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Preface

R is a powerful and flexible statistical and graphical environment that is freely
distributed under the GNU Public Licencea for all major computing platforms
(Windows, MacOSX and Linux). This open source licence along with a relatively
simple scripting syntax has promoted diverse and rapid evolution and contribution. As
the broader scientific community continues to gain greater instruction and exposure
to the overall project, the popularity of R as a teaching and research tool continues to
accelerate.

It is now widely acknowledged that R proficiency as a scientific skill set is becoming
increasingly more desirable and useful throughout the scientific community. However,
as with most open source developments, the emphasis of the R project remains on
the expansive development of tools and features. Applied documentation still remains
somewhat sparse and somewhat incomprehensible to the average biologist. Whilst
there are a number of excellent texts on R emerging, the bulk of these texts are devoted
to the R language itself. Any featured examples therein are used primarily for the
purpose of illustrating the suite of commonly used R features and procedures, rather
than to illustrate how R can be used to perform common biostatistical analyses.

Coinciding with the increasing interest in R as both a learning and research tool
for biostatistics, has been the success of a relatively new major biostatistics textbook
(Quinn and Keough, 2002). This text provides detailed coverage of most of the major
statistical concepts and tests that biologists are likely to encounter with an emphasis on
the practical implementation of these concepts with real biological data. Undoubtedly,
a large part of the appeal of this book is attributable to the extensive use of real biological
examples to augment and reinforce the text. Furthermore, by concentrating on the
information biologists need to implement their research, and avoiding the overuse of
complex mathematical descriptions, the authors have appealed to those biologists who
don’t require (or desire) a knowledge of performing or programming entire analyses
from scratch. Such biologists tend to use statistical software that is already available
and specifically desire information that will help them achieve reliable statistical and
biological outcomes. Quinn and Keough (2002) also advocate a number of alternative

a This is an open source licence that ensured that the application as well as its source code is freely
available to use, modify and redistribute.
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texts that provide more detailed coverage of specific topics and that also adopt this real
example approach.

Typically, most biostatistical texts focus on the principles of design and analysis
without extending into the practical use of software to implement these princi-
ples. Similarly, R/S-plus texts tend to concentrate on documenting and showcasing
the features of R without providing much of a biostatistical account of the princi-
ples behind the features or illustrating how these tools can be extended to achieve
comprehensive real world analyses. Consequently, many biological students and
professionals struggle to translate the theoretical advice into computational out-
comes. Although some of these difficulties can be addressed after extensively reading
through a number of software references, many of the difficulties remain. The incon-
sistency and incompatibility between theory texts and software reference texts is
mainly the result of differing intentions of the two genres and is a source of great
frustration.

The reluctance of biostatistical texts to promote or instruct on any particular
statistical software (except for extremely specialized cases where historically only a
single dedicated program was available) is in part an acknowledgment of the diversity
of software packages available (each of which differs substantially in the range of
features offered as well as the user interface and output provided). Furthermore,
software upgrades generally involve major alternations to the way in which preex-
isting tasks are performed and thus being associated with a single software package
tends to restrict the longevity and audience of the text. In contrast, although con-
tributers are constantly extending the feature set of R environments, overall the
project maintains a consistent user interface. Consequently, there is currently both
a need and opportunity for a text that fills the gap between biostatistics texts and
software texts, so as to assist biologists with the practical side of performing statistical
analysis.

Many biological researchers and students have at one stage or another used one or
other of the major biostatistics texts and gained a good understanding of the principles.
However, from time to time (and particularly when preparing to generate a new design
or analyse a new data set), they require a quick refresher to help remind them of the
issues and principles relevant to their current design and/or analysis scenarios. In most
cases, they do not need to re-read the more discursive texts and in many cases express a
reluctance to invest large amounts of valuable research time doing so. Therefore, there
is also a need for a quick reference that summarizes the key concepts of contemporary
biostatistics and leads users step-wise through each of the analysis procedures and
options. Such a guide would also help users to identify their areas of statistical naivete
and enable them to return to a more comprehensive text with a more focused and
efficient objective.

Therefore, the intended focus of this book will be to highlight the major concepts,
principles and issues in contemporary biostatistics as well as demonstrate how to use R
(as a research design, analysis and presentation tool) to complete examples from major
biostatistics textbooks. In so doing, this proposed text acknowledges the important
role that statistical software and real examples play in reinforcing statistical principles
and practices.
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Hence in summary, the intentions of the book are three-fold

(i) To provide very brief refresher summaries of the main concepts, issues and options involved
in a range of contemporary biostatistical analyses

(ii) To provide key guides that steps users through the procedures and options of a range of
contemporary biostatistical analyses

(iii) To provide detailed R scripts and documentation that enable users to perform a range of real
worked examples from statistics texts that are popular among biological and environmental
scientists

Worked examples

Where possible and appropriate, this book will make use the same examples that appear
in the popular biostatistical texts so as to take advantage of the history and information
surrounding those examples as well as any familiarity that users may have with those
examples. Having said this however, access to these other texts will not be necessary to
get good value out of the materials.

Website

This book is augmented by a website (http://www.wiley.com./go/logan/r) which
includes:

• raw data sets and R analysis scripts associated with all worked examples
• the biology package that contains many functions utilized in this book
• an R reference card containing links to pages within the book

Typographical convensions

Throughout this book, all R language objects and functions will be printed in courier
(monospaced) typeface. Commands will begin with the standard R command prompt
(<) and lines continuing on from a previous line will begin with the continuation
prompt (+). In syntax used within the chapter keys, dataset is used as an example
and should be replaced by the name of the actual data frame when used. Similarly, all
vector names should be replaced by the names used to denote the various variables in
your data set.

Acknowledgements

The inspiration for this book came primarily from Gerry Quinn and Mick Keough
towards whom I am both indebted and infuriated (in equal quantities). As authors
of a statistical piece themselves, they should known better than to encourage others
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to attempt such an undertaking! I also wish to acknowledge the intellectualizing and
suggestions of Patrick Baker and Andrew Robinson, the former of whom’s regular
supply of ideas remains a constant source of material and torment. Countless numbers
of students and colleagues have also helped refine the materials and format of this
book. As almost all of the worked examples in this book are adapted from the major
biostatistical texts, the contributions of these other authors cannot be overstated.
Finally, I would like to thank Nat, Kara, Saskia and Anika for your support and
tolerance while I wrote this ‘‘extremely quite boring book with rid-ic-li-us pictures’’
(S. Logan, age 7).
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Introduction to R

1.1 Why R?

R is a language and programming environment for statistical analysis and graphics
that is distributed under the GNU General Public Licensea and is largely modeled on
the powerful proprietary S/Splus (from ATT Bell Laboratories). R provides a flexible
and powerful environment consisting of a core set of integrated tools for classical
data manipulation, analysis and display. An ever expanding library of additional
modules (packages) provide extended functionality for more specialized procedures.
Initially written by Ross Ihaka and Robert Gentleman of the Department of Statistics
at the University of Auckland (NZ), the R project is currently maintained by an
international cooperative (the ‘R Core Team’) who oversee and adjudicate on the
continual development of the project.

The GNU General Public License and flexible language ensure that the R project
has the potential to rapidly support any newly conceived procedures. Consequently,
R has (and will continue to), evolved rapidly as statisticians from a wide range of
scientific backgrounds recognize the power of universally adopted tools and offer
their contributions. Moreover, the universality, freedom and extensibility of R has
resulted in its rapid expansion in popularity among biological teaching and research
professionals and students alike. Source code and binaries (executable files) are also
freely available for the Windows, Macb and Unix/Linux families of operating systems
from the Comprehensive R Archive Network (CRAN) site at ‘http://cran.r-project.org/’.
Not surprisingly then, R is quickly becoming the universal statistical language of the
international scientific community, and correspondingly, R proficiency skills are
becoming increasingly more valuable.

As R is a copy of S, documentation on either are generally relevant (however, it
should be noted that there are a number of differences between the two dialects). In
particular, Everitt (1994), Pinheiro and Bates (2000) and Venables and Ripley (2002)
are excellent S/S-PLUS references whilst Dalgaard (2002), Fox (2002), Maindonald
and Braun (2003), Crawley (2002, 2007), Murrell (2005) and Zuur et al. (2009) are
excellent R reference texts for biologists. In addition, there is an extensive amount of

a Under the GNU General Public License, anyone is free to use, modify and (re)distribute the software.
b Support for the Mac OS Classic ended with R 1.7.1.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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information available on-line at the CRAN site (‘http://r-project.org’) and in the help
files packaged with the distributions and extension packages.

1.2 Installing R

At the time of writing the current version of R is R.2.9.1. Since Windows, Unix/Linux
and Mac OS systems differ extensively in areas of user privileges and software
management, different installation files and procedures are required for each of
the systems. Irrespective of the system, the latest version of an installation binary
or the source code can be downloaded from the CRAN. Binary installation files or
compressed source code for version R.2.9.1 can also be found on the accompanying
website www.wiley.com/go/logan/r.

1.2.1 Windows

Obtain a copy of the R installation binary file (e.g. R-2.9.1-win32.exe). Run this self-
extracting and self-installation file as Administrator (right click on the executable and
select Run as Administrator) if you know the appropriate password. This will install R
in the default (and best) location. If you do not know the Administrator password for
the computer (or do not have adequate privileges), R will be installed within your user
account. The installer will guide you through the installation, but for most purposes
the default options are adequate. During the installation process, startup menu and
desktop icon links to RGui.exe (the main R interface) will be automatically created.

1.2.2 Unix/Linux

Obtain a copy of the compressed R source code (e.g. R.2.9.1.tgz) and unpack it to an
appropriate location (typically /usr/local) with:

tar xvfz R.2.9.1.tgz

Note: if you do not have root status, or you wish to have R installed in an alternative
location for some reason, you are referred to the R-admin.html help file included in
the packed source. From the top directory of the unpacked source, issue the following
commands to configure, build and check the system:

./configure

make

make check

If there are no failures, the manuals can be built in dvi, pdf and/or info formats using
the following commands:

make dvi

make pdf

make info
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Install the R tree (and manuals) on your system using the following commands:

make install

make install-dvi

make install-pdf

make install-info

A symbolic link (R) will be added to /usr/local/bin and thus R can be run by
entering R at a terminal command prompt.

1.2.3 MacOSX

Obtain a copy of the R disk image file (e.g. R.2.9.1.tgz). Start the installation by running
(double-clicking on) the disk image file. This will bring up a new Finder window
containing the installation package. Run the installation package (double-click) and
if you are not already logged in as Administrator, you will be prompted for the
administrator password. The installer will then guide you through the installation, but
for most purposes the default options are adequate.

1.3 The R environment

Let’s begin with a few important definitions:

Object R is an object oriented language and everything in R is an object. For example, a
single number is an object, a variable is an object, output is an object, a data set is an
object that is itself a collection of objects, etc.

Vector A collection of one or more objects of the same type (e.g. all numbers or all
characters etc).

Function A set of instructions carried out on one or more objects. Functions are typically
used to perform specific and common tasks that would otherwise require many instructions.
For example, the function mean() is used to calculate the arithmetic mean of the values in
a given numeric vector. Functions consist of a name followed by parentheses containing
either a set of parameters (expressed as arguments) or left empty.

Parameter The kind of information that can be passed to a function. For example, the
mean() function declairs a single required parameter (a valid object for which the mean is
to be calculated is a compulsary) as well as a number of optional parameters that facilitate
finer control over the function.

Argument The specific information passed to a function to determine how the function
should perform its task. Arguments are expressions (in the form of name=value) given
between the parentheses that follow the name of the function. For example, the mean()
function requires at least one argument - either the name of an object that contains the
values from which the mean is to be generated or a vector of values.

Operator Is a symbol that has a pre-defined meaning. Familiar operators include + - *

and /, which respectively perform addition, subtraction, multiplication and division. The
= operator is used within functions to assign values to arguments. Logical operators are
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queries returning either a TRUE or FALSE response. Familiar logical operators include < (‘is
the left hand side less than the right?’), > (‘greater than?’), <= (‘less than or equal?’) and >=
(‘greater than or equal?’), while less familiar logical operators include == (which translates
to ‘does the entry on the left hand side of the == operator equal the entry on the right
hand side?’), != (logical NOT – ‘is the left hand side not equal to the right?’), && (logical
AND – ‘are both left hand and right hand conditions TRUE?’) and || (logical OR – ‘is
either condition TRUE?’).

1.3.1 The console (command line)

The R command prompt (>) is where you interact with R by entering commands
(expressions). Commands are evaluated once the Enter key has been pressed, however,
they can also be separated from one another on a single line by a semicolon character (;).
A continuation prompt (+) is used by R to indicate that the command on the preceding
line was syntactically incomplete. R ignores all characters on a line that are followed by
a hash character (#). These statements or comments are commonly used in R literature
and scripts for explaining or detailing the surrounding commands.
Enter the following command at the R command prompt (>):

> 5 + 1

[1] 6

R evaluates the command 5+1 (5 plus 1) and returns the value of an object whose
first (and only) element is 6. The [1] indicates that this is the first (and in this case
only) element in the object returned.

Command history

Each time a command is entered at the R command prompt, the command is also
added to a list known as the command history. The up and down arrow keys scroll
backward and forward respectively through the session’s command history list and
place the top most command at the current R command prompt. Scrolling through
the command history enables previous commands to be rapidly re-executed, reviewed
or modified and executed.

1.4 Object names

All objects have unique names to which they are refered. Names given to any object
in R can comprise virtually any sequence of letters and numbers providing that the
following rules are adhered to:

• Names must begin with a letter (names beginning with numbers or operators are not
permitted)

• Names cannot contain the following characters; space , - + * / # % & [ ] { }
( ) ~
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Whilst the above rules are necessary, the following naming conventions are also
recommended:

• Avoid names that are the names of common predefined functions as this can provide a
source of confusion for both you and R. For example, to represent the mean of a head length
variable, use something like MEAN.HEAD.LENGTHor MeanHeadLength rather than mean.

• In R, all commands are case sensitive and thus A and a are different and refer to
different objects. Almost all inbuilt names in R are lowercase. Therefore, one way to reduce
the likelihood of assigning a name that is already in use by an inbuilt object is to only use
uppercase names for any objects that you create. This is a convention practiced in this book.

• Names should reflect the content of the object. One of the powerful features of R is that
there is virtually no limit to the number of objects (variables, datasets, results, models, etc)
that can be in use at a time. However, without careful name management, objects can
rapidly become misplaced or ambiguous. Therefore, the name of an object should reflect
what it is, and what has happened to it. For example, the name Log.FISH.WTS might be
given to an object that contains log transformed fish weights.

• Although there are no restrictions on the length of names, shorter names are quicker to type
and provide less scope for typographical errors and are therefore recommended (of course
within the restrictions of the point above).

• Separate any words in names by a decimal point. For example, the name HEAD.LENGTH
might be used to represent a numeric vector of head lengths.

Attempts have been made to always adhere to the above naming conventions
throughout the rest of the worked examples in this book, so as to provide a more
extensive guide to good naming practices.

1.5 Expressions, Assignment and Arithmetic

An expression is a command that is entered at the R command prompt, evaluated by
R, printed to the current output device (usually the screen), and then discarded. For
example:

> 2 + 3 ← an expression
[1] 5 ← the evaluated output

Assignment assigns a name to a new object that may be the result of an evaluated
expression or any other object. The assignment operator <- is interpreted by R as
‘evaluate the expression on the right hand side and assign it the name supplied on the
left hand side’c. If the object on the left hand side does not already exist, then it is
created, otherwise the object’s contents are replaced. The contents of the object can be
viewed (printed) by entering the name of the object at the command prompt.

> VAR1 <- 2 + 3 ← assign expression to the object VAR1
> VAR1 ← print the contents of the object VAR1
[1] 5 ← evaluated output

c Assignment can also be made left to right using the -> assignment operator.
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A single command may be spread over multiple lines. If either a command is not
complete by the end of a line, or a carriage return is entered before R considers that
the command syntax is complete, the following line will begin with the prompt + to
indicate that the command is incomplete.

> VAR2 <- ← an incomplete assignment/expression
+ 2 + 3 ← assignment/expression completed
> VAR2 ← print the contents of VAR2, the evaluated output
[1] 5

When the contents of a vector are numeric (see section 1.10 below), standard arithmetic
procedures can be applied.

> VAR2 - 1 ← print the contents of VAR2 minus 1
[1] 4

> ANS1 <- VAR1 * VAR2 ← evaluated expression assigned to ANS1
> ANS1 ← print the contents of ANS1 the evaluated output
[1] 25

Objects can be concatenated (joined together) to create objects with multiple entries
using the c() (concatenation) function.

> c(1, 2, 6) ← concatenate 1, 2 and 6
[1] 1 2 6 ← printed output
> c(VAR1, ANS1) ← concatenate VAR1 and ANS1 contents
[1] 5 25 ← printed output

In addition to the typical addition, subtraction, multiplication and division operators,
there are a number of special operators, the simplest of which are the quotient or
integer divide operator (%/%) and the remainder or modulus operator (%%).

> 7/3

[1] 2.333333

> 7%/%3

[1] 2

> 7%%3

[1] 1

1.6 R Sessions and workspaces

1.6.1 Cleaning up

So far we have created a number of objects. To view a list of all current objects that
have been created:

> ls() ← list current objects in R environment
[1] "ANS1" "VAR1" "VAR2"
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The ls() function is also useful for searching for the name of objects that you created
and can’t remember:

> ls(pat = "VAR") ← list objects that begin with VAR

[1] "VAR1" "VAR2"

> ls(pat = "A*1") ← list objects that contain an A and a 1 with
any number of characters in between.[1] "ANS1" "VAR1"

Since objects are easily created (and forgotten about) in R, an R session’s workspace
can rapidly become cluttered with extraneous and no longer required objects. To avoid
this, it is good practice to remove objects as they become obsolete. This is done with
the rm() function.

> rm(VAR1, VAR2) ← remove the VAR1 and VAR2 objects

> rm(list = ls()) ← remove all user defined objects

1.6.2 Workspaces

Throughout an R session, all objects (including loaded packages, see section 1.19) that
have been added are stored within the R global environment, called the workspace.
Occasionally, it is desirable to save the workspace and thus all those objects (vectors,
functions, etc) that were in use during a session so that they are automatically available
during subsequent sessions. This can be done using the save.image() function.
Note, this will save the workspace to a file called .RData in the current working
directory (usually the R startup directory, see section 1.6.3), unless a filename (and
path) is supplied as an argument to the save.image() function. A previously saved
workspace can be loaded by providing a full path and filename as an argument to the
load() function. Whilst saving a workspace image can sometimes be convenient, it
can also contribute greatly to organizational problems associated with large numbers
of obsolete or undocumented objects.

1.6.3 Current working directory

By default, files are read and written to the current working directory-the R startup
directory (location of the R executable file) unless otherwise specified. To enable read
and write operations to take place in other locations, the current working directory can
be changed with the setwd() function which requires a single argument (the full path
of the directoryd). The current working directory can be reviewed using the getwd()
function

> setwd("~/Documents/") ← set the current working directory
> getwd() ← review the current working directory
[1] "/home/murray/Documents"

d Note that R using the Unix/Linux style directory subdivision markers. That is, R uses the forward
slash / in path names rather than the regular \ of Windows.
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> list.files(getwd())

[1] "addressbook.vcf"

[2] "Introduction.rnw" ← list all in the current working directory
[3] "Introduction.rnw.map"

[4] "Rplots.ps"

[5] "Rscripts.R"

1.6.4 Quitting R

To quit R elegantly, use the q() function. You will be asked whether or not you wish to
save the workspace image. If you answer yes (y), the current state of your environment
or workspace (including all the objects and packagese that were added during the
session) will be stored within the current working directory.

1.7 Getting help

There are a variety of ways to obtain help on either specific functions or more general
procedures within the R environment. Specific information on any inbuilt and add-in
objects (such as functions) as well as the R language can be obtained by either providing
the name of the object as a character string argument for the help() function or by
using the name of the object as a suffix to a ? characterf. As an example, the following
two statements both display the R manual page on the mean() function:

> help(mean)

> ?mean

Help files are in a standard format such that they all include a description of the
object(s), a template of how the object(s) are used, a description of all the arguments
and options, more information on any important specific details of the use of the
object(s), a list of authors, a list of similar objects and finally a set of examples that
illustrate the use of the object(s).

The examples within a manual page can also be run on the R command line using
the example() function. To see an example use of the mean function:

> example(mean)

R includes some inbuilt demonstration scripts that showcase the general use of
functions on certain topics. The demo() function provides a user-friendly interface for
running these demonstrations. For example, to get an overview of the use of some of
the basic graphical procedures in R, run the graphics demo:

> demo(graphics)

e Packages provide a flexible means of extending the functionality of R, see section 1.19.
f Help on objects within a package is only available when the package is loaded.
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Calling the demo() function without any arguments returns a list of demonstration
topics available on your system:

> demo()

The apropos() function returns a set of object names from the current search list that
match a specific pattern, and is therefore useful for recalling the name of functions. For
example, the following expression returns the name of all currently available objects
that contain the characters "mea" in their names.

> apropos("mea")

[1] "colMeans" "influence.measures"

[3] "kmeans" "mean"

[5] "mean.data.frame" "mean.Date"

[7] "mean.default" "mean.difftime"

[9] "mean.POSIXct" "mean.POSIXlt"

[11] "rowMeans" "weighted.mean"

The help.search() and help.start() functions both provide ways of searching
through all the installed R manuals on your system for specific terms. The name of the
term or ‘keyword’ is provided as a character string argument to the help.search()
function which returns a list of relevant manual pages and their brief descrip-
tions.

> help.search("mean")

The help.start()function is a more comprehensive and general help system that
launches a web browser that displays various local HTML documents containing
specific R documentation, a search engine and links to other resources.

There are also numerous books written on the use of R (and/or S/PLUS), see
section 1.22 for a list of recent publications.

1.8 Functions

Functions are sets of commands that are conveniently wrapped together such that they
can be initiated via a single command that encapsulates all the user inputs to any of the
internal commands. Hence, functions provide a friendly way to interact with a set of
commands. Most functions require one or more inputs (called arguments), and, while
a particular function may have a number of arguments, not all need to be specified each
time the function is called. Consider the seq() function, which generates a sequence
of values (a vector) according to the values of the arguments. This function has the
following common usage structures:

> seq(from, to) ← a sequence of numbers from 'from' to
'to' incrementing by 1
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> seq(from, to, by = ) ← a sequence of numbers from 'from' to
'to' incrementing by 'by='

> seq(from, to, length.out = ) ← a sequence of 'length.out' numbers
from 'from' to 'to'

If only the first two arguments are provided (as in the first form above), the result is a
sequence of integers from 'from' to 'to'. Note that this is equivalent to the sequence
generator of the form 'from:to'. When the arguments are provided unnamed (such
as seq(5,9)), the order of arguments is assumed to be as provided in the usage
structure. Therefore, the following two expressions do not yield the same sequences:

> seq(5, 9)

> seq(9, 5)

Named arguments are used to distinguish between alternative uses of a function. For
example, in the expression seq(2,10,4), the 4 could mean either that the sequence
should increment by 4 (by=4) or that the sequence should consist of 4 numbers
(length.out=4). Furthermore, when named arguments are provided, the order in
which the arguments are included is no longer important. Thus, the following are
equivalent:

> seq(from = 5, to = 9, by = 2)

> seq(to = 9, by = 2, from = 5)

Argument names can also be truncated provided the names are not ambiguous.
Therefore, the above examples could be shortened to seq(f=5, t=9, b=2). If a
function had the arguments length and letter, for that particular function, the
arguments could be truncated to len and let respectively.

Many functions also provide default values for some compulsory arguments. The
default values represent the ‘typical’ conditions under which the function is used, and
these arguments are only required if they are to be different from the default. For
example, the mean function calculates the arithmetic mean of one or more numbers. In
addition to an argument that specifies an object containing numbers (to be averaged),
the function has the arguments trim=0 and na.rm=FALSE which respectively indicate
what fraction of the data to trim to calculate the trimmed mean and whether or not
to remove missing entries before calculation. The expression mean(X) is therefore
equivalent to mean(X, trim=0, na.rm=FALSE).

1.9 Precedence

The rules of operator precedence are listed (highest to lowest) in Table 1.1. Addi-
tionally, expressions within parentheses ‘()’ always have precedence. Arguments and
expressions within a function are always evaluated before the function. Consider the
following set of commands that use the c() (concatenation) function to generate a
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Table 1.1 Precedence and description of operators within R listed from highest to lowest.

Operator Description

[ [[ indexing
:: name space
$ component
^ exponentiation (evaluated right to left)
- + sign (unary)
: sequence
%special% special operators (e.g. %/%, %%)
* \ multiplication, division
+ - addition and subtraction
< > <= >= == != ordering and comparison
! logical negation (not)
& && logical AND
| || logical OR
~ formula
-> ->> assignment (left to right)
= argument assignment (right to left)
<- <<- assignment (right to left)
? help

vector of two numbers (2 and 4) and then use the rep() (repeat) function to repeat
the vector thrice.

> X <- c(2, 4)

> rep(X, 3)

[1] 2 4 2 4 2 4

Alternatively, by nesting the c() function within the rep() function, the same result
can be achieved with a single command:

> rep(c(2, 4), 3)

[1] 2 4 2 4 2 4

1.10 Vectors - variables

The basic data storage unit in R is called a vector. A vector is a collection of one or
more entries of the same class (type). Table 1.2 below defines the four major vector
classes and provides simple examples of their use. Vectors are one-dimensional arrays
of entries. That is, a vector is a single column (or row) of entries whose length is the
number of rows in the column or vice versa. Each entry has a unique index number
that is equivalent to a row number that can be used to refer to that particular entry
within the vector.
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Table 1.2 Object vector classes in R. The operator : is used to generate a sequence of integers.
The function called c() is short (very short) for concatenate and can be used to generate a
vectors. The operator == evaluates whether the left hand side is equal to the right hand side.

Vector class Example

integer > 2:4 #vector of integers from 2 to 4

(Whole numbers) [1] 2 3 4

> c(1,3,9) #vector of integers

[1] 1 3 9

numeric > c(8.4, 2.1) #vector of real numbers

(Real numbers) [1] 8.4 2.1

character > c('A', 'ABC') #vector of letters

(Letters) [1] "A" "ABC"

logical > c(2:4)==3 #evaluate the expression

(TRUE or FALSE) [1] FALSE TRUE FALSE #the printed logical vector

Biological variables are collections of observations of the same kind (e.g. a temper-
ature variable contains a collection of temperature measurements) and are therefore,
appropriately represented by vectors. Continuous biological variables are represented
by numeric vectors, whereas, categorical variables are best represented by character
vectors. For example, a numeric vector (variable) might represent the air temperature
within ten (10) quadrats.

> TEMPERATURE <- c(36.1, 30.6, 31, 36.3, 39.9, 6.5,

+ 11.2, 12.8, 9.7, 15.9)

> TEMPERATURE

[1] 36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

1.10.1 Regular or patterned sequences

Inclusive sequences of integers can be generated using the : operator

> #a sequence from 10 to 18 inclusive

> 10:18

[1] 10 11 12 13 14 15 16 17 18

> #a sequence from 18 to 10 inclusive

> 18:10

[1] 18 17 16 15 14 13 12 11 10

The seq() function is used to generate numeric sequences

> #every 4th number from 2 to <= 20

> seq(from=2, to=20, by=4)

[1] 2 6 10 14 18



INTRODUCTION TO R 13

> seq(from = 2, to = 20, length = 5)

[1] 2.0 6.5 11.0 15.5 20.0

Sequences of repeated entries are supported with the rep() function.

> rep(4, 5) #repeat the number 4 five times

[1] 4 4 4 4 4

> rep("no", 4) #repeat the word 'no' four times

[1] "no" "no" "no" "no"

> rep(c(2, 5), 3) #repeat the series 2 & 5 three times

[1] 2 5 2 5 2 5

> rep(c(2, 5), c(3, 2)) #repeat the number 2 three times

[1] 2 2 2 5 5 # and then the number 5 twice

Note that in the two examples immediately above, there are functions within functions.
That is the c() function is used within the rep() function. When there are functions
within functions, the inner most function is evaluated first. Hence in the above
examples, the c() function is evaluated and expanded first and then the rep()

function uses the resulting object(s) as an argument.

1.10.2 Character vectors

Names of experimental or sampling units (such as sites, quadrats, individuals...) can
be stored into character vectors.

> QUADRATS <- c("Q1", "Q2", "Q3", "Q4", "Q5", "Q6",

+ "Q7", "Q8", "Q9", "Q10")

> QUADRATS

[1] "Q1" "Q2" "Q3" "Q4" "Q5" "Q6" "Q7" "Q8" "Q9"

[10] "Q10"

A more elegant way to generate the above character vector is to use the paste() func-
tion. This function converts multiple vectors into character vectors before combining
the elements of each vector together into a single character vector. A sep= argument
is used to indicate a separation character (or set of characters) to appear between
combined vector elements:

> QUADRATS <- paste("Q", 1:10, sep = "")

> QUADRATS

[1] "Q1" "Q2" "Q3" "Q4" "Q5" "Q6" "Q7" "Q8" "Q9"

[10] "Q10"

> paste("Quad", 1:10, sep = ".")

[1] "Quad.1" "Quad.2" "Quad.3" "Quad.4" "Quad.5"

[6] "Quad.6" "Quad.7" "Quad.8" "Quad.9" "Quad.10"
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Such a character vector can then be used to name the elements of a vector. For example,
we could use the names() function to name the elements of the TEMPERATURE vector
according to their quadrat labels:

> names(TEMPERATURE) <- QUADRATS

> TEMPERATURE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

The paste() function can also be used in conjunction with other functions to
generate lists of labels. For example, we could combine a vector in which the letters
A, B, C, D and E (generated with the LETTERS constant) are each repeated twice
consecutively (using the rep() function) with a vector that contains a 1 and a 2 to
produce a character vector that labels sites in which the quadrats may have occurred.

> SITE <- paste(rep(LETTERS[1:5], each = 2), 1:2,

+ sep = "")

> SITE

[1] "A1" "A2" "B1" "B2" "C1" "C2" "D1" "D2" "E1" "E2"

The substr() function is used to extract parts of string (set of characters) entries
within character vectors and thus is useful for making truncated labels (particularly for
graphical summaries). For example, if we had a character vector containing the names
of the Australian capital cities and required abbreviations (first 3 characters) for graph
labels:

> AUST <- c("Adelaide", "Brisbane", "Canberra",

+ "Darwin", "Hobart", "Melbourne", "Perth",

+ "Sydney")

> substr(AUST, 1, 3)

[1] "Ade" "Bri" "Can" "Dar" "Hob" "Mel" "Per" "Syd"

Alternatively, we could use the abbreviate() function.

> abbreviate(AUST, minlength = 3)

Adelaide Brisbane Canberra Darwin Hobart Melbourne

"Adl" "Brs" "Cnb" "Drw" "Hbr" "Mlb"

Perth Sydney

"Prt" "Syd"

Categorical variables with discrete levels can be represented by character vectors. For
example, a character vector might represent whether or not each of the quadrats
(from which the above temperatures were measured) were shaded. The first entry
in each vector (the numerical temperature vector and the categorical shade vector),
corresponds to the first quadrat measured, and so on such that both vectors (variables)
are of the same length.
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> SHADE <- c("no", "no", "no", "no", "no", "full",

+ "full", "full", "full", "full")

> SHADE

[1] "no" "no" "no" "no" "no" "full" "full" "full"

[9] "full" "full"

1.10.3 Factors

To properly accommodate factorial (categorical) variables, R has an additional class
of vector called a factor which stores the vector along with a list of the levels of the
factorial variable. The factor() function converts a vector into a factor vector.

> SHADE <- factor(SHADE)

> SHADE

[1] no no no no no full full full full full

Levels: full no

Note the differences between the output of the factor vector and the previous character
vector. Firstly, the absence of quotation marks indicate that the vector is no longer a
character vector. Internally, the factor vector (SHADE) is actually a numeric variable
containing only 1’s and 2’s and in which 1 is defined as the level ‘full’ and 2 is defined
as the level ‘no’ (levels of a factor are defined alphabetically by default). Hence, when
printed, each entry is represented by a label and the levels contained in the factor are
listed below.

There are a number of more convenient ways to generate factors in R. Combinations
of the rep() function and concatenation (c()) function can be used in a variety of
ways to produce identical results:

> SHADE <- factor(c(rep("no", 5), rep("full", 5)))

> SHADE <- factor(rep(c("no", "full"), c(5, 5)))

> SHADE <- factor(rep(c("no", "full"), each = 5))

> SHADE

[1] no no no no no full full full full full

Levels: full no

Another convenient method of generating a factor when each level of the factor has
an equal number of entries (replicates) is to use the gl() function. The gl() function
requires the number of factor levels, the number of consecutive replicates per factor
level, the total length of the factor, and a list of factor level labels, as arguments.
#generate a factor with the levels 'no' and 'full', each repeated

times in a row

> SHADE <- gl(2, 5, 10, c("no", "full"))

> SHADE

[1] no no no no no full full full full full

Levels: no full
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> SHADE <- gl(2, 1, 10, c("no", "full"))

> SHADE

[1] no full no full no full no full no full

Levels: no full

Notice that by default, the factor() function arranges the factor levels in alphabetical
order, whereas the gl() function orders the factor levels in the order in which they
are included in the expression. Issues relating to the ordering of factor levels will be
covered in section 2.6.1.

1.11 Matrices, lists and data frames

1.11.1 Matrices

A vector has only a single dimension – it has length. However, a vector can be converted
into a matrix (2 dimensional array), whereupon it will display height and width. For
example, we could convert the TEMPERATURE vector into a matrix by specifying the
number of rows (or columns) within the matrix() function:

> matrix(TEMPERATURE, nrow = 5)

[,1] [,2]

[1,] 36.1 6.5

[2,] 30.6 11.2

[3,] 31.0 12.8

[4,] 36.3 9.7

[5,] 39.9 15.9

By default, the matrix is filled by columns. The optional argument byrow=T, causes
filling by rows instead.

Matrices can also be used to represent the binding of two or more vectors of equal
length (and classg). For example, we may have the X and Y coordinates for five quadrats
within a grid. Vectors are combined into a single matrix using the cbind() (combine
by columns) or rbind() (combine by rows) functions:

> X <- c(16.92, 24.03, 7.61, 15.49, 11.77)

> Y <- c(8.37, 12.93, 16.65, 12.2, 13.12)

> XY <- cbind(X, Y)

> XY

X Y

[1,] 16.92 8.37

[2,] 24.03 12.93

[3,] 7.61 16.65

[4,] 15.49 12.20

[5,] 11.77 13.12

g when vectors of different types are combined, they are all be converted into a suitable common type.
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> rbind(X, Y)

[,1] [,2] [,3] [,4] [,5]

X 16.92 24.03 7.61 15.49 11.77

Y 8.37 12.93 16.65 12.20 13.12

Row and column names can be set (and viewed) using the rownames() and col-

names() functions:

> colnames(XY)

[1] "X" "Y"

> rownames(XY) <- LETTERS[1:5]

> XY

X Y

A 16.92 8.37

B 24.03 12.93

C 7.61 16.65

D 15.49 12.20

E 11.77 13.12

The object, LETTERS, is a 26 character vector inbuilt into R that contains the
uppercase letters of the English alphabet. Similarly, letters, contains the equivalent
lowercase letters.

1.11.2 Lists

Whilst matrices store vectors of the same type (class) and length, lists are used to store
collections of objects that can be of differing lengths and types. Lists are constructed
using the list() function. For example, we have previously created a number of
isolated vectors (temperature, shade and names and coordinates of sites) that may
actually represent data or information from a single experiment. These objects can be
grouped together such that they all become components of a list object:

> EXPERIMENT <- list(SITE = SITE, COORDINATES = paste(X,

+ Y, sep = ","), TEMPERATURE = TEMPERATURE,

+ SHADE = SHADE)

> EXPERIMENT

$SITE

[1] "A1" "A2" "B1" "B2" "C1" "C2" "D1" "D2" "E1" "E2"

$COORDINATES

[1] "16.92,8.37" "24.03,12.93" "7.61,16.65" "15.49,12.2"

[5] "11.77,13.12"

$TEMPERATURE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9
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$SHADE

[1] no full no full no full no full no full

Levels: no full

Note that this list consists of four components made up of two character vectors
(SITE and COORDINATES: a vector of XY coordinates for sites A, B, C, D and E), a
numeric vector (TEMPERATURE) and a factor (SHADE). Note also that while three of
the components have a length of 10, the COORDINATES component has only five.

1.11.3 Data frames - data sets

Rarely are single biological variables collected in isolation. Rather, data are usually
collected in sets of variables reflecting investigations of patterns between and/or among
the different variables. Consequently, data sets are best organized into matricies of
variables (vectors) all of the same lengths yet not necessarily of the same type. Hence,
neither lists nor matrices represent natural storages for data sets. This is the role of
data frames which are used to store a list of vectors of the same length (yet potentially
different types) in a rectangular matrix.

Data frames are generated by combining multiple vectors together such that each
vector becomes a separate column in the data frame. In this way, a data frame is similar
to a matrix in which each column can represent a different vector type. For a data
frame to faithfully represent a data set, the sequence in which observations appear in
the vectors must be the same for each vector, and each vector should have the same
number of observations. For example, the first, second, third...etc entries in each vector
must represent respectively, the observations collected from the first, second, third...etc
sampling units.

Since the focus of this book is in the exploration, analysis and summary of data sets,
and data sets are accommodated in R by data frames, the generation, importation/
exportation, manipulation and management of data frames receives extensive coverage
in chapter 2.

1.12 Object information and conversion

1.12.1 Object information

Everything in R is an object and all objects are of a certain type or class. The class of an
object can be examined using the class() function. For example:

> class(TEMPERATURE)

[1] "numeric"

There is also a family of functions prefixed with is. that evaluate whether or not an
object is of a particular class (or type) or not. Table 1.3 lists the common object query
functions. All object query functions return a logical vector. Enter methods(is) for a
more comprehensive list.
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Table 1.3 Common object query functions and their corresponding return values.

Function Returns TRUE:

is.numeric(x) if all elements of x are numeric or integer (x <-c(1,-3.5))
is.null(x) if x is NULL (the object has no length) (x <-NULL)
is.logical(x) if all elements of x are logical (x <- c(TRUE,FALSE))
is.character(x) if all elements of x are character strings

(x <- c(,A,,,Quad,))
is.vector(x) if the object x is a vector (a single dimension). Returns FALSE if

object has any attributes other than names

is.factor(x) if the object x is a factor
is.matrix(x) if the object x is a matrix (2 dimensions but not a data frame)
is.list(x) if the object x is a list
is.data.frame(x) if the object x is a data frame
is.na(x) for each missing (NA) element in x (x <- c(NA,2))
! (‘not’) character as a prefix converts the above functions into

‘is.not.’

Many R objects also have a set of attributes, the number and type of which are
specific to each class of object. For example, a matrix object has a specific number
of dimensions as well as row and column names. The attributes of an object can be
viewed using the attributes() function:

> attributes(XY)

$dim

[1] 5 2

$dimnames

$dimnames[[1]]

[1] "A" "B" "C" "D" "E"

$dimnames[[2]]

[1] "X" "Y"

Similarly, the attr() function can be used to view and set individual attributes of
an object, by specifying the name of the object and the name of the attribute (as a
character string) as arguments. For example:

> attr(XY, "dim")

[1] 5 2

> attr(XY, "description") <- "coordinates of quadrats"

> XY

X Y

A 16.92 8.37

B 24.03 12.93
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C 7.61 16.65

D 15.49 12.20

E 11.77 13.12

attr(,"description")

[1] "coordinates of quadrats"

Note that in the above example, the attribute "description" is not a inbuilt attribute
of a matrix. When a new attribute is set, this attribute is displayed along with the object.
This provides a useful way of attaching a description to an object, thereby reducing the
risks of the object becoming unfamiliar.

1.12.2 Object conversion

Objects can be converted or coerced into other objects using a family of functions
with a as. prefix. Note that there are some obvious restrictions on these conversions
as most objects cannot be completely accommodated by all other object types, and
therefore some information (such as certain attributes) may be lost or modified during
the conversion. Objects and elements that cannot be successfully coerced are returned
as NA. Table 1.4 lists the common object coercion functions. Use methods(as) for a
more comprehensive list.

Table 1.4 Common object coercion functions and their corresponding return values.

Function Converts object to

as.numeric(x) a numeric vector (‘integer’ or ‘real’). Factors converted to integers.
as.null(x) a NULL
as.logical(x) a logical vector. Values of >1 converted to TRUE, otherwise FALSE
as.character(x) a character vector
as.vector(x) a vector. All attributes (including names) are removed.
as.factor(x) a factor. This is an abbreviated version of factor
as.matrix(x) a matrix. Any non-numeric elements result in all matrix elements

being converted to character strings
as.list(x) a list
as.data.frame(x) a data frame. Matrix columns and list columns are converted into a

separate vectors of the data frame, and character vectors are
converted into factors. All previous attributes are removed

1.13 Indexing vectors, matrices and lists

This section makes use of a number of objects created in earlier sections. Impor-
tantly, the TEMPERATURE object is a named vector and thus output will differ
slightly from unnamed vectors in that returned elements are headed by their row
names.
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1.13.1 Vector indexing

It is possible to print or refer to a subset of a vector by appending an index vector
(enclosed in square brackets, []), to the vector name. There are four common forms
of vector indexing used to extract a sub-set of vectors:

(i) Vector of positive integers. A set of integers that indicate which elements of the
vector are to be selected. Selected elements are concatenated in the specified order.
– Select the nth element

> TEMPERATURE[2]

Q2

30.6

– Select elements n through m

> TEMPERATURE[2:5]

Q2 Q3 Q4 Q5

30.6 31.0 36.3 39.9

– Select a specific set of elements

> TEMPERATURE[c(1, 5, 6, 9)]

Q1 Q5 Q6 Q9

36.1 39.9 6.5 9.7

(ii) Vector of negative integers. A set of integers that indicate which elements of the
vector are to be excluded from concatenation.
– Select all but the nth element

> TEMPERATURE[-2]

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36.1 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

(iii) Vector of character strings. This form of vector indexing is only possible for vectors
whose elements have been named. A vector of element names can be used to select
elements for concatenation.
– Select the named element

> TEMPERATURE["Q1"]

Q1

36.1

– Select the names elements

> TEMPERATURE[c("Q1", "Q4")]

Q1 Q4

36.1 36.3
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(iv) Vector of logical values. The vector of logical values must be the same length as
the vector being sub-setted and usually are the result of an evaluated condition. Logical
values of T (TRUE) and F indicate respectively to include and exclude corresponding
elements of the main vector from concatenation.
– Select elements for which the logical condition is true

> TEMPERATURE[TEMPERATURE < 15]

Q6 Q7 Q8 Q9

6.5 11.2 12.8 9.7

> TEMPERATURE[SHADE == "no"]

Q1 Q3 Q5 Q7 Q9

36.1 31.0 39.9 11.2 9.7

– Select elements for which multiple logical conditions are true

> TEMPERATURE[TEMPERATURE < 34 & SHADE == "no"]

Q3 Q7 Q9

31.0 11.2 9.7

– Select elements for which one or other logical conditions are true

> TEMPERATURE[TEMPERATURE < 10 | SHADE == "no"]

Q1 Q3 Q5 Q6 Q7 Q9

36.1 31.0 39.9 6.5 11.2 9.7

1.13.2 Matrix indexing

Like vectors, matrices can be indexed from vectors of positive integers, negative
integers, character strings and logical values. However, whereas vectors have only
a single dimension (length) (thus enabling each element to be indexed by a single
number), matrices have two dimensions (height and width) and, therefore, require
a set of two numbers for indexing. Consequently, matrix indexing takes on the
form of [row.indices, col.indices], where row.indices and col.indices

respectively represent sequences of row and column indices of the form described for
vectors in section 1.13.1.

Before proceeding, re-examine the XY matrix generated in section 1.11.1:

> XY

X Y

A 16.92 8.37

B 24.03 12.93

C 7.61 16.65

D 15.49 12.20

E 11.77 13.12

attr(,"description")

[1] "coordinates of quadrats"
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The following examples will illustrate the variety of matrix indexing possibilities:

> XY[3, 2]

[1] 16.65

# select the element at row 3,

column 2

> XY[3, ]

X Y

7.61 16.65

# select the entire 3rd row

> XY[, 2]

A B C D E

8.37 12.93 16.65 12.20 13.12

# select the entire 2nd column

> XY[, -2]

A B C D E

16.92 24.03 7.61 15.49 11.77

# select all columns except the

2nd

> XY["A", 1:2]

X Y

16.92 8.37

#select columns 1 through 2 for

row A

> XY[, "X"]

A B C D E

16.92 24.03 7.61 15.49 11.77

#select the column named 'X'

> XY[XY[, "X"] > 12, ]

X Y

A 16.92 8.37

B 24.03 12.93

D 15.49 12.20

#select all rows for which the

value of the column X is

greater than 12

1.13.3 List indexing

Lists consist of collections of objects that need not be of the same size or type. The
objects within a list are indexed by appending an index vector (enclosed in double
square brackets, [[]]), to the list name. A single object within a list can also be referred
to by appending a string character ($) followed by the name of the object to the list
names (e.g. list$object). The elements of objects within a list are indexed according
to the object type. Vector indices to objects within other objects (lists) are placed within
their own square brackets outside the list square brackets:

Recall the EXPERIMENT list generated in section 1.11.2

> EXPERIMENT

$SITE

[1] "A1" "A2" "B1" "B2" "C1" "C2" "D1" "D2" "E1" "E2"
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$COORDINATES

[1] "16.92,8.37" "24.03,12.93" "7.61,16.65" "15.49,12.2"

[5] "11.77,13.12"

$TEMPERATURE

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

$SHADE

[1] no full no full no full no full no full

Levels: no full

The following examples illustrate a variety of list indexing possibilities:

> #select the first object in the list

> EXPERIMENT[[1]]

[1] "A1" "A2" "B1" "B2" "C1" "C2" "D1" "D2" "E1" "E2"

> #select the object named 'TEMPERATURE' within the list

> EXPERIMENT[['TEMPERATURE']]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36.1 30.6 31.0 36.3 39.9 6.5 11.2 12.8 9.7 15.9

> #select the first 3 elements of 'TEMPERATURE' within

> #'EXPERIMENT'

> EXPERIMENT[['TEMPERATURE']][1:3]

Q1 Q2 Q3

36.1 30.6 31.0

> #select only those 'TEMPERATURE' values which correspond

> #to SITE's with a '1' as the second character in their name

> EXPERIMENT$TEMPERATURE[substr(EXPERIMENT$SITE,2,2) == '1']

Q1 Q3 Q5 Q7 Q9

36.1 31.0 39.9 11.2 9.7

1.14 Pattern matching and replacement (character search and replace)

It is often desirable to select a subset of data on the basis of character entries that match
more general patterns. Furthermore, the ability to search and replace character strings
within a character vector can be very useful.

1.14.1 grep - pattern searching

The grep() function searches within a vector for matches to a pattern and returns the
index of all matching entries.
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# select only those 'SITE' values that contain an 'A'

> grep("A", EXPERIMENT$SITE)

[1] 1 2

> EXPERIMENT$SITE[grep("A", EXPERIMENT$SITE)]

[1] "A1" "A2"

By default, the pattern comprises any valid regular expressionh which provides great
pattern searching flexibility.

# convert the EXPERIMENT list into a data frame

> EXP <- as.data.frame(EXPERIMENT)

# select only those rows that contain correspond to a 'SITE'

value of either an A, B or C followed by a '1'

> grep("[A-C]1", EXP$SITE)

[1] 1 3 5

> EXP[grep("[A-C]1", EXP$SITE), ]

SITE COORDINATES TEMPERATURE SHADE

Q1 A1 16.92,8.37 36.1 no

Q3 B1 7.61,16.65 31.0 no

Q5 C1 11.77,13.12 39.9 no

1.14.2 regexpr - position and length of match

Rather than return the indexes of matching entries, the regexpr() function returns
the position of the match within each string as well as the length of the pattern
within each string (-1 values correspond to entries in which the pattern is not
found).

#recall the AUST character vector that lists the Australian

capital cities

> AUST

[1] "Adelaide" "Brisbane" "Canberra" "Darwin"

[5] "Hobart" "Melbourne" "Perth" "Sydney"

#get the position and length of string of characters containing

an 'a' and an 'e' separated by any number of characters

> regexpr("a.*e", AUST)

[1] 5 6 2 -1 -1 -1 -1 -1

attr(,"match.length")

[1] 4 3 4 -1 -1 -1 -1 -1

h A regular expression is a formal computer language consisting of normal printing characters and
special metacharacters (which represent wildcards and other features) that together provide a concise
yet flexible way of matching strings.
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1.14.3 gsub - pattern replacement

The gsub() function replaces all instancesi of an identified pattern within a character
vector with an alternative set of characters.

> gsub("no", "Not shaded", EXP$SHADE)

[1] "Not shaded" "full" "Not shaded" "full"

[5] "Not shaded" "full" "Not shaded" "full"

[9] "Not shaded" "full"

It is also possible to extend the functionality to accomodate perl-compatible regular
expressions.

#convert all the capital values entries into uppercase identify

(and store) all words (\\w) convert stored pattern (\\1) to

uppercase (\\U)

> gsub("(\\w)", "\\U\\1", AUST, perl = TRUE)

[1] "ADELAIDE" "BRISBANE" "CANBERRA" "DARWIN"

[5] "HOBART" "MELBOURNE" "PERTH" "SYDNEY"

1.15 Data manipulation

1.15.1 Sorting

The sort() function is used to sort vector entries in increasing (or decreasing)
order. Note that the elements of the TEMPERATURE vector were earlier named (see
section 1.10.2). This assists in the distinction of the following functions, however it
does result in slightly different format (each element has a name above it, and the
braced index is absent).

> sort(TEMPERATURE)

Q6 Q9 Q7 Q8 Q10 Q2 Q3 Q1 Q4 Q5

6.5 9.7 11.2 12.8 15.9 30.6 31.0 36.1 36.3 39.9

> sort(TEMPERATURE, decreasing = T)

Q5 Q4 Q1 Q3 Q2 Q10 Q8 Q7 Q9 Q6

39.9 36.3 36.1 31.0 30.6 15.9 12.8 11.2 9.7 6.5

The order() function is also used to sort vector entries in increasing (or decreasing)
order, but rather than return a sorted vector, it returns the position (order) or the
sorted entries in the original vector. For example:

> order(TEMPERATURE)

[1] 6 9 7 8 10 2 3 1 4 5

i The similar sub() function replaces only the first match of a pattern within a vector.
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Indicating that the smallest entry in the TEMPERATURE vector was at position (index)
6 and so on.

The rank() function is used to indicate the ranking of each entry in a vector:

> rank(TEMPERATURE)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

8 6 7 9 10 1 3 4 2 5

Indicating that the first entry in the TEMPERATURE vector was ranked eighth in
increasing order. Ranks from decreasing order can be produced by then reversing the
returned vector using the rev() function.

> rev(rank(TEMPERATURE))

Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1

5 2 4 3 1 10 9 7 6 8

1.15.2 Formatting data

Rounding

The ceiling() function rounds vector entries up to the nearest integer

> ceiling(TEMPERATURE)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

37 31 31 37 40 7 12 13 10 16

The floor() function rounds vector entries down to the nearest integer

> floor(TEMPERATURE)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36 30 31 36 39 6 11 12 9 15

The trunc() function rounds vector entries to the nearest integer towards ‘0’ (zero)

> trunc(seq(-2, 2, by = 0.5))

[1] -2 -1 -1 0 0 0 1 1 2

The round() function rounds vector entries to the nearest numeric with the specified
number of decimal places. Digits of 5 are rounded off to the nearest even digit.

> round(TEMPERATURE)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

36 31 31 36 40 6 11 13 10 16

> round(seq(-2, 2, by = 0.5))

[1] -2 -2 -1 0 0 0 1 2 2
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> round(TEMPERATURE/2.2, 2)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

16.41 13.91 14.09 16.50 18.14 2.95 5.09 5.82 4.41 7.23

> round(TEMPERATURE, -1)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

40 30 30 40 40 10 10 10 10 20

Other formating

Occasionally (mainly for graphical displays), it is necessary to be able to adjust the
other aspects of the formatting of vector entries. For example, you may wish to have
numbers expressed in scientific notation (2.93e-04 rather than 0.000293) or insert
commas every 3 digits left of the decimal point. These procedures are supported via
the formatC() function.

> seq(pi, pi * 10000, length = 5)

[1] 3.141593 7856.337828 15709.534064 23562.730300

[5] 31415.926536

# scientific notation

> formatC(seq(pi, pi * 10000, length = 5), format = "e",

+ digits = 2)

[1] "3.14e+00" "7.86e+03" "1.57e+04" "2.36e+04" "3.14e+04"

# scientific notation only if it saves space

> formatC(seq(pi, pi * 10000, length = 5), format = "g",

+ digits = 2)

[1] "3.1" "7.9e+03" "1.6e+04" "2.4e+04" "3.1e+04"

# floating point format with 1000's indicators

> formatC(seq(pi, pi * 10000, length = 5), format = "f",

+ big.mark = ",", digits = 2)

[1] "3.14" "7,856.34" "15,709.53" "23,562.73"

[5] "31,415.93"

1.16 Functions that perform other functions repeatedly

The replicate() function repeatedly performs the function specified in the second
argument the number of times indicated by the first argument. The important
distinction between the replicate() function and the rep() functions described in
section 1.10.1, is that the former repeatedly performs the function whereas the later
performs the function only once and then duplicates the result multiple times. Since
most functions produce the same result each time they are performed, for many uses,
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both functions produce identical results. The one group of functions that do not
produce identical results each time, are those involved in random number generation.
Hence, the replicate() function is usually used in conjunction with random number
generators (such as runif(), which will be described in greater detail in chapter 4)
to produce sets of random numbers. Consider first the difference between rep() and
replicate():

> rep(runif(1), 5)

[1] 0.4194366 0.4194366 0.4194366 0.4194366 0.4194366

> replicate(5, runif(1))

[1] 0.467324683 0.727337794 0.797764456 0.007025032

[5] 0.155971928

When the function being run within runif() itself produces a vector of length > 1,
the runif() function combines each of the vectors together as separate columns in a
matrix:

> replicate(5, runif(5))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.3266058 0.3313832 0.2113326 0.4744742 0.257732622

[2,] 0.5241960 0.9801652 0.6642341 0.5292882 0.799982207

[3,] 0.1894848 0.8300792 0.7178351 0.7262750 0.698298026

[4,] 0.1464055 0.6758495 0.9940731 0.3015559 0.288537242

[5,] 0.5491748 0.4052211 0.9923927 0.4074775 0.002170782

1.16.1 Along matrix margins

Theapply() function applies a function to the margins (1=row margins and 2=column
margins) of a matrix. For example, we might have a matrix that represents the
abundance of three species of moth from three habitat types:

> MOTH <- cbind(SpA = c(25, 6, 3), SpB = c(12, 12,

+ 3), SpC = c(7, 2, 19))

> rownames(MOTH) <- paste("Habitat", 1:3, sep = "")

> MOTH

SpA SpB SpC

Habitat1 25 12 7

Habitat2 6 12 2

Habitat3 3 3 19

The apply() function could be used to calculate the column means (mean abundance
of each species across habitat types):

> apply(MOTH, 2, mean)

SpA SpB SpC

11.333333 9.000000 9.333333
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1.16.2 By factorial groups

The tapply() function applies a function to the vector separately for each level of a
factor combination. This provides a convenient way to calculate group statistics (pivot
tables). For example, if we wanted to calculate the mean TEMPERATURE for each level
of the SHADE factor:

> tapply(TEMPERATURE, SHADE, mean)

no full

25.58 20.42

1.16.3 By objects

The lapply() and sapply() functions apply a function separately to each of the
objects in a list and return a list and vector/matrix respectively. For example, to find
out the length of each of the objects within the EXPERIMENT list:

> lapply(EXPERIMENT, length)

$SITE

[1] 10

$COORDINATES

[1] 5

$TEMPERATURE

[1] 10

$SHADE

[1] 10

> sapply(EXPERIMENT, length)

SITE COORDINATES TEMPERATURE SHADE

10 5 10 10

1.17 Programming in R

Although the library of built-in and add-on tools available for the R environment
is extensive (and continues to grow at an incredible rate), occasionally there is the
need to perform a task for which there are no existing functions. Since R is itself
a programming language (in fact most of the available functions are written in R),
extending its functionality to accommodate additional procedures can be a relatively
simple exercise (depending of course, on the complexity of the procedure and your
level of R proficiency).
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1.17.1 Grouped expressions

Multiple commands can be issued on a single line by separating each command by
a semicolon (;). When doing so, commands are evaluated in order from left to
right:

> A <- 1; B <- 2; C <- A + B

> C

[1] 3

When a series of commands are grouped together between braces (such as {command1;
command2;...}), the whole group of commands are evaluated as a single expression
and the value of the last evaluated command within the group is returned:

> D <- {A <- 1; 2 -> B; C <- A + B}

> D

[1] 3

Grouped expressions are useful for wrapping up sets of commands that work together
to produce a single result and since they are treated as a single expression, they too can
be further nested within braces as part of a larger grouped expression.

1.17.2 Conditional execution – if and ifelse

Conditional execution is when a sequence of tasks is determined by whether a condition
is met (TRUE) or not (FALSE), and is useful when writing code that needs to be able to
accommodate more than one set of circumstances. In R, conditional execution has the
forms:

if(condition) true.task

if(condition) true.task else false.task

ifelse(condition) true.task false.task

If condition returns a TRUE, the statement true.task is evaluated, otherwise the
false.task is evaluated (if provided). If condition cannot be coerced into a logical
(a yes/no answer), an error will be reported.

To illustrate the use of the if conditional execution, imagine that you were writing
code to calculate means and you anticipated that you may have to accommodate two
different classes of objects (vectors and matrices). I will use the vector TEMPERATURE
and the matrix MOTH:

> NEW.OBJECT <- TEMPERATURE

> if (is.vector(NEW.OBJECT)) mean(NEW.OBJECT)

+ else apply(NEW.OBJECT, 2, mean)

[1] 23
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> NEW.OBJECT <- MOTH

> ifelse(is.vector(NEW.OBJECT), mean(NEW.OBJECT),

+ apply(NEW.OBJECT, 2, mean))

[1] 11.33333

1.17.3 Repeated execution – looping

Looping enables sets of commands to be performed (executed) repeatedly.

for

A for loop iteratively loops through a vector of integers (a counter), each time
executing the set of commands, and takes on the general form of:

for (counter in sequence) task

where counter is a loop variable, whose value is incremented according to the
integer vector defined by sequence. The task is a single expression or grouped
expression (see section 1.17.1) that utilizes the incrementing variable to perform a
specific operation on a sequence of objects. For a simple example of a for loop, consider
the following snippet that counts to six:

> for (i in 1:6) print(i)

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

As a more applied example, let’s say we wanted to calculate the distances between
each pair of sites in the XY matrix generated in section 1.11.1. The distance between any
two sites (e.g. 'A' and 'B') could be determined using Pythagoras’ theorem
(a2 + b2 = c2).

> sqrt((XY["A", "X"] - XY["B", "X"])^2 + (XY["A",

+ "Y"] - XY["B", "Y"])^2)

# OR equivalently

> sqrt((XY[1, 1] - XY[2, 1])^2 + (XY[1, 2] - XY[2,

+ 2])^2)

[1] 8.446638

A for loop can be used to produce a 5 × 5 matrix of pairwise distances between each of
the sites:

# Create empty object

> DISTANCES <- NULL



INTRODUCTION TO R 33

> for (i in 1:5) {

+ X.DIST <- (XY[i, 1] - XY[, 1])^2

+ Y.DIST <- (XY[i, 2] - XY[, 2])^2

+ DISTANCES <- cbind(DISTANCES, sqrt(X.DIST +

+ Y.DIST))

+ }

> colnames(DISTANCES) <- rownames(DISTANCES)

> DISTANCES

A B C D E

A 0.000000 8.446638 12.459314 4.088251 7.006069

B 8.446638 0.000000 16.836116 8.571143 12.261472

C 12.459314 16.836116 0.000000 9.049691 5.455868

D 4.088251 8.571143 9.049691 0.000000 3.832075

E 7.006069 12.261472 5.455868 3.832075 0.000000

while

A while loop executes a set of commands repeatedly while a condition is TRUE and
exits when the condition evaluates to FALSE, and takes the general form:

> while (condition) task

where task is a single expression or grouped expression (see section 1.17.1) that
performs a specific operation as long as condition evaluates to TRUE.

To illustrate the use of a while loop, consider the situation where a procedure needs
to generate a temporary object, but you want to be sure that no existing objects are
overwritten. A simple solution is to append the object name with a number. A while

loop can be used to repeatedly assess whether an object name (TEMP) already exists in
the current R environment (each time incrementing a suffix) and eventually generate
a unique name. The first three commands in the following syntax are included purely
to generate a couple of existing names and confirm their existence.

> TEMP <- NULL

> TEMP1 <- NULL

> ls()

[1] "A" "AUST" "B" "C"

[5] "D" "DISTANCES" "EXP" "EXPERIMENT"

[9] "i" "MOTH" "NEW.OBJECT" "op"

[13] "QUADRATS" "SHADE" "SITE" "TEMP"

[17] "TEMP1" "TEMPERATURE" "X" "X.DIST"

[21] "XY" "Y" "Y.DIST"

#object name suffix, initially empty

> j <- NULL

# proposed temporary object

> NAME <- "TEMP"

# iteratively search for a unique name
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> while (exists(Nm <- paste(NAME, j, sep = ""))) {

+ ifelse(is.null(j), j <- 1, j <- j + 1)

+ }

# assign the unique name to a numeric vector

> assign(Nm, c(1, 3, 3))

# Reexamine list of objects, note the new object, TEMP2

> ls()

[1] "A" "AUST" "B" "C"

[5] "D" "DISTANCES" "EXP" "EXPERIMENT"

[9] "i" "j" "MOTH" "NAME"

[13] "NEW.OBJECT" "Nm" "op" "QUADRATS"

[17] "SHADE" "SITE" "TEMP" "TEMP1"

[21] "TEMP2" "TEMPERATURE" "X" "X.DIST"

[25] "XY" "Y" "Y.DIST"

The exists() function assesses whether an object of the given name already exists and
assign() function makes the first argument an object name and assigns it the value of
the second argument.

1.17.4 Writing functions

For all but the most trivial cases, lines of R code should be organized into a new function
which can then be used in the same way as the built in functions. Functions are defined
using the function() function:

> name <- function(argument1, argument2, ...) expression

The new function (called name) will use the arguments (argument1, argument2,

...) to evaluate the expression (usually grouped expressions – see section 1.17.1) and
return the result of the evaluated expression. Once defined, the function is called by
issuing a statement in the form:

> name(argument1, argument2, ...)

Functions not only provide a more elegant way to interact with a procedure (as all
arguments are provided in one location, and the internal workings are hidden from
view), they form a reusable extension of the R environment. As such, there are a couple
of general programming conventions that are worth adhering to. Firstly, each function
should only perform a single task. If a series of tasks are required, consider writing a
number of functions that in turn are called from another function. Secondly, where
possible, provide default options, thereby simplifying the use of the function for most
regular occasions. Thirdly, user defined functions should be in either upper case or
camel case so as to avoid conflicting with functions built into R or one of the many
extension packages.

For example, we could extend the functionality of R by writing a function that
estimates the standard error of the mean. The standard error of the mean can be
estimated using the formula sd/

√
n − 1, where sd is the standard deviation of the

sample and n is the number of observations.



INTRODUCTION TO R 35

> SEM <- function(x, na.rm = FALSE) {

+ if (na.rm == TRUE)

+ VAR <- x[!is.na(x)]

+ else VAR <- x

+ SD <- sd(VAR)

+ N <- length(VAR)

+ SD/sqrt(N - 1)

+ }

The function first assesses whether missing values (values of 'NA') should be removed
(based on the value of na.rm supplied by the function user). If the function is called
with na.rm=TRUE, the is.na() function is used to deselect such values, before the
standard deviation and length are calculated using the sdj and length functions.
Finally, the standard error of the mean is calculated and returned. This function
could then be used to calculate the standard error of the mean for the TEMPERATURE
vector:

> SEM(TEMPERATURE)

[1] 4.30145

1.18 An introduction to the R graphical environment

In addition to providing a highly adaptable statistical environment, R is also a graphical
environment in which figures suitable for publication can be generated. The R graphical
environment consists of one or more graphical devices along with an extensive library
of functions for manipulating objects on these devices. A graphical device is an output
stream such as a window, file or printer that is capable of receiving and interpreting
graphical/plotting instructions. The exhaustive number of graphical functions can be
broadly broken down into three categories:

• High-level graphics (plotting) functions are used to generate a new plot on a graphical
device, and, unless directed otherwise, accompanying axes, labels and the appropriate (yet
basic) points/bars/boxes etc are also automatically generated. When these functions are
issued, a graphical device (a window unless otherwise specified) is opened and activated.
If the device is already active, the previous plot will be overwritten. Whilst these functions
form the basis of all graphics in R, they are rarely used in isolation to produced graphs, as
they offer only limited potential for customization.

• Low-level graphics functions are used to customize and enhance existing plots by adding
more objects and information, such as additional points, lines, words, axes, colors etc.

• Interactive graphics functions allow information to be added or extracted interactively
from existing plots using the mouse. For example, a label may be added to a plot at
the location of the mouse pointer, thereby simplifying the interaction with the graphical
device’s coordinate system.

j The sd function returns a 'NA' when a vector containing missing values is encountered.
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The R graphical environment also includes a set of graphical parameters that operate
over and above these functions to control the settings of the graphical device, such as
its dimensions and where a plot is positioned within the device.

As this section aims to provide only an introductory overview of the R graphical
environment, documentation will be limited to just some high level graphics functions.
Documentation on low level and interactive graphical functions as well as graphical
parameters will be reserved until chapter 5.

1.18.1 The plot() function

The plot() function is actually a generic function that produces different types of plots
depending on the class of objects upon which it is acting. The plot() function evaluates
the class of the arguments and then passes the objects on to the plotting function most
appropriate for those objects. Notice that the first time a plotting statement is issued, a
graphical device (window) is opened and a plot generated. Thereafter, the plots on this
graphical device are replaced.

plot(x) – if x is a numeric vector this form
of the plot() function produces a time series
plot, a plot of x against index numbers.

> plot(TEMPERATURE)
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plot(~x) – if x is a numeric vector this form
of the plot() function produces a stripchart
for x. The same could be achieved with the
stripplot() function. The ~ indicates a
formula in which the left side is modeled
against the right.

> plot(~TEMPERATURE)

10 15 20 25 30 35 40
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plot(x,y) – if x and y are numeric vectors
this form of the plot() function produces a
scatterplot of y against x.

> plot(X, Y)
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plot(y~expr) – if y is a numeric vector
and expr is an expression, this form of the
plot() function plots y against each vector
in the expression.

> plot(Y ~ X)
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plot(xy) – if xy is a either a two-column
matrix or a list containing the entries x and
y, this form of the plot() function produces
a plot of y (column 2) against x (column 1).
If x is numeric, this will be a scatterplot,
otherwise it will be a boxplot.

> plot(XY)
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plot(fact) – if fact is a factor vector, this
form of the plot() function produces a bar
graph (bar chart) with the height of bars
representing the number of entries of each
level of the factor. The same could be achieved
with the barplot() function.

> plot(SHADE)

no full
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2
4

3
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plot(fact, dv) – if fact is a factor vector
and dv is a numeric vector, this form of
the plot() function produces boxplots of dv
for each level of fact. The same could be
achieved with the boxplot() function.

> plot(SHADE, TEMPERATURE)

no full
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plot(dv~fact) – if fact is a factor vector
and dv is a numeric vector, this form of
the plot() function produces boxplots of dv
for each level of fact.

> plot(TEMPERATURE ~ SHADE)
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There are a limited number of options available to modify the appearance of these
plots. Consider the following example:
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ylab= and xlab= – these arguments specify
the labels used on the vertical and horizontal
axes respectively.

> plot(X, Y, ylab = "Y coordinate",

+ xlab = "")
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Other useful high-level plotting functions and options will be illustrated in chapter 5.

1.18.2 Graphical devices

By default, R uses the window() graphical device (X11() in UNIX/Linux and typically
quartz() in MacOSX), which provides a representation of graphics on the screen
within the R application. However, it is often necessary to produce graphics that
can be printed or used within other applications. This is achieved by starting an
alternative device (such as a graphics file) driver, redirecting graphical commands to
this alternative device, and finally completing the process by closing the alternative
device driver. The device driver is responsible for converting the graphical command(s)
into a format that is appropriate for that sort of device.

Most installations of R come complete with a number of alternative graphics devices,
each of which have their own set of options. A list of graphics devices available on
your installation can be obtained by examining the Devices help file after issuing the
following commandk.

> ?Devices

Table 1.5 lists some of the major alternative graphics devices and illustrates the
common options used for each. Note that in all cases, unless full path names are
supplied in the filenames, files are written to the current working directoryl

The bitmap() function can also be used to provide a consistent interface to a
number of device drivers. The type= argument can be used to select from a large

k A function name preceded by a question mark (?) instruct R to bring up the help file on that
function. Help files are introduced in section 1.7.
l The current working directory is the location in which files user files are read and written. The
working directory can be altered to any available directory on your system and is discussed in
section 1.6.3.
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Table 1.5 List of useful alternative R graphical devicesa.

Device Example of use

jpeg > jpeg(file="figure1.jpg",

+ width=500, height=500, dimensions of device (pixels)
+ quality=75) degree of non-compression
> .... graphical commands
> dev.off() close the device

postscript > postscript(file="figure1.ps",

+ width=6, height=6, dimensions of graphics region (inches)
+ paper="special", size of the device, if paper=

"special"

+ horiz=F, portrait orientation
+ family="Helvetica") font family to use
> .... graphical commands
> dev.off() close the device

pdf > pdf(file="figure1.pdf",

+ width=6, height=6, dimensions of graphics region (inches)
+ paper="special", size of the device, if paper=

"special"

+ family="Helvetica") font family to use
> .... graphical commands
> dev.off() close the device

aNot all graphical devices are available on all systems.

range of device types including, "jpeg", "pcx256", "bmp256" and "png256". This
function has a modest set of arguments (options), the most important of which are the
device dimensions (width and height) that are specified in inches.

The dev2bitmap() function converts a screen graphics device into a graphics file
device, thereby providing a simple (yet restrictive) way to save a completed graphic to
file without the need to reissue the commands. This function takes the same argument
set as the bitmap() function.

1.18.3 Multiple graphics devices

It is also possible to have multiple devices (of the same or different type) open at once,
thereby enabling multiple graphics to be viewed and/or modified concurrently. Each
opened graphics device is given a numberm (starting with 2) and the number reflects
the order in which it was created.

To create multiple devices, issue the dev.set(1) function multiple times. Multiple
blank windows will be created, the most recently created of which will be the active

m Graphical device 1 is a null device – an indicator that there are no currently opened devices.
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device (the device in which graphical functions will next act). To view the list of
currently open devices, issue the following:

> dev.set(1)

null device

1

> dev.list()

pdf pdf

2 3

This indicates that there are currently two pdf graphics devices open in my current
session. To list the currently active device:

> dev.cur()

pdf

3

To make a graphical device active and thus ready to accept the next graphical function,
specify the device number as an argument to the dev.set() function. For example, to
make graphical device 2 the active device:

> dev.set(2)

pdf

2

R returns the type and number of the device as confirmation. The active device can
be closed by issuing the dev.off() function without an argument, whereas a specific
device can be closed by specifying the device number as the argument.

A graphics device can be copied from one open device to another (or even to a
new device) using the dev.copy() function. To copy the active device to graphics
device 3 (assuming that there is a device numbered 3 and that this is not the active
device):

> dev.copy(which = 3)

pdf

3

To copy the active device to a new display device (e.g. window, X11 or quartz), specify
the device type as an argument:

> dev.copy(device = X11)

The dev.copy() function can also be used to copy the active device to other device
types, such as graphics files. To do so, the dev.copy() function is able to receive and
forward arguments on to the relevant graphics device driver function (see Table 1.5).

> dev.copy(device = jpeg, file = "figure1.jpg",

+ height = 600, width = 600)
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Note that the jpeg graphics file will not be written until the device has been closed by
specifying the device number as an argument to the dev.off() function.

As an alternative, the dev.print() function can be used. This operates identically
to the dev.copy() function except that it closes the new device once the graphic has
been copied to it. In this way, it is similar to the dev2bitmap() function and is also
useful for sending graphics to a printer.

1.19 Packages

The functionality of the core R system is extended through an ever expanding library
of add-on packages. As new procedures are developed, they can be supported by
specific add-on packages rather than necessitating re-writes of the entire application.
Packages define a set of functions designed to perform more specific statistical or
graphical tasks. Packages also include help files, example data sets and command
scripts to provide information about the full use of the functions. All packages that
are made available through the official Comprehensive R Archive Network (CRAN)
and its many mirror sites, must comply with very specific regulations set and enforced
by the R core development team. Authors of packages are also encouraged not to
‘reinvent the wheel’, but rather make use of the functionality of other packages where
possible. These factors help maximize stability, uniformity and consistency across and
between R and all of its packages, thereby ensuring that users of R who have attained a
reasonable level of proficiency can rapidly master new packages.

The modularized nature of R also means that only the packages that are necessary to
perform the current tasks need to be loaded into memory at any one time. This results
in a very ‘light-weight’, fast statistical and graphical system.

As with procedures for installing and running R itself, procedures for installing
packages differ between operating systems and are usually best performed with
Administrator (super user) privilegesn.

1.19.1 Manual package management

Obtaining packages

The core R system includes only a subset of the available packages – those packages that
have been identified by the R core development team as essential for supporting the
common and traditional data exploration, analysis and summary procedures. Addi-
tional packages can be obtained from the CRAN web site (http://cran.r-project.org) by
following the ‘packages’ hyperlink and locating the specific package(s). Windows users

n Installing with Administrator rites ensures that installations take place in the correct locations (with
system wide access). Regular users typically do not have write access to these locations and thus
installations with lesser privileges result in packages being installed in the users data directories. In
Windows, R can be run as an Administrator by right clicking on the RGui.exe file, folder or shortcut
and selecting Run As Administrator from the drop-down menu. Linux and MacOSX users usually
know how to act as a super user.
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should download the .zip versions, Unix/Linux users download the .tar.gz versions and
MacOSX users download .tgz versions.

Note that the philosophy of cross-package reliance to reduce the number of replicated
procedures, means that many packages depend on other packages. A package’s
dependencies are listed in the package description. Ensure that when downloading a
package, all other packages that are required have either been previously acquired or
are also downloaded. The library() function without any arguments returns a list
of installed and currently available packages on your system. This can be useful for
checking potential dependency violations.

Installing packages

Windows

To install packages directly from one of the CRAN mirrors or Bioconductor (Bioinfor-
matics packages) repositories, start by selecting the Packages menu from within RGui.
For CRAN repositories, select the most local CRAN mirror to you from the list that
appears after selecting Set CRAN mirror... from the Packages menu. Anytime there-
after you can install packages from that mirror by selecting the Install package(s)...
submenu and then selecting the desired package(s) from the list. To install packages
from the Bioconductor packages repository, first alter the repository via the Select
repositories... submenu.

It is also possible to install packages from pre-downloaded package binaries. Select
the Packages menu, then the Install from local zip files.. submenu and locate the
downloaded .zip file(s) and click the OK button.

Unix/Linux

Typically only root (or a superuser) can install packages. As root, and from the
directory containing the compressed package, enter the following command at a
terminal prompt:

R CMD INSTALL package_name.tar.gz

where package name is the name of the package to be installed.

MacOSX

The MacOSX port of R is able to install packages from source packages using the
methods outlined for Unix/Linux systems. However, it is also able to install from
pre-packaged binary packages. Whilst the latter is sometimes (for some packages)
specific to which OS version is in use (typically only the latest), no other additional
compiler tools are required for installation. Hence, installation from binary packages
is the simplest method.

To install packages directly from one of the CRAN mirrors or Bioconductor
(Bioinformatics packages) repositories, after selecting the Package Installer submenu,
select the appropriate repository and package type (typically CRAN (binaries)) before
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pressing Get List. Select the package(s) you want installed, check the ‘‘Install Depen-
dencies” check-box just below the ‘‘Install Selected” button to ensure all the necessary
dependencieso are also retrieved. You are also able to chose where the packages are
installed. There are four radio buttons corresponding to the possible locations. The
default is ‘‘At System Level (in R framework)”. For those with Administrator privileges
and password, this is recommended. The others are ‘‘At User Level”, ‘‘In Other Loca-
tion (Will Be Asked Upon Installation)”, and ‘‘As Defined by .libpaths()” Finally, click
the Install Selected button.

To install from downloaded binary packages, select the Package Installer submenu
from the Packages & Data menu. Selecting Local Source Package and pressing Install
will bring up a new Finder window form which you should navigate to and select the
downloaded package(s).

Package management within R

The R statistical and graphical environment is equipped with a number of tools to help
install and update packages on your system. A list of all the currently installed packages
can be obtained by issuing:

> installed.packages()

Package LibPath Version Priority Bundle Contains
abind "abind" "/usr/local/lib/R/site-library" "1.1-0" NA NA NA
akima "akima" "/usr/local/lib/R/site-library" "0.5-2" NA NA NA
alr3 "alr3" "/usr/local/lib/R/site-library" "1.1.7" NA NA NA
Biobase "Biobase" "/usr/local/lib/R/site-library" "2.4.1" NA NA NA
biology "biology" "/usr/local/lib/R/site-library" "1.0" NA NA NA
bitops "bitops" "/usr/local/lib/R/site-library" "1.0-4.1" NA NA NA

Depends Imports Suggests Enhances OS_type Built
abind "R (>= 1.5.0)" NA NA NA NA "2.6.2"
akima NA NA NA NA NA "2.9.1"
alr3 NA NA NA NA NA "2.6.2"
Biobase "R (>= 2.7.0), methods, utils" NA "tools, tkWidgets, ALL" NA NA "2.9.1"
biology "car" NA NA NA NA "2.9.1"
bitops NA NA NA NA NA "2.9.1"

Note, I have included only the first six packages to save space. The installed

.packages() function returns the name of the installed packages as well as information
about the packages including the version number, dependencies and the version of R
on which the package was built.

Packages are often updated in the CRAN repositories. The easiest way to update the
installed packages is to use the update.packages() function

> update.packages()

o In the spirit of modularization, many packages build upon functions contributed by other packages.
Consequently, packages that depend on function within other packages list those packages as
dependencies. For a given package to install correctly, all its dependencies must already be installed.



INTRODUCTION TO R 45

You will be prompted for a repository mirror (web locations that provide copies
of the official R repositories). You should select the mirror closest to you. The
update.packages() function will then compare your currently installed packages to
those on the repositories, download any updated packages and install them on your
system. It is also possible to provide a repos= argument in order to explicitly specify
the base URL of the repository you wish to access the package from.

Individual packages can also be installed from a CRAN mirror. The name of the
package (without the version codes) is supplied as an argument to the install

.packages() function. As described above, the repos= argument can be used. The
following syntax could be used to install the car (Companion to Applied Regression)
package from the University of Melbourne CRAN mirror.

> install.packages(car, repos = "http://cran.ms.unimelb.edu.au")

1.19.2 Loading packages

Although packages only need to be installed once, before a package can be used in a
session, it needs to be loaded into memory. This ensures that while you may have
a very large number of packages installed on your system, only those packages that
are actually required to perform the current tasks are taking up valuable resources.
A package is loaded by providing the name of the package (without any extensions)
as an argument for the library() function. For example, to load the package gdata
which provides various data manipulation functions:

> library(gdata)

Loading required package: gtools

In this case R, informs you that it first loaded a package called gtools that gdata
depends on.

1.20 Working with scripts

One of the advantages of command driven software is that if the commands used
to perform certain tasks can be stored, then the tasks can be easily repeated exactly.
A collection of one or more commands is called a script. In R, a script is a plain text
file with a separate command on each line and can be created and read in any text
editor. A script is read into R by providing the full filename (and path if not in the
current working directory – see section 1.6.3) of the script file as an argument in the
source() function. By convention, filenames for R scripts end in the extension .R.
For example:

> source("filename.R")
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A typical script may look like the following:

# Temperature.R script

# Written by Murray Logan Aug09

# Sets up temperature and shade variables and calculates mean

# temperature in and out of shade

# Generates a numeric vector called TEMPERATURE

TEMPERATURE <- c(36.1, 30.6, 31.0, 36.3, 39.9, 6.5, 11.2, 12.8,

9.7, 15.9)

# Define quadrat labels for row names

names(TEMPERATURE) <- paste('Q', 1:10, sep="")

# Generate a factor with the levels 'no' and 'full'

SHADE <- gl(2,5,10,c('no','full'))

# Calculate the mean TEMPERATURE for each level of SHADE

tapply(TEMPERATURE, SHADE, mean)

The above script illustrates a couple of important points about R scripts. Firstly,
commands within scripts do not begin with a (>) prompt. Expressions can be split
over multiple lines (and a ‘+’ prompt is not required) and extra spaces and tabs
are completely ignored by R. Finally, the benefits of regular comments throughout
a script cannot be overstated. Since scripts are so valuable as a lasting record of
analyses, it is of vital importance that each step be thoroughly documented for future
reference.

When a script is sourced, each line of the script is parsedp (checked for errors),
interpreted, and run as if it had been typed directly at the R command prompt. This
is an extremely useful feature as it enables complicated and/or lengthy sequences of
commands to be stored, modified and reused rapidly as well as acting as a record
of data analysis and a repository of analysis techniques. All the commands used in
this book are provided as scripts on the accompanying website www.wiley.com/go/
logan/r.

1.21 Citing R in publications

The full R citation (and convenient BibTeX entry) is obtained by issuing the following:

> citation()

To cite R in publications use:

p Parsing is a process by which information is first verified before use.



INTRODUCTION TO R 47

R Development Core Team (2009). R: A language and

environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0, URL http://www.R-project.org.

A BibTeX entry for LaTeX users is

@Manual{,

title = {R: A Language and Environment

for Statistical Computing},

author = {{R Development Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2009},

note = {{ISBN} 3-900051-07-0},

url = {http://www.R-project.org},

}

We have invested a lot of time and effort in creating

R, please cite it when using it for data analysis.

See also 'citation("pkgname")' for citing R packages.

1.22 Further reading

Crawley, M. J. (2002). Statistical computing: an introduction to data analysis using S-PLUS.
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Verlag, New York.
R Development Core Team, (2005). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS, 4th edn.
Springer-Verlag, New York.
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Data sets

2.1 Constructing data frames

Data frames are generated by amalgamating vectors of the same length together. To
illustrate the translation of a data set (collection of variables) into an R data frame
(collection of vectors), a portion of a real data set by Mac Nally (1996) in which the
bird communities were investigated from 37 sites across five habitats in southeastern
Australia will be used. Although the original data set includes the measured maximum
density of 102 bird species from the 37 sites, for simplicity’s sake only two bird
species (GST: gray shrike thrush, EYR: eastern yellow robin) and the first eight of
the sites will be included. The truncated data set, comprises a single factorial (or
categorical) variable, two continuous variables, and a set of site (row) names, and is as
follows:

Site HABITAT GST EYR

Reedy Lake Mixed 3.4 0.0
Pearcedale Gipps.Manna 3.4 9.2
Warneet Gipps.Manna 8.4 3.8
Cranbourne Gipps.Manna 3.0 5.0
Lysterfield Mixed 5.6 5.6
Red Hill Mixed 8.1 4.1
Devilbend Mixed 8.3 7.1
Olinda Mixed 4.6 5.3

Firstly, generate the three variables (excluding the site labels as they are not variables)
separately:

> HABITAT <- factor(c("Mixed", "Gipps.Manna", "Gipps.Manna",

+ "Gipps.Manna", "Mixed", "Mixed", "Mixed", "Mixed"))

> GST <- c(3.4, 3.4, 8.4, 3, 5.6, 8.1, 8.3, 4.6)

> EYR <- c(0, 9.2, 3.8, 5, 5.6, 4.1, 7.1, 5.3)

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Next, use the names of the vectors as arguments in the data.frame() function to
amalgamate the three separate variables into a single data frame (data set) which we
will call MACNALLY (after the author).

> MACNALLY <- data.frame(HABITAT, GST, EYR)

> MACNALLY

HABITAT GST EYR

1 Mixed 3.4 0.0

2 Gipps.Manna 3.4 9.2

3 Gipps.Manna 8.4 3.8

4 Gipps.Manna 3.0 5.0

5 Mixed 5.6 5.6

6 Mixed 8.1 4.1

7 Mixed 8.3 7.1

8 Mixed 4.6 5.3

Notice that each vector (variable) becomes a column in the data frame and that each
row represents a single sampling unit (in this case, each row represents a different site).
By default, the rows are named using numbers corresponding to the number of rows
in the data frame. However, these can be altered to reflect the names of the sampling
units by assigning a list of alternative names to the row.names() property of the data
frame.

> row.names(MACNALLY) <- c("Reedy Lake", "Pearcedale", "Warneet",

+ "Cranbourne", "Lysterfield", "Red Hill", "Devilbend",

+ "Olinda")

> MACNALLY

HABITAT GST EYR

Reedy Lake Mixed 3.4 0.0

Pearcedale Gipps.Manna 3.4 9.2

Warneet Gipps.Manna 8.4 3.8

Cranbourne Gipps.Manna 3.0 5.0

Lysterfield Mixed 5.6 5.6

Red Hill Mixed 8.1 4.1

Devilbend Mixed 8.3 7.1

Olinda Mixed 4.6 5.3

2.2 Reviewing a data frame - fix()

As with all other objects, a data frame can be viewed by issuing the name of the data
frame. A data frame can also be viewed as a simple spreadsheet in a separate window
by using the name of the data frame as an argument in the fix() function. The fix()
function also enables simple editing of the data frame. The arrow keys are used for
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navigating the spreadsheet and any alterations will be made to the data frame when the
window is closed. Try the following:

> fix(MACNALLY)

Warning - only make alterations to numeric variables, alterations to the entries of
factorial variables will not update the factors list of levels and thus the factor will appear
to act irrationally in analysis and graphical procedures.

2.3 Importing (reading) data

Generally, statistical systems are not very well suited to tasks of data entry and
management. This is the roll of spreadsheets, of which there are many available.
Although the functionality of R continues to expand, it is unlikely that R itself will
ever duplicate the extensive spreadsheet and database capabilities of other softwarea.
R development has roots in the Unix/Linux programming philosophy that dictates
that tools should be dedicated to performing specific tasks that they perform very well
and rely on other tools to perform other tasks. Consequently, the emphasis of R is, and
will continue to be, purely an environment for statistical and graphical procedures. It
is expected that other software will be used to generate and maintain data sets.

Unfortunately, data importation into R can be a painful exercise that overshadows
the benefits of using R for new users. In part, this is because there are a large number
of competing methods that can be used to import data and from a wide variety of
sources. This section does not intend to cover all the methods. Rather, it will highlight
the simplest and most robust methods of importing data from the most popular
sources.

Unless file path names are specified, all data reading functions search for files in
the current working directory. Refer to section 1.6.3 for information of reviewing and
altering the current working directory.

2.3.1 Import from text file

The easiest form of importation is from a pure text file. Since most software that accepts
file input can read plain text files, they can be created in all spreadsheet, database and
statistical software packages and are also the default outputs of most data collection
devices. In a text file, data are separated or delimited by a specific character, which
in turn defines what sort of text file it is. The text file should broadly represent the
format of the data frame. That is, variables should be in columns and sampling units
in rows. The first row should contain the variable names and if there are row names,
these should be in the first column.

a However, there are numerous projects in early stages of development that are being designed to
offer an interface to R from within major spreadsheet packages.
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The following examples illustrate the format of the abbreviated Mac Nally (1996)
data set created as both comma delimited (left) and tab delimited (right) files as well
as the corresponding read.table() commands used to import the files.

Comma delimited text file *.csv
HABITAT,GST,EYR

Reedy Lake,Mixed,3.4,0.0

Pearcedale,Gipps.Manna,3.4,9.2

Warneet,Gipps.Manna,8.4,3.8

Cranbourne,Gipps.Manna,3.0,5.0

....

> MACNALLY <- read.table(

+ 'macnally.csv', header=T,

+ row.names=1, sep=',')

Tab delimited text file *.txt
HABITAT GST EYR

Reedy Lake Mixed 3.4 0.0

Pearcedale Gipps.Manna 3.4 9.2

Warneet Gipps.Manna 8.4 3.8

Cranbourne Gipps.Manna 3.0 5.0

....

> MACNALLY <- read.table(

+ 'macnally.txt', header=T,

+ row.names=1, sep='\t')

The first argument to the read.table() function specifies the name (in quotation
marks) of the text file to be imported (and path if not in the current working directory,
see section 1.6.3). The header=T argument indicates that the first row of the file is a
header that defines the variable (vector) names. The row.names= argument indicates
which column in the data set contains the row names. If there are no row names in
the data set, then the row.names= argument should be omitted. Finally, the sep=

argument specifies which character is used as the delimiter to separate data entries.
The syntax ('\t') indicates a tab character. Field (data) separators are not restricted
to commas or tabs, just about any character can be defined as a separator.

2.3.2 Importing from the clipboard

The read.table() function can also be used to import data (into a data frame)
that has been placed on the clipboardb by other software, thereby providing a very
quick and convenient way of obtaining data from spreadsheets. Simply replace the
filename argument with the word 'clipboard' and indicate a tab field separator
(\t). For example, to import data placed on the clipboard from Microsoft Excel, use
the following syntax;

> MACNALLY <- read.table("clipboard", header = T, row.names = 1,

+ sep = "\t")

2.3.3 Import from other software

As previously stated, virtually all software packages are able to export data in text file
format and usually with a choice of delimiters. However, the foreign package offers

b The clipboard is allocated space in virtual memory from which information can be copied and
pasted within and between different applications.
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more direct import of native file formats from a range of other popular statistical
packages. To illustrate the use of the various relevant functions within the foreign

package, importation of a subset of the Mac Nally (1996) data set from the various
formats will be illustrated.

Systatc

> library(foreign)

> MACNALLY <- read.systat("macnally.syd", to.data.frame = T)

Spss

> library(foreign)

> MACNALLY <- read.spss("macnally.sav", to.data.frame = T)

Minitab

> library(foreign)

> MACNALLY <- as.data.frame(read.mtp("macnally.mtp"))

Note, the file must be in Minitab Portable Worksheet format.

Sas

> library(foreign)

> MACNALLY <- read.xport("macnally")

Note, the file must be in the SAS XPORT format. If there is only a single dataset in
the XPORT format library, then the read.xport() function will return a data frame,
otherwise it will return a list of data frames.

Excel

Excel is more than just a spreadsheet – it contains macros, formulae, multiple
worksheets and formatting. The easiest ways to import data from Excel is either to save
the worksheet as a text file (comma or tab delimited) and import the data as a text
file (see section 2.3.3), or to copy the data to the clipboard in Excel and import the
clipboard data into R (see section 2.3.2).

2.4 Exporting (writing) data

Although plain text files are not the most compact storage formats, they do offer two
very important characteristics. Firstly, they can be read by a wide variety of other
applications, ensuring that the ability to retrieve the data will continue indefinitely.

c Cannot be used to import files produced with the MacOS version of SYSTAT due to incompatible
file formats.
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Secondly, as they are neither compressed nor encoded, a corruption to one section of
the file does not necessarily reduce the ability to correctly read other parts of the file.
Hence, this is also an important consideration for the storage of datasets.

The write.table() function is used to save data frames. Although there are a large
number of optional arguments available for controlling the exact format of the output
file, typically only a few are required. The following example illustrates the exportation
of the Mac Nally (1996) data set as a comma delimited text file.

> write.table(MACNALLY, "macnally.csv", quote = F, row.names = T,

+ sep = ",")

The first and second arguments specify respectively the name of the data frame and
filename (and path if necessary) to be exported. The quote=F argument indicates that
words and factor entries should not be exported with surrounding double quotation
marks. The row.names=T argument indicates that the row names in the data frame
are also to be exported (they will be the first column in the file). If there are no defined
row names in the data frame, alter the argument to row.names=F. Finally, specify the
field separator for the file (comma specified in above example).

