics
is the idea of probability. The probability of an event or outcome is the proportion
of times that the event or outcome is expected to occur in the long-run (after a
large number of repeated procedures). For many statistical analyses, probabilities of
occurrence are used as the basis for conclusions, inferences and predictions.

Consider the vague research question “How much do Victorian male koalas weigh?”.
This could be interpreted as:

* How much do each of the Victorian male koalas weigh individually?
* What is the total mass of all Victorian male koalas added together?
* What is the mass of the typical Victorian male koala?

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Table 3.1 List of important terms. Examples pertain to a hypothetical research investigation into
estimating the protein content of koala milk.

Term Definition Example
Measurement A single piece of recorded information Protein content of the milk
reflecting a characteristic of interest (e.g. of a single female koala

length of a leaf, pH of a water aliquot mass
of an individual, number of individuals per
quadrat etc)

Observation A single measured sampling or experimental A small quantity of milk
unit (such as an individual, a quadrat, a site from a single koala
etc)

Population All the possible observations that could be The milk of all female koalas

measured and the unit of which wish to
draw conclusions about (note a statistical
population need not be a viable biological

population)

Sample The (representative) subset of the population A small quantity of milk
that are observed collected from 15 captive

female koalas®

Variable A set of measurements of the same type that ~ The protein content of koala
comprise the sample. The characteristic that milk.
differs (varies) from observation to
observation

“ Note that such a sample may not actually reflect the defined population. Rather, it could be argued that such a sample
reflects captive populations. Nevertheless, such extrapolations are common when field samples are difficult to obtain.

Arguably, it is the last of these questions that is of most interest. We might also be
interested in the degree to which these weights differ from individual to individual and
the frequency of individuals in different weight classes.

3.1 Distributions

The set of observations in a sample can be represented by a sampling or frequency
distribution. A frequency distribution (or just distribution) represents how often
observations in certain ranges occur (see Figure 3.1a). For example, how many male
koalas in the sample weigh between 10 and 11 kg, or how many weigh more than
12 kg. Such a sampling distribution can also be expressed in terms of the probability
(long-run likelihood or chance) of encountering observations within certain ranges.
For example, the probability of encountering a male koala weighing more than 12 kg is
equal to the proportion of male koalas in the sample that weighed greater than 12 kg.
It is then referred to as a probability distribution. When a frequency distribution can
be described by a mathematical function, the probability distribution is a curve. The
total area under this curve is defined as 1 and thus, the area under sections of the
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Fig 3.1 Fictitious histogram (a) and (b) normal and (c-d) log-normal probability distributions.

curve represent the probability of values falling in the associated interval. Note, it is
not possible to determine the probability of discrete events (such as the probability of
encountering a koala weighing 12.183 kg) only ranges of values.

3.1.1 The normal distribution

It has been a long observed mathematical phenomenon that the accumulation of a
set of independent random influences tend to converge upon a central value (central
limit theorem) and that the distribution of such accumulated values follow a specific
‘bell shaped’ curve called a normal or Gaussian distribution (see Figure 3.1b). The
normal distribution is a symmetrical distribution in which values close to the center
of the distribution are more likely and that progressively larger and smaller values are
less commonly encountered.

Many biological measurements (such as the weight of a Victorian male koala) are
likewise influenced by an almost infinite number of factors (many of which can be
considered independent and random) and thus many biological variables also follow
a normal distribution. Since many scientific variables behave according to the central
limit theorem, many of the common statistical procedures have been specifically
derived for (and thus assume) normally distributed data. In fact, the reliability of
inferences based on such procedures is directly related to the degree of conformity to
this assumption of normality. Likewise, many other statistical elements rely on normal
distributions, and thus the normal distribution (or variants thereof) is one of the most
important mathematical distributions.
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3.1.2 Log-normal distribution

Many biological variables have a lower limit of zero (at least in theory). For example,
a koala cannot weigh less than 0 kg or there cannot be fewer than zero individuals in a
quadrat. Such circumstances can result in asymmetrical distributions that are highly
truncated towards the left with a long right tail (see Figure 3.1¢). In such cases, the mean
and median present different values (the latter arguably more reflective of the ‘typical’
value), see Figure 3.1d. These distributions can often be described by a log-normal
distribution. Furthermore, some variables do not naturally vary on a linear scale. For
example, growth rates or chemical concentrations might naturally operate on logarith-
mic or exponential scales. Consequently, when such data are collected on a linear scale,
they might be expected to follow a non-normal (perhaps log-normal) distribution.

3.2 Scale transformations

Essentially, data transformation is the process of converting the scale in which the
observations were measured into another scale. I will demonstrate the principles of
data transformation with two simple examples. Firstly, to illustrate the legitimacy and
commonness of data transformations, imagine you had measured water temperature
in a large number of streams. Let’s assume that you measured the temperature in °C.
Supposing later you required the temperatures be in °F. You would not need to re-
measure the stream temperatures. Rather, each of the temperatures could be converted
from one scale (°C) to the other (°F). Such transformations are very common.

Imagine now that a botanist wanted to examine the leaf size of a particular species.
The botanist decides to measure the length of a random selection of leaves using a
standard linear, metric ruler and the distribution of sample observations are illustrated
in Figure 3.2a. The growth rate of leaves might be expected to be greatest in small leaves
and deccelerate with increasing leaf size. That is, the growth rate of leaves might be
expected to be logarithmic rather than linear. As a result, the distribution of leaf sizes
using a linear scale might also be expected to be non-normal (log-normal). If, instead
of using a linear scale, the botanist had used a logarithmic ruler, the distribution of leaf
sizes may have been more like that depicted in Figure 3.2b.

If the distribution of observations is determined by the scale used to measure of
the observations, and the choice of scale (in this case the ruler) is somewhat arbitrary
(a linear scale is commonly used because we find it easier to understand), then it is
justifiable to convert the data from one scale to another after the data has been collected
and explored. It is not necessary to re-measure the data in a different scale. Therefore,
to normalize the data, the botanist can simply convert the data to logarithms.

The important points in the process of transformations are;

(i) The order of the data has not been altered (a large leaf measured on a linear scale is still
a large leaf on a logarithmic scale), only the spacing of the data has changed
(i) Since the spacing of the data is purely dependent on the scale of the measuring device,
there is no reason why one scale is more correct than any other scale
(iii) For the purpose of normalization, data can be converted from one scale to another
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Fig 3.2 Ficticious illustration of scale transformations. Leaf length measurements collected
on a linear a) and logarithmic b) scale yielding log-normal and normal sampling distributions
respectively. Leaf length measurements collected on a linear scale can be normalized by applying
a logarithmic function (inset) to each measurement. Such a scale transformation only alters the
relative spacing of measurements c). A largest leaf has the largest values on both scales.

Table 3.2 Common data transformations.

Nature of data Transformation R syntax
Measurements (lengths, weights, etc)  log, log (x)
log1o log(x, 10)
log1o 1ogl10 (x)
logx+1 log(x+1)
Counts (number of individuals, etc) VA sqrt (x)
Percentages (must be proportions) arcsin asin(sgrt(x))*180/pi

where x is the name of the vector (variable) whose values are to be transformed.

The purpose of scale transformation is purely to normalize the data so as to satisfy
the underlying assumptions of a statistical analysis. As such, it is possible to apply any
function to the data. Nevertheless, certain data types respond more favourably to certain
transformations due to characteristics of those data types. Common transformations
and R syntax are provided in Table 3.2.

3.3 Maeasures of location

Measures of location describe the center of a distribution and thus characterize the
typical value of a population. There are many different measures of location (see
Table 3.3), all of which yield identical values (in the center of the distribution) when
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Table 3.3 Commonly estimated population parameters?.

Parameter Description R syntax

Estimates of Location

Arithmetic mean () The sum of the values divided by mean (x)
the number of values (1)
Trimmed mean The arithmetic mean calculated mean (X, trim=0.05)

after a fraction (typically 0.05
or 5%) of the lower and upper
values have been discarded
Winsorized mean The arithmetic mean is calculated library (psych)
after the trimmed values are winsor (X, trim=0.05)
replaced by the upper and
lower trimmed quantiles

Median The middle value median (X)
Minimum, maximum Smallest and largest values min (X), max (X)
Estimates of Spread
Variance (%) Average deviation of observations var (x)
from the mean
Standard deviation (o) Square-root of variance sd (X)
Median absolute deviation The median difference of mad (X)
observations from the median
value
Inter-quartile range Difference between the 75% and  IQR(X)

25% ranked observations
Precision and confidence

Standard error of ¥ (s3) Precision of the estimate ¥ sd(X) /sgrt (length (X))
95% confidence interval  Interval with a 95% probability of 1ibrary (gmodels)
of containing the true mean ci (X)

“0nly L-estimators are provided. L-estimators are linear combinations of weighted statistics on ordered values. M-estimators
(of which maximum likelihood is an example) are calculated as the minimum of some function(s).

the population (and sample) follows an exactly symmetrical distribution. Whilst the
mean is highly influenced by unusually large or small values (outliers) and skewed
distributions, the median is more robust. The greater the degree of asymmetry and
outliers, the more disparate the different measures of location.

3.4 Measures of dispersion and variability

In addition to having an estimate of the typical value (center of a distribution), it is
often desirable to have an estimate of the spread of the values in the population. That
is, do all Victorian male koalas weigh the same or do the weights differ substantially?
In its simplest form, the variability, or spread, of a population can be characterized
by its range (difference between maximum and minimum values). However, as ranges
can only increase with increasing sample size, sample ranges are likely to be a poor
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estimate of population spread. Variance (s*) describes the typical deviation of values
from the typical (mean) value:
=2
2 yi—»)
s¢ = —
2.5

Note that by definition, the mean value must be in the center of all the values, and
thus the sum of the positive and negative deviations will always be zero. Consequently,
the deviances are squared prior to summing. Unfortunately, this results in the units
of the spread estimates being different to the units of location. Standard deviation (the
square-root of the variance) rectifies this issue.

Note also, that population variance (and standard deviation) estimates are calculated
with a denominator of n — 1 rather than n. The reason for this is that since the sample
values are likely to be more similar to the sample mean (which is of course derived from
these values) than to the fixed, yet unknown population mean, the sample variance
will always underestimate the population variance. That is, the sample variance and
standard deviations are biased estimates of the population parameters. Division by #-1
rather than # is an attempt to partly offset these biases.

There are more robust (less sensitive to outliers) measures of spread including the
inter-quartile range (difference between 75% and 25% ranked observations) and the
median absolute deviation (MAD: the median difference of observations from the
median value).

3.5 Measures of the precision of estimates - standard errors
and confidence intervals

Since sample statistics are used to estimate population parameters, it is also desirable
to have a measure of how good the estimates are likely to be. For example, how well
the sample mean is likely to represent the true population mean. The proximity of
an estimated value to the true population value is its accuracy. Clearly, as the true
value of the population parameter is never known (hence the need for statistics), it
is not possible to determine the accuracy of an estimate. Instead, we measure the
precision (repeatability, consistency) of the estimate. Provided an estimate is repeatable
(likely to be obtained from repeated samples) and that the sample is a good, unbiased
representative of the population, a precise estimate should also be accurate.

Strictly, precision is measured as the degree of spread (standard deviation) in a set
of sample statistics (e.g. means) calculated from multiple samples and is called the
standard error. The standard error can be estimated from a single sample by dividing
the sample standard deviation by the square-root of the sample size (5=). The smaller
the standard error of an estimate, the more precise the estimate is and thus the closer
it is likely to approximate the true population parameter.

The central limit theorem (which predicates that any set of averaged values drawn
from an identical population will always converge towards being normally distributed)
suggests that the distribution of repeated sample means should follow a normal distri-
bution and thus can be described by its overall mean and standard deviation (=standard
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Fig 3.3 (a) Normal distribution displaying percentage quantiles (grey) and probabilities (areas
under the curve) associated with a range of standard deviations beyond the mean. (b) 20 possible
95% confidence intervals from 20 samples (n = 30) drawn from the one population. Bold intervals
are those that do not include the true population mean. In the long run, 5% of such intervals will
not include the population mean ().

error). In fact, since the standard error of the mean is estimated from the same single
sample as the mean, its distribution follows a special type of normal distribution called
a t-distribution. In accordance to the properties of a normal distribution (and thus a
t-distribution with infinite degrees of freedom), 68.27% of the repeated means fall
between the true mean and % one sample standard error (see Figure 3.3). Put differ-
ently, we are 68.27% percent confident that the interval bound by the sample mean
plus and minus one standard error will contain the true population mean. Of course,
the smaller the sample size (lower the degrees of freedom), the flatter the #-distribution
and thus the smaller the level of confidence for a given span of values (interval).

This concept can be easily extended to produce intervals associated with other
degrees of confidence (such as 95%) by determining the percentiles (and thus number
of standard errors away from the mean) between which the nominated percentage
(e.g. 95%) of the values lie (see Figure 3.3a). The 95% confidence interval is thus
defined as:

P {7 —to.os(n-1)S§§ < U <y + tO.OS(n—l)S)_/}

where ¥ is the sample mean, s; is the standard error, #9 o5(,—1) is the value of the 95%
percentile of a t distribution with n — 1 degrees of freedom, and p is the unknown
population mean. For a 95% confidence interval, there is a 95% probability that the
interval will contain the true mean (see Figure 3.3b). Note, this interpretation is about
the interval, not the true population value, which remains fixed (albeit unknown). The
smaller the interval, the more confidence is placed in inferences about the estimated
parameter.
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3.6 Degrees of freedom

The concept of degrees of freedom is sufficiently abstract and foreign to those new to
statistical principles that it warrants special attention. The degrees of freedom refers
to how many observations in a sample are ‘free to vary’ (theoretically take on any value)
when calculating independent estimates of population parameters (such as population
variance and standard deviation).

In order for any inferences about a population to be reliable, each population
parameter estimate (such as the mean and the variance) must be independent of one
another. Yet they are usually all obtained from a single sample and to estimate variance,
a prior estimate of the mean is required. Consequently, mean and variance estimated
from the same sample cannot strictly be independent of one another.

When estimating the population variance (and thus standard deviation) from sample
observations, not all of the observations can be considered independent of the estimate
of population mean. The value of at least one of the observations in the sample is
constrained (not free to vary). If, for example, there were four observations in a sample
with a mean of 5, then the first three of these can theoretically take on any value,
yet the forth value must be such that the sum of the values is still 20. The degrees of
freedom therefore indicates how many independent observations are involved in the
estimation of a population parameter. A ‘cost’ of a single degree of freedom is incurred
for each prior estimate required in the calculation of a population parameter.

The shape of the probability distributions of coefficients (such as those in linear
models etc) and statistics depend on the number of degrees of freedom associated
with the estimates. The greater the degrees of freedom, the narrower the probability
distribution and thus the greater the statistical power”. Degrees of freedom (and thus
power) are positively related to sample size (the greater the number of replicates, the
greater the degrees of freedom and power) and negatively related to the number of
variables and prior required parameters (the greater the number of parameters and
variables, the lower the degrees of freedom and power).

3.7 Methods of estimation
3.7.1 Least squares (LS)

Least squares (LS) parameter estimation is achieved by simply minimizing the overall
differences between the observed sample values and the estimated parameter(s). For
example, the least squares estimate of the population mean is a value that minimizes
the differences between the sample values and this estimated mean. Least squares
estimation has no inherent basis for testing hypotheses or constructing confidence

@ Power is the probability of detecting an effect if an effect genuinely occurs.
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Fig 3.4 Diagrammatic illustration of ML estimation of .

intervals and is thus primarily for parameter estimation. Least squares estimation is
used extensively in simple model fitting procedures (e.g. regression and analysis of
variance) where optimization (minimization) has an exact solution that can be solved
via simultaneous equations.

3.7.2  Maximum likelihood (ML)

The maximum likelihood (ML) approach estimates one or more population parameters
such that the (log) likelihood of obtaining the observed sample values from such
populations is maximized for a nominated probability distribution.

Computationally, this involves summing the probabilities of obtaining each obser-
vation for a range of possible population parameter estimates, and using integration to
determine the parameter value(s) that maximize the likelihood. A simplified example
of this process is represented in Figure 3.4.

Probabilities of obtaining observations for any given parameter value(s) are calcu-
lated according to a specified exponential probability distribution (such as normal,
binomial, Poisson, gamma or negative binomial). When the probability distribution
is normal (as in Figure 3.4), ML estimators for linear model parameters have exact
computational solutions and are identical to LS solutions (see section 3.7.1). However
for other probability distributions (for which LS cannot be used), ML estimators
involve complex iterative calculations. Unlike least squares, the maximum likelihood
estimation framework also provides standard errors and confidence intervals for esti-
mations and therefore provides a basis for statistical inference. The major draw back
of this method is that it typically requires strong assumptions about the underlying
distributions of the parameters.
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3.8 Outliers

Outliers are extreme or unusual values that do not fall within the normal range of
the data. As many of the commonly used statistical procedures are based on means
and variances (both of which are highly susceptible to extreme observations), outliers
tend to bias statistical outcomes towards these extremes. For a statistical outcome
to reliably reflect population trends, it is important that all observed values have an
equal influence on the statistical outcomes. Outliers, however, have a greater influence
on statistical outcomes than the other observations and thus, the resulting statistical
outcomes may no longer represent the population of interest.

There are numerous mathematical methods that can be used to identify outliers.
For example, an outlier could be defined as any value that is greater than two standard
deviations from the mean?. Alternatively, outliers could be defined as values that are
greater than two times the inter-quartile range from the inter-quartile range.

Outliers are caused by a variety of reasons including errors in data collection or
transcription, contamination or unusual sampling circumstances, or the observation
may just be naturally unusual. Dealing with outliers therefore depends on the cause
and requires a great deal of discretion.

* |f there are no obvious reasons why outlying observations could be considered unrepresen-
tative, they must be retained although it is often worth reporting the results of the analyses
with and without these influential observations

» Omitting outliers can be justified if there is reason to suspect that they are not representative
(due to sampling errors etc), although their exclusion should always be acknowledged.

* There are many statistical alternatives that are based on more robust (less affected by
departures from normality or the presence of outliers) measures that should be employed if
outliers are present.

3.9 Further reading

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John Wiley &
Sons, England.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for biologists.
Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

b This method clearly assumes that the observations are normally distributed.
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Sampling and experimental design with R

A fundamental assumption of nearly all statistical procedures is that samples are
collected randomly from populations. In order for a sample to truly represent a
population, the sample must be collected without bias (intentional or otherwise). R has
a rich array of randomization tools to assist researches randomize their sampling and
experimental designs.

4.1 Random sampling

Biological surveys involve the collection of observations from naturally existing
populations. Ideally, every possible observation should have an equal likelihood of
being selected as part of the sample. The sample () function facilitates the drawing
of random samples.

Selecting sampling units from a numbered list

Imagine wanting to perform bird surveys within five forested fragments which are to
be randomly selected from a list of 37 fragments:

> sample(1:37, 5, replace=F)
[1] 2 16 28 30 20

> MACNALLY <- read.table("macnally.csv", header=T, sep=",")
> sample (row.names (MACNALLY), 5, replace=F)
[1] "Arcadia" "Undera" "Warneet" "Tallarook"

[5] "Donna Buang"
Selecting sample times

Consider a mammalogist who is about to conduct spotlighting arboreal mammal
surveys at 10 different sites (S1—S10). The mammalogist wants to randomize the time
(number of minutes since sundown) that each survey commences so as to restrict
any sampling biases or confounding dial effects. Since the surveys are to take exactly

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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20 minutes and the maximum travel time between sites is 10 minutes, the survey
starting times need to be a minimum of 30 minutes apart. One simple way to do this
is to generate a sequence of times at 30 minute intervals from 0 to 600 (60 x 10) and
then randomly select 10 of the times using the sample () function:

> sample(seqg (0,600, by=30), 10, replace=F)
[1] 300 90 270 600 480 450 30 510 120 210

However, these times are not strictly random, as only a small subset of possible times
could have been generated (multiples of 30). Rather, they are a regular sequence of
times that could potentially coincide with some natural rhythm, thereby confounding
the results. A more statistically sound method is to generate an initial random starting
time and then generate a set of subsequent times that are a random time greater than
30 minutes, but no more than (say) 60 minutes after the preceding time. A total of
10 times can then be randomly selected from this set.

First step is to obtain a random starting (first survey)
time. To do this retain the minimum time from a random set of
times between 1 (minute) and 60*10 (number of minutes in

10 hours)

TIMES <- min(runif (20,1,60%*10))

# Next we calculate additional random times each of which is a

#
#
#
#

# minimum and maximum of 30 and 60 minutes respectively after
# the previous
for(i in 2:20) {
TIMES([i] <- runif (1, TIMES[i-1]1+30,TIMES[i-1]1+60)
1if (TIMES[1]>9*60) break
}
# Randomly select 10 of these times
TIMES <- sample(TIMES, 10, replace=F)
# Generate a Site name for the times
names (TIMES) <- paste('Site',1:10, sep='")
# Finally sort the list and put it in a single column
cbind('Times'=sort (TIMES))
Times
Siteb 53.32663
Site9 89.57309
Site5 137.59397
Sitel 180.17486
Sited 223.28241
Site2 312.30799
Site3 346.42314
Sitel0 457.35221
Site7 513.23244
Site8 554.69444

vV V V V V V + 4+ + V V V V V V V VvV V
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Note, that potentially any times could have been generated, and thus this is a better
solution. This relatively simple example could be further extended with the use of some
of the Date-Time functions.

> # Convert these minutes into hs, mins, seconds
hrs <- TIMES%/%60
mins <- trunc (TIMES%$%60)
secs <- trunc(((TIMES%%60)-mins) *60)
RelTm <- paste(hrs,sprintf("%2.0f",mins), secs, sep=":")
# We could also express them as real times
# If sundown occurs at 18:00 (18*60*60 seconds)
RealTm<-format (strptime (RelTm, "$H:%M:%S")+(18*60*60),
"$H:$M:%3S")
# Finally sort the list and put it in a single column
data.frame('Minutes'=sort (TIMES),
'RelativeTime'=RelTm[order (TIMES) ],
RealTime=RealTm[order (TIMES) ])
Minutes RelativeTime RealTime
Siteb 53.32663 0:53:19 18:53:19
Site9 89.57309 1:29:34 19:29:34
Site5 137.59397 :17:35 20:17:35
Sitel 180.17486 0:10 21:00:10
Sited 223.28241 :43:16 21:43:16
Site2 312.30799 :12:18 23:12:18
Site3 346.42314 :46:25 23:46:25
Sitel0 457.35221 :37:21 01:37:21
Site7 513.23244 :33:13 02:33:13
Site8 554.69444 :14:41 03:14:41

+ + V. V. + vV VvV V VvV V V V
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Selecting random coordinates from a rectangular grid

Consider requiring 10 random quadrat locations from a 100 x 200 m grid. This can
done by using the runif () function to generate two sets of random coordinates:

> data.frame (X=runif (10,0,100), Y=runif(10,0,200))
X Y
87.213819 114.947282
9.644797 23.992531
41.040160 175.342590
97.703317 23.101111
52.669145 1.731125
63.887850 52.981325
56.863370 54.875307
27.918894 46.495312
94.183309 189.389244
0 90.385280 151.110335

P W o J o U1 W N
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Random coordinates of an irregular shape

Consider designing an experiment in
which a number of point quadrats (lets
say five) are to be established in a State
Park. These points are to be used for 7532 —
stationary 10 minute bird surveys and
you have decided that the location of ;45 |

each of the point quadrats within each B
site should be determined via random —
coordinates to minimize sampling bias.
As represented in figure to the right, 7596
=

the site is not a regular rectangle and
therefore the above technique is not a7.504
appropriate. This problem is solved by

LATITUDE

first generating a matrix of site bound- 7522 |
ary coordinates (GPS latitude and lon- x x x x x

. . . 145.450 145.452 145.454 145.456 145.458
gitude), and then using a specific set LATITUDE

of functions from the sp® package to
generate the five random coordinates.

> LAT <- c(145.450, 145.456, 145.459, 145.457, 145.451, 145.450)
> LONG <- c(37.525, 37.526, 37.528, 37.529, 37.530,37.525)
> XY <- cbind(LAT, LONG)
> plot (XY, type='1l")
> library(sp)
> XY.poly <- Polygon (XY)
> XY.points <- spsample (XY.poly, n=8, type='random')
> XY.points
SpatialPoints:
rl r2

[1,] 145.4513 37.52938
[2,] 145.4526 37.52655
[3,]1 145.4559 37.52746
[4,]1 145.4573 37.52757
[5,] 145.4513 37.52906
[6,] 145.4520 37.52631
[7,]1 145.4569 37.52871
[8,] 145.4532 37.52963
Coordinate Reference System (CRS) arguments: NA

?Note that the function responsible for generating the random coordinates (spsample()) is only
guaranteed to produce approximately the specified number of random coordinates, and will often
produce a couple more or less. Furthermore, some locations might prove to be unsuitable (if for
example, the coordinates represented a position in the middle of a lake). Consequently, it is usually
best to request a 50% more than are actually required and simply ignore any extras.



80 CHAPTER 4

These points can then be plotted on the map.

>

a

points (XY.points[1:5])

37.532 —

37.530 —

37.528 —

LATITUDE

37.526 —

37.524 —

37.522 —

T T T T T
145.450 145.452 145.454 145.456 145.458

LATITUDE

Lets say that the above site consisted of two different habitats (a large heathland and
small swamp) and you wanted to use stratified random sampling rather than pure
random sampling so as to sample each habitat proportionally. This is achieved in a
similar manner as above, except that multiple spatial rings are defined and joined into

a more complex spatial data set.

vV V V.V V V V V V V V V V V

LAT1 <- c(145.450, 145.456, 145.457, 145.451,145.450)
LONG1l <- c(37.525, 37.526, 37.529, 37.530, 37.525)
XYl <- cbind(LAT1,LONG1)

LAT2 <- c(145.456,145.459,145.457,145.456)

LONG2 <- c(37.526, 37.528, 37.529,37.526)

XY2 <- cbind(LAT2, LONG2)

library (sp)

XY1l.poly <- Polygon (XY1)

XY1l.polys <- Polygons (list (XY1l.poly), "Heathland")
XY2.poly <- Polygon (XY2)

XY2.polys <- Polygons(list (XY2.poly), "Swamp")
XY.Spolys <- SpatialPolygons (list(XY1l.polys, XY2.polys))

XY.Spoints <- spsample(XY.Spolys, n=10, type='stratified')

XY.Spoints

SpatialPoints:

x1 x2
145.4504 37.52661
145.4529 37.52649
145.4538 37.52670
145.4554 37.52699
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[5,] 145.4515 37.52889
[6,] 145.4530 37.52846
[7,] 145.4552 37.52861
[8,] 145.4566 37.52738
[9,] 145.4578 37.52801
[10,] 145.4510 37.52946
Coordinate Reference System (CRS) arguments: NA

The spsample () function supports random sampling (' random' ), stratified ran-
dom sampling ('stratified'), systematic sampling (' regular') and non-aligned
systematic sampling ('nonaligned'). Visual representations of each of these different
sampling designs are depicted in Figure 4.1.

Random distance or coordinates along a line

Random locations along simple lines such as linear transects, can be selected by
generating sets of random lengths. For example, we may have needed to select a single
point along each of ten 100 m transects on four occasions. Since we effectively require
10 x 4 = 40 random distances between 0 and 100 m, we generate these distances

Random sampling Stratified random

Systematic sampling Nonaligned systematic

Fig 4.1 Four different sampling designs supported by the spsample () function.
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and arrange them in a 10 x 4 matrix where the rows represent the transects and the
columns represent the days:

> DIST <- matrix(runif(40,0,100),nrow=10)
> DIST
[,1] [,2] [,31 [,4]
7.638788 89.4317359 24.796132 24.149444
31.241571 0.7366166 52.682013 38.810297
87.879788 88.2844160 2.437215 32.059111
28.488424 6.3546905 78.463586 60.120835
25.803398 4.8487586 98.311620 87.707566
10.911730 25.5682093 90.443998 9.097557
63.199593 36.7521530 62.775836 29.430201
20.946571 42.7538255 4.389625 81.236970
94.274397 21.9937230 64.892213 70.588414
13.114078 9.7766933 43.903295 90.947627

P — = = — = = /= =
O W O J o Ui W N
S S

To make the information more user friendly, we could put apply row and column
names and round the distances to the nearest centimeter:

> rownames (DIST) <- paste("Transect", 1:10, sep='")
> colnames (DIST) <- paste("Day", 1:4, sep='")
> round (DIST, digits=2)
Dayl Day2 Day3 Day4
Transectl 7.64 89.43 24.80 24.15
Transect2 31.24 0.74 52.68 38.81
Transect3 87.88 88.28 2.44 32.06
Transect4d 28.49 6.35 78.46 60.12
Transect5 25.80 4.85 98.31 87.71
Transect6 10.91 25.57 90.44 9.10
Transect7 63.20 36.75 62.78 29.43
Transect8 20.95 42.75 4.39 81.24
Transect9 94.27 21.99 64.89 70.59
Transectl0 13.11 9.78 43.90 90.95

If the line represents an irregular feature such as a river, or is very long, it might not
be convenient to have to measure out a distance from a particular point in order
to establish a sampling location. These circumstances can be treated similar to other
irregular shapes. First generate a matrix of X,Y coordinates for major deviations in the
line, and then use the spsample () function to generate a set of random coordinates.

X <- ¢(0.77,0.5,0.55,0.45,0.4, 0.2, 0.05)

Y <- ¢(0.9,0.9,0.7,0.45,0.2,0.1,0.3)

XY <- cbind(X,Y)

library (sp)

XY.line <- Line (XY)

XY.points <- spsample(XY.line,n=10, 'random')

vV V. V VvV V V
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> plot (XY, type="1")
> points (XY.points)

> coordinates (XY.points)
X Y g_

[1,] 0.5538861 0.9000000

[2,] 0.4171638 0.2858188 o |

[3,] 0.3869956 0.1934978 °

[4,] 0.4579028 0.4697570 g

[5,] 0.3109703 0.1554851 S

[6,] 0.1238188 0.2015750

[7,] 0.5398741 0.6746852 .

[8,] 0.4826300 0.5315749 °

[9,] 0.1745837 0.1338884 -
[10,] 0.5248993 0.6372481 01 02 03 04 05 06 07

4.2 Experimental design

Randomization is also important in reducing confounding effects. Experimental design
incorporates the order in which observations should be collected and/or the physical
layout of the manipulation or survey. Good experimental design aims to reduce the
risks of bias and confounding effects.

4.2.1 Fully randomized treatment allocation

Lets say that you were designing an experiment in which you intended to investigate
the effect of fertilizer on the growth rate of a species of plant. You intended to have
four different fertilizer treatments (A, B, C and D) and a total of six replicate plants per
treatment. The plant seedlings are all in individual pots housed in a greenhouse and
to assist with watering, you want to place all the seedlings on a large table arranged in
a4 x 6 matrix. To reduce the impacts of any potentially confounding effects (such as
variations in water, light, temperature etc), fertilizer treatments should be assigned to
seedling positions completely randomly.

This can be done by first generating a factorial vector (containing the levels A, B, C,
and D, each repeated six times), using the samp1le function to randomize the treatment
orders and then arranging it in a 4 x 6 matrix:

> TREATMENTS <- gl(4,6,24,c('A','B','C','D"))
> matrix(sample (TREATMENTS) ,nrow=4)
[,11 [,21 [,31 [,41 [,51 [,6l

[l,] nen npn nAm ngn non nanm
[2,] Ly ngn non non non ngn
[3,] nAm npn nAm ngn npn npn

[4,] ngn npn non ngn npm npn



84 CHAPTER 4

Note that when the optional size argument (number of random entries to draw) is not

supplied, the sample () function performs a random permutation of the elements of
the vector.

4.2.2 Randomized complete block treatment allocation

When the conditions under which an experiment is to be conducted are expected to
be sufficiently heterogeneous to substantially increase the variability in the response
variable (and thus obscure the effects of the main factor), experimental units are
grouped into blocks (units of space or time that are likely to have less variable
background conditions). Each level of the treatment factor is then applied to a single
unit within each block.

In the previous example, treatments were randomly positioned throughout the
4 x 6 matrix. However, if the conditions in the greenhouse were not homogeneous
(perhaps the light was better at one end and the sprinkler system favoured a certain
section of the table), the ability to detect any effects of fertilizer treatment might be
impeded. A randomized complete block (in which each level of fertilizer is randomly
positioned within each block) design is achieved by repeating the sample () function
six times (one per block) and combining the result into a matrix:

> TREATMENTS <- replicate(6,sample(c('A','B','C','D")))
> colnames (TREATMENTS) <- paste('Block',1:6,sep="'")
> TREATMENTS

Blockl Block2 Block3 Block4 Block5 Blocké6

(1,1 "B" "en "B" "en "D" "A"
(2,1 "A" "D" "D" "B" "A" "D"
[3,1 "cr "B" "A" "A" "B" ek
(4,1 "D" "A" "en "D" nen "B"
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Graphical data presentation

Graphical summaries provide three very important rolls in data analyses. Firstly, they
are an important part of the initial exploratory data analyses that should precede any
formal statistical analyses. Secondly, they provide visual representations of the patterns
and trends revealed in complex statistical analyses. Finally, in some instances (such
as regression trees and ordination plots), graphical representations are the primary
result of the analyses. R accommodates many of the standard exploratory data analyses
via specific plotting functions. Many of these functions require little user input and
produce very rudimentary plots —although the quality of such exploratory data analyses
is rarely of great importance (as they are typically only for the researcher). Nevertheless,
the plotting functionality within R is also highly customizable in order to produce rich,
publication quality graphical and analytical summaries.

Typically, a graphic begins with a high-level plotting function that defines the coarse
structure of the graphic including its dimensions, axes scales, plotting symbol types and
titles before creating a new plotting region on the graphics device. The most frequently
used high-level plotting function is the plot () function which is a generic, overloaded?
function that produces different plots depending on the class of object passed as its
first argument. A range of the graphics produced by plot were illustrated on page 36.
Other commonly used high-level plotting functions include hist (), boxplot (),
scatterplot () and pairs (). Additional elements (such as text and lines) are added
using the rich set of low-level graphical functions available. Common low-level plotting
functions include 1ines (), points (), text () and axis (). These functions cannot
define the dimensions of the plotting region and thus can only be added to existing plots.

It is not the intention of this chapter to produce finalized versions of graphical
summaries. Rather, emphasis will be on illustrating the range of the commonly used
high and low level plotting functions as well as some of the many graphical options
available to help achieve rich and professional graphics. Subsequent chapters will build
upon these foundations and illustrate the production of publication quality figures
appropriate for the designs and analyses.

@A function is overloaded when many separate functions contain the same name (e.g. plot), yet
differ from each other in the arguments (input) they except and the output they produce. Function
overloading provides a common, convenient name to interface a suite of functions (thereby reducing
the number of names that need to be learned).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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In the plotting system described above, graphics are built up by sequentially adding
items (lines, points, text, etc) to a base plot. Each graphical element is evaluated
individually. However, for data that can be naturally split into subsets (subjects,
blocks), Trellis graphics provide an alternative system in which entire sets of graphical
elements are applied consistently to multiple subplots within a grid (or trellis). The
resulting multipanel displays are produced by a single set of integrated instructions
that also handle the otherwise difficult tasks of coordinating the control of axes scales
and aspect ratios. Furthermore, the plots represent the underlying data in a manner
that closely matches their hierarchical treatment in linear modelling.

All plotting functions are handled via graphics device drivers. When R starts up,
it automatically opens a graphics device driver (x11 on linux, windows on Windows
and quartz or x11 on Mac OS X) ready to accept plotting commands. These graphics
devices are referred to as display or screen devices since the output is displayed
on the screen. There are also numerous file graphics devices (such as postscript,
pdf, jpeg, etc) in which the graphical information is stored in standard formats for
incorporation into other applications. Importantly, plotting commands can only be
sent to a single graphical device at a time and the capabilities of different types of
graphical devices vary.

5.1 The plot() function

The plot () function is a generic (overloaded) function, the output of which depends
on the class of objects passed to it as arguments (see page 36). There are many other
parameters that can be used to control various aspects of the plot () function. Some of
these parameters (summarized below) provide convenient ways to control the scaling
and overall form of the plot and are specific to the plot () high level plotting function
(along with many of its derivatives). Others (graphical parameters, see section 5.2)
provide even finer control of the overall plot and where relevant, can be applied to
most other high and low level plotting functions.

5.1.1 The type parameter

The type parameter takes a single character argument and controls how the points
should be presented.

type="p" type="1"
Points Lines
(]
6 [e) 6 -
o
4 o 4 -
- o -
X 2 X 2 4
o
0 1 0 A
o
-2 Q. -2 A
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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type="b" type="o"
Both points & lines Points Over lines
6 4 6
4 44
X 2] X 5
0 0 -
-2 | 5 ]
{28 45 6 7 8 {2 5 4 5 6 7 8
Index Index
type="h" type="s"
Histograms Steps
6 A 6
4 4
%l ‘ % .
O.l | | 0
-2 4 -2 4
{23 456 7 8 {23 456 7 8
Index Index
type="n"
No points
6 4
4 4
X 2]
0 4
-2 4

5.1.2 The x1im and y1im parameters

x1imand y1im control the x-axis and y-axis range respectively. These parameters take
a vector with two elements (c (min, max) ) representing the minimum and maximum
scale limits.

x1im=NULL x1im=c (0, 8)
Default limits Minimum of 0 and maximum of 8
12 o 12 o
(@] O
1
v o y " o
(@] (@]
10 9 00 o 10 o e
9 o) o 9 o) o
3 4 5 6 0 2 4 6 8
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5.1.3 The xlab and ylab parameters

x1lab and ylab define the titles for the x-axis and y-axis respectively. These parameters
take a character string.

x1lab=NULL xlab="Concentration" xlab=""
Default (vector names) Redefined x-axis title Blank x-axis title
12 (@] 12 o) 12 o
o fe) 0o
11 11 o 11 o
Y Y Y
10{° 00 o 100 002 o 10{0 00 % o
9 o o 9 o o 9 o o
3 4 5 6 3 4 5 6 3 4 5 6
X Concentration

5.1.4 The axes and ann parameters

The axes and ann parameters indicates whether (=TRUE) or not (=FALSE) ALL the
axes and axes titles should be plotted respectively.

axes=T, ann=T axes=F ann=F
Default (show both) Suppress axes Suppress axes titles
12 ¢} © 12 o)
o o o)
11 11
o
Y O OO Y O O ©
10 0O O 00O @) 10 {© e © o
1 o © o o Q
3 4 5 6 3 4 5 6
X X

5.1.5 The 1log parameter

The 1og parameter indicates whether or which axes should be plotted on a logarithmic
scale.

10g: |IX|I 10g: |ly|l 10g: n Xy"
Log x-axis scale Log y-axis scale Log x-axis and y-axis scales
20 (@] 20.0 o 20.0
o 10.0 o©° 10.0 e
15 o 50 losud 5.0 069
Y 10 Y 20 égp Y 20 d§©
5 &® 1018 1.0 &
as° 05 05
oo ® — o o
0.5 20 5.0 20.0 0 5 10 15 20 0.5 20 5.0 20.0
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5.2 Graphical Parameters

The graphical parameters provide consistent control over most of the plotting features
across a wide range of high and low plotting functions. Any of these parameters
can be set by passing them as arguments to the par () function. Once set via the
par () function, they become global graphical parameters that apply to all subsequent
functions that act on the current graphics device.

All of the graphical parameters have default values that are applied when a new
graphical device is instantiated. When the par () function is used to alter a parameter
setting, it returns a list containing the previous values of any altered parameters.
Applying this list as an argument to the par () function thereby restores the previous
graphical parameters.

> opar <- par (mar=c(4,5,1,1)

> # the plot margins of the current or new device are set

> # to be four, five, one and one text lines from the bottom,
> # left, top and right of the figure boundary

> opar

Smar

[1] 5.1 4.1 4.1 2.1

> par (opar)
> # restore plotting margins to be 5.1, 4.1, 4.1 and 2.1 text
> # lines thick.

Similarly, calling the par () function without any arguments returns a list containing
ALL the current parameter values (altered or not) in alphabetical order. Whilst it might
be tempting to use this list to apply settings to other graphical devices (or even the
currently active device at a later date), since the settings will be restored alphabetically,
parameters further along the alphabet will overwrite or nullify alternative parameters.
For example, both mai and mar provide alternative ways of altering the plot margin
dimensions, however the latter will have the final say. A safer practice for storing current
settings for reuse is to call the par () function with the altered parameters twice. The first
time will store the previous settings and the second will store the current altered settings.

> # on a new or restored device
> opar <- par (mar=c(4,5,1,1)

> npar <- par (mar=c(4,5,1,1)

> npar

Smar

[1] 4 511

> par (npar)
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5.2.1 Plot dimensional and layout parameters
The graphical parameters responsible for controlling the dimensions and layout of

graphics can only be set via the par () function and are itemized in Table 5.1 and
represented in Figure 5.1.

Table 5.1 Dimensional and layout graphical parameters.

Parameter tag Value Description

din, fin, pin =c(width,height) Dimensions (width and height) of the
device, figure and plotting regions
(ininches)

fig =c(left,right,bottom, top) Coordinates of the figure region within

the device. Coordinates expressed as
a fraction of the device region.

mai, mar =c (bottom, left, top, right) Size of each of the four figure margins in
inches and lines of text (relative to
current font size).

mfg =c (row, column) Position of the currently active figure
within a grid of figures defined by
either mfcol or mfrow.

mfcol, mfrow =c (rows,columns) Number of rows and columns in a
multi-figure grid.
new =TRUE Of =FALSE Indicates whether to treat the current

figure region as a new frame (and
thus begin a new plot over the top of
the previous plot (TRUE) or to allow
a new high level plotting function to
clear the figure region first (FALSE).

oma, omd, omi =c(bottom,left,top, right) Size of each of the four outer margins in
lines of text (relative to current font
size), inches and as a fraction of the
device region dimensions

plt =c(left,right,bottom, top) Coordinates of the plotting region
expressed as a fraction of the device
region.

pty ="s"Oof="m" Type of plotting region within the figure

region. Is the plotting region a square
(="s") oris it maximized to fit
within the shape of the figure region.

usr =c(left,right,bottom, top) Coordinates of the plotting region
corresponding to the axes limits of
the plot.
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Fig 5.1 Device, figure and plotting regions along with examples of the graphical parameters
that control each of the respective dimensions for (a) single figure and (b) multifigure graphics.
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5.2.2 Axis characteristics

The parameters that provide finer control of the scale and formatting of the plot axes
are listed in Table 5.2.

Table 5.2 Graphical parameters controlling characteristics of axes.

Parameter tag Value Description

ann, axes =T Or =F High level plotting parameters that
specify whether or not titles (main,
sub and axes) and axes should be
plotted.

bty ="o","1","7","c","u" or "]" Single character whose upper case
letter resembles the sides of the
box or axes to be included with the

plot.
lab =c(x,y, length) Specifies the length and number of
tickmarks on the x and y axes.
las =0, 1, 2 or 3 Specifies the style of the axes tick

labels. 0 = parallel to axes,
1 = horizontal, 2 = perpendicular
to axes, 3 = vertical
mgp =c(title, labels, line) Distance (in multiples of the height of
a line of text) of the axis title, labels
and line from the plot boundary.
tck, tcl =length The length of tick marks as a fraction
of the plot dimensions (tck) and
as a fraction of the height of a line
of text (tcl)

Xaxp, yaxp =c (min, max, num) Minimum, maximum and number of
tick marks on the x and y axes
Xaxs, yaxs ="rvnor="4in Determines how the axes ranges are

calculated. The "r" option results
in ranges that extend 4% beyond
the data ranges, whereas the "1 "
option uses the raw data ranges.

xaxt, yaxt ="y" ="n"or="gs" Essentially determines whether or not
to plot the axes. The "s" option is
for compatibility with S.

xlog, ylog =FALSE Of =TRUE Specifies whether or not the x and y
axes should be plotted on a
(natural) logarithmic scale.

xpd =FALSE, =TRUE Of ='NA" Specifies whether plotting is clipped
to the plotting (=FALSE), figure
(=TRUE) or device (="'NA") region
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Table 5.3 Character expansion parameters.

Parameter Applies to

cex All subsequent characters
cex.axis  AXxes tick labels
cex.lab Axes titles

cex.main  Main plot title

cex.sub Plot sub-titles

5.2.3 Character sizes

The base or default character size of text and symbols on a graphic is defined when the
graphics device is initiated. Thereafter, the sizes of characters (including symbols)
can be controlled by the character expansion (cex) parameter. The (cex) parameter
determines the amount by which characters should be magnified relative to the base
character size and can be set as an argument to the par () function as well as to individual
high and low level plotting functions. In addition to the overall character expansion
parameter, there are also separate character expansion parameters that control the sizes
of text within each of the major components of a figure (see Table 5.3) relative to cex.

> set.seed(12) 340
> plot (rnorm(5,0,1), rnorm(5,0,1), o
o
xlab="Predictor", 2
_n " _ ) 7
yvlab="Response", cex=2, Q o o
cex.lab=3, cex.axis=1.5, B o o
bty="1") oc 4
©
Q] 6]
T T T T T T T T
2.0 -1.0 00 05 10 15
Predictor

5.2.4 Line characteristics

Many of the characteristics of lines are controlled by arguments to the par () function
or to high and low level plotting functions (see Table 5.4).

5.2.5 Plotting character parameter - pch

The plotting character (pch) parameter can be set with the par () function, and can
also be set as arguments within individual high and low level plotting functions.

> set.seed(12)
> # plot points as solid circles
> plot(rnorm(5,0,1), rnorm(5,0,1), pch=16, axes=F,

ann=F, cex=4) ®



94 CHAPTER 5
Table 5.4 Line characteristics.
Parameter Description Examples
1ty The type of line. Specified as either }EYj
a single integer intherange of  ......... ... ... ... ... .. ..., 1t§=3
I to 6 (for predefined line types) "= = = = =-="=:="="~- ﬁgzg
or as a string of 2 or 4 numbers  -—-—-—i—mi i —. — lty=6
that define the relative lengths — —_ _ _ _ _ _ _ _ _ _ _ 1‘%27,1234
of dashes and spaces within a — lwd='9111"
repeated sequence.
1lwd The thickness of a line as a 1wg:8‘35
. . wa=0.
multiple of the default thickness Twd=1
ok ; s 1wd=2
(which is device specific) e
lend The line end style (square, butt or I | cnd=2
round) I | cnd-1
G | <1d=0
ljoin The style of the join between lines  1join=0 1join=1 1join=2

/\ /\ /\

210 22 23<> 24/\ 25/

6/ 7] 8%’% 9%} 0P
() 2A 3+ 4. 5<>

Fig 5.2 Basic pch plotting symbols.
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Fig 5.3 Extended pch plotting symbols for the symbol font (font=5). The plotting character
number is determined from the grid by adding the x coordinate to 10 times the y coordinate.
Hence, symbol & is character number 167.

There are 25 basic plotting symbols (see Figure 5.2) that can be used to define the
point character (pch) within many high and low level plotting functions. The numbers
to the left of the symbols in the figure indicate the integer value used as the
argument.

In addition to these standard plotting characters, when used in conjunction with a
symbol font face, the pch parameter can accept any integer between 1:128 and 160:254
to yield an extended point character set (see Figure 5.3).

> set.seed(12) e
> plot(rnorm(5,0,1), rnorm(5,0,1), pch=167, cex=4,
font=5) &
* &
L o
The pch parameter can also accept any other keyboard printing A
character (letter, number, punctuation etc) as an argument.
> set.seed(12) /\/\
> plot(rnorm(5,0,1), rnorm(5,0,1), pch="A", A
axes=F, cex=4) A
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Upper and lower case letters can also be plotted respectively via
the predefined Letters[] and letters[] vectors.

> set.seed(12) d
> plot(rnorm(5,0,1), rnorm(5,0,1),
pch=letters[1:5], axes=F, cex=4)

The size and weight of plotting symbols is controlled respectively by the cex
(character expansion factor) and 1wd (line width) parameters.

> m <- matrix(rep(1l:5,5),nrow=5,
o /<0000
> plot(m, t(m), pch=21,
ooz, s 10000
lwd=t (m), xlim=c(.5,5.5),
ylim=c(.5,5.5), las=1, 5 (:)
=34 ©O
xlab="cex", ylab="1lwd") - © CD <:>
4o 0 00Q
1 0000
T T T T T
1 2 3 4 5

cex

5.2.6 Fonts

The shape of text characters is controlled by the family (the overall visual appearance
of a group of fonts - otherwise known as the typeface) and the font (plain, bold, italics,
etc), see Figure 5.4. The font families supported varies for each graphical device as do
the names by which they are referred (see Table 5.5).

> set.seed(12) A
> # plot points with a italic serif
> # font 2
> plot(rnorm(5,0,1), rnorm(5,0,1), % A
pch="A", family="serif", font=4, ~ A A
xlab="Predictor", ylab="Response") A
Predictor

Different fonts can also be applied to each of the main plotting components
(font.axis: axes labels, font.lab: axes titles, font.main: Main plot title and
font . sub: plot sub-title).
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Common fonts

sans ABCabc123 ABCabc123 ABCabc123 ABCabc123

serif — ABCabc123 ABCabc123 ABCabcl23 ABCabcl23

mono —| ABCabcl23 ABCabcl23 ABCabcl23 ABCabcl23

Postscript/PDF fonts

Helvetica-Narrow | ABCabc123 ABCabc123 ABCabc123 ABCabc123
Palatino — ABCabc123 ABCabc123 ABCabc123 ABCabc123
NewCenturySchoolbook — ABCabc123 ABCabcl23 ABCabcl23 ABCabcl23
Bookman 4  ABCabcl23 ABCabcl23 ABCabcl23 ABCabcl23
AvantGarde — ABCabc123 ABCabcl123 ABCabcl23 ABCabcl23

T T T T
1 (Plain) 2 (Bold) 3 (ltalic) 4 (Bold + Italic)

Fig 5.4 Appearance of major family (y-axis) and font (x-axis) sequences.

Table 5.5 Family names appropriate for the most common devices.

Device Serif Sans serif Monospaced
Display devices
x11 () (Unix/Linux) "serif" ‘"sans" "mono"
quartz () (MacOSX) ‘"serif" ‘“"sans" "mono"
window () (Windows) ‘"serif" ‘“"sans" "mono™"
File devices
postscript "Times" "Helvetica" "Courier"
pdf "Times" "Helvetica" "Courier"
Hershey fonts

R also supports Hershey (vector) fonts that greatly extend the range of characters
and symbols available. In contrast to regular (bitmap) fonts that consist of a set of
small images (one for each character of each style and size), vector fonts consist of the
coordinates of each of the curves required to create the character. That is, vector fonts
store the information on how to draw the character rather than store the character itself.
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Hershey fonts can therefore be scaled to any size without distortion. Unfortunately
however, Hershey fonts cannot be combined with regular fonts in a single plotting
statement and thus they cannot be easily incorporated into mathematical formulae. An
extensive selection of the Hershey font characters available can be obtained by issuing
the command below and following the prompts:

> demo (Hershey)

> set.seed(12) A
> plot(rnorm(5,0,1), rnorm(5,0,1), o
pch="A", family="HersheySerif", g
xlab="Predictor", ylab="Response") & A
g A A
A
Predictor

5.2.7 Text orientation and justification

The orientation and justification of characters and strings are also under the control of
a set of graphics parameters (see Table 5.6).

5.2.8 Colors

The color of all plotting elements is controlled by a set of parameters. The default
color for plotting elements is specified using the col parameter. There are also
separate parameters that control the color of each of the major components of a
figure (col.axis: the axes tick labels, col.lab: the axes titles, col.main: the main
plot title, col. sub: plot sub-titles) and when specified, take precedence over the col
parameter. Two additional parameters, bg and £g can be used to control the color

Table 5.6 Text orientation and justification characteristics.

Parameter Description Examples

adj Specifies the justification of a text adj=0 adj=0.5 adj=1
string relative to the coordinates
of its origin. A single number Text Text Text
between 0 and 1 specifies
horizontal justification. A vector  _. (g, 1) —c(1,0) —c(1,-1)
of two numbers (=c (x,v)) Text
indicates justification in Text Text
horizontal and vertical
directions.

crt, srt  Specifies the amount of rotation sTt=90 srt=45 srt=-45
(in degrees) of single characters = S P
(crt) and strings (srt) 2 N3 %
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of the background and foreground (boxes and axes) respectively. The color of other
elements (such as the axes themselves) is manipulated by using the col parameter
within low-level plotting functions.

> set.seed(12) i

> plot (rnorm(5,0,1),
rnorm(5,0,1),
xlab="Predictor",
yvlab="Response", col=8,

Response

col.lab="grey50",
col.axis="grey90", bty="1")

Predictor

There are numerous ways that colors can be specified:

* by an index (numbers 0-8) to a small palette of eight colors (0 indicates the background
color). The colors in this palette can be reviewed with the palette () function.

* by name. The names of the 657 defined colors can be reviewed with the colors () function.
The epitools package provides the colors.plot () function which generates a graphic
that displays a matrix of all the colors. When used with the locator=TRUE argument,
a series of left mouse clicks on the color squares, terminated by a right mouse click, will
result in a matrix of corresponding color names.

* extract an arbitrary number (n) of contiguous colors from built-in color palettes
- rainbow(n) - Red— Violet
- heat.colors (n) - White—Orange— Red
- terrain.colors (n) - White— Brown— Green
- topo.colors (n) - White— Brown— Green— Blue
- grey(n) - White— Black

* by direct specification of the red, green and blue components of the RGB spectrum as a
character string in the form "#RRGGBB". This string consists of a # followed by a pair of
hexadecimal digits in the range 00 : FF for each component.

5.3 Enhancing and customizing plots with low-level plotting functions

In addition to their specific parameters, each of the following functions accept many of
the graphical parameters. In the function definitions, these capabilities are represented
by three consecutive dots (. . . ). Technically, . . . indicates that any supplied arguments
that are not explicitly part of the definition of a function are passed on to the relevant
underlying functions (in this case, par).

5.3.1 Adding points - points ()

Points can be added to a plot using the points(x, y, pch, ...) function. This
function plots a plotting character (specified by the pch parameter) at the coordinates
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specified by the vectors x, y. Alternatively, the coordinates can be passed as a formula
of the form, y~x.

> set.seed(1l) 20 .//.,,0
> X<-seq(9,12,1=10) 19
> Y1<-(1*X+2)+rnorm(10,3,1) 18 .\\‘//0
> Y2<-(1.2*X+2)+rnorm(10,3,1) 17_¢\\ //o,,o\\c>
> plot(c(Y1l,Y2)~c(X,X), 6 ‘\\ ° o
1 o
type="n", axes=T, ann=F, ° ///
vp . A
bty="1", las=1) ° ° °
: _ iy 14 //'\\
> points (Y1~X,pch=21, type="b") o
o
1 ~ = —npn T T T T T T T
> points (¥2-X,pch=16, type="b") 9.0 95 100 105 110 115 120

5.3.2 Adding text within a plot - text ()

The text () function adds text strings (1abels parameter) to the plot at the supplied
coordinates (x,y) and is defined as:

> text (x, y = NULL, labels = seq along(x), adj = NULL,
pos = NULL, offset = 0.5, vfont = NULL, cex = 1, col = NULL,
font = NULL, ...)

Descriptions and examples of the arguments not previously outlined in the graphical
parameters section, are outlined in Table 5.7.

paste()

The paste () function concatenates vectors together after converting each of the
elements to characters. This is particularly useful for making labels and is equally

Table 5.7 text () arguments.

Parameter Description Examples
pos Simplified text justification that pos=1 pos=2 pos=3 pos=4
overrides the adj parameter. T Text Text Text
1=below, 2=left, 3=above ext
and 4=right.
offset Offset used by pos as a fraction  pos=1,0ffset=1 pos=1,offset=2
of the width of a character.
Text
¢ Text
vfont Provision for Hershey (vector) lab='ABCabcl23”
f t f] ti vfont=c(’'serif’, 'plain’)
ont specincation ABCabc123

(vfont=c (typeface,
lab=c('\VE’, '\MA’, ' \#H0844")

style). vfont=c(’serif’, 'plain’)
2 &
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useful in non-graphical applications. Paste has two other optional parameters (sep and
collapse) which define extra character strings to be placed between strings joined.
sep operates on joins between paired vector elements whereas collapse operates on
joints of elements within a vector respectively.

> cc <- C("H","M","L")

> cc

[11 "H" "M" "L"

> paste(cc,1:3, sep=":")

[1] "H:1" "M:2" "L:3"

> paste(cc, collapse=":")

[1] "H:M:L"

> paste(cc, 1:3,sep="-",collapse=":")

[1] "H-1:M-2:L-3"

> set.seed(10) 11.0 -
> X<-rnorm(5,10,1) 105 4
’ Site—1
> Y<-rnorm(5,10,1) 100
> plot(X,Y, type="n",axes=T, ' 5 Site-5
95 ite—3
ann=F, bty="1", las=1,
xlim=c(8,11), ylim=c(8,11)) 9.0 Site—2
> points(X,Y,col="grey", pch=16) g5 Site—4
> text(X,Y,paste("Site",1:5, 8.0
sep="-"), cex=2, pos=4) 80 85 90 95 100 105 110

Non-character arguments

Most other objects” passed as a label object are evaluated before being coerced into a
string for plotting. In so doing, the output of other functions can be plotted.

> plot(c(0,1),c(0,1),type="n", 1.0
axes=T, ann=F, bty="1", las=1) 08 —

> text (.5,.75, 5*2+3, cex=2) | 13

> text(.5,.5, mean(c(2,3,4,5)), o8 35
cex=2) 047 mean=3.5

> text(.5,.25, paste("mean=", 0.2
mean(c(2,3,4,5))), cex=2) 0.0

0.0 0.2 0.4 0.6 0.8 1.0
5.3.3 Adding text to plot margins - mtext ()

The mtext () function adds text (text) to the plot margins and is typically used to
create fancy or additional axes titles. The mtext () function is defined as:

> mtext (text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

b Language objects are treated differently (see section 5.3.5).
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Table 5.8 mtext () arguments.

Parameter Description Examples
side Specifies which margin the title 8 text='Response’ , side=2
should be plotted in. 1=bottom, & . .
2=left, 3=top and a=right. e text='Predictor’,6 side=1
Predictor
line Number of tex.t lines out frqm the 1ine=1 1ine=2
plot region into the margin to
plot the marginal text
Predictor .
Predictor
outer For multi-plot figure, if outer=TRUE, put the marginal text in the outer margin
(if there is one).
at Position along the axis (in user at=2 at=8
coordinates) of the text . : : : : .
0 2 4 6 8 10
Predictor Predictor
dj, padj Adjustment (justification) of the j = . .
adj, padj Adjustm @ _) adj=0, padi=1 adj=1
position of the marginal text padj=1
parallel (ad5) and perpendicular > i . .
(pad3j) to the axis. Justification , , Predictor
. . Predictor Predictor
depends on the orientation of
. . < . .
the text string and the margin adj=1 (A) las=1,adj=1
. las=1,adj=0,
(aXlS)- O| adj=0,padj=1 és (B) pZZj:la ’
padj=1 (C) las=1,padj=1

o0

Descriptions and examples of the arguments not previously outlined in the graphical

parameters section, are outlined in Table 5.8.

5.3.4 Adding a legend - 1egend ()

The legend () functionbringstogetherarich collection of plotting functions to produce
highly customizable figure legends in a single call. A sense of the rich functionality of

the legend function is reflected in Table 5.9 and the function definition:

> legend(x, y = NULL, legend, fill = NULL, col = par("col"),
1ty, 1lwd, pch, angle = 45, density = NULL, bty = "o",
bg = par("bg"), box.lwd = par("lwd"), box.lty = par("lty"),

pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = 1lwd,

xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,

adj = c(0, 0.5), text.width = NULL, text.col = par("col"),

merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0)
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Table 5.9 legend () arguments. To save space, some parameter descriptions are combined,
others are omitted.

Parameter Description Examples
legend A vector of strings or expressions to comprise the labels of the legend.
title A string or expression for a title £itle=Temperature’ Temperature
at the top of the legend -
Low
bty, The type ("o or "n"), line box.lwd=1.5, box.lty=2 é—"H-i;f;_"_E
box.lty, thickness and line style of box p o Medlum:
box . lwd framing the legend. ot
bg, The colors used for the legend bg='grey’,
text.col=c(’'white’, "grey40’, 'black’) Medium
text.col background and legend labels P
horiz Whether or not to produce a horiz=TRUE High Medium  Low
horizontal legend instead of a
vertical legend
ncol The number of columns in which  nco1-2 High Low
to arrange the legend labels Medium
cex Character expansion for all elements of the legend relative to the plot cex
graphical parameter.
Boxes If any of the following parameters are set, the legend labels will be
accompanied by boxes.
fill Specifies the fill color of the £ill=c('white’, ‘grey’, 'black’) | O High
boxes. A vector of colors will o [edium
result in different fills.
angle, Specifies the angle and number fill=c('white’, ‘grey’, 'black’) | B High
density of lines that make up the stripy Hedium
fill of boxes. Negative density
) values result in solid fills.
Points
pch Specifies the type of plotting col=c('white’, ‘grey’, ‘black’) |® High
character. L Vedium
pt.cex, Specifies the character expansion o216 cex=1:3, pt.1wa=2 o High
pt.lwd and line width of the plotting 8 Lipaum
characters.
col,pt.bg  Specifies the foreground and pch=16, o High
background color of the DeiPgrearevB0T, arey”, Thlack™), | o Medum
plotting characters (and lines
for col).
(continued overleaf)
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Table 5.9 (continued)

Parameter Description Examples

Lines If any of the following parameters are set, the legend labels will be
accompanied by lines.

lwd, 1ty Specifies the width and type of lwd=c(1.5), lty=c(l,2,3) — High
H ---  Medium
lines. . Low
merge Whether or not to merge points lwd=c(1.5), lty=c(1,2,3) —e— High
and lines. L Medum

In addition to the usual methods for specifying the positioning coordinates,
convenient keywords reflecting the four corners ("bottomleft", "bottomright",
"topleft", "topright") and boundaries ("bottom", "left", "top", "right") of
the plotting region can alternatively be specified.

5.3.5 More advanced text formatting

The text plotting functions described above (text (), mtext () and legend()) can
also build plotting text from objects that constitute the R language itself. These are
referred to as language objects and include:

* names - the names of objects

* expressions - unevaluated syntactically correct statements that could otherwise be
evaluated at the command prompt

* calls - these are specific expressions that comprise of an unevaluated named function
(complete with arguments)

Any language object passed as an argument to one of the text plotting functions
described above (text (), mtext () and legend () ) will be coerced into an expression
and evaluated as a mathematical expression prior to plotting. In so doing, the text
plotting functions will also apply TgX-like formatting (the extensive range of which can
be sampled by issuing the demo (plotmath) command) where appropriate. Hence,
advanced text construction, formatting and plotting is thus achieved by skilled use of a
variety of functions (described below) that assist in the creation of language objects for
passing to the text plotting functions.

expression ()

The expression function is used to build complex expressions that incorporate
TgX-like mathematical formatting. Hence, the expression function is typically nested
within one of the text plotting functions to plot complex combinations of characters
and symbols.
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The expression () function is useful for

generating axes titles with complex units. §“ 100 R
E 95°
> set.seed(10) S
> X<-rnorm(5,10,1) % 0 o
> Y<-rnorm(5,10,1) € 85 . o .
> plot(X,Y, type="p", axes=T, 9.0 9.5 10.0
ann=F, bty="1", las=1) Temperature (°C)
> mtext (expression (Temperature~
(degree*C)), side=1, line=3,
cex=1.5)
> mtext (expression (Respiration~
(mL~0[2]~h"-1)), side=2,
line=3.5, cex=1.5)
The expression () function is also useful for , °
plotting complex mathematical formula within 100 - fly)=— Ze_zw%’“
the plots. o Yonat ©
9.5 —
> set.seed(10) 9.0
> X<-rnorm(5,10,1) o
> Y<-rnorm(5,10,1) 85 °
> plot(X,Y, type="p",axes=T, ann=F, gk Js 1$0

bty="1", las=1)

> text(9.3,10, expression(f(y) ==
frac(l,sgrt(2*pi*sigma”2))*
e~frac (- (y-mu) "2, 2*sigma”2)),
cex=1.25)

bguote ()

The bquote () function generates a language object by converting the argument after
first evaluating any objects wrapped in ‘. (). This provides a way to produce text
strings that combine mathematical formatting and the output statistical functions.

> set.seed(3)
> X<-rnorm(20,0,1) 1.0 9
> Y<-rnorm(20,0,1) 0.5 -
> # calculate correlation 0.0 corr. coef. =—-0.14
> # between X and Y 05 4
> cc<-cor(X,Y) 1o
> plot (X,Y, type="n", axes=T,
ann=F, bty="1", las=1) 5
> points(X,Y,col="grey", pch=16) Jo 55 ob og 15

> text(0,0,bguote(corr.~coef.==.
(round(cc,2))), cex=4)

> text (0, 0,names (cc))
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Note the required use of the tilde (~) character to allow spaces®. A space character at
that point would have resulted in a syntactically incorrect mathematical expression.

substitute()
Alternatively, for situations in which substitutions are required within non-genuine

mathematical expressions (such as straight character strings), the substitute()
function is useful.