2.5 Saving and loading of R objects

Any object in R (including data frames) can also be saved into a native R workspace
image file (*.RData) either individually, or as a collection of objects using the save()
function. For example;

> #save just the MACNALLY data frame

> save(MACNALLY, file='macnally.RData')

> #calculate the mean GST

> meanGST <- mean(MACNALLY$GST)

> #display the mean GST

> meanGST

[1] 4.878378

> #save the MACNALLY data frame as well as the mean GST object

> save(MACNALLY, meanGST, file='macnallystats.RData')

The saved object(s) can be loaded during subsequent sessions by providing the name
of the saved workspace image file as an argument to the load() function. For
example;

> load("macnallystats.RData")

Similarly, a straight un-encoded text version of an object (including a dataframe) can
be saved or added to a text file using the dump() function.

> dump("MACNALLY", file = "macnally")

If the file character string is left empty, the text representation of the object will be
written to the console. This can then be viewed or copied and pasted into a script file,
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thereby providing a convenient way to bundle together data sets along with graphical
and analysis commands that act on the data sets.

> dump("MACNALLY", file = "")

Thereafter, the dataset is automatically included when the script is sourced and cannot
accidentally become separated from the script.

2.6 Data frame vectors

In generating a data frame from individual vectors (such as above), copies of the
original vectors, rather than the actual original vectors themselves are amalgamated.
Consequently, while the vectors contained in the data frame contain the same infor-
mation (entries) as the original vectors, they are completely distinct from the original
vectors. So from the examples above, the R workspace will contain the vectorsHABITAT,
GST and EYR as well as HABITAT, GST and EYR within the MACNALLY data frame.

To refer to a vector within a data frame, the name of the vector is proceeded by the
name of the data frame and the two names are separated by a $ character. For example,
to refer to the GST vector of the MACNALLY data frame:

> MACNALLY$GST

[1] 3.4 3.4 8.4 3.0 5.6 8.1 8.3 4.6 3.2 4.6 3.7 3.8

[13] 5.4 3.1 3.8 9.6 3.4 5.6 1.7 4.7 14.0 6.0 4.1 6.5

[25] 6.5 1.5 4.7 7.5 3.1 2.7 4.4 3.0 2.1 2.6 3.0 7.1

[37] 4.3

Modification made to the original vectors will not affect the vectors within a data
frame. Therefore, it is important to remember to use the data frame prefix. To avoid
confusion, it is generally recommended that following the successful generation of the
data frame from individual vectors, the original vectors should be deleted.

> rm(HABITAT, GST, EYR)

Thereafter, any inadvertent reference to the original vector (GST) rather than vector
within the data frame (MACNALLY$GST) will result in a error informing that the object
does not exist.

> GST

Error: Object "GST" not found

2.6.1 Factor levels

When factors are generated directly using the factor() function or a data set
is imported using one of the above importation methods (which themselves use
the factor() function to convert character vectors into factors), factor levels
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are automatically arranged alphabetically. For example, examine the levels of the
MACNALLY$HABITAT factor;

> levels(MACNALLY$HABITAT)

[1] "Box-Ironbark" "Foothills Woodland" "Gipps.Manna"

[4] "Mixed" "Montane Forest" "River Red Gum"

Although the order of factor levels has no bearing on most statistical procedures and
for many applications, alphabetical ordering is as valid as any other arrangement, for
some analyses (particularly those involving contrasts, see section 7.3) it is necessary to
know the arrangement of factor levels. Furthermore, for graphical summaries of some
data, alphabetical factor levels might not represent the natural trends among groups.
Consider a dataset that includes a factorial variable with the levels 'high', 'medium'
and 'low'. Presented alphabetically, the levels of the factor would be 'high' 'low'
'medium'. Those data would probably be more effectively presented in the more
natural order of 'high' 'medium' 'low' or 'low' 'medium' 'high'.

When creating a factor, the order of factor levels can be specified as a list of labels.
For example, consider a factor with the levels 'low','medium' and 'high':

> FACTOR <- gl(3, 2, 6, c("low", "medium", "high"))

> FACTOR

[1] low low medium medium high high

Levels: low medium high

The order of existing factor levels can also be altered by redefining a factor:

> # examine the default order of levels

> levels(MACNALLY$HABITAT)

[1] "Box-Ironbark" "Foothills Woodland" "Gipps.Manna"

[4] "Mixed" "Montane Forest" "River Red Gum"

> # redefine the order of levels

> MACNALLY$HABITAT<-factor(MACNALLY$HABITAT, levels=c(

+ 'Montane Forest', 'Foothills Woodland','Mixed', 'Gipps.Manna',

+ 'Box-Ironbark','River Red Gum'))

> # examine the new order of levels

> levels(MACNALLY$HABITAT)

[1] "Montane Forest" "Foothills Woodland" "Mixed"

[4] "Gipps.Manna" "Box-Ironbark" "River Red Gum"

In addition, some analyses perform different operations on factors that are defined
as ‘ordered’ compared to ‘unordered’ factors. Regardless of whether you have altered
the ordering of factor levels or not, by default all factors are implicitly considered
‘unordered’ until otherwise defined using the ordered() functiond.

d Alternatively, the argument ordered=TRUE can be supplied to the factor function when defining
a vector as a factor.
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> FACTOR <- ordered(FACTOR)

> FACTOR

[1] low low medium medium high high

Levels: low < medium < high

2.7 Manipulating data sets

2.7.1 Subsets of data frames – data frame indexing

Indexing of data frames follows the format of data frame[rows,columns], see
Table 2.1.

As an alternative to data frame indexing, the subset() function can be used:

> #extract all the bird densities from sites that have GST values

> #greater than 3

> subset(MACNALLY, GST>3)

HABITAT GST EYR

Reedy Lake Mixed 3.4 0.0

Pearcedale Gipps.Manna 3.4 9.2

Warneet Gipps.Manna 8.4 3.8

Lysterfield Mixed 5.6 5.6

Red Hill Mixed 8.1 4.1

Table 2.1 Data frame indexing.

Action Example indexing syntax

Indexing by rows
(sampling units)

Select the first 5 rows of each of the vectors in the data frame
> MACNALLY[1:5,]

Select each of the vectors for the row called ’Pearcedale’ from the
data frame

> MACNALLY['Pearcedale',]

Indexing by columns
(variables)

Select all rows but just the second and forth vector of the data
frame

> MACNALLY[,c(2,4)]

Select the GST and EYR vectors for all sites from the dataframe
> MACNALLY[,c('GST','EYR')]

Indexing by conditions Select the data for sites that have GST values greater than 3
> MACNALLY[MACNALLY$GST>3,]

Select data for ‘Mixed’ habitat sites that have GST values greater
than 3

> MACNALLY[MACNALLY$GST>3 &

+ MACNALLY$HABITAT=='Mixed',]
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Devilbend Mixed 8.3 7.1

Olinda Mixed 4.6 5.3

Fern Tree Gum Montane Forest 3.2 5.2

Sherwin Foothills Woodland 4.6 1.2

...

> #extract the GST and EYR densities from sites in which GST

> #is greater than 3

> subset(MACNALLY, GST>3, select=c('GST','EYR'))

GST EYR

Reedy Lake 3.4 0.0

Pearcedale 3.4 9.2

Warneet 8.4 3.8

Lysterfield 5.6 5.6

Red Hill 8.1 4.1

Devilbend 8.3 7.1

Olinda 4.6 5.3

Fern Tree Gum 3.2 5.2

Sherwin 4.6 1.2

...

The subset() function can be used within many other analysis functions and there-
fore provides a convenient way of performing data analysis on subsets of larger data sets.

2.7.2 The %in% matching operator

It is often desirable to subset according to multiple alternative conditions. The %in%
operator searches through all of the entries in the object on the lefthand side for matches
with any of the entries within the vector on the righthand side.

> #subset the MACNALLY dataset according to those rows that

> #correspond to HABITAT 'Montane Forest' or 'Foothills Woodland'

> MACNALLY[MACNALLY$HABITAT %in% c("Montane Forest",

+ "Foothills Woodland"),]

HABITAT GST EYR

Fern Tree Gum Montane Forest 3.2 5.2

Sherwin Foothills Woodland 4.6 1.2

Heathcote Ju Montane Forest 3.7 2.5

Warburton Montane Forest 3.8 6.5

Panton Gap Montane Forest 3.8 3.8

St Andrews Foothills Woodland 4.7 3.6

Nepean Foothills Woodland 14.0 5.6

Tallarook Foothills Woodland 4.3 2.9

Convieniently, the %in% operator can also be used in the subset function.
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2.7.3 Pivot tables and aggregating datasets

Sometimes it is necessary to calculate summary statistics of a vector separately for
different levels of a factor. This is achieved by specifying the numeric vector, the factor
(or list of factors) and the summary statistic function (such as mean) as arguments in
the tapply() function.

> #calculate the mean GST densities per HABITAT

> tapply(MACNALLY$GST, MACNALLY$HABITAT, mean)

Montane Forest Foothills Woodland Mixed

3.625000 6.900000 5.035294

Gipps.Manna Box-Ironbark River Red Gum

5.325000 4.575000 3.300000

When it is necessary to calculate the summary statistic for multiple variables at a time,
or to retain the dataset format to facilitate subsequent analyses or graphical summaries,
the aggregate() function is very useful.

> #calculate the mean GST and EYR densities per habitat

> aggregate(MACNALLY[c('GST','EYR')],

+ list(Habitat=MACNALLY$HABITAT), mean)

Habitat GST EYR

1 Montane Forest 3.625000 4.500000

2 Foothills Woodland 6.900000 3.325000

3 Mixed 5.035294 4.264706

4 Gipps.Manna 5.325000 6.925000

5 Box-Ironbark 4.575000 1.450000

6 River Red Gum 3.300000 0.000000

Alternatively, the gsummary() functon within the nlme and lme4 packages performs
similarly. The gsummary() function performs more conveniently than aggregate()

on grouped data (data containing hierarchical blocking or nesting).

> library(nlme)

> gsummary(MACNALLY[c("GST", "EYR")], groups = MACNALLY$HABITAT)

GST EYR

Montane Forest 3.625000 4.500000

Foothills Woodland 6.900000 3.325000

Mixed 5.035294 4.264706

Gipps.Manna 5.325000 6.925000

Box-Ironbark 4.575000 1.450000

River Red Gum 3.300000 0.000000

2.7.4 Sorting datasets

Often it is necessary to rearrange or sort datasets according to one or more variables.
This is done by using the order() function to generate the row indices. By default,
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data are sorted in increasing order, however this can be reversed by supplying the
decreasing=T argument to the order() function. It is possible to sort according to
multiple variables simply by specifying a comma separated list of the vector names (see
example below), whereby the data are sorted first by the first supplied vector, then the
next and so on. Note however, when multiple vectors are supplied, all are sorted in the
same direction.

> MACNALLY[order(MACNALLY$HABITAT, MACNALLY$GST), ]

HABITAT GST EYR

Fern Tree Gum Montane Forest 3.2 5.2

Heathcote Ju Montane Forest 3.7 2.5

Warburton Montane Forest 3.8 6.5

Panton Gap Montane Forest 3.8 3.8

Tallarook Foothills Woodland 4.3 2.9

Sherwin Foothills Woodland 4.6 1.2

St Andrews Foothills Woodland 4.7 3.6

Nepean Foothills Woodland 14.0 5.6

Donna Buang Mixed 1.5 0.0

...

To appreciate how this is working, examine just the order component

> order(MACNALLY$HABITAT, MACNALLY$GST)

[1] 9 11 12 15 37 10 20 21 26 19 35 14 1 17 23 8 27 13 5 18

[21] 22 28 6 7 16 4 2 24 3 33 34 25 36 30 32 29 31

Hence when this sequence is applied as row indices to MACNALLY, it would be
interpreted as ‘display row 13, then row 27, 29 etc’.

2.7.5 Accessing and evaluating expressions within the context of a dataframe

For times when you find it necessary to repeatedly include the name of the dataframe
within functions and expressions, the with() function is very convenient. This
function evaluates an expression (which can include functions) within the context of
the dataframe. Hence, the above order() illustration could also be performed as:

> with(MACNALLY, order(HABITAT, GST))

[1] 9 11 12 15 37 10 20 21 26 19 35 14 1 17 23 8 27 13 5 18

[21] 22 28 6 7 16 4 2 24 3 33 34 25 36 30 32 29 31

2.7.6 Reshaping dataframes

Data sets are typically constructed such that variables (vectors) are in columns and
replicates are in rows. This standard format (known as long format) allows a huge variety
of graphical and numerical summaries and analyses to be performed with minimal need
for data alterations. Nevertheless, there are a small number of analyses (such as paired
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t-tests, repeated measures and multivariate analysis of variance (MANOVA)) that can
be performed on, or else require data to be arranged in wide format. In wide format,
the rows represent blocks or individuals and the repeated measurements (responses
to treatments within each block) are arranged in columns. Conversion between long
and wide data formats is provided by the reshape() function. To illustrate, we will
use the Walter and O’Dowd (1992) randomized block dataset in which the number
of mites encountered on leaves with and without domatia blocked within plants were
modelled.

> walter<-read.table('walter.csv', header=TRUE, sep=',')

> #view first six rows of the walter data set

> head(walter)

LEAVES BLOCK TREAT MITE

1 a1 1 1 9

2 a2 1 2 1

3 b1 2 1 2

4 b2 2 2 1

5 c1 3 1 0

6 c2 3 2 2

Using the reshape() function to convert the long format into wide format:

> walter.wide <- reshape(walter, v.names = "MITE",

+ timevar = "TREAT", idvar = "BLOCK", direction = "wide",

+ drop = "LEAVES")

> walter.wide

BLOCK MITE.1 MITE.2

1 1 9 1

3 2 2 1

5 3 0 2

7 4 12 4

9 5 15 2

11 6 3 1

13 7 11 0

15 8 6 0

17 9 7 1

19 10 6 0

21 11 5 1

23 12 8 1

25 13 3 1

27 14 6 0

In the above, v.names= specifies the names of vectors from the long format whose
values will fill the repeated measures columns of the wide format, timevar= specifies
the names of categorical vectors in the long format whose levels will define the separate
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repeated measures columns, idvar= specifies the names of categorical vectors in the
long format that define the blocks or individuals. The direction= argument specifies
the format of the resulting dataframe and drop= specifies the name of any vectors in
the long format that can be removed prior to reshaping. Similarly, the reshape()

function can be used to convert wide to long format. Reshaping from wide to long
format is often desirable, since while the long format is necessary for most analysis
and summaries, the wide format is typically more compact and suitable for field data
collection sheets and spreadsheet entry. For the purpose of an example, the following
wide data set represents seal counts from ten sites at three different times of the day
(08:00, 12:00 and 16:00). The researcher wishes to reshape it to long format to facilitate
analyses.

> seals <- data.frame(Seal = paste("Site", 1:10, sep = ""),

+ T8.00 = c(10, 35, 67, 2, 49, 117, 26, 85, 20,

+ 15), T12.00 = c(15, 47, 88, 3, 46, 132, 41,

+ 101, 36, 18), T16.00 = c(9, 31, 62, 0, 39,

+ 86, 11, 3, 14, 7))

> seals.long <- reshape(seals, varying = c("T8.00",

+ "T12.00", "T16.00"), v.names = "Count", timevar = "TIME",

+ times = paste("T", seq(8, 16, by = 4), sep = ""),

+ idvar = "Seal", direction = "long")

> seals.long

Seal TIME Count

Site1.T8 Site1 T8 10

Site2.T8 Site2 T8 35

Site3.T8 Site3 T8 67

Site4.T8 Site4 T8 2

Site5.T8 Site5 T8 49

Site6.T8 Site6 T8 117

Site7.T8 Site7 T8 26

Site8.T8 Site8 T8 85

Site9.T8 Site9 T8 20

Site10.T8 Site10 T8 15

Site1.T12 Site1 T12 15

Site2.T12 Site2 T12 47

Site3.T12 Site3 T12 88

Site4.T12 Site4 T12 3

Site5.T12 Site5 T12 46

Site6.T12 Site6 T12 132

Site7.T12 Site7 T12 41

Site8.T12 Site8 T12 101

Site9.T12 Site9 T12 36

Site10.T12 Site10 T12 18

Site1.T16 Site1 T16 9

Site2.T16 Site2 T16 31
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Site3.T16 Site3 T16 62

Site4.T16 Site4 T16 0

Site5.T16 Site5 T16 39

Site6.T16 Site6 T16 86

Site7.T16 Site7 T16 11

Site8.T16 Site8 T16 3

Site9.T16 Site9 T16 14

Site10.T16 Site10 T16 7

2.8 Dummy data sets - generating random data

Most statisticians strongly recommend that research questions be designed around
sets of well defined statistical procedures. This ensures that the eventual data analyses
remain possible and relatively straightforward. Furthermore, many would recommend
the generation and mock analysis of dummy data sets that approximate the anticipated
structure and variability of the anticipated data. This enables many of the common
data analysis problems to be anticipated, thereby allowing solutions to be considered
prior to data collection. Dummy data sets are usually created by filling the response
variable(s) (and continuous predictor variables) with random data.

R uses the Mersenne-Twister Random Number Generator (RNG) with a random
number sequence cycle of 219937 − 1. All random number generators have what is
known as a ‘seed’. This is a number that uniquely identifies a series of random number
sequences. Strictly, computer generated random numbers are ‘pseudo-random’ as
the sequences themselves are predefined. However, with such a large number of
possible sequences (219937 − 1), for all intents and purposes they are random.

By default, the initial random seed is generated from the computer clock (mil-
liseconds field) and is therefore unbiased. However, it is also possible to specify a
random seed. This is often useful for error-checking functions. Additionally, it also
facilitates learning how to perform randomizations, as the same outcomes can be
repeated.

R has a family of functions (see Table 2.2) that extract random numbers from a
range of mathematical distributions that represent the common sampling and statistical
distributions encountered in biology.

For example, imagine that you were interested in examining the effect of four
different nitrogen treatments (N1, N2, N3, N4) on the growth rate of a particular
species of plant. An ANOVA (see chapter 10) appeared suitable for your intended
experimental design, and you prudently decided to run a mock analysis prior to
data collection. Previous studies had indicated that the growth rate of the plant
species was normally distributed with a mean of around 250 mm per year with a
standard deviation of about 20 mm, and you had decided (for whatever reason) to
have 10 replicates of each treatment. Using these criteria it is possible to generate a
dummy data set.
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Table 2.2 Random number generation functions for different sampling distributions.

Distribution Example syntax

Normal > # generate 5 random numbers from a normal

> # distribution with a mean of 10 and a standard

> # deviation of 1

> rnorm(5,mean=10,sd=1)

[1] 11.564555 9.732885 8.357070 8.690451 12.272846

Log-Normal > # generate 5 random numbers from a log-normal

> # distribution whose logarithm has a mean of 2 and a

> # standard deviation

> # of 1

> rlnorm(5,mean=2,sd=1)

[1] 8.157636 30.914781 20.175299 5.071559 16.364014

Uniform > # generate 5 random numbers from a uniform

> # distribution with a minimum of 2 and a

> # maximum of 10

> runif(5,min=1,max=10)

[1] 4.710560 8.155589 8.272690 6.898405 4.226496

Poisson > # generate 5 random numbers from a Poisson

> # distribution with a lambda parameter of 4

> rpois(5,min=1,max=10)

[1] 4 4 2 6 1

Binomial > # generate 5 random numbers from a binomial

> # distribution based on 10 Bernoulli trials and

> # a prob. of 0.5

> rbinom(5,size=10,prob=.5)

[1] 4 4 1 4 6

Negative
binomial

> # generate 5 random numbers from a negative binomial

> # distribution based on 10 Bernoulli trials and

> # an alternative parameterization (mu) of 4

> rnbinom(5,size=10,mu=4)

[1] 5 7 1 4 5

Exponential > # generate 5 random numbers from a exponential

> # distribution with a lambda rate of 2

> rexp(5,rate=2)

[1] 0.3138283 1.1896221 0.2466995 0.4090852 1.1757822
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> # create the response variable with four sets of 10 random

> # numbers from a normal distribution

> GROWTH.RATE <- c(rnorm(10, 250,20), rnorm(10, 250,20),

+ rnorm(10, 250,20),rnorm(10, 250,20))

> # create the nitrogen treatment factor with four levels each

> # replicated 10 times

> TREATMENT <- gl(4,10,40,c('N1', 'N2', 'N3', 'N4'))

> # combine the vectors into a dataframe

> NITROGEN <- data.frame(GROWTH.RATE, TREATMENT)

For multifactor designs, the expand.grid() function provides a convenient way to
generate dataframes containing all combinations of one or more factors. Following
from the previous example, imagine you now wanted to create mock data for a two
factor (nitrogen treatment and season) ANOVA design. A dummy data set could be
created as follows:

> # create the nitrogen treatment factor with four levels

> TREATMENT <- c("N1","N2","N3","N4")

> # create the season factor with two levels

> SEASON <- c("WINTER", "SUMMER")

> # use the expand.grid function to create a dataframe with each

> # combination replicated 5 times

> TS<-expand.grid(TREATMENT=TREATMENT,SEASON=SEASON, reps=1:5)

> # combine a normally distributed response variable to the

> # factor combinations using the data.frame function

> NITROGEN<-data.frame(TS,GROWTH.RATE=rnorm(40,250,20))

The data can now be subject to the statistical and graphical procedures. Dummy data
sets are also useful for examining the possible impacts of missing data and unbalanced
designs.
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Introductory statistical principles

Statistics is a branch of mathematical sciences that relates to the collection, analysis,
presentation and interpretation of data and is therefore central to most scientific
pursuits. Fundamental to statistics is the concept that samples are collected and
statistics are calculated to estimate populations and their parameters.

Statistical populations can represent natural biological populations (such as the
Victorian koala population), although more typically they reflect somewhat artificial
constructs (e.g. Victorian male koalas). A statistical population strictly refers to all the
possible observations from which a sample (a subset) can be drawn and is the entity
about which you wish to make conclusions.

The population parameters are the characteristics (such as population mean, variabil-
ity etc) of the population that we are interested in drawing conclusions about. Since it
is usually not possible to observe an entire population, the population parameters must
be estimated from corresponding statistics calculated from a subset of the population
known as a sample (e.g sample mean, variability etc). Provided the sample adequately
represents the population (is sufficiently large and unbiased), the sample statistics
should be reliable estimates of the population parameters of interest. It is primarily for
this reason that most statistical procedures assume that sample observations have been
drawn randomly from populations (to maximize the likelihood that the sample will
truly represent the population). Additional terminology fundamental to the study of
biometry are listed in Table 3.1.

In addition to estimating population parameters, various statistical functions (or
statistics) are often calculated to express the relative magnitude of trends within and
between populations. For example, the degree of difference between two populations is
usually described by a t-statistic (see chapter 6). Another important concept in statistics
is the idea of probability. The probability of an event or outcome is the proportion
of times that the event or outcome is expected to occur in the long-run (after a
large number of repeated procedures). For many statistical analyses, probabilities of
occurrence are used as the basis for conclusions, inferences and predictions.

Consider the vague research question ‘‘How much do Victorian male koalas weigh?’’.
This could be interpreted as:

• How much do each of the Victorian male koalas weigh individually?
• What is the total mass of all Victorian male koalas added together?
• What is the mass of the typical Victorian male koala?

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Table 3.1 List of important terms. Examples pertain to a hypothetical research investigation into
estimating the protein content of koala milk.

Term Definition Example

Measurement A single piece of recorded information
reflecting a characteristic of interest (e.g.
length of a leaf, pH of a water aliquot mass
of an individual, number of individuals per
quadrat etc)

Protein content of the milk
of a single female koala

Observation A single measured sampling or experimental
unit (such as an individual, a quadrat, a site
etc)

A small quantity of milk
from a single koala

Population All the possible observations that could be
measured and the unit of which wish to
draw conclusions about (note a statistical
population need not be a viable biological
population)

The milk of all female koalas

Sample The (representative) subset of the population
that are observed

A small quantity of milk
collected from 15 captive
female koalasa

Variable A set of measurements of the same type that
comprise the sample. The characteristic that
differs (varies) from observation to
observation

The protein content of koala
milk.

a Note that such a sample may not actually reflect the defined population. Rather, it could be argued that such a sample
reflects captive populations. Nevertheless, such extrapolations are common when field samples are difficult to obtain.

Arguably, it is the last of these questions that is of most interest. We might also be
interested in the degree to which these weights differ from individual to individual and
the frequency of individuals in different weight classes.

3.1 Distributions

The set of observations in a sample can be represented by a sampling or frequency
distribution. A frequency distribution (or just distribution) represents how often
observations in certain ranges occur (see Figure 3.1a). For example, how many male
koalas in the sample weigh between 10 and 11 kg, or how many weigh more than
12 kg. Such a sampling distribution can also be expressed in terms of the probability
(long-run likelihood or chance) of encountering observations within certain ranges.
For example, the probability of encountering a male koala weighing more than 12 kg is
equal to the proportion of male koalas in the sample that weighed greater than 12 kg.
It is then referred to as a probability distribution. When a frequency distribution can
be described by a mathematical function, the probability distribution is a curve. The
total area under this curve is defined as 1 and thus, the area under sections of the
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(c) (d)

Median Mean

Fig 3.1 Fictitious histogram (a) and (b) normal and (c-d) log-normal probability distributions.

curve represent the probability of values falling in the associated interval. Note, it is
not possible to determine the probability of discrete events (such as the probability of
encountering a koala weighing 12.183 kg) only ranges of values.

3.1.1 The normal distribution

It has been a long observed mathematical phenomenon that the accumulation of a
set of independent random influences tend to converge upon a central value (central
limit theorem) and that the distribution of such accumulated values follow a specific
‘bell shaped’ curve called a normal or Gaussian distribution (see Figure 3.1b). The
normal distribution is a symmetrical distribution in which values close to the center
of the distribution are more likely and that progressively larger and smaller values are
less commonly encountered.

Many biological measurements (such as the weight of a Victorian male koala) are
likewise influenced by an almost infinite number of factors (many of which can be
considered independent and random) and thus many biological variables also follow
a normal distribution. Since many scientific variables behave according to the central
limit theorem, many of the common statistical procedures have been specifically
derived for (and thus assume) normally distributed data. In fact, the reliability of
inferences based on such procedures is directly related to the degree of conformity to
this assumption of normality. Likewise, many other statistical elements rely on normal
distributions, and thus the normal distribution (or variants thereof) is one of the most
important mathematical distributions.
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3.1.2 Log-normal distribution

Many biological variables have a lower limit of zero (at least in theory). For example,
a koala cannot weigh less than 0 kg or there cannot be fewer than zero individuals in a
quadrat. Such circumstances can result in asymmetrical distributions that are highly
truncated towards the left with a long right tail (see Figure 3.1c). In such cases, the mean
and median present different values (the latter arguably more reflective of the ‘typical’
value), see Figure 3.1d. These distributions can often be described by a log-normal
distribution. Furthermore, some variables do not naturally vary on a linear scale. For
example, growth rates or chemical concentrations might naturally operate on logarith-
mic or exponential scales. Consequently, when such data are collected on a linear scale,
they might be expected to follow a non-normal (perhaps log-normal) distribution.

3.2 Scale transformations

Essentially, data transformation is the process of converting the scale in which the
observations were measured into another scale. I will demonstrate the principles of
data transformation with two simple examples. Firstly, to illustrate the legitimacy and
commonness of data transformations, imagine you had measured water temperature
in a large number of streams. Let’s assume that you measured the temperature in ◦C.
Supposing later you required the temperatures be in ◦F. You would not need to re-
measure the stream temperatures. Rather, each of the temperatures could be converted
from one scale (◦C) to the other (◦F). Such transformations are very common.

Imagine now that a botanist wanted to examine the leaf size of a particular species.
The botanist decides to measure the length of a random selection of leaves using a
standard linear, metric ruler and the distribution of sample observations are illustrated
in Figure 3.2a. The growth rate of leaves might be expected to be greatest in small leaves
and deccelerate with increasing leaf size. That is, the growth rate of leaves might be
expected to be logarithmic rather than linear. As a result, the distribution of leaf sizes
using a linear scale might also be expected to be non-normal (log-normal). If, instead
of using a linear scale, the botanist had used a logarithmic ruler, the distribution of leaf
sizes may have been more like that depicted in Figure 3.2b.

If the distribution of observations is determined by the scale used to measure of
the observations, and the choice of scale (in this case the ruler) is somewhat arbitrary
(a linear scale is commonly used because we find it easier to understand), then it is
justifiable to convert the data from one scale to another after the data has been collected
and explored. It is not necessary to re-measure the data in a different scale. Therefore,
to normalize the data, the botanist can simply convert the data to logarithms.

The important points in the process of transformations are;

(i) The order of the data has not been altered (a large leaf measured on a linear scale is still
a large leaf on a logarithmic scale), only the spacing of the data has changed

(ii) Since the spacing of the data is purely dependent on the scale of the measuring device,
there is no reason why one scale is more correct than any other scale

(iii) For the purpose of normalization, data can be converted from one scale to another
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Fig 3.2 Ficticious illustration of scale transformations. Leaf length measurements collected
on a linear a) and logarithmic b) scale yielding log-normal and normal sampling distributions
respectively. Leaf length measurements collected on a linear scale can be normalized by applying
a logarithmic function (inset) to each measurement. Such a scale transformation only alters the
relative spacing of measurements c). A largest leaf has the largest values on both scales.

Table 3.2 Common data transformations.

Nature of data Transformation R syntax

Measurements (lengths, weights, etc) loge log(x)

log10 log(x, 10)

log10 log10(x)

log x + 1 log(x+1)

Counts (number of individuals, etc) √
sqrt(x)

Percentages (must be proportions) arcsin asin(sqrt(x))*180/pi

where x is the name of the vector (variable) whose values are to be transformed.

The purpose of scale transformation is purely to normalize the data so as to satisfy
the underlying assumptions of a statistical analysis. As such, it is possible to apply any
function to the data. Nevertheless, certain data types respond more favourably to certain
transformations due to characteristics of those data types. Common transformations
and R syntax are provided in Table 3.2.

3.3 Measures of location

Measures of location describe the center of a distribution and thus characterize the
typical value of a population. There are many different measures of location (see
Table 3.3), all of which yield identical values (in the center of the distribution) when



70 CHAPTER 3

Table 3.3 Commonly estimated population parametersa.

Parameter Description R syntax

Estimates of Location
Arithmetic mean (µ) The sum of the values divided by

the number of values (n)
mean(X)

Trimmed mean The arithmetic mean calculated
after a fraction (typically 0.05
or 5%) of the lower and upper
values have been discarded

mean(X, trim=0.05)

library(psych)

winsor(X, trim=0.05)
Winsorized mean The arithmetic mean is calculated

after the trimmed values are
replaced by the upper and
lower trimmed quantiles

Median The middle value median(X)

Minimum, maximum Smallest and largest values min(X), max(X)
Estimates of Spread

Variance (σ 2) Average deviation of observations
from the mean

var(X)

Standard deviation (σ ) Square-root of variance sd(X)

Median absolute deviation The median difference of
observations from the median
value

mad(X)

Inter-quartile range Difference between the 75% and
25% ranked observations

IQR(X)

Precision and confidence
Standard error of y (sy) Precision of the estimate y sd(X)/sqrt(length(X))

95% confidence interval
of µ

Interval with a 95% probability of
containing the true mean

library(gmodels)

ci(X)

aOnly L-estimators are provided. L-estimators are linear combinations of weighted statistics on ordered values. M-estimators
(of which maximum likelihood is an example) are calculated as the minimum of some function(s).

the population (and sample) follows an exactly symmetrical distribution. Whilst the
mean is highly influenced by unusually large or small values (outliers) and skewed
distributions, the median is more robust. The greater the degree of asymmetry and
outliers, the more disparate the different measures of location.

3.4 Measures of dispersion and variability

In addition to having an estimate of the typical value (center of a distribution), it is
often desirable to have an estimate of the spread of the values in the population. That
is, do all Victorian male koalas weigh the same or do the weights differ substantially?

In its simplest form, the variability, or spread, of a population can be characterized
by its range (difference between maximum and minimum values). However, as ranges
can only increase with increasing sample size, sample ranges are likely to be a poor
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estimate of population spread. Variance (s2) describes the typical deviation of values
from the typical (mean) value:

s2 =
∑ (yi − y)2

n − 1

Note that by definition, the mean value must be in the center of all the values, and
thus the sum of the positive and negative deviations will always be zero. Consequently,
the deviances are squared prior to summing. Unfortunately, this results in the units
of the spread estimates being different to the units of location. Standard deviation (the
square-root of the variance) rectifies this issue.

Note also, that population variance (and standard deviation) estimates are calculated
with a denominator of n − 1 rather than n. The reason for this is that since the sample
values are likely to be more similar to the sample mean (which is of course derived from
these values) than to the fixed, yet unknown population mean, the sample variance
will always underestimate the population variance. That is, the sample variance and
standard deviations are biased estimates of the population parameters. Division by n-1
rather than n is an attempt to partly offset these biases.

There are more robust (less sensitive to outliers) measures of spread including the
inter-quartile range (difference between 75% and 25% ranked observations) and the
median absolute deviation (MAD: the median difference of observations from the
median value).

3.5 Measures of the precision of estimates - standard errors
and confidence intervals

Since sample statistics are used to estimate population parameters, it is also desirable
to have a measure of how good the estimates are likely to be. For example, how well
the sample mean is likely to represent the true population mean. The proximity of
an estimated value to the true population value is its accuracy. Clearly, as the true
value of the population parameter is never known (hence the need for statistics), it
is not possible to determine the accuracy of an estimate. Instead, we measure the
precision (repeatability, consistency) of the estimate. Provided an estimate is repeatable
(likely to be obtained from repeated samples) and that the sample is a good, unbiased
representative of the population, a precise estimate should also be accurate.

Strictly, precision is measured as the degree of spread (standard deviation) in a set
of sample statistics (e.g. means) calculated from multiple samples and is called the
standard error. The standard error can be estimated from a single sample by dividing
the sample standard deviation by the square-root of the sample size ( σ√

n
). The smaller

the standard error of an estimate, the more precise the estimate is and thus the closer
it is likely to approximate the true population parameter.

The central limit theorem (which predicates that any set of averaged values drawn
from an identical population will always converge towards being normally distributed)
suggests that the distribution of repeated sample means should follow a normal distri-
bution and thus can be described by its overall mean and standard deviation (=standard



72 CHAPTER 3

−4s +4s−3s +3s−2s +2s−1s +1sy

P = 0.5

P = 0.1587

P = 0.0228

P = 0.0013

68.27% of values−1 s

90% of values−1.64 s

95% of values−1.96 s

99% of values−2.58 s

(a)

m

Population mean

20
 d

iff
er

en
t c

on
fid

en
ce

 in
te

rv
al

s 
ca

lc
ul

at
ed

fr
om

 s
am

e 
po

pu
la

tio
n

(b)

Fig 3.3 (a) Normal distribution displaying percentage quantiles (grey) and probabilities (areas
under the curve) associated with a range of standard deviations beyond the mean. (b) 20 possible
95% confidence intervals from 20 samples (n = 30) drawn from the one population. Bold intervals
are those that do not include the true population mean. In the long run, 5% of such intervals will
not include the population mean (µ).

error). In fact, since the standard error of the mean is estimated from the same single
sample as the mean, its distribution follows a special type of normal distribution called
a t-distribution. In accordance to the properties of a normal distribution (and thus a
t-distribution with infinite degrees of freedom), 68.27% of the repeated means fall
between the true mean and ± one sample standard error (see Figure 3.3). Put differ-
ently, we are 68.27% percent confident that the interval bound by the sample mean
plus and minus one standard error will contain the true population mean. Of course,
the smaller the sample size (lower the degrees of freedom), the flatter the t-distribution
and thus the smaller the level of confidence for a given span of values (interval).

This concept can be easily extended to produce intervals associated with other
degrees of confidence (such as 95%) by determining the percentiles (and thus number
of standard errors away from the mean) between which the nominated percentage
(e.g. 95%) of the values lie (see Figure 3.3a). The 95% confidence interval is thus
defined as:

P
{

y − t0.05(n−1)sy ≤ µ ≤ y + t0.05(n−1)sy
}

where y is the sample mean, sy is the standard error, t0.05(n−1) is the value of the 95%
percentile of a t distribution with n − 1 degrees of freedom, and µ is the unknown
population mean. For a 95% confidence interval, there is a 95% probability that the
interval will contain the true mean (see Figure 3.3b). Note, this interpretation is about
the interval, not the true population value, which remains fixed (albeit unknown). The
smaller the interval, the more confidence is placed in inferences about the estimated
parameter.
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3.6 Degrees of freedom

The concept of degrees of freedom is sufficiently abstract and foreign to those new to
statistical principles that it warrants special attention. The degrees of freedom refers
to how many observations in a sample are ‘free to vary’ (theoretically take on any value)
when calculating independent estimates of population parameters (such as population
variance and standard deviation).

In order for any inferences about a population to be reliable, each population
parameter estimate (such as the mean and the variance) must be independent of one
another. Yet they are usually all obtained from a single sample and to estimate variance,
a prior estimate of the mean is required. Consequently, mean and variance estimated
from the same sample cannot strictly be independent of one another.

When estimating the population variance (and thus standard deviation) from sample
observations, not all of the observations can be considered independent of the estimate
of population mean. The value of at least one of the observations in the sample is
constrained (not free to vary). If, for example, there were four observations in a sample
with a mean of 5, then the first three of these can theoretically take on any value,
yet the forth value must be such that the sum of the values is still 20. The degrees of
freedom therefore indicates how many independent observations are involved in the
estimation of a population parameter. A ‘cost’ of a single degree of freedom is incurred
for each prior estimate required in the calculation of a population parameter.

The shape of the probability distributions of coefficients (such as those in linear
models etc) and statistics depend on the number of degrees of freedom associated
with the estimates. The greater the degrees of freedom, the narrower the probability
distribution and thus the greater the statistical powera. Degrees of freedom (and thus
power) are positively related to sample size (the greater the number of replicates, the
greater the degrees of freedom and power) and negatively related to the number of
variables and prior required parameters (the greater the number of parameters and
variables, the lower the degrees of freedom and power).

3.7 Methods of estimation

3.7.1 Least squares (LS)

Least squares (LS) parameter estimation is achieved by simply minimizing the overall
differences between the observed sample values and the estimated parameter(s). For
example, the least squares estimate of the population mean is a value that minimizes
the differences between the sample values and this estimated mean. Least squares
estimation has no inherent basis for testing hypotheses or constructing confidence

a Power is the probability of detecting an effect if an effect genuinely occurs.
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Fig 3.4 Diagrammatic illustration of ML estimation of µ.

intervals and is thus primarily for parameter estimation. Least squares estimation is
used extensively in simple model fitting procedures (e.g. regression and analysis of
variance) where optimization (minimization) has an exact solution that can be solved
via simultaneous equations.

3.7.2 Maximum likelihood (ML)

The maximum likelihood (ML) approach estimates one or more population parameters
such that the (log) likelihood of obtaining the observed sample values from such
populations is maximized for a nominated probability distribution.

Computationally, this involves summing the probabilities of obtaining each obser-
vation for a range of possible population parameter estimates, and using integration to
determine the parameter value(s) that maximize the likelihood. A simplified example
of this process is represented in Figure 3.4.

Probabilities of obtaining observations for any given parameter value(s) are calcu-
lated according to a specified exponential probability distribution (such as normal,
binomial, Poisson, gamma or negative binomial). When the probability distribution
is normal (as in Figure 3.4), ML estimators for linear model parameters have exact
computational solutions and are identical to LS solutions (see section 3.7.1). However
for other probability distributions (for which LS cannot be used), ML estimators
involve complex iterative calculations. Unlike least squares, the maximum likelihood
estimation framework also provides standard errors and confidence intervals for esti-
mations and therefore provides a basis for statistical inference. The major draw back
of this method is that it typically requires strong assumptions about the underlying
distributions of the parameters.
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3.8 Outliers

Outliers are extreme or unusual values that do not fall within the normal range of
the data. As many of the commonly used statistical procedures are based on means
and variances (both of which are highly susceptible to extreme observations), outliers
tend to bias statistical outcomes towards these extremes. For a statistical outcome
to reliably reflect population trends, it is important that all observed values have an
equal influence on the statistical outcomes. Outliers, however, have a greater influence
on statistical outcomes than the other observations and thus, the resulting statistical
outcomes may no longer represent the population of interest.

There are numerous mathematical methods that can be used to identify outliers.
For example, an outlier could be defined as any value that is greater than two standard
deviations from the meanb. Alternatively, outliers could be defined as values that are
greater than two times the inter-quartile range from the inter-quartile range.

Outliers are caused by a variety of reasons including errors in data collection or
transcription, contamination or unusual sampling circumstances, or the observation
may just be naturally unusual. Dealing with outliers therefore depends on the cause
and requires a great deal of discretion.

• If there are no obvious reasons why outlying observations could be considered unrepresen-
tative, they must be retained although it is often worth reporting the results of the analyses
with and without these influential observations

• Omitting outliers can be justified if there is reason to suspect that they are not representative
(due to sampling errors etc), although their exclusion should always be acknowledged.

• There are many statistical alternatives that are based on more robust (less affected by
departures from normality or the presence of outliers) measures that should be employed if
outliers are present.

3.9 Further reading

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John Wiley &
Sons, England.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for biologists.
Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.
Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

b This method clearly assumes that the observations are normally distributed.
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Sampling and experimental design with R

A fundamental assumption of nearly all statistical procedures is that samples are
collected randomly from populations. In order for a sample to truly represent a
population, the sample must be collected without bias (intentional or otherwise). R has
a rich array of randomization tools to assist researches randomize their sampling and
experimental designs.

4.1 Random sampling

Biological surveys involve the collection of observations from naturally existing
populations. Ideally, every possible observation should have an equal likelihood of
being selected as part of the sample. The sample() function facilitates the drawing
of random samples.

Selecting sampling units from a numbered list

Imagine wanting to perform bird surveys within five forested fragments which are to
be randomly selected from a list of 37 fragments:

> sample(1:37, 5, replace=F)

[1] 2 16 28 30 20

> MACNALLY <- read.table("macnally.csv", header=T, sep=",")

> sample(row.names(MACNALLY), 5, replace=F)

[1] "Arcadia" "Undera" "Warneet" "Tallarook"

[5] "Donna Buang"

Selecting sample times

Consider a mammalogist who is about to conduct spotlighting arboreal mammal
surveys at 10 different sites (S1→S10). The mammalogist wants to randomize the time
(number of minutes since sundown) that each survey commences so as to restrict
any sampling biases or confounding dial effects. Since the surveys are to take exactly

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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20 minutes and the maximum travel time between sites is 10 minutes, the survey
starting times need to be a minimum of 30 minutes apart. One simple way to do this
is to generate a sequence of times at 30 minute intervals from 0 to 600 (60 × 10) and
then randomly select 10 of the times using the sample() function:

> sample(seq(0,600, by=30), 10, replace=F)

[1] 300 90 270 600 480 450 30 510 120 210

However, these times are not strictly random, as only a small subset of possible times
could have been generated (multiples of 30). Rather, they are a regular sequence of
times that could potentially coincide with some natural rhythm, thereby confounding
the results. A more statistically sound method is to generate an initial random starting
time and then generate a set of subsequent times that are a random time greater than
30 minutes, but no more than (say) 60 minutes after the preceding time. A total of
10 times can then be randomly selected from this set.

> # First step is to obtain a random starting (first survey)

> # time. To do this retain the minimum time from a random set of

> # times between 1 (minute) and 60*10 (number of minutes in

> # 10 hours)

> TIMES <- min(runif(20,1,60*10))

> # Next we calculate additional random times each of which is a

> # minimum and maximum of 30 and 60 minutes respectively after

> # the previous

> for(i in 2:20) {

+ TIMES[i] <- runif(1,TIMES[i-1]+30,TIMES[i-1]+60)

+ if(TIMES[i]>9*60) break

+ }

> # Randomly select 10 of these times

> TIMES <- sample(TIMES, 10, replace=F)

> # Generate a Site name for the times

> names(TIMES) <- paste('Site',1:10, sep='')

> # Finally sort the list and put it in a single column

> cbind('Times'=sort(TIMES))

Times

Site6 53.32663

Site9 89.57309

Site5 137.59397

Site1 180.17486

Site4 223.28241

Site2 312.30799

Site3 346.42314

Site10 457.35221

Site7 513.23244

Site8 554.69444
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Note, that potentially any times could have been generated, and thus this is a better
solution. This relatively simple example could be further extended with the use of some
of the Date-Time functions.

> # Convert these minutes into hs, mins, seconds

> hrs <- TIMES%/%60

> mins <- trunc(TIMES%%60)

> secs <- trunc(((TIMES%%60)-mins)*60)

> RelTm <- paste(hrs,sprintf("%2.0f",mins),secs, sep=":")

> # We could also express them as real times

> # If sundown occurs at 18:00 (18*60*60 seconds)

> RealTm<-format(strptime(RelTm, "%H:%M:%S")+(18*60*60),

+ "%H:%M:%S")

> # Finally sort the list and put it in a single column

> data.frame('Minutes'=sort(TIMES),

+ 'RelativeTime'=RelTm[order(TIMES)],

+ RealTime=RealTm[order(TIMES)])

Minutes RelativeTime RealTime

Site6 53.32663 0:53:19 18:53:19

Site9 89.57309 1:29:34 19:29:34

Site5 137.59397 2:17:35 20:17:35

Site1 180.17486 3: 0:10 21:00:10

Site4 223.28241 3:43:16 21:43:16

Site2 312.30799 5:12:18 23:12:18

Site3 346.42314 5:46:25 23:46:25

Site10 457.35221 7:37:21 01:37:21

Site7 513.23244 8:33:13 02:33:13

Site8 554.69444 9:14:41 03:14:41

Selecting random coordinates from a rectangular grid

Consider requiring 10 random quadrat locations from a 100 × 200 m grid. This can
done by using the runif() function to generate two sets of random coordinates:

> data.frame(X=runif(10,0,100), Y=runif(10,0,200))

X Y

1 87.213819 114.947282

2 9.644797 23.992531

3 41.040160 175.342590

4 97.703317 23.101111

5 52.669145 1.731125

6 63.887850 52.981325

7 56.863370 54.875307

8 27.918894 46.495312

9 94.183309 189.389244

10 90.385280 151.110335
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Random coordinates of an irregular shape

Consider designing an experiment in
which a number of point quadrats (lets
say five) are to be established in a State
Park. These points are to be used for
stationary 10 minute bird surveys and
you have decided that the location of
each of the point quadrats within each
site should be determined via random
coordinates to minimize sampling bias.
As represented in figure to the right,
the site is not a regular rectangle and
therefore the above technique is not
appropriate. This problem is solved by
first generating a matrix of site bound-
ary coordinates (GPS latitude and lon-
gitude), and then using a specific set
of functions from the spa package to
generate the five random coordinates.

LATITUDE

145.450 145.452 145.454 145.456 145.458

37.522

37.524

37.526

37.528

37.530

37.532

LA
T

IT
U

D
E

> LAT <- c(145.450, 145.456, 145.459, 145.457, 145.451, 145.450)

> LONG <- c(37.525, 37.526, 37.528, 37.529, 37.530,37.525)

> XY <- cbind(LAT,LONG)

> plot(XY, type='l')

> library(sp)

> XY.poly <- Polygon(XY)

> XY.points <- spsample(XY.poly, n=8, type='random')

> XY.points

SpatialPoints:

r1 r2

[1,] 145.4513 37.52938

[2,] 145.4526 37.52655

[3,] 145.4559 37.52746

[4,] 145.4573 37.52757

[5,] 145.4513 37.52906

[6,] 145.4520 37.52631

[7,] 145.4569 37.52871

[8,] 145.4532 37.52963

Coordinate Reference System (CRS) arguments: NA

a Note that the function responsible for generating the random coordinates (spsample()) is only
guaranteed to produce approximately the specified number of random coordinates, and will often
produce a couple more or less. Furthermore, some locations might prove to be unsuitable (if for
example, the coordinates represented a position in the middle of a lake). Consequently, it is usually
best to request a 50% more than are actually required and simply ignore any extras.
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These points can then be plotted on the map.

> points(XY.points[1:5])

LATITUDE

145.450 145.452 145.454 145.456 145.458

37.522

37.524

37.526

37.528

37.530

37.532
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T
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U

D
E

Lets say that the above site consisted of two different habitats (a large heathland and
a small swamp) and you wanted to use stratified random sampling rather than pure
random sampling so as to sample each habitat proportionally. This is achieved in a
similar manner as above, except that multiple spatial rings are defined and joined into
a more complex spatial data set.

> LAT1 <- c(145.450, 145.456, 145.457, 145.451,145.450)

> LONG1 <- c(37.525, 37.526, 37.529, 37.530, 37.525)

> XY1 <- cbind(LAT1,LONG1)

> LAT2 <- c(145.456,145.459,145.457,145.456)

> LONG2 <- c(37.526, 37.528, 37.529,37.526)

> XY2 <- cbind(LAT2,LONG2)

> library(sp)

> XY1.poly <- Polygon(XY1)

> XY1.polys <- Polygons(list(XY1.poly), "Heathland")

> XY2.poly <- Polygon(XY2)

> XY2.polys <- Polygons(list(XY2.poly), "Swamp")

> XY.Spolys <- SpatialPolygons(list(XY1.polys, XY2.polys))

> XY.Spoints <- spsample(XY.Spolys, n=10, type='stratified')

> XY.Spoints

SpatialPoints:

x1 x2

[1,] 145.4504 37.52661

[2,] 145.4529 37.52649

[3,] 145.4538 37.52670

[4,] 145.4554 37.52699
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[5,] 145.4515 37.52889

[6,] 145.4530 37.52846

[7,] 145.4552 37.52861

[8,] 145.4566 37.52738

[9,] 145.4578 37.52801

[10,] 145.4510 37.52946

Coordinate Reference System (CRS) arguments: NA

The spsample() function supports random sampling ('random'), stratified ran-
dom sampling ('stratified'), systematic sampling ('regular') and non-aligned
systematic sampling ('nonaligned'). Visual representations of each of these different
sampling designs are depicted in Figure 4.1.

Random distance or coordinates along a line

Random locations along simple lines such as linear transects, can be selected by
generating sets of random lengths. For example, we may have needed to select a single
point along each of ten 100 m transects on four occasions. Since we effectively require
10 × 4 = 40 random distances between 0 and 100 m, we generate these distances

Random sampling Stratified random

Systematic sampling Nonaligned systematic

Fig 4.1 Four different sampling designs supported by the spsample() function.
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and arrange them in a 10 × 4 matrix where the rows represent the transects and the
columns represent the days:

> DIST <- matrix(runif(40,0,100),nrow=10)

> DIST

[,1] [,2] [,3] [,4]

[1,] 7.638788 89.4317359 24.796132 24.149444

[2,] 31.241571 0.7366166 52.682013 38.810297

[3,] 87.879788 88.2844160 2.437215 32.059111

[4,] 28.488424 6.3546905 78.463586 60.120835

[5,] 25.803398 4.8487586 98.311620 87.707566

[6,] 10.911730 25.5682093 90.443998 9.097557

[7,] 63.199593 36.7521530 62.775836 29.430201

[8,] 20.946571 42.7538255 4.389625 81.236970

[9,] 94.274397 21.9937230 64.892213 70.588414

[10,] 13.114078 9.7766933 43.903295 90.947627

To make the information more user friendly, we could put apply row and column
names and round the distances to the nearest centimeter:

> rownames(DIST) <- paste("Transect", 1:10, sep='')

> colnames(DIST) <- paste("Day", 1:4, sep='')

> round(DIST, digits=2)

Day1 Day2 Day3 Day4

Transect1 7.64 89.43 24.80 24.15

Transect2 31.24 0.74 52.68 38.81

Transect3 87.88 88.28 2.44 32.06

Transect4 28.49 6.35 78.46 60.12

Transect5 25.80 4.85 98.31 87.71

Transect6 10.91 25.57 90.44 9.10

Transect7 63.20 36.75 62.78 29.43

Transect8 20.95 42.75 4.39 81.24

Transect9 94.27 21.99 64.89 70.59

Transect10 13.11 9.78 43.90 90.95

If the line represents an irregular feature such as a river, or is very long, it might not
be convenient to have to measure out a distance from a particular point in order
to establish a sampling location. These circumstances can be treated similar to other
irregular shapes. First generate a matrix of X,Y coordinates for major deviations in the
line, and then use the spsample() function to generate a set of random coordinates.

> X <- c(0.77,0.5,0.55,0.45,0.4, 0.2, 0.05)

> Y <- c(0.9,0.9,0.7,0.45,0.2,0.1,0.3)

> XY <- cbind(X,Y)

> library(sp)

> XY.line <- Line(XY)

> XY.points <- spsample(XY.line,n=10,'random')
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> plot(XY, type="l")

> points(XY.points)

> coordinates(XY.points)

X Y

[1,] 0.5538861 0.9000000

[2,] 0.4171638 0.2858188

[3,] 0.3869956 0.1934978

[4,] 0.4579028 0.4697570

[5,] 0.3109703 0.1554851

[6,] 0.1238188 0.2015750

[7,] 0.5398741 0.6746852

[8,] 0.4826300 0.5315749

[9,] 0.1745837 0.1338884

[10,] 0.5248993 0.6372481 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

X

Y

4.2 Experimental design

Randomization is also important in reducing confounding effects. Experimental design
incorporates the order in which observations should be collected and/or the physical
layout of the manipulation or survey. Good experimental design aims to reduce the
risks of bias and confounding effects.

4.2.1 Fully randomized treatment allocation

Lets say that you were designing an experiment in which you intended to investigate
the effect of fertilizer on the growth rate of a species of plant. You intended to have
four different fertilizer treatments (A, B, C and D) and a total of six replicate plants per
treatment. The plant seedlings are all in individual pots housed in a greenhouse and
to assist with watering, you want to place all the seedlings on a large table arranged in
a 4 × 6 matrix. To reduce the impacts of any potentially confounding effects (such as
variations in water, light, temperature etc), fertilizer treatments should be assigned to
seedling positions completely randomly.

This can be done by first generating a factorial vector (containing the levels A, B, C,
and D, each repeated six times), using the sample function to randomize the treatment
orders and then arranging it in a 4 × 6 matrix:

> TREATMENTS <- gl(4,6,24,c('A','B','C','D'))

> matrix(sample(TREATMENTS),nrow=4)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] "C" "D" "A" "B" "C" "A"

[2,] "A" "B" "C" "C" "C" "B"

[3,] "A" "D" "A" "B" "D" "D"

[4,] "B" "D" "C" "B" "A" "D"
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Note that when the optional size argument (number of random entries to draw) is not
supplied, the sample() function performs a random permutation of the elements of
the vector.

4.2.2 Randomized complete block treatment allocation

When the conditions under which an experiment is to be conducted are expected to
be sufficiently heterogeneous to substantially increase the variability in the response
variable (and thus obscure the effects of the main factor), experimental units are
grouped into blocks (units of space or time that are likely to have less variable
background conditions). Each level of the treatment factor is then applied to a single
unit within each block.

In the previous example, treatments were randomly positioned throughout the
4 × 6 matrix. However, if the conditions in the greenhouse were not homogeneous
(perhaps the light was better at one end and the sprinkler system favoured a certain
section of the table), the ability to detect any effects of fertilizer treatment might be
impeded. A randomized complete block (in which each level of fertilizer is randomly
positioned within each block) design is achieved by repeating the sample() function
six times (one per block) and combining the result into a matrix:

> TREATMENTS <- replicate(6,sample(c('A','B','C','D')))

> colnames(TREATMENTS) <- paste('Block',1:6,sep='')

> TREATMENTS

Block1 Block2 Block3 Block4 Block5 Block6

[1,] "B" "C" "B" "C" "D" "A"

[2,] "A" "D" "D" "B" "A" "D"

[3,] "C" "B" "A" "A" "B" "C"

[4,] "D" "A" "C" "D" "C" "B"
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Graphical data presentation

Graphical summaries provide three very important rolls in data analyses. Firstly, they
are an important part of the initial exploratory data analyses that should precede any
formal statistical analyses. Secondly, they provide visual representations of the patterns
and trends revealed in complex statistical analyses. Finally, in some instances (such
as regression trees and ordination plots), graphical representations are the primary
result of the analyses. R accommodates many of the standard exploratory data analyses
via specific plotting functions. Many of these functions require little user input and
produce very rudimentary plots – although the quality of such exploratory data analyses
is rarely of great importance (as they are typically only for the researcher). Nevertheless,
the plotting functionality within R is also highly customizable in order to produce rich,
publication quality graphical and analytical summaries.

Typically, a graphic begins with a high-level plotting function that defines the coarse
structure of the graphic including its dimensions, axes scales, plotting symbol types and
titles before creating a new plotting region on the graphics device. The most frequently
used high-level plotting function is the plot() function which is a generic, overloadeda

function that produces different plots depending on the class of object passed as its
first argument. A range of the graphics produced by plot were illustrated on page 36.
Other commonly used high-level plotting functions include hist(), boxplot(),
scatterplot() and pairs(). Additional elements (such as text and lines) are added
using the rich set of low-level graphical functions available. Common low-level plotting
functions include lines(), points(), text() and axis(). These functions cannot
define the dimensions of the plotting region and thus can only be added to existing plots.

It is not the intention of this chapter to produce finalized versions of graphical
summaries. Rather, emphasis will be on illustrating the range of the commonly used
high and low level plotting functions as well as some of the many graphical options
available to help achieve rich and professional graphics. Subsequent chapters will build
upon these foundations and illustrate the production of publication quality figures
appropriate for the designs and analyses.

a A function is overloaded when many separate functions contain the same name (e.g. plot), yet
differ from each other in the arguments (input) they except and the output they produce. Function
overloading provides a common, convenient name to interface a suite of functions (thereby reducing
the number of names that need to be learned).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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In the plotting system described above, graphics are built up by sequentially adding
items (lines, points, text, etc) to a base plot. Each graphical element is evaluated
individually. However, for data that can be naturally split into subsets (subjects,
blocks), Trellis graphics provide an alternative system in which entire sets of graphical
elements are applied consistently to multiple subplots within a grid (or trellis). The
resulting multipanel displays are produced by a single set of integrated instructions
that also handle the otherwise difficult tasks of coordinating the control of axes scales
and aspect ratios. Furthermore, the plots represent the underlying data in a manner
that closely matches their hierarchical treatment in linear modelling.

All plotting functions are handled via graphics device drivers. When R starts up,
it automatically opens a graphics device driver (x11 on linux, windows on Windows
and quartz or x11 on Mac OS X) ready to accept plotting commands. These graphics
devices are referred to as display or screen devices since the output is displayed
on the screen. There are also numerous file graphics devices (such as postscript,
pdf, jpeg, etc) in which the graphical information is stored in standard formats for
incorporation into other applications. Importantly, plotting commands can only be
sent to a single graphical device at a time and the capabilities of different types of
graphical devices vary.

5.1 The plot() function

The plot() function is a generic (overloaded) function, the output of which depends
on the class of objects passed to it as arguments (see page 36). There are many other
parameters that can be used to control various aspects of the plot() function. Some of
these parameters (summarized below) provide convenient ways to control the scaling
and overall form of the plot and are specific to the plot() high level plotting function
(along with many of its derivatives). Others (graphical parameters, see section 5.2)
provide even finer control of the overall plot and where relevant, can be applied to
most other high and low level plotting functions.

5.1.1 The type parameter

The type parameter takes a single character argument and controls how the points
should be presented.

type="p" type="l"
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type="b" type="o"

Both points & lines Points Over lines
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type="h" type="s"
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5.1.2 The xlim and ylim parameters

xlim and ylim control the x-axis and y-axis range respectively. These parameters take
a vector with two elements (c(min,max)) representing the minimum and maximum
scale limits.

xlim=NULL xlim=c(0,8)

Default limits Minimum of 0 and maximum of 8
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5.1.3 The xlab and ylab parameters

xlab and ylab define the titles for the x-axis and y-axis respectively. These parameters
take a character string.

xlab=NULL xlab="Concentration" xlab=""

Default (vector names) Redefined x-axis title Blank x-axis title
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5.1.4 The axes and ann parameters

The axes and ann parameters indicates whether (=TRUE) or not (=FALSE) ALL the
axes and axes titles should be plotted respectively.

axes=T, ann=T axes=F ann=F

Default (show both) Suppress axes Suppress axes titles
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5.1.5 The log parameter

The log parameter indicates whether or which axes should be plotted on a logarithmic
scale.

log="x" log="y" log="xy"

Log x-axis scale Log y-axis scale Log x-axis and y-axis scales
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5.2 Graphical Parameters

The graphical parameters provide consistent control over most of the plotting features
across a wide range of high and low plotting functions. Any of these parameters
can be set by passing them as arguments to the par() function. Once set via the
par() function, they become global graphical parameters that apply to all subsequent
functions that act on the current graphics device.

All of the graphical parameters have default values that are applied when a new
graphical device is instantiated. When the par() function is used to alter a parameter
setting, it returns a list containing the previous values of any altered parameters.
Applying this list as an argument to the par() function thereby restores the previous
graphical parameters.

> opar <- par(mar=c(4,5,1,1)

> # the plot margins of the current or new device are set

> # to be four, five, one and one text lines from the bottom,

> # left, top and right of the figure boundary

> opar

$mar

[1] 5.1 4.1 4.1 2.1

> par(opar)

> # restore plotting margins to be 5.1, 4.1, 4.1 and 2.1 text

> # lines thick.

Similarly, calling the par() function without any arguments returns a list containing
ALL the current parameter values (altered or not) in alphabetical order. Whilst it might
be tempting to use this list to apply settings to other graphical devices (or even the
currently active device at a later date), since the settings will be restored alphabetically,
parameters further along the alphabet will overwrite or nullify alternative parameters.
For example, both mai and mar provide alternative ways of altering the plot margin
dimensions, however the latter will have the final say. A safer practice for storing current
settings for reuse is to call thepar() function with the altered parameters twice. The first
time will store the previous settings and the second will store the current altered settings.

> # on a new or restored device

> opar <- par(mar=c(4,5,1,1)

> npar <- par(mar=c(4,5,1,1)

> npar

$mar

[1] 4 5 1 1

> par(npar)
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5.2.1 Plot dimensional and layout parameters

The graphical parameters responsible for controlling the dimensions and layout of
graphics can only be set via the par() function and are itemized in Table 5.1 and
represented in Figure 5.1.

Table 5.1 Dimensional and layout graphical parameters.

Parameter tag Value Description

din, fin, pin =c(width,height) Dimensions (width and height) of the
device, figure and plotting regions
(in inches)

fig =c(left,right,bottom,top) Coordinates of the figure region within
the device. Coordinates expressed as
a fraction of the device region.

mai, mar =c(bottom,left,top,right) Size of each of the four figure margins in
inches and lines of text (relative to
current font size).

mfg =c(row,column) Position of the currently active figure
within a grid of figures defined by
either mfcol or mfrow.

mfcol, mfrow =c(rows,columns) Number of rows and columns in a
multi-figure grid.

new =TRUE or =FALSE Indicates whether to treat the current
figure region as a new frame (and
thus begin a new plot over the top of
the previous plot (TRUE) or to allow
a new high level plotting function to
clear the figure region first (FALSE).

oma, omd, omi =c(bottom,left,top,right) Size of each of the four outer margins in
lines of text (relative to current font
size), inches and as a fraction of the
device region dimensions

plt =c(left,right,bottom,top) Coordinates of the plotting region
expressed as a fraction of the device
region.

pty ="s" or ="m" Type of plotting region within the figure
region. Is the plotting region a square
(="s") or is it maximized to fit
within the shape of the figure region.

usr =c(left,right,bottom,top) Coordinates of the plotting region
corresponding to the axes limits of
the plot.
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Fig 5.1 Device, figure and plotting regions along with examples of the graphical parameters
that control each of the respective dimensions for (a) single figure and (b) multifigure graphics.
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5.2.2 Axis characteristics

The parameters that provide finer control of the scale and formatting of the plot axes
are listed in Table 5.2.

Table 5.2 Graphical parameters controlling characteristics of axes.

Parameter tag Value Description

ann, axes =T or =F High level plotting parameters that
specify whether or not titles (main,
sub and axes) and axes should be
plotted.

bty ="o","l","7","c","u" or "]" Single character whose upper case
letter resembles the sides of the
box or axes to be included with the
plot.

lab =c(x,y,length) Specifies the length and number of
tickmarks on the x and y axes.

las =0, 1, 2 or 3 Specifies the style of the axes tick
labels. 0 = parallel to axes,
1 = horizontal, 2 = perpendicular
to axes, 3 = vertical

mgp =c(title,labels,line) Distance (in multiples of the height of
a line of text) of the axis title, labels
and line from the plot boundary.

tck, tcl =length The length of tick marks as a fraction
of the plot dimensions (tck) and
as a fraction of the height of a line
of text (tcl)

xaxp, yaxp =c(min,max,num) Minimum, maximum and number of
tick marks on the x and y axes

xaxs, yaxs ="r" or ="i" Determines how the axes ranges are
calculated. The "r" option results
in ranges that extend 4% beyond
the data ranges, whereas the "i"
option uses the raw data ranges.

xaxt, yaxt ="y", ="n" or ="s" Essentially determines whether or not
to plot the axes. The "s" option is
for compatibility with S.

xlog, ylog =FALSE or =TRUE Specifies whether or not the x and y
axes should be plotted on a
(natural) logarithmic scale.

xpd =FALSE, =TRUE or ='NA' Specifies whether plotting is clipped
to the plotting (=FALSE), figure
(=TRUE) or device (='NA') region
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Table 5.3 Character expansion parameters.

Parameter Applies to

cex All subsequent characters
cex.axis Axes tick labels
cex.lab Axes titles
cex.main Main plot title
cex.sub Plot sub-titles

5.2.3 Character sizes

The base or default character size of text and symbols on a graphic is defined when the
graphics device is initiated. Thereafter, the sizes of characters (including symbols)
can be controlled by the character expansion (cex) parameter. The (cex) parameter
determines the amount by which characters should be magnified relative to the base
character size and can be set as an argument to thepar() function as well as to individual
high and low level plotting functions. In addition to the overall character expansion
parameter, there are also separate character expansion parameters that control the sizes
of text within each of the major components of a figure (see Table 5.3) relative to cex.

> set.seed(12)

> plot(rnorm(5,0,1), rnorm(5,0,1),

xlab="Predictor",

ylab="Response", cex=2,

cex.lab=3, cex.axis=1.5,

bty="l")
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5.2.4 Line characteristics

Many of the characteristics of lines are controlled by arguments to the par() function
or to high and low level plotting functions (see Table 5.4).

5.2.5 Plotting character parameter - pch

The plotting character (pch) parameter can be set with the par() function, and can
also be set as arguments within individual high and low level plotting functions.

> set.seed(12)

> # plot points as solid circles

> plot(rnorm(5,0,1), rnorm(5,0,1), pch=16, axes=F,

ann=F, cex=4)
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Table 5.4 Line characteristics.

Parameter Description Examples

lty The type of line. Specified as either
a single integer in the range of
1 to 6 (for predefined line types)
or as a string of 2 or 4 numbers
that define the relative lengths
of dashes and spaces within a
repeated sequence.

lty=1
lty=2
lty=3
lty=4
lty=5
lty=6
lty=7
lwd=’1234’
lwd=’9111’

lwd The thickness of a line as a
multiple of the default thickness
(which is device specific)

lwd=0.5
lwd=0.75
lwd=1
lwd=2
lwd=4

lend The line end style (square, butt or
round)

lend=2

lend=1

lend=0

ljoin The style of the join between lines ljoin=0 ljoin=1 ljoin=2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig 5.2 Basic pch plotting symbols.
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Fig 5.3 Extended pch plotting symbols for the symbol font (font=5). The plotting character
number is determined from the grid by adding the x coordinate to 10 times the y coordinate.
Hence, symbol ♣ is character number 167.

There are 25 basic plotting symbols (see Figure 5.2) that can be used to define the
point character (pch) within many high and low level plotting functions. The numbers
to the left of the symbols in the figure indicate the integer value used as the
argument.

In addition to these standard plotting characters, when used in conjunction with a
symbol font face, the pch parameter can accept any integer between 1:128 and 160:254
to yield an extended point character set (see Figure 5.3).

> set.seed(12)

> plot(rnorm(5,0,1), rnorm(5,0,1), pch=167, cex=4,

font=5)

The pch parameter can also accept any other keyboard printing
character (letter, number, punctuation etc) as an argument.

> set.seed(12)

> plot(rnorm(5,0,1), rnorm(5,0,1), pch="A",

axes=F, cex=4)
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Upper and lower case letters can also be plotted respectively via
the predefined Letters[] and letters[] vectors.

> set.seed(12)

> plot(rnorm(5,0,1), rnorm(5,0,1),

pch=letters[1:5], axes=F, cex=4)

The size and weight of plotting symbols is controlled respectively by the cex

(character expansion factor) and lwd (line width) parameters.

> m <- matrix(rep(1:5,5),nrow=5,

byrow=F)

> plot(m, t(m), pch=21,

bg="grey", cex=m,

lwd=t(m), xlim=c(.5,5.5),

ylim=c(.5,5.5), las=1,

xlab="cex", ylab="lwd")

1 2 3 4 5
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5.2.6 Fonts

The shape of text characters is controlled by the family (the overall visual appearance
of a group of fonts - otherwise known as the typeface) and the font (plain, bold, italics,
etc), see Figure 5.4. The font families supported varies for each graphical device as do
the names by which they are referred (see Table 5.5).

> set.seed(12)

> # plot points with a italic serif

> # font

> plot(rnorm(5,0,1), rnorm(5,0,1),

pch="A", family="serif", font=4,

xlab="Predictor", ylab="Response")

A A

A

A

A

Predictor

R
es
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e

Different fonts can also be applied to each of the main plotting components
(font.axis: axes labels, font.lab: axes titles, font.main: Main plot title and
font.sub: plot sub-title).
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ABCabc123

ABCabc123

ABCabc123

ABCabc123

ABCabc123

ABCabc123

AvantGarde

Bookman

NewCenturySchoolbook

Palatino

Helvetica–Narrow

mono

serif

sans

1 (Plain) 2 (Bold) 3 (Italic) 4 (Bold + Italic)

Common fonts

Postscript/PDF fonts

Fig 5.4 Appearance of major family (y-axis) and font (x-axis) sequences.

Table 5.5 Family names appropriate for the most common devices.

Device Serif Sans serif Monospaced

Display devices
X11() (Unix/Linux) "serif" "sans" "mono"

quartz() (Mac OS X) "serif" "sans" "mono"

window() (Windows) "serif" "sans" "mono"

File devices
postscript "Times" "Helvetica" "Courier"

pdf "Times" "Helvetica" "Courier"

Hershey fonts

R also supports Hershey (vector) fonts that greatly extend the range of characters
and symbols available. In contrast to regular (bitmap) fonts that consist of a set of
small images (one for each character of each style and size), vector fonts consist of the
coordinates of each of the curves required to create the character. That is, vector fonts
store the information on how to draw the character rather than store the character itself.
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Hershey fonts can therefore be scaled to any size without distortion. Unfortunately
however, Hershey fonts cannot be combined with regular fonts in a single plotting
statement and thus they cannot be easily incorporated into mathematical formulae. An
extensive selection of the Hershey font characters available can be obtained by issuing
the command below and following the prompts:

> demo(Hershey)

> set.seed(12)

> plot(rnorm(5,0,1), rnorm(5,0,1),

pch="A", family="HersheySerif",

xlab="Predictor", ylab="Response")

R
e
s
p
o
n
s
e

Predictor

5.2.7 Text orientation and justification

The orientation and justification of characters and strings are also under the control of
a set of graphics parameters (see Table 5.6).

5.2.8 Colors

The color of all plotting elements is controlled by a set of parameters. The default
color for plotting elements is specified using the col parameter. There are also
separate parameters that control the color of each of the major components of a
figure (col.axis: the axes tick labels, col.lab: the axes titles, col.main: the main
plot title, col.sub: plot sub-titles) and when specified, take precedence over the col
parameter. Two additional parameters, bg and fg can be used to control the color

Table 5.6 Text orientation and justification characteristics.

Parameter Description Examples

adj Specifies the justification of a text
string relative to the coordinates
of its origin. A single number
between 0 and 1 specifies
horizontal justification. A vector
of two numbers (=c(x,y))
indicates justification in
horizontal and vertical
directions.

Text

adj=0

Text

adj=0.5

Text

adj=1

Text

=c(0,1)

Text

=c(1,0)

Text
=c(1,-1)

crt, srt Specifies the amount of rotation
(in degrees) of single characters
(crt) and strings (srt) T

ex
t

srt=90

Tex
t

srt=45

Text

srt=-45
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of the background and foreground (boxes and axes) respectively. The color of other
elements (such as the axes themselves) is manipulated by using the col parameter
within low-level plotting functions.

> set.seed(12)

> plot(rnorm(5,0,1),

rnorm(5,0,1),

xlab="Predictor",

ylab="Response", col=8,

col.lab="grey50",

col.axis="grey90", bty="l")
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There are numerous ways that colors can be specified:

• by an index (numbers 0-8) to a small palette of eight colors (0 indicates the background
color). The colors in this palette can be reviewed with the palette() function.

• by name. The names of the 657 defined colors can be reviewed with the colors() function.
The epitools package provides the colors.plot() function which generates a graphic
that displays a matrix of all the colors. When used with the locator=TRUE argument,
a series of left mouse clicks on the color squares, terminated by a right mouse click, will
result in a matrix of corresponding color names.

• extract an arbitrary number (n) of contiguous colors from built-in color palettes
– rainbow(n) - Red→Violet
– heat.colors(n) - White→Orange→Red
– terrain.colors(n) - White→Brown→Green
– topo.colors(n) - White→Brown→Green→Blue
– grey(n) - White→Black

• by direct specification of the red, green and blue components of the RGB spectrum as a
character string in the form "#RRGGBB". This string consists of a # followed by a pair of
hexadecimal digits in the range 00:FF for each component.

5.3 Enhancing and customizing plots with low-level plotting functions

In addition to their specific parameters, each of the following functions accept many of
the graphical parameters. In the function definitions, these capabilities are represented
by three consecutive dots (...). Technically,... indicates that any supplied arguments
that are not explicitly part of the definition of a function are passed on to the relevant
underlying functions (in this case, par).

5.3.1 Adding points - points()

Points can be added to a plot using the points(x, y, pch, ...) function. This
function plots a plotting character (specified by the pch parameter) at the coordinates
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specified by the vectors x,y. Alternatively, the coordinates can be passed as a formula
of the form, y~x.

> set.seed(1)

> X<-seq(9,12,l=10)

> Y1<-(1*X+2)+rnorm(10,3,1)

> Y2<-(1.2*X+2)+rnorm(10,3,1)

> plot(c(Y1,Y2)~c(X,X),

type="n", axes=T, ann=F,

bty="l", las=1)

> points(Y1~X,pch=21, type="b")

> points(Y2~X,pch=16, type="b")
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5.3.2 Adding text within a plot - text()

The text() function adds text strings (labels parameter) to the plot at the supplied
coordinates (x,y) and is defined as:

> text (x, y = NULL, labels = seq_along(x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL, cex = 1, col = NULL,

font = NULL, ...)

Descriptions and examples of the arguments not previously outlined in the graphical
parameters section, are outlined in Table 5.7.

paste()

The paste() function concatenates vectors together after converting each of the
elements to characters. This is particularly useful for making labels and is equally

Table 5.7 text() arguments.

Parameter Description Examples

pos Simplified text justification that
overrides the adj parameter.
1=below, 2=left, 3=above
and 4=right.

Text

pos=1

Text

pos=2

Text
pos=3

Text

pos=4

offset Offset used by pos as a fraction
of the width of a character.

Text

pos=1,offset=1

Text

pos=1,offset=2

vfont Provision for Hershey (vector)
font specification
(vfont=c(typeface,
style).

lab=’ABCabc123’
vfont=c(’serif’,’plain’)

lab=c(’\VE’,’\MA’,’\#H0844’)
vfont=c(’serif’,’plain’)
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useful in non-graphical applications. Paste has two other optional parameters (sep and
collapse) which define extra character strings to be placed between strings joined.
sep operates on joins between paired vector elements whereas collapse operates on
joints of elements within a vector respectively.

> cc <- c("H","M","L")

> cc

[1] "H" "M" "L"

> paste(cc,1:3, sep=":")

[1] "H:1" "M:2" "L:3"

> paste(cc, collapse=":")

[1] "H:M:L"

> paste(cc, 1:3,sep="-",collapse=":")

[1] "H-1:M-2:L-3"

> set.seed(10)

> X<-rnorm(5,10,1)

> Y<-rnorm(5,10,1)

> plot(X,Y, type="n",axes=T,

ann=F, bty="l", las=1,

xlim=c(8,11), ylim=c(8,11))

> points(X,Y,col="grey", pch=16)

> text(X,Y,paste("Site",1:5,

sep="-"), cex=2, pos=4) 8.0 8.5 9.0 9.5 10.0 10.5 11.0

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Site–1

Site–2

Site–3

Site–4

Site–5

Non-character arguments

Most other objectsb passed as a label object are evaluated before being coerced into a
string for plotting. In so doing, the output of other functions can be plotted.

> plot(c(0,1),c(0,1),type="n",

axes=T, ann=F, bty="l", las=1)

> text(.5,.75, 5*2+3, cex=2)

> text(.5,.5, mean(c(2,3,4,5)),

cex=2)

> text(.5,.25, paste("mean=",

mean(c(2,3,4,5))), cex=2)
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5.3.3 Adding text to plot margins - mtext()

The mtext() function adds text (text) to the plot margins and is typically used to
create fancy or additional axes titles. The mtext() function is defined as:

> mtext(text, side = 3, line = 0, outer = FALSE, at = NA,

adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

b Language objects are treated differently (see section 5.3.5).
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Table 5.8 mtext() arguments.

Parameter Description Examples

side Specifies which margin the title
should be plotted in. 1=bottom,
2=left, 3=top and 4=right.

Predictor

R
es

po
ns

e

text=’Response’,side=2

text=’Predictor’,side=1

line Number of text lines out from the
plot region into the margin to
plot the marginal text

Predictor
Predictor

line=1 line=2

outer For multi-plot figure, if outer=TRUE, put the marginal text in the outer margin
(if there is one).

at Position along the axis (in user
coordinates) of the text

Predictor Predictor

at=2 at=8

0 2 4 6 8 10

adj, padj Adjustment (justification) of the
position of the marginal text
parallel (adj) and perpendicular
(padj) to the axis. Justification
depends on the orientation of
the text string and the margin
(axis).

Predictor

adj=0,
padj=1

Predictor

padj=1

Predictor

adj=1

0 2 8 10

A adj=1

B

adj=0,padj=1C

padj=1

A

las=1,adj=1(A)

B
las=1,adj=0,
padj=1(B)C

las=1,padj=1(C)

4 6

Descriptions and examples of the arguments not previously outlined in the graphical
parameters section, are outlined in Table 5.8.

5.3.4 Adding a legend - legend()

Thelegend() function brings together a rich collection of plotting functions to produce
highly customizable figure legends in a single call. A sense of the rich functionality of
the legend function is reflected in Table 5.9 and the function definition:

> legend(x, y = NULL, legend, fill = NULL, col = par("col"),

lty, lwd, pch, angle = 45, density = NULL, bty = "o",

bg = par("bg"), box.lwd = par("lwd"), box.lty = par("lty"),

pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,

xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,

adj = c(0, 0.5), text.width = NULL, text.col = par("col"),

merge = do.lines && has.pch, trace = FALSE,

plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,

inset = 0)
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Table 5.9 legend() arguments. To save space, some parameter descriptions are combined,
others are omitted.

Parameter Description Examples

legend A vector of strings or expressions to comprise the labels of the legend.

title A string or expression for a title
at the top of the legend

title=’Temperature’ Temperature

High
Medium
Low

bty,
box.lty,
box.lwd

The type ("o" or "n"), line
thickness and line style of box
framing the legend.

box.lwd=1.5, box.lty=2 High
Medium
Low

bg,
text.col

The colors used for the legend
background and legend labels

bg=’grey’,
text.col=c(’white’,’grey40’,’black’) High

Medium
Low

horiz Whether or not to produce a
horizontal legend instead of a
vertical legend

horiz=TRUE High Medium Low

ncol The number of columns in which
to arrange the legend labels

ncol=2 High
Medium

Low

cex Character expansion for all elements of the legend relative to the plot cex
graphical parameter.

Boxes If any of the following parameters are set, the legend labels will be
accompanied by boxes.

fill Specifies the fill color of the
boxes. A vector of colors will
result in different fills.

fill=c(’white’,’grey’,’black’) High
Medium
Low

angle,
density

Specifies the angle and number
of lines that make up the stripy
fill of boxes. Negative density
values result in solid fills.

fill=c(’white’,’grey’,’black’) High
Medium
Low

Points
pch Specifies the type of plotting

character.
col=c(’white’,’grey’,’black’) High

Medium
Low

pt.cex,
pt.lwd

Specifies the character expansion
and line width of the plotting
characters.

pch=21,pt.cex=1:3, pt.lwd=2 High
Medium
Low

col, pt.bg Specifies the foreground and
background color of the
plotting characters (and lines
for col).

pch=16,
pt.bg=c(’grey80’,’grey’,’black’),
col=1

High
Medium
Low

(continued overleaf)



104 CHAPTER 5

Table 5.9 (continued)

Parameter Description Examples

Lines If any of the following parameters are set, the legend labels will be
accompanied by lines.

lwd, lty Specifies the width and type of
lines.

lwd=c(1.5), lty=c(1,2,3) High
Medium
Low

merge Whether or not to merge points
and lines.

lwd=c(1.5), lty=c(1,2,3) High
Medium
Low

In addition to the usual methods for specifying the positioning coordinates,
convenient keywords reflecting the four corners ("bottomleft", "bottomright",
"topleft", "topright") and boundaries ("bottom", "left", "top", "right") of
the plotting region can alternatively be specified.

5.3.5 More advanced text formatting

The text plotting functions described above (text(), mtext() and legend()) can
also build plotting text from objects that constitute the R language itself. These are
referred to as language objects and include:

• names - the names of objects
• expressions - unevaluated syntactically correct statements that could otherwise be

evaluated at the command prompt
• calls - these are specific expressions that comprise of an unevaluated named function

(complete with arguments)

Any language object passed as an argument to one of the text plotting functions
described above (text(), mtext() and legend()) will be coerced into an expression
and evaluated as a mathematical expression prior to plotting. In so doing, the text
plotting functions will also apply TEX-like formatting (the extensive range of which can
be sampled by issuing the demo(plotmath) command) where appropriate. Hence,
advanced text construction, formatting and plotting is thus achieved by skilled use of a
variety of functions (described below) that assist in the creation of language objects for
passing to the text plotting functions.

expression()

The expression function is used to build complex expressions that incorporate
TEX-like mathematical formatting. Hence, the expression function is typically nested
within one of the text plotting functions to plot complex combinations of characters
and symbols.
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The expression() function is useful for
generating axes titles with complex units.

> set.seed(10)

> X<-rnorm(5,10,1)

> Y<-rnorm(5,10,1)

> plot(X,Y, type="p", axes=T,

ann=F, bty="l", las=1)

> mtext(expression(Temperature~

(degree*C)), side=1, line=3,

cex=1.5)

> mtext(expression(Respiration~

(mL~O[2]~h^-1)), side=2,

line=3.5, cex=1.5)
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The expression() function is also useful for
plotting complex mathematical formula within
the plots.

> set.seed(10)

> X<-rnorm(5,10,1)

> Y<-rnorm(5,10,1)

> plot(X,Y,type="p",axes=T, ann=F,

bty="l", las=1)

> text(9.3,10, expression(f(y) ==

frac(1,sqrt(2*pi*sigma^2))*

e^frac(-(y-mu)^2, 2*sigma^2)),

cex=1.25)

9.0 9.5 10.0

8.5

9.0

9.5

10.0 f(y) = 1

2πs2
e

−(y−m)2

2s
2

bquote()

The bquote() function generates a language object by converting the argument after
first evaluating any objects wrapped in ‘.()’. This provides a way to produce text
strings that combine mathematical formatting and the output statistical functions.

> set.seed(3)

> X<-rnorm(20,0,1)

> Y<-rnorm(20,0,1)

> # calculate correlation

> # between X and Y

> cc<-cor(X,Y)

> plot(X,Y,type="n",axes=T,

ann=F, bty="l", las=1)

> points(X,Y,col="grey", pch=16)

> text(0,0,bquote(corr.~coef.==.

(round(cc,2))), cex=4)

> text(0,0,names(cc))

−1.0 −0.5 0.0 0.5 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

corr. coef. = −0.14
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Note the required use of the tilde (~) character to allow spacesc. A space character at
that point would have resulted in a syntactically incorrect mathematical expression.

substitute()

Alternatively, for situations in which substitutions are required within non-genuine
mathematical expressions (such as straight character strings), the substitute()

function is useful.

> X<-c(2,4,6,10,14,18,24,30,36,42)

> Y<-c(5,8,10,11,15,18,16,15,19,16)

> n<-nls(Y~SSasymp(X,a,b,c))

> plot(Y~X, type='p', ann=F)

> lines(1:40, predict(n,

data.frame(X=1:40)))

> a<-round(summary(n)$coef[1,1],2)

> b<-round(summary(n)$coef[2,1],2)

> c<-round(summary(n)$coef[3,1],2)

> text(40,8,substitute(y == a

- b*e^c*x,list(y="Nutrient

uptake",a=a,b=b,c=c,x="Time")),

cex=1.25, pos=2)

> mtext("Time (min)",1,line=3)

> mtext(expression(Nutrient~uptake~(mu~mol~g^-1)),

2, line=3)
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Combinations of advanced text formatting functions

It is possible to produce virtually any text representation on an R plot, however,
some representations require complex combinations of the above functions. Whilst,
these functions are able to be nested within one another, the combinations often
appear to behave counter-intuitively. Great understanding and consideration of the
exact nuances of each of the functions is required in order to successfully master
their combined effects. Nevertheless, the following scenarios should provide some
appreciation of the value and uses of some of these combinations.

The formula for calculating the mean of a sample (µ =
∑

yi
n ) as represented by

an R mathematical expression is: mu == frac(sum(y[i]),n). What if however, we
wished to represent not only the formula applied to the data, but the result of the formula

as well (e.g. (µ =
∑

yi
n = 10))? To substitute the actual result, the bquote() function

is appropriate. However, the following mathematical expression is not syntactically
correct, as a mathematical expression cannot have two relational operators (=) in
the one statement. mu == frac(sum(y[i]),n) == .(meanY) . Building such an
expression is achieved by combining the bquote() function with a paste() function.

c Alternatively, space can be provided by the keyword phantom(char), where char is a character
whose width is equal to the amount of space required.
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> set.seed(1)

> Y<-rnorm(100,0,1)

> plot(density(Y),type="l", axes=T,

ann=F, bty="l", las=1,

col="grey")

> text(10,0.2,bquote(paste(mu ==

frac(sum(y[i]),n)) ==

.(mean(Y))), cex=2) 7 8 9 10 11 12 13

0.0

0.1

0.2

0.3

0.4

m =
∑yi

n
= 10.10889

The more observant and discerning reader may have noticed the y-axis label in the
substitute() example above had a space between the µ and the word ‘mol’. Using
just the expression() function, this was unavoidable. A more eligant solution would
have been to employ a expression(paste()) combination.

> X<-c(2,4,6,10,14,18,24,30,36,42)

> Y<-c(5,8,10,11,15,18,16,15,19,16)

> n<-nls(Y~SSasymp(X,a,b,c))

> plot(Y~X, type='p', ann=F)

> ...

> mtext(expression(paste("Nutrient

uptake", " (", mu, "mol.",

g^-1, ")", sep="")), 2, line=3)
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5.3.6 Adding axes - axis()

Although most of the high-level plotting functions provide some control over axes
construction (typically via graphical parameters), finer control over the individual
axes is achieved by constructing each axis separately with the axis() function (see
Table 5.10). The axis() function is defined as:

> axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,

pos = NA, outer = FALSE, font = NA, lty = "solid", lwd = 1,

col = NULL, hadj = NA, padj = NA, ...)

> set.seed(1)

> X<-rnorm(200,10,1)

> m<-mean(X)

> s<-sd(X)

> plot(density(X), type="l",

axes=F, ann=F)

> axis(1, at=c(0, m, m+s, m-s,

m+2*s, m+2*-s, 100), lab=

expression(NA, mu, 1*sigma,

-1*sigma, 2*sigma, -2*sigma,

NA), pos=0, cex.axis=2)

−2σ −1σ µ 1σ 2σ
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Table 5.10 axis() arguments.

Parameter Description Examples

side Simplifies which axis to construct. 1=bottom, 2=left, 3=top and 4=right.

at Where the tick marks are to be drawn.
Axis will span between minimum
and maximum values supplied.

at=c(0,.1,.5,.7)

0.0 0.1 0.5 0.7

labels Specifies the labels to draw at each
tickmark.

• TRUE or FALSE - should labels be
drawn

• a character or expression vector
defining the text appear at each
tickmark specified by the at
parameter.

at=c(0.25,0.5,0.75),
labels=c("Low","Medium","High")

Low Medium High

tick Specifies whether or not (TRUE or
FALSE) the axis line and tickmarks
should be drawn.

tick=F

0.0 0.2 0.4 0.6 0.8 1.0

line Specifies the number of text lines into
the margin to place the axis (along
with the tickmarks and labels).

line=−1

0.0 0.2 0.4 0.6 0.8 1.0

pos Specifies where along the
perpendicular axis, the current axis
should be drawn.

pos=0.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

outer Specifies whether or not (TRUE or FALSE) the axis should be drawn in the
outer margin.

font The font used for the tickmark labels.

lwd, lty,
col

Specifies the line width, style and
color of the axis line and tickmarks.

lwd=2.5, lty=1,
col="grey60"

0.0 0.2 0.4 0.6 0.8 1.0

hadj, padj Specifies the parallel and perpendicular
adjustment of tick labels to the axis.
Units of movement (for example)
are padj=0: right or top, padj=1:
left or bottom. Other values are
multipliers of this justification.

hadj=1, padj=−1

0.0 0.2 0.4 0.6 0.8 1.0

5.3.7 Adding lines and shapes within a plot

There are a number of low-level plotting functions for plotting lines and shapes.
Individually and collectively, they provide the tools to construct any custom graphic.
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The following demonstrations will utilize a dataset by Christensen et al. (1996) that
consists of course woody debris (CWD) measurements as well as a number of human
impact/land use characteristics for riparian zones around freshwater lakes in North
America.

> christ <- read.table("christ.csv", header=T, sep=",")

Straight lines - abline()

The low-level plotting abline() function is used to fit straight lines with a given
intercept (a) and gradient (b) or single values for horizontal (h) or vertical (v) lines.
The function can also be passed a fitted linear model (reg) or coefficient vector from
which it extracts the intercept and slope parameters. The definition of the abline()
function is:

> abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,

coef = NULL, untf = FALSE, ...)

Assessing departures from linearity and
homogeneity of variance can be assisted
by fitting a linear (least squares regression)
line through the data cloud.

> plot(CWD.DENS ~ RIP.DENS,

data=christ)

> # use abline to add a

> # regression trendline

> abline(lm(CWD.DENS ~ RIP.DENS,

data=christ))

> # use abline to represent the

> # mean y-value

> abline(h=mean(christ$CWD.DENS),

lty=2)
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Lines joining a succession of points - lines()

The lines() function can be used to add lines between points and is particularly
useful for adding multiple trends (or non-linear trends, see ‘Smoothers’) through
a data cloud. As with the points() function, the lines() function is a generic
function whose actions depend on the type of objects passed as arguments. Notably,
for simple coordinate vectors, the points() and lines() functions are virtually
interchangeable (accept in the type of points they default to). Consequently, a more
complex example involving the predict() function (a function that predicts new
values from fitted models) will be used to demonstrate the power of the lines
function.
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Assessing departures from linearity and
homogeneity of variance can be assisted
by fitting a linear (least squares regression)
line through the data cloud.

> plot(CWD.DENS ~ RIP.DENS,

+ data=christ, type="p")

> # divide the dataset up

> # according to lake size

> area <- cut(christ$AREA,2,

+ lab=c("small", "large"))

> # explore trend for each

> # area separately

> lm.small <- lm(CWD.DENS ~ RIP.DENS, data=christ,

+ subset=area=="small")

> lm.large <- lm(CWD.DENS ~ RIP.DENS, data=christ,

+ subset=area=="large")

> lines(christ$RIP.DENS[area=="small"], predict(lm.small))

> lines(christ$RIP.DENS[area=="large"], predict(lm.large), lty=2)

> legend("bottomright",title="Area",legend=c("small","large"),

+ lty=c(1,2))
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Lines between pairs of points - segments()

The segments function draws straight lines between points ((x0,y0) and (x1,y1)).
When each of the coordinates are given as vectors, multiple lines are drawn.

> segments(x0, y0, x1, y1, col = par("fg"), lty = par("lty"),

lwd = par("lwd"), ...)

Assessing departures from linearity and
homogeneity of variance can also be fur-
ther assisted by adding lines to represent the
residuals (segments that join observed and
predicted responses for each predictor).
This example also makes use of the with()
function which evaluates any expression or
call (in this case the segments function)
in the context of a particular data frame
(christ) or other environment.

> plot(CWD.DENS ~ RIP.DENS,

data=christ)
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> abline(lm(CWD.DENS ~ RIP.DENS, data=christ))

> # fit the linear model

> christ.lm <- lm(CWD.DENS ~ RIP.DENS, data=christ)

> abline(christ.lm)

> with(christ, segments(RIP.DENS, CWD.DENS, RIP.DENS,

predict(christ.lm), lty=2))

Arrows and connectors - arrows()

The arrows() function builds on the segments function to add provisions for simple
arrow heads. Furthermore, as the length, angle and end to which the arrow head applies
are all controllable, the arrows() function is also particularly useful for annotating
figures and creating flow diagrams. The function can also be useful for creating
customized error bars (as demonstrated in the following example).

> area<-cut(christ$AREA,2,

lab=c("small","large"))

> library(gmodels)

> s<-tapply(christ$CWD.DENS,

area,ci)

> plot(christ$CWD.DENS ~ area,

border="white", ylim=range(s))

> points(1,s$small["Estimate"])

> points(2,s$large["Estimate"])

> with(s, arrows(1,

small["CI lower"], 1,

small["CI upper"], length=0.1,

angle=90, code=3))

> with(s, arrows(2,

large["CI lower"], 2,

large["CI upper"], length=0.1,

angle=90, code=3))
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Rectangles - rect()

The rect() function draws rectangles from left-bottom, right-top coordinates that
can be filled with solid or striped patterns (according to the line type, width, angle,
density and color):

> rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,

col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),

...)
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The main use of rectangles is to produce frames for items within plots.

> set.seed(1)

> Y<-rnorm(200,10,1)

> plot(density(Y),type="l",axes=T,

ann=F, bty="l", las=1,

col="grey")

> rect(7.5,.1,12.5,.3, ang=45,

density=20, col="grey",

border="black")

> text(10,0.2,bquote(paste(mu ==

frac(sum(y[i]),n)) ==

.(mean(Y))),cex=2)

0.0
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0.2

0.3

0.4

m =
∑yi

n
= 10.03554
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Irregular shapes between a succession of points - polygon()

Given a vector of x coordinates and a corresponding vector of y coordinates, the
polygon() function draws irregular shapes:

> polygon(x, y = NULL, density = NULL, angle = 45, border = NULL,

col = NA, lty = par("lty"), ...)

Smoothers

Smoothing functions can be useful additions to scatterplots, particularly for assessing
(non)linearity and the nature of underlying trends. There are many different types of
smoothers see section 8.3 and Table 8.2.

Smoothers are added to a plot by first
fitting the smoothing function (loess(),
ksmooth()) to the data before plotting the
values predicted by this function across
the span of the data.
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> plot(CWD.DENS ~ RIP.DENS,

data=christ)

> # fit the loess smoother

> christ.loess<-loess(CWD.DENS ~

RIP.DENS, data=christ)

> # created a vector of the sorted

> # X values

> xs<-sort(christ$RIP.DENS)

> lines(xs, predict(christ.loess, data.frame(RIP.DENS=xs)))

> # fit and plot a kernel smoother

> christ.kern <- ksmooth(christ$RIP.DENS, christ$CWD.DENS,

"norm", bandwidth=200)

> lines(christ.kern, lty=2)
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Confidence ellipses - matlines()d

The matlines() function, along with the similar matplot() and matpoints()

functions plot multiple columns of matrices against one another, thereby providing
a convenient means to plot predicted trends and confidence intervals in a single
statement.

Confidence bands are added by using the value(s) returned by a predict() function
as the second argument to the matlines() function.

> plot(CWD.DENS ~ RIP.DENS,

data=christ)

> christ.lm<-lm(CWD.DENS ~

RIP.DENS, data=christ)

> xs<-with(christ,

seq(min(RIP.DENS),

max(RIP.DENS), l=1000))

> matlines(xs,

predict(christ.lm,

data.frame(RIP.DENS=xs),

interval="confidence"),

lty=c(1,2,2), col=1)
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5.4 Interactive graphics

The majority of plotting functions on the majority of graphical devices operate by
sending all of the required information to the device at the time of the call - no
additional information is required or accepted from the user. The display devices
(X11(), windows() and quartz()) however, also support a couple of functions
designed to allow interactivity between the user and the current plotting region.

5.4.1 Identifying points - identify()

The identify() function allows the user to label points interactively. After issuing the
identify() function with arguments corresponding to the x and y axis vectors, R awaits
mouse input in the form of left mouse button clicks in the plotting region of the current
display device. Each time the left mouse button is clicked on the display device, the
coordinates of the mouse pointer are retrieved and the nearest data points (determined
by comparing the mouse pointer coordinates to the point coordinates supplied as argu-
ments) are labelled. A right mouse click (‘ESC’ on MAC OS X) terminates the function
which returns a vector of point indices. In its simplest form, identify() function can
be used to identify potentially problematic observations. Additional arguments can be
supplied to provide finer control over the relative positioning and text of the labels.

d Note, the same could be achieved via three seperate lines() calls.
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5.4.2 Retrieving coordinates - locator()

The locator() function returns the coordinates of the mouse pointer each time the
left mouse button is clicked on the display device. A right mouse click on the display
(‘ESC’ on MacOSX) terminates the function which returns a list of x, y coordinates.
Alternatively, the function can be supplied with an argument indicating the number
of points to locate (n). Furthermore, if the type= parameter is set to one of the plotting
point types, the points will be echoed onto the current plotting region. The locator()
function provides a convenient way to construct mock data sets, trace objects as well as
construct simple maps.

5.5 Exporting graphics

Graphics can also be written to several graphical file formats via specific graphics
devices which oversee the conversion of graphical commands into actual graphical
elements. In order to write graphics to a file, an appropriate graphics device must
first be ‘opened’. A graphics device is opened by issuing one of the device functions
listed below and essentially establishes the devices global parameters and readies
the device stream for input. Opening such a device also creates (or overwrites) the
nominated file. As graphical commands are issued, the input stream is evaluated
and accumulated. The file is only written to disk when the device is closed via the
dev.off() function.

Note that as the capabilities and default global parameters of different devices differ
substantially, some graphical elements may appear differently on different devices. This
is particularly true of dimensions, locations, fonts and colors.

5.5.1 Postscript - poscript() and pdf()

Postscript is actually a programming language that defines both the nature of the
content and exactly how the content should be displayed or printed on a page. As a
result, postscript is device independent and scalable to any size and is therefore the
preferred format of most publishers. Whilst there are many other arguments that can
be passed to the postscript() function, common use is as follows:

> postscript(file, family, fonts = NULL, width, height,

horizontal, paper)

where file is a file name (and path), font and family declare all the fonts required
in the device, width and height define the dimensions (in inches) of the graphic,
paper defines the size of the printer paper (or ‘special’ for graphics in which width and
height is defined) and horizontal determines the orientation of the graphic relative
to the paper type.

Like postscript, pdf (Portable Document Format) files contain information on
exactly how the printed page should appear. Pdf documents can also contain a great
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deal of additional information on how the information should behave in different
contexts. Such ‘advanced’ postscript features are largely designed to enhance the
capabilities of documents displayed on screens and are therefore rarely utilized from R.
Importantly, unlike R’s postscript device, the pdf device does not embed a prologue
of font metrics, and thus only fonts that can be assumed to be present on the target
devices (printers and other computers) should be used.

5.5.2 Bitmaps - jpeg() and png()

R also supports a range of bitmap file formats, the range of which depends on the
underlying operating system and the availability of external applications.

> jpeg(filename, width = 480, height = 480, units = "px",

pointsize = 12, quality = 75, bg = "white", res = NA, ...)

where filename defines the name of the file (including path), width and height

define the dimensions of the graphic (in pixels) and quality defines the compression
quality (100 indicates no compression). The graphical capabilities of the bitmap devices
are largely tied to the default display device.

5.5.3 Copying devices - dev.copy()

Alternatively, graphics can be exported to file by copying the contents of one device
(such as a display device) to another device (such as a file device) using the dev.copy()
function.

5.6 Working with multiple graphical devices

It is possible to have multiple graphical devices open simultaneously. However, only
one device can be active (receptive to plotting commands) at a time. Once a device
has been opened (see section 5.5), the device object is given an automatically iterated
reference number in the range of 1 to 63. Device 1 will always be a null device that
cannot accept plotting commands and is essentially just a placeholder for the device
counter. The set of functions for managing multiple devices are described in Table 5.11.
To appreciate the workings of these functions, first create multiple display devices. To
do so, issue one of the commands listed below (the one appropriate for your system)
multiple times:

Windows MacOSXe Linux
windows() quartz() X11()

Note that the device title bars will indicate the device reference number as well as
whether the device is currently active or inactive. The last one created will be active.

e The default graphics device for MacOSX is X11, however, many prefer quartz.
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Table 5.11 Functions for managing multiple graphics devices.

Function Description Example

dev.list() Returns the numbers of open devices (with device types as
column headings)

X11 X11

2 3

dev.cur() Returns the number (and name) of the currently active device X11

3

dev.next() Returns the number (and name) of the next available device
after the device specified by the which= argument (after
current if which= absent)

X11

2

dev.prev() Returns the number (and name) of the previous available
device after the device specified by the which= argument
(before current if which= absent)

X11

2

dev.set() Makes the device specified by the which= argument the
currently active device and returns the number (and
name) of this device. If which= argument absent, it is set
to the next device.

X11

2

dev.off() Closes the device specified by the which= argument (or
current device if which= argument absent), makes the
next device active and returns the number (and name) of
this device.

X11

3

5.7 High-level plotting functions for univariate (single variable) data

5.7.1 Histogram

Histograms are useful at representing
the distribution of observations for large
(> 30) sample sizes.

> set.seed(1)

> VAR <- rnorm(100,10,2)

> hist(VAR)
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The number or size of the bins can be
controlled by passing respectively a sin-
gle number or vector of bin breakpoints
with the breaks= argumentf. Specify-
ing the probability=T argument will
express the number counts in each bin
as a density (probability) rather than as
a frequency.

> hist(VAR, breaks=18,

probability=T)

#OR equivalently in this case

> hist(VAR, breaks=seq(5.5,15,

by=.5), probability=T)
VAR
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5.7.2 Density functions

Probability density functions are also useful additions or alternatives to histograms as
they further assist in describing the patterns of the underlying distribution. Typical
kernel density functions fit a series of kernels (symmetric probability functions) to
successive subsets (windows) of the ordered dataset from which new estimates of the
observations are calculated. The resolution and texture (smoothness) of the density
function is controlled by a smoothing parameter which essentially defines the width of
the kernel window.

A density function can be plotted using
the density() function as an argument
to the high-level overloaded plot()

function.

> plot(density(VAR))
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f It is also possible to pass a function that computes the number of breaks or the name of a breaking
algorithm.
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The type of smoothing kernel (normal
or gaussian by default) can be defined
by the kernel= argument and the degree
of smoothing is controlled by the bw=

(bandwidth) argument. The higher the
smoothing bandwidth, the greater the
degree of smoothing.

> plot(density(VAR, bw=1))
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The density function can also be added to
a histogram using the density() func-
tion as an argument to a the low-level
lines() function.

> set.seed(1)

> VAR1 <- rlnorm(100,2,.5)

> hist(VAR1, prob=T)

> lines(density(VAR1))
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5.7.3 Q-Q plots

Q-Q normal plots can also be useful at diagnosing departures from normality by
comparing the data quantilesg to those of a standard normal distribution. Substantial
deviations from linearity, indicate departures from normality.

> qqnorm(VAR1)

> qqline(VAR1)
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g Quantiles are a regular spacing of points throughout an ordered data set.
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5.7.4 Boxplots

For smaller sample sizes, histograms and density functions can be difficult to interpret.
Boxplots (or box-and-whisker plots) provide an alternative means of depicting the
location (average), variability and shape of the distribution of data. The dimensions of
a boxplot are defined by the five-number summaries (minimum value, lower quartile
(Q1), median (Q2), upper quartile (Q3) and maximum value - each representing 25%)
of the data (see Figure 5.5).

Recall that boxplots are typically used to explore the distributions of small samples.
The volatility of quantiles from small samples offers little confidence in any single
component of a boxplot. Hence, the key characteristic of a boxplot that is indicative
of a departure from normality is that each segment of the boxplot gets progressively
larger (or smaller). Only in such a circumstance, could you be confident that the
sample could not have come from a normal distribution of values. The following
boxplots provide an illustration of such a departure from normality (log-normal
boxplot).

Univariate boxplots are generated by passing a vector to the boxplot() func-
tion.

> set.seed(6)

> VAR2<-rlnorm(15,2,.5)

> boxplot(VAR2)
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Fig 5.5 Boxplot of a standard normal distribution (mean=0, sd=1).
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The horizontal=T argument is used to produce
horizontally aligned boxplots

> boxplot(VAR2, horizontal=T)

4 6 8 10 12 14 16 18

5.7.5 Rug charts

Another representation of the data that can be added to existing plots is a rug chart that
displays the values as a series of ticks on the axis. Rug charts can be particularly useful
at revealing artifacts in the data that are ‘‘smoothed’’ over by histograms, boxplots and
density functions.

> set.seed(1)

> VAR <- rnorm(100,10,2)

> plot(density(VAR))

> rug(VAR,side=1)
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5.8 Presenting relationships

When two or more continuous variables are collected, we often intend to explore
the nature of the relationships between the variables. Such trends can be depicted
graphically in scatterplots. Scatterplots display a cloud of points, the coordinates
of which correspond to the values of the variables that define the horizontal and
vertical axes.

5.8.1 Scatterplots

Although scatterplots do not formally distinguish between response (dependent) and
predictor (independent) variables, when such distinctions occur, independent variables
are conventionally plotted along the horizontal (x) axis.
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Scatterplots are used prior to analyses to help assess the suitability of the data to
particular analytical procedures. Of particular importance are the insights they provide
into the linearity and patterns of variability of trends. They are also presented post
analysis as summaries of the trends and analyses.

The following demonstrations will again utilize the course woody debris (CWD)
dataset by Christensen et al. (1996). As previously demonstrated, scatterplots can
generated with the plot() function. Additional features (such as trendlines, smoothers
and other features that assist in assessing departures from linearity and homogeneity
of variance) can then be added with various low-level plotting functions.

To facilitate all of these diagnostic features as well as marginal boxplots, the high-
level scatterplot() function (car package) is very useful. Note, the scatterplot()
function fits a lowess rather than loess smoother.

> library(car)

> scatterplot(CWD.DENS ~

RIP.DENS, data=christ)
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Scatterplot matrices (SPLOMS)

Scatterplot matrices display a panel of scatterplots between each pair of variables when
there are three or more continuous variables. A given variable makes up the x-axis of
each of the panels up the column and the y-axis of each of the panels along the row. The
diagnal panels are often populated with univariate plots such as boxplots, histograms
or density functions. The upper right panels are a mirror of the lower left panels. There
are a few high-level plotting functions for producing scatterplot matrices:

• the pairs() function is an extension of the regular plot()function
Different functions can be applied to the lower, upper and diagonal panels of the grid.
A lowess smoother is supported by the panel.smooth function. It is also possible to
define alternative functions. This example illustrates the application of horizontal boxplots
into the diagonal panels. Since, the upper panels are a mirror of the lower panels, the upper
panels can be removed with by setting the upper.panel= parameter to NULL.

> # define a boxplot panel function

> panel.bxp <- function(x, ...)

> \{

> usr <- par("usr"); on.exit(par(usr))
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> par(usr = c(usr[1:2],0,2))

> boxplot(x, add=TRUE, horizontal=T)

> \}

> pairs(~CWD.DENS + RIP.DENS + CABIN + AREA, data=christ,

lower.panel=panel.smooth, diag.panel=panel.bxp,

upper.panel=NULL, gap=0)
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• the scatterplot.matrix() function (car package) is an extension of the regular
scatterplot() function.

> library(car)

> scatterplot.matrix(~CWD.DENS + RIP.DENS + CABIN + AREA,

data=christ, diag="boxplot")
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The scatterplot.matrix() function can differentiate trends for different levels
(groups) of a categorical variable. To illustrate, we will use the cut() function to
convert the AREA vector into a categorical variable with two levels (small and large).

> scatterplot.matrix(~CWD.DENS + RIP.DENS + CABIN,

groups=cut(christ$AREA,br=2, lab=c("small","large")),

by.groups=T, data=christ, diag="density")

|| ||||||| | ||| |||

CWD.DENS

80
0

12
00

16
00

20
00

0

200

400

600

800

800

1200

1600

2000

|| | || |||| |||| | | |

RIP.DENS

0

20
0

40
0

60
0

80
0 0 5 10 15 20 25

25

20

15

10

5

0||| | || | | | || | |

CABIN

large
small

3D scatterplots

Three dimensional scatterplots can be useful for exploring multivariate patterns
between combinations of three or more variables. To illustrate 3D scatterplots in R, we
will make use of a dataset by Allison and Cicchetti (1976) that compiles sleep, morphol-
ogy and life history characteristics 62 species of mammal along with predation indices.

> allison <- read.table("allison.csv", header=T, sep=",")

• the scatterplot3d function (scatterplot3d package)

> library(scatterplot3d)

> with(allison,

scatterplot3d(log

(Gestation), log(BodyWt),

log(LifeSpan), type="h",

pch=16))

The type="h" parameter specifies that
points should be connected to the base
by a line and the pch=16 parameter
specifies solid points. All variables were
expressed as their natural logarithms
using the log() function.
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• the scatter3d function (Rcmdr package) displays rotating three dimensional plots.

> library(Rcmdr)

> with(allison,

scatter3d(log(Gestation),

log(LifeSpan), log(BodyWt),

fit="additive", rev=1))

The fit= parameter specifies the form
of surface to fit through the data. The
option selected ("additive") fits an
additive non-parametric surface through
the data cloud and is useful for identify-
ing departures from multivariate linearity.
The rev= parameter specifies the num-
ber of full revolutions the plot should
make. Axes rotations can also be manip-
ulated manually by dragging the mouse
over the plot.
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> library(Rcmdr)

> with(allison,

scatter3d(log(Gestation),

log(LifeSpan), log(BodyWt),

fit="linear", parallel=F,

groups=factor(Predation),

fill=F))

The parallel=F argument specifies that
separate surfaces are generated for each of
the levels in the factorial variable speci-
fied by the groups= argument. In this
case, the factor() function was used to
convert the numeric predation vector to a
factor. The fill=F argument specifies
that the surfaces should not be filled in.
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• the cloud() function (lattice package). Refer to section 5.11 for more information on
trellis graphics.

> library(lattice)

> cloud(log(LifeSpan) ~

log(BodyWt) *

log(Gestation),

data=allison, pch=16,

type=c("p","h"),

screen=c(x=-90, y=-20),

zlab=list(rot=90))
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The data are specified as a formula of the format z~x*y. The type=c("p","h")

argument specifies that both points and connected lines should be used. The screen=

argument specifies the amount of axes rotation for the x, y and z axes. The zlab list
specifies that the z axis label should be rotated 90 degrees.

5.9 Presenting grouped data

Data for which a response has been measured from two or more groups of sampling
units are summarised graphically by estimates of location (such as mean and median)
and spread (standard error and standard deviation). As with summaries of relationships,
graphical summaries for grouped data serve as both exploratory data analysis tools as
well as visual representations of statistical analyses.

5.9.1 Boxplots

Plotting multiple boxplots side by side (one for each level of a factorial variable),
provides a useful means of examining homogeneity (equal) of variance assumptions.
To illustrate boxplots, we will reproduce Figure 4.5 from Quinn and Keough (2002)
using data sets from Ward and Quinn (1988) and Furness and Bryant (1996).

> ward<-read.table("ward.csv",

header=T, sep=",")

> boxplot(EGGS~ZONE, data=ward,

ylab="Number of eggs per

capsule", xlab="Zone")
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> furness<-read.table("furness

.csv", header=T, sep=",")

> boxplot(METRATE~SEX, data=

furness, ylab="metabolic

rate", xlab="Sex")
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5.9.2 Boxplots for grouped means

Technically, the normality and homogeneity of variance assumptions pertain to the
residuals (difference between values observed and those predicted by the proposed
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model) and thus the model replicates. For multi-factor analysis of variance designs, the
appropriate replicates for a hypothesis test are usually the individual observations from
each combination of factors. Hence, boxplots should also reflect this level of replication.

To illustrate, a data set introduced in
Box 11.2 of Sokal and Rohlf (1997) on
the oxygen consumption of two species
of limpets under three seawater concen-
trations will be used.

> limpets <-read.table("limpets

.csv", header=T, sep=",")

> boxplot(O2~SEAWATER*SPECIES,

limpets)
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5.9.3 Interaction plots - means plots

Interactions are outcomes in which the effects of one factor are dependent on the levels
of other factor(s). That is, the effect of one factor is not consistent across all levels of the
other factors. Interaction plots depict the mean response value of each combination of
factor levels (groups) and are therefore useful for interpreting interactions.

• the interaction.plot() function (car package).

> library(car)

> limpets <-read.table

("limpets.csv", header=T,

sep=",")

> with(limpets, interaction.

plot(SEAWATER, SPECIES,

O2, type="b", pch=16)) 8
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• the plotmeans() function (gplots package)

> library(gplots)

> plotmeans(O2 ~ interaction

(SPECIES, SEAWATER),

limpets, connect=list

(c(1,3,5), c(2,4,6)))
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5.9.4 Bargraphs

Bargraphs are plots where group means are represented by the tops of bars or columns.
Pure statisticians (who refer to these plots as ‘dynamite plots’) argue that bars should
only be used to represent frequencies (totals) and are not appropriate for representing
means (since the body of the bar has no logical interpretation). Furthermore, they
implicitly assume parametric assumptions and can misleadingly conceal the true nature
of the data. Consequently, there are no high-level bargraph plotting functions (and it is
unlikely that the R Core Development Team would ever support such a function). Such
professionals prefer boxplots (see section 5.9.2), means plots (means represented by
points) and violin plots (see section 5.9.5). Nevertheless, biologist often find bargraph
useful graphical summaries and they do provide a greater area for displaying colors
and shading to distinguish different treatment combinations. Such is the power of R,
they are relatively simple to construct using a series of low-level plotting functions.

> means<-with(ward, tapply(EGGS,

ZONE, mean))

> sds <-with(ward, tapply(EGGS,

ZONE, sd))

> ns<-with(ward, tapply(EGGS, ZONE,

length))

> ses <- sds/sqrt(ns)

> b<-barplot(means, ylim=c(min(pretty

( means - ses)), max(pretty

(means+ses))), xpd=F,

ylab="Number of eggs per capsule")

> arrows(b, means+ses, b, means-ses,

angle=90, code=3)

> box(bty="l") Littor Mussel
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Similarly, multifactor bargraphs can also be constructed from first principles.

> means<-with(limpets, tapply(O2,

list(SPECIES,SEAWATER), mean))

> sds <-with(limpets, tapply(O2,

list(SPECIES,SEAWATER), sd))

> ns<-with(limpets, tapply(O2,

list(SPECIES,SEAWATER), length))

> ses <- sds/sqrt(ns)

> b<-barplot(means, ylim=c(min(pretty

( means-ses)), max(pretty

(means+ses))), beside=T, xpd=F,

ylab="Oxygen consumption",

legend.text=rownames(means))

> arrows(b,means+ses,b,means-ses,

angle=90, code=3,length=0.05)

> box(bty="l")
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5.9.5 Violin plots

Violin plots are an alternative to boxplots and bargraphs for representing the charac-
teristics of multiple samples.

> library(UsingR)

> simple.violinplot(EGGS~ZONE, ward,

+ col="gray", bw="SJ")

> box(bty="l")

Littor Mussel

5
10

15
20

5.10 Presenting categorical data

Associations between two or more categorical variables (such as those data modelled
by contingency tables and log-linear modelling) can be summarized graphically by
mosaic and association plots. To illustrate graphical summaries for categorical data,
we will use a data set by Young and Winn (2003) in which encountered eels were
cross-classified according to species and location (grass beds, sand/rubble or bordering
the previous two).

> eels <-read.table("eels.csv", header=T, sep=",")

> eels.xtab <- xtabs(COUNT ~ LOCATION + SPECIES, eels)

5.10.1 Mosaic plots

Mosaic plots represent each of the various cross-classifications as a mosaic of rectangles,
the sizes of which are proportional to the observed frequenciesh. In addition, the
rectangles can be shaded to reflect the magnitudes and significancei of the residuals,
thereby providing an indication of which cross-classifications contribute to a lack of
independence.

> library(vcd)

> strucplot(eels.xtab, gp=shading_max)

h Actually, the widths and heights are proportional to the marginal and conditional percentages
respectively.
i Significance is determined via a permutation test, and thus exact probabilities differ from run
to run.
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5.10.2 Association plots

Association plots depict cross-classifications as rectangles whose heights reflect the
relative sizes and polarity of Pearson residuals and whose areas reflect the raw residuals.
As with mosaic plots, shading can be used to reflect the magnitude and significance of
residuals.

> assoc(eels.xtab, gp=shading_max)
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5.11 Trellis graphics

Trellis graphics provide the means of plotting the trends amongst a set of variables
separately according to the levels of other variables and can therefore be more
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Table 5.12 Incomplete list of high-level lattice (Trellis) plotting functions.

Plotting function Description

Univariate
densityplot() Conditional kernel smoothing density plot
histogram() Conditional histograms
dotplot() Conditional dotplots

Bivariate
xyplot() Conditional scatterplots
qq() Conditional quantile-quantile plots
qqmath() Conditional qq-normal plots
barchart() Conditional barcharts
bwplot() Conditional boxplots

Multivariate
cloud() Conditional 3D scatterplots
splom() Matrix of scatterplots

appropriate for exploring trends within grouped dataj. The separate trends are presented
in multiple panels within a grid and/or as different plotting symbols within plots.
Many of the high-level plotting functions described above have trellis equivalents
(see Table 5.12), all of which are provided by the lattice package.

Trellis (lattice) graphics provide a richer, more customizable set of graphical
procedures that can also be easily modified and committed multiple times to multiple
devices. The cost however, is that they are substantially more complex. An excellent
source of reference on trellis graphics (and graphics in general) within R is Murrell
(2005).

To illustrate trellis graphics we will again make use of the Allison and Cicchetti
(1976) data in which the amount of sleep time, morphology and predation risks were
compiled for 62 species of mammal. Predation risk was measured on a scale of 1
through 5 where 1 is very low and 5 is very high.

> allison <- read.table("allison.csv", header=T, sep=",")

A basic conditioning plot, might depict the relationship between the life span of
mammals against body mass separately for each level of predation. Such a plot could be
constructed using the xyplot() function. Grouped data can be specified in one of two
ways. Firstly, if the plotting formula contains a factor vector separated by a |, separate
panels are constructed for each level of the factor. The xyplot() function introduces
the type="r" argument which specifies regression trendlines.

j Such as those data modelled by blocking and repeated measured designs.
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> xyplot(log(LifeSpan)~log(BodyWt) | factor(Predation),

data=allison, type=c("p","r"))

log(BodyWt)

lo
g(

Li
fe

S
pa

n)

1

2

3

4

1 2 3

4

−5 0 5

−5 0 5 −5 0 5

1

2

3

4

5

It is clear that the relationship between longevity and body mass is conditional on the
level of predation risk.

Alternatively, each of the trends can be
included on the one plot by passing the
factorial vector as a group= argument.

> xyplot(log(LifeSpan)~

log(BodyWt), groups=factor

(Predation), data=allison,

type=c("p","r"),

auto.key=list(columns=5))
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Additional graphical features can be added to the panels using the panels= argument.
This argument accepts a range of predefined functions, as well as user defined functions
to achieve specific results and is called by the plotting function for each panel in the
lattice.

> myFunc<-function(x,y) a<-lm(y~x); panel.points(x,y, pch=16,

col="grey"); panel.abline(a,col="grey"); panel.loess(x,y)

> xyplot(log(LifeSpan) ~ log(BodyWt) | factor(Predation),

data=allison, panel=myFunc)
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Accordingly, there are also lattice equivalents of most of the low level plotting
functions described in section 5.3. Typically, these functions are called by the name of
the basic low level function name with a panel. prefex.

Unlike the basic plotting system described earlier, lattice plots are not a biproduct of
the plotting functions. Instead, the output is returned by the function. Consequently,
an entire trellis can be stored as an object and subsequently updated (modified) using
the overloaded update() function. The overall graphic is not committed until the
object is printedk.

> myPlot<-xyplot(log(LifeSpan) ~ log(BodyWt) |

factor(Predation), data=allison, panel=myFunc)

> print(myPlot)

This produces the same as above.

5.11.1 scales() parameters

Many of the elements associated with the panel axes can be customized using the
scales parameter. This parameter accepts a lists of arguments associated with the x
and y axes.

> update(myPlot, xlab=expression(paste("Body weight ",

(log[e]*Kg))), ylab=expression(paste("Lifespan ",

(log[e]*yrs))), scales=list(x=list(at=seq(-6,6,l=7))))

k As with most non-plotting functions in R, when a lattice plotting function is called without assigning
a name for the output object, the result is automatically passed onto an appropriate print method
before being discarded. If the function’s output is assigned a name, the object is not ‘‘printed’’, it is
stored.
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5.12 Further reading

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Murrell, P. (2005). R Graphics (Computer Science and Data Analysis). Chapman & Hall/CRC.
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Simple hypothesis testing – one and two
population tests

6.1 Hypothesis testing

Chapter 3 illustrated how samples can be used to estimate numerical characteristics or
parameters of populationsa. Importantly, recall that the standard error is an estimate
of how variable repeated parameter estimates (e.g. population means) are likely to be
from repeated (long-run) population re-sampling. Also recall, that the standard error
can be estimated from a single collected sample given the degree of variability and size
of this sample. Hence, sample means allow us make inferences about the population
means, and the strength of these inferences is determined by estimates of how precise
(or repeatable) the estimated population means are likely to be (standard error). The
concept of precision introduces the value of using the characteristics of a single sample
to estimate the likely characteristics of repeated samples from a population.This same
philosophy of estimating the characteristics of a large number of possible samples and
outcomes forms the basis of frequentist approach to statistics in which samples are
used to objectively test specific hypotheses about populations.

A biological or research hypothesis is a concise statement about the predicted or
theorized nature of a population or populations and usually proposes that there is
an effect of a treatment (e.g. the means of two populations are different). Logically
however, theories (and thus hypothesis) cannot be proved, only disproved (falsification)
and thus a null hypothesis (H0) is formulated to represent all possibilities except the
hypothesized prediction. For example, if the hypothesis is that there is a difference
between (or relationship among) populations, then the null hypothesis is that there
is no difference or relationship (effect). Evidence against the null hypothesis thereby
provides evidence that the hypothesis is likely to be true.

The next step in hypothesis testing is to decide on an appropriate statistic that
describes the nature of population estimates in the context of the null hypothesis
taking into account the precision of estimates. For example, if the null hypothesis is

a Recall that in a statistical context, the term population refers to all the possible observations of a
particular condition from which samples are collected, and that this does not necessarily represent
a biological population.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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that the mean of one population is different to the mean of another population, the null
hypothesis is that the population means are equal. The null hypothesis can therefore
be represented mathematically as: H0 : µ1 = µ2 or equivalently: H0 : µ1 − µ2 = 0.

The appropriate test statistic for such a null hypothesis is a t-statistic:

t = (y1 − y2) − (µ1 − µ2)

sy1−y2

= (y1 − y2)

sy1−y2

where (y1 − y2) is the degree of difference between sample means of population 1 and
2 and sy1−y2

expresses the level of precision in the difference. If the null hypothesis is
true and the two populations have identical means, we might expect that the means of
samples collected from the two populations would be similar and thus the difference in
means would be close to 0, as would the value of the t-statistic. Since populations and
thus samples are variable, it is unlikely that two samples will have identical means, even
if they are collected from identical populations (or the same population). Therefore, if
the two populations were repeatedly sampled (with comparable collection technique
and sample size) and t-statistics calculated, it would be expected that 50% of the time,
the mean of sample 1 would be greater than that of population 2 and visa versa. Hence,
50% of the time, the value of the t-statistic would be greater than 0 and 50% of the
time it would be less than 0. Furthermore, samples that are very different from one
another (yielding large positive or negative t-values), although possible, would rarely
be obtained.

All the possible values of the t-statistic (and thus sample combinations) calculated
for a specific sample size for the situation when the null hypothesis is true could be
collated and a histogram generated (see Figure 6.1a). From a frequentist perspective,
this represents the sampling or probability distribution for the t-statistic calculated
from repeated samples of a specific sample size (degrees of freedom) collected under
the situation when the null hypothesis is true. That is, it represents all the possible
expected t-values we might expect when there is no effect. When certain conditions
(assumptions) are met, these t-values follow a known distribution called a t-distribution
(see Figure 6.1b) for which the exact mathematical formula is known. The area under
the entire t-distribution (curve) is one, and thus, areas under regions of the curve

−4 −3 −2 −1 0 4

(a)

t = 0

P(t )

(b)

1 2 3

Fig 6.1 Distribution of all possible values of the t-statistic calculated from samples (each
comprising of 10 observations) collected from two identical populations (situation when null
hypothesis is true) represented as a (a) histogram and (b) t-distribution with 18 degrees of
freedom (df = (n1 − 1) + (n2 − 1) = 18).
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can be calculated, which in turn represent the relative frequencies (probabilities) of
obtaining t-values in those regions. From the above example, the probability (p-value)
of obtaining a t-value of greater than zero when the null hypothesis is true (population
means equal) is 0.5 (50%).

When real samples are collected from two populations, the null hypothesis that the
two population means are equal is tested by calculating the real value of the t-statistic,
and using an appropriate t-distribution to calculate the probability of obtaining the
observed (data) t-value or ones more extreme when the null hypothesis is true. If
this probability is very low (below a set critical value, typically 0.05 or 5%), it is
unlikely that the sample(s) could have come from such population(s) and thus the
null hypothesis is unlikely to be true. This then provides evidence that the hypothesis
is true.

Similarly, all other forms of hypothesis testing follow the same principal. The
value of a test statistic that has been calculated from collected data is compared
to the appropriate probability distribution for that statistic. If the probability of
obtaining the observed value of the test statistic (or ones more extreme) when the null
hypothesis is true is less than a predefined critical value, the null hypothesis is rejected,
otherwise it is not rejected.

Note that the probability distributions of test statistics are strictly defined under a
specific set of conditions. For example, the t-distribution is calculated for theoretical
populations that are exactly normal (see chapter 3) and of identical variability. The
further the actual populations (and thus samples) deviate from these ideal conditions,
the less reliably the theoretical probability distributions will approximate the actual
distribution of possible values of the test statistic, and thus, the less reliable the resulting
hypothesis test.

6.2 One- and two-tailed tests

Two-tailed tests are any test used to test a null hypotheses that can be rejected by
large deviations from expected in either direction. For example, when testing the null
hypothesis that two population means are equal, the null hypothesis could be rejected
if either population was greater than the other. By contrast one-tailed tests are those
tests that are used to test more specific null hypotheses that restrict null hypothesis
rejection to only outcomes in one direction. For example, we could use a one-tailed
test to test the null hypothesis that the mean of population 1 was greater or equal to
the mean of population 2. This null hypothesis would only be rejected if population
2 mean was significantly greater than that of population 1.

6.3 t-tests

Single population t-tests

Single population t-tests are used to test null hypotheses that a population parameter
is equal to a specific value (H0 : µ = θ , where θ is typically 0), and are thus useful
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for testing coefficients of regression and correlation or for testing whether measured
differences are equal to zero.

Two population t-tests

Two population t-tests are used to test null hypotheses that two independent popula-
tions are equal with respect to some parameter (typically the mean, e.g. H0 : µ1 = µ2).
The t-test formula presented in section 6.1 above is used in the original student
or pooled variances t-test. The separate variances t-test (Welch’s test), represents
an improvement of the t-test in that more appropriately accomodates samples with
modestly unequal variances.

Paired samples t-tests

When observations are collected from a population in pairs such that two variables
are measured from each sampling unit, a paired t-test can be used to test the null
hypothesis that the population mean difference between paired observations is equal
to zero (H0 : µd = 0). Note that this is equivalent to a single population t-test testing
a null hypotheses that the population parameter is equal to the specific value of zero.

6.4 Assumptions

The theoretical t-distributions were formulated for samples collected from theoret-
ical populations that are 1) normally distributed (see section 3.1.1) and 2) equally
varied. Consequently, the theoretical t-distribution will only strictly represent the
distribution of all possible values of the t-statistic when the populations from which
real samples are collected also conform to these conditions. Hypothesis tests that
impose distributional assumptions are known as parametric tests. Although substantial
deviations from normality and/or homogeneity of variance reduce the reliability of
the t-distribution and thus p-values and conclusions, t-tests are reasonably robust
to violations of normality and to a lesser degree, homogeneity of variance (provided
sample sizes equal).

As with most hypothesis tests, t-tests also assume 3) that each of the observations
are independent (or that pairs are independent of one another in the case of paired
t-tests). If observations are not independent, then a sample may not be an unbiased
representation of the entire population, and therefore any resulting analyses could
completely misrepresent any biological effects.

6.5 Statistical decision and power

Recall that probability distributions are typically symmetrical, bell-shaped distribu-
tions that define the relative frequencies (probabilities) of all possible outcomes and
suggest that progressively more extreme outcomes become progressively less frequent
or likely. By convention however, the statistical criteria for any given hypothesis test is a



138 CHAPTER 6

watershed value typically set at 0.05 or 5%. Belying the gradational decline in probabil-
ities, outcomes with a probability less than 5% are considered unlikely whereas values
equal to or greater are considered likely. However, values less than 5% are of course
possible and could be obtained if the samples were by chance not centered similarly to
the population(s) – that is, if the sample(s) were atypical of the population(s).

When rejecting a null hypothesis at the 5% level, we are therefore accepting that
there is a 5% change that we are making an error (a Type I error). We are concluding
that there is an effect or trend, yet it is possible that there really there is no trend, we just
had unusual samples. Conversely, when a null hypothesis is not rejected (probability
of 5% or greater) even though there really is a trend or effect in the population, a Type
II error has been committed. Hence, a Type II error is when you fail to detect an effect
that really occurs.

Since rejecting a null hypothesis is considered to be evidence of a hypothesis or
theory and therefore scientific advancement, the scientific community projects itself
against too many false rejections by keeping the statistical criteria and thus Type I error
rate low (5%). However, as Type I and Type II error rates are linked, doing so leaves
the Type II error rate (β) relatively large (approximately 20%).

The reciprocal of the Type II error rate, is called power. Power is the probability that
a test will detect an effect (reject a null hypothesis, not make a Type II error) if one
really occurs. Power is proportional to the statistical criteria, and thus lowering the
statistical criteria compromises power. The conventional value of α = 0.05) represents
a compromise between Type I error rate and power.

Power is also affected by other aspects of a research framework and can be described
by the following general representation:

power(1 − β) ∝ ES
√

n α

σ
Statistical power is:

• directly proportional to the effect size (ES) which is the absolute size or magnitude of the
effect or trend in the population. The more subtle the difference or effect, the lower
the power

• directly proportional to the sample size (n). The greater the sample size, the greater the
power

• directly proportional to the significance level (α = 0.05) as previously indicated
• inversely proportional to the population standard deviation (σ ). The more variable the

population, the lower the power

When designing an experiment or survey, a researcher would usually like to know
how many replicates are going to be required. Consequently, the above relationship is
often transposed to express it in terms of sample size for a given amount of power:

n ∝ (power σ )2

ES α

Researchers typically aim for power of at least 0.8 (80% probability of detecting an
effect if one exists). Effect size and population standard deviation are derived from
either pilot studies, previous research, documented regulations or gut feeling.
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6.6 Robust tests

There are a number of more robust (yet less powerful) alternatives to independent sam-
ples t-tests and paired t-tests. The Mann-Whitney-Wilcoxon testb is a non-parametric
(rank-based) equivalent of the independent samples t-test that uses the ranks of the
observations to calculate test statistics rather than the actual observations and tests the
null hypothesis that the two sampled populations have equal distributions. Similarly,
the non-parametric Wilcoxon signed-rank test uses the sums of positive and negative
signed ranked differences between paired observations to test the null hypothesis that
the two sets of observations come from the one population. While neither test dictate
that sampled populations must follow a specific distribution, the Wilcoxon signed-rank
test does assume that the population differences are symmetrically distributed about
the median and the Mann-Whitney test assumes that the sampled populations are
equally varied (although violations of this assumption apparently have little impact).
Randomization tests in which the factor levels are repeatedly shuffled so as to yield a
probability distribution for the relevant statistic (such as the t-statistic) specific to the
sample data do not have any distributional assumptions. Strictly however, randomiza-
tion tests examine whether the sample patterns could have occurred by chance and do
not pertain to populations.

6.7 Further reading

• Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practice - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Wilcox, R. R. (2005). Introduction to Robust Estimation and Hypothesis Testing.
Elsevier Academic Press.

b The Mann-Whitney U-test and the Wilcoxon two-sample test are two computationally different
tests that yield identical statistics.
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6.8 Key for simple hypothesis testing

1 a. Mean of single sample compared to a specific fixed value (such as a predicted
population mean) (one-sample t-test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

b. Two samples used to compare the means of two populations . . . . . . . . . . . . . Go to 2
2 a. Two completely independent samples (different sampling units used for each

replicate of each condition) (independent samples t-test) . . . . . . . . . . . . . . . . . Go to 3

FACTOR DV

A .
A .
.. ..
B .
B .
.. ..

Dataset should be constructed in
long format such that the variables
are in columns and each replicate is
in is own row.

b. Two samples specifically paired (each of the sampling units measured under both
conditions) to reduce within-group variation (paired t-test) . . . . . . . . . . . . . . Go to 3

Pair FACTOR DV

1 A .
2 A .
.. .. ..
1 B .
2 B .
.. ..

Dataset can be constructed in either
long format (left) such that the
variables are in columns and each
replicate is in is own row or in wide
format (right) such that each pair
of measurements has its own row.

Pair DV1 DV2

1 . .
2 . .
3 . .
4 . .
5 . .
.. .. ..

3 a. Check parametric assumptions

• Normality of the response variable at both level of the categorical variable -
boxplots

• one-sample t-test

> boxplot(DV, dataset)

• two-sample t-test

> boxplot(DV ~ Factor, dataset)

• paired t-test

> with(dataset, boxplot(DV1 - DV2))

> diffs <- with(dataset, DV[FACTOR == "A"]

+ - DV[FACTOR == "B"])

> boxplot(diffs)

where DV and Factor are response and factor variables respectively in the dataset
data frame. DV1 and DV2 represent the paired responses for group one and two
of a paired t-test. Note, paired t-test data is traditionally setup in wide format
(see section 2.7.6)
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• Homogeneity of variance (two-sample t-tests only) - boxplots (as above) and
scatterplot of mean vs variance

> boxplot(DV ~ Factor, dataset)

where DV and FACTOR are response and factor variables respectively in the dataset
data frame

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
b. Parametric assumptions NOT met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5

4 a. Perform one-sample t-test

> t.test(DV, dataset)

b. Perform (separate variances) independent-sample t-test . . . . . . . . . See Example 6B

• one-tailed (H0 : µA > µB)

> t.test(DV ~ FACTOR, dataset, alternative = "greater")

• two-tailed (H0 : µA = µB)

> t.test(DV ~ FACTOR, dataset)

for pooled variances t-tests, include the var.equal=T argument (see Example 6A).
c. Perform (separate variances) paired t-test . . . . . . . . . . . . . . . . . . . . . . . See Example 6C

• one-tailed (H0 : µA > µB)

> t.test(DV1, DV2, dataset, alternative = "greater")

> t.test(DV ~ FACTOR, dataset, alternative = "greater",

+ paired = T)

• two-tailed (H0 : µA = µB)

> t.test(DV1, DV2, dataset)

> t.test(DV ~ FACTOR, dataset, paired = T)

for pooled variances t-tests, include the var.equal=T argument.
5 a. Attempt a scale transformation (see Table 3.2 for common transfor-

mations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3
b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

6 a. Underlying distribution of the response variable and residuals is non-normal, yet
known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17

b. Underlying distribution of the response variable and residuals is non-normal and
is NOT known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

7 a. Observations independent or specifically paired, variances not wildly unequal
(Wilcoxon rank sum nonparametric test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

b. Variances not wildly unequal, random sampling not possible (Randomization
test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 6E

> library(boot)

> data.boot <- boot(dataset, stat, R = 999, sim = "parametric",

+ rand.gen = rand.gen)

> plot(data.boot)

> print(data.boot)

where stat is the statistic to repeatedly calculate and rand.gen defines how the data
are randomized.
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8 a. Perform one-sample Wilcoxon (rank sum) test

> wilcox.test(DV, dataset)

b. Perform independent-sample Mann-Whitney Wilcoxon test . . . . . See Example 6D

• one-tailed (H0 : µA > µB)

> wilcox.test(DV ~ FACTOR, dataset, alternative = "greater")

• two-tailed (H0 : µA = µB)

> wilcox.test(DV ~ FACTOR, dataset)

c. Perform paired Wilcoxon (signed rank) test

• one-tailed (H0 : µA > µB)

> wilcox.test(DV1,DV2, dataset, alternative="greater")

> #OR for long format

> wilcox.test(DV~FACTOR, dataset, alternative="greater",

+ paired=T)

• two-tailed (H0 : µA = µB)

> wilcox.test(DV1, DV2, dataset)

> wilcox.test(DV ~ FACTOR, dataset, paired = T)

6.9 Worked examples of real biological data sets

Example 6A: Pooled variances, student t-test
Ward and Quinn (1988) investigated differences in the fecundity (as measured by egg
production) of a predatory intertidal gastropod (Lepsiella vinosa) in two different intertidal
zones (mussel zone and the higher littorinid zone) (Box 3.2 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Ward and Quinn (1988) data set.

> ward <- read.table("ward.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean egg production is the same for both littorinid and mussel
zone Lepsiella.

> boxplot(EGGS ~ ZONE, ward)

Littor Mussel

6
10
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16
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> with(ward, rbind(MEAN = tapply(EGGS, ZONE, mean),

+ VAR = tapply(EGGS, ZONE, var)))

Littor Mussel

MEAN 8.702703 11.357143

VAR 4.103604 5.357143

Conclusions - There was no evidence of non-normality (boxplots not grossly asymmetrical)
or unequal variance (boxplots very similar size and variances very similar). Hence, the simple,
studentized (pooled variances) t-test is likely to be reliable.

Step 3 (Key 6.4b) - Perform a pooled variances t-test to test the null hypothesis that
the population mean egg production is the same for both littorinid and mussel zone
Lepsiella.

> t.test(EGGS ~ ZONE, ward, var.equal = T)

Two Sample t-test

data: EGGS by ZONE

t = -5.3899, df = 77, p-value = 7.457e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.635110 -1.673770

sample estimates:

mean in group Littor mean in group Mussel

8.702703 11.357143

Conclusions - Reject the null hypothesis. Egg production by predatory gastropods (Lepsiella
vinosa was significantly greater (t77 = −5.39, P < 0.001) in mussel zones than littorinid zones
on rocky intertidal shores.

Summarize the trends with a bargraph.

> ward.means <- with(ward, tapply(EGGS, ZONE, mean))

> ward.sds <- with(ward, tapply(EGGS, ZONE, sd))

> ward.ns <- with(ward, tapply(EGGS, ZONE, length))

> ward.se <- ward.sds/sqrt(ward.ns)

> xs <- barplot(ward.means, ylim = range(pretty(c(ward.means +

+ ward.se, ward.means - ward.se))), axes = F, xpd = F,

+ axisnames = F, axis.lty = 2, legend.text = F, col = "gray")

> arrows(xs, ward.means + ward.se, xs, ward.means - ward.se,

+ code = 3, angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = xs, lab = c("Littorinid", "Mussel"), padj = 1,

+ mgp = c(0, 0, 0))

> mtext(2, text = "Mean number of egg capsules per capsule",

+ line = 3, cex = 1)

> mtext(1, text = "Zone", line = 3, cex = 1)

> box(bty = "l")
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Example 6B: Separate variances, Welch’s t-test
Furness and Bryant (1996) measured the metabolic rates of eight male and six female
breeding northern fulmars and were interesting in testing the null hypothesis that there
was no difference in metabolic rate between the sexes (Box 3.2 of Quinn and Keough
(2002)).

Step 1 - Import (section 2.3) the Furness and Bryant (1996) data set.

> furness <- read.table("furness.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean metabolic rate is the same for male and female breeding
northern fulmars.

> boxplot(METRATE ~ SEX, furness)
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> with(furness, rbind(MEAN = tapply(METRATE, SEX, mean),

+ VAR = tapply(METRATE, SEX, var)))

Female Male

MEAN 1285.517 1563.775

VAR 177209.418 799902.525



SIMPLE HYPOTHESIS TESTING – ONE AND TWO POPULATION TESTS 145

Conclusions - Whilst there is no evidence of non-normality (boxplots not grossly asymmetri-
cal), variances are a little unequal (although perhaps not grossly unequal - one of the boxplots
is not more than three times smaller than the other). Hence, a separate variances t-test is more
appropriate than a pooled variances t-test.

Step 3 (Key 6.4b) - Perform a separate variances (Welch’s) t-test to test the null hypothesis
that the population mean metabolic rate is the same for both male and female breeding northern
fulmars.

> t.test(METRATE ~ SEX, furness, var.equal = F)

Welch Two Sample t-test

data: METRATE by SEX

t = -0.7732, df = 10.468, p-value = 0.4565

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1075.3208 518.8042

sample estimates:

mean in group Female mean in group Male

1285.517 1563.775

Conclusions - Do not reject the null hypothesis. Metabolic rate of male breeding northern
fulmars was not found to differ significantly (t = −0.773, df = 10.468, P = 0.457) from that
of females.

Example 6C: Paired t-test
To investigate the effects of lighting conditions on the orb-spinning spider webs Elgar et al.
(1996) measured the horizontal (width) and vertical (height) dimensions of the webs made
by 17 spiders under light and dim conditions. Accepting that the webs of individual spiders
vary considerably, Elgar et al. (1996) employed a paired design in which each individual
spider effectively acts as its own control. A paired t-test performs a one sample t-test on
the differences between dimensions under light and dim conditions (Box 3.3 of Quinn and
Keough (2002)).

Step 1 - Import (section 2.3) the Elgar et al. (1996) data set.

> elgar <- read.table("elgar.csv", header = T, sep = ",")

Note the format of this data set. Rather than organizing the data into the usual long format
in which variables are represented in columns and rows represent individual replicates, these
data have been organized in wide format. Wide format is often used for data containing
repeated measures from individual or other sampling units. Whilst, this is not necessary (as
paired t-tests can be performed on long format data), traditionally it did allow more compact
data management as well as making it easier to calculate the differences between repeated
measurements on each individual.

Step 2 (Key 6.3) - Assess whether the differences in web width (and height) in light and dim
light conditions are normally distributed.
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> with(elgar, boxplot(HORIZLIG -

+ HORIZDIM))

> with(elgar, boxplot(VERTLIGH -

+ VERTDIM))
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Conclusions - There is no evidence of non-normality for either the difference in widths or
heights of webs under light and dim ambient conditions. Therefore paired t-tests are likely to be
reliable tests of the hypotheses that the mean web dimensional differences are equal to zero.

Step 3 (Key 6.4c) - Perform two separate paired t-tests to test the test the respective null
hypotheses.

• No effect of lighting on web width

> with(elgar, t.test(HORIZLIG, HORIZDIM, paired = T))

Paired t-test

data: HORIZLIG and HORIZDIM

t = -2.1482, df = 16, p-value = 0.04735

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

-91.7443687 -0.6085725

sample estimates:

mean of the differences

-46.17647

• No effect of lighting on web height

> with(elgar, t.test(VERTLIGH, VERTDIM, paired = T))

Paired t-test

data: VERTLIGH and VERTDIM

t = -0.9654, df = 16, p-value = 0.3487

alternative hypothesis: true difference in means is not

equal to 0
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95 percent confidence interval:

-65.79532 24.61885

sample estimates:

mean of the differences

-20.58824

Conclusions - Orb-spinning spider webs were found to be significantly wider (t = 2.148,
df = 16, P = 0.047) under dim lighting conditions than light conditions, yet were not found
to differ (t = 0.965, df = 16, P = 0.349) in height.

Example 6D: Non-parametric Mann-Whitney-Wilcoxon signed rank test
Sokal and Rohlf (1997) presented a dataset comprising the lengths of cheliceral bases
(in µm) from two samples of chigger (Trombicula lipovskyi) nymphs. These data were used
to illustrate two equivalent tests (Mann-Whitney U-test and Wilcoxon two-sample test) of
location equality (Box 13.7 of Sokal and Rohlf (1997)).

Step 1 - Import (section 2.3) the nymph data set.

> nymphs <- read.table("nymphs.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess assumptions of normality and homogeneity of variance for the null
hypothesis that the population mean metabolic rate is the same for male and female breeding
northern fulmars.

> boxplot(LENGTH ~ SAMPLE, nymphs)
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> with(nymphs, rbind(MEAN = tapply(LENGTH, SAMPLE, mean),

+ VAR = tapply(LENGTH, SAMPLE, var)))

Sample A Sample B

MEAN 119.68750 111.80000

VAR 53.29583 60.17778

Conclusions - Whilst there is no evidence of unequal variance, there is some (possible)
evidence of non-normality (boxplots slightly asymmetrical). These data will therefore be
analysed using a non-parametric Mann-Whitney-Wilcoxon signed rank test.
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Step 3 (Key 6.8b) - Perform a Mann-Whitney Wilcoxon test to investigate the null hypothesis
that the mean length of cheliceral bases is the same for the two samples of nymphs of chigger
(Trombicular lipovskyi).

> wilcox.test(LENGTH ~ SAMPLE, nymphs)

Wilcoxon rank sum test with continuity correction

data: LENGTH by SAMPLE

W = 123.5, p-value = 0.02320

alternative hypothesis: true location shift is not equal to 0

Conclusions - Reject the null hypothesis. The length of the cheliceral base is significantly
longer in nymphs from sample 1 (W = 123.5, df = 24, P = 0.023) than those from sample 2.

Example 6E: Randomization t-test
Powell and Russell (1984, 1985) investigated differences in beetle consumption between
two size classes of eastern horned lizard (Phrynosoma douglassi brevirostre) represented
respectively by adult females in the larger class and adult male and yearling females in the
smaller class (Example 4.1 from Manly, 1991).

Step 1 - Import (section 2.3) the Powell and Russell (1984, 1985) beetle data set.

> beetles <- read.table("beetle.csv", header = T, sep = ",")

Step 2 (Key 6.3) - Assess normality/homogeneity of variance using boxplot of ant biomass
against month. Cube root transformation also assessed, but not shown.

> boxplot(BEETLES~SIZE,

+ beetles)
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Conclusions - strong evidence of non-normality and lots of zero values. As a result a
randomization test in which the t-distribution is generated from the samples, might be more
robust than a standard t-test that assumes each of the populations are normally distributed.
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Furthermore, the observations need not be independent, provided we are willing to concede that
we are no longer testing hypotheses about populations (rather, we are estimating the probability
of obtaining the observed differences in beetle consumption between the size classes just by
chance).

Step 3 (Key 6.7b) - define the statistic to use in the randomization test – in this case the
t-statistic (without replacement).

> stat <- function(data, indices) {

+ t.test <- t.test(BEETLES ~ SIZE, data)$stat

+ t.test

+ }

Step 4 (Key 6.7b) - define how the data should be randomized – randomly reorder the which
size class that each observation belonged to.

> rand.gen <- function(data, mle) {

+ out <- data

+ out$SIZE <- sample(out$SIZE, replace = F)

+ out

+ }

Step 5 (Key 6.7b) - call a bootstrapping procedure to randomize 5000 times (this can take
some time).

> library(boot)

> beetles.boot <- boot(beetles, stat, R = 5000, sim = "parametric",

+ ran.gen = rand.gen)

Step 6 (Key 6.7b) - examine the distribution of t-statistics generated from the randomization
procedure

> print(beetles.boot)

PARAMETRIC BOOTSTRAP

Call:

boot(data = beetles, statistic = stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Bootstrap Statistics :

original bias std. error

t1* 2.190697 -2.237551 1.019904

> plot(beetles.boot)
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Conclusions - The observed t-value was 2.191. Note that the t-distribution is centered around
zero and thus a t-value of 2.191 is equivalent to a t-value of −2.191. Only the magnitude of a
t-value is important, not the sign.

Step 7 (Key 6.7b) - calculate the number of possible t-values (including the observed t-value,
which is one possible situation) that were greater or equal to the observed t-value and express
this as a percentage of the number of randomizations (plus one for the observed situation)
performed.

> tval <- length(beetles.boot[beetles.boot$t >= abs(beetles.

+ boot$t0)]) + 1

> tval/(beetles.boot$R + 1)

[1] 0.00759848

Conclusions - Reject the null hypothesis that the difference in beetle consumption between
small and large lizards is purely due to chance. It is likely that beetle consumption is significantly
higher in large female eastern horned lizards than the smaller adult males and yearling females
(t = 2.191, R = 5000, P = 0.019).
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Introduction to Linear models

A statistical model is an expression that attempts to explain patterns in the observed
values of a response variable by relating the response variable to a set of predictor
variables and parameters. Consider the following familiar statistical model:

y = mx + c

or equivalently:
y = bx + a

This simple statistical model relates a
response variable (y) to a single
predictor variable (x) as a straight
line according to the values of two
constant parameters:

b – the degree to which y
changes per unit of
change in x (gradient of
line)

a – the value of y when x = 0
(y-intercept) 0 10

X
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y = 1.5x + 2

2 4 6 8

The above statistical model represents a perfect fit, that is, 100% of the change
(variation) in y is explained by a change in x. However, rarely would this be the
case when modeling biological variables. In complex biological systems, variables are
typically the result of many influential and interacting factors and therefore simple
models usually fail to fully explain a response variable. Consequently, the statistical
model also has an error component that represents the portion of the response variable
that the model fails to explain. Hence, statistical models are of the form:

response variable = model + error

where the model component comprises of one or more categorical and/or continuous
predictor variable(s) and their parameter(s) that together represent the effect of the

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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predictors variable(s) on the mean the response variable. A parameter and its associated
predictor variable(s) are referred to as a model term.

A statistical model is fitted to observed data so as to estimate the model parameters
and test hypotheses about these parameters (coefficients).

7.1 Linear models

Linear models are those statistical models in which a series of parameters are arranged
as a linear combination. That is, within the model, no parameter appears as either a
multiplier, divisor or exponent to any other parameter. Importantly, the term ‘linear’
in this context does not pertain to the nature of the relationship between the response
variable and the predictor variable(s), and thus linear models are not restricted to
‘linear’ (straight-line) relationships.

An example of a very simple linear model, is the model used to investigate the
linear relationship between a continuous response variable (Y and a single continuous
predictor variable, X):

yi = β0 + β1 × xi + εi

response variable = population + population × predictor + error
= intercept slope variable︸ ︷︷ ︸ ︸ ︷︷ ︸

intercept term slope term

︸ ︷︷ ︸
model

The above notation is typical of that used to represent the elements of a linear
model. y denotes the response variable and x represents the predictor variable. The
subscript (i) is used to represent a set of observations (usually from 1 to n where n
is the total sample size) and thus yi and xi represent respectively the ith observation
of the Y and X variables. εi represents the deviation of the ith observed Y from the
value of Y expected by the model component. The parameters β0 and β1 represent
population intercept and population slope (effect of X on Y per unit of x) respectively.
Population (effect) parameters are usually represented by Greek symbolsa. The above
linear model notation is therefore a condensed representation of a compilation of
arithmetic relationships:

y1 = β0 + β1 × x1 + ε1

y2 = β0 + β1 × x2 + ε2

y3 = β0 + β1 × x3 + ε3

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

a Typically, effect parameters associated with continuous variables are represented by β and those
associated with categorical variables are represented by the symbols α, β, γ , . . .
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the first y observation (y1) is related to the first x observation (x1) according to
the values of the two constants (parameters β0 and β1) and ε1 is the amount
that the observed value of Y differs from the value expected according the model (the
residual).

When there are multiple continuous predictor variables, in addition to the intercept
parameter (β0), the linear model includes a separate slope parameter for each of the
predictor variables:

yi = β0 + β1x1i + β2x2i + ... + εi

The model structure for linear models containing a single categorical predictor
variable (known as a factor) with two or more treatment levels (groups) is similar in
form to the multiple linear regression model (listed immediately above) with the overall
mean (µ) replacing the y-intercept (β0). The factor levels (groups) are represented in
the model by binary (contain only of 0s and 1s, see Table 7.1) indicator (or ‘dummy’)
variables and associated estimable parameters (β1, β2, ...).

For a data set comprising of p groups and n replicates within each group, the linear
model is:

yij = µ + β1(dummy1)ij + β2(dummy2)ij + .... + εij

where i represents the treatment levels (from 1 to p) and j represents the set of replicates
(from 1 to n) within the ith group. Hence, yij represents the jth observation of the
response variable within the ith group and (dummy1)ij represents the dummy code
for the jth replicate within the ith group of the first dummy variable (first treatment
level).

The dummy variable for a particular treatment level contains all 0s except in the rows
that correspond to observations that received that treatment level. Table 7.1 illustrates

Table 7.1 Fictitious data set (consisting of three replicates for each of three
groups:‘G1’,‘G1’,‘G2’) to illustrate the link between a) single factor dataset, and
b) the indicator (dummy) variables.

a) b)

Y A

2 G1
3 G1
4 G1
6 G2
7 G2
8 G2
10 G3
11 G3
12 G3

Y dummy1 dummy2 dummy3

2 1 0 0
3 1 0 0
4 1 0 0
6 0 1 0
7 0 1 0
8 0 1 0
10 0 0 1
11 0 0 1
12 0 0 1
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the dummy coding for a single factor within three levels (‘G1’, ‘G2’, ‘G3’) each with
three replicatesb.

More typically however, statistical models that include one or more factors are
expressed as effects models in which the individual treatment levels (and their param-
eters) are represented by a single term (e.g. αi) that denotes the effect of each of the
levels of the factor on the overall mean. For a data set comprised of p groups and n
replicates within each group, the linear effects model is:

yij = µ + αi + εij

where i represents the set of treatments (from 1 to p) and j represents the set of
replicates (from 1 to n) within the ith group. Hence, yij represents the jth observation
of the response variable within the ith group of the factor. µ is the overall population
mean of the response variable (Y) and is equivalent to the intercept. αi represents the
effect of the ith group calculated as the difference between each of the group means and
the overall mean (αi = µi − µ).

7.2 Linear models in R

Statistical models in R are represented by a formula corresponding to the linear model
(for continuous variables) or effects model (categorical variables):

> response~model

where the tilde (~) defines a model formula and model represents a set of terms to
include in the model. Terms are included in a model via their variable names and
terms preceded by the - (negative sign) operator are explicitly excluded. The intercept
term (denoted by a 1) is implicit in the model and need not be specified. Hence the
following model formulae all model the effect of the variable X on the Y variable with
the inclusion of the intercept:

> Y~X

> Y~1+X

> Y~X+1

whereas the following exclude the intercept:

> Y~-1+X

> Y~X-1

Linear models are fitted by providing the model formula as an argument to the lm()
function. To fit the simple linear regression model relating a fictitious response variable
(Y) to fictitious continuous predictor variable (X):

b Note that linear model that this represents (yij = µ + β1(dummy1)ij + β2(dummy2)ij +
β3(dummy3)ij + εij) is over-parameterized, see section 7.3.
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> Y<-c(0,1,2,4,7,10)

> X<-1:6

> plot(Y~X)
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> Fictitious.lm <- lm(Y~X)

To examine the estimated parameters (and hypothesis tests) from the fitted model,
provide the name of the fitted model as an argument to the summary()functionc.

> summary(Fictitious.lm)

Call:

lm(formula = Y ~ X)

Residuals:

1 2 3 4 5 6

1.000e+00 3.404e-16 -1.000e+00 -1.000e+00 6.280e-17 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.0000 0.9309 -3.223 0.03220 *

X 2.0000 0.2390 8.367 0.00112 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 4 degrees of freedom

Multiple R-squared: 0.9459, Adjusted R-squared: 0.9324

F-statistic: 70 on 1 and 4 DF, p-value: 0.001116

The summary output begins by specifying the nature of the call used to fit the model.
Next is a summary of the residuals (differences between observed responses and

c Actually, the summary() function is an overloaded wrapper that invokes different specific functions
depending on the class of object provided as the first argument. In the summary() function invokes
the summary.lm() function.
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expected responses for each value of the predictor variable). The estimated parameters
are listed in the coefficients table. Each row of the table lists the value of an estimated
parameter from the linear model along with the outcome of a hypothesis test for this
parameter. The row labeled ‘(Intercept)’ concerns the intercept (overall constant)
and subsequent rows are labeled according to the model term that is associated with
the estimated parameter. In this case, the row labeled ‘X’ concerns the population
slope (β1). Finally a brief summary of the partitioning of total variation (ANOVA, see
section 7.3.2) in the response variable is provided.

7.3 Estimating linear model parameters

During model fitting, parameters can be estimated using any of the estimation methods
outlined in section 3.7, although ordinary least squares (OLS) and maximum likelihood
(ML or REML) are most common. The OLS approach estimates the value of one or
more parameters such that they minimize the sum of squared deviations between the
observed values and the parameter (typically the values predicted by the model) and will
be illustrated in detail in the following sections. Models that utilize OLS parameter esti-
mates are referred to as ‘general’ linear models as they accommodate both continuous
and categorical predictor variables. Broadly speaking, such models that incorpo-
rate purely continuous predictor variables are referred to as ‘regression’ models (see
chapters 8 & 9) whereas models that purely incorporate categorical predictors are called
‘ANOVA’ models (see chapters 10 – 14). Analysis of covariance (ANCOVA) models
incorporate both categorical and continuous predictor variables (see chapter 15).

ML estimators estimate one or more population parameters such that the (log)
likelihood of obtaining the observed values from such populations is maximized and
these models are useful when there is evidence of a relationship between mean and
variance or for models involving correlated data structures. Maximum likelihood
parameter estimation is also utilized by ‘generalized’ linear models, so called as they
are not restricted to normally distributed response and residuals. Generalized linear
models accommodate any exponential probability distribution (including normal,
binomial, Poisson, gamma and negative binomial), see chapter 17.

The parameters estimated during simple linear and multiple linear regression
analyses are relatively straightforward to interpret (they simply represent the rates of
change in the response variable attributable to each individual predictor variable) and
can be used to construct an algebraic representation of the relationship between a
response variable and one or more predictor variables. However, this is generally not
the case for linear models containing factorial variables.

7.3.1 Linear models with factorial variables

Recall from section 7.1 that linear models comprising of a single factor are expressed
as an effects model:

yij = µ + αi + εij
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where αi estimates the effect of each treatment group on the overall mean of groups
(αi = µi − µ). However, the effects model for a factor with p groups, will have
p + 1 parameters (the overall mean µ plus the p α parameters), and thus the linear
effects model is considered to be ‘over-parameterized’d. In order to obtain parameter
estimates, the model must be reduced to a total of p parameters. Over-parameterization
can be resolved either by removing one of the parameters from the effects model (either
the overall mean (µ) or one of the treatment effects (αi) parameters - a procedure rarely
used in biology), or by generating a new set (p − 1) of effects parameters (α∗

q , where q
represents the set of orthogonal parameters from 1 to p − 1) each of which represent
a linear combination of groups rather than a single group effect. That is, each α∗ can
include varying contributions from any number of the groups and are not restricted to
a single contrast of (= µi − µ). For example, one of the parameters might represent
the difference in means between two groups or the difference in means between one
group and the average of two other groups. The reduced number of effects parameters
are defined through the use of a matrix of ‘contrast coefficients’. Note, the new set of
effects parameters should incorporate the overall relational effects of each of the groups
equally such that each group maintains an equal contribution to the overall model fit.

A number of ‘pre-fabricated’, contrast matrices exist, each of which estimate a
different set of specific comparisons between treatment combinations. The most
common contrasts types include:

Treatment contrasts - in which each of the treatment groups means are compared to
the mean of a ‘control’ group. This approach to over-parameterization is computationally
identical to fitting p − 1 dummy variables via multiple linear regression. However, due to the
interpretation of the parameters (groups compared to a control) and the fact that treatment
effects are not orthogonal to the intercept, the interpretation of treatment contrasts (and
thus dummy regression) is really only meaningful for situations where there is clearly a single
group (control) to which the other groups can be compared. For treatment contrasts, the
intercept is replaced by α∗

1 and thus the remaining α∗
q parameters are numbered starting at 2.

Parameter Estimates Null hypothesis

Intercept mean of ‘control’ group (µ1) H0: µ = µ1 = 0
α∗

2 mean of group 2 minus mean of ‘control’ group
(µ2 − µ1)

H0: α∗
2 = µ2 − µ1 = 0

α∗
3 mean of group 3 minus mean of ‘control’ group

(µ3 − µ1)
H0: α∗

3 = µ3 − µ1 = 0

...

d Given that αi = µi − µ, it is only possible to estimate p − 1 orthogonal (independent) parameters.
For example, once µ and p − 1 of the effects parameters have been estimated, the final effects
parameter is no longer ‘free to vary’ and therefore cannot be independently estimated. Likewise, if
the full linear model contains as many dummy variables as there are treatment groups, then it too is
over-parameterized.
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> Y <- c(2,3,4,6,7,8,10,11,12)

> A <- gl(3,3,9,lab=c("G1","G2","G3"))

> # specify that treatment contrasts should be used

> contrasts(A) <-contr.treatment

> summary(lm(Y~A))

Call:

lm(formula = Y ~ A)

Residuals:

Min 1Q Median 3Q Max

-1.000e+00 -1.000e+00 6.939e-17 1.000e+00 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 0.5774 5.196 0.00202 **

A2 4.0000 0.8165 4.899 0.00271 **

A3 8.0000 0.8165 9.798 6.5e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 6 degrees of freedom

Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216

F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Sum to zero contrasts - this technique constrains the sum of the unconstrained treatment
effects (α) to zero. In this model, the intercept estimates the average treatment effect and
the remaining (α∗) estimate the differences between each of the treatment means and the
average treatment mean.

Parameter Estimates Null hypothesis

Intercept mean of group means (µi∗/p) H0: µ = µq/p = 0
α∗

1 mean of group 1 minus mean of
group means (µ1 − (µq/p))

H0: α1 = µ1 − (µq/p) = 0

α∗
2 mean of group 2 minus mean of

group means (µ2 − (µq/p))
H0: α2 = µ2 − (µq/p) = 0

...

> # specify that sum-to-zero contrast should be used

> contrasts(A) <-contr.sum

> summary(lm(Y~A))

Call:

lm(formula = Y ~ A)

Residuals:

Min 1Q Median 3Q Max

-1.000e+00 -1.000e+00 1.388e-17 1.000e+00 1.000e+00
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.000e+00 3.333e-01 21.000 7.6e-07 ***

A1 -4.000e+00 4.714e-01 -8.485 0.000147 ***

A2 1.228e-16 4.714e-01 2.60e-16 1.000000

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 6 degrees of freedom

Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216

F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Helmert contrasts - the intercept estimates the average treatment effect and the remaining
(α∗

q ) estimate the differences between each of the treatment means and the mean of the
group before it. In reality, parameter estimates from Helmert contrasts have little biological
interpretability.

Parameter Estimates Null hypothesis

Intercept mean of group means (µq/p) H0: µ = µq/p = 0
α∗

1 mean of group 2 minus mean of
(group means and mean of
group1) (µ2 − (µq/p + µ1)/2)

H0: α∗
1 = µ2−

(µq/p + µ1)/2 = 0

α∗
2 mean of group 3 minus mean of

(group means, mean of group1
and mean of group2)
(µ3 − (µq/p + µ1 + µ2)/3)

H0: α∗
2 = µ3−

(µq/p + µ1 + µ2)/3 = 0

...

> # specify that Helmert contrasts should be used

> contrasts(A) <-contr.helmert

> summary(lm(Y~A))

Call:

lm(formula = Y ~ A)

Residuals:

Min 1Q Median 3Q Max

-1.000e+00 -1.000e+00 -7.865e-17 1.000e+00 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0000 0.3333 21.000 7.6e-07 ***

A1 2.0000 0.4082 4.899 0.002714 **

A2 2.0000 0.2357 8.485 0.000147 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 1 on 6 degrees of freedom

Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216

F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

Polynomial contrasts - generate orthogonal polynomial trends (such as linear, quadratic and
cubic). This is equivalent to fitting a multiple linear regression (or polynomial regression)
with orthogonal parameters.

Parameter Estimates Null hypothesis

Intercept y-intercept H0: β∗
0 = 0

β∗
1 partial slope for linear term H0: β∗

1 = 0
β∗

2 partial slope for quadratic term H0: β∗
2 = 0

...

> # specify that orthogonal polynomial contrasts should be used

> contrasts(A) <-contr.poly

> summary(lm(Y~A))

Call:

lm(formula = Y ~ A)

Residuals:

Min 1Q Median 3Q Max

-1.000e+00 -1.000e+00 -1.712e-16 1.000e+00 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.000e+00 3.333e-01 21.000 7.6e-07 ***

A.L 5.657e+00 5.774e-01 9.798 6.5e-05 ***

A.Q -9.890e-16 5.774e-01 -1.71e-15 1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 6 degrees of freedom

Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216

F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

User defined contrasts - In addition to the ‘prefabricated’ sets of comparisons illustrated
above, it is possible to define other contrast combinations that are specifically suited to
a particular experimental design and set of research questions. Contrasts are defined by
constructing a contrast matrix according to the following rules:

(i) groups to be included and excluded in a specific contrasts (comparison) are represented
by non-zero and zero coefficients respectively

(ii) groups to be apposed (contrasted) to one another should have apposing signs
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(iii) the number of contrasts must not exceed p − 1e, where p is the number of groups.
(iv) within a given contrast, the sum of positive coefficients (and negative coefficients)

should sum to 1 to ensure that the resulting estimates can be sensibly interpreted
(v) all the contrasts must be orthogonal (independent of one another)

> # define potential contrast matrix for comparing group G1 with

> # the average of groups G2 and G3

> contrasts(A) <- cbind(c(1, -0.5, -0.5))

> contrasts(A)

[,1] [,2]

G1 1.0 -6.407635e-17

G2 -0.5 -7.071068e-01

G3 -0.5 7.071068e-01

> l <- lm(Y~A)

> # summarize the model fitting

> summary(l)

Call:

lm(formula = Y ~ A)

Residuals:

Min 1Q Median 3Q Max

-1.000e+00 -1.000e+00 -4.163e-17 1.000e+00 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.0000 0.3333 21.000 7.6e-07 ***

A1 -4.0000 0.4714 -8.485 0.000147 ***

A2 2.8284 0.5774 4.899 0.002714 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 6 degrees of freedom

Multiple R-squared: 0.9412, Adjusted R-squared: 0.9216

F-statistic: 48 on 2 and 6 DF, p-value: 0.0002035

By default, Rf employs treatment contrasts for unordered factorsg and orthogonal
polynomial contrasts for ordered factors, although this behavior can be altered to an
alternative (such as contr.sum for unordered factors) using the options(contrasts
=c("contr.sum", "contr.poly")) function.

e Actually, it must equal p − 1 exactly. However, it is usually sufficient to define less than p − 1
contrasts and let R generate the remaining contrasts.
f Note that the default behaviour of S-PLUS is to employ sum to zero contrasts for unordered factors.
g Unordered factors are factors that have not specifically defined as ‘ordered’, see section 2.6.1. The
order of groups in an ordered factor is usually important - for example when examining polynomial
trends across groups.
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Note that while the estimates and interpretations of individual model parameters
differ between the alternative approaches, in all but the µ = 0 (set-to-zero) case, the
overall effects model is identical (yqj = µ + α∗

q + εqj). Hence, the overall null hypothesis
tested from the effects model (H0: α∗

1 = α∗
2 = ... = 0) is the same irrespective of the

contrasts chosen.
When the model contains more than one factor, a separate term is assigned for each

factor and possibly the interactions between factors (e.g. αi + βj + αβij). Alternatively,
statistical models containing factors can be expressed as cell means models in which
the overall mean and treatment effects (µ + αi) are replaced by the treatment (cell)
means (µi). In the cell means model, there are as many cell means as there are unique
treatment levels. These differences are thus summarized:

Linear model yij = µ + β1(dummy1)ij + β2(dummy2)ij + .... + εij

Linear effects model yij = µ + αi + εij

Orthogonal linear effects model yi∗j = µ + α∗
i∗ + εi∗j

Cell means model yij = µi + εij

For simple model fitting the choice of model type makes no difference, however
for complex factorial models in which entire treatment levels (cells) are missing, full
effects models cannot be fitted and therefore cell means models must be used.

7.3.2 Linear model hypothesis testing

Hypothesis testing is usually concerned with evaluating whether a population parameter
is (or set of parameters are) equal to zero, as this signifies no ‘relationship’ or ‘effect’.

Null hypotheses about individual model parameters

In a linear model, there is a null hypothesis associated with each of the individual
model parameters (typically that the parameter is equal to zero), although not all the
testable null hypotheses are necessarily biologically meaningful. Consider again the
simple linear regression model:

yi = β0 + β1xi + εi

This linear model includes two parameters (β0 andβ1), and thus there are two individual
testable null hypotheses - that the population y-intercept is equal to zero (H0: β0 = 0)
and the slope is equal to zero (H0: β1 = 0). While rejecting a null hypothesis that the
slope parameter equals zero indicates the presence of a ‘relationship’, discovering that
the value of the response variable when the predictor variable is equal to zero is usually
of little biological relevance.

Null hypotheses about individual model parameters are usually tested using a t-test
(see section 6.3), or equivalently via a single factor ANOVA (see chapter 10) with a
single degree of freedom. The latter approach is often employed when user-defined
contrasts are involved as it enables the results to be expressed in the context of the
overall linear model (see below and section 10.6).
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Null hypotheses about the fit of overall model

Recall that in hypothesis testing, a null hypothesis (H0) is formulated to represent all
possibilities except the hypothesized prediction and that disproving the null hypothesis
provides evidence that some alternative hypothesis (HA) is true. Consequently, there
are typically at least two models fitted. The reduced model, in which the parameter
of interest (and its associated predictor variable) is absent (or equivalently set to
zero) represents the model predicted by null hypothesis. The full model represents the
alternative hypothesis and includes the term of interest. For example, to test the null
hypothesis that there is no relationship between populations x and y (and thus that the
population slope (β1)= 0):

full model (HA) - yi = β0 + β1xi + errori

reduced model (H0) - yi = β0 + 0xi + errori

= β0 + errori

The degree to which a model ‘fits’ the observed data is determined by the amount
of variation that the model fails to explain, and is measured as the sum of the squared
differences (termed SS or sums-of-squares) between the observed values of the response
variable and the values predicted by the model. A model that fits the observed data
perfectly will have a SS of 0.

The reduced model measures the amount of variation left unexplained by the
statistical model when the contribution of the parameter and predictor variable (term)
of interest is removed (SSTotal). The full model measures the amount of variation left
unexplained by the statistical model when the contribution of the term is included
(SSResidual). The difference between the reduced and full models (SSModel) is the amount
of explained variation attributed to the term of interest. When the null hypothesis
is true, the term of interest should not explain any of the variability in the observed
data and thus the full model will not fit the observed data any better than the reduced
model. That is, the proposed model would not be expected to explain any more
of the total variation than it leaves unexplained. If however, the full model fits the
data ‘significantly’ better (unexplained variability is substantially less in the full model
compared to the reduced model) than the reduced model, there is evidence to reject
the null hypothesis in favour of the alternative hypothesis.

Hypothesis testing formally evaluates this proposition by comparing the ratio of
explained and unexplained variation to a probability distribution representing all
possible ratios theoretically obtainable when the null hypothesis is true. The total
variability in the observed data (SSResidual – reduced model) is partitioned into at least
two sources.

(i) the variation that is explained by the model (SSModel)
SSModel = SSTotal (reduced model) − SSResidual (full model)

(ii) the variation that is unexplained by the model (SSResidual)
SSResidual (full model)

The number of degrees of freedom (d.f.) associated with estimates of each source
of variation reflect the number of observations involved in the estimate minus the
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Table 7.2 Analysis of variance (ANOVA) table for a simple linear model.
n is the number of observations, fp is the number of parameters in the full
model and rp is the number of parameters in the reduced model.

Source of variation SS df MS F-ratio

Model SSModel fp − 1
SSModel

dfModel

MSModel

MSResidual

Residual SSResidual n − fp
SSResidual

dfResidual

Total SSTotal n − rp
SSResidual

dfResidual

number of other parameters that must have been estimated previously. Just like SS, df
are additive and therefore:

dfModel = dfTotal (reduced model) − dfResidual (full model)

Each of the sources of variation are based on a different number of contributing
observations. Therefore more comparable, standardized versions are generated by
dividing by the appropriate number of (degrees of freedom). These averaged measures
of variation (known as mean squares or MS) are thus conservative mean measures of
variation and importantly, they have known probability distributions (unlike the SS
estimates).

The partitioned sources of variation are tabulated in the form of an analysis
of variance (ANOVA) table (see Table 7.2), which also includes the ratio (F-ratio)
of MSModel to MSResidual. When the null hypothesis is true MSModel and MSResidual

are expected to be the same, and thus their ratio (F-ratio) should be approxi-
mately 1. An F-ratio based on observed data is thus compared to an appropriate
F-distribution (theoretical distribution of all possible F-ratios for the set of degrees
of freedom) when the null hypothesis is true. If the probability of obtaining such
an F-ratio (or one more extreme) is less than a critical value, the null hypothesis is
rejected.

When there are multiple predictor variables, in addition to assessing the fit of the
overall model, we usually want to determine the effect of individual factors. This is
done by comparing the fit of models with and without the specific term(s) associated
with that variable.

7.4 Comments about the importance of understanding the structure
and parameterization of linear models

An understanding of how to formulate the correct statistical model from a design
and set of null hypotheses is crucial to ensure that the correct R syntax (and thus
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Table 7.3 Statistical models in R. Lower case letters denote continuous numeric variables and
uppercase letters denote factors. Note that the error term is always implicit.

Effects model R Model formula Description

yi = β0 + β1xi y ~ 1 + x

y ~ x

Simple linear regression
model of y on x with
intercept term included

yi = β1xi y ~ 0 + x

y ~ -1 + x

y ~ x - 1

Simple linear regression
model of y on x with
intercept term excluded

yi = β0 y ~ 1

y ~ 1 - x

Simple linear regression
model of y against the
intercept term

yi = β0 + β1xi1 + β2xi2 y ~ x1 + x2 Multiple linear regression
model of y on x1 and x2

with the intercept term
included implicitly

yi = β0 + β1xi1 + β2x2
i1 y ~ 1 + x + I(x^2) Second order polynomial

regression of y on x

y ~ poly(x, 2) As above, but using
orthogonal polynomials

yij = µ + αi y ~ A Analysis of variance of y
against a single factor A

yijk = µ + αi + βj + αβij y ~ A + B + A:B

y ~ A*B

Fully factorial analysis of
variance of y against A
and B

yijk = µ + αi + βj y ~ A*B - A:B Fully factorial analysis of
variance of y against A
and B without the
interaction term
(equivalent to A + B)

yijk = µ + αi + βj(i) y ~ B %in% A

y ~ A/B

Nested analysis of variance
of y against A and B

nested within A

yij = µ + αi + β(xij − x) y ~ A*x

y ~ A/x

Analysis of covariance of y
on x at each level of A

yijkl = µ + αi + βj(i) +
γk + αγik + βγj(i)k

y ~ A + Error(B) + C

+ A:C + B:C

Partly nested ANOVA of y
against a single between
block factor (A), a single
within block factor (C)
and a single random
blocking factor (B).
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analysis) is employed. This is particularly important for more complex designs which
incorporate multiple error strata (such as partly nested ANOVA). Table 7.3 briefly
illustrates the ways in which statistical models are represented in R. Moreover, in each
of the remaining chapters, the statistical models as well as the appropriate R model
formulae for each major form of modeling will be highlighted and demonstrated,
thereby providing greater details about use of R in statistical modeling.
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Correlation and simple linear regression

Correlation and regression are techniques used to examine associations and rela-
tionships between continuous variables collected on the same set of sampling or
experimental units. Specifically, correlation is used to investigate the degree to which
variables change or vary together (covary). In correlation, there is no distinction
between dependent (response) and independent (predictor) variables and there is no
attempt to prescribe or interpret the causality of the association. For example, there
may be an association between arm and leg length in humans, whereby individu-
als with longer arms generally have longer legs. Neither variable directly causes the
change in the other. Rather, they are both influenced by other variables to which
they both have similar responses. Hence correlations apply mainly to survey designs
where each variable is measured rather than specifically set or manipulated by the
investigator.

Regression is used to investigate the nature of a relationship between variables
in which the magnitude and changes in one variable (known as the independent or
predictor variable) are assumed to be directly responsible for the magnitude and changes
in the other variable (dependent or response variable). Regression analyses apply to
both survey and experimental designs. Whilst for experimental designs, the direction
of causality is established and dictated by the experiment, for surveys the direction of
causality is somewhat discretionary and based on prior knowledge. For example,
although it is possible that ambient temperature effects the growth rate of a species of
plant, the reverse is not logical. As an example of regression, we could experimentally
investigate the relationship between algal cover on rocks and molluscan grazer density
by directly manipulating the density of snails in different specifically control plots and
measuring the cover of algae therein. Any established relationship must be driven by
snail density, as this was the controlled variable. Alternatively the relationship could be
investigated via a field survey in which the density of snails and cover of algae could
be measured from random locations across a rock platform. In this case, the direction
of causality (or indeed the assumption of causality) may be more difficult to defend.

In addition to examining the strength and significance of a relationship (for
which correlation and regression are equivalent), regression analysis also explores the
functional nature of the relationship. In particular, it estimates the rate at which a
change in an independent variable is reflected in a change in a dependent variable as

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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well as the expected value of the dependent variable when the independent variable is
equal to zero. These estimates can be used to construct a predictive model (equation)
that relates the magnitude of a dependent variable to the magnitude of an independent
variable, and thus permit new responses to be predicted from new values of the
independent variable.

8.1 Correlation

The simplest measure of association between two variables is the sum product of the
deviations of each point from the mean center [e.g.

∑
(x − x)(y − y)], see Figure. 8.1f.

This method essentially partitions the cloud of points up into four quadrants and weighs
up the amount in the positive and negative quadrants. The greater the degree to which
points are unevenly distributed across the positive and negative quadrants, the greater
the magnitude (either negative or positive) of the measure of association. Clearly how-
ever, the greater the number of points, the higher the measure of association. Covariance
standardizes for sample size by dividing this measure by the degrees of freedom (num-
ber of observation pairs minus 1) and thus represents the average deviations from the
mean center. Note that covariance is really the bivariate variance of two variablesa.
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Fig 8.1 Fictitious data illustrating covariance, correlation, strength and polarity.

a Covariance of a single variable and itself is the variance of that variable.
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8.1.1 Product moment correlation coefficient

Unfortunately, there are no limits on the range of covariance as its magnitude
depends on the scale of the units of the variables (see Figure 8.1a-b). The Pearson’s
(product moment) correlation coefficient further standardizes covariance by dividing
it by the standard deviations of x and y, thereby resulting in a standard coefficient
(ranging from −1 to +1) that represents the strength and polarity of a linear
association.

8.1.2 Null hypothesis

Correlation tests the H0 that the population correlation coefficient (ρ, estimated by
the sample correlation coefficient, r) equals zero:

H0 : ρ = 0 (the population correlation coefficient equals zero)

This null hypothesis is tested using a t statistic (t = r
sr

), where sr is the standard error
of r. This t statistic is compared to a t distribution with n − 2 degrees of freedom.

8.1.3 Assumptions

In order that the calculated t-statistic should reliably represent the population trends,
the following assumptions must be met:

(i) linearity - as the Pearson correlation coefficient measures the strength of a linear (straight-
line) association, it is important to establish whether or not some other curved relationship
represents the trends better. Scatterplots are useful for exploring linearity.

(ii) normality - the calculated t statistic will only reliably follow the theoretical t distribution
when the joint XY population distribution is bivariate normal. This situation is only
satisfied when both individual populations (X and Y) are themselves normally distributed.
Boxplots should be used to explore normality of each variable.

Scale transformations are often useful to improve linearity and non-normality.

8.1.4 Robust correlation

For situations when one or both of the above assumptions are not met and transfor-
mations are either unsuccessful or not appropriate (particularly, proportions, indices
and counts), monotonic associations (general positive or negative - not polynomial)
can be investigated using non-parametric (rank-based) tests. The Spearman’s rank
correlation coefficient (rs) calculates the product moment correlation coefficient on
the ranks of the x and y variables and is suitable for samples with between 7 and 30
observations. For greater sample sizes, an alternative rank based coefficient Kendall’s
(τ ) is more suitable. Note that non-parametric tests are more conservative (have less
power) than parametric tests.



170 CHAPTER 8

8.1.5 Confidence ellipses

Confidence ellipses are used to represent the region on a plot within which we have
a certain degree of confidence (e.g 95%) the true population mean center is likely to
occur. Such ellipses are centered at the sample mean center and oriented according to
the covariance matrixb of x and y.

8.2 Simple linear regression

Simple linear regression is concerned with generating a mathematical equation (model)
that relates the magnitude of dependent (response) variable to the magnitude of the
independent (predictor) variable. The general equation for a straight line is y = bx + a,
where a is the y-intercept (value of y when x = 0) and b is the gradient or slope (rate
at which y changes per unit change in x).

Figure 8.2 illustrates sets of possible representatives of population trends between
two variables. It should be apparent that if the population slope (β1) is equal to
zero there is no relationship between dependent (Y) and independent variables (X).
Changes in the independent variable are not reflected by the dependent variable.
Conversely, when the population slope is not equal to zero there is a relationship. Note
that the population intercept (β0) has less biological meaning.

The population parameters (β0 and β1) are estimated from a line of best fit through
the cloud of sample data. There are a number of ways to determine the line of best fit,
each of which represent different approach to regression analysis (see Figure 8.4, and
section 8.2.5).
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Fig 8.2 Fictitious data contrasting differences in interpretation between slope (β1) and
y-intercept (β0) parameters.

b The covariance matrix of two variables has two rows and two columns. The upper left and lower
right entries represent the variances of x and y respectively and the upper right and lower left entries
represent the covariance of x and y.
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8.2.1 Linear model

The linear model reflects the equation of the line of best fit:

yi = β0 + β1xi + εi

where β0 is the population y-intercept, β1 is the population slope and εi is the random
unexplained error or residual component.

8.2.2 Null hypotheses

A separate H0 is tested for each of the estimated model parameters:

H0 : β1 = 0 (the population slope equals zero)

This test examines whether or not there is likely to be a relationship between the
dependent and independent variables in the population. In simple linear regression, this
test is identical to the test that the population correlation coefficient equals zero (ρ = 0).

H0 : β0 = 0 (the population y-intercept equals zero)

This test is rarely of interest as it only tests the likelihood that the background level
of the response variable is equal to zero (rarely a biologically meaningful comparison)
and does not test whether or not there is a relationship (see Figure 8.4b-c).