X<-c(2,4,6,10,14,18,24,30,36,42) °
Y<-c(5,8,10,11,15,18,16,15,19,16)
n<-nls(Y~SSasymp(X,a,b,c))
plot(Y~X, type='p', ann=F)

VvV V.V V V

lines(1:40, predict(n
data.frame (X=1:40)))
a<-round (summary (n) Scoef

8 10 12 14 16 18

Nutrient uptake (1 mol g™')

1,11,2)
2,11,2)
3,1

1,2) Time (min)

[
b<-round (summary (n) Scoef [
c<-round (summary (n) Scoef [
text (40,8, substitute(y == a

- b*e”c*x,list (y="Nutrient

vV V. VvV V

uptake",a=a,b=b,c=c,x="Time") ),
cex=1.25, pos=2)

> mtext ("Time (min)",1,line=3)
> mtext (expression (Nutrient~uptake~ (mu~mol~g”~-1)),
2, line=3)

Combinations of advanced text formatting functions

It is possible to produce virtually any text representation on an R plot, however,
some representations require complex combinations of the above functions. Whilst,
these functions are able to be nested within one another, the combinations often
appear to behave counter-intuitively. Great understanding and consideration of the
exact nuances of each of the functions is required in order to successfully master
their combined effects. Nevertheless, the following scenarios should provide some
appreciation of the value and uses of some of these combinations.

The formula for calculating the mean of a sample (1 = %
an R mathematical expression is: mu == frac(sum(y[i]), n). What if however, we
wished to represent not only the formula applied to the data, but the result of the formula
as well (e.g. (u = % = 10))? To substitute the actual result, the bquote () function
is appropriate. However, the following mathematical expression is not syntactically
correct, as a mathematical expression cannot have two relational operators (=) in
the one statement. mu == frac(sum(y[i]),n) == . (meanY) . Building such an
expression is achieved by combining the bquote () function with a paste () function.

) as represented by

¢ Alternatively, space can be provided by the keyword phantom (char), where char is a character
whose width is equal to the amount of space required.
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> set.seed (1)
Y<-rnorm(100,0,1)
plot (density(Y), type="1", axes=T, °]

0.4 -

Vv

Vv

ann=F, bty="1", las=1,
Y oz =Y _ 1010889
col="grey") n

0.1 o

> text (10,0.2,bguote (paste (mu ==

frac(sum(y[i]),n)) == 00

. (mean(Y))), cex=2) 7 8 9 10 11 12 13

The more observant and discerning reader may have noticed the y-axis label in the
substitute () example above had a space between the p and the word ‘mol’. Using
just the expression () function, this was unavoidable. A more eligant solution would
have been to employ a expression (paste()) combination.

> X<-c(2,4,6,10,14,18,24,30,36,42) o R °

> ¥<-c(5,8,10,11,15,18,16,15,19,16) .

> n<-nls(Y~SSasymp(X,a,b,c)) g .

> plot (Y~X, type='p', ann=F) e |

> .

> mtext (expression(paste("Nutrient § i_ Nutrent uptake = 17.16 1,356 2057
uptake", " (", mu, "mol.", o

gr-1, ")", sep="")), 2, line=3) T T T T

Time (min)

5.3.6 Adding axes - axis ()

Although most of the high-level plotting functions provide some control over axes
construction (typically via graphical parameters), finer control over the individual
axes is achieved by constructing each axis separately with the axis () function (see
Table 5.10). The axis () function is defined as:

> axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, 1lty = "solid", 1lwd = 1,
col = NULL, hadj = NA, padj = NA, ...)

set.seed (1)

X<-rnorm(200,10,1)

m<-mean (X)

s<-sd(X)

plot(density(X), type="1",

V V. V V V

axes=F, ann=F)
> axis(l, at=c(0, m, m+s, m-s,
m+2*s, m+2*-s, 100), lab= 26 -6 u 16 20

expression (NA, mu, l*sigma,

-l*sigma, 2*sigma, -2*sigma,

NA), pos=0, cex.axis=2)
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Table 5.10 axis () arguments.

Parameter

Description

Examples

side

at

labels

tick

line

pos

outer

font

1wd, 1ty,

col

hadj, padj

Simplifies which axis to construct. |=bottom, 2=left, 3=top and 4=right.

Where the tick marks are to be drawn.
Axis will span between minimum
and maximum values supplied.

Specifies the labels to draw at each
tickmark.

* TRUE Of FALSE - should labels be
drawn

* a character or expression vector
defining the text appear at each
tickmark specified by the at
parameter.

Specifies whether or not (TRUE or
FALSE) the axis line and tickmarks
should be drawn.

Specifies the number of text lines into
the margin to place the axis (along
with the tickmarks and labels).

Specifies where along the
perpendicular axis, the current axis
should be drawn.

at=c(0,.1,.5,.7)

0.0 0.1

T 1
0.5 0.7

at=c(0.25,0.5,0.75),

labels=c("Low", "Medium", "High")

0.0

T 1
Low Medium High

tick=F

0.2 0.4 0.6 0.8 1.0

line=-1

0.0

0.2 0.4 0.6 0.8 1.0

pos=0.4

0.0

0.2 0.4 0.6 0.8 1.0

Specifies whether or not (TRUE or FALSE) the axis should be drawn in the

outer margin.

The font used for the tickmark labels.

Specifies the line width, style and
color of the axis line and tickmarks.

Specifies the parallel and perpendicular

adjustment of tick labels to the axis.
Units of movement (for example)
are padj=0: right or top, padj=1:
left or bottom. Other values are
multipliers of this justification.

0.0

lwd=2.5, lty=1,
col="grey60"

0.2 0.4 0.6 0.8 1.0

hadj=1, padj=-1

0.0

T T T T 1
0.2 0.4 0.6 0.8 1.0

5.3.7 Adding lines and shapes within a plot

There are a number of low-level plotting functions for plotting lines and shapes.
Individually and collectively, they provide the tools to construct any custom graphic.
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The following demonstrations will utilize a dataset by Christensen et al. (1996) that
consists of course woody debris (CWD) measurements as well as a number of human
impact/land use characteristics for riparian zones around freshwater lakes in North
America.

> christ <- read.table("christ.csv", header=T, sep=",")
Straight lines - abline()

The low-level plotting abline () function is used to fit straight lines with a given
intercept (a) and gradient (b) or single values for horizontal (h) or vertical (v) lines.
The function can also be passed a fitted linear model (reg) or coefficient vector from
which it extracts the intercept and slope parameters. The definition of the abline ()
function is:

> abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
coef = NULL, untf = FALSE, ...)

Assessing departures from linearity and
homogeneity of variance can be assisted
by fitting a linear (least squares regression)
line through the data cloud.

800 1000

600

> plot (CWD.DENS ~ RIP.DENS,
data=christ)

# use abline to add a

400

CWD.DENS

\
200

\%

# regression trendline

. ~ T T T T T T T
abline (1lm(CWD.DENS RIP.DENS, 800 1000 1200 1400 1600 1800 2000 2200

data=christ)) RIP.DENS

0

\%

\%

# use abline to represent the

\

# mean y-value
abline (h=mean (christ$CWD.DENS) ,
1lty=2)

\

Lines joining a succession of points - 1ines ()

The lines () function can be used to add lines between points and is particularly
useful for adding multiple trends (or non-linear trends, see ‘Smoothers’) through
a data cloud. As with the points () function, the lines () function is a generic
function whose actions depend on the type of objects passed as arguments. Notably,
for simple coordinate vectors, the points() and lines () functions are virtually
interchangeable (accept in the type of points they default to). Consequently, a more
complex example involving the predict () function (a function that predicts new
values from fitted models) will be used to demonstrate the power of the lines
function.
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Assessing departures from linearity and
homogeneity of variance can be assisted
by fitting a linear (least squares regression)
line through the data cloud.

1000

800
|

600

plot (CWD.DENS ~ RIP.DENS,

400
|

data=christ, type="p")

CWD.DENS

# divide the dataset up

200
|

Area
i — small

o 8 --- large

area <- cut(christ$SAREA, 2, T T T T T T

800 1000 1200 1400 1600 1800 2000 2200

RIP.DENS

# according to lake size

0
|

lab=c("small", "large"))
# explore trend for each

>

+

>

>

>

+

>

> # area separately

> Im.small <- 1m(CWD.DENS ~ RIP.DENS, data=christ,
+ subset=area=="small")
> Im.large <- 1m(CWD.DENS ~ RIP.DENS, data=christ,
+ subset=area=="large")
> lines (christ$RIP.DENS[area=="small"], predict(lm.small))
> lines (christ$RIP.DENS[area=="large"], predict(lm.large), lty=2)
> legend("bottomright",title="Area", legend=c("small", "large"),
+ lty=c(1,2))

Lines between pairs of points - segments ()

The segments function draws straight lines between points ((x0,y0) and (x1,y1)).
When each of the coordinates are given as vectors, multiple lines are drawn.

> segments (x0, y0, x1, yl, col = par("fg"), 1lty = par("lty"),
lwd = par("lwd"), ...)

Assessing departures from linearity and
homogeneity of variance can also be fur-
ther assisted by adding lines to represent the
residuals (segments that join observed and
predicted responses for each predictor).
This example also makes use of thewith ()
function which evaluates any expression or
call (in this case the segments function)
in the context of a particular data frame

(christ) or other environment. 800 1000 1200 1400 1600 1800 2000 2200

RIP.DENS

1000

800

CWD.DENS
400

200

0

> plot (CWD.DENS ~ RIP.DENS,
data=christ)
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abline (1m(CWD.DENS ~ RIP.DENS, data=christ))

# fit the linear model

christ.lm <- 1Im(CWD.DENS ~ RIP.DENS, data=christ)

abline(christ.1lm)

with(christ, segments (RIP.DENS, CWD.DENS, RIP.DENS,
predict (christ.lm), lty=2))

vV V. V VvV VvV

Arrows and connectors - arrows ()

The arrows () function builds on the segments function to add provisions for simple
arrow heads. Furthermore, as the length, angle and end to which the arrow head applies
are all controllable, the arrows () function is also particularly useful for annotating
figures and creating flow diagrams. The function can also be useful for creating
customized error bars (as demonstrated in the following example).

> area<-cut (christ$AREA, 2, -
lab=c("small", "large"))

600
|

> library (gmodels)

> s<-tapply (christsSCWD.DENS,
area,ci)

> plot(christ$CWD.DENS ~ area,

400
|

200
|

border="white", ylim=range(s))

christ$CWD.DENS
0
|

> points(1l,s$Ssmall["Estimate"])

-200

> points(2,s$large["Estimate"])

> with(s, arrows (1, small large
area
small["CI lower"], 1,
small["CI upper"], length=0.1,
angle=90, code=3))
> with(s, arrows (2,
large["CI lower"], 2,
large["CI upper"], length=0.1,
angle=90, code=3))

Rectangles - rect ()

The rect () function draws rectangles from left-bottom, right-top coordinates that
can be filled with solid or striped patterns (according to the line type, width, angle,
density and color):

> rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NA, border = NULL, 1lty = par("lty"), 1lwd = par("lwd"),
.)
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The main use of rectangles is to produce frames for items within plots.

> set.seed (1)

0.4 -
> Y<-rnorm(200,10,1)
> plot(density(Y),type="1",axes=T, 0.3
ann=F, bty="1", las=1, i
02 - 1=V 1003854
col="grey") n

> rect(7.5,.1,12.5,.3, ang=45, 0.1 1
density=20, col="grey",

0.0
border="black") 7 8 9 0 11 12 13

> text (10,0.2,bgquote(paste (mu ==
frac(sum(y[i]),n))

. (mean(Y))),cex=2)
Irregular shapes between a succession of points - polygon ()

Given a vector of x coordinates and a corresponding vector of y coordinates, the
polygon () function draws irregular shapes:

> polygon(x, y = NULL, density = NULL, angle = 45, border = NULL,
col = NA, 1lty = par("lty"), ...)

Smoothers

Smoothing functions can be useful additions to scatterplots, particularly for assessing
(non)linearity and the nature of underlying trends. There are many different types of
smoothers see section 8.3 and Table 8.2.

Smoothers are added to a plot by first
fitting the smoothing function (loess (), ;
ksmooth () ) to the data before plotting the :
values predicted by this function across
the span of the data.

600 800 1000
| |

400
|

> plot (CWD.DENS ~ RIP.DENS,
data=christ)

> # fit the loess smoother A

> christ.loess<-loess (CWD.DENS ~ [°8| : : : : :

RIP.DENS, data=christ) 800 1000 1200 1400 1600 1800 2000 2200
RIP.DENS

CWD.DENS

200
|

0
|

# created a vector of the sorted

# X values

xs<-sort (christ$RIP.DENS)

lines (xs, predict(christ.loess, data.frame(RIP.DENS=xs)))

# fit and plot a kernel smoother

christ.kern <- ksmooth(christ$RIP.DENS, christ$CWD.DENS,
"norm", bandwidth=200)

> lines(christ.kern, 1lty=2)

VvV V. V VvV V V
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Confidence ellipses - matlines ()4

The matlines () function, along with the similar matplot () and matpoints()
functions plot multiple columns of matrices against one another, thereby providing
a convenient means to plot predicted trends and confidence intervals in a single
statement.

Confidence bands are added by using the value(s) returned by apredict () function
as the second argument to the matlines () function.

\%

plot (CWD.DENS ~ RIP.DENS,
data=christ)
> christ.lm<-1m(CWD.DENS ~
RIP.DENS, data=christ)
> xs<-with(christ,
seq(min (RIP.DENS) ,
max (RIP.DENS), 1=1000))
> matlines (xs,

400 600 800 1000
| | |

CWD.DENS

200
|

predict (christ.lm, o

T T T T T T T
data.frame (RIP.DENS=xs), 800 1000 1200 1400 1600 1800 2000 2200
interval="confidence"), RIP.DENS
lty=c(1,2,2), col=1)

5.4 Interactive graphics

The majority of plotting functions on the majority of graphical devices operate by
sending all of the required information to the device at the time of the call - no
additional information is required or accepted from the user. The display devices
(X11(), windows () and quartz()) however, also support a couple of functions
designed to allow interactivity between the user and the current plotting region.

5.4.1 ldentifying points - identify ()

The identify () function allows the user to label points interactively. After issuing the
identify() function with arguments corresponding to the x and y axis vectors, R awaits
mouse input in the form of left mouse button clicks in the plotting region of the current
display device. Each time the left mouse button is clicked on the display device, the
coordinates of the mouse pointer are retrieved and the nearest data points (determined
by comparing the mouse pointer coordinates to the point coordinates supplied as argu-
ments) are labelled. A right mouse click (‘ESC’ on MAC OS X) terminates the function
which returns a vector of point indices. In its simplest form, identify () function can
be used to identify potentially problematic observations. Additional arguments can be
supplied to provide finer control over the relative positioning and text of the labels.

4 Note, the same could be achieved via three seperate lines () calls.
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5.4.2 Retrieving coordinates - 1ocator ()

The locator () function returns the coordinates of the mouse pointer each time the
left mouse button is clicked on the display device. A right mouse click on the display
(‘ESC’ on MacOSX) terminates the function which returns a list of x, y coordinates.
Alternatively, the function can be supplied with an argument indicating the number
of points to locate (n). Furthermore, if the type= parameter is set to one of the plotting
point types, the points will be echoed onto the current plotting region. The locator ()
function provides a convenient way to construct mock data sets, trace objects as well as
construct simple maps.

5.5 Exporting graphics

Graphics can also be written to several graphical file formats via specific graphics
devices which oversee the conversion of graphical commands into actual graphical
elements. In order to write graphics to a file, an appropriate graphics device must
first be ‘opened’. A graphics device is opened by issuing one of the device functions
listed below and essentially establishes the devices global parameters and readies
the device stream for input. Opening such a device also creates (or overwrites) the
nominated file. As graphical commands are issued, the input stream is evaluated
and accumulated. The file is only written to disk when the device is closed via the
dev.off () function.

Note that as the capabilities and default global parameters of different devices differ
substantially, some graphical elements may appear differently on different devices. This
is particularly true of dimensions, locations, fonts and colors.

5.5.1 Postscript - poscript () and pdf ()

Postscript is actually a programming language that defines both the nature of the
content and exactly how the content should be displayed or printed on a page. As a
result, postscript is device independent and scalable to any size and is therefore the
preferred format of most publishers. Whilst there are many other arguments that can
be passed to the postscript () function, common use is as follows:

> postscript(file, family, fonts = NULL, width, height,

horizontal, paper)

where file is a file name (and path), font and family declare all the fonts required
in the device, width and height define the dimensions (in inches) of the graphic,
paper defines the size of the printer paper (or ‘special’ for graphics in which width and
height is defined) and horizontal determines the orientation of the graphic relative
to the paper type.

Like postscript, pdf (Portable Document Format) files contain information on
exactly how the printed page should appear. Pdf documents can also contain a great
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deal of additional information on how the information should behave in different
contexts. Such ‘advanced’ postscript features are largely designed to enhance the
capabilities of documents displayed on screens and are therefore rarely utilized from R.
Importantly, unlike R’s postscript device, the pdf device does not embed a prologue
of font metrics, and thus only fonts that can be assumed to be present on the target
devices (printers and other computers) should be used.

5.5.2 Bitmaps - jpeg () and png ()

R also supports a range of bitmap file formats, the range of which depends on the
underlying operating system and the availability of external applications.

> jpeg(filename, width = 480, height = 480, units = "px",
pointsize = 12, quality = 75, bg = "white", res = NA, ...)

where filename defines the name of the file (including path), width and height
define the dimensions of the graphic (in pixels) and quality defines the compression
quality (100 indicates no compression). The graphical capabilities of the bitmap devices
are largely tied to the default display device.

5.5.3 Copying devices - dev.copy ()

Alternatively, graphics can be exported to file by copying the contents of one device
(such as a display device) to another device (such as a file device) using the dev . copy ()
function.

5.6 Working with multiple graphical devices

It is possible to have multiple graphical devices open simultaneously. However, only
one device can be active (receptive to plotting commands) at a time. Once a device
has been opened (see section 5.5), the device object is given an automatically iterated
reference number in the range of 1 to 63. Device 1 will always be a null device that
cannot accept plotting commands and is essentially just a placeholder for the device
counter. The set of functions for managing multiple devices are described in Table 5.11.
To appreciate the workings of these functions, first create multiple display devices. To
do so, issue one of the commands listed below (the one appropriate for your system)
multiple times:

Windows MacOSX®  Linux
windows () quartz() X11 ()

Note that the device title bars will indicate the device reference number as well as
whether the device is currently active or inactive. The last one created will be active.

¢ The default graphics device for MacOSX is x11, however, many prefer quartz.
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Table 5.11 Functions for managing multiple graphics devices.

Function Description Example
dev.list () Returnsthe numbers of open devices (with device types as x11 x11
column headings) 2 3
dev.cur () Returns the number (and name) of the currently active device x11
3
dev.next ()  Returns the number (and name) of the next available device =~ x11
after the device specified by the which= argument (after 2
current if which= absent)
dev.prev() Returnsthe number (and name) of the previous available X11
device after the device specified by the which= argument 2
(before current if which= absent)
dev.set () Makes the device specified by the which= argument the X11
currently active device and returns the number (and 2
name) of this device. If which= argument absent, it is set
to the next device.
dev.off () Closes the device specified by the which= argument (or x11
current device if which= argument absent), makes the
next device active and returns the number (and name) of 3

this device.

5.7 High-level plotting functions for univariate (single variable) data

5.7.1 Histogram

Histograms are useful at representing Histogram of VAR

the distribution of observations for large S- L
(> 30) sample sizes.

15

> set.seed (1) —
> VAR <- rnorm(100,10,2)
> hist (VAR)

Frequency
10
1
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The number or size of the bins can be Histogram of VAR
controlled by passing respectively a sin- Q_ M
gle number or vector of bin breakpoints ° 1
with the breaks= argument/. Specify- 8-
ing the probability=T argument will N B
express the number counts in each bin £ 7] —
as a density (probability) rather than as é o |
a frequency. °©
8
> hist (VAR, breaks=18, °
probability=T) § - | : : : —!_l_
#OR equivalently in this case 6 8 10 12 14
> hist (VAR, breaks=seqg(5.5,15, VAR

by=.5), probability=T)

5.7.2 Density functions

Probability density functions are also useful additions or alternatives to histograms as
they further assist in describing the patterns of the underlying distribution. Typical
kernel density functions fit a series of kernels (symmetric probability functions) to
successive subsets (windows) of the ordered dataset from which new estimates of the
observations are calculated. The resolution and texture (smoothness) of the density
function is controlled by a smoothing parameter which essentially defines the width of
the kernel window.

A density function can be plotted using density.default(x = VAR)
the density () function as an argument o
to the high-level overloaded plot () 3]
function.
2|
o
> plot (density (VAR)) %‘
o
8
g
8
o

N =100 Bandwidth = 0.6341

1t is also possible to pass a function that computes the number of breaks or the name of a breaking
algorithm.
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The type of smoothing kernel (normal
or gaussian by default) can be defined
by the kernel= argument and the degree
of smoothing is controlled by the bw=
(bandwidth) argument. The higher the
smoothing bandwidth, the greater the
degree of smoothing.

> plot(density (VAR, bw=1))

The density function can also be added to
a histogram using the density () func-
tion as an argument to a the low-level
lines () function.

set.seed (1)
VARl <- rlnorm(100,2,.5)
hist (VAR1, prob=T)

>
>
>
> lines (density (VARL1))

5.73 Q-Qplots

Density

Density
0.00 002 004 006 0.08 0.10

density.default(x = VAR, bw = 1)

0.10 0.15 0.20
1 1 1

0.05
1

0.00
|

T T T
5 10 15

N =100 Bandwidth =1

Histogram of VAR1

N

Q-Q normal plots can also be useful at diagnosing departures from normality by
comparing the data quantiles® to those of a standard normal distribution. Substantial
deviations from linearity, indicate departures from normality.

> ggnorm (VAR1)
> ggline (VAR1)

Sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles

¢ Quantiles are a regular spacing of points throughout an ordered data set.
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5.7.4 Boxplots

For smaller sample sizes, histograms and density functions can be difficult to interpret.
Boxplots (or box-and-whisker plots) provide an alternative means of depicting the
location (average), variability and shape of the distribution of data. The dimensions of
a boxplot are defined by the five-number summaries (minimum value, lower quartile
(Q1), median (Q2), upper quartile (Q3) and maximum value - each representing 25%)
of the data (see Figure 5.5).

Recall that boxplots are typically used to explore the distributions of small samples.
The volatility of quantiles from small samples offers little confidence in any single
component of a boxplot. Hence, the key characteristic of a boxplot that is indicative
of a departure from normality is that each segment of the boxplot gets progressively
larger (or smaller). Only in such a circumstance, could you be confident that the
sample could not have come from a normal distribution of values. The following
boxplots provide an illustration of such a departure from normality (log-normal
boxplot).

Univariate boxplots are generated by passing a vector to the boxplot () func-
tion.

> set.seed(6) 2 —_—
> VAR2<-rlnorm(15,2,.5) € :
> boxplot (VAR2) R
ﬁ -
e -
©
o
< i
Median (Q2)
Q1-1.5xIQR Q1 Q3 Q3+1.5x1QR
8 Rt S I N 10
<—IQR—> .
~25% 25%  25% 259  outlier
[ I I: I 1
—4 -2 0 2 4

Fig 5.5 Boxplot of a standard normal distribution (mean=0, sd=1).
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The horizontal=T argument is used to produce
horizontally aligned boxplots

> boxplot (VAR2, horizontal=T)

5.7.5 Rug charts

Another representation of the data that can be added to existing plots is a rug chart that
displays the values as a series of ticks on the axis. Rug charts can be particularly useful
at revealing artifacts in the data that are “smoothed” over by histograms, boxplots and
density functions.

> set.seed (1) density.default(x = VAR)
> VAR <- rnorm(100,10,2) 9
> plot (density (VAR)) S
> rug (VAR, side=1) ©
2
=
2 e
8 <
8 |
o
8 - §
o T | I‘ | H\\HHIHHHIIHHHH Il IH\I\ L1 ‘I |1 T
4 6 8 10 12 14 16

N =100 Bandwidth = 0.6341

5.8 Presenting relationships

When two or more continuous variables are collected, we often intend to explore
the nature of the relationships between the variables. Such trends can be depicted
graphically in scatterplots. Scatterplots display a cloud of points, the coordinates
of which correspond to the values of the variables that define the horizontal and
vertical axes.

5.8.1 Scatterplots

Although scatterplots do not formally distinguish between response (dependent) and
predictor (independent) variables, when such distinctions occur, independent variables
are conventionally plotted along the horizontal (x) axis.
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Scatterplots are used prior to analyses to help assess the suitability of the data to
particular analytical procedures. Of particular importance are the insights they provide
into the linearity and patterns of variability of trends. They are also presented post
analysis as summaries of the trends and analyses.

The following demonstrations will again utilize the course woody debris (CWD)
dataset by Christensen etal. (1996). As previously demonstrated, scatterplots can
generated with theplot () function. Additional features (such as trendlines, smoothers
and other features that assist in assessing departures from linearity and homogeneity
of variance) can then be added with various low-level plotting functions.

To facilitate all of these diagnostic features as well as marginal boxplots, the high-
level scatterplot () function (car package) is very useful. Note, the scatterplot ()
function fits a lowess rather than loess smoother.

> library (car)
> scatterplot (CWD.DENS ~
RIP.DENS, data=christ)

800 1000
1

600

CWD.DENS
400

200
1

T T T T T T T
800 1000 1200 1400 1600 1800 2000 2200

RIP.DENS

Scatterplot matrices (SPLOMS)

Scatterplot matrices display a panel of scatterplots between each pair of variables when
there are three or more continuous variables. A given variable makes up the x-axis of
each of the panels up the column and the y-axis of each of the panels along the row. The
diagnal panels are often populated with univariate plots such as boxplots, histograms
or density functions. The upper right panels are a mirror of the lower left panels. There
are a few high-level plotting functions for producing scatterplot matrices:

* the pairs () function is an extension of the regular plot () function
Different functions can be applied to the lower, upper and diagonal panels of the grid.
A lowess smoother is supported by the panel.smooth function. It is also possible to
define alternative functions. This example illustrates the application of horizontal boxplots
into the diagonal panels. Since, the upper panels are a mirror of the lower panels, the upper
panels can be removed with by setting the upper . panel= parameter to NULL.

> # define a boxplot panel function
> panel.bxp <- function(x, ...)

> \{

>

usr <- par("usr"); on.exit (par (usr))
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par(usr = c(usr[l1:2],0,2))

boxplot (x, add=TRUE, horizontal=T)

\}

pairs (~CWD.DENS + RIP.DENS + CABIN + AREA, data=christ,

lower .panel=panel.smooth, diag.panel=panel.bxp,

vV V. V V

upper .panel=NULL, gap=0)
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* the scatterplot.matrix() function (car package) is an extension of the regular
scatterplot () function.

> library(car)
> scatterplot.matrix (~CWD.DENS + RIP.DENS + CABIN + AREA,
data=christ, diag="boxplot")

I 250

CWD.DENS

250

150
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The scatterplot.matrix() function can differentiate trends for different levels
(groups) of a categorical variable. To illustrate, we will use the cut () function to
convert the AREA vector into a categorical variable with two levels (small and large).

> scatterplot.matrix (~CWD.DENS + RIP.DENS + CABIN,

groups=cut (christ$SAREA, br=2
by.groups=T, data=christ,

I-800

, lab=c("small", "large")),

diag="density")
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3D scatterplots

Three dimensional scatterplots can be useful for exploring multivariate patterns
between combinations of three or more variables. To illustrate 3D scatterplots in R, we
will make use of a dataset by Allison and Cicchetti (1976) that compiles sleep, morphol-
ogy and life history characteristics 62 species of mammal along with predation indices.

> allison <- read.table("allison.csv", header=T, sep=",")

* the scatterplot3d function (scatterplot3d package)

> library(scatterplot3d)

> with(allison,
scatterplot3d(log
(Gestation), log(BodyWt),
log(LifeSpan),
pch=16))

type= nh ,

log(LifeSpan)
log(BodyWt)

The type="h" parameter specifies that
points should be connected to the base - 1 {
by a line and the pch=16 parameter
specifies solid points. All variables were
expressed as their natural logarithms
using the 1og () function.

Ll e
0

log(Gestation)
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* the scatter3d function (Remdr package) displays rotating three dimensional plots.

> library (Rcmdr)

> with(allison,
scatter3d(log(Gestation),

log (BodyWt)

rev=1l))

log (LifeSpan),
fit="additive",

The fit= parameter specifies the form
of surface to fit through the data. The
option selected ("additive") fits an
additive non-parametric surface through
the data cloud and is useful for identify-
ing departures from multivariate linearity.
The rev= parameter specifies the num-
ber of full revolutions the plot should
make. Axes rotations can also be manip-
ulated manually by dragging the mouse
over the plot.

> library (Rcmdr)
> with(allison,
scatter3d(log(Gestation),
log (BodyWt)
parallel=F,

log(LifeSpan),
fit="linear",
groups=factor (Predation),
fill=F))

The parallel=F argument specifies that
separate surfaces are generated for each of
the levels in the factorial variable speci-
fied by the groups= argument. In this
case, the factor () function was used to
convert the numeric predation vector to a
factor. The £i11=F argument specifies
that the surfaces should not be filled in.

’

log(LifeSpan)

log(Gestation).
6"
Iog(BOQy_W.t)

2y 9

log(BodyWt)

* the cloud () function (1attice package). Refer to section 5.1 1 for more information on

trellis graphics.

> library(lattice)

> cloud(log(LifeSpan) ~
log (BodyWt) *
log(Gestation),
data=allison, pch=16,
type=c("p","h"),
screen=c (x=-90, y=-20),
zlab=1ist (rot=90))

log(LifeSpan)

log(Gestation)

log(BodyWt)
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The data are specified as a formula of the format z~x*y. The type=c("p", "h")
argument specifies that both points and connected lines should be used. The screen=
argument specifies the amount of axes rotation for the x, y and z axes. The zlab list
specifies that the z axis label should be rotated 90 degrees.

5.9 Presenting grouped data

Data for which a response has been measured from two or more groups of sampling
units are summarised graphically by estimates of location (such as mean and median)
and spread (standard error and standard deviation). As with summaries of relationships,
graphical summaries for grouped data serve as both exploratory data analysis tools as
well as visual representations of statistical analyses.

5.9.1 Boxplots

Plotting multiple boxplots side by side (one for each level of a factorial variable),
provides a useful means of examining homogeneity (equal) of variance assumptions.
To illustrate boxplots, we will reproduce Figure 4.5 from Quinn and Keough (2002)
using data sets from Ward and Quinn (1988) and Furness and Bryant (1996).

> ward<-read.table("ward.csv", > furness<-read.table("furness
header=T, sep=",") .csv", header=T, sep=",")
> boxplot (EGGS~ZONE, data=ward, > boxplot (METRATE~SEX, data=
yvlab="Number of eggs per furness, ylab="metabolic
capsule", xlab="Zone") rate", xlab="Sex")
8
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Littor Mussel Female Male
Zone Sex

5.9.2 Boxplots for grouped means

Technically, the normality and homogeneity of variance assumptions pertain to the
residuals (difference between values observed and those predicted by the proposed
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model) and thus the model replicates. For multi-factor analysis of variance designs, the
appropriate replicates for a hypothesis test are usually the individual observations from
each combination of factors. Hence, boxplots should also reflect this level of replication.

To illustrate, a data set introduced in
Box 11.2 of Sokal and Rohlf (1997) on
the oxygen consumption of two species
of limpets under three seawater concen-
trations will be used.

> limpets <-read.table("limpets

.csv", header=T, sep=",")
> boxplot (02~SEAWATER*SPECIES,
limpets)

5.9.3 Interaction plots - means plots

10
L

T T T T T T
100%. 75%. 50%. 100%. 75%. 50%.
A.scabra A.scabra A.scabra A.digitalis A.digitalis A.digitalis

Interactions are outcomes in which the effects of one factor are dependent on the levels
of other factor(s). That is, the effect of one factor is not consistent across all levels of the
other factors. Interaction plots depict the mean response value of each combination of
factor levels (groups) and are therefore useful for interpreting interactions.

* the interaction.plot () function (car package).

> library(car)

> limpets <-read.table
("limpets.csv", header=T,

")

> with(limpets,

sep=",
interaction.
plot (SEAWATER, SPECIES,

02, type="b", pch=16))

mean of 02

/® SPECIES
— Addigitalis

-e- Ascabra

L]
75%
SEAWATER

100% 50%

* the plotmeans () function (gplots package)

> library (gplots)

> plotmeans (02 ~ interaction
(SPECIES, SEAWATER),
limpets, connect=1list

(c(1,3,5), c(2,4,6)))

02

o
e
© \

|
|1 \

n=8 NLS n=8 rl8 n=8 n=8
T T T T T T

A.scabra.100% A.scabra.75%  A.scabra.50%
interaction(SPECIES, SEAWATER)
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5.9.4 Bargraphs

Bargraphs are plots where group means are represented by the tops of bars or columns.
Pure statisticians (who refer to these plots as ‘dynamite plots’) argue that bars should
only be used to represent frequencies (totals) and are not appropriate for representing
means (since the body of the bar has no logical interpretation). Furthermore, they
implicitly assume parametric assumptions and can misleadingly conceal the true nature
of the data. Consequently, there are no high-level bargraph plotting functions (and it is
unlikely that the R Core Development Team would ever support such a function). Such
professionals prefer boxplots (see section 5.9.2), means plots (means represented by
points) and violin plots (see section 5.9.5). Nevertheless, biologist often find bargraph
useful graphical summaries and they do provide a greater area for displaying colors
and shading to distinguish different treatment combinations. Such is the power of R,
they are relatively simple to construct using a series of low-level plotting functions.

> means<-with (ward, tapply (EGGS,
ZONE, mean))

> sds <-with(ward, tapply (EGGS,
ZONE, sd))

> ns<-with(ward, tapply (EGGS, ZONE,
length))

> ses <- sds/sqgrt(ns)

> b<-barplot (means, ylim=c (min (pretty
( means - ses)), max(pretty
(means+ses) ) ), xpd=F,

Number of eggs per capsule
10
1

yvlab="Number of eggs per capsule")

> arrows (b, means+ses, b, means-ses,

angle=90, code=3)
> box (bty="1") Littor Mussel

Similarly, multifactor bargraphs can also be constructed from first principles.

14
|

> means<-with (limpets, tapply (02,
1ist (SPECIES, SEAWATER), mean)) B Ascabra
> sds <-with(limpets, tapply (02, O Adigitalis
1ist (SPECIES, SEAWATER), sd))
> ns<-with(limpets, tapply (02,
list (SPECIES, SEAWATER), length))
> ses <- sds/sqgrt(ns)

12
|

10
|

> b<-barplot (means, ylim=c (min(pretty
( means-ses)), max(pretty

Oxygen consumption

8
|

(means+ses))), beside=T, xpd=F,
yvlab="0Oxygen consumption",
legend. text=rownames (means) )

> arrows (b, means+ses, b, means-ses, 50% 75% 100%
angle=90, code=3,length=0.05)
> box (bty="1")
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5.9.5 Violin plots

Violin plots are an alternative to boxplots and bargraphs for representing the charac-
teristics of multiple samples.

> library (UsingR)

> simple.violinplot (EGGS~ZONE, ward, &
+ col="gray", bw="SJ")

> box (bty="1") 2

Littor Mussel

5.10 Presenting categorical data

Associations between two or more categorical variables (such as those data modelled
by contingency tables and log-linear modelling) can be summarized graphically by
mosaic and association plots. To illustrate graphical summaries for categorical data,
we will use a data set by Young and Winn (2003) in which encountered eels were
cross-classified according to species and location (grass beds, sand/rubble or bordering
the previous two).

> eels <-read.table("eels.csv", header=T, sep=",")
> eels.xtab <- xtabs (COUNT ~ LOCATION + SPECIES, eels)

5.10.1 Mosaic plots

Mosaic plots represent each of the various cross-classifications as a mosaic of rectangles,
the sizes of which are proportional to the observed frequencies”. In addition, the
rectangles can be shaded to reflect the magnitudes and significance’ of the residuals,
thereby providing an indication of which cross-classifications contribute to a lack of
independence.

> library (ved)

> strucplot (eels.xtab, gp=shading_max)

" Actually, the widths and heights are proportional to the marginal and conditional percentages
respectively.

" Significance is determined via a permutation test, and thus exact probabilities differ from run
to run.
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SPECIES

G.moringa G.vicinus Pearson
residuals:

— 1.58
— 1.28

Grass

Sand

— 0.00

LOCATION

Border

—=-1.32
p—-value =
0.034

5.10.2 Association plots

Association plots depict cross-classifications as rectangles whose heights reflect the
relative sizes and polarity of Pearson residuals and whose areas reflect the raw residuals.
As with mosaic plots, shading can be used to reflect the magnitude and significance of
residuals.

> assoc (eels.xtab, gp=shading max)

SPECIES
G.moringa G.vicinus
Pearson
residuals:
e 1.58
—1.27
1]
[2]
g
O]
z
o
g
O - — 0.00
S8 —
o}
S -
o
M
—=-1.32
p-value =
0.038

5.11 Trellis graphics

Trellis graphics provide the means of plotting the trends amongst a set of variables
separately according to the levels of other variables and can therefore be more
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Table 5.12 Incomplete list of high-level lattice (Trellis) plotting functions.

Plotting function Description

Univariate

densityplot () Conditional kernel smoothing density plot
histogram() Conditional histograms

dotplot () Conditional dotplots

Bivariate

xyplot () Conditional scatterplots

aq () Conditional quantile-quantile plots
agmath () Conditional gg-normal plots
barchart () Conditional barcharts

bwplot () Conditional boxplots

Multivariate

cloud () Conditional 3D scatterplots
splom() Matrix of scatterplots

appropriate for exploring trends within grouped data’. The separate trends are presented
in multiple panels within a grid and/or as different plotting symbols within plots.
Many of the high-level plotting functions described above have trellis equivalents
(see Table 5.12), all of which are provided by the 1attice package.

Trellis (1attice) graphics provide a richer, more customizable set of graphical
procedures that can also be easily modified and committed multiple times to multiple
devices. The cost however, is that they are substantially more complex. An excellent
source of reference on trellis graphics (and graphics in general) within R is Murrell
(2005).

To illustrate trellis graphics we will again make use of the Allison and Cicchetti
(1976) data in which the amount of sleep time, morphology and predation risks were
compiled for 62 species of mammal. Predation risk was measured on a scale of 1
through 5 where 1 is very low and 5 is very high.

> allison <- read.table("allison.csv", header=T, sep=",")

A basic conditioning plot, might depict the relationship between the life span of
mammals against body mass separately for each level of predation. Such a plot could be
constructed using the xyplot () function. Grouped data can be specified in one of two
ways. Firstly, if the plotting formula contains a factor vector separated by a |, separate
panels are constructed for each level of the factor. The xyplot () function introduces
the type="r" argument which specifies regression trendlines.

7 Such as those data modelled by blocking and repeated measured designs.
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> xyplot (log(LifeSpan)~1log (BodyWt)

data=allison,

type:c ( npn , nrn) )

| factor (Predation),
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It is clear that the relationship between longevity and body mass is conditional on the

level of predation risk.

Alternatively, each of the trends can be

included on the one plo

factorial vector as a group= argument.

> xyplot (log(LifeSpan)~
log (BodyWt), groups=factor
(Predation), data=allison,

type=c("p", "r"

t by passing the

log(LifeSpan)

)

auto.key=1list (columns=5))

Additional graphical features can be added to the panels using the panels= argument.
This argument accepts a range of predefined functions, as well as user defined functions
to achieve specific results and is called by the plotting function for each panel in the

lattice.

> myFunc<-function

col="grey"); panel.abline(a,col="grey");

> xyplot(log(LifeSpan) ~ log(BodyWt)

(x,y) a<-1lm(y~x); panel.points(x,y,

data=allison, panel=myFunc)

panel.loess (x,Vv)

| factor (Predation),
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Accordingly, there are also lattice equivalents of most of the low level plotting
functions described in section 5.3. Typically, these functions are called by the name of
the basic low level function name with a panel. prefex.

Unlike the basic plotting system described earlier, lattice plots are not a biproduct of
the plotting functions. Instead, the output is returned by the function. Consequently,
an entire trellis can be stored as an object and subsequently updated (modified) using
the overloaded update () function. The overall graphic is not committed until the
object is printedX.

> myPlot<-xyplot (log(LifeSpan) ~ log(BodyWt) |
factor (Predation), data=allison, panel=myFunc)

> print (myPlot)

This produces the same as above.
5.11.1 scales () parameters

Many of the elements associated with the panel axes can be customized using the
scales parameter. This parameter accepts a lists of arguments associated with the x
and y axes.

"

> update (myPlot, xlab=expression (paste("Body weight ",
(logl[el*Kg))), yvlab=expression(paste("Lifespan ",
(logl[el*yrs))), scales=list(x=list(at=seq(-6,6,1=7))))

k¥ As with most non-plotting functions in R, when a lattice plotting function is called without assigning

a name for the output object, the result is automatically passed onto an appropriate print method

before being discarded. If the function’s output is assigned a name, the object is not “printed”, it is

stored.
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5.12 Further reading

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.
Murrell, P. (2005). R Graphics (Computer Science and Data Analysis). Chapman & Hall/CRC.
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Simple hypothesis testing — one and two
population tests

6.1 Hypothesis testing

Chapter 3 illustrated how samples can be used to estimate numerical characteristics or
parameters of populations”. Importantly, recall that the standard error is an estimate
of how variable repeated parameter estimates (e.g. population means) are likely to be
from repeated (long-run) population re-sampling. Also recall, that the standard error
can be estimated from a single collected sample given the degree of variability and size
of this sample. Hence, sample means allow us make inferences about the population
means, and the strength of these inferences is determined by estimates of how precise
(or repeatable) the estimated population means are likely to be (standard error). The
concept of precision introduces the value of using the characteristics of a single sample
to estimate the likely characteristics of repeated samples from a population.This same
philosophy of estimating the characteristics of a large number of possible samples and
outcomes forms the basis of frequentist approach to statistics in which samples are
used to objectively test specific hypotheses about populations.

A biological or research hypothesis is a concise statement about the predicted or
theorized nature of a population or populations and usually proposes that there is
an effect of a treatment (e.g. the means of two populations are different). Logically
however, theories (and thus hypothesis) cannot be proved, only disproved (falsification)
and thus a null hypothesis (Hy) is formulated to represent all possibilities except the
hypothesized prediction. For example, if the hypothesis is that there is a difference
between (or relationship among) populations, then the null hypothesis is that there
is no difference or relationship (effect). Evidence against the null hypothesis thereby
provides evidence that the hypothesis is likely to be true.

The next step in hypothesis testing is to decide on an appropriate statistic that
describes the nature of population estimates in the context of the null hypothesis
taking into account the precision of estimates. For example, if the null hypothesis is

@ Recall that in a statistical context, the term population refers to all the possible observations of a
particular condition from which samples are collected, and that this does not necessarily represent
a biological population.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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that the mean of one population is different to the mean of another population, the null

hypothesis is that the population means are equal. The null hypothesis can therefore

be represented mathematically as: Hy : i1 = pu, or equivalently: Hy : 1 — pp = 0.
The appropriate test statistic for such a null hypothesis is a ¢-statistic:

G =) _ (=7

=72 =72

where (¥, — ¥,) is the degree of difference between sample means of population 1 and
2 and sy, 5, expresses the level of precision in the difference. If the null hypothesis is
true and the two populations have identical means, we might expect that the means of
samples collected from the two populations would be similar and thus the difference in
means would be close to 0, as would the value of the ¢-statistic. Since populations and
thus samples are variable, it is unlikely that two samples will have identical means, even
if they are collected from identical populations (or the same population). Therefore, if
the two populations were repeatedly sampled (with comparable collection technique
and sample size) and #-statistics calculated, it would be expected that 50% of the time,
the mean of sample 1 would be greater than that of population 2 and visa versa. Hence,
50% of the time, the value of the ¢-statistic would be greater than 0 and 50% of the
time it would be less than 0. Furthermore, samples that are very different from one
another (yielding large positive or negative t-values), although possible, would rarely
be obtained.

All the possible values of the #-statistic (and thus sample combinations) calculated
for a specific sample size for the situation when the null hypothesis is true could be
collated and a histogram generated (see Figure 6.1a). From a frequentist perspective,
this represents the sampling or probability distribution for the ¢-statistic calculated
from repeated samples of a specific sample size (degrees of freedom) collected under
the situation when the null hypothesis is true. That is, it represents all the possible
expected t-values we might expect when there is no effect. When certain conditions
(assumptions) are met, these t-values follow a known distribution called a ¢-distribution
(see Figure 6.1b) for which the exact mathematical formula is known. The area under
the entire #-distribution (curve) is one, and thus, areas under regions of the curve

Fig 6.1 Distribution of all possible values of the t-statistic calculated from samples (each
comprising of 10 observations) collected from two identical populations (situation when null
hypothesis is true) represented as a (a) histogram and (b) t-distribution with 18 degrees of
freedom (df = (n; — 1)+ (n; — 1) = 18).
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can be calculated, which in turn represent the relative frequencies (probabilities) of
obtaining #-values in those regions. From the above example, the probability (p-value)
of obtaining a t-value of greater than zero when the null hypothesis is true (population
means equal) is 0.5 (50%).

When real samples are collected from two populations, the null hypothesis that the
two population means are equal is tested by calculating the real value of the #-statistic,
and using an appropriate f-distribution to calculate the probability of obtaining the
observed (data) t-value or ones more extreme when the null hypothesis is true. If
this probability is very low (below a set critical value, typically 0.05 or 5%), it is
unlikely that the sample(s) could have come from such population(s) and thus the
null hypothesis is unlikely to be true. This then provides evidence that the hypothesis
is true.

Similarly, all other forms of hypothesis testing follow the same principal. The
value of a test statistic that has been calculated from collected data is compared
to the appropriate probability distribution for that statistic. If the probability of
obtaining the observed value of the test statistic (or ones more extreme) when the null
hypothesis is true is less than a predefined critical value, the null hypothesis is rejected,
otherwise it is not rejected.

Note that the probability distributions of test statistics are strictly defined under a
specific set of conditions. For example, the ¢-distribution is calculated for theoretical
populations that are exactly normal (see chapter 3) and of identical variability. The
further the actual populations (and thus samples) deviate from these ideal conditions,
the less reliably the theoretical probability distributions will approximate the actual
distribution of possible values of the test statistic, and thus, the less reliable the resulting
hypothesis test.

6.2 One- and two-tailed tests

Two-tailed tests are any test used to test a null hypotheses that can be rejected by
large deviations from expected in either direction. For example, when testing the null
hypothesis that two population means are equal, the null hypothesis could be rejected
if either population was greater than the other. By contrast one-tailed tests are those
tests that are used to test more specific null hypotheses that restrict null hypothesis
rejection to only outcomes in one direction. For example, we could use a one-tailed
test to test the null hypothesis that the mean of population 1 was greater or equal to
the mean of population 2. This null hypothesis would only be rejected if population
2 mean was significantly greater than that of population 1.

6.3 t-tests
Single population t-tests

Single population ¢-tests are used to test null hypotheses that a population parameter
is equal to a specific value (Hy : u = 0, where 0 is typically 0), and are thus useful
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for testing coefficients of regression and correlation or for testing whether measured
differences are equal to zero.

Two population t-tests

Two population ¢-tests are used to test null hypotheses that two independent popula-
tions are equal with respect to some parameter (typically the mean, e.g. Hy : ;11 = w2).
The r-test formula presented in section 6.1 above is used in the original student
or pooled variances t-test. The separate variances t-test (Welch’s test), represents
an improvement of the ¢-test in that more appropriately accomodates samples with
modestly unequal variances.

Paired samples t-tests

When observations are collected from a population in pairs such that two variables
are measured from each sampling unit, a paired t-test can be used to test the null
hypothesis that the population mean difference between paired observations is equal
to zero (Hy : ;g = 0). Note that this is equivalent to a single population ¢-test testing
a null hypotheses that the population parameter is equal to the specific value of zero.

6.4 Assumptions

The theoretical ¢-distributions were formulated for samples collected from theoret-
ical populations that are 1) normally distributed (see section 3.1.1) and 2) equally
varied. Consequently, the theoretical #-distribution will only strictly represent the
distribution of all possible values of the t-statistic when the populations from which
real samples are collected also conform to these conditions. Hypothesis tests that
impose distributional assumptions are known as parametric tests. Although substantial
deviations from normality and/or homogeneity of variance reduce the reliability of
the t-distribution and thus p-values and conclusions, t-tests are reasonably robust
to violations of normality and to a lesser degree, homogeneity of variance (provided
sample sizes equal).

As with most hypothesis tests, t-tests also assume 3) that each of the observations
are independent (or that pairs are independent of one another in the case of paired
t-tests). If observations are not independent, then a sample may not be an unbiased
representation of the entire population, and therefore any resulting analyses could
completely misrepresent any biological effects.

6.5 Statistical decision and power

Recall that probability distributions are typically symmetrical, bell-shaped distribu-
tions that define the relative frequencies (probabilities) of all possible outcomes and
suggest that progressively more extreme outcomes become progressively less frequent
or likely. By convention however, the statistical criteria for any given hypothesis test is a
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watershed value typically set at 0.05 or 5%. Belying the gradational decline in probabil-
ities, outcomes with a probability less than 5% are considered unlikely whereas values
equal to or greater are considered likely. However, values less than 5% are of course
possible and could be obtained if the samples were by chance not centered similarly to
the population(s) — that is, if the sample(s) were atypical of the population(s).

When rejecting a null hypothesis at the 5% level, we are therefore accepting that
there is a 5% change that we are making an error (a Type I error). We are concluding
that there is an effect or trend, yet it is possible that there really there is no trend, we just
had unusual samples. Conversely, when a null hypothesis is not rejected (probability
of 5% or greater) even though there really is a trend or effect in the population, a Type
II error has been committed. Hence, a Type II error is when you fail to detect an effect
that really occurs.

Since rejecting a null hypothesis is considered to be evidence of a hypothesis or
theory and therefore scientific advancement, the scientific community projects itself
against too many false rejections by keeping the statistical criteria and thus Type I error
rate low (5%). However, as Type I and Type II error rates are linked, doing so leaves
the Type II error rate (8) relatively large (approximately 20%).

The reciprocal of the Type II error rate, is called power. Power is the probability that
a test will detect an effect (reject a null hypothesis, not make a Type II error) if one
really occurs. Power is proportional to the statistical criteria, and thus lowering the
statistical criteria compromises power. The conventional value of @ = 0.05) represents
a compromise between Type I error rate and power.

Power is also affected by other aspects of a research framework and can be described
by the following general representation:

E
power(l — B) 75\/%“
o

Statistical power is:

« directly proportional to the effect size (ES) which is the absolute size or magnitude of the
effect or trend in the population. The more subtle the difference or effect, the lower
the power

« directly proportional to the sample size (n). The greater the sample size, the greater the
power

« directly proportional to the significance level (« = 0.05) as previously indicated

* inversely proportional to the population standard deviation (o). The more variable the
population, the lower the power

When designing an experiment or survey, a researcher would usually like to know
how many replicates are going to be required. Consequently, the above relationship is
often transposed to express it in terms of sample size for a given amount of power:

(power 0)?
ESa
Researchers typically aim for power of at least 0.8 (80% probability of detecting an

effect if one exists). Effect size and population standard deviation are derived from
either pilot studies, previous research, documented regulations or gut feeling.
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6.6 Robust tests

There are a number of more robust (yet less powerful) alternatives to independent sam-
ples t-tests and paired ¢-tests. The Mann-Whitney-Wilcoxon test’ is a non-parametric
(rank-based) equivalent of the independent samples #-test that uses the ranks of the
observations to calculate test statistics rather than the actual observations and tests the
null hypothesis that the two sampled populations have equal distributions. Similarly,
the non-parametric Wilcoxon signed-rank test uses the sums of positive and negative
signed ranked differences between paired observations to test the null hypothesis that
the two sets of observations come from the one population. While neither test dictate
that sampled populations must follow a specific distribution, the Wilcoxon signed-rank
test does assume that the population differences are symmetrically distributed about
the median and the Mann-Whitney test assumes that the sampled populations are
equally varied (although violations of this assumption apparently have little impact).
Randomization tests in which the factor levels are repeatedly shuftled so as to yield a
probability distribution for the relevant statistic (such as the ¢-statistic) specific to the
sample data do not have any distributional assumptions. Strictly however, randomiza-
tion tests examine whether the sample patterns could have occurred by chance and do
not pertain to populations.

6.7 Further reading

¢ Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.

Quinn, G. P., and K.J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R.,and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.
Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.
* Practice - R
Crawley, M. J. (2007). The R Book. John Wiley, New York.
Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Wilcox, R.R. (2005). Introduction to Robust Estimation and Hypothesis Testing.
Elsevier Academic Press.

b The Mann-Whitney U-test and the Wilcoxon two-sample test are two computationally different
tests that yield identical statistics.
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6.8 Key for simple hypothesis testing

1a.

b.

b.

3 a.

Mean of single sample compared to a specific fixed value (such as a predicted

population mean) (one-sample f-test) ..........o.iiiiiiiiiiiia.. Goto3
Two samples used to compare the means of two populations ............. Goto2
. Two completely independent samples (different sampling units used for each
replicate of each condition) (independent samples t-test) ................. Goto3
FACTOR DV
A . Dataset should be constructed in
A . long format such that the variables
are in columns and each replicate is
B . in is own row.
B

Two samples specifically paired (each of the sampling units measured under both

conditions) to reduce within-group variation (paired ¢t-test) .............. Goto 3
Pair FACTOR DV L. Pair DV1 DV2
! n Dataset can be constructed in either !
long format (left) such that the
2 A . . 2
variables are in columns and each 5
'1' B replicate is in is own row or in wide 1
5 B format (right) such that each pair 5

of measurements has its own row.

Check parametric assumptions

* Normality of the response variable at both level of the categorical variable -
boxplots
* one-sample t-test
> boxplot (DV, dataset)
* two-sample t-test
> boxplot (DV ~ Factor, dataset)
* paired t-test
> with(dataset, boxplot (DV1 - DV2))

> diffs <- with(dataset, DV[FACTOR == "A"]
+ - DV[FACTOR == "B"])
> boxplot (diffs)

where DV and Factor are response and factor variables respectively in the dataset
data frame. DV1 and DV2 represent the paired responses for group one and two
of a paired t-test. Note, paired t-test data is traditionally setup in wide format
(see section 2.7.6)
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* Homogeneity of variance (two-sample t-tests only) - boxplots (as above) and
scatterplot of mean vs variance

> boxplot (DV ~ Factor, dataset)

where DV and FACTOR are response and factor variables respectively in the dataset
data frame

Parametricassumptionsmet ...............oiitiiiiiiiii i Goto4
. Parametric assumptions NOTmet .................cooiiiiiienna... Goto5
. Perform one-sample ¢-test
> t.test(DV, dataset)
. Perform (separate variances) independent-sample ¢-test ......... See Example 6B
* one-tailed (Hy : g > Up)
> t.test(DV ~ FACTOR, dataset, alternative = "greater")
* two-tailed (Hy : jta = i)
> t.test(DV ~ FACTOR, dataset)
for pooled variances t-tests, include the var . equal=T argument (see Example 6A).
. Perform (separate variances) paired t-test....................... See Example 6C
* one-tailed (Hy : ta > Up)
> t.test(DV1l, DV2, dataset, alternative = "greater")
> t.test(DV ~ FACTOR, dataset, alternative = "greater",
+ paired = T)
* two-tailed (Hy : jta = i4B)
> t.test(DV1l, DV2, dataset)
> t.test(DV ~ FACTOR, dataset, paired = T)
for pooled variances t-tests, include the var . equal=T argument.
. Attempt a scale transformation (see Table3.2 for common transfor-
INALIOIIS) . o ottt ettt e e Goto3
. Transformations unsuccessful or inappropriate......................... Goto6
. Underlying distribution of the response variable and residuals is non-normal, yet
KNnown . ... GLM chapter 17
. Underlying distribution of the response variable and residuals is non-normal and
ISNOTKNOWN. . ..o e Goto7
. Observations independent or specifically paired, variances not wildly unequal
(Wilcoxon rank sum nonparametrictest).....................ooiin.... Goto8
. Variances not wildly unequal, random sampling not possible (Randomization
BT See Example 6E
> library (boot)
> data.boot <- boot(dataset, stat, R = 999, sim = "parametric",
+ rand.gen = rand.gen)
> plot (data.boot)
> print (data.boot)

where stat is the statistic to repeatedly calculate and rand.gen defines how the data
are randomized.
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8 a. Perform one-sample Wilcoxon (rank sum) test

> wilcox.test (DV, dataset)
b. Perform independent-sample Mann-Whitney Wilcoxon test . . ... See Example 6D
 one-tailed (Hy : pua > [4B)
> wilcox.test (DV ~ FACTOR, dataset, alternative = "greater")
e two-tailed (Hy : tg = )
> wilcox.test (DV ~ FACTOR, dataset)
c. Perform paired Wilcoxon (signed rank) test

 one-tailed (Hy : pta > [4B)

> wilcox.test (DV1,DV2, dataset, alternative="greater")

> #OR for long format

> wilcox.test (DV~FACTOR, dataset, alternative="greater",
+ paired=T)

* two-tailed (Hy : Ly = [B)
> wilcox.test (DV1, DV2, dataset)
> wilcox.test (DV ~ FACTOR, dataset, paired = T)

6.9 Worked examples of real biological data sets

Example 6A: Pooled variances, student t-test

Ward and Quinn (1988) investigated differences in the fecundity (as measured by egg
production) of a predatory intertidal gastropod (Lepsiella vinosa) in two different intertidal
zones (mussel zone and the higher littorinid zone) (Box 3.2 of Quinn and Keough (2002)).

Step | - Import (section 2.3) the Ward and Quinn (1988) data set.

> ward <- read.table("ward.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean egg production is the same for both littorinid and mussel
zone Lepsiella.

> boxplot (EGGS ~ ZONE, ward)
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> with(ward, rbind(MEAN = tapply (EGGS, ZONE, mean),
+ VAR = tapply (EGGS, ZONE, var)))
Littor Mussel
MEAN 8.702703 11.357143
VAR 4.103604 5.357143

Conclusions - There was no evidence of non-normality (boxplots not grossly asymmetrical)
or unequal variance (boxplots very similar size and variances very similar). Hence, the simple,
studentized (pooled variances) t-test is likely to be reliable.

Step 3 (Key 6.4b) - Perform a pooled variances t-test to test the null hypothesis that
the population mean egg production is the same for both littorinid and mussel zone
Lepsiella.

> t.test (EGGS ~ ZONE, ward, var.equal = T)
Two Sample t-test

data: EGGS by ZONE

t = -5.3899, df = 77, p-value = 7.457e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-3.635110 -1.673770

sample estimates:
mean in group Littor mean in group Mussel

8.702703 11.357143

Conclusions - Reject the null hypothesis. Egg production by predatory gastropods (Lepsiella
vinosa was significantly greater (t;7 = —5.39, P < 0.001) in mussel zones than littorinid zones
on rocky intertidal shores.

Summarize the trends with a bargraph.

> ward.means <- with(ward, tapply (EGGS, ZONE, mean))

> ward.sds <- with(ward, tapply (EGGS, ZONE, sd))

> ward.ns <- with(ward, tapply(EGGS, ZONE, length))

> ward.se <- ward.sds/sgrt (ward.ns)

> xs <- barplot (ward.means, ylim = range (pretty(c(ward.means +
+ ward.se, ward.means - ward.se))), axes = F, xpd = F,

+ axisnames = F, axis.lty = 2, legend.text = F, col = "gray")
> arrows (Xs, ward.means + ward.se, xs, ward.means - ward.se,

+ code = 3, angle = 90, len = 0.05)

> axis (2, las = 1)

> axis(l, at = xs, lab = c("Littorinid", "Mussel"), padj = 1,
+ mgp = c(0, 0, 0))

> mtext (2, text = "Mean number of egg capsules per capsule",

+ line = 3, cex = 1)

> mtext (1, text = "Zone", line = 3, cex = 1)

>

box (bty = "1")
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Example 6B: Separate variances, Welch’s t-test

Furness and Bryant (1996) measured the metabolic rates of eight male and six female
breeding northern fulmars and were interesting in testing the null hypothesis that there
was no difference in metabolic rate between the sexes (Box 3.2 of Quinn and Keough
(2002)).

Step 1 - Import (section 2.3) the Furness and Bryant (1996) data set.
> furness <- read.table("furness.csv", header = T, sep = ", ")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean metabolic rate is the same for male and female breeding
northern fulmars.

\

boxplot (METRATE ~ SEX, furness)
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> with (furness, rbind(MEAN = tapply (METRATE, SEX, mean),
+ VAR = tapply (METRATE, SEX, var)))

Female Male
MEAN 1285.517 1563.775

VAR 177209.418 799902.525
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Conclusions - Whilst there is no evidence of non-normality (boxplots not grossly asymmetri-
cal), variances are a little unequal (although perhaps not grossly unequal - one of the boxplots
is not more than three times smaller than the other). Hence, a separate variances t-test is more
appropriate than a pooled variances t-test.

Step 3 (Key 6.4b) - Perform a separate variances (Welch's) t-test to test the null hypothesis
that the population mean metabolic rate is the same for both male and female breeding northern
fulmars.

> t.test (METRATE ~ SEX, furness, var.equal = F)
Welch Two Sample t-test

data: METRATE by SEX

t = -0.7732, df = 10.468, p-value = 0.4565
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-1075.3208 518.8042

sample estimates:
mean in group Female mean in group Male

1285.517 1563.775

Conclusions - Do not reject the null hypothesis. Metabolic rate of male breeding northern
fulmars was not found to differ significantly (t = —0.773, df = 10.468, P = 0.457) from that
of females.

Example 6C: Paired t-test

To investigate the effects of lighting conditions on the orb-spinning spider webs Elgar et al.
(1996) measured the horizontal (width) and vertical (height) dimensions of the webs made
by 17 spiders under light and dim conditions. Accepting that the webs of individual spiders
vary considerably, Elgar et al. (1996) employed a paired design in which each individual
spider effectively acts as its own control. A paired t-test performs a one sample t-test on
the differences between dimensions under light and dim conditions (Box 3.3 of Quinn and
Keough (2002)).

Step | - Import (section 2.3) the Elgar et al. (1996) data set.

> elgar <- read.table("elgar.csv", header = T, sep = ", ")

Note the format of this data set. Rather than organizing the data into the usual long format
in which variables are represented in columns and rows represent individual replicates, these
data have been organized in wide format. Wide format is often used for data containing
repeated measures from individual or other sampling units. Whilst, this is not necessary (as
paired t-tests can be performed on long format data), traditionally it did allow more compact
data management as well as making it easier to calculate the differences between repeated
measurements on each individual.

Step 2 (Key 6.3) - Assess whether the differences in web width (and height) in light and dim
light conditions are normally distributed.
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> with(elgar, boxplot (HORIZLIG - > with(elgar, boxplot (VERTLIGH -
+ HORIZDIM)) + VERTDIM) )
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Conclusions - There is no evidence of non-normality for either the difference in widths or
heights of webs under light and dim ambient conditions. Therefore paired t-tests are likely to be
reliable tests of the hypotheses that the mean web dimensional differences are equal to zero.

Step 3 (Key 6.4c) - Perform two separate paired t-tests to test the test the respective null
hypotheses.

* No effect of lighting on web width

> with(elgar, t.test(HORIZLIG, HORIZDIM, paired = T))
Paired t-test

data: HORIZLIG and HORIZDIM
t = -2.1482, df = 16, p-value = 0.04735
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-91.7443687 -0.6085725
sample estimates:
mean of the differences
-46.17647

* No effect of lighting on web height

> with(elgar, t.test(VERTLIGH, VERTDIM, paired = T))
Paired t-test

data: VERTLIGH and VERTDIM

t = -0.9654, df = 16, p-value = 0.3487

alternative hypothesis: true difference in means is not
equal to 0
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95 percent confidence interval:
-65.79532 24.61885
sample estimates:
mean of the differences
-20.58824

Conclusions - Orb-spinning spider webs were found to be significantly wider (t = 2.148,
df = 16, P = 0.047) under dim lighting conditions than light conditions, yet were not found
to differ (t = 0.965, df = 16, P = 0.349) in height.

Example 6D: Non-parametric Mann-Whitney-Wilcoxon signed rank test

Sokal and Rohlf (1997) presented a dataset comprising the lengths of cheliceral bases
(in uwm) from two samples of chigger (Trombicula lipouskyi) nymphs. These data were used
to illustrate two equivalent tests (Mann-Whitney U-test and Wilcoxon two-sample test) of
location equality (Box 13.7 of Sokal and Rohlf (1997)).

Step | - Import (section 2.3) the nymph data set.

> nymphs <- read.table("nymphs.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean metabolic rate is the same for male and female breeding
northern fulmars.

> boxplot (LENGTH ~ SAMPLE, nymphs)
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> with (nymphs, rbind(MEAN = tapply (LENGTH, SAMPLE, mean),
+ VAR = tapply (LENGTH, SAMPLE, var)))
Sample A Sample B
MEAN 119.68750 111.80000
VAR 53.29583 60.17778

Conclusions - Whilst there is no evidence of unequal variance, there is some (possible)
evidence of non-normality (boxplots slightly asymmetrical). These data will therefore be
analysed using a non-parametric Mann-Whitney-Wilcoxon signed rank test.
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Step 3 (Key 6.8b) - Perform a Mann-Whitney Wilcoxon test to investigate the null hypothesis
that the mean length of cheliceral bases is the same for the two samples of nymphs of chigger
(Trombicular lipovskyi).

> wilcox.test (LENGTH ~ SAMPLE, nymphs)

Wilcoxon rank sum test with continuity correction

data: LENGTH by SAMPLE
W = 123.5, p-value = 0.02320

alternative hypothesis: true location shift is not equal to 0

Conclusions - Reject the null hypothesis. The length of the cheliceral base is significantly
longer in nymphs from sample | (W = 123.5,df = 24, P = 0.023) than those from sample 2.