These H0’s are tested using a t statistic (e.g. t = b
sb

), where sb is the standard error
of b. This t statistic is compared to a t distribution with n − 2 degrees of freedom.

Along with testing the individual parameters that make up the linear model via
t-tests, linear regression typically also tests the H0 : β1 = 0 by partitioning the total
variability in the response variable into a component that is explained by the β1 term in
the full linear model (yi = β0 + β1xi + εi) and a component of the variance that cannot
be explained (residual), see Figure 8.3. As it is only possible to directly determine
unexplained variation, the amount of variability explained by the full model (and
therefore β1) is calculated as the difference between the amount left unexplained by a
reduced model (yi = β0 + εi, which represents the situation when H0 : β1 = 0 is true)
and the amount left unexplained by the full model (yi = β0 + β1xi + εi).

When the null hypothesis is true (no relationship and therefore β1 = 0) and the test
assumptions are met, the ratio (F-ratio) of explained to unexplained variability follows
a F-distribution. Likewise, full and reduced models respectively with and without the
y-intercept could be used to test H0: β1 = 0. For simple linear regression, the t-tests
and ANOVA’s test equivalent null hypothesesc, however this is not the case for more
complex linear models.

c For simple linear regression the F-statistic is equal to the t-value squared (F = t2).
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Fig 8.3 Fictitious data illustrating the partitioning of (a) total variation into components
(b) explained (MSregression) and (c) unexplained (MSresidual) by the linear trend. The probability of
collecting our sample, and thus generating the sample ratio of explained to unexplained variation
(or one more extreme), when the null hypothesis is true (and there is no relationship between
X and Y) is the area under the F-distribution (d) beyond the sample F-ratio.

8.2.3 Assumptions

To maximize the reliability of null hypotheses tests, the following assumptions
apply:

(i) linearity - simple linear regression models a linear (straight-line) relationship and thus it
is important to establish whether or not some other curved relationship represents the
trends better. Scatterplots are useful for exploring linearity.

(ii) normality - the populations from which the single responses were collected per level of
the predictor variable are assumed to be normally distributed. Boxplots of the response
variable (and predictor if it was measured rather than set) should be used to explore
normality.
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(iii) homogeneity of variance - the populations from which the single responses were
collected per level of the predictor variable are assumed to be equally varied. With only
a single representative of each population per level of the predictor variable, this can
only be explored by examining the spread of responses around the fitted regression line.
In particular, increasing spread along the regression line would suggest a relationship
between population mean and variance (which must be independent to ensure unbiased
parameter estimates). This can also be diagnosed with a residual plot.

8.2.4 Multiple responses for each level of the predictor

Simple linear regression assumes linearity and investigates whether there is a relation-
ship between a response and predictor variable. In so doing, it is relying on single
response values at each level of the predictor being good representatives of their
respective populations. Having multiple independent replicates of each population
from which a mean can be calculated thereby provides better data from which to
investigate a relationship. Furthermore, the presence of replicates of the populations at
each level of the predictor variable enables us to establish whether or not the observed
responses differ significantly from their predicted values along a linear regression line
and thus to investigate whether the population relationship is linear versus some other
curvilinear relationship. Analysis of such data is equivalent to ANOVA with polynomial
contrasts (see section 10.6).

8.2.5 Model I and II regression

The ordinary least squares (OLS, or model I regression) fits a line that minimizes
the vertical spread of values around the line and is the standard regression procedure.
Regression was originally devised to explore the nature of relationship between a
measured dependent variable and an independent variable of which the levels where
specifically set (and thus controlled) by the researcher to represent a uniform range of
possibilities. As the independent variable is set (fixed) rather than measured, there is no
uncertainty or error in the y values. The coordinates predicted (by the linear model) for
any given observation must therefore lie in a vertical plane around the observed coordi-
nates (see Figure 8.4a). The difference between an observed value and its predicted value
is called a residual. Hence, OLS regression minimizes the sum of the squaredd residuals.

Model II regression refers to a family of line fitting procedures that acknowledge
and incorporate uncertainty in both response and predictor variables and primarily
describe the first major axis through a bivariate normal distribution (see Table 8.1 and
Figure 8.4). These techniques generate better parameter estimates (such as population
slope) than model I regression when the levels of the predictor variable are measured,
however, they are only necessary for situations in which the parameter estimates are
the main interest of the analysis. For example, when performing regression analysis

d Residuals are squared to remove negatives. Since the regression line is fitted exactly through the
middle of the cloud of points, some points will be above this line (+ve residuals) and some points
will be below (-ve residuals) and therefore the sum of the residuals will equal exactly zero.
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Fig 8.4 Fictitious data illustrating the differences between (a) ordinary least squares, (b) major
axis and (c) reduced major axis regression. Each are also contrasted in (d) along with a depiction
of ordinary least squares regression for X against Y. Note that the fitted line for all techniques
passes through the center mean of the data cloud. When the X and Y are measured on the same
scale, MA and RMA are the same.

to estimate the slope in allometric scaling relationships or to compare slopes between
models.

Major axis (MA) minimizes the sum square of the perpendicular spread from the
regression line (Figure 8.4c) and thus the predicted values line in a perpendicular
planes from the regression line. Although this technique incorporates uncertainty in
both response and predictor variable, it assumes that the degree of uncertainty is the
same on both axes (1:1 ratio) and is therefore only appropriate when both variables
are measured on the same scale and with the same units. Ranged major axis (Ranged
MA) is a modification of major axis regression in which MA regression is performed
on variables that are pre-standardized by their ranges (Figure 8.4d) and the resulting
parameters are then returned to their original scales. Alternatively, Reduced major axis
(RMA) minimizes the sum squared triangular areas bounded by the observations and
the regression line (Figure 8.4e) thereby incorporating all possible ratios of uncertainty
between the response and predictor variables. For this technique, the estimated slope
is the average of the slope from a regression of y against x and the inverse of the slope
of x against y.
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Table 8.1 Comparison of the situations in which the different regression methods are suitable.

Method

Ordinary least squares (OLS)
• When there is no uncertainty in IV (levels set not measured) or uncertainty in IV 


uncertainty in DV
• When testing H0 : β1 = 0 (no linear relationship between DV and IV)
• When generating predictive models from which new values of DV are predicted from given

values of IV . Since we rarely have estimates of uncertainty in our new predictor values (and
thus must assume there is no uncertainty), predictions likewise must be based on predictive
models developed with the assumption of no uncertainty. Note, if there is uncertainty in IV ,
standard errors and confidence intervals inappropriate.

• When distribution is not bivariate normal
> summary(lm(DV~IV, data))

Major axis (MA)

• When a good estimate of the population parameters (slope) is required AND
• When distribution is bivariate normal (IV levels not set) AND
• When error variance (uncertainty) in IV and DV equal (typically because variables in same

units or dimensionless)
> library(biology)

> summary(lm.II(DV~IV, data, method=’MA’))

Ranged Major axis (Ranged MA)

• When a good estimate of the population parameters (slope) is required AND
• When distribution is bivariate normal (IV levels not set) AND
• When error variances are proportional to variable variances AND
• There are no outliers
> library(biology)

> #For variables whose theoretical minimum is arbitrary

> summary(lm.II(DV~IV, data, method=’rMA’))

> #OR for variables whose theoretical minimum must be zero

> #such as ratios, scaled variables & abundances

> summary(lm.II(DV~IV, data, method=’rMA’, zero=T))

Reduced major axis (RMA) or Standard major axis (SMA)

• When a good estimate of the population parameters (slope) is required AND
• When distribution is bivariate normal (IV levels not set) AND
• When error variances are proportional to variable variances AND
• When there is a significant correlation r between IV and DV
> library(biology)

> summary(lm.II(DV~IV, data, method=’RMA’))

Modified from Legendre (2001).
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8.2.6 Regression diagnostics

As part of linear model fitting, a suite of diagnostic measures can be calculated each of
which provide an indication of the appropriateness of the model for the data and the
indication of each points influence (and outlyingness) of each point on resulting the
model.

Leverage

Leverage is a measure of how much of an outlier each point is in x-space (on x-axis)
and thus only applies to the predictor variable. Values greater than 2 ∗ p/n (where
p=number of model parameters (p = 2 for simple linear regression), and n is the
number of observations) should be investigated as potential outliers.

Residuals

As the residuals are the differences between the observed and predicted values along a
vertical plane, they provide a measure of how much of an outlier each point is in y-space
(on y-axis). Outliers are identified by relatively large residual values. Residuals can also
standardized and studentized, the latter of which can be compared across different
models and follow a t distribution enabling the probability of obtaining a given residual
can be determined. The patterns of residuals against predicted y values (residual plot)
are also useful diagnostic tools for investigating linearity and homogeneity of variance
assumptions (see Figure 8.5).

Cook’s D

Cook’s D statistic is a measure of the influence of each point on the fitted model
(estimated slope) and incorporates both leverage and residuals. Values ≥ 1 (or even
approaching 1) correspond to highly influential observations.

8.2.7 Robust regression

There are a range of model fitting procedures that are less sensitive to outliers and
underlying error distributions. Huber M-estimators fit linear models by minimizing
the sum of differentially weighted residuals. Small residuals (weakly influential) are
squared and summed as for OLS, whereas residuals over a preselected critical size
(more influential) are incorporated as the sum of the absolute residual values. A useful
non-parametric test is the Theil-Sen single median (Kendall’s robust) method which
estimates the population slope (β1) as the median of the n(n − 1)/2 possible slopes
(b1) between each pair of observations and the population intercept (β0) is estimated
as the median of the n intercepts calculated by solving y − b1x for each observation.
A more robust, yet complex procedure (Siegel repeated medians) estimates β1 and
β0 as the median of the n median of the n − 1 slopes and intercepts respectively
between each point and all others. Randomization tests compare the statistic (b1) to
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Fig 8.5 Stylised residual plots depicting characteristic patterns of residuals (a) random scatter
of points - homogeneity of variance and linearity met (b) ‘‘wedge-shaped’’ - homogeneity of
variance not met (c) linear pattern remaining - erroneously calculated residuals or additional
variable(s) required and (d) curved pattern remaining - linear function applied to a curvilinear
relationship. Modified from Zar (1999).

a unique probability distribution that is generated by repeatedly reshuffling one of
the variables and recalculating the test statistic. As a result, they do not impose any
distributional requirements on the data. Randomization tests are particularly useful
for analysing data that could not be collected randomly or haphazardly as they test
whether the patterns in the data could occur by chance rather than specifically testing
hypotheses about populations. As a result, technically any conclusions pertain only
to the collected observations and not to the populations from which the observations
were collected.

8.2.8 Power and sample size determination

Although interpreted differently, the tests H0 : ρ = 0 and H0 : β1 = 0 (population
correlation and slope respectively equal zero) are statistically equivalent. Therefore
power analyses to determine sample size required for null hypothesis rejection for both
correlation and regression are identical and based on r (correlation coefficient), which
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from regression analyses, can be obtained from the coefficient of determination (r2) or
as r = b

√∑
x2/

∑
y2.

8.3 Smoothers and local regression

Smoothers fit simple models (such as linear regression) through successive localized
subsets of the data to describe the nature of relationships between a response variable
and one or more predictor variables for each point in a data cloud. Importantly, these
techniques do not require the data to conform to a particular global model structure
(e.g. linear, exponential, etc). Essentially, smoothers generate a line (or surface) through
the data cloud by replacing each observation with a new value that is predicted from
the subset of observations immediately surrounding the original observation. The
subset of neighbouring observations surrounding an observation is known as a band
or window and the larger the bandwidth, the greater the degree of smoothing.

Smoothers can be used as graphical representations as well as to model (local
regression) the nature of relationships between response and predictor variables in a
manner analogous to linear regression. Different smoothers differ in the manner by
which the predicted values are created.

• running medians (or less robust running means) generate predicted values that are the
medians of the responses in the bands surrounding each observation.

• loess and lowesse (locally weighted scatterplot smoothing) - fit least squares regression
lines to successive subsets of the observations weighted according to their distance from
the target observation and thus depict changes in the trends throughout the data cloud.

• kernel smoothers - new smoothed y-values are computed as the weighted averages of
points within a defined window (bandwidth) or neighbourhood of the original x-values.
Hence the bandwidth depends on the scale of the x-axis. Weightings are determined by the
type of kernel smoother specified, and for. Nevertheless, the larger the window, the greater
the degree of smoothing.

• splines - join together a series of polynomial fits that have been generated after the entire
data cloud is split up into a number of smaller windows, the widths of which determine
the smoothness of the resulting piecewise polynomial.

Whilst the above smoothers provide valuable exploratory tools, they also form the
basis of the formal model fitting procedures supported via generalized additive models
(GAMs, see chapter 17).

8.4 Correlation and regression in R

Simple correlation and regression in R are performed using the cor.test() and lm()
functions. The mblm() and rlm() functions offer a range of non-parametric regression

e Lowess and loess functions are similar in that they both fit linear models through localizations of
the data. They differ in in that loess uses weighted quadratic least squares and lowess uses weighted
linear least squares. They also differ in how they determine the data spanning (neighborhood of
points regression model fitted to), and in that loess smoothers can fit surfaces and thus accomodate
multivariate data.
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Table 8.2 Smoothing function within R. For each of the following, DV is the response variable
within the data dataset. Smoothers are plotted on scatterplots by using the smoother function
as the response variable in the points() function (e.g. points(runmed(DV)~IV, data,

type=’l’)).

Smoothera Syntax

Running median > runmed(data$DV,k)

where k is an odd number that defines the bandwidth of the window
and if k omitted, defaults to either Turlach or Struetzle breaking
algorithms depending on data size (Turlack for larger)

Loess > loess(DV~IV1+IV2+..., data, span=0.75)

where IV1, IV2 represent one or more predictor variables and span

controls the degree of smoothing

Lowess > lowess(data$IV, data$DV, f=2/3)

where IV represents the predictor variable and f controls the degree of
smoothing

Kernel > ksmooth(data$IV, data$DV, kernel="normal",

bandwidth=0.5)

where IV represents the predictor variable, kernel represents the
smoothing kernel (box or normal) and bandwidth is the
smoothing bandwidth

> density(data$DV, bw="nrd0", adjust=1)

where IV represents the predictor variable and bw and adjust

‘‘nrd0’’ the smoothing bandwidth and course bandwidth multiplier
respectively. Information on the alternative smoothing bandwidth
selectors for gaussian (normal) windows is obtained by typing
?bw.nrd

Splines > data.spl<-smooth.spline(data$IV, data$DV, spar)

> points(y~x, data.spl, type=’l’)

where IV represents the predictor variable and spar is the smoothing
coeficient, typically between 0 and 1.

aNote, there are many other functions and packages that facilitate alternatives to the smoothing functions listed here.

alternatives. Model II regressions are facilitated via the lm.II() function and the
common smoothing functions available in R are described in Table 8.2.

8.5 Further reading

• Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.
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Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

8.6 Key for correlation and regression

1 a. Neither variable has been set (they are both measured) AND there is no implied
causality between the variables (Correlation) . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2

b. Either one of the variables has been specifically set (not measured) OR there is an
implied causality between the variables whereby one variable could influence the
other but the reverse is unlikely (Regression) . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4

2 a. Check parametric assumptions for correlation analysis

• Bivariate normality of the response/predictor variables - marginal scatterplot
boxplots

> library(car)

> scatterplot(V1 ~ V2, dataset)

where V1 and V2 are the continuous variables in the dataset data frame
• Linearity of data points on a scatterplot, trendline and lowess smoother

useful

> library(car)

> scatterplot(V1 ~ V2, dataset, reg.line = F)

where V1 and V2 are the continuous variables in the dataset data frame and
reg.line=F excludes the misleading regression line from the plot

Parametric assumptions met (Pearson correlation) . . . . . . . . . . . . . See Example 8A

> corr.test(~V1 + V2, data = dataset)

where V1 and V2 are the continuous variables in the dataset data frame
For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Parametric assumptions NOT met or scale transformations (see Table 3.2) not
successful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Sample size between 7 and 30 (Spearman rank correlation) . . . . . . See Example 8B

> cor.test(~V1 + V2, data = dataset, method = "spearman")

where V1 and V2 are the continuous variables in the dataset data frame
For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Sample size > 30 (Kendall’s tao correlation)

> cor.test(~V1 + V2, data = dataset, method = "kendall")
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where V1 and V2 are the continuous variables in the dataset data frame
For a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

4 a. Check parametric assumptions for regression analysis

• Normality of the response variable (and predictor variable if measured) -
marginal scatterplot boxplots

• Homogeneity of variance - spread of data around scatterplot trendline
• Linearity of data points on a scatterplot, trendline and lowess smoother useful

> library(car)

> scatterplot(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset
data frame

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5
b. Parametric assumptions NOT met or scale transformations (see Table 3.2) not

successful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7
5 a. Levels of predictor variable set (not measured) - no uncertainty in predictor

variable OR the primary aim of the analysis is:

• hypothesis testing (H0 : β1 = 0)
• generating a predictive model (y = β0 + β1x)

(Ordinary least squares (OLS) regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
b. Levels of predictor variable NOT set (they are measured) AND the main aim

of the analysis is to estimate the population slope of the relationship (Model II
regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8F

> library(biology)

> data.lm <- lm.II(DV ~ IV, christ, type = "RMA")

> summary(data.lm)

where DV and IV are response and predictor variables respectively in the dataset data
frame. type can be one of "MA", "RMA", "rMA" or "OLS". For type="rMA", it is also
possible to force a minimum response of zero (zero=T).
To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

6 a. Single response value for each level of the predictor variable . . . . . . . . . . . . . . . . See
Examples 8C&8D

> dataset.lm <- lm(IV ~ DV, dataset)

> plot(dataset.lm)

> influence.measures(dataset.lm)

> summary(dataset.lm)

where DV and IV are response and predictor variables respectively in the dataset data
frame.
To get parameter confidence intervals f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10
To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

b. Multiple response values for each level of the predictor variable . . . . . . . . . . . . . See
Examples 8E

> anova(lm(DV ~ IV + as.factor(IV), dataset))

f If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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• Pooled residual term

> dataset.lm <- lm(DV ~ IV, dataset)

> summary(dataset.lm)

• Non-pooled residual term

> dataset.lm <- aov(DV ~ IV + Error(as.factor(IV)), dataset)

> summary(dataset.lm)

> lm(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset data
frame.

7 a. Observations collected randomly/haphazardly, no reason to suspect
non-independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

b. Random/haphazard sampling not possible, observations not necessarily indepen-
dent (Randomization test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8H

> stat <- function(data, index) {

+ summary(lm(DV ~ IV, data))$coef[2, 3]

+ }

> rand.gen <- function(data, mle) {

+ out <- data

+ out$IV <- sample(out$IV, replace = F)

+ out

+ }

> library(boot)

> dataset.boot <- boot(dataset, stat, R = 5000,

+ sim = "parametric", ran.gen = rand.gen)

> plot(dataset.boot)

> dataset.boot

where DV and IV are response and predictor variables respectively in the dataset data
frame.
To get parameter confidence intervalsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10
To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

8 a. Mild non-normality due mainly to outliers (influential obseravations), data linear
(M-regression)

> library(MASS)

> data.rlm <- rlm(DV ~ IV, dataset)

where DV and IV are response and predictor variables respectively in the dataset data
frame.
To get parameter confidence intervalsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12
To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

g If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
h If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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b. Data non-normal and/or non-linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 9
9 a. Binary response (e.g. dead/alive, present/absent) . . . . . . Logistic Regression

chapter 17
b. Underlying distribution of response variable and residuals is known . . . . . . GLM

chapter 17
c. Data curvilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-linear regression chapter 9
d. Data monotonic non-linear (nonparametric regression) . . . . . . . . See Example 8G

• Theil-Sen single median (Kendall’s) robust regression

> library(mblm)

> data.mblm <- mblm(DV ~ IV, dataset, repeated = F)

> summary(data.mblm)

• Siegel repeated medians regression

> library(mblm)

> data.mblm <- mblm(DV ~ IV, dataset, repeated = T)

> summary(data.mblm)

where DV and IV are response and predictor variables respectively in the dataset data
frame.
To get parameter confidence intervalsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12
To predict new values of the response variable . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

10 Generating parameter confidence intervals . . . . . . . . . . . . . . . . . . See Example 8C&8G

> confint(model, level = 0.95)

where model is a fitted model
To get randomization parameter estimates and their confidence intervals . . . . . . . . See
Example 8H

> par.boot <- function(dataset, index) {

+ x <- dataset$ALT[index]

+ y <- dataset$HK[index]

+ model <- lm(y ~ x)

+ coef(model)

+ }

> dataset.boot <- boot(dataset, par.boot, R = 5000)

> boot.ci(dataset.boot, index = 2)

where dataset is the data.frame. The optional argument (R=5000) indicates 5000
randomizations and the optional argument (index=2) indicates which parameter to
generate confidence intervals for (y-intercept=1, slope=2). Note the use of the lm()

function for the parameter estimations and could be replaced by robust alternatives such as
rlm() or mblm().

11 Generating new response values (and corresponding prediction intervals) . . . . . See
Example 8C&8D

> predict(model, data.frame(IV = c()), interval = "p")

i If there is uncertainty in the predictor variable, parameter confidence intervals might be inappro-
priate.
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where model is a fitted model and IV is the predictor variable and c() is a vector of new
predictor values (e.g. c(10,13.4))
To get randomization prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . See Example 8H

> pred.boot <- function(dataset, index) {

+ dataset.rs <- dataset[index, ]

+ dataset.lm <- lm(HK ~ ALT, dataset.rs)

+ predict(dataset.lm, data.frame(ALT = 1))

+ }

> dataset.boot <- boot(dataset, pred.boot, R = 5000)

> boot.ci(dataset.boot)

where dataset is the name of the data frame. Note the use of the lm() function for the
parameter estimations. This could be replaced by robust alternatives such as rlm() or
mblm().

12 Base summary plot for correlation or regression . . . . . . See Example 8B&8C&8D&8F

> plot(V1 ~ V2, data, pch = 16, axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = "x-axis title", side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "y-axis title", side = 2, line = 3)

> box(bty = "l")

where V1 and V2 are the continuous variables in the dataset data frame. For regression,
V1 represents the response variable and V2 represents the predictor variable.
Adding confidence ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8B

> data.ellipse(V2, V1, levels = 0.95, add = T)

Adding regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 8C

> abline(model)

where model represents a fitted regression model
Adding regression confidence intervals . . . . . . . . . . . . . . . . . . . . . . See Example 8C&8D

> x <- seq(min(IV), max(IV), l = 1000)

> y <- predict(object, data.frame(IV = x), interval = "c")

> matlines(x, y, lty = 1, col = 1)

where IV is the name of the predictor variable (including the dataframe) model represents
a fitted regression model

8.7 Worked examples of real biological data sets

Example 8A: Pearson’s product moment correlation
Sokal and Rohlf (1997) present an unpublished data set (L. Miller) in which the correlation
between gill weight and body weight of the crab (Pachygrapsus crassipes) is investigated.
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Step 1 - Import (section 2.3) the crabs data set

> crabs <- read.table("crabs.csv", header = T, sep = ",")

Step 2 (Key 8.2) - Assess linearity and bivariate normality using a scatterplot with marginal
boxplots

> library(car)

> scatterplot(GILLWT ~ BODYWT, data = crabs, reg.line = F)
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Conclusions - data not obviously
nonlinear and no evidence of non-
normality (boxplots not asymmetrical)

Step 3 (Key 8.2a) - Calculate the Pearson’s correlation coefficient and test H0 : ρ = 0 (that the
population correlation coefficient equals zero).

> cor.test(~GILLWT + BODYWT, data = crabs)

Pearson's product-moment correlation

data: GILLWT and BODYWT

t = 5.4544, df = 10, p-value = 0.0002791

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.5783780 0.9615951

sample estimates:

cor

0.8651189

Conclusions - reject H0 that population correlation coefficient equals zero, there was
a strong positive correlation between crab weight and gill weight (r = 0.865, t10 = 5.45,
P < 0.001).
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Example 8B: Spearman rank correlation
Green (1997) investigated the correlation between total biomass of red land crabs (Gecar-
coidea natalis and the density of their burrows at a number of forested sites (Lower site: LS
and Drumsite: DS) on Christmas Island.

Step 1 - Import (section 2.3) the Green (1997) data set

> green <- read.table("green.csv", header = T, sep = ",")

Step 2 (Key 8.2) - Assess linearity and bivariate normality for the two sites separately using a
scatterplots with marginal boxplots

> library(car)

> scatterplot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "LS",

+ reg.line = F)
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> library(car)

> scatterplot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "DS",

+ reg.line = F)
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Conclusions - some evidence of non-normality (boxplots not asymmetrical)

Step 3 (Key 8.3a) - Calculate the Spearman’s rank correlation coefficient and test H0 : ρ = 0
(that the population correlation coefficient equals zero).

> cor.test(~BURROWS + TOTMASS, data = green, subset = SITE ==

+ "LS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS

S = 24.5738, p-value = 0.001791

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8510678
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Conclusions - reject H0 that population correlation coefficient equals zero, there was a strong
positive correlation between crab biomass and burrow density at Low site (ρ = 0.851, S10 =
24.57, P = 0.0018).

> cor.test(~BURROWS + TOTMASS, data = green, subset = SITE ==

+ "DS", method = "spearman")

Spearman's rank correlation rho

data: BURROWS and TOTMASS

S = 69.9159, p-value = 0.6915

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.1676677

Conclusions - do not reject H0 that population correlation coefficient equals zero, there was
no detectable correlation between crab weight and gill weight at Drumsite (ρ = 0.168, S10 =
69.92, P = 0.692).

Step 4 (Key 8.12) - Summarize findings with scatterplots (section 5.8.1), including 95%
confidence ellipses for the population bivariate mean center. The following also indicate two
alternative ways to specify a subset of a dataframe.

> plot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "LS",

+ xlim = c(0,

+ 8), ylim = c(0,

+ 80))

> with(subset(green, SITE ==

+ "LS"), data.ellipse

+ (TOTMASS,

+ BURROWS, levels = 0.95,

+ add = T))
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> plot(BURROWS ~ TOTMASS,

+ data = green, subset =

+ SITE == "DS",

+ xlim = c(0,

+ 8), ylim = c(0,

+ 150))

> with(subset(green, SITE ==

+ "DS"), data.ellipse

+ (TOTMASS,

+ BURROWS, levels = 0.95,

+ add = T))
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Example 8C: Simple linear regression - fixed X
As part of a Ph.D into the effects of starvation and humidity on water loss in the confused flour
beetle (Tribolium confusum), Nelson (1964) investigated the linear relationship between
humidity and water loss by measuring the amount of water loss (mg) by nine batches of
beetles kept at different relative humidities (ranging from 0 to 93%) for a period of six days
(Table 14.1 Sokal and Rohlf (1997)).

Step 1 - Import (section 2.3) the Nelson (1964) data set

> nelson <- read.table("nelson.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(WEIGHTLOSS ~ HUMIDITY, data = nelson)
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Conclusions - no evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is
effectively no uncertainty (error) in the predictor variable (relative humidity).

Step 4 (Key 8.6a) - fit the simple linear regression model (yi = β0 + β1xi) and examine the
diagnostics.

> nelson.lm <- lm(WEIGHTLOSS ~ HUMIDITY, nelson)

> plot(nelson.lm)
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Conclusions - There is
no obvious ‘‘wedge’’ pat-
tern evident in the residual
plot (confirming that the
assumption of homogene-
ity of variance is likely to
be met). Although there is
some deviation in the Q-
Q normal plot (suggesting
that the response variable
does deviate from normal),
the sample size is rather
small and the test is reason-
ably robust to such devia-
tions. Finally, none of the
points approach the high
Cook’s D contours suggest-
ing that none of the obser-
vations are overly influential
on the final fitted model.

> influence.measures(nelson.lm)

Influence measures of

lm(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson) :

dfb.1_ dfb.HUMI dffit cov.r cook.d hat inf

1 1.07457 -0.92033 1.07457 1.449 5.31e-01 0.417 *

2 0.17562 -0.13885 0.17705 1.865 1.81e-02 0.289 *

3 -0.83600 0.52023 -0.91800 0.552 2.86e-01 0.164

4 -0.32184 0.10806 -0.45713 0.970 9.67e-02 0.118

5 0.00868 0.00169 0.01969 1.531 2.26e-04 0.112

6 0.11994 0.27382 0.73924 0.598 1.97e-01 0.129

7 0.00141 -0.00609 -0.00956 1.674 5.33e-05 0.187

8 -0.01276 0.03163 0.04208 1.825 1.03e-03 0.255

9 0.03662 -0.07495 -0.09204 2.019 4.93e-03 0.330 *

Conclusions - None of the leverage (hat) values are greater than 2 ∗ p/n = 0.444 and therefore
(none are considered to be outliers in x-space). Furthermore, none of the Cook’s D values are
≥ 1 (no point is overly influential). Hence there is no evidence that hypothesis tests will be
unreliable.
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Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests (Boxes 14.1 & 14.3
of Sokal and Rohlf (1997)).

> summary(nelson.lm)

Call:

lm(formula = WEIGHTLOSS ~ HUMIDITY, data = nelson)

Residuals:

Min 1Q Median 3Q Max

-0.46397 -0.03437 0.01675 0.07464 0.45236

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.704027 0.191565 45.44 6.54e-10 ***

HUMIDITY -0.053222 0.003256 -16.35 7.82e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2967 on 7 degrees of freedom

Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708

F-statistic: 267.2 on 1 and 7 DF, p-value: 7.816e-07

Conclusions - Reject H0 that the population slope equals zero. An increase in relative humidity
was found to be associated with a strong (r2 = 0.975), significant decrease in weight loss
(b = −0.053, t7 = −16.35, P < 0.001) in confused flour beetles.

Step 6 (Key 8.10) - calculate the 95% confidence limits for the regression coefficients (Box
14.3 of Sokal and Rohlf (1997)).

> confint(nelson.lm)

2.5 % 97.5 %

(Intercept) 8.25104923 9.15700538

HUMIDITY -0.06092143 -0.04552287

Step 7 (Key 8.11) - use the fitted linear model to predict the mean weight loss of flour beetles
expected at 50 and 100% relative humidity (Box 14.3 of Sokal and Rohlf (1997)).

> predict(nelson.lm, data.frame(HUMIDITY = c(50, 100)),

+ interval = "prediction", se = T)

$fit

fit lwr upr

1 6.042920 5.303471 6.782368

2 3.381812 2.549540 4.214084

$se.fit

1 2

0.0988958 0.1894001
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$df

[1] 7

$residual.scale

[1] 0.2966631

Step 8 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels

> plot(WEIGHTLOSS~HUMIDITY, data=nelson, pch=16, axes=F, xlab="",

ylab="")

> #put the x-axis (axis 1) with smaller label font size

> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text="% Relative humidity", side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Weight loss (mg)", side=2, line=3)

> #add the regression line from the fitted model

> abline(nelson.lm)

> #add the regression formula

> text(99,9,"WEIGHTLOSS = -0.053HUMIDITY + 8.704", pos=2)

> #add the r squared value

> text(99,8.6,expression(paste(r^2==0.975)), pos=2)

> #create a sequence of 1000 numbers spanning the range of

humidities

> x <- seq(min(nelson$HUMIDITY), max(nelson$HUMIDITY),l=1000)

> #for each value of x, calculate the upper and lower 95%

confidence

> y<-predict(nelson.lm, data.frame(HUMIDITY=x), interval="c")

> #plot the upper and lower 95% confidence limits

> matlines(x,y, lty=1, col=1)

> #put an L-shaped box to complete the axis

> box(bty="l")
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Example 8D: Simple linear regression - random X
To investigated the nature of abundance-area relationships for invertebrates in intertidal
mussel clumps, Peake and Quinn (1993) measured area (mm2) (dependent variable: AREA)
and number of non-mussel individuals supported (response variable: INDIV) from a total of
25 intertidal mussel clumps(from Box 5.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Peake and Quinn (1993) data set

> peake <- read.table("peake.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(INDIV ~ AREA,

+ data = peake)
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> library(car)

> scatterplot(log10(INDIV) ~

+ log10(AREA), data = peake)
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Conclusions - scatterplot of raw data (left figure) indicates evidence of non-normality (boxplots
not symmetrical) and evidence that homogeneity of variance my also be violated (points become
more spread along the line of the regression line). Data transformed to logarithms (base 10)
appear to meet the assumptions of normality and homogeneity of variance better (right figure).
Linearity of the log-log relationship also appears reasonable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the main
focus will be on hypothesis testing and generating a predictive model.

Step 4 (Key 8.6) - fit the simple linear regression model (yi = β0 + β1xi) and examine the
diagnostics.

> peake.lm <- lm(INDIV ~ AREA, data = peake)

> plot(peake.lm)
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Conclusions - There is a defi-
nite ‘‘wedge’’ pattern evident in
the residual plot which is indicative
of a problem with homogeneity of
variance. The Q-Q normal plot con-
firms that the response variable does
deviate from normal. One of the
points (observation 25, obscured
by the legend) is close to the higher
Cook’s D contours suggesting that
this observation may be overly influ-
ential on the final fitted model.

> peake.lm <- lm(log10(INDIV) ~ log10(AREA), data = peake)

> plot(peake.lm)
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Conclusions - The residual plot
resulting from a model based on log
transformed data does not depict an
obvious ‘‘wedge’’, the Q-Q normal
plot indicates a greater degree of
normality and non of the points
are close to the higher Cook’s D
contours. This confirms that it is
more appropriate to fit the linear
model using the log transformed
data.

> influence.measures(peake.lm)

Influence measures of

lm(formula = log10(INDIV) ~ log10(AREA), data = peake) :

dfb.1_ dfb.l10. dffit cov.r cook.d hat inf

1 -1.202012 1.12137 -1.2929 0.670 0.626553 0.1615 *

2 0.310855 -0.29097 0.3319 1.260 0.056245 0.1727

3 0.269684 -0.25255 0.2877 1.278 0.042502 0.1745 *

4 0.153477 -0.13896 0.1781 1.187 0.016366 0.1023

5 -0.484207 0.42414 -0.6182 0.804 0.164749 0.0756
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6 -0.062392 0.05251 -0.0897 1.151 0.004183 0.0608

7 0.052830 -0.04487 0.0739 1.158 0.002846 0.0633

8 0.187514 -0.15760 0.2707 1.052 0.036423 0.0605

9 0.006384 -0.00416 0.0164 1.141 0.000140 0.0428

10 0.004787 -0.00131 0.0244 1.137 0.000311 0.0401

11 0.013583 0.00419 0.1238 1.101 0.007882 0.0400

12 -0.003011 -0.00112 -0.0287 1.137 0.000432 0.0401

13 0.000247 0.00259 0.0198 1.138 0.000204 0.0407

14 -0.003734 -0.00138 -0.0356 1.135 0.000662 0.0401

15 -0.015811 0.05024 0.2419 1.013 0.028826 0.0418

16 -0.017200 0.02518 0.0595 1.142 0.001842 0.0487

17 -0.061445 0.09368 0.2375 1.038 0.028033 0.0474

18 -0.025317 0.03314 0.0619 1.151 0.001995 0.0561

19 -0.146377 0.18521 0.3173 1.015 0.049144 0.0607

20 0.100361 -0.13065 -0.2406 1.064 0.028981 0.0567

21 -0.263549 0.31302 0.4496 0.963 0.095261 0.0776

22 0.263206 -0.29948 -0.3786 1.101 0.071044 0.1069

23 0.043182 -0.04845 -0.0588 1.246 0.001804 0.1248

24 0.167829 -0.18726 -0.2236 1.226 0.025747 0.1341

25 0.545842 -0.61039 -0.7334 0.929 0.241660 0.1302

Conclusions - Whilst three leverage (hat) values are greater than 2 ∗ p/n = 0.16 (obser-
vations 1, 2 and 3) and therefore potentially outliers in x-space, none of the Cook’s D
values are ≥ 1 (no point is overly influential). No evidence that hypothesis tests will be
unreliable.

Step 5 (Key 8.6a) - examine the parameter estimates and hypothesis tests.

> summary(peake.lm)

Call:

lm(formula = log10(INDIV) ~ log10(AREA), data = peake)

Residuals:

Min 1Q Median 3Q Max

-0.43355 -0.06464 0.02219 0.11178 0.26818

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.57601 0.25904 -2.224 0.0363 *

log10(AREA) 0.83492 0.07066 11.816 3.01e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1856 on 23 degrees of freedom

Multiple R-squared: 0.8586, Adjusted R-squared: 0.8524

F-statistic: 139.6 on 1 and 23 DF, p-value: 3.007e-11
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Conclusions - Reject H0 that the population slope equals zero. An increase in (log) mussel
clump area was found to be associated with a strong (r2 = 0.859), significant increase in the
(log) number of supported invertebrate individuals (b = 0.835, t23 = 11.816, P < 0.001).

Step 6 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels}

> plot(INDIV~AREA, data=peake, pch=16, axes=F, xlab="", ylab="",

log="xy")

> #put the x-axis (axis 1) with smaller label font size

> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text=expression(paste("Mussel clump area", (mm^2))),

side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Number of individuals", side=2, line=3)

> #add the regression line from the fitted model

> abline(peake.lm)

> #add the regression formula

> text(30000, 30, expression(paste(log[10], "INDIV = 0.835",

+ log[10], "AREA - 0.576")), pos=2)

> #add the r squared value

> text(30000, 22, expression(paste(r^2==0.835)), pos=2)

> #put an L-shaped box to complete the axis

> box(bty="l")
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Step 7 (Key 8.11) - use the fitted linear model to predict the number of individuals that would
be supported on two new mussel clumps with areas of 8000 and 10000 mm2.

> 10^predict(peake.lm, data.frame(AREA = c(8000, 10000)))

1 2

481.6561 580.2949
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Since OLS was used to generate the predictive model, and yet there was likely to have been
uncertainty in the original mussel clump area measurements, confidence intervals about these
predictions are not valid. Nevertheless, the following illustrates how they would be obtained.

> 10^predict(peake.lm, data.frame(AREA = c(8000, 10000)),

interval = "prediction")

fit lwr upr

1 481.6561 194.5975 1192.167

2 580.2949 233.5345 1441.938

Similarly, confidence bands could be incorporated onto the plot to indicate confidence in the
population regression line if there was no uncertainty in the predictor variable.

> plot(log10(INDIV) ~ log10(AREA), data = peake, pch = 16,

+ axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = "Log Mussel clump area", side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "Log number of individuals", side = 2, line = 3)

> abline(peake.lm)

> text(4.5, 1.4, expression(paste(log[10], "INDIV = 0.835",

+ log[10], "AREA - 0.576")), pos = 2)

> text(4.5, 1.3, expression(paste(r^2 == 0.835)), pos = 2)

> x <- seq(min(peake$AREA), max(peake$AREA), l = 1000)

> y <- predict(peake.lm, data.frame(AREA = x), interval = "c")

> matlines(log10(x), y, lty = 1, col = 1)

> box(bty = "l")
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Example 8E: Linear regression - with multiple values of Y per value of X
Sokal and Rohlf (1997) presented data on the (arcsine transformed) percentage survival to
adulthood of Tibolium castaneum beetles housed at four densities (5, 20, 50 & 100 eggs per
gram of flour medium). Each level of the density treatment was replicated (albeit to varying
degrees) in a manner similar to single factor classification (ANOVA, see chapter 10).
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Step 1 - Import (section 2.3) the beetles data set

> beetles <- read.table("beetles.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother. As there are replicates for each level of the
predictor, normality and homogeneity of variance can also be assessed with boxplots of each
population.

> library(car)

> scatterplot(SURVIVAL ~ DENSITY,

+ data = beetles)
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> boxplot(SURVIVAL ~ DENSITY,

+ data = beetles)
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Conclusions - the scatterplot indicates that the assumption of linearity is likely to be ok. Note
that the boxplot on the x-margin of the scatterplot only reflects an imbalance in replication.
Whilst there is some evidence of non-homogeniety of variance, a consistent relationship between
mean and variance cannot be fully established, and thus the data are considered suitable.

Step 3 (Key 8.5a) - the ordinary least squares method is considered appropriate as the there is
considered to be no uncertainty (error) in the predictor variable (relative density).

Step 4 (Key 8.5b) - determine the lack of fit to the regression line by comparing deviations of
observations from the regression line to deviations of observations from their means per density.

> anova(lm(SURVIVAL ~ DENSITY + as.factor(DENSITY), beetles))

Analysis of Variance Table

Response: SURVIVAL

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 1 403.93 403.93 32.0377 0.0001466 ***

as.factor(DENSITY) 2 19.77 9.89 0.7842 0.4804305

Residuals 11 138.69 12.61

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Conclusions - deviations from linear not significantly different from zero (F = 0.7842, P =
0.480), hence there is no evidence that a straight line is not an adequate representation of these
data.

Step 5 (Key 8.5b) - consider whether to pool deviations from the regression line and the
deviations from the predictor level means

> #calculate critical F for alpha=0.25, df=2,11

> qf(0.25,2,11, lower=T)

[1] 0.2953387

Conclusions - Sokal and Rohlf (1997) suggest that while there is no difference between the
deviations from the regression line and the deviations from the predictor level means, they
should not be pooled because F = 0.784 > F0.75[2,11] = 0.295.

Step 6 (Key 8.5b) - to test whether the regression is linear by comparing the fit of the linear
regression with the deviations from linearity (non pooled).

> beetles.lm <- aov(SURVIVAL ~ DENSITY + Error(as.factor(DENSITY)),

+ beetles)

> summary(beetles.lm)

Error: as.factor(DENSITY)

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 1 403.93 403.93 40.855 0.02361 *

Residuals 2 19.77 9.89

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 138.687 12.608

Conclusions - Reject H0 that the population is not linear.

> #to get the regression coefficients

> lm(SURVIVAL~DENSITY, beetles)

Call:

lm(formula = SURVIVAL ~ DENSITY, data = beetles)

Coefficients:

(Intercept) DENSITY

65.960 -0.147

If we had decided to pool, the analysis could have been performed as follows:

> summary(lm(SURVIVAL ~ DENSITY, beetles))

Call:

lm(formula = SURVIVAL ~ DENSITY, data = beetles)
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Residuals:

Min 1Q Median 3Q Max

-6.8550 -1.8094 -0.2395 2.7856 5.1902

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.96004 1.30593 50.508 2.63e-16 ***

DENSITY -0.14701 0.02554 -5.757 6.64e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.491 on 13 degrees of freedom

Multiple R-squared: 0.7182, Adjusted R-squared: 0.6966

F-statistic: 33.14 on 1 and 13 DF, p-value: 6.637e-05

Note that these data could also have been analysed as a single factor ANOVA with polynomial
contrasts

> beetles$DENSITY <- as.factor(beetles$DENSITY)

> contrasts(beetles$DENSITY) <- contr.poly(4, c(5, 20, 50,

+ 100))

> beetles.aov <- aov(SURVIVAL ~ DENSITY, beetles)

> summary(beetles.aov, split = list(DENSITY = list(1, c(2,

+ 3))))

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 3 423.70 141.23 11.2020 0.0011367 **

DENSITY: C1 1 403.93 403.93 32.0377 0.0001466 ***

DENSITY: C2 2 19.77 9.89 0.7842 0.4804305

Residuals 11 138.69 12.61

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 8F: Model II regression
To contrast the parameter estimates resulting from model II regression, Quinn and Keough
(2002) used a data set from Christensen et al. (1996) (Box 5.7 Quinn and Keough (2002)).
Whilst model II regression is arguably unnecessary for these data (as it is hard to imagine
why estimates of the regression parameters would be the sole interest of the Christensen
et al. (1996) investigation), we will proceed with the aim of gaining a reliable estimate of the
population slope is required.

Step 1 - Import (section 2.3) the Christensen et al. (1996) data set

> christ <- read.table("christ.csv", header = T, sep = ",")
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Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> library(car)

> scatterplot(CWD.BASA ~ RIP.DENS, data = christ)
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Conclusions - no evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity.

Step 3 (Key 8.5b) - as there is likely to be uncertainty in the measured levels of the predictor
variable and the stated intention of the analysis is to obtain a reliable estimate of the population
slope, model II regression is considered appropriate. Furthermore, as the basal area of course
woody debris and the density of riparian vegetation are measured on different scales, the degrees
of uncertainty in the variables are unlikely to be equal (yet may well be proportionaly to the
respective variances of each variable), MA regression is not appropriate. Finally, as there is some
evidence that there may be outliers present, RMA is considered the most appropriate method.

Step 4 (Key 8.5b) - fit the RMA linear regression model.

> library(biology)

> christ.lm <- lm.II(CWD.BASA ~ RIP.DENS, christ, type = "RMA")

> summary(christ.lm)

$Call

lm.II(formula = CWD.BASA ~ RIP.DENS, data = christ, type = "RMA")

$Coefficients

Estimate Lower 95% CI Upper 95% CI

(Intercept) -113.9042556 -187.1524427 -61.7666149

RIP.DENS 0.1450207 0.1032249 0.2037396

Step 5 (Key 8.12) - summarize the findings of the linear regression analysis with a scatterplot
including the regression line, regression equation and r2.

> #create a plot with solid dots (pch=16) and no axis or labels

> plot(CWD.BASA~RIP.DENS, christ, pch=16, axes=F, xlab="",

ylab="")

> #put the x-axis (axis 1) with smaller label font size
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> axis(1, cex.axis=.8)

> #put the x-axis label 3 lines down from the axis

> mtext(text="Riparian tree density", side=1, line=3)

> #put the y-axis (axis 2) with horizontal tick labels

> axis(2, las=1)

> #put the y-axis label 3 lines to the left of the axis

> mtext(text="Course woody debris basal area", side=2, line=3)

> #add the regression line from the fitted model

> abline(christ.lm)

> #add the regression parameters

> text(1600,50,expression(paste(beta[1]==0.145)), pos=4)

> text(1600,40,expression(paste(beta[0]==-113.904)), pos=4)

> #put an L-shaped box to complete the axis

> box(bty="l")

800 1000 1200 1400 1600 1800 2000 2200

Riparian tree density

0

50

100

150

C
ou

rs
e 

w
oo

dy
 d

eb
ris

 b
as

al
 a

re
a

β1 = 0.145
β0 = −113.904

Example 8G: Linear regression - non-parametric regression
Smith (1967) investigated the effects of cloud seeding on rainfall in the Snowy Mountains,
Australia. The experiment took place in two areas (the target and control). Within a
year a number of periods were randomly allocated for seeding and additional periods for
non-seeding. The total rainfall in the target and control areas during each of these periods
were recorded. Within a single year, the impact of seeding was assessed via a double ratio
(ratio of rainfall in target to control areas for seeding periods versus ratio of target to control
areas during non-seeding times) and the experiment was repeated over 5 years (Example 9.2
Hollander and Wolfe (1999)).

Step 1 - Import (section 2.3) the Smith (1967) data set

> smith <- read.table("smith.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.

> scatterplot(RATIO ~ YEARS, smith)
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Conclusions - whilst there may not
appear to be any evidence of non-
normality (boxplots not overly asym-
metrical), non homogeneity of variance
(points do not become progressively
more or less spread out along the
regression line) or non-linearity, it
could be argued that there are too
few observations on which to make
meaningful decisions about normality
and it might be safer to not make
distributional assumptions.

Step 3 (Key 8.7) - as far as we know, there are no reasons to suspect that that observations
wont be independent.

Step 4 (Key 8.8b) - it is difficult to assess normality, homogeneity of variance and linearity
with such a small sample size. We will take the conservative approach and not make any such
assumptions.

Step 5 (Key 8.9d) - perform non-parametric (Kendall’s) robust regression to assess the
H0 : β1 = 0.

> library(mblm)

> smith.mblm <- mblm(RATIO ~ YEARS, smith, repeated = F)

> summary(smith.mblm)

Call:

mblm(formula = RATIO ~ YEARS, dataframe = smith, repeated = F)

Residuals:

1 2 3 4 5

0.00000 0.06625 -0.02750 0.06875 -0.00500

Coefficients:

Estimate MAD V value Pr(>|V|)

(Intercept) 1.31625 0.04077 15 0.0625 .

YEARS -0.05625 0.03459 4 0.0137 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05744 on 3 degrees of freedom

Conclusions - reject H0. The impact of cloud seeding significantly declines over time (b=-0.056,
V=4, P=0.0137).
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Step 6 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates.

> confint.mblm(smith.mblm, level = 0.95)

0.025 0.975

(Intercept) 1.28875 1.385

YEARS -0.10000 -0.015

Example 8H: Linear regression - randomization test
McKechnie et al. (1975) investigated the relationship between altitude and the frequency of
hezokinase (HK) 1.00 mobility genes from colonies of Euphydras editha butterflies (Example
8.1 Manly (1991)).

Step 1 - Import (section 2.3) the McKechnie et al. (1975) data set

> mckechnie <- read.table("mckechnie.csv", header = T, sep = ",")

Step 2 (Key 8.4) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother. For the purpose of this demonstration, lets
assume that the assumption of normality could not be met and more importantly, that the
observations are not independent, thereby necessitating an alternative regression method.

Step 3 (Key 8.7b) - use randomization to test whether the observed trend could be due to
chance.

1. define the statisticj to use in the randomization test - in this case the t-statistic

> stat <- function(data, index) {

+ summary(lm(HK ~ ALT, data))$coef[2, 3]

+ }

2. define how the data should be randomized - randomize the pairing of predictor and responses
(shuffle without replacement the predictor values amongst observations)

> rand.gen <- function(data, mle) {

+ out <- data

+ out$ALT <- sample(out$ALT, replace = F)

+ out

+ }

3. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> library(boot)

j Consistent with Manly (1991), I have used OLS to estimate the regression parameters. However,
these parameters could alternatively be RMA or non-parametric regression estimates.
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> mckechnie.boot <- boot(mckechnie, stat, R = 5000,

+ sim = "parametric", ran.gen = rand.gen)

4. examine the distribution of t-values generated from the randomization procedure

> plot(mckechnie.boot)
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5. examine the bootstrap statistics

> mckechnie.boot

PARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = stat, R = 5000,

sim = "parametric", ran.gen = rand.gen)

Bootstrap Statistics :

original bias std. error

t1* 4.830571 -4.846745 1.084864

6. calculate the number of possible t-values (including the observed t-value, which is one
possible outcome) that were greater or equal to the observed t-value and express this as a
percentage of the number of randomizations (plus one for the observed outcome).

> t <- length(mckechnie.boot$t[mckechnie.boot$t >=

+ mckechnie.boot$t0]) + 1

> t/(mckechnie.boot$R + 1)

[1] 0.00059988

Conclusions - probability of obtaining a t-value of 4.83 or greater when H0 is true is 0.0006
(0.06%). Note that as this is a randomization procedure, the p-value will vary slightly each
time.
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Step 4 (Key 8.10) - calculate 95% confidence intervals for the parameter estimates (example
8.2 Manly (1991))

1. define how the parameters (coefficients) are to be calculated (from OLS regression of a
random resample with replacement of the observations).

> par.boot <- function(mckechnie, index) {

+ x <- mckechnie$ALT[index]

+ y <- mckechnie$HK[index]

+ model <- lm(y ~ x)

+ coef(model)

+ }

2. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> mckechnie.boot <- boot(mckechnie, par.boot, R = 5000)

> mckechnie.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = par.boot, R = 5000)

Bootstrap Statistics :

original bias std. error

t1* 10.65409 0.2426368 4.853195

t2* 29.15347 -0.1309074 5.581786

3. examine the bootstrap 95% confidence intervals for the second (index=2) parameter (slope)

> boot.ci(mckechnie.boot, index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 5000 bootstrap replicates

CALL :

boot.ci(boot.out = mckechnie.boot, index = 2)

Intervals :

Level Normal Basic

95% (18.34, 40.22 ) (18.38, 40.81 )

Level Percentile BCa

95% (17.50, 39.92 ) (16.95, 39.52 )

Calculations and Intervals on Original Scale

Conclusions - 95% confidence interval for the true regression coefficients is 15.49 - 39.52
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Step 5 (Key 8.11) - predict the percentage of HK genes at an altitude of 1.

1. define the function to predict new values.

> pred.boot <- function(mckechnie, index) {

+ mckechnie.rs <- mckechnie[index, ]

+ mckechnie.lm <- lm(HK ~ ALT, mckechnie.rs)

+ predict(mckechnie.lm, data.frame(ALT = 1))

+ }

2. call a bootstrapping procedure to randomize 5000 times (this can take some time)

> mckechnie.boot <- boot(mckechnie, pred.boot, R = 5000)

> mckechnie.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mckechnie, statistic = pred.boot, R = 5000)

Bootstrap Statistics :

original bias std. error

t1* 39.80756 0.1235158 4.914043

3. examine the bootstrap 95% intervals for this prediction

> boot.ci(mckechnie.boot, index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 5000 bootstrap replicates

CALL :

boot.ci(boot.out = mckechnie.boot, index = 1)

Intervals :

Level Normal Basic

95% (30.05, 49.32 ) (30.66, 49.80 )

Level Percentile BCa

95% (29.82, 48.96 ) (27.68, 47.58 )

Calculations and Intervals on Original Scale

Conclusions - 95% confidence interval for the true regression coefficients is 27.59 - 47.81

Alternatively, if the levels of the predictor variable were specifically set, then it might be
more appropriate to base hypothesis tests, predictions and confidence intervals on randomized
residuals rather than randomizing the predictor variable.
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Example 8I: Power analysis - sample size determination in testing H0 : ρ = 0
Zar (1999) provided a worked example in which the sample size required to reject the null
hypothesis (H0 : ρ = 0) 99% of the time when the correlation coefficient has an absolute
magnitude (ignore sign) greater or equal to 0.5 (|ρ| ≥ 0.5) (Example 19.5 Zar (1999)).

Step 1 - calculate the sample size required to detect a correlation of greater or equal to 0.5 with
a power of 0.99

> library(pwr)

> pwr.r.test(r = 0.5, power = 0.99)

approximate correlation power calculation (arctangh

transformation)

n = 63.50301

r = 0.5

sig.level = 0.05

power = 0.99

alternative = two.sided

Step 2 - generate a plot that illustrates the relationship between target correlation (from 0.4 to
0.9) and sample size for a range of levels of power (0.75,0.8,0.85,0.9).

> library(pwr)

> r <- seq(0.4, 0.9, l = 100)

> plot(sapply(r, function(x) pwr.r.test(r = x, power = 0.8)$n) ~

+ r, type = "l", lwd = 2, xlab = "Correlation coefficient",

+ ylab = "Sample size")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.9)$n) ~

+ r, type = "l")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.85)$n) ~

+ r, type = "l")

> points(sapply(r, function(x) pwr.r.test(r = x, power = 0.75)$n) ~

+ r, type = "l")
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Conclusions - graph provides a means
to evaluate the cost-benefit compromises
between power and sample size for a range
of possible correlations. Informed design
decisions can result from such graphs. If the
degree of correlation is expected to be high,
approximately 10 replicates would be ade-
quate. However, if the degree of correlation
is expected to be lower, a greater number
of replicates are required. Furthermore, as
the degree of correlation declines, the differ-
ence in estimated required sample size for
different levels of power becomes greater.
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Multiple and curvilinear regression

Multiple and complex regression analyses can be useful for situations in which patterns
in a response variable can not be adequately described by a single straight line resulting
from a single predictor and/or a simple linear equation.

9.1 Multiple linear regression

Multiple regression is an extension of simple linear regression whereby a response
variable is modeled against a linear combination of two or more simultaneously
measured continuous predictor variables. There are two main purposes of multiple
linear regression:

(i) To develop a better predictive model (equation) than is possible from models based on
single independent variables.

(ii) To investigate the relative individual effects of each of the multiple independent variables
above and beyond (standardized across) the effects of the other variables.

Although the relationship between response variable and the additive effect of all the
predictor variables is represented overall by a single multidimensional plane (surface),
the individual effects of each of the predictor variables on the response variable
(standardized across the other variables) can be depicted by single partial regression lines.
The slope of any single partial regression line (partial regression slope) thereby represents
the rate of change or effect of that specific predictor variable (holding all the other
predictor variables constant to their respective mean values) on the response variable. In
essence, it is the effect of one predictor variable at one specific level (the means) of all the
other predictor variables (i.e. when each of the other predictors are set to their averages).

Multiple regression models can be constructed additively (containing only the
predictor variables themselves) or in a multiplicative design (which incorporate inter-
actions between predictor variables in addition to the predictor variables themselves).
Multiplicative models are used primarily for testing inferences about the effects of
various predictor variables and their interactions on the response variable in much the
same way as factorial ANOVA (see chapter 12). Additive models by contrast are used
for generating predictive models and estimating the relative importance of individual
predictor variables more so than hypothesis testing.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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9.2 Linear models

Additive model

yi = β0 + β1xi1 + β2xi2 + . . . + βjxij + εi

where β0 is the population y-intercept (value of y when all partial slopes equal zero),
β1, β2, etc are the partial population slopes of Y on X1, X2, etc respectively holding
the other X constant. εi is the random unexplained error or residual component.
The additive model assumes that the effect of one predictor variable (partial slope) is
independent of the levels of the other predictor variables.

Multiplicative model

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + . . . + εi

where β3xi1xi2 is the interactive effect of X1 and X2 on Y and it examines the degree
to which the effect of one of the predictor variables depends on the levels of the other
predictor variable(s).

9.3 Null hypotheses

A separate H0 is tested for each of the estimated model parameters:

H0: β0 = 0 (the population y-intercept equals zero)

This test is rarely of interest as it only tests the likelihood that the background level
of the response variable is equal to zero (rarely a biologically meaningful comparison)
and does not test whether or not there is a relationship.

H0: β1 = 0 (the partial population slope of X1 on Y equals zero)
H0: β2 = 0 (the partial population slope of X2 on Y equals zero)
. . . .

These tests examine respectively whether or not there is likely to be a relationship
between the dependent and one of the independent variables (holding the other
independent variables constant) in the population.

For an additive model

H0 : β3 = 0 (the partial population slope of the interactive effect of
X1 and X2 on Y equals zero)

This test examines whether or not the effect of one dependent variable on the
independent variable (holding others constant) is dependent on other independent
variables.
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As with simple linear regression, these individual parameter null hypothesis tests
can all be tested using the t-statistic with n − (p + 1) degrees of freedom (where p is
the number of parameters in the linear model) or by comparing the lack of fit of a
full model (model containing all predictor variables) to an appropriate reduced model
(model containing all but the individual predictor variable or interacting variables)
via analysis of variance. In addition, the overall analysis of variance (which tests
the H0 : β1 = β2 = . . . = βj = 0) investigates whether the response variable can be
modeled by the particular linear combination of predictor variables.

Interactions

The nature of significant interactions (e.g. X1 and X2 on Y) can be further explored by
re-fitting the multiple linear model to explore the partial effects of one of the predictor
variables (e.g. X1) for a specific set of levels of the other interacting predictor variable(s)
(e.g. the mean of x2 as well as this mean ± 1 and or 2 standard deviations). For such
subsequent main effects tests, ignore the effect of the interaction, which will be identical
to that previously tested, and focus purely on the individual partial slope (β1).

9.4 Assumptions

To maximize the reliability of hypothesis tests, the following assumptions apply:

(i) linearity - no other curved relationship represents the relationships between each of the
predictors and the response variable. Scatterplots and scatterplot matrices are useful for
exploring linearity.

(ii) normality - the residuals, and therefore the populations from which each of the responses
were collected, are normally distributed. Note that in the majority of multiple linear
regression cases, the predictor variables are measured (not specifically set), and therefore
the respective populations are also assumed to be normally distributed. Boxplots of each
variable (particularly those incorporated within the diagonals of a scatterplot matrix) are
useful diagnostics.

(iii) homogeneity of variance - the residuals (populations from which each of the responses
were collected) are equally varied. Exploring the spread of points around individual
scatterplot trendlines can be useful, as can residual plots. Plots of residuals against
each of the predictor variables can also be useful for diagnostic spatial and temporal
autocorrelation.

(iv) (multi)collinearity - a predictor variable must not be correlated to the combination of
other predictor variables. Multicollinearity has major detrimental effects on model fitting:
• instability of the estimated partial regression slopes (small changes in the data or

variable inclusion can cause dramatic changes in parameter estimates).
• inflated standard errors and confidence intervals of model parameters, thereby increas-

ing the type II error rate (reducing power) of parameter hypothesis tests.
Multicollinearity can be diagnosed with the following:
• investigate pairwise correlations between all the predictor variables either by a

correlation matrix or a scatterplot matrix.
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• calculate tolerance (1 − r2 of the relationship between a predictor variable and all the
other predictor variables) for each of the predictor variables. Tolerance is a measure
of the degree of collinearity and values less < 0.2 should be considered and values
< 0.1 given series attention. Variance inflation factor (VIF) are the inverse of tolerance
and thus values greater than 5, or worse, 10 indicate collinearity.

• PCA (principle components analysis) eigenvalues (from a correlation matrix for all the
predictor variables) close to zero indicate collinearity and component loadings may be
useful in determining which predictor variables cause collinearity.

There are several approaches to dealing with collinearitya:
• remove the highly correlated predictor variable(s), starting with the least most

biologically interesting variable(s).
• PCA (principle components analysis) regression - regress the response variable

against the principal components resulting from a correlation matrix for all the
predictor variables. Each of these principal components by definition are completely
independent, but the resulting parameter estimates must be back-calculated in order
to have any biological meaning.

Interaction terms in multiplicative models are likely to be correlated to their constituent
individual predictors, and thus the partial slopes of these individual predictors are likely
to be unstable. However, this problem can be reduced by first centering (subtracting the
mean from the predictor values) the individual predictor variables.

(v) the number of predictor variables must be less than the number of observations otherwise
the linear model will be over-parameterized (more parameters to estimate than there are
independent data from which estimations are calculated).

As with simple linear regression, regression diagnostics (residuals, leverage and
Cook’s D) should be examined following model fitting.

9.5 Curvilinear models

It is not always appropriate to attempt to model the relationship between a response
and predictor variable with a straight line in which it is assumed that the rate of
change (slope) remains constant throughout the range of the predictor variable. In
such cases, scale transformations may not only be unable to correct linearity, they may
be inappropriate when we are trying to describe a model that reflects the true nature of
the relationship. To some degree, curvilinear models assume that there is a relationship
between the variables and are themselves more concerned with exploring the nature of
the relationship. Table 9.1 depicts the general nature and corresponding models and
R syntax for some simple or useful non-linear models.

9.5.1 Polynomial regression

Polynomials are linear combinations of predictor variables (no predictor variable is the
exponent, multiplier or deviser of any other) in which a predictor variable is represented

a Note that all of these are likely to result in biased parameter estimates.
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Table 9.1 Illustrative set of useful non-linear functions with corresponding R model fitting
syntax. Some examples also illustrate corresponding self-starting functions. Note that this is a
non-exhaustive set.

Function Preview

Concave/convex functions
Power (y = αxβ )

Used to describe a large range of physical and biological trends
including allometric scaling relationships (e.g. Kleiber’s law) and
inverse square laws (e.g. Newtonian gravity). α defines the scale of
the y-axis and β defines the magnitude and polatity of the rate
of change and thus the degree of curvature
> nls(DV~a*IV^b, dataset, start=list(a=1,

b=0.1))

0 < b < 1

b < 0

b > 1

Exponential (y = αeβx)
Models non-asymptotic growth and decay. α defines the scale of
the y-axis and increasing magnitude of β increases the curvature of
the curve.
> nls(DV~a*exp(b*IV), dataset, start=list(a=1,

b=0.1))

a > 0, b < 0

a < 0, b < 0
a > 0, b > 0

a < 0, b > 0

Aymptotic functions
Asymptotic exponential (y = α + (β − α)e−eγ x)

Used to describe general asymptotic relationships.
Equivelent to the more simple y = a − be−cx when a = α,
b = β − α and c = eγ

α - y value of horizontal asymptote. β - value of y when x = 0.
γ - natural log of rate of curvature
> nls(DV~a+b*exp(c*x),dataset,start=list(a=1,

b=-1,c=-1))

> nls(DV~SSasymp(IV,a,b,c), dataset)

a > b

a < b

Michaelis-Menten (y = αx
β+x )

Used to relate rates of enzymatic reactions to substrate concentra-
tions
α − y value of horizontal asymptote. β (Mechaelis parameter) -
value of x at which half the asymptotic response is obtained.
> nls(DV~(a*IV)/(b*IV), dataset,

start=list(a=1, b=1))

> nls(DV~SSmicmen(IV,a,b), dataset)

b > 0

b < 0
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Table 9.1 (continued)

Function Preview

Sigmoidal
Logistic (y = α

1+e(β−x)/γ )
Used to describe binary responses (presence/absence, alive/dead,
etc) relationships.
α - horizontal asymptote (typically 1). β - value of x at which half
the asymptotic response is obtained (inflection point).
γ - determines the steepness at inflection.
> nls(DV~a/(1+exp((b-IV)/c)), dataset,

start=list(a=1,b=1,c=.1))

> nls(DV~SSlogis(IV,a,b,c), dataset)

g > 0

g < 0

Weibull (y = α − βe−(eγ xδ))
Describes the kinetics of many enzymes. Used to relate rates of
enzymatic reactions to substrate concentrations
α - right side horizontal asymptote. β - rate of vertical change.
γ - natural log of rate of curvature. δ - power to raise x.
> nls(DV~a - b*exp(-exp(c)*IV^d), dataset,

start=list(a=1, b=1, c=1, d=1))

> nls(DV~SSweibull(IV,a,b,c,d), dataset)

g > 0

g < 0

Peaks and/or valleys
Polynomials

Describes the kinetics of many enzymes. Used to relate rates of
enzymatic reactions to substrate concentrations
> lm(DV~ IV + I(IV^2) + I(IV^3), dataset)

> lm(DV poly(IV, 3), dataset)

y = b0 + b1x − b2x
2

y = b0 + b1x + b2x
2 − b3x

3

by multiple instances of itself (each of a successively higher order). These higher order
terms are quadratic (2nd order, x2), cubic (3rd order, x3), etc terms and are interactions
of the predictor variables with itself. The linear model for a second-order (quadratic)
regression (parabola) is:

yi = β0 + β1xi1 + β2x2
i1 + εi

Parameters are estimated and tests of the H0’s that β0 = 0, β1 = 0, β2 = 0 and
β0 = β1 = β2 = 0 are performed as per multiple linear regression. Note that the
polynomial regression model contains multiple instances of a predictor variable
(including interactions), and that each of these instances will be correlated to one
another, thereby violating the assumption of collinearity. Centering the predictor
variable first reduces this problem.

Arguably a more biologically meaningful test is whether a higher-order polynomial
model (e.g. quadratic) fits the data better than a lower-order model (such as a simple
linear regression) and this is tested with a F-statistic by comparing the fit of the model
with the higher-order term versus a model without this term.
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9.5.2 Nonlinear regression

Non-linear regression models enable us to investigate the fit of various predefined
functions (such as power, exponential, logarithmic as well as any other non straight
line functions) to our collected data. Non-linear model parameters are estimated by
iteratively changing the values of the parameters so as to either minimize the sum of
squared residuals (OLS) or to maximize the log-likelihood (ML). Starting values of
the parameters must be provided, and should be realistic to maximize the chances of
convergence (reaching stable parameter estimates). Furthermore, it is advisable that
non-linear models be re-fitted with a range of starting values so as to reduce the risks of
parameter estimates converging on a ‘local minimum’ (a set of parameters arrived on
through the sequential iteration process that produce a better fit than slightly different
values of the parameters, yet still not the estimates that produce the best fit). When
using OLS, the typical regression assumptions of residual normality and equal variance
apply, whereas, ML can be more robust to these assumptions.

9.5.3 Diagnostics

The same model fitting diagostic issues and measures that were highlighted in
section 8.2.6 are relevant to multiple linear regression and non-linear regression.

9.6 Robust regression

The robust alternatives introduced for simple linear regression in section 8.2.7 can
largely be extended to multiple linear regression applications.

9.7 Model selection

Not all the predictor variables in a multiple linear model necessarily contribute
substantially to explaining variation in the response variable. Those that do not, are
unlikely to have much biological impact on the response and therefore could be
ommitted from the final regression equation (along with all the other unmeasured
variables). Furthermore, we may wish to determine which of a range of linear and
non-linear models best fits the collected data. For the purpose of explaining a response
variableb, the ‘best’ regression model is arguably the model that contains only a subset
combination of important predictor variables and is therefore the model that explains
the most amount of response variability with the fewest predictor termsc (parsimony).

b Likewise, for the pursuit of developing predictive multiple regression models, the ‘best’ regression
model will contain the fewest predictor variables as greater numbers of predictor variables increases the
model complexity and sources of uncertainty and thus decreases the precision of resulting predictions.
c Recall that in statistical models, a ‘term’ denotes an estimable parameter (such as partial slope) and
its associated predictor or interaction of predictors.
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There are several criteria that can be used to assess the efficiency or fit of a model
that are penalized by the number of predictor terms. These criteria are calculated and
compared for a set of competing models thereby providing an objective basis on which
to select the ‘best’ regression model.

MSresiduals - represents the mean amount of variation unexplained by the model, and therefore
the lowest value indicates the best fit.

Adjusted r2 - (the proportion of mean amount of variation in response variable explained
by the model) is calculated as adj. r2 = MSregression

MStotal
and is therefore adjusted for both sample

size and the number of terms. Larger values indicate better fit. Adjusted r2 and MSresiduals

should not be used to compare between linear and non-linear models.
Mallow’s Cp - is an index resulting from the comparison of the specific model to a model

that contain all the possible terms. Models with the lowest value and/or values closest to
their respective p (the number of model terms, including the y-intercept) indicate best fit.

Akaike Information Criteria (AIC) - there are several different versions of AIC, each
of which adds a different constant (designed to penalize according to the number of
parameters and sample size) to a likelhood function to produce a relative measure of the
information content of a model. Smaller values indicate more parsimonious models. As a
rule of thumb, if the difference between two AIC values (delta AIC) is greater than 2, the
lower AIC is a significant improvement in parsimony.

Schwarz Bayesian Information Criteria (BIC or SIC) - is outwardly similar to AIC. The
constant added to the likelihood function penalizes models with more predictor terms more
heavily (and thus select more simple models) than AIC. It is for this reason that BIC is
favored by many workers, however, others argue strongly in favor of AIC claiming that the
theoretical basis for BIC may not be relevant for most biological applicationsd.

Traditionally, the set of competing linear models were generated by stepwise proce-
dures in which terms were progressively added or dropped from a model on the basis of
importance (as assessed via p-values of partial slopes). Whilst such procedures reduce
the number of models that are assessed and compared (it is for the associated reduc-
tions in computational intensity that such procedures where originally developed), it is
possible that the ‘best’ model is never assessed. Modern computing now allows all com-
binations to be assessed rapidly thereby voiding the need for such selection procedures.

9.7.1 Model averaging

Typically, there are multiple plausible alternative models that incorporate different
combinations of predictor variables and that yield similar degrees of fit (based on AIC,
QAIC, BIC, etc). Each alternative model will result in different parameter estimates for
the predictor variables. Furthermore, conclusions about the relative importance of each
of the predictor variables is likely to be dependent on which model is selected. Model
averaging is a technique that calculates weighted averages of the parameter estimates

d The original basis for BIC was for situations in which there were either no effects or else there were
a mixture of major and no effects with no intermediate or tapering effects. Furthermore, it assumes
that the true model (against which all others are compared) is among the set being assessed.
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for each predictor variable across all the possible models. In so doing, model selection
uncertainty can be incorporated into estimates of parameter precision. Furthermore,
through model averaging, we are able to obtain an estimate the relative importance of
each of the predictor variables on the the response.

9.7.2 Hierarchical partitioning

For applications that are primarily focused on identifying the polarity and relative
magnitudes of the effects (importance) of predictor variables, constructing a single
‘best’ predictive model may be of little value and indeed may not necessarily identify
the important causal variables. Similar to model averaging, hierarchical partitioning
assesses the independent, joint and total contribution (relative influence) of each
predictor variable by averaging a measure of goodness-of-fite over all possible models
that include that predictor variable. In so doing, hierarchical partitioning is also
less susceptible to multicollinearity problems than are the single-model approaches
outlined above. Note that since hierarchical partitioning operates within an entire
model set, it is not appropriate for comparing the fit of single models.

In order to evaluate whether the magnitude of a variable’s contribution is great
enough to warrant retention (or attributed as important), a randomization procedure
can be used in which the independent contributions of each predictor variable are
compared to distributions of such contributions generated by repeated (e.g. 1000 times)
randomizations of the data matrix. Alternatively, the randomized outcomes can be
used to calculate Z-scores f for each predictor variable, which in turn can be used to
test significance (Z ≥ 1.65 at the 95% level).

9.8 Regression trees

Regression trees are a robustg alternative to multiple regression for exploring and
describing patterns between a response variable and multiple predictor variables as
well as developing predictive models. In addition, as regression trees are rank-based,
they accommodate a range and combination of response and predictor data types
(including categorical, numerical and rankings) and do not depend on the nature
of monotonic relationships (linearity not assumed nor is the arbitrary family of a
curvilinear relationship required).

Regression trees are constructed via binary recursive partitioning, a process in which
the data are progressively split into a dichotomously branching tree. Initially, for
each predictor variable, the process iteratively determines the value of that predictor
variable that results in the single dichotomous split that minimizes the sum of squared
deviations from the split response means. The predictor variable (and split) with
the smallest deviations is thereby installed as a node at the top of the tree and is
interpreted as the most explanatory of the patterns in the response variable. Two

e r2 in multiple linear regression, χ2 in log-linear models.
f calculated as Z = (Iobs − mean{Irand})/sd{Irand}.
g They are invariant to underlying distributions.
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branches descend from this top tree node. The left and right branches represent subsets
of the entire dataset for which the values of the top predictor variable are respectively
less than and greater than the splitting threshold value. This partitioning process then
continues recursively down each branch until either a specific number of branches
have been produced or a pre-defined minimum number of observations within the
branch has been obtained. Graphical trees can be constructed to illustrate the hierarchy
of importance of the predictor variables as well as the nature of interactions between
predictor variables.

Each additional split increases the overall explanatory power of the tree (as measured
by total deviance). However, greater numbers of branches also increase the degree of
over-fittingh and complexity resulting in models with poor predictive performance.
A cost-complexity measure can be used to visually assess the compromise between
explanatory power and complexity (number of branches) and thus help identify how
the tree could be pruned.

9.9 Further reading

• Theory

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. John Wiley & Sons, New York.

Manly, B. F. J. (1991). Randomization and Monte Carlo methods in biology. Chapman
& Hall, London.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Faraway, J. J. (2006). Extending Linear Models with R: generalized linear mixed effects
and nonparametric regression models. Chapman & Hall/CRC.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

9.10 Key and analysis sequence for multiple and complex regression

1 a. Investigating relationships between a single response variable and multiple
predictor variables with the expectation that the predictor variables will be
linearly related to the response (Multiple linear regression) . . . . . . . . . . . . Go to 2

h Over-fitting is were additional branches have began to represent and ‘‘explain’’ random aspects of
the dataset (such as individual variation) rather than genuine population patterns.
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b. Investigating non-linear relationships between a single response variable and a
single predictor variable (Non-linear regression) . . . . . . . . . . . . . . . . . . . . . . Go to 7

c. Develop descriptive and predictive models between a single response variable
and multiple predictor variables with few distributional, curvilinear or data type
restrictions (Regression trees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 13

2 a. Check assumptions for multiple linear regression
Parametric assumptions
• Normality of the response variable and predictor variables - scatterplot matrix

with boxplots in diagonals
• Homogeneity of variance - spread of data around scatterplot matrix trendlines
• Linearity of data points on a scatterplot, trendline and lowess smoother

useful

> library(car)

> scatterplot.matrix(~DV+IV1+IV2+IV3, dataset,

+ diag="boxplot")

where DV and IV1, IV2,. . . are the response and predictor variables respectively in
the dataset data frame

(Multi)collinearity assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3
Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4

b. Parametric assumptions NOT met or scale transformations (see tab. 3.2) not
successful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

3 a. Check (multi)collinearity assumption

> cor(dataset[, cols])

where cols is a set (vector) of numbers representing the column numbers for the
predictor variables in the dataset data frame

> vif(lm(DV ~ IV1 + IV2 + ..., dataset))

> 1/vif(lm(DV ~ IV1 + IV2 + ..., dataset))

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.
(Multi)collinearity assumption met . . . . . . . . . . . . . . . . . . . . . . . . . return to previous

b. (Multi)collinearity assumption not met - attempt one of the following:

• Exclude one or more predictor variables - retain most biologically important
on an priori theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9A

• (Multi)collinearity due to interactive/polynomial terms - center predictors See
Example 9B

> dataset$cIV1 <- scale(dataset$IV1, scale = F)

> dataset$cIV2 <- scale(dataset$IV2, scale = F)

> ...

where IV1 and IV2 are two of the predictor variables in the dataset data frame.
Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Return to previous

• PCA regression . . . . . . . . . . . . . . . . . . . . see Quinn and Keough (2002) chapter 17.
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4 a. The effects of each predictor variable on the response variable are expected to be
independent of other measured predictor variables (fit additive model) . . . . . See
Example 9A

> data.lm <- lm(DV ~ IV1 + IV2 + .., dataset)

> plot(data.lm)

> summary(data.lm)

To summarize the partial relationships graphically . . . . . . . . . . . . . . . . . . . . . Go to 12
To select the ‘best’ model or compare fit to other models . . . . . . . . . . . . . . . . Go to 8

b. The effects of one or more predictor variables are expected to depend on the
level of other measured predictor variables and such interactions are of biological
interest (fit multiplicative model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9B

> data.lm <- lm(DV ~ IV1 + IV2 + .. + IV1:IV2 + .., dataset)

> plot(data.lm)

> summary(data.lm)

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.
To summarize the partial relationships graphically . . . . . . . . . . . . . . . . . . . . . Go to 12
Interaction(s) present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
To select the ‘best’ model or compare fit to other models . . . . . . . . . . . . . . . . Go to 8

5 a. Random/haphazard sampling not possible, observations not necessarily indepen-
dent (randomization test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See
Example 9E

> stat <- function(data, indices) {

+ summary(lm(DV ~ IV1 + IV2 + ..., data))$coef[,

+ 3]

+ }

> rand.gen <- function(data, mle) {

+ out <- data

+ out$DV <- sample(out$DV, replace = F)

+ out

+ }

> library(boot)

> dataset.boot <- boot(dataset, stat, R = 1000,

+ sim = "parametric", ran.gen = rand.gen)

> t <- apply(apply(abs(dataset.boot$t), 1, ">=",

+ abs(dataset.boot$t0)) * 1, 1, "sum") + 1

> t/(dataset.boot$R + 1)

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.
Interaction(s) present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

b. Observations independent however data non-normal with few outliers (robust
M-estimator test)
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6 Exploring interactions further . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9B

> IV1_sd2 <- mean(IV1) - 2 * sd(IV1)

> data.lm2 <- lm(DV ~ IV2 * c(IV1 - IV1_sd2), data = dataset)

> summary(data.lm2)

where the effect of one of the predictor variables (IV2) on the dependent variable (DV)
is modeled for a value of another predictor variable (IV1) equal to its mean minus 1
standard deviation.
Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Return to previous

7 a. Relationship should theoretically asymptote (reach a plateau) (Nonlinear
regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7
Power function

> dataset.nls <- nls(DV ~ alpha * IV^beta,

+ start = list(alpha = a, beta = b), dataset)

Logarithmic function

> dataset.nls <- nls(DV ~ alpha * log(IV),

+ start = list(alpha = a), dataset)

Exponential function

> dataset.nls <- nls(DV ~ alpha * exp(IV * beta),

+ start = list(alpha = a, beta = b), dataset)

where DV and IV are the response and predictor variables respectively in the dataset
data frame. The starting parameters a and b are numbers selected to represent the
starting configuration (see Table 9.1).
Examine the parameter estimates

> summary(dataset.nls)

b. Relationship does not necessarily plateau (Polynomial regression) . . . . . . . . . . see
Example 9F

> data.lm3 <- lm(DV ~ IV + I(IV^2) + I(IV^3) + ..., dataset)

OR

> data.lm3 <- lm(DV ~ poly(IV, 3), dataset)

> plot(data.lm3)

Compare fit to that of a lower order polynomial

> data.lm2 <- lm(DV ~ IV + I(IV ~ 2) + ..., dataset)

> anova(data.lm2, data.lm3)

> summary(data.lm2)

To produce a summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
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8 Comparing the fit of two or more models (see table 9.2) . . . . . . . . See Example 9G
Additionally, to compare the fit of two or more parametric linear models via
ANOVA

> anova(model.lm1, model.lm2, ...)

where data.lm1 and data.lm2, ... are two or more parametric linear models.
9 Generating the ‘best’ predictive model (Model Selection)i . . . . . . See Example 9C

> library(biology)

> Model.selection(data.lm)

> library(MuMIn)

> model.avg(get.models(dredge(data.glm)))

where data.lm is the full fitted linear model containing all the predictor variable
combinations.

10 Determine the relative influence of each of the predictor variables (Hierarchical
partitioning) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9D

> library(hier.part)

> data.preds <- data.lm$model[, 1]

> hier.part(dataset$DV, data.preds, gof = "Rsqu")

> rand.hp(dataset$DV, data.preds, gof = "Rsqu",

+ num.reps = 100)$Iprobs

11 Base summary plot for curvilinear regression . . . . . . . . . . . . . See Example 9F &9G

> plot(V1 ~ V2, data, pch = 16, axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = "x-axis title", side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "y-axis title", side = 2, line = 3)

> box(bty = "l")

where V1 and V2 are the continuous variables in the dataset data frame. For
regression, V1 represents the response variable and V2 represents the predictor variable.

Adding fitted regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9F&9G

> x <- seq(min(dataset$IV), max(dataset$IV), l = 1000)

> points(x, predict(model, data.frame(IV = x)), type = "l")

where IV represents the predictor variable within the dataset data frame and model

represents a fitted regression model.

i The MuMIn package is not yet part of the official comprehensive R archive network (CRAN).
The package can be downloaded from http://mumin.r-forge.r-project.org/ or installed from within
R: > install.packages("MuMIn", repos="http://R-Forge.R-project.org").
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12 Exploring added variable plots to illustrate the relationships between the response
variable and each of the predictor terms . . . . . . . . . . . . . . . . . . . . . . . See Example 9A

> av.plots(data.lm, ask = F)

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.

13 Perform binary recursive partitioning (Regression tree) . . . . . . . . See Example 9H

> library(tree)

> data.tree <- tree(DV ~ IV1 + IV2 + ..., dataset,

+ mindev = 0)

where DV and IV1, IV2, ... are the response and predictor variables respectively in the
dataset data frame.
To examine a residual plot

> plot(residuals(data.tree) ~ predict(data.tree))

To construct the graphical tree

> plot(data.tree, type = "uniform")

> text(data.tree, cex = 0.5, all = T)

> text(data.tree, lab = paste("n"), cex = 0.5, adj = c(0,

+ 2), splits = F)

For tree pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
14 Regression tree pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 9H

To investigate a const-complexity measure plot

> plot(prune.tree(data.tree))

To prune the tree to a specific number of branches (e.g. 3)

> data.tree.prune <- prune.tree(data.tree, best = 3)

9.11 Worked examples of real biological data sets

Example 9A: Multiple linear regression - additive model
To investigate the effects of habitat fragmentation, Loyn (1987) related the abundance of
forest birds to a range of variables (including patch area, number of years of isolation,
distance to the nearest patch and larger patch, grazing intensity and altitude) collected from
a total of 56 forest patches throughout Victoria (Box 6.2 Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Loyn (1987) data set

> loyn <- read.table("loyn.csv", header = T, sep = ",")
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Step 2 (Key 9.2) - Assess assumptions of linearity, normality and homogeneity of variance.

> library(car)

> scatterplot.matrix(~ABUND + AREA + YR.ISOL + DIST +

+ LDIST + GRAZE + ALT, data = loyn, diag = "boxplot")
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Conclusions - AREA, DIST and LDIST variables obviously non-normal (asymmetrical boxplots)
and consequently the relationships between each of these variables and the response variable
(ABUND) show non-linearity. In light of the normality problems, homogeneity of variance is
difficult to assess. Scale transformations of the non-normal variables should be attempted.

> scatterplot.matrix(~ABUND + log10(AREA) + YR.ISOL +

+ log10(DIST) + log10(LDIST) + GRAZE + ALT, data = loyn,

+ diag = "boxplot")
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Conclusions - log10 transformation appear successful, no evidence of non-normality (sym-
metrical boxplots), non-homogeneity of variance (even spread of points around each trend) or
non-linearity.

Step 3 (Key 9.3) - Assess multicollinearity.

> cor(loyn[, 2:7])

AREA YR.ISOL DIST LDIST

AREA 1.000000000 -0.001494192 0.1083429 0.03458035

YR.ISOL -0.001494192 1.000000000 0.1132175 -0.08331686

DIST 0.108342870 0.113217524 1.0000000 0.31717234

LDIST 0.034580346 -0.083316857 0.3171723 1.00000000

GRAZE -0.310402417 -0.635567104 -0.2558418 -0.02800944

ALT 0.387753885 0.232715406 -0.1101125 -0.30602220

GRAZE ALT

AREA -0.31040242 0.3877539

YR.ISOL -0.63556710 0.2327154

DIST -0.25584182 -0.1101125
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LDIST -0.02800944 -0.3060222

GRAZE 1.00000000 -0.4071671

ALT -0.40716705 1.0000000

Conclusions - With the exception of GRAZE and YR.ISOL, none of the predictor variables
are particularly correlated to one another.

> vif(lm(ABUND ~ log10(AREA) + YR.ISOL + log10(DIST) +

+ log10(LDIST) + GRAZE + ALT, data = loyn))

log10(AREA) YR.ISOL log10(DIST) log10(LDIST) GRAZE

1.911514 1.804769 1.654553 2.009749 2.524814

ALT

1.467937

> 1/vif(lm(ABUND ~ log10(AREA) + YR.ISOL + log10(DIST) +

+ log10(LDIST) + GRAZE + ALT, data = loyn))

log10(AREA) YR.ISOL log10(DIST) log10(LDIST) GRAZE

0.5231454 0.5540876 0.6043930 0.4975746 0.3960688

ALT

0.6812282

Conclusions - Variance inflation and their inverses (tolerances) are less than 5 and greater than
0.2 respectively suggesting that multicollinearity is unlikely to be a problem.

Step 4 (Key 9.4) - fit the additive multiple linear model relating bird abundance to the range of
appropriately scaled patch characteristics.

> loyn.lm <- lm(ABUND ~ log10(AREA) + YR.ISOL + log10(DIST) +

+ log10(LDIST) + GRAZE + ALT, data = loyn)

> plot(loyn.lm)
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Conclusions - There is no obvi-
ous ‘‘wedge’’ pattern evident in
the residual plot (confirming that
the assumption of homogene-
ity of variance is likely to be
met). The Q-Q normal plot does
not deviate greatly from nor-
mal. Finally, none of the points
approach the high Cook’s D con-
tours suggesting that none of the
observations are overly influen-
tial on the final fitted model.
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> influence.measures(loyn.lm)

dfb.1_ dfb.l10(A dfb.YR.I dfb.l10(D dfb.l10(L

1 -0.02454653 0.32534847 0.008468066 0.08370776 -0.022663517

2 -0.01750873 0.01265303 0.016012689 -0.01656030 0.020997123

3 -0.05891170 0.04830884 0.060903999 0.01044557 -0.016320746

4 -0.02464857 -0.04735981 0.028326646 -0.01082504 -0.015503647

5 0.06451364 -0.09167341 -0.078406403 0.17235656 -0.075678399

6 -0.01395526 -0.02707540 0.014184325 0.01153817 0.003907139

dfb.GRAZ dfb.ALT dffit cov.r cook.d

1 0.218999564 -0.0055469496 -0.42060699 1.394989 0.0254974592

2 0.003658088 0.0372465169 -0.06571529 1.319078 0.0006293951

3 0.012240659 -0.0219517552 -0.11033159 1.287647 0.0017717789

4 -0.005964993 0.0102469605 0.09983048 1.216839 0.0014493334

5 0.105181168 0.1013851217 0.35751545 1.035693 0.0181201227

6 -0.003666825 0.0009195532 0.03845593 1.243342 0.0002155830

hat

1 0.23735383

2 0.12793356

3 0.11497013

4 0.06900608

5 0.08492694

6 0.07336138

...

Conclusions - Whilst a couple of the leverage (hat) values are greater than 2 ∗ p/n = 0.286
and therefore potentially outliers in x-space, none of the Cook’s D values are ≥ 1. Hence the
hypothesis tests are likely to be reliable.

> summary(loyn.lm)

Call:

lm(formula = ABUND ~ log10(AREA) + YR.ISOL + log10(DIST) +

log10(LDIST) + GRAZE + ALT, data = loyn)

Residuals:

Min 1Q Median 3Q Max

-15.6506 -2.9390 0.5289 2.5353 15.2842

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -125.69725 91.69228 -1.371 0.1767

log10(AREA) 7.47023 1.46489 5.099 5.49e-06 ***

YR.ISOL 0.07387 0.04520 1.634 0.1086

log10(DIST) -0.90696 2.67572 -0.339 0.7361

log10(LDIST) -0.64842 2.12270 -0.305 0.7613
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GRAZE -1.66774 0.92993 -1.793 0.0791 .

ALT 0.01951 0.02396 0.814 0.4195

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.384 on 49 degrees of freedom

Multiple R-squared: 0.6849, Adjusted R-squared: 0.6464

F-statistic: 17.75 on 6 and 49 DF, p-value: 8.443e-11

Conclusions - there was a significant positive partial slope for bird abundance against log10

patch area. The overall model explained 69% of the variability in bird abundances across the
56 patches in Victoria. Bird abundances were found to increase with increasing patch area, but
were not found to be significantly effected by grazing, altitude, years of isolation and distance
to nearest patch or larger patch.

Step 5 (Key 9.12) - explore plots of the individual partial relationships between the response
variable and each of the predictor variables (holding the other predictor variables constant).

> av.plots(loyn.lm, ask = F)
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Example 9B: Multiple linear regression - multiplicative model
Paruelo and Lauenroth (1996) investigated the geographic (latitude and longitude) and
climatic (mean annual temperature, means annual precipitation and the proportion of the
mean annual precipitation that fall in the periods June-August and December-February)
patterns in the relative abundance of C3 plants throughout 73 sites across North America
(Box 6.1 Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Paruelo and Lauenroth (1996) data set

> paruelo <- read.table("paruelo.csv", header = T,

+ sep = ",")

Step 2 (Key 9.2) - Assess assumptions of linearity, normality and homogeneity of variance.

> library(car)

> scatterplot.matrix(~C3 + MAP + MAT + JJAMAP + DJFMAP +

+ LONG + LAT, data = paruelo, diag = "boxplot")
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Conclusions - whilst all the predictor variables appear normally distributed (symmetrical
boxplots), the response variable (C3) appears to be positively skewed and thus a candidate for
scale transformation (either a root transformation or a heavier log transformation). Paruelo and
Lauenroth (1996) and therefore Quinn and Keough (2002) used a log10(y + 1). Note that as
there are 0 values present and that log(0) cannot be evaluated, a small constant (such as 0.1j)
must be added to each count in the response variable prior to the log transformation.

> scatterplot.matrix(~log10(C3 + 0.1) + MAP + MAT +

+ JJAMAP + DJFMAP + LONG + LAT, data = paruelo,

+ diag = "boxplot")
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Conclusions - transformation appear successful, now no evidence of non-normality (symmet-
rical boxplots), non-homogeneity of variance (even spread of points around each trend) or

j This constant value should be small relative to the values in the variable so that it does not
overshadow the existing values. However, if the value is more than two orders of magnitude smaller
than the majority of the values, it will make the zero values outliers (influential points).
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non-linearity. However there is some indication that multicollinearity could be an issue (there
are some strong trends between pairs of predictor variables).

Step 3 (Key 9.3) - Assess multicollinearity.

> cor(paruelo[, 2:7])

MAP MAT JJAMAP DJFMAP

MAP 1.0000000 0.355090766 0.11225905 -0.404512409

MAT 0.3550908 1.000000000 -0.08077131 0.001478037

JJAMAP 0.1122590 -0.080771307 1.00000000 -0.791540381

DJFMAP -0.4045124 0.001478037 -0.79154038 1.000000000

LONG -0.7336870 -0.213109100 -0.49155774 0.770743994

LAT -0.2465058 -0.838590413 0.07417497 -0.065124848

LONG LAT

MAP -0.73368703 -0.24650582

MAT -0.21310910 -0.83859041

JJAMAP -0.49155774 0.07417497

DJFMAP 0.77074399 -0.06512485

LONG 1.00000000 0.09655281

LAT 0.09655281 1.00000000

Conclusions - as was expected, some pairs of predictor variables (MAP & LONG, MAT & LAT

and JJAMAP & DJFMAP) are strongly correlated to one another suggesting multicollinearity
could potentially be a problem.

> vif(lm(log10(C3 + 0.1) ~ MAP + MAT + JJAMAP + DJFMAP +

+ LONG + LAT, data = paruelo))

MAP MAT JJAMAP DJFMAP LONG LAT

2.799428 3.742780 3.163215 5.710315 5.267618 3.502732

> 1/vif(lm(log10(C3 + 0.1) ~ MAP + MAT + JJAMAP + DJFMAP +

+ LONG + LAT, data = paruelo))

MAP MAT JJAMAP DJFMAP LONG LAT

0.3572159 0.2671810 0.3161340 0.1751217 0.1898391 0.2854914

Conclusions - Some of the variance inflation and their inverses (tolerances) are approaching
5 and 0.2 respectively again suggesting that multicollinearity could be a problem. Paru-
elo and Lauenroth (1996) and Quinn and Keough (2002) decided to split the analysis up
into two smaller analyses (Key 9.3b), one representing an investigation of geographic dis-
tribution and the other investigating the climatic factors. different aspects of the overall
study.

Step 4 - The investigation of geographic patterns in C3 plant abundances would model the log
transformed abundance of C3 plants against latitude and longitude. The extent of any latitudinal
effects might be expected to depend on longitude and visa versa. For example, perhaps longi-
tudinal effects are only important above or below a certain latitudes. Such possibilities suggest
that fitting a more complicated multiplicative model (with interaction effects) might be more
informative than an additive model.
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Step 5 (Key 9.3) - check multicollinearity by assessing tolerances.

> 1/vif(lm(log10(C3 + 0.1) ~ LAT + LONG + LAT:LONG,

+ data = paruelo))

LAT LONG LAT:LONG

0.003249445 0.014973575 0.002494144

Conclusions - not surprisingly, there are very low tolerances since each of the individual pre-
dictors are going to be correlated to their interaction term. Centering (Key 9.3b) the predictor
variables before re-fitting the model should address this.

> paruelo$cLAT <- paruelo$LAT-mean(paruelo$LAT)

> #OR

> paruelo$cLAT <- scale(paruelo$LAT, scale=F)

> paruelo$cLONG <- scale(paruelo$LONG, scale=F)

> 1/vif(lm(log10(C3+.1)~cLAT+cLONG+cLAT:cLONG, data=paruelo))

cLAT cLONG cLAT:cLONG

0.8268942 0.9799097 0.8195915

Conclusions - multicollinearity is no longer likely to be a problem and the parameter estimates
and hypothesis tests are likely to be reliable.

Step 6 (Key 9.4b) - fit the multiplicative linear model and test whether each of the partial
population slopes are likely to equal zero.

> paruelo.lm <- lm(log10(C3 + 0.1) ~ cLAT + cLONG +

+ cLAT:cLONG, data = paruelo)

> plot(paruelo.lm)
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Conclusions - There is no
obvious ‘‘wedge’’ pattern evi-
dent in the residual plot (con-
firming that the assumption
of homogeneity of variance is
likely to be met). The Q-Q
normal plot does not deviate
greatly from normal. Finally,
none of the points approach
the high Cook’s D contours
suggesting that none of the
observations are overly influ-
ential on the final fitted model.
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> influence.measures(paruelo.lm)

dfb.1_ dfb.cLAT dfb.cLON dfb.cLAT: dffit

1 -0.01240897 -0.04291203 -0.04343888 -0.06275532 -0.07869325

2 -0.01232348 -0.03577596 -0.02255957 -0.04094363 -0.05303525

3 0.07696884 0.12765517 0.06321144 0.11087334 0.17912507

4 0.17518366 0.09561479 -0.13875996 -0.06937259 0.25698909

5 -0.05221407 -0.05487872 0.03652972 0.01850913 -0.09147598

6 -0.16175075 0.02214619 0.17475473 0.00759321 -0.24141744

cov.r cook.d hat

1 1.383538 0.0015704573 0.23466106

2 1.229880 0.0007133425 0.13890169

3 1.087217 0.0080746585 0.05557079

4 0.974066 0.0162711273 0.03171179

5 1.098320 0.0021171765 0.04482606

6 0.981941 0.0143925390 0.03048383

...

Conclusions - few leverage (hat) values are greater than 2 ∗ p/n = 0.082, none of the Cook’s
D values are approaching 1. Hence the hypothesis tests are likely to be reliable.

> summary(paruelo.lm)

Call:

lm(formula = log10(C3 + 0.1) ~ cLAT + cLONG + cLAT:cLONG,

data = paruelo)

Residuals:

Min 1Q Median 3Q Max

-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5529416 0.0274679 -20.130 < 2e-16 ***

cLAT 0.0483954 0.0057047 8.483 2.61e-12 ***

cLONG -0.0025787 0.0043182 -0.597 0.5523

cLAT:cLONG 0.0022522 0.0008757 2.572 0.0123 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926

F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

Conclusions - reject the H0 that there is no interactive effect of latitude and longitude on the
(log10) abundance of C3 plants.
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Step 7 (Key 9.6) - to further investigate this interaction, calculate the simple slopes of C3 plant
abundance against longitude for a range of latitudes (e.g. mean ± 1 standard deviation and ± 2
standard deviations). Since the partial slopes in the multiplicative model are the simple slopes
for the mean values of the other predictor (hence partial effect of one predictor holding the other
predictor variables constant), the simple slope of longitude at the mean latitude has already
been calculated (−0.0026) and can be extracted from the summarized multiplicative model.

x1 − 2σ (mean centered longitude - 2 standard deviations)

> LAT_sd1 <- mean(paruelo$cLAT) - 2 * sd(paruelo$cLAT)

> paruelo_LONG.lm1 <- lm(log10(C3 + 0.1) ~ cLONG *

+ c(cLAT - LAT_sd1), data = paruelo)

> summary(paruelo_LONG.lm1)

Call:

lm(formula = log10(C3 + 0.1) ~ cLONG * c(cLAT - LAT_sd1),

data = paruelo)

Residuals:

Min 1Q Median 3Q Max

-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0662239 0.0674922 -15.798 < 2e-16

cLONG -0.0264657 0.0098255 -2.694 0.00887

c(cLAT - LAT_sd1) 0.0483954 0.0057047 8.483 2.61e-12

cLONG:c(cLAT - LAT_sd1) 0.0022522 0.0008757 2.572 0.01227

(Intercept) ***

cLONG **

c(cLAT - LAT_sd1) ***

cLONG:c(cLAT - LAT_sd1) *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926

F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

x1 − 1σ (mean centered longitude - 1 standard deviation)

> LAT_sd2 <- mean(paruelo$cLAT) - 1 * sd(paruelo$cLAT)

> paruelo_LONG.lm2 <- lm(log10(C3 + 0.1) ~ cLONG *

+ c(cLAT - LAT_sd2), data = paruelo)

> summary(paruelo_LONG.lm2)

Call:

lm(formula = log10(C3 + 0.1) ~ cLONG * c(cLAT - LAT_sd2),

data = paruelo)
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Residuals:

Min 1Q Median 3Q Max

-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8095827 0.0417093 -19.410 < 2e-16

cLONG -0.0145222 0.0060025 -2.419 0.0182

c(cLAT - LAT_sd2) 0.0483954 0.0057047 8.483 2.61e-12

cLONG:c(cLAT - LAT_sd2) 0.0022522 0.0008757 2.572 0.0123

(Intercept) ***

cLONG *

c(cLAT - LAT_sd2) ***

cLONG:c(cLAT - LAT_sd2) *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926

F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

x1 + 1σ (mean centered longitude + 1 standard deviation)

> LAT_sd4 <- mean(paruelo$cLAT) - 1 * sd(paruelo$cLAT)

> paruelo_LONG.lm4 <- lm(log10(C3 + 0.1) ~ cLONG *

+ c(cLAT - LAT_sd4), data = paruelo)

> summary(paruelo_LONG.lm4)

Call:

lm(formula = log10(C3 + 0.1) ~ cLONG * c(cLAT - LAT_sd4),

data = paruelo)

Residuals:

Min 1Q Median 3Q Max

-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8095827 0.0417093 -19.410 < 2e-16

cLONG -0.0145222 0.0060025 -2.419 0.0182

c(cLAT - LAT_sd4) 0.0483954 0.0057047 8.483 2.61e-12

cLONG:c(cLAT - LAT_sd4) 0.0022522 0.0008757 2.572 0.0123

(Intercept) ***

cLONG *

c(cLAT - LAT_sd4) ***

cLONG:c(cLAT - LAT_sd4) *
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926

F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

x1 + 2σ (mean centered longitude + 2 standard deviation)

> LAT_sd5 <- mean(paruelo$cLAT) - 1 * sd(paruelo$cLAT)

> paruelo_LONG.lm5 <- lm(log10(C3 + 0.1) ~ cLONG *

+ c(cLAT - LAT_sd5), data = paruelo)

> summary(paruelo_LONG.lm5)

Call:

lm(formula = log10(C3 + 0.1) ~ cLONG * c(cLAT - LAT_sd5),

data = paruelo)

Residuals:

Min 1Q Median 3Q Max

-0.54185 -0.13298 -0.02287 0.16807 0.43410

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8095827 0.0417093 -19.410 < 2e-16

cLONG -0.0145222 0.0060025 -2.419 0.0182

c(cLAT - LAT_sd5) 0.0483954 0.0057047 8.483 2.61e-12

cLONG:c(cLAT - LAT_sd5) 0.0022522 0.0008757 2.572 0.0123

(Intercept) ***

cLONG *

c(cLAT - LAT_sd5) ***

cLONG:c(cLAT - LAT_sd5) *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2334 on 69 degrees of freedom

Multiple R-squared: 0.5137, Adjusted R-squared: 0.4926

F-statistic: 24.3 on 3 and 69 DF, p-value: 7.657e-11

Conclusions - the abundance of C3 plants is negatively related to longitude at low latitudes
however this longitudinal effect diminishes with increasing latitude and becomes a positive
effect at very high latitudes. Additionally (or alternatively), latitudinal effects could be seen to
become more positive with increasing longitude (from east to west).

Example 9C: Selecting the ‘best’ regression model
Quinn and Keough (2002) used the Loyn (1987) data set (analysed in Example 9A on
page 224) demonstrated the use of various criteria as the basis of selecting the ‘best’ model
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(Quinn and Keough (2002) Box 6.8). Continuing on from Example 9A, we will attempt to
determine the ‘best’, most parsimonious regression model for the purpose of either generating
a predictive model or simply to determine which predictor variables have the greatest relative
influence on the response variable.

Step 1 (Key 9.9b) - Compare the fit of all additive combinations of predictor variables from the
full fitted linear model of the Loyn (1987) data set via AIC, BIC, Cp and adjusted r2.

> library(biology)
> Model.selection(loyn.lm)

Adj.r.sq AIC AICc deltaAIC
1. log10(AREA) 0.53927618 224.3964 227.4602 14.2082619
2. YR.ISOL 0.23954252 252.4592 255.5230 42.2710623
3. log10(DIST) -0.00216233 267.9149 270.9788 57.7267862
4. log10(LDIST) -0.00430673 268.0346 271.0984 57.8464855
5. GRAZE 0.45592959 233.7081 236.7719 23.5199360
6. ALT 0.13310788 259.7949 262.8587 49.6067453
7. log10(AREA)+YR.ISOL 0.63002728 213.0649 216.1288 2.8768100
8. log10(AREA)+log10(DIST) 0.54130423 225.1026 228.1664 14.9144529
9. log10(AREA)+log10(LDIST) 0.56364647 222.3063 225.3701 12.1181257
...
24. log10(AREA)+YR.ISOL+GRAZE 0.65436215 210.1881 213.2520 0.0000000
25. log10(AREA)+YR.ISOL+ALT 0.64340828 211.9353 214.9992 1.7471955
26. log10(AREA)+log10(DIST)+log10(LDIST) 0.55526607 224.3049 227.3687 14.1167393
27. log10(AREA)+log10(DIST)+GRAZE 0.64144047 212.2435 215.3073 2.0553756
28. log10(AREA)+log10(DIST)+ALT 0.56137177 223.5307 226.5946 13.3425950
29. log10(AREA)+log10(LDIST)+GRAZE 0.64443577 211.7737 214.8376 1.5856031
...
39. log10(DIST)+log10(LDIST)+ALT 0.16767219 259.4029 262.4667 49.2147489
40. log10(DIST)+GRAZE+ALT 0.45484515 235.7061 238.7699 25.5179860
41. log10(LDIST)+GRAZE+ALT 0.47031877 234.0936 237.1575 23.9054939
42. log10(AREA)+YR.ISOL+log10(DIST)+log10(LDIST) 0.62461805 215.7237 218.7875 5.5355253
43. log10(AREA)+YR.ISOL+log10(DIST)+GRAZE 0.65360148 211.2238 214.2877 1.0356946
44. log10(AREA)+YR.ISOL+log10(DIST)+ALT 0.63704328 213.8387 216.9025 3.6505413
...

Estimate Unconditional_SE Lower95CI
log10(AREA) 7.54126720 1.43013594 4.73820077
YR.ISOL 0.06204083 0.03729047 -0.01104849
log10(DIST) -0.51987543 0.87724385 -2.23927338
log10(LDIST) -0.52400077 0.75025473 -1.99450004
GRAZE -1.73681399 0.83173477 -3.36701413
ALT 0.01065631 0.01150212 -0.01188785

Upper95CI
log10(AREA) 10.34433364
YR.ISOL 0.13513016
log10(DIST) 1.19952252
log10(LDIST) 0.94649850
GRAZE -0.10661385
ALT 0.03320047
attr(,"heading")
[1] "Model averaging\n" "Response: ABUND \n"

Note some of the rows and columns have been omitted from the above output to conserve
space.
Alternatively, using the MuMIn package

> library(MuMIn)
> model.avg(get.models(dredge(loyn.lm, rank = "AIC")))
Model summary:

Deviance AIC Delta Weight
2+3+6 2070 371 0.000 0.1330
1+2+3+6 2010 372 0.414 0.1080
2+3+5+6 2030 372 0.962 0.0820
2+3+4+6 2040 372 1.040 0.0790
2+3 2200 373 1.400 0.0657
2+3+5 2130 373 1.590 0.0600
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1+3+6 2140 373 1.750 0.0554
1+2+3 2150 373 2.050 0.0477
2+3+4 2150 373 2.060 0.0475
1+2+3+4+6 2000 373 2.060 0.0473
1+2+3+5+6 2000 373 2.090 0.0467
2+3+4+5+6 2020 374 2.710 0.0343
3+6 2260 374 2.880 0.0315
1+2+3+5 2110 374 3.080 0.0285
2+3+4+5 2120 374 3.340 0.0250
1+2+3+4 2120 374 3.370 0.0246
1+3+5+6 2130 375 3.520 0.0228
3+5+6 2210 375 3.610 0.0218
1+3+4+6 2130 375 3.650 0.0214
1+2+3+4+5+6 2000 375 3.950 0.0184

Variables:
1 2 3 4 5 6

ALT GRAZE log10(AREA) log10(DIST) log10(LDIST) YR.ISOL

Averaged model parameters:
Coefficient Variance SE Unconditional SE Lower CI Upper CI

ALT 0.0107 1.46e-07 0.0177 0.0178 -0.0243 0.0457
GRAZE -1.7900 1.81e+00 1.1200 1.1300 -4.0000 0.4330
(Intercept) -99.4000 1.66e+08 111.0000 112.0000 -320.0000 121.0000
log10(AREA) 7.5000 4.07e+00 1.4100 1.4400 4.6700 10.3000
log10(DIST) -0.4930 5.39e+00 1.1400 1.1600 -2.7600 1.7800
log10(LDIST) -0.5130 2.95e+00 1.0600 1.0700 -2.6200 1.5900
YR.ISOL 0.0606 9.85e-06 0.0550 0.0556 -0.0485 0.1700

Relative variable importance:
log10(AREA) GRAZE YR.ISOL ALT log10(LDIST) log10(DIST)

1.00 0.85 0.70 0.42 0.34 0.30

Conclusions - AIC and Cp (not shown) both select a model with three predictor variables
(log10area, grazing intensity and years of isolation). However, it should be noted, that using the
rule-of-thumb that delta AIC values less than 2 do not represent significant improvements in fit,
it could be argued that the three variable model is not significantly better than the simpler two
variable (log10area and grazing intensity) model. Hence log10 patch area and grazing intensity
are the most important measured influences on bird abundances across the fragmented Victorian
landscape.

Step 2 - construct the predictive model

> loyn.lm2 <- lm(ABUND ~ log10(AREA) + GRAZE, data = loyn)

> summary(loyn.lm2)

Call:

lm(formula = ABUND ~ log10(AREA) + GRAZE, data = loyn)

Residuals:

Min 1Q Median 3Q Max

-13.4296 -4.3186 -0.6323 4.1273 13.0739

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.6029 3.0917 6.987 4.73e-09 ***

log10(AREA) 6.8901 1.2900 5.341 1.98e-06 ***

GRAZE -2.8535 0.7125 -4.005 0.000195 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 6.444 on 53 degrees of freedom

Multiple R-squared: 0.6527, Adjusted R-squared: 0.6396

F-statistic: 49.81 on 2 and 53 DF, p-value: 6.723e-13

Conclusions - the predictive model (resulting from the ‘best’ regression model is abund =
6.89log10area − 2.85graze + 21.60 and explains approximately 65% of the variation in bird
abundance.

Example 9D: Hierarchical partitioning
Quinn and Keough (2002) also used the Loyn (1987) data set (analysed in Example 9A
on page 224) to demonstrate the use of hierarchical partitioning to determine the relative
contributions of each of the predictor variables (Quinn and Keough (2002) Box 6.8).

Step 1 (Key 9.10) - Perform a hierarchical partitioning on the multiple linear model fitted to
the Loyn (1987) data set. As this is a linear model, the goodness-of-fit of the model should be
assessed by the r2 value.

1. determine independent and joint contribution of each predictor variable averaged across all
possible model combinations.

> library(hier.part)

> loyn.preds <- with(loyn, data.frame(logAREA = log10(AREA),

+ YR.ISOL, logDIST = log10(DIST), logLDIST = log10(LDIST),

+ GRAZE, ALT))

> hier.part(loyn$ABUND, loyn.preds, gof = "Rsqu")

$gfs

[1] 0.00000000 0.54765298 0.25336902 0.01605880 0.01395339

[6] 0.46582178 0.14886955 0.64348084 0.55798408 0.57951387

[11] 0.65273437 0.58357693 0.27202894 0.29411677 0.47394321

[16] 0.32970100 0.01878268 0.46670232 0.19573296 0.47484303

[21] 0.20305219 0.47978826 0.64797136 0.65145633 0.67321512

[26] 0.66285874 0.57952428 0.66099826 0.58529695 0.66383018

[31] 0.59521919 0.66105930 0.29441552 0.47580294 0.37071613

[36] 0.48827761 0.40728610 0.48872839 0.47606705 0.21307189

[41] 0.48458087 0.49921047 0.65191856 0.67879410 0.66344013

[46] 0.67921724 0.66420358 0.68234183 0.66529515 0.59537174

[51] 0.66514424 0.66687281 0.48949273 0.40962297 0.49609855

[56] 0.51765498 0.49933677 0.68067311 0.66425545 0.68433597

[61] 0.68419720 0.66776512 0.51772763 0.68493595

$IJ

I J Total

logAREA 0.315204510 0.2324484698 0.54765298

YR.ISOL 0.101458466 0.1519105495 0.25336902

logDIST 0.007285099 0.0087737041 0.01605880
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logLDIST 0.013677502 0.0002758905 0.01395339

GRAZE 0.190462561 0.2753592211 0.46582178

ALT 0.056847811 0.0920217408 0.14886955

$I.perc

I

logAREA 46.019560

YR.ISOL 14.812840

logDIST 1.063618

logLDIST 1.996902

GRAZE 27.807354

ALT 8.299727

Conclusions - log10area and grazing intensity contribute most to the explained variance in
bird abundance (46.0 and 27.8% respectively), although years of isolation and to a lesser
degree, altitude also make some contributions.

2. determine the likelihood that the independent contributions for each predictor variable
could be due to change by performing a randomization test and assessing the significance
of Z scores at the 95% level. Note that this procedure takes some time.

> r.HP <- rand.hp(loyn$ABUND, loyn.preds, gof = "Rsqu",

+ num.reps = 100)$Iprobs

Obs Z.score sig95

logAREA 0.32 11.86 *

YR.ISOL 0.10 2.67 *

logDIST 0.01 -0.50

logLDIST 0.01 -0.12

GRAZE 0.19 8.99 *

ALT 0.06 1.09

Conclusions - the individual contributions of log10area, grazing, and years of isolation were
all found to be significantly greater than would be expected by chance and therefore each
has some influence on the abundance of forest birds within habitat patches across Victoria.

Example 9E: Randomization and multiple regression
McKechnie et al. (1975) investigated the relationship between the frequency of hezokinase
(HK) 1.00 mobility genes and a range of climatic conditions (including altitude, temperature
and precipitation) from colonies of Euphydras editha butterflies (example 8.3 Manly (1991)).

Step 1 - Import (section 2.3) the McKechnie et al. (1975) data set

> mckechnie2 <- read.table("mckechnie2.csv", header = T,

+ sep = ",")

Step 2 (Key 9.2) - Assess linearity, normality and homogeneity of variance using a scatterplot
with marginal boxplots and a lowess smoother.
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For the purpose of this demonstration, lets assume that the assumption of normality could not
be met and more importantly, that the observations are not independent, thereby necessitating
an alternative regression method.

Step 3 (Key 9.3) - assess (multi)collinearity.

> library(car)

> vif(lm(HK ~ PRECIP + MAXTEMP + MINTEMP + ALT, mckechnie2))

PRECIP MAXTEMP MINTEMP ALT

2.242274 3.375163 6.727932 1.921078

Conclusions - there is some indication of a collinearity issue concerning the minimum
temperature variable (VIF greater than 5), however this will be overlooked for consistency with
Manly (1991).

Step 4 (Key 9.5) - use a randomization test to test whether the observed trends could be due
to chance.

1. use conventional multiple regression methodsk to estimate the regression parameters.

> mckechnie2.lm <- lm(HK ~ PRECIP + MAXTEMP + MINTEMP +

+ ALT, mckechnie2)

> summary(mckechnie2.lm)

Call:

lm(formula = HK ~ PRECIP + MAXTEMP + MINTEMP + ALT,

data = mckechnie2)

Residuals:

Min 1Q Median 3Q Max

-50.995 -5.141 2.656 10.091 29.620

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -88.5645 101.1793 -0.875 0.39728

PRECIP 0.4720 0.4955 0.952 0.35823

MAXTEMP 0.8668 1.1725 0.739 0.47290

MINTEMP 0.2503 1.0195 0.246 0.80986

ALT 26.1237 8.6450 3.022 0.00982 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.95 on 13 degrees of freedom

Multiple R-squared: 0.647, Adjusted R-squared: 0.5384

F-statistic: 5.957 on 4 and 13 DF, p-value: 0.005984

k Consistent with Manly (1991), I have used OLS to estimate the regression parameters. However,
these parameters could alternatively be RMA or non-parametric regression estimates.
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2. define the statistic (again this example uses OLS) to use in the randomization test - in this
case the t-statistics for each of the estimated parameters.

> stat <- function(data, indices) {

+ summary(lm(HK ~ PRECIP + MAXTEMP + MINTEMP +

+ ALT, data))$coef[, 3]

+ }

3. define how the data should be randomized - randomize the response-predictor pairings
(shuffle the response variable without replacement).

> rand.gen <- function(data, mle) {

+ out <- data

+ out$HK <- sample(out$HK, replace = F)

+ out

+ }

4. call a bootstrapping procedure to randomize 1000 times (this can take some time)

> library(boot)

> mckechnie2.boot <- boot(mckechnie2, stat, R = 1000,

+ sim = "parametric", ran.gen = rand.gen)

5. calculate the number of possible t-values (including the observed t-value, which is one
possible outcome) that were greater or equal to the observed t-value (for each parameter)
and express these as a percentage of the number of randomizations (plus one for the
observed outcomes).

> t <- apply(apply(abs(mckechnie2.boot$t), 1, ">=",

+ abs(mckechnie2.boot$t0)) * 1, 1, "sum") + 1

> t/(mckechnie2.boot$R + 1)

(Intercept) PRECIP MAXTEMP MINTEMP ALT

0.39360639 0.36563437 0.48151848 0.79620380 0.00999001

6. perform a similar randomization to investigate the ANOVA F-ratio. This requires a couple of
minor adjustments of the above procedures.

> stat <- function(data, indices) {

+ summary(lm(HK ~ PRECIP + MAXTEMP + MINTEMP +

+ ALT, data))$fstatistic

+ }

> rand.gen <- function(data, mle) {

+ out <- data

+ out$HK <- sample(out$HK, replace = F)

+ out

+ }

> mckechnie2.boot <- boot(mckechnie2, stat, R = 1000,

+ sim = "parametric", ran.gen = rand.gen)

> f <- apply(apply(abs(mckechnie2.boot$t), 1, ">=",

+ abs(mckechnie2.boot$t0)) * 1, 1, "sum") + 1

> f/(mckechnie2.boot$R + 1)
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value numdf dendf

0.006993007 1.000000000 1.000000000

Conclusions - in this case, the p-values for both regression parameters and the overall ANOVA
are almost identical to those produced via conventional regression analysis.

Example 9F: Polynomial regression
Sokal and Rohlf (1997) present an unpublished data set (R. K. Koehn) in which the nature
of the relationship between Lap94 allele frequency in Mytilus edulis and distance (in miles)
from Southport was investigated (Box 16.5, Sokal and Rohlf (1997)).

Step 1 - Import (section 2.3) the mytilus data set

> mytilus <- read.table("mytilus.csv", header = T,

+ sep = ",")

As a matter of course, Sokal and Rohlf (1997) transform frequencies using angular trans-
formations (arcsin transformations) and henceforth Lap94 will be transformed in-line using
asin(sqrt(LAP))*180/pi.

Step 2 (Key 8.2a) - confirm that simple linear regression does not adequately describe the
relationship between Lap94 allele frequency and distance by examining a scatterplot and
residual plot.

> library(car)

> scatterplot(asin(sqrt(LAP)) *

+ 180/pi ~ DIST,

+ data = mytilus)

> plot(lm(asin(sqrt(LAP)) *

+ 180/pi ~ DIST,

+ data = mytilus),

+ which = 1)
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Conclusions - the scatterplot smoother suggests a potentially non-linear relationship and
a persisting pattern in the residuals further suggests that the linear model is inadequate for
explaining the response variable.
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Step 3 (Key 9.7b) - fit a polynomial regression (additive multiple regression) model incorporating
up to the fifth power (5th order polynomial)l.

1. Fit the quintic model

> mytilus.lm5 <- lm(asin(sqrt(LAP)) * 180/pi ~ DIST +

+ I(DIST^2) + I(DIST^3) + I(DIST^4) + I(DIST^5),

+ mytilus)

2. Examine the diagnostics

> plot(mytilus.lm5, which = 1)
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Conclusions - no ‘‘wedge’’ pattern
suggesting that homogeneity of vari-
ance and there is no persisting pattern
suggesting that the fitted model is
appropriate for modeling these data.

3. Examine the fit of the model including the contribution of different powers

> anova(mytilus.lm5)

Analysis of Variance Table

Response: asin(sqrt(LAP)) * 180/pi

Df Sum Sq Mean Sq F value Pr(>F)

DIST 1 1418.37 1418.37 125.5532 2.346e-07 ***

I(DIST^2) 1 57.28 57.28 5.0701 0.04575 *

I(DIST^3) 1 85.11 85.11 7.5336 0.01907 *

I(DIST^4) 1 11.85 11.85 1.0493 0.32767

I(DIST^5) 1 15.99 15.99 1.4158 0.25915

Residuals 11 124.27 11.30

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - powers of distance beyond a cubic (3) do not make significant contributions
to explaining the variation in arcsin transformed Lat94 allele frequency.

l Note that trends beyond a third order polynomial are unlikely to have much biological basis and are
likely to be over-fit.



246 CHAPTER 9

4. The improved fit (and significance) attributed to an additional power can be evaluated by
comparing the fit of the higher order models against models one lower in order.

> mytilus.lm1 <- lm(asin(sqrt(LAP)) * 180/pi ~ DIST,

+ mytilus)

> mytilus.lm2 <- lm(asin(sqrt(LAP)) * 180/pi ~ DIST +

+ I(DIST^2), mytilus)

> anova(mytilus.lm2, mytilus.lm1)

Analysis of Variance Table

Model 1: asin(sqrt(LAP)) * 180/pi ~ DIST + I(DIST^2)

Model 2: asin(sqrt(LAP)) * 180/pi ~ DIST

Res.Df RSS Df Sum of Sq F Pr(>F)

1 14 237.222

2 15 294.500 -1 -57.277 3.3803 0.08729 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> mytilus.lm3 <- lm(asin(sqrt(LAP)) * 180/pi ~ DIST +

+ I(DIST^2) + I(DIST^3), mytilus)

> anova(mytilus.lm3, mytilus.lm2)

Analysis of Variance Table

Model 1: asin(sqrt(LAP)) * 180/pi ~ DIST + I(DIST^2) + I(DIST^3)

Model 2: asin(sqrt(LAP)) * 180/pi ~ DIST + I(DIST^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 13 152.115

2 14 237.222 -1 -85.108 7.2734 0.0183 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - a cubic model fits the data significantly better than a quadratic model (P =
0.018), the latter of which does not fit significantly better than a linear model (P = 0.09).

5. Estimate the model parametersm for the cubic model so as to establish the descriptive or
predictive model.

m Due to the extreme multicollinearity problems (dist must be correlated to dist2 and dist3 etc), the
parameter estimates are not stable, the standard errors are inflated and the individual parameter
hypothesis tests are non informative. As with multiplicative multiple regression, this problem can
be greatly alleviated by first centering the predictor variable. However, the value in doing so is
limited as the resulting parameters (and associated confidence intervals) would then have to be back
transformed into the original scales in order to construct a descriptive or predictive model (main uses
of polynomial regression). Since the values of the estimated polynomial parameters do not have any
biological meaning, standard errors and hypothesis tests of the parameter estimates should be ignored.
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> summary(mytilus.lm3)

Call:

lm(formula = asin(sqrt(LAP)) * 180/pi ~ DIST + I(DIST^2) +

+ I(DIST^3), data = mytilus)

Residuals:

Min 1Q Median 3Q Max

-6.1661 -2.1360 -0.3908 1.9016 6.0079

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.2232524 3.4126910 7.684 3.47e-06 ***

DIST -0.9440845 0.4220118 -2.237 0.04343 *

I(DIST^2) 0.0421452 0.0138001 3.054 0.00923 **

I(DIST^3) -0.0003502 0.0001299 -2.697 0.01830 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.421 on 13 degrees of freedom

Multiple R-squared: 0.9112, Adjusted R-squared: 0.8907

F-statistic: 44.46 on 3 and 13 DF, p-value: 4.268e-07

Conclusions - there was a significant cubic relationship between the frequency of
the Lat94 allele in Mytilus edulis and distance from Southport (P < 0.001, r2 = 0.911:
arcsin

√
Lat = 26.2233 − 0.9441dist + 0.0421dist2 − 0.0003dist3).

Step 4 (Key 9.11) - construct a summary figure to summarize the illustrate the proposed nature
of the relationship.

> plot(asin(sqrt(LAP)) * 180/pi ~ DIST, data = mytilus,

+ pch = 16, axes = F, xlab = "", ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = expression(paste("Miles east of Southport,

+ Connecticut")), side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = expression(paste("Arcsin ",

+ sqrt(paste("freq. of allele ", italic("Lap"))^{

+ 94

+ }))), side = 2, line = 3)

> x <- seq(0, 80, l = 1000)

> points(x, predict(mytilus.lm3, data.frame(DIST = x)),

+ type = "l")

> box(bty = "l")



248 CHAPTER 9

0 10 20 30 40 50 60

Miles east of Southport, Connecticut

20

25

30

35

40

45

A
rc

si
n 

 fr
eq

. o
f a

lle
le

 L
ap

94

Example 9G: Nonlinear regression
Peake and Quinn (1993) investigated the nature of species-area relationships for invertebrates
inhabiting inter-tidal mussel clumps (Box 6.11, Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the peake data set

> peake <- read.table("peake.csv", header = T, sep = ",")

Step 2 (Key 8.2a) - confirm that simple linear regression does not adequately describe the
relationship between the number of species and mussel clump area by examining a scatterplot
and residual plot.

> library(car)

> scatterplot(SPECIES ~ AREA,

+ data = peake)

> plot(lm(SPECIES ~ AREA,

+ data = peake), which = 1)
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Conclusions - the scatterplot smoother suggests a non-linear relationship and the persisting
pattern in the residuals further suggests that the linear model is inadequate for explaining the
response variable. Although this could probably be corrected by transforming the scale of the
mussel clump area variable, in this case, theory suggests that species-area relationships might
be more appropriately modeled with a power function.
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Step 3 (Key 9.7) - fit a nonlinear regression (power) model.

1. Fit the model (a power model would seem appropriate, see also Table 9.1)

> peake.nls <- nls(SPECIES ~ alpha * AREA^beta,

start = list(alpha = 0.1,

+ beta = 1), peake)

2. Examine the diagnostics

> plot(resid(peake.nls) ~ fitted(peake.nls))
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s) Conclusions - no persisting pattern

suggesting that the fitted power model
is appropriate for modeling these data.
Additionally, there is no ‘‘wedge’’ pat-
tern suggesting that the homogeneity
of variance assumption is satisfied.

3. Examine the estimated nonlinear model parameters

> summary(peake.nls)

Formula: SPECIES ~ alpha * AREA^beta

Parameters:

Estimate Std. Error t value Pr(>|t|)

alpha 0.8584 0.2769 3.100 0.00505 **

beta 0.3336 0.0350 9.532 1.87e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.733 on 23 degrees of freedom

Number of iterations to convergence: 17

Achieved convergence tolerance: 1.043e-06

Step 4 (Key 9.8a) - Examine the fit of the nonlinear model (compared to a linear model).

> AIC(peake.nls, k=log(nrow(peake))) #BIC

[1] 128.7878

> AIC(peake.nls) #AIC

[1] 125.1312

> deviance(peake.nls)/df.residual(peake.nls) #MSresid

[1] 7.468933
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> peake.lm<-lm(SPECIES~AREA, data=peake) #linear fit

> AIC(peake.lm, k=log(nrow(peake))) #lm BIC

[1] 144.7322

> AIC(peake.lm) #lm AIC

[1] 141.0756

> deviance(peake.lm)/df.residual(peake.lm) #lm MSresid

[1] 14.13324

Conclusions - all fit criterion concur that the nonlinear power model is a better fit to the data
than the linear model.

Step 5 (Key 9.8a) - Arguably, these data would be better modelled by a asymptotic relationship.
Fit such a relationship.

> peake.nls1 <- nls(SPECIES~SSasymp(AREA,a,b,c),peake)

> summary(peake.nls1)

Formula: SPECIES ~ SSasymp(AREA, a, b, c)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a 24.4114 1.6644 14.667 7.71e-13 ***

b 4.9563 1.4244 3.479 0.00213 **

c -8.8138 0.2482 -35.512 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.719 on 22 degrees of freedom

Number of iterations to convergence: 0

Achieved convergence tolerance: 7.128e-07

> AIC(peake.nls1) #AIC

[1] 125.7644

> deviance(peake.nls1)/df.residual(peake.nls1) #MSresid

[1] 7.393005

> anova(peake.nls,peake.nls1)

Analysis of Variance Table

Model 1: SPECIES ~ alpha * AREA^beta

Model 2: SPECIES ~ SSasymp(AREA, a, b, c)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 23 171.785

2 22 162.646 1 9.139 1.2362 0.2782

Conclusions - the asymptotic trend does not fit the data significantly better than the exponential
trend.
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Step 6 (Key 9.11) - summarize the nonlinear species-area relationship with a scatterplot and
exponential (dashed line) and asymptotic (solid) line trends.

> plot(SPECIES ~ AREA, peake, pch = 16, axes = F, xlab = "",

+ ylab = "")

> axis(1, cex.axis = 0.8)

> mtext(text = expression(paste("Clump area ", (dm^2))),

+ side = 1, line = 3)

> axis(2, las = 1)

> mtext(text = "Number of species", side = 2, line = 3)

> box(bty = "l")

> x <- seq(0, 30000, l = 1000)

> points(x, predict(peake.nls, data.frame(AREA = x)),

+ type = "l", lty = 2)

> points(x, predict(nls(SPECIES ~ SSasymp(AREA, a,

+ b, c), peake), data.frame(AREA = x)), type = "l",

+ lty = 1)

> box(bty = "l")
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Example 9H: Regression trees
Quinn and Keough (2002) used the Loyn (1987) data set (analysed in Example 9A on
page 224) to demonstrate the use of regression trees for producing descriptive and predictive
models (Quinn and Keough (2002) Box 6.9). Using the same data from Example 9A, we will
illustrate the use of R to produce regression trees.

Step 1 (Key 9.13) - Perform binary recursive partitioning and construct the resulting regres-
sion tree.

> library(tree)

> loyn.tree <- tree(ABUND ~ AREA + YR.ISOL + DIST +

+ LDIST + GRAZE + ALT, data = loyn, mindev = 0)
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Note that Quinn and Keough (2002) used log10 transformed data for some of the variables. Such
transformations have no impact on the construction of the tree nodes or branches, however the
split threshold values for transformed predictor variables will be on a log10 scale.

Step 2 (Key 9.13) - Examine the residuals for outlying, influential observations.

> plot(residuals(loyn.tree) ~ predict(loyn.tree))
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Conclusions - There are an even spread of
residuals with no obvious potentially influen-
tial observations (no outliers from the patterns
within each branches predicted values).

Step 3 (Key 9.13) - Construct the regression tree.

> plot(loyn.tree, type = "uniform")

> text(loyn.tree, cex = 0.5, all = T)

> text(loyn.tree, lab = paste("n"), cex = 0.5, adj = c(0,

+ 2), splits = F)

GRAZE < 4.5
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YR.ISOL < 1964

LDIST < 192.5 AREA < 3.5
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Conclusions - Grazing intensity was con-
sidered the most important single predictor
of forest bird abundance. When grazing
intensity was less than 4.5, patch area
is important and when grazing intensity
is greater than 4.5, the split in distance
to nearest patch produced the greatest
deviance (albeit very small suggesting that
this entire branch is probably of little impor-
tance). Larger patch sizes continue to be
split according to patch size suggesting that
patch area is an important predictor of bird
abundance. Smaller patches however are
split by years since isolation and then by
distance to the nearest patch and again
patch area.

This is in broad agreement with the model selection outcomes demonstrated in examples 9C
and 9D, although grazing intensity is of elevated importance in the regression tree. Patch
area and years since isolation are considered important within the patches of lower grazing
pressure.
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Step 4 (Key 9.14) - Examine the cost-complexity measure.

> plot(prune.tree(loyn.tree))
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Conclusions - It is clear that the additional
deviance (fit) achieved by adding more nodes
beyond 3 is very marginal (cost-complexity curve
begins to asymptote at this point). This suggests
that the tree could potentially be pruned to just
three terminal branches without great loss of
predictive power too achieve a more genuine
predictive model.

Step 5 (Key 9.14) - Prune the tree.

> loyn.tree.prune <- prune.tree(loyn.tree, best = 3)

> plot(loyn.tree.prune, type = "uniform")

> text(loyn.tree.prune, cex = 0.5, all = T)

> text(loyn.tree.prune, lab = paste("n"), cex = 0.5,

+ adj = c(0, 2), splits = F)
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Conclusions - The pruned regression tree
suggests a predictive model with two variables
(grazing intensity and patch area).
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Single factor classification (ANOVA)

Single factor classification (also known as analysis of variance of ANOVA) is used to
investigate the effect of single factor comprising of two or more groups (treatment
levels) from a completely randomized design (see Figure 10.1 & Figure 11.1a). Com-
pletely randomized refers to the absence of restrictions on the random allocation of
experimental or sampling units to factor levels.

10.0.1 Fixed versus random factors

Fixed factors are factors whose levels represent the specific populations of interest. For
example, a factor that comprises ‘high’, ‘medium’ and ‘low’ temperature treatments
is a fixed factor – we are only interested in comparing those three populations.
Conclusions about the effects of a fixed factor are restricted to the specific treatment
levels investigated and for any subsequent experiments to be comparable, the same
specific treatments of the factor would need to be used.

By contrast, Random factors are factors whose levels are randomly chosen from
all the possible levels of populations and are used as random representatives of the
populations. For example, five random temperature treatments could be used to
represent a full spectrum of temperature treatments. In this case, conclusions are
extrapolated to all the possible treatment (temperature) levels and for subsequent
experiments, a new random set of treatments of the factor would be selected. Other
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Fig 10.1 A fictitious spatial depiction of sampling units arranged randomly and randomly
assigned to one of four treatment levels (n = 4 for each treatment level).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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common examples of random factors include sites and subjects - factors for which we
are attempting to generalize over. Furthermore, the nature of random factors means
that we have no indication of how a new level of that factor (such as another subject or
site) are likely to respond and thus it is not possible to predict new observations from
random factors.

These differences between fixed and random factors are reflected in the way their
respective null hypotheses are formulated and interpreted. Whilst fixed factors contrast
the effects of the different levels of the factor, random factors are modelled as the
amount of additional variability they introduce.

10.1 Null hypotheses

Fixed factor

A single fixed factor ANOVA tests the H0 that there are no differences between the
population group means

H0 : µ1 = µ2 = . . . = µi = µ (the population group means are all equal)

That is, that the mean of population 1 is equal to that of population 2 and so on, and
thus all population means are equal to an overall mean. If the effect of the ith group
is the difference between the ith group mean and the overall mean (αi = µi − µ) then
the H0 can alternatively be written as:

H0 : α1 = α2 = . . . = αi = 0 (the effect of each group equals zero)

If one or more of the αi are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random factor

The H0 for a random factor is that the variance between all possible groups equals zero:

H0 : σ 2
α = 0 (added variance due to this factor equals zero)

10.2 Linear model

The linear model for single factor classification is similar to that of multiple linear
regressiona. There is a separate parameter for each level (group) of the factor and a
constant parameter that estimates the overall mean of the response variable:

yij = µ + β1(level1)ij + β2(level2)ij + . . . + εij

a Indeed, if the model is fitted with the lm() function rather than the more specific aov() function,
parameters associated with each level of the treatment are estimated and tested.
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where β1 and β2 respectively represent the effects of level 1 and 2 on the mean response.
When these individual effects are combined into a single term, the linear effects model
for single factor classification becomes:

yij = µ + αi + εij

Term Fixed/random Description Null hypothesis

αi fixed the effect of the ith group αi = 0 (no effect of factor A)
random random variable σ 2

α = 0 (variances between all
possible levels of A are equal)

Note that whilst the null hypotheses for fixed and random factors are different
(fixed: population group means all equal, random: variances between populations
all equal zero, the linear model fitted for fixed and random factors in single factor
ANOVA models is identical. For more complex multifactor ANOVA models however,
the distinction between fixed and random factors has important consequences for
statistical models and null hypotheses.

10.3 Analysis of variance

When the null hypothesis is true (and the populations are identical), the amount of vari-
ation among observations within groups should be similar to the amount of variation in
observations between groups. However, when the null hypothesis is false, the amount
of variation among observations might be expected to be less than the amount of
variation within groups. Analysis of variance, or ANOVA, partitions the total variance
in the response (dependent) variable into a component of the variance that is explained
by combinations of one or more categorical predictor variables (called factors) and
a component of the variance that cannot be explained (residual), see Figure 10.2. In
effect, these are the variances among observations between and within groups respec-
tively. The variance ratio (F-ratio) from this partitioning can then be used to test the
null hypothesis (H0) that the population group or treatment means are all equal.

When the null hypothesis is true (and the test assumptions have not been violated),
the ratio (F-ratio) of explained to unexplained variance follows a theoretical probability
distribution (F-distribution, see Figure 10.2d). When the null hypothesis is true, and
there is no affect of the treatment on the response variable, the ratio of explained
variability to unexplained variability is expected to be ≤ 1b.

Importantly, the denominator in an F-ratio calculation essentially represents what
we would expect the numerator to be in the absence of a treatment effect. For simple
analyses, identifying the what these expected values are straight forward (equivalent to
the degree of within group variability). However, in more complex designs (particularly
involving random factors and hierarchical treatment levels), the logical ‘‘groups’’ can
be more difficult (and in some cases impossible) to identify. In such cases, nominating

b Since the denominator should represent the expected numerator in the absence of an effect.
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Group A Group B

Group A mean

Overal mean

Group B mean

Group A Group B

SSgroups= sum of squared
 explained distances

MSgroups= conservative mean
 var explained

=
SSgroups

dfgroups

Explained var.
(distances)

Group A Group B

SSresidual = sum of squared
 unexplained distances

MSresidual = conservative mean
 var unexplained

=
SSresidual

dfresidual

Unexplained var.
(distances)

F-ratio =
Explained

Unexplained
=

MSgroups
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F-distribution
(Distribution of all possible
expected F-ratios when the
H0 is true)

(a) (b)

(c) (d)

Fig 10.2 Fictitious data illustrating the partitioning of total variation into components explained
by the groups (MSgroups) and unexplained (MSresidual) by the groups. The gray arrows in (b)
depict the relative amounts explained by the groups. The proposed groupings generally explain
why the first few points are higher on the y-axis than the last three points. The gray arrows in (c)
depict the relative amounts unexplained (the residuals) by the groups. The proposed groupings
fail to explain the differences within the first three points and within the last three points.
The probability of collecting our sample, and thus generating the sample ratio of explained to
unexplained variation (or one more extreme), when the null hypothesis is true (and population
means are equal) is the area under the F-distribution (d) beyond our sample F-ratio.
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Table 10.1 F-ratios and corresponding R syntax for single factor
ANOVA designs (A fixed or random).

Factor d.f. MS F-ratio

A a − 1 MSA
MSA

MSResid

Residual (=N′(A)) (n − 1)a MSResid

> anova(aov(DV A,dataset))

the appropriate F-ratio deniminator for estimating an specific effect requires careful
consideration (see chapters 11–14). Table 10.1 depicts the anatomy of the single factor
ANOVA table and corresponding R syntax.

An F-ratio substantially greater than 1 suggests that the model relating the response
variable to the categorical variable explains substantially more variability than is left
unexplained. In turn, this implies that the linear model does represent the data well
and that differences between observations can be explained largely by differences in
treatment levels rather than purely the result of random variation. If the probability of
getting the observed (sample) F-ratio or one more extreme is less than some predefined
critical value (typically 5% or 0.05), we conclude that it is highly unlikely that the
observed samples could have been collected from populations in which the treatment
has no effect and therefore we would reject the null hypothesis.

10.4 Assumptions

An F-ratio from real data can only reliably relate to a theoretical F-distribution when
the data conform to certain assumptions. Hypothesis testing for a single factor ANOVA
model assumes that the residuals (and therefore the response variable for each of the
treatment levels) are all:

(i) normally distributed - although ANOVA is robust to non-normality provided sample
sizes and variances are equal. Boxplots should be used to explore normality, skewness,
bimodality and outliers. Scale transformations are often useful.

(ii) equally varied - provided sample sizes are equal and the largest to smallest variance
ratio does not exceed 3:1 (9:1 for sd), ANOVA is reasonably robust to this assumption,
however, relationships between variance and mean and/or sample size are of particular
concern as they elevate the Type I error rate. Boxplots and plots of means against
variance should be used to explore the spread of values. Residual plots should reveal no
patterns (see Figure 8.5). Since unequal variances are often the result of non-normality,
transformations that improve normality will also improve variance homogeneity.

(iii) independent of one another - this assumption must be addressed at the design and
collection stages and cannot be compensated for laterc.

Violations of these assumptions reduce the reliability of the analysis.

c Unless a model is used that specifically accounts for particular types of non-independent data, such
as repeated measures ANOVA - see chapter 13.
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10.5 Robust classification (ANOVA)

There are a number of alternatives to ANOVA that are more robust (less sensitive)
to conditions of either non-normality or unequal variance. Welch’s test adjusts
the degrees of freedom to maintain test reliability in situations where populations
are normally distributed but unequally varied. Alternatively, Randomization tests
repeatedly shuffle the observations randomly, each time calculating a specific test
statistic so as to build up a unique probability distribution for the test statistic for the
collected data and thus make no assumptions about the distribution of the underlying
population. Such tests do not assume observations were collected via random sampling,
however they do assume that populations are equally varied.

Non-parametric (rank-based) tests such as the Kruskal-Wallis test use ranks
of the observations to calculate test statistics rather than the actual observations
and thus do not assume that the underlying populations are normally distributed.
They test the null hypothesis that population medians are equal and are useful in
situations where there are outliers. Although technically these tests still assume that
the populations are equally varied, violations of this assumption apparently have little
impact.

10.6 Tests of trends and means comparisons

Rejecting the null hypothesis that all of population group means are equal only
indicates that at least one of the population group means differs from the others, it does
not indicate which groups differ from which other groups. Consequently, researchers
often wish to examine patterns of differences among groups. However, this requires
multiple comparisons of group means and multiple comparisons lead to two statistical
problems. First, multiple significance tests increase the probability of Type I errors (α,
the probability of falsely rejecting H0). If the decision criteria for any single hypothesis
test is 0.05 (5%), then we are accepting that there is a 5% chance of committing a Type
I error (falsely rejecting the null hypothesis). As a result, if many related hypothesis
tests are conducted, then the overall Type I error rate (probability of making at least
one Type I error) compounds to unacceptably high levels. For example, testing for
differences between 5 groups requires ten pairwise comparisons. If the α for each test
is 0.05 (5%), then the probability of at least one Type I error for the family of 10 tests is
approximately 0.4 (40%). Second, the outcome of each test might not be independent
(orthogonal). For example, if one test reveals that the population mean of group A is
significantly different from the population mean of group B (A>B) and B>C then we
already know the result of A vs. C.

Post-hoc unplanned pairwise comparisons compare all possible pairs of group
means and are useful in an exploratory fashion to reveal differences between groups
when it is not possible to justify any specific comparisons over other comparisons prior
to the collection and analysis of data. There are a variety of procedures available to
control the family-wise Type I error rate (e.g. Bonferroni and Tukey’s test), thereby
minimizing the probability of making Type I errors. However, these procedures reduce
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the power of each individual pairwise comparison (increase Type II error), and the
reduction in power is directly related to the number of groups (and hence number of
comparisons) being compared. For ordered factors (e.g. Temperature: 10, 15, 20, . . .),
multiple pairwise comparisons are arguably less informative than an investigation of
the overall trends across the set of factor levels.

Planned comparisons are specific comparisons that are usually planned during
the design stage of the experiment. Most textbooks recommend that multiple com-
parisons can be made (each at α = 0.05) provided each comparison is independent
of (orthogonal to) other comparisons and that no more than p − 1 (where p is the
number of groups) comparisons are made. Among all possible comparisons (both
pairwise and combinational), only a select sub-set are performed, while other less
meaningful (within the biological context of the investigation) combinations are
ignored. Occasionally, the comparisons of greatest interest are not independent (non-
orthogonal). In such circumstances, some statisticians recommend performing the
each of the individual comparisons separately before applying a Dunn-Sidak p-value
correction.

Specific comparisons are defined via a set of contrast coefficients associated with a
linear combination of the treatment means (see section 7.3.1):

y1(C1) + y2(C2) + . . . + yp(Cp)

where p is the number of groups in the factor. The contrast coefficients for a specific
comparison must sum to zero and the groups being contrasted should have opposing
signs. In addition to facilitating specific comparisons between individual groups, it is
also possible to compare multiple groups to other groups or multiples and investigate
polynomial trends. Table 10.2 provides example contrast coefficients for a number of
commonly used planned comparison H0 types. Note that polynomial trends assume
that factor levels are ordered according to a natural gradient or progression (eg. low,
medium, high) and that the factor levels are evenly spaced along this gradient. If
you have reason to suspect that this is not the case, consider either weighting the

Table 10.2 Example contrast coefficients for specific compar-
isons and the first three order polynomials for a factor with four
levels (groups).

H0: Group1 Group2 Group3 Group4

µ1 = µ2 1 −1 0 0
(µ1 + µ2)/2 = µ3

a .5 .5 −1 0
no linear trend −3 −1 1 3
no quadratic trend 1 −1 −1 1
no cubic trend −1 3 −3 1

awhile alternatively, this planned contrast could have been defined as 1, 1, −2, 0,
yielding the same partitioning on SSCONTRAST , its estimated parameter value
would not reflect the value inferred by the null hypothesis.
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contrast coefficients to better represent the increments between treatment levelsd, or
else regression analysis (see chapter 8) as an alternative.

10.7 Power and sample size determination

Recall from section 6.5, that power (the probability of detecting an effect if an effect
really exists) is proportional to the effect size, sample size and significance level
(α) and inversely proportional to the background variability. It is convienient to
think about the effect size as the absolute magnitude of the effect. When there
are only two groups, the effect size is relatively straight forward to estimate (it is
the expected difference between the means of two populations). However, when
there are more than two groups, there are numerous ways in which this effect
size can manifest. For example, in an investigation into the effect of temperature
(‘v.high’, ‘high’, ‘medium’ and ‘low’) on the growth rate of seedlings, there are
numerous ways that an effect size of (for example) 10 units above the expected
background mean growth rate of 20 units could be distributed across the four groups
(see Table 10.3). Consequently, effect size is expressed in terms of the expected
variability both within and between the populations (groups). The smaller the degree
of variability between groups, the more difficult it is to detect differences, or the greater
the sample size required to detect differences. It is therefore important to anticipate
the nature of between group patterns in conducting power analyses and sample size
determinations.

Table 10.3 Fictitious illustration of the variety of ways that an effect size of 10 units could be
distributed over four groups.

Possible trends Between group variability

One group different µV > µH = µM = µL var(c(30,20,20,20)) = 25.00

Two groups different µV = µH > µM = µL var(c(30,30,20,20)) = 33.33

Equal increments µV > µH > µM > µL var(seq(30,20,l=4)) = 18.52

Other increments µV > µH = µM > µL var(c(30,25,25,20)) = 16.67

10.8 ANOVA in R

Single factor ANOVA models can be fitted with the either the lm() linear modelling
function or the more specific aov() function, the latter of which provides a wrapper for
the lm() function that redefines output for standard analysis of variance rather than

d For a linear trend, weighted coefficients can be calculated by providing numerical representations
of each of the factor levels and then subtracting the mean of these levels from each numeric level.
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parameter estimates. ANOVA tables for balanced, fixed factor designs can be viewed
using either the anova() or summary(), the latter of which is used to accommodate
planned contrasts with the split= argument.

10.9 Further reading
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edition. 2 edition. John Wiley & Sons, New York.
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Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.
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10.10 Key for single factor classification (ANOVA)

1 a. Check parametric assumptions

• Normality of the response variable at each level of the categorical variable -
boxplots

> boxplot(DV ~ Factor, dataset)

where DV and Factor are response and factor variables respectively in the dataset
data frame
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• Homogeneity of variance - boxplots (as above) and scatterplot of mean vs
variance

> plot(tapply(dataset$DV, dataset$Factor, var),

+ tapply(dataset$DV, dataset$Factor, mean))

where DV and Factor are response and factor variables respectively in the dataset
data frame

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
b. Parametric assumptions NOT met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5

2 a. ANOVA with specific comparisons or trends . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
b. ANOVA without specific comparisons or trends . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Single fixed factor (model I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10A

> data.aov <- aov(DV ~ Factor, dataset)

> plot(data.aov)

> anova(data.aov)

if Reject H0 - Significant difference between group means detected . . . . . . . . Go to 9
b. Single random factor (model II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10D

> anova(aov(DV ~ Factor, dataset))

if Reject H0 - Significant difference between group means detected - calculate variance
components

> library(nlme)

> data.lme <- lme(DV ~ 1, random = ~1 | Factor, data = dataset,

+ method = "ML")

> VarCorr(data.lme)

> data.lme <- lme(DV ~ 1, random = ~1 | Factor, data = dataset,

+ method = "REML")

> VarCorr(data.lme)

4 a. With planned comparisons of means . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10B

> contrasts(dataset$Factor) <- cbind(c(contrasts), c(contrasts),

+ ...)

> round(crossprod(contrasts(dataset$Factor)), 2)

> data.list <- list(Factor = list(lab = 1, ..), ..)

> data.aov <- aov(DV ~ Factor, data = dataset)

> plot(data.aov)

> summary(data.aov, split = data.list)

b. With planned polynomial trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10C

> contrasts(dataset$Factor) <- "contr.poly"

> data.list <- list(Factor = list(Linear = 1))

> data.aov <- aov(DV ~ Factor, data = dataset)

> plot(data.aov)

> summary(data.aov, split = data.list)

5 a. Attempt a scale transformation (see Table 3.2 for common transformation
options) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 1

b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
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6 a. Underlying distribution of the response variable is normal but variances are
unequal (Welch’s test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10F

> oneway.test(DV ~ Factor, var.equal = F)

If Reject H0 - Significant difference between group means detected . . . . . . . Go to 9c
or consider GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17

b. Underlying distribution of the response variable is NOT normal . . . . . . . . Go to 7
7 a. Underlying distribution of the response variable and residuals

is known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17
b. Underlying distribution of the response variable and residuals is NOT

known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8
8 a. Variances not wildly unequal, but outliers present (Kruskal-Wallis nonparametric

test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10G

> kruskal.test(DV ~ Factor, var.equal = F)

If Reject H0 - Significant difference between group means detected . . . . Go to 9cb/c
b. Variances not wildly unequal, random sampling not possible (Randomization

test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10G

> library(boot)

> data.boot <- boot(dataset, stat, R = 999, sim = "parametric",

+ rand.gen = rand.gen)

> plot(data.boot)

> print(data.boot)

where stat is the statistic to repeatedly calculate and rand.gen defines how the data
are randomized.

9 a. Parametric simultaneous multiple comparisons - Tukey’s test . . See Example 10A

> library(multcomp)

> summary(glht(model, linfct = mcp(Factor = "Tukey")))

b. Non-parametric simultaneous multiple comparisons - Steel
test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 10E

> library(npmc)

> data <- data.frame(var = dataset$DV, class = dataset$Factor)

> summary(npmc(data), type = "steel")

c. Multiple comparisons based on p-value adjustments . . . . . . . . . . See Example 10G

> library(multtest)

> mt.rawp2adjp(pvalues, proc = "SidakSD")

> p.adjust(pvalues, method = "holm")

where pvalues is a list of pvalues from each pairwise comparison and 'holm' and
'SidakSD' are the names of the p-value adjustment procedures. For alternative
procedures, see Table 10.4.
The p.adjust function above can also be called from within other pairwise routines
Parametric pairwise tests

> pairwise.t.test(DV ~ Factor, pool.sd = F, p.adjust = "holm")

Non-parametric pairwise tests

> pairwise.wilcox.test(DV ~ Factor, p.adjust = "holm")
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Table 10.4 Alternative p-value adjustments (p.adjust) for use with
the pairwise.wilcoxon.test and pairwise.t.test.

Syntax Correction Description

'bonferroni' Bonferroni single-step correction p-values multiplied by number of
comparisons to control the
family-wise error rate

'holm' sequential step-down Bonferroni
correction

More powerful than Bonferroni to
control the family-wise error rate

'hochberg' Hochberg step-up correction Reverse of Holm procedure and possibly
more powerful to control the
family-wise error rate

'hommel' sequential Bonferroni correction Reportedly more powerful than
Hochberg procedure to control the
family-wise error rate

'BH' Benjamini & Hochberg step-up
correction

Controls the false discovery rate

'BY' Benjamini & Yekutieli step-up
correction

Controls the false discovery rate

'none' no correction Uncorrected p-values
'SidakSS'a Sidak single-step correction More powerful modification of

Bonferroni procedure
'SidakSD'a Sidak step-down correction More powerful modification of

Bonferroni procedure

aonly available via the mt.rawp2adjp function of the multtest package, see Example 10F.

10.11 Worked examples of real biological data sets

Example 10A: Single factor ANOVA with Tukey’s test
Medley and Clements (1998) investigated the impact of zinc contamination (and other
heavy metals) on the diversity of diatom species in the USA Rocky Mountains (from
Box 8.1 of Quinn and Keough (2002)). The diversity of diatoms (number of species)
and degree of zinc contamination (categorized as either of high, medium, low or natural
background level) were recorded from between four and six sampling stations within each
of six streams known to be polluted. These data were used to test the null hypothesis
that there were no differences the diversity of diatoms between different zinc levels (H0:
µH = µM = µL = µB = µ; αi = 0).

The linear effects model would be:

yij = µ + αi + εij

diatom species = overall + effect of zinc + error
diversity mean level

Step 1 - Import (section 2.3) the Medley and Clements (1998) data set

> medley <- read.table("medley.csv", header = T, sep = ",")
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Step 2 - Reorganize the levels of the categorical factor into a more logical order (section 2.6.1)

> medley$ZINC <- factor(medley$ZINC, levels = c("HIGH", "MED",

+ "LOW", "BACK"), ordered = F)

Step 3 (Key 10.1) - Assess normality/homogeneity of variance using boxplot of species diversity
against zinc group

> boxplot(DIVERSITY ~ ZINC, medley)
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Conclusions - no obvious violations of
normality or homogeneity of variance
(boxplots not asymmetrical and do not
vary greatly in size)

Step 4 (Key 10.1) - Assess homogeneity of variance assumption with a table and/or plot of
mean vs variance

> plot(tapply(medley$DIVERSITY, medley$ZINC, mean),

+ tapply(medley$DIVERSITY, medley$ZINC, var))
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Conclusions - no obvious relationship
between group mean and variance

Step 5 (Key 10.3a) - Test H0 that population group means are all equal - perform analysis
of variance (fit the linear model) of species diversity versus zinc-level group and examine the
diagnostics (residual plot)

> medley.aov <- aov(DIVERSITY ~ ZINC, medley)

> plot(medley.aov)
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Conclusions - no obvious vio-
lations of normality or homo-
geneity of variance (no obvious
wedge shape in residuals, nor-
mal Q-Q plot approximately
linear). Note that Cook’s D val-
ues meaningless in ANOVA.

Step 6 (Key 10.3a) - Examine the ANOVA table.

> anova(medley.aov)

Analysis of Variance Table

Response: DIVERSITY

Df Sum Sq Mean Sq F value Pr(>F)

ZINC 3 2.5666 0.8555 3.9387 0.01756 *

Residuals 30 6.5164 0.2172

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - reject H0 that population group means are equal, ZINC was found to have a
significant impact on the DIVERSITY of diatoms (F3,30 = 3.939, P = 0.018).

Step 7 (Key 10.9a) - Perform post-hoc Tukey’s test to investigate pairwise mean differences
between all groups

> library(multcomp)

> summary(glht(medley.aov, linfct = mcp(ZINC = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = DIVERSITY ~ ZINC, data = medley)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

MED - HIGH == 0 0.44000 0.21970 2.003 0.2093

LOW - HIGH == 0 0.75472 0.22647 3.333 0.0114 *

BACK - HIGH == 0 0.51972 0.22647 2.295 0.1219

LOW - MED == 0 0.31472 0.22647 1.390 0.5152

BACK - MED == 0 0.07972 0.22647 0.352 0.9847

BACK - LOW == 0 -0.23500 0.23303 -1.008 0.7457
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Conclusions - diatom species diversity is significantly higher in low zinc sites than high zinc
sites (t15 = 3.333, P = 0.011). No other H0 rejected. Note, the Tukey’s adjusted P-values are
based on robust procedures that were not available to Quinn and Keough (2002). The more
recent Tukey’s test makes use of randomization procedures and thus the exact P-values differ
from run to run.

Step 8 - Summarize findings of global ANOVA and post-hoc Tukey’s test with a bargraph (see
also section 5.9.4)

> library(biology)

> Mbargraph(medley$DIVERSITY, medley$ZINC, symbols = c("A", "AB",

+ "B", "AB"), ylab = "Mean diatom diversity",

+ xlab = "Zinc concentration")
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Example 10B: Single factor ANOVA with planned comparisons
Keough and Raimondi (1995) examined the effects of four biofilm types (SL: sterile unfilmed
substrate, NL: netted laboratory biofilms, UL: unnetted laboratory biofilms and F: netted field
biofilms) on the recruitment of serpulid larvae (from Box8.2 and Box8.4 of Quinn and Keough,
2002). Substrates treated with one of the four biofilm types were left in shallow marine
waters for one week after which the number of newly recruited serpulid worms were counted.
These data were used to test the null hypothesis that there were no differences in serpulid
numbers between the different biofilms (H0: µSL = µNL = µUL = µSL = µF = µ; αi = 0).
The linear effects model would be:

yij = µ + αi + εij

serpulid = overall + effect of biofilm type + error
number mean

Step 1 - Import (section 2.3) the Keough and Raimondi (1995) data set

> keough <- read.table("keough.csv", header = T, sep = ",")
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Step 2 (Keys 10.1 & 10.5) - Check the assumptions and scale data if appropriate

> boxplot(SERP ~ BIOFILM,

+ data = keough)

> boxplot(log10(SERP) ~ BIOFILM,

+ data = keough)
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> with(keough, plot(tapply(SERP,

+ BIOFILM, mean),

+ tapply(SERP, BIOFILM,

+ var)))

> with(keough,

+ plot(tapply(log10(SERP),

+ BIOFILM, mean),

+ tapply(log10(SERP),

+ BIOFILM, var)))
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Conclusions - some evidence of a relationship between population mean and population
variance from untransformed data, log10 transformed data meets assumptions better, therefore
transformation appropriate.

In addition to examining the overall effect of BIOFILM treatments on the number of newly
recruited serpulid worms, Keough and Raimondi (1995) were interested in examining a number
of other specific null hypotheses. In particular, whether recruitment was effected by the presence
of netting in laboratory biofilms (NL vs UL), whether recruitment differed between field and
laboratory biofilms (F vs (NL&UL) and finally whether recruitment differed between unfilmed
and filmed treatments (SL vs (F&NL&UL)).
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There specific null hypotheses and corresponding contrast coefficients are (Note, technically,
we should not define contrasts with values greater than 1. However, in this case, as we are not
going to examine the estimated regression parameters, the magnitude of the contrast coefficients
will have no impact on the analyses.):

H0: F NL SL UL

µNL = µUL 0 1 0 −1
µF = (µNL + µUL)/2 2 −1 0 −1
µSL = (µF + µNL + µUL)/3 −1 −1 3 −1

Step 3 (Key 10.4a) - Define a list of contrasts for the following planned comparisons: NL vs
UL, F vs the average of NL and UL, and SL vs the average of F, NL and UL.

> contrasts(keough$BIOFILM) <- cbind(c(0, 1, 0, -1), c(2, -1, 0,

+ -1), c(-1, -1, 3, -1))

Step 4 (Key 10.4a) - Confirm that defined contrasts are orthogonal.

> round(crossprod(contrasts(keough$BIOFILM)), 2)

[,1] [,2] [,3]

[1,] 2 0 0

[2,] 0 6 0

[3,] 0 0 12

Conclusions - all defined planned contrasts are orthogonal (values above or below the
cross-product matrix diagonal are all be zero).

Step 5 (Key 10.4a) - Define contrast labels. These are labels to represent each of the defined
planned comparisons in the ANOVA table

> keough.list <- list(BIOFILM = list('NL vs UL' = 1,

+ 'F vs (NL&UL)' = 2, 'SL vs (F&NL&UL)' = 3))

Step 6 (Key 10.4a cont.) - Fit the linear model to test the null hypothesis that the population
group means are all equal as well as the specific null hypotheses that the population means of
treatments SL and F are equal, SL and the average of NL and F are equal, and UL and the average
of SL, NL and F are equal.

> keough.aov <- aov(log10(SERP) ~ BIOFILM, data = keough)

Step 7 (Key 10.4a cont.) - Check the diagnostic plots to confirm assumptions are met

> plot(keough.aov)
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Conclusions - no obvi-
ous violations of normality
or homogeneity of variance
(no obvious wedge shape in
residuals, normal Q-Q plot
approximately linear), Ignore
Cook’s D values for ANOVA.

Step 8 (Key 10.4a cont.) - Examine the ANOVA table

> summary(keough.aov, split = keough.list)

Df Sum Sq Mean Sq F value Pr(>F)

BIOFILM 3 0.24103 0.08034 6.0058 0.0033386 **

BIOFILM: NL vs UL 1 0.00850 0.00850 0.6352 0.4332635

BIOFILM: F vs (NL&UL) 1 0.00888 0.00888 0.6635 0.4233267

BIOFILM: SL vs (F&NL&UL) 1 0.22366 0.22366 16.7188 0.0004208 ***

Residuals 24 0.32106 0.01338

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Biofilm treatments were found to have a significant affect on the mean log10

number of serpulid recruits (F3,24 = 6.0058, P = 0.003). The presence of a net (NL) over the
substrate was not found to alter the mean log10 serpulid recruits compared to a surface without
(UL) a net (F1,24 = 0.6352, P = 0.4332). Field biofilms (F) were not found to have different
mean log10 serpulid recruits than the laboratory (NL, UL) biofilms (F1,24 = 0.6635, P = 0.4233).
Unfilmed treatments were found to have significantly lower mean log10 serpulid recruits than
treatments with biofilms (F1,24 = 16.719, P < 0.001).

Step 9 - Summarize findings with a bargraph (see section 5.9.4)

> means <- with(keough, tapply(SERP, BIOFILM, mean, na.rm = T))

> sds <- with(keough, tapply(SERP, BIOFILM, sd, na.rm = T))

> n <- with(keough, tapply(SERP, BIOFILM, length))

> ses <- sds/sqrt(n)

> ys <- pretty(c(means - ses, means + (2 * ses)))

> xs <- barplot(means, beside = T, axes = F, ann = F,

+ ylim = c(min(ys), max(ys)), xpd = F)

> arrows(xs, means + ses, xs, means - ses, ang = 90, length = 0.1,

+ code = 3)
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> axis(2, las = 1)

> mtext(2, text = "Mean number of serpulids", line = 3, cex = 1.5)

> mtext(1, text = "Biofilm treatment", line = 3, cex = 1.5)

> box(bty = "l")
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Example 10C: Single factor ANOVA with planned polynomial trends
As an illustration of polynomial trends, Quinn and Keough (2002) suggested a hypothetical
situation in which Keough and Raimondi (1995) might have also included an examination
of the linear change in settlement across the four treatments (SL, NL, UL & F).

Step 1 - Import the Keough and Raimondi (1995) data set, see Example 10B.

> keough <- read.table("keough.csv", header = T, sep = ",")

Step 2 (see section 2.6.1) - Reorder the factor levels into a logical order in preparation of the
polynomial trends - so that not in alphabetical order

> keough$BIOFILM <- factor(keough$BIOFILM, levels = c("SL", "NL",

+ "UL", "F"))

Step 3 (Key 10.4b) - Define the polynomial contrast coefficients. These will be automatically
generated and orthogonal.

> contrasts(keough$BIOFILM) <- "contr.poly"

Step 4 (Key 10.4b) - Define the polynomial contrast labels

> keough.list <- list(BIOFILM = list(Linear = 1, Quadratic = 2,

+ Cubic = 3))

Step 5 (Key 10.4b) - Fit the ANOVA model and the first, second and third order polynomial
trends

> keough.aov <- aov(log10(SERP) ~ BIOFILM, data = keough)
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Step 6 (Key 10.4b) - Examine the ANOVA table including the first three polynomial trends

> summary(keough.aov, split = keough.list)

Df Sum Sq Mean Sq F value Pr(>F)

BIOFILM 3 0.24103 0.08034 6.0058 0.003339 **

BIOFILM: Linear 1 0.08155 0.08155 6.0961 0.021054 *

BIOFILM: Quadratic 1 0.12248 0.12248 9.1555 0.005836 **

BIOFILM: Cubic 1 0.03700 0.03700 2.7660 0.109294

Residuals 24 0.32106 0.01338

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - We would reject the null hypothesis of no quadratic trend over and above a
linear trend (F1,24 = 9.156, P = 0.006), suggesting that there is a significant quadratic trend
in mean log10 number of serpulid recruits across the ordered BIOFILM treatments (SL, NL,
UL, F). Whilst this is a statistically significant outcome, it does not necessarily infer biological
significance.

Example 10D: Single random factor ANOVA and variance components
Following on from Example 10A, Medley and Clements (1998) may also have been interested
in whether diatom diversity differed across Rocky Mountain streams (Box8.1 from Quinn
and Keough, 2002). Hence, streams could be treated as a random factor in testing the null
hypothesis that there was no added variance in diatom diversity due to streams.

Step 1 - Import (section 2.3) the Medley and Clements (1998) data set

> medley <- read.table("medley.csv", header = T, sep = ",")

Step 2 (Key 10.1a & 10.1b) - Assess normality/homogeneity of variance using boxplot of
species diversity against stream

> boxplot(DIVERSITY ~ STREAM, medley)

Arkan Blue Chalk Eagle Snake Splat
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Conclusions - although not ideal,
there is no evidence that popula-
tion diatom diversity is consistently
non-normally distributed and drasti-
cally unequally varied. Note that small
boxplots are accompanied by outliers
suggestive of potentially greater vari-
ance. Consequently, perform ANOVA
and rely on general robustness of the
test.
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Step 3 (Key 10.3a) - Test H0 that there is no added variation in diatom diversity due to stream -
perform analysis of variance (fit the linear model) of species diversity versus stream and examine
the ANOVA table.

> medley.aov <- aov(DIVERSITY ~ STREAM, medley)

> anova(medley.aov)

Analysis of Variance Table

Response: DIVERSITY

Df Sum Sq Mean Sq F value Pr(>F)

STREAM 5 1.8278 0.3656 1.4108 0.2508

Residuals 28 7.2552 0.2591

Conclusions - do not reject the null hypothesis that there is no added variance in diatom
diversity due to streams.

Step 4 (Key 10.3a) - Calculate ML and REML estimates of variance components (random factor
and residuals).

> library(nlme)

> print(VarCorr(lme(DIVERSITY ~ 1, random = ~1 | STREAM,

+ method = "ML", data = medley)))

STREAM = pdLogChol(1)

Variance StdDev

(Intercept) 0.009927963 0.09963916

Residual 0.257182572 0.50713171

> print(VarCorr(lme(DIVERSITY ~ 1, random = ~1 | STREAM,

+ method = "REML", data = medley)))

STREAM = pdLogChol(1)

Variance StdDev

(Intercept) 0.02053683 0.1433068

Residual 0.25755732 0.5075011

Conclusions - Most of the variance in diatom diversity is due to differences between sampling
stations within the streams (ML: 0.2571, REML: 0.2576), very little variance is added due to
differences between streams (ML: 0.0099, REML: 0.0205)

Example 10E: Kruskal-Wallis test with non-parametric post-hoc test
Sokal and Rohlf (1997) present an unpublished data set (W. Purves) in which the effect of
different sugar treatments (Control, 2% glucose added, 2% fructose added, 1% glucose and
1% fructose added, and 2% sucrose added) on pea length was investigated (from Box 13.6
of Sokal and Rohlf, 1997).

Step 1 - Import the Purves (unpublished) data set

> purves <- read.table("purves.csv", header = T, sep = ",")
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Step 2 (Keys 10.1a & 10.5) - Check the assumptions of normality and equal variance

> boxplot(LENGTH ~ TREAT, data = purves)

Control Fructose GlucFruc Glucose Sucrose

60
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Conclusions - strong evidence of
unequal variance. Note that this data
set would probably be better suited
to a Welch’s test, however, for the
purpose of providing worked examples
that are consistent with popular biom-
etry texts, a Kruskal-Wallis test will be
demonstrated.

Step 3 (Key 10.8) - Perform non-parametric Kruskal-Wallis test.

> kruskal.test(LENGTH ~ TREAT, data = purves)

Kruskal-Wallis rank sum test

data: LENGTH by TREAT

Kruskal-Wallis chi-squared = 38.4368, df = 4, p-value = 9.105e-08

Conclusions - reject null hypothesis, sugar treatment has a significant affect on the growth of
pea sections.

Step 4 (Key 10.8) - Perform non-parametric post-hoc test.

> library(npmc)

> dat <- data.frame(var = purves$LENGTH, class = purves$TREAT)

> summary(npmc(dat), type = "Steel")

$'Data-structure'

group.index class.level nobs

Control 1 Control 10

Fructose 2 Fructose 10

GlucFruc 3 GlucFruc 10

Glucose 4 Glucose 10

Sucrose 5 Sucrose 10

$'Results of the multiple Steel-Test'

cmp effect lower.cl upper.cl p.value.1s p.value.2s

1 1-2 0.000 -0.3599019 0.3599019 1.0000000000 0.001470977

2 1-3 0.000 -0.3596288 0.3596288 1.0000000000 0.001298745

3 1-4 0.000 -0.3600384 0.3600384 1.0000000000 0.001041309

4 1-5 0.050 -0.3081226 0.4081226 1.0000000000 0.005696086

5 2-3 0.495 0.1422692 0.8477308 0.9943192409 1.000000000
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6 2-4 0.670 0.3133899 1.0266101 0.5005921659 0.713955365

7 2-5 1.000 0.6405079 1.3594921 0.0005691443 0.001327216

8 3-4 0.730 0.3746322 1.0853678 0.2525087694 0.407630138

9 3-5 1.000 0.6407814 1.3592186 0.0008494360 0.001372916

10 4-5 0.985 0.6261920 1.3438080 0.0010278350 0.001889472

Conclusions - The pea sections treated with sugar were significantly shorter than the controls
and sections treated with sucrose were significantly longer than sections treated with either
glucose, fructose or a mixture of glucose and fructose.

Step 5 - Summarize findings with a bargraph

> means <- with(purves, tapply(LENGTH, TREAT, mean, na.rm = T))

> sds <- with(purves, tapply(LENGTH, TREAT, sd, na.rm = T))

> n <- with(purves, tapply(LENGTH, TREAT, length))

> ses <- sds/sqrt(n)

> ys <- pretty(c(means - ses, means + (2 * ses)))

> xs <- barplot(means, beside = T, axes = F, ann = F,

+ ylim = c(min(ys), max(ys)), xpd = F)

> arrows(xs, means + ses, xs, means - ses, ang = 90, length = 0.05,

+ code = 3)

> axis(2, las = 1)

> mtext(2, text = "Mean pea length", line = 3, cex = 1.5)

> mtext(1, text = "Sugar treatment", line = 3, cex = 1.5)

> text(xs, means + ses, labels = c("A", "B", "B", "B", "C"),

pos = 3)

> box(bty = "l")
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Example 10F: Welch’s test
Sánchez-Piñero and Polis (2000) studied the effects of sea birds on tenebrionid beetles
on islands in the Gulf of California. These beetles are the dominant consumers on these
islands and it was envisaged that sea birds leaving guano and carrion would increase beetle
productivity. They had a sample of 25 islands and recorded the beetle density, the type of
bird colony (roosting, breeding, no birds), % cover of guano and % plant cover of annuals
and perennials.
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Step 1 - Import the Sánchez-Piñero and Polis (2000) data set

> sanchez <- read.table("sanchez.csv", header = T, sep = ",")

Step 2 (Keys 10.1a & 10.5) - Check the assumptions and scale data if necessary

> boxplot(GUANO ~ COLTYPE,

+ data = sanchez)

> boxplot(sqrt(GUANO) ~ COLTYPE,

+ data = sanchez)
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Conclusions - clear evidence that normality and homogeneity of variance assumptions are
likely to be violated, square-root transformation improves normality, however, there is still clear
evidence that that homogeneity of variance assumption is likely to be violated. Consequently
use a Welch’s test.

Step 3 (Key 10.6a) - Perform the Welch’s test.

> oneway.test(sqrt(GUANO) ~ COLTYPE, data = sanchez)

One-way analysis of means (not assuming equal variances)

data: sqrt(GUANO) and COLTYPE

F = 42.2862, num df = 2.000, denom df = 10.706, p-value = 8.282e-06

Conclusions - Reject the null hypothesis that population means are equal - percentage guano
cover differs significantly in different colony types.

Step 4 (Key 10.9c) - Perform post-hoc test.

> pairwise.t.test(sqrt(sanchez$GUANO), sanchez$COLTYPE,

+ pool.sd = F, p.adj = "holm")

Pairwise comparisons using t tests with non-pooled SD

data: sqrt(sanchez$GUANO) and sanchez$COLTYPE

B N

N 0.0091 -

R 0.9390 2.7e-05

P value adjustment method: holm
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Conclusions - Square root transformed guano cover was significantly higher in breeding
colonies than roosting colonies and significantly lower in roosting colonies than the controls
and sections treated with sucrose were significantly longer than sections treated with either
glucose, fructose or a mixture of glucose and fructose.
Alternatively, the Dunn-Sidak procedure of p-value adjustments could be performed. First re-
perform each of the pairwise comparisons but without any p-value corrections and keep a copy
of the p-values. Examine these unadjusted p-values to determine which p-value is associated
with which comparison. Then use the mt.rawp2adjp function of the multtest package to
perform Dunn-Sidak step-down p-value corrections. Note that adjusted p-values are ordered from
lowest to largest and labels are not supplied, so to determine which p-values are associated with
which comparison, cross reference with the raw p-values or use the values of the index attribute.

> pvalues <- pairwise.t.test(sqrt(sanchez$GUANO), sanchez$COLTYPE,

+ pool.sd = F, p.adj = "none")$p.value

> pvalues

B N

N 0.00455275 NA

R 0.93900231 8.846058e-06

> library(multtest)

> mt.rawp2adjp(pvalues, proc = "SidakSD")

$adjp

rawp SidakSD

[1,] 8.846058e-06 3.538376e-05

[2,] 4.552750e-03 1.359616e-02

[3,] 9.390023e-01 9.962793e-01

[4,] NA NA

$index

[1] 4 1 2 3

$h0.ABH

NULL

$h0.TSBH

NULL

Conclusions - the square root transformed guano cover of sites without birds was found to
be significantly lower than the cover in both breeding (p < 0.001) and roosting (p = 0.0136)
colonies, however the square root transformed guano cover was not found to differ significantly
between breeding and roosting colonies (p = 0.996).

Step 5 - Summarize findings with a bargraph

> library(biology)

> Mbargraph(sanchez$GUANO, sanchez$COLTYPE, symbols = c("A", "B",

+ "A"), ylab = "Mean percentage Guano cover",

+ xlab = "Bird colony type")
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Example 10G: Randomization test
As part of a study into the diets of of eastern horned lizard (Phrynosoma douglassi
brevirostre), Powell and Russell (1984, 1985) investigated whether the consumption of ants
changed over time from June to September (Example 5.1 from Manly, 1991). They measured
the dry biomass of ants collected from the stomachs of 24 adult male and yearling females
in June, July, August and September of 1980.

Step 1 - Import the Powell and Russell (1984, 1985) data set

> ants <- read.table("ants.csv", header = T, sep = ",")

Step 2 (Key 10.1a) - Assess normality/homogeneity of variance using boxplot of ant biomass
against month. Cube root transformation also assessed.

> boxplot(BIOMASS ~ MONTH, ants) > boxplot(BIOMASS^(1/3) ~ MONTH,

ants)
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Conclusions - strong evidence of non-normality and unequal variance in raw data. Cube root
transformation greatly improved homogeneity of variance, however there is evidence that the
populations are not of the same distribution (August appears to be skewed). As a result a
randomization test in which the the F-distribution is generated from the samples, might be
more robust than an ANOVA that assumes each of the populations are normally distributed.
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Step 3 (Key 10.8b) - define the statistic to use in the randomization test – in this case the
F-ratio

> stat <- function(data, indices) {

+ f.ratio <- anova(aov(BIOMASS^(1/3) ~ MONTH, data))$"F

+ value"[1] f.ratio

+ }

Step 4 (Key 10.8b) - define how the data should be randomized – randomly reorder the which
month each biomass observation was collected (without replacement)

> rand.gen <- function(data, mle) {

+ out <- data

+ out$MONTH <- sample(out$MONTH, replace = F)

+ out

+ }

Step 5 (Key 10.8b) - call a bootstrapping procedure to randomize 5000 times (this can take
some time).

> ants.boot <- boot(ants, stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Step 6 (Key 10.8b) - examine the distribution of F-ratios generated from the randomization
procedure

> plot(ants.boot)
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Step 7 (Key 10.8b) - examine the bootstrap statistics

> print(ants.boot)

PARAMETRIC BOOTSTRAP
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Call:

boot(data = ants, statistic = stat, R = 5000, sim = "parametric",

ran.gen = rand.gen)

Bootstrap Statistics :

original bias std. error

t1* 4.618806 -3.491630 1.074420

Conclusions - The observed F-ratio was 4.619

Step 8 (Key 10.8b) - calculate the number of possible F-ratios (including the observed F-ratio,
which is one possible situation) that were greater or equal to the observed F-ratio and express
this as a percentage of the number of randomizations (plus one for the observed situation)
performed.

> f <- length(ants.boot[ants.boot$t >= ants.boot$t0]) + 1

> print(f/(ants.boot$R + 1))

[1] 0.0159968

Conclusions - Reject the null hypothesis that the population cubed root ant biomass
consumption was equal in each of the four months because the p-value was less than 0.05.
The consumption of ants by eastern horned lizard different between the four months.

Step 9 - Perform post-hoc multiple comparisons via randomization and use the Holm correction
procedure on the pairwise p-values. For each pairwise comparison, specify which levels of the
categorical variable to include in the randomization (boot) function and calculate a p-value.

> ants.rand1 <- boot(ants[ants$MONTH == "September" | ants$MONTH ==

+ "August", ], stat, R = 1000, sim = "parametric", ran.gen =

+ rand.gen)

> ants.rand2 <- boot(ants[ants$MONTH == "September" | ants$MONTH ==

+ "July", ], stat, R = 1000, sim = "parametric", ran.gen =

+ rand.gen)

> p.S.A <- print(length(ants.rand1[ants.rand1$t >= ants.rand1$t0])/

+ (ants.rand1$R + 1))

[1] 0.000999001

> p.S.Jy <- print(length(ants.rand2[ants.rand2$t >= ants.rand2$t0])/

+ (ants.rand2$R + 1))

[1] 0.2677323

Step 10 - Compile a list of all the pairwise p-values and perform Holm correction.

> p.values <- c('Sep vs Aug' = p.S.A, 'Sep vs Jul' = p.S.Jy,

+ 'Sep vs Jun' = p.S.Jn, 'Aug vs Jul' = p.A.Jy,

+ 'Aug vs Jun' = p.A.Jn, 'Jul vs Jun' = p.Jy.Jn)
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> p.adjust(p.values, "holm")

Sep vs Aug Sep vs Jul Sep vs Jun Aug vs Jul Aug vs Jun

Jul vs Jun

0.005994006 0.803196803 0.264735265 0.264735265 0.803196803

0.803196803

Conclusions - The cubed root ant biomass consumption by eastern horned lizards was found
to be significantly different between September and August (p=0.006), but was not found to
be significantly different between any other month pairs.

Step 11 - Summarize findings with a bargraph

> Mbargraph(ants$BIOMASS, ants$MONTH, symbols = c("A", "AB", "AB",

+ "B"), ylab = "Mean ant biomass", xlab = "Month")
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Nested ANOVA

When single sampling units are selected amongst highly heterogeneous conditions (as
represented in Figure 11.1a), it is unlikely that these single units will adequately repre-
sent the populations and repeated sampling is likely to yield very different outcomes.
As a result, the amount of variation within the main treatment effect (unexplained
variability) remains high, thereby potentially masking any detectable effects due to the
measured treatments. Although this problem can be addressed by increased replica-
tion, this is not always practical or possible. For example, if we were investigating the
impacts of fuel reduction burning across a highly heterogeneous landscape, our ability
to replicate adequately might be limited by the number of burn sites available.

Alternatively, sub-replicates within each of the sampling units (e.g. sites) can be
collected (and averaged) so as to provided better representatives for each of the units
(see Figure 11.1b) and ultimately reduce the unexplained variability of the test of
treatments. In essence, the sub-replicates are the replicates of an additional nested
factor whose levels are nested within the main treatment factor. A nested factor refers
to a factor whose levels are unique within each level of the factor it is nested within and
each level is only represented once. For example, the fuel reduction burn study design
could consist of three burnt sites and three un-burnt (control) sites each containing
four quadrats (replicates of site and sub-replicates of the burn treatment). Each site
represents a unique level of a random factor (any given site cannot be both burnt and
un-burnt) that is nested within the fire treatment (burned or not).

A nested design can be thought of as a hierarchical arrangement of factors (hence
the alternative name hierarchical designs) whereby a treatment is progressively sub-
replicated. As an additional example, imagine an experiment designed to comparing the
leaf toughness of a number of tree species. Working down the hierarchy, five individual
trees were randomly selected within (nested within) each species, three branches were
randomly selected within each tree, two leaves were randomly selected within each
branch and the force required to shear the leaf material in half (transversely) was
measured in four random locations along the leaf. Clearly any given leaf can only
be from a single branch, tree and species. Each level of sub-replication is introduced
to further reduce the amount of unexplained variation and thereby increasing the
power of the test for the main treatment effect (the effect of species). Additionally, it is
possible to investigate which scale of replication has the greatest (or least, etc) degree
of variability - the level of the species, individual tree, branch, leaf, leaf region etc.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 11.1 Fictitious spatial depictions contrasting (a) single factor and (b) nested ANOVA
designs each with three replicate sampling units for each of two treatment levels (n = 3 for
each treatment level). When single sampling units are selected amongst highly heterogeneous
conditions (as represented in (a)), it is unlikely that these single units will adequately represent the
populations and repeated sampling is likely to yield very different outcomes. For such situations,
this heterogeneity increases the unexplained variation thereby potentially masking any detectable
effects due to the measured treatments. Sub-replicates within each of the sampling units can be
collected so as to provided a better representative for each unit.

Nested factors are typically random factors (see section 10.0.1), of which the levels
are randomly selected to represent all possible levels (e.g. sites). When the main
treatment effect (called Factor A) is a fixed factor, such designs are referred to as a
mixed model nested anova, whereas when Factor A is random, the design is referred to
as a Model II nested anova. Fixed nested factors are also possible. For example, specific
dates (corresponding to particular times during a season) could be nested within
season. When all factors are fixed, the design is referred to as a Model I mixed model.

Fully nested designs (the topic of this chapter) differ from other multi-factor designs
in that all factors within (below) the main treatment factor are nested and thus
interactions are un-replicated and cannot be testeda. Partly nested designs in which
some of the factors within the main treatment effect are not nested (that is, their levels
are repeated within each of the levels of the factor(s) above) are dealt with in chapter 14.

11.1 Linear models

The linear models for two and three factor nested design are:

yijk = µ + αi + βj(i) + εijk

yijkl = µ + αi + βj(i) + γk(j(i)) + εijkl

a Interaction effects are assumed to be zero.
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where µ is the overall mean, α is the effect of Factor A, β is the effect of Factor B, γ is
the effect of Factor C and ε is the random unexplained or residual component.

11.2 Null hypotheses

Separate null hypotheses are associated with each of the factors, however, nested factors
are typically only added to absorb some of the unexplained variability and thus, specific
hypotheses tests associated with nested factors are of lesser biological importance.

11.2.1 Factor A - the main treatment effect

Fixed

H0(A) : µ1 = µ2 = . . . = µi = µ (the population group means are all equal)

The mean of population 1 is equal to that of population 2 and so on, and thus all
population means are equal to an overall mean. If the effect of the ith group is the
difference between the ith group mean and the overall mean (αi = µi − µ) then the H0

can alternatively be written as:

H0(A) : α1 = α2 = . . . = αi = 0 (the effect of each group equals zero)

If one or more of the αi are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random

H0(A) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of A.