Example 6E: Randomization t-test

Powell and Russell (1984, 1985) investigated differences in beetle consumption between
two size classes of eastern horned lizard (Phrynosoma douglassi brevirostre) represented
respectively by adult females in the larger class and adult male and yearling females in the
smaller class (Example 4.1 from Manly, 1991).

Step 1 - Import (section 2.3) the Powell and Russell (1984, 1985) beetle data set.
> beetles <- read.table("beetle.csv", header = T, sep = ", ")

Step 2 (Key 6.3) - Assess normality/homogeneity of variance using boxplot of ant biomass
against month. Cube root transformation also assessed, but not shown.

> boxplot (BEETLES~SIZE, > boxplot (sgrt (BEETLES)~SIZE,
+ beetles) + beetles)
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Conclusions - strong evidence of non-normality and lots of zero values. As a result a
randomization test in which the t-distribution is generated from the samples, might be more
robust than a standard t-test that assumes each of the populations are normally distributed.
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Furthermore, the observations need not be independent, provided we are willing to concede that
we are no longer testing hypotheses about populations (rather, we are estimating the probability
of obtaining the observed differences in beetle consumption between the size classes just by
chance).

Step 3 (Key 6.7b) - define the statistic to use in the randomization test — in this case the
t-statistic (without replacement).

> stat <- function(data, indices) {

+ t.test <- t.test(BEETLES ~ SIZE, data)S$stat
+ t.test

+ }

Step 4 (Key 6.7b) - define how the data should be randomized - randomly reorder the which
size class that each observation belonged to.

> rand.gen <- function(data, mle) {

+ out <- data

+ OUtS$SSIZE <- sample (out$SIZE, replace = F)
+ out

+ )

Step 5 (Key 6.7b) - call a bootstrapping procedure to randomize 5000 times (this can take
some time).

> library (boot)

> beetles.boot <- boot (beetles, stat, R = 5000, sim = "parametric",

+ ran.gen = rand.gen)

Step 6 (Key 6.7b) - examine the distribution of t-statistics generated from the randomization
procedure

> print (beetles.boot)
PARAMETRIC BOOTSTRAP

Call:
boot (data = beetles, statistic = stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Bootstrap Statistics
original bias std. error
tl* 2.190697 -2.237551 1.019904

> plot (beetles.boot)
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Conclusions - The observed t-value was 2.191. Note that the t-distribution is centered around
zero and thus a t-value of 2.191 is equivalent to a t-value of —2.191. Only the magnitude of a
t-value is important, not the sign.

Step 7 (Key 6.7b) - calculate the number of possible t-values (including the observed t-value,
which is one possible situation) that were greater or equal to the observed t-value and express
this as a percentage of the number of randomizations (plus one for the observed situation)
performed.

> tval <- length(beetles.boot[beetles.boot$St >= abs(beetles.
+ bootst0)]) + 1

> tval/ (beetles.boot$R + 1)

[1] 0.00759848

Conclusions - Reject the null hypothesis that the difference in beetle consumption between
small and large lizards is purely due to chance. It is likely that beetle consumption is significantly
higher in large female eastern horned lizards than the smaller adult males and yearling females
(t=2.191,R = 5000, P = 0.019).
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Introduction to Linear models

A statistical model is an expression that attempts to explain patterns in the observed
values of a response variable by relating the response variable to a set of predictor
variables and parameters. Consider the following familiar statistical model:

y=mx+c

or equivalently:
y=bx+a

This simple statistical model relates a
response variable (y) to a single
predictor variable (x) as a straight 8
line according to the values of two
constant parameters:

10 7

b - thedegree to which y Y \— S 15xe2
changes per unit of
change in x (gradient of 27
line)
a — thevalue of y whenx =0 0 I I I I I
(y-intercept) 0 2 ¢ X 6 8 10

The above statistical model represents a perfect fit, that is, 100% of the change
(variation) in y is explained by a change in x. However, rarely would this be the
case when modeling biological variables. In complex biological systems, variables are
typically the result of many influential and interacting factors and therefore simple
models usually fail to fully explain a response variable. Consequently, the statistical
model also has an error component that represents the portion of the response variable
that the model fails to explain. Hence, statistical models are of the form:

response variable = model + error

where the model component comprises of one or more categorical and/or continuous
predictor variable(s) and their parameter(s) that together represent the effect of the

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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predictors variable(s) on the mean the response variable. A parameter and its associated
predictor variable(s) are referred to as a model term.

A statistical model is fitted to observed data so as to estimate the model parameters
and test hypotheses about these parameters (coefficients).

7.1 Linear models

Linear models are those statistical models in which a series of parameters are arranged
as a linear combination. That is, within the model, no parameter appears as either a
multiplier, divisor or exponent to any other parameter. Importantly, the term ‘linear’
in this context does not pertain to the nature of the relationship between the response
variable and the predictor variable(s), and thus linear models are not restricted to
‘linear’ (straight-line) relationships.

An example of a very simple linear model, is the model used to investigate the
linear relationship between a continuous response variable (Y and a single continuous
predictor variable, X):

Vi = Bo + B1 X Xi + &
response variable =  population + population Xx predictor + error
= intercept slope variable
intercept term slope term
model

The above notation is typical of that used to represent the elements of a linear
model. y denotes the response variable and x represents the predictor variable. The
subscript (7) is used to represent a set of observations (usually from 1 to n where n
is the total sample size) and thus y; and x; represent respectively the i observation
of the Y and X variables. &; represents the deviation of the i’ observed Y from the
value of Y expected by the model component. The parameters By and §; represent
population intercept and population slope (effect of X on Y per unit of x) respectively.
Population (effect) parameters are usually represented by Greek symbols®. The above
linear model notation is therefore a condensed representation of a compilation of
arithmetic relationships:

71 Bo + B x x4+ &
v = B + B X x + &
y3 Bo + B x x5 + &

“ Typically, effect parameters associated with continuous variables are represented by # and those
associated with categorical variables are represented by the symbols «, 8, , . ..
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the first y observation (y;) is related to the first x observation (x;) according to
the values of the two constants (parameters By and f;) and &; is the amount
that the observed value of Y differs from the value expected according the model (the
residual).

When there are multiple continuous predictor variables, in addition to the intercept
parameter (fy), the linear model includes a separate slope parameter for each of the
predictor variables:

yi = Bo+ Pixli 4+ Pox2; + ... + &

The model structure for linear models containing a single categorical predictor
variable (known as a factor) with two or more treatment levels (groups) is similar in
form to the multiple linear regression model (listed immediately above) with the overall
mean () replacing the y-intercept (8y). The factor levels (groups) are represented in
the model by binary (contain only of 0s and 1s, see Table 7.1) indicator (or ‘dummy’)
variables and associated estimable parameters (81, S, ...).

For a data set comprising of p groups and » replicates within each group, the linear
model is:

yii = i+ Bildummyr);; + Ba(dummy, )i + ... + &

where i represents the treatment levels (from 1 to p) and j represents the set of replicates
(from 1 to n) within the i group. Hence, y; represents the j" observation of the
response variable within the i group and (dummy);; represents the dummy code
for the j™ replicate within the i group of the first dummy variable (first treatment
level).

The dummy variable for a particular treatment level contains all Os except in the rows
that correspond to observations that received that treatment level. Table 7.1 illustrates

Table 7.1 Fictitious data set (consisting of three replicates for each of three
groups:'GIl’,'GI’,G2’) to illustrate the link between a) single factor dataset, and
b) the indicator (dummy) variables.

I G3 I
12 G3 12

a) b)
Yy A Y  dummy, dummy, dummy;
2 Gl 2 | 0 0
3 Gl 3 | 0 0
4 Gl 4 | 0 0
6 G2 6 0 [ 0
7 G2 7 0 I 0
8 G2 8 0 I 0
0 0 I
0 0 I
0 0 I
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the dummy coding for a single factor within three levels (‘G1’, ‘G2’, ‘G3’) each with
three replicates’.

More typically however, statistical models that include one or more factors are
expressed as effects models in which the individual treatment levels (and their param-
eters) are represented by a single term (e.g. «;) that denotes the effect of each of the
levels of the factor on the overall mean. For a data set comprised of p groups and n
replicates within each group, the linear effects model is:

Vi = K+ i+ &jj

where i represents the set of treatments (from 1 to p) and j represents the set of
replicates (from 1 to 1) within the i group. Hence, yij represents the i observation
of the response variable within the i group of the factor. 4 is the overall population
mean of the response variable (Y) and is equivalent to the intercept. «; represents the
effect of the i group calculated as the difference between each of the group means and
the overall mean (o; = u; — ).

7.2 Linear models in R

Statistical models in R are represented by a formula corresponding to the linear model
(for continuous variables) or effects model (categorical variables):

> response~model

where the tilde (~) defines a model formula and model represents a set of terms to
include in the model. Terms are included in a model via their variable names and
terms preceded by the - (negative sign) operator are explicitly excluded. The intercept
term (denoted by a 1) is implicit in the model and need not be specified. Hence the
following model formulae all model the effect of the variable X on the v variable with
the inclusion of the intercept:

> Y~X
> Y~1+X
> Y~X+1

whereas the following exclude the intercept:

> Y~-1+4X
> Y~X-1

Linear models are fitted by providing the model formula as an argument to the 1m ()
function. To fit the simple linear regression model relating a fictitious response variable
(Y) to fictitious continuous predictor variable (x):

®Note that linear model that this represents (vij = u + Br(dummy, )i + B (dummy,);; +
B3(dummys);; + &;;) is over-parameterized, see section 7.3.
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> Y<-c(0,1,2,4,7,10)
> X<-1:6
> plot (Y~X)
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> Fictitious.lm <- 1lm(Y~X)

To examine the estimated parameters (and hypothesis tests) from the fitted model,
provide the name of the fitted model as an argument to the summary () function.

> summary (Fictitious.1lm)
Call:
Im(formula = Y ~ X)

Residuals:
1 2 3 4 5 6
1.000e+00 3.404e-16 -1.000e+00 -1.000e+00 6.280e-17 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.0000 0.9309 -3.223 0.03220 *
X 2.0000 0.2390 8.367 0.00112 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1

Residual standard error: 1 on 4 degrees of freedom
Multiple R-squared: 0.9459, Adjusted R-squared: 0.9324
F-statistic: 70 on 1 and 4 DF, p-value: 0.001116

The summary output begins by specifying the nature of the call used to fit the model.
Next is a summary of the residuals (differences between observed responses and

¢ Actually, the summary () function is an overloaded wrapper that invokes different specific functions
depending on the class of object provided as the first argument. In the summary () function invokes
the summary.1m() function.
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expected responses for each value of the predictor variable). The estimated parameters
are listed in the coefficients table. Each row of the table lists the value of an estimated
parameter from the linear model along with the outcome of a hypothesis test for this
parameter. The row labeled ‘ (Intercept)’ concerns the intercept (overall constant)
and subsequent rows are labeled according to the model term that is associated with
the estimated parameter. In this case, the row labeled ‘X’ concerns the population
slope (B1). Finally a brief summary of the partitioning of total variation (ANOVA, see
section 7.3.2) in the response variable is provided.

7.3 Estimating linear model parameters

During model fitting, parameters can be estimated using any of the estimation methods
outlined in section 3.7, although ordinary least squares (OLS) and maximum likelihood
(ML or REML) are most common. The OLS approach estimates the value of one or
more parameters such that they minimize the sum of squared deviations between the
observed values and the parameter (typically the values predicted by the model) and will
be illustrated in detail in the following sections. Models that utilize OLS parameter esti-
mates are referred to as ‘general’ linear models as they accommodate both continuous
and categorical predictor variables. Broadly speaking, such models that incorpo-
rate purely continuous predictor variables are referred to as ‘regression’ models (see
chapters 8 &9) whereas models that purely incorporate categorical predictors are called
‘ANOVA’ models (see chapters 10 — 14). Analysis of covariance (ANCOVA) models
incorporate both categorical and continuous predictor variables (see chapter 15).

ML estimators estimate one or more population parameters such that the (log)
likelihood of obtaining the observed values from such populations is maximized and
these models are useful when there is evidence of a relationship between mean and
variance or for models involving correlated data structures. Maximum likelihood
parameter estimation is also utilized by ‘generalized’ linear models, so called as they
are not restricted to normally distributed response and residuals. Generalized linear
models accommodate any exponential probability distribution (including normal,
binomial, Poisson, gamma and negative binomial), see chapter 17.

The parameters estimated during simple linear and multiple linear regression
analyses are relatively straightforward to interpret (they simply represent the rates of
change in the response variable attributable to each individual predictor variable) and
can be used to construct an algebraic representation of the relationship between a
response variable and one or more predictor variables. However, this is generally not
the case for linear models containing factorial variables.

7.3.1 Linear models with factorial variables

Recall from section 7.1 that linear models comprising of a single factor are expressed
as an effects model:

Vi = K+ + &jj
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where o; estimates the effect of each treatment group on the overall mean of groups
(oj = ni — ). However, the effects model for a factor with p groups, will have
p + 1 parameters (the overall mean p plus the p o parameters), and thus the linear
effects model is considered to be ‘over-parameterized’®. In order to obtain parameter
estimates, the model must be reduced to a total of p parameters. Over-parameterization
can be resolved either by removing one of the parameters from the effects model (either
the overall mean () or one of the treatment effects («;) parameters - a procedure rarely
used in biology), or by generating a new set (p — 1) of effects parameters (crg, where g
represents the set of orthogonal parameters from 1 to p — 1) each of which represent
a linear combination of groups rather than a single group effect. That is, each «* can
include varying contributions from any number of the groups and are not restricted to
a single contrast of (= ; — ). For example, one of the parameters might represent
the difference in means between two groups or the difference in means between one
group and the average of two other groups. The reduced number of effects parameters
are defined through the use of a matrix of ‘contrast coefficients’. Note, the new set of
effects parameters should incorporate the overall relational effects of each of the groups
equally such that each group maintains an equal contribution to the overall model fit.

A number of ‘pre-fabricated’, contrast matrices exist, each of which estimate a
different set of specific comparisons between treatment combinations. The most
common contrasts types include:

Treatment contrasts - in which each of the treatment groups means are compared to
the mean of a ‘control” group. This approach to over-parameterization is computationally
identical to fitting p — | dummy variables via multiple linear regression. However, due to the
interpretation of the parameters (groups compared to a control) and the fact that treatment
effects are not orthogonal to the intercept, the interpretation of treatment contrasts (and
thus dummy regression) is really only meaningful for situations where there is clearly a single
group (control) to which the other groups can be compared. For treatment contrasts, the
intercept is replaced by f and thus the remaining o parameters are numbered starting at 2.

Parameter  Estimates Null hypothesis

Intercept  mean of ‘control” group () Ho:pu=pu, =0

o3 mean of group 2 minus mean of ‘control’ group  Ho: ey =y — ;=0
(n2 — p1)

of mean of group 3 minus mean of ‘control’ group  Ho: oy = 3 — ) =0
(U3 — 1)

4 Given that a; = t; — 1, it is only possible to estimate p — 1 orthogonal (independent) parameters.
For example, once p and p — 1 of the effects parameters have been estimated, the final effects
parameter is no longer ‘free to vary’ and therefore cannot be independently estimated. Likewise, if
the full linear model contains as many dummy variables as there are treatment groups, then it too is
over-parameterized.
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>Y <- ¢(2,3,4,6,7,8,10,11,12)

> A <- gl(3,3,9,lab=c("G1l","G2","G3"))

> # specify that treatment contrasts should be used
> contrasts(A) <-contr.treatment

> summary (1lm(Y~A))

Call:

Im(formula = Y ~ A)

Residuals:
Min 10 Median 30 Max
-1.000e+00 -1.000e+00 6.939e-17 1.000e+00 1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 0.5774 5.196 0.00202 **

A2 4.0000 0.8165 4.899 0.00271 **

A3 8.0000 0.8165 9.798 6.5e-05 ***

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.'" 0.1 * ' 1

Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216
F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Sum to zero contrasts - this technique constrains the sum of the unconstrained treatment
effects () to zero. In this model, the intercept estimates the average treatment effect and
the remaining (™) estimate the differences between each of the treatment means and the
average treatment mean.

Parameter  Estimates Null hypothesis

Intercept  mean of group means (u/p) Ho: o = pq/p =0

af mean of group | minus mean of Horap = ) — ((g/p) =0
group means (141 — (q/p))

o mean of group 2 minus mean of Horap = iy — ((q/p) =0

group means (iz — (q/P))

> # specify that sum-to-zero contrast should be used
> contrasts(A) <-contr.sum

> summary (1lm(Y~A))

Call:

Im(formula = Y ~ A)

Residuals:
Min 10 Median 30 Max
-1.000e+00 -1.000e+00 1.388e-17 1.000e+00 1.000e+00
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Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.000e+00 3.333e-01 21.000 7.6e-07 ***
Al -4.000e+00 4.714e-01 -8.485 0.000147 ***
A2 1.228e-16 4.714e-01 2.60e-16 1.000000
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 "' "1
Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216
F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Helmert contrasts - the intercept estimates the average treatment effect and the remaining
(ag) estimate the differences between each of the treatment means and the mean of the
group before it. In reality, parameter estimates from Helmert contrasts have little biological
interpretability.

Parameter  Estimates Null hypothesis
Intercept  mean of group means (iq/p) Ho: it = pg/p=0
af mean of group 2 minus mean of Ho: oof = py—
(group means and mean of (Hg/P+11)/2=0
groupl) (12 — (iq/P + 11)/2)
o5 mean of group 3 minus mean of Ho: o = p3—

(group means, mean of group|
and mean of group2)

(3 — (g/p + wy + u2)/3)

(g/p+ 11 +12)/3 =0

> # specify that Helmert contrasts should be used

> contrasts(A) <-contr.helmert
> summary (lm(Y~A))
Call:

Im(formula = Y ~ A)

Residuals:

Min 10 Median 30 Max
-1.000e+00 -1.000e+00 -7.865e-17 1.000e+00 1.000e+00
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.0000 0.3333 21.000 7.6e-07 ***
Al 2.0000 0.4082 4.899 0.002714 **
A2 2.0000 0.2357 8.485 0.000147 **=*
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 '



160 CHAPTER 7

Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216
F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Polynomial contrasts - generate orthogonal polynomial trends (such as linear, quadratic and
cubic). This is equivalent to fitting a multiple linear regression (or polynomial regression)
with orthogonal parameters.

Parameter  Estimates Null hypothesis
Intercept  y-intercept Ho: By =0
B partial slope for linear term Ho: B =0

B partial slope for quadratic term  Ho: 85 =0

> # specify that orthogonal polynomial contrasts should be used
> contrasts(A) <-contr.poly

> summary (1lm(Y~A))

Call:

Im(formula = Y ~ A)

Residuals:
Min 10 Median 30 Max
-1.000e+00 -1.000e+00 -1.712e-16 1.000e+00 1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 7.000e+00 3.333e-01 21.000 7.6e-07 **x*
A.L 5.657e+00 5.774e-01 9.798 6.5e-05 ***
A.Q -9.890e-16 5.774e-01 -1.71le-15 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' "1

Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216
F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

User defined contrasts - In addition to the ‘prefabricated” sets of comparisons illustrated
above, it is possible to define other contrast combinations that are specifically suited to
a particular experimental design and set of research questions. Contrasts are defined by
constructing a contrast matrix according to the following rules:

(i) groups to beincluded and excluded in a specific contrasts (comparison) are represented
by non-zero and zero coefficients respectively
(i) groups to be apposed (contrasted) to one another should have apposing signs
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(iii) the number of contrasts must not exceed p — 1€, where p is the number of groups.
(iv) within a given contrast, the sum of positive coefficients (and negative coefficients)
should sum to | to ensure that the resulting estimates can be sensibly interpreted

(v) all the contrasts must be orthogonal (independent of one another)

# define potential contrast matrix for comparing group Gl with
# the average of groups G2 and G3
contrasts (A) <- cbind(c(1l, -0.5, -0.5))
contrasts (A)
[,1] [,2]
Gl 1.0 -6.407635e-17
G2 -0.5 -7.071068e-01
G3 -0.5 7.071068e-01
> 1 <- 1Im(Y~A)

> # summarize the model fitting

vV V. VvV Vv

> summary (1)
Call:
Im(formula = Y ~ A)

Residuals:
Min 10 Median 30 Max
-1.000e+00 -1.000e+00 -4.163e-17 1.000e+00 1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>]|t])

(Intercept) 7.0000 0.3333 21.000 7.6e-07 ***
Al -4.0000 0.4714 -8.485 0.000147 ***
A2 2.8284 0.5774 4.899 0.002714 *x*
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 "' "' 1

Residual standard error: 1 on 6 degrees of freedom
Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216
F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

By default, Rf employs treatment contrasts for unordered factors? and orthogonal
polynomial contrasts for ordered factors, although this behavior can be altered to an
alternative (such as contr . sum for unordered factors) using the options (contrasts
=c("contr.sum", "contr.poly")) function.

¢ Actually, it must equal p — | exactly. However, it is usually sufficient to define less than p — |
contrasts and let R generate the remaining contrasts.

fNote that the default behaviour of S-PLUS is to employ sum to zero contrasts for unordered factors.
& Unordered factors are factors that have not specifically defined as ‘ordered’, see section 2.6.1. The
order of groups in an ordered factor is usually important - for example when examining polynomial
trends across groups.
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Note that while the estimates and interpretations of individual model parameters
differ between the alternative approaches, in all but the ;& = 0 (set-to-zero) case, the
overall effects modelisidentical (ys; = u + aj + &4j). Hence, the overall null hypothesis
tested from the effects model (Hy: of = o = ... = 0) is the same irrespective of the
contrasts chosen.

When the model contains more than one factor, a separate term is assigned for each
factor and possibly the interactions between factors (e.g. o; + B + ;). Alternatively,
statistical models containing factors can be expressed as cell means models in which
the overall mean and treatment effects (« + «;) are replaced by the treatment (cell)
means (1;). In the cell means model, there are as many cell means as there are unique
treatment levels. These differences are thus summarized:

Linear model  yij = u + Bi(dummy,)ii + Ba(dummy,)ii + ... + &;;
Linear effects model  yi; = ju + o + &j
Orthogonal linear effects model  yy; = o + o + &+
Cell means model  y;; = u; + &jj

For simple model fitting the choice of model type makes no difference, however
for complex factorial models in which entire treatment levels (cells) are missing, full
effects models cannot be fitted and therefore cell means models must be used.

7.3.2 Linear model hypothesis testing

Hypothesis testing is usually concerned with evaluating whether a population parameter
is (or set of parameters are) equal to zero, as this signifies no ‘relationship’ or ‘effect’.

Null hypotheses about individual model parameters

In a linear model, there is a null hypothesis associated with each of the individual
model parameters (typically that the parameter is equal to zero), although not all the
testable null hypotheses are necessarily biologically meaningful. Consider again the
simple linear regression model:

yi = Po+ Prxi + &

This linear model includes two parameters ( 8y and 8 ), and thus there are two individual
testable null hypotheses - that the population y-intercept is equal to zero (Hy: By = 0)
and the slope is equal to zero (Hy: 81 = 0). While rejecting a null hypothesis that the
slope parameter equals zero indicates the presence of a ‘relationship’, discovering that
the value of the response variable when the predictor variable is equal to zero is usually
of little biological relevance.

Null hypotheses about individual model parameters are usually tested using a #-test
(see section 6.3), or equivalently via a single factor ANOVA (see chapter 10) with a
single degree of freedom. The latter approach is often employed when user-defined
contrasts are involved as it enables the results to be expressed in the context of the
overall linear model (see below and section 10.6).
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Null hypotheses about the fit of overall model

Recall that in hypothesis testing, a null hypothesis (Hy) is formulated to represent all
possibilities except the hypothesized prediction and that disproving the null hypothesis
provides evidence that some alternative hypothesis (H,) is true. Consequently, there
are typically at least two models fitted. The reduced model, in which the parameter
of interest (and its associated predictor variable) is absent (or equivalently set to
zero) represents the model predicted by null hypothesis. The full model represents the
alternative hypothesis and includes the term of interest. For example, to test the null
hypothesis that there is no relationship between populations x and y (and thus that the
population slope (8;)= 0):

full model (Hp) - yi = Bo + Bixi + error;
reduced model (Hy) -  y; = Bo + Ox; + error;
= By + error;

The degree to which a model ‘fits’ the observed data is determined by the amount
of variation that the model fails to explain, and is measured as the sum of the squared
differences (termed SS or sums-of-squares) between the observed values of the response
variable and the values predicted by the model. A model that fits the observed data
perfectly will have a SS of 0.

The reduced model measures the amount of variation left unexplained by the
statistical model when the contribution of the parameter and predictor variable (term)
of interest is removed (SS7,¢q1). The full model measures the amount of variation left
unexplained by the statistical model when the contribution of the term is included
(SSResidua). The difference between the reduced and full models (SSyode1) is the amount
of explained variation attributed to the term of interest. When the null hypothesis
is true, the term of interest should not explain any of the variability in the observed
data and thus the full model will not fit the observed data any better than the reduced
model. That is, the proposed model would not be expected to explain any more
of the total variation than it leaves unexplained. If however, the full model fits the
data ‘significantly’ better (unexplained variability is substantially less in the full model
compared to the reduced model) than the reduced model, there is evidence to reject
the null hypothesis in favour of the alternative hypothesis.

Hypothesis testing formally evaluates this proposition by comparing the ratio of
explained and unexplained variation to a probability distribution representing all
possible ratios theoretically obtainable when the null hypothesis is true. The total
variability in the observed data (SSresidual — reduced model) is partitioned into at least
two sources.

(i) the variation that is explained by the model (SSyiodet)
SSModel = SSTotal (reduced model) — SSpesidual (full model)
(i) the variation that is unexplained by the model (SSgesiduat)
SSReSidual (fu“ mOdeI)

The number of degrees of freedom (d.f.) associated with estimates of each source
of variation reflect the number of observations involved in the estimate minus the
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Table 7.2 Analysis of variance (ANOVA) table for a simple linear model.
n is the number of observations, f, is the number of parameters in the full
model and r, is the number of parameters in the reduced model.

Source of variation SS df MS F-ratio
SS MS
Model SSModel ﬁ) —1 Model Model
ggModel MSResidual
Residual SSResidual n— ﬁ) Residual
deesidual
SSResidual
Total SS _ O9Residual
fou! ! ? deesiduul

number of other parameters that must have been estimated previously. Just like SS, df
are additive and therefore:

Afmodel = Afrotal (reduced model) — dfgesiguar (full model)

Each of the sources of variation are based on a different number of contributing
observations. Therefore more comparable, standardized versions are generated by
dividing by the appropriate number of (degrees of freedom). These averaged measures
of variation (known as mean squares or MS) are thus conservative mean measures of
variation and importantly, they have known probability distributions (unlike the SS
estimates).

The partitioned sources of variation are tabulated in the form of an analysis
of variance (ANOVA) table (see Table 7.2), which also includes the ratio (F-ratio)
of MSniodel t0 MSResiduai- When the null hypothesis is true MSyoder and MSgesidual
are expected to be the same, and thus their ratio (F-ratio) should be approxi-
mately 1. An F-ratio based on observed data is thus compared to an appropriate
F-distribution (theoretical distribution of all possible F-ratios for the set of degrees
of freedom) when the null hypothesis is true. If the probability of obtaining such
an F-ratio (or one more extreme) is less than a critical value, the null hypothesis is
rejected.

When there are multiple predictor variables, in addition to assessing the fit of the
overall model, we usually want to determine the effect of individual factors. This is
done by comparing the fit of models with and without the specific term(s) associated
with that variable.

7.4 Comments about the importance of understanding the structure
and parameterization of linear models

An understanding of how to formulate the correct statistical model from a design
and set of null hypotheses is crucial to ensure that the correct R syntax (and thus
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Table 7.3 Statistical models in R. Lower case letters denote continuous numeric variables and
uppercase letters denote factors. Note that the error term is always implicit.

Effects model R Model formula Description
yi = Bo + Bixi y~1+x Simple linear regression
vy ~ x model of v on x with
intercept term included
yi = Pixi v ~ 0 + x Simple linear regression
vy ~ -1 + x model of v on x with
v ~x -1 intercept term excluded
vi = Bo y ~ 1 Simple linear regression
v ~1-x model of y against the
intercept term
yi = Bo + Bixii + Paxin y ~ x1 + x2 Multiple linear regression
model of y on x1 and x2
with the intercept term
included implicitly
yi = Bo + Bixii + Baxi; v ~ 1+ x + I(x"2) Second order polynomial
regression of y on x
y ~ poly(x, 2) As above, but using
orthogonal polynomials
yi= W+ y ~ A Analysis of variance of v
against a single factor A
Yiik = b+ o + B + afj; vy ~A + B + A:B Fully factorial analysis of
y ~ A*B variance of y against a
and B
Yik = U+ ;i + B y ~ A*B - A:B Fully factorial analysis of
variance of y against A
and B without the
interaction term
(equivalenttoa + B)
Yijk = 1+ o + Bja y ~ B %in% A Nested analysis of variance
vy ~ A/B of y against 2 and B
nested within a
Vi = 1+ o + B(x;; — %) y ~ A*x Analysis of covariance of v
vy ~ A/x on x at each level of A
Vil = 1+ o + ﬂj(,’) + y ~ A + Error(B) + Partly nested ANOVA of v

Yk + avik + BYiik

+ A:C + B:C

against a single between
block factor (a), a single
within block factor (c)
and a single random
blocking factor (B).
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analysis) is employed. This is particularly important for more complex designs which
incorporate multiple error strata (such as partly nested ANOVA). Table 7.3 briefly
illustrates the ways in which statistical models are represented in R. Moreover, in each
of the remaining chapters, the statistical models as well as the appropriate R model
formulae for each major form of modeling will be highlighted and demonstrated,
thereby providing greater details about use of R in statistical modeling.
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Correlation and simple linear regression

Correlation and regression are techniques used to examine associations and rela-
tionships between continuous variables collected on the same set of sampling or
experimental units. Specifically, correlation is used to investigate the degree to which
variables change or vary together (covary). In correlation, there is no distinction
between dependent (response) and independent (predictor) variables and there is no
attempt to prescribe or interpret the causality of the association. For example, there
may be an association between arm and leg length in humans, whereby individu-
als with longer arms generally have longer legs. Neither variable directly causes the
change in the other. Rather, they are both influenced by other variables to which
they both have similar responses. Hence correlations apply mainly to survey designs
where each variable is measured rather than specifically set or manipulated by the
investigator.

Regression is used to investigate the nature of a relationship between variables
in which the magnitude and changes in one variable (known as the independent or
predictor variable) are assumed to be directly responsible for the magnitude and changes
in the other variable (dependent or response variable). Regression analyses apply to
both survey and experimental designs. Whilst for experimental designs, the direction
of causality is established and dictated by the experiment, for surveys the direction of
causality is somewhat discretionary and based on prior knowledge. For example,
although it is possible that ambient temperature effects the growth rate of a species of
plant, the reverse is not logical. As an example of regression, we could experimentally
investigate the relationship between algal cover on rocks and molluscan grazer density
by directly manipulating the density of snails in different specifically control plots and
measuring the cover of algae therein. Any established relationship must be driven by
snail density, as this was the controlled variable. Alternatively the relationship could be
investigated via a field survey in which the density of snails and cover of algae could
be measured from random locations across a rock platform. In this case, the direction
of causality (or indeed the assumption of causality) may be more difficult to defend.

In addition to examining the strength and significance of a relationship (for
which correlation and regression are equivalent), regression analysis also explores the
functional nature of the relationship. In particular, it estimates the rate at which a
change in an independent variable is reflected in a change in a dependent variable as

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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well as the expected value of the dependent variable when the independent variable is
equal to zero. These estimates can be used to construct a predictive model (equation)
that relates the magnitude of a dependent variable to the magnitude of an independent
variable, and thus permit new responses to be predicted from new values of the
independent variable.

8.1 Correlation

The simplest measure of association between two variables is the sum product of the
deviations of each point from the mean center [e.g. Y (x — X)(y — )], see Figure. 8.1f.
This method essentially partitions the cloud of points up into four quadrants and weighs
up the amount in the positive and negative quadrants. The greater the degree to which
points are unevenly distributed across the positive and negative quadrants, the greater
the magnitude (either negative or positive) of the measure of association. Clearly how-
ever, the greater the number of points, the higher the measure of association. Covariance
standardizes for sample size by dividing this measure by the degrees of freedom (num-
ber of observation pairs minus 1) and thus represents the average deviations from the
mean center. Note that covariance is really the bivariate variance of two variables”.

10 4 10 4 10 4
.ot .t *e . COv=-35
8 o 8 - o 84, .00 cor=-0.7
S 6 ° DO S I : DS AT I T .
=] e e = N = et e,
> MU S > MU S > . 2
44 . . > 44 . . > 49 Tl
24 ,.' v cov =3.5 24 ,.' R cov =35 2 LN
. .. cor=0.7 . .. cor=0.7 LS .
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X units X units X units
(a) (b) (c)
10 - . 10 . .
* ° ° |
R . e o
2 6 PRI 264 . !
= . % . = C e e . .
S Y S LI . e
> 4 et S
o, . . . . ° .
24 e . cov=4.75 2 “¢ ., cov=0
oo . cor=0.95 .0 *cor=0 o -
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2 4 6 8 10 2 4 6 8 10 X
X units X units
(d) (e) ®)
Fig 8.1 Fictitious data illustrating covariance, correlation, strength and polarity.

@ Covariance of a single variable and itself is the variance of that variable.
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8.1.1 Product moment correlation coefficient

Unfortunately, there are no limits on the range of covariance as its magnitude
depends on the scale of the units of the variables (see Figure 8.1a-b). The Pearson’s
(product moment) correlation coefficient further standardizes covariance by dividing
it by the standard deviations of x and y, thereby resulting in a standard coefficient
(ranging from —1 to +1) that represents the strength and polarity of a linear
association.

8.1.2  Null hypothesis

Correlation tests the Hy that the population correlation coefficient (p, estimated by
the sample correlation coefficient, r) equals zero:

Ho:p=0 (the population correlation coefficient equals zero)

This null hypothesis is tested using a ¢ statistic (t = é), where s, is the standard error
of r. This ¢ statistic is compared to a t distribution with n — 2 degrees of freedom.

8.1.3 Assumptions

In order that the calculated ¢-statistic should reliably represent the population trends,
the following assumptions must be met:

(i) linearity - as the Pearson correlation coefficient measures the strength of a linear (straight-
line) association, it is important to establish whether or not some other curved relationship
represents the trends better. Scatterplots are useful for exploring linearity.

(ii) normality - the calculated t statistic will only reliably follow the theoretical t distribution
when the joint XY population distribution is bivariate normal. This situation is only
satisfied when both individual populations (X and Y) are themselves normally distributed.
Boxplots should be used to explore normality of each variable.

Scale transformations are often useful to improve linearity and non-normality.
8.1.4 Robust correlation

For situations when one or both of the above assumptions are not met and transfor-
mations are either unsuccessful or not appropriate (particularly, proportions, indices
and counts), monotonic associations (general positive or negative - not polynomial)
can be investigated using non-parametric (rank-based) tests. The Spearman’s rank
correlation coefficient (r;) calculates the product moment correlation coefficient on
the ranks of the x and y variables and is suitable for samples with between 7 and 30
observations. For greater sample sizes, an alternative rank based coefficient Kendall’s
(t) is more suitable. Note that non-parametric tests are more conservative (have less
power) than parametric tests.
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8.1.5 Confidence ellipses

Confidence ellipses are used to represent the region on a plot within which we have
a certain degree of confidence (e.g 95%) the true population mean center is likely to
occur. Such ellipses are centered at the sample mean center and oriented according to
the covariance matrix” of x and y.

8.2 Simple linear regression

Simple linear regression is concerned with generating a mathematical equation (model)
that relates the magnitude of dependent (response) variable to the magnitude of the
independent (predictor) variable. The general equation for a straightlineis y = bx + g,
where a is the y-intercept (value of y when x = 0) and b is the gradient or slope (rate
at which y changes per unit change in x).

Figure 8.2 illustrates sets of possible representatives of population trends between
two variables. It should be apparent that if the population slope () is equal to
zero there is no relationship between dependent (Y) and independent variables (X).
Changes in the independent variable are not reflected by the dependent variable.
Conversely, when the population slope is not equal to zero there is a relationship. Note
that the population intercept () has less biological meaning.

The population parameters (8y and ;) are estimated from a line of best fit through
the cloud of sample data. There are a number of ways to determine the line of best fit,
each of which represent different approach to regression analysis (see Figure 8.4, and
section 8.2.5).

Dependent (Y)
nN
Dependent (Y)
nN
Dependent (Y)

RN f?r <0 -7
Y-intercept(f,) = 2 for all BRI .7

Independent (X) Independent (X) Independent (X)
(a) (b) ()

Fig 8.2 Fictitious data contrasting differences in interpretation between slope (8;) and
y-intercept (Bo) parameters.

b The covariance matrix of two variables has two rows and two columns. The upper left and lower
right entries represent the variances of x and y respectively and the upper right and lower left entries
represent the covariance of x and y.
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8.2.1 Linear model

The linear model reflects the equation of the line of best fit:
yi = Bo+ Bixi + €

where B is the population y-intercept, B, is the population slope and ¢; is the random
unexplained error or residual component.

8.2.2 Null hypotheses

A separate Hy is tested for each of the estimated model parameters:
Ho:8:1 =0 (the population slope equals zero)

This test examines whether or not there is likely to be a relationship between the
dependent and independent variables in the population. In simple linear regression, this
testisidentical to the test that the population correlation coefficient equals zero (p = 0).

Ho:B0=0 (the population y-intercept equals zero)

This test is rarely of interest as it only tests the likelihood that the background level
of the response variable is equal to zero (rarely a biologically meaningful comparison)
and does not test whether or not there is a relationship (see Figure 8.4b-c).

These Hy’s are tested using a ¢ statistic (e.g. t = i), where s, is the standard error
of b. This ¢ statistic is compared to a ¢ distribution with n — 2 degrees of freedom.

Along with testing the individual parameters that make up the linear model via
t-tests, linear regression typically also tests the Hy : 8 = 0 by partitioning the total
variability in the response variable into a component that is explained by the ; term in
the full linear model (y; = By + Pi1xi + €;) and a component of the variance that cannot
be explained (residual), see Figure 8.3. As it is only possible to directly determine
unexplained variation, the amount of variability explained by the full model (and
therefore ;) is calculated as the difference between the amount left unexplained by a
reduced model (y; = Bo + €;, which represents the situation when Hy : ; = 0 is true)
and the amount left unexplained by the full model (y; = By + B1xi + ;).

When the null hypothesis is true (no relationship and therefore 8; = 0) and the test
assumptions are met, the ratio (F-ratio) of explained to unexplained variability follows
a F-distribution. Likewise, full and reduced models respectively with and without the
y-intercept could be used to test Hy: 8; = 0. For simple linear regression, the ¢-tests
and ANOVA’s test equivalent null hypotheses‘, however this is not the case for more
complex linear models.

¢ For simple linear regression the F-statistic is equal to the t-value squared (F = ).
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Fictitious data illustrating the partitioning of (a) total variation into components
(b) explained (MSegression) and (c) unexplained (MSyesiquat) by the linear trend. The probability of
collecting our sample, and thus generating the sample ratio of explained to unexplained variation
(or one more extreme), when the null hypothesis is true (and there is no relationship between

X and Y) is the area under the F-distribution (d) beyond the sample F-ratio.

8.2.3 Assumptions

To maximize the reliability of null hypotheses tests, the following assumptions

apply:

(i) linearity - simple linear regression models a linear (straight-line) relationship and thus it
is important to establish whether or not some other curved relationship represents the

trends better. Scatterplots are useful for exploring linearity.

(i)

normality.

normality - the populations from which the single responses were collected per level of
the predictor variable are assumed to be normally distributed. Boxplots of the response
variable (and predictor if it was measured rather than set) should be used to explore
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(iii) homogeneity of variance - the populations from which the single responses were
collected per level of the predictor variable are assumed to be equally varied. With only
a single representative of each population per level of the predictor variable, this can
only be explored by examining the spread of responses around the fitted regression line.
In particular, increasing spread along the regression line would suggest a relationship
between population mean and variance (which must be independent to ensure unbiased
parameter estimates). This can also be diagnosed with a residual plot.

8.2.4 Multiple responses for each level of the predictor

Simple linear regression assumes linearity and investigates whether there is a relation-
ship between a response and predictor variable. In so doing, it is relying on single
response values at each level of the predictor being good representatives of their
respective populations. Having multiple independent replicates of each population
from which a mean can be calculated thereby provides better data from which to
investigate a relationship. Furthermore, the presence of replicates of the populations at
each level of the predictor variable enables us to establish whether or not the observed
responses differ significantly from their predicted values along a linear regression line
and thus to investigate whether the population relationship is linear versus some other
curvilinear relationship. Analysis of such data is equivalent to ANOVA with polynomial
contrasts (see section 10.6).

8.2.5 Model | and Il regression

The ordinary least squares (OLS, or model I regression) fits a line that minimizes
the vertical spread of values around the line and is the standard regression procedure.
Regression was originally devised to explore the nature of relationship between a
measured dependent variable and an independent variable of which the levels where
specifically set (and thus controlled) by the researcher to represent a uniform range of
possibilities. As the independent variable is set (fixed) rather than measured, there is no
uncertainty or error in the y values. The coordinates predicted (by the linear model) for
any given observation must therefore lie in a vertical plane around the observed coordi-
nates (see Figure 8.4a). The difference between an observed value and its predicted value
is called a residual. Hence, OLS regression minimizes the sum of the squared” residuals.

Model II regression refers to a family of line fitting procedures that acknowledge
and incorporate uncertainty in both response and predictor variables and primarily
describe the first major axis through a bivariate normal distribution (see Table 8.1 and
Figure 8.4). These techniques generate better parameter estimates (such as population
slope) than model I regression when the levels of the predictor variable are measured,
however, they are only necessary for situations in which the parameter estimates are
the main interest of the analysis. For example, when performing regression analysis

4 Residuals are squared to remove negatives. Since the regression line is fitted exactly through the
middle of the cloud of points, some points will be above this line (+ve residuals) and some points
will be below (-ve residuals) and therefore the sum of the residuals will equal exactly zero.



174 CHAPTER 8

10 10 l 10
8 - 8 - I 8 -
2 6+ 2 61 2 6
C C C
=} 35 35
> 44 > 44 > 4
21 2 - ‘ 2 -
T T T T 1 v T T T T 1 T T T T 1
20 40 60 80 10 20 40 60 80 10 2 4 6 8 10
X units X units X units
(a) OLS Y against X (b) OLS X against Y (c) MA
10 10 -
g g | VA
2 64 2 2 64
c 'c c
=} =} ]
> 41 > > 44 °* OLS Y s X
L~ &MA
24 29 ranged MA
/] OLS Xvs Y
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
X units X units X units
(d) ranged MA (c) RMA (d)

Fig 8.4 Fictitious data illustrating the differences between (a) ordinary least squares, (b) major
axis and (c) reduced major axis regression. Each are also contrasted in (d) along with a depiction
of ordinary least squares regression for X against Y. Note that the fitted line for all techniques
passes through the center mean of the data cloud. When the X and Y are measured on the same
scale, MA and RMA are the same.

to estimate the slope in allometric scaling relationships or to compare slopes between
models.

Major axis (MA) minimizes the sum square of the perpendicular spread from the
regression line (Figure 8.4c) and thus the predicted values line in a perpendicular
planes from the regression line. Although this technique incorporates uncertainty in
both response and predictor variable, it assumes that the degree of uncertainty is the
same on both axes (1:1 ratio) and is therefore only appropriate when both variables
are measured on the same scale and with the same units. Ranged major axis (Ranged
MA) is a modification of major axis regression in which MA regression is performed
on variables that are pre-standardized by their ranges (Figure 8.4d) and the resulting
parameters are then returned to their original scales. Alternatively, Reduced major axis
(RMA) minimizes the sum squared triangular areas bounded by the observations and
the regression line (Figure 8.4e) thereby incorporating all possible ratios of uncertainty
between the response and predictor variables. For this technique, the estimated slope
is the average of the slope from a regression of y against x and the inverse of the slope
of x against y.
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Table 8.1 Comparison of the situations in which the different regression methods are suitable.

Method

Ordinary least squares (OLS)

* When there is no uncertainty in IV (levels set not measured) or uncertainty in IV <
uncertainty in DV

* When testing Hg : 8; = 0 (no linear relationship between DV and [V)

* When generating predictive models from which new values of DV are predicted from given
values of IV. Since we rarely have estimates of uncertainty in our new predictor values (and
thus must assume there is no uncertainty), predictions likewise must be based on predictive
models developed with the assumption of no uncertainty. Note, if there is uncertainty in IV,
standard errors and confidence intervals inappropriate.

* When distribution is not bivariate normal

> summary (1lm(DV~IV, data))

Major axis (MA)

* When a good estimate of the population parameters (slope) is required AND

When distribution is bivariate normal (/V levels not set) AND

When error variance (uncertainty) in IV and DV equal (typically because variables in same
units or dimensionless)

> library(biology)
> summary (lm.II(DV~IV, data, method='MA’))

Ranged Major axis (Ranged MA)

* When a good estimate of the population parameters (slope) is required AND
* When distribution is bivariate normal (/V levels not set) AND

* When error variances are proportional to variable variances AND

There are no outliers

library (biology)

#For variables whose theoretical minimum is arbitrary
summary (lm.II (DV~IV, data, method='rMA’))

#OR for variables whose theoretical minimum must be zero
#such as ratios, scaled variables & abundances

summary (1lm.II (DV~IV, data, method='rMA’, zero=T))

vV V.V V VvV V

Reduced major axis (RMA) or Standard major axis (SMA)

* When a good estimate of the population parameters (slope) is required AND
When distribution is bivariate normal (/V levels not set) AND

When error variances are proportional to variable variances AND

When there is a significant correlation r between IV and DV

library (biology)

summary (lm.II (DV~IV, data, method='RMA’))

\%

\

Modified from Legendre (2001).
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8.2.6 Regression diagnostics

As part of linear model fitting, a suite of diagnostic measures can be calculated each of
which provide an indication of the appropriateness of the model for the data and the
indication of each points influence (and outlyingness) of each point on resulting the
model.

Leverage

Leverage is a measure of how much of an outlier each point is in x-space (on x-axis)
and thus only applies to the predictor variable. Values greater than 2 % p/n (where
p=number of model parameters (p = 2 for simple linear regression), and 7 is the
number of observations) should be investigated as potential outliers.

Residuals

As the residuals are the differences between the observed and predicted values along a
vertical plane, they provide a measure of how much of an outlier each point is in y-space
(on y-axis). Outliers are identified by relatively large residual values. Residuals can also
standardized and studentized, the latter of which can be compared across different
models and follow a  distribution enabling the probability of obtaining a given residual
can be determined. The patterns of residuals against predicted y values (residual plot)
are also useful diagnostic tools for investigating linearity and homogeneity of variance
assumptions (see Figure 8.5).

Cook’s D

Cook’s D statistic is a measure of the influence of each point on the fitted model
(estimated slope) and incorporates both leverage and residuals. Values > 1 (or even
approaching 1) correspond to highly influential observations.

8.2.7 Robust regression

There are a range of model fitting procedures that are less sensitive to outliers and
underlying error distributions. Huber M-estimators fit linear models by minimizing
the sum of differentially weighted residuals. Small residuals (weakly influential) are
squared and summed as for OLS, whereas residuals over a preselected critical size
(more influential) are incorporated as the sum of the absolute residual values. A useful
non-parametric test is the Theil-Sen single median (Kendall’s robust) method which
estimates the population slope (81) as the median of the n(n — 1)/2 possible slopes
(b1) between each pair of observations and the population intercept (o) is estimated
as the median of the n intercepts calculated by solving y — b;x for each observation.
A more robust, yet complex procedure (Siegel repeated medians) estimates 8, and
Bo as the median of the n median of the n — 1 slopes and intercepts respectively
between each point and all others. Randomization tests compare the statistic (b;) to
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Fig 8.5 Stylised residual plots depicting characteristic patterns of residuals (a) random scatter
of points - homogeneity of variance and linearity met (b) “wedge-shaped” - homogeneity of
variance not met (c) linear pattern remaining - erroneously calculated residuals or additional
variable(s) required and (d) curved pattern remaining - linear function applied to a curvilinear
relationship. Modified from Zar (1999).

a unique probability distribution that is generated by repeatedly reshuffling one of
the variables and recalculating the test statistic. As a result, they do not impose any
distributional requirements on the data. Randomization tests are particularly useful
for analysing data that could not be collected randomly or haphazardly as they test
whether the patterns in the data could occur by chance rather than specifically testing
hypotheses about populations. As a result, technically any conclusions pertain only
to the collected observations and not to the populations from which the observations
were collected.

8.2.8 Power and sample size determination

Although interpreted differently, the tests Hy: p = 0 and Hy : 81 = 0 (population
correlation and slope respectively equal zero) are statistically equivalent. Therefore
power analyses to determine sample size required for null hypothesis rejection for both
correlation and regression are identical and based on r (correlation coefficient), which
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from regression analyses, can be obtained from the coefficient of determination (72) or

asr=0by> x2/ > y2

8.3 Smoothers and local regression

Smoothers fit simple models (such as linear regression) through successive localized
subsets of the data to describe the nature of relationships between a response variable
and one or more predictor variables for each point in a data cloud. Importantly, these
techniques do not require the data to conform to a particular global model structure
(e.g. linear, exponential, etc). Essentially, smoothers generate a line (or surface) through
the data cloud by replacing each observation with a new value that is predicted from
the subset of observations immediately surrounding the original observation. The
subset of neighbouring observations surrounding an observation is known as a band
or window and the larger the bandwidth, the greater the degree of smoothing.

Smoothers can be used as graphical representations as well as to model (local
regression) the nature of relationships between response and predictor variables in a
manner analogous to linear regression. Different smoothers differ in the manner by
which the predicted values are created.

* running medians (or less robust running means) generate predicted values that are the
medians of the responses in the bands surrounding each observation.

* loess and lowess® (locally weighted scatterplot smoothing) - fit least squares regression
lines to successive subsets of the observations weighted according to their distance from
the target observation and thus depict changes in the trends throughout the data cloud.

* kernel smoothers - new smoothed y-values are computed as the weighted averages of
points within a defined window (bandwidth) or neighbourhood of the original x-values.
Hence the bandwidth depends on the scale of the x-axis. Weightings are determined by the
type of kernel smoother specified, and for. Nevertheless, the larger the window, the greater
the degree of smoothing.

+ splines - join together a series of polynomial fits that have been generated after the entire
data cloud is split up into a number of smaller windows, the widths of which determine
the smoothness of the resulting piecewise polynomial.

Whilst the above smoothers provide valuable exploratory tools, they also form the
basis of the formal model fitting procedures supported via generalized additive models
(GAMs, see chapter 17).

8.4 Correlation and regression in R

Simple correlation and regression in R are performed using the cor. test () and 1m()
functions. Themblm () and r1m () functions offer a range of non-parametric regression

¢ Lowess and loess functions are similar in that they both fit linear models through localizations of
the data. They differ in in that loess uses weighted quadratic least squares and lowess uses weighted
linear least squares. They also differ in how they determine the data spanning (neighborhood of
points regression model fitted to), and in that loess smoothers can fit surfaces and thus accomodate
multivariate data.
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Table 8.2 Smoothing function within R. For each of the following, DV is the response variable
within the data dataset. Smoothers are plotted on scatterplots by using the smoother function
as the response variable in the points () function (e.g. points (runmed (DV)~IV, data,
type="1")).

Smoother” Syntax

Running median > runmed (data$DV, k)
where k is an odd number that defines the bandwidth of the window
and if k omitted, defaults to either Turlach or Struetzle breaking
algorithms depending on data size (Turlack for larger)
Loess > loess (DV~IV1+IV2+..., data, span=0.75)
where TV1, TV2 represent one or more predictor variables and span
controls the degree of smoothing

Lowess > lowess (data$IV, data$Dv, f=2/3)
where TV represents the predictor variable and £ controls the degree of
smoothing
Kernel > ksmooth (data$IV, datas$DV, kernel="normal",

bandwidth=0.5)

where TV represents the predictor variable, kernel represents the
smoothing kernel (box or normal) and bandwidth is the
smoothing bandwidth

> density(datas$bv, bw="nrd0", adjust=1)

where TV represents the predictor variable and bw and adjust
“nrd0” the smoothing bandwidth and course bandwidth multiplier
respectively. Information on the alternative smoothing bandwidth
selectors for gaussian (normal) windows is obtained by typing
?bw.nrd

Splines > data.spl<-smooth.spline(data$IV, data$DV, spar)

> points(y~x, data.spl, type='1l")

where TV represents the predictor variable and spar is the smoothing
coeficient, typically between 0 and |.

“Note, there are many other functions and packages that facilitate alternatives to the smoothing functions listed here.

alternatives. Model II regressions are facilitated via the 1m.II () function and the
common smoothing functions available in R are described in Table 8.2.

8.5 Further reading

* Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.
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Crawley, M. J. (2007). The R Book. John Wiley, New York.
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Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.
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8.6

1a.

b.

Example-based Approach. Cambridge University Press, London.

Key for correlation and regression

Neither variable has been set (they are both measured) AND there is no implied
causality between the variables (Correlation) .......................... Goto2

. Either one of the variables has been specifically set (not measured) OR there is an

implied causality between the variables whereby one variable could influence the
other but the reverse is unlikely (Regression) .......................... Goto4

. Check parametric assumptions for correlation analysis

* Bivariate normality of the response/predictor variables - marginal scatterplot
boxplots
> library (car)

> scatterplot (V1 ~ V2, dataset)

where V1 and v2 are the continuous variables in the dataset data frame
* Linearity of data points on a scatterplot, trendline and lowess smoother
useful

> library (car)
> scatterplot(Vl ~ V2, dataset, reg.line = F)
where V1 and V2 are the continuous variables in the dataset data frame and
reg.line=F excludes the misleading regression line from the plot
Parametric assumptions met (Pearson correlation) ............. See Example 8A
> corr.test(~V1l + V2, data = dataset)

where V1 and V2 are the continuous variables in the dataset data frame
Forasummary plot.......co.ouiiein it Goto 12

. Parametric assumptions NOT met or scale transformations (see Table 3.2) not

successful or inappropriate............ ... .o Goto3

. Sample size between 7 and 30 (Spearman rank correlation) . ... .. See Example 8B

> cor.test (~V1 + V2, data = dataset, method = "spearman")

where V1 and v2 are the continuous variables in the dataset data frame
Forasummary plot..... ... Goto 12
Sample size > 30 (Kendall’s tao correlation)

> cor.test (~V1l + V2, data = dataset, method = "kendall")
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where V1 and V2 are the continuous variables in the dataset data frame
Forasummary plot...... ... i Goto 12
4 a. Check parametric assumptions for regression analysis

* Normality of the response variable (and predictor variable if measured) -
marginal scatterplot boxplots

* Homogeneity of variance - spread of data around scatterplot trendline

* Linearity of data points on a scatterplot, trendline and lowess smoother useful
> library(car)
> gcatterplot (DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset

data frame
Parametricassumptionsmet ........... ... ... i i Goto5
b. Parametric assumptions NOT met or scale transformations (see Table 3.2) not
successful or inappropriate. .......... ... ... i Goto7

5 a. Levels of predictor variable set (not measured) - no uncertainty in predictor
variable OR the primary aim of the analysis is:
* hypothesis testing (H, : ; = 0)
* generating a predictive model (y = B + B1x)

(Ordinary least squares (OLS) regression) ................cooevuenen... Goto6
b. Levels of predictor variable NOT set (they are measured) AND the main aim

of the analysis is to estimate the population slope of the relationship (Model II

24 <) 11 1 1 P See Example 8F

> library (biology)

> data.lm <- Im.II(DV ~ IV, christ, type = "RMA")

> summary (data.lm)

where DV and TV are response and predictor variables respectively in the dataset data

frame. type can be one of "MA", "RMA", "rMA" or "OLS". For type="rMA", it is also

possible to force a minimum response of zero (zero=T).

To produce a summary plot. ..o Goto 12
6 a. Single response value for each level of the predictor variable ................ See

Examples 8C&8D

dataset.lm <- 1m(IV ~ DV, dataset)
plot (dataset.1lm)
influence.measures (dataset.1lm)

vV V. V V

summary (dataset.lm)

where DV and TV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervals/................................ Go to 10

To predict new values of the response variable ......................... Gotoll

To produce a summary plot. ..o Goto 12
b. Multiple response values for each level of the predictor variable............. See

Examples 8E

> anova (lm(DV ~ IV + as.factor(IV), dataset))

F1f there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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e Pooled residual term
> dataset.lm <- Im(DV ~ IV, dataset)
> summary (dataset.lm)

* Non-pooled residual term

> dataset.lm <- aov(DV ~ IV + Error(as.factor(IV)), dataset)
> summary (dataset.lm)
> Im(DV ~ IV, dataset)

where DV and TV are response and predictor variables respectively in the dataset data

frame.
7 a. Observations collected randomly/haphazardly, no reason to suspect
non-independence. ........... ... Goto 8
b. Random/haphazard sampling not possible, observations not necessarily indepen-
dent (Randomizationtest) ....................coieiiiiinn... See Example 8H

> stat <- function(data, index) {

summary (1lm(DV ~ IV, data))Scoef[2, 3]
}

rand.gen <- function(data, mle) {

out <- data

out$IV <- sample(out$IV, replace = F)
out

+
+

>

+

+

+

+ )
> library (boot)

> dataset.boot <- boot(dataset, stat, R = 5000,
+ sim = "parametric", ran.gen = rand.gen)

> plot (dataset.boot)

> dataset.boot

where DV and TV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervals® ....... ... ... .. .. ..o .. Goto 10
To predict new values of the response variable ......................... Goto 11
To produce a summary plot. ... ...couveinineininin e, Goto 12

8 a. Mild non-normality due mainly to outliers (influential obseravations), data linear
(M-regression)
> library (MASS)
> data.rlm <- r1lm(DV ~ IV, dataset)

where DV and TV are response and predictor variables respectively in the dataset data

frame.

To get parameter confidence intervals” ................................ Goto 12
To predict new values of the response variable ......................... Goto 11
To produce a summary plot. ... ....ouveinineinin i, Goto 10

8 If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
" If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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b. Datanon-normal and/ornon-linear ......................... . ....... Goto9
9 a. Binary response (e.g. dead/alive, present/absent)...... Logistic Regression
chapter 17
b. Underlying distribution of response variable and residuals is known ... . ... GLM
chapter 17
c. Datacurvilinear...................... ... ... Non-linear regression chapter 9
d. Data monotonic non-linear (nonparametric regression) . . ...... See Example 8G

¢ Theil-Sen single median (Kendall’s) robust regression

> library (mblm)
> data.mblm <- mblm(DV ~ IV, dataset, repeated =

> summary (data.mblm)

|
e

* Siegel repeated medians regression

> library (mblm)
> data.mblm <- mblm(DV ~ IV, dataset, repeated = T)
> summary (data.mblm)

where DV and IV are response and predictor variables respectively in the dataset data

frame.
To get parameter confidence intervals’ ...............cccovvueeeiin.. Goto 12
To predict new values of the response variable ......................... Goto 11
To produce a summary plot. ... .....vueneeir i, Goto 10
10 Generating parameter confidence intervals .................. See Example 8C&8G
> confint (model, level = 0.95)

where model is a fitted model
To get randomization parameter estimates and their confidence intervals ........ See
Example 8H
par.boot <- function(dataset, index) {
x <- dataset$ALT[index]
v <- datasetS$HK[index]
model <- lm(y ~ x)
coef (model)
}
dataset.boot <- boot (dataset, par.boot, R = 5000)

boot.ci(dataset.boot, index = 2)

VOV o+ o+ o+ + o+ v

where dataset is the data.frame. The optional argument (R=5000) indicates 5000
randomizations and the optional argument (index=2) indicates which parameter to
generate confidence intervals for (y-intercept=1, slope=2). Note the use of the 1m()
function for the parameter estimations and could be replaced by robust alternatives such as
rim() ormblm().

11 Generating new response values (and corresponding prediction intervals) .. ... See
Example 8C&8D
> predict (model, data.frame(IV = c()), interval = "p")

'If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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where model is a fitted model and 1V is the predictor variable and c () is a vector of new
predictor values (e.g. ¢ (10,13.4))
To get randomization prediction intervals ........................ See Example 8H

pred.boot <- function(dataset, index) {

>

+ dataset.rs <- dataset[index, ]

+ dataset.lm <- 1Im(HK ~ ALT, dataset.rs)

+ predict (dataset.lm, data.frame (ALT = 1))

+ 1}

> dataset.boot <- boot(dataset, pred.boot, R = 5000)

> boot.ci(dataset.boot)

where dataset is the name of the data frame. Note the use of the 1m () function for the
parameter estimations. This could be replaced by robust alternatives such as rlm() or
mblm().

12 Base summary plot for correlation or regression. ... .. See Example 8B&8C&8D&SF
> plot(Vl ~ V2, data, pch = 16, axes = F, xlab = "", ylab = "")
> axis(l, cex.axis = 0.8)
> mtext (text = "x-axis title", side = 1, line = 3)
> axis (2, las = 1)
> mtext (text = "y-axis title", side = 2, line = 3)
> box(bty = "1")

where V1 and v2 are the continuous variables in the dataset data frame. For regression,
V1 represents the response variable and V2 represents the predictor variable.
Adding confidenceellipse....... ...l See Example 8B

> data.ellipse(V2, V1, levels = 0.95, add = T)

Adding regressionline........... ... .. . it See Example 8C
> abline (model)

where model represents a fitted regression model

Adding regression confidenceintervals...................... See Example 8C&8D
> x <- seq(min(IV), max(IV), 1 = 1000)

> y <- predict (object, data.frame(IV = x), interval = "c")

> matlines(x, y, lty =1, col = 1)

where TV is the name of the predictor variable (including the dataframe) model represents
a fitted regression model

8.7 Worked examples of real biological data sets

Example 8A: Pearson’s product moment correlation
Sokal and Rohlf (1997) present an unpublished data set (L. Miller) in which the correlation
between gill weight and body weight of the crab (Pachygrapsus crassipes) is investigated.
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Step | - Import (section 2.3) the crabs data set

> crabs <- read.table("crabs.csv", header = T, sep = ", ")

Step 2 (Key 8.2) - Assess linearity and bivariate normality using a scatterplot with marginal
boxplots

> library (car)
> scatterplot (GILLWT ~ BODYWT, data = crabs, reg.line = F)

Conclusions - data not obviously
nonlinear and no evidence of non-
normality (boxplots not asymmetrical)

GILLWT
1

100 150 200 250 300 350

50
L

5 10 15 20
BODYWT
— -

Step 3 (Key 8.2a) - Calculate the Pearson’s correlation coefficient and test Hy : p = 0 (that the
population correlation coefficient equals zero).

> cor.test (~GILLWT + BODYWT, data = crabs)

Pearson's product-moment correlation

data: GILLWT and BODYWT
t = 5.4544, df = 10, p-value = 0.0002791
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5783780 0.9615951
sample estimates:
cor
0.8651189

Conclusions - reject Hq that population correlation coefficient equals zero, there was
a strong positive correlation between crab weight and gill weight (r = 0.865,t,0 = 5.45,
P < 0.001).
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Example 8B: Spearman rank correlation

Green (1997) investigated the correlation between total biomass of red land crabs (Gecar-
coidea natalis and the density of their burrows at a number of forested sites (Lower site: LS
and Drumsite: DS) on Christmas Island.

Step | - Import (section 2.3) the Green (1997) data set
> green <- read.table("green.csv", header = T, sep = ",")

Step 2 (Key 8.2) - Assess linearity and bivariate normality for the two sites separately using a
scatterplots with marginal boxplots

> library (car) > library(car)
> scatterplot (BURROWS ~ TOTMASS, > scatterplot (BURROWS ~ TOTMASS,
+ data = green, subset = + data = green, subset =
+ SITE == "LS", + SITE == "DS",
+ reg.line = F) + reg.line = F)
o ° & T
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Conclusions - some evidence of non-normality (boxplots not asymmetrical)

Step 3 (Key 8.3a) - Calculate the Spearman’s rank correlation coefficient and test Hy : p = 0
(that the population correlation coefficient equals zero).

> cor.test (~BURROWS + TOTMASS, data = green, subset = SITE ==
+ "LS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS
S = 24.5738, p-value = 0.001791
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8510678
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Conclusions - reject Hy that population correlation coefficient equals zero, there was a strong
positive correlation between crab biomass and burrow density at Low site (0 = 0.851,S,p =
24.57,P = 0.0018).

> cor.test (~BURROWS + TOTMASS, data = green, subset = SITE ==
+ "DS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS
S = 69.9159, p-value = 0.6915
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1676677

Conclusions - do not reject Hy that population correlation coefficient equals zero, there was
no detectable correlation between crab weight and gill weight at Drumsite (o = 0.168,S,p =
69.92, P = 0.692).

Step 4 (Key 8.12) - Summarize findings with scatterplots (section 5.8.1), including 95%
confidence ellipses for the population bivariate mean center. The following also indicate two
alternative ways to specify a subset of a dataframe.

plot (BURROWS ~ TOTMASS, plot (BURROWS ~ TOTMASS,
data = green, subset
SITE == "LS",

> >

+ + data = green, subset =
+ + SITE == "DS",

+ x1lim = c (0, + x1lim = c (0,

+ 8), ylim = c (0, + 8), ylim = c (0,
+ 80)) + 150))

> with (subset (green, SITE == > with (subset (green, SITE ==
+ + "DS"), data.ellipse

+ + (TOTMASS,

+ + BURROWS, levels = 0.95,
+ +

add = T))

"LS"), data.ellipse
(TOTMASS,

BURROWS, levels = 0.95,
add = T))

80
|
150
|

100

BURROWS
40
|
®
BURROWS

TOTMASS TOTMASS
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Example 8C: Simple linear regression - fixed X

As part of a Ph.D into the effects of starvation and humidity on water loss in the confused flour
beetle (Tribolium confusum), Nelson (1964) investigated the linear relationship between
humidity and water loss by measuring the amount of water loss (mg) by nine batches of
beetles kept at different relative humidities (ranging from 0 to 93%) for a period of six days
(Table 14.1 Sokal and Rohlf (1997)).

Step 1 - Import (section 2.3) the Nelson (1964) data set

> nelson <- read.table("nelson.csv", header = T, sep = ", ")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library (car)
> gscatterplot (WEIGHTLOSS ~ HUMIDITY, data = nelson)

Conclusions - no evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity.

WEIGHTLOSS

0 20 40 60 80
HUMIDITY
—Q T

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is
effectively no uncertainty (error) in the predictor variable (relative humidity).

Step 4 (Key 8.6a) - fit the simple linear regression model (y; = Bo + B1x;) and examine the
diagnostics.

> nelson.lm <- Im(WEIGHTLOSS ~ HUMIDITY, nelson)
> plot(nelson.1lm)
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Conclusions - There is
no obvious “wedge” pat-

Residuals vs Fitted Normal Q-Q . . .
S tern evident in the residual
06 60| . .
" S By ] o plot (confirming that the
= - N @ o .
g _ e o assumption of homogene-
ke] - o _ . . . .
5 ° 32 9 000° ity of variance is likely to
e A S o °7 .
Z’F‘ 40 & ] o be met). Altbough there is
e Tl some deviation in the Q-
4 5 6 7 8 15 -05 05 15 Q normal plot (suggesting
Fitted values Theoretical Quantiles  that the response variable
Scale-Location Residuals vs Leverage does deviate from .normal),
N R Y PR the sample size is rather
y Sel “q1 .
§ —_—. o 10 § o — “=olos  small and the test is reason-
A i o ably robust to such devia-
(1ol . T © o o o . .
2a ° 29 tions. Finally, none of the
_.:g pust 5 7o © = T~ - . .
s o © & o _.--*> points approach the high
o | o (baqksdlsjqnc 1 Cook’
= N A ook’s D contours suggest-
4 56 7 8 0.0 01 02 03 04 ing that none of the obser-
Fitted values Leverage vations are overly influential

on the final fitted model.
> influence.measures (nelson.lm)
Influence measures of

Im(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson)

dfb.1_ dfb.HUMI dffit cov.r cook.d hat inf

1 1.07457 -0.92033 1.07457 1.449 5.31e-01 0.417 *
2 0.17562 -0.13885 0.17705 1.865 1.81e-02 0.289 *
3 -0.83600 0.52023 -0.91800 0.552 2.86e-01 0.164
4 -0.32184 0.10806 -0.45713 0.970 9.67e-02 0.118
5 0.00868 0.00169 0.01969 1.531 2.26e-04 0.112
6 0.11994 0.27382 0.73924 0.598 1.97e-01 0.129
7 0.00141 -0.00609 -0.00956 1.674 5.33e-05 0.187
8 -0.01276 0.03163 0.04208 1.825 1.03e-03 0.255
9 0.03662 -0.07495 -0.09204 2.019 4.93e-03 0.330 *

Conclusions - None of the leverage (hat) values are greater than 2 % p/n = 0.444 and therefore
(none are considered to be outliers in x-space). Furthermore, none of the Cook’s D values are
> | (no point is overly influential). Hence there is no evidence that hypothesis tests will be
unreliable.
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Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests (Boxes 4.1 & 14.3
of Sokal and Rohlf (1997)).

> summary (nelson.lm)
Call:
Im(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson)

Residuals:
Min 10 Median 30 Max
-0.46397 -0.03437 0.01675 0.07464 0.45236

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 8.704027 0.191565 45.44 6.54e-10 ***
HUMIDITY -0.053222 0.003256 -16.35 7.82e-07 ***

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 "' ' 1

Residual standard error: 0.2967 on 7 degrees of freedom
Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708
F-statistic: 267.2 on 1 and 7 DF, p-value: 7.816e-07

Conclusions - Reject Hq that the population slope equals zero. An increase in relative humidity
was found to be associated with a strong (r> = 0.975), significant decrease in weight loss
(b = —0.053,t; = —16.35,P < 0.001) in confused flour beetles.

Step 6 (Key 8.10) - calculate the 95% confidence limits for the regression coefficients (Box
14.3 of Sokal and Rohlf (1997)).

> confint (nelson.lm)

2.5 % 97.5 %
(Intercept) 8.25104923 9.15700538
HUMIDITY -0.06092143 -0.04552287

Step 7 (Key 8.11) - use the fitted linear model to predict the mean weight loss of flour beetles
expected at 50 and 100% relative humidity (Box 14.3 of Sokal and Rohlf (1997)).

> predict(nelson.lm, data.frame (HUMIDITY = c (50, 100)),
+ interval = "prediction", se = T)
Sfit
fit lwr upr
1 6.042920 5.303471 6.782368
2 3.381812 2.549540 4.214084

Sse.fit
1 2
0.0988958 0.1894001
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S$df
[11 7

Sresidual.scale
[1] 0.2966631

Step 8 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r%.

> #create a plot with solid dots (pch=16) and no axis or labels

plot (WEIGHTLOSS~HUMIDITY, data=nelson, pch=16, axes=F, xlab="",
ylab="")

#put the x-axis (axis 1) with smaller label font size

Vv

axis(l, cex.axis=.8)

#put the x-axis label 3 lines down from the axis
mtext (text="% Relative humidity", side=1, line=3)
#put the y-axis (axis 2) with horizontal tick labels
axis (2, las=1)

#put the y-axis label 3 lines to the left of the axis
mtext (text="Weight loss (mg)", side=2, line=3)

#add the regression line from the fitted model

abline (nelson.lm)

#add the regression formula

text (99,9, "WEIGHTLOSS = -0.053HUMIDITY + 8.704", pos=2)
#add the r squared value

text (99, 8.6, expression (paste(r"2==0.975)), pos=2)

vV V.V V V V V V V V V V V V V

#create a sequence of 1000 numbers spanning the range of
humidities
> x <- seqg(min(nelson$HUMIDITY), max(nelson$HUMIDITY),1=1000)

> #for each value of x, calculate the upper and lower 95%
confidence

> y<-predict(nelson.lm, data.frame (HUMIDITY=x), interval="c")
> #plot the upper and lower 95% confidence limits
> matlines(x,y, 1lty=1, col=1)
> #put an L-shaped box to complete the axis
> box (bty="1")

9 - WEIGHTLOSS = -0.053HUMIDITY + 8.704

r2=0.975

S 81
E
o 7
[%2])
kel
= 6
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T T T T T
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% Relative humidity
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Example 8D: Simple linear regression - random X

To investigated the nature of abundance-area relationships for invertebrates in intertidal
mussel clumps, Peake and Quinn (1993) measured area (mm?) (dependent variable: AREA)
and number of non-mussel individuals supported (response variable: INDIV) from a total of
25 intertidal mussel clumps(from Box 5.4 of Quinn and Keough (2002)).

Step | - Import (section 2.3) the Peake and Quinn (1993) data set
> peake <- read.table("peake.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library (car) > library (car)
> scatterplot (INDIV ~ AREA, > scatterplot (loglO (INDIV) ~
+ data = peake) + loglO (AREA), data = peake)

1 1 1
o

INDIV
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0 5000 10000 15000 20000 25000 Iog10(AREA)
AREA — T )

Conclusions - scatterplot of raw data (left figure) indicates evidence of non-normality (boxplots
not symmetrical) and evidence that homogeneity of variance my also be violated (points become
more spread along the line of the regression line). Data transformed to logarithms (base 10)
appear to meet the assumptions of normality and homogeneity of variance better (right figure).
Linearity of the log-log relationship also appears reasonable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the main
focus will be on hypothesis testing and generating a predictive model.

Step 4 (Key 8.6) - fit the simple linear regression model (y; = Bo + Bix;) and examine the
diagnostics.

> peake.lm <- Im(INDIV ~ AREA, data = peake)
> plot (peake.1lm)
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> peake.lm <- Im(loglO(INDIV) ~ 1loglO(AREA), data = peake)
> plot (peake.1lm)
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> influence.measures (peake.lm)
Influence measures of
Im(formula = loglO(INDIV) ~ loglO(AREA), data = peake)

dfb.1_ dfb.110. dffit cov.r cook.d hat inf

1 -1.202012 1.12137 -1.2929 0.670 0.626553 0.1615 *
2 0.310855 -0.29097 0.3319 1.260 0.056245 0.1727
3 0.269684 -0.25255 0.2877 1.278 0.042502 0.1745 *
4 0.153477 -0.13896 0.1781 1.187 0.016366 0.1023
5 -0.484207 0.42414 -0.6182 0.804 0.164749 0.0756
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6 -0.062392 0.05251 -0.0897 1.151 0
7 0.052830 -0.04487 0.0739 1.158 0
8 0.187514 -0.15760 0.2707 1.052 0
9 0.006384 -0.00416 0.0164 1.141 O
10 0.004787 -0.00131 0.0244 1.137 0
11 0.013583 0.00419 0.1238 1.101 0
12 -0.003011 -0.00112 -0.0287 1.137 0
13 0.000247 0.00259 0.0198 1.138 0
14 -0.003734 -0.00138 -0.0356 1.135 0
15 -0.015811 0.05024 0.2419 1.013 0
16 -0.017200 0.02518 0.0595 1.142 0
17 -0.061445 0.09368 0.2375 1.038 0
18 -0.025317 0.03314 0.0619 1.151 0
19 -0.146377 0.18521 0.3173 1.015 0
20 0.100361 -0.13065 -0.2406 1.064 0
21 -0.263549 0.31302 0.4496 0.963 0
22 0.263206 -0.29948 -0.3786 1.101 0
23 0.043182 -0.04845 -0.0588 1.246 0
24 0.167829 -0.18726 -0.2236 1.226 0
25 0.545842 -0.61039 -0.7334 0.929 0

Conclusions - Whilst three leverage (hat) values

.004183 0.0608
.002846 0.0633
.036423 0.0605
.000140 0.0428
.000311 0.0401
.007882 0.0400
.000432 0.0401
.000204 0.0407
.000662 0.0401
.028826 0.0418
.001842 0.0487
.028033 0.0474
.001995 0.0561
.049144 0.0607
.028981 0.0567
.095261 0.0776
.071044 0.1069
.001804 0.1248
.025747 0.1341
.241660 0.1302

are greater than 2« p/n = 0.16 (obser-

vations |, 2 and 3) and therefore potentially outliers in x-space, none of the Cook’s D
values are > | (no point is overly influential). No evidence that hypothesis tests will be

unreliable.

Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests.

> summary (peake.lm)

Call:
Im(formula = loglO(INDIV) ~ loglO(AREA), data = peake)
Residuals:

Min 10 Median 30 Max
-0.43355 -0.06464 0.02219 0.11178 0.26818
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -0.57601 0.25904 -2.224 0.0363 *
loglO (AREA) 0.83492 0.07066 11.816 3.0le-11 **x*
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " " 1

Residual standard error: 0.1856 on 23
0.8586,
139.6 on 1 and 23 DF,

Multiple R-squared:
F-statistic:

Adjusted R-squared:
p-value:

degrees of freedom
0.8524
3.007e-11
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Conclusions - Reject Hy that the population slope equals zero. An increase in (log) mussel
clump area was found to be associated with a strong (r> = 0.859), significant increase in the
(log) number of supported invertebrate individuals (b = 0.835,t;3 = 11.816, P < 0.001).

Step 6 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r?.

> #create a plot with solid dots (pch=16) and no axis or labels}

\

vV V. V VvV

vV V.V V + V V V V V V V V

Number of individuals

plot (INDIV~AREA, data=peake, pch=16, axes=F, xlab="", ylab="",
log="xy")

#put the x-axis (axis 1) with smaller label font size

axis(l, cex.axis=.8)

#put the x-axis label 3 lines down from the axis

mtext (text=expression (paste("Mussel clump area", (mm"2))),
side=1, line=3)

#put the y-axis (axis 2) with horizontal tick labels

axis (2, las=1)

#put the y-axis label 3 lines to the left of the axis

mtext (text="Number of individuals", side=2, line=3)

#add the regression line from the fitted model

abline (peake.1lm)

#add the regression formula

text (30000, 30, expression(paste(log[l10], "INDIV = 0.835",

log[10], "AREA - 0.576")), pos=2)

#add the r squared value

text (30000, 22, expression(paste(r”2==0.835)), pos=2)

#put an L-shaped box to complete the axis

box (bty="1")
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Step 7 (Key 8.11) - use the fitted linear model to predict the number of individuals that would
be supported on two new mussel clumps with areas of 8000 and 10000 mm?.

>

10"predict (peake.1lm, data.frame (AREA = c (8000, 10000)))
1 2

481.6561 580.2949
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Since OLS was used to generate the predictive model, and yet there was likely to have been
uncertainty in the original mussel clump area measurements, confidence intervals about these
predictions are not valid. Nevertheless, the following illustrates how they would be obtained.

> 10"predict (peake.lm, data.frame (AREA = ¢ (8000, 10000)),
interval = "prediction")
fit lwr upr
1 481.6561 194.5975 1192.167
2 580.2949 233.5345 1441.938

Similarly, confidence bands could be incorporated onto the plot to indicate confidence in the
population regression line if there was no uncertainty in the predictor variable.

> plot(loglO (INDIV) ~ 1loglO(AREA), data = peake, pch = 16,

+ axes = F, xlab = "", ylab = "")

> axis(l, cex.axis = 0.8)

> mtext (text = "Log Mussel clump area", side = 1, line = 3)

> axis (2, las = 1)

> mtext (text = "Log number of individuals", side = 2, line = 3)
> abline (peake.lm)

> text (4.5, 1.4, expression(paste(log[10], "INDIV = 0.835",

+ log([10], "AREA - 0.576")), pos = 2)

> text (4.5, 1.3, expression(paste(r”2 == 0.835)), pos = 2)

> x <- seq(min(peake$SAREA), max (peakeS$SAREA), 1 = 1000)

> y <- predict(peake.lm, data.frame(AREA = x), interval = "c")
> matlines(loglO(x), vy, lty = 1, col = 1)

> box(bty = "1")
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Example 8E: Linear regression - with multiple values of Y per value of X

Sokal and Rohlf (1997) presented data on the (arcsine transformed) percentage survival to
adulthood of Tibolium castaneum beetles housed at four densities (5, 20, 50 & 100 eggs per
gram of flour medium). Each level of the density treatment was replicated (albeit to varying
degrees) in a manner similar to single factor classification (ANOVA, see chapter 10).
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Step | - Import (section 2.3) the beetles data set

> beetles <- read.table("beetles.csv", header = T, sep = ", ")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother. As there are replicates for each level of the
predictor, normality and homogeneity of variance can also be assessed with boxplots of each
population.

> library (car)
> scatterplot (SURVIVAL ~ DENSITY, > boxplot (SURVIVAL ~ DENSITY,

+ data = beetles) + data = beetles)
R R
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Conclusions - the scatterplot indicates that the assumption of linearity is likely to be ok. Note
that the boxplot on the x-margin of the scatterplot only reflects an imbalance in replication.
Whilst there is some evidence of non-homogeniety of variance, a consistent relationship between
mean and variance cannot be fully established, and thus the data are considered suitable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is
considered to be no uncertainty (error) in the predictor variable (relative density).

Step 4 (Key 8.5b) - determine the lack of fit to the regression line by comparing deviations of
observations from the regression line to deviations of observations from their means per density.

> anova (1lm(SURVIVAL ~ DENSITY + as.factor (DENSITY), beetles))

Analysis of Variance Table

Response: SURVIVAL

Df Sum Sg Mean Sg F value Pr (>F)
DENSITY 1 403.93 403.93 32.0377 0.0001466 ***
as.factor (DENSITY) 2 19.77 9.89 0.7842 0.4804305
Residuals 11 138.69 12.61

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1
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Conclusions - deviations from linear not significantly different from zero (F = 0.7842,P =
0.480), hence there is no evidence that a straight line is not an adequate representation of these
data.

Step 5 (Key 8.5b) - consider whether to pool deviations from the regression line and the
deviations from the predictor level means

> #calculate critical F for alpha=0.25, df=2,11
> gf(0.25,2,11, lower=T)
[1] 0.2953387

Conclusions - Sokal and Rohlf (1997) suggest that while there is no difference between the
deviations from the regression line and the deviations from the predictor level means, they
should not be pooled because F = 0.784 > Fq 752,11} = 0.295.

Step 6 (Key 8.5b) - to test whether the regression is linear by comparing the fit of the linear
regression with the deviations from linearity (non pooled).

> beetles.lm <- aov(SURVIVAL ~ DENSITY + Error (as.factor (DENSITY)),
+ beetles)
> summary (beetles.1lm)
Error: as.factor (DENSITY)
Df Sum Sg Mean Sg F value Pr(>F)
DENSITY 1 403.93 403.93 40.855 0.02361 *
Residuals 2 19.77 9.89

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 11 138.687 12.608

Conclusions - Reject Hy that the population is not linear.

> #to get the regression coefficients

> 1m(SURVIVAL~DENSITY, beetles)

Call:

Im(formula = SURVIVAL ~ DENSITY, data = beetles)

Coefficients:
(Intercept) DENSITY
65.960 -0.147

If we had decided to pool, the analysis could have been performed as follows:

> summary (1lm (SURVIVAL ~ DENSITY, beetles))
Call:
Im(formula = SURVIVAL ~ DENSITY, data = beetles)
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Residuals:
Min 10 Median 30
-6.8550 -1.8094 -0.2395 2.7856

Coefficients:

Estimate Std. Error
(Intercept) 65.96004 1.30593
DENSITY -0.14701 0.02554

Max
5.1902

t value
50.508
-5.757

Signif. codes: 0 '***' 0.001 '**' 0.01

Pr(>|t])
2.63e-16 ***
6.64e-05 ***

'*' 0.05 '." 0.1

Residual standard error: 3.491 on 13 degrees of freedom

Multiple R-squared: 0.7182,

F-statistic: 33.14 on 1 and 13 DF,

Adjusted R-squared:
p-value: 6.637e-05

0.6966

199
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Note that these data could also have been analysed as a single factor ANOVA with polynomial

contrasts

beetles$SDENSITY <- as.factor (beetles$DENSITY)
contrasts (beetles$SDENSITY) <- contr.poly (4, c(5, 20, 50,

100))

summary (beetles.aov, split =

3))))
Df Sum Sg Mean Sg
DENSITY 3 423.70 141.23
DENSITY: C1 1 403.93 403.93
DENSITY: C2 2 19.77 9.89
Residuals 11 138.69 12.61

F value
11.2020
32.0377
0.7842

Signif. codes: 0 '***' (0.001 '**' 0.01

Example 8F: Model Il regression

>
>

+

> beetles.aov <- aov (SURVIVAL ~ DENSITY, beetles)

> 1list (DENSITY = list(1l, c(2,
+

Pr (>F)
0.0011367 **
0.0001466 =***
0.4804305

‘<t 0.05 '." 0.1

1

To contrast the parameter estimates resulting from model Il regression, Quinn and Keough
(2002) used a data set from Christensen et al. (1996) (Box 5.7 Quinn and Keough (2002)).
Whilst model Il regression is arguably unnecessary for these data (as it is hard to imagine
why estimates of the regression parameters would be the sole interest of the Christensen
et al. (1996) investigation), we will proceed with the aim of gaining a reliable estimate of the

population slope is required.

Step 1 - Import (section 2.3) the Christensen et al. (1996) data set

> christ <- read.table("christ.csv",

header = T, sep
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Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library (car)
> scatterplot (CWD.BASA ~ RIP.DENS, data = christ)

Conclusions - no evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity.

CWD.BASA

T T T T T T T
800 1000 1200 1400 1600 1800 2000 2200

RIP.DENS
|7 o

Step 3 (Key 8.5b) - as there is likely to be uncertainty in the measured levels of the predictor
variable and the stated intention of the analysis is to obtain a reliable estimate of the population
slope, model Il regression is considered appropriate. Furthermore, as the basal area of course
woody debris and the density of riparian vegetation are measured on different scales, the degrees
of uncertainty in the variables are unlikely to be equal (yet may well be proportionaly to the
respective variances of each variable), MA regression is not appropriate. Finally, as there is some
evidence that there may be outliers present, RMA is considered the most appropriate method.

Step 4 (Key 8.5b) - fit the RMA linear regression model.

> library(biology)

> christ.lm <- 1Im.II(CWD.BASA ~ RIP.DENS, christ, type = "RMA")

> summary (christ.lm)

$call

Im.II(formula = CWD.BASA ~ RIP.DENS, data = christ, type = "RMA")
SCoefficients

Estimate Lower 95% CI Upper 95% CI
(Intercept) -113.9042556 -187.1524427 -61.7666149
RIP.DENS 0.1450207 0.1032249 0.2037396

Step 5 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels

> plot (CWD.BASA~RIP.DENS, christ, pch=16, axes=F, xlab="",
yvlab="")

> #put the x-axis (axis 1) with smaller label font size
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> axis(l, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext (text="Riparian tree density", side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis (2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext (text="Course woody debris basal area", side=2, line=3)
> #add the regression line from the fitted model

> abline(christ.lm)

> #add the regression parameters

> text (1600,50, expression (paste(betal[l]==0.145)), pos=4)

> text (1600,40,expression (paste(betal[0]==-113.904)), pos=4)
> #put an L-shaped box to complete the axis

> box (bty="1")
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Example 8G: Linear regression - non-parametric regression

Smith (1967) investigated the effects of cloud seeding on rainfall in the Snowy Mountains,
Australia. The experiment took place in two areas (the target and control). Within a
year a number of periods were randomly allocated for seeding and additional periods for
non-seeding. The total rainfall in the target and control areas during each of these periods
were recorded. Within a single year, the impact of seeding was assessed via a double ratio
(ratio of rainfall in target to control areas for seeding periods versus ratio of target to control
areas during non-seeding times) and the experiment was repeated over 5 years (Example 9.2
Hollander and Wolfe (1999)).

Step | - Import (section 2.3) the Smith (1967) data set
> smith <- read.table("smith.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> scatterplot (RATIO ~ YEARS, smith)
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Conclusions - whilst there may not
appear to be any evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity, it
could be argued that there are too
few observations on which to make
meaningful decisions about normality
and it might be safer to not make
distributional assumptions.

RATIO

Step 3 (Key 8.7) - as far as we know, there are no reasons to suspect that that observations
wont be independent.

Step 4 (Key 8.8b) - it is difficult to assess normality, homogeneity of variance and linearity
with such a small sample size. We will take the conservative approach and not make any such
assumptions.

Step 5 (Key 8.9d) - perform non-parametric (Kendall's) robust regression to assess the
Ho . ,3| =0.

> library (mblm)

> smith.mblm <- mblm(RATIO ~ YEARS, smith, repeated = F)

> summary (smith.mblm)

Call:

mblm(formula = RATIO ~ YEARS, dataframe = smith, repeated = F)

Residuals:
1 2 3 4 5
0.00000 0.06625 -0.02750 0.06875 -0.00500

Coefficients:
Estimate MAD V value Pr(>]|V])
(Intercept) 1.31625 0.04077 15 0.0625
YEARS -0.05625 0.03459 4 0.0137 *
Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.'" 0.1 "' ' 1

Residual standard error: 0.05744 on 3 degrees of freedom

Conclusions - reject Hq. The impact of cloud seeding significantly declines over time (b=-0.056,
V=4, P=0.0137).
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Step 6 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates.

> confint.mblm(smith.mblm, level = 0.95)
0.025 0.975

(Intercept) 1.28875 1.385

YEARS -0.10000 -0.015

Example 8H: Linear regression - randomization test

McKechnie et al. (1975) investigated the relationship between altitude and the frequency of
hezokinase (HK) 1.00 mobility genes from colonies of Euphydras editha butterflies (Example
8.1 Manly (1991)).

Step 1 - Import (section 2.3) the McKechnie et al. (1975) data set

> mckechnie <- read.table("mckechnie.csv", header = T, sep = ", ")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother. For the purpose of this demonstration, lets
assume that the assumption of normality could not be met and more importantly, that the
observations are not independent, thereby necessitating an alternative regression method.

Step 3 (Key 8.7b) - use randomization to test whether the observed trend could be due to

chance.

I. define the statistic/ to use in the randomization test - in this case the t-statistic

> stat <- function(data, index) {
+ summary (1lm(HK ~ ALT, data))S$coef[2, 3]
+ 1

2. define how the data should be randomized - randomize the pairing of predictor and responses
(shuffle without replacement the predictor values amongst observations)

> rand.gen <- function(data, mle) {

+ out <- data

+ OULSALT <- sample (out$SALT, replace = F)
+ out

+ 1}

3. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> library (boot)

J Consistent with Manly (1991), I have used OLS to estimate the regression parameters. However,
these parameters could alternatively be RMA or non-parametric regression estimates.
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> mckechnie.boot <- boot (mckechnie, stat, R = 5000,

+ sim = "parametric", ran.gen = rand.gen)
4. examine the distribution of t-values generated from the randomization procedure

> plot (mckechnie.boot)
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5. examine the bootstrap statistics

> mckechnie.boot
PARAMETRIC BOOTSTRAP

Call:
boot (data = mckechnie, statistic = stat, R = 5000,
sim = "parametric", ran.gen = rand.gen)

Bootstrap Statistics
original bias std. error
tl* 4.830571 -4.846745 1.084864

6. calculate the number of possible t-values (including the observed t-value, which is one
possible outcome) that were greater or equal to the observed t-value and express this as a
percentage of the number of randomizations (plus one for the observed outcome).

> t <- length(mckechnie.boot$t[mckechnie.boot$t >=
+ mckechnie.boot$t0]) + 1

> t/ (mckechnie.boot$SR + 1)

[1] 0.00059988

Conclusions - probability of obtaining a t-value of 4.83 or greater when Hy is true is 0.0006
(0.06%). Note that as this is a randomization procedure, the p-value will vary slightly each
time.
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Step 4 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates (example
8.2 Manly (1991))

I. define how the parameters (coefficients) are to be calculated (from OLS regression of a
random resample with replacement of the observations).

> par.boot <- function (mckechnie, index) {

+ x <- mckechnieS$SALT[index]
+ y <- mckechnie$HK[index]
+ model <- lm(y ~ x)

+ coef (model)

+ }

2. call a bootstrapping procedure to randomize 5000 times (this can take some time)
> mckechnie.boot <- boot (mckechnie, par.boot, R = 5000)

> mckechnie.boot
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = mckechnie, statistic = par.boot, R = 5000)

Bootstrap Statistics

original bias std. error
tl* 10.65409 0.2426368 4.853195
t2* 29.15347 -0.1309074 5.581786

3. examine the bootstrap 95% confidence intervals for the second (index=2) parameter (slope)

> boot.ci (mckechnie.boot, index = 2)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates

CALL
boot.ci (boot.out = mckechnie.boot, index = 2)

Intervals

Level Normal Basic
95% (18.34, 40.22 ) (18.38, 40.81 )
Level Percentile BCa
95% (17.50, 39.92 ) (16.95, 39.52 )

Calculations and Intervals on Original Scale

Conclusions - 95% confidence interval for the true regression coefficients is 15.49 - 39.52
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Step 5 (Key 8.11) - predict the percentage of HK genes at an altitude of |,

I. define the function to predict new values.

pred.boot <- function(mckechnie, index) {

mckechnie.rs <- mckechnie[index, ]

>
+

+ mckechnie.lm <- 1m(HK ~ ALT, mckechnie.rs)
+ predict (mckechnie.lm, data.frame (ALT = 1))
+

}
2. call a bootstrapping procedure to randomize 5000 times (this can take some time)
> mckechnie.boot <- boot (mckechnie, pred.boot, R = 5000)

> mckechnie.boot
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = mckechnie, statistic = pred.boot, R = 5000)

Bootstrap Statistics
original bias std. error
tl* 39.80756 0.1235158 4.914043

3. examine the bootstrap 95% intervals for this prediction

> boot.ci (mckechnie.boot, index = 1)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates

CALL

boot.ci(boot.out = mckechnie.boot, index = 1)
Intervals

Level Normal Basic

95% (30.05, 49.32 ) (30.66, 49.80 )

Level Percentile BCa

95% (29.82, 48.96 ) (27.68, 47.58 )

Calculations and Intervals on Original Scale
Conclusions - 95% confidence interval for the true regression coefficients is 27.59 - 47.8|

Alternatively, if the levels of the predictor variable were specifically set, then it might be
more appropriate to base hypothesis tests, predictions and confidence intervals on randomized
residuals rather than randomizing the predictor variable.
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Example 8I: Power analysis - sample size determination in testing Hy : p =0

Zar (1999) provided a worked example in which the sample size required to reject the null
hypothesis (Hg : p = 0) 99% of the time when the correlation coefficient has an absolute
magnitude (ignore sign) greater or equal to 0.5 (|p| > 0.5) (Example 19.5 Zar (1999)).

Step 1 - calculate the sample size required to detect a correlation of greater or equal to 0.5 with
a power of 0.99

> library (pwr)
> pwr.r.test(r = 0.5, power = 0.99)

approximate correlation power calculation (arctangh

transformation)
n = 63.50301
r = 0.5

sig.level = 0.05

power = 0.99

alternative two.sided

Step 2 - generate a plot that illustrates the relationship between target correlation (from 0.4 to
0.9) and sample size for a range of levels of power (0.75,0.8,0.85,0.9).

> library (pwr)

> r <- seqg(0.4, 0.9, 1 = 100)

> plot (sapply(r, function(x) pwr.r.test(r = x, power = 0.8)S$n) ~

+ r, type = "1", lwd = 2, xlab = "Correlation coefficient",

+ vlab = "Sample size")

> points (sapply(r, function(x) pwr.r.test(r = x, power = 0.9)$n) ~
+ r, type = "1")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.85)$n) ~
+ r, type = "1")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.75)$n) ~
+ r, type = "1")

Conclusions - graph provides a means
to evaluate the cost-benefit compromises
i between power and sample size for a range
of possible correlations. Informed design
decisions can result from such graphs. If the
degree of correlation is expected to be high,
approximately 10 replicates would be ade-
quate. However, if the degree of correlation
is expected to be lower, a greater number
of replicates are required. Furthermore, as

o4 o5 o6 o7 os o9 thedegreeofcorelation declines, the differ-
Correlation coefficient ence in estimated required sample size for

different levels of power becomes greater.
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Multiple and curvilinear regression

Multiple and complex regression analyses can be useful for situations in which patterns
in a response variable can not be adequately described by a single straight line resulting
from a single predictor and/or a simple linear equation.

9.1 Multiple linear regression

Multiple regression is an extension of simple linear regression whereby a response
variable is modeled against a linear combination of two or more simultaneously
measured continuous predictor variables. There are two main purposes of multiple
linear regression:

(i) To develop a better predictive model (equation) than is possible from models based on
single independent variables.

(i) Toinvestigate the relative individual effects of each of the multiple independent variables
above and beyond (standardized across) the effects of the other variables.

Although the relationship between response variable and the additive effect of all the
predictor variables is represented overall by a single multidimensional plane (surface),
the individual effects of each of the predictor variables on the response variable
(standardized across the other variables) can be depicted by single partial regression lines.
The slope of any single partial regression line (partial regression slope) thereby represents
the rate of change or effect of that specific predictor variable (holding all the other
predictor variables constant to their respective mean values) on the response variable. In
essence, it is the effect of one predictor variable at one specific level (the means) of all the
other predictor variables (i.e. when each of the other predictors are set to their averages).

Multiple regression models can be constructed additively (containing only the
predictor variables themselves) or in a multiplicative design (which incorporate inter-
actions between predictor variables in addition to the predictor variables themselves).
Multiplicative models are used primarily for testing inferences about the effects of
various predictor variables and their interactions on the response variable in much the
same way as factorial ANOVA (see chapter 12). Additive models by contrast are used
for generating predictive models and estimating the relative importance of individual
predictor variables more so than hypothesis testing.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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9.2 Linear models

Additive model

yi = Bo+ Bixii + Baxio + ... + Bixij + &i

where By is the population y-intercept (value of y when all partial slopes equal zero),
B1, B, etc are the partial population slopes of Y on X, X, etc respectively holding
the other X constant. ¢; is the random unexplained error or residual component.
The additive model assumes that the effect of one predictor variable (partial slope) is
independent of the levels of the other predictor variables.

Multiplicative model

yi = Bo + Bixi1 + Boxia + Bsxixip + ... + &

where B3x;1xi, is the interactive effect of X; and X; on Y and it examines the degree
to which the effect of one of the predictor variables depends on the levels of the other
predictor variable(s).

9.3 Null hypotheses

A separate Hy is tested for each of the estimated model parameters:
Hp: o =0 (the population y-intercept equals zero)

This test is rarely of interest as it only tests the likelihood that the background level
of the response variable is equal to zero (rarely a biologically meaningful comparison)
and does not test whether or not there is a relationship.

Hp: p1 =0 (the partial population slope of X; on Y equals zero)
Hp: 2 =0 (the partial population slope of X, on Y equals zero)

These tests examine respectively whether or not there is likely to be a relationship
between the dependent and one of the independent variables (holding the other
independent variables constant) in the population.

For an additive model

Ho:8:=0 (the partial population slope of the interactive effect of
X and X; on Y equals zero)

This test examines whether or not the effect of one dependent variable on the
independent variable (holding others constant) is dependent on other independent
variables.
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As with simple linear regression, these individual parameter null hypothesis tests
can all be tested using the ¢-statistic with n — (p + 1) degrees of freedom (where p is
the number of parameters in the linear model) or by comparing the lack of fit of a
full model (model containing all predictor variables) to an appropriate reduced model
(model containing all but the individual predictor variable or interacting variables)
via analysis of variance. In addition, the overall analysis of variance (which tests
the Hy : B1 = B2 = ... = Bj = 0) investigates whether the response variable can be
modeled by the particular linear combination of predictor variables.

Interactions

The nature of significant interactions (e.g. X; and X; on Y) can be further explored by
re-fitting the multiple linear model to explore the partial effects of one of the predictor
variables (e.g. X ) for a specific set of levels of the other interacting predictor variable(s)
(e.g. the mean of x; as well as this mean & 1 and or 2 standard deviations). For such
subsequent main effects tests, ignore the effect of the interaction, which will be identical
to that previously tested, and focus purely on the individual partial slope (5;).

9.4 Assumptions
To maximize the reliability of hypothesis tests, the following assumptions apply:

(i) linearity - no other curved relationship represents the relationships between each of the
predictors and the response variable. Scatterplots and scatterplot matrices are useful for
exploring linearity.
(ii) normality - the residuals, and therefore the populations from which each of the responses
were collected, are normally distributed. Note that in the majority of multiple linear
regression cases, the predictor variables are measured (not specifically set), and therefore
the respective populations are also assumed to be normally distributed. Boxplots of each
variable (particularly those incorporated within the diagonals of a scatterplot matrix) are
useful diagnostics.
(iii) homogeneity of variance - the residuals (populations from which each of the responses
were collected) are equally varied. Exploring the spread of points around individual
scatterplot trendlines can be useful, as can residual plots. Plots of residuals against
each of the predictor variables can also be useful for diagnostic spatial and temporal
autocorrelation.
(iv) (multi)collinearity - a predictor variable must not be correlated to the combination of
other predictor variables. Multicollinearity has major detrimental effects on model fitting:
* instability of the estimated partial regression slopes (small changes in the data or
variable inclusion can cause dramatic changes in parameter estimates).

* inflated standard errors and confidence intervals of model parameters, thereby increas-
ing the type Il error rate (reducing power) of parameter hypothesis tests.

Multicollinearity can be diagnosed with the following:

* investigate pairwise correlations between all the predictor variables either by a
correlation matrix or a scatterplot matrix.
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* calculate tolerance (| — r? of the relationship between a predictor variable and all the
other predictor variables) for each of the predictor variables. Tolerance is a measure
of the degree of collinearity and values less < 0.2 should be considered and values
< 0.1 given series attention. Variance inflation factor (VIF) are the inverse of tolerance
and thus values greater than 5, or worse, 10 indicate collinearity.

* PCA (principle components analysis) eigenvalues (from a correlation matrix for all the
predictor variables) close to zero indicate collinearity and component loadings may be
useful in determining which predictor variables cause collinearity.

There are several approaches to dealing with collinearity®:

* remove the highly correlated predictor variable(s), starting with the least most
biologically interesting variable(s).

* PCA (principle components analysis) regression - regress the response variable
against the principal components resulting from a correlation matrix for all the
predictor variables. Each of these principal components by definition are completely
independent, but the resulting parameter estimates must be back-calculated in order
to have any biological meaning.

Interaction terms in multiplicative models are likely to be correlated to their constituent

individual predictors, and thus the partial slopes of these individual predictors are likely

to be unstable. However, this problem can be reduced by first centering (subtracting the
mean from the predictor values) the individual predictor variables.

(v) the number of predictor variables must be less than the number of observations otherwise
the linear model will be over-parameterized (more parameters to estimate than there are
independent data from which estimations are calculated).

As with simple linear regression, regression diagnostics (residuals, leverage and
Cook’s D) should be examined following model fitting.

9.5 Curvilinear models

It is not always appropriate to attempt to model the relationship between a response
and predictor variable with a straight line in which it is assumed that the rate of
change (slope) remains constant throughout the range of the predictor variable. In
such cases, scale transformations may not only be unable to correct linearity, they may
be inappropriate when we are trying to describe a model that reflects the true nature of
the relationship. To some degree, curvilinear models assume that there is a relationship
between the variables and are themselves more concerned with exploring the nature of
the relationship. Table 9.1 depicts the general nature and corresponding models and
R syntax for some simple or useful non-linear models.

9.5.1 Polynomial regression

Polynomials are linear combinations of predictor variables (no predictor variable is the
exponent, multiplier or deviser of any other) in which a predictor variable is represented

?Note that all of these are likely to result in biased parameter estimates.



212 CHAPTER 9

Table 9.1 lllustrative set of useful non-linear functions with corresponding R model fitting
syntax. Some examples also illustrate corresponding self-starting functions. Note that this is a
non-exhaustive set.

Function Preview

Concave/convex functions
Power (y = axP)

Used to describe a large range of physical and biological trends g>; 1
including allometric scaling relationships (e.g. Kleiber's law) and
inverse square laws (e.g. Newtonian gravity). « defines the scale of

p<0

the y-axis and S defines the magnitude and polatity of the rate

of change and thus the degree of curvature

> nls (DV~a*IV"b, dataset, start=list (a=1,
b=0.1))

Exponential (y = aef?)
Models non-asymptotic growth and decay. « defines the scale of
the y-axis and increasing magnitude of S increases the curvature of
the curve.
> nls (DV~a*exp (b*IV), dataset, start=list(a=1,
b=0.1))

a<0,B8<0

a>0,8>0
@ <0,8>0
a>0,8<0

Aymptotic functions
Asymptotic exponential (y = « + (8 — a)e %)
Used to describe general asymptotic relationships.
Equivelent to the more simple y =a— be™™ when a=«,
b=p—aandc=c¢e"
« -y value of horizontal asymptote. § - value of y when x = 0.
y - natural log of rate of curvature
> nls (DV~a+b*exp(c*x),dataset, start=1ist (a=1,
b=-1,c=-1))
> nls (DV~SSasymp (IV,a,b,c), dataset)
Michaelis-Menten (y = ;=
Used to relate rates of enzymatic reactions to substrate concentra-
tions
a — y value of horizontal asymptote. 8 (Mechaelis parameter) -
value of x at which half the asymptotic response is obtained.
> nls (DV~(a*1IV)/(b*IV), dataset,
start=1list (a=1, b=1))
> nls(DV~SSmicmen (IV,a,b), dataset)

a<f
a>p
B>0
p<0
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Table 9.1 (continued)

Function Preview
Sigmoidal
’.Ogistic (y = m)
Used to describe binary responses (presence/absence, alive/dead, y>0

etc) relationships.

a - horizontal asymptote (typically 1). 8 - value of x at which half

the asymptotic response is obtained (inflection point).

y - determines the steepness at inflection.

> nls(DV~a/ (1l+exp((b-IV)/c)), dataset,
start=1list(a=1,b=1,c=.1))

> nls(DV~SSlogis(IV,a,b,c), dataset)

Weibull (y = o — Be=(@*))

Describes the kinetics of many enzymes. Used to relate rates of r>0

enzymatic reactions to substrate concentrations

«a - right side horizontal asymptote. 8 - rate of vertical change.

y - natural log of rate of curvature. § - power to raise x.

> nls(DV~a - b*exp(-exp(c)*IVv~"d), dataset,
start=1list (a=1, b=1, c=1, d=1))

> nls (DV~SSweibull (IV,a,b,c,d), dataset)

y<0

Peaks and/or valleys
Polynomials
Describes the kinetics of many enzymes. Used to relate rates of
enzymatic reactions to substrate concentrations
> Im(DV~ IV + I(IV"2) + I(IV"3), dataset)
> Im(DV poly (IV, 3), dataset)

= ;30+ Bix— ﬁ2x2

by multiple instances of itself (each of a successively higher order). These higher order
terms are quadratic (2nd order, x?), cubic (3rd order, x°), etc terms and are interactions
of the predictor variables with itself. The linear model for a second-order (quadratic)
regression (parabola) is:

yi = Bo + Bixit + Poxiy + &

Parameters are estimated and tests of the Hy’s that 8y =0, 81 =0, 8, =0 and
Bo = 1 = B, = 0 are performed as per multiple linear regression. Note that the
polynomial regression model contains multiple instances of a predictor variable
(including interactions), and that each of these instances will be correlated to one
another, thereby violating the assumption of collinearity. Centering the predictor
variable first reduces this problem.

Arguably a more biologically meaningful test is whether a higher-order polynomial
model (e.g. quadratic) fits the data better than a lower-order model (such as a simple
linear regression) and this is tested with a F-statistic by comparing the fit of the model
with the higher-order term versus a model without this term.
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9.5.2 Nonlinear regression

Non-linear regression models enable us to investigate the fit of various predefined
functions (such as power, exponential, logarithmic as well as any other non straight
line functions) to our collected data. Non-linear model parameters are estimated by
iteratively changing the values of the parameters so as to either minimize the sum of
squared residuals (OLS) or to maximize the log-likelihood (ML). Starting values of
the parameters must be provided, and should be realistic to maximize the chances of
convergence (reaching stable parameter estimates). Furthermore, it is advisable that
non-linear models be re-fitted with a range of starting values so as to reduce the risks of
parameter estimates converging on a ‘local minimum’ (a set of parameters arrived on
through the sequential iteration process that produce a better fit than slightly different
values of the parameters, yet still not the estimates that produce the best fit). When
using OLS, the typical regression assumptions of residual normality and equal variance
apply, whereas, ML can be more robust to these assumptions.

9.5.3 Diagnostics

The same model fitting diagostic issues and measures that were highlighted in
section 8.2.6 are relevant to multiple linear regression and non-linear regression.

9.6 Robust regression

The robust alternatives introduced for simple linear regression in section 8.2.7 can
largely be extended to multiple linear regression applications.

9.7 Model selection

Not all the predictor variables in a multiple linear model necessarily contribute
substantially to explaining variation in the response variable. Those that do not, are
unlikely to have much biological impact on the response and therefore could be
ommitted from the final regression equation (along with all the other unmeasured
variables). Furthermore, we may wish to determine which of a range of linear and
non-linear models best fits the collected data. For the purpose of explaining a response
variable’, the ‘best’ regression model is arguably the model that contains only a subset
combination of important predictor variables and is therefore the model that explains
the most amount of response variability with the fewest predictor terms® (parsimony).

b Likewise, for the pursuit of developing predictive multiple regression models, the ‘best’ regression
model will contain the fewest predictor variables as greater numbers of predictor variables increases the

model complexity and sources of uncertainty and thus decreases the precision of resulting predictions.
¢ Recall that in statistical models, a ‘term’ denotes an estimable parameter (such as partial slope) and

its associated predictor or interaction of predictors.
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There are several criteria that can be used to assess the efficiency or fit of a model
that are penalized by the number of predictor terms. These criteria are calculated and
compared for a set of competing models thereby providing an objective basis on which
to select the ‘best’ regression model.

MS,esiduats - Tepresents the mean amount of variation unexplained by the model, and therefore
the lowest value indicates the best fit.

Adjusted r? - (the proportion of mean amount of variation in response variable explained
by the model) is calculated as adj. r* = % and is therefore adjusted for both sample
size and the number of terms. Larger values indicate better fit. Adjusted r? and MS,esiguals
should not be used to compare between linear and non-linear models.

Mallow’s C, - is an index resulting from the comparison of the specific model to a model
that contain all the possible terms. Models with the lowest value and/or values closest to
their respective p (the number of model terms, including the y-intercept) indicate best fit.

Akaike Information Criteria (AIC) - there are several different versions of AIC, each
of which adds a different constant (designed to penalize according to the number of
parameters and sample size) to a likelhood function to produce a relative measure of the
information content of a model. Smaller values indicate more parsimonious models. As a
rule of thumb, if the difference between two AIC values (delta AIC) is greater than 2, the
lower AIC is a significant improvement in parsimony.

Schwarz Bayesian Information Criteria (BIC or SIC) - is outwardly similar to AIC. The
constant added to the likelihood function penalizes models with more predictor terms more
heavily (and thus select more simple models) than AIC. It is for this reason that BIC is
favored by many workers, however, others argue strongly in favor of AIC claiming that the
theoretical basis for BIC may not be relevant for most biological applications¢.

Traditionally, the set of competing linear models were generated by stepwise proce-
dures in which terms were progressively added or dropped from a model on the basis of
importance (as assessed via p-values of partial slopes). Whilst such procedures reduce
the number of models that are assessed and compared (it is for the associated reduc-
tions in computational intensity that such procedures where originally developed), it is
possible that the ‘best’ model is never assessed. Modern computing now allows all com-
binations to be assessed rapidly thereby voiding the need for such selection procedures.

9.7.1 Model averaging

Typically, there are multiple plausible alternative models that incorporate different
combinations of predictor variables and that yield similar degrees of fit (based on AIC,
QAIC, BIC, etc). Each alternative model will result in different parameter estimates for
the predictor variables. Furthermore, conclusions about the relative importance of each
of the predictor variables is likely to be dependent on which model is selected. Model
averaging is a technique that calculates weighted averages of the parameter estimates

4 The original basis for BIC was for situations in which there were either no effects or else there were
a mixture of major and no effects with no intermediate or tapering effects. Furthermore, it assumes
that the true model (against which all others are compared) is among the set being assessed.
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for each predictor variable across all the possible models. In so doing, model selection
uncertainty can be incorporated into estimates of parameter precision. Furthermore,
through model averaging, we are able to obtain an estimate the relative importance of
each of the predictor variables on the the response.

9.7.2 Hierarchical partitioning

For applications that are primarily focused on identifying the polarity and relative
magnitudes of the effects (importance) of predictor variables, constructing a single
‘best’ predictive model may be of little value and indeed may not necessarily identify
the important causal variables. Similar to model averaging, hierarchical partitioning
assesses the independent, joint and total contribution (relative influence) of each
predictor variable by averaging a measure of goodness-of-fit® over all possible models
that include that predictor variable. In so doing, hierarchical partitioning is also
less susceptible to multicollinearity problems than are the single-model approaches
outlined above. Note that since hierarchical partitioning operates within an entire
model set, it is not appropriate for comparing the fit of single models.

In order to evaluate whether the magnitude of a variable’s contribution is great
enough to warrant retention (or attributed as important), a randomization procedure
can be used in which the independent contributions of each predictor variable are
compared to distributions of such contributions generated by repeated (e.g. 1000 times)
randomizations of the data matrix. Alternatively, the randomized outcomes can be
used to calculate Z-scores/ for each predictor variable, which in turn can be used to
test significance (Z > 1.65 at the 95% level).

9.8 Regression trees

Regression trees are a robust® alternative to multiple regression for exploring and
describing patterns between a response variable and multiple predictor variables as
well as developing predictive models. In addition, as regression trees are rank-based,
they accommodate a range and combination of response and predictor data types
(including categorical, numerical and rankings) and do not depend on the nature
of monotonic relationships (linearity not assumed nor is the arbitrary family of a
curvilinear relationship required).

Regression trees are constructed via binary recursive partitioning, a process in which
the data are progressively split into a dichotomously branching tree. Initially, for
each predictor variable, the process iteratively determines the value of that predictor
variable that results in the single dichotomous split that minimizes the sum of squared
deviations from the split response means. The predictor variable (and split) with
the smallest deviations is thereby installed as a node at the top of the tree and is
interpreted as the most explanatory of the patterns in the response variable. Two

¢#2 in multiple linear regression, x? in log-linear models.

fcalculated as Z = (I, — mean{lana}) /sd{Liand}.
8 They are invariant to underlying distributions.
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branches descend from this top tree node. The left and right branches represent subsets
of the entire dataset for which the values of the top predictor variable are respectively
less than and greater than the splitting threshold value. This partitioning process then
continues recursively down each branch until either a specific number of branches
have been produced or a pre-defined minimum number of observations within the
branch has been obtained. Graphical trees can be constructed to illustrate the hierarchy
of importance of the predictor variables as well as the nature of interactions between
predictor variables.

Each additional split increases the overall explanatory power of the tree (as measured
by total deviance). However, greater numbers of branches also increase the degree of
over-fitting" and complexity resulting in models with poor predictive performance.
A cost-complexity measure can be used to visually assess the compromise between
explanatory power and complexity (number of branches) and thus help identify how
the tree could be pruned.

9.9 Further reading

¢ Theory

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.

Quinn, G. P., and K.J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal,R.,and F. J.Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.
Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

* Practical - R
Crawley, M. J. (2007). The R Book. John Wiley, New York.

Faraway, J. J. (2006). Extending Linear Models with R: generalized linear mixed effects
and nonparametric regression models. Chapman & Hall/CRC.
Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

9.10 Key and analysis sequence for multiple and complex regression

1 a. Investigating relationships between a single response variable and multiple
predictor variables with the expectation that the predictor variables will be
linearly related to the response (Multiple linear regression) ............ Goto2

" Over-fitting is were additional branches have began to represent and “explain” random aspects of
the dataset (such as individual variation) rather than genuine population patterns.
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. Investigating non-linear relationships between a single response variable and a

single predictor variable (Non-linear regression) ...................... Goto7

. Develop descriptive and predictive models between a single response variable

and multiple predictor variables with few distributional, curvilinear or data type
restrictions (Regressiontrees) ................coiiiiiiiininnn.. Goto 13

. Check assumptions for multiple linear regression

Parametric assumptions
* Normality of the response variable and predictor variables - scatterplot matrix
with boxplots in diagonals
* Homogeneity of variance - spread of data around scatterplot matrix trendlines
* Linearity of data points on a scatterplot, trendline and lowess smoother
useful
> library(car)
> scatterplot.matrix (~DV+IV1+IV2+IV3, dataset,
+ diag="boxplot")

where DV and IV1, IV2,... are the response and predictor variables respectively in
the dataset data frame

(Multi)collinearity assumption . ............c..coeiitiieiniineennan... Goto3
Parametricassumptionsmet............... .. it Goto4

. Parametric assumptions NOT met or scale transformations (see tab. 3.2) not

successful or inappropriate . .......... ... .. i Goto7

. Check (multi)collinearity assumption

> cor (dataset[, cols])

where cols is a set (vector) of numbers representing the column numbers for the
predictor variables in the dataset data frame

> vif (lm(DV ~ IV1 + IV2 + ..., dataset))

> 1/vif (lm(DV ~ IVl + IV2 + ..., dataset))

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.
(Multi)collinearity assumptionmet......................... return to previous

. (Multi)collinearity assumption not met - attempt one of the following:

* Exclude one or more predictor variables - retain most biologically important
on an priori theoretical basis............................... See Example 9A

¢ (Multi)collinearity due to interactive/polynomial terms - center predictors See
Example 9B

> dataset$cIVl <- scale(dataset$IVl, scale F)
> dataset$cIV2 <- scale(dataset$IV2, scale = F)

>

where TV1 and IV2 are two of the predictor variables in the dataset data frame.
Return ........ .. Return to previous
* PCAregression.................... see Quinn and Keough (2002) chapter 17.
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4 a.

The effects of each predictor variable on the response variable are expected to be

independent of other measured predictor variables (fit additive model) ... .. See
Example 9A
> data.lm <- 1Im(DV ~ IV1 + IV2 + .., dataset)

> plot(data.lm)

> summary (data.lm)

To summarize the partial relationships graphically..................... Goto 12
To select the ‘best’ model or compare fit to other models ................ Goto 8

. The effects of one or more predictor variables are expected to depend on the

level of other measured predictor variables and such interactions are of biological
interest (fit multiplicativemodel)............... ... ... ... .. ... See Example 9B
> data.lm <- Im(DV ~ IV1 + IV2 + .. + IV1:IV2 + .., dataset)

> plot(data.lm)

> summary (data.lm)

where DV and IV1, IV2, . . . are the response and predictor variables respectively in the
dataset data frame.

To summarize the partial relationships graphically..................... Goto 12
INteraction(s) PreSENt. . ... vttt ettt e e e e e e aaas Goto 6
To select the ‘best’ model or compare fit to other models ................ Goto8

. Random/haphazard sampling not possible, observations not necessarily indepen-

dent (randomization test) .. ... See
Example 9E
stat <- function(data, indices) {
summary (1m(DV ~ IVl + IV2 + ..., data))S$Scoef[,

3]
}
rand.gen <- function(data, mle) {

out <- data

out$DV <- sample(out$DV, replace = F)

>

+

+

+

>

+

+

+ out
+ 1

> library (boot)

> dataset.boot <- boot(dataset, stat, R = 1000,

+ sim = "parametric", ran.gen = rand.gen)

> t <- apply(apply (abs (dataset.boots$t), 1, ">=",

+ abs (dataset.boot$t0)) * 1, 1, "sum") + 1

> t/(dataset.bootS$R + 1)

where DV and TV1, IV2, . . . are the response and predictor variables respectively in the
dataset data frame.

Interaction(s) present . ............c.uoueiuintint i iean.. Goto6

. Observations independent however data non-normal with few outliers (robust

M-estimator test)
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Exploring interactionsfurther.......................... ... .. See Example 9B
> IVl_sd2 <- mean(IV1l) - 2 * sd(IVl)

> data.lm2 <- 1Im(DV ~ IV2 * c(IV1l - IVl _sd2), data = dataset)
> summary (data.lm2)

where the effect of one of the predictor variables (1v2) on the dependent variable (DvV)
is modeled for a value of another predictor variable (1v1) equal to its mean minus 1
standard deviation.

Return ... Return to previous
Relationship should theoretically asymptote (reach a plateau) (Nonlinear
o4 LT 10311 PP Goto7

Power function

> dataset.nls <- nls(DV ~ alpha * IV"beta,

+ start = list(alpha = a, beta = b), dataset)
Logarithmic function

> dataset.nls <- nls(DV ~ alpha * log(IV),

+ start = list(alpha = a), dataset)
Exponential function

> dataset.nls <- nls(DV ~ alpha * exp(IV * beta),
+ start = list(alpha = a, beta = b), dataset)

where DV and IV are the response and predictor variables respectively in the dataset
data frame. The starting parameters a and b are numbers selected to represent the
starting configuration (see Table 9.1).

Examine the parameter estimates

> summary (dataset.nls)

. Relationship does not necessarily plateau (Polynomial regression) . ......... see
Example 9F
> data.lm3 <- Im(DV ~ IV + I(IV"2) + I(IV"3) + ..., dataset)
OR

> data.lm3 <- Im(DV ~ poly(IV, 3), dataset)
> plot(data.lm3)
Compare fit to that of a lower order polynomial

> data.lm2 <- 1Im(DV ~ IV + I(IV ~ 2) + ..., dataset)
> anova (data.lm2, data.lm3)
> summary (data.lm2)

To produce a summary plot .. ....ovein it Goto 1l
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8  Comparing the fit of two or more models (see table9.2) ........ See Example 9G
Additionally, to compare the fit of two or more parametric linear models via
ANOVA
> anova (model.lml, model.lm2, ...)
where data.1ml and data.1lm2, ... are two or more parametric linear models.

9  Generating the ‘best’ predictive model (Model Selection)' . . . . .. See Example 9C

> library (biology)

> Model.selection(data.lm)

> library (MuMIn)

> model.avg (get.models (dredge (data.glm)))

where data.lm is the full fitted linear model containing all the predictor variable

combinations.
10  Determine the relative influence of each of the predictor variables (Hierarchical
partitioning) . ... ... .. See Example 9D

> library (hier.part)
> data.preds <- data.lmSmodel[, 1]

> hier.part (dataset$DV, data.preds, gof = "Rsqu")
> rand.hp (dataset$DV, data.preds, gof = "Rsqu",
+ num.reps = 100)$Iprobs
11  Base summary plot for curvilinear regression ............. See Example 9F &9G
> plot (V1 ~ V2, data, pch = 16, axes = F, xlab = "", ylab = "")
> axis(l, cex.axis = 0.8)
> mtext (text = "x-axis title", side = 1, line = 3)
> axis (2, las = 1)
> mtext (text = "y-axis title", side = 2, line = 3)
> box (bty = "1")

where V1 and V2 are the continuous variables in the dataset data frame. For
regression, V1 represents the response variable and v2 represents the predictor variable.
Adding fitted regressionline ................ ... ... See Example 9F&9G
> x <- seqg(min(dataset$IV), max(dataset$IV), 1 = 1000)
)

> points(x, predict (model, data.frame(IV = x) type = "1")

where IV represents the predictor variable within the dataset data frame and model
represents a fitted regression model.

"The muMTn package is not yet part of the official comprehensive R archive network (CRAN).
The package can be downloaded from http://mumin.r-forge.r-project.org/ or installed from within
R:> install.packages ("MuMIn", repos="http://R-Forge.R-project.org").
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Exploring added variable plots to illustrate the relationships between the response
variable and each of the predictorterms....................... See Example 9A

> av.plots(data.lm, ask = F)

where DV and IV1, IV2, . . . are the response and predictor variables respectively in the
dataset data frame.

Perform binary recursive partitioning (Regression tree) . .. ..... See Example 9H
> library(tree)

> data.tree <- tree(DV ~ IVl + IV2 + ..., dataset,

+ mindev = 0)

where DV and IV1, IV2, . . . are the response and predictor variables respectively in the

dataset data frame.
To examine a residual plot

> plot(residuals(data.tree) ~ predict(data.tree))
To construct the graphical tree

> plot(data.tree, type = "uniform")

> text(data.tree, cex = 0.5, all = T)

> text (data.tree, lab
2

= paste("n"), cex = 0.5, adj = c(0,
+ ), splits = F)
Fortree pruning...........o.uiuiiiiiiiiiiiii i Goto 14
Regressiontreepruning ..................coiiiiiiiiia... See Example 9H

To investigate a const-complexity measure plot

> plot (prune.tree(data.tree))

To prune the tree to a specific number of branches (e.g. 3)

> data.tree.prune <- prune.tree(data.tree, best = 3)

Worked examples of real biological data sets

Example 9A: Multiple linear regression - additive model

To investigate the effects of habitat fragmentation, Loyn (1987) related the abundance of
forest birds to a range of variables (including patch area, number of years of isolation,
distance to the nearest patch and larger patch, grazing intensity and altitude) collected from
a total of 56 forest patches throughout Victoria (Box 6.2 Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Loyn (1987) data set

> loyn <- read.table("loyn.csv", header = T, sep = ",")
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Step 2 (Key 9.2) - Assess assumptions of linearity, normality and homogeneity of variance.

> library (car)
> scatterplot.matrix (~ABUND + AREA + YR.ISOL + DIST +

+ LDIST + GRAZE + ALT, data = loyn, diag = "boxplot")
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Conclusions - AREA, DIST and LDIST variables obviously non-normal (asymmetrical boxplots)
and consequently the relationships between each of these variables and the response variable
(ABUND) show non-linearity. In light of the normality problems, homogeneity of variance is
difficult to assess. Scale transformations of the non-normal variables should be attempted.

> scatterplot.matrix (~ABUND + loglO (AREA) + YR.ISOL +
+ 1logl0(DIST) + loglO(LDIST) + GRAZE + ALT, data = loyn,
+ diag = "boxplot")
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Conclusions - log|o transformation appear successful, no evidence of non-normality (sym-
metrical boxplots), non-homogeneity of variance (even spread of points around each trend) or
non-linearity.

Step 3 (Key 9.3) - Assess multicollinearity.

> cor (loyn[, 2:7])
AREA YR.ISOL DIST LDIST

AREA 1.000000000 -0.001494192 0.1083429 0.03458035
YR.ISOL -0.001494192 1.000000000 0.1132175 -0.08331686
DIST 0.108342870 0.113217524 1.0000000 0.31717234

LDIST 0.034580346 -0.083316857 0.3171723 1.00000000
GRAZE -0.310402417 -0.635567104 -0.2558418 -0.02800944

ALT 0.387753885 0.232715406 -0.1101125 -0.30602220
GRAZE ALT
AREA -0.31040242 0.3877539

YR.ISOL -0.63556710 0.2327154
DIST -0.25584182 -0.1101125
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LDIST -0.02800944 -0.3060222
GRAZE 1.00000000 -0.4071671
ALT -0.40716705 1.0000000

Conclusions - With the exception of GRAZE and YR. ISOL, none of the predictor variables
are particularly correlated to one another.

> vif (Im(ABUND ~ loglO (AREA) + YR.ISOL + loglO(DIST) +
+ 1logl0 (LDIST) + GRAZE + ALT, data = loyn))
loglO (AREA) YR.ISOL 1loglO(DIST) loglO(LDIST) GRAZE
1.911514 1.804769 1.654553 2.009749 2.524814
ALT
1.467937
> 1/vif (1lm(ABUND ~ loglO(AREA) + YR.ISOL + loglO(DIST) +
+ 1logl0 (LDIST) + GRAZE + ALT, data = loyn))
logl0 (AREA) YR.ISOL 1loglO(DIST) loglO(LDIST) GRAZE
0.5231454 0.5540876 0.6043930 0.4975746 0.3960688
ALT
0.6812282

Conclusions - Variance inflation and their inverses (tolerances) are less than 5 and greater than
0.2 respectively suggesting that multicollinearity is unlikely to be a problem.

Step 4 (Key 9.4) - fit the additive multiple linear model relating bird abundance to the range of
appropriately scaled patch characteristics.

> loyn.lm <- Im(ABUND ~ loglO(AREA) + YR.ISOL + loglO(DIST) +

+ 1loglO(LDIST) + GRAZE + ALT, data = loyn)
> plot(loyn.1lm)
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> influence.measures (loyn.1lm)

dfb.1_ dfb.110(A dfb.YR.T dfb.110(D dfb.110(L
1 -0.02454653 0.32534847 0.008468066 0.08370776 -0.022663517
2 -0.01750873 0.01265303 0.016012689 -0.01656030 0.020997123
3 -0.05891170 0.04830884 0.060903999 0.01044557 -0.016320746
4 -0.02464857 -0.04735981 0.028326646 -0.01082504 -0.015503647
5 0.06451364 -0.09167341 -0.078406403 0.17235656 -0.075678399
6 -0.01395526 -0.02707540 0.014184325 0.01153817 0.003907139
dfb.GRAZ dfb.ALT dffit cov.r cook.d
1 0.218999564 -0.0055469496 -0.42060699 1.394989 0.0254974592
2 0.003658088 0.0372465169 -0.06571529 1.319078 0.0006293951
3 0.012240659 -0.0219517552 -0.11033159 1.287647 0.0017717789
4 -0.005964993 0.0102469605 0.09983048 1.216839 0.0014493334
5 0.105181168 0.1013851217 0.35751545 1.035693 0.0181201227
6 -0.003666825 0.0009195532 0.03845593 1.243342 0.0002155830
hat
1 0.23735383
2 0.12793356
3 0.11497013
4 0.06900608
5 0.08492694
6 0.07336138

Conclusions - Whilst a couple of the leverage (hat) values are greater than 2 % p/n = 0.286
and therefore potentially outliers in x-space, none of the Cook’s D values are > |. Hence the
hypothesis tests are likely to be reliable.

> summary (loyn.lm)

Call:
Im(formula = ABUND ~ loglO (AREA) + YR.ISOL + loglO(DIST) +
1logl0 (LDIST) + GRAZE + ALT, data = loyn)

Residuals:
Min 10 Median 30 Max
-15.6506 -2.9390 0.5289 2.5353 15.2842

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -125.69725 91.69228 -1.371 0.1767
logl0 (ARER) 7.47023 1.46489 5.099 5.49e-06 ***
YR.ISOL 0.07387 0.04520 1.634 0.1086
1logl0 (DIST) -0.90696 2.67572 -0.339 0.7361
logl0 (LDIST) -0.64842 2.12270 -0.305 0.7613
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GRAZE -1.66774
ALT 0.01951
Signif. codes: 0 '***!

229

0.92993 -1.793 0.0791
0.02396 0.814 0.4195
0.001 '*** 0.01L '*' 0.05 '." 0.1 * 1

Residual standard error:

Multiple R-squared:
F-statistic:

0.6849,
17.75 on 6 and 49 DF,

p-value:

6.384 on 49 degrees of freedom
Adjusted R-squared:

0.6464

8.443e-11

Conclusions - there was a significant positive partial slope for bird abundance against log;o
patch area. The overall model explained 69% of the variability in bird abundances across the
56 patches in Victoria. Bird abundances were found to increase with increasing patch area, but
were not found to be significantly effected by grazing, altitude, years of isolation and distance

to nearest patch or larger patch.