11.2.2 Factor B - the nested factor

Random (typical case)

H0(B) : σ 2
β = 0 (population variance equals zero)

There is no added variance due to all possible levels of B within the (set or all possible)
levels of A.

Fixed

H0(B) : µ1(1) = µ2(1) = . . . = µj(i) = µ (the population group means of B

(within A) are all equal)

H0(B) : β1(1) = β2(1) = . . . = βj(i) = 0 (the effect of each chosen B group

equals zero)
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Table 11.1 F-ratios, estimated variance components (for balanced ANOVA only) and corre-
sponding R syntax for two factor nested designs.

A fixed/random, B random A fixed/random, B fixed

Factor d.f. MS F-ratio Var. comp. F-ratio Var. comp.

A a − 1 MSA
MSA

MSB′(A)

MSA − MSB′(A)

nb

MSA

MSResid

MSA − MSResid

nb

B′(A) (b − 1)a MSB′(A)
MSB′(A)

MSResid

MSB′(A) − MSResid

n

MSB′(A)

MSResid

MSB′(A) − MSResid

n

Residual
(=N′(B′(A)))

(n − 1)ba MSResid

A fixed/random, B random
> summary(aov(DV~A+Error(B), data))

> VarCorr(lme(DV~A,random=~1|B)

Unbalanced > anova(lme(DV~A,random=~1|B), data)

A fixed/random, B fixed
> summary(aov(DV~A+B, data)))

Unbalanced > Anova(aov(DV~A/B,data),type="III")a

aTo use Type III sums of squares, Factor B contrasts must first be defined as something other than ‘treatment’ (such as
‘sum’ or ‘helmert’) prior to fitting the model (> contrasts(data$B)<-contr.helmert).

The null hypotheses associated with additional factors, are treated similarly to Factor B
above.

11.3 Analysis of variance

Analysis of variance sequentially partitions the total variability in the response variable
into components explained by each of the factorsb (starting with the factors lowest
down in the hierarchy - the most deeply nested) and the components unexplained by
each factor. When the null hypothesis for a factor is true (no effect or added variability),
the ratio of explained and unexplained components for that factor (F-ratio) should
follow a theoretical F-distribution with an expected value less than 1.

The appropriate unexplained residuals and therefore the appropriate F-ratios
for each factor differ according to the different null hypotheses associated with
different combinations of fixed and random factors in a nested linear model (see
Tables 11.1 & 11.2).

11.4 Variance components

As previously alluded to, it can often be useful to determine the relative contribution
(to explaining the unexplained variability) of each of the factors as this provides insights

b Explained variability is calculated by subtracting the amount unexplained by the factor from the
amount unexplained by a reduced model that does not contain the factor.
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into the variability at each different scale. These contributions are known as variance
components and are estimates of the added variances due to each of the factors. For
consistency with other texts, I have included estimated variance components for various
balanced nested ANOVA designs in Tables 11.1 & 11.2. However, variance components
based on a modified version of the maximum likelihood iterative model fitting (see
chapter 3.7.2) procedure (REML) is generally recommended as this accommodates
both balanced and unbalanced designs.

While there are no numerical differences in the calculations of variance components
for fixed and random factors, fixed factors are interpreted very differently and
arguably have little biological meaning (other to infer relative contribution). For fixed
factors, variance components estimate the variance between the means of the specific
populations that are represented by the selected levels of the factor and therefore
represent somewhat arbitrary and artificial populations. For random factors, variance
components estimate the variance between means of all possible populations that could
have been selected and thus represents the true population variance.

11.5 Assumptions

An F-distribution represents the relative frequencies of all the possible F-ratio’s when a
given null hypothesis is true and certain assumptions about the residuals (denominator
in the F-ratio calculation) hold. Consequently, it is also important that diagnostics
associated with a particular hypothesis test reflect the denominator for the appropriate
F-ratio. For example, when testing the null hypothesis that there is no effect of Factor A
(H0(A) : αi = 0) in a mixed nested anova, the means of each level of Factor B are used
as the replicates of Factor A. As with single factor anova, hypothesis testing for nested
ANOVA assumes the residuals are (for greater explanation of each see chapter 10.4):

(i) normally distributed. Factors higher up in the hierarchy of a nested model are based on
means (or means of means) of lower factors and thus the Central Limit Theory would
predict that normality will usually be satisfied for the higher level factors. Nevertheless,
boxplots using the appropriate scale of replication should be used to explore normality.
Scale transformations are often useful.

(ii) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns (see Figure 8.5). Scale transformations are often useful.

(iii) independent of one another - this requires special consideration so as to ensure that the
scale at which sub-replicates are measured is still great enough to enable observations to
be independent.

11.6 Pooling denominator terms

Designs that incorporate fixed and random factors (either nested or factorial), involve
F-ratio calculations in which the denominators that are themselves random factors
other than the overall residuals. Many statisticians argue that when such denominators
are themselves not statistically significant (at the 0.25 level), there are substantial power



290 CHAPTER 11

benefits from pooling together successive non-significant denominator terms. Thus an
F-ratio for a particular factor might be recalculated after pooling together its original
denominator with its denominators denominator and so on. The conservative 0.25 is
used instead of the usual 0.05 to reduce further the likelihood of Type II errors (falsely
concluding an effect is non-significant - that might result from insufficient power).

11.7 Unbalanced nested designs

Unbalanced designs are those designs in which sample (subsample) sizes for each level
of one or more factors differ. These situations are relatively common in biological
research, however such imbalance has some important implications for nested designs.
Firstly, hypothesis tests are more robust to the assumptions of normality and equal
variance when the design is balanced. Secondly (and arguably, more importantly), the
model contrasts are not orthogonal (independent) and the sums of squares component
attributed to each of the model terms cannot be calculated by simple additive
partitioning of the total sums of squares (see section 12.6). In such situations, exact
F-ratios cannot be constructed (at least in theoryc), variance components calculations
are more complicated and significance tests cannot be computed.

The severity of this issue depends on which scale of the sub-sampling hierarchy
the unbalance(s) occurs as well whether the unbalance occurs in the replication of a
fixed or random factor. For example, whilst unequal levels of the first nesting factor
(e.g. unequal number of burn vs un-burnt sites) has no effect on F-ratio construction
or hypothesis testing for the top level factor (irrespective of whether either of the factors
are fixed or random), unequal sub-sampling (replication) at the level of a random (but
not fixed) nesting factor will impact on the ability to construct F-ratios and variance
components of all terms above it in the hierarchy.

There are a number of alternative ways of dealing with unbalanced nested designsd:

(i) split the analysis up into separate smaller simple ANOVA’s each using the means of the
nesting factor to reflect the appropriate scale of replication. As the resulting sums of
squares components are thereby based on an aggregated dataset the analyses then inherit
the procedures and requirements of single (chapter 10) or fully factorial (chapter 12)
ANOVA.

(ii) adopt mixed-modelling techniques (see section 11.8)

11.8 Linear mixed effects models

Although the term ‘mixed-effects’ can be used to refer to any design that incorporates
both fixed and random predictors, its use is more commonly restricted to designs in

c The denominator MS in an F-ratio is determined by examining the expected value of the mean
squares of each term in a model. Unequal sample sizes result in expected means squares for which there
are no obvious logical comparators that enable the impact of an individual model term to be isolated.
d All assume that the imbalance is not a direct result of the treatments themselves. Such outcomes are
more appropriately analysed by modelling the counts of surviving observations via frequency analysis
(see chapters 16&17).
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which factors are nested or grouped within other factors. Typically examples include
nested, longitudinale data, repeated measures and blocking designs (see chapters 13
& 14). Furthermore, rather than basing parameter estimations on observed and
expected mean squares or error strata (as outlined above), mixed-effects models
estimate parameters via maximum likelihood (ML) or residual maximum likelihood
(REML). In so doing, mixed-effects models more appropriately handle estimation of
parameters, effects and variance components of unbalanced designs (particularly for
random effects). Resulting fitted (or expected) values of each level of a factor (for
example, the expected population site means) are referred to as Best Linear Unbiased
Predictors (BLUP’s). As an acknowledgement that most estimated site means will be
more extreme than the underlying true population means they estimatef, BLUP’s are
less spread from the overall mean than are simple site means. In addition, mixed-effects
models naturally model the ‘within-block’ correlation structure that complicates many
longitudinal designs (see section 13.4.1). Whilst the basic concepts of mixed-effects
models have been around for a long time, recent computing advances and adoptions
have greatly boosted the popularity of these procedures.

Linear mixed effects models are currently at the forefront of statistical development,
and as such, are very much a work in progress - both in theory and in practice. Recent
developments have seen a further shift away from the traditional practices associated
with degrees of freedom, probability distribution and p-value calculations.

The traditional approach to inference testing is to compare the fit of an alternative
(full) model to a null (reduced) model (via an F-ratio). When assumptions of normality
and homogeneity of variance apply, the degrees of freedom are easily computed and
the F-ratio has an exact F-distribution to which it can be compared. However, this
approach introduces two additional problematic assumptions when estimating fixed
effects in a mixed effects model.

Firstly, when estimating the effects of one factor, the parameter estimates associated
with other factor(s) are assumed to be the true values of those parameters (not
estimates). Whilst this assumption is reasonable when all factors are fixed, as random
factors are selected such that they represent one possible set of levels drawn from
an entire population of possible levels for the random factor, it is unlikely that the
associated parameter estimates accurately reflect the true values. Consequently, there
is not necessarily an appropriate F-distribution.

Furthermore, determining the appropriate degrees of freedom (nominally, the
number of independent observations on which estimates are based) for models that
incorporate a hierarchical structure is only possible under very specific circumstances
(such as completely balanced designs). Degrees of freedom is a somewhat arbitrary
defined concept used primarily to select a theoretical probability distribution on which
a statistic can be compared. Arguably, however, it is a concept that is overly simplistic
for complex hierarchical designs.

Most statistical applications continue to provide the ‘approximate’ solutions (as did
earlier versions within R). However, R linear mixed effects development leaders argue

e measurements repeated over time.
f This is based on the principle that smaller sample sizes result in greater chances of more extreme
observations and that nested sub-replicates are also likely to be highly intercorrelated).
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strenuously that given the above shortcomings, such approximations are variably
inappropriate and are thus omitted.

Markov chain Monte Carlo (MCMC) sampling methods provide a Bayesian-like
alternative for inference testing. Markov chains use the mixed model parameter
estimates to generate posterior probability distributions of each parameter from which
Monte Carlo sampling methods draw a large set of parameter samples. These parameter
samples can then be used to calculate highest posterior density (HPD) intervalsg. Such
intervals indicate the interval in which there is a specified probability (typically 95%)
that the true population parameter lies. Furthermore, whilst technically against the
spirit of the Bayesian philosophy, it is also possible to generate P values on which to
base inferences.

11.9 Robust alternatives

There are no formal robust or non-parametric tests specifically formulated for nested
analyses. However, since nested designs simply represent a hierarchical set of ANOVA’s,
it is possible to employ the techniques outlined in chapter 10.5 in a series of simple
ANOVA’s each using aggregated portions of the full data set (reflecting the appropriate
scale of replication of each individual hypothesis test). Likewise, randomization
tests (which are useful for situations in which observation independence could be
questionable) can be performed by comparing the F-ratios to a large number of sets of
F-ratios calculated from repeatedly shuffled datah.

Note that nested designs are often incompatible with randomization procedures due
to the low number of possible randomization combinations possible. For example, if
the design consists of three locations nested within two treatments (e.g. burnt and un-
burnt), there are only (kn)!/[(n!)kk!] = 10 (where n is the number of replicates within
each of the k treatments) unique ways in which the sites can be randomized within the
treatments, and thus the smallest possible p-value is 0.1 (1/10).

11.10 Power and optimisation of resource allocation

Since nested designs represent a hierarchical set of ANOVA’s, it is possible to employ
the power analysis techniques outlined in section 10.7 in a series of analyses using
aggregated portions of the full data set (reflecting the appropriate scale of replication
of each individual hypothesis test).

At the start of this chapter, an example of a leaf toughness investigation was
introduced so as to demonstrate the nature of a nested design. In this example, the
choice of sample size within each scale of sub-replication (individual tree, branch, leaf)
was completely arbitrary, yet such choices are actually of great importance. Since the
individual trees are the direct replicates of the species treatment, the power of the test

g HPD intervals are also known as Bayesian credible intervals.
h Various ways of shuffling the data have been suggested. These include:

(i) Complete shuffling of the data set
(ii) When testing a given factor, constrain (restrict) the shuffling to the scale of the replicates for

that factor.
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of species is directly affected by the number of replicate trees per species. However,
the power of this test will also indirectly benefit from greater replication at the scale
with the greatest degree of variability as this will further reduce the unexplained
variability.

The optimal degree of replication at each levels of a nested design can be assessed
by examining the ratio of the variance components of each of the nested effects with
their respective residual variance components. Furthermore, such calculations can
incorporate the costs (time and/or money) associated with each level of replication so
as to estimate the optimal allocation of resources. For example, in a three factor mixed
nested design (fixed A, random B and C), the optimum number of replicates within
each level of the random nested factors B and C would be defined by:

r =
√√√√CB(A)s

2
C(B(A))

CC(B(A))s
2
B(A)

n =
√√√√ CC(B(A))s

2

CRepss
2
C(B(A))

where C and s2 are respectively the cost and estimated variances associated with the
subscripted effects levels and r and n denote the number of replicates for B (levels of C)
and C respectively. Note that for two factor mixed nested model, only the first of these
are required (although it is now defining r) and C(B(A)) represents the lowest form
of replication and therefore the overall residuals (s2). Costs can be ignored by making
them equal to 1. Similarly, for any mixed design with a fixed Factor A, the optimum
number of replicates of factor A (levels of factor B) can be estimated by solving for q
from either of the following:

s2
A = ns2

B(A) + s2
C(B(A))

nq

CA = qCB(A) + nqCC(B(A))

where s2
A represents the expected (or desired) variance amongst group means for the

fixed Factor A.

11.11 Nested ANOVA in R

11.11.1 Error strata (aov)

Nested ANOVA can be thought of as a series of ANOVA models, each with a different
error (residual term). Each of the separate models and their corresponding error
term are referred to as a strata. The first error strata corresponds to a linear model
that incorporates factor(s) for which the levels first random nesting factor are the
appropriate replicates. Likewise, the second error strata corresponds to the next level of
error terms (residuals) and so on. For a two factor mixed nested ANOVA, the second
error strata will be the overall measurements (residuals). Modelling ANOVA with
multiple error strata is accommodated via the aov function. Note however, that this is
really only appropriate for balanced designs - particularly if the source of imbalance is
at the level of the nesting factor replication.
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11.11.2 Linear mixed effects models (lme and lmer)

The lme (nlme) and more recent lmer (lme4) functions facilitate linear mixed-effects
and generalized linear mixed-effects modelling respectively. As such these procedures
are more suitable for unbalanced and longitudinal designs. Note that recent versions
of lmer have omitted P value approximations and that inference testing is performed
by the pvals.fnc (languageR) function via the presently inconsistent mcmcsamp
(lme4) function.

11.12 Further reading

• Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS.
Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. (2009). Mixed
Effects Models and Extensions in Ecology with R. Springer.

11.13 Key for nested ANOVA

1 Determine the appropriate model design and hierarchy

• Conceptualise the design into a hierarchy (ladder) of factors

• Main factor(s) with levels that are applied to complete sets of other (nesting)
factors at the top

• Progressively deeper levels of sub-replication of these main factor(s) considered
progressively lower in the hierarchy
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• Label random nesting factor levels with unique names for each level across the
entire design (within and between main factor(s)). Label fixed nesting factor levels
according to the levels they represent (recycled label names within each level of
the main factor(s))

Random B Fixed B

Fact A Fact B DV Fact A Fact B DV

A1 B1 . A1 B1 .
A1 B2 . A1 B2 .
A2 B3 . A2 B1 .
A2 B4 . A2 B2 .

• Identify the correct error (residual) term for each factor (see Tables 11.1 & 11.2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
2 a. Check assumptions for nested ANOVA

As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. Typically
this means generating temporary aggregated data sets.

• Normality (symmetry) of the response variable at each level of the factor -
boxplots of mean values for each level of the next random term in the hierarchy
Factor A (with random factor B)

> data.B.agg <- with(data, aggregate(data.frame(DV),

+ by = list(A = A, B = B), mean))

> #OR

> library(nlme)

> data.B.agg <- gsummary(data, data$B)

> boxplot(DV ~ A, data.B.agg)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A within the data dataset.
Factor B (random)
If Factor C exits and is random

> library(nlme)

> data.C.agg <- gsummary(data, data$C)

> boxplot(DV ~ A:B, data.C.agg)

If no random Factor C

> boxplot(DV ~ A:B, data)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A within the data dataset.

• Homogeneity of variance (relationship between mean and variance) - boxplots
(as above) and scatterplot of mean vs variance (fixed factors only)

> with(data.B.agg, plot(tapply(DV, A, var),

tapply(DV, A, mean)))

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A within the data.B.agg aggregated dataset.

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
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b. Parametric assumptions not met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3
3 a. Attempt a scale transformation (see Table 3.2 for transformation

options) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . Go to 8

4 a. Determine whether the design is balanced and if not, at what scale of replication
the imbalance occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 11A,11C,11D

> library(biology)

> is.balanced(DV ~ A + b + C + .., data)

> #OR

> !is.list(replications(DV ~ A + b + C + .., data))

value of TRUE indicates design is completely balanced

> replications(DV ~ A + b + C + .., data)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A within the data dataset.
Design is balanced with respect to the appropriate sub-replicates of the term of
interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5a-d

b. Design is NOT balanced with respect to the appropriate sub-replicates of the term
of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5b-d

5 a. Fit nested model using complete aov procedure (for balanced designs only) . See
Example 11A
Define planned contrasts if required . . . . . . . . . . . . . . . . . . . . Refer back to Key 10.4

> data.aov <- aov(DV ~ A + Error(B), data)

> summary(data.aov)

For additional combinations of fixed and random factors see Tables 11.1 & 11.2
Examine residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

b. Fit nested model using simple ANOVA of aggregated dataset . . . . . . . . . . . . . . . See
Example 11C,11D
Factor A (with random factor B)

> library(nlme)

> data.B.agg <- gsummary(data, data$B)

Define planned contrasts if required . . . . . . . . . . . . . . . . . . . . Refer back to Key 10.4

> anova(aov(DV ~ A, data.B.agg))

Factor B (with random factor C or no C)

> library(nlme)

> data.C.agg <- gsummary(data, data$B)

Define planned contrasts if required . . . . . . . . . . . . . . . . . . . . Refer back to Key 10.4

> anova(aov(DV ~ A + B, data.C.agg))

where DV is the response variable, A is the main fixed factor, B is a random factor nested
within A and C is a random factor nested within B(A) within the data dataset. If there
is no random Factor C, substitute data for data.C.agg in the aov() function above.
For additional combinations of fixed and random factors see Table. 11.2
For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

c. Fit nested model using lme procedure . . . . . . . . . . . . . . . . . . . . . . . See Example 11D
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Define planned contrasts if required . . . . . . . . . . . . . . . . . . . . Refer back to Key 10.4

> library(nlme)

> data.lme <- lme(DV ~ A, random = ~1 | B, data)

> summary(data.lme)

> anova(data.lme)

OR if three factor mixed-effects (A fixed, B & C random)

> data.lme <- lme(DV ~ A, random = ~1 | B/C, data)

> summary(data.lme)

> anova(data.lme)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A and, if present, C is a random factor nested within B(A) within the
data dataset. Note that the summary includes variance components for the random
factors.
For additional combinations of fixed and random factors see Table 11.1 & 11.2
Examine residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

d. Fit nested model using lmer procedure . . . . . . . . . . . . . . . . . . See Example 11C,11D
Define planned contrasts if required . . . . . . . . . . . . . . . . . . . . Refer back to Key 10.4

> library(lme4)

> data.lmer <- lmer(DV ~ A + (1 | B), data)

> summary(data.lmer)

> anova(data.lmer)

OR if three factor mixed-effects (A fixed, B & C random)

> data.lmer <- lmer(DV ~ A + (1 | B/C), data)

> summary(data.lmer)

> anova(data.lmer)

where DV is the response variable, A is the main fixed factor and B is a random factor
nested within A and, if present,C is a random factor nested within B(A) within the
data dataset. Note that the summary includes variance components for the random
factors.
Examine residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

For model parameter and fixed factor effects confidence intervals via Markov
chain Monte Carlo sampling

> library(languageR)

> pvals.fnc(data.lmer)

For model parameter and fixed factor effects (if more than two groups) significance
via Markov chain Monte Carlo sampling

> library(languageR)

> pvals <- pvals.fnc(data.lmer, nsim = 10000, withMCMC = T)

> library(biology)

> mcmcpvalue(as.matrix(pvals$mcmc), "A")

where "A" is string to indicate the name of the fixed factor (A in this case) to test.

6 a. Examining a residual plot of the nested models fitted with aov . See Example 11A

> plot(resid(model[[2]]) ~ fitted(model[[2]]))
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where model is the name of a model fitted via aov and [[2]] refers to the second
object in the fitted model (which is the first strata).

b. Examining a residual plot of the mixed-effects models fitted with lme or
lmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 11D

> plot(resid(model) ~ fitted(model))

where model is the name of a model fitted via lme or lmer.
7 Calculate variance components of random factors . . . . . . . . . . . . See Example 11A

> library(nlme)

> VarCorr(lme(lme(DV ~ A, random = ~1 | B, data)))

For additional combinations of fixed and random factors see Table. 11.1 & 11.2
8 a. Underlying distribution of the response variable is normal for each level of the

main fixed factor, but the variances are unequal (Welch’s test from aggregated
data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 11B

> data.B.agg <- gsummary(data, data$B)

> oneway.test(DV ~ A, data.B.agg, var.equal = F)

or consider GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17
b. Underlying distributions not normally distributed . . . . . . . . . . . . . . . . . . . . Go to 9

9 a. Underlying distribution of the response variable and residuals
is known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17

b. Underlying distributions of the response variable and residuals is
not known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10

10 a. Variances not wildly unequal, outliers present, but data independent (Kruskal-
Wallis non-parametric test on aggregated data)

> data.B.agg <- gsummary(data, data$B)

> kruskal.test(DV ~ A, data.B.agg, var.equal = F)

b. Variances not wildly unequal, random sampling not possible - data might not be
independent (Randomization test on aggregated data

> data.B.agg <- gsummary(data, data$B)

Use this aggregated data set and follow the instructions in Key 10. 8b. Warning,
randomization procedures are only useful when there are a large number of
possible randomization combinations (rarely the case in nested designs)

11.14 Worked examples of real biological data sets

Example 11A: Two factor mixed nested ANOVA
To investigate density-dependent grazing effects of sea urchin Andrew and Underwood
(1993) on filamentous algae measured the percentage of filamentous algae within five
quadrats randomly positioned within each of four random patches of reef that were in turn
nested within four sea urchin density treatments (no urchins, 33% of natural density, 66%
natural density and 100% natural density). The sea urchin density treatment was considered
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a fixed factor and patch within density treatment as well as the individual quadrats were
treated as random factors.

Step 1 - Import (section 2.3) the Andrew and Underwood (1993) data set

> andrew <- read.table("andrew.csv", header = T, sep = ",")

Step 2 - The patch vector (variable) contains numerical representations of the patch identifications,
therefore by default R considers this to be a integer vector rather than a categorical factor. In
order to ensure that this variable is treated as a factor we need to redefine its class

> class(andrew$PATCH)

[1] "integer"

> andrew$PATCH <- factor(andrew$PATCH)

> class(andrew$PATCH)

[1] "factor"

Additionally, all variables that contain strings (alphanumeric characters) are automatically
defined as factor variables during the data importation stage. In doing so, R by default, orders
the levels of all factors in alphabetical order. Consequently, the levels of the density treatment
factor are ordered as 0%, 100%, 33%, 66%. Whilst the order of these levels has no impact on the
outcome of statistical analyses, defining a more logical order of factor levels can improve graphical
summaries and simplify defining contrast matrices. Since 100% density represents the natural
density (and thus the control), logically we would order our treatments from 100% down to 0%.

> levels(andrew$TREAT)

[1] "0%" "100%" "33%" "66%"

> andrew$TREAT <- factor(andrew$TREAT, levels = c("100%", "66%",

+ "33%", "0%"))

Step 3 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 11.1).

1. Factor A (density treatment - fixed factor). The patch means are the replicates for the density
treatment, and thus an aggregated dataset needs to be created from which the boxplots can
be based.

> andrew.agg <- with(andrew, aggregate(data.frame(ALGAE),

+ by = list(TREAT = TREAT, PATCH = PATCH), mean))

> library(nlme)

> andrew.agg <- gsummary(andrew, groups = andrew$PATCH)

> boxplot(ALGAE ~ TREAT, andrew.agg)
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Conclusions - Although there is no evi-
dence of non-normality (boxplots not
wildly asymmetrical), there is strong evi-
dence of unequal variance. Of particu-
lar concern is the apparent relationship
between mean and variance (heights of
boxplots increase up the y-axis). Transfor-
mations (arcsin√ and log) are ineffectual.
Andrew and Underwood (1993) and there-
fore Quinn and Keough (2002) decided to
proceed and rely on the robustness of the
parametric test for balanced designs.

2. Factor B (patches - random factor). As this factor is of little biological interest, checking the
assumptions associated with its hypothesis tests are of little value.

Conclusions - For the purpose of demonstrating how to use R to perform the worked examples
that appear in the popular biostatistics reference literature, we will proceed with raw data
(following Quinn and Keough (2002)). Note, however, as a demonstration of non-parametric
or robust alternatives in nested designs, we will reanalyse these data in example 11B.
Although Quinn and Keough (2002) did not include either planned or post-hoc comparisons,
in this case, the former would seem appropriate. We will compare each of the reduced urchin
density treatments to the control – these are known as treatment contrastsi.

Step 4 (Key 11.4) - Determine whether or not the design is balanced (at least with respect to
sub-replication).

> replications(ALGAE ~ TREAT + PATCH, andrew)

TREAT PATCH

20 5

> library(biology)

> is.balanced(ALGAE ~ TREAT + PATCH, andrew)

[1] TRUE

Conclusions - The design is completely balanced. There are two replicate patches within each
of the four treatments and there are five replicate quadrats within each patch.

Step 5 - Define treatment contrasts (see sections 10.6 and 7.3.1 for more information on setting
contrasts).

> contrasts(andrew$TREAT) <- contr.treatment

Note that there is no need to check the orthogonality of these contrasts, when using one of the
contrasts functions, they will always be constructed correctly in accordance with the relevant
contrast definition.

i Alternatively, as the levels of the main treatment factor are naturally ordered (according to urchin
density), polynomial contrasts might be desirable.
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Step 6 (Key 11.5a) - As the design is completely balanced, there are a number of ways to fit
the linear model to test the null hypotheses that there is no effect of urchin treatment and no
added variance due to patchesj. The complete aov() procedure is the traditional method and
arguably the simplest.

> andrew.aov <- aov(ALGAE ~ TREAT + Error(PATCH), andrew)

Step 7 (Key 11.6a) - Examine the fitted model diagnostics k. Note that it is only the first error
strata that we are interested in and this is the second object within the aov object (hence
the [[2]])

> plot(resid(andrew.aov[[2]]) ~ fitted(andrew.aov[[2]]))
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Conclusions - As anticipated, there is an
indication of a ‘wedge’ pattern in the residuals
indicative of unequal variance.

Step 8 (Key 11.5a) - Examine the anova tablesl, including the set of defined planned treatment
contrasts.

> summary(andrew.aov, split = list(TREAT = list('cont vs 66' = 1,

+ 'cont vs 33' = 2, 'cont vs 0' = 3)))

Error: PATCH

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 14429.1 4809.7 2.7171 0.09126 .

TREAT: cont vs 66 1 44.2 44.2 0.0250 0.87707

TREAT: cont vs 33 1 20.8 20.8 0.0118 0.91540

TREAT: cont vs 0 1 14364.1 14364.1 8.1146 0.01466 *

Residuals 12 21242.0 1770.2

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

j Note that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model. In this case, treatment
contrasts (with the 100% urchin density as the ‘control’) would probably be the most logical.
k Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
l R does not provide the hypothesis tests associated with the random nesting factors as these
are rarely of interest. In order to obtain such tests, re-fit the linear model treating the random
nesting factor as a fixed factor. All hypothesis tests in the output above this term in the hier-
archy should be ignored as they will not be tested against the incorrect error (residual) terms.
E.g. > andrew.aov1<-aov(ALGAE TREAT+PATCH, andrew).
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 64 19110.4 298.6

Conclusions - Note that the output has been split into two error strata each reflecting the
appropriate error (residual) term to test the corresponding hypothesis against. Do not reject
the null hypothesis of no effect of urchin density treatment. Sea urchin density was not found to
have an impact on the percentage of filamentous algae. As no overall difference was observed,
neither planned or unplanned comparisons are appropriate and therefore ignored.

Step 9 (Key 11.7) - Examine the variance components to determine the relative contribution of
each of the random factors. This must be done via a linear mixed effects model. Note further,
that to get an estimate of the variance component for a fixed factor (purely for the purpose
of comparison to other components, as the actual estimates of variance components for fixed
factors are illogical), it must be modelled as a random factor.

> library(nlme)

> VarCorr(lme(ALGAE ~ 1, random = ~1 | TREAT/PATCH, andrew))

Variance StdDev

TREAT = pdLogChol(1)

(Intercept) 151.9443 12.32657

PATCH = pdLogChol(1)

(Intercept) 294.3209 17.15578

Residual 298.6005 17.28006

Conclusions - There was a high level of variance between patches within treatment ((294.32 ×
100)/(151.94 + 294.32 + 298.60) = 39.51%) compared to between treatments (20.40%).

Example 11B: Two factor non-parametric mixed nested ANOVA
To demonstrate the hierarchical nature of nested ANOVA designs and how alternative model
fitting procedures can be fitted to such designs in R, we will re-analyse the Andrew and
Underwood (1993) data (which you may recall from example 11A, did not really satisfy the
assumption on equal variance).

Step 1 - Import and prepare the Andrew and Underwood (1993) data set as in Steps 1-2 of
example 11A

Step 2- Generate a separate data set for each of the appropriate error strata (consult Table 11.1)

Urchin treatment – for testing the effect of urchin treatment (fixed factor) the patch means
are the appropriate replicates. Generate a dataset that is aggregated according to the patch
means.

> andrew.patch <- with(andrew, aggregate(data.frame(ALGAE),

+ by = list(TREAT = TREAT, PATCH = PATCH), mean))

> library(nlme)

> andrew.patch <- gsummary(andrew, groups = andrew$PATCH)
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Patch treatment – for testing whether there is any added variance due to patches (random
factor) the replicates are the values of the quadrats within the patches that are the appropriate
replicates. As the values of the quadrats within each patch are the lowest level of sub-replication
represented by the original dataset, the original dataset is appropriate for the error strata for
testing the hypothesis about patches.

Step 3 (Key 11.8) - Perform a non-parametric ANOVA on each strata (see also Key 10. 6).
Note, it is rarely of interest to test hypotheses about nested factors and thus only the main
effect of treatment is tested.

Urchin treatment

> oneway.test(ALGAE ~ TREAT, andrew.patch, var.equal = F)

One-way analysis of means (not assuming equal variances)

data: ALGAE and TREAT

F = 4.5792, num df = 3.000, denom df = 5.031, p-value = 0.06687

Alternatively, we could convert the response variable to ranks and perform the parametric
nested ANOVA on these ranks. It should be acknowledged that these methods are not ideal
in this example. This approach can be a useful alternative when normality is suspect, yet still
assumes similar variances.

> summary(aov(rank(ALGAE) ~ TREAT + Error(PATCH), andrew))

Error: PATCH

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 10761.7 3587.2 2.8916 0.07929 .

Residuals 12 14886.8 1240.6

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 64 13432.9 209.9

Conclusions - The conclusions are much the same as they were based on the parametric
nested ANOVA, thereby confirming the general robustness of balanced ANOVA.

Example 11C: Two factor model II nested ANOVA with unequal sample sizes
Sokal and Rohlf (1997) present a dataset containing single blood pH readings from the
female offspring of 15 dams (females). Each of the offspring were nested within different
litters resulting from either two or three sires (males) which were in turn nested within the
15 dams. The dams represent a random factor at the top of the hierarchy (Factor A), sire
represents the first random nesting factor (Factor B(A)), and the individual offspring within
each litter represent the replicates of the sires.

Step 1 - Import (section 2.3) the blood pH data set

> ph <- read.table("ph.csv", header = T, sep = ",")
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Step 2 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 11.1).

1. Factor A (dams - random factor). The means of mice within each sire litter are the replicates
for the dams, and thus an aggregated dataset needs to be created from which the boxplots
can be based.

> library(nlme)

> ph.agg <- gsummary(ph, groups = ph$SIRE)

> boxplot(PH ~ DAM, ph.agg)
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Conclusions - no evidence of consis-
tent non-normality and no evidence of a
relationship between mean and variance.

2. Factor B (sires - random factor). The blood pH readings from each mice are the replicates of
the sires, therefore boxplots should be based on the entire data set.

> boxplot(PH ~ DAM:SIRE, ph)
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Conclusions - no evidence of consistent
non-normality and no evidence of a rela-
tionship between mean and variance.

Step 3 (Key 11.4) - Assess whether the design is balanced (are there equal sample sizes in each
treatment).
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> replications(PH ~ DAM + SIRE, data = ph)

$DAM

DAM

D1 D10 D11 D12 D13 D14 D15 D2 D3 D4 D5 D6 D7 D8 D9

8 9 10 9 12 13 15 9 13 7 12 13 14 8 8

$SIRE

SIRE

S1 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S2 S20 S21 S22 S23 S24

4 5 4 3 4 4 5 4 5 5 3 4 5 4 4 5 4

S25 S26 S27 S28 S29 S3 S30 S31 S32 S33 S34 S35 S36 S37 S4 S5 S6

5 5 5 4 5 5 3 4 4 4 5 5 5 5 4 4 4

S7 S8 S9

5 3 4

> library(biology)

> is.balanced(PH ~ DAM + SIRE, data = ph)

[1] FALSE

Conclusions - the design is not balanced (there are a different number of sired litters and
offspring per dam). The FALSE indicates that the design is not balanced. This design is therefore
best modelled using linear mixed effects (REML) procedures. Note that Sokal and Rohlf (1997)
employ an older procedure (which some argue is now outdated and potentially inappropriate) in
which the F-ratio and variance components calculations are adjusted to account for the degree
of imbalance.

Step 4 (Key 11.5b) - fit one or more linear models to test the null hypotheses that there is no
added variation due to dams and no added variation due to sires within dams. Note, as this is
an unbalanced design, we cannot rely on the usual additive partitioning of SSTotal. There are
two options (both of which will result in slightly different estimates - yet the conclusions are
consistent):

1. (Key 11.5b) use a single factor ANOVA to model the effects of dam against the mean
pH values for each sire (use the aggregated dataset from Step 2 above).

> ph.aov <- aov(PH ~ DAM, ph.agg)

> anova(ph.aov)

Analysis of Variance Table

Response: PH

Df Sum Sq Mean Sq F value Pr(>F)

DAM 14 430.90 30.78 3.5464 0.003963 **

Residuals 22 190.93 8.68

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There are maternal influences on the blood pH of female offspring in mice
(F14,22 = 3.546, P = 0.003).
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Perform simple ANOVA to investigate the effects of sire using the individual pH readings
from each of the offspring as the replicates. Note that the hypothesis test for dam that is
included in this modelling should be ignored.

> ph.aov1 <- aov(PH ~ DAM + SIRE, data = ph)

> anova(ph.aov1)

Analysis of Variance Table

Response: PH

Df Sum Sq Mean Sq F value Pr(>F)

DAM 14 1780.17 127.16 5.1405 1.563e-07 ***

SIRE 22 800.24 36.37 1.4705 0.09662 .

Residuals 123 3042.53 24.74

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Paternity was not found to have a significant impact on the blood pH of
female offspring in mice (F22,123 = 1.470, P = 0.097).

2. (Key 11.5d) fit the linear mixed effects model using lmer.

> library(lme4)

> ph.lmer <- lmer(PH ~ 1 + (1 | DAM/SIRE), ph)

> summary(ph.lmer)

Linear mixed model fit by REML

Formula: PH ~ 1 + (1 | DAM/SIRE)

Data: ph

AIC BIC logLik deviance REMLdev

1006 1019 -499.1 999.9 998.2

Random effects:

Groups Name Variance Std.Dev.

SIRE:DAM (Intercept) 2.6456 1.6265

DAM (Intercept) 8.8957 2.9826

Residual 24.8079 4.9807

Number of obs: 160, groups: SIRE:DAM, 37; DAM, 15

Fixed effects:

Estimate Std. Error t value

(Intercept) 44.9179 0.9104 49.34

Conclusions - the main interest in this output is the variance components for each of the
random effects. It is clear that there is more variation between dams than there is between
sires within dams (8.90 cf 2.64) suggesting that maternal impacts on female blood pH are
stronger than paternal influences. There is however, a large amount of variation between
offspring (within sires: 24.81 cf 2.64) indicating that blood pH is probably influenced by a
number of other factors, some of which may even be more important than the measured
maternal and paternal associations.

Step 5 (Key 11.5d) - Calculate the 95% confidence intervals of the random effects (based on
Markov chain Monte Carlo sampling).
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> library(languageR)

> pvals.fnc(ph.lmer)

$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

1 44.92 44.91 43.35 46.56 0.0001 0

$random

Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper

1 SIRE:DAM (Intercept) 1.6265 0.6168 0.7046 0.0000 1.8502

2 DAM (Intercept) 2.9826 2.4766 2.5250 1.3511 3.8754

3 Residual 4.9807 5.2150 5.2319 4.6293 5.8855

Conclusions - The 95% confidence interval for the random effect of dam (no added variance
due to dams) does not include 0, and therefore we would reject the modified null hypothesis
and conclude that there is a maternal influence on offspring blood pH. On the other hand, the
interval for the effect of sires does appear to include 0 and thus we would conclude that there
is no significant paternal influence on blood pH. It is also evident that the maternal influence
on female offspring blood pH is stronger than the paternal influence.

Example 11D: Three factor mixed model nested ANOVA
Sokal and Rohlf (1997) demonstrate the analysis of a balanced three factor nested ANOVA
design in which the glycogen levels had been measured from two separate readings from
each of three liver preparations from each of two individual rats per one of three different
treatments (which they did not elaborate on). In this case, the treatments represent the fixed
Factor A, the individual rats represent the first random nesting factor (Factor B and therefore
the replicates of the treatment effects) and liver preparations represent an additional random
nesting factor (Factor C). The duplicate readings from each liver, are the units of replication
for the preparations.

Presumably, the researchers would have been primarily interested in whether there was
an effect of treatment on liver glycogen content. The design acknowledges that individual
liver preparations and glycogen readings as well as the individual rats are themselves likely
to be of substantially great enough variability with respect to glycogen measurements that
they could potentially mask the ability to detect an impact of treatment – hence the use of
a nested designm.

Step 1 - Import (section 2.3) the liver glycogen data set

> glyco <- read.table("glyco.csv", header = T, sep = ",")

Recall that read.table() automatically alphabetises the order of factor levels (hence in this
case: Compound217, Compound217Sugar, Control) and defines treatment contrasts.
For treatment contrasts to be meaningful in this case, the order of factor levels should be
Control, Compound217, Compound217Sugar.

> glyco$TREAT <- factor(glyco$TREAT, levels = c("Control",

+ "Compound217", "Compound217Sugar"))

m Additionally, a nested design substantially reduces the number of rats required for the experiment.
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Step 2 (Key 11.2) - Assess assumptions of normality and homogeneity of variance for each null
hypotheses ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 11.1). Note that for each hypothesis test
there are only either two or three replicates, and thus it is virtually impossible to confidently
examine the assumptions. Instead, we must rely on the robustness of the test for a balanced
design. As a result, I will only illustrate the process of producing the appropriate aggregated
data sets for each hypothesis test.

1. Factor A (treatment - fixed factor). The mean glycogen levels per rat are the replicates for
the treatment effects, and thus an aggregated dataset needs to be created from which the
boxplots can be based.

> library(nlme)

> glyco.treat.agg <- gsummary(glyco, groups = glyco$RAT)

2. Factor B (rats - random factor). The mean glycogen levels per liver preparation are the
replicates for the contributions of rats to added variation.

> glyco.rat.agg <- gsummary(glyco, groups = glyco$PREP)

3. Factor C (preparations - random factor). The mean glycogen levels per duplicate reading are
the replicates for the contributions of the preparations to added variation. Note that in this
case, since the individual readings are the lowest level of sub-replication, the aggregated
dataset is the same as the original.

> glyco.prep.agg <- gsummary(glyco, groups = glyco$READ)

Step 3 (Key 11.4) - Assess whether the design is balanced (are there equal sample sizes in
each treatment).

> library(biology)

> is.balanced(GLYCO ~ TREAT + RAT + PREP, data = glyco)

[1] TRUE

Conclusions - the design is balanced.

Step 4 (Key 11.5a) - fit one or more linear models to test the null hypotheses that there are
no effects of treatment and no added variation due to rats within treatments and preparations
within rats within treatments. As this is a balanced design, all three parametric model fitting
procedures (aov, ANOVA from aggregated data sets and linear mixed effects models) will yield
equivalent outcomes.

1. Factor A (treatment - fixed factor)

> glyco.aov <- aov(GLYCO ~ TREAT + Error(RAT/PREP), glyco)

> summary(glyco.aov)

Error: RAT

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 2 1557.56 778.78 2.929 0.1971

Residuals 3 797.67 265.89
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Error: RAT:PREP

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 12 594.0 49.5

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 18 381.00 21.17

2. Factor B (rats - random factor). Ignore the test of treatment from this output.

> glyco.rat.aov <- aov(GLYCO ~ TREAT + RAT + Error(PREP),

glyco.rat.agg)

> summary(glyco.rat.aov)

Error: PREP

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 2 778.78 389.39 15.7329 0.0004428 ***

RAT 3 398.83 132.94 5.3715 0.0141091 *

Residuals 12 297.00 24.75

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. Factor C (preparations - random factor). Ignore the tests of treatment and rat from this
output.

> glyco.prep.aov <- aov(GLYCO ~ TREAT + RAT + PREP,

glyco.prep.agg)

> summary(glyco.prep.aov)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 2 1557.56 778.78 36.7927 4.375e-07 ***

RAT 3 797.67 265.89 12.5617 0.0001143 ***

PREP 12 594.00 49.50 2.3386 0.0502907 .

Residuals 18 381.00 21.17

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Treatments were not found to have an impact on the glycogen content of rat
livers (F2,3 = 2.929, P = 0.197). Liver glycogen content varies significantly between rats (F3,12 =
5.372, P = 0.014), but only marginally between liver preparations F12,18 = 2.339, P = 0.050).
Alternatively, we could use a linear mixed effects model to investigate the effect of treatment
and examine the variance components. As the design is balanced, the lme() function is
perhaps more preferable to many workers (than the lmer() function) as it provides an F-ratio
and P-value (Key 11.5c)

> library(nlme)

> glyco.lme <- lme(GLYCO ~ TREAT, random = ~1 | RAT/PREP, glyco)

> summary(glyco.lme)

Linear mixed-effects model fit by REML

Data: glyco
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AIC BIC logLik

231.6213 240.6003 -109.8106

Random effects:

Formula: ~1 | RAT

(Intercept)

StdDev: 6.005399

Formula: ~1 | PREP %in% RAT

(Intercept) Residual

StdDev: 3.763863 4.600725

Fixed effects: GLYCO ~ TREAT

Value Std.Error DF t-value p-value

(Intercept) 140.50000 4.707166 18 29.848111 0.0000

TREATCompound217 10.50000 6.656937 3 1.577302 0.2128

TREATCompound217Sugar -5.33333 6.656937 3 -0.801169 0.4816

Correlation:

(Intr) TREATCm217

TREATCompound217 -0.707

TREATCompound217Sugar -0.707 0.500

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.48211987 -0.47263005 0.03061539 0.42934293 1.82934636

Number of Observations: 36

Number of Groups:

RAT PREP %in% RAT

6 18

> anova(glyco.lme)

numDF denDF F-value p-value

(Intercept) 1 18 2738.654 <.0001

TREAT 2 3 2.929 0.1971

> library(nlme)

> VarCorr(glyco.lme)

Variance StdDev

RAT = pdLogChol(1)

(Intercept) 36.06482 6.005399

PREP = pdLogChol(1)

(Intercept) 14.16667 3.763863

Residual 21.16667 4.600725
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Conclusions - Again, treatments were not found to have an impact on the glycogen content of
rat livers (F2,3 = 2.929, P = 0.197). The variability in liver glycogen content is greater between
the individual rats than it is between preparations within the rats.
Yet another alternative is to employ the newer generalized mixed effects modelling procedure
(lmer) (Key 11.5d). Although this will not produce F-ratios, P-values for fixed effects can be
determined from a sampling distribution generated via Markov Chain Monte Carlo techniquesn.

> library(lme4)

> glyco.lmer <- lmer(GLYCO ~ TREAT + (1 | RAT/PREP), glyco)

> plot(resid(ph.lmer) ~ fitted(ph.lmer))

42 44 46 48 50
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Conclusions - no evidence of a wedge or other
pattern in the residuals.

> glyco.lmer

Linear mixed model fit by REML

Formula: GLYCO ~ TREAT + (1 | RAT/PREP)

Data: glyco

AIC BIC logLik deviance REMLdev

231.6 241.1 -109.8 234.3 219.6

Random effects:

Groups Name Variance Std.Dev.

PREP:RAT (Intercept) 14.167 3.7639

RAT (Intercept) 36.065 6.0054

Residual 21.167 4.6007

Number of obs: 36, groups: PREP:RAT, 18; RAT, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 140.500 4.707 29.850

TREATCompound217 10.500 6.656 1.577

TREATCompound217Sugar -5.333 6.656 -0.801

n Markov chain Monte Carlo procedures in this context generate samples of model parameters via
randomizations of Markov chains. which themselves represent states or estimates by incorporating
previous states or estimates.
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Correlation of Fixed Effects:

(Intr) TREATCm217

TREATCmp217 -0.707

TREATCm217S -0.707 0.500

Conclusions - The conclusions about the sources of variability are the same as previous (greater
variability between rats than between preparations). Note that degrees of freedom and P values
are intentionally omitted from the output since (arguably) sensible values are not identifiable
by traditional techniques.
Employ Markov chain Monte Carlo (MCMC) sampling methods to generate distributions of each
of the parameter estimates from which confidence intervals and P valueso can be calculated.
Markov chain Monte Carlo sampling is performed using the recently updated mcmcsamp

function. These techniques are at the bleeding edge of theoretical and practical statistics and
the author of this function stresses that it is currently displaying some peculiar behaviour
and should not yet be trusted. Nevertheless, I will include it as these teething issues are likely
to be rectified in the near future.

> library(languageR)

> glyco.pval <- pvals.fnc(glyco.lmer, nsim = 10000, withMCMC = T)

Examine the fixed effects
> glyco.pval$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 140.500 140.501 133.4425 147.54 0.0001 0.0000

TREATCompound217 10.500 10.507 0.3542 20.20 0.0398 0.1242

TREATCompound217Sugar -5.333 -5.392 -15.2432 4.74 0.2386 0.4287

Examine the random effects
> glyco.pval$random

Groups Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper

1 PREP:RAT (Intercept) 3.7639 0.8526 1.0771 0.0000 3.1076

2 RAT (Intercept) 6.0054 3.7633 3.9243 0.0000 6.9293

3 Residual 4.6007 6.0172 6.1119 4.4933 7.8493

Conclusions - The output would suggest that (based on MCMC P values) whilst there
was no evidence that liver glycogen levels associated with the Compound217sugar treatment
are not different to those of the control, there is some evidence that the levels are higher
when associated with the Compound217 treatment. Note that the significant P value (0.0398)
resulting from the MCMC sampling is suspiciously low, particularly when we consider that it is
lower than the included anti-conservative P value (0.1242).

Examine the null hypothesis that there is no overall treatment effect (via MCMC sampling).
> glyco.mcmc <- glyco.pval$mcmc

> library(biology)

> mcmcpvalue(as.matrix(glyco.mcmc), "TREAT")

[1] 0.017

Conclusions - This P-value is based on the current implementation of MCMC sampling and
thus is presently suspect.

o Note that the calculation of P values is contrary to the general Bayesian philosophy on which these
methods are based and it is therefore an unsupported pursuit.
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Factorial ANOVA

Factorial designs are an extension of single factor ANOVA designs in which additional
factors are added such that each level of one factor is applied to all levels of the other
factor(s) and all combinations are replicated (see Figure 12.1). For example, we might
design an experiment in which the effects of temperature (high vs low) and fertilizer
(added vs not added) on the growth rate of seedlings are investigated by growing
seedlings under the different temperature and fertilizer combinations. In addition to
investigating the impacts of the main factors, factorial designs allow us to investigate
whether the effects of one factor are consistent across levels of another factor. For
example, is the effect of temperature on growth rate the same for both fertilized and
unfertilized seedlings and similarly, does the impact of fertilizer treatment depend on
the temperature under which the seedlings are grown?

To appreciate the interpretation of interactions, consider the following figures that
depict fictitious two factor (temperature and fertilizer) designs. For Figure 12.2a, it is
clear that whether or not there is an observed effect of adding fertilizer or not depends
on whether we are focused on seedlings growth under high or low temperatures.
Fertilizer is only important for seedlings grown under high temperatures. In this case
it is not possible to simply state that there is an effect of fertilizer, as it depends on the
level of temperature. Similarly, the magnitude of the effect of temperature depends on
whether fertilizer has been added or not. Such interactions are represented by plots
in which lines either intersect or converge. Figure 12.2b-c both depict parallel lines
which are indicative of no interaction. That is, the effects of temperature are similar
for both fertilizer added and controls and vice versa. Whilst the former displays an
effect of both fertilizer and temperature, in the latter, only fertilizer is important.
Finally, Figure 12.2d represents a strong interaction that would mask the main effects
of temperature and fertilizer (since the nature of the effect of temperature is very
different for the different fertilizer treatments and visa versa).

Factorial designs can consist entirely of fixed (see section 10.0.1) factors (Model I
ANOVA) in which conclusions are restricted to the specific combinations of levels
selected for the experiment, entirely of random factors (Model II ANOVA) or a
mixture of fixed and random factors (Model III ANOVA). The latter are useful for
investigating the generality of a main treatment effect (fixed) over broad spatial,
temporal or biological levels of organization. That is, whether the observed effects of

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Factor A – or Factor B – or

Fig 12.1 Fictitious spatial depictions of a multi (two) factor ANOVA design. There are two
levels of factor A (shaded or not) and two levels of factor B (square or circle) and three replicates
of each shape/fill combination.

temperature and/or fertilizer (for example) are observed across the entire genera or
country.

12.1 Linear models

The linear models for two and three factor designs are:

yijk = µ + αi + βj + (αβ)ij + εijk

yijkl = µ + αi + βj + γk + (αβ)ij + (αγ )ik + (βγ )jk + (αβγ )ijk + εijkl

where µ is the overall mean, α is the effect of Factor A, β is the effect of Factor B,
γ is the effect of Factor C and ε is the random unexplained or residual component.
Note that although the linear models for Model I, Model II and Model III designs are
identical, the interpretation of terms (and thus null hypothesis) differ.

12.2 Null hypotheses

There are separate null hypothesis associated with each of the main effects and the
interaction terms.
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Fig 12.2 Fictitious depictions of two factor ANOVA design. There are two levels of factor A
(temperature: High and Low) and two levels of factor B (fertilizer: Added or not added).

12.2.1 Model 1 - fixed effects

Factor A

H0(A) : µ1 = µ2 = · · · = µi = µ (the population group means are all equal)

The mean of population 1 is equal to that of population 2 and so on, and thus all
population means are equal to an overall mean. If the effect of the ith group is the
difference between the ith group mean and the overall mean (αi = µi − µ) then the
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H0 can alternatively be written as:

H0(A) : α1 = α2 = · · · = αi = 0 (the effect of each group equals zero)

If one or more of the αi are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true, indicating that
the treatment does affect the response variable.

Factor B

H0(B) : µ1 = µ2 = · · · = µi = µ (the population group means are all equal)

Equivalent interpretation to Factor A above.

A:B Interaction

H0(AB) : µij = µi + µj − µ (the population group means are all equal)

For any given combination of factor levels, the population group mean will be equal to
the difference between the overall population mean and the simple additive effects of
the individual factor group means. That is, the effects of the main treatment factors are
purely additive and independent of one another. This is equivalent to H0(AB): αβij = 0,
no interaction between Factor A and Factor B.

12.2.2 Model 2 - random effects

Factor A

H0(A) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of A.

Factor B

H0(B) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of B.

A:B Interaction

H0(AB) : σ 2
αβ = 0 (population variance equals zero)

There is no added variance due to all possible interactions between all possible levels
of A and B.
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12.2.3 Model 3 - mixed effects

Fixed factor - e.g. A

H0(A) : µ1 = µ2 = · · · = µi = µ (the population group means are all equal)

The mean of population 1 (pooled over all levels of the random factor) is equal to that
of population 2 and so on, and thus all population means are equal to an overall mean
pooling over all possible levels of the random factor. If the effect of the ith group is the
difference between the ith group mean and the overall mean (αi = µi − µ) then the
H0 can alternatively be written as:

H0(A) : α1 = α2 = · · · = αi = 0 (no effect of any level of this factor pooled
over all possible levels of the random factor)

Random factor - e.g. B

H0(B) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of B.

A:B Interaction

The interaction of a fixed and random factor is always considered a random factor.

H0(AB) : σ 2
αβ = 0 (population variance equals zero)

There is no added variance due to all possible interactions between all possible levels
of A and B.

12.3 Analysis of variance

When fixed factorial designs are balanced, the total variance in the response variable
can be sequentially partitioned into what is explained by each of the model terms
(factors and their interactions) and what is left unexplained. For each of the specific
null hypotheses, the overall unexplained variability is used as the denominator in
F-ratio calculations (see Tables 12.1 & 12.2), and when a null hypothesis is true,
an F-ratio should follow an F distribution with an expected value less than 1.

Random factors are added to provide greater generality of conclusions. That is, to
enable us to make conclusions about the effect of one factor (such as whether or not
fertilizer is added) over all possible levels (not just those sampled) of a random factor
(such as all possible locations, seasons, varieties etc). In order to expand our conclusions
beyond the specific levels used in the design, the hypothesis tests (and thus F-ratios)
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must reflect this extra generality by being more conservative. The appropriatea F-ratios
for fixed, random and mixed factorial designs are presented in Tables 12.1 & 12.2.
Generally, once the terms (factors and interactions) have been ordered into a hierarchy
(single factors at the top, highest level interactions at the bottom and terms of same order
given equivalent positions in the hierarchy), the denominator for any term is selected as
the next appropriate random term (an interaction that includes the term to be tested)
encountered lower in the hierarchy. Interaction terms that contain one or more random
factors are considered themselves to be random terms, as is the overall residual term (as
all observations are assumed to be random representations of the entire population(s)).

Pooling of non-significant F-ratio denominator terms (see section 11.6), in which
lower random terms are added to the denominator (provided α > 0.25), may also be
useful.

For random factors within mixed models, selecting F-ratio denominators that
are appropriate for the intended hypothesis tests is a particularly complex and
controversial issue. Traditionally, there are two alternative approaches and whilst the
statistical resumes of each are complicated, essentially they differ in whether or not
the interaction term is constrained for the test of the random factor. The constrained
or restricted method (Model I), stipulates that for the calculation of a random factor
F-ratio (which investigates the added variance added due to the random factor), the
overall effect of the interaction is treated as zero. Consequently, the random factor
is tested against the residual term (see Tables 12.1 & 12.2). The unconstrained or
unrestrained method (Model II) however, does not set the interaction effect to zero
and therefore the interaction term is used as the random factor F-ratio denominator
(see Tables 12.1 & 12.2). This method assumes that the interaction terms for each level
of the random factor are completely independent (correlations between the fixed factor
must be consistent across all levels of the random factor). Some statisticians maintain
that the independence of the interaction term is difficult to assess for biological data
and therefore, the restricted approach is more appropriate. However, others have
suggested that the restricted method is only appropriate for balanced designs.

12.3.1 Quasi F-ratios

An additional complication for three or more factor models that contain two or more
random factors, is that there may not be a single appropriate interaction term to use as
the denominator for many of the main effects F-ratios. For example, if Factors A and B
are random and C is fixed, then there are two random interaction terms of equivalent
level under Factor C (A′ × C and B′ × C). As a result, the value of the of the Mean
Squares expected when the nul hypothesis is true cannot be easily defined. The solutions
for dealing with such situations (quasi F-ratiosb) involve adding (and subtracting) terms
together to create approximate estimates of F-ratio denominators. These solutions are

a When designs include a mixture of fixed and random crossed effects, exact demoninators for certain
F-ratios are undefined and traditional approaches adopt rather inexact estimated approximate or
‘‘Quasi’’ F-ratios.
b Alternatively, for random factors, variance components with confidence intervals can be used.
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sufficiently unsatisfying as to lead many biostatisticians to recommend that factorial
designs with two or more random factors should avoided if possible. Arguably however,
linear mixed effects models (see section 11.8) offer more appropriate solutions to the
above issues as they are more robust for unbalanced designs, accommodate covariates
and provide a more comprehensive treatment and overview of all the underlying data
structures.

12.3.2 Interactions and main effects tests

Note that for fixed factor models, when null hypotheses of interactions are rejected,
the null hypothesis of the individual constituent factors are unlikely to represent the
true nature of the effects and thus are of little value. The nature of such interactions are
further explored by fitting simpler linear models (containing at least one less factor)
separately for each of the levels of the other removed factor(s). Such Main effects
tests are based on a subset of the data, and therefore estimates of the overall residual
(unexplained) variabilty are unlikely to be as precise as the estimates based on the global
model. Consequently, F-ratios involving MSResid should use the estimate of MSResid

from the global model rather than that based on the smaller, theoretically less precise
subset of data. For random and mixed models, since the objective is to generalize the
effect of one factor over and above any interactions with other factors, the main factor
effects can be interpreted even in the presence of significant interactionsc.

12.4 Assumptions

Hypothesis tests assume that the residuals are:

(i) normally distributed. Boxplots using the appropriate scale of replication (reflecting the
appropriate residuals/F-ratio denominator (see Tables 12.1 & 12.2)) should be used to
explore normality. Scale transformations are often useful.

(ii) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns (see Figure 8.5). Scale transformations are often useful.

(iii) independent of one another.

12.5 Planned and unplanned comparisons

As with single factor analysis of variance, plannedd and unplanned multiple com-
parisons (such as Tukey’s test) can be incorporated into or follow the linear model

c Although it should be noted that when a significant interaction is present in a mixed model, the
power of the main fixed effects will be reduced (since the amount of variability explained by the
interaction term will be relatively high, and this term is used as the denominator for the F-ratio
calculation, see Table 12.1).
d As with single factor analysis of variance, the contrasts must be defined prior to fitting the linear
model, and no more than p − 1 (where p is the number of levels of the factor) contrasts can be
defined for a factor.
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respectively so as to further investigate any patterns or trends within the main factors
and/or the interactions (see section 10.6).

12.6 Unbalanced designs

A factorial design can be thought of as a table made up of rows (representing the levels
of one factor), columns (levels of another factor) and cells (the individual combinations
of the set of factors), see Table 12.3(a). Table 12.3(b) depicts a balanced two factor
(3x3) design in which each cell (combination of factor levels) has three replicate
observations. Whilst Table 12.3(c) does not have equal sample sizes in each cell, the
sample sizes are in proportion and as such, does not present the issues discussed below
for unbalanced designs. Tables 12.3(d) & (e), are considered unbalanced.

12.6.1 Missing observations

In addition to impacting on normality and homogeneity of variance, unequal sample
sizes in factorial designs have major implications for the partitioning of the total sums
of squares into each of the model components.

For balanced designs, the total sums of squares (SSTotal) is equal to the additive
sums of squares of each of the components (including the residual). For example,
in a two factor balanced design, SSTotal = SSA + SSB + SSAB + SSResid. This can be
represented diagrammatically by a Venn Diagram (see Figure 12.3) in which each of
the SS for the term components butt against one another and are surrounded by
the SSResid (see Figure 12.2a). However, in unbalanced designs, the sums of squares
will be nonorthogonal and the sum of the individual components does not add up
to the total sums of squares. Diagrammatically, the SS of the terms intersect or are
separated (see Figure 12.2b and 12.2g respectively). In regular sequential sums of
squares (Type I SS), the sum of the individual sums of squares must be equal to the
total sums of squares, the sums of squares of the last factor to be estimated will be
calculated as the difference between the total sums of squares and what has already
been accounted for by other components. Consequently, the order in which factors
are specified in the model (and thus estimated) will alter their sums of squares and
therefore their F-ratios (see Figure 12.2c-d).

To overcome this problem, traditionally there are two other alternative methods of
calculating sums of squares. Type II (hierarchical) SS estimate the sums of squares of
each term as the improvement it contributes upon the addition of that term to a model
of greater complexity and lower in the hierarchy (recall that the hierarchical structure
descends from the simplest model down to the fully populated model). The SS for
the interaction as well as the first factor to be estimated are the same as for Type I SS.
Type II SS estimate the contribution of a factor over and above the contributions
of other factors of equal or lower complexity but not above the contributions of
the interaction terms or terms nested within the factor (see Figure 12.3e & 12.3k).
However, these sums of squares are weighted by the sample sizes of each level and
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Table 12.3 Factorial cell means structure (a) for a fictitious two factor design (effect of
Temperature: high, medium or low, and Shading: full, partial or control on seedling growth)
illustrating (b) balanced, (c) proportionally balanced, (d-e) unbalanced and (f) missing cells
designs. For the missing cell example, in which one combination or cell is missing (perhaps
seedlings grown under these conditions all died), three alternative sets of that can be used to
estimate individual factor effects for factor A and B are listed in subfigures (g) and (h) respectively.
Gray coefficients indicate coefficients to be omitted when cell FL is missing (as an example)
and coefficients in brackets are replacement coefficients relevant for the missing cell example.
Similarly, interaction effects are estimated from one of four alternative contrast sets (i). Note that
cell means contrasts are not orthogonal and therefore the individual hypotheses tests should be
ignored (SS will differ substantially according to the order in which the contrasts are defined).
They are used purely to establish the overall factor and interaction effects.

(a) Cell means structure (b) Balanced design (3 replicates)

High Medium Low

Full shade µFH µFM µFL

Partial shade µPH µPM µPL

Control µCH µCM µCL

High Medium Low

Full shade XXX XXX XXX
Partial shade XXX XXX XXX
Control XXX XXX XXX

(c) Proportionally balanced design (2-3 replicates) (d) Unbalanced design (2-3 replicates)

High Medium Low

Full shade XXX XXX XXX
Partial shade XX XX XX
Control XXX XXX XXX

High Medium Low

Full shade XX XXX XXX
Partial shade XXX XXX XXX
Control XXX XXX XXX

(e) Unbalanced design (1-3 replicates) (f) Missing cells design (3 replicates)

High Medium Low

Full shade XX XXX XXX
Partial shade XXX X XX
Control XXX XXX XXX

High Medium Low

Full shade XXX XXX
Partial shade XXX XXX XXX
Control XXX XXX XXX

(g) Factor A (Shade) contrasts (h) Factor B (Temperature) contrasts

FH FM FL PH PM PL CH CM CL

Set 1
H0: µF = µP 1 1 1 −1 −1 −1 (0) 0 0 0
H0: µP = µC 0 0 0 1 1 1 −1 −1 −1

Set 2
H0: µF = µP 1 1 1 −1 −1 −1 (0) 0 0 0
H0: µF = µC 1 1 1 0 0 0 −1 −1 −1 (0)

Set 3
H0: µF = µC 1 1 1 0 0 0 −1 −1 −1 (0)
H0: µP = µC 0 0 0 1 1 1 −1 −1 −1

FH FM FL PH PM PL CH CM CL

Set 1
H0: µH = µM 1 −1 0 1 −1 0 1 −1 0
H0: µM = µL 0 1 (0) −1 0 1 −1 0 1 −1

Set 2
H0: µM = µL 0 1 (0) −1 0 1 −1 0 1 −1
H0: µH = µL 1 (0) 0 −1 1 0 −1 1 0 −1

Set 3
H0: µH = µL 1 (0) 0 −1 1 0 −1 1 0 −1
H0: µM = µL 0 1 (0) −1 0 1 −1 0 1 −1
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Table 12.3 (continued)

(i) AB interaction contrasts
Effects of A at each level of B

FHFM FL PHPM PL CHCMCL

Set 1
H0:µFH +µPM=µPH+µFM 1 −1 0 −1 1 0 0 0 0
H0:µFM+µPL=µPM+µFL 0 1 −1 0 −1 1 0 0 0
H0:µPH +µCM=µCH+µPM 0 0 0 1 −1 0 −1 1 0
H0:µPM+µCL=µCM+µPL 0 0 0 0 1 −1 0 −1 1

Set 2
H0:µFH +µPM=µPH+µFM 1 −1 0 −1 1 0 0 0 0
H0:µFH +µPL=µPH+µFL 1 0 −1−1 0 1 0 0 0
H0:µFH +µCM=µCH+µFM 1 −1 0 0 0 0 −1 1 0
H0:µFH +µCL=µCH+µFL 1 0 −1 0 0 0 −1 0 1

Effects of B at each level of A

FHFM FL PHPM PL CHCMCL

Set 3
H0:µFH+µPM=µPH +µFM 1 −1 0 −1 1 0 0 0 0
H0:µPH+µCM=µPM+µCH 0 0 0 1 −1 0 1 −1 0
H0:µFM+µPL=µFL+µPM 0 1 −1 0 −1 1 0 0 0
H0:µPM+µCL=µPL+µCM 0 0 0 0 1 −1 0 −1 1

Set 4
H0:µFH+µPM=µFM+µPH 1 −1 0 −1 1 0 0 0 0
H0:µFH+µCM=µFM+µCH 1 −1 0 0 0 0 −1 1 0
H0:µFH+µPL=µFL+µPH 1 0 −1−1 0 1 0 0 0
H0:µFH+µCL=µFL+µCH 1 0 −1 0 0 0 −1 0 1

therefore are biased towards the trends produced by the groups (levels) that have
higher sample sizese.

Type III (marginal or orthogonal) SS estimate the sums of squares of each term
as the improvement based on a comparison of models with and without the term
and are unweighted by sample sizes. Type III SS essentially measure just the unique
contribution of each factor over and above the contributions of the other factors and
interactions (see Figure 12.3f & 12.3l). For unbalanced designs,Type III SS essentially
test equivalent hypotheses to balanced Type I SS and are therefore arguably more
appropriate for unbalanced factorial designs than Type II SS. Importantly, Type III
SS are only interpretable if they are based on orthogonal contrasts (such as sum or
helmert contrasts and not treatment contrasts).

The choice between Type II and III SS clearly depends on the nature of the question.
For example, if we had measured the growth rate of seedlings subjected to two factors
(temperature and fertilizer), Type II SS could address whether there was an effect of
temperature across the level of fertilizer treatment, whereas Type III SS could assess
whether there was an effect of temperature within each level of the fertilizer treatment.

12.6.2 Missing combinations - missing cells

When an entire combination, or cell, is missing (perhaps due to unforeseen circum-
stances) it is not possible to test all the main effects and/or interactions. Table 12.3(f)
depicts such as situation. One solution is to fit a large single factor ANOVA with as many
levels as there are cells (this is known as a cell means model) and investigate various
factor and interaction effects via specific contrasts (see Tables 12.3(g)-(j) and 12.4).
Difficulties in establishing appropriate error terms, makes missing cells in random and
mixed factor designs substantially more complex.

e As a result of the weightings, Type II SS actually test hypotheses about really quite complex
combinations of factor levels. Rather than test a hypothesis that µHigh = µMedium = µLow, Type II
SS might be testing that 4µHigh = 1µMedium = 0.25µLow.
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Factor A Factor B

A:B

Interaction

Residuals

(a) Balanced factorial design

Factor A Factor B

A:B

Interaction

Residuals

(b) Positive intersection

Residuals

(c) Type I SS – Factor A first

Residuals

(d) Type I SS – Factor B first

Residuals

(e) Type II SS

Residuals

(f) Type III SS

Factor A Factor B

A:B

Interaction

Residuals

(g) Negative intersection

Factor A Factor B

A:B

Interaction

Residuals

(h) Negative intersection

Residuals

(i) Type I SS – Factor A first

Residuals

(j) Type I SS – Factor B first

Residuals

(k) Type II SS

Residuals

(l) Type III SS

Factor A Factor B Factor A Factor B
Factor A Factor B Factor A Factor B

A:B

Interaction

Factor A Factor B

A:B

Interaction

A:B

Interaction

A:B

Interaction

A:B

Interaction

Factor A Factor B
Factor A Factor B Factor A Factor B

A:B

Interaction

A:B

Interaction

A:B

Interaction

Fig 12.3 Fictitious representations of Type I, II and III Sums of Squares (SS) calculations for
balanced and unbalanced two factor designs with positive (b-f) and negative (g-l) intersections.
Striped pattern represents SSresid, shaded patterns represent SS for the respective terms and the
white fill represent ignored areas. For completely balanced designs (a), the terms are all completely
orthogonal or independent (no intersections) and thus Type I, II and III SS are identical. The
Type I, II and III sums of squares for the interaction term for unbalanced two-factor designs
are also identical. Type II SS for the main factors are the same as the Type I SS for the second
factor calculated. When there are positive intersections between factors (factors are positively
dependent), Type I SS for the first factor will be greater than its Type II estimate which in turn will
be greater than its Type III estimate. For negative intersections (in which factors are negatively
dependent), Type I SS for the first factor will be less than its Type II and III estimates. For such
intersections, factors are joined by a bridge which is included in the SS calculations for each of
the factors it joins. It is also possible to have bridges between factors and interaction terms, in
which case Type III SS estimates can be substantially larger than Type I and II estimates. Note
that intersections are not the same as interactions and the two issues are completely separate.

12.7 Robust factorial ANOVA

Factorial designs can be analysed as large single factor designs that incorporate
specific sets of contrasts. Therefore, many of the robust or non-parametric techniques
outlined in chapter 10.5 can be used to analyze factorial designs. Alternatively, standard
factorial ANOVA can be performed on rank transformed data. This approach can also
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be extended to more complex designs, thereby providing a way to analyse unbalanced
and mixed effects designs that display evidence of non-normality. Unfortunately, there
is some evidence to suggest that testing interactions on rank transformed data can
increase the Type I error rate. Furthermore, in the presence of significant main effects,
the power to detect interaction effects is low.

Randomization tests (which are useful for situations in which observation indepen-
dence could be questionable) can be performed by comparing the F-ratios (or mean
squares) to a large number of F-ratios calculated from repeatedly shuffled dataf. In so
doing, randomization tests can accomodate random, fixed and mixed models as well
as Type I, II and III SS and cell means models (for missing cells).

12.8 Power and sample sizes

Although power analyses for main effects within factorial designs follow the same
principles as single factor designs, for interactions, it is very difficult to estimate the
meaningful effect sizes due to the large number of factor level combinations. That said,
the tests of interactions are typically more powerful than main effects (due to greater
available degrees of freedom) and for fixed models, efforts to improve the power of
any of the main effects will also benefit the corresponding interactions. Power analyses
for mixed and random factorial designs should reflect the appropriate residuals (see
Tables 12.1 & 12.2).

12.9 Factorial ANOVA in R

Fully factorial linear models are predominantly fitted using the aov() function. Anova
tables for balanced, fixed factor designs can be viewed using either the anova() or
summary(), the latter of which is used to accommodate planned contrasts with the
split= argument. Type II and III sums of squares are estimated for unbalanced
designs using either the Anova()g or AnovaM()h functions, the latter of which also
accommodates planned contrasts (with the split= argument) as well as random and
mixed models by enabling the appropriate F-ratio denominators to be defined via the
denoms= argument.

12.10 Further reading

• Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

f Although there are various ways in which the data or residuals could be shuffled, simulations suggest
that they all yield very similar results.
g From the car package.
h From the biology package.
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Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San
Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Wilcox, R. R. (2005). Introduction to Robust Estimation and Hypothesis Testing.
Elsevier Academic Press.

12.11 Key for factorial ANOVA

1 For each factor (categorical variable), establish whether it is to be considered a fixed
or random factor
• Conclusions about the factor are restricted to the specific levels selected in the

design. Levels of the factor selected to represent the specific levels of interest (fixed
factor)

• Conclusions about the factor to be generalized across all possible levels of the
factor. Levels of the factor used represent a random selection of all the possible levels
(random factor)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
2 Establish what sort of model it is and therefore what the appropriate F-ratio

denominators apply (see Tables 12.1 & 12.2)
• All factors fixed (Model I)
• All factors random (Model II)
• Mixture of fixed and random factors (Model III)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Check assumptions for factorial ANOVA
As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. This is
particularly important for random and mixed models where interaction terms might
be the appropriate denominators (residuals).

• Normality (symmetry) of the response variable (residuals) at each level of each
factor or combination of factors - boxplots of mean values
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Fixed factor model (Model I) - using MSResid as denominator in each case

> boxplot(DV ~ A, data) #factor A

> boxplot(DV ~ B, data) #factor B

> boxplot(DV ~ A * B, data) #A:B interaction

Random or mixed model (Model II or III - factor B random) - using MSAB as
denominator as example

> library(nlme)

> data.AB.agg <- gsummary(data, groups = data$A:data$B)

> boxplot(DV ~ A, data.AB.agg) #factor A

where DV is the response variable, A is a main fixed or random factor within the data
dataset.

• Homogeneity (equality) of variance of the response variable (residuals) at each
level of each factor or combination of factors - boxplots of mean values
As for Normality.

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5
b. Parametric assumptions not met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4

4 a. Attempt a scale transformation (see Table 3.2 for transformation op-
tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . Go to 15
5 a. All factor combinations (cells) have at least one observation (no missing

cells) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
b. One or more factor combinations without any observations (missing cells).

Analyze as single factor cell means model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 10
6 If incorporating planned contrasts (comparisons) . . . . . . See Examples 12A,12B,12C

> contrasts(data$A) <- cbind(c(contrasts), ...)

> round(crossprod(contrasts(data$A)), 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7
7 a. Determine whether the design is balanced

> replications(DV ~ A * b * C + .., data)

> library(biology)

> is.balanced(DV ~ A * b * C + .., data)

Design is balanced - sample sizes of all cells are equal (Type I SS) . . . . . . . . Go to 8
b. Design is NOT balanced - sample sizes of cells differ (Type III SS) . . . . . . . Go to 9

8 a. Balanced Model I (Fixed factors) . . . . . . . . . . . . . . . . . . . . . . . . See Examples 12A,12B

> data.aov <- aov(DV ~ A * B, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

• With planned contrasts

> library(biology)

> AnovaM(data.aov, split = list(A = list(Name1 = 1, Name2 = 2,

+ ...), B = list()))

> #OR

> summary(data.aov, split = list(A = list(Name1 = 1,

+ Name2 = 2, ...), B = list()))
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where DV is the response variable, A and B are the main fixed factors within the data
dataset.

• Without planned contrasts

> AnovaM(data.aov)

> #OR

> summary(data.aov)

> #OR

> anova(data.aov)

For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20

If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

b. Balanced Model II (random factors) or Model III (mixed factors) . . . . . . . . . . . See
Example 12C
> data.aov <- aov(DV ~ A * B, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

• With planned contrasts
> AnovaM(data.aov, denoms = c("A:B", "Resid", "Resid"),

+ split = list(A = list(Name1 = 1, Name2 = 2, ...),

+ B = list()))

This example is a restricted model III where DV is the response variable, A is a fixed
factor and B is a random factor within the data dataset. denoms=c() is used to
specify the denominators for each term in the model according to table 12.1

• Without planned contrasts

> AnovaM(data.aov, denoms = c("A:B", "Resid", "Resid"))

For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20

For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 19
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

9 a. Unbalanced Model I (Fixed factors) . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 12D

> data.aov <- aov(DV ~ A * B, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

• With planned contrasts
> AnovaM(data.aov, type = "III", split = list(A = list

+ (Name1 = 1, Name2 = 2, ...), B = list()))

where DV is the response variable, A and B are the main fixed factors within the data
dataset.

• Without planned contrasts - must define contrasts other than the default (treat-
ment contratsts)

> contrasts(data$A) <- contr.helmert

> contrasts(data$B) <- contr.helmert

> data.aov <- aov(DV ~ A * B, data)

> AnovaM(data.aov, type = "III", data)

For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20

If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
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For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18
b. Unbalanced Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ A * B, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

• With planned contrasts

> AnovaM(data.aov, denoms = c("A:B", "Resid", "Resid"),

+ type = "III", split = list(A = list(Name1 = 1,

+ Name2 = 2, ...), B = list()))

example is a restricted model III where DV is the response variable, A is a fixed factor
and B is a random factor within the data dataset. denoms=c() is used to specify the
denominators for each term in the model according to table 12.1

• Without planned contrasts

> AnovaM(data.aov, denoms = c("A:B", "Resid", "Resid"),

+ type = "III")

For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20

For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 19
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

10 Generate a new factorial variable to represent the combinations of factor levels and
define sets of contrasts to represent each of the terms (main factors and interactions)
in the design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 12E,13

> data$AB <- factor(paste(data$A, data$B, sep = "A:B"))

> contrasts(data$AB) <- cbind(c(contrasts), c(contrasts), ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12
11 a. Determine whether the design is otherwise balanced (all present cells have equal

sample sizes)

> replications(DV ~ A * b * C + .., data)

> library(biology)

> is.balanced(DV ~ A * b * C + .., data)

Design is balanced - sample sizes of all cells are equal (Type I SS) . . . . . . . Go to 12
b. Design is NOT balanced - sample sizes of cells differ (Type III SS) . . . . . . Go to 13

12 a. Balanced missing cells Model I (Fixed factors) . . . . . . . . . . . . . . . . . See Example 12E

> data.aov <- aov(DV ~ AB, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

> AnovaM(data.aov, split = list(AB = list('Factor A' = 1:2)))

where in this case, DV is the response variable and AB is the combined factors (A and B)
within the data dataset. In this case, the ANOVA table will also include a line titled
‘‘Factor A’’ which represents the combination of the first two contrasts.
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

b. Balanced missing cells Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ AB, data)
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To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

> AnovaM(data.aov, denoms = c(object), split = list(AB = list

+ ('Factor A' = 1:2)))

example is a restricted model III where DV is the response variable, and AB is a
random factor representing the combination of factors A and B within the data dataset.
denoms=c(object) is used to specify the denominators for each term in the model
according to table 12.1. The object can be either a list of labels that refer to terms in
the current model, a single alternative aov model from which to extract the Residual
term, or a list of alternative model terms. Note, interaction terms should be derived prior
to main factors.
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20
For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 19
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

13 a. Unbalanced missing cells Model I (Fixed factors) . . . . . . . . . . . . . . See Example 12F

> data.aov <- aov(DV ~ AB, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

> AnovaM(data.aov, type = "III", split = list(AB = list

+ ('Factor A' = 1:2)))

where DV is the response variable, A and B are the main fixed factors within the data
dataset.
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

b. Unbalanced missing cells Model II (random factors) or Model III (mixed factors)

> data.aov <- aov(DV ~ AB, data)

To check residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 21

> AnovaM(data.aov, denoms = c(c(object)), type = "III",

+ split = list(AB = list('Factor A' = 1:2)))

example is a restricted model III where DV is the response variable, A is a fixed factor and
B is a random factor within the data dataset. denoms=c(object) is used to specify
the denominators for each term in the model according to table 12.1. The object can
be either a list of labels that refer to terms in the current model, a single alternative
aov model from which to extract the Residual term, or a list of alternative model
terms.
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 20
For variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 19
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 14
For summary plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 18

14 Main effects tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 12B,12D,12E,12F
• Repeat analysis steps above with on a subset of the data (just one levels of one of

the factors) and use the MSResid from the global model.

> AnovaM(mainEffects(data.aov, at = B == "B1"), split = list

+ (A = list(Name1 = 1, Name2 = 2, ...)))
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where in this case, DV is the response variable and A is a fixed factor (A from a
Model I factorial design within the data dataset. denoms=c() is used to specify the
denominators for each term in the model according to table 12.1

15 a. Underlying distribution of the response variable is normal for each level of the
interaction, but the variances are unequal (Welch’s test on combined factors)
Generate a new factorial variable to represent the combinations of factor levels and
analyse as a single factor ANOVA using a Welch’s test (see Key 10.6)

> data$AB <- factor(paste(data$A, data$B, sep = "A:B"))

> oneway.test(DV ~ AB, data, var.equal = F)

b. Underlying distributions not normally distributed . . . . . . . . . . . . . . . . . . . . Go to 16
or consider GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17

c. Underlying distributions not normally distributed . . . . . . . . . . . . . . . . . . . . Go to 16
16 a. Underlying distribution of the response variable and residuals is known . . . GLM

chapter 17
b. Underlying distributions of the response variable and residuals is not

known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 17
17 a. Variances not wildly unequal, outliers present, but data independent (Kruskal-

Wallis non-parametric test on combined factors)

> data$AB <- factor(paste(data$A, data$B, sep = "A:B"))

> kruskal.test(DV ~ AB, data, var.equal = F)

b. Variances not wildly unequal, random sampling not possible - data might not be
independent (Randomization test)
Follow the instructions in Key 10.8b to randomize the F-ratios or MS values from
ANOVA tables produced using the parametric steps above. Warning, random-
ization procedures are only useful when there are a large number of possible
randomization combinations (rarely the case in factorial designs)

18 a. Interaction plot to summarize an ordered trend (line graph) . . . . . . . . . . . . . . . . See
Examples 12A,12B,12E

> library(gmodels)

> data.means <- with(data, tapply(DV, list(FACTA, FACTB), mean))

> data.se <- with(data, tapply(DV, list(FACTA, FACTB),

+ function(x) ci(x)[4]))

> with(data, interaction.plot(FACTA, FACTB, DV, las = 1,

+ lwd = 2, ylim = range(pretty(data$DV), na.rm = T),

+ axes = F, xlab = "", ylab = "", pch = c(16, 17),

+ type = "b", legend = F))

> arrows(1:3, data.means - data.se, 1:3, data.means + data.se,

+ code = 3, angle = 90, len = 0.05)

> axis(2, cex.axis = 0.8, las = 1, mgp = c(3, 0.5, 0),

+ tcl = -0.2)

> mtext(text = "Y-label", side = 2, line = 3, cex = 1)

> axis(1, cex.axis = 0.8, at = 1:3, lab = c("Lab1",

+ "Lab2", ...))

> mtext(text = "X-label", 1, line = 3, cex = 1)

> box(bty = "l")
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> legend("topright", leg = c("Lab1", "Lab2", ...), lwd = 2,

+ lty = c(2, 1), bty = "n", pch = c(16, 17), cex = 1)

where FACTA is the factor to placed on the x-axis.
b. Interaction plot to summarize an unordered categories (bargraph) . . . . . . . . . . See

Examples 12C,12D,12F

> library(gmodels)

> data.means <- t(tapply(data$DV, list(data$FACTA, data$FACTB),

+ mean, na.rm = T))

> data.se <- t(tapply(data$DV, list(data$FACTA, data$FACTB),

+ function(x) ci(x, na.rm = T)[4]))

> xs <- barplot(data.means, ylim = range(pretty(data$DV),

+ na.rm = T), beside = T, axes = F, xpd = F, axisnames = F,

+ axis.lty = 2, legend.text = F, col = c(0, 1))

> arrows(xs, data.means, xs, data.means + data.se, code = 2,

+ angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("Lab1",

+ "Lab2", ...), padj = 1, mgp = c(0, 0, 0))

> mtext(2, text = "Y-label", line = 3, cex = 1)

> mtext(1, text = "X-label", line = 3, cex = 1)

> box(bty = "l")

> legend("topright", leg = c("Lab1", "Lab2", ...), fill = c(0,

+ 1), col = c(0, 1), bty = "n", cex = 1)

where FACTA is the factor to placed on the x-axis.
19 Estimate variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 12C

> library(lme4)

> lmer(DV ~ 1 + (1 | A) + (1 | B) + (1 | A:B) + ..., data)

20 a. Perform Tukey’s post-hoc multiple comparisons . . . . . . . . . . . . . . See Example 12D

> TukeyHSD(mod, which = "Factor")

> library(multcomp)

> summary(glht(mod, linfct = mcp(Factor = "Tukey")))

> confint(glht(mod, linfct = mcp(Factor = "Tukey")))

where mod is the name of an aov model and ,Factor, is the name of a factor.
b. Perform other form of post-hoc multiple comparisons . . . . . . . . . . . Go to Key 10.9

21 Examine a residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 12A-12D

> plot(data.aov, which = 1)

12.12 Worked examples of real biological data sets

Example 12A: Two factor fixed (Model I) ANOVA
Quinn (1988) manipulated the density of adults limpets within enclosures (8, 15, 30 and
45 individuals per enclosure) during two seasons (winter-spring and summer-autumn) so as
to investigate the effects of adult density and season on egg mass production by intertidal
limpets. Three replicate enclosures per density/season combination were used, and both
density and season were considered fixed factors (from Box 9.4 of Quinn and Keough (2002)).
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Step 1 - Import (section 2.3) the Quinn (1988) data set

> quinn <- read.table("quinn.csv", header = T, sep = ",")

Step 2 - The density vector (variable) contains numerical representations of the adult limpet
densities, and R will consider this to be a integer vector rather than a categorical factor. In order
to ensure that this variable is treated as a factor we need to redefine its class

> class(quinn$DENSITY)

[1] "integer"

> quinn$DENSITY <- factor(quinn$DENSITY)

> class(quinn$DENSITY)

[1] "factor"

Step 3 (Key 12.2) Quinn (1988) considered both factors to be fixed factors and thus the data
represent a Model I design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).
According to Table 12.1, the MSResid (individual enclosures) should be used as the replicates
for all hypothesis tests for Model I designs.

Factor A (Fixed) Factor B (Fixed) A:B interaction (Fixed)

> boxplot(EGGS ~

+ DENSITY, quinn)

> boxplot(EGGS ~

+ SEASON, quinn)

> boxplot(EGGS ~

+ DENSITY * SEASON,

+ quinn)
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Conclusions - No evidence of non-normality (boxplots not wildly asymmetrical) and no
apparent relationship between mean and variance (heights of boxplots increase up the y-axis).
No evidence that any of the hypothesis tests will be unreliable.

Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(EGGS ~ DENSITY * SEASON, quinn)

DENSITY SEASON DENSITY:SEASON

6 12 3
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> library(biology)

> is.balanced(EGGS ~ DENSITY * SEASON, quinn)

[1] TRUE

Conclusions - The design is completely balanced. There are three replicate enclosures for each
of the four densities and two seasons.

Step 6 - (Key 12.6) - Define polynomial contrasts (see sections 10.6 and 7.3.1 for more
information on setting contrasts) to further investigate the nature of the effects of density on
egg mass production.

> contrasts(quinn$DENSITY) <- contr.poly(4, scores = c(8, 15, 30,

+ 45))

Note that there is no need to check the orthogonality of these contrasts, they will always be
constructed to be orthogonal.

Step 7 (Key 12.8) - Fit the factorial linear modeli.

> quinn.aov <- aov(EGGS ~ DENSITY + SEASON + DENSITY:SEASON,

+ data = quinn)

> #OR

> quinn.aov <- aov(EGGS ~ DENSITY * SEASON, data = quinn)

Step 8 (Key 12.21) - Examine the fitted model diagnostics j. Note that this is evaluating the
overall residuals and predicted values for the interaction effect.)

> plot(quinn.aov, which = 1)
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Conclusions - As anticipated, there is no
indication of a ‘wedge’ pattern in the residuals
suggesting that the assumption of unequal
variance is likely to be satisfied.

Step 9 (Key 12.8) - Examine the balanced model I ANOVA table, including the set of defined
planned polynomial contrasts.

> summary(quinn.aov, split = list(DENSITY = list(Linear = 1,

+ Quadratic = 2)))

i Note that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model.
j Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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OR

> library(biology)

> AnovaM(quinn.aov, type = "I", split = list(DENSITY =

+ list(Linear = 1, Quadratic = 2)))

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 3 5.2841 1.7614 9.6691 0.0007041 ***

DENSITY: Linear 1 5.0241 5.0241 27.5799 7.907e-05 ***

DENSITY: Quadratic 1 0.2358 0.2358 1.2946 0.2719497

SEASON 1 3.2502 3.2502 17.8419 0.0006453 ***

DENSITY:SEASON 3 0.1647 0.0549 0.3014 0.8239545

DENSITY:SEASON: Linear 1 0.0118 0.0118 0.0649 0.8021605

DENSITY:SEASON: Quadratic 1 0.0691 0.0691 0.3796 0.5464978

Residuals 16 2.9146 0.1822

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There was no evidence of an interaction between density and season (suggesting
that the effect of density was consistent across both seasons). Egg production was significantly
greater in winter-spring than summer-autumn and declined linearly with increasing adult
density.

Step 10 (Key 12.18) - Summarize the trends in a interaction plot.

> library(gmodels)

> quinn.means <- tapply(quinn$EGGS, list(quinn$DENSITY,

+ quinn$SEASON), mean)

> quinn.se <- tapply(quinn$EGGS, list(quinn$DENSITY, quinn$SEASON),

+ function(x) ci(x)[4])

> quinn$DENS <- as.numeric(as.character(quinn$DENSITY))

> plot(EGGS ~ DENS, quinn, type = "n", axes = F, xlab = "",

+ ylab = "")

> points(quinn.means[, 1] ~ unique(quinn$DENS), pch = 16,

+ type = "b", lwd = 2)

> arrows(unique(quinn$DENS), quinn.means[, 1] - quinn.se[, 1],

+ unique(quinn$DENS), quinn.means[, 1] + quinn.se[, 1],

+ code = 3, angle = 90, len = 0.1)

> points(quinn.means[, 2] ~ unique(quinn$DENS), pch = 16,

+ type = "b", lwd = 2, lty = 2)

> arrows(unique(quinn$DENS), quinn.means[, 2] - quinn.se[, 2],

+ unique(quinn$DENS), quinn.means[, 2] + quinn.se[, 2],

+ code = 3, angle = 90, len = 0.1)

> axis(1, cex.axis = 0.8)

> mtext(text = "Adult Density", 1, line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = "Egg production", side = 2, line = 3)

> legend("topright", leg = c("Winter-spring", "Summer-autumn"),

+ lwd = 2, lty = c(1, 2), bty = "n")

> box(bty = "l")
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Example 12B: Two factor fixed (Model I) ANOVA
In a similar experiment to that illustrated in Example 12A, Quinn (1988) also manipulated
the density of larger adults limpets further down the shoreline within enclosures (6, 12 and
24 individuals per enclosure) during the two seasons (winter-spring and summer-autumn)
so as to investigate their effects on egg mass production. Again, three replicate enclosures
per density/season combination were used, and both density and season were considered
fixed factors (from Box 9.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Quinn (1988) data set

> quinn1 <- read.table("quinn1.csv", header = T, sep = ",")

Step 2 - redefine the density vector as a factor

> quinn1$DENSITY <- factor(quinn1$DENSITY)

Step 3 (Key 12.2) Quinn (1988) considered both factors to be fixed factors and thus the data
represent a Model I design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).
According to Table 12.1, the MSResid (individual enclosures) should be used as the replicates
for all hypothesis tests for Model I designs.

> boxplot(EGGS ~ DENSITY * SEASON, quinn1)

6.spring 24.spring 12.summer

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Conclusions - No evidence of non-normality (box-
plots not wildly asymmetrical) and no apparent
relationship between mean and variance (heights of
boxplots increase up the y-axis). No evidence that
any of the hypothesis tests will be unreliable.
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Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(EGGS ~ DENSITY * SEASON, quinn1)

DENSITY SEASON DENSITY:SEASON

6 9 3

> library(biology)

> is.balanced(EGGS ~ DENSITY * SEASON, quinn1)

[1] TRUE

Conclusions - The design is completely balanced. There are three replicate enclosures for each
of the three densities and two seasons.

Step 6 - (Key 12.6) - Quinn and Keough (2002) illustrated treatment contrasts to compare
the control adult density (6) to the increased densities (12 and 24) and whether this differed
between the seasonsk. To do this we define our own contrasts (see sections 10.6 and 7.3.1 for
more information on setting contrasts).

> contrasts(quinn1$DENSITY) <- cbind(c(1, -0.5, -0.5))

Step 7 (Key 12.8) - Fit the factorial linear modell.

> quinn1.aov <- aov(EGGS ~ DENSITY * SEASON, data = quinn1)

Step 8 (Key 12.21) - Examine the fitted model diagnosticsm. Note that is evaluating the overall
residuals and predicted values for the interaction effect.)

> plot(quinn1.aov, which = 1)
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Conclusions - As anticipated, there is no indi-
cation of a ‘wedge’ pattern in the residuals
suggesting that the assumption of unequal vari-
ance is likely to be satisfied.

Step 9 (Key 12.8) - Examine the model I, balanced anova table, including the set of defined
planned contrasts. Store the resulting ANOVA table with a name so that the data therein can
later be accessed.

k Note that Quinn and Keough (2002) also defined a linear polynomial contrast. However, as this
contrast is not orthogonal (independent) of the treatment contrast, it cannot be included in the one
linear model.
l Note that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model.
m Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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> library(biology)

> quinn1.anova<-AnovaM(quinn1.aov, type="I", split=list(DENSITY=

+ list('6 vs 12&24'=1)))

> quinn1.anova

Df Sum Sq Mean Sq F value Pr(>F)

DENSITY 2 4.0019 2.0010 13.984 0.0007325 ***

DENSITY: 6 vs 12&24 1 2.7286 2.7286 19.069 0.0009173 ***

SEASON 1 17.1483 17.1483 119.845 1.336e-07 ***

DENSITY:SEASON 2 1.6907 0.8454 5.908 0.0163632 *

DENSITY:SEASON: 6 vs 12&24 1 1.5248 1.5248 10.656 0.0067727 **

Residuals 12 1.7170 0.1431

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is strong evidence of a interaction between density and season. Whether
or not there is a difference between the egg production of control vs high adult density depends
on the season.

Step 10 (Key 12.14) - To further explore the interaction between density and season, Quinn
and Keough (2002) investingated the effects of adult density separately for each season using
two single factor ANOVA’s. For each ANOVA, the MSResid from the global (overall) model was
used as the denominator in F-ratio calculations.

> # effect of density in spring

> library(biology)

> AnovaM(mainEffects(quinn1.aov, at=SEASON=="spring"),

+ split=list(DENSITY=list('6 vs 12&24'=1)))

Df Sum Sq Mean Sq F value Pr(>F)

INT 3 22.4940 7.4980 52.4017 3.616e-07 ***

DENSITY 2 0.3469 0.1735 1.2124 0.3315

DENSITY: 6 vs 12&24 1 0.0869 0.0869 0.6076 0.4508

Residuals 12 1.7170 0.1431

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # effect of density in summer

> AnovaM(mainEffects(quinn1.aov, at=SEASON=="summer"),

+ split=list(DENSITY=list('6 vs 12&24'=1)))

Df Sum Sq Mean Sq F value Pr(>F)

INT 3 17.4953 5.8318 40.757 1.436e-06 ***

DENSITY 2 5.3457 2.6728 18.680 0.0002065 ***

DENSITY: 6 vs 12&24 1 4.1664 4.1664 29.118 0.0001611 ***

Residuals 12 1.7170 0.1431

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Conclusions - Whilst egg production was found to be significantly lower in higher densities of
adult limpets compared to natural densities during the summer-autumn season, such as trend
was not observed during the spring-winter season.

Step 11 (Key 12.18) - Summarize the trends in a interaction plot.

> library(gmodels)

> quinn1.means <- tapply(quinn1$EGGS, list(quinn1$DENSITY,

+ quinn1$SEASON), mean)

> quinn1.se <- tapply(quinn1$EGGS, list(quinn1$DENSITY,

+ quinn1$SEASON), function(x) ci(x)[4])

> quinn1$DENS <- as.numeric(as.character(quinn1$DENSITY))

> plot(EGGS ~ DENS, quinn1, type = "n", axes = F, xlab = "",

+ ylab = "")

> points(quinn1.means[, 1] ~ unique(quinn1$DENS), pch = 16,

+ type = "b", lwd = 2)

> arrows(unique(quinn1$DENS), quinn1.means[, 1] - quinn1.se[, 1],

+ unique(quinn1$DENS), quinn1.means[, 1] + quinn1.se[, 1],

+ code = 3, angle = 90, len = 0.1)

> points(quinn1.means[, 2] ~ unique(quinn1$DENS), pch = 16,

+ type = "b", lwd = 2, lty = 2)

> arrows(unique(quinn1$DENS), quinn1.means[, 2] - quinn1.se[, 2],

+ unique(quinn1$DENS), quinn1.means[, 2] + quinn1.se[, 2],

+ code = 3, angle = 90, len = 0.1)

> axis(1, cex.axis = 0.8)

> mtext(text = "Adult Density", 1, line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = "Egg production", side = 2, line = 3)

> legend("topright", leg = c("Winter-spring", "Summer-autumn"),

+ lwd = 2, lty = c(1, 2), bty = "n")

> box(bty = "l")
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Example 12C: Two factor mixed (Model III) ANOVA
Minchinton and Ross (1999) investigated the distribution of oyster substrates for limpets
in four zones alone the shore (the landward zone high on the shore, the mid zone with
mangrove trees, the seaward zone with mangrove trees and the seaward zone without trees)
by measuring the number of limpets per oyster shell (expressed as the number of limpets
per 100 oysters) in five quadrats per zone. Data were collected from two sites (considered
a random factor) so as to provide some estimates of the spatial generality of the observed
trends (from Box 9.4 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Minchinton and Ross (1999) data set

> minch <- read.table("minch.csv", header = T, sep = ",")

Step 2 (Key 12.2) Minchinton and Ross (1999) considered the zone factor to be fixed and the
site factor to be a random factor and thus the data represent a Model III design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).
According to Table 12.1, the effect of zone should be tested against the zone by site interaction
whereas the effect of site and the interaction should be tested against the overall residual term
(MSResid). As boxplots are

Factor A (Fixed) Factor B (Random) A:B interaction (Random)

> library(nlme)

> minch.agg<-gsummary

+ (minch, groups=

+ minch$ZONE:minch$SITE)

> boxplot(LIMPT100~ZONE,

+ minch.agg)

> boxplot(LIMPT100 ~

+ SITE, minch)

> boxplot(LIMPT100 ~

+ ZONE * SITE,

+ minch)

LZ MZ SZ(−TR) SZ(+TR)

5
10

15
20

25

A B

0
10

20
30

40
50

LZ.A SZ(−TR).A LZ.B SZ(−TR).B

0
10

20
30

40
50

Conclusions - strong evidence to suggest both non-normality (boxplots asymmetrical where
enough data) and the existence of a relationship between mean and variance (heights of
boxplots increase up the y-axis). Hypothesis tests may well be unreliable.

Step 4 (Key 12.4) - Assess square-root transformed data (square root appropriate given the
number of 0 counts).
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Factor A (Fixed)n Factor B (Random) A:B interaction (Random)

> boxplot(sqrt

+ (LIMPT100) ~

+ ZONE, minch.agg)

> boxplot(sqrt

+ (LIMPT100) ~

+ SITE, minch)

> boxplot(sqrt

+ (LIMPT100) ~

+ ZONE * SITE, minch)
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Conclusions - although not ideal, the transformation is an improvment and thus hypothesis
tests based on the square root transformed data are likely to be more reliable.

Step 5 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(sqrt(LIMPT100) ~ ZONE * SITE, minch)

ZONE SITE ZONE:SITE

10 20 5

> library(biology)

> is.balanced(sqrt(LIMPT100) ~ ZONE * SITE, minch)

[1] TRUE

Conclusions - The design is completely balanced. There are five replicate quadrats for each of
the four zones and two sites.

Step 6 - (Key 12.6) - Quinn and Keough (2002) did not illustrate the use of planned contrasts
in Box 9.5 (presumably due to the lack of any main effects). However, prior to analysing these
data, a number of sensible planned contrasts are identifiable in the context of investigating the
distribution of suitable limpet substrates. We will further propose contrasting the treed zones to
the treeless seaward zone by defining our own contrasts (see sections 10.6 and 7.3.1 for more
information on setting contrasts).

> contrasts(minch$ZONE) <- cbind(c(1/3, 1/3, -1, 1/3))

Step 7 (Key 12.8b) - Fit the factorial linear model o.

> minch.aov <- aov(sqrt(LIMPT100) ~ ZONE * SITE, data = minch)

n Note that the following procedure is mimicking a square root transformation. Ideally, these
data should be transformed prior to aggregation rather than transforming the aggregated data
(as demonstrated), but for the purpose of assumption checking it is acceptable.
o Note that if we were also intending to investigate a set of planned comparisons/contrasts (see
chapter 10.6), these should be defined prior to fitting the linear model.
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Step 8 (Key 12.21) - Examine the fitted model diagnosticsp. Note that this is evaluating the
overall residuals and predicted values for the interaction effect.

> plot(minch.aov, which = 1)
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Conclusions - there is no indication of a
‘wedge’ pattern in the residuals suggesting
that the assumption of unequal variance is
likely to be satisfied.

Step 9 (Key 12.8b) - Examine the balanced model III ANOVA table, including the set of defined
planned contrasts. Store the resulting ANOVA table with a name so that the data therein can
later be accessed.

> library(biology)

> (minch.anova<-AnovaM(minch.aov, split = list(ZONE =

+ list('Treed vs No trees' = 1)), denoms = c("ZONE:SITE","Resid",

+ "Resid")))

Anova Table (Type III tests)

Response: sqrt(LIMPT100)

Df Sum Sq Mean Sq F value Pr(>F)

ZONE 3 39.249 13.083 1.2349 0.43320

ZONE: Treed vs No trees 1 12.448 12.448 1.1750 0.35772

SITE 1 6.372 6.372 1.8425 0.18415

ZONE:SITE 3 31.783 10.594 3.0632 0.04205 *

ZONE:SITE: Treed vs No trees 1 4.700 4.700 1.3588 0.25236

Residuals 32 110.673 3.459

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is evidence of a interaction between zone and site suggesting that any
patterns in limpet numbers between zones are not consistent across sites.

p Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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Step 10 (Key 12.19) - Estimate the variance components of the random (and fixed) termsq via
the restricted maximum likelihood (REML) method.

> library(lme4)

> lmer(sqrt(LIMPT100) ~ 1 + (1 | ZONE) + (1 | SITE) +

+ (1 | ZONE:SITE), minch)

Linear mixed model fit by REML

Formula: sqrt(LIMPT100) ~ 1 + (1 | ZONE) + (1 | SITE) +

(1 | ZONE:SITE)

Data: minch

AIC BIC logLik deviance REMLdev

180.8 189.3 -85.4 171.5 170.8

Random effects:

Groups Name Variance Std.Dev.

ZONE:SITE (Intercept) 1.2160e+00 1.1027e+00

ZONE (Intercept) 3.5443e-01 5.9534e-01

SITE (Intercept) 5.0652e-16 2.2506e-08

Residual 3.4585e+00 1.8597e+00

Number of obs: 40, groups: ZONE:SITE, 8; ZONE, 4; SITE, 2

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.5096 0.5719 4.388

Conclusions - Although the interaction term explained approximately 26% (1.216/(1.216 +
0 + 3.455)), most of the variance was unexplained ((3.455/(1.216 + 0 + 3.455) = 74%).
Note that these values differ slightly from those presented by Quinn and Keough (2002) in
Box 9.5, because they are estimated by the REML method rather than the ANOVA method
which is restricted to balanced designs.

Step 11 (Key 12.18b) - Summarize the trends in a bargraph (from Quinn and Keough (2002)).

> library(gmodels)

> minch.means <- t(tapply(sqrt(minch$LIMPT100), list(minch$ZONE,

+ minch$SITE), mean))

> minch.se <- t(tapply(sqrt(minch$LIMPT100), list(minch$ZONE,

+ minch$SITE), function(x) ci(x)[4]))

> xs <- barplot(minch.means, ylim = range(sqrt(minch$LIMPT100)),

+ beside = T, axes = F, xpd = F, axisnames = F, axis.lty = 2,

+ legend.text = F, col = c(0, 1))

q Note that variance components for fixed terms are interpreted differnently to those of random
terms. Whereas for random terms, variance components estimate the variance between all possible
population means, for fixed factors they only estimate the variance between the specific populations
used.



346 CHAPTER 12

> arrows(xs, minch.means, xs, minch.means + minch.se, code = 3,

+ angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("Land", "Mid",

+ "Sea\n(-trees)", "Sea\n(+trees)"), padj = 1,

+ mgp = c(0, 0, 0))

> mtext(2, text = expression(paste(sqrt("number of limpets

+ (x100)"))), line = 3, cex = 1)

> mtext(1, text = "Zone", line = 3, cex = 1)

> legend("topright", leg = c("Site A", "Site B"), fill = c(0, 1),

+ col = c(0, 1), bty = "n", cex = 1)

> box(bty = "l")
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Example 12D: Two factor unbalanced fixed (Model I) ANOVA
Quinn and Keough (2002) present a two factor analysis of variance (Quinn and Keough,
2002; Table 9.15b) of a subset of a dataset by Reich et al. (1999) in which the specific leaf
area of a number of plant species were compared from four different biomes (New Mexico
woodlands, South Carolina temperate/sub-tropical forests, Venezuela tropical rain forests
and Wisconsin temperate forests) and two different functional groups (shrubs and trees).
Sample sizes varied for each combination of factors (cells).

Step 1 - Import (section 2.3) the modified Reich et al. (1999) data set

> reich <- read.table("reich.csv", header = T, sep = ",")

Step 2 (Key 12.2) Reich et al. (1999) considered both location and functional group to be fixed
factors and thus the data represent a Model I design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).
According to Table 12.1, the effect of location, functional group as well as their interaction
should all be tested against the overall residual term (MSResid).
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A:B interaction (Fixed)r

> boxplot(LEAFAREA ~ LOCATION * FUNCTION, na.omit(reich))
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Conclusions - no strong evidence to suggest either
consistent non-normality or the of a relationship
between mean and variance (heights of boxplots
increase up the y-axis). Hypothesis tests likely to be
reliable.

Step 4 (Key 12.5 & 12.7) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(LEAFAREA ~ LOCATION * FUNCTION, reich)

$LOCATION

LOCATION

Newmex Scarolin Venezuel Wiscons

7 6 23 21

$FUNCTION

FUNCTION

Shrub Tree

16 41

$'LOCATION:FUNCTION'

FUNCTION

LOCATION Shrub Tree

Newmex 5 2

Scarolin 3 3

Venezuel 2 21

Wiscons 6 15

> library(biology)

> is.balanced(LEAFAREA ~ LOCATION * FUNCTION, reich)

[1] FALSE

r Note that there is a missing case (denoted ‘‘NA’’ in the dataset). There are many functions that
by default return an error when there are missing cases (so as to reduce the risks that potentially
unrepresentative outcomes being blindly accepted by the user). Such functions need to be informed to
ignore missing cases. This can be done either with the na.rm=T argument or by using the na.omit()
function to create a temporary copy of the original dataset with the entire row of the missing case
removed.
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Conclusions - The design is unbalanced. The number of samples per location and function
combination varies from 2 to 21. Therefore Type II or III sums of squares are appropriate. In this
case, as we potentially wish to make conclusions about each of the main effects that are over and
above the other main effects and their interaction, Type III sums of squares will be demonstrated.

Step 5 - (Key 12.6) - By default, all unordered factors are coded as treatment (compare to
control) contrasts which are not appropriate for Type III sums of squares. Therefore, although
we have no planned contrasts to perform in association with fitting the linear model, we do
need to code the contrasts of the factors as helmert contrastss.

> contrasts(reich$LOCATION) <- contr.helmert

> contrasts(reich$FUNCTION) <- contr.helmert

Step 6 (Key 12.9) - Fit the factorial linear model.

> reich.aov <- aov(LEAFAREA ~ LOCATION * FUNCTION, data = reich)

Step 7 (Key 12.21) - Examine the fitted model diagnosticst. Note that is evaluating the overall
residuals and predicted values for the interaction effect.)

> plot(reich.aov, which = 1)
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Conclusions - Although there is no indi-
cation of a ‘wedge’ pattern in the residuals,
observation 40 has a very large residual (con-
sidered an extreme outlier) and is potentially
very influential. Caution should be excised
for any hypothesis test close to the critical α

value (0.05).

Step 8 (Key 12.9) - Examine the unbalanced model I ANOVA table. Store the resulting ANOVA
table with a name so that the data therein can later be accessed.

> library(biology)

> (reich.anova <- AnovaM(reich.aov, type = "III"))

Df Sum Sq Mean Sq F value Pr(>F)

LOCATION 3 49202 16401 13.6005 1.401e-06 ***

FUNCTION 1 6919 6919 5.7378 0.02047 *

s Other contrasts (such as polynomial or user defined orthogonal contrasts) would also be equally as
valid - just not treatment contrasts.
t Recall that leverage, and thus Cook’s D are not informative for categorical predictor variables.
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LOCATION:FUNCTION 3 67783 22594 18.7367 3.120e-08 ***

Residuals 49 59088 1206

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1 observation deleted due to missingness

Conclusions - There is strong evidence of a interaction between location and functional group
suggesting that the patterns between different ecosystems differ according to the functional
type of the plants and visa versa.

Step 9 (Key 12.14 & 12.20) - To better appreciate the patterns in specific leaf area between
the different ecosystems, simple main effects tests can be performed to investigate the effects
of location separately for each functional group. When so doing, recall that it is necessary to
use the MSResid from the original (global) analysis of variance as the residual term. Tukey’s post
hoc honestly significant difference tests have also been included to investigate the pairwise
differences between locations.

Effect of location for the shrub functional group

> AnovaM(reich.aov.shrub <- mainEffects(reich.aov, at =

+ FUNCTION == "Shrub"), type = "III")

Df Sum Sq Mean Sq F value Pr(>F)

INT 4 14994 3749 3.1086 0.02338 *

LOCATION 3 75012 25004 20.7351 8.199e-09 ***

Residuals 49 59088 1206

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1 observation deleted due to missingness

> library(multcomp)

> summary(glht(reich.aov.shrub, linfct = mcp(LOCATION = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

Scarolin - Newmex == 0 13.07 25.36 0.515 0.9542

Venezuel - Newmex == 0 220.95 29.05 7.605 <0.001 ***

Wiscons - Newmex == 0 49.55 21.03 2.356 0.0973 .

Venezuel - Scarolin == 0 207.88 31.70 6.558 <0.001 ***

Wiscons - Scarolin == 0 36.48 24.55 1.486 0.4485

Wiscons - Venezuel == 0 -171.40 28.35 -6.045 <0.001 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
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> confint(glht(reich.aov.shrub, linfct = mcp(LOCATION = "Tukey")))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Estimated Quantile = 2.6496

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Scarolin - Newmex == 0 13.0667 -54.1263 80.2596

Venezuel - Newmex == 0 220.9500 143.9708 297.9292

Wiscons - Newmex == 0 49.5500 -6.1634 105.2634

Venezuel - Scarolin == 0 207.8833 123.8922 291.8745

Wiscons - Scarolin == 0 36.4833 -28.5760 101.5426

Wiscons - Venezuel == 0 -171.4000 -246.5240 -96.2760

Effect of location for the tree functional group

> AnovaM(reich.aov.tree <- mainEffects(reich.aov, at = FUNCTION ==

+ "Tree"), type = "III")

Df Sum Sq Mean Sq F value Pr(>F)

INT 4 75431 18858 15.6382 2.6e-08 ***

LOCATION 3 14575 4858 4.0289 0.01222 *

Residuals 49 59088 1206

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1 observation deleted due to missingness

> library(multcomp)

> summary(glht(reich.aov.tree, linfct = mcp(LOCATION = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

Scarolin - Newmex == 0 -20.40 31.70 -0.644 0.9108

Venezuel - Newmex == 0 -15.70 25.70 -0.611 0.9224

Wiscons - Newmex == 0 23.37 26.14 0.894 0.7950

Venezuel - Scarolin == 0 4.70 21.43 0.219 0.9959
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Wiscons - Scarolin == 0 43.77 21.96 1.993 0.1895

Wiscons - Venezuel == 0 39.07 11.74 3.328 0.0079 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

> confint(glht(reich.aov.tree, linfct = mcp(LOCATION = "Tukey")))

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = update(object, ~INT + .), data = dn)

Estimated Quantile = 2.6156

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Scarolin - Newmex == 0 -20.4000 -103.3134 62.5134

Venezuel - Newmex == 0 -15.7000 -82.9132 51.5132

Wiscons - Newmex == 0 23.3667 -45.0055 91.7388

Venezuel - Scarolin == 0 4.7000 -51.3597 60.7597

Wiscons - Scarolin == 0 43.7667 -13.6774 101.2108

Wiscons - Venezuel == 0 39.0667 8.3615 69.7718

Conclusions - Specific leaf area differs significantly between locations for both shrub and tree
functional groups. However, whilst specific leaf area of trees was only found to differ significantly
between Wisconsin cold temperate forests and Venezuela topical forests (the former having
greater area), for shrubs, the Venezuela topical forests were found to have significantly greater
leaf areas than shrubs in the other ecosystems.

Step 10 (Key 12.18b) - Summarize the trends in a bargraph (from Quinn and Keough
(2002)).

> library(gmodels)

> reich.means <- t(tapply(reich$LEAFAREA, list(reich$LOCATION,

+ reich$FUNCTION), mean, na.rm = T))

> reich.se <- t(tapply(reich$LEAFAREA, list(reich$LOCATION,

+ reich$FUNCTION), function(x) ci(x, na.rm = T)[4]))

> xs <- barplot(reich.means, ylim = range(reich$LEAFAREA,

+ na.rm = T), beside = T, axes = F, xpd = F, axisnames = F,

+ axis.lty = 2, legend.text = F, col = c(0, 1))

> arrows(xs, reich.means, xs, reich.means + reich.se, code = 2,

+ angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("Newmax", "Scarolin",

+ "Venezuel", "Wiscons"), padj = 1, mgp = c(0, 0, 0))
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> mtext(2, text = expression(paste("Mean specific leaf area ",

+ (mm^2))), line = 3, cex = 1)

> mtext(1, text = "Location", line = 3, cex = 1)

> box(bty = "l")

> legend("topright", leg = c("Shrub", "Tree"), fill = c(0, 1),

+ col = c(0, 1), bty = "n", cex = 1)

50

100

150

200

250

300

Newmax Scarolin Venezuel Wiscons

M
ea

n 
sp

ec
ifi

c 
le

af
 a

re
a 

(m
m

2 )

Location

Shrub
Tree

Example 12E: Two factor fixed (Model I) ANOVA with missing cells
Hall et al. (2000) measured the number of macroinvertebrate individuals colonizing small
sheets of submerged cloth subjected to one of two treatments (nitrogen and phosphorus
nutrients added or control) for either two, four or six months (time factor). Quinn and
Keough (2002) present an analysis of a modification of these data in which the control
treatments (no nutrients added) for the six month duration are all missing (from Table 9.16
of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Hall et al. (2000) data set

> hall1 <- read.table("hall1.csv", header = T, sep = ",")

Step 2 (Key 12.2) Since the levels of the time factor are purely numbers, R considers this vector
as a numeric variable rather than as a factorial variable. In order for the effect of time to be
modeled appropriately, the time vector needs to be explicitly defined as a factor.

> hall1$TIME <- as.factor(hall1$TIME)

Step 3 (Key 12.2) Hall et al. (2000) considered both treatment and time to be fixed factors and
thus the data represent a Model I design

Step 4 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each
null hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1).
According to Table 12.1, the effect of treatment and time as well as their interaction should all
be tested against the overall residual term (MSResid).
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> boxplot(IND ~ TREAT * TIME,

+ hall1)

> boxplot(log(IND + 1) ~

+ TREAT * TIME, hall1)
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Conclusions - boxplots of the raw data (plot on left) show strong evidence of a relationship
between mean and variance (height of boxplots related to their positions on the y-axis). The plot
on the right illustrates boxplots of the data transformed to logsu and indicates that transforming
the data to logs improves its suitability to parametric analysis.

Step 5 (Key 12.5b & 12.11) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(log(IND + 1) ~ TREAT * TIME, hall1)

$TREAT

TREAT

control nutrient

10 15

$TIME

TIME

2 4 6

10 10 5

$'TREAT:TIME'

TIME

TREAT 2 4 6

control 5 5 0

nutrient 5 5 5

> library(biology)

> is.balanced(log(IND + 1) ~ TREAT * TIME, hall1)

[1] FALSE

u In order to accommodate zero values in the data, a small number (1) is added to each count prior
to logarithmic transformation. This is referred to as a log plus one transformation.
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Conclusions - The design has a missing cell - there are no replicates of the control treatment
at 6 months. Quinn and Keough (2002) analysed this two factor ANOVA using a cell means
model in which all replicated factor level combinations are treated as levels of a single factor in
a single factor ANOVA. The main treatment effects are estimated by defining planned contrasts
that are carefully selected to model the ‘estimatable’ comparisons.

Step 6 - (Key 12.10) - Convert the factor combinations into a single factor design.

> hall1$TREATTIME <- as.factor(paste(hall1$TREAT, hall1$TIME,

+ sep = ""))

Step 7 - (Key 12.10) - For each of the main terms in the original multifactor model (the main
effects and interactions), define appropriate contrasts to estimate the effects of each term (see
Tables 12.3 & 12.4), fit the cell means linear model and partition the sums of squares accordingly.
Note that as missing cells are an extreme form of unbalance, they too can result in non-
orthogonality of contrasts and therefore each of the main effects should be estimated separately.

Effect of nutrient treatment

> contrasts(hall1$TREATTIME) <- cbind(c(1, 1, -1,

+ -1, 0))

> AnovaM(aov(log(IND + 1) ~ TREATTIME, hall1),

+ split = list(TREATTIME = list("treatment" = 1)))

Df Sum Sq Mean Sq F value Pr(>F)

TREATTIME 4 32.013 8.003 93.169 1.232e-12 ***

TREATTIME: treatment 1 1.063 1.063 12.379 0.002161 **

Residuals 20 1.718 0.086

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Effect of time

> contrasts(hall1$TREATTIME) <- cbind(c(1, -1, 1,

+ -1, 0), c(0, 0, 1, 0, -1))

> AnovaM(aov(log(IND + 1) ~ TREATTIME, hall1),

+ split = list(TREATTIME = list("time" = 1:2,

+ " time 2 vs 4" = 1, " time 2 vs 6" = 2)))

Df Sum Sq Mean Sq F value Pr(>F)

TREATTIME 4 32.013 8.003 93.169 1.232e-12 ***

TREATTIME: time 2 24.742 12.371 144.013 1.332e-12 ***

TREATTIME: time 2 vs 4 1 13.441 13.441 156.468 6.505e-11 ***

TREATTIME: time 2 vs 6 1 11.301 11.301 131.557 3.008e-10 ***

Residuals 20 1.718 0.086

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nutrient treatment by time interaction

> contrasts(hall1$TREATTIME) <- cbind(c(1, -1, -1,

+ 1, 0))
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> AnovaM(aov(log(IND + 1) ~ TREATTIME, hall1),

+ split = list(TREATTIME = list("treatment:time" = 1)))

Df Sum Sq Mean Sq F value Pr(>F)

TREATTIME 4 32.013 8.003 93.1689 1.232e-12 ***

TREATTIME: treatment:time 1 0.491 0.491 5.7209 0.02670 *

Residuals 20 1.718 0.086

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is strong evidence of a significant interaction between the nutrient
treatment and time. The effect of the nutrient treatment on the number of macroinvertebrate
individuals colonizing the artificial substrates differs according to the duration for which the
substrates have been available. The nature of the interaction could be explored by splitting
the data up and analysing the effects of the nutrient treatment separately for each time.
Additionally, given the sequential nature of time, polynomial trends could be explored for the
nutrient added treatments.

Step 8 (Key 12.18a) - Summarize the trends with an interaction plot.

> library(gmodels)

> hall1.means <- with(hall1, tapply(IND, list(TIME, TREAT), mean))

> hall1.se <- with(hall1, tapply(IND, list(TIME, TREAT),

+ function(x) ci(x)[4]))

> with(hall1, interaction.plot(TIME, TREAT, IND, las = 1, lwd = 2,

+ ylim = range(pretty(hall1$IND)), axes = F, xlab = "",

+ ylab = "", pch = c(16, 17), type = "b", legend = F))

> arrows(1:3, hall1.means - hall1.se, 1:3, hall1.means + hall1.se,

+ code = 3, angle = 90, len = 0.05)

> axis(2, cex.axis = 0.8, las = 1, mgp = c(3, 0.5, 0), tcl = -0.2)

> mtext(text = expression(paste("Mean number of macroinvertebrate")),

+ side = 2, line = 3, cex = 1)

> mtext(text = expression(paste("individuals")), side = 2, line = 2,

+ cex = 1)

> axis(1, cex.axis = 0.8, at = 1:3, lab = c("2", "4", "6"))

> mtext(text = "Time (duration)", 1, line = 3, cex = 1)

> box(bty = "l")

> legend("topright", leg = c("Control", "Nutrient added"), lwd = 2,

+ lty = c(2, 1), bty = "n", pch = c(16, 17), cex = 1)
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Example 12F: Two factor fixed (Model I) ANOVA with missing cells and unbalanced
replication
Milliken and Johnson (1984) present a data set from a fictitious investigation into the effects
of different fats and surfactants on the specific volume of baked bread. The 3x3 design was
to include four replicates of each of the three fat types and three surfactant types (nine
combinations). Unfortunately, many of the replicates were lost due to a defective batch of
yeast. The structure of the data a represented below.

Surf.1 Surf.2 Surf.3

Fat 1 XXX XXX
Fat 2 XXX XXXX
Fat 3 XX XXXX XX

Step 1 - Import (section 2.3) the Milliken and Johnson (1984) data set

> milliken <- read.table("milliken.csv", header = T, sep = ",")

Step 2 (Key 12.2) Milliken and Johnson (1984) considered both treatment and time to be fixed
factors and thus the data represent a Model I design

Step 3 (Key 12.3) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 12.1). According to Table 12.1, the effect
of fat and surfactant type as well as their interaction should all be tested against the overall
residual term (MSResid).

> boxplot(VOL ~ FAT * SURF, milliken)

F1.S1 F3.S1 F2.S2 F1.S3 F3.S3

5
6

7
8

9

Conclusions - no evidence of either non-normality
(boxplots not consistently asymmetrical) or a rela-
tionship between mean and variance (height of
boxplots related to their positions on the y-axis).

Step 4 (Key 12.5 & 12.11) - Determine whether or not the design is missing any factor
combinations (cells) or is unbalanced (unequal sample sizes).

> replications(VOL ~ FAT * SURF, milliken)

$FAT

FAT

F1 F2 F3

6 7 8
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$SURF

SURF

S1 S2 S3

8 7 6

$'FAT:SURF'

SURF

FAT S1 S2 S3

F1 3 3 0

F2 3 0 4

F3 2 4 2

> library(biology)

> is.balanced(VOL ~ FAT * SURF, milliken)

[1] FALSE

Conclusions - The design is not balanced - the number of replicates in each fat/surfactant
combination differs. Furthermore, there are two missing cells. As with example 12E, this
can be analysed with a cell means model in which all replicated factor level combinations
are treated as levels of a single factor in a single factor ANOVA. The main treatment effects are
estimated by defining planned contrasts that are carefully selected to model the ‘estimatable’
comparisons.

Step 5 - (Key 12.10) - Convert the factor combinations into a single factor design.

> milliken$FS <- as.factor(paste(milliken$FAT, milliken$SURF,

+ sep = ""))

Step 6 - (Key 12.12F) - For each of the main terms in the original multifactor model (the
main effects and interactions), define appropriate contrasts to estimate the effects of each term
(see Tables 12.3 & 12.4), fit the cell means linear model and partition the sums of squares
accordingly. Note that Type III sums of squares are used due to unbalanced data. Note also,
that additional planned contrasts will also be included to potentially explore any main effects
further.

Effect of the fat type

> contrasts(milliken$FS) <- cbind(c(1, 1, 0, 0, -1, -1, 0), c(0,

+ 0, 1, 1, -1, 0, -1))

> AnovaM(aov(VOL ~ FS, milliken), split = list(FS = list

+ (fat = 1:2, ' fat: 1 vs 3' = 1, ' fat 2 vs 3' = 2)),

+ type = "III")

Df Sum Sq Mean Sq F value Pr(>F)

FS 6 12.4714 2.0786 2.9493 0.04473 *

FS: fat 2 3.8725 1.9363 2.7474 0.09851 .

FS: fat: 1 vs 3 1 1.6233 1.6233 2.3033 0.15135

FS: fat 2 vs 3 1 1.6178 1.6178 2.2955 0.15200

Residuals 14 9.8667 0.7048

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Effect of surfactant type

> contrasts(milliken$FS) <- cbind(c(0, 0, 0, 0, 0, 1, -1), c(0,

+ 0, 1, -1, 1, 0, -1))

> AnovaM(aov(VOL ~ FS, milliken), split = list(FS = list

+ (surf = 1:2, ' surf: 2 vs 3' = 1, ' surf: 1 vs 3' = 2)),

+ type = "III")

Df Sum Sq Mean Sq F value Pr(>F)

FS 6 12.4714 2.0786 2.9493 0.04473 *

FS: surf 2 1.6702 0.8351 1.1850 0.33464

FS: surf: 2 vs 3 1 1.2063 1.2063 1.7116 0.21185

FS: surf: 1 vs 3 1 0.1593 0.1593 0.2261 0.64177

Residuals 14 9.8667 0.7048

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fat type by surfactant type interaction

> contrasts(milliken$FS) <- cbind(c(1, -1, 0, 0, -1, 1, 0), c(0,

+ 0, 1, -1, -1, 0, 1))

> AnovaM(aov(VOL ~ FS, milliken), split = list(FS = list

+ ('fat:surf' = 1:2, ' fat:surf1' = 1, ' fat:surf2' = 2)),

+ type = "III")

Df Sum Sq Mean Sq F value Pr(>F)

FS 6 12.4714 2.0786 2.9493 0.04473 *

FS: fat:surf 2 4.7216 2.3608 3.3498 0.06474 .

FS: fat:surf1 1 0.2689 0.2689 0.3815 0.54672

FS: fat:surf2 1 4.6935 4.6935 6.6597 0.02178 *

Residuals 14 9.8667 0.7048

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Neither fat type nor surfactant type were found to significantly effect the specific
volume of baked bread and nor was the impact of either found to be dependent on the other.

Step 7 (Key 12.18b) - Summarize the trends with an interaction plot.

> library(gmodels)

> milliken.means <- with(milliken, tapply(VOL, list(SURF, FAT),

+ mean, na.rm = T))

> milliken.se <- with(milliken, tapply(VOL, list(SURF, FAT),

+ function(x) ci(x, na.rm = T)[4]))

> xs <- barplot(milliken.means, ylim = range(milliken$VOL,

+ na.rm = T), beside = T, axes = F, xpd = F, axisnames = F,

+ axis.lty = 2, legend.text = F, col = c(0, 1, "gray"))

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("Fat 1", "Fat 2",

+ "Fat 3"), padj = 1, mgp = c(0, 0, 0))



FACTORIAL ANOVA 359

> mtext(2, text = expression(paste("Mean specific bread volume ")),

+ line = 3, cex = 1)

> box(bty = "l")

> arrows(xs, milliken.means, xs, milliken.means + milliken.se,

+ code = 2, angle = 90, len = 0.05)

> legend("topleft", leg = c("Surfactant 1", "Surfactant 2",

+ "Surfactant 3"), fill = c(0, 1, "gray"), col = c(0, 1,

+ "gray"), bty = "n", cex = 1)

5

6

7

8

9

Fat 1 Fat 2 Fat 3

M
ea

n 
sp

ec
ifi
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br
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vo
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e Surfactant 1

Surfactant 2
Surfactant 3



13

Unreplicated factorial designs – randomized
block and simple repeated measures

Chapter 11 introduced the concept of employing sub-replicates that are nested
within the main treatment levels as a means of absorbing some of the unexplained
variability that would otherwise arise from designs in which sampling units are selected
from amongst highly heterogeneous conditions. Such (nested) designs are useful in
circumstances where the levels of the main treatment (such as burnt and un-burnt
sites) occur at a much larger temporal or spatial scale than the experimental/sampling
units (e.g. vegetation monitoring quadrats). For circumstances in which the main
treatments can be applied (or naturally occur) at the same scale as the sampling units
(such as whether a stream rock is enclosed by a fish proof fence or not), an alternative
design is available. In this design (randomized complete block design), each of the levels
of the main treatment factor are grouped (blocked) together (in space and/or time)
and therefore, whilst the conditions between the groups (referred to as ‘blocks’) might
vary substantially, the conditions under which each of the levels of the treatment are
tested within any given block are far more homogeneous (see Figure 13.1b). If any
differences between blocks (due to the heterogeneity) can account for some of the total
variability between the sampling units (thereby reducing the amount of variability that
the main treatment(s) failed to explain), then the main test of treatment effects will be
more powerful/sensitive.

As an simple example of a randomized block, consider an investigation into the
roles of different organism scales (microbial, macro invertebrate and vertebrate) on
the breakdown of leaf debris packs within streams. An experiment could consist of
four treatment levels - leaf packs protected by fish-proof mesh, leaf packs protected by
fine macro invertebrate exclusion mesh, leaf packs protected by dissolving antibacterial
tablets, and leaf packs relatively unprotected as controls. As an acknowledgement that
there are many other unmeasured factors that could influence leaf pack breakdown
(such as flow velocity, light levels, etc) and that these are likely to vary substantially
throughout a stream, the treatments are to be arranged into groups or ‘blocks’ (each
containing a single control, microbial, macro invertebrate and fish protected leaf pack).

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 13.1 Fictitious spatial depictions contrasting (a) single factor (n = 2), (b) randomized
complete block (n = 6) and (c-d) repeated measures (n = 6) ANOVA designs each with
three treatment levels. When single sampling units are selected amongst highly heterogeneous
conditions (as represented in (a)), it is unlikely that these single units will adequately represent
the populations and repeated sampling is likely to yield very different outcomes. In such cases,
this heterogeneity increases the unexplained variation thereby potentially masking any detectable
effects due to the measured treatments. If however, it is possible to group each of the main
treatment levels together within a small spatial or temporal scale (in which the conditions are likely
to be more homogeneous), the groups (or ‘blocks’) should account for some of the unexplained
variability between replicates thereby reducing the unexplained variability (and thus increasing
the power of the main test of treatments).



362 CHAPTER 13

Blocks of treatment sets are then secured in locations haphazardly selected throughout
a particular reach of stream.

Blocking does however come at a cost. The blocks absorb both unexplained
variability as well as degrees of freedom from the residuals. Consequently, if the
amount of the total unexplained variation that is absorbed by the blocks is not
sufficiently large enough to offset the reduction in degrees of freedom (which may
result from either less than expected heterogeneity, or due to the scale at which the
blocks are established being inappropriate to explain much of the variation), for a
given number of sampling units (leaf packs), the tests of main treatment effects will
suffer power reductions.

Treatments can also be applied sequentially or repeatedly at the scale of the entire
block, such that at any single time, only a single treatment level is being applied
(see Figure 13.1c-d). Such designs are called repeated measures. A repeated measures
ANOVA is to an single factor ANOVA as a paired t-test is to a independent samples
t-test. One example of a repeated measures analysis might be an investigation into the
effects of five different diet drugs (four doses and a placebo) on the food intake of lab
rats. Each of the rats (‘subjects’) is subject to each of the four drugs (within subject
effects) which are administered in a random order. In another example, temporal
recovery responses of sharks to bi-catch entanglement stresses might be simulated by
analysing blood samples collected from captive sharks (subjects) every half hour for
three hours following a stress inducing restraint.

This repeated measures design allows the anticipated variability in stress tolerances
between individual sharks to be accounted for in the analysis (so as to permit more
powerful test of the main treatments). Furthermore, by performing repeated measures
on the same subjects, repeated measures designs reduce the number of subjects required
for the investigation. Essentially, this is a randomized complete block design except that
the within subject (block) effect (e.g. time since stress exposure) cannot be randomized
(the consequences of which are discussed in section 13.4.1).

To suppress contamination effects resulting from the proximity of treatment
sampling units within a block, units should be adequately spaced in time and
space. For example, the leaf packs should not be so close to one another that the
control packs are effected by the antibacterial tablets and there should be sufficient
recovery time between subsequent drug administrations. In addition, the order or
arrangement of treatments within the blocks must be randomized so as to prevent
both confounding as well as computational complications (see section 13.4.1). Whilst
this is relatively straight forward for the classic randomized complete block design
(such as the leaf packs in streams), it is logically not possible for repeated measures
designs.

Blocking factors are typically random factors (see section 10.0.1) that represent all
the possible blocks that could be selected. As such, no individual block can truly be
replicated. Randomized complete block and repeated measures designs can therefore
also be thought of as un-replicated factorial designs in which there are two or more
factors but that the interactions between the blocks and all the within block factors are
not replicated.
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13.1 Linear models

The linear modelsa for two and three factor un-replicated factorial design are:

yij = µ + βi + αj + εij (Model 1 or 2)

yijk = µ + βi + αj + γk + βαij + βγ ik + αγ jk + γ αβ ijk + εijk (Model 1)

yijk = µ + βi + αj + γk + αγjk + εijk (Model 2)

where µ is the overall mean, β is the effect of the Blocking Factor B, α and γ are
the effects of withing block Factor A and Factor C respectively and ε is the random
unexplained or residual component.

Tests for the effects of blocks as well as effects within blocks assume that there are
no interactions between blocks and the within block effects. That is, it is assumed that
any effects are of similar nature within each of the blocks. Whilst this assumption
may well hold for experiments that are able to consciously set the scale over which
the blocking units are arranged, when designs utilize arbitrary or naturally occurring
blocking units, the magnitude and even polarity of the main effects are likely to vary
substantially between the blocks. The preferred (non-additive or ‘Model 1’) approach
to un-replicated factorial analysis of some bio-statisticians is to include the block by
within subject effect interactions (e.g. βα). Whilst these interaction effects cannot be
formally tested, they can be used as the denominators in F-ratio calculations of their
respective main effects tests (see Tables 13.1 & 13.2). Proponents argue that since these
blocking interactions cannot be formally tested, there is no sound inferential basis
for using these error terms separately. Alternatively, models can be fitted additively
(‘Model 2’) whereby all the block by within subject effect interactions are pooled into
a single residual term (ε). Although the latter approach is simpler, each of the within
subject effects tests do assume that there are no interactions involving the blocksb and
that perhaps even more restrictively, that sphericity (see section 13.4.1) holds across
the entire design.

13.2 Null hypotheses

Separate null hypotheses are associated with each of the factors, however, blocking
factors are typically only added to absorb some of the unexplained variability and
therefore specific hypothesis tests associated with blocking factors are of lesser biological
importance.

a Note that whilst the order of the linear model terms is not important as far as software is concerned,
the order presented above reflects (most closely) the hierarchy of the design structure. That is, the
main factor effect (α) occurs within the blocking factor effect (β) and is thus placed after the blocking
effect in the linear model. I say most closely since some of the terms are at the same hierarchical level
(e.g. α and γ ) and thus their orders are interchangeable.
b The presence of such interactions increase the residual variability and thus reduce the power of tests.
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13.2.1 Factor A - the main within block treatment effect

Fixed (typical case)

H0(A) : µ1 = µ2 = ... = µi = µ (the population group means of A (pooling B)

are all equal)

The mean of population 1 (pooling blocks) is equal to that of population 2 and so on,
and thus all population means are equal to an overall mean. No effect of A within each
block (Model 2) or over and above the effect of blocks. If the effect of the ith group is
the difference between the ith group mean and the overall mean (αi = µi − µ) then
the H0 can alternatively be written as:

H0(A) : α1 = α2 = ... = αi = 0 (the effect of each group equals zero)

If one or more of the αi are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random

H0(A) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of A (pooling B).

13.2.2 Factor B - the blocking factor

Random (typical case)

H0(B) : σ 2
β = 0 (population variance equals zero)

There is no added variance due to all possible levels of B.

Fixed

H0(B) : µ1 = µ2 = . . . = µi = µ (the population group means of B are all equal)

H0(B) : β1 = β2 = . . . = βi = 0 (the effect of each chosen B group equals zero)

The null hypotheses associated with additional within block factors, are treated similarly
to Factor A above.

13.3 Analysis of variance

Partitioning of the total variance sequentially into explained and unexplained com-
ponents and F-ratio calculations predominantly follows the rules established in
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Table 13.1 F-ratios and corresponding R syntax for a range of two un-replicated factorial
(randomized complete block and repeated measures) designs.

F-ratio

Factor d.f. MS Model 1 (non-additive) Model 2 (additive)

B′ (block) b − 1 MSB′ No testa MSB′

MSResid

A a − 1 MSA
MSA

MSResid

MSA

MSResid

Residual (=B′A) (b − 1)(a − 1) MSResid

> summary(aov(DV~Error(B)+A))

Unbalanced > anova(lme(DV~A, random=~1|B))

aIf A is random (or an unrestricted model), then F-ratio is MSB′/MSResid.

chapters 11 and 12. Randomized block and repeated measures designs can essentially
be analysed as Model III ANOVAs. The appropriate unexplained residuals and there-
fore the appropriate F-ratios for each factor differ according to the different null
hypotheses associated with different combinations of fixed and random factors and
what analysis approach (Model 1 or 2) is adopted for the randomized block linear
model (see Tables 13.1 & 13.2).

In additively (Model 2) fitted models (in which block interactions are assumed not
to exist and are thus pooled into a single residual term), hypothesis tests of the effect of
B (blocking factor) are possible. However, since blocking designs are usually employed
out of expectation for substantial variability between blocks, such tests are rarely of
much biological interest.

13.4 Assumptions

As with other ANOVA designs, the reliability of hypothesis tests is dependent on the
residuals being:

(i) normally distributed. Boxplots using the appropriate scale of replication (reflecting the
appropriate residuals/F-ratio denominator (see Tables 13.1 & 13.2) should be used to
explore normality. Scale transformations are often useful.

(ii) equally varied. Boxplots and plots of means against variance (using the appropriate scale
of replication) should be used to explore the spread of values. Residual plots should
reveal no patterns. Scale transformations are often useful.

(iii) independent of one another. Although the observations within a block may not strictly be
independent, provided the treatments are applied or ordered randomly within each block
or subject, within block proximity effects on the residuals should be random across all
blocks and thus the residuals should still be independent of one another. Nevertheless,
it is important that experimental units within blocks are adequately spaced in space and
time so as to suppress contamination or carryover effects.
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Table 13.2 F-ratios and corresponding R syntax for a range of un-replicated three-factor (ran-
domized complete block and repeated measures) designs. F-ratio numerators and demoninators
are represented by numbers that correspond to the rows from which the appropriate mean square
values would be associated.

F-ratio

A&C, B random A fixed,B&C random A,B&C random

Factor d.f. Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

1 B′ b − 1 No testa 1/7 1/6b 1/7 1/(5 + 6 − 7)b c 1/7
2 A a − 1 2/5 2/7 2/(4 + 5 − 7)b d 2/4 2/(4 + 5 − 7)b c 2/4
3 C c − 1 3/6 3/7 3/6b 3/7e 3/(4 + 6 − 7)b c 3/4
4 A×C (a − 1)(c − 1) 4/7 4/7 4/7 4/7 4/7 4/7
5 B′×A (b − 1)(a − 1) No test No test 5/7
6 B′×C (b − 1)(a − 1) No test No test 6/7
7 Residuals (b − 1)(a − 1)(c − 1)

(=B′×A×C)
B random, A&C fixed

Model 1 > summary(aov(DV~+Error(B/(A*C)+A*C)))

Model 2 > summary(aov(DV~Error(B)+A*C))

Unbalanced #sphericity met

> anova(lme(DV~A*C, random=~1|B), type=’marginal’)

#sphericity not met

> anova(lme(DV~A*C,random=~1|B,corr=corAR1(form=~1|B),

type=’marginal’)

Other models
#F-ratios and P-values must be calculated individually

> AnovaM(aov(DV~B*A*C))

aIf A is random (or an unrestricted model), then F-ratio is 1/7 (MSB′/MSResid).
bInexact F-ratio for restricted model.
cPooling: higher order interactions with P> 0.25 can be removed to produce more exact denominators.
dPooling: If P>0.25 for AC′ and P<0.25 for B′A, F-ratio denominator is MSB′A. If P>0.25 for B′A and P<0.25 for AC′,
F-ratio denominator is MSAC′ . If P>0.25 for both B′A and AC′, F-ratio denominator is (SSAC′ + SSB′A + SSB′AC′ )/((a −
1)(c − 1) + (a − 1)(c − 1) + (a − 1)(b − 1)(c − 1)).
eFor unrestricted model F-ratio denominator is MSAC′ .

13.4.1 Sphericity

Un-replicated factorial designs extend the usual equal variance (no relationship between
mean and variance) assumption to further assume that the differences between each
pair of within block treatments are equally varied across the blocks (see Figure 13.2).
To meet this assumption, a matrix of variances (between pairs of observations within
treatments) and covariances (between treatment pairs within each block) must display
a pattern known as sphericityc

Typically, un-replicated factorial designs in which the treatment levels have been
randomly arranged (temporally and spatially) within each block (randomized complete

c Strickly, the variance-covariance matrix must display a very specific pattern of sphericity in which
both variances and covariances are equal (compound symmetry), however an F-ratio will still reliably
follow an F distribution provided basic sphericity holds.
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(a) Single factor ANOVA

T1 T2 T3 T4

Variance-covariance structure

T1 T2 T3 T4
T1 0.15 0.00 0.00 0.00
T2 0.00 0.15 0.00 0.00
T3 0.00 0.00 0.15 0.00
T4 0.00 0.00 0.00 0.15

(b) Randomized complete block design

Block A

Block B

Block C

Block D

T1 T2 T3 T4

Variance-covariance structure

T1 T2 T3 T4
T1 0.15 0.05 0.05 0.05
T2 0.05 0.15 0.05 0.05
T3 0.05 0.05 0.15 0.05
T4 0.05 0.05 0.05 0.15

(c) Repeated measures design

Subject A

Subject B

Subject C

10 20 30 40

Time (mins)

Variance-covariance structure

Time1 Time2 Time3 Time4
Time1 0.50 0.60 0.30 0.10
Time2 0.60 0.50 0.60 0.30
Time3 0.30 0.60 0.50 0.60
Time4 0.10 0.30 0.60 0.50

Fig 13.2 Fictitious representations of variance-covariance structures associated with examples
of (a) Single factor ANOVA, (b) Randomized complete block and (c) Repeated measures designs.
The matrix diagonals represent within group variances and the off-diagonals represent the
covariances between each group pair. In each of the example designs, homogeneity of variance
(between treatment groups) is met. The variance-covariance structure associated with single factor
ANOVA designs typically have either zero covariance or at least no pattern in the covariances.
Randomized complete block designs (in which the treatment levels are arranged randomly within
each block) usually display compound symmetry (equal covariances). By contrast, repeated
measures designs often violate this assumption (sphericity) and display a covariance structure
that reflects a particular pattern in which progressively closer (temporally or spatially) observations
collected from the same sampling units are progressively more similar (autocorrelated).

block) should meet this sphericity assumption. Conversely, repeated measures designs
that incorporate factors whose levels cannot be randomized within each block (such as
distances from a source or time), are likely to violate this assumption. In such designs,
the differences between treatments that are arranged closer together (in either space
or time) are likely to be less variable (greater paired covariances) than the differences
between treatments that are further apart.

Hypothesis tests are not very robust to substantial deviations from sphericity and
consequently would tend to have inflated type I errors. There are three broad techniques
for compensating or tackling the issues of sphericity:

(i) reducing the degrees of freedom for F-tests according to the degree of departure
from sphericity (measured by epsilon (ε)). The two main estimates of epsilon are
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Greenhouse-Geisser and Huynh-Feldt, the former of which is preferred (as it provides
more liberal protection) unless its value is less than 0.5.

(ii) perform a multivariate ANOVA (MANOVA). Although the sphericity assumption does
not apply to such procedures, MANOVA’s essentially test null hypotheses about the
differences between multiple treatment pairs (and thus test whether an array of population
means equals zero), and therefore assume multivariate normality - a difficult assumption
to explore.

(iii) fit a linear mixed effects (lme) model (see section 11.8). The approximate form of
the correlation structure can be specified up-front when fitting linear mixed effects
models and thus correlated data are more appropriately handled. A selection of variance-
covariance structures appropriate for biological data are listed in Table 13.3. It is generally
recommended that linear mixed effects models be fitted with a range of covariance
structures. The ‘‘best’’ covariance structure is that the results in a better fit (as measured
by either AIC, BIC or ANOVA) than a model fitted with a compound symmetry
structure.

13.4.2 Block by treatment interactions

The presence of block by treatment interactions have important implications for models
that incorporate a single within block factor as well as additive models involving two or
more within block factors. In both cases, the blocking interactions and overall random
errors are pooled into a residual term that is used as the denominator in F-ratio
calculations (see Table 13.1). Consequently, block by treatment interactions increase
the denominator (MSResid) resulting in lower F-ratios (lower power). Moreover, the
presence of strong blocking interactions would imply that any effects of the main
factor are not consistent. Drawing conclusions from such an analysis (particularly in
light of non-significant main effects) is difficult. Unless we assume that there are no
block by within block interactions, non-significant within block effects could be due
to either an absence of a treatment effect, or as a result of opposing effects within
different blocks. As these block by within block interactions are unreplicated, they can
neither be formally tested nor is it possible to perform main effects tests to diagnose
non-significant within block effects.

Block by treatment interactions can be diagnosed by examining;

(i) interaction (cell means) plot. The mean (n = 1) response for each level of the main factor
is plotted against the block number. Parallel lines infer no block by treatment interaction.

(ii) residual plot. A curvilinear pattern in which the residual values switch from positive to
negative and back again (or visa versa) over the range of predicted values implies that
the scale (magnitude but not polarity) of the main treatment effects differs substantially
across the range of blocks. Scale transformations can be useful in removing such
interactions.

(iii) Tukey’s test for non-additivity evaluated at α = 0.10 or even α = 0.25. This (curvilinear
test) formally tests for the presence of a quadratic trend in the relationship between residu-
als and predicted values. As such, it too is only appropriate for simple interactions of scale.
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There are no corrections for other more severe interactions (such as cross-over) -
effected conclusions must therefore be made cautiously.

13.5 Specific comparisons

For randomized complete block designs in which the levels of within block factors can
be randomly arranged, both planned and unplanned multiple comparisons tests can
be performed as per single factor or fully factorial linear models (see chapters 10&12).
However, when the assumption of sphericity is likely to be violated (as is typically
the case for repeated measures designs), the appropriate compensatory adjustments
for each specific comparison are not clearly defined. Therefore, each specific planned
comparison should be performed using separately generated denominators (error
terms). Unplanned multiple comparisons should be performed as a series of paired t
tests, subsequently corrected for inflated type I error rates (e.g. Bonferroni corrections)
if necessary (see section 10.6).

13.6 Unbalanced un-replicated factorial designs

Since these designs are un-replicated, any missing observation equates to an entire
missing combination (cell) and thus an unbalanced design. Unbalanced designs (to
reiterate) are less robust to deviations from the assumptions (particularly sphericity)
and therefore require special attention. There are a number of approaches for dealing
with unbalanced un-replicated designs, the pros and cons of which are described
below:

(i) Omit the entire block/subject from which the observation is missing. Clearly, such an
approach is only acceptable for designs that have a large number of blocks in the first
place as it involves disregarding otherwise good data.

(ii) Fit a cell means model with appropriate contrasts (see section 12.6.2). Defining the
appropriate contrasts can be a very difficult process.

(iii) If block interactions are assumed not to exist (additivity)
(a) perform regular analysis with missing values have been replaced by values predicted

by solving equations such as (predicted value = treatment mean + block mean -
overall mean) and subtract one degree of freedom for each substituted value.

(b) compare the fit (residual sums of squares) of appropriate full and reduced models
(e.g. full: yij = µ + βi + αj + εij versus reduced: yij = µ + βi + εij) using ANOVA.
Importantly, sphericity corrections should also be incorporated into this approach -
a task that is difficult to achieve.

(iv) Fit a linear mixed effects (lme) model (see section 11.8). In contrast to ANOVA,
which only produces optimal estimators (estimators that minimize variance) for balanced
designs, maximum likelihood (ML and REML) and thus linear mixed effects estimators yield
estimators that are ‘asymptotically efficient’ for both balanced and unbalanced designs.
The ability of linear mixed effects models to accommodate balanced and unbalanced,
correlated and hierarchical (nested) data makes them the preferred approach to analyzing
unbalanced un-replicated factorial designs.
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13.7 Robust alternatives

When the data are non-normal (or infected with outliers), rank-based analysis can
be useful. Of particular note is the Friedman test which generates a test statistic after
ranking the observations within each block and compares this statistic to a chi-square
distribution. As is the case for other rank based alternatives, this approach is less
powerful than the parametric equivalents and is less capable of handling blocking
interactions. Moreover, rank based tests do not directly address the issues of sphericity
and are therefore inapporpriate for repeated measures designs.

Randomization tests, in which observations are repeatedly shuffled amongst the
treatments within each block, are useful (particularly when observational independence
is violated).

13.8 Power and blocking efficiency

Power analyses follow single factor and fully factorial power analyses, except that with
respect to sample sizes, the blocks become the replicates. The decision of whether
or not to block is often a comprimise between reducing unexplained variation and
retaining maximum degrees of freedom. For the benifit of future investigations on
similar systems, it is often desirable to determine what benifit incorporating a blocking
factor offered over a regular completely randomized design. An estimate of the relative
effeciency of the blocking can be obtained from:

Estimated blocking efficiency = (q − 1)MSBlock + q(p − 1)MSResid

(pq − 1)MSResid

13.9 Unreplicated factorial ANOVA in R

Randomized complete block and repeated measures designs can be analysed using
the aov() function with blocking factors defined with the Error= argument. Anova
tables for balanced designs that meet the assumption of sphericity can be viewed
using the summary() function which can also accommodate planned contrasts with
the split= argument. Alternatively, lme (nlme) and the more recent lmer (lme4)
functions facilitate the argubly more appropriate linear mixed effects modelling
approach to analysing unreplicated factorial designs. Associated planned comparisons
are performed as estimable() functions.

13.10 Further reading

• Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.
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Hollander, M., and D. A. Wolfe. (1999). Nonparametric statistical methods, 2nd
edition. 2 edition. John Wiley & Sons, New York.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS.
Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. (2009). Mixed
Effects Models and Extensions in Ecology with R. Springer.

13.11 Key for randomized block and simple repeated measures ANOVA

1 a. Determine the appropriate model design and hierarchy

• Conceptualise the design into a hierarchy (ladder) of factors

• Blocking factor (factor to which all levels (complete sets) of other factors are
applied) at the top

• Each of the main treatment factors (that are applied within each block) are
considered lower in the hierarchy

• The Block by treatment interactions (which are unreplicated) are next on the
heirarchy

• If there are two or more fixed within block treatment factors, then there are
also interactions between these factors to consider

• Label random blocking factor levels (blocks or subjects ) with a unique name

Block Fact A DV

B1 A1 .
B1 A2 .
B1 A3 .
B2 A1 .

• Identify the correct error (residual) term and thus F-ratio denominator for each
factor (see Tables 13.1 & 13.2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
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2 a. Check assumptions for unreplicated factorial ANOVA
As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. This is
particularly important for Model 1 (non-additive) models where interaction terms
are used as the appropriate denominators (residuals).

• No block by within block treatment interactions

> with(data, interaction.plot(B, A, DV))

Residual curvature plot and Tukey’s test for nonadditivity

> library(alr3)

> residual.plots(lm(DV ~ BLOCK + A, data))

> tukey.nonadd.test(lm(DV ~ BLOCK + A, data))

• Normality (symmetry) of the response variable (residuals) at each level of each
factor or combination of factors - boxplots of mean values
Single within block factor or additive model (no interactions - Model 2) using
MSResid as denominator in each case

> boxplot(DV ~ A, data)

> boxplot(DV ~ C, data)

> boxplot(DV ~ A * C, data)

Two or more within block factor non-additive (Model 1) model using interac-
tions (such as MSBA) as denominator as example

> library(lme4)

> data.BA.agg <- gsummary(data, groups = data$B:data$A)

> boxplot(DV ~ A, data.BA.agg)

where DV is the response variable, A is a main fixed or random factor within the data
dataset.

• Homogeneity (equality) of variance of the response variable (residuals) at each
level of each factor or combination of factors - boxplots of mean values
As for Normality.
Parametric assumptions (Normality/Homogeneity of variance) met . . Go to 4

b. Parametric assumptions not met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Attempt a scale transformation (see Table 3.2 for transformation options) Go to 2
b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . . . . . . . Go to 9

4 a. If incorporating planned contrasts (comparisons) . . . . . . See Examples 13A&13B

> contrasts(data$A) <- cbind(c(contrasts), ...)

> round(crossprod(contrasts(data$A)), 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5
5 a. Determine whether the design is balanced

> replications(DV ~ Error(Block) + A * C.., data)

> is.balanced(DV ~ Error(Block) + A * C.., data)

Design is balanced - sample sizes of all cells are equal . . . . . . . . . . . . . . . . . . Go to 6
b. Design is NOT balanced - one or more cells (combinations) missing

(0 replicates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7
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c. Design is NOT balanced - sample sizes of cells differ, but all combinations have at
least one replicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

6 a. Balanced single within block factor or additive (no interactions -
Model 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 13A,13B

> data.aov <- aov(DV ~ A + Error(Block), data)

> data.aov <- aov(DV ~ A * C + Error(Block), data)

Alternatively, consider linear mixed effects (lme) model . . . . . . . . . . . . . . Go to 13
Check for sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

• Sphericity met

> summary(data.aov)

OR

> library(biology)

> AnovaM(data.aov)

• Sphericity NOT met

> library(biology)

> AnovaM(data.aov, RM = T)

To incorporate planned comparisons, utilize the split= argument, see Key 12.6
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12.20a

b. Balanced two or more within block factor non-additive
(Model 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 13A,13B&13D)

> data.aov <- aov(DV ~ Error(Block/A + Block/C) + A * C, data)

Alternatively, consider linear mixed effects (lme) model . . . . . . . . . . . . . . Go to 13
Check for sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12

• Sphericity met

> summary(data.aov)

OR

> library(biology)

> AnovaM(data.aov)

• Sphericity NOT met

> library(biology)

> AnovaM(data.aov, RM = T)

To incorporate planned comparisons, utilize the split= argument, see Key 12.6
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . Go to Key 12.20a

7 a. Unbalanced (missing cells) single within block or additive (Model 2)

> data.lme <- lme(DV ~ A, random = ~1 | Block, data)

> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

> anova(data.lme)

b. Unbalanced (missing cells) two or more within block factor non-additive
(Model 1)
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> data.lme <- lme(Y ~ A * C, random = ~1 | Block/A + 1 |

+ Block/C, data)

> anova(data.lme)

8 a. Unbalanced (unequal sample sizes n > 0) additive (Model 2)

> contrasts(data$A) <- contr.helmert

> contrasts(data$C) <- contr.helmert

> data.aov <- aov(DV ~ Error(Block) + A * C, data)

> AnovaM(data.aov, type = "III")

OR

> data.lme <- lme(DV ~ A * C, random = ~1 | Block, data)

b. Unbalanced (unequal sample sizes n > 0) non-additive (Model 1)

> data.aov <- aov(DV ~ Error(Block/A + Block/C) + A * C, data)

OR

> data.lme <- lme(DV ~ A, random = ~1 | Block, data)

> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

> anova(data.lme)

9 a. Underlying distributions not normally distributed . . . . . . . . . . . . . . . . . . . Go to 10
or consider GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17

b. Underlying distributions not normally distributed . . . . . . . . . . . . . . . . . . . Go to 10
10 a. Underlying distribution of the response variable and residuals

is known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLM chapter 17
b. Underlying distributions of the response variable and residuals

is not known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 11
11 a. Variances not wildly unequal, outliers present, but data independent (Friedman

non-parametric test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 13E

> friedman.test(DV ~ A | Block, data)

b. Variances not wildly unequal, random sampling not possible - data might not be
independent (Randomization test
Follow the instructions in Key 10.8b to randomize the F-ratios or MS values from
ANOVA tables produced using the parametric steps above. Warning, random-
ization procedures are only useful when there are a large number of possible
randomization combinations (rarely the case in blocking designs)

12 a. Checking sphericity

> library(biology)

> epsi.GG.HF(data.aov)

13 a. Fitting linear mixed effects models

• Fit a range of models with alternative covariance structures

> library(nlme)

> #General (unstructured)

> data.lme <- lme(DV ~ A, random = ~1 | Block, data, corr =

+ corSymm(form = ~1 | Block))

> #Compound symmetry

> data.lme1 <- lme(DV ~ A, random = ~1 | Block, data, corr =
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+ corrCompSymm(form = ~1 | Block))

> #Compound symmetry with heterogenous variances

> data.lme2 <- lme(DV ~ A, random = ~1 | Block, data, corr =

+ corrCompSymm(form = ~1 | Block), weights = varIdent(form =

+ ~1 | Block))

> #First order autoregressive

> data.lme3 <- lme(DV ~ A, random = ~1 | Block, data, corr =

+ corrAR1(form = ~1 | Block))

• Compare the fit of each to the model incorporating compound symmetry

> anova(data.lme1, data.lme)

• Examine the anova table (for fixed effects) for the fitted model with the ‘‘best’’
covariance structure

> summary(data.lme)

• Examine the parameter estimates for the fitted model with the ‘‘best’’ covariance
structure

> summary(data.lme)

13.12 Worked examples of real biological data sets

Example 13A: Two factor fixed (Model I) ANOVA
To investigate the importance of leaf domatia on the abundance of mites, Walter and
O’Dowd (1992) shaved the domatia off the surface of one random leaf from each of 14 leaf
pairs. Leaves where blocked into pairs of neighboring leaves in anticipation that different
parts of a plant might have different numbers of mites. Their design represents a randomized
complete block with leaf pairs as random blocks and the treatment (shaved or not) as the
within block effect (from Box 10.1 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Walter and O’Dowd (1992) data set

> walter <- read.table("walter.csv", header = T, sep = ",")

Step 2 - The block vector (variable) contains a unique identifier of each leaf pair. However, R will
consider this to be a integer vector rather than a categorical factor. In order to ensure that this
variable is treated as a factor we need to redefine its class

> walter$BLOCK <- factor(walter$BLOCK)

> class(walter$BLOCK)

[1] "factor"

Step 3 (Key 13.2) - Assess assumptions of normality and homogeneity of variance for the main
null hypothesis that there is no effect of shaving domatia on the number of mites found on
leaves.
According to Table 13.1, the MSResid (individual leaves within leaf pairs) should be used as the
replicates for this hypothesis irrespective of whether a blocking interaction (the consistency of
the effect of shaving is across leaf pairs) is likely to be present or not.
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MITE log transformed MITEd

> boxplot(MITE ~ TREAT, walter) > boxplot(log(0.5 + (MITE *

10)) ~ TREAT, walter)
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Conclusions - Strong evidence of unequal variance, potentially due to non-normality. Loga-
rithmic transformation to normalize is an improvement.

Step 4 (Key 13.2) - Investigate whether or not there is any evidence of a block by treatment
interaction.

Response variable: MITE

> library(alr3)

> resplot(lm(MITE ~ BLOCK +

TREAT, walter))

t value Pr(>|t|)

6.452132e+00 1.102875e-10

> with(walter, interaction.plot

(BLOCK, TREAT, MITE))
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d Note that due to the presence of zero values Walter and O’Dowd (1992) added a small constant
(0.5) to each of the mite counts prior to logarithmic transformation. They also multiplied the number
of mites by 10, although it is not clear why.
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Response variable: log transformed MITE

> library(alr3)

> resplot(lm(log(0.5 + (MITE *

+ 10)) ~ BLOCK + TREAT,

+ walter))

t value Pr(>|t|)

-0.4644124 0.6423523

> with(walter, interaction.plot

+ (BLOCK, TREAT, log(0.5 +

+ (MITE * 10))))
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Conclusions - Strong evidence of a blocking interaction with the raw data (curvature pattern
in the residuals and a significant Tukey’s non-additivity statistic), yet no evidence with the log
transformed data.

Step 5 (Key 13.5) - Determine whether or not the design is balanced (equal sample sizes).

> replications(log(0.5 + (MITE * 10)) ~ Error(BLOCK) + TREAT,

data = walter)

TREAT

14

> library(biology)

> is.balanced(log(0.5 + (MITE * 10)) ~ Error(BLOCK) + TREAT,

data = walter)

[1] TRUE

Conclusions - The design is completely balanced. Each of the 14 leaf pairs have exactly one
leaf for each treatment (shaved or not).

Step 6 (Key 13.6) - Fit the randomized complete block linear model (additive or non-additive).

> walter.aov <- aov(log(0.5 + (MITE * 10)) ~ Error(BLOCK) + TREAT,

+ data = walter)

Step 7 (Key 13.6) - Examine the anova table.

> summary(walter.aov)

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 13 23.0576 1.7737
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 1 31.341 31.341 11.315 0.005084 **

Residuals 13 36.007 2.770

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - the number of mites were found to be significantly lower on shaved leaves
(those without domatia) than unshaved leaves.

Step 8 (Key 12.18) - Summarize the trends in a plot.

> op <- par(mar = c(4, 4, 0.1, 0.1))

> plot(MITE ~ as.numeric(BLOCK), data = walter, type = "n",

+ axes = F, xlab = "", ylab = "")

> with(subset(walter, TREAT == "Without.domatia"), points(MITE ~

+ as.numeric(BLOCK), pch = 21, type = "o", lwd = 1))

> with(subset(walter, TREAT == "With.domatia"), points(MITE ~

+ as.numeric(BLOCK), pch = 16, type = "o", lwd = 1, lty = 1))

> axis(1, cex.axis = 0.8)

> mtext(text = "Leaf pair", side = 1, line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = "Number of mites per leaf", side = 2, line = 3)

> legend("topright", leg = c("Without domatia", "With domatia"),

+ lty = 0, pch = c(21, 16), bty = "n", cex = 0.7)

> box(bty = "l")

> par(op)
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Example 13B: Simple repeated measures ANOVA
Driscoll and Roberts (1997) investigated the impact of fuel-reduction burning on the number
of individual male frogs calling. Matched burnt and unburnt sites were blocked within six
drainages, and the difference in number of calling male frogs between the sites was recorded
for each drainage on three occasions (a 1992 pre-burn and two post burns in 1993 and
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1994). They were primarily interested in investigating whether the mean difference in number
of calling frogs between burn and control sites differed between years (from Box 10.2 of
Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Driscoll and Roberts (1997) data set

> driscoll <- read.table("driscoll.csv", header = T, sep = ",")

Step 2 - The year vector is represented by single integer entries, and therefore to ensure that it is
treated as a factor, we need to manually define it as such.

> driscoll$YEAR <- factor(driscoll$YEAR)

Step 3 (Key 13.2) - Assess assumptions of normality and homogeneity of variance for the main
null hypothesis that there is no effect of year on the difference in male frogs calling between
burnt and unburnt sites (within blocks).
According to Table 13.1, the MSResid (individual frog call differences) should be used as the
replicates for this hypothesis irrespective of whether a blocking interaction is likely to be present
or not.

> boxplot(CALLS ~ YEAR, driscoll)

Conclusions - No evidence of unequal variance,
and the hypothesis test should be robust enough to
account for any potential non-normality.
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Step 4 (Key 13.2) - Investigate whether or not there is any evidence of a block by year
interaction.

> library(alr3)

> resplot(lm(CALLS ~ BLOCK +

+ YEAR, driscoll))

t value Pr(>|t|)

-0.03404365 0.97284234

> with(driscoll, interaction.plot

+ (BLOCK, YEAR, CALLS))
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Conclusions - No strong evidence of a blocking interaction.
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Step 5 (Key 13.5) - Determine whether or not the design is balanced (equal sample
sizes).

> replications(CALLS ~ Error(BLOCK) + YEAR, data = driscoll)

YEAR

6

> library(biology)

> is.balanced(CALLS ~ Error(BLOCK) + YEAR, data = driscoll)

[1] TRUE

Conclusions - The design is completely balanced. Each of the three years were represented
within each of the 6 drainages (blocks).

Step 6 (Key 13.6) - Fit the repeated measures linear model (additive or non-additive).

> driscoll.aov <- aov(CALLS ~ Error(BLOCK) + YEAR, data = driscoll)

Step 7 (Key 13.6) - Examine the anova table. Since, the levels of year cannot be randomized
within each block (the order must always be 1, 2, 3), we might suspect that sphericity will be
an issue. Consequently, we will calculate Greenhouse-Geisser and Huynh-Feldt epsilon values
and adjust the hypothesis tests accordingly.

> library(biology)

> AnovaM(driscoll.aov, RM = T)

Sphericity Epsilon Values

-------------------------------

Greenhouse.Geisser Huynh.Feldt

0.7121834 0.9153904

Anova Table (Type I tests)

Response: CALLS

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 955.61 191.12

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 2 369.44 184.72 9.6601 0.004615 **

Residuals 10 191.22 19.12

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Greenhouse-Geisser corrected ANOVA table

Response: CALLS

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 955.61 191.12
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 1.4244 369.44 184.72 9.6601 0.00722 **

Residuals 10.0000 191.22 19.12

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Huynh-Feldt corrected ANOVA table

Response: CALLS

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 955.61 191.12

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 1.8308 369.44 184.72 9.6601 0.005196 **

Residuals 10.0000 191.22 19.12

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - The Greenhouse-Geisser epsilon (0.712) confirmed a deviation from sphericity
and thus the Greenhouse-Geisser adjusted P-value (0.013) should be used. Analysis indicates
that there was a significant effect of year (time prior or post fuel reduction burn) on the
difference in number of males calling between burnt and unburnt sites.

Step 8 (Key 12.8) - Quinn and Keough (2002) also presented the output of a multivariate
analysis of variance (MANOVA) as an alternative.

> #convert the data to wide format

> dris.rm <- reshape(driscoll, timevar = "YEAR", v.names = "CALLS",

+ idvar = "BLOCK", direction = "wide")

> #fit the simple MANOVA

> dris.lm <- lm(cbind(CALLS.1, CALLS.2, CALLS.3) ~ 1, dris.rm)

> #create a data frame that defines the intra-block design

> idata <- data.frame(YEAR = as.factor(c(1, 2, 3)))

> #use the Anova (car) function to estimate the MANOVA test

statistics

> (av.ok <- Anova(dris.lm, idata = idata, idesign = ~YEAR))

Type III Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.0028 0.0142 1 5 0.90965

YEAR 1 0.8725 13.6913 2 4 0.01625 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(av.ok) #NOTE the output has been trunctated

Type III Repeated Measures MANOVA Tests:

------------------------------------------
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Term: (Intercept)

Response transformation matrix:

(Intercept)

CALLS.1 1

CALLS.2 1

CALLS.3 1

Sum of squares and products for the hypothesis:

(Intercept)

(Intercept) 8.166667

Sum of squares and products for error:

(Intercept)

(Intercept) 2866.833

Multivariate Tests: (Intercept)

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.0028406 0.0142434 1 5 0.90965

Wilks 1 0.9971594 0.0142434 1 5 0.90965

Hotelling-Lawley 1 0.0028487 0.0142434 1 5 0.90965

Roy 1 0.0028487 0.0142434 1 5 0.90965

------------------------------------------

Term: YEAR

Response transformation matrix:

YEAR1 YEAR2

CALLS.1 1 0

CALLS.2 0 1

CALLS.3 -1 -1

Sum of squares and products for the hypothesis:

YEAR1 YEAR2

YEAR1 704.1667 216.66667

YEAR2 216.6667 66.66667

Sum of squares and products for error:

YEAR1 YEAR2

YEAR1 232.8333 215.3333

YEAR2 215.3333 269.3333

Multivariate Tests: YEAR

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.872540 13.691253 2 4 0.016246 *
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Wilks 1 0.127460 13.691253 2 4 0.016246 *

Hotelling-Lawley 1 6.845627 13.691253 2 4 0.016246 *

Roy 1 6.845627 13.691253 2 4 0.016246 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

SS num Df Error SS den Df F Pr(>F)

(Intercept) 2.72 1 955.61 5 0.0142 0.909649

YEAR 369.44 2 191.22 10 9.6601 0.004615 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mauchly Tests for Sphericity

Test statistic p-value

YEAR 0.59587 0.35506

Greenhouse-Geisser and Huynh-Feldt Corrections

for Departure from Sphericity

GG eps Pr(>F[GG])

YEAR 0.71218 0.01252 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

HF eps Pr(>F[HF])

YEAR 0.91539 0.006175 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Multivariate tests for the within block effects, all concur that there is an effect of
YEAR on the differences in number of male frogs calling. Whilst the Mauchly test for sphericity
does not indicate a problem with sphericity (P=0.355), Greenhouse-Geisser epsilon suggest
substantial departures from sphericity (0.712). Univariate repeated measures ANOVA corrected
for sphericity yield the same outcomes as Step 13B above.

Step 9 - Quinn and Keough (2002) suggested a logical planned contrast of year 1 (pre burn)
with the year 2 and 3 (post burn). Note that as sphericity was clearly violated, this comparison
must be performed using a separately calculated error term.

> driscoll.aov2 <- aov(CALLS ~ C(YEAR, c(1, -0.5, -0.5), 1) +

+ BLOCK + Error(BLOCK/C(YEAR, c(1, -0.5, -0.5), 1)),

+ data = driscoll)

> summary(driscoll.aov2)
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Error: BLOCK

Df Sum Sq Mean Sq

BLOCK 5 955.61 191.12

Error: BLOCK:C(YEAR, c(1, -0.5, -0.5), 1)

Df Sum Sq Mean Sq F value Pr(>F)

C(YEAR, c(1, -0.5, -0.5), 1) 1 336.11 336.11 29.715 0.002823 **

Residuals 5 56.56 11.31

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 6 168 28

Conclusions - the burnt-unburnt differences in number of frogs calling was significantly lower
prior to the burn than after.
Purely for illustrative purposes, Quinn and Keough (2002) also highlighted the exploration of
polynomial trendse (specifically a linear trend) across years.

> driscoll.aov3 <- aov(CALLS ~ C(YEAR, poly, 1) + BLOCK +

+ Error(BLOCK/C(YEAR, poly, 1)), data = driscoll)

> summary(driscoll.aov3)

Error: BLOCK

Df Sum Sq Mean Sq

BLOCK 5 955.61 191.12

Error: BLOCK:C(YEAR, poly, 1)

Df Sum Sq Mean Sq F value Pr(>F)

C(YEAR, poly, 1) 1 352.08 352.08 15.122 0.01154 *

Residuals 5 116.42 23.28

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 6 92.167 15.361

Conclusions - there was a significant linear trend in burnt-unburnt differences in number of
frogs calling across the years.

Step 10 (Key 13.13) - Finally, rather than attempting a post-hoc correct for the estimated
departures from compound symmetry (sphericity), we could instead fit a linear mixed effects
model (lme) in which the within block correlation structure is specified and incorporated.

e Note that this contrast is not independent of the previous contrast and is perhaps not of great
biological meaning given that the impact occurred mid-way through the years rather than at the start.
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• Fit the linear mixed effects model with a range of covariance structures

> library(nlme)

> #fit the lme with unstructured covariance structure

> driscoll.lme <- lme(CALLS ~ YEAR, random =~1 | BLOCK,

+ data = driscoll, correlation = corSymm(form = ~1 | BLOCK))

> #fit the lme assuming compound symmetry (sphericity)

> driscoll.lme1 <- update(driscoll.lme, correlation =

+ corCompSymm(form = ~1 | BLOCK))

> #compare the fit of the models

> anova(driscoll.lme, driscoll.lme1)

Model df AIC BIC logLik Test L.Ratio p-value

driscoll.lme 1 8 114.3804 120.0448 -49.19019

driscoll.lme1 2 6 115.7165 119.9648 -51.85826 1 vs 2 5.336127 0.0694

> #fit the lme with a first order autoregressive covariance structure

> driscoll.lme2 <- update(driscoll.lme, correlation = corAR1(form = ~1 |

+ BLOCK))

> driscoll.lme2

Linear mixed-effects model fit by REML

Data: driscoll

Log-restricted-likelihood: -51.31218

Fixed: CALLS ~ YEAR

(Intercept) YEAR2 YEAR3

-6.50000 7.50000 10.83333

Random effects:

Formula: ~1 | BLOCK

(Intercept) Residual

StdDev: 0.002177376 8.230684

Correlation Structure: AR(1)

Formula: ~1 | BLOCK

Parameter estimate(s):

Phi

0.758245

Number of Observations: 18

Number of Groups: 6

Conclusions - ρ (autocorrelation parameter) estimated to be 0.758245.

> #compare the fit of the models

> anova(driscoll.lme2, driscoll.lme1)

Model df AIC BIC logLik

driscoll.lme2 1 6 114.6244 118.8727 -51.31218

driscoll.lme1 2 6 115.7165 119.9648 -51.85826

> #fit the lme with a first order autoregressive covariance and heterogenous

> #variances structure

> driscoll.lme3 <- update(driscoll.lme, correlation = corAR1(form = ~1 |

+ BLOCK), weights = varIdent(form = ~1 | BLOCK))

> #compare the fit of the models

> anova(driscoll.lme3, driscoll.lme1)

Model df AIC BIC logLik Test L.Ratio p-value

driscoll.lme3 1 11 120.1991 127.9876 -49.09953

driscoll.lme1 2 6 115.7165 119.9648 -51.85826 1 vs 2 5.517442 0.356
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Conclusions - Inferential evidence for a deviation from compound symmetry is not signifi-
cant (AIC and BIC differentials less than 2 and logLikelihood statistic not significantly for any
alternative models).

• Examine the anova table for the ‘‘best’’ lme

> anova(driscoll.lme1)

numDF denDF F-value p-value

(Intercept) 1 10 0.014243 0.9074

YEAR 2 10 9.660081 0.0046

Conclusions - There is a significant effect of year on the difference in number of males
calling between burnt and unburnt sites.

• Fit the planned contrast of year 1 (pre burn) versus year 2 and 4 (post burns).

> library(gmodels)

> fit.contrast(driscoll.lme1, "YEAR", c(1, -0.5, -0.5))

Estimate Std. Error t-value Pr(>|t|)

YEAR c=( 1 -0.5 -0.5 ) -9.166667 2.186448 -4.192492 0.001850619

• Examine the polynomial trends.

> library(gmodels)

> fit.contrast(driscoll.lme1, "YEAR", t(contr.poly(3, c(1, 2, 3))))

Estimate Std. Error t-value Pr(>|t|)

YEAR.L 7.660323 1.785227 4.2909509 0.001583836

YEAR.Q -1.701035 1.785227 -0.9528391 0.363134925

Step 11 - Summarize the trends in a plot.

> # create a blocking variable (called BLCK) that represents the

> #order of data in rows

> driscoll$BLCK <- as.numeric(factor(driscoll$BLOCK, levels =

+ unique(driscoll$BLOCK)))

> # construct the base plot with different point types for each

> # treatment

> plot(CALLS ~ BLCK, data = driscoll, type = "n", axes = F, xlab = "",

+ ylab = "")

> with(subset(driscoll, YEAR == "1"), points(CALLS ~ BLCK, pch = 21,

+ type = "o", lwd = 1))

> with(subset(driscoll, YEAR == "2"), points(CALLS ~ BLCK, pch = 15,

+ type = "o", lwd = 1, lty = 2))

> with(subset(driscoll, YEAR == "3"), points(CALLS ~ BLCK, pch = 5,

+ type = "o", lwd = 1, lty = 5))

> # create the axes and their labels

> axis(1, cex.axis = 0.8)

> mtext(text = "Block", side = 1, line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = "Difference in calls (burnt - unburnt)", side = 2,

+ line = 3)

> # include a legend
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> legend("topright",leg = c("Year 1", "Year 2", "Year 3"), lty = 0,

+ pch = c(21, 15, 5), bty = "n",

+ cex=0.9)

> box(bty="l")
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Example 13C: Unreplicated ANOVA with missing observations
Quinn and Keough (2002) presented a modification of the Driscoll and Roberts (1997) data
set in which one of the observations (newpipe year 2) was removed - so as to demonstrate
and contrast the options for dealing with missing observations (=cells) in unreplicated
designs (see Box 10.8 Quinn and Keough (2002)).

Step 1 - Prepare the data (from example 13B).

> driscoll1 <- driscoll

> driscoll1[9, 4] <- NA

Step 2 - As we have already examined the assumptions associated with the relevant design, we
will skip straight to the analysis options

Option 1- Omit the newpipe block

> driscoll1.aov <- aov(CALLS ~ Error(BLOCK) + YEAR,

+ data = driscoll1, subset = BLOCK != "newpipe")

> summary(driscoll1.aov)

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 747.07 186.77

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 2 272.133 136.067 7.044 0.01721 *

Residuals 8 154.533 19.317

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Option 2- Substitute a new value (by solving the equation ŷij = yi + yj − y - that is, the
expected value of any given observation within a specific year/block is equal to the sum of the
mean of the block, the mean of the year and the negative of the overall mean).
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> #calculate the mean of the newpipe block

> BM<-with(driscoll1, tapply(CALLS, BLOCK, mean, na.rm=T))

+ ["newpipe"]

> #calculate the mean of year 2

> YM<-with(driscoll1, tapply(CALLS, YEAR, mean, na.rm=T))["2"]

> #calculate the overall mean

> M<-mean(driscoll1$CALLS,na.rm=T)

> #duplicate the data set and work on the duplicate

> driscoll2 <- driscoll1

> #substitute the new value into the data frame

> driscoll2[9,3]<-YM+BM-M

> #fit the linear model

> driscoll2.aov <- aov(CALLS~Error(BLOCK)+YEAR, data=driscoll2)

> summary(driscoll2.aov)

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 1 116.74 116.74 0.625 0.4734

Residuals 4 747.07 186.77

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

YEAR 2 384.12 192.06 10.135 0.004957 **

Residuals 9 170.55 18.95

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> #then make adjustments to the F-ratio and Pvalue (to reflect a

> #reduction) in residual degrees of freedom by one for each

> #substituted value)

> (MSresid <- summary(driscoll2.aov)[[2]][[1]]["Residuals",

"Sum Sq"]/9)

[1] 18.95

> (Fyear <- summary(driscoll2.aov)[[2]][[1]]["YEAR","Mean Sq"]/

MSresid)

[1] 10.13500

> (Pvalue <- 1-pf(Fyear, 2,8))

[1] 0.006412925

Option 3- Compare appropriate full and reduced models

> driscoll1.aovF <- aov(CALLS ~ BLOCK + YEAR, data = driscoll1)

> driscoll1.aovR <- aov(CALLS ~ BLOCK, data = driscoll1)

> anova(driscoll1.aovF, driscoll1.aovR)

Analysis of Variance Table

Model 1: CALLS ~ BLOCK + YEAR

Model 2: CALLS ~ BLOCK
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Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 170.55

2 11 554.67 -2 -384.12 10.135 0.004957 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OR

> anova(driscoll1.aovF)

Analysis of Variance Table

Response: CALLS

Df Sum Sq Mean Sq F value Pr(>F)

BLOCK 5 863.80 172.76 9.1167 0.002500 **

YEAR 2 384.12 192.06 10.1350 0.004957 **

Residuals 9 170.55 18.95

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that options 2 and 3 are only valid if we assume that there are no block by year interactions
and are both difficult to make reasonable sphericity deviation estimates and corrections.

Option 4- fit some alternative linear mixed effects models (with different covariance structures).

> library(nlme)

> #No structure

> driscoll1.lme1 <- lme(CALLS ~ YEAR, random = ~1 | BLOCK, data = driscoll1,

+ subset = !is.na(CALLS))

> #Unstructured

> driscoll1.lme2 <- lme(CALLS ~ YEAR, random = ~1 | BLOCK, data = driscoll1,

+ subset = !is.na(CALLS), correlation = corSymm(form = ~1 | BLOCK))

> #Compound symmetry

> driscoll1.lme3 <- update(driscoll1.lme1, correlation =

+ corCompSymm(form = ~1 | BLOCK))

> #First order autoregressive

> driscoll1.lme4 <- lme(CALLS ~ YEAR, random = ~1 | BLOCK, data = driscoll1,

+ subset = !is.na(CALLS), correlation = corAR1(form = ~1 | BLOCK))

> driscoll1.lme4 <- update(driscoll1.lme1, correlation =

+ corAR1(form = ~1 | BLOCK))

> #Compare each to compound symmetry

> anova(driscoll1.lme3, driscoll1.lme1, driscoll1.lme2, driscoll1.lme4)

Model df AIC BIC logLik Test L.Ratio p-value

driscoll1.lme3 1 6 108.8226 112.6570 -48.41133

driscoll1.lme1 2 5 106.8226 110.0179 -48.41133 1 vs 2 0.000000 1.0000

driscoll1.lme2 3 8 109.2339 114.3464 -46.61695 2 vs 3 3.588753 0.3094

driscoll1.lme4 4 6 107.7288 111.5632 -47.86441 3 vs 4 2.494909 0.2872

> anova(driscoll1.lme3)

numDF denDF F-value p-value

(Intercept) 1 9 0.002742 0.9594

YEAR 2 9 10.264400 0.0048

Note that the lme method also implicitly incorporates the correlation structure of the
data and therefore arguably handles the issues of sphericity (which are exacerbated with
missing observations) more appropriately than ANOVA. Nevertheless, none of the alternative
covariance structures resulted in significantly better fits (based on AIC values) than a model
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incorporating compound symmetry (driscoll1.lme3). Consistent with other analyses, the
impact of burning was found to differ significantly over time.

Example 13D: Two factor randomized block design
To illustrate two factor randomized blocking designs, Doncaster and Davey (2007)f introduced
a fictitious data set in which all the levels of sewing density (factor A) and fertilizer treatments
(Factor B) were randomly allocated within blocks (Factor S) which in turn where arranged
across a heterogeneous landscape. The response variable was the yield of crop (Y).

Step 1 - Import (section 2.3) the crop yield data set

> crop <- read.table("crop.csv", header = T, sep = ",")

Step 2 - Each of the categorical variables are listed as integer vectors rather than a categorical
factors. In order to ensure that this variable is treated as a factor we need to redefine them.

> crop$A <- factor(crop$A)

> crop$B <- factor(crop$B)

> crop$S <- factor(crop$S)

Step 3 (Key 13.2) - Assess whether there is any evidence of treatment by block interactions

Response variable: MITE

> library(alr3)

> resplot(lm(Y ~ S + A * B,

crop))

t value Pr(>|t|)

-1.3756093 0.1689426

> with(crop, interaction.plot(S,

+ paste("A", A, ":B", B,

+ sep = ""), Y))
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Conclusions - No clear evidence of a blocking interaction (no obvious curvature pattern in the
residuals and non-significant Tukey’s non-additivity statistic). Hence according to Table 13.2,
the MSResid (individual treatment plots within the blocks) should be used as the replicates for
each of the hypotheses.

f The data and example output can be found on the book’s web page http://www.southampton.
ac.uk/ cpd/anovas/datasets/.
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Step 4 (Key 13.2) - Assess assumptions of normality and homogeneity of variance for the main
null hypotheses that there are no effects of sewing density, fertilizer treatment or no interaction
between the two on the yield of crop.

> boxplot(Y ~ A * B, crop)
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Conclusions - No evidence of unequal variance or non-normality.

Step 5 (Key 13.5) - Determine whether or not the design is balanced (equal sample sizes).

> replications(Y ~ Error(S) + A * B, data = crop)

A B A:B

8 12 4

> library(biology)

> is.balanced(Y ~ Error(S) + A * B, data = crop)

[1] TRUE

Conclusions - The design is completely balanced. Each of the four field blocks have exactly
one replicate of each combination of the levels of A and B.

Step 6 (Key 13.6) - Fit the randomized complete block linear model (additive).

> crop.aov <- aov(Y ~ Error(S) + A * B, data = crop)

Note, a non-additive model would be fit as:

> crop.aov <- aov(Y ~ A * B + Error(S/A + S/B), data = crop)

Step 7 (Key 13.6) - Examine the anova table.