Step 5 (Key 9.12) - explore plots of the individual partial relationships between the response
variable and each of the predictor variables (holding the other predictor variables constant).

> av.plots(loyn.lm, ask
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Example 9B: Multiple linear regression - multiplicative model

Paruelo and Lauenroth (1996) investigated the geographic (latitude and longitude) and
climatic (mean annual temperature, means annual precipitation and the proportion of the
mean annual precipitation that fall in the periods June-August and December-February)
patterns in the relative abundance of C; plants throughout 73 sites across North America
(Box 6.1 Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Paruelo and Lauenroth (1996) data set

> paruelo <- read.table("paruelo.csv", header = T,

+ Sep = n , n )
Step 2 (Key 9.2) - Assess assumptions of linearity, normality and homogeneity of variance.

> library(car)
> gscatterplot.matrix(~C3 + MAP + MAT + JJAMAP + DJFMAP +
+ LONG + LAT, data = paruelo, diag = "boxplot")
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Conclusions - whilst all the predictor variables appear normally distributed (symmetrical
boxplots), the response variable (C3) appears to be positively skewed and thus a candidate for
scale transformation (either a root transformation or a heavier log transformation). Paruelo and
Lauenroth (1996) and therefore Quinn and Keough (2002) used a log o(y + 1). Note that as
there are 0 values present and that log(0) cannot be evaluated, a small constant (such as 0.1Y)
must be added to each count in the response variable prior to the log transformation.

> scatterplot.matrix(~logl0(C3 + 0.1) + MAP + MAT +
+ JJAMAP + DJFMAP + LONG + LAT, data = paruelo,
+ diag = "boxplot")

600 1000 A . . 105 115
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log10(G3 + 0.1)
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Conclusions - transformation appear successful, now no evidence of non-normality (symmet-
rical boxplots), non-homogeneity of variance (even spread of points around each trend) or

i This constant value should be small relative to the values in the variable so that it does not
overshadow the existing values. However, if the value is more than two orders of magnitude smaller
than the majority of the values, it will make the zero values outliers (influential points).
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non-linearity. However there is some indication that multicollinearity could be an issue (there
are some strong trends between pairs of predictor variables).

Step 3 (Key 9.3) - Assess multicollinearity.

> cor (paruelo[, 2:7])

MAP MAT JJAMAP DJFMAP
MAP 1.0000000 0.355090766 0.11225905 -0.404512409
MAT 0.3550908 1.000000000 -0.08077131 0.001478037

JJAMAP 0.1122590 -0.080771307 1.00000000 -0.791540381
DJFMAP -0.4045124 0.001478037 -0.79154038 1.000000000
LONG -0.7336870 -0.213109100 -0.49155774 0.770743994

LAT -0.2465058 -0.838590413 0.07417497 -0.065124848
LONG LAT

MAP -0.73368703 -0.24650582

MAT -0.21310910 -0.83859041

JJAMAP -0.49155774 0.07417497
DJFMAP 0.77074399 -0.06512485
LONG 1.00000000 0.09655281
LAT 0.09655281 1.00000000

Conclusions - as was expected, some pairs of predictor variables (MAP & LONG, MAT & LAT
and JJAMAP & DIFMAP) are strongly correlated to one another suggesting multicollinearity
could potentially be a problem.

> vif(Ilm(loglO(C3 + 0.1) ~ MAP + MAT + JJAMAP + DJFMAP +
+ LONG + LAT, data = paruelo))
MAP MAT JJAMAP DJFMAP LONG LAT

2.799428 3.742780 3.163215 5.710315 5.267618 3.502732
1/vif(lm(logl0(C3 + 0.1) ~ MAP + MAT + JJAMAP + DJFMAP +
LONG + LAT, data = paruelo))
MAP MAT JJAMAP DJFMAP LONG LAT
0.3572159 0.2671810 0.3161340 0.1751217 0.1898391 0.2854914

\

+

Conclusions - Some of the variance inflation and their inverses (tolerances) are approaching
5 and 0.2 respectively again suggesting that multicollinearity could be a problem. Paru-
elo and Lauenroth (1996) and Quinn and Keough (2002) decided to split the analysis up
into two smaller analyses (Key 9.3b), one representing an investigation of geographic dis-
tribution and the other investigating the climatic factors. different aspects of the overall
study.

Step 4 - The investigation of geographic patterns in C3 plant abundances would model the log
transformed abundance of Cs plants against latitude and longitude. The extent of any latitudinal
effects might be expected to depend on longitude and visa versa. For example, perhaps longi-
tudinal effects are only important above or below a certain latitudes. Such possibilities suggest
that fitting a more complicated multiplicative model (with interaction effects) might be more
informative than an additive model.
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Step 5 (Key 9.3) - check multicollinearity by assessing tolerances.

> 1/vif(lm(logl0(C3 + 0.1) ~ LAT + LONG + LAT:LONG,
+ data = paruelo))

LAT LONG LAT : LONG
0.003249445 0.014973575 0.002494144

Conclusions - not surprisingly, there are very low tolerances since each of the individual pre-
dictors are going to be correlated to their interaction term. Centering (Key 9.3b) the predictor
variables before re-fitting the model should address this.

paruelo$cLAT <- paruelo$LAT-mean (paruelo$SLAT)

#OR

paruelo$cLAT <- scale(parueloS$SLAT, scale=F)

paruelo$cLONG <- scale(parueloS$SLONG, scale=F)

1/vif(1lm(logl0(C3+.1)~cLAT+cLONG+cLAT:cLONG, data=paruelo))
cLAT cLONG cLAT:cLONG

0.8268942 0.9799097 0.8195915

VvV V. V V V

Conclusions - multicollinearity is no longer likely to be a problem and the parameter estimates
and hypothesis tests are likely to be reliable.

Step 6 (Key 9.4b) - fit the multiplicative linear model and test whether each of the partial
population slopes are likely to equal zero.

> paruelo.lm <- Im(loglO(C3 + 0.1) ~ cLAT + cLONG +
+ cLAT:cLONG, data = paruelo)
> plot (paruelo.lm)
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> influence.measures (paruelo.lm)

dfb.1_ dfb.cLAT dfb.cLON dfb.cLAT: dffit
1 -0.01240897 -0.04291203 -0.04343888 -0.06275532 -0.07869325
2 -0.01232348 -0.03577596 -0.02255957 -0.04094363 -0.05303525
3 0.07696884 0.12765517 0.06321144 0.11087334 0.17912507
4 0.17518366 0.09561479 -0.13875996 -0.06937259 0.25698909
5 -0.05221407 -0.05487872 0.03652972 0.01850913 -0.09147598
6 -0.16175075 0.02214619 0.17475473 0.00759321 -0.24141744
cov.r cook.d hat
1 1.383538 0.0015704573 0.23466106
2 1.229880 0.0007133425 0.13890169
3 1.087217 0.0080746585 0.05557079
4 0.974066 0.0162711273 0.03171179
5 1.098320 0.0021171765 0.04482606
6 0.981941 0.0143925390 0.03048383

Conclusions - few leverage (hat) values are greater than 2 x p/n = 0.082, none of the Cook’s
D values are approaching |. Hence the hypothesis tests are likely to be reliable.

> summary (paruelo.lm)
Call:
Im(formula = loglO(C3 + 0.1) ~ cLAT + cLONG + cLAT:cLONG,

data = paruelo)

Residuals:
Min 10 Median 30 Max
-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.5529416 0.0274679 -20.130 < 2e-16 ***

cLAT 0.0483954 0.0057047 8.483 2.6le-12 **x*

cLONG -0.0025787 0.0043182 -0.597 0.5523

cLAT : cLONG 0.0022522 0.0008757 2.572 0.0123 ~*

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.'" 0.1 "' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom
Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926
F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

Conclusions - reject the Hy that there is no interactive effect of latitude and longitude on the
(logo) abundance of C5 plants.
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Step 7 (Key 9.6) - to further investigate this interaction, calculate the simple slopes of C; plant
abundance against longitude for a range of latitudes (e.g. mean & | standard deviation and =+ 2
standard deviations). Since the partial slopes in the multiplicative model are the simple slopes
for the mean values of the other predictor (hence partial effect of one predictor holding the other
predictor variables constant), the simple slope of longitude at the mean latitude has already
been calculated (—0.0026) and can be extracted from the summarized multiplicative model.

X| — 20 (mean centered longitude - 2 standard deviations)

> LAT_sdl <- mean (parueloS$ScLAT) - 2 * sd(parueloS$ScLAT)

> paruelo_LONG.lml <- Im(loglO(C3 + 0.1) ~ cLONG *

+ c(cLAT - LAT_sdl), data = paruelo)

> summary (paruelo_LONG. 1lml)

Call:

Im(formula = loglO(C3 + 0.1) ~ cLONG * c(cLAT - LAT sdl),

data = paruelo)

Residuals:
Min 10 Median 30 Max
-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0662239 0.0674922 -15.798 < 2e-16
cLONG -0.0264657 0.0098255 -2.694 0.00887
c(cLAT - LAT_ sdl) 0.0483954 0.0057047 8.483 2.6le-12
cLONG:c (cLAT - LAT_sdl) 0.0022522 0.0008757 2.572 0.01227
(Intercept) el
cLONG e
c(cLAT - LAT_sdl) * k%

cLONG:c (cLAT - LAT sdl) *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom
Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926
F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

X| — lo(mean centered longitude - | standard deviation)
> LAT_sd2 <- mean (parueloS$ScLAT) - 1 * sd(parueloS$ScLAT)
> paruelo_LONG.1lm2 <- Im(logl0O(C3 + 0.1) ~ cLONG *
+ c(cLAT - LAT_sd2), data = paruelo)
> summary (paruelo_LONG. 1m2)
Call:
Im(formula = 1loglO(C3 + 0.1) ~ cLONG * c(cLAT - LAT_ sd2),

data = paruelo)
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Residuals:
Min 10 Median 30
-0.54185 -0.13298 -0.02287 0.16807

Coefficients:

(Intercept)

cLONG

c (cLAT - LAT_sd2)
cLONG:c (cLAT - LAT_sd2)

(Intercept)

cLONG

¢ (cLAT - LAT_sd2)
cLONG:c (cLAT - LAT_sd2)

Signif. codes: 0 ‘'***!

Residual standard error:

Max
0.43410

Estimate Std. Error t value Pr(>]|t])

-0.8095827
-0.0145222
0.0483954
0.0022522

* Kk Kk

*

0.001 '*x

0.

0
0.
0

0417093
.0060025
0057047
.0008757

0.01 '*" 0.

-19.410
-2.419
8.483
2.572

05 .

< 2e-16
0.0182
2.61le-12
0.0123

0.1 " "1

0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926
F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11
X1 + lo(mean centered longitude + | standard deviation)
> LAT_sd4 <- mean (paruelo$cLAT) - 1 * sd(parueloS$ScLAT)
> paruelo_LONG.1lm4 <- Im(loglO(C3 + 0.1) ~ cLONG *
+ c(cLAT - LAT_sd4), data = paruelo)
> summary (paruelo_LONG. 1m4)
Call:
Im(formula = 1logl0(C3 + 0.1) ~ cLONG * c(cLAT - LAT sd4),
data = paruelo)
Residuals:
Min 10 Median 30 Max
-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

(Intercept)

cLONG

c(cLAT - LAT_sd4)
cLONG:c (cLAT - LAT_sd4)

(Intercept)

cLONG

c (cLAT - LAT_ sd4)
cLONG:c (cLAT - LAT_sd4)

Estimate Std. Error t value Pr(>]|t])

-0.8095827
-0.0145222
0.0483954
0.0022522

* % %

* k k

*

0.

0
0.
0

0417093
.0060025
0057047
.0008757

-19.410
-2.419
8.483
2.572

< 2e-16
0.0182
2.6le-12
0.0123
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Signif. codes: 0 ‘'***!

Residual standard error:

Multiple R-squared: 0.5137,

F-statistic: 24.3 on 3

0.001 '**!

0.01 '*" 0

.05 . 0.2 " "1

0.2334 on 69 degrees of freedom

and 69 DF,

p-value:

X| + 20 (mean centered longitude + 2 standard deviation)

Adjusted R-squared: 0.4926

7.657e-11

> LAT_sd5 <- mean (parueloS$ScLAT) - 1 * sd(parueloS$ScLAT)
> paruelo_LONG.1lm5 <- Im(logl0(C3 + 0.1) ~ cLONG *
+ c(cLAT - LAT_sd5), data = paruelo)
> summary (paruelo_LONG. 1m5)
Call:
Im(formula = 1loglO(C3 + 0.1) ~ cLONG * c(cLAT - LAT_sd5),
data = paruelo)
Residuals:
Min 10 Median 30 Max
-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

(Intercept)

cLONG

c(cLAT - LAT_sdb)
cLONG:c (cLAT - LAT_sdb)

(Intercept)

cLONG

c (cLAT - LAT_sdb)
cLONG:c (cLAT - LAT sdb)

Signif. codes: 0 ‘'**x*:

Residual standard error:
Multiple R-squared: 0.5137,

F-statistic: 24.3 on 3

Estimate Std. Error t value Pr(>|t|)

-0.8095827
-0.0145222
0.0483954
0.0022522

* Kk ok
*
* k *

*

0.001 '**

0.
0.0060025
0.

0.0008757

0417093

0057047

0.01 '*" 0

-19.410 < 2e-16
-2.419 0.0182
8.483 2.6le-12
2.572 0.0123

.06 . 0.1 " 1

0.2334 on 69 degrees of freedom

and 69 DF,

p-value:

Adjusted R-squared: 0.4926

7.657e-11
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Conclusions - the abundance of Cs plants is negatively related to longitude at low latitudes
however this longitudinal effect diminishes with increasing latitude and becomes a positive
effect at very high latitudes. Additionally (or alternatively), latitudinal effects could be seen to
become more positive with increasing longitude (from east to west).

Example 9C: Selecting the ‘best’ regression model

Quinn and Keough (2002) used the Loyn (1987) data set (analysed in Example 9A on
page 224) demonstrated the use of various criteria as the basis of selecting the ‘best’ model
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(Quinn and Keough (2002) Box 6.8). Continuing on from Example 9A, we will attempt to
determine the ‘best’, most parsimonious regression model for the purpose of either generating
a predictive model or simply to determine which predictor variables have the greatest relative
influence on the response variable.

Step | (Key 9.9b) - Compare the fit of all additive combinations of predictor variables from the
full fitted linear model of the Loyn (1987) data set via AIC, BIC, C, and adjusted 2.

> library(biology)
> Model.selection(loyn.lm)

logl0 (AREA) +YR.ISOL
1logl0 (AREA) +1ogl0 (DIST)
logl0 (AREA) +10gl0 (LDIST)

.63002728 213.0649 216.1288 2.8768100
.54130423 225.1026 228.1664 14.9144529
.56364647 222.3063 225.3701 12.1181257

Adj.r.sqg AIC AICc deltaAIC
1. loglO (AREA) 0.53927618 224.3964 227.4602 14.2082619
2. YR.ISOL 0.23954252 252.4592 255.5230 42.2710623
3. logl0(DIST) -0.00216233 267.9149 270.9788 57.7267862
4. 1ogl0(LDIST) -0.00430673 268.0346 271.0984 57.8464855
5. GRAZE 0.45592959 233.7081 236.7719 23.5199360
6. ALT .13310788 259.7949 262.8587 49.6067453
7.
8.
9.

o o o o

.65436215 210.1881 213.2520 0.0000000
.64340828 211.9353 214.9992 1.7471955
.55526607 224.3049 227.3687 14.1167393
.64144047 212.2435 215.3073 2.0553756
.56137177 223.5307 226.5946 13.3425950
.64443577 211.7737 214.8376 1.5856031

24. loglO (AREA)+YR.ISOL+GRAZE

25. 1loglO (AREA)+YR.ISOL+ALT

26. 1loglO (AREA)+1ogl0 (DIST)+1ogl0 (LDIST)
27. loglO (AREA)+1ogl0 (DIST)+GRAZE

28. logl0(AREA)+1logl0 (DIST)+ALT

29. loglO (AREA)+1ogl0 (LDIST)+GRAZE

oo oo oo

39. 1logl0(DIST)+1logl0O (LDIST)+ALT

40. loglO(DIST)+GRAZE+ALT

41. loglO (LDIST)+GRAZE+ALT

42. 1loglO (AREA)+YR.ISOL+1ogl0 (DIST)+1ogl0 (LDIST)
43. 1loglO (AREA)+YR.ISOL+10ogl0 (DIST)+GRAZE

44. 1loglO (AREA)+YR.ISOL+1ogl0 (DIST)+ALT

.16767219 259.4029 262.4667 49.2147489
.45484515 235.7061 238.7699 25.5179860
.47031877 234.0936 237.1575 23.9054939
.62461805 215.7237 218.7875 5.5355253
.65360148 211.2238 214.2877 1.0356946
.63704328 213.8387 216.9025 3.6505413

o oo oo o

Estimate Unconditional_ SE Lower95CI

logl0 (AREA) 7.54126720 1.43013594 4.73820077

YR.ISOL 0.06204083 0.03729047 -0.01104849

logl0(DIST) -0.51987543 0.87724385 -2.23927338

1logl0(LDIST) -0.52400077 0.75025473 -1.99450004

GRAZE -1.73681399 0.83173477 -3.36701413

ALT 0.01065631 0.01150212 -0.01188785
Upper95CT

loglO(AREA) 10.34433364

YR.ISOL 0.13513016

logl0 (DIST) 1.19952252

logl0(LDIST) 0.94649850

GRAZE -0.10661385

ALT 0.03320047

attr(, "heading")

[1] "Model averaging\n" "Response: ABUND \n"

Note some of the rows and columns have been omitted from the above output to conserve

space.
Alternatively, using the MuMIn package

> library (MuMIn)
> model.avg (get.models (dredge (loyn.1lm, rank = "AIC")))
Model summary:

Deviance AIC Delta Weight

2+43+6 2070 371 0.000 0.1330
1+2+3+6 2010 372 0.414 0.1080
2+3+5+6 2030 372 0.962 0.0820
2+3+4+6 2040 372 1.040 0.0790
2+3 2200 373 1.400 0.0657
24345 2130 373 1.590 0.0600
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1+3+6 2140 373 1.750 0.0554
1+2+3 2150 373 2.050 0.0477
2+3+4 2150 373 2.060 0.0475
1+2+3+4+6 2000 373 2.060 0.0473
1+2+3+5+6 2000 373 2.090 0.0467
2+3+4+5+6 2020 374 2.710 0.0343
3+6 2260 374 2.880 0.0315
1+2+3+5 2110 374 3.080 0.0285
2+3+4+5 2120 374 3.340 0.0250
1+2+3+4 2120 374 3.370 0.0246
1+3+5+6 2130 375 3.520 0.0228
3+5+6 2210 375 3.610 0.0218
1+3+4+6 2130 375 3.650 0.0214
1+2+3+4+5+6 2000 375 3.950 0.0184
Variables:
1 2 3 4 5 6
ALT GRAZE 1logl0 (AREA) 1ogl0(DIST) loglO (LDIST) YR.ISOL

Averaged model parameters:

Coefficient Variance SE Unconditional SE Lower CI Upper CI
ALT 0.0107 1.46e-07 0.0177 0.0178 -0.0243 0.0457
GRAZE -1.7900 1.81e+00 1.1200 1.1300 -4.0000 0.4330
(Intercept) -99.4000 1.66e+08 111.0000 112.0000 -320.0000 121.0000
1ogl0 (AREA) 7.5000 4.07e+00 1.4100 1.4400 4.6700 10.3000
1ogl0 (DIST) -0.4930 5.39e+00 1.1400 1.1600 -2.7600 1.7800
1logl0 (LDIST) -0.5130 2.95e+00 1.0600 1.0700 -2.6200 1.5900
YR.ISOL 0.0606 9.85e-06 0.0550 0.0556 -0.0485 0.1700
Relative variable importance:
logl0 (AREA) GRAZE YR.ISOL ALT loglO (LDIST) logl0 (DIST)

1.00 0.85 0.70 0.42 0.34 0.30

Conclusions - AIC and C, (not shown) both select a model with three predictor variables
(logjparea, grazing intensity and years of isolation). However, it should be noted, that using the
rule-of-thumb that delta AIC values less than 2 do not represent significant improvements in fit,
it could be argued that the three variable model is not significantly better than the simpler two
variable (loggarea and grazing intensity) model. Hence log,q patch area and grazing intensity
are the most important measured influences on bird abundances across the fragmented Victorian

landscape.

Step 2 - construct the predictive model

> loyn.1lm2 <- 1Im(ABUND ~ loglO (AREA) + GRAZE, data = loyn)
> summary (loyn.lm2)
Call:
Im(formula = ABUND ~ loglO (AREA) + GRAZE, data = loyn)
Residuals:

Min 10 Median 30 Max
-13.4296 -4.3186 -0.6323 4.1273 13.0739
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 21.6029 3.0917 6.987 4.73e-09 **x*
logl0 (AREA) 6.8901 1.2900 5.341 1.98e-06 ***
GRAZE -2.8535 0.7125 -4.005 0.000195 ***
Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1
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Residual standard error:
0.6527,
F-statistic: 49.81 on 2 and 53 DF,

Multiple R-squared

Conclusions - the predictive model (resulting from the ‘best’ regression model is abund =
6.89log oarea — 2.85graze + 21.60 and explains approximately 65% of the variation in bird

abundance.

Example 9D: Hierarchical partitioning
Quinn and Keough (2002) also used the Loyn (1987) data set (analysed in Example 9A
on page 224) to demonstrate the use of hierarchical partitioning to determine the relative

CHAPTER 9

p-value:

Adjusted R-squared:
6.723e-13

6.444 on 53 degrees of freedom
0.6396

contributions of each of the predictor variables (Quinn and Keough (2002) Box 6.8).

Step | (Key 9.10) - Perform a hierarchical partitioning on the multiple linear model fitted to
the Loyn (1987) data set. As this is a linear model, the goodness-of-fit of the model should be

assessed by the r? value.

I. determine independent and joint contribution of each predictor variable averaged across all

possible model combinations.

> library (hier.part)
> loyn.preds <- with(loyn, data.frame(logAREA = loglO (AREA),
+ YR.ISOL, 1logDIST = logl0(DIST), logLDIST =
+ GRAZE, ALT))
> hier.part (loyn$ABUND, loyn.preds, gof = "Rsqu")
$gfs

[1] 0.00000000 0.54765298 0.25336902 0.01605880

[6] 0.46582178 0.14886955 0.64348084 0.55798408
[11] 0.65273437 0.58357693 0.27202894 0.29411677
[16] 0.32970100 0.01878268 0.46670232 0.19573296
[21] 0.20305219 0.47978826 0.64797136 0.65145633
[26] 0.66285874 0.57952428 0.66099826 0.58529695
[31] 0.59521919 0.66105930 0.29441552 0.47580294
[36] 0.48827761 0.40728610 0.48872839 0.47606705
[41] 0.48458087 0.49921047 0.65191856 0.67879410
[46] 0.67921724 0.66420358 0.68234183 0.66529515
[51] 0.66514424 0.66687281 0.48949273 0.40962297
[56] 0.51765498 0.49933677 0.68067311 0.66425545
[61] 0.68419720 0.66776512 0.51772763 0.68493595
SIJ

I J Total

logAREA 0.315204510 0.2324484698 0.54765298
YR.ISOL 0.101458466 0.1519105495 0.25336902
logDIST 0.007285099 0.0087737041 0.01605880

logl0 (LDIST),

.01395339
.57951387
.47394321
.47484303
.67321512
.66383018
.37071613
.21307189
.66344013
.59537174
.49609855
.68433597
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logLDIST 0.013677502 0.0002758905 0.01395339

GRAZE 0.190462561 0.2753592211 0.46582178
ALT 0.056847811 0.0920217408 0.14886955
SI.perc

I

logAREA 46.019560
YR.ISOL 14.812840
logDIST 1.063618
logLDIST 1.996902
GRAZE 27.807354
ALT 8.299727

Conclusions - logparea and grazing intensity contribute most to the explained variance in
bird abundance (46.0 and 27.8% respectively), although years of isolation and to a lesser
degree, altitude also make some contributions.

2. determine the likelihood that the independent contributions for each predictor variable
could be due to change by performing a randomization test and assessing the significance
of Z scores at the 95% level. Note that this procedure takes some time.

> r.HP <- rand.hp(loyn$SABUND, loyn.preds, gof = "Rsqu",
+ num.reps = 100) $Iprobs

Obs Z.score sig95

logAREA 0.32 11.86 *
YR.ISOL 0.10 2.67 *
logDIST 0.01 -0.50
logLDIST 0.01 -0.12
GRAZE 0.19 8.99 *
ALT 0.06 1.09

Conclusions - the individual contributions of log garea, grazing, and years of isolation were
all found to be significantly greater than would be expected by chance and therefore each
has some influence on the abundance of forest birds within habitat patches across Victoria.

Example 9E: Randomization and multiple regression

McKechnie et al. (1975) investigated the relationship between the frequency of hezokinase
(HK) 1.00 mobility genes and a range of climatic conditions (including altitude, temperature
and precipitation) from colonies of Euphydras editha butterflies (example 8.3 Manly (1991)).

Step 1 - Import (section 2.3) the McKechnie et al. (1975) data set
> mckechnie2 <- read.table("mckechnie2.csv", header = T,

+ sep = u’u)

Step 2 (Key 9.2) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.
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For the purpose of this demonstration, lets assume that the assumption of normality could not
be met and more importantly, that the observations are not independent, thereby necessitating
an alternative regression method.

Step 3 (Key 9.3) - assess (multi)collinearity.

> library (car)

> vif (Im(HK ~ PRECIP + MAXTEMP + MINTEMP + ALT, mckechnie2))
PRECIP MAXTEMP MINTEMP ALT

2.242274 3.375163 6.727932 1.921078

Conclusions - there is some indication of a collinearity issue concerning the minimum
temperature variable (VIF greater than 5), however this will be overlooked for consistency with
Manly (1991).

Step 4 (Key 9.5) - use a randomization test to test whether the observed trends could be due
to chance.

. use conventional multiple regression methods to estimate the regression parameters.

> mckechnie2.lm <- 1lm(HK ~ PRECIP + MAXTEMP + MINTEMP +

+ ALT, mckechnie2)
> summary (mckechnie2.1lm)
Call:

Im(formula = HK ~ PRECIP + MAXTEMP + MINTEMP + ALT,
data = mckechnie2)

Residuals:
Min 10 Median 30 Max
-50.995 -5.141 2.656 10.091 29.620

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -88.5645 101.1793 -0.875 0.39728
PRECIP 0.4720 0.4955 0.952 0.35823
MAXTEMP 0.8668 1.1725 0.739 0.47290
MINTEMP 0.2503 1.0195 0.246 0.80986
ALT 26.1237 8.6450 3.022 0.00982 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Residual standard error: 20.95 on 13 degrees of freedom
Multiple R-squared: 0.647, Adjusted R-squared: 0.5384
F-statistic: 5.957 on 4 and 13 DF, p-value: 0.005984

k Consistent with Manly (1991), I have used OLS to estimate the regression parameters. However,
these parameters could alternatively be RMA or non-parametric regression estimates.
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. define the statistic (again this example uses OLS) to use in the randomization test - in this
case the t-statistics for each of the estimated parameters.

> stat <- function(data, indices) {

+ summary (1m(HK ~ PRECIP + MAXTEMP + MINTEMP +

+ ALT, data))$coef[, 3]

+ 1}

. define how the data should be randomized - randomize the response-predictor pairings

(shuffle the response variable without replacement).

> rand.gen <- function(data, mle) {

+ out <- data

+ out$HK <- sample(out$HK, replace = F)
+ out

+ }

. call a bootstrapping procedure to randomize 1000 times (this can take some time)

> library (boot)

> mckechnie2.boot <- boot (mckechnie2, stat, R = 1000,

+ sim = "parametric", ran.gen = rand.gen)

. calculate the number of possible t-values (including the observed t-value, which is one
possible outcome) that were greater or equal to the observed t-value (for each parameter)
and express these as a percentage of the number of randomizations (plus one for the
observed outcomes).

> t <- apply(apply (abs(mckechnie2.bootst), 1, ">=",

+ abs (mckechnie2 .boot$t0)) * 1, 1, "sum") + 1
> t/ (mckechnie2.boot$R + 1)
(Intercept) PRECIP MAXTEMP MINTEMP ALT

0.39360639 0.36563437 0.48151848 0.79620380 0.00999001

. perform a similar randomization to investigate the ANOVA F-ratio. This requires a couple of
minor adjustments of the above procedures.

stat <- function(data, indices) {
summary (1m(HK ~ PRECIP + MAXTEMP + MINTEMP +
ALT, data))s$fstatistic
}
rand.gen <- function(data, mle) {
out <- data
OUt$HK <- sample (out$HK, replace = F)
out
}
mckechnie2.boot <- boot (mckechnie2, stat, R = 1000,
sim = "parametric", ran.gen = rand.gen)
f <- apply(apply (abs (mckechnie2.boot$t), 1, ">=",
abs (mckechnie2 .boots$t0)) * 1, 1, "sum") + 1
£/ (mckechnie2.boot$R + 1)

V + V. + V + + + + V + + + V
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value numdf dendf
0.006993007 1.000000000 1.000000000

Conclusions - in this case, the p-values for both regression parameters and the overall ANOVA
are almost identical to those produced via conventional regression analysis.

Example 9F: Polynomial regression

Sokal and Rohlf (1997) present an unpublished data set (R. K. Koehn) in which the nature
of the relationship between Lap®* allele frequency in Mytilus edulis and distance (in miles)
from Southport was investigated (Box 16.5, Sokal and Rohlf (1997)).

Step | - Import (section 2.3) the mytilus data set

> mytilus <- read.table("mytilus.csv", header = T,
+ Sep = |l’ |l)

As a matter of course, Sokal and Rohlf (1997) transform frequencies using angular trans-
formations (arcsin transformations) and henceforth Lap® will be transformed in-line using
asin(sqgrt (LAP)) *180/pi.

Step 2 (Key 8.2a) - confirm that simple linear regression does not adequately describe the
relationship between Lap®* allele frequency and distance by examining a scatterplot and
residual plot.

> library (car) > plot(lm(asin(sgrt (LAP)) *
> scatterplot (asin(sgrt (LAP)) * + 180/pi ~ DIST,
+ 180/pi ~ DIST, + data = mytilus),
+ data = mytilus) + which = 1)
Residuals vs Fitted
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Fitted values

N e iy S— m(asin(sqrt(LAP)) * 180/pi ~ DIST + I(DISTA2) + I(DISTA3) + I(DISTA4)

Conclusions - the scatterplot smoother suggests a potentially non-linear relationship and
a persisting pattern in the residuals further suggests that the linear model is inadequate for
explaining the response variable.
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Step 3 (Key 9.7b) - fit a polynomial regression (additive multiple regression) model incorporating
up to the fifth power (5! order polynomial)'.

I. Fit the quintic model

> mytilus.lm5 <- Im(asin(sqgrt(LAP)) * 180/pi ~ DIST +
+ I(DIST"2) + I(DIST"3) + I(DIST"4) + I(DIST"5),

+ mytilus)
2. Examine the diagnostics
> plot (mytilus.lm5, which = 1)

Residuals vs Fitted
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o appropriate for modeling these data.
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Fitted values m(asin(sqrt(LAP)) * 180/pi ~
DIST + |(DISTA2) + I(DISTA3) + |(DISTA4)

3. Examine the fit of the model including the contribution of different powers

> anova (mytilus.1lm5)
Analysis of Variance Table

Response: asin(sqgrt(LAP)) * 180/pi

Df Sum Sg Mean Sg F value Pr (>F)
DIST 1 1418.37 1418.37 125.5532 2.346e-07 ***
I(DIsT"2) 1 57.28 57.28 5.0701 0.04575 *
I(DIST"3) 1 85.11 85.11 7.5336 0.01907 *
I(DIST"4) 1 11.85 11.85 1.0493 0.32767
I(DIST"5) 1 15.99 15.99 1.4158 0.25915
Residuals 11 124.27 11.30

Signif. codes: 0 '***' (0.001 '**' 0.01 '*'" 0.05 '.'" 0.1 "' " 1

Conclusions - powers of distance beyond a cubic (3) do not make significant contributions
to explaining the variation in arcsin transformed Lat allele frequency.

!'Note that trends beyond a third order polynomial are unlikely to have much biological basis and are
likely to be over-fit.
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4. The improved fit (and significance) attributed to an additional power can be evaluated by
comparing the fit of the higher order models against models one lower in order.

> mytilus.lml <- Im(asin(sqgrt(LAP)) * 180/pi ~ DIST,

+ mytilus)
> mytilus.lm2 <- Im(asin(sqgrt(LAP)) * 180/pi ~ DIST +
+ I(DIST"2), mytilus)

> anova (mytilus.lm2, mytilus.lml)

Analysis of Variance Table

Model 1: asin(sgrt(LAP)) * 180/pi ~ DIST + I(DIST"2)
Model 2: asin(sgrt(LAP)) * 180/pi ~ DIST

Res.Df RSS Df Sum of Sg F Pr(>F)
1 14 237.222
2 15 294.500 -1 -57.277 3.3803 0.08729
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " "1

> mytilus.lm3 <- Im(asin(sqgrt(LAP)) * 180/pi ~ DIST +
+ I(DIST"2) + I(DIST"3), mytilus)
> anova (mytilus.lm3, mytilus.1lm2)

Analysis of Variance Table

Model 1: asin(sgrt(LAP)) * 180/pi ~ DIST + I(DIST"2) + I(DIST"3)
Model 2: asin(sgrt(LAP)) * 180/pi ~ DIST + I(DIST"2)

Res.Df RSS Df Sum of Sg F Pr (>F)
1 13 152.115
2 14 237.222 -1 -85.108 7.2734 0.0183 *
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - a cubic model fits the data significantly better than a quadratic model (P =
0.018), the latter of which does not fit significantly better than a linear model (P = 0.09).

5. Estimate the model parameters™ for the cubic model so as to establish the descriptive or
predictive model.

" Due to the extreme multicollinearity problems (dist must be correlated to dist> and dist* etc), the
parameter estimates are not stable, the standard errors are inflated and the individual parameter
hypothesis tests are non informative. As with multiplicative multiple regression, this problem can
be greatly alleviated by first centering the predictor variable. However, the value in doing so is
limited as the resulting parameters (and associated confidence intervals) would then have to be back
transformed into the original scales in order to construct a descriptive or predictive model (main uses
of polynomial regression). Since the values of the estimated polynomial parameters do not have any
biological meaning, standard errors and hypothesis tests of the parameter estimates should be ignored.
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> summary (mytilus.1lm3)

Call:
Im(formula = asin(sqgrt(LAP)) * 180/pi ~ DIST + I(DIST"2) +
+ I(DIST"3), data = mytilus)
Residuals:
Min 10 Median 30 Max

-6.1661 -2.1360 -0.3908 1.9016 6.0079

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.2232524 3.4126910 7.684 3.47e-06 ***
DIST -0.9440845 0.4220118 -2.237 0.04343 *
I(DIST"2) 0.0421452 0.0138001 3.054 0.00923 **
I(DIST"3) -0.0003502 0.0001299 -2.697 0.01830 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' "1

Residual standard error: 3.421 on 13 degrees of freedom
Multiple R-squared: 0.9112, Adjusted R-squared: 0.8907
F-statistic: 44.46 on 3 and 13 DF, p-value: 4.268e-07

Conclusions - there was a significant cubic relationship between the frequency of
the Lat® allele in Mytilus edulis and distance from Southport (P < 0.001,r* = 0.911:
aresiny/Lat = 26.2233 — 0.944 1 dist + 0.042 1dist> — 0.0003dist>).

Step 4 (Key 9.11) - construct a summary figure to summarize the illustrate the proposed nature
of the relationship.

>
+
>
>
+
>
>
+
+
+
>
>
+
>

plot(asin(sqgrt (LAP)) * 180/pi ~ DIST, data = mytilus,
pch = 16, axes = F, xlab = "", ylab = "")

axis(l, cex.axis = 0.8)

mtext (text = expression(paste("Miles east of Southport,
Connecticut")), side = 1, line = 3)

axis (2, las = 1)

mtext (text = expression(paste("Arcsin ",
sgrt (paste("freqg. of allele ", italic("Lap"))"{
94

}))), side = 2, line = 3)

x <- seqg(0, 80, 1 = 1000)

points(x, predict(mytilus.lm3, data.frame(DIST = x)),
type = "1")

box (bty = "1")
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Miles east of Southport, Connecticut

Example 9G: Nonlinear regression
Peake and Quinn (1993) investigated the nature of species-area relationships for invertebrates
inhabiting inter-tidal mussel clumps (Box 6.1 1, Quinn and Keough (2002)).

Step | - Import (section 2.3) the peake data set

> peake <- read.table("peake.csv", header = T, sep = ",")

Step 2 (Key 8.2a) - confirm that simple linear regression does not adequately describe the
relationship between the number of species and mussel clump area by examining a scatterplot
and residual plot.

> library (car) > plot (1lm(SPECIES ~ AREA,
> scatterplot (SPECIES ~ AREA, + data = peake), which = 1)
+ data = peake)

Residuals vs Fitted
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Conclusions - the scatterplot smoother suggests a non-linear relationship and the persisting
pattern in the residuals further suggests that the linear model is inadequate for explaining the
response variable. Although this could probably be corrected by transforming the scale of the
mussel clump area variable, in this case, theory suggests that species-area relationships might
be more appropriately modeled with a power function.
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Step 3 (Key 9.7) - fit a nonlinear regression (power) model.

Fit the model (a power model would seem appropriate, see also Table 9.1)

> peake.nls <- nls(SPECIES ~ alpha * AREA"beta,

start = list (alpha

+ beta = 1), peake)

2. Examine the diagnostics

> plot(resid(peake.nls)

0.1,

~ fitted(peake.nls))

w N o . L
< Conclusions - no persisting pattern
% oo e° o o suggesting that the fitted power model
o . . .
8 o © o o is appropriate for modeling these data.
% . © ° ° Additionally, there is no “wedge” pat-
= ° tern suggesting that the homogeneity
Y4 © . of variance assumption is satisfied.
© [e]
! T T T T
10 15 20 25

fitted(peake.nls)

3. Examine the estimated nonlinear model parameters

> summary (peake.nls)
Formula: SPECIES ~ alpha * AREA"beta
Parameters:

Estimate Std. Error t value Pr(>|t])

alpha 0.8584 0.2769 3.100 0.00505 =*=*
beta 0.3336 0.0350 9.532 1.87e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 2.733 on 23 degrees of freedom

Number of iterations to convergence: 17

Achieved convergence tolerance: 1.043e-06

Step 4 (Key 9.8a) - Examine the fit of the nonlinear model (compared to a linear model).

> AIC (peake.nls, k=log(nrow(peake))) #BIC
[1] 128.7878

> AIC(peake.nls) #AIC

[1] 125.1312

> deviance (peake.nls) /df.residual (peake.nls) #MSresid
[1] 7.468933

1
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> peake.lm<-1m(SPECIES~AREA, data=peake) #linear fit

> AIC (peake.lm, k=log(nrow(peake))) #1lm BIC

[1] 144.7322

> AIC (peake.lm) #1m AIC

[1] 141.0756

> deviance (peake.1lm) /df.residual (peake.lm) #1lm MSresid
[1] 14.13324

Conclusions - all fit criterion concur that the nonlinear power model is a better fit to the data
than the linear model.

Step 5 (Key 9.8a) - Arguably, these data would be better modelled by a asymptotic relationship.
Fit such a relationship.

> peake.nlsl <- nls(SPECIES~SSasymp (AREA,a,b,c), peake)
> summary (peake.nlsl)
Formula: SPECIES ~ SSasymp (AREA, a, b, c)

Parameters:

Estimate Std. Error t value Pr(>|t])

a 24.4114 1.6644 14.667 7.71le-13 ***
b 4.9563 1.4244 3.479 0.00213 **
c -8.8138 0.2482 -35.512 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.719 on 22 degrees of freedom

Number of iterations to convergence: 0

Achieved convergence tolerance: 7.128e-07

> AIC (peake.nlsl) #AIC

[1] 125.7644

> deviance (peake.nlsl) /df.residual (peake.nlsl) #MSresid
[1] 7.393005

> anova (peake.nls,peake.nlsl)

Analysis of Variance Table

Model 1: SPECIES ~ alpha * AREA"“beta

Model 2: SPECIES ~ SSasymp (AREA, a, b, <)
Res.Df Res.Sum Sg Df Sum Sg F value Pr (>F)

1 23 171.785

2 22 162.646 1 9.139 1.2362 0.2782

Conclusions - the asymptotic trend does not fit the data significantly better than the exponential
trend.
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Step 6 (Key 9.11) - summarize the nonlinear species-area relationship with a scatterplot and
exponential (dashed line) and asymptotic (solid) line trends.

> plot (SPECIES ~ AREA, peake, pch = 16, axes = F, xlab = "",
+ vliab = "")

> axis(l, cex.axis = 0.8)

> mtext (text = expression(paste("Clump area ", (dm”™2))),
+ side = 1, line = 3)

> axis (2, las = 1)

> mtext (text = "Number of species", side = 2, line = 3)
> box(bty = "1")

> x <- seqg(0, 30000, 1 = 1000)

> points(x, predict (peake.nls, data.frame (AREA = X)),

+ type = "1", lty = 2)

> points(x, predict(nls(SPECIES ~ SSasymp (AREA, a,

+ b, c¢), peake), data.frame(AREA = X)), type = "1",
+ lty = 1)

> box(bty = "1")
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Example 9H: Regression trees

Quinn and Keough (2002) used the Loyn (1987) data set (analysed in Example 9A on
page 224) to demonstrate the use of regression trees for producing descriptive and predictive
models (Quinn and Keough (2002) Box 6.9). Using the same data from Example 9A, we will
illustrate the use of R to produce regression trees.

Step | (Key 9.13) - Perform binary recursive partitioning and construct the resulting regres-
sion tree.

> library (tree)
> loyn.tree <- tree(ABUND ~ AREA + YR.ISOL + DIST +
+ LDIST + GRAZE + ALT, data = loyn, mindev = 0)
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Note that Quinn and Keough (2002) used logq transformed data for some of the variables. Such
transformations have no impact on the construction of the tree nodes or branches, however the
split threshold values for transformed predictor variables will be on a logq scale.

Step 2 (Key 9.13) - Examine the residuals for outlying, influential observations.

> plot(residuals(loyn.tree) ~ predict(loyn.tree))
Q- o
o
< ° o o
3 7 8 ° o o
= ° o 8 ° g ; o
c
) o—; o % , & of Conclusions - There are an even spread of
1 8 . . . o
2 g oo © o| residuals with no obvious potentially influen-
3 0 g & . ° tial observations (no outliers from the patterns
0 o . . .
o s within each branches predicted values).
o
2
[

T T T T T T T
5 10 15 20 25 30 35

predict(loyn.tree)

Step 3 (Key 9.13) - Construct the regression tree.

> plot(loyn.tree, type = "uniform")

> text(loyn.tree, cex = 0.5, all = T)

> text(loyn.tree, lab = paste("n"), cex = 0.5, adj = c(0,
+ 2), splits = F)

Conclusions - Grazing intensity was con-
sidered the most important single predictor

GHAZIIE<4.5 ) ]

o510 of forest bird abundance. When grazing

intensity was less than 4.5, patch area

AREA < 14 bistkaso IS important and when grazing intensity

23510 6292 is greater than 4.5, the split in distance

to nearest patch produced the greatest

YRISO| < 1964 ARE4 <42 deviance (albeit very small suggesting that

18.810 90,080 2790 8590 this entire branch is probably of little impor-

tance). Larger patch sizes continue to be

LDISTF 1925 AREA <SS AREA< 102 split according to patch size suggesting that

22.050 15.140 27.010 32.320

8 patch area is an important predictor of bird

abundance. Smaller patches however are

24730 18.840 11.210 19.720 34.050 30.240 split by years since isolation and then by

e s 78 &8 distance to the nearest patch and again
patch area.

This is in broad agreement with the model selection outcomes demonstrated in examples 9C
and 9D, although grazing intensity is of elevated importance in the regression tree. Patch
area and years since isolation are considered important within the patches of lower grazing
pressure.
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Step 4 (Key 9.14) - Examine the cost-complexity measure.

> plot (prune.tree(loyn.tree))

3000 290 130 95 ~Inf
1 1 1 1 1 1 1 1 1

Conclusions - It is clear that the additional
deviance (fit) achieved by adding more nodes
beyond 3 is very marginal (cost-complexity curve
begins to asymptote at this point). This suggests
that the tree could potentially be pruned to just
three terminal branches without great loss of
predictive power too achieve a more genuine
predictive model.
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Step 5 (Key 9.14) - Prune the tree.

loyn.tree.prune <- prune.tree(loyn.tree, best = 3)
plot(loyn.tree.prune, type = "uniform")

text (loyn.tree.prune, lab = paste("n"), cex = 0.5,

>
>
> text(loyn.tree.prune, cex = 0.5, all = T)
>
+

adj = c(0, 2), splits = F)
GRAZE <45
19.510
AREA < 14 Conclusions ) The pruned. regressxoq tree
23510 6202 Suggests a predictive model with two variables
18 (grazing intensity and patch area).
18.310 30.080

24 19
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Single factor classification (ANOVA)

Single factor classification (also known as analysis of variance of ANOVA) is used to
investigate the effect of single factor comprising of two or more groups (treatment
levels) from a completely randomized design (see Figure 10.1 & Figure 11.1a). Com-
pletely randomized refers to the absence of restrictions on the random allocation of
experimental or sampling units to factor levels.

[0.0.1 Fixed versus random factors

Fixed factors are factors whose levels represent the specific populations of interest. For
example, a factor that comprises ‘high’, ‘medium’ and ‘low’ temperature treatments
is a fixed factor — we are only interested in comparing those three populations.
Conclusions about the effects of a fixed factor are restricted to the specific treatment
levels investigated and for any subsequent experiments to be comparable, the same
specific treatments of the factor would need to be used.

By contrast, Random factors are factors whose levels are randomly chosen from
all the possible levels of populations and are used as random representatives of the
populations. For example, five random temperature treatments could be used to
represent a full spectrum of temperature treatments. In this case, conclusions are
extrapolated to all the possible treatment (temperature) levels and for subsequent
experiments, a new random set of treatments of the factor would be selected. Other

N

3

1
3 L4 (4]

Fig 10.1 A fictitious spatial depiction of sampling units arranged randomly and randomly
assigned to one of four treatment levels (n = 4 for each treatment level).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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common examples of random factors include sites and subjects - factors for which we
are attempting to generalize over. Furthermore, the nature of random factors means
that we have no indication of how a new level of that factor (such as another subject or
site) are likely to respond and thus it is not possible to predict new observations from
random factors.

These differences between fixed and random factors are reflected in the way their
respective null hypotheses are formulated and interpreted. Whilst fixed factors contrast
the effects of the different levels of the factor, random factors are modelled as the
amount of additional variability they introduce.

10.1 Null hypotheses
Fixed factor

A single fixed factor ANOVA tests the Hy that there are no differences between the
population group means

H:m=mwm=...=ui=n (the population group means are all equal)

That is, that the mean of population 1 is equal to that of population 2 and so on, and
thus all population means are equal to an overall mean. If the effect of the i group
is the difference between the i group mean and the overall mean («; = ; — i) then
the Hy can alternatively be written as:

Hy:o1=ay=...=a;=0 (the effect of each group equals zero)

If one or more of the «; are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random factor

The Hy for a random factor is that the variance between all possible groups equals zero:

Hp : crj =0 (added variance due to this factor equals zero)

10.2 Linear model

The linear model for single factor classification is similar to that of multiple linear
regression®. There is a separate parameter for each level (group) of the factor and a
constant parameter that estimates the overall mean of the response variable:

yii = i+ Bi(levely);j + Ba(levely)jj + . . . + &j

@ Indeed, if the model is fitted with the 1m () function rather than the more specific aov () function,
parameters associated with each level of the treatment are estimated and tested.
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where 81 and S, respectively represent the effects of level 1 and 2 on the mean response.
When these individual effects are combined into a single term, the linear effects model
for single factor classification becomes:

Yij = K+ i+ &jj

Term Fixed/random Description Null hypothesis
o; fixed the effect of the i group «; = 0 (no effect of factor A)
random random variable o2 = 0 (variances between all

possible levels of A are equal)

Note that whilst the null hypotheses for fixed and random factors are different
(fixed: population group means all equal, random: variances between populations
all equal zero, the linear model fitted for fixed and random factors in single factor
ANOVA models is identical. For more complex multifactor ANOVA models however,
the distinction between fixed and random factors has important consequences for
statistical models and null hypotheses.

10.3 Analysis of variance

When the null hypothesis is true (and the populations are identical), the amount of vari-
ation among observations within groups should be similar to the amount of variation in
observations between groups. However, when the null hypothesis is false, the amount
of variation among observations might be expected to be less than the amount of
variation within groups. Analysis of variance, or ANOVA, partitions the total variance
in the response (dependent) variable into a component of the variance that is explained
by combinations of one or more categorical predictor variables (called factors) and
a component of the variance that cannot be explained (residual), see Figure 10.2. In
effect, these are the variances among observations between and within groups respec-
tively. The variance ratio (F-ratio) from this partitioning can then be used to test the
null hypothesis (Hy) that the population group or treatment means are all equal.

When the null hypothesis is true (and the test assumptions have not been violated),
the ratio (F-ratio) of explained to unexplained variance follows a theoretical probability
distribution (F-distribution, see Figure 10.2d). When the null hypothesis is true, and
there is no affect of the treatment on the response variable, the ratio of explained
variability to unexplained variability is expected to be < 1°.

Importantly, the denominator in an F-ratio calculation essentially represents what
we would expect the numerator to be in the absence of a treatment effect. For simple
analyses, identifying the what these expected values are straight forward (equivalent to
the degree of within group variability). However, in more complex designs (particularly
involving random factors and hierarchical treatment levels), the logical “groups” can
be more difficult (and in some cases impossible) to identify. In such cases, nominating

b Since the denominator should represent the expected numerator in the absence of an effect.
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SSqroups= sum of squared
explained distances
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Fig 10.2 Fictitious data illustrating the partitioning of total variation into components explained
by the groups (MSgroups) and unexplained (MSyesiquat) by the groups. The gray arrows in (b)
depict the relative amounts explained by the groups. The proposed groupings generally explain
why the first few points are higher on the y-axis than the last three points. The gray arrows in (c)
depict the relative amounts unexplained (the residuals) by the groups. The proposed groupings
fail to explain the differences within the first three points and within the last three points.
The probability of collecting our sample, and thus generating the sample ratio of explained to
unexplained variation (or one more extreme), when the null hypothesis is true (and population
means are equal) is the area under the F-distribution (d) beyond our sample F-ratio.
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Table 10.1 F-ratios and corresponding R syntax for single factor
ANOVA designs (A fixed or random).

Factor d.f. MS F-ratio
A a—1 MS, Vi

Residual (=N(A)) (n—1a MSgesia

> anova (aov(DV A,dataset))

the appropriate F-ratio deniminator for estimating an specific effect requires careful
consideration (see chapters 11—14). Table 10.1 depicts the anatomy of the single factor
ANOVA table and corresponding R syntax.

An F-ratio substantially greater than 1 suggests that the model relating the response
variable to the categorical variable explains substantially more variability than is left
unexplained. In turn, this implies that the linear model does represent the data well
and that differences between observations can be explained largely by differences in
treatment levels rather than purely the result of random variation. If the probability of
getting the observed (sample) F-ratio or one more extreme is less than some predefined
critical value (typically 5% or 0.05), we conclude that it is highly unlikely that the
observed samples could have been collected from populations in which the treatment
has no effect and therefore we would reject the null hypothesis.

10.4 Assumptions

An F-ratio from real data can only reliably relate to a theoretical F-distribution when
the data conform to certain assumptions. Hypothesis testing for a single factor ANOVA
model assumes that the residuals (and therefore the response variable for each of the
treatment levels) are all:

(i) normally distributed - although ANOVA is robust to non-normality provided sample
sizes and variances are equal. Boxplots should be used to explore normality, skewness,
bimodality and outliers. Scale transformations are often useful.

(ii) equally varied - provided sample sizes are equal and the largest to smallest variance
ratio does not exceed 3:1 (9:1 for sd), ANOVA is reasonably robust to this assumption,
however, relationships between variance and mean and/or sample size are of particular
concern as they elevate the Type | error rate. Boxplots and plots of means against
variance should be used to explore the spread of values. Residual plots should reveal no
patterns (see Figure 8.5). Since unequal variances are often the result of non-normality,
transformations that improve normality will also improve variance homogeneity.

(iii) independent of one another - this assumption must be addressed at the design and
collection stages and cannot be compensated for later®.

Violations of these assumptions reduce the reliability of the analysis.

¢ Unless a model is used that specifically accounts for particular types of non-independent data, such
as repeated measures ANOVA - see chapter 13.
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10.5 Robust classification (ANOVA)

There are a number of alternatives to ANOVA that are more robust (less sensitive)
to conditions of either non-normality or unequal variance. Welch’s test adjusts
the degrees of freedom to maintain test reliability in situations where populations
are normally distributed but unequally varied. Alternatively, Randomization tests
repeatedly shuffle the observations randomly, each time calculating a specific test
statistic so as to build up a unique probability distribution for the test statistic for the
collected data and thus make no assumptions about the distribution of the underlying
population. Such tests do not assume observations were collected via random sampling,
however they do assume that populations are equally varied.

Non-parametric (rank-based) tests such as the Kruskal-Wallis test use ranks
of the observations to calculate test statistics rather than the actual observations
and thus do not assume that the underlying populations are normally distributed.
They test the null hypothesis that population medians are equal and are useful in
situations where there are outliers. Although technically these tests still assume that
the populations are equally varied, violations of this assumption apparently have little
1mmpact.

10.6 Tests of trends and means comparisons

Rejecting the null hypothesis that all of population group means are equal only
indicates that at least one of the population group means differs from the others, it does
not indicate which groups differ from which other groups. Consequently, researchers
often wish to examine patterns of differences among groups. However, this requires
multiple comparisons of group means and multiple comparisons lead to two statistical
problems. First, multiple significance tests increase the probability of Type I errors (,
the probability of falsely rejecting Hy). If the decision criteria for any single hypothesis
test is 0.05 (5%), then we are accepting that there is a 5% chance of committing a Type
I error (falsely rejecting the null hypothesis). As a result, if many related hypothesis
tests are conducted, then the overall Type I error rate (probability of making at least
one Type I error) compounds to unacceptably high levels. For example, testing for
differences between 5 groups requires ten pairwise comparisons. If the o for each test
is 0.05 (5%), then the probability of at least one Type I error for the family of 10 tests is
approximately 0.4 (40%). Second, the outcome of each test might not be independent
(orthogonal). For example, if one test reveals that the population mean of group A is
significantly different from the population mean of group B (A>B) and B>C then we
already know the result of A vs. C.

Post-hoc unplanned pairwise comparisons compare all possible pairs of group
means and are useful in an exploratory fashion to reveal differences between groups
when it is not possible to justify any specific comparisons over other comparisons prior
to the collection and analysis of data. There are a variety of procedures available to
control the family-wise Type I error rate (e.g. Bonferroni and Tukey’s test), thereby
minimizing the probability of making Type I errors. However, these procedures reduce
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the power of each individual pairwise comparison (increase Type II error), and the
reduction in power is directly related to the number of groups (and hence number of
comparisons) being compared. For ordered factors (e.g. Temperature: 10, 15, 20, .. .),
multiple pairwise comparisons are arguably less informative than an investigation of
the overall trends across the set of factor levels.

Planned comparisons are specific comparisons that are usually planned during
the design stage of the experiment. Most textbooks recommend that multiple com-
parisons can be made (each at « = 0.05) provided each comparison is independent
of (orthogonal to) other comparisons and that no more than p — 1 (where p is the
number of groups) comparisons are made. Among all possible comparisons (both
pairwise and combinational), only a select sub-set are performed, while other less
meaningful (within the biological context of the investigation) combinations are
ignored. Occasionally, the comparisons of greatest interest are not independent (non-
orthogonal). In such circumstances, some statisticians recommend performing the
each of the individual comparisons separately before applying a Dunn-Sidak p-value
correction.

Specific comparisons are defined via a set of contrast coefficients associated with a
linear combination of the treatment means (see section 7.3.1):

71(C) +7,(C) + ... +7,(Cy)

where p is the number of groups in the factor. The contrast coefficients for a specific
comparison must sum to zero and the groups being contrasted should have opposing
signs. In addition to facilitating specific comparisons between individual groups, it is
also possible to compare multiple groups to other groups or multiples and investigate
polynomial trends. Table 10.2 provides example contrast coefficients for a number of
commonly used planned comparison Hy types. Note that polynomial trends assume
that factor levels are ordered according to a natural gradient or progression (eg. low,
medium, high) and that the factor levels are evenly spaced along this gradient. If
you have reason to suspect that this is not the case, consider either weighting the

Table 10.2 Example contrast coefficients for specific compar-
isons and the first three order polynomials for a factor with four
levels (groups).

Hp: Group; Group, Group; Group,
M1 = U2 | —1 0 0
(1 + @2)/2 = pu3” 5 5 —I 0
no linear trend -3 —1 | 3
no quadratic trend | —1 —1 |
no cubic trend —1 3 -3 |

“while alternatively, this planned contrast could have been defined as 1, 1, —2,0,
yielding the same partitioning on SSconTrasT, its estimated parameter value
would not reflect the value inferred by the null hypothesis.
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contrast coefficients to better represent the increments between treatment levels, or
else regression analysis (see chapter 8) as an alternative.

10.7 Power and sample size determination

Recall from section 6.5, that power (the probability of detecting an effect if an effect
really exists) is proportional to the effect size, sample size and significance level
(o) and inversely proportional to the background variability. It is convienient to
think about the effect size as the absolute magnitude of the effect. When there
are only two groups, the effect size is relatively straight forward to estimate (it is
the expected difference between the means of two populations). However, when
there are more than two groups, there are numerous ways in which this effect
size can manifest. For example, in an investigation into the effect of temperature
(‘v.high’, ‘high’, ‘medium’ and ‘low’) on the growth rate of seedlings, there are
numerous ways that an effect size of (for example) 10 units above the expected
background mean growth rate of 20 units could be distributed across the four groups
(see Table 10.3). Consequently, effect size is expressed in terms of the expected
variability both within and between the populations (groups). The smaller the degree
of variability between groups, the more difficult it is to detect differences, or the greater
the sample size required to detect differences. It is therefore important to anticipate
the nature of between group patterns in conducting power analyses and sample size
determinations.

Table 10.3 Fictitious illustration of the variety of ways that an effect size of 10 units could be
distributed over four groups.

Possible trends Between group variability

One group different Wy > Uy = iy = U var(c(30,20,20,20)) = 25.00
Two groups different vy = uyg > uy = ur  var(c(30,30,20,20)) = 33.33
Equal increments Uy > g > Upm > UL var(seq(30,20,1=4)) = 18.52
Other increments Uy > g = Upm > UL var(c(30,25,25,20)) = 16.67

10.8 ANOVAinR

Single factor ANOVA models can be fitted with the either the 1m () linear modelling
function or the more specific aov () function, the latter of which provides a wrapper for
the 1m () function that redefines output for standard analysis of variance rather than

4 For a linear trend, weighted coefficients can be calculated by providing numerical representations
of each of the factor levels and then subtracting the mean of these levels from each numeric level.
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parameter estimates. ANOVA tables for balanced, fixed factor designs can be viewed
using either the anova () or summary (), the latter of which is used to accommodate
planned contrasts with the split= argument.

10.9 Further reading
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Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.
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Sokal, R.,and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.
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10.10 Key for single factor classification (ANOVA)

1 a. Check parametric assumptions
* Normality of the response variable at each level of the categorical variable -
boxplots
> boxplot (DV ~ Factor, dataset)

where DV and Factor are response and factor variables respectively in the dataset
data frame
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2 a.

3 a.

5 a.

b.

* Homogeneity of variance - boxplots (as above) and scatterplot of mean vs
variance

> plot (tapply (dataset$DV, dataset$Factor, var),
+ tapply (dataset$DV, dataset$Factor, mean))

where DV and Factor are response and factor variables respectively in the dataset

data frame
Parametricassumptionsmet ...............oiiiiiiiiiiiiiie. Goto 2
Parametric assumptions NOTmet .................. ..., Goto5
ANOVA with specific comparisonsortrends........................... Goto4
ANOVA without specific comparisonsortrends ....................... Goto3
Single fixed factor (modelI) ................. . ... . ... See Example 10A

> data.aov <- aov(DV ~ Factor, dataset)
> plot (data.aov)
> anova (data.aov)

if Reject Hy - Significant difference between group means detected ... ..... Goto9
Single random factor (model II) ............................. See Example 10D
> anova(aov(DV ~ Factor, dataset))

if Reject Hy - Significant difference between group means detected - calculate variance
components

library (nlme)

>

> data.lme <- 1lme(DV ~ 1, random = ~1 | Factor, data = dataset,
+ method = "ML")

> VarCorr (data.lme)

> data.lme <- lme(DV ~ 1, random = ~1 | Factor, data = dataset,
+ method = "REML")

> VarCorr (data.lme)

. With planned comparisonsof means......................... See Example 10B
> contrasts (dataset$Factor) <- cbind(c(contrasts), c(contrasts),
+ )
> round (crossprod (contrasts (dataset$SFactor)), 2)
> data.list <- list(Factor = list(lab =1, ..), ..)
> data.aov <- aov(DV ~ Factor, data = dataset)
> plot (data.aov)
> summary (data.aov, split = data.list)

. With planned polynomial trends............................. See Example 10C

contrasts (dataset$Factor) <- "contr.poly"

data.list <- list(Factor = list(Linear = 1))

>
>
> data.aov <- aov(DV ~ Factor, data = dataset)
> plot (data.aov)

>

summary (data.aov, split = data.list)

Attempt a scale transformation (see Table3.2 for common transformation
OPLIOMIS) . ettt ettt e Gotol
Transformations unsuccessful or inappropriate........................ Goto6
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6 a. Underlying distribution of the response variable is normal but variances are

unequal (Welch’stest)....... ..., See Example 10F
> oneway.test (DV ~ Factor, var.equal = F)
If Reject Hy - Significant difference between group means detected ... ... .. Go to 9c
orconsider GLM ....... .. ..ottt GLM chapter 17
b. Underlying distribution of the response variable is NOT normal . ... .... Goto7
7 a. Underlying distribution of the response variable and residuals
ISKNOWN. .. ..o GLM chapter 17
b. Underlying distribution of the response variable and residuals is NOT
KNOWNL. ... Goto 8
8 a. Variances not wildly unequal, but outliers present (Kruskal-Wallis nonparametric
LS L ettt e See Example 10G

> kruskal.test (DV ~ Factor, var.equal = F)

If Reject Hy - Significant difference between group means detected . ... Go to 9cb/c
b. Variances not wildly unequal, random sampling not possible (Randomization

B .ottt See Example 10G
> library (boot)

> data.boot <- boot (dataset, stat, R = 999, sim = "parametric",
+ rand.gen = rand.gen)

> plot(data.boot)

> print (data.boot)

where stat is the statistic to repeatedly calculate and rand . gen defines how the data
are randomized.

9 a. Parametric simultaneous multiple comparisons - Tukey’s test.. See Example 10A
> library (multcomp)
> summary (glht (model, linfct = mcp(Factor = "Tukey")))

b. Non-parametric simultaneous multiple comparisons - Steel

L= See Example 10E
> library (npmc)
> data <- data.frame(var = dataset$DV, class = dataset$Factor)
> summary (npmc (data), type = "steel")

c. Multiple comparisons based on p-value adjustments .......... See Example 10G

> library (multtest)
> mt.rawp2adjp(pvalues, proc = "SidakSD")
> p.adjust (pvalues, method = "holm")

where pvalues is a list of pvalues from each pairwise comparison and 'holm' and
'SidaksD' are the names of the p-value adjustment procedures. For alternative
procedures, see Table 10.4.

The p.adjust function above can also be called from within other pairwise routines
Parametric pairwise tests

> pairwise.t.test (DV ~ Factor, pool.sd = F, p.adjust = "holm")

Non-parametric pairwise tests

> pairwise.wilcox.test (DV ~ Factor, p.adjust = "holm")
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Table 10.4 Alternative p-value adjustments (p.adjust) for use with

the pairwise.wilcoxon. test and pairwise.t.test.

Syntax Correction Description
'bonferroni' Bonferroni single-step correction  p-values multiplied by number of
comparisons to control the
family-wise error rate
"holm' sequential step-down Bonferroni  More powerful than Bonferroni to
correction control the family-wise error rate
"hochberg" Hochberg step-up correction Reverse of Holm procedure and possibly
more powerful to control the
family-wise error rate
"hommel ' sequential Bonferroni correction ~ Reportedly more powerful than
Hochberg procedure to control the
family-wise error rate
"BH' Benjamini & Hochberg step-up  Controls the false discovery rate
correction
'BY" Benjamini & Yekutieli step-up Controls the false discovery rate
correction
'none’ no correction Uncorrected p-values
'Sidakss'? Sidak single-step correction More powerful modification of
Bonferroni procedure
'SidaksD'? Sidak step-down correction More powerful modification of

Bonferroni procedure

Zonly available via the mt . rawp2adijp function of the multtest package, see Example 10F.

10.11 Worked examples of real biological data sets

Example 10A: Single factor ANOVA with Tukey’s test

Medley and Clements (1998) investigated the impact of zinc contamination (and other
heavy metals) on the diversity of diatom species in the USA Rocky Mountains (from
Box 8.1 of Quinn and Keough (2002)). The diversity of diatoms (number of species)
and degree of zinc contamination (categorized as either of high, medium, low or natural
background level) were recorded from between four and six sampling stations within each
of six streams known to be polluted. These data were used to test the null hypothesis
that there were no differences the diversity of diatoms between different zinc levels (Ho:

My =y = (L = U = W; o =0).
The linear effects model would be:

Yij = 12 + o + &j
diatom species = overall + effectofzinc + error
diversity mean level
Step 1 - Import (section 2.3) the Medley and Clements (1998) data set
> medley <- read.table("medley.csv", header = T, sep = ",")
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Step 2 - Reorganize the levels of the categorical factor into a more logical order (section 2.6.1)

> medley$SZINC <- factor (medley$ZINC, levels = c("HIGH", "MED",
+ "LOW", "BACK"), ordered = F)

Step 3 (Key 10.1) - Assess normality/homogeneity of variance using boxplot of species diversity
against zinc group

> boxplot (DIVERSITY ~ ZINC, medley)

p—
© !
(\i — 1
1
1 _
-_T 1
o | ' . . o
w . Conclusions - no obvious violations of
) . normality or homogeneity of variance
1
@ ' . ' — (boxplots not asymmetrical and do not
1 —_—
! vary greatly in size)
2 . -
1
‘ ° o
—_—
T T T T
HIGH MED LOwW BACK

Step 4 (Key 10.1) - Assess homogeneity of variance assumption with a table and/or plot of
mean vs variance

> plot (tapply (medley$DIVERSITY, medley$ZINC, mean),
+ tapply (medley$SDIVERSITY, medley$SZINC, var))

0.24
I

0.22
I

Conclusions - no obvious relationship
between group mean and variance

0.20
I

tapply(medley$DIVERSITY, medley$ZINC, var)

tapp $DIVERSITY, medley$ZINC, mean)
Step 5 (Key 10.3a) - Test Hy that population group means are all equal - perform analysis
of variance (fit the linear model) of species diversity versus zinc-level group and examine the
diagnostics (residual plot)

> medley.aov <- aov(DIVERSITY ~ ZINC, medley)
> plot (medley.aov)
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Step 6 (Key 10.3a) - Examine the ANOVA table.

> anova (medley.aov)
Analysis of Variance Table

Response: DIVERSITY

Df Sum Sg Mean Sg F value Pr(>F)
ZINC 3 2.5666 0.8555 3.9387 0.01756 *
Residuals 30 6.5164 0.2172

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Conclusions - reject Hq that population group means are equal, ZINC was found to have a
significant impact on the DIVERSITY of diatoms (f3 30 = 3.939, P = 0.018).

Step 7 (Key 10.9a) - Perform post-hoc Tukey’s test to investigate pairwise mean differences
between all groups

> library (multcomp)
> summary (glht (medley.aov, linfct = mcp(ZINC = "Tukey")))
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = DIVERSITY ~ ZINC, data = medley)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t])

(
MED - HIGH == 0 0.44000 0.21970 2.003 0.2093
LOW - HIGH == 0 0.75472 0.22647 3.333 0.0114 =
BACK - HIGH == 0.51972 0.22647 2.295 0.1219
LOW - MED == 0 0.31472 0.22647 1.390 0.5152
BACK - MED == 0 0.07972 0.22647 0.352 0.9847
BACK - LOW == 0 -0.23500 0.23303 -1.008 0.7457
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 "' "1
(Adjusted p values reported -- single-step method)

Conclusions - diatom species diversity is significantly higher in low zinc sites than high zinc
sites (tjs = 3.333,P = 0.011). No other Hq rejected. Note, the Tukey's adjusted P-values are
based on robust procedures that were not available to Quinn and Keough (2002). The more
recent Tukey’s test makes use of randomization procedures and thus the exact P-values differ
from run to run.

Step 8 - Summarize findings of global ANOVA and post-hoc Tukey’s test with a bargraph (see
also section 5.9.4)

> library (biology)
> Mbargraph (medley$DIVERSITY, medley$ZINC, symbols = c("A", "AB",
+ "B", "AB"), ylab = "Mean diatom diversity",
+ xlab = "Zinc concentration")

2.4 —

22 - B

2.0 - T_ AB

| 1

D mml |
1.4 — T
1.2 — J_

1.0 T T T
HIGH MED LOW BACK

Zinc concentration

Mean diatom diversity

Example 10B: Single factor ANOVA with planned comparisons

Keough and Raimondi (1995) examined the effects of four biofilm types (SL: sterile unfilmed
substrate, NL: netted laboratory biofilms, UL: unnetted laboratory biofilms and F: netted field
biofilms) on the recruitment of serpulid larvae (from Box8.2 and Box8.4 of Quinn and Keough,
2002). Substrates treated with one of the four biofilm types were left in shallow marine
waters for one week after which the number of newly recruited serpulid worms were counted.
These data were used to test the null hypothesis that there were no differences in serpulid
numbers between the different biofilms (Ho: ity = e = pur = s = ur = i a; = 0).
The linear effects model would be:

Yij = u + 7 + g
serpulid = overall + effect of biofilm type +  error
number mean

Step I - Import (section 2.3) the Keough and Raimondi (1995) data set

> keough <- read.table("keough.csv", header = T, sep = ", ")
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Step 2 (Keys 10.1 & 10.5) - Check the assumptions and scale data if appropriate

> boxplot (SERP ~ BIOFILM, > boxplot (loglO (SERP) ~ BIOFILM,
+ data = keough) + data = keough)
— —— o [ — J—
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F NL SL uL F NL SL uL
> with (keough, plot(tapply (SERP, > with (keough,
+ BIOFILM, mean), + plot (tapply (loglO (SERP),
+ tapply (SERP, BIOFILM, + BIOFILM, mean),
+ var))) + tapply (1loglO (SERP) ,
+ BIOFILM, var)))
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tapply(SERP, BIOFILM, mean) tapply(log10(SERP), BIOFILM, mean)

Conclusions - some evidence of a relationship between population mean and population
variance from untransformed data, log,q transformed data meets assumptions better, therefore
transformation appropriate.

In addition to examining the overall effect of BIOFILM treatments on the number of newly
recruited serpulid worms, Keough and Raimondi (1995) were interested in examining a number
of other specific null hypotheses. In particular, whether recruitment was effected by the presence
of netting in laboratory biofilms (NL vs UL), whether recruitment differed between field and
laboratory biofilms (F vs (NL&UL) and finally whether recruitment differed between unfilmed
and filmed treatments (SL vs (F&GNL&UL)).
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There specific null hypotheses and corresponding contrast coefficients are (Note, technically,
we should not define contrasts with values greater than |. However, in this case, as we are not
going to examine the estimated regression parameters, the magnitude of the contrast coefficients
will have no impact on the analyses.):

Ho: F NL SL UL
UNL = Hut 0 I 0 -l
wr = (N + 1ur)/2 2 -1 0 -l
s = (e + pne + pw)/3 =1 =1 3 —I

Step 3 (Key 10.4a) - Define a list of contrasts for the following planned comparisons: NL vs
UL, F vs the average of NL and UL, and SL vs the average of F, NL and UL.

> contrasts (keough$BIOFILM) <- cbind(c(0, 1, 0, -1), c(2, -1, 0,
+ -1), c(-1, -1, 3, -1))

Step 4 (Key 10.4a) - Confirm that defined contrasts are orthogonal.

> round (crossprod(contrasts (keough$SBIOFILM) ), 2)
[,11 [,21 [,3]

[1,] 2 0 0

[2,] 0 6 0

[3,] 0 0 12

Conclusions - all defined planned contrasts are orthogonal (values above or below the
cross-product matrix diagonal are all be zero).

Step 5 (Key 10.4a) - Define contrast labels. These are labels to represent each of the defined
planned comparisons in the ANOVA table

> keough.list <- 1ist(BIOFILM = list('NL vs UL' = 1,
+ 'F vs (NL&UL)' = 2, 'SL vs (F&NL&UL)' = 3))

Step 6 (Key 10.4a cont.) - Fit the linear model to test the null hypothesis that the population
group means are all equal as well as the specific null hypotheses that the population means of
treatments SL and F are equal, SL and the average of NL and F are equal, and UL and the average
of SL, NL and F are equal.

> keough.aov <- aov(loglO(SERP) ~ BIOFILM, data = keough)

Step 7 (Key 10.4a cont.) - Check the diagnostic plots to confirm assumptions are met

> plot (keough.aov)
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Step 8 (Key 10.4a cont.) - Examine the ANOVA table

> summary (keough.aov, split = keough.list)

Df Sum Sg Mean Sg F value Pr (>F)
BIOFILM 0.24103 0.08034 6.0058 0.0033386 **
BIOFILM: NL vs UL 0.00850 0.00850 0.6352 0.4332635
BIOFILM: F vs (NL&UL) 1 0.00888 0.00888 0.6635 0.4233267
BIOFILM: SL vs (F&NL&UL) 1 0.22366 0.22366 16.7188 0.0004208 ***
Residuals 24 0.32106 0.01338
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Conclusions - Biofilm treatments were found to have a significant affect on the mean log;o
number of serpulid recruits (F5 24 = 6.0058, P = 0.003). The presence of a net (NL) over the
substrate was not found to alter the mean log,, serpulid recruits compared to a surface without
(UL) a net (Fj 4 = 0.6352, P = 0.4332). Field biofilms (F) were not found to have different
mean log serpulid recruits than the laboratory (NL, UL) biofilms (F| 24 = 0.6635, P = 0.4233).
Unfilmed treatments were found to have significantly lower mean logo serpulid recruits than
treatments with biofilms (F| 24 = 16.719,P < 0.001).

Step 9 - Summarize findings with a bargraph (see section 5.9.4)

means <- with(keough, tapply(SERP, BIOFILM, mean, na.rm = T))

sds <- with(keough, tapply(SERP, BIOFILM, sd, na.rm = T))

n <- with(keough, tapply(SERP, BIOFILM, length))

ses <- sds/sqrt(n)

vs <- pretty(c(means - ses, means + (2 * ses)))

xS <- barplot (means, beside = T, axes = F, ann = F,
yvlim = c(min(ys), max(ys)), xpd = F)

arrows (xs, means + ses, Xs, means - ses, ang = 90, length = 0.1,
code = 3)

+ V. + V V V V VvV V
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> axis (2, las = 1)
> mtext (2, text = "Mean number of serpulids", line = 3, cex = 1.5)
> mtext (1, text = "Biofilm treatment", line = 3, cex = 1.5)
> box(bty = "1")
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Example 10C: Single factor ANOVA with planned polynomial trends

As an illustration of polynomial trends, Quinn and Keough (2002) suggested a hypothetical
situation in which Keough and Raimondi (1995) might have also included an examination
of the linear change in settlement across the four treatments (SL, NL, UL & F).

Step 1 - Import the Keough and Raimondi (1995) data set, see Example 10B.

> keough <- read.table("keough.csv", header = T, sep = ", ")

Step 2 (see section 2.6.1) - Reorder the factor levels into a logical order in preparation of the
polynomial trends - so that not in alphabetical order

> keoughS$BIOFILM <- factor (keough$BIOFILM, levels = c("SL", "NL",
+ "UL", |IF|I))

Step 3 (Key 10.4b) - Define the polynomial contrast coefficients. These will be automatically
generated and orthogonal.

> contrasts (keough$BIOFILM) <- "contr.poly"

Step 4 (Key 10.4b) - Define the polynomial contrast labels

> keough.list <- 1ist(BIOFILM = list(Linear = 1, Quadratic = 2,
+ Cubic = 3))

Step 5 (Key 10.4b) - Fit the ANOVA model and the first, second and third order polynomial
trends

> keough.aov <- aov(loglO(SERP) ~ BIOFILM, data = keough)
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Step 6 (Key 10.4b) - Examine the ANOVA table including the first three polynomial trends

> summary (keough.aov, split = keough.list)
Df Sum Sg Mean Sg F wvalue Pr (>F)
BIOFILM 3 0.24103 0.08034 6.0058 0.003339 **
BIOFILM: Linear 1 0.08155 0.08155 6.0961 0.021054 *
BIOFILM: Quadratic 1 0.12248 0.12248 9.1555 0.005836 **
BIOFILM: Cubic 1 0.03700 0.03700 2.7660 0.109294
Residuals 24 0.32106 0.01338
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " "' 1

Conclusions - We would reject the null hypothesis of no quadratic trend over and above a
linear trend (Fy 24 = 9.156, P = 0.006), suggesting that there is a significant quadratic trend
in mean log,o number of serpulid recruits across the ordered BIOFILM treatments (SL, NL,
UL, F). Whilst this is a statistically significant outcome, it does not necessarily infer biological
significance.

Example 10D: Single random factor ANOVA and variance components

Following on from Example 10A, Medley and Clements (1998) may also have been interested
in whether diatom diversity differed across Rocky Mountain streams (Box8.! from Quinn
and Keough, 2002). Hence, streams could be treated as a random factor in testing the null
hypothesis that there was no added variance in diatom diversity due to streams.

Step 1 - Import (section 2.3) the Medley and Clements (1998) data set

> medley <- read.table("medley.csv", header = T,

Step 2 (Key 10.1a & 10.1b) - Assess normality/homogeneity of variance using boxplot of
species diversity against stream

> boxplot (DIVERSITY ~ STREAM, medley)

Conclusions - although not ideal,
there is no evidence that popula-
tion diatom diversity is consistently
non-normally distributed and drasti-
: cally unequally varied. Note that small
A boxplots are accompanied by outliers
suggestive of potentially greater vari-
ance. Consequently, perfform ANOVA
and rely on general robustness of the
test.
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Step 3 (Key 10.3a) - Test Hy that there is no added variation in diatom diversity due to stream -
perform analysis of variance (fit the linear model) of species diversity versus stream and examine
the ANOVA table.

> medley.aov <- aov(DIVERSITY ~ STREAM, medley)
> anova (medley.aov)

Analysis of Variance Table

Response: DIVERSITY

Df Sum Sg Mean Sqg F value Pr (>F)
STREAM 5 1.8278 0.3656 1.4108 0.2508
Residuals 28 7.2552 0.2591

Conclusions - do not reject the null hypothesis that there is no added variance in diatom
diversity due to streams.

Step 4 (Key 10.3a) - Calculate ML and REML estimates of variance components (random factor
and residuals).

> library (nlme)
> print (VarCorr (lme (DIVERSITY ~ 1, random = ~1 | STREAM,
+ method = "ML", data = medley)))
STREAM = pdLogChol (1)
Variance StdDev
(Intercept) 0.009927963 0.09963916
Residual 0.257182572 0.50713171
> print (VarCorr (lme (DIVERSITY ~ 1, random = ~1 | STREAM,
+ method = "REML", data = medley)))
STREAM = pdLogChol (1)
Variance StdDev
(Intercept) 0.02053683 0.1433068
Residual 0.25755732 0.5075011

Conclusions - Most of the variance in diatom diversity is due to differences between sampling
stations within the streams (ML: 0.2571, REML: 0.2576), very little variance is added due to
differences between streams (ML: 0.0099, REML: 0.0205)

Example 10E: Kruskal-Wallis test with non-parametric post-hoc test

Sokal and Rohlf (1997) present an unpublished data set (W. Purves) in which the effect of
different sugar treatments (Control, 2% glucose added, 2% fructose added, 1% glucose and
1% fructose added, and 2% sucrose added) on pea length was investigated (from Box 13.6
of Sokal and Rohlf, 1997).

Step | - Import the Purves (unpublished) data set

> purves <- read.table("purves.csv", header = T, sep
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Step 2 (Keys 10.1a & 10.5) - Check the assumptions of normality and equal variance

> boxplot (LENGTH ~ TREAT, data = purves)

Conclusions - strong evidence of
unequal variance. Note that this data
set would probably be better suited
1 - to a Welch’s test, however, for the

E purpose of providing worked examples
B that are consistent with popular biom-

|+| etry texts, a Kruskal-Wallis test will be
- demonstrated.

70
|

65
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Step 3 (Key 10.8) - Perform non-parametric Kruskal-Wallis test.

> kruskal.test (LENGTH ~ TREAT, data = purves)
Kruskal-Wallis rank sum test

data: LENGTH by TREAT
Kruskal-Wallis chi-squared = 38.4368, df = 4, p-value = 9.105e-08

Conclusions - reject null hypothesis, sugar treatment has a significant affect on the growth of
pea sections.

Step 4 (Key 10.8) - Perform non-parametric post-hoc test.
> library (npmc)

> dat <- data.frame(var = purves$SLENGTH, class = purves$STREAT)
> summary (npmc (dat), type = "Steel")

$'Data-structure’
group.index class.level nobs

Control 1 Control 10
Fructose 2 Fructose 10
GlucFruc 3 GlucFruc 10
Glucose 4 Glucose 10
Sucrose 5 Sucrose 10

S'Results of the multiple Steel-Test'
cmp effect lower.cl wupper.cl p.value.ls p.value.2s

1 1-2 0.000 -0.3599019 0.3599019 1.0000000000 0.001470977
2 1-3 0.000 -0.3596288 0.3596288 1.0000000000 0.001298745
3 1-4 0.000 -0.3600384 0.3600384 1.0000000000 0.001041309
4 1-5 0.050 -0.3081226 0.4081226 1.0000000000 0.005696086
5 2-3 0.495 0.1422692 0.8477308 0.9943192409 1.000000000
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6 2-4 0.670 0.3133899 1.0266101 0.5005921659 0.713955365
7 2-5 1.000 0.6405079 1.3594921 0.0005691443 0.001327216
8 3-4 0.730 0.3746322 1.0853678 0.2525087694 0.407630138
9 3-5 1.000 0.6407814 1.3592186 0.0008494360 0.001372916
10 4-5 0.985 0.6261920 1.3438080 0.0010278350 0.001889472

Conclusions - The pea sections treated with sugar were significantly shorter than the controls
and sections treated with sucrose were significantly longer than sections treated with either
glucose, fructose or a mixture of glucose and fructose.

Step 5 - Summarize findings with a bargraph

> means <- with(purves, tapply (LENGTH, TREAT, mean, na.rm = T))

> sds <- with(purves, tapply (LENGTH, TREAT, sd, na.rm = T))

> n <- with(purves, tapply (LENGTH, TREAT, length))

> ses <- sds/sgrt(n)

> ys <- pretty(c(means - ses, means + (2 * ses)))

> xs <- barplot (means, beside = T, axes = F, ann = F,

+ yvlim = c(min(ys), max(ys)), xpd = F)

> arrows (Xs, means + ses, Xs, means - ses, ang = 90, length = 0.05,

+ code = 3)

> axis (2, las = 1)

> mtext (2, text = "Mean pea length", line = 3, cex = 1.5)

> mtext (1, text = "Sugar treatment", line = 3, cex = 1.5)

> text(xs, means + ses, labels = c("A", "B", "B", "B", "C"),
pos = 3)

> box(bty = "1")
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Example 10F: Welch’s test

Sanchez-Pifiero and Polis (2000) studied the effects of sea birds on tenebrionid beetles
on islands in the Gulf of California. These beetles are the dominant consumers on these
islands and it was envisaged that sea birds leaving guano and carrion would increase beetle
productivity. They had a sample of 25 islands and recorded the beetle density, the type of
bird colony (roosting, breeding, no birds), % cover of guano and % plant cover of annuals
and perennials.
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Step | - Import the Sanchez-Pifiero and Polis (2000) data set

> sanchez <- read.table("sanchez.csv", header = T, sep = ", ")

Step 2 (Keys 10.1a & 10.5) - Check the assumptions and scale data if necessary

> boxplot (GUANO ~ COLTYPE, > boxplot (sgrt (GUANO) ~ COLTYPE,
+ data = sanchez) + data = sanchez)
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Conclusions - clear evidence that normality and homogeneity of variance assumptions are
likely to be violated, square-root transformation improves normality, however, there is still clear
evidence that that homogeneity of variance assumption is likely to be violated. Consequently
use a Welch's test.

Step 3 (Key 10.6a) - Perform the Welch's test.

> oneway.test (sqgrt (GUANO) ~ COLTYPE, data = sanchez)

One-way analysis of means (not assuming equal variances)

data: sqgrt(GUANO) and COLTYPE
F = 42.2862, num df = 2.000, denom df = 10.706, p-value = 8.282e-06

Conclusions - Reject the null hypothesis that population means are equal - percentage guano
cover differs significantly in different colony types.

Step 4 (Key 10.9c) - Perform post-hoc test.

> pairwise.t.test (sqgrt (sanchez$SGUANO), sanchez$SCOLTYPE,
+ pool.sd = F, p.adj = "holm")
Pairwise comparisons using t tests with non-pooled SD

data: sgrt(sanchez$GUANO) and sanchez$SCOLTYPE
B N
N 0.0091 -

R 0.9390 2.7e-05

P value adjustment method: holm
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Conclusions - Square root transformed guano cover was significantly higher in breeding
colonies than roosting colonies and significantly lower in roosting colonies than the controls
and sections treated with sucrose were significantly longer than sections treated with either
glucose, fructose or a mixture of glucose and fructose.

Alternatively, the Dunn-Sidak procedure of p-value adjustments could be performed. First re-
perform each of the pairwise comparisons but without any p-value corrections and keep a copy
of the p-values. Examine these unadjusted p-values to determine which p-value is associated
with which comparison. Then use the mt . rawp2adjp function of the multtest package to
perform Dunn-Sidak step-down p-value corrections. Note that adjusted p-values are ordered from
lowest to largest and labels are not supplied, so to determine which p-values are associated with
which comparison, cross reference with the raw p-values or use the values of the index attribute.

> pvalues <- pailrwise.t.test (sgrt (sanchez$GUANO), sanchez$SCOLTYPE,
+ pool.sd = F, p.adj = "none")S$Sp.value
> pvalues
B N
N 0.00455275 NA
R 0.93900231 8.846058e-06

> library (multtest)
> mt.rawp2adjp (pvalues, proc = "SidakSD")
Sadjp
rawp SidakSD
[1,] 8.846058e-06 3.538376e-05
[2,] 4.552750e-03 1.359616e-02
[3,1 9.390023e-01 9.962793e-01
[4,] NA NA

Sindex
[1] 412 3

Sh0.ABH
NULL

$h0.TSBH
NULL

Conclusions - the square root transformed guano cover of sites without birds was found to
be significantly lower than the cover in both breeding (p < 0.001) and roosting (p = 0.0136)
colonies, however the square root transformed guano cover was not found to differ significantly
between breeding and roosting colonies (p = 0.996).

Step 5 - Summarize findings with a bargraph

> library(biology)

> Mbargraph (sanchez$SGUANO, sanchez$COLTYPE, symbols = c("A", "B",
+ "A"), ylab = "Mean percentage Guano cover",

+ xlab = "Bird colony type")
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Example 10G: Randomization test

As part of a study into the diets of of eastern horned lizard (Phrynosoma douglassi
brevirostre), Powell and Russell (1984, 1985) investigated whether the consumption of ants
changed over time from June to September (Example 5.1 from Manly, 1991). They measured
the dry biomass of ants collected from the stomachs of 24 adult male and yearling females
in June, July, August and September of 1980.

Step 1 - Import the Powell and Russell (1984, 1985) data set
> ants <- read.table("ants.csv", header = T, sep = ", ")

Step 2 (Key 10.1a) - Assess normality/homogeneity of variance using boxplot of ant biomass
against month. Cube root transformation also assessed.

> boxplot (BIOMASS ~ MONTH, ants) > boxplot (BIOMASS”~(1/3) ~ MONTH,

ants)
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Conclusions - strong evidence of non-normality and unequal variance in raw data. Cube root
transformation greatly improved homogeneity of variance, however there is evidence that the
populations are not of the same distribution (August appears to be skewed). As a result a
randomization test in which the the F-distribution is generated from the samples, might be
more robust than an ANOVA that assumes each of the populations are normally distributed.
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Step 3 (Key 10.8b) - define the statistic to use in the randomization test — in this case the

F-ratio

> stat <- function(data, indices) {

+ f.ratio <- anova(aov(BIOMASS"(1/3) ~ MONTH, data))S$"F
+ value"[1l] f.ratio

+ }

Step 4 (Key 10.8b) - define how the data should be randomized - randomly reorder the which
month each biomass observation was collected (without replacement)

> rand.gen <- function(data, mle) {

+ out <- data

+ OUt$SMONTH <- sample (out$SMONTH, replace = F)
+ out

+ }

Step 5 (Key 10.8b) - call a bootstrapping procedure to randomize 5000 times (this can take
some time).

> ants.boot <- boot (ants, stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Step 6 (Key 10.8b) - examine the distribution of F-ratios generated from the randomization
procedure

> plot (ants.boot)
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Step 7 (Key 10.8b) - examine the bootstrap statistics

> print (ants.boot)
PARAMETRIC BOOTSTRAP
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Call:
boot (data = ants, statistic = stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Bootstrap Statistics
original bias std. error
tl* 4.618806 -3.491630 1.074420

Conclusions - The observed F-ratio was 4.619

Step 8 (Key 10.8b) - calculate the number of possible F-ratios (including the observed F-ratio,
which is one possible situation) that were greater or equal to the observed F-ratio and express
this as a percentage of the number of randomizations (plus one for the observed situation)
performed.

> f <- length(ants.boot[ants.boot$t >= ants.boot$t0]) + 1
> print (f/ (ants.boots$R + 1))
[1] 0.0159968

Conclusions - Reject the null hypothesis that the population cubed root ant biomass
consumption was equal in each of the four months because the p-value was less than 0.05.
The consumption of ants by eastern horned lizard different between the four months.

Step 9 - Perform post-hoc multiple comparisons via randomization and use the Holm correction
procedure on the pairwise p-values. For each pairwise comparison, specify which levels of the
categorical variable to include in the randomization (boot) function and calculate a p-value.

> ants.randl <- boot (ants[ants$MONTH == "September" | ants$MONTH ==
+ "August", ], stat, R = 1000, sim = "parametric", ran.gen =

+ rand.gen)

> ants.rand2 <- boot (ants[ants$MONTH == "September" | ants$MONTH ==
+ "July", 1, stat, R = 1000, sim = "parametric", ran.gen =

+ rand.gen)

> p.S.A <- print(length(ants.randl[ants.randl$t >= ants.randl$t0])/
+ (ants.randl$R + 1))

[1] 0.000999001

> p.S.Jy <- print(length(ants.rand2[ants.rand2$t >= ants.rand2st0])/
+ (ants.rand2S$R + 1))

[1] 0.2677323

Step 10 - Compile a list of all the pairwise p-values and perform Holm correction.

> p.values <- c('Sep vs Aug' = p.S.A, 'Sep vs Jul' = p.S.Jdy,
+ 'Sep vs Jun' = p.S.Jn, 'Aug vs Jul' = p.A.Jdy,
+ 'Aug vs Jun' = p.A.Jn, 'Jul vs Jun' = p.Jy.Jdn)
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> p.adjust(p.values, "holm")

Sep vs Aug Sep vs Jul Sep vs Jun Aug vs Jul Aug vs Jun
Jul vs Jun

0.005994006 0.803196803 0.264735265 0.264735265 0.803196803
0.803196803

Conclusions - The cubed root ant biomass consumption by eastern horned lizards was found
to be significantly different between September and August (p=0.006), but was not found to
be significantly different between any other month pairs.

Step 11 - Summarize findings with a bargraph

> Mbargraph (ants$BIOMASS, ants$MONTH, symbols = c("A", "AB", "AB",
+ "B"), ylab = "Mean ant biomass", xlab = "Month")
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Nested ANOVA

When single sampling units are selected amongst highly heterogeneous conditions (as
represented in Figure 11.1a), it is unlikely that these single units will adequately repre-
sent the populations and repeated sampling is likely to yield very different outcomes.
As a result, the amount of variation within the main treatment effect (unexplained
variability) remains high, thereby potentially masking any detectable effects due to the
measured treatments. Although this problem can be addressed by increased replica-
tion, this is not always practical or possible. For example, if we were investigating the
impacts of fuel reduction burning across a highly heterogeneous landscape, our ability
to replicate adequately might be limited by the number of burn sites available.

Alternatively, sub-replicates within each of the sampling units (e.g. sites) can be
collected (and averaged) so as to provided better representatives for each of the units
(see Figure 11.1b) and ultimately reduce the unexplained variability of the test of
treatments. In essence, the sub-replicates are the replicates of an additional nested
factor whose levels are nested within the main treatment factor. A nested factor refers
to a factor whose levels are unique within each level of the factor it is nested within and
each level is only represented once. For example, the fuel reduction burn study design
could consist of three burnt sites and three un-burnt (control) sites each containing
four quadrats (replicates of site and sub-replicates of the burn treatment). Each site
represents a unique level of a random factor (any given site cannot be both burnt and
un-burnt) that is nested within the fire treatment (burned or not).

A nested design can be thought of as a hierarchical arrangement of factors (hence
the alternative name hierarchical designs) whereby a treatment is progressively sub-
replicated. As an additional example, imagine an experiment designed to comparing the
leaf toughness of a number of tree species. Working down the hierarchy, five individual
trees were randomly selected within (nested within) each species, three branches were
randomly selected within each tree, two leaves were randomly selected within each
branch and the force required to shear the leaf material in half (transversely) was
measured in four random locations along the leaf. Clearly any given leaf can only
be from a single branch, tree and species. Each level of sub-replication is introduced
to further reduce the amount of unexplained variation and thereby increasing the
power of the test for the main treatment effect (the effect of species). Additionally, it is
possible to investigate which scale of replication has the greatest (or least, etc) degree
of variability - the level of the species, individual tree, branch, leaf, leaf region etc.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 11.1 Fictitious spatial depictions contrasting (a) single factor and (b) nested ANOVA
designs each with three replicate sampling units for each of two treatment levels (n = 3 for
each treatment level). When single sampling units are selected amongst highly heterogeneous
conditions (as represented in (a)), it is unlikely that these single units will adequately represent the
populations and repeated sampling is likely to yield very different outcomes. For such situations,
this heterogeneity increases the unexplained variation thereby potentially masking any detectable
effects due to the measured treatments. Sub-replicates within each of the sampling units can be
collected so as to provided a better representative for each unit.

Nested factors are typically random factors (see section 10.0.1), of which the levels
are randomly selected to represent all possible levels (e.g. sites). When the main
treatment effect (called Factor A) is a fixed factor, such designs are referred to as a
mixed model nested anova, whereas when Factor A is random, the design is referred to
as a Model II nested anova. Fixed nested factors are also possible. For example, specific
dates (corresponding to particular times during a season) could be nested within
season. When all factors are fixed, the design is referred to as a Model I mixed model.

Fully nested designs (the topic of this chapter) differ from other multi-factor designs
in that all factors within (below) the main treatment factor are nested and thus
interactions are un-replicated and cannot be tested®. Partly nested designs in which
some of the factors within the main treatment effect are not nested (that is, their levels
are repeated within each of the levels of the factor(s) above) are dealt with in chapter 14.

I11.1 Linear models

The linear models for two and three factor nested design are:

yik = K+ ai+ Bju) + €ijk
Yijk =+ i + Biy + Vi) T Eijkl

¢ Interaction effects are assumed to be zero.
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where p is the overall mean, « is the effect of Factor A, f is the effect of Factor B, y is
the effect of Factor C and ¢ is the random unexplained or residual component.

11.2 Null hypotheses

Separate null hypotheses are associated with each of the factors, however, nested factors
are typically only added to absorb some of the unexplained variability and thus, specific
hypotheses tests associated with nested factors are of lesser biological importance.

[1.2.1 Factor A - the main treatment effect
Fixed

Ho(A) :uy=puo=...=pni=n (the population group means are all equal)

The mean of population 1 is equal to that of population 2 and so on, and thus all
population means are equal to an overall mean. If the effect of the i group is the
difference between the i*" group mean and the overall mean («; = p; — ) then the Hy
can alternatively be written as:

HyA):ai=ay=...=a; =0 (the effect of each group equals zero)

If one or more of the «; are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random
Hy(A) : O’j =0 (population variance equals zero)
There is no added variance due to all possible levels of A.
[1.2.2  Factor B - the nested factor
Random (typical case)

Ho(B) : aé =0 (population variance equals zero)

There is no added variance due to all possible levels of B within the (set or all possible)
levels of A.

Fixed
Ho(B) : (i) = Moy = - .- = HjG) = K (the population group means of B
(within A) are all equal)
Ho(B) : Bity = B2ty = ... = Bjti)) =0 (the effect of each chosen B group

equals zero)
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Table 11.1 F-ratios, estimated variance components (for balanced ANOVA only) and corre-
sponding R syntax for two factor nested designs.

A fixed/random, B random A fixed/random, B fixed

Factor d.f. MS F-ratio  Var. comp. F-ratio  Var. comp.
MS MS, — MSy MS MS, — MSges;
a a—1 MSA A A B'(A) A A Resid
M‘SB’(A) nb MSResid nb
MSp MSpay — MSgesia  MSg MSp 4y — MSgesi
B,(A) (b _ l)a MSB/(A) B/ (A) B/ (A) Resid B/ (A) B/ (A) Resid
MSResia n MSgesid n
Residual (n—1)ba MSgesia

(=N'(B'(A)))
A fixed/random, B random
> summary (aov (DV~A+Error (B), data))
> VarCorr (lme (DV~A, random=~1|B)
Unbalanced > anova (1lme (DV~A,random=~1|B), data)

A fixed/random, B fixed

> summary (aov (DV~A+B, data)))
Unbalanced > Anova (aov(DV~A/B,data),type="III")?

“To use Type Ill sums of squares, Factor B contrasts must first be defined as something other than ‘treatment’ (such as
‘sum’ or ‘helmert’) prior to fitting the model (> contrasts (data$B)<-contr.helmert).

The null hypotheses associated with additional factors, are treated similarly to Factor B
above.

11.3 Analysis of variance

Analysis of variance sequentially partitions the total variability in the response variable
into components explained by each of the factors® (starting with the factors lowest
down in the hierarchy - the most deeply nested) and the components unexplained by
each factor. When the null hypothesis for a factor is true (no effect or added variability),
the ratio of explained and unexplained components for that factor (F-ratio) should
follow a theoretical F-distribution with an expected value less than 1.

The appropriate unexplained residuals and therefore the appropriate F-ratios
for each factor differ according to the different null hypotheses associated with
different combinations of fixed and random factors in a nested linear model (see
Tables 11.1 & 11.2).

11.4 Variance components

As previously alluded to, it can often be useful to determine the relative contribution
(to explaining the unexplained variability) of each of the factors as this provides insights

b Explained variability is calculated by subtracting the amount unexplained by the factor from the
amount unexplained by a reduced model that does not contain the factor.
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into the variability at each different scale. These contributions are known as variance
components and are estimates of the added variances due to each of the factors. For
consistency with other texts, [ have included estimated variance components for various
balanced nested ANOVA designs in Tables 11.1 & 11.2. However, variance components
based on a modified version of the maximum likelihood iterative model fitting (see
chapter 3.7.2) procedure (REML) is generally recommended as this accommodates
both balanced and unbalanced designs.

While there are no numerical differences in the calculations of variance components
for fixed and random factors, fixed factors are interpreted very differently and
arguably have little biological meaning (other to infer relative contribution). For fixed
factors, variance components estimate the variance between the means of the specific
populations that are represented by the selected levels of the factor and therefore
represent somewhat arbitrary and artificial populations. For random factors, variance
components estimate the variance between means of all possible populations that could
have been selected and thus represents the true population variance.

11.5 Assumptions

An F-distribution represents the relative frequencies of all the possible F-ratio’s when a
given null hypothesis is true and certain assumptions about the residuals (denominator
in the F-ratio calculation) hold. Consequently, it is also important that diagnostics
associated with a particular hypothesis test reflect the denominator for the appropriate
F-ratio. For example, when testing the null hypothesis that there is no effect of Factor A
(Ho(A) : @; = 0) in a mixed nested anova, the means of each level of Factor B are used
as the replicates of Factor A. As with single factor anova, hypothesis testing for nested
ANOVA assumes the residuals are (for greater explanation of each see chapter 10.4):

(i) normally distributed. Factors higher up in the hierarchy of a nested model are based on
means (or means of means) of lower factors and thus the Central Limit Theory would
predict that normality will usually be satisfied for the higher level factors. Nevertheless,
boxplots using the appropriate scale of replication should be used to explore normality.
Scale transformations are often useful.

(i) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns (see Figure 8.5). Scale transformations are often useful.

(i) independent of one another - this requires special consideration so as to ensure that the
scale at which sub-replicates are measured is still great enough to enable observations to
be independent.

11.6 Pooling denominator terms

Designs that incorporate fixed and random factors (either nested or factorial), involve
F-ratio calculations in which the denominators that are themselves random factors
other than the overall residuals. Many statisticians argue that when such denominators
are themselves not statistically significant (at the 0.25 level), there are substantial power
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benefits from pooling together successive non-significant denominator terms. Thus an
F-ratio for a particular factor might be recalculated after pooling together its original
denominator with its denominators denominator and so on. The conservative 0.25 is
used instead of the usual 0.05 to reduce further the likelihood of Type II errors (falsely
concluding an effect is non-significant - that might result from insufficient power).

11.7 Unbalanced nested designs

Unbalanced designs are those designs in which sample (subsample) sizes for each level
of one or more factors differ. These situations are relatively common in biological
research, however such imbalance has some important implications for nested designs.
Firstly, hypothesis tests are more robust to the assumptions of normality and equal
variance when the design is balanced. Secondly (and arguably, more importantly), the
model contrasts are not orthogonal (independent) and the sums of squares component
attributed to each of the model terms cannot be calculated by simple additive
partitioning of the total sums of squares (see section 12.6). In such situations, exact
F-ratios cannot be constructed (at least in theory®), variance components calculations
are more complicated and significance tests cannot be computed.

The severity of this issue depends on which scale of the sub-sampling hierarchy
the unbalance(s) occurs as well whether the unbalance occurs in the replication of a
fixed or random factor. For example, whilst unequal levels of the first nesting factor
(e.g. unequal number of burn vs un-burnt sites) has no effect on F-ratio construction
or hypothesis testing for the top level factor (irrespective of whether either of the factors
are fixed or random), unequal sub-sampling (replication) at the level of a random (but
not fixed) nesting factor will impact on the ability to construct F-ratios and variance
components of all terms above it in the hierarchy.

There are a number of alternative ways of dealing with unbalanced nested designs?:

(i) split the analysis up into separate smaller simple ANOVA's each using the means of the
nesting factor to reflect the appropriate scale of replication. As the resulting sums of
squares components are thereby based on an aggregated dataset the analyses then inherit
the procedures and requirements of single (chapter 10) or fully factorial (chapter 12)
ANOVA.

(ii) adopt mixed-modelling techniques (see section |1.8)

11.8 Linear mixed effects models

Although the term ‘mixed-effects’ can be used to refer to any design that incorporates
both fixed and random predictors, its use is more commonly restricted to designs in

“The denominator MS in an F-ratio is determined by examining the expected value of the mean
squares of each term in a model. Unequal sample sizes result in expected means squares for which there
are no obvious logical comparators that enable the impact of an individual model term to be isolated.
4 All assume that the imbalance is not a direct result of the treatments themselves. Such outcomes are
more appropriately analysed by modelling the counts of surviving observations via frequency analysis
(see chapters 16&17).
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which factors are nested or grouped within other factors. Typically examples include
nested, longitudinal® data, repeated measures and blocking designs (see chapters 13
& 14). Furthermore, rather than basing parameter estimations on observed and
expected mean squares or error strata (as outlined above), mixed-effects models
estimate parameters via maximum likelihood (ML) or residual maximum likelihood
(REML). In so doing, mixed-effects models more appropriately handle estimation of
parameters, effects and variance components of unbalanced designs (particularly for
random effects). Resulting fitted (or expected) values of each level of a factor (for
example, the expected population site means) are referred to as Best Linear Unbiased
Predictors (BLUP’s). As an acknowledgement that most estimated site means will be
more extreme than the underlying true population means they estimate/, BLUP’s are
less spread from the overall mean than are simple site means. In addition, mixed-effects
models naturally model the ‘within-block’ correlation structure that complicates many
longitudinal designs (see section 13.4.1). Whilst the basic concepts of mixed-effects
models have been around for a long time, recent computing advances and adoptions
have greatly boosted the popularity of these procedures.

Linear mixed effects models are currently at the forefront of statistical development,
and as such, are very much a work in progress - both in theory and in practice. Recent
developments have seen a further shift away from the traditional practices associated
with degrees of freedom, probability distribution and p-value calculations.

The traditional approach to inference testing is to compare the fit of an alternative
(full) model to a null (reduced) model (via an F-ratio). When assumptions of normality
and homogeneity of variance apply, the degrees of freedom are easily computed and
the F-ratio has an exact F-distribution to which it can be compared. However, this
approach introduces two additional problematic assumptions when estimating fixed
effects in a mixed effects model.

Firstly, when estimating the effects of one factor, the parameter estimates associated
with other factor(s) are assumed to be the true values of those parameters (not
estimates). Whilst this assumption is reasonable when all factors are fixed, as random
factors are selected such that they represent one possible set of levels drawn from
an entire population of possible levels for the random factor, it is unlikely that the
associated parameter estimates accurately reflect the true values. Consequently, there
is not necessarily an appropriate F-distribution.

Furthermore, determining the appropriate degrees of freedom (nominally, the
number of independent observations on which estimates are based) for models that
incorporate a hierarchical structure is only possible under very specific circumstances
(such as completely balanced designs). Degrees of freedom is a somewhat arbitrary
defined concept used primarily to select a theoretical probability distribution on which
a statistic can be compared. Arguably, however, it is a concept that is overly simplistic
for complex hierarchical designs.

Most statistical applications continue to provide the ‘approximate’ solutions (as did
earlier versions within R). However, R linear mixed effects development leaders argue

¢ measurements repeated over time.
fThis is based on the principle that smaller sample sizes result in greater chances of more extreme
observations and that nested sub-replicates are also likely to be highly intercorrelated).
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strenuously that given the above shortcomings, such approximations are variably
inappropriate and are thus omitted.

Markov chain Monte Carlo (MCMC) sampling methods provide a Bayesian-like
alternative for inference testing. Markov chains use the mixed model parameter
estimates to generate posterior probability distributions of each parameter from which
Monte Carlo sampling methods draw a large set of parameter samples. These parameter
samples can then be used to calculate highest posterior density (HPD) intervals®. Such
intervals indicate the interval in which there is a specified probability (typically 95%)
that the true population parameter lies. Furthermore, whilst technically against the
spirit of the Bayesian philosophy, it is also possible to generate P values on which to
base inferences.

11.9 Robust alternatives

There are no formal robust or non-parametric tests specifically formulated for nested
analyses. However, since nested designs simply represent a hierarchical set of ANOVA’s,
it is possible to employ the techniques outlined in chapter 10.5 in a series of simple
ANOVA'’s each using aggregated portions of the full data set (reflecting the appropriate
scale of replication of each individual hypothesis test). Likewise, randomization
tests (which are useful for situations in which observation independence could be
questionable) can be performed by comparing the F-ratios to a large number of sets of
F-ratios calculated from repeatedly shuffled data’.

Note that nested designs are often incompatible with randomization procedures due
to the low number of possible randomization combinations possible. For example, if
the design consists of three locations nested within two treatments (e.g. burnt and un-
burnt), there are only (kn)!/ [(n))¥k!] = 10 (where n is the number of replicates within
each of the k treatments) unique ways in which the sites can be randomized within the
treatments, and thus the smallest possible p-value is 0.1 (1/10).

11.10 Power and optimisation of resource allocation

Since nested designs represent a hierarchical set of ANOVA’s, it is possible to employ
the power analysis techniques outlined in section 10.7 in a series of analyses using
aggregated portions of the full data set (reflecting the appropriate scale of replication
of each individual hypothesis test).

At the start of this chapter, an example of a leaf toughness investigation was
introduced so as to demonstrate the nature of a nested design. In this example, the
choice of sample size within each scale of sub-replication (individual tree, branch, leaf)
was completely arbitrary, yet such choices are actually of great importance. Since the
individual trees are the direct replicates of the species treatment, the power of the test

8 HPD intervals are also known as Bayesian credible intervals.
" Various ways of shuffling the data have been suggested. These include:
(i) Complete shuffling of the data set
(i) When testing a given factor, constrain (restrict) the shuffling to the scale of the replicates for
that factor.
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of species is directly affected by the number of replicate trees per species. However,
the power of this test will also indirectly benefit from greater replication at the scale
with the greatest degree of variability as this will further reduce the unexplained
variability.

The optimal degree of replication at each levels of a nested design can be assessed
by examining the ratio of the variance components of each of the nested effects with
their respective residual variance components. Furthermore, such calculations can
incorporate the costs (time and/or money) associated with each level of replication so
as to estimate the optimal allocation of resources. For example, in a three factor mixed
nested design (fixed A, random B and C), the optimum number of replicates within
each level of the random nested factors B and C would be defined by:

Cemay®

52
B(A)"C(B(A))

2 2
C(B(A)SB(A) CrepsSC((A))

where C and s* are respectively the cost and estimated variances associated with the
subscripted effects levels and r and n denote the number of replicates for B (levels of C)
and C respectively. Note that for two factor mixed nested model, only the first of these
are required (although it is now defining r) and C(B(A)) represents the lowest form
of replication and therefore the overall residuals (s*). Costs can be ignored by making
them equal to 1. Similarly, for any mixed design with a fixed Factor A, the optimum
number of replicates of factor A (levels of factor B) can be estimated by solving for g
from either of the following:

2 2
2 — ™Mb T cmw)
A nq
Ca = qCpa) + nqCc(pa))

where s} represents the expected (or desired) variance amongst group means for the
fixed Factor A.

I1.11 Nested ANOVA in R
[1.11.1  Error strata (aov)

Nested ANOVA can be thought of as a series of ANOVA models, each with a different
error (residual term). Each of the separate models and their corresponding error
term are referred to as a strata. The first error strata corresponds to a linear model
that incorporates factor(s) for which the levels first random nesting factor are the
appropriate replicates. Likewise, the second error strata corresponds to the next level of
error terms (residuals) and so on. For a two factor mixed nested ANOVA, the second
error strata will be the overall measurements (residuals). Modelling ANOVA with
multiple error strata is accommodated via the aov function. Note however, that this is
really only appropriate for balanced designs - particularly if the source of imbalance is
at the level of the nesting factor replication.
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[1.11.2 Linear mixed effects models (1me and 1mer)

The 1me (nlme) and more recent 1mer (1me4) functions facilitate linear mixed-effects
and generalized linear mixed-effects modelling respectively. As such these procedures
are more suitable for unbalanced and longitudinal designs. Note that recent versions
of 1mer have omitted P value approximations and that inference testing is performed
by the pvals.fnc (languageR) function via the presently inconsistent mcmcsamp
(1me4) function.

11.12 Further reading

* Theory

Doncaster, C. P., and A.]J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R.,and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.
Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.
* Practical - R
Crawley, M. J. (2007). The R Book. John Wiley, New York.
Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS.
Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. (2009). Mixed
Effects Models and Extensions in Ecology with R. Springer.

11.13 Key for nested ANOVA

1  Determine the appropriate model design and hierarchy
* Conceptualise the design into a hierarchy (ladder) of factors

* Main factor(s) with levels that are applied to complete sets of other (nesting)
factors at the top

* Progressively deeper levels of sub-replication of these main factor(s) considered
progressively lower in the hierarchy
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* Label random nesting factor levels with unique names for each level across the
entire design (within and between main factor(s)). Label fixed nesting factor levels
according to the levels they represent (recycled label names within each level of
the main factor(s))

Random B Fixed B

Fact A FactB DV Fact A FactB DV

Al B1 . Al Bl
Al B2 . Al B2
A2 B3 . A2 Bl
A2 B4 . A2 B2

* Identify the correct error (residual) term for each factor (see Tables 11.1 & 11.2).

2 a. Check assumptions for nested ANOVA
As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. Typically
this means generating temporary aggregated data sets.

* Normality (symmetry) of the response variable at each level of the factor -
boxplots of mean values for each level of the next random term in the hierarchy
Factor A (with random factor B)

data.B.agg <- with(data, aggregate(data.frame(DV),
by = list(A = A, B = B), mean))

#OR

library (nlme)

data.B.agg <- gsummary (data, data$B)

boxplot (DV ~ A, data.B.agg)

VvV V. V V + V

where DV is the response variable, & is the main fixed factor and B is a random factor
nested within A within the data dataset.

Factor B (random)

If Factor C exits and is random

> library (nlme)
> data.C.agg <- gsummary (data, datascC)
> boxplot (DV ~ A:B, data.C.agg)

If no random Factor C
> boxplot (DV ~ A:B, data)
where DV is the response variable, & is the main fixed factor and B is a random factor
nested within A within the data dataset.

* Homogeneity of variance (relationship between mean and variance) - boxplots
(as above) and scatterplot of mean vs variance (fixed factors only)
> with(data.B.agg, plot(tapply(DV, A, var),

tapply (DV, A, mean)))

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A within the data.B.agg aggregated dataset.
Parametricassumptionsmet ............ ... i, Goto4
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CHAPTER 11

. Parametric assumptionsnotmet............ ... ... ... Goto 3
. Attempt a scale transformation (see Table 3.2 for transformation

OPLIOIIS) . . o ettt ettt et e et e e e e e e e Goto2
. Transformations unsuccessful or inappropriate . ...................... Goto8
. Determine whether the design is balanced and if not, at what scale of replication

theimbalanceoccurs........................ .. ... See Examples 11A,11C,11D

> library (biology)

> is.balanced(DV ~ A + b + C + .., data)

> #OR

> lis.list(replications(DV ~ A + b + C + .., data))

value of TRUE indicates design is completely balanced
> replications(DV ~ A + b + C + .., data)
where DV is the response variable, A is the main fixed factor and B is a random factor

nested within A within the data dataset.
Design is balanced with respect to the appropriate sub-replicates of the term of

INEETEST . ..ot e Go to 5a-d
Design is NOT balanced with respect to the appropriate sub-replicates of the term
of INterest. ... ...ttt e Go to 5b-d

. Fit nested model using complete aov procedure (for balanced designs only) . See

Example 11A
Define planned contrasts if required .................... Refer back to Key 10.4

> data.aov <- aov(DV ~ A + Error(B), data)
> summary (data.aov)

For additional combinations of fixed and random factors see Tables 11.1 & 11.2

Examine residuals ... i Goto6
For variance COMPONENTS. . ... vuvuuett ettt eaiieee e Goto7
Fit nested model using simple ANOVA of aggregated dataset ............... See

Example 11C,11D
Factor A (with random factor B)

> library (nlme)

> data.B.agg <- gsummary (data, data$B)

Define planned contrasts if required . ................... Refer back to Key 10.4
> anova (aov(DV ~ A, data.B.agg))

Factor B (with random factor C or no C)

> library (nlme)

> data.C.agg <- gsummary (data, data$B)

Define planned contrasts if required . ................... Refer back to Key 10.4
> anova(aov(DV ~ A + B, data.C.agg))

where DV is the response variable, A is the main fixed factor, B is a random factor nested
within A and C is a random factor nested within B (2) within the data dataset. If there
is no random Factor C, substitute data for data.C.agg in the aov () function above.
For additional combinations of fixed and random factors see Table. 11.2

For variance COmMPONENTS. . .. .vvuutttt ettt Goto7
Fit nested model using 1me procedure ....................... See Example 11D
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Define planned contrastsifrequired .................... Refer back to Key 10.4
> library (nlme)

> data.lme <- Ime(DV ~ A, random = ~1 | B, data)

> summary (data.lme)

> anova (data.lme)

OR if three factor mixed-effects (A fixed, B & C random)

> data.lme <- lme(DV ~ A, random = ~1 | B/C, data)
> summary (data.lme)

> anova (data.lme)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A and, if present, C is a random factor nested within B (a) within the
data dataset. Note that the summary includes variance components for the random
factors.

For additional combinations of fixed and random factors see Table 11.1 & 11.2

Examineresiduals ........... ..o i Goto 6
For variance COMpPONents. . .......uuuuiiitiiiiiiii i, Goto7
. Fit nested model using 1lmer procedure.................. See Example 11C,11D
Define planned contrastsifrequired .................... Refer back to Key 10.4

library (lme4)
data.lmer <- lmer(DV ~ A + (1 | B), data)

summary (data.lmer)

vV V. V V

anova (data.lmer)

OR if three factor mixed-effects (A fixed, B & C random)
> data.lmer <- lmer (DV ~ A + (1 | B/C), data)

> summary (data.lmer)

> anova (data.lmer)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A and, if present,C is a random factor nested within B (a) within the
data dataset. Note that the summary includes variance components for the random
factors.

Examineresiduals ........... .o Goto6
For model parameter and fixed factor effects confidence intervals via Markov
chain Monte Carlo sampling

> library (languageR)

> pvals.fnc (data.lmer)

For model parameter and fixed factor effects (if more than two groups) significance
via Markov chain Monte Carlo sampling

> library (languageR)

> pvals <- pvals.fnc(data.lmer, nsim = 10000, withMCMC = T)

> library (biology)

> mcmcpvalue (as.matrix (pvals$Smcmec), "A")

where "A" is string to indicate the name of the fixed factor (A in this case) to test.

. Examining a residual plot of the nested models fitted with aov. See Example 11A

> plot(resid(model[[2]]) ~ fitted(model[[2]11]))
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where model is the name of a model fitted via aov and [[2]] refers to the second
object in the fitted model (which is the first strata).

b. Examining a residual plot of the mixed-effects models fitted with 1me or
MO .ottt ettt e e See Example 11D

> plot(resid(model) ~ fitted(model))
where model is the name of a model fitted via 1me or 1mer.

7  Calculate variance components of random factors............ See Example 11A
> library (nlme)

> VarCorr (lme(lme(DV ~ A, random = ~1 | B, data)))

For additional combinations of fixed and random factors see Table. 11.1 & 11.2

8 a. Underlying distribution of the response variable is normal for each level of the
main fixed factor, but the variances are unequal (Welch’s test from aggregated
data). . ... See Example 11B

> data.B.agg <- gsummary (data, datas$B)
> oneway.test (DV ~ A, data.B.agg, var.equal = F)

orconsider GLM .. .........oiiiiiiiii i, GLM chapter 17
b. Underlying distributions not normally distributed .................... Goto9
9 a. Underlying distribution of the response variable and residuals
isknown ... ... GLM chapter 17
b. Underlying distributions of the response variable and residuals is
NOtKNOWIL .. ..o e Go to 10

10 a. Variances not wildly unequal, outliers present, but data independent (Kruskal-
Wallis non-parametric test on aggregated data)
> data.B.agg <- gsummary (data, datas$B)
> kruskal.test (DV ~ A, data.B.agg, var.equal = F)

b. Variances not wildly unequal, random sampling not possible - data might not be
independent (Randomization test on aggregated data

> data.B.agg <- gsummary (data, datas$B)

Use this aggregated data set and follow the instructions in Key 10. 8b. Warning,
randomization procedures are only useful when there are a large number of
possible randomization combinations (rarely the case in nested designs)

11.14 Worked examples of real biological data sets

Example 11A: Two factor mixed nested ANOVA

To investigate density-dependent grazing effects of sea urchin Andrew and Underwood
(1993) on filamentous algae measured the percentage of filamentous algae within five
quadrats randomly positioned within each of four random patches of reef that were in turn
nested within four sea urchin density treatments (no urchins, 33% of natural density, 66%
natural density and 100% natural density). The sea urchin density treatment was considered
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a fixed factor and patch within density treatment as well as the individual quadrats were
treated as random factors.

Step | - Import (section 2.3) the Andrew and Underwood (1993) data set

> andrew <- read.table("andrew.csv", header = T, sep = ", ")

Step 2 - The patch vector (variable) contains numerical representations of the patch identifications,
therefore by default R considers this to be a integer vector rather than a categorical factor. In
order to ensure that this variable is treated as a factor we need to redefine its class

> class (andrew$SPATCH)
[1] "integer"

> andrew$PATCH <- factor (andrew$PATCH)
> class (andrew$PATCH)
[1] "factor"

Additionally, all variables that contain strings (alphanumeric characters) are automatically
defined as factor variables during the data importation stage. In doing so, R by default, orders
the levels of all factors in alphabetical order. Consequently, the levels of the density treatment
factorare ordered as 0%, 100%, 33%, 66%. Whilst the order of these levels has no impact on the
outcome of statistical analyses, defining a more logical order of factor levels can improve graphical
summaries and simplify defining contrast matrices. Since 100% density represents the natural
density (and thus the control), logically we would order our treatments from 100% down to 0%.

> levels (andrew$STREAT)

[1] ||O%|| "100%" ||33%|| ll66%ll
> andrew$TREAT <- factor (andrew$STREAT, levels = c("100%", "66%",
+ ||33%||, IIO%II))

Step 3 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table I1.1).

I. Factor A (density treatment - fixed factor). The patch means are the replicates for the density
treatment, and thus an aggregated dataset needs to be created from which the boxplots can
be based.

> andrew.agg <- with(andrew, aggregate (data.frame (ALGAE),
+ by = 1list (TREAT = TREAT, PATCH = PATCH), mean))

> library (nlme)

> andrew.agg <- gsummary (andrew, groups = andrew$SPATCH)

> boxplot (ALGAE ~ TREAT, andrew.agg)
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s | — Conclusions - Although there is no evi-

dence of non-normality (boxplots not
3 wildly asymmetrical), there is strong evi-
o dence of unequal variance. Of particu-
A _ — lar concern is the apparent relationship
g ‘ between mean and variance (heights of

boxplots increase up the y-axis). Transfor-
8 ‘ mations(arcsin\[ and log) are ineffectual.
o | Andrew and Underwood (1993) and there-
" 1 fore Quinn and Keough (2002) decided to
oq &=/ — — - proceed and rely on the robustness of the

I I I I . .
100% 66% 33% 0% parametric test for balanced designs.

2. Factor B (patches - random factor). As this factor is of little biological interest, checking the
assumptions associated with its hypothesis tests are of little value.

Conclusions - For the purpose of demonstrating how to use R to perform the worked examples
that appear in the popular biostatistics reference literature, we will proceed with raw data
(following Quinn and Keough (2002)). Note, however, as a demonstration of non-parametric
or robust alternatives in nested designs, we will reanalyse these data in example | 1B.
Although Quinn and Keough (2002) did not include either planned or post-hoc comparisons,
in this case, the former would seem appropriate. We will compare each of the reduced urchin
density treatments to the control — these are known as treatment contrasts'.

Step 4 (Key 11.4) - Determine whether or not the design is balanced (at least with respect to
sub-replication).

> replications (ALGAE ~ TREAT + PATCH, andrew)
TREAT PATCH
20 5

> library (biology)
> is.balanced (ALGAE ~ TREAT + PATCH, andrew)
[1] TRUE

Conclusions - The design is completely balanced. There are two replicate patches within each
of the four treatments and there are five replicate quadrats within each patch.

Step 5 - Define treatment contrasts (see sections 10.6 and 7.3.1 for more information on setting
contrasts).

> contrasts (andrew$TREAT) <- contr.treatment

Note that there is no need to check the orthogonality of these contrasts, when using one of the
contrasts functions, they will always be constructed correctly in accordance with the relevant
contrast definition.

! Alternatively, as the levels of the main treatment factor are naturally ordered (according to urchin
density), polynomial contrasts might be desirable.
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Step 6 (Key 11.5a) - As the design is completely balanced, there are a number of ways to fit
the linear model to test the null hypotheses that there is no effect of urchin treatment and no
added variance due to patches’. The complete aov () procedure is the traditional method and
arguably the simplest.

> andrew.aov <- aov (ALGAE ~ TREAT + Error (PATCH), andrew)

Step 7 (Key 11.6a) - Examine the fitted model diagnostics¥. Note that it is only the first error
strata that we are interested in and this is the second object within the aov object (hence
the [[21])

> plot (resid(andrew.aov[[2]]) ~ fitted(andrew.aov[[2]]))
o o
g - ° °
o
—~ &
g o
é oo 50° °
5 5.
el [} . o . .
s 5 o o Conclusions - As anticipated, there is an
£ o] o . ) . :
8 T ° indication of a ‘wedge’ pattern in the residuals
3 indicative of unequal variance.
o
? )

T T T T T T
_50 -40 -30 -20 -10 0
fitted(andrew.aov[[2]])

Step 8 (Key 11.5a) - Examine the anova tables!, including the set of defined planned treatment

contrasts.
> summary (andrew.aov, split = l1ist(TREAT = list('cont vs 66' = 1,
+ 'cont vs 33' = 2, 'cont vs 0' = 3)))

Error: PATCH
Df Sum Sg Mean Sg F value Pr (>F)

TREAT 3 14429.1 4809.7 2.7171 0.09126

TREAT: cont vs 66 1 44 .2 44.2 0.0250 0.87707

TREAT: cont vs 33 1 20.8 20.8 0.0118 0.91540

TREAT: cont vs 0 1 14364.1 14364.1 8.1146 0.01466 *
Residuals 12 21242.0 1770.2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' " 1

JNote that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model. In this case, treatment
contrasts (with the 100% urchin density as the ‘control’) would probably be the most logical.

k Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.

'R does not provide the hypothesis tests associated with the random nesting factors as these
are rarely of interest. In order to obtain such tests, re-fit the linear model treating the random
nesting factor as a fixed factor. All hypothesis tests in the output above this term in the hier-
archy should be ignored as they will not be tested against the incorrect error (residual) terms.
E.g.> andrew.aovl<-aov (ALGAE TREAT+PATCH, andrew).
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Error: Within
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 64 19110.4 298.6

Conclusions - Note that the output has been split into two error strata each reflecting the
appropriate error (residual) term to test the corresponding hypothesis against. Do not reject
the null hypothesis of no effect of urchin density treatment. Sea urchin density was not found to
have an impact on the percentage of filamentous algae. As no overall difference was observed,
neither planned or unplanned comparisons are appropriate and therefore ignored.

Step 9 (Key 11.7) - Examine the variance components to determine the relative contribution of
each of the random factors. This must be done via a linear mixed effects model. Note further,
that to get an estimate of the variance component for a fixed factor (purely for the purpose
of comparison to other components, as the actual estimates of variance components for fixed
factors are illogical), it must be modelled as a random factor.

> library (nlme)

> VarCorr (1lme (ALGAE ~ 1, random = ~1 | TREAT/PATCH, andrew))
Variance StdDev

TREAT = pdLogChol (1)

(Intercept) 151.9443 12.32657

PATCH = pdLogChol (1)

(Intercept) 294.3209 17.15578

Residual 298.6005 17.28006

Conclusions - There was a high level of variance between patches within treatment ((294.32 x
100)/(151.94 + 294.32 + 298.60) = 39.51%) compared to between treatments (20.40%).

Example 11B: Two factor non-parametric mixed nested ANOVA

To demonstrate the hierarchical nature of nested ANOVA designs and how alternative model
fitting procedures can be fitted to such designs in R, we will re-analyse the Andrew and
Underwood (1993) data (which you may recall from example | [A, did not really satisfy the
assumption on equal variance).

Step 1 - Import and prepare the Andrew and Underwood (1993) data set as in Steps 1-2 of
example | |A

Step 2- Generate a separate data set for each of the appropriate error strata (consult Table I1.1)

Urchin treatment - for testing the effect of urchin treatment (fixed factor) the patch means
are the appropriate replicates. Generate a dataset that is aggregated according to the patch
means.

andrew.patch <- with(andrew, aggregate(data.frame (ALGAE),
by = list (TREAT = TREAT, PATCH = PATCH), mean))
library (nlme)

vV VvV + VvV

andrew.patch <- gsummary (andrew, groups = andrew$SPATCH)
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Patch treatment - for testing whether there is any added variance due to patches (random
factor) the replicates are the values of the quadrats within the patches that are the appropriate
replicates. As the values of the quadrats within each patch are the lowest level of sub-replication
represented by the original dataset, the original dataset is appropriate for the error strata for
testing the hypothesis about patches.

Step 3 (Key 11.8) - Perform a non-parametric ANOVA on each strata (see also Key 10. 6).
Note, it is rarely of interest to test hypotheses about nested factors and thus only the main
effect of treatment is tested.

Urchin treatment

> oneway.test (ALGAE ~ TREAT, andrew.patch, var.equal = F)
One-way analysis of means (not assuming equal variances)

data: ALGAE and TREAT
F = 4.5792, num df = 3.000, denom df = 5.031, p-value = 0.06687

Alternatively, we could convert the response variable to ranks and perform the parametric
nested ANOVA on these ranks. It should be acknowledged that these methods are not ideal
in this example. This approach can be a useful alternative when normality is suspect, yet still
assumes similar variances.

> summary (aov (rank (ALGAE) ~ TREAT + Error (PATCH), andrew))
Error: PATCH
Df Sum Sg Mean Sg F value Pr(>F)
TREAT 3 10761.7 3587.2 2.8916 0.07929
Residuals 12 14886.8 1240.6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Error: Within
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 64 13432.9 209.9

Conclusions - The conclusions are much the same as they were based on the parametric
nested ANOVA, thereby confirming the general robustness of balanced ANOVA.

Example 11C: Two factor model Il nested ANOVA with unequal sample sizes

Sokal and Rohlf (1997) present a dataset containing single blood pH readings from the
female offspring of 15 dams (females). Each of the offspring were nested within different
litters resulting from either two or three sires (males) which were in turn nested within the
I5 dams. The dams represent a random factor at the top of the hierarchy (Factor A), sire
represents the first random nesting factor (Factor B(A)), and the individual offspring within
each litter represent the replicates of the sires.

Step | - Import (section 2.3) the blood pH data set

> ph <- read.table("ph.csv", header = T, sep = ", ")



304 CHAPTER 11

Step 2 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table I1.1).

I. Factor A (dams - random factor). The means of mice within each sire litter are the replicates
for the dams, and thus an aggregated dataset needs to be created from which the boxplots
can be based.

> library(nlme)
> ph.agg <- gsummary (ph, groups = ph$SIRE)
> boxplot (PH ~ DAM, ph.agqg)
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© TED ﬁ Conclusions - no evidence of consis-
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LT _ﬁ 7 tent non-normality and no evidence of a
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2. Factor B (sires - random factor). The blood pH readings from each mice are the replicates of
the sires, therefore boxplots should be based on the entire data set.

\

boxplot (PH ~ DAM:SIRE, ph)
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Step 3 (Key 11.4) - Assess whether the design is balanced (are there equal sample sizes in each
treatment).
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> replications (PH ~ DAM + SIRE, data = ph)
SDAM
DAM
D1 D10 D11 D12 D13 D14 D15 D2 D3 D4 D5 D6 D7 D8 D9
8 9 10 9 12 13 15 9 13 7 12 13 14 8 8

$SIRE

SIRE

S1 s10 sS11 s12 s13 S14 S15 slée S17 S18 S19 S2 S20 S21 S22 S23 S24
4 5 4 3 4 4 5 4 5 5 3 4 5 4 4 5 4

S25 S26 S27 S28 S29  S3 S30 S31 S32 S33 S34 S35 S36 S37 sS4 S5 S6
5 5 5 4 5 5 3 4 4 4 5 5 5 5 4 4 4
S7 S8 S9
5 3 4

> library(biology)

> is.balanced(PH ~ DAM + SIRE, data = ph)

[1] FALSE

Conclusions - the design is not balanced (there are a different number of sired litters and
offspring per dam). The FALSE indicates that the design is not balanced. This design is therefore
best modelled using linear mixed effects (REML) procedures. Note that Sokal and Rohlf (1997)
employ an older procedure (which some argue is now outdated and potentially inappropriate) in
which the F-ratio and variance components calculations are adjusted to account for the degree
of imbalance.

Step 4 (Key 11.5b) - fit one or more linear models to test the null hypotheses that there is no
added variation due to dams and no added variation due to sires within dams. Note, as this is
an unbalanced design, we cannot rely on the usual additive partitioning of SStoq. There are
two options (both of which will result in slightly different estimates - yet the conclusions are
consistent):

I. (Key I1.5b) use a single factor ANOVA to model the effects of dam against the mean
pH values for each sire (use the aggregated dataset from Step 2 above).

> ph.aov <- aov(PH ~ DAM, ph.agg)
> anova (ph.aov)

Analysis of Variance Table

Response: PH

Df Sum Sg Mean Sg F value Pr (>F)

DAM 14 430.90 30.78 3.5464 0.003963 =**
Residuals 22 190.93 8.68
Signif. codes: 0 '"**x' (0,001 '**' 0.01 '*" 0.05 '." 0.2 ' "1

Conclusions - There are maternal influences on the blood pH of female offspring in mice
(Fig.22 = 3.546, P = 0.003).



306 CHAPTER 11

Perform simple ANOVA to investigate the effects of sire using the individual pH readings
from each of the offspring as the replicates. Note that the hypothesis test for dam that is
included in this modelling should be ignored.

> ph.aovl <- aov(PH ~ DAM + SIRE, data = ph)
> anova (ph.aovl)
Analysis of Variance Table

Response: PH

Df Sum Sg Mean Sg F value Pr (>F)
DAM 14 1780.17 127.16 5.1405 1.563e-07 ***
SIRE 22 800.24 36.37 1.4705 0.09662

Residuals 123 3042.53 24.74

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Conclusions - Paternity was not found to have a significant impact on the blood pH of
female offspring in mice (F2.123 = 1.470, P = 0.097).
2. (Key 11.5d) fit the linear mixed effects model using 1mer.

> library (1lme4)
> ph.lmer <- lmer(PH ~ 1 + (1 | DAM/SIRE), ph)
> summary (ph.lmer)
Linear mixed model fit by REML
Formula: PH ~ 1 + (1 | DAM/SIRE)
Data: ph

AIC BIC logLik deviance REMLdev

1006 1019 -499.1 999.9 998.2
Random effects:

Groups Name Variance Std.Dev.
SIRE:DAM (Intercept) 2.6456 1.6265
DAM (Intercept) 8.8957 2.9826
Residual 24.8079 4.9807

Number of obs: 160, groups: SIRE:DAM, 37; DAM, 15

Fixed effects:
Estimate Std. Error t value
(Intercept) 44.9179 0.9104 49.34

Conclusions - the main interest in this output is the variance components for each of the
random effects. It is clear that there is more variation between dams than there is between
sires within dams (8.90 cf 2.64) suggesting that maternal impacts on female blood pH are
stronger than paternal influences. There is however, a large amount of variation between
offspring (within sires: 24.81 cf 2.64) indicating that blood pH is probably influenced by a
number of other factors, some of which may even be more important than the measured
maternal and paternal associations.

Step 5 (Key 11.5d) - Calculate the 95% confidence intervals of the random effects (based on
Markov chain Monte Carlo sampling).
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> library(languageR)
> pvals. fnc(ph.lmer)

sfixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t\)
1 44.92 44.91 43.35 46.56 0.0001 0
Srandom
Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper
1 SIRE:DAM (Intercept) 1.6265 0.6168 0.7046 0.0000 1.8502
2 DAM (Intercept) 2.9826 2.4766 2.5250 1.3511 3.8754
3 Residual 4.9807 5.2150 5.2319 4.6293 5.8855

Conclusions - The 95% confidence interval for the random effect of dam (no added variance
due to dams) does not include 0, and therefore we would reject the modified null hypothesis
and conclude that there is a maternal influence on offspring blood pH. On the other hand, the
interval for the effect of sires does appear to include 0 and thus we would conclude that there
is no significant paternal influence on blood pH. It is also evident that the maternal influence
on female offspring blood pH is stronger than the paternal influence.

Example I11D: Three factor mixed model nested ANOVA

Sokal and Rohlf (1997) demonstrate the analysis of a balanced three factor nested ANOVA
design in which the glycogen levels had been measured from two separate readings from
each of three liver preparations from each of two individual rats per one of three different
treatments (which they did not elaborate on). In this case, the treatments represent the fixed
Factor A, the individual rats represent the first random nesting factor (Factor B and therefore
the replicates of the treatment effects) and liver preparations represent an additional random
nesting factor (Factor C). The duplicate readings from each liver, are the units of replication
for the preparations.

Presumably, the researchers would have been primarily interested in whether there was
an effect of treatment on liver glycogen content. The design acknowledges that individual
liver preparations and glycogen readings as well as the individual rats are themselves likely
to be of substantially great enough variability with respect to glycogen measurements that
they could potentially mask the ability to detect an impact of treatment — hence the use of
a nested design™.

Step 1 - Import (section 2.3) the liver glycogen data set

> glyco <- read.table("glyco.csv", header = T, sep = ",")

Recall that read. table () automatically alphabetises the order of factor levels (hence in this
case: Compound217, Compound217Sugar, Control) and defines treatment contrasts.
For treatment contrasts to be meaningful in this case, the order of factor levels should be
Control, Compound2l7, Compound2l7Sugar

> glycoSTREAT <- factor (glyco$TREAT, levels = c("Control",
+ "Compound217", "Compound2l7Sugar"))

" Additionally, a nested design substantially reduces the number of rats required for the experiment.
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Step 2 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypotheses ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table I1.1). Note that for each hypothesis test
there are only either two or three replicates, and thus it is virtually impossible to confidently
examine the assumptions. Instead, we must rely on the robustness of the test for a balanced
design. As a result, | will only illustrate the process of producing the appropriate aggregated
data sets for each hypothesis test.

I. Factor A (treatment - fixed factor). The mean glycogen levels per rat are the replicates for
the treatment effects, and thus an aggregated dataset needs to be created from which the
boxplots can be based.

> library(nlme)
> glyco.treat.agg <- gsummary (glyco, groups = glyco$RAT)

2. Factor B (rats - random factor). The mean glycogen levels per liver preparation are the
replicates for the contributions of rats to added variation.

> glyco.rat.agg <- gsummary (glyco, groups = glycoS$SPREP)

3. Factor C (preparations - random factor). The mean glycogen levels per duplicate reading are
the replicates for the contributions of the preparations to added variation. Note that in this
case, since the individual readings are the lowest level of sub-replication, the aggregated
dataset is the same as the original.

> glyco.prep.agg <- gsummary (glyco, groups = glyco$SREAD)

Step 3 (Key 11.4) - Assess whether the design is balanced (are there equal sample sizes in
each treatment).

> library (biology)
> is.balanced (GLYCO ~ TREAT + RAT + PREP, data = glyco)
[1] TRUE

Conclusions - the design is balanced.

Step 4 (Key 11.5a) - fit one or more linear models to test the null hypotheses that there are
no effects of treatment and no added variation due to rats within treatments and preparations
within rats within treatments. As this is a balanced design, all three parametric model fitting
procedures (aov, ANOVA from aggregated data sets and linear mixed effects models) will yield
equivalent outcomes.

I. Factor A (treatment - fixed factor)

> glyco.aov <- aov(GLYCO ~ TREAT + Error (RAT/PREP), glyco)
> summary (glyco.aov)
Error: RAT
Df Sum Sg Mean Sg F value Pr (>F)
TREAT 2 1557.56 778.78 2.929 0.1971
Residuals 3 797.67 265.89
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Error: RAT:PREP
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 12 594.0 49.5

Error: Within
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 18 381.00 21.17

2. Factor B (rats - random factor). Ignore the test of treatment from this output.

> glyco.rat.aov <- aov(GLYCO ~ TREAT + RAT + Error (PREP),
glyco.rat.agg)

> summary (glyco.rat.aov)

Error: PREP

Df Sum Sg Mean Sg F value Pr (>F)
TREAT 2 778.78 389.39 15.7329 0.0004428 ***
RAT 3 398.83 132.94 5.3715 0.0141091 *

Residuals 12 297.00 24.75

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. Factor C (preparations - random factor). Ignore the tests of treatment and rat from this
output.

> glyco.prep.aov <- aov(GLYCO ~ TREAT + RAT + PREP,
glyco.prep.agg)
> summary (glyco.prep.aov)

Df Sum Sg Mean Sg F value Pr (>F)
TREAT 2 1557.56 778.78 36.7927 4.375e-07 ***
RAT 3 797.67 265.89 12.5617 0.0001143 **x*
PREP 12 594.00 49.50 2.3386 0.0502907

Residuals 18 381.00 21.17

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1

Conclusions - Treatments were not found to have an impact on the glycogen content of rat
livers (F,3 = 2.929, P = 0.197). Liver glycogen content varies significantly between rats (f5 | =
5.372,P = 0.014), but only marginally between liver preparations f, ;g = 2.339, P = 0.050).
Alternatively, we could use a linear mixed effects model to investigate the effect of treatment
and examine the variance components. As the design is balanced, the 1me () function is
perhaps more preferable to many workers (than the 1mer () function) as it provides an F-ratio
and P-value (Key 11.5c)

> library (nlme)

> glyco.lme <- 1lme(GLYCO ~ TREAT, random = ~1 | RAT/PREP, glyco)
> summary (glyco.lme)

Linear mixed-effects model fit by REML

Data: glyco
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AIC BIC logLik
231.6213 240.6003 -109.8106

Random effects:

Formula: ~1 | RAT
(Intercept)

StdDev: 6.005399

Formula: ~1 | PREP %in% RAT
(Intercept) Residual
StdDev: 3.763863 4.600725

Fixed effects: GLYCO ~ TREAT
Value Std.Error DF

(Intercept) 140.50000 4.707166 18 29
TREATCompound217 10.50000 6.656937 3 1
TREATCompound2l7Sugar -5.33333 6.656937 3 -0
Correlation:

(Intr) TREATCm217
TREATCompound217 -0.707
TREATCompound217Sugar -0.707 0.500

Standardized Within-Group Residuals:
Min 01 Med 03
-1.48211987 -0.47263005 0.03061539 0.42934293

Number of Observations: 36
Number of Groups:
RAT PREP %in% RAT
6 18

> anova (glyco.lme)

numDF denDF F-value p-value
(Intercept) 1 18 2738.654 <.0001
TREAT 2 3 2.929 0.1971

> library (nlme)

> VarCorr (glyco.lme)

Variance StdDev
RAT = pdLogChol (1)
(Intercept) 36.06482 6.005399
PREP = pdLogChol (1)
(Intercept) 14.16667 3.763863

Residual 21.16667 4.600725

t-value p-value
.848111 0.0000
.577302 0.2128
.801169 0.4816

Max
1.82934636
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Conclusions - Again, treatments were not found to have an impact on the glycogen content of
rat livers (F,3 = 2.929, P = 0.197). The variability in liver glycogen content is greater between
the individual rats than it is between preparations within the rats.

Yet another alternative is to employ the newer generalized mixed effects modelling procedure
(1mer) (Key 11.5d). Although this will not produce F-ratios, P-values for fixed effects can be
determined from a sampling distribution generated via Markov Chain Monte Carlo techniques™.

> library (lme4)
> glyco.lmer <- lmer (GLYCO ~ TREAT + (1 | RAT/PREP), glyco)

> plot(resid(ph.lmer) ~ fitted(ph.lmer))
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> glyco.lmer
Linear mixed model fit by REML
Formula: GLYCO ~ TREAT + (1 | RAT/PREP)
Data: glyco
AIC BIC logLik deviance REMLdev
231.6 241.1 -109.8 234.3 219.6
Random effects:

Groups Name Variance Std.Dev.
PREP:RAT (Intercept) 14.167 3.7639
RAT (Intercept) 36.065 6.0054
Residual 21.167 4.6007

Number of obs: 36, groups: PREP:RAT, 18; RAT, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 140.500 4.707 29.850
TREATCompound217 10.500 6.656 1.577
TREATCompound217Sugar -5.333 6.656 -0.801

" Markov chain Monte Carlo procedures in this context generate samples of model parameters via
randomizations of Markov chains. which themselves represent states or estimates by incorporating
previous states or estimates.
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Correlation of Fixed Effects:
(Intr) TREATCm217

TREATCmp217 -0.707

TREATCm217S -0.707 0.500

Conclusions - The conclusions about the sources of variability are the same as previous (greater
variability between rats than between preparations). Note that degrees of freedom and P values
are intentionally omitted from the output since (arguably) sensible values are not identifiable
by traditional techniques.

Employ Markov chain Monte Carlo (MCMC) sampling methods to generate distributions of each
of the parameter estimates from which confidence intervals and P values® can be calculated.
Markov chain Monte Carlo sampling is performed using the recently updated mcmcsamp
function. These techniques are at the bleeding edge of theoretical and practical statistics and
the author of this function stresses that it is currently displaying some peculiar behaviour
and should not yet be trusted. Nevertheless, | will include it as these teething issues are likely
to be rectified in the near future.

> library (languageR)
> glyco.pval <- pvals.fnc(glyco.lmer, nsim = 10000, withMCMC = T)

Examine the fixed effects
> glyco.pvalsfixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|

(Intercept) 140.500 140.501 133.4425 147.54 0.0001 0.0000
TREATCompound217 10.500 10.507 0.3542 20.20 0.0398 0.1242
TREATCompound217Sugar -5.333 -5.392 -15.2432 4.74 0.2386 0.4287

Examine the random effects

> glyco.pvalS$random

Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper
1 PREP:RAT (Intercept) 3.7639 0.8526 1.0771 0.0000 3.1076
2 RAT (Intercept) 6.0054 3.7633 3.9243 0.0000 6.9293
3 Residual 4.6007 6.0172 6.1119 4.4933 7.8493

Conclusions - The output would suggest that (based on MCMC P values) whilst there
was no evidence that liver glycogen levels associated with the Compound2 | 7sugar treatment
are not different to those of the control, there is some evidence that the levels are higher
when associated with the Compound2 17 treatment. Note that the significant P value (0.0398)
resulting from the MCMC sampling is suspiciously low, particularly when we consider that it is
lower than the included anti-conservative P value (0.1242).

Examine the null hypothesis that there is no overall treatment effect (via MCMC sampling).
> glyco.mcmc <- glyco.pval$Smcmc

> library(biology)

> mcmcpvalue (as.matrix (glyco.mcmc), "TREAT")

[1] 0.017

Conclusions - This P-value is based on the current implementation of MCMC sampling and
thus is presently suspect.

? Note that the calculation of P values is contrary to the general Bayesian philosophy on which these
methods are based and it is therefore an unsupported pursuit.
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Factorial ANOVA

Factorial designs are an extension of single factor ANOVA designs in which additional
factors are added such that each level of one factor is applied to all levels of the other
factor(s) and all combinations are replicated (see Figure 12.1). For example, we might
design an experiment in which the effects of temperature (high vs low) and fertilizer
(added vs not added) on the growth rate of seedlings are investigated by growing
seedlings under the different temperature and fertilizer combinations. In addition to
investigating the impacts of the main factors, factorial designs allow us to investigate
whether the effects of one factor are consistent across levels of another factor. For
example, is the effect of temperature on growth rate the same for both fertilized and
unfertilized seedlings and similarly, does the impact of fertilizer treatment depend on
the temperature under which the seedlings are grown?

To appreciate the interpretation of interactions, consider the following figures that
depict fictitious two factor (temperature and fertilizer) designs. For Figure 12.2a, it is
clear that whether or not there is an observed effect of adding fertilizer or not depends
on whether we are focused on seedlings growth under high or low temperatures.
Fertilizer is only important for seedlings grown under high temperatures. In this case
it is not possible to simply state that there is an effect of fertilizer, as it depends on the
level of temperature. Similarly, the magnitude of the effect of temperature depends on
whether fertilizer has been added or not. Such interactions are represented by plots
in which lines either intersect or converge. Figure 12.2b-c both depict parallel lines
which are indicative of no interaction. That is, the effects of temperature are similar
for both fertilizer added and controls and vice versa. Whilst the former displays an
effect of both fertilizer and temperature, in the latter, only fertilizer is important.
Finally, Figure 12.2d represents a strong interaction that would mask the main effects
of temperature and fertilizer (since the nature of the effect of temperature is very
different for the different fertilizer treatments and visa versa).

Factorial designs can consist entirely of fixed (see section 10.0.1) factors (Model I
ANOVA) in which conclusions are restricted to the specific combinations of levels
selected for the experiment, entirely of random factors (Model II ANOVA) or a
mixture of fixed and random factors (Model III ANOVA). The latter are useful for
investigating the generality of a main treatment effect (fixed) over broad spatial,
temporal or biological levels of organization. That is, whether the observed effects of

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Factor A — or FactorB- []or O

O

O O

o © -

Fig 12.1 Fictitious spatial depictions of a multi (two) factor ANOVA design. There are two
levels of factor A (shaded or not) and two levels of factor B (square or circle) and three replicates
of each shape/fill combination.

temperature and/or fertilizer (for example) are observed across the entire genera or
country.

12.1 Linear models

The linear models for two and three factor designs are:
Yik = i+ ai + B + (aB)ij + €ijk
Vi = 1+ i + B+ vi + (aB)ij + (ay )ik + (BY )ik + (@BY )ik + &iju

where p is the overall mean, « is the effect of Factor A, B is the effect of Factor B,
y is the effect of Factor C and ¢ is the random unexplained or residual component.
Note that although the linear models for Model I, Model IT and Model III designs are
identical, the interpretation of terms (and thus null hypothesis) differ.

12.2 Null hypotheses

There are separate null hypothesis associated with each of the main effects and the
interaction terms.
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Fig 12.2 Fictitious depictions of two factor ANOVA design. There are two levels of factor A
(temperature: High and Low) and two levels of factor B (fertilizer: Added or not added).

[2.2.1 Model I - fixed effects
Factor A

Ho(A):py=pur=---=pui=pn (the population group means are all equal)
The mean of population 1 is equal to that of population 2 and so on, and thus all

population means are equal to an overall mean. If the effect of the i group is the
difference between the i group mean and the overall mean (o; = u; — ) then the
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Hj can alternatively be written as:
Hoy(A):ay = =---=a; =0 (the effect of each group equals zero)
If one or more of the «; are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true, indicating that
the treatment does affect the response variable.
Factor B
HoB):u1=pr=--=pui=pn (the population group means are all equal)
Equivalent interpretation to Factor A above.
A:B Interaction
Ho(AB): wij = pi + pj — (the population group means are all equal)
For any given combination of factor levels, the population group mean will be equal to
the difference between the overall population mean and the simple additive effects of
the individual factor group means. That is, the effects of the main treatment factors are
purely additive and independent of one another. This is equivalent to Ho(AB): aB;; = 0,
no interaction between Factor A and Factor B.
12.2.2  Model 2 - random effects
Factor A
Hy(A): 0, =0 (population variance equals zero)
There is no added variance due to all possible levels of A.
Factor B
Ho(B): O’j =0 (population variance equals zero)
There is no added variance due to all possible levels of B.
A:B Interaction

Ho(AB): a(fﬁ =0 (population variance equals zero)

There is no added variance due to all possible interactions between all possible levels
of A and B.
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12.2.3 Model 3 - mixed effects
Fixed factor - e.g. A
Hoy(A) i1 =pur = =ui=n (the population group means are all equal)

The mean of population 1 (pooled over all levels of the random factor) is equal to that
of population 2 and so on, and thus all population means are equal to an overall mean
pooling over all possible levels of the random factor. If the effect of the i group is the
difference between the i group mean and the overall mean (o; = u; — ) then the
Hj can alternatively be written as:

Hoy(A):ay=ap=---=a; =0 (no effect of any level of this factor pooled
over all possible levels of the random factor)

Random factor - e.g. B
Hy(B): 0(3 =0 (population variance equals zero)
There is no added variance due to all possible levels of B.
A:B Interaction
The interaction of a fixed and random factor is always considered a random factor.
Ho(AB): ojﬁ =0 (population variance equals zero)

There is no added variance due to all possible interactions between all possible levels
of A and B.

12.3 Analysis of variance

When fixed factorial designs are balanced, the total variance in the response variable
can be sequentially partitioned into what is explained by each of the model terms
(factors and their interactions) and what is left unexplained. For each of the specific
null hypotheses, the overall unexplained variability is used as the denominator in
F-ratio calculations (see Tables 12.1 & 12.2), and when a null hypothesis is true,
an F-ratio should follow an F distribution with an expected value less than 1.
Random factors are added to provide greater generality of conclusions. That is, to
enable us to make conclusions about the effect of one factor (such as whether or not
fertilizer is added) over all possible levels (not just those sampled) of a random factor
(suchasall possible locations, seasons, varieties etc). In order to expand our conclusions
beyond the specific levels used in the design, the hypothesis tests (and thus F-ratios)
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must reflect this extra generality by being more conservative. The appropriate® F-ratios
for fixed, random and mixed factorial designs are presented in Tables 12.1 & 12.2.
Generally, once the terms (factors and interactions) have been ordered into a hierarchy
(single factorsat the top, highest level interactions at the bottom and terms of same order
given equivalent positions in the hierarchy), the denominator for any term is selected as
the next appropriate random term (an interaction that includes the term to be tested)
encountered lower in the hierarchy. Interaction terms that contain one or more random
factors are considered themselves to be random terms, as is the overall residual term (as
all observations are assumed to be random representations of the entire population(s)).

Pooling of non-significant F-ratio denominator terms (see section 11.6), in which
lower random terms are added to the denominator (provided o > 0.25), may also be
useful.

For random factors within mixed models, selecting F-ratio denominators that
are appropriate for the intended hypothesis tests is a particularly complex and
controversial issue. Traditionally, there are two alternative approaches and whilst the
statistical resumes of each are complicated, essentially they differ in whether or not
the interaction term is constrained for the test of the random factor. The constrained
or restricted method (Model 1), stipulates that for the calculation of a random factor
F-ratio (which investigates the added variance added due to the random factor), the
overall effect of the interaction is treated as zero. Consequently, the random factor
is tested against the residual term (see Tables 12.1 & 12.2). The unconstrained or
unrestrained method (Model II) however, does not set the interaction effect to zero
and therefore the interaction term is used as the random factor F-ratio denominator
(see Tables 12.1 & 12.2). This method assumes that the interaction terms for each level
of the random factor are completely independent (correlations between the fixed factor
must be consistent across all levels of the random factor). Some statisticians maintain
that the independence of the interaction term is difficult to assess for biological data
and therefore, the restricted approach is more appropriate. However, others have
suggested that the restricted method is only appropriate for balanced designs.

[2.3.1 Quasi F-ratios

An additional complication for three or more factor models that contain two or more
random factors, is that there may not be a single appropriate interaction term to use as
the denominator for many of the main effects F-ratios. For example, if Factors A and B
are random and C is fixed, then there are two random interaction terms of equivalent
level under Factor C (A’ x C and B’ x C). As a result, the value of the of the Mean
Squares expected when the nul hypothesis is true cannot be easily defined. The solutions
for dealing with such situations (quasi F-ratios?) involve adding (and subtracting) terms
together to create approximate estimates of F-ratio denominators. These solutions are

% When designs include a mixture of fixed and random crossed effects, exact demoninators for certain
F-ratios are undefined and traditional approaches adopt rather inexact estimated approximate or
“Quasi” F-ratios.

b Alternatively, for random factors, variance components with confidence intervals can be used.
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sufficiently unsatisfying as to lead many biostatisticians to recommend that factorial
designs with two or more random factors should avoided if possible. Arguably however,
linear mixed effects models (see section 11.8) offer more appropriate solutions to the
above issues as they are more robust for unbalanced designs, accommodate covariates
and provide a more comprehensive treatment and overview of all the underlying data
structures.

12.3.2 Interactions and main effects tests

Note that for fixed factor models, when null hypotheses of interactions are rejected,
the null hypothesis of the individual constituent factors are unlikely to represent the
true nature of the effects and thus are of little value. The nature of such interactions are
further explored by fitting simpler linear models (containing at least one less factor)
separately for each of the levels of the other removed factor(s). Such Main effects
tests are based on a subset of the data, and therefore estimates of the overall residual
(unexplained) variabilty are unlikely to be as precise as the estimates based on the global
model. Consequently, F-ratios involving MSgesig should use the estimate of MSgesiq
from the global model rather than that based on the smaller, theoretically less precise
subset of data. For random and mixed models, since the objective is to generalize the
effect of one factor over and above any interactions with other factors, the main factor
effects can be interpreted even in the presence of significant interactions*.

12.4 Assumptions

Hypothesis tests assume that the residuals are:

(i) normally distributed. Boxplots using the appropriate scale of replication (reflecting the
appropriate residuals/F-ratio denominator (see Tables 12.1 & 12.2)) should be used to
explore normality. Scale transformations are often useful.

(i) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns (see Figure 8.5). Scale transformations are often useful.

(iii) independent of one another.

12.5 Planned and unplanned comparisons

As with single factor analysis of variance, planned’ and unplanned multiple com-
parisons (such as Tukey’s test) can be incorporated into or follow the linear model

¢ Although it should be noted that when a significant interaction is present in a mixed model, the
power of the main fixed effects will be reduced (since the amount of variability explained by the
interaction term will be relatively high, and this term is used as the denominator for the F-ratio
calculation, see Table 12.1).

4 As with single factor analysis of variance, the contrasts must be defined prior to fitting the linear
model, and no more than p — 1 (where p is the number of levels of the factor) contrasts can be
defined for a factor.
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respectively so as to further investigate any patterns or trends within the main factors
and/or the interactions (see section 10.6).

12.6 Unbalanced designs

A factorial design can be thought of as a table made up of rows (representing the levels
of one factor), columns (levels of another factor) and cells (the individual combinations
of the set of factors), see Table 12.3(a). Table 12.3(b) depicts a balanced two factor
(3x3) design in which each cell (combination of factor levels) has three replicate
observations. Whilst Table 12.3(c) does not have equal sample sizes in each cell, the
sample sizes are in proportion and as such, does not present the issues discussed below
for unbalanced designs. Tables 12.3(d) & (e), are considered unbalanced.

12.6.1 Missing observations

In addition to impacting on normality and homogeneity of variance, unequal sample
sizes in factorial designs have major implications for the partitioning of the total sums
of squares into each of the model components.

For balanced designs, the total sums of squares (SSto1) is equal to the additive
sums of squares of each of the components (including the residual). For example,
in a two factor balanced design, SSto = SSa + SSp + SSap + SSresia- This can be
represented diagrammatically by a Venn Diagram (see Figure 12.3) in which each of
the SS for the term components butt against one another and are surrounded by
the SSgresia (see Figure 12.2a). However, in unbalanced designs, the sums of squares
will be nonorthogonal and the sum of the individual components does not add up
to the total sums of squares. Diagrammatically, the SS of the terms intersect or are
separated (see Figure 12.2b and 12.2g respectively). In regular sequential sums of
squares (Type I SS), the sum of the individual sums of squares must be equal to the
total sums of squares, the sums of squares of the last factor to be estimated will be
calculated as the difference between the total sums of squares and what has already
been accounted for by other components. Consequently, the order in which factors
are specified in the model (and thus estimated) will alter their sums of squares and
therefore their F-ratios (see Figure 12.2¢-d).

To overcome this problem, traditionally there are two other alternative methods of
calculating sums of squares. Type II (hierarchical) SS estimate the sums of squares of
each term as the improvement it contributes upon the addition of that term to a model
of greater complexity and lower in the hierarchy (recall that the hierarchical structure
descends from the simplest model down to the fully populated model). The SS for
the interaction as well as the first factor to be estimated are the same as for Type I SS.
TypeII SS estimate the contribution of a factor over and above the contributions
of other factors of equal or lower complexity but not above the contributions of
the interaction terms or terms nested within the factor (see Figure 12.3e & 12.3k).
However, these sums of squares are weighted by the sample sizes of each level and
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Table 12.3 Factorial cell means structure (a) for a fictitious two factor design (effect of
Temperature: high, medium or low, and Shading: full, partial or control on seedling growth)
illustrating (b) balanced, (c) proportionally balanced, (d-e) unbalanced and (f) missing cells
designs. For the missing cell example, in which one combination or cell is missing (perhaps
seedlings grown under these conditions all died), three alternative sets of that can be used to
estimate individual factor effects for factor A and B are listed in subfigures (g) and (h) respectively.
Gray coefficients indicate coefficients to be omitted when cell FL is missing (as an example)
and coefficients in brackets are replacement coefficients relevant for the missing cell example.
Similarly, interaction effects are estimated from one of four alternative contrast sets (i). Note that
cell means contrasts are not orthogonal and therefore the individual hypotheses tests should be
ignored (SS will differ substantially according to the order in which the contrasts are defined).
They are used purely to establish the overall factor and interaction effects.

(a) Cell means structure

(b) Balanced design (3 replicates)

High Medium Low High Medium Low
Full shade ILFH JLEM urr Full shade XXX XXX XXX
Partial shade ILPH LpM upr Partial shade XXX XXX XXX
Control JLCH Hem wcr  Control XXX XXX XXX

(c) Proportionally balanced design (2-3 replicates)

(d) Unbalanced design (2-3 replicates)

High Medium Low High Medium Low
Full shade XXX XXX XXX Full shade XX XXX XXX
Partial shade XX XX XX Partial shade XXX XXX XXX
Control XXX XXX XXX Control XXX XXX XXX
(e) Unbalanced design (-3 replicates) (f) Missing cells design (3 replicates)

High Medium Low High Medium Low
Full shade XX XXX XXX Full shade XXX XXX
Partial shade XXX X XX Partial shade XXX XXX XXX
Control XXX XXX XXX Control XXX XXX XXX

(g) Factor A (Shade) contrasts

FH FM F[L PH PM PL CHCM CL

(h) Factor B (Temperature) contrasts

FH FM FLPHPM PL CHCM CL

Set | Set |
Hoopp=mp | | | —1 =1 —1(0) 0 0 O  Hypg=pm 1 —1 0 1—-10 1—-10
Ho:ptp=pc 0 0 O | 1 I =1 =1 =1 Heum=wpr O 1(0)—1 0 I—1 0 I-—1
Set 2 Set 2
Ho:pp=mp | | | —1 =1 —1(0) 0 0 O Hypm=pr 0 1(0)—1 0 1—1 0 1—1I
Hoprp=pc | 1 1 0 0 0 —I —1 —1(0) Hymg=mur 10 0 —1 1 0—1 1 0—I
Set 3 Set 3
Hooprp=pmc | 1 1 0 0 0 —1 —1 —1(0) Hopg=pL 1(0 0 —1 1 0—1 I 0—I
Ho:ptp=pc 0 0 O | 1 I =1 =1 =1 Hoeum=wpr O 1(0—1 0 I—1 0 1-—1
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Table 12.3 (continued)

(i) AB interaction contrasts

Effects of A at each level of B Effects of B at each level of A
FHFM FL PHPM PLCHCMCL FHFM FL PHPM PLCHCMCL
Set | Set 3
Ho:p+upm=pmprtupy 1 =10 —1'1 0 0 0 O Ho:upg+upy=ppytpupy 1 —10—-1'1 0 0 0 0
HO:/LFM"',UMPL:ILPM'HLFL 0o 1 10 I'1 0 0O H0:/LPH+/LCM:/LPM+/LCHO ool —-101-10
Ho:uputuem=mertipy 0 0 0 1 —1 0 —1 1 0 Hoppm+upr=pprtupy 0 1 =10 —1 1 0 0 0
HoZ[LpM+/LCL=[LCM+/,LpL 00 OO0 T1T—-10-11 HO://«PM+//«CL=/LPL+ILCM 00 OO0 1 —-10-—-11
Set 2 Set 4
Ho:mpa+upm=pmprtupy 1 =10 —1'1 0 0 0 O Ho:pupg+upy=prpmtppy 1 —10—-1'1 0 0 0 0
Ho:/LFH‘F,U«PL:ILPH“',U«FL I 0 I-10 1 0 0 O HO:,UMFH"',U«CM:ILFM*'/LCH I-10 0 0 O-1120
Ho:rtuem=pcatipe 1 =10 0 0 0 —1 I 0 Hoppg+upr=pprtpupy 1 0 —1—=10 1 0 0 0
Ho:mra+pcr=pecp+itrr 1 0 =10 0 0 —1 0 | Hoppg+pcr=prr+pbcy 1 0 —10 0 0 —10 1

therefore are biased towards the trends produced by the groups (levels) that have
higher sample sizes®.

Type III (marginal or orthogonal) SS estimate the sums of squares of each term
as the improvement based on a comparison of models with and without the term
and are unweighted by sample sizes. Type III SS essentially measure just the unique
contribution of each factor over and above the contributions of the other factors and
interactions (see Figure 12.3f & 12.31). For unbalanced designs,Type III SS essentially
test equivalent hypotheses to balanced Type I SS and are therefore arguably more
appropriate for unbalanced factorial designs than Type II SS. Importantly, Type III
SS are only interpretable if they are based on orthogonal contrasts (such as sum or
helmert contrasts and not treatment contrasts).

The choice between Type IT and II1 SS clearly depends on the nature of the question.
For example, if we had measured the growth rate of seedlings subjected to two factors
(temperature and fertilizer), Type IT SS could address whether there was an effect of
temperature across the level of fertilizer treatment, whereas Type III SS could assess
whether there was an effect of temperature within each level of the fertilizer treatment.

12.6.2 Missing combinations - missing cells

When an entire combination, or cell, is missing (perhaps due to unforeseen circum-
stances) it is not possible to test all the main effects and/or interactions. Table 12.3(f)
depicts such as situation. One solution is to fit a large single factor ANOVA with as many
levels as there are cells (this is known as a cell means model) and investigate various
factor and interaction effects via specific contrasts (see Tables 12.3(g)-(j) and 12.4).
Difficulties in establishing appropriate error terms, makes missing cells in random and
mixed factor designs substantially more complex.

¢As a result of the weightings, Type II SS actually test hypotheses about really quite complex
combinations of factor levels. Rather than test a hypothesis that wpigh = tnedium = uLow, Type II
SS might be testing that 4umigh = 1tMedium = 0.25uLow.
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Fig 12.3 Fictitious representations of Type I, Il and Il Sums of Squares (SS) calculations for

balanced and unbalanced two factor designs with positive (b-f) and negative (g-I) intersections.
Striped pattern represents SSresid, shaded patterns represent SS for the respective terms and the
white fill represent ignored areas. For completely balanced designs (a), the terms are all completely
orthogonal or independent (no intersections) and thus Type I, Il and Il SS are identical. The
Type I, Il and Il sums of squares for the interaction term for unbalanced two-factor designs
are also identical. Type II SS for the main factors are the same as the Type | SS for the second
factor calculated. When there are positive intersections between factors (factors are positively
dependent), Type | SS for the first factor will be greater than its Type Il estimate which in turn will
be greater than its Type Il estimate. For negative intersections (in which factors are negatively
dependent), Type | SS for the first factor will be less than its Type Il and Ill estimates. For such
intersections, factors are joined by a bridge which is included in the SS calculations for each of
the factors it joins. It is also possible to have bridges between factors and interaction terms, in
which case Type Il SS estimates can be substantially larger than Type | and Il estimates. Note
that intersections are not the same as interactions and the two issues are completely separate.

12.7 Robust factorial ANOVA

Factorial designs can be analysed as large single factor designs that incorporate
specific sets of contrasts. Therefore, many of the robust or non-parametric techniques
outlined in chapter 10.5 can be used to analyze factorial designs. Alternatively, standard
factorial ANOVA can be performed on rank transformed data. This approach can also
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be extended to more complex designs, thereby providing a way to analyse unbalanced
and mixed effects designs that display evidence of non-normality. Unfortunately, there
is some evidence to suggest that testing interactions on rank transformed data can
increase the Type I error rate. Furthermore, in the presence of significant main effects,
the power to detect interaction effects is low.

Randomization tests (which are useful for situations in which observation indepen-
dence could be questionable) can be performed by comparing the F-ratios (or mean
squares) to a large number of F-ratios calculated from repeatedly shuffled data/. In so
doing, randomization tests can accomodate random, fixed and mixed models as well
as Type I, Il and III SS and cell means models (for missing cells).

12.8 Power and sample sizes

Although power analyses for main effects within factorial designs follow the same
principles as single factor designs, for interactions, it is very difficult to estimate the
meaningful effect sizes due to the large number of factor level combinations. That said,
the tests of interactions are typically more powerful than main effects (due to greater
available degrees of freedom) and for fixed models, efforts to improve the power of
any of the main effects will also benefit the corresponding interactions. Power analyses
for mixed and random factorial designs should reflect the appropriate residuals (see
Tables 12.1 & 12.2).

12.9 Factorial ANOVA inR

Fully factorial linear models are predominantly fitted using the aov () function. Anova
tables for balanced, fixed factor designs can be viewed using either the anova () or
summary (), the latter of which is used to accommodate planned contrasts with the
split= argument. Type Il and III sums of squares are estimated for unbalanced
designs using either the anova ()8 or AnovaM ()" functions, the latter of which also
accommodates planned contrasts (with the split= argument) as well as random and
mixed models by enabling the appropriate F-ratio denominators to be defined via the
denoms= argutnent.

12.10 Further reading

¢ Theory

Doncaster, C. P., and A.J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

f Although there are various ways in which the data or residuals could be shuffled, simulations suggest
that they all yield very similar results.

8 From the car package.

" From the biology package.
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Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Quinn, G. P., and K.J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F.]. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San
Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.
* Practical - R
Crawley, M. J. (2007). The R Book. John Wiley, New York.
Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Wilcox, R.R. (2005). Introduction to Robust Estimation and Hypothesis Testing.
Elsevier Academic Press.

12.11 Key for factorial ANOVA

1 For each factor (categorical variable), establish whether it is to be considered a fixed

or random factor

* Conclusions about the factor are restricted to the specific levels selected in the
design. Levels of the factor selected to represent the specific levels of interest (fixed
factor)

* Conclusions about the factor to be generalized across all possible levels of the
factor. Levels of the factor used represent a random selection of all the possible levels
(random factor)

2 Establish what sort of model it is and therefore what the appropriate F-ratio
denominators apply (see Tables 12.1 & 12.2)
* All factors fixed (Model I)
* All factors random (Model II)
* Mixture of fixed and random factors (Model III)

3 a. Check assumptions for factorial ANOVA
As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. This is
particularly important for random and mixed models where interaction terms might
be the appropriate denominators (residuals).

* Normality (symmetry) of the response variable (residuals) at each level of each
factor or combination of factors - boxplots of mean values
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Fixed factor model (Model I) - using MSg,sis as denominator in each case

> boxplot (DV ~ A, data) #factor A
> boxplot (DV ~ B, data) #factor B
> boxplot(DV ~ A * B, data) #A:B interaction

Random or mixed model (Model II or III - factor B random) - using MSup as
denominator as example

> library (nlme)
> data.AB.agg <- gsummary (data, groups = dataSA:datas$B)
> boxplot (DV ~ A, data.AB.agg) #factor A

where DV is the response variable, A is a main fixed or random factor within the data
dataset.

* Homogeneity (equality) of variance of the response variable (residuals) at each
level of each factor or combination of factors - boxplots of mean values
As for Normality.

Parametricassumptionsmet ........... ... .. i Goto5
b. Parametric assumptionsnotmet. ........ ..o, Goto 4
4 a. Attempt a scale transformation (see Table 3.2 for transformation op-
BOMIS ) vttt Goto3
b. Transformations unsuccessful or inappropriate....................... Goto 15
5 a. All factor combinations (cells) have at least one observation (no missing
CelIS) Goto 6
b. One or more factor combinations without any observations (missing cells).
Analyze as single factor cell means model. ............. ... ... oLl Go to 10
6 Ifincorporating planned contrasts (comparisons) .. .. .. See Examples 12A,12B,12C
> contrasts(data$A) <- cbind(c(contrasts), ...)
> round (crossprod (contrasts (datasa)), 2)
....................................................................... Goto7
7 a. Determine whether the design is balanced
> replications(DV ~ A * b * C + .., data)
> library (biology)
> is.balanced(DV ~ A * b * C + .., data)
Design is balanced - sample sizes of all cells are equal (TypeISS)........ Goto8
b. Design is NOT balanced - sample sizes of cells differ (Type IIISS) ....... Goto9
8 a. Balanced Model I (Fixed factors)........................ See Examples 12A,12B
> data.aov <- aov(DV ~ A * B, data)
Tocheckresidualplot .......... ... ... . i Go to 21

* With planned contrasts
> library(biology)
> AnovaM(data.aov, split = list(A = list(Namel = 1, Name2 = 2,

+ L), B = 1list()))

> #OR

> summary (data.aov, split = list(A = list(Namel = 1,

+ Name2 = 2, ...), B = 1list()))
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where DV is the response variable, A and B are the main fixed factors within the data
dataset.
* Without planned contrasts

> AnovaM (data.aov)

> #OR

> summary (data.aov)

> #OR

> anova (data.aov)

For post-hoc multiple comparisons................................ Go to 20
If significant interation . .........c.outieie it Go to 14
For summary plot. ... ....oiuui i Goto 18

b. Balanced Model II (random factors) or Model III (mixed factors) ........... See
Example 12C
> data.aov <- aov(DV ~ A * B, data)
To checkresidual plot............ ... .. . i Goto21
* With planned contrasts

> AnovaM (data.aov, denoms = c("A:B", "Resid", "Resid"),

+ split = list(A = list(Namel = 1, Name2 = 2, ...),

+ B = list()))

This example is a restricted model I1I where DV is the response variable, A is a fixed

factor and B is a random factor within the data dataset. denoms=c () is used to

specify the denominators for each term in the model according to table 12.1
* Without planned contrasts

> AnovaM (data.aov, denoms = c("A:B", "Resid", "Resid"))

For post-hoc multiple comparisons................................ Go to 20
For variance COMpOnents .. .......uuuuutnteenntenenienneenneenn Goto 19
If significant interation .. ........o.uiniin it Go to 14
For summary plot. ..o e Goto 18

9 a. Unbalanced Model I (Fixed factors) .......................... See Example 12D

> data.aov <- aov(DV ~ A * B, data)
To checkresidual plot...... ... ... ... . i i Goto21
* With planned contrasts

> AnovaM (data.aov, type = "III", split = list(A = list
2, ...), B =1list()))

+ (Namel = 1, Name?2

where DV is the response variable, A and B are the main fixed factors within the data
dataset.

* Without planned contrasts - must define contrasts other than the default (treat-
ment contratsts)
> contrasts (data$A) <- contr.helmert
> contrasts (data$B) <- contr.helmert
> data.aov <- aov(DV ~ A * B, data)

> AnovaM(data.aov, type = "III", data)
For post-hoc multiple comparisons................. ... .. ... ... ... Go to 20

If significant INteration . ........c.oveir ittt iin e Go to 14
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For summary plot. ... ... Goto 18
Unbalanced Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ A * B, data)

Tocheckresidualplot ......... ... ... . i Go to 21
* With planned contrasts

> AnovaM (data.aov, denoms = c("A:B", "Resid", "Resid"),

+ type = "III", split = list(A = list(Namel = 1,

+ Name2 = 2, ...), B = 1list()))

example is a restricted model I1I where DV is the response variable, A is a fixed factor
and B is a random factor within the data dataset. denoms=c () is used to specify the
denominators for each term in the model according to table 12.1

* Without planned contrasts

> AnovaM(data.aov, denoms = c("A:B", "Resid", "Resid"),

+ type = "III")

For post-hoc multiple comparisons.....................coiin... Go to 20
For variance COMpPONents . ........ueuutiiuteni i Goto 19
If significant interation . ...........ouin it Go to 14
For summary plot. ... ...t Goto 18

10 Generate a new factorial variable to represent the combinations of factor levels and
define sets of contrasts to represent each of the terms (main factors and interactions)
inthedesign ......... ... . . See Examples 12E,13

> dataS$AB <- factor (paste(data$A, data$B, sep = "A:B"))
> contrasts (data$AB) <- cbind(c(contrasts), c(contrasts), ...)

11 a.

12 a.

.................................................................... Goto 12

Determine whether the design is otherwise balanced (all present cells have equal
sample sizes)

> replications(DV ~ A * b * C + .., data)

> library(biology)

> is.balanced(DV ~ A * b * C + .., data)

Design is balanced - sample sizes of all cells are equal (TypeISS)....... Goto 12
Design is NOT balanced - sample sizes of cells differ (Type IIISS) ...... Goto 13
Balanced missing cells Model I (Fixed factors)................. See Example 12E
> data.aov <- aov(DV ~ AB, data)

Tocheckresidualplot ......... ... . ... . i Go to 21
> AnovaM(data.aov, split = list(AB = list('Factor A' = 1:2)))

where in this case, DV is the response variable and AB is the combined factors (A and B)
within the data dataset. In this case, the ANOVA table will also include a line titled
“Factor A” which represents the combination of the first two contrasts.

For post-hoc multiple comparisons .............. ..., Go to 20
If significantinteration ............ ... .. .. i i Go to 14
Forsummaryplot........ ... .. Goto 18

Balanced missing cells Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ AB, data)
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To checkresidual plot ......... .. .. ..o i Goto 21
> AnovaM (data.aov, denoms = c(object), split = list(AB = list
+ ('Factor A' = 1:2)))

example is a restricted model III where DV is the response variable, and AB is a
random factor representing the combination of factors A and B within the data dataset.
denoms=c (object) is used to specify the denominators for each term in the model
according to table 12.1. The object can be either a list of labels that refer to terms in
the current model, a single alternative aov model from which to extract the Residual
term, or a list of alternative model terms. Note, interaction terms should be derived prior
to main factors.

For post-hoc multiple comparisons ....................coooiiiin... Go to 20
For variance components ...............coiuiiiiiiiiiineinneennn.. Goto 19
If significantinteration ............ ... .. . i i i Go to 14
For summary plot. ..o e Goto 18
Unbalanced missing cells Model I (Fixed factors) .............. See Example 12F
> data.aov <- aov(DV ~ AB, data)

To checkresidualplot ......... .. .. .. i, Goto 21
> AnovaM (data.aov, type = "III", split = 1list(AB = list

+ ('Factor A' = 1:2)))

where DV is the response variable, A and B are the main fixed factors within the data
dataset.

For post-hoc multiple comparisons .......................cooooin... Go to 20
If significantinteration ............ ... .. .. i Go to 14
Forsummaryplot...... ... .. Goto 18

. Unbalanced missing cells Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ AB, data)

To checkresidual plot ......... .. .. .. i Goto 21
> AnovaM (data.aov, denoms = c(c(object)), type = "III",
+ split = list(AB = list('Factor A' = 1:2)))

example is a restricted model 111 where DV is the response variable, A is a fixed factor and
B is a random factor within the data dataset. denoms=c (object) is used to specify
the denominators for each term in the model according to table 12.1. The object can
be either a list of labels that refer to terms in the current model, a single alternative
aov model from which to extract the Residual term, or a list of alternative model
terms.

For post-hoc multiple comparisons ....................cooiiiiin... Go to 20
For variance components ...............cuuutiinienneenieenneennn.. Goto 19
If significantinteration ............ ... ... i i i Go to 14
Forsummaryplot ......... ... e Goto 18
14 Maineffectstests.........oovviiiiiinneeennnnnnn. See Examples 12B,12D,12E,12F

Repeat analysis steps above with on a subset of the data (just one levels of one of
the factors) and use the MSg,;s from the global model.

> AnovaM(mainEffects(data.aov, at = B == "B1"), split = list

+ (A = list(Namel = 1, Name2 = 2, ...)))
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15 a.

16 a.

17 a.

18 a.

where in this case, DV is the response variable and A is a fixed factor (a from a
Model I factorial design within the data dataset. denoms=c () is used to specify the
denominators for each term in the model according to table 12.1

Underlying distribution of the response variable is normal for each level of the
interaction, but the variances are unequal (Welch’s test on combined factors)
Generate a new factorial variable to represent the combinations of factor levels and
analyse as a single factor ANOVA using a Welch’s test (see Key 10.6)

> dataSAB <- factor(paste(data$A, data$B, sep = "A:B"))
> oneway.test (DV ~ AB, data, var.equal = F)
. Underlying distributions not normally distributed.................... Goto 16
orconsider GLM ....... .. ..ottt GLM chapter 17
. Underlying distributions not normally distributed . ................... Goto 16

Underlying distribution of the response variable and residuals is known ... GLM
chapter 17

. Underlying distributions of the response variable and residuals is not

Known. ... ..o Goto 17
Variances not wildly unequal, outliers present, but data independent (Kruskal-
Wallis non-parametric test on combined factors)

> dataSAB <- factor (paste(data$A, data$B, sep = "A:B"))
> kruskal.test (DV ~ AB, data, var.equal = F)

Variances not wildly unequal, random sampling not possible - data might not be
independent (Randomization test)

Follow the instructions in Key 10.8b to randomize the F-ratios or MS values from
ANOVA tables produced using the parametric steps above. Warning, random-
ization procedures are only useful when there are a large number of possible
randomization combinations (rarely the case in factorial designs)

Interaction plot to summarize an ordered trend (line graph) . ............... See
Examples 12A,12B,12E

> library (gmodels)

> data.means <- with(data, tapply(DV, 1list(FACTA, FACTB), mean))
> data.se <- with(data, tapply(DV, 1list (FACTA, FACTB),

+ function(x) ci(x)[4]1))

> with(data, interaction.plot (FACTA, FACTB, DV, las = 1,

+ lwd = 2, ylim = range(pretty(data$DV), na.rm = T),

+ axes = F, xlab = "", ylab = "", pch = c(16, 17),

+ type = "b", legend = F))

> arrows (1:3, data.means - data.se, 1:3, data.means + data.se,
+ code = 3, angle = 90, len = 0.05)

> axis (2, cex.axis = 0.8, las =1, mgp = c(3, 0.5, 0),

+ tcl = -0.2)

> mtext (text = "Y-label", side = 2, line = 3, cex = 1)

> axis(l, cex.axis = 0.8, at = 1:3, lab = c("Labl",

+ "Lab2", ...))

> mtext (text = "X-label", 1, line = 3, cex = 1)

> box(bty = "1")
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> legend("topright", leg = c("Labl", "Lab2", ...), lwd = 2,
+ lty = c(2, 1), bty = "n", pch = c(1l6, 17), cex = 1)

where FACTA is the factor to placed on the x-axis.
b. Interaction plot to summarize an unordered categories (bargraph).......... See
Examples 12C,12D,12F

> library (gmodels)

> data.means <- t(tapply(datas$DV, list(data$SFACTA, data$SFACTB),
+ mean, na.rm = T))

> data.se <- t(tapply(datas$DVv, list(data$FACTA, dataS$SFACTB),

+ function(x) ci(x, na.rm = T)[4]))

> xs <- barplot(data.means, ylim = range (pretty(datas$DV),

+ na.rm = T), beside = T, axes = F, xpd = F, axisnames = F,
+ axis.lty = 2, legend.text = F, col = c(0, 1))

> arrows (Xs, data.means, xs, data.means + data.se, code = 2,

+ angle = 90, len = 0.05)

> axis (2, las = 1)

> axis(l, at = apply(xs, 2, median), lab = c("Labl",

+ "Lab2", ...), padj = 1, mgp = c(0, 0, 0))

> mtext (2, text = "Y-label", line = 3, cex = 1)

> mtext (1, text = "X-label", line = 3, cex = 1)

> box(bty = "1")

> legend("topright", leg = c("Labl", "Lab2", ...), fill = c(O,
+ 1), col = c(0, 1), bty = "n", cex = 1)

where FACTA is the factor to placed on the x-axis.

19 Estimate variancecomponents.................cooueeineenne... See Example 12C
> library (lme4)
> lmer(DV ~ 1 + (1 | A) + (1 | B) + (1 | A:B) + ..., data)
20 a. Perform Tukey’s post-hoc multiple comparisons.............. See Example 12D
> TukeyHSD (mod, which = "Factor")
> library (multcomp)
> summary (glht (mod, linfct = mcp(Factor = "Tukey")))
> confint (glht (mod, linfct = mcp(Factor = "Tukey")))

where mod is the name of an aov model and , Factor, is the name of a factor.
b. Perform other form of post-hoc multiple comparisons. .......... Go to Key 10.9
21 Examinearesidualplot........... ... ... .. .. .. .. .. See Examples 12A-12D

> plot(data.aov, which = 1)

12.12 Worked examples of real biological data sets

Example 12A: Two factor fixed (Model I) ANOVA

Quinn (1988) manipulated the density of adults limpets within enclosures (8, 15, 30 and
45 individuals per enclosure) during two seasons (winter-spring and summer-autumn) so as
to investigate the effects of adult density and season on egg mass production by intertidal
limpets. Three replicate enclosures per density/season combination were used, and both
density and season were considered fixed factors (from Box 9.4 of Quinn and Keough (2002)).
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Step 1 - Import (section 2.3) the Quinn (1988) data set

> quinn <- read.table("quinn.csv", header = T, sep = ",")

Step 2 - The density vector (variable) contains numerical representations of the adult limpet
densities, and R will consider this to be a integer vector rather than a categorical factor. In order
to ensure that this variable is treated as a factor we need to redefine its class

> class (quinn$DENSITY)
[1] "integer"

> quinn$DENSITY <- factor (quinn$DENSITY)
> class (quinn$DENSITY)
[1] "factor"

Step 3 (Key 12.2) Quinn (1988) considered both factors to be fixed factors and thus the data
represent a Model | design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).

According to Table 12.1, the MSgesig (individual enclosures) should be used as the replicates
for all hypothesis tests for Model | designs.

Factor A (Fixed) Factor B (Fixed) A:B interaction (Fixed)

> boxplot (EGGS ~ > boxplot (EGGS ~ > boxplot (EGGS ~

+ DENSITY, quinn) + SEASON, quinn) + DENSITY * SEASON,
+ quinn)
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Conclusions - No evidence of non-normality (boxplots not wildly asymmetrical) and no
apparent relationship between mean and variance (heights of boxplots increase up the y-axis).
No evidence that any of the hypothesis tests will be unreliable.

Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (EGGS ~ DENSITY * SEASON, quinn)
DENSITY SEASON DENSITY:SEASON
6 12 3
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> library (biology)
> is.balanced (EGGS ~ DENSITY * SEASON, quinn)
[1] TRUE

Conclusions - The design is completely balanced. There are three replicate enclosures for each
of the four densities and two seasons.

Step 6 - (Key 12.6) - Define polynomial contrasts (see sections 10.6 and 7.3.1 for more
information on setting contrasts) to further investigate the nature of the effects of density on
egg mass production.

> contrasts (quinn$DENSITY) <- contr.poly (4, scores = c(8, 15, 30,
+ 45))

Note that there is no need to check the orthogonality of these contrasts, they will always be
constructed to be orthogonal.

Step 7 (Key 12.8) - Fit the factorial linear model'.

> quinn.aov <- aov(EGGS ~ DENSITY + SEASON + DENSITY:SEASON,
+ data = quinn)

> #OR

> guinn.aov <- aov(EGGS ~ DENSITY * SEASON, data = quinn)

Step 8 (Key 12.21) - Examine the fitted model diagnostics’. Note that this is evaluating the
overall residuals and predicted values for the interaction effect.)

> plot(quinn.aov, which = 1)

Residuals vs Fitted
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o ° ° ° indication of a ‘wedge’ pattern in the residuals
o | . .
S ors suggesting that the assumption of unequal
30 variance is likely to be satisfied.
T T T
1.0 1.5 2.0

Fitted values
aov(EGGS ~ DENSITY * SEASON)

Step 9 (Key 12.8) - Examine the balanced model | ANOVA table, including the set of defined
planned polynomial contrasts.

> summary (quinn.aov, split = 1ist(DENSITY = list(Linear = 1,
+ Quadratic = 2)))

"Note that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model.
JRecall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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OR
> library (biology)
> AnovaM(quinn.aov, type = "I", split = 1list (DENSITY =
+ list(Linear = 1, Quadratic = 2)))
Df Sum Sg Mean Sg F value Pr (>F)
DENSITY 3 5.2841 1.7614 9.6691 0.0007041 **x*
DENSITY: Linear 1 5.0241 5.0241 27.5799 7.907e-05 ***
DENSITY: Quadratic 1 0.2358 0.2358 1.2946 0.2719497
SEASON 1 3.2502 3.2502 17.8419 0.0006453 ***
DENSITY : SEASON 3 0.1647 0.0549 0.3014 0.8239545
DENSITY:SEASON: Linear 1 0.0118 0.0118 0.0649 0.8021605
DENSITY:SEASON: Quadratic 1 0.0691 0.0691 0.3796 0.5464978
Residuals 16 2.9146 0.1822
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '." 0.1 "' ' 1

Conclusions - There was no evidence of an interaction between density and season (suggesting
that the effect of density was consistent across both seasons). Egg production was significantly
greater in winter-spring than summer-autumn and declined linearly with increasing adult
density.

Step 10 (Key 12.18) - Summarize the trends in a interaction plot.

library (gmodels)

quinn.means <- tapply (quinn$EGGS, list (quinn$DENSITY,
quinn$SEASON) , mean)

quinn.se <- tapply (quinn$EGGS, 1list (quinn$DENSITY, quinn$SEASON),
function(x) ci(x)[4])

quinn$DENS <- as.numeric (as.character (Quinn$SDENSITY) )

plot (EGGS ~ DENS, quinn, type = "n", axes = F, xlab = "",
ylab = "")

points(quinn.means[, 1] ~ unique(quinn$DENS), pch = 16,
type = "b", lwd = 2)

arrows (unique (quinn$DENS), quinn.means[, 1] - quinn.se[, 1],
unique (quinn$DENS), quinn.means([, 1] + quinn.se[, 1],
code = 3, angle = 90, len = 0.1)

points(quinn.means[, 2] ~ unique(quinn$DENS), pch = 16,
type = "b", lwd = 2, lty = 2)

arrows (unique (quinn$DENS), quinn.means[, 2] - quinn.se[, 2],

unique (quinn$DENS), quinn.means[, 2] + quinn.sel[, 2],
code = 3, angle = 90, len = 0.1)

axis(l, cex.axis = 0.8)

mtext (text = "Adult Density", 1, line = 3)

axis (2, cex.axis = 0.8, las = 1)

mtext (text = "Egg production", side = 2, line = 3)

legend("topright", leg = c("Winter-spring", "Summer-autumn"),
lwd = 2, 1lty = c(1l, 2), bty = "n")

vV + VvV V V V V + + V + V + 4+ V + V + V V + V + V V

box (bty = "1")
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Example 12B: Two factor fixed (Model ) ANOVA

In a similar experiment to that illustrated in Example 12A, Quinn (1988) also manipulated
the density of larger adults limpets further down the shoreline within enclosures (6, 12 and
24 individuals per enclosure) during the two seasons (winter-spring and summer-autumn)
so as to investigate their effects on egg mass production. Again, three replicate enclosures
per density/season combination were used, and both density and season were considered
fixed factors (from Box 9.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Quinn (1988) data set

> quinnl <- read.table("quinnl.csv", header = T, sep

Step 2 - redefine the density vector as a factor

> quinnl$DENSITY <- factor (quinnl$DENSITY)

Step 3 (Key 12.2) Quinn (1988) considered both factors to be fixed factors and thus the data
represent a Model | design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).

According to Table 12.1, the MSgesi¢ (individual enclosures) should be used as the replicates
for all hypothesis tests for Model | designs.

> boxplot (EGGS ~ DENSITY * SEASON, quinnl)

< =

=N Q Conclusions - No evidence of non-normality (box-
o - plots not wildly asymmetrical) and no apparent
o g relationship between mean and variance (heights of
o] T __ - boxplots increase up the y-axis). No evidence that
; E Q any of the hypothesis tests will be unreliable.

; o ===

T T
6.spring 24.spring 12.summer
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Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (EGGS ~ DENSITY * SEASON, quinnl)
DENSITY SEASON DENSITY :SEASON
6 9 3
> library(biology)
> is.balanced (EGGS ~ DENSITY * SEASON, quinnl)
[1] TRUE

Conclusions - The design is completely balanced. There are three replicate enclosures for each
of the three densities and two seasons.

Step 6 - (Key 12.6) - Quinn and Keough (2002) illustrated treatment contrasts to compare
the control adult density (6) to the increased densities (12 and 24) and whether this differed
between the seasons¥. To do this we define our own contrasts (see sections 10.6 and 7.3.1 for
more information on setting contrasts).

> contrasts (quinnl$DENSITY) <- cbind(c (1, -0.5, -0.5))
Step 7 (Key 12.8) - Fit the factorial linear model’.
> quinnl.aov <- aov(EGGS ~ DENSITY * SEASON, data = quinnl)

Step 8 (Key 12.21) - Examine the fitted model diagnostics™. Note that is evaluating the overall
residuals and predicted values for the interaction effect.)

> plot (quinnl.aov, which = 1)

Residuals vs Fitted
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S °2 ance is likely to be satisfied.
T T T T T T
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Fitted values
aov(EGGS ~ DENSITY * SEASON)

Step 9 (Key 12.8) - Examine the model |, balanced anova table, including the set of defined
planned contrasts. Store the resulting ANOVA table with a name so that the data therein can
later be accessed.

k Note that Quinn and Keough (2002) also defined a linear polynomial contrast. However, as this
contrast is not orthogonal (independent) of the treatment contrast, it cannot be included in the one
linear model.

!'Note that if we were also intending to investigate a set of planned comparisons/contrasts (see

chapter 10.6), these should be defined prior to fitting the linear model.
" Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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> library (biology)
> quinnl.anova<-AnovaM(quinnl.aov, type="I", split=1ist (DENSITY=
+ list('6 vs 12&24'=1)))
> quinnl.anova
Df Sum Sg Mean Sg F value Pr (>F)
DENSITY 2 4.0019 2.0010 13.984 0.0007325
DENSITY: 6 vs 12&24 1 2.7286 2.7286 19.069 0.0009173
SEASON 1 17.1483 17.1483 119.845 1.336e-07
DENSITY : SEASON 2 1.6907 0.8454 5.908 0.0163632
DENSITY:SEASON: 6 vs 12&24 1 1.5248 1.5248 10.656 0.0067727
Residuals 12 1.7170 0.1431
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

* % %

* K K

* Kk Kk

* %

Conclusions - There is strong evidence of a interaction between density and season. Whether
or not there is a difference between the egg production of control vs high adult density depends

on the season.

Step 10 (Key 12.14) - To further explore the interaction between density and season, Quinn
and Keough (2002) investingated the effects of adult density separately for each season using
two single factor ANOVA's. For each ANOVA, the MSg.siq from the global (overall) model was

used as the denominator in F-ratio calculations.

> # effect of density in spring
> library (biology)

> AnovaM (mainEffects (quinnl.aov,
+ split=1ist (DENSITY=1ist('6 vs 12&24'=1)))

Df Sum Sg Mean Sqg F value

INT 3 22.4940 7.4980 52.4017

DENSITY 2 0.3469 0.1735 1.2124

DENSITY: 6 vs 12&24 1 0.0869 0.0869 0.6076
Residuals 12 1.7170 0.1431

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05

> # effect of density in summer
> AnovaM (mainEffects (quinnl.aov,
+ split=1ist(DENSITY=1ist('6 vs 12&24'=1)))

Df Sum Sg Mean Sg F value

INT 3 17.4953 5.8318 40.757

DENSITY 2 5.3457 2.6728 18.680
DENSITY: 6 vs 12&24 1 4.1664 4.1664 29.118

Residuals 12 1.7170 0.1431

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

at=SEASON=="gspring"),

Pr (>F)
3.616e-07
0.3315
0.4508

at=SEASON=="summer") ,

Pr (>F)
1.436e-06
0.0002065
0.0001611

0.1

* k k

* Kk Kk
* Kk Kk

* Kk Kk

1
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Conclusions - Whilst egg production was found to be significantly lower in higher densities of
adult limpets compared to natural densities during the summer-autumn season, such as trend
was not observed during the spring-winter season.

Step 11 (Key 12.18) - Summarize the trends in a interaction plot.

library (gmodels)

quinnl.means <- tapply (quinnl$EGGS, list (quinnlS$DENSITY,
quinnl$SEASON), mean)

quinnl.se <- tapply(quinnl$EGGS, list (quinnl$DENSITY,
quinnl$SEASON), function(x) ci(x) [4])

quinnl$DENS <- as.numeric (as.character (quinnl$DENSITY) )

plot (EGGS ~ DENS, quinnl, type = "n", axes = F, xlab = "",
ylab = "")
points(quinnl.means([, 1] ~ unique(quinnl$DENS), pch = 16,
type = "b", 1lwd = 2)
arrows (unique (quinnl$DENS), quinnl.means|[, 1] - quinnl.se[, 1],

unique (quinnl$DENS), quinnl.means|[, 1] + quinnl.se[, 1],
code = 3, angle = 90, len = 0.1)

points (quinnl.means([, 2] ~ unique(quinnl$DENS), pch = 16,
type = "b", lwd = 2, lty = 2)

arrows (unique (quinnl$DENS), quinnl.means|[, 2] - quinnl.sel[, 2],
unique (quinnl$SDENS), quinnl.means[, 2] + quinnl.sel, 2],
code = 3, angle = 90, len = 0.1)

axis(l, cex.axis = 0.8)

mtext (text = "Adult Density", 1, line = 3)

axis (2, cex.axis = 0.8, las = 1)

mtext (text = "Egg production", side = 2, line = 3)

legend("topright", leg = c("Winter-spring", "Summer-autumn"),
lwd = 2, 1ty = c(1, 2), bty = "n")

box (bty = "1")
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Example 12C: Two factor mixed (Model I1ll) ANOVA

Minchinton and Ross (1999) investigated the distribution of oyster substrates for limpets
in four zones alone the shore (the landward zone high on the shore, the mid zone with
mangrove trees, the seaward zone with mangrove trees and the seaward zone without trees)
by measuring the number of limpets per oyster shell (expressed as the number of limpets
per 100 oysters) in five quadrats per zone. Data were collected from two sites (considered
a random factor) so as to provide some estimates of the spatial generality of the observed
trends (from Box 9.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Minchinton and Ross (1999) data set

> minch <- read.table("minch.csv", header = T, sep = ",")

Step 2 (Key 12.2) Minchinton and Ross (1999) considered the zone factor to be fixed and the
site factor to be a random factor and thus the data represent a Model Il design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).

According to Table 12.1, the effect of zone should be tested against the zone by site interaction
whereas the effect of site and the interaction should be tested against the overall residual term
(MSgesiq)- As boxplots are

Factor A (Fixed) Factor B (Random) A:B interaction (Random)
> library (nlme) > boxplot (LIMPT100 ~ > boxplot (LIMPT100 ~
> minch.agg<-gsummary + SITE, minch) + ZONE * SITE,

+ (minch, groups= + minch)

+ minch$ZONE:minch$SITE)

> boxplot (LIMPT100~ZONE,

+ minch.agg)
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Conclusions - strong evidence to suggest both non-normality (boxplots asymmetrical where
enough data) and the existence of a relationship between mean and variance (heights of
boxplots increase up the y-axis). Hypothesis tests may well be unreliable.

Step 4 (Key 12.4) - Assess square-root transformed data (square root appropriate given the
number of 0 counts).
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Factor A (Fixed)™ Factor B (Random) A:B interaction (Random)
> boxplot (sgrt > boxplot (sgrt > boxplot (sgrt
+ (LIMPT100) ~ + (LIMPT100) ~ + (LIMPT100) ~
+ ZONE, minch.agg) + SITE, minch) + ZONE * SITE, minch)
~ o —_— ~ -
0 —_— ' o
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o - o . 80
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Lz MZ SZ(-TR) SZ(+TR) A B LZ.A SZ(-TR).A LZB SZ(-TR).B

Conclusions - although not ideal, the transformation is an improvment and thus hypothesis
tests based on the square root transformed data are likely to be more reliable.

Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (sqgrt (LIMPT100) ~ ZONE * SITE, minch)
ZONE SITE ZONE:SITE
10 20 5
> library(biology)
> is.balanced(sqgrt (LIMPT100) ~ ZONE * SITE, minch)
[1] TRUE

Conclusions - The design is completely balanced. There are five replicate quadrats for each of
the four zones and two sites.

Step 6 - (Key 12.6) - Quinn and Keough (2002) did not illustrate the use of planned contrasts
in Box 9.5 (presumably due to the lack of any main effects). However, prior to analysing these
data, a number of sensible planned contrasts are identifiable in the context of investigating the
distribution of suitable limpet substrates. We will further propose contrasting the treed zones to
the treeless seaward zone by defining our own contrasts (see sections 10.6 and 7.3.1 for more
information on setting contrasts).

> contrasts (minch$ZONE) <- cbind(c(1/3, 1/3, -1, 1/3))
Step 7 (Key 12.8b) - Fit the factorial linear model °.

> minch.aov <- aov(sqgrt (LIMPT100) ~ ZONE * SITE, data = minch)

"Note that the following procedure is mimicking a square root transformation. Ideally, these
data should be transformed prior to aggregation rather than transforming the aggregated data

(as demonstrated), but for the purpose of assumption checking it is acceptable.
°Note that if we were also intending to investigate a set of planned comparisons/contrasts (see

chapter 10.6), these should be defined prior to fitting the linear model.
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Step 8 (Key 12.21) - Examine the fitted model diagnosticsP. Note that this is evaluating the
overall residuals and predicted values for the interaction effect.

> plot (minch.aov, which = 1)

Residuals vs Fitted
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Step 9 (Key 12.8b) - Examine the balanced model Il ANOVA table, including the set of defined
planned contrasts. Store the resulting ANOVA table with a name so that the data therein can
later be accessed.

> library (biology)

> (minch.anova<-AnovaM (minch.aov, split = 1list (ZONE =

+ list('Treed vs No trees' = 1)), denoms = c("ZONE:SITE", "Resid",
+ "Resid")))

Anova Table (Type III tests)

Response: sqgrt (LIMPT100)
Df Sum Sg Mean Sg F value Pr(>F)

ZONE 3 39.249 13.083 1.2349 0.43320
ZONE: Treed vs No trees 1 12.448 12.448 1.1750 0.35772

SITE 1 6.372 6.372 1.8425 0.18415

ZONE:SITE 3 31.783 10.594 3.0632 0.04205 *
ZONE:SITE: Treed vs No trees 1 4.700 4.700 1.3588 0.25236

Residuals 32 110.673 3.459

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Conclusions - There is evidence of a interaction between zone and site suggesting that any
patterns in limpet numbers between zones are not consistent across sites.

P Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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Step 10 (Key 12.19) - Estimate the variance components of the random (and fixed) terms? via
the restricted maximum likelihood (REML) method.

> library (1lme4)
> lmer (sqrt (LIMPT100) ~ 1 + (1 | ZONE) + (1 | SITE) +
+ (1 | ZONE:SITE), minch)
Linear mixed model fit by REML
Formula: sgrt(LIMPT100) ~ 1 + (1 | ZONE) + (1 | SITE) +
(1 | ZONE:SITE)
Data: minch
AIC BIC logLik deviance REMLdev
180.8 189.3 -85.4 171.5 170.8
Random effects:

Groups Name Variance Std.Dev.

ZONE:SITE (Intercept) 1.2160e+00 1.1027e+00
ZONE (Intercept) 3.5443e-01 5.9534e-01
SITE (Intercept) 5.0652e-16 2.2506e-08
Residual 3.4585e+00 1.8597e+00

Number of obs: 40, groups: ZONE:SITE, 8; ZONE, 4; SITE, 2

Fixed effects:
Estimate Std. Error t value
(Intercept) 2.5096 0.5719 4.388

Conclusions - Although the interaction term explained approximately 26% (1.216/(1.216 +
0 + 3.455)), most of the variance was unexplained ((3.455/(1.216 + 0 4 3.455) = 74%).
Note that these values differ slightly from those presented by Quinn and Keough (2002) in
Box 9.5, because they are estimated by the REML method rather than the ANOVA method
which is restricted to balanced designs.

Step 11 (Key 12.18b) - Summarize the trends in a bargraph (from Quinn and Keough (2002)).

library (gmodels)

minch.means <- t(tapply(sgrt (minch$SLIMPT100), list (minch$ZONE,
minch$SITE), mean))

minch.se <- t(tapply(sqgrt (minch$LIMPT100), list (minch$ZONE,
minch$SITE), function(x) ci(x)[4]))

xS <- barplot (minch.means, ylim = range (sqgrt (minch$SLIMPT100)),
beside = T, axes = F, xpd = F, axisnames = F, axis.lty = 2,
legend.text = F, col = c(0, 1))

+ + VvV + VvV + Vv V

1Note that variance components for fixed terms are interpreted differnently to those of random
terms. Whereas for random terms, variance components estimate the variance between all possible
population means, for fixed factors they only estimate the variance between the specific populations
used.
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> arrows (xs, minch.means, xs, minch.means + minch.se, code = 3,
+ angle = 90, len = 0.05)
> axis (2, las = 1)
> axis(l, at = apply(xs, 2, median), lab = c("Land", "Mid",
+ "Sea\n(-trees)", "Sea\n(+trees)"), padj = 1,
+ mgp = c(0, 0, 0))
> mtext (2, text = expression(paste(sgrt("number of limpets
+ (x100)"))), line = 3, cex = 1)
> mtext(l, text = "Zone", line = 3, cex = 1)
> legend("topright", leg = c("Site A", "Site B"), fill = c(0, 1),
+ col = c(0, 1), bty = "n", cex = 1)
> box(bty = "1")
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Example 12D: Two factor unbalanced fixed (Model ) ANOVA

Quinn and Keough (2002) present a two factor analysis of variance (Quinn and Keough,
2002; Table 9.15b) of a subset of a dataset by Reich et al. (1999) in which the specific leaf
area of a number of plant species were compared from four different biomes (New Mexico
woodlands, South Carolina temperate/sub-tropical forests, Venezuela tropical rain forests
and Wisconsin temperate forests) and two different functional groups (shrubs and trees).
Sample sizes varied for each combination of factors (cells).

Step 1 - Import (section 2.3) the modified Reich et al. (1999) data set

> reich <- read.table("reich.csv", header = T, sep = ",")

Step 2 (Key 12.2) Reich et al. (1999) considered both location and functional group to be fixed
factors and thus the data represent a Model | design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).

According to Table 12.1, the effect of location, functional group as well as their interaction
should all be tested against the overall residual term (MSgesiq)-
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A:B interaction (Fixed)’

> boxplot (LEAFAREA ~ LOCATION * FUNCTION, na.omit (reich))
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Conclusions - no strong evidence to suggest either
consistent non-normality or the of a relationship
between mean and variance (heights of boxplots
increase up the y-axis). Hypothesis tests likely to be
reliable.

= -

Newmex.Shrub  Wiscons.Shrub ~ Venezuel.Tree

Step 4 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (LEAFAREA ~ LOCATION * FUNCTION, reich)

SLOCATION
LOCATION
Newmex Scarolin Venezuel
7 6 23

$FUNCTION

FUNCTION

Shrub Tree
16 41

$'LOCATION: FUNCTION'

FUNCTION
LOCATION Shrub Tree
Newmex 5 2
Scarolin 3 3
Venezuel 2 21
Wiscons 6 15

> library (biology)

Wiscons
21

> is.balanced (LEAFAREA ~ LOCATION * FUNCTION, reich)

[1] FALSE

"Note that there is a missing case (denoted “NA” in the dataset). There are many functions that
by default return an error when there are missing cases (so as to reduce the risks that potentially
unrepresentative outcomes being blindly accepted by the user). Such functions need to be informed to
ignore missing cases. This can be done either with the na . rm=T argument or by using the na . omit ()
function to create a temporary copy of the original dataset with the entire row of the missing case

removed.
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Conclusions - The design is unbalanced. The number of samples per location and function
combination varies from 2 to 21. Therefore Type Il or [l sums of squares are appropriate. In this
case, as we potentially wish to make conclusions about each of the main effects that are over and

above the other main effects and their interaction,

Step 5 - (Key 12.6) - By default, all unordered

Type Il sums of squares will be demonstrated.

factors are coded as treatment (compare to

control) contrasts which are not appropriate for Type Ill sums of squares. Therefore, although
we have no planned contrasts to perform in association with fitting the linear model, we do
need to code the contrasts of the factors as helmert contrasts®.

> contrasts (reich$LOCATION)
> contrasts (reich$FUNCTION)

Step 6 (Key 12.9) - Fit the factorial linear model.

> reich.aov <- aov(LEAFAREA ~ LOCATION * FUNCTION, data

<- contr.helmert
<- contr.helmert

reich)

Step 7 (Key 12.21) - Examine the fitted model diagnostics'. Note that is evaluating the overall
residuals and predicted values for the interaction effect.)

> plot(reich.aov, which 1)

Residuals vs Fitted

400

Residuals

100 150 200 250

Fitted values
aov(LEAFAREA ~ LOCATION * FUNCTION)

Conclusions - Although there is no indi-
cation of a ‘wedge’ pattern in the residuals,
observation 40 has a very large residual (con-
sidered an extreme outlier) and is potentially
very influential. Caution should be excised
for any hypothesis test close to the critical o
value (0.05).

Step 8 (Key 12.9) - Examine the unbalanced model | ANOVA table. Store the resulting ANOVA
table with a name so that the data therein can later be accessed.

> library(biology)

> (reich.anova <- AnovaM(reich.aov, type = "III"))

Df Sum Sg Mean Sg F value Pr (>F)
LOCATION 3 49202 16401 13.6005 1.401e-06 ***
FUNCTION 1 6919 6919 5.7378 0.02047 *

* Other contrasts (such as polynomial or user defined orthogonal contrasts) would also be equally as

valid - just not treatment contrasts.

" Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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LOCATION:FUNCTION 3 67783 22594 18.7367 3.120e-08 ***
Residuals 49 59088 1206
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

1 observation deleted due to missingness

Conclusions - There is strong evidence of a interaction between location and functional group
suggesting that the patterns between different ecosystems differ according to the functional
type of the plants and visa versa.

Step 9 (Key 12.14 & 12.20) - To better appreciate the patterns in specific leaf area between
the different ecosystems, simple main effects tests can be performed to investigate the effects
of location separately for each functional group. When so doing, recall that it is necessary to
use the MSgesiq from the original (global) analysis of variance as the residual term. Tukey’s post
hoc honestly significant difference tests have also been included to investigate the pairwise
differences between locations.

Effect of location for the shrub functional group

> AnovaM (reich.aov.shrub <- mainEffects(reich.aov, at =

+ FUNCTION == "Shrub"), type = "III")

Df Sum Sg Mean Sg F value Pr (>F)
INT 4 14994 3749 3.1086 0.02338 *
LOCATION 3 75012 25004 20.7351 8.199e-09 **x*

Residuals 49 59088 1206

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1

1 observation deleted due to missingness

> library (multcomp)

> summary (glht (reich.aov.shrub, linfct = mcp (LOCATION = "Tukey")))
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Linear Hypotheses:
Estimate Std. Error t value Pr(>]|t])

Scarolin - Newmex == 0 13.07 25.36 0.515 0.9542
Venezuel - Newmex == 0 220.95 29.05 7.605 <0.001 ***
Wiscons - Newmex == 0 49.55 21.03 2.356 0.0973 .
Venezuel - Scarolin == 0 207.88 31.70 6.558 <0.001 **=*
Wiscons - Scarolin == 0 36.48 24.55 1.486 0.4485
Wiscons - Venezuel == 0 -171.40 28.35 -6.045 <0.001 **=*
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
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> confint (glht (reich.aov.shrub, linfct = mcp (LOCATION = "Tukey")))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Estimated Quantile = 2.6496

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
Scarolin - Newmex == 0 13.0667 -54.1263 80.2596
Venezuel - Newmex == 0 220.9500 143.9708 297.9292
Wiscons - Newmex == 0 49.5500 -6.1634 105.2634
Venezuel - Scarolin == 207.8833 123.8922 291.8745
Wiscons - Scarolin == 0 36.4833 -28.5760 101.5426
Wiscons - Venezuel == 0 -171.4000 -246.5240 -96.2760

Effect of location for the tree functional group

> AnovaM(reich.aov.tree <- mainEffects(reich.aov, at = FUNCTION ==

+ "Tree"), type = "III")
Df Sum Sg Mean Sg F value Pr (>F)
INT 4 75431 18858 15.6382 2.6e-08 ***
LOCATION 3 14575 4858 4.0289 0.01222 *
Residuals 49 59088 1206
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 " "1

1 observation deleted due to missingness

> library (multcomp)

> summary (glht (reich.aov.tree, linfct = mcp(LOCATION = "Tukey")))
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Linear Hypotheses:
Estimate Std. Error t value Pr(>]|t])

(
Scarolin - Newmex == 0 -20.40 31.70 -0.644 0.9108
Venezuel - Newmex == 0 -15.70 25.70 -0.611 0.9224
Wiscons - Newmex == 0 23.37 26.14 0.894 0.7950
Venezuel - Scarolin == 0 4.70 21.43 0.219 0.9959



FACTORIAL ANOVA 351

Wiscons - Scarolin == 0 43.77 21.96 1.993 0.1895
Wiscons - Venezuel == 0 39.07 11.74 3.328 0.0079 **
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1
(Adjusted p values reported -- single-step method)

> confint (glht(reich.aov.tree, linfct = mcp (LOCATION = "Tukey")))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Estimated Quantile = 2.6156

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
Scarolin - Newmex == 0 -20.4000 -103.3134 62.5134
Venezuel - Newmex == 0 -15.7000 -82.9132 51.5132
Wiscons - Newmex == 0 23.3667 -45.0055 91.7388
Venezuel - Scarolin == 4.7000 -51.3597 60.7597
Wiscons - Scarolin == 0 43.7667 -13.6774 101.2108
Wiscons - Venezuel == 0 39.0667 8.3615 69.7718

Conclusions - Specific leaf area differs significantly between locations for both shrub and tree
functional groups. However, whilst specific leaf area of trees was only found to differ significantly
between Wisconsin cold temperate forests and Venezuela topical forests (the former having
greater area), for shrubs, the Venezuela topical forests were found to have significantly greater
leaf areas than shrubs in the other ecosystems.

Step 10 (Key 12.18b) - Summarize the trends in a bargraph (from Quinn and Keough
(2002)).

library (gmodels)

reich.means <- t(tapply(reich$LEAFAREA, list (reich$LOCATION,
reich$FUNCTION), mean, na.rm = T))

reich.se <- t(tapply(reich$SLEAFAREA, list (reichS$LOCATION,
reich$FUNCTION), function(x) ci(x, na.rm = T)[4]))

xS <- barplot(reich.means, ylim = range(reichS$SLEAFAREA,

na.rm = T), beside = T, axes = F, xpd = F, axisnames

1l
&)

axis.lty = 2, legend.text = F, col = c(0, 1))
arrows (xs, reich.means, xs, reich.means + reich.se, code = 2,
angle = 90, len = 0.05)

axis (2, las = 1)

axis(1l, at = apply(xs, 2, median), lab = c("Newmax", "Scarolin",

+ V. V. 4+ V + + V + V + V V

"Venezuel", "Wiscons"), padj = 1, mgp = c(0, 0, 0))
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> mtext (2, text = expression(paste("Mean specific leaf area ",
+ (mm~2))), line = 3, cex = 1)

> mtext (1, text = "Location", line = 3, cex = 1)

> box(bty = "1")

> legend("topright", leg = c("Shrub", "Tree"), fill = c¢(0, 1),
+ col = c(0, 1), bty = "n", cex = 1)

300
T O Shrub

W Tree
250

200
150

NN

Newmax Scarolin Venezuel Wiscons

Location

Mean specific leaf area (mm?)

Example 12E: Two factor fixed (Model ) ANOVA with missing cells

Hall et al. (2000) measured the number of macroinvertebrate individuals colonizing small
sheets of submerged cloth subjected to one of two treatments (nitrogen and phosphorus
nutrients added or control) for either two, four or six months (time factor). Quinn and
Keough (2002) present an analysis of a modification of these data in which the control
treatments (no nutrients added) for the six month duration are all missing (from Table 9.16
of Quinn and Keough (2002)).

Step | - Import (section 2.3) the Hall et al. (2000) data set

> halll <- read.table("halll.csv", header = T, sep = ",")

Step 2 (Key 12.2) Since the levels of the time factor are purely numbers, R considers this vector
as a numeric variable rather than as a factorial variable. In order for the effect of time to be
modeled appropriately, the time vector needs to be explicitly defined as a factor.

> halllSTIME <- as.factor (halll$TIME)

Step 3 (Key 12.2) Hall et al. (2000) considered both treatment and time to be fixed factors and
thus the data represent a Model | design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each
null hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).

According to Table 12.1, the effect of treatment and time as well as their interaction should all
be tested against the overall residual term (MSgesiq).
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> boxplot (IND ~ TREAT * TIME,

> boxplot (log (IND + 1) ~
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+ halll) + TREAT * TIME, halll)
© -
e} -
. —
3
® 0 -
—
[=] —_ o
Y 7] —
—_
-
8- _ . -
= ==
= )
—— —— —— ——
o -
T T T T T T T T T T T
control.2 control.4 control.6 control.2 control.4 control.6

Conclusions - boxplots of the raw data (plot on left) show strong evidence of a relationship
between mean and variance (height of boxplots related to their positions on the y-axis). The plot
on the right illustrates boxplots of the data transformed to logs" and indicates that transforming
the data to logs improves its suitability to parametric analysis.

Step 5 (Key 12.5b & 12.11) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (log (IND + 1)

STREAT
TREAT
control nutrient
10 15
STIME
TIME
2 4 6
10 10 5

$'TREAT:TIME'

TIME
TREAT 2 4 6
control 5 5 0

nutrient 5 5 5
> library(biology)
> is.balanced(log (IND + 1)
[1] FALSE

~ TREAT * TIME, halll)

~ TREAT * TIME, halll)

“In order to accommodate zero values in the data, a small number (1) is added to each count prior
to logarithmic transformation. This is referred to as a log plus one transformation.
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Conclusions - The design has a missing cell - there are no replicates of the control treatment
at 6 months. Quinn and Keough (2002) analysed this two factor ANOVA using a cell means
model in which all replicated factor level combinations are treated as levels of a single factor in
a single factor ANOVA. The main treatment effects are estimated by defining planned contrasts
that are carefully selected to model the ‘estimatable’ comparisons.

Step 6 - (Key 12.10) - Convert the factor combinations into a single factor design.

> halll$TREATTIME <- as.factor (paste(halll$TREAT, halll$STIME,
+ Sep = n |l) )

Step 7 - (Key 12.10) - For each of the main terms in the original multifactor model (the main
effects and interactions), define appropriate contrasts to estimate the effects of each term (see
Tables 12.3 & 12.4), fit the cell means linear model and partition the sums of squares accordingly.
Note that as missing cells are an extreme form of unbalance, they too can result in non-
orthogonality of contrasts and therefore each of the main effects should be estimated separately.

Effect of nutrient treatment

> contrasts (halll$TREATTIME) <- cbind(c (1, 1, -1,
+ -1, 0))
> AnovaM(aov (log (IND + 1) ~ TREATTIME, halll),
+ split = 1list (TREATTIME = list("treatment" = 1)))
Df Sum Sg Mean Sg F value Pr (>F)
TREATTIME 4 32.013 8.003 93.169 1.232e-12 ***
TREATTIME: treatment 1 1.063 1.063 12.379 0.002161 **
Residuals 20 1.718 0.086
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1

Effect of time

> contrasts (halll$STREATTIME) <- cbind(c(1, -1, 1,
+ -1, 0), c(0, 0, 1, 0, -1))
> AnovaM(aov (log(IND + 1) ~ TREATTIME, halll),
+ split = list(TREATTIME = list("time" = 1:2,
+ " time 2 vs 4" =1, " time 2 vs 6" = 2)))
Df Sum Sg Mean Sg F value Pr (>F)
TREATTIME 4 32.013 8.003 93.169 1.232e-12 ***
TREATTIME: time 2 24.742 12.371 144.013 1.332e-12 ***

TREATTIME: time 2 vs 4 1 13.441 13.441 156.468 6.505e-11 ***
TREATTIME: time 2 vs 6 1 11.301 11.301 131.557 3.008e-10 ***
Residuals 20 1.718 0.086

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nutrient treatment by time interaction

> contrasts (halll$TREATTIME) <- cbind(c(1, -1, -1,
+ 1, 0))
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> AnovaM(aov (log (IND + 1) ~ TREATTIME, halll),
+ split = list (TREATTIME = list("treatment:time" = 1)))
Df Sum Sg Mean Sg F value Pr (>F)
TREATTIME 4 32.013 8.003 93.1689 1.232e-12 ***
TREATTIME: treatment:time 1 0.491 0.491 5.7209 0.02670 *
Residuals 20 1.718 0.086
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Conclusions - There is strong evidence of a significant interaction between the nutrient
treatment and time. The effect of the nutrient treatment on the number of macroinvertebrate
individuals colonizing the artificial substrates differs according to the duration for which the
substrates have been available. The nature of the interaction could be explored by splitting
the data up and analysing the effects of the nutrient treatment separately for each time.
Additionally, given the sequential nature of time, polynomial trends could be explored for the
nutrient added treatments.

Step 8 (Key 12.18a) - Summarize the trends with an interaction plot.

> library (gmodels)

> halll.means <- with(halll, tapply(IND, list(TIME, TREAT), mean))

> halll.se <- with(halll, tapply(IND, list(TIME, TREAT),

+ function(x) ci(x)[4]))

> with(halll, interaction.plot(TIME, TREAT, IND, las = 1, lwd = 2,

+ ylim = range(pretty(halll$IND)), axes = F, xlab = "",

+ yvlab = "", pch = c(16, 17), type = "b", legend = F))

> arrows (1:3, halll.means - halll.se, 1:3, halll.means + halll.se,

+ code = 3, angle = 90, len = 0.05)

> axis (2, cex.axis = 0.8, las =1, mgp = c(3, 0.5, 0), tcl = -0.2)

> mtext (text = expression(paste("Mean number of macroinvertebrate")),
+ side = 2, line = 3, cex = 1)

> mtext (text = expression(paste("individuals")), side = 2, line = 2,
+ cex = 1)

> axis(l, cex.axis = 0.8, at = 1:3, lab = c("2", "4", "6"))

> mtext (text = "Time (duration)", 1, line = 3, cex = 1)

> box(bty = "1")

> legend("topright", leg = c("Control", "Nutrient added"), lwd = 2,
+

lty = ¢(2, 1), bty = "n", pch = c(1l6, 17), cex = 1)

400 1 —e= Control

—4— Nutrient added

300 -

200 - {

100 A x

Mean number of macroinvertebrate
individuals

[

Time (duration)
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Example 12F: Two factor fixed (Model ) ANOVA with missing cells and unbalanced
replication

Milliken and Johnson (1984) present a data set from a fictitious investigation into the effects
of different fats and surfactants on the specific volume of baked bread. The 3x3 design was
to include four replicates of each of the three fat types and three surfactant types (nine
combinations). Unfortunately, many of the replicates were lost due to a defective batch of
yeast. The structure of the data a represented below.

Surf.l  Surf.2  Surf.3

Fat I XXX XXX
Fat2 XXX XXXX
Fat3 XX XXXX XX

Step 1 - Import (section 2.3) the Milliken and Johnson (1984) data set

> milliken <- read.table("milliken.csv", header = T, sep = ", ")

Step 2 (Key 12.2) Milliken and Johnson (1984) considered both treatment and time to be fixed
factors and thus the data represent a Model | design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1). According to Table 12.1, the effect
of fat and surfactant type as well as their interaction should all be tested against the overall
residual term (MSgesig)-

> boxplot (VOL ~ FAT * SURF, milliken)

0 - -
|

T - B Conclusions - no evidence of either non-normality
- ' (boxplots not consistently asymmetrical) or a rela-
© : o Q E tionship between mean and variance (height of

H e . boxplots related to their positions on the y-axis).

|
|
-~

T T T T T T T T
F1.81 F3.81 F2.82 F1.83 F3.83

Step 4 (Key 12.5 & 12.11) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications (VOL ~ FAT * SURF, milliken)
SFAT
FAT
Fl F2 F3
6 7 8
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$SURF

SURF

S1 S2 S3
8 7 6

$'FAT: SURF'

SURF
FAT S1 S2 S3
F1 3 3 O
F2 3 0 4

F3 2 4 2
> library (biology)
> is.balanced(VOL ~ FAT * SURF, milliken)
[1] FALSE

Conclusions - The design is not balanced - the number of replicates in each fat/surfactant
combination differs. Furthermore, there are two missing cells. As with example |2E, this
can be analysed with a cell means model in which all replicated factor level combinations
are treated as levels of a single factor in a single factor ANOVA. The main treatment effects are
estimated by defining planned contrasts that are carefully selected to model the ‘estimatable’
comparisons.

Step 5 - (Key 12.10) - Convert the factor combinations into a single factor design.

> millikenS$SFS <- as.factor(paste(millikenS$FAT, millikenS$SURF,
+ Sep = n ll) )

Step 6 - (Key 12.12F) - For each of the main terms in the original multifactor model (the
main effects and interactions), define appropriate contrasts to estimate the effects of each term
(see Tables 12.3 & 12.4), fit the cell means linear model and partition the sums of squares
accordingly. Note that Type Ill sums of squares are used due to unbalanced data. Note also,
that additional planned contrasts will also be included to potentially explore any main effects
further.

Effect of the fat type

> contrasts(milliken$FS) <- cbind(c(1, 1, 0, 0, -1, -1, 0), c(O0,
+ o, 1, 1, -1, 0, -1))
> AnovaM(aov(VOL ~ FS, milliken), split = list(FS = list
+ (fat = 1:2, ' fat: 1 vs 3' =1, ' fat 2 vs 3' = 2)),
+ type = "III")
Df Sum Sg Mean Sg F value Pr (>F)

FS 6 12.4714 2.0786 2.9493 0.04473 *
FS: fat 2 3.8725 1.9363 2.7474 0.09851
FS: fat: 1 vs 3 1 1.6233 1.6233 2.3033 0.15135
Fs: fat 2 vs 3 1 1.6178 1.6178 2.2955 0.15200

Residuals 14 9.8667 0.7048

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1
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Effect of surfactant type

> contrasts(millikenS$FS) <- cbind(c(0, 0, 0, 0, 0, 1, -1), c(O,
+ o, 1, -1, 1, 0, -1))

> AnovaM(aov (VOL ~ FS, milliken), split = list(FS = list

+

+

(surf = 1:2, ' surf: 2 vs 3' =1, ' surf: 1 vs 3' = 2)),
type = "III")
Df Sum Sg Mean Sg F value Pr(>F)
FS 6 12.4714 2.0786 2.9493 0.04473 *
FS: surf 2 1.6702 0.8351 1.1850 0.33464
FS: surf: 2 vs 3 1 1.2063 1.2063 1.7116 0.21185
FS: surf: 1 vs 3 1 0.1593 0.1593 0.2261 0.64177
Residuals 14 9.8667 0.7048
Signif. codes: 0 '***' (0.001 '**' Q.01 '*' 0.05 '.' 0.1 "' "' 1

Fat type by surfactant type interaction

> contrasts(millikens$FS) <- cbind(c(1, -1, 0, 0, -1, 1, 0), c(O0,
+ o, 1, -1, -1, 0, 1))
> AnovaM(aov (VOL ~ FS, milliken), split = list(FS = list
+ (*fat:surf' = 1:2, ' fat:surfl' = 1, ' fat:surf2' = 2)),
+ type = "III")
Df Sum Sg Mean Sg F value Pr(>F)

FS 6 12.4714 2.0786 2.9493 0.04473 *

FS: fat:surf 2 4.7216 2.3608 3.3498 0.06474

FS: fat:surfl 1 0.2689 0.2689 0.3815 0.54672

FS: fat:surf2 1 4.6935 4.6935 6.6597 0.02178 *
Residuals 14 9.8667 0.7048
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Conclusions - Neither fat type nor surfactant type were found to significantly effect the specific
volume of baked bread and nor was the impact of either found to be dependent on the other.

Step 7 (Key 12.18b) - Summarize the trends with an interaction plot.

library (gmodels)

milliken.means <- with(milliken, tapply(VOL, list (SURF, FAT),
mean, na.rm = T))

milliken.se <- with(milliken, tapply(VOL, list(SURF, FAT),
function(x) ci(x, na.rm = T)[4]))

xs <- barplot(milliken.means, ylim = range(milliken$VOL,
na.rm = T), beside = T, axes = F, xpd = F, axisnames = F,
axis.lty = 2, legend.text = F, col = c(0, 1, "gray"))

axis(2, las = 1)

axis(1l, at = apply(xs, 2, median), lab = c("Fat 1", "Fat 2",
"Fat 3"), padj = 1, mgp = c(0, 0, 0))

+ V. V. 4+ + V + VvV + V V
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+ + VvV + VvV V + V

mtext (2, text = expression(paste("Mean specific bread volume ")),
line = 3, cex = 1)

box (bty = "1")

arrows (xs, milliken.means, xs, milliken.means + milliken.se,
code = 2, angle = 90, len = 0.05)

legend("topleft", leg = c("Surfactant 1", "Surfactant 2",
"Surfactant 3"), f£ill = c(0, 1, "gray"), col = c(0, 1,
"gray"), bty = "n", cex = 1)
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Unreplicated factorial designs — randomized
block and simple repeated measures

Chapter 11 introduced the concept of employing sub-replicates that are nested
within the main treatment levels as a means of absorbing some of the unexplained
variability that would otherwise arise from designs in which sampling units are selected
from amongst highly heterogeneous conditions. Such (nested) designs are useful in
circumstances where the levels of the main treatment (such as burnt and un-burnt
sites) occur at a much larger temporal or spatial scale than the experimental/sampling
units (e.g. vegetation monitoring quadrats). For circumstances in which the main
treatments can be applied (or naturally occur) at the same scale as the sampling units
(such as whether a stream rock is enclosed by a fish proof fence or not), an alternative
design is available. In this design (randomized complete block design), each of the levels
of the main treatment factor are grouped (blocked) together (in space and/or time)
and therefore, whilst the conditions between the groups (referred to as ‘blocks’) might
vary substantially, the conditions under which each of the levels of the treatment are
tested within any given block are far more homogeneous (see Figure 13.1b). If any
differences between blocks (due to the heterogeneity) can account for some of the total
variability between the sampling units (thereby reducing the amount of variability that
the main treatment(s) failed to explain), then the main test of treatment effects will be
more powerful/sensitive.

As an simple example of a randomized block, consider an investigation into the
roles of different organism scales (microbial, macro invertebrate and vertebrate) on
the breakdown of leaf debris packs within streams. An experiment could consist of
four treatment levels - leaf packs protected by fish-proof mesh, leaf packs protected by
fine macro invertebrate exclusion mesh, leaf packs protected by dissolving antibacterial
tablets, and leaf packs relatively unprotected as controls. As an acknowledgement that
there are many other unmeasured factors that could influence leaf pack breakdown
(such as flow velocity, light levels, etc) and that these are likely to vary substantially
throughout a stream, the treatments are to be arranged into groups or ‘blocks’ (each
containing a single control, microbial, macro invertebrate and fish protected leaf pack).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 13.1 Fictitious spatial depictions contrasting (a) single factor (n = 2), (b) randomized
complete block (n = 6) and (c-d) repeated measures (n = 6) ANOVA designs each with
three treatment levels. When single sampling units are selected amongst highly heterogeneous
conditions (as represented in (a)), it is unlikely that these single units will adequately represent
the populations and repeated sampling is likely to yield very different outcomes. In such cases,
this heterogeneity increases the unexplained variation thereby potentially masking any detectable
effects due to the measured treatments. If however, it is possible to group each of the main
treatment levels together within a small spatial or temporal scale (in which the conditions are likely
to be more homogeneous), the groups (or ‘blocks’) should account for some of the unexplained
variability between replicates thereby reducing the unexplained variability (and thus increasing
the power of the main test of treatments).
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Blocks of treatment sets are then secured in locations haphazardly selected throughout
a particular reach of stream.

Blocking does however come at a cost. The blocks absorb both unexplained
variability as well as degrees of freedom from the residuals. Consequently, if the
amount of the total unexplained variation that is absorbed by the blocks is not
sufficiently large enough to offset the reduction in degrees of freedom (which may
result from either less than expected heterogeneity, or due to the scale at which the
blocks are established being inappropriate to explain much of the variation), for a
given number of sampling units (leaf packs), the tests of main treatment effects will
suffer power reductions.

Treatments can also be applied sequentially or repeatedly at the scale of the entire
block, such that at any single time, only a single treatment level is being applied
(see Figure 13.1c-d). Such designs are called repeated measures. A repeated measures
ANOVA is to an single factor ANOVA as a paired t-test is to a independent samples
t-test. One example of a repeated measures analysis might be an investigation into the
effects of five different diet drugs (four doses and a placebo) on the food intake of lab
rats. Each of the rats (‘subjects’) is subject to each of the four drugs (within subject
effects) which are administered in a random order. In another example, temporal
recovery responses of sharks to bi-catch entanglement stresses might be simulated by
analysing blood samples collected from captive sharks (subjects) every half hour for
three hours following a stress inducing restraint.

This repeated measures design allows the anticipated variability in stress tolerances
between individual sharks to be accounted for in the analysis (so as to permit more
powerful test of the main treatments). Furthermore, by performing repeated measures
on the same subjects, repeated measures designs reduce the number of subjects required
for the investigation. Essentially, this is a randomized complete block design except that
the within subject (block) effect (e.g. time since stress exposure) cannot be randomized
(the consequences of which are discussed in section 13.4.1).

To suppress contamination effects resulting from the proximity of treatment
sampling units within a block, units should be adequately spaced in time and
space. For example, the leaf packs should not be so close to one another that the
control packs are effected by the antibacterial tablets and there should be sufficient
recovery time between subsequent drug administrations. In addition, the order or
arrangement of treatments within the blocks must be randomized so as to prevent
both confounding as well as computational complications (see section 13.4.1). Whilst
this is relatively straight forward for the classic randomized complete block design
(such as the leaf packs in streams), it is logically not possible for repeated measures
designs.

Blocking factors are typically random factors (see section 10.0.1) that represent all
the possible blocks that could be selected. As such, no individual block can truly be
replicated. Randomized complete block and repeated measures designs can therefore
also be thought of as un-replicated factorial designs in which there are two or more
factors but that the interactions between the blocks and all the within block factors are
not replicated.
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13.1 Linear models

The linear models” for two and three factor un-replicated factorial design are:

yii = i+ Bi +aj+ & (Model 1 or 2)
Yijk = 1+ Bi + o + v + Bay + By i + oy + vaBix + €ijk (Model 1)
Yiik = 1+ Bi + o + vk + ayik + €ijk (Model 2)

where w is the overall mean, 8 is the effect of the Blocking Factor B, o and y are
the effects of withing block Factor A and Factor C respectively and ¢ is the random
unexplained or residual component.

Tests for the effects of blocks as well as effects within blocks assume that there are
no interactions between blocks and the within block effects. That is, it is assumed that
any effects are of similar nature within each of the blocks. Whilst this assumption
may well hold for experiments that are able to consciously set the scale over which
the blocking units are arranged, when designs utilize arbitrary or naturally occurring
blocking units, the magnitude and even polarity of the main effects are likely to vary
substantially between the blocks. The preferred (non-additive or ‘Model 1°) approach
to un-replicated factorial analysis of some bio-statisticians is to include the block by
within subject effect interactions (e.g. Bar). Whilst these interaction effects cannot be
formally tested, they can be used as the denominators in F-ratio calculations of their
respective main effects tests (see Tables 13.1 & 13.2). Proponents argue that since these
blocking interactions cannot be formally tested, there is no sound inferential basis
for using these error terms separately. Alternatively, models can be fitted additively
(‘Model 2’) whereby all the block by within subject effect interactions are pooled into
a single residual term (&). Although the latter approach is simpler, each of the within
subject effects tests do assume that there are no interactions involving the blocks” and
that perhaps even more restrictively, that sphericity (see section 13.4.1) holds across
the entire design.

13.2 Null hypotheses

Separate null hypotheses are associated with each of the factors, however, blocking
factors are typically only added to absorb some of the unexplained variability and
therefore specific hypothesis tests associated with blocking factors are of lesser biological
importance.

@ Note that whilst the order of the linear model terms is not important as far as software is concerned,
the order presented above reflects (most closely) the hierarchy of the design structure. That is, the
main factor effect («) occurs within the blocking factor effect (8) and is thus placed after the blocking
effect in the linear model. I say most closely since some of the terms are at the same hierarchical level
(e.g. o and y) and thus their orders are interchangeable.

b The presence of such interactions increase the residual variability and thus reduce the power of tests.
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[3.2.1  Factor A - the main within block treatment effect

Fixed (typical case)

HoA) = =...=pi=n (the population group means of A (pooling B)
are all equal)

The mean of population 1 (pooling blocks) is equal to that of population 2 and so on,
and thus all population means are equal to an overall mean. No effect of A within each
block (Model 2) or over and above the effect of blocks. If the effect of the i group is
the difference between the i*" group mean and the overall mean (o; = pu; — 1) then
the Hy can alternatively be written as:

Hy(A):a1=ay=...=a; =0 (the effect of each group equals zero)

If one or more of the «; are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random

Hy(A) : oj =0 (population variance equals zero)

There is no added variance due to all possible levels of A (pooling B).
13.2.2 Factor B - the blocking factor
Random (typical case)

Hy(B) : o*é =0 (population variance equals zero)

There is no added variance due to all possible levels of B.

Fixed
Ho(B) : t1 = 2 = ... = i = p (the population group means of B are all equal)
Ho(B) : By =B =...=Bi=0 (theeffect of each chosen B group equals zero)

The null hypotheses associated with additional within block factors, are treated similarly
to Factor A above.

13.3 Analysis of variance

Partitioning of the total variance sequentially into explained and unexplained com-
ponents and F-ratio calculations predominantly follows the rules established in
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Table 13.1 F-ratios and corresponding R syntax for a range of two un-replicated factorial
(randomized complete block and repeated measures) designs.

F-ratio
Factor d.f. MS Model | (non-additive) Model 2 (additive)

MSy

B’ (block) b—1 MSp  No test? U
MSResid

MS MS

A a—1 MS, A A

MSResid MSResid

Residual (=B’A) (b —1)(a — 1) MSResid

> summary (aov (DV~Error (B) +A))
Unbalanced > anova (1lme(DV~A, random=~1|B))

If A'is random (or an unrestricted model), then F-ratio is MSg/ / MSgesid-

chapters 11 and 12. Randomized block and repeated measures designs can essentially
be analysed as Model III ANOVAs. The appropriate unexplained residuals and there-
fore the appropriate F-ratios for each factor differ according to the different null
hypotheses associated with different combinations of fixed and random factors and
what analysis approach (Model 1 or 2) is adopted for the randomized block linear
model (see Tables 13.1 & 13.2).

In additively (Model 2) fitted models (in which block interactions are assumed not
to exist and are thus pooled into a single residual term), hypothesis tests of the effect of
B (blocking factor) are possible. However, since blocking designs are usually employed
out of expectation for substantial variability between blocks, such tests are rarely of
much biological interest.

13.4 Assumptions

As with other ANOVA designs, the reliability of hypothesis tests is dependent on the
residuals being:

(i) normally distributed. Boxplots using the appropriate scale of replication (reflecting the
appropriate residuals/f-ratio denominator (see Tables 13.1 & 13.2) should be used to
explore normality. Scale transformations are often useful.

(i) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns. Scale transformations are often useful.

(i) independent of one another. Although the observations within a block may not strictly be
independent, provided the treatments are applied or ordered randomly within each block
or subject, within block proximity effects on the residuals should be random across all
blocks and thus the residuals should still be independent of one another. Nevertheless,
it is important that experimental units within blocks are adequately spaced in space and
time so as to suppress contamination or carryover effects.
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Table 13.2 F-ratios and corresponding R syntax for a range of un-replicated three-factor (ran-
domized complete block and repeated measures) designs. F-ratio numerators and demoninators
are represented by numbers that correspond to the rows from which the appropriate mean square
values would be associated.

F-ratio
A&C, B random A fixed,B&C random A,B&C random

Factor d.f. Model I Model 2 Model | Model 2 Model | Model 2
1B b—1 No test® 17 /6 17 HE5+6—7)¢ 17
2 A a—1 2/5 217 2(4+5-7)04 2/4 20(4+5-7)0¢ 2/4
3 C c—1 3/6 317 3/6? 37¢ 3la+6—70¢ 34
4 AxC (a—1(c—-1) 417 417 417 417 417 417
5 B'xA (b—1)(a—1) No test No test 517
6 B'xC (b—1)(@a—1) No test No test 6/7
7 Residuals (b—1(a—1)(c—1)

(=B’xAxC)

B random, A&C fixed

Model | > summary (aov (DV~+Error (B/ (A*C) +A*C) ) )
Model 2 > summary (aov (DV~Error (B) +A*C))
Unbalanced #sphericity met
> anova (lme (DV~A*C, random:~1|B), type='marginal’)
#sphericity not met
> anova (lme (DV~A*C, random=~1 | B, corr=corARl (form=~1|B) ,

type='marginal’)

Other models
#F-ratios and P-values must be calculated individually
> AnovaM (aov (DV~B*A*C) )

“If A is random (or an unrestricted model), then F-ratio is /7 (MSg /MSgesid)-

bInexact F-ratio for restricted model.

“Pooling: higher order interactions with P> 0.25 can be removed to produce more exact denominators.

4pooling: If P>0.25 for AC" and P<0.25 for B'A, F-ratio denominator is MSy . If P>0.25 for B'A and P<0.25 for AC’,
F-ratio denominator is MS, . If P>0.25 for both B'A and AC’, F-ratio denominator is (SSy¢r + SSgra + SSpracy)/((a —
D=1+ @=1)(c—=1)+(@—=1)(b—1)(c—1)).

For unrestricted model F-ratio denominator is MS, .

[3.4.1 Sphericity

Un-replicated factorial designs extend the usual equal variance (no relationship between
mean and variance) assumption to further assume that the differences between each
pair of within block treatments are equally varied across the blocks (see Figure 13.2).
To meet this assumption, a matrix of variances (between pairs of observations within
treatments) and covariances (between treatment pairs within each block) must display
a pattern known as sphericity®

Typically, un-replicated factorial designs in which the treatment levels have been
randomly arranged (temporally and spatially) within each block (randomized complete

¢ Strickly, the variance-covariance matrix must display a very specific pattern of sphericity in which
both variances and covariances are equal (compound symmetry), however an F-ratio will still reliably
follow an F distribution provided basic sphericity holds.
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|:| Variance-covariance structure
> — T1 T2 T3 T4
2% || . T -& 0.00 0.0
7 T2 0.00 0.00 0.00
%
T3 0.00 0.00 0.00
T4 0.00 0.00 0.00

N

- My

OT W T2 OT3 #Z T4
(a) Single factor ANOVA

Variance-covariance structure

Block B -l:l % - Block D T1 T2 T3 T4

T1 -& 0.05 0.05

Block A EFI- I:-D Block C Ig ggg o 0.05 882
OTt M T2 0713 @ T4 T4 005 005 005

(b) Randomized complete block design

Variance-covariance structure

Subject C )
whiee ° 0 Time1 Time2 Time3 Time4
SubjectB| - = [ Timed 060 030 0.10
. Time2 0.60 060 0.30
swetd| = @ @ O Time3 030 0.60 0.60
10 20 30 40 Time4 0.10 0.30 0.60

Time (mins)
(c) Repeated measures design

Fig 13.2 Fictitious representations of variance-covariance structures associated with examples
of (a) Single factor ANOVA, (b) Randomized complete block and (c) Repeated measures designs.
The matrix diagonals represent within group variances and the off-diagonals represent the
covariances between each group pair. In each of the example designs, homogeneity of variance
(between treatment groups) is met. The variance-covariance structure associated with single factor
ANOVA designs typically have either zero covariance or at least no pattern in the covariances.
Randomized complete block designs (in which the treatment levels are arranged randomly within
each block) usually display compound symmetry (equal covariances). By contrast, repeated
measures designs often violate this assumption (sphericity) and display a covariance structure
that reflects a particular pattern in which progressively closer (temporally or spatially) observations
collected from the same sampling units are progressively more similar (autocorrelated).

block) should meet this sphericity assumption. Conversely, repeated measures designs
that incorporate factors whose levels cannot be randomized within each block (such as
distances from a source or time), are likely to violate this assumption. In such designs,
the differences between treatments that are arranged closer together (in either space
or time) are likely to be less variable (greater paired covariances) than the differences
between treatments that are further apart.

Hypothesis tests are not very robust to substantial deviations from sphericity and
consequently would tend to have inflated type I errors. There are three broad techniques
for compensating or tackling the issues of sphericity:

(i) reducing the degrees of freedom for F-tests according to the degree of departure
from sphericity (measured by epsilon (g)). The two main estimates of epsilon are



368 CHAPTER 13

Greenhouse-Geisser and Huynh-Feldt, the former of which is preferred (as it provides
more liberal protection) unless its value is less than 0.5.

(ii) perform a multivariate ANOVA (MANOVA). Although the sphericity assumption does
not apply to such procedures, MANOVA's essentially test null hypotheses about the
differences between multiple treatment pairs (and thus test whether an array of population
means equals zero), and therefore assume multivariate normality - a difficult assumption
to explore.

(iii) fit a linear mixed effects (Ime) model (see section I1.8). The approximate form of
the correlation structure can be specified up-front when fitting linear mixed effects
models and thus correlated data are more appropriately handled. A selection of variance-
covariance structures appropriate for biological data are listed in Table 13.3. It is generally
recommended that linear mixed effects models be fitted with a range of covariance
structures. The “best” covariance structure is that the results in a better fit (as measured
by either AIC, BIC or ANOVA) than a model fitted with a compound symmetry
structure.

13.4.2 Block by treatment interactions

The presence of block by treatment interactions have important implications for models
that incorporate a single within block factor as well as additive models involving two or
more within block factors. In both cases, the blocking interactions and overall random
errors are pooled into a residual term that is used as the denominator in F-ratio
calculations (see Table 13.1). Consequently, block by treatment interactions increase
the denominator (MSg.siq) resulting in lower F-ratios (lower power). Moreover, the
presence of strong blocking interactions would imply that any effects of the main
factor are not consistent. Drawing conclusions from such an analysis (particularly in
light of non-significant main effects) is difficult. Unless we assume that there are no
block by within block interactions, non-significant within block effects could be due
to either an absence of a treatment effect, or as a result of opposing effects within
different blocks. As these block by within block interactions are unreplicated, they can
neither be formally tested nor is it possible to perform main effects tests to diagnose
non-significant within block effects.
Block by treatment interactions can be diagnosed by examining;

(i) interaction (cell means) plot. The mean (n = 1) response for each level of the main factor

is plotted against the block number. Parallel lines infer no block by treatment interaction.

(i) residual plot. A curvilinear pattern in which the residual values switch from positive to

negative and back again (or visa versa) over the range of predicted values implies that

the scale (magnitude but not polarity) of the main treatment effects differs substantially

across the range of blocks. Scale transformations can be useful in removing such
interactions.

(iii) Tukey’s test for non-additivity evaluated at « = 0.10 or even o = 0.25. This (curvilinear

test) formally tests for the presence of a quadratic trend in the relationship between residu-

als and predicted values. As such, it too is only appropriate for simple interactions of scale.
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There are no corrections for other more severe interactions (such as cross-over) -
effected conclusions must therefore be made cautiously.

13.5 Specific comparisons

For randomized complete block designs in which the levels of within block factors can
be randomly arranged, both planned and unplanned multiple comparisons tests can
be performed as per single factor or fully factorial linear models (see chapters 10&12).
However, when the assumption of sphericity is likely to be violated (as is typically
the case for repeated measures designs), the appropriate compensatory adjustments
for each specific comparison are not clearly defined. Therefore, each specific planned
comparison should be performed using separately generated denominators (error
terms). Unplanned multiple comparisons should be performed as a series of paired ¢
tests, subsequently corrected for inflated type I error rates (e.g. Bonferroni corrections)
if necessary (see section 10.6).

13.6 Unbalanced un-replicated factorial designs

Since these designs are un-replicated, any missing observation equates to an entire
missing combination (cell) and thus an unbalanced design. Unbalanced designs (to
reiterate) are less robust to deviations from the assumptions (particularly sphericity)
and therefore require special attention. There are a number of approaches for dealing
with unbalanced un-replicated designs, the pros and cons of which are described
below:

(i) Omit the entire block/subject from which the observation is missing. Clearly, such an
approach is only acceptable for designs that have a large number of blocks in the first
place as it involves disregarding otherwise good data.

(ii) Fit a cell means model with appropriate contrasts (see section 12.6.2). Defining the
appropriate contrasts can be a very difficult process.

(iii) If block interactions are assumed not to exist (additivity)

(a) perform regular analysis with missing values have been replaced by values predicted
by solving equations such as (predicted value = treatment mean + block mean -
overall mean) and subtract one degree of freedom for each substituted value.

(b) compare the fit (residual sums of squares) of appropriate full and reduced models
(e.g.full:yy = p + Bi + o + g versus reduced: y; = u + B; + &) using ANOVA.
Importantly, sphericity corrections should also be incorporated into this approach -
a task that is difficult to achieve.

(iv) Fit a linear mixed effects (Ime) model (see section 11.8). In contrast to ANOVA,
which only produces optimal estimators (estimators that minimize variance) for balanced
designs, maximum likelihood (ML and REML) and thus linear mixed effects estimators yield
estimators that are ‘asymptotically efficient’ for both balanced and unbalanced designs.
The ability of linear mixed effects models to accommodate balanced and unbalanced,
correlated and hierarchical (nested) data makes them the preferred approach to analyzing
unbalanced un-replicated factorial designs.
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13.7 Robust alternatives

When the data are non-normal (or infected with outliers), rank-based analysis can
be useful. Of particular note is the Friedman test which generates a test statistic after
ranking the observations within each block and compares this statistic to a chi-square
distribution. As is the case for other rank based alternatives, this approach is less
powerful than the parametric equivalents and is less capable of handling blocking
interactions. Moreover, rank based tests do not directly address the issues of sphericity
and are therefore inapporpriate for repeated measures designs.

Randomization tests, in which observations are repeatedly shuffled amongst the
treatments within each block, are useful (particularly when observational independence
is violated).

13.8 Power and blocking efficiency

Power analyses follow single factor and fully factorial power analyses, except that with
respect to sample sizes, the blocks become the replicates. The decision of whether
or not to block is often a comprimise between reducing unexplained variation and
retaining maximum degrees of freedom. For the benifit of future investigations on
similar systems, it is often desirable to determine what benifit incorporating a blocking
factor offered over a regular completely randomized design. An estimate of the relative
effeciency of the blocking can be obtained from:

(q - 1)MSBlock + q(P - 1)MSResid
(Pq - 1)IVISResid

Estimated blocking efficiency =

13.9 Unreplicated factorial ANOVA in R

Randomized complete block and repeated measures designs can be analysed using
the aov () function with blocking factors defined with the Error= argument. Anova
tables for balanced designs that meet the assumption of sphericity can be viewed
using the summary () function which can also accommodate planned contrasts with
the split= argument. Alternatively, lme (nlme) and the more recent lmer (1me4)
functions facilitate the argubly more appropriate linear mixed effects modelling
approach to analysing unreplicated factorial designs. Associated planned comparisons
are performed as estimable () functions.

13.10 Further reading

* Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.
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Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.
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* Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.
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Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS.
Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.
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Effects Models and Extensions in Ecology with R. Springer.

13.11 Key for randomized block and simple repeated measures ANOVA

1 a. Determine the appropriate model design and hierarchy
* Conceptualise the design into a hierarchy (ladder) of factors

* Blocking factor (factor to which all levels (complete sets) of other factors are
applied) at the top

* Each of the main treatment factors (that are applied within each block) are
considered lower in the hierarchy

* The Block by treatment interactions (which are unreplicated) are next on the
heirarchy

e If there are two or more fixed within block treatment factors, then there are
also interactions between these factors to consider

* Label random blocking factor levels (blocks or subjects ) with a unique name

Block FactA DV

B1 Al
Bl A2
Bl A3
B2 Al

* Identify the correct error (residual) term and thus F-ratio denominator for each
factor (see Tables 13.1 & 13.2)
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2 a.

3 a.

4 a.

Check assumptions for unreplicated factorial ANOVA

As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. This is
particularly important for Model 1 (non-additive) models where interaction terms
are used as the appropriate denominators (residuals).

* No block by within block treatment interactions
> with(data, interaction.plot(B, A, DV))

Residual curvature plot and Tukey’s test for nonadditivity

> library(alr3)
> residual.plots(lm(DV ~ BLOCK + A, data))
> tukey.nonadd.test (1lm(DV ~ BLOCK + A, data))

* Normality (symmetry) of the response variable (residuals) at each level of each
factor or combination of factors - boxplots of mean values
Single within block factor or additive model (no interactions - Model 2) using
MSRg.sia as denominator in each case
> boxplot (DV ~ A, data)
> boxplot (DV ~ C, data)
> boxplot(DV ~ A * C, data)

Two or more within block factor non-additive (Model 1) model using interac-
tions (such as MSp, ) as denominator as example

> library (lme4)
> data.BA.agg <- gsummary (data, groups = data$B:data$h)
> boxplot (DV ~ A, data.BA.agg)

where DV is the response variable, A is a main fixed or random factor within the data
dataset.

* Homogeneity (equality) of variance of the response variable (residuals) at each
level of each factor or combination of factors - boxplots of mean values
As for Normality.
Parametric assumptions (Normality/Homogeneity of variance) met.. Go to 4

. Parametric assumptionsnotmet ............ ... . ... ... Goto3
Attempt a scale transformation (see Table 3.2 for transformation options) Go to 2
. Transformations unsuccessful or inappropriate ....................... Goto9
If incorporating planned contrasts (comparisons) .. .. .. See Examples 13A&13B
> contrasts (dataSA) <- cbind(c(contrasts), ...)
> round (crossprod(contrasts (datasa)), 2)
.................................................................... Goto5
. Determine whether the design is balanced
> replications (DV ~ Error (Block) + A * C.., data)
> is.balanced(DV ~ Error(Block) + A * C.., data)
Design is balanced - sample sizes of all cellsareequal .................. Goto6

. Design is NOT balanced - one or more cells (combinations) missing

(Oreplicates) ... ....ontintt e Goto7
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c. Design is NOT balanced - sample sizes of cells differ, but all combinations have at
least onereplicate. ... ... ..ot Goto 8
6 a. Balanced single within block factor or additive (no interactions -

Model2). ... See Examples 13A,13B
> data.aov <- aov(DV ~ A + Error (Block), data)
> data.aov <- aov(DV ~ A * C + Error(Block), data)
Alternatively, consider linear mixed effects (Ime) model .............. Goto 13
Check for sphericity....... ... Goto 12
* Sphericity met

> summary (data.aov)

OR

> library (biology)

> AnovaM (data.aov)
* Sphericity NOT met

> library(biology)

> AnovaM(data.aov, RM = T)
To incorporate planned comparisons, utilize the split=argument, see Key 12.6
For post-hoc multiple comparisons.............................. Go to 12.20a

b. Balanced two or more within block factor non-additive

Modell). ... See Examples 13A,13B&13D)
> data.aov <- aov(DV ~ Error (Block/A + Block/C) + A * C, data)
Alternatively, consider linear mixed effects (Ime) model .............. Goto 13
Check for sphericity....... ... Goto 12

* Sphericity met
> summary (data.aov)
OR

> library (biology)
> AnovaM(data.aov)

* Sphericity NOT met

> library (biology)
> AnovaM(data.aov, RM = T)

To incorporate planned comparisons, utilize the split= argument, see Key 12.6

For post-hoc multiple comparisons.......................... Go to Key 12.20a
. Unbalanced (missing cells) single within block or additive (Model 2)

> data.lme <- lme(DV ~ A, random = ~1 | Block, data)

> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

> anova (data.lme)

Unbalanced (missing cells) two or more within block factor non-additive
(Model 1)
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> data.lme <- lme(Y ~ A * C, random = ~1 | Block/A + 1 |
+ Block/C, data)

> anova (data.lme)

. Unbalanced (unequal sample sizes n > 0) additive (Model 2)

> contrasts (data$A) <- contr.helmert

> contrasts (data$C) <- contr.helmert

> data.aov <- aov(DV ~ Error(Block) + A * C, data)

> AnovaM(data.aov, type = "III")

OR

> data.lme <- lme(DV ~ A * C, random = ~1 | Block, data)

. Unbalanced (unequal sample sizes n > 0) non-additive (Model 1)

> data.aov <- aov(DV ~ Error (Block/A + Block/C) + A * C, data)

OR
> data.lme <- Ime(DV ~ A, random = ~1 | Block, data)
> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

> anova (data.lme)

9 a. Underlying distributions not normally distributed ................... Go to 10
orconsider GLM . ... ... ...ttt GLM chapter 17
b. Underlying distributions not normally distributed ................... Goto 10
10 a. Underlying distribution of the response variable and residuals

ISKknown ... . e GLM chapter 17

b. Underlying distributions of the response variable and residuals
ismotknown ........ ... ... Goto 1l
11 a. Variances not wildly unequal, outliers present, but data independent (Friedman
non-parametrictest)............ ... i See Examples 13E

12 a.

13 a.

> friedman.test(DV ~ A | Block, data)

. Variances not wildly unequal, random sampling not possible - data might not be

independent (Randomization test

Follow the instructions in Key 10.8b to randomize the F-ratios or MS values from
ANOVA tables produced using the parametric steps above. Warning, random-
ization procedures are only useful when there are a large number of possible
randomization combinations (rarely the case in blocking designs)

Checking sphericity

> library (biology)

> epsi.GG.HF (data.aov)

Fitting linear mixed effects models

* Fit a range of models with alternative covariance structures

#Compound symmetry

> library (nlme)

> #General (unstructured)

> data.lme <- lme(DV ~ A, random = ~1 | Block, data, corr =
+ corSymm(form = ~1 | Block))

>

>

data.lmel <- lme(DV ~ A, random = ~1 | Block, data, corr =
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+ corrCompSymm(form = ~1 | Block))

> #Compound symmetry with heterogenous variances

> data.lme2 <- lme(DV ~ A, random = ~1 | Block, data, corr =
+ corrCompSymm (form = ~1 Block), weights = varIdent (form =
+ ~1 | Block))

> #First order autoregressive

> data.lme3 <- 1lme(DV ~ A, random = ~1 | Block, data, corr =
+ corrARl (form = ~1 | Block))

* Compare the fit of each to the model incorporating compound symmetry

> anova (data.lmel, data.lme)

* Examine the anova table (for fixed effects) for the fitted model with the “best”
covariance structure

> summary (data.lme)

* Examine the parameter estimates for the fitted model with the “best” covariance
structure

> summary (data.lme)

13.12 Worked examples of real biological data sets

Example 13A: Two factor fixed (Model ) ANOVA

To investigate the importance of leaf domatia on the abundance of mites, Walter and
O’Dowd (1992) shaved the domatia off the surface of one random leaf from each of 14 leaf
pairs. Leaves where blocked into pairs of neighboring leaves in anticipation that different
parts of a plant might have different numbers of mites. Their design represents a randomized
complete block with leaf pairs as random blocks and the treatment (shaved or not) as the
within block effect (from Box 10.1 of Quinn and Keough (2002)).

Step | - Import (section 2.3) the Walter and O’'Dowd (1992) data set

> walter <- read.table("walter.csv", header = T, sep = ", ")

Step 2 - The block vector (variable) contains a unique identifier of each leaf pair. However, R will
consider this to be a integer vector rather than a categorical factor. In order to ensure that this
variable is treated as a factor we need to redefine its class

> walter$BLOCK <- factor (walter$BLOCK)
> class (walter$BLOCK)
[1] "factor"

Step 3 (Key 13.2) - Assess assumptions of normality and homogeneity of variance for the main
null hypothesis that there is no effect of shaving domatia on the number of mites found on
leaves.

According to Table 13.1, the MSgesig (individual leaves within leaf pairs) should be used as the
replicates for this hypothesis irrespective of whether a blocking interaction (the consistency of
the effect of shaving is across leaf pairs) is likely to be present or not.
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MITE log transformed MITE4
> boxplot (MITE ~ TREAT, walter) > boxplot(log (0.5 + (MITE *
10)) ~ TREAT, walter)
© —_— 0 —_—
: -
1 D —
l 1
= . o . -
I
o -
o -
D — : o —
o — : o
T T T T
With.domatia Without.domatia With.domatia Without.domatia

Conclusions - Strong evidence of unequal variance, potentially due to non-normality. Loga-
rithmic transformation to normalize is an improvement.

Step 4 (Key 13.2) - Investigate whether or not there is any evidence of a block by treatment
interaction.

Response variable: MITE

> library(alr3) > with(walter, interaction.plot
> resplot (1Im(MITE ~ BLOCK + (BLOCK, TREAT, MITE))
TREAT, walter))
t value Pr(>|t])

6.452132e+00 1.102875e-10

TREAT

—— Without.doma
--- With.domatia

Pearson Residuals
0
|
o
o
mean of MITE

Fitted values BLOCK

4 Note that due to the presence of zero values Walter and O’Dowd (1992) added a small constant
(0.5) to each of the mite counts prior to logarithmic transformation. They also multiplied the number
of mites by 10, although it is not clear why.
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Response variable: log transformed MITE

> library(alr3) > with(walter, interaction.plot
> resplot(lm(log(0.5 + (MITE * + (BLOCK,