> summary(crop.aov)

Error: S

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 9.0746 3.0249

a Note that due to the presence of zero values Walter and O’Dowd (1992) added a small constant (0.5)
to each of the mite counts prior to logarithmic transformation. They also multiplied the number of
mites by 10, although it is not clear why.
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

A 2 745.36 372.68 32.6710 3.417e-06 ***

B 1 91.65 91.65 8.0346 0.012553 *

A:B 2 186.37 93.18 8.1690 0.003983 **

Residuals 15 171.11 11.41

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - there is a significant sewing density by fertilizer treatment interaction.

Step 8 - Examine the main effects

> #Examine the effects of B at A=1

> summary(mainEffects(crop.aov, at = A == "1"))

Error: S

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 9.0746 3.0249

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 4 1019.46 254.87 22.3429 3.563e-06 ***

B 1 3.91 3.91 0.3432 0.5667

Residuals 15 171.11 11.41

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> #Examine the effects of B at A=2

> summary(mainEffects(crop.aov, at = A == "2"))

Error: S

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 9.0746 3.0249

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 4 1018.78 254.70 22.3280 3.578e-06 ***

B 1 4.59 4.59 0.4028 0.5352

Residuals 15 171.11 11.41

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> #Examine the effects of B at A=3

> summary(mainEffects(crop.aov, at = A == "3"))

Error: S

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 9.0746 3.0249
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Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 4 753.87 188.47 16.522 2.267e-05 ***

B 1 269.51 269.51 23.627 0.0002077 ***

Residuals 15 171.11 11.41

---

Signi f. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - there is significant effect of fertilizer treatment (B1 vs B2) on crop yield, but
only at a sewing density of A3.

Step 9 - Summarize the trends in a plot.

> crop.means <- with(crop, t(tapply(Y, list(A, B), mean)))

> library(gmodels)

> crop.se <- with(crop, t(tapply(Y, list(A, B), function(x) ci(x,

+ na.rm = T)[4])))

> ofst <- min(crop$Y)

> xs <- barplot(crop.means, ylim = range(crop$Y, na.rm = T),

+ beside = T, axes = F, xpd = T, axisnames = F,

+ axis.lty = 2, legend.text = F, col = c(0, 1), offset = ofst)

> arrows(xs, crop.means + ofst, xs, crop.means + crop.se + ofst,

+ code = 2, angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("A1", "A2", "A3"),

+ padj = 1, mgp = c(0, 0, 0))

> mtext(2, text = expression(paste("Crop yield ", (g.m^2))), line = 3,

+ cex = 1)

> mtext(1, text = "Sewing density", line = 3, cex = 1)

> box(bty = "l", xpd = 1)

> legend("topleft", leg = c("B1", "B2"), fill = c(0, 1), col = c(0,

+ 1), bty = "n", cex = 1)
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Example 13E: Non-parametric randomized block
Zar (1999) illustrated two approaches (Example 12.6 and Example 12.7) to non-parametric
unreplicated factorial designs. Both approaches made use of data collected on the weight
gained by guinea pigs maintained on one of four diets. Each guinea pig was individually caged
and in an attempt to account for any variability in weight gain resulting from differences in
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cage position (the holding facility was potentially not homogeneous with respect to lighting,
noise, temperature etc), guinea pigs were also blocked into sets of four individuals (one on
each diet) whose cages were in close proximity. Within a block, individuals were randomly
assigned to one of the four treatment diets. Whilst the data do not show concerning
deviations from the parametric assumptions of normality and equal variance, for the purpose
of illustration we will assume these assumptions have been violated.

Step 1 - Import (section 2.3) the Zar (1999) guinea pig data set

> gp <- read.table("gp.csv", header = T, sep = ",")

Step 2 (Key 13.2) - Assess whether there is any evidence of treatment by block interactions
Response variable: GAIN

> library(alr3)

> resplot(lm(GAIN ~ BLOCK +

DIET, gp))

t value Pr(>|t|)

0.9315358 0.3515765

> with(gp, interaction.plot

(BLOCK, DIET, GAIN))
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Conclusions - No clear evidence of a blocking interaction (only very slight curvature pattern in
the residuals and non-significant Tukey’s non-additivity statistic).

Step 3 (Key 13.2) - Assess assumptions of normality and homogeneity of variance for the main
null hypotheses that there are no effects of diet within Block on the weight gain of guinea
pigs.

> boxplot(GAIN ~ DIET, gp)
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Conclusions - Although the evidence of unequal variance and non-normality is not substantial,
outliers are present and some skewness is suggested. Note, that for the purpose of
reproducing the output of one of the major texts in biostatisics, we will proceed as
if the parametric assumptions had been violated.

Step 4 (Key 13.5) - Determine whether or not the design is balanced (equal sample sizes).

> replications(GAIN ~ Error(BLOCK) + DIET, data = gp)

DIET

5

> library(biology)

> is.balanced(GAIN ~ Error(BLOCK) + DIET, data = gp)

[1] TRUE

Conclusions - The design is completely balanced. There are exactly one of each diet treatment
per block.

Step 5 (Key 13.11) - Perform a Friedman’s test (Zar (1999), Example 12.6)

> library(pgirmess)

> friedman.test(GAIN ~ DIET | BLOCK, data = gp)

Friedman rank sum test

data: GAIN and DIET and BLOCK

Friedman chi-squared = 10.68, df = 3, p-value = 0.01359

Conclusions - there is a significant effect of diet on the weight gain of guinea pigs.

Step 6 - Perform a multiple comparisons test following a Friedman’s test

> library(pgirmess)

> friedmanmc(gp$GAIN, gp$DIET, gp$BLOCK, p = 0.05)

Multiple comparisons between groups after Friedman test

p.value: 0.05

Comparisons

obs.dif critical.dif difference

D1-D2 0 10.77064 FALSE

D1-D3 5 10.77064 FALSE

D1-D4 1 10.77064 FALSE

D2-D3 5 10.77064 FALSE

D2-D4 1 10.77064 FALSE

D3-D4 4 10.77064 FALSE

Conclusions - None of the diet types were found to be significantly different from each other,
however, this is a very conservative test.

Step 7 - Alternatively, we could perform a randomized complete block on rank transformed
data (Zar (1999)–example 12.7)



UNREPLICATED FACTORIAL DESIGNS 397

> summary(aov(rank(GAIN) ~ Error(BLOCK) + DIET, gp))

Error: BLOCK

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 400 100

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

DIET 3 195.400 65.133 11.23 0.0008471 ***

Residuals 12 69.600 5.800

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - there is a significant effect of diet on the weight gain of guinea pigs.

Step 8 - Perform a multiple comparisons test rank based randomized block analysis

> library(multcomp)

> summary(glht(aov(rank(GAIN) ~ BLOCK + DIET, gp),

linfct = mcp(DIET = "Tukey")))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = rank(GAIN) ~ BLOCK + DIET, data = gp)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

D2 - D1 == 0 -7.000 1.523 -4.596 0.00279 **

D3 - D1 == 0 -6.200 1.523 -4.070 0.00740 **

D4 - D1 == 0 -0.800 1.523 -0.525 0.95130

D3 - D2 == 0 0.800 1.523 0.525 0.95135

D4 - D2 == 0 6.200 1.523 4.070 0.00712 **

D4 - D3 == 0 5.400 1.523 3.545 0.01827 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

Conclusions - The weight gain of guinea pigs on diets one and four was significantly greater
than that on either diet two or three.

Step 9 - Summarize the trends in a plot.

> gp.means <- with(gp, t(tapply(GAIN, DIET, mean)))

> library(gmodels)

> gp.res <- resid(aov(GAIN ~ BLOCK + DIET, gp))

> gp.se <- with(gp, t(tapply(gp.res, DIET, function(x) ci(x,

+ na.rm = T)[4])))
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> xs <- barplot(gp.means, ylim = range(gp$GAIN), beside = T,

+ axes = F, xpd = F, axisnames = F, axis.lty = 2,

+ legend.text = F, col = c(0,0))

> arrows(xs, gp.means + ofst, xs, gp.means + gp.se, code = 2,

+ angle = 90, len = 0.05)

> axis(2, las = 1)

> axis(1, at = apply(xs, 2, median), lab = c("D1", "D2", "D3",

+ "D4"), padj = 1, mgp = c(0, 0, 0))

> mtext(2, text = expression(paste("Weight gain ", (g))), line = 3,

+ cex = 1)

> mtext(1, text = "Diet", line = 3, cex = 1)

> box(bty = "l", xpd = 1)

> text(gp.means + gp.se + 0.5 ~ xs, lab = c("A", "B", "B", "A"))
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Partly nested designs: split plot and complex
repeated measures

Split-plota designs extend unreplicated factorial (randomized complete block and
simple repeated measures) designs by incorporating an additional factor whose levels
are applied to entire blocks. Similarly, complex repeated measures designs are repeated
measures designs in which there are different types of subjects. Split-plot and complex
repeated measures designs are depicted diagrammatically in Figure 14.1 .

Such designs are often referred to as partly nested designs which reflects the fact
that blocks are (partlyb) nested within the main between blocking factor. These designs
include both within and between block (subject) effects and as a result, they are subject
to the considerations of both nested (Chapter 11) and unreplicated factorial designs
(Chapter 13). Whilst most of the issues have therefore already been covered separately
in previous chapters, the popularity and additional accumulated complexity of these
designs warrants special treatment.

Consider the example of a randomized complete block presented at the start of
Chapter 13. Blocks of four treatments (representing leaf packs subject to different
aquatic taxa) were secured in numerous locations throughout a potentially heteroge-
neous stream. If some of those blocks had been placed in riffles, some in runs and some
in pool habitats of the stream, the design becomes a split-plot design incorporating a
between block factor (stream region: runs, riffles or pools) and a within block factor
(leaf pack exposure type: microbial, macro invertebrate or vertebrate). Furthermore,
the design would enable us to investigate whether the roles that different organism
scales play on the breakdown of leaf material in stream are consistent across each
of the major regions of a stream (interaction between region and exposure type).
Alternatively (or in addition), shading could be artificially applied to half of the blocks,
thereby introducing a between block effect (whether the block is shaded or not).

Extending the repeated measures examples from Chapter 13, there might have been
different populations (such as different species or histories) of rats or sharks. Any single

a The term ‘‘split-plot’’ refers to the agricultural field plots for which these designs were originally
devised.
b It is only partly, since there is only a single block within each level of the main factor.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 14.1 Fictitious spatial depictions of (a) split-plot and (b) complex repeated measures
designs. The levels of the between block (or subject) effect (Factor A) are applied to the entire
block. Note that the appropriate replicates for the effects of the between block effects are the
block means. Therefore, for the effect of Factor A, n = 3 and for the effect of Factor C (within
block or subject effect), n = 6.

subject (such as an individual shark or rat) can only be of one of the populations types
and thus this additional factor represents a between subject effect.

14.1 Null hypotheses

There are separate null hypotheses associated with each of the main factors (and
interactions), although typically, null hypotheses associated with the random blocking
factors are of little interest.

14.1.1 Factor A - the main between block treatment effect

Fixed (typical case)

H0(A) : µ1 = µ2 = . . . = µi = µ (the population group means of A are all equal)

The mean of population 1 is equal to that of population 2 and so on, and thus all
population means are equal to an overall mean. No effect of A. If the effect of the ith

group is the difference between the ith group mean and the overall mean (αi = µi − µ)
then the H0 can alternatively be written as:

H0(A) : α1 = α2 = . . . = αi = 0 (the effect of each group equals zero)
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If one or more of the αi are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random

H0(A) : σ 2
α = 0 (population variance equals zero)

There is no added variance due to all possible levels of A.

14.1.2 Factor B - the blocking factor

Random (typical case)

H0(B) : σ 2
β = 0 (population variance equals zero)

There is no added variance due to all possible levels of B.

Fixed

H0(B) : µ1 = µ2 = . . . = µi = µ (the population group means of B are all equal)

H0(B) : β1 = β2 = . . . = βi = 0 (the effect of each chosen B group equals zero)

14.1.3 Factor C - the main within block treatment effect

Fixed (typical case)

H0(C) : µ1 = µ2 = . . . = µk = µ (the population group means of C (pooling B)

are all equal)

The mean of population 1 (pooling blocks) is equal to that of population 2 and so on,
and thus all population means are equal to an overall mean. No effect of C within each
block (Model 2) or over and above the effect of blocks. If the effect of the kth group is
the difference between the kth group mean and the overall mean (γk = µk − µ) then
the H0 can alternatively be written as:

H0(C) : γ1 = γ2 = . . . = γk = 0 (the effect of each group equals zero)

If one or more of the γk are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

Random

H0(C) : σ 2
γ = 0 (population variance equals zero)

There is no added variance due to all possible levels of C (pooling B).
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14.1.4 AC interaction - the within block interaction effect

Fixed (typical case)

H0(A × C) : µijk − µi − µk + µ = 0 (the population group means of AC

combinations (pooling B) are all equal)

There are no effects in addition to the main effects and the overall mean. If the effect
of the ikth group is the difference between the ikth group mean and the overall mean
(γik = µi − µ) then the H0 can alternatively be written as:

H0(AC) : αγ11 = αγ12 = . . . = αγik = 0 (the interaction is equal to zero)

Random

H0(AC) : σ 2
αγ = 0 (population variance equals zero)

There is no added variance due to any interaction effects (pooling B).

14.1.5 BC interaction - the within block interaction effect

Typically random

H0(BC) : σ 2
βγ = 0 (population variance equals zero)

There is no added variance due to any block by within block interaction effects. That
is, the patterns amongst the levels of C are consistent across all the blocks. Unless each
of the levels of Factor C are replicated (occur more than once) within each block, this
null hypotheses about this effect cannot be tested.

14.2 Linear models

The linear models for three and four factor partly nested designs are:

14.2.1 One between (α), one within (γ ) block effect

yijkl = µ + αi + βj + γk + αγij + βγjk + εijkl

14.2.2 Two between (α, γ ), one within (δ) block effect

yijklm = µ + αi + γj + αγij + βk + δl + αδil + γ δjl + αγ δijl

+ εijklm (Model 2 - Additive)

yijklm = µ + αi + γj + αγij + βk + δl + αδil + γ δjl + αγ δijl + βδkl + βαδkil + βγ δkjl

+ βαγ δkijl + εijklm (Model 1 - Non-additive)
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14.2.3 One between (α), two within (γ , δ) block effects

yijklm = µ + αi + βj + γk + δl + γ δkl + αγik + αδil + αγ δikl

+ εijk (Model 2- Additive)

yijklm = µ + αi + βj + γk + βγjk + δl + βδjl + γ δkl + βγ δjkl + αγik + αδil + αγ δikl

+ εijk (Model 1 - Non-additive)

where µ is the overall mean, β is the effect of the Blocking Factor B and ε is the random
unexplained or residual component.

14.3 Analysis of variance

The construction of appropriate F-ratios generally follow the rules and conventions
established in Chapters 10-13, albeit with additional complexity. Tables 14.1-14.3
document the appropriate numerator and denominator mean squares and degrees of
freedom for each null hypothesis for a range of two and three factor partly nested
designs.

14.4 Assumptions

As partly nested designs share elements in common with each of nested, factorial and
unreplicated factorial designs, they also share similar assumptions and implications
to these other designs. Readers should also consult sections 11.5, 12.4 and 14.4.
Specifically, hypothesis tests assume that:

(i) the appropriate residuals are normally distributed. Boxplots using the appropriate scale of
replication (reflecting the appropriate residuals/F-ratio denominator (see Tables 14.1-14.3)
should be used to explore normality. Scale transformations are often useful.

(ii) the appropriate residuals are equally varied. Boxplots and plots of means against variance
(using the appropriate scale of replication) should be used to explore the spread of
values. Residual plots should reveal no patterns (see Figure 8.5). Scale transformations
are often useful.

(iii) the appropriate residuals are independent of one another. Critically, experimental units
within blocks/subjects should be adequately spaced temporally and spatially to restrict
contamination or carryover effects.

(iv) that the variance/covariance matrix displays sphericityc (see section 13.4.1). This
assumption is likely to be met only if the treatment levels within each block can be
randomly ordered. This assumption can be managed by either adjusting the sensitivity
of the affected F-ratios or employing linear mixed effects (see section 11.8) modelling to
the design.

c Strickly, the variance-covariance matrix must display a very specific pattern of sphericity in which
both variances and covariances are equal (compound symmetry), however an F-ratio will still reliably
follow an F distribution provided basic sphericity holds.
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(v) there are no block by within block interactions. Such interactions render non-significant
within block effects difficult to interpretd.

14.5 Other issues

Issues of post hoc and specific comparisons as well design balance and power follow the
discussions in sections 10.6, 13.5, 13.6, 11.7, 11.10 and 13.8.

14.5.1 Robust alternatives

As designs increase in complexity, so too do the options for robust alternatives. In
particular, rank based procedures can yield highly misleading outcomes. Generalized
linear models (GLM: chpt 17) can be useful for modelling alternative (non-normal)
residual distributions provided pairs of full and reduced models are chosen carefully and
sensibly. Finally, randomizations can also be of use (particularly when observational
independence is violated). However, care must be exercised in determining the
appropriate scale at which to randomize.

Partly nested designs consist of multiple error or residual terms arranged in
hierarchical strata and can therefore be thought of as a series of linear models (one for
each strata). For example, a repeated measures design might consist of a linear model
representing the between subject effects and one or more linear models representing
the within subject effects. As a result, partly nested designs can also be broken down
into the individual linear models onto which more the simplified robust alternatives
highlighted in previous chapters can be applied.

14.6 Further reading

• Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

d Unless we assume that there are no block by within block interactions, non-significant within block
effects could be due to either an absence of a treatment effect, or as a result of opposing effects within
different blocks. As these block by within block interactions are unreplicated, they can neither be
formally tested nor is it possible to perform main effects tests to diagnose non-significant within
block effects.
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Faraway, J. J. (2006). Extending Linear Models with R: generalized linear mixed effects
and nonparametric regression models. Chapman & Hall/CRC.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Pinheiro, J. C., and D. M. Bates. (2000). Mixed effects models in S and S-PLUS.
Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. (2009). Mixed
Effects Models and Extensions in Ecology with R. Springer.

14.7 Key for partly nested ANOVA

1 Determine the appropriate model design and hierarchy

• Conceptualise the design into a hierarchy (ladder) of factors

• Between block effects (factors whose levels differ between different blocks)
• Between block interactions (if there are multiple between block effects)
• Blocking factor (typically a random factor in which each level of other factors

are applied)
• Within block effects (factors that have all levels applied within each block).
• Between block by within block interactions
• Block by within block interactions
• Within block interactions (if there are multiple within block effects)

• Identify the correct error (residual) term and thus F-ratio denominator for each
factor (see Tables 14.1-14.3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
2 a. Check assumptions for split-plot and complex randomized

block ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Examples 14A–14C&14E
As the assumptions of any given hypothesis test relate to residuals, all diagnostics
should reflect the appropriate error (residual) terms for the hypothesis. This is
particularly important for Model 1 (non-additive) models where interaction terms
are used as the appropriate denominators (residuals).

• No block by within block treatment interactions

> with(data, interaction.plot(B, C, DV))

> library(lattice)

> bwplot(DV ~ C, groups = BLOCK, data)

Residual curvature plot and Tukey’s test for nonadditivity

> library(alr3)

> residual.plots(lm(DV ~ B + C, data))

> tukey.nonadd.test(lm(DV ~ B + C, data))
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• Normality (symmetry) of the response variable (residuals) at each level of each
factor or combination of factors - boxplots of mean values
Between block factor using MSB as denominator in each case

> library(nlme)

> data.B.agg <- gsummary(data, groups = data$B)

> boxplot(DV ~ A, data.B.agg)

Single within block factor or additive model (no interactions - Model 2) using
MSResid as denominator in each case

> boxplot(DV ~ A, data) #factor A

> boxplot(DV ~ C, data) #factor C

> boxplot(DV ~ A * C, data) #A:C interaction

Two or more within block factor non-additive (Model 1) model using interactions
(such as MSBC) as denominator as example

> library(nlme)

> data.BC.agg <- gsummary(data, groups = data$B : data$C)

> boxplot(DV ~ C, data.BC.agg) #factor C

where DV is the response variable, A is a main fixed or random factor within the data
dataset.

• Homogeneity (equality) of variance of the response variable (residuals) at each
level of each factor or combination of factors - boxplots of mean values
As for Normality.

Parametric assumptions (Normality/Homogeneity of variance) met . . . . . . Go to 4
b. Parametric assumptions not met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3

3 a. Attempt a scale transformation (see Table 3.2 for transformation options) Go to 2
b. Transformations unsuccessful or inappropriate . . . . . . . . . . . . . . . . . Go to Key 13.9

4 a. If incorporating planned contrasts (comparisons) . . . . . . . . See Examples 14C,14D

> contrasts(data$A) <- cbind(c(contrasts), ...)

> round(crossprod(contrasts(data$A)), 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5
5 a. Determine whether the design is balanced

> replications(DV ~ Error(B) + A * C.., data)

> library(biology)

> is.balanced(DV ~ Error(B) + A * C.., data)

Design is balanced - sample sizes of all cells are equal . . . . . . . . . . . . . . . . . . . Go to 6
b. Design is NOT balanced - one or more cells (combinations) missing

(0 replicates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7
c. Design is NOT balanced - sample sizes of cells differ, but all combinations have at

least one replicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8b
6 a. Balanced single between and single within block factor or additive (no

interactions - Model 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 14A,14B

> #Single within block factor

> data.aov <- aov(DV ~ A * C + Error(B), data)

> #Multiple within/between block factors

> data.aov <- aov(DV ~ A * C * D + Error(B), data)
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Alternatively, consider linear mixed effects (lme) model . . . . . . . . . . . See Key 13.13
Check for sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Key 13.12

• Sphericity met

> summary(data.aov)

> library(biology)

> AnovaM(data.aov)

• Sphericity NOT met

> library(biology)

> AnovaM(data.aov, RM = T)

To incorporate planned comparisons, utilize the split= argument, see Key 12.8
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12.20a
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 12.14

b. Balanced two or more within block factor non-additive (Model 1)

> data.aov <- aov(DV ~ A + Error(B/C + B/D) + C * D, data)

Alternatively, consider linear mixed effects (lme) model . . . . . . . . . . . See Key 13.13
Check for sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to Key 13.12

• Sphericity met

> summary(data.aov)

> library(biology)

> AnovaM(data.aov)

• Sphericity NOT met

> library(biology)

> AnovaM(data.aov, RM = T)

To incorporate planned comparisons, utilize the split= argument, see Key 12.8
For post-hoc multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to Key 12.20a
If significant interation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to Key 12.14

7 a. Unbalanced (missing cells) single within block or additive (Model 2)

• No within block correlation structure

> #single within block factor

> data.lme <- lme(DV ~ A, random = ~1 | Block, data)

> #multiple within block factors

> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

• Compound symmetry within block correlation structure

> #single within block factor

> data.lme <- lme(DV ~ A * C, random = ~1 | B, data,

+ correlation = corCompSymm(form = ~1 | B))

> #multiple within block factor

> data.lme <- lme(DV ~ A * C * D, random = ~1 | B, data,

+ correlation = corCompSymm(form = ~1 | B))

• General (unstructured) within block correlation structure

> #single within block factor

> data.lme <- lme(DV ~ A * C, random = ~1 | B, data,
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+ correlation = corSymm(form = ~1 | B))

> #multiple within block factor

> data.lme <- lme(DV ~ A * C * D, random = ~1 | B, data,

+ correlation = corSymm(form = ~1 | B))

• First order autoregressive within block correlation structure

> #single within block factor

> data.lme <- lme(DV ~ A * C, random = ~1 | B, data,

+ correlation = corAR1(form = ~1 | B))

> #multiple within block factor

> data.lme <- lme(DV ~ A * C * D, random = ~1 | B, data,

+ correlation = corAR1(form = ~1 | B))

Comparing two models with differing correlation structures

> anova(data.lme, data.lme1)

> anova(data.lme)

b. Unbalanced (missing cells) two or more within block factor non-additive
(Model 1)

> data.lme <- lme(Y ~ A * C, random = ~1 | Block/A + 1 |

+ Block/C, data)

> anova(data.lme)

8 a. Unbalanced (unequal sample sizes n > 0) additive
(Model 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 14C,14D

> data.aov <- aov(DV ~ A * C + Error(B), data)

> AnovaM(data.aov, type = "II")

OR

> contrasts(data$A) <- contr.helmert

> contrasts(data$C) <- contr.helmert

> data.aov <- aov(DV ~ A * C + Error(B), data)

> AnovaM(data.aov, type = "III")

OR

> data.lme <- lme(DV ~ A * C, random = ~1 | Block, data)

> summary(data.lme, type = "marginal")

b. Unbalanced (unequal sample sizes n > 0) non-additive (Model 1)

> data.aov <- aov(DV ~ A * C * D + Error(Block/C + Block/D),

data)

> AnovaM(data.aov, type = "II")

OR

> contrasts(data$A) <- contr.helmert

> contrasts(data$C) <- contr.helmert

> contrasts(data$D) <- contr.helmert

> data.aov <- aov(DV ~ A * C * D + Error(Block/C + Block/D),

data)

> AnovaM(data.aov, type = "III")
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OR

> data.lme <- lme(Y ~ A * C, random = ~1 | Block, data)

> anova(data.lme, type = "marginal")

14.8 Worked examples of real biological data sets

Example 14A: Split-plot ANOVA
Kirk (1968) fabricated an experiment in which the effects of mode of signal presentation
(Treatment A: 1 = auditory signal, 2 = visual signal), monitoring period throughout exper-
iment (Treatment Ce: 1 = one hour, 2 = two hours, 3 = three hours and 4 = four hours)
on the degree of vigilance displayed (Y: measured as response latency) by a number of
subjects was measured. Four of the subjects were randomly assigned to the auditory signal
treatment and the another four subjects to the visual signal treatment and the response
latency of each subject were repeated every hour for four hours. These data can be analysed
as a split-plot or repeated measures design with subjects as the plots, signal type (Treatment
A) as the between plot effect and monitoring period (Treatment C) as the within plot effect
(from chapter 8 of Kirk (1968)).

Step 1 - Import (section 2.3) the Kirk (1968) spf (split-plot factorial) data set.

> spf <- read.table("spf.csv", header = T, sep = ",")

Step 2 (Key 14.2) - Assess whether there are likely to be any plot by within plot interactions.

> library(alr3)

> resplot(lm(Y ~ A * C + B,

data = spf))

t value Pr(>|t|)

-1.2186824 0.2229648

> with(spf, interaction.plot

(spf$B, spf$C, spf$Y))
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e Note, to maintain consistency with the conventions adopted by Quinn and Keough (2002) as well
as this book, I have altered Kirk (1968)’s Factor B into Factor C and subjects S into B.
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Conclusions - No strong evidence of a blocking interaction, therefore an additive model is
appropriate.

Step 3 (Key 14.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators).

1. Factor A (signal type treatment - fixed
effect). The subject means are the replicates
for the signal treatment effect and thus an
aggregated dataset needs to be created from
which the boxplots can be based.

> library(nlme)

> spf.agg <- gsummary(spf,

groups = spf$B)

> boxplot(Y ~ A, spf.agg)

Conclusions - There is no conclusive evi-
dence of non-normality or unequal variance.
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2. Factor C (monitoring period - fixed factor).
The individual vigilance measurements
within each subject are the replicates for
the effect of monitoring period.

> boxplot(Y ~ C, spf)

Conclusions - There is no conclusive
evidence of non-normality or unequal vari-
ance.
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3. A:C interaction (fixed factor). The individ-
ual vigilance measurements within each
subject are the replicates for the interaction
effect.

> boxplot(Y ~ A * C, spf)

Conclusions - There is no conclusive
evidence of non-normality or unequal vari-
ance.
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Step 4 (Key 14.5) - Determine whether or not the design is balanced (at least with respect to
sub-replication).

> replications(Y ~ A * C + Error(B), data = spf)

A C A:C

16 8 4

> library(biology)

> is.balanced(Y ~ A * C + Error(B), data = spf)

[1] TRUE

Conclusions - The design is completely balanced. There are exactly one of each of the four
monitoring periods per subject within each signal type.

Step 5 (Key 14.6) - fit the linear model and produce an ANOVA table to test the null hypotheses
that there no effects of signal type, monitoring time or interaction on vigilance (Table 8.2-2 of
Kirk (1968)).

> spf.aov <- aov(Y ~ A * C + Error(B), spf)

> summary(spf.aov)

Error: B

Df Sum Sq Mean Sq F value Pr(>F)

A 1 3.1250 3.1250 2 0.2070

Residuals 6 9.3750 1.5625

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

C 3 194.500 64.833 127.890 2.516e-12 ***

A:C 3 19.375 6.458 12.740 0.0001051 ***

Residuals 18 9.125 0.507

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is a significant signal type by monitoring period interaction (F3,18 =
12.740, P < 0.001). Note that whilst sphericity might be expected to be an issue for these data
(since the order of the monitoring periods could not be randomized), Kirk (1968) concluded that
the variance-covariance matrix did not deviate substantially from symmetry and thus considered
corrections unnecessary.

Step 6 - Explore the nature of the interaction further by evaluating the simple main effects
(Table 8.6-2 of Kirk (1968)).

• Effect of monitoring period (C) at A1 (auditory signal). Note, to reduce inflated family-wise
Type I errors, Kirk (1968) advocated testing each of the simple main effects tests at α/p
where p is the number of simple main effects tests within a global linear model term such
that the main effects family-wise α is the same as the α used to assess the global hypothesis
in the original model. In this example, we will perform four (4) simple main effects tests, and
thus α = 0.05/4 = 0.0125 for each.

> library(biology)

> summary(mainEffects(spf.aov, at = A == "A1"))

Error: B
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Df Sum Sq Mean Sq F value Pr(>F)

INT 1 3.1250 3.1250 2 0.2070

Residuals 6 9.3750 1.5625

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 3 159.187 53.062 104.671 1.391e-11 ***

C 3 54.688 18.229 35.959 8.223e-08 ***

Residuals 18 9.125 0.507

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Effect of monitoring period (C) at A2 (visual signal)

> library(biology)

> summary(mainEffects(spf.aov, at = A == "A2"))

Error: B

Df Sum Sq Mean Sq F value Pr(>F)

INT 1 3.1250 3.1250 2 0.2070

Residuals 6 9.3750 1.5625

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 3 54.688 18.229 35.959 8.223e-08 ***

C 3 159.188 53.062 104.671 1.391e-11 ***

Residuals 18 9.125 0.507

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Effect of signal type (A) at C1 (first hour). Note, when a main effect and an interaction to
which it contributes do not have the same error term, main effects should be calculated using
a pooled error term so fitting a fully factorial anova will pool error terms

> spf.aovA <- aov(Y ~ A * C, spf)

> summary(mainEffects(spf.aovA, at = C == "C1"))

Df Sum Sq Mean Sq F value Pr(>F)

INT 6 209.000 34.833 45.189 6.51e-12 ***

A 1 8.000 8.000 10.378 0.003645 **

Residuals 24 18.500 0.771

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Effect of signal type (A) at C2 (second hour).

> summary(mainEffects(spf.aovA, at = C == "C2"))

Df Sum Sq Mean Sq F value Pr(>F)

INT 6 215.000 35.833 46.4865 4.783e-12 ***



PARTLY NESTED DESIGNS: SPLIT PLOT AND COMPLEX REPEATED MEASURES 417

A 1 2.000 2.000 2.5946 0.1203

Residuals 24 18.500 0.771

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

...

Conclusions - Whilst the visual signal was more effective (lower response latency) than the
auditory signal during the first hour of the experiment (P < 0.001), its superiority was not
significant during hour two (P > 0.0125) and three (P > 0.0125) and it was significantly less
effective than the auditory signal during the forth hour (P = 0.004).

Step 7 - Since factor C (monitoring period) represents a quantitative sequence of the duration of
the experiment, we might also be interested in exploring the nature of trends (linear, quadratic,
etc) in vigilance over time and whether these trends are consistent for both signal types. Trends
should be compared using a separately calculated error term, each of which estimates a different
source of variation. Furthermore, family-wise α values should be maintained by dividing the α

by three (one for each polynomial trend α/3 = 0.017 ), (Table 8.8-4 of Kirk (1968)).

> p1 <- C(spf$C, poly, 1)

> p2 <- C(spf$C, poly, 2)

> p3 <- C(spf$C, poly, 3)

> spf.aov <- aov(Y ~ A * (p1 + p2 + p3) + Error(B/(p1 + p2 + p3)),

+ spf)

> summary(spf.aov)

Error: B

Df Sum Sq Mean Sq F value Pr(>F)

A 1 3.1250 3.1250 2 0.2070

Residuals 6 9.3750 1.5625

Error: B:p1

Df Sum Sq Mean Sq F value Pr(>F)

p1 1 184.900 184.900 182.617 1.018e-05 ***

A:p1 1 13.225 13.225 13.062 0.01118 *

Residuals 6 6.075 1.012

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: B:p2

Df Sum Sq Mean Sq F value Pr(>F)

p2 1 8.0000 8.0000 25.6 0.002311 **

A:p2 1 3.1250 3.1250 10.0 0.019509 *

Residuals 6 1.8750 0.3125

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: B:p3

Df Sum Sq Mean Sq F value Pr(>F)
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p3 1 1.60000 1.60000 8.1702 0.02886 *

A:p3 1 3.02500 3.02500 15.4468 0.00771 **

Residuals 6 1.17500 0.19583

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - At α = 0.017, it is evident that a substantial component of the global A:C
interaction (13.225/19.375 = 63.5%) is due to differences in the nature of the linear decline in
vigilance through time between the two signal types (P = 0.011).

Step 8 (Key 12.18) - Summarize the trends in a plot.

> spf.means <- with(spf, tapply(Y, list(A, C), mean))

> library(gmodels)

> spf.se <- with(spf, tapply(Y, list(A, C), function(x) ci(x)[4]))

> plot(Y ~ as.numeric(C), data = spf, type = "n", axes = F,

+ xlab = "", ylab = "")

> xval <- as.numeric(spf$C)

> points(spf.means["A1", ], pch = 22, type = "b", lwd = 1, lty = 2)

> arrows(xval, spf.means["A1", ] - spf.se["A1", ], xval,

+ spf.means["A1", ] + spf.se["A1", ], code = 3, angle = 90,

+ len = 0.05)

> points(spf.means["A2", ], pch = 19, type = "b", lwd = 1, lty = 1)

> arrows(xval, spf.means["A2", ] - spf.se["A2", ], xval,

+ spf.means["A2", ] + spf.se["A2", ], code = 3, angle = 90,

+ len = 0.05)

> axis(1, at = 1:4, cex.axis = 0.8)

> mtext(text = "Time period (h)", side = 1, line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = "Response latency", side = 2, line = 3)

> legend("topleft", leg = c("Visual", "Auditory"), lty = 0,

+ pch = c(22, 19), bty = "n", cex = 1)

> box(bty = "l")
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Example 14B: Linear mixed effects split-plot
Alternatively, linear mixed effects modeling could be used to analyze the Kirk (1968) spf
(split-plot factorial) data used in Example 14A. Notably, such an approach permits us to
attempt to incorporate the nature of the variance-covariance matrix rather than wish it away
post-hoc with estimated adjustments.

Step 1 (14.2&14.5) - Refer to Example 14A for importing the data and performing exploratory
data analysis.

Step 2 (Key 14.6) - Fit a series of lme models (with and without random slope components as
well as alternative correlation structures) and compare them to evaluate the appropriateness of
each.

> library(nlme)

> spf.lme.1 <- lme(Y ~ A * C, random = ~C | B, spf)

> spf.lme.2 <- update(spf.lme.1, random = ~1 | B)

> anova(spf.lme.1, spf.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

spf.lme.1 1 19 97.63924 120.0223 -29.81962

spf.lme.2 2 10 89.64876 101.4293 -34.82438 1 vs 2 10.00952 0.3497

Conclusions - Random slope not required as the model incorporating the random slope is not
a significantly better fit (likelihood ratio not significant).

> spf.lme.3 <- update(spf.lme.2, correlation = corAR1(form = ~1 |

+ B))

> anova(spf.lme.2, spf.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value

spf.lme.2 1 10 89.64876 101.4293 -34.82438

spf.lme.3 2 11 88.44767 101.4063 -33.22384 1 vs 2 3.201085 0.0736

> spf.lme.4 <- update(spf.lme.2, correlation = corCompSymm(form = ~1 |

+ B))

> anova(spf.lme.2, spf.lme.4)

Model df AIC BIC logLik Test L.Ratio p-value

spf.lme.2 1 10 89.64876 101.4293 -34.82438

spf.lme.4 2 11 91.64876 104.6073 -34.82438 1 vs 2 1.421086e-14 1

> spf.lme.5 <- update(spf.lme.2, correlation = corSymm(form = ~1 |

+ B))

> anova(spf.lme.2, spf.lme.5)

Model df AIC BIC logLik Test L.Ratio p-value

spf.lme.2 1 10 89.64876 101.4293 -34.82438

spf.lme.5 2 16 94.52970 113.3786 -31.26485 1 vs 2 7.119057 0.31

Conclusions - neither first order continuous-time autoregressive, compound symmetry or
a general correlation structure yield better fits than a no within-group correlation structure.
Examine the fit of the linear mixed effects model.

> anova(spf.lme.2)

numDF denDF F-value p-value

(Intercept) 1 18 591.6800 <.0001

A 1 6 2.0000 0.2070

C 3 18 127.8904 <.0001

A:C 3 18 12.7397 0.0001

Conclusions - There is a significant signal type by monitoring period interaction (F3,18 =
12.740, P < 0.001).
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Step 3 - Investigate the simple main effects.

• Effect of monitoring period (C) at A1.

> library(biology)

> anova(mainEffects(spf.lme.2, at = A == "A1"))

numDF denDF F-value p-value

(Intercept) 1 17 591.6800 <.0001

M1 4 17 79.0034 <.0001

M3 3 17 35.9589 <.0001

• Effect of monitoring period (C) at A2.

> anova(mainEffects(spf.lme.2, at = A == "A2"))

numDF denDF F-value p-value

(Intercept) 1 17 591.6800 <.0001

M1 4 17 27.4692 <.0001

M3 3 17 104.6712 <.0001

• Effect of monitoring period (A) at C1.

> anova(mainEffects(spf.lme.2, at = C == "C1"))

numDF denDF F-value p-value

(Intercept) 1 18 591.6800 <.0001

M1 6 18 68.9187 <.0001

M2 1 6 10.3784 0.0181

• Effect of monitoring period (A) at C2.

> anova(mainEffects(spf.lme.2, at = C == "C2"))

numDF denDF F-value p-value

(Intercept) 1 18 591.6800 <.0001

M1 6 18 70.2160 <.0001

M2 1 6 2.5946 0.1584

Step 4 - Similar with lmer (lme4).

> library(lme4)

> spf.lmer <- lmer(Y ~ A * C + (1 | B), spf)

> library(languageR)

> aovlmer.fnc(spf.lmer, noMCMC = T)

Analysis of Variance Table

Df Sum Sq Mean Sq F value F Df2 p

A 1 1.014 1.014 1.9997 1.9997 24.000 0.170

C 3 194.500 64.833 127.8904 127.8904 24.000 6.772e-15

A:C 3 19.375 6.458 12.7397 12.7397 24.000 3.508e-05
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Example 14C: Repeated measures ANOVA
Mullens (1993) investigated the impact of hypoxia (oxygen stress) on the ventilation patterns
of cane toads (Bufo marinus). In anticipation of variability in ventilation patterns between
individual toads, each oxygen concentration level (O2LEVEL: 0, 5, 10, 15, 20, 30, 40 and
50%) was measured from each individual. Hence the individual toads represent the blocks
(TOADS) and the oxygen levels represent a within block treatment. Individual toads also
categorized according to their typical predominant mode of breathing (BRTH.TYP: buccal
or lung) and therefore breathing type represents a between block treatment. Ventilation
patterns were measured as the frequency of buccal breathing (Box 11.2 of Quinn and Keough
(2002)).

Step 1 - Import (section 2.3) the Mullens (1993) data set.

> mullens <- read.table("mullens.csv", header = T, sep = ",")

Step 2 - In order to ensure that the oxygen concentration variable is treated as a factor we need
to redefine its class

> mullens$O2LEVEL <- factor(mullens$O2LEVEL)

Step 3 (Key 14.2) - Assess whether there are likely to be any plot by within plot interactions.

Raw data Square root transformed data

> library(alr3)

> resplot(lm(FREQBUC ~

+ BRTH.TYP * O2LEVEL +

+ TOAD, data = mullens))

t value Pr(>|t|)

3.926581e+00 8.616205e-05

> resplot(lm(sqrt(FREQBUC) ~

+ BRTH.TYP * O2LEVEL + TOAD,

+ data = mullens))

t value Pr(>|t|)

1.2616950 0.2070586
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Conclusions - If raw data is appropriate, then there is some evidence of a blocking interaction
(thus non-additive model). However, there is no strong evidence of a blocking interaction for
square root transformed data (thus additive model).

Step 4 (Key 14.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 14.1).

1. Between plot effect (Factor A: breathing type treatment - fixed effect). The means of each
toad are the replicates for the breathing type effect and thus an aggregated dataset needs to
be created from which the boxplots can be based.

> library(nlme)

> mullens.agg <- gsummary

+ (mullens, groups =

+ mullens$TOAD)

> boxplot(FREQBUC ~ BRTH.TYP,

+ mullens.agg)

buccal lung
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> mullens$SFREQBUC <- sqrt

+ (mullens$FREQBUC)

> mullens.agg <- gsummary

+ (mullens, groups =

+ mullens$TOAD)

> boxplot(SFREQBUC ~ BRTH.TYP,

+ mullens.agg)

buccal lung

2
3

4
5

Conclusions - Square root transformed data appears to confirm to the parametric assump-
tions better than the raw data.

2. Within plot effects (Factor C: percentage oxygen treatment - fixed effect, A:C interaction -
fixed factor). The individual frequency of buccal breathing measurements within each toad
are the replicates for the effect of oxygen level.
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> boxplot(FREQBUC ~

+ O2LEVEL, mullens)

> boxplot(FREQBUC ~

+ BRTH.TYP * O2LEVEL,

+ mullens)
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> boxplot(sqrt(FREQBUC) ~

+ O2LEVEL, mullens)

> boxplot(sqrt(FREQBUC) ~
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Conclusions - Square root transformed data appears to confirm to the parametric assump-
tions better than the raw data.

Step 5 (Key 14.5) - Determine whether or not the design is balanced (at least with respect to
sub-replication).

> replications(sqrt(FREQBUC) ~ BRTH.TYP * O2LEVEL + Error(TOAD),

+ mullens)

$BRTH.TYP

BRTH.TYP

buccal lung

104 64

$O2LEVEL

[1] 21

$'BRTH.TYP:O2LEVEL'

O2LEVEL

BRTH.TYP 0 5 10 15 20 30 40 50

buccal 13 13 13 13 13 13 13 13

lung 8 8 8 8 8 8 8 8

> library(biology)

> is.balanced(sqrt(FREQBUC) ~ BRTH.TYP * O2LEVEL + Error(TOAD),

+ mullens)

[1] FALSE

Conclusions - The design is not balanced. Of the 21 toads, 13 where buccal breathing and
only 8 where lung breathing. Consequently, type I Sums of Squares are not appropriate.
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Step 6 (Key 14.8) - fit the linear model and produce an ANOVA table to test the null hypotheses
that there no effects of breathing type, oxygen concentration or interaction on the pattern of
ventilation (frequency of buccal breathing). Furthermore, we will treat the design as a repeated
measures analysis to correct for deviations from sphericity that may result due to the ordered
nature of the between plot effect (oxygen concentration).

> contrasts(mullens$TOAD) <- contr.helmert

> contrasts(mullens$BRTH.TYP) <- contr.helmert

> # define polynomial contrasts with a particular pattern of

spacing between levels

> contrasts(mullens$O2LEVEL) <- contr.poly(8, c(0, 5, 10, 15, 20,

+ 30, 40, 50))

> # create a new variable to represent the transformed response

> mullens$SFREQBUC <- sqrt(mullens$FREQBUC)

> mullens.aov <- aov(SFREQBUC ~ BRTH.TYP * O2LEVEL + Error(TOAD),

+ data = mullens)

> library(biology)

> AnovaM(mullens.aov, type = "III", RM = T)

Sphericity Epsilon Values

-------------------------------

Greenhouse.Geisser Huynh.Feldt

0.4281775 0.5172755

Anova Table (Type III tests)

Response: SFREQBUC

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

BRTH.TYP 1 39.921 39.921 5.7622 0.02678 *

Residuals 19 131.634 6.928

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

O2LEVEL 7 25.748 3.678 4.8841 6.258e-05 ***

BRTH.TYP:O2LEVEL 7 56.372 8.053 10.6928 1.228e-10 ***

Residuals 133 100.166 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Greenhouse-Geisser corrected ANOVA table

Response: SFREQBUC

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

BRTH.TYP 0.42818 39.921 39.921 5.7622 0.04785 *

Residuals 19.00000 131.634 6.928

---



PARTLY NESTED DESIGNS: SPLIT PLOT AND COMPLEX REPEATED MEASURES 425

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

O2LEVEL 2.9972 25.748 3.678 4.8841 0.002981 **

BRTH.TYP:O2LEVEL 2.9972 56.372 8.053 10.6928 2.435e-06 ***

Residuals 133.0000 100.166 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Huynh-Feldt corrected ANOVA table

Response: SFREQBUC

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

BRTH.TYP 0.51728 39.921 39.921 5.7622 0.04393 *

Residuals 19.00000 131.634 6.928

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

O2LEVEL 3.6209 25.748 3.678 4.8841 0.001545 **

BRTH.TYP:O2LEVEL 3.6209 56.372 8.053 10.6928 4.223e-07 ***

Residuals 133.0000 100.166 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Both Greenhouse-Geisser and Huynh-Feldt epsilon estimates suggest that
sphericity was not met (Greenhouse-Geisser preferred as they are both less than 0.75). There is
a significant breathing type by oxygen level interaction (P < 0.001).

Step 7 - Explore the nature of the interaction further by evaluating the simple main effects.

• Effect of oxygen concentration for buccal breathing toads.

> library(biology)

> summary(mainEffects(mullens.aov, at = BRTH.TYP == "buccal"))

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

INT 1 39.921 39.921 5.7622 0.02678 *

Residuals 19 131.634 6.928

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 7 19.907 2.844 3.7761 0.0009103 ***

O2LEVEL 7 75.433 10.776 14.3085 9.013e-14 ***

Residuals 133 100.166 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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• Effect of oxygen concentration for lung breathing toads.

> summary(mainEffects(mullens.aov, at = BRTH.TYP == "lung"))

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

INT 1 39.921 39.921 5.7622 0.02678 *

Residuals 19 131.634 6.928

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 7 75.433 10.776 14.3085 9.013e-14 ***

O2LEVEL 7 19.907 2.844 3.7761 0.0009103 ***

Residuals 133 100.166 0.753

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Step 8 - Quinn and Keough (2002) also illustrated polynomial trends which can be useful for
exploring the nature of the within plot treatments(s) in repeated measures designs (when the
treatment has an orderedf set of levels). Such trends should be compared using a separately
calculated error term (to reduce the impacts of deviations from sphericity), each of which
estimates a different source of variation.

> # begin by defining the appropriate linear, quadratic and cubic terms

> p1 <- C(mullens$O2LEVEL, poly, 1, c(0, 5, 10, 15, 20, 30, 40, 50))

> p2 <- C(mullens$O2LEVEL, poly, 2, c(0, 5, 10, 15, 20, 30, 40, 50))

> p3 <- C(mullens$O2LEVEL, poly, 3, c(0, 5, 10, 15, 20, 30, 40, 50))

> # calculate the Linear trend

> # Note the use of Type III Sums of Squares due to design imbalance

> mullens.aovP1 <- aov(SFREQBUC ~ BRTH.TYP * p1 + Error(TOAD/(p1)),

> # data = mullens)

> AnovaM(mullens.aovP1, type = "III")[[2]]

Df Sum Sq Mean Sq F value Pr(>F)

p1 1 17.010 17.010 8.2555 0.0097341 **

BRTH.TYP:p1 1 40.065 40.065 19.4441 0.0003011 ***

Residuals 19 39.149 2.060

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> # calculate the Quadratic trend

> mullens.aovP2 <- aov(SFREQBUC ~ BRTH.TYP * (p1 + p2) + Error(TOAD/(p1 +

+ p2)), data = mullens)

> AnovaM(mullens.aovP2, type = "III")[[3]]

Df Sum Sq Mean Sq F value Pr(>F)

p2 1 5.0069 5.0069 6.9667 0.016162 *

BRTH.TYP:p2 1 12.3256 12.3256 17.1498 0.000555 ***

Residuals 19 13.6553 0.7187

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

f by ordered, I refer to a set of factor levels that have a natural order such as time, distance,
concentration etc.
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> # calculate the Cubic trend

> mullens.aovP3 <- aov(SFREQBUC ~ BRTH.TYP * (p1 + p2 + p3) +

+ Error(TOAD/(p1 + p2 + p3)), data = mullens)

> AnovaM(mullens.aovP3, type = "III")[[4]]

Df Sum Sq Mean Sq F value Pr(>F)

p3 1 1.7470 1.7470 3.2625 0.08675 .

BRTH.TYP:p3 1 1.7839 1.7839 3.3314 0.08373 .

Residuals 19 10.1742 0.5355

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There are significant breathing type by oxygen concentration linear and quadratic
interactions, suggesting that the nature of the trends in ventilation performance depend upon
on the natural breathing type of the toads. We shall therefore explore the nature of the trends
separately for each breathing type.

> # explore the trends for buccal breathing toads

> library(biology)

> mullens.aovB <- aov(SFREQBUC ~ p1 + p2 + p3 + Error(TOAD/(p1 +

+ p2 + p3)), data = mullens, subset = BRTH.TYP == "buccal")

> AnovaM(mullens.aovB)

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 12 88.286 7.357

Error: TOAD:p1

Df Sum Sq Mean Sq F value Pr(>F)

p1 1 71.719 71.719 178.87 1.432e-08 ***

Residuals 12 4.811 0.401

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: TOAD:p2

Df Sum Sq Mean Sq F value Pr(>F)

p2 1 1.06373 1.06373 5.4981 0.03706 *

Residuals 12 2.32167 0.19347

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: TOAD:p3

Df Sum Sq Mean Sq F value Pr(>F)

p3 1 0.0001 0.0001 2e-04 0.9877

Residuals 12 6.1020 0.5085

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 52 22.6251 0.4351

> # explore the trends for lung breathing toads

> mullens.aovL <- aov(SFREQBUC ~ p1 + p2 + p3 + Error(TOAD/(p1 +
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+ p2 + p3)), data = mullens, subset = BRTH.TYP == "lung")

> AnovaM(mullens.aovL)

Error: TOAD

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 7 43.349 6.193

Error: TOAD:p1

Df Sum Sq Mean Sq F value Pr(>F)

p1 1 1.964 1.964 0.4004 0.547

Residuals 7 34.338 4.905

Error: TOAD:p2

Df Sum Sq Mean Sq F value Pr(>F)

p2 1 13.3447 13.3447 8.2421 0.02396 *

Residuals 7 11.3336 1.6191

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: TOAD:p3

Df Sum Sq Mean Sq F value Pr(>F)

p3 1 2.8518 2.8518 4.9023 0.06242 .

Residuals 7 4.0722 0.5817

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 32 18.9595 0.5925

Conclusions - Whilst buccal breathing toads respond to increasing hypoxia (reducing oxygen
levels) with a significant linear increase in buccal breathing rate (P < 0.001), the breathing rates
of lung breathing toads displays a quadratic trend (P = 0.024), initially rising before declining
sharply at oxygen concentrations lower than 10 percent (see figure).

Step 9 - Summarize the trends in a plot.

> # calculate the mean and standard error of each group

> mullens.means <- with(mullens, tapply(SFREQBUC, list(BRTH.TYP,

+ O2LEVEL), mean))

> mullens.se <- with(mullens, tapply(SFREQBUC, list(BRTH.TYP,

+ O2LEVEL), function(x) ci(x)[4]))

> mullens$O2 <- as.numeric(as.character(mullens$O2LEVEL))

> # create a numeric version of the oxygen level variable

> xval <- unique(mullens$O2)

> # construct the base plot

> plot(SFREQBUC ~ O2, data = mullens, type = "n", axes = F,

+ xlab = "", ylab = "")

> # create some shortcuts objects

> mB <- mullens.means["buccal", ]

> seB <- mullens.se["buccal", ]
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> # plot the error bars with open circle symbols for buccal breathing toads

> arrows(xval, mB - seB, xval, mB + seB, code = 3, angle = 90,

+ len = 0.01)

> points(mB ~ xval, pch = 16, col = "white", type = "b", lwd = 1,

+ lty = 2)

> points(mB ~ xval, pch = 1, col = "black", type = "b", lwd = 1,

+ lty = 2)

> mL <- mullens.means["lung", ]

> seL <- mullens.se["lung", ]

> points(mL ~ xval, pch = 19, type = "b", lwd = 1, lty = 1)

> arrows(xval, mL - seL, xval, mL + seL, code = 3, angle = 90,

+ len = 0.01)

> axis(1, cex.axis = 0.8)

> mtext(text = expression(paste(O[2], " level (%)")), side = 1,

+ line = 3)

> axis(2, cex.axis = 0.8, las = 1)

> mtext(text = expression(paste("Breathing rate ",

+ (sqrt(breaths.m^{-1

+ })))), side = 2, line = 3)

> legend("topright", leg = c("buccal", "lung"),

+ title = "Breathing type", lty = 0, pch = c(22, 19),

+ bty = "n", cex = 1)

> box(bty = "l")
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Example 14D: Linear mixed effects - unbalanced and compound symmetry violated
Alternatively, linear mixed effects modeling could be used to analyze the data introduced in
Example 14C (Box 11.2 of Quinn and Keough (2002)). Notably, such an approach permits
us to attempt to incorporate the nature of the variance-covariance matrix rather than wish it
away post-hoc with estimated adjustments.

Step 1 (Key 14.2&14.5) - Refer to Example 14C for importing the data and performing
exploratory data analysis.

Step 2 - Examine a lattice (trellis) plot in which the patterns of buccal breathing frequency
against oxygen percentage are displayed for each individual toad.
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> library(lattice)

> mullens$O2 <- as.numeric(as.character(mullens$O2LEVEL))

> xyplot(SFREQBUC ~ O2 | TOAD, groups = BRTH.TYP, mullens,

+ type = c("p", "r"), auto.key = T)

O2

S
F

R
E

Q
B

U
C

0

2

4

6

0

2

4

6

0

2

4

6

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

a b c d e

f g h i

0

2

4

6

j

k l m n o

p q r s

0

2

4

6

t

u
buccal
lung

Conclusions - individual toads clearly display different propensities for buccal breathing. Thus
a random intercepts model (essentially allowing each toad to have its own intercept) could
be very useful. The slopes are fairly similar to one another (at least within a breathing type),
and thus, models that incorporate random slopes in addition to random intercepts are perhaps
overly complex.

Step 3 (Key 14.8) - Fit a series of lme models (with and without random slope components as
well as alternative correlation structures) and compare them to evaluate the appropriateness of
each.

> library(nlme)

> # model with random intercept and slope

> contrasts(mullens$BRTH.TYP) <- "contr.helmert"

> contrasts(mullens$O2LEVEL) <- contr.poly(8, c(0, 5, 10, 15, 20,

+ 30, 40, 50))

> # fit a model without correlation structure

> mullens.lme.1 <- lme(SFREQBUC ~ BRTH.TYP * O2LEVEL, random = ~1 |

+ TOAD, data = mullens)

> # fit a model with a compound symmetry correlation structure
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> mullens.lme.2 <- lme(SFREQBUC ~ BRTH.TYP * O2LEVEL, random = ~1 |

+ TOAD, data = mullens, corr = corCompSymm(form = ~1 | TOAD))

> # compare the fit of models

> anova(mullens.lme.1, mullens.lme.2)

Model df AIC BIC logLik Test

mullens.lme.1 1 18 518.8302 573.2601 -241.4151

mullens.lme.2 2 19 520.8302 578.2839 -241.4151 1 vs 2

L.Ratio p-value

mullens.lme.1

mullens.lme.2 1.136868e-13 1

Conclusions - Models incorporating either no correlation structure or compound symmetry are
essentially equivalent (on the basis of AIC and log-likelihood ratio) to one another.

> # fit a model with a continuous first order autoregressive structure

> mullens.lme.3 <- lme(SFREQBUC ~ BRTH.TYP * O2LEVEL, random = ~1 | TOAD,

+ data = mullens, corr = corAR1(form = ~1 | TOAD))

> # compare the fit of models

> anova(mullens.lme.1, mullens.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value

mullens.lme.1 1 18 518.8302 573.2601 -241.4151

mullens.lme.3 2 19 487.8255 545.2793 -224.9128 1 vs 2 33.00467 <.0001

Conclusions - A model that incorporates a continuous first order autoregressive correlation
structure is a significantly better model that one without any correlation structure. Therefore use
the autoregressive model to test the hypotheses about the fixed factors in the model (breathing
rate, oxygen concentration and their interaction). Note a continuous time autoregressive struc-
ture is more appropriate than a regular first order autoregressive structure as the oxygen levels
were not of equal spacing.
Examine the anova table for the model fit. As the design is not balanced, use marginal (Type III)
sums of squares.

> anova(mullens.lme.3, type = "marginal")

numDF denDF F-value p-value

(Intercept) 1 133 254.69303 <.0001

BRTH.TYP 1 19 5.99813 0.0242

O2LEVEL 7 133 2.96663 0.0064

BRTH.TYP:O2LEVEL 7 133 6.27943 <.0001

Conclusions - There is a significant breathing type by oxygen level interaction (P < 0.001)g.

Step 4 - Explore the nature of the interaction further by evaluating the simple main effects.

• Effect of oxygen concentration for buccal breathing toads.

> library(biology)

> anova(mainEffects(mullens.lme.3, at = BRTH.TYP == "buccal"))

g Note, had we used the fitted linear effects model that assumed incorporated compound symmetry
(mullens.lme.2), we would have produced the same F-ratios and P-values to a traditional split-plot
ANOVA model that assumed compound symmetry (Step 5 of Example 14C).
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numDF denDF F-value p-value

(Intercept) 1 132 283.35264 <.0001

M1 8 132 3.79161 5e-04

M3 7 132 7.02263 <.0001

• Effect of oxygen concentration for lung breathing toads.

> anova(mainEffects(mullens.lme.3, at = BRTH.TYP == "lung"))

numDF denDF F-value p-value

(Intercept) 1 132 283.35264 <.0001

M1 8 132 7.18335 <.0001

M3 7 132 3.14635 0.0042

Conclusions - There is a significant effect of oxygen concentration on the rate of breathing
in both buccal (P < 0.001) and lung breathing toads, although the effect is perhaps stronger
in the former (P = 0.004).

Step 5 - Quinn and Keough (2002) also illustrated polynomial trends which can be useful for
exploring the nature of the within plot treatments(s) in repeated measures designs. Since the
oxygen level contrasts were defined as polynomial contrasts prior to fitting the linear mixed effects
model, the polynomial trends can be explored by examining their respective contrast estimates.

> summary(mullens.lme.3)$tTable

Value Std.Error DF t-value p-value

(Intercept) 3.27055552 0.2049335 133 15.9591048 1.072635e-32

BRTH.TYP1 -0.50190423 0.2049335 19 -2.4491075 2.419395e-02

O2LEVEL.L -0.92665742 0.2960086 133 -3.1305084 2.145655e-03

O2LEVEL.Q -0.50274699 0.2350434 133 -2.1389536 3.426644e-02

O2LEVEL.C 0.29696969 0.1902856 133 1.5606525 1.209821e-01

O2LEVEL^4 -0.16531509 0.1656535 133 -0.9979572 3.201123e-01

O2LEVEL^5 0.12862277 0.1455696 133 0.8835824 3.785161e-01

O2LEVEL^6 0.21789466 0.1377385 133 1.5819442 1.160375e-01

O2LEVEL^7 -0.09384956 0.1248054 133 -0.7519672 4.533995e-01

BRTH.TYP1:O2LEVEL.L 1.42214172 0.2960086 133 4.8043931 4.125417e-06

BRTH.TYP1:O2LEVEL.Q -0.78879876 0.2350434 133 -3.3559702 1.031193e-03

BRTH.TYP1:O2LEVEL.C 0.30008904 0.1902856 133 1.5770455 1.171607e-01

BRTH.TYP1:O2LEVEL^4 -0.10039069 0.1656535 133 -0.6060282 5.455289e-01

BRTH.TYP1:O2LEVEL^5 -0.17042006 0.1455696 133 -1.1707115 2.438081e-01

BRTH.TYP1:O2LEVEL^6 -0.07034671 0.1377385 133 -0.5107264 6.103893e-01

BRTH.TYP1:O2LEVEL^7 -0.25859982 0.1248054 133 -2.0720245 4.019500e-02

Conclusions - There are significant breathing type by linear and quadratic interactions, sug-
gesting that the nature of the trends in ventilation performance depend upon on the natural
breathing type of the toads. We shall therefore explore the nature of the trends separately for
each breathing type.

• Explore the polynomial trends for buccal breathing toads. nly terms beginning with M3 are
relevant to the trends of interest.

> summary(mainEffects(mullens.lme.3, at = BRTH.TYP == "buccal"))$tTable

Value Std.Error DF t-value p-value

(Intercept) 3.772459750 0.2529754 132 14.91235638 4.296929e-30

M1INTlung.0 -3.391410652 0.5469173 132 -6.20095742 6.696311e-09

M1INTlung.5 -2.355189353 0.5469173 132 -4.30629917 3.213505e-05

M1INTlung.10 -1.058672073 0.5469173 132 -1.93570792 5.504132e-02
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M1INTlung.15 -1.018480912 0.5469173 132 -1.86222119 6.479525e-02

M1INTlung.20 -0.092952990 0.5469173 132 -0.16995805 8.653033e-01

M1INTlung.30 -0.414694389 0.5469173 132 -0.75823972 4.496591e-01

M1INTlung.40 0.225424650 0.5469173 132 0.41217322 6.808811e-01

M1INTlung.50 0.075508077 0.5469173 132 0.13806124 8.904024e-01

M3O2LEVEL.L -2.348799134 0.3654010 132 -6.42800489 2.169510e-09

M3O2LEVEL.Q 0.286051766 0.2901439 132 0.98589614 3.259878e-01

M3O2LEVEL.C -0.003119349 0.2348936 132 -0.01327984 9.894246e-01

M3O2LEVEL^4 -0.064924399 0.2044871 132 -0.31749874 7.513669e-01

M3O2LEVEL^5 0.299042834 0.1796951 132 1.66416827 9.845096e-02

M3O2LEVEL^6 0.288241366 0.1700281 132 1.69525698 9.238432e-02

M3O2LEVEL^7 0.164750259 0.1540631 132 1.06936865 2.868552e-01

• Explore the polynomial trends for lung breathing toads. Only terms beginning with M3 are
relevant to the trends of interest.

> summary(mainEffects(mullens.lme.3, at = BRTH.TYP == "lung"))$tTable

Value Std.Error DF t-value p-value

(Intercept) 6.16006195 0.4625892 133 13.3164859 3.078255e-26

M1INTlung.0 -3.39141065 0.5469173 19 -6.2009574 5.876085e-06

M1INTbuccal.5 -1.03622130 0.4195306 133 -2.4699543 1.477925e-02

M1INTbuccal.10 -2.33273858 0.5260936 133 -4.4340748 1.918234e-05

M1INTbuccal.15 -2.37292974 0.5783317 133 -4.1030600 7.066792e-05

M1INTbuccal.20 -3.29845766 0.6062166 133 -5.4410546 2.462483e-07

M1INTbuccal.30 -2.97671626 0.6216187 133 -4.7886530 4.410966e-06

M1INTbuccal.40 -3.61683530 0.6302675 133 -5.7385722 6.153507e-08

M1INTbuccal.50 -3.46691873 0.6351661 133 -5.4582867 2.275045e-07

M3O2LEVEL.L 0.49548430 0.4657967 133 1.0637352 2.893762e-01

M3O2LEVEL.Q -1.29154575 0.3698624 133 -3.4919631 6.512915e-04

M3O2LEVEL.C 0.59705874 0.2994318 133 1.9939723 4.820021e-02

M3O2LEVEL^4 -0.26570578 0.2606709 133 -1.0193149 3.099041e-01

M3O2LEVEL^5 -0.04179729 0.2290672 133 -0.1824674 8.554938e-01

M3O2LEVEL^6 0.14754795 0.2167442 133 0.6807470 4.972150e-01

M3O2LEVEL^7 -0.35244937 0.1963927 133 -1.7946154 7.498631e-02

Conclusions - The rows in the above tables that are of interest are those labled M302LEVEL.L,
M302LEVEL.Q and M302LEVEL.C representing linear, quadratic and cubic effects respectively.
Whilst an increase in hypoxia (reduction in oxygen levels) was associated with a significant
linear increase in buccal breathing rate by buccal breathing toads (P < 0.001), such as linear
trend was not observed in lung breathing toads (P = 0.289). Instead, for lung breathing toads,
increasing hypoxia was associated with a significant quadratic breathing rate (P < 0.001). The
breathing rate of lung breathing toads initially increased as the oxygen concentration decreased
before desplaying a sharp decline after oxygen concentrations lower than 10 percent (see Figure
produced in Step 9 of Example 14C).

Example 14E: Repeated measures ANOVA
McGoldrick and Mac Nally (1998) investigated temporal changes in bird abundances in two
different eucalypt habitat types (HABITAT: Ironbark and Stringybark) from two different
regions (REGION: north and south) across south east Australia. Two sites (random plots) of
each habitat/region combination were surveyed once a month for twelve months (MONTH:
fixed within plot effect) and thus a partly nested design was employed (Box 11.4 of Quinn
and Keough (2002)).
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Step 1 - Import (section 2.3) the McGoldrick and Mac Nally (1998) data set.

> mcgold <- read.table("mcgold.csv", header = T, sep = ",")

Step 2 - To preserve the natural chronological order of the month data (by default R orders all
factors alphabetically), specify the logical sequence of months and define the factor as orderedh.
In so doing, R will also define the contrasts for this factor as polynomials. Note the procedure
below relies on the order of data in the data file reflecting the preferred order.

> # examine the first six entries in the MONTH vector

> head(mcgold$MONTH)

[1] MAY MAY MAY MAY MAY MAY

12 Levels: APRIL AUGUST DECEMBER FEBRUARY JANUARY JULY JUNE MARCH

... SEPTEMBER

> mcgold$MONTH <- ordered(mcgold$MONTH,

levels = unique(mcgold$MONTH))

> # examine the first six entries in the MONTH vector again

> # note the format of the levels attribute

> head(mcgold$MONTH)

[1] MAY MAY MAY MAY MAY MAY

12 Levels: MAY < JUNE < JULY < AUGUST < SEPTEMBER < OCTOBER < ... <

APRIL

Step 3 (14.2) - Assess whether there are likely to be any plot by within plot interactions.

Raw data Loge + 1 transformed data

> library(alr3)

> resplot(lm(BIRDS ~ HABITAT *

+ REGION * MONTH + SITE,

+ data = mcgold))

t value Pr(>|t|)

4.987846e+00 6.105625e-07

> resplot(lm(log(BIRDS + 1) ~

+ HABITAT * REGION * MONTH +

+ SITE, data = mcgold))

t value Pr(>|t|)

0.7961976 0.4259172
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h Ordered factors are those in which the trends along the entire sequence of the levels are more
interesting than the individual pairwise differences between levels.
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Conclusions - The raw data shows a curvilinear trend implying that site by month interactions
may be present. Moreover, the plot depicts a definite ‘wedge’ shape indicating that the
assumption of homogeneity of variance is likely to be violated. Model fitting based on loge + 1
transformed data shows no evidence of blocking interactions or non-homogeneity of variance.

Step 4 (14.2) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 14.3).

1. Between plot effects (Factor A: HABITAT - fixed effect, FACTOR C: REGION - fixed effect,
A:C interaction - fixed). The mean bird abundances within each site (pooled over months)
are the replicates for the between plot effects and thus an aggregated dataset needs to be
created on which exploratory data analysis plots should be based. Prior to aggregating, we
need to make a new variable to represent transformed data.

> library(nlme)

> mcgold$LBIRDS <- log

+ (mcgold$BIRDS + 1)

> mcgold.agg <- gsummary

+ (mcgold, groups =

+ mcgold$SITE)

> boxplot(BIRDS ~ HABITAT *

+ REGION, mcgold.agg)

> boxplot(LBIRDS ~

+ HABITAT * REGION,

+ mcgold.agg)
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Conclusions - loge + 1 transformed data appears to confirm to the parametric assumptions
better than the raw data.

2. Within plot effects (Factor D: MONTH - fixed effect, interactions - fixed factor, interactions
involving month). The individual bird abundances within each month of each site are the
replicates for the within site effectsi.

> boxplot(BIRDS ~

+ MONTH, mcgold)

> boxplot(LBIRDS ~

+ MONTH, mcgold)
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i For the transformed data, there was no evidence of interactions involving the sites (blocks) and
thus we can use this single pooled residual term. Had there have been strong evidence of blocking
interactions, it would be appropriate to generate further appropriately aggregated datasets on which
to perform exploratory data analysis.
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Conclusions - loge + 1 transformed data appears to confirm to the parametric assumptions
better than the raw data.

Step 5 (Key 14.splitPlot-key-notMissing) - Determine whether or not the design is balanced
(at least with respect to sub-replication).

> replications(log(BIRDS + 1) ~ HABITAT * REGION * MONTH +

+ Error(SITE), mcgold)

HABITAT REGION MONTH

48 48 8

HABITAT:REGION HABITAT:MONTH REGION:MONTH

24 4 4

HABITAT:REGION:MONTH

2

> library(biology)

> is.balanced(log(BIRDS + 1) ~ HABITAT * REGION * MONTH +

+ Error(SITE), mcgold)

[1] TRUE

Conclusions - The design is balanced. There were exactly two sites per habitat/region
combination and each site was surveyed every month.

Step 6 (Key 14.6) - fit the linear model and produce an ANOVA table to test the null hypotheses
that there are no effects of habitat, region and month on the (log transformed) abundance of
forest birds. Treat the design as a repeated measures analysis to correct for deviations from
sphericity that may result due to the ordered nature of the between plot effect (month).

> mcgold.aov <- aov(LBIRDS ~ HABITAT * REGION * MONTH +

+ Error(SITE), data = mcgold)

> library(biology)

> AnovaM(mcgold.aov, RM = T)

Sphericity Epsilon Values

-------------------------------

Greenhouse.Geisser Huynh.Feldt

0.2103946 0.5162103

Anova Table (Type I tests)

Response: LBIRDS

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

HABITAT 1 88.313 88.313 48.9753 0.002194 **

REGION 1 0.106 0.106 0.0586 0.820678

HABITAT:REGION 1 1.334 1.334 0.7398 0.438236

Residuals 4 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within
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Df Sum Sq Mean Sq F value Pr(>F)

MONTH 11 48.676 4.425 5.9408 8.029e-06 ***

HABITAT:MONTH 11 72.152 6.559 8.8061 5.488e-08 ***

REGION:MONTH 11 11.436 1.040 1.3957 0.2089

HABITAT:REGION:MONTH 11 3.858 0.351 0.4709 0.9113

Residuals 44 32.774 0.745

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Greenhouse-Geisser corrected ANOVA table

Response: LBIRDS

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

HABITAT 0.21039 88.313 88.313 48.9753 0.005497 **

REGION 0.21039 0.106 0.106 0.0586 0.398851

HABITAT:REGION 0.21039 1.334 1.334 0.7398 0.220487

Residuals 4.00000 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 2.3143 48.676 4.425 5.9408 0.0036017 **

HABITAT:MONTH 2.3143 72.152 6.559 8.8061 0.0003426 ***

REGION:MONTH 2.3143 11.436 1.040 1.3957 0.2586627

HABITAT:REGION:MONTH 2.3143 3.858 0.351 0.4709 0.6552869

Residuals 44.0000 32.774 0.745

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Huynh-Feldt corrected ANOVA table

Response: LBIRDS

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

HABITAT 0.51621 88.313 88.313 48.9753 0.003255 **

REGION 0.51621 0.106 0.106 0.0586 0.644687

HABITAT:REGION 0.51621 1.334 1.334 0.7398 0.341802

Residuals 4.00000 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 5.6783 48.676 4.425 5.9408 0.0001662 ***

HABITAT:MONTH 5.6783 72.152 6.559 8.8061 3.572e-06 ***
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REGION:MONTH 5.6783 11.436 1.040 1.3957 0.2399414

HABITAT:REGION:MONTH 5.6783 3.858 0.351 0.4709 0.8171740

Residuals 44.0000 32.774 0.745

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Both Greenhouse-Geisser and Huynh-Feldt epsilon estimates suggest that
sphericity was not met. There is a significant habitat by month interaction suggesting that the
nature of the temporal patterns in bird abundances differ between the two habitats (P < 0.001).
Similarly, whether or not there are differences in bird abundances in different habitats depends
on the focal month.

Step 7 - Quinn and Keough (2002) presented the polynomial output that typically accompanies
repeated measures analysis. Such trends should be compared using a separately calculated error
term (to reduce the impacts of deviations from sphericity), each of which estimates a different
source of variation.

> # begin by defining the appropriate linear, quadratic and cubic

> # terms

> MONTH.L <- C(mcgold$MONTH, poly, 1) # linear trend

> MONTH.Q <- C(mcgold$MONTH, poly, 2) # quadratic trend

> MONTH.C <- C(mcgold$MONTH, poly, 3) # cubic trend

> mcgold.aov <- aov(LBIRDS ~ HABITAT * REGION * MONTH + Error(SITE/

+ (MONTH.L + MONTH.Q + MONTH.C)), data = mcgold)

> summary(mcgold.aov)

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

HABITAT 1 88.313 88.313 48.9753 0.002194 **

REGION 1 0.106 0.106 0.0586 0.820678

HABITAT:REGION 1 1.334 1.334 0.7398 0.438236

Residuals 4 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.L

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 1 16.0556 16.0556 12.2311 0.02496 *

HABITAT:MONTH 1 24.5324 24.5324 18.6887 0.01242 *

REGION:MONTH 1 3.0278 3.0278 2.3065 0.20345

HABITAT:REGION:MONTH 1 0.7168 0.7168 0.5460 0.50095

Residuals 4 5.2507 1.3127

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.Q

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 1 13.0991 13.0991 8.8971 0.04063 *

HABITAT:MONTH 1 17.9351 17.9351 12.1818 0.02512 *
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REGION:MONTH 1 1.5739 1.5739 1.0690 0.35958

HABITAT:REGION:MONTH 1 0.8219 0.8219 0.5583 0.49648

Residuals 4 5.8891 1.4723

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.C

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 1 1.6960 1.6960 2.9426 0.161419

HABITAT:MONTH 1 22.6950 22.6950 39.3754 0.003293 **

REGION:MONTH 1 1.4015 1.4015 2.4316 0.193923

HABITAT:REGION:MONTH 1 0.1671 0.1671 0.2900 0.618808

Residuals 4 2.3055 0.5764

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

MONTH 8 17.8249 2.2281 3.6889 0.003745 **

HABITAT:MONTH 8 6.9895 0.8737 1.4465 0.215806

REGION:MONTH 8 5.4324 0.6791 1.1242 0.373928

HABITAT:REGION:MONTH 8 2.1525 0.2691 0.4455 0.884351

Residuals 32 19.3284 0.6040

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - The nature of temporal trends in bird abundances differ between the two
habitats.

Step 8 - Although Quinn and Keough (2002) did not show simple main effects tests, in this case,
such tests would be useful to formally explore the nature of the habitat by trend interactions
further.

• Effects of month in the ironbark region

> library(biology)

> summary(mainEffects(mcgold.aov, at = HABITAT == "ironbark"))

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 89.408 44.704 24.791 0.005573 **

REGION 1 0.344 0.344 0.191 0.684633

Residuals 4 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.L

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 3.793 1.896 1.4447 0.337090
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MONTH 1 40.140 40.140 30.5789 0.005225 **

REGION:MONTH 1 0.399 0.399 0.3040 0.610719

Residuals 4 5.251 1.313

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.Q

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 2.5249 1.2624 0.8575 0.48989

MONTH 1 30.8446 30.8446 20.9502 0.01021 *

REGION:MONTH 1 0.0605 0.0605 0.0411 0.84921

Residuals 4 5.8891 1.4723

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.C

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 7.2597 3.6298 6.2977 0.058096 .

MONTH 1 18.3996 18.3996 31.9230 0.004834 **

REGION:MONTH 1 0.3003 0.3003 0.5211 0.510325

Residuals 4 2.3055 0.5764

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 16 12.2722 0.7670 1.2699 0.273976

MONTH 8 16.7784 2.0973 3.4723 0.005442 **

REGION:MONTH 8 3.3488 0.4186 0.6930 0.694765

Residuals 32 19.3284 0.6040

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Effects of month in the stringybark region

> library(biology)

> summary(mainEffects(mcgold.aov, at = HABITAT == "stringybark"))

Error: SITE

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 88.657 44.329 24.5832 0.00566 **

REGION 1 1.095 1.095 0.6073 0.47934

Residuals 4 7.213 1.803

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.L

Df Sum Sq Mean Sq F value Pr(>F)
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INT 2 40.540 20.270 15.4415 0.01315 *

MONTH 1 0.448 0.448 0.3409 0.59064

REGION:MONTH 1 3.345 3.345 2.5486 0.18563

Residuals 4 5.251 1.313

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.Q

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 30.9051 15.4526 10.4956 0.02562 *

MONTH 1 0.1896 0.1896 0.1288 0.73787

REGION:MONTH 1 2.3353 2.3353 1.5862 0.27635

Residuals 4 5.8891 1.4723

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: SITE:MONTH.C

Df Sum Sq Mean Sq F value Pr(>F)

INT 2 18.7000 9.3500 16.2220 0.01205 *

MONTH 1 5.9914 5.9914 10.3949 0.03215 *

REGION:MONTH 1 1.2683 1.2683 2.2005 0.21212

Residuals 4 2.3055 0.5764

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

INT 16 20.1272 1.2579 2.0827 0.03784 *

MONTH 8 8.0361 1.0045 1.6631 0.14622

REGION:MONTH 8 4.2361 0.5295 0.8767 0.54617

Residuals 32 19.3284 0.6040

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - Whereas bird abundances in the ironbark habitat increased substantially during
the period from May-August (displaying a significant quadratic or even cubic trend through
time), no real temporal trend was observed within the stringybark habitat. Bird abundances
were not found to differ between the two regions and nor did the nature of the temporal trends.

Step 9 - Summarize the trends in a plot. Note that Quinn and Keough (2002, Fig. 11.5) plotted
mean loge + 1 number of birds on a linear scale. The following plot will illustrate plotting the
mean number of birds on a loge scale so as to depict the actual trends analysed, yet allow the
actual bird abundances to be appreciated. To do so, slight modifications of the y-axis scale tick
marks are necessary.

> mcgold.means <- with(mcgold, tapply(BIRDS + 1, list(interaction

+ (HABITAT, REGION), MONTH), mean))
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> library(gmodels)

> mcgold.se <- with(mcgold, tapply(BIRDS + 1, list(interaction

+ (HABITAT, REGION), MONTH), function(x) ci(x)[4]))

> xval <- as.numeric(mcgold$MONTH)

> plot(BIRDS ~ xval, data = mcgold, type = "n", axes = F, xlab = "",

+ ylab = "", log = "y")

> xval <- unique(xval)

> points(mcgold.means["ironbark.north", ] ~ xval, pch = 1,

+ col = "black", type = "b", lwd = 1, lty = 1)

> points(mcgold.means["ironbark.south", ] ~ xval, pch = 16,

+ col = "black", type = "b", lwd = 1, lty = 2)

> points(mcgold.means["stringybark.north", ] ~ xval, pch = 2,

+ col = "black", type = "b", lwd = 1, lty = 1)

> points(mcgold.means["stringybark.south", ] ~ xval, pch = 17,

+ col = "black", type = "b", lwd = 1, lty = 2)

> axis(1, cex.axis = 0.8, at = xval, lab = substr(levels

+ (mcgold$MONTH), 1, 1))

> mtext(text = "Month", side = 1, line = 3)

> yticks <- ifelse(axTicks(2) > 9, axTicks(2), axTicks(2) - 1)

> axis(2, cex.axis = 0.8, las = 1, at = axTicks(2), lab = yticks)

> mtext(text = "Mean number of birds", side = 2, line = 3)

> legend("topright", leg = c("Ironbark north", "Ironbark South",

+ "Stringybark north", "Stringybark south"), lty = 0,

+ pch = c(1, 16, 2, 17), bty = "n", cex = 1)

> box(bty = "l")
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Example 14F: Linear mixed effects - multiple between plot factors
Alternatively, linear mixed effects modeling could be used to analyze the data introduced in
Example 14E (Box 11.4 of Quinn and Keough (2002)). Notably, such an approach permits
us to attempt to incorporate the nature of the variance-covariance matrix rather than wish it
away post-hoc with estimated adjustments.
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Step 1 (Key 14.2) - Refer to Example 14E for importing the data and performing exploratory
data analysis.

Step 2 (Key 14.6) - Fit a series of lme models (with alternative correlation structures) and
compare them to evaluate the appropriateness of each.

> library(nlme)

> # fit a model without correlation structure

> mcgold.lme.1 <- lme(LBIRDS ~ HABITAT * REGION * MONTH, random=~1 |

+ SITE, data=mcgold)

> # fit a model with a first order autoregressive correlation structure

> mcgold.lme.2 <- lme(LBIRDS ~ HABITAT * REGION * MONTH, random = ~1 |

+ SITE, data = mcgold, correlation = corAR1(form = ~1 | SITE))

> # compare the fit of models

> anova(mcgold.lme.1, mcgold.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

mcgold.lme.1 1 50 268.8264 362.3865 -84.41320

mcgold.lme.2 2 51 263.7146 359.1458 -80.85729 1 vs 2 7.111819 0.0077

> # fit a model with compound symmetry structure

> mcgold.lme.3 <- update(mcgold.lme.1, correlation = corCompSymm(form = ~1 |

+ SITE))

> anova(mcgold.lme.2, mcgold.lme.3)

Model df AIC BIC logLik

mcgold.lme.2 1 51 263.7146 359.1458 -80.85729

mcgold.lme.3 2 51 270.8264 366.2577 -84.41320

A model that incorporates a first order autoregressive correlation structure is a significantly
better model than either no structure or a compound symmetry model. Therefore use the
autoregressive model to test the hypotheses about the fixed factors in the model (habitat type,
region, month and their interaction).

> anova(mcgold.lme.2)

numDF denDF F-value p-value

(Intercept) 1 44 246.45562 <.0001

HABITAT 1 4 57.87532 0.0016

REGION 1 4 0.07888 0.7927

MONTH 11 44 4.30356 0.0002

HABITAT:REGION 1 4 0.87245 0.4032

HABITAT:MONTH 11 44 5.55797 <.0001

REGION:MONTH 11 44 1.31472 0.2486

HABITAT:REGION:MONTH 11 44 0.48120 0.9050

Conclusions - There is a significant habitat type by month interaction (P < 0.001). Note that
the model assuming compound symmetry (mcgold.lme.3) would have yielded the same F-ratios
and P-values to a traditional split-plot ANOVA model that assumed compound symmetry
(Step 5 of Example 14E).

Step 3 - Explore the nature of the interaction further by evaluating the simple main effects.

• Effect of month in the ironbark habitat.

> library(biology)

> anova(mainEffects(mcgold.lme.2, at = HABITAT == "ironbark"))
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numDF denDF F-value p-value

(Intercept) 1 42 246.45562 <.0001

M1 24 42 3.96420 <.0001

M3 1 6 0.21333 0.6604

M4 11 42 7.81231 <.0001

M7 11 42 0.52446 0.8757

• Effect of month in the stringybark habitat.

> anova(mainEffects(mcgold.lme.2, at = HABITAT == "stringybark"))

numDF denDF F-value p-value

(Intercept) 1 42 246.45562 <.0001

M1 24 42 6.24138 <.0001

M3 1 6 0.73800 0.4233

M4 11 42 2.04922 0.0472

M7 11 42 1.27146 0.2739

Conclusions - There is a significant effect of month on the abundance of birds rate in both
ironbark (P < 0.001) and stringybark habitats (P = 0.0472), although the effect is perhaps
stronger in the former.

Step 4 - Quinn and Keough (2002) also illustrated polynomial trends which can be useful for
exploring the nature of the within plot treatments(s) in repeated measures designs.

> op <- options(width = 200)
> summary(mcgold.lme.2)$tTable

Value Std.Error DF t-value p-value
(Intercept) 3.14903875 0.2759018 44 11.41362002 9.701113e-15
HABITATstringybark -2.15401165 0.3901841 4 -5.52050052 5.257047e-03
REGIONsouth -0.16942080 0.3901841 4 -0.43420733 6.865331e-01
MONTH.L -2.85195444 0.8688652 44 -3.28238987 2.021045e-03
MONTH.Q 2.65387603 0.7858802 44 3.37694715 1.541953e-03
MONTH.C 1.87072523 0.7114088 44 2.62960646 1.173306e-02
MONTH^4 -0.80528671 0.6473149 44 -1.24404167 2.200710e-01
MONTH^5 -0.57180974 0.5935441 44 -0.96338205 3.406208e-01
MONTH^6 0.29126582 0.5490521 44 0.53048849 5.984407e-01
MONTH^7 0.23388559 0.5124500 44 0.45640666 6.503426e-01
MONTH^8 0.29995662 0.4823553 44 0.62185818 5.372442e-01
MONTH^9 1.05595693 0.4575438 44 2.30788155 2.576776e-02
MONTH^10 -0.61026362 0.4369923 44 -1.39650874 1.695666e-01
MONTH^11 -0.79906329 0.4198714 44 -1.90311424 6.358096e-02
HABITATstringybark:REGIONsouth 0.47151096 0.5518037 4 0.85449042 4.409904e-01
HABITATstringybark:MONTH.L 4.10097201 1.2287610 44 3.33748549 1.727032e-03
HABITATstringybark:MONTH.Q -3.63565503 1.1114025 44 -3.27123167 2.086112e-03
HABITATstringybark:MONTH.C -3.65768273 1.0060840 44 -3.63556395 7.228149e-04
HABITATstringybark:MONTH^4 0.69302331 0.9154415 44 0.75703723 4.530626e-01
HABITATstringybark:MONTH^5 -0.32033115 0.8393981 44 -0.38162005 7.045800e-01
HABITATstringybark:MONTH^6 -0.35115544 0.7764769 44 -0.45224196 6.533165e-01
HABITATstringybark:MONTH^7 0.24974620 0.7247138 44 0.34461358 7.320267e-01
HABITATstringybark:MONTH^8 -0.37318162 0.6821535 44 -0.54706402 5.870988e-01
HABITATstringybark:MONTH^9 -1.63946191 0.6470647 44 -2.53369098 1.492385e-02
HABITATstringybark:MONTH^10 0.60736034 0.6180005 44 0.98278294 3.310877e-01
HABITATstringybark:MONTH^11 0.08769159 0.5937879 44 0.14768168 8.832687e-01
REGIONsouth:MONTH.L -0.63173897 1.2287610 44 -0.51412680 6.097360e-01
REGIONsouth:MONTH.Q 0.24603964 1.1114025 44 0.22137762 8.258226e-01
REGIONsouth:MONTH.C 0.54802968 1.0060840 44 0.54471562 5.886995e-01
REGIONsouth:MONTH^4 -0.96233481 0.9154415 44 -1.05122478 2.988948e-01
REGIONsouth:MONTH^5 0.18744949 0.8393981 44 0.22331416 8.243246e-01
REGIONsouth:MONTH^6 1.02414643 0.7764769 44 1.31896571 1.940041e-01
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REGIONsouth:MONTH^7 0.69912331 0.7247138 44 0.96468890 3.399730e-01
REGIONsouth:MONTH^8 -0.49437049 0.6821535 44 -0.72472034 4.724601e-01
REGIONsouth:MONTH^9 -0.26957160 0.6470647 44 -0.41660690 6.789914e-01
REGIONsouth:MONTH^10 0.64105415 0.6180005 44 1.03730361 3.052616e-01
REGIONsouth:MONTH^11 0.34908521 0.5937879 44 0.58789548 5.596079e-01
HABITATstringybark:REGIONsouth:MONTH.L -1.19732182 1.7377305 44 -0.68901469 4.944315e-01
HABITATstringybark:REGIONsouth:MONTH.Q 1.28213649 1.5717605 44 0.81573274 4.190471e-01
HABITATstringybark:REGIONsouth:MONTH.C 0.57815559 1.4228176 44 0.40634553 6.864584e-01
HABITATstringybark:REGIONsouth:MONTH^4 -0.11272067 1.2946298 44 -0.08706788 9.310126e-01
HABITATstringybark:REGIONsouth:MONTH^5 0.62160040 1.1870882 44 0.52363455 6.031603e-01
HABITATstringybark:REGIONsouth:MONTH^6 -1.59393894 1.0981042 44 -1.45153707 1.537236e-01
HABITATstringybark:REGIONsouth:MONTH^7 0.07801131 1.0249000 44 0.07611602 9.396718e-01
HABITATstringybark:REGIONsouth:MONTH^8 0.31864555 0.9647107 44 0.33030167 7.427396e-01
HABITATstringybark:REGIONsouth:MONTH^9 1.11230331 0.9150876 44 1.21551562 2.306513e-01
HABITATstringybark:REGIONsouth:MONTH^10 0.13738776 0.8739847 44 0.15719699 8.758087e-01
HABITATstringybark:REGIONsouth:MONTH^11 0.03842338 0.8397429 44 0.04575612 9.637117e-01

Conclusions - Whereas bird abundances in the ironbark habitat increased substantially during
the period from May-August (displaying a significant quadratic or even cubic trend through
time), no real temporal trend was observed within the stringybark habitat. Bird abundances
were not found to differ between the two regions and nor did the nature of the temporal trends.

Step 5 - Although Quinn and Keough (2002) did not show simple main effects tests, in this case,
such tests would be useful to formally explore the nature of the habitat by trend interactions
further.
• Explore the polynomial trends for the ironbark habitat. Only terms beginning with M4 are

relevant to the trends of interest.

> summary(mainEffects(mcgold.lme.2, at = HABITAT == "ironbark"))$tTable
Value Std.Error DF t-value p-value

(Intercept) 3.1490387 0.2759018 42 11.4136200 1.875333e-14
M1INTstringybark.north.MAY -3.9079061 0.9070778 42 -4.3082370 9.696800e-05
M1INTstringybark.south.MAY -2.9858859 0.9070778 42 -3.2917639 2.023752e-03
M1INTstringybark.north.JUNE -4.9205932 0.9070778 42 -5.4246651 2.656305e-06
M1INTstringybark.south.JUNE -2.5454031 0.9070778 42 -2.8061575 7.567240e-03
M1INTstringybark.north.JULY -4.4090191 0.9070778 42 -4.8606847 1.671342e-05
M1INTstringybark.south.JULY -3.7779198 0.9070778 42 -4.1649348 1.514844e-04
M1INTstringybark.north.AUGUST -4.8277053 0.9070778 42 -5.3222617 3.718097e-06
M1INTstringybark.south.AUGUST -4.4377135 0.9070778 42 -4.8923185 1.508977e-05
M1INTstringybark.north.SEPTEMBER -1.7739004 0.9070778 42 -1.9556210 5.718397e-02
M1INTstringybark.south.SEPTEMBER -1.8567860 0.9070778 42 -2.0469975 4.694857e-02
M1INTstringybark.north.OCTOBER -0.7458274 0.9070778 42 -0.8222309 4.155892e-01
M1INTstringybark.south.OCTOBER -0.5058004 0.9070778 42 -0.5576153 5.800672e-01
M1INTstringybark.north.NOVEMBER -1.0797421 0.9070778 42 -1.1903523 2.405928e-01
M1INTstringybark.south.NOVEMBER -0.2027326 0.9070778 42 -0.2235007 8.242294e-01
M1INTstringybark.north.DECEMBER 0.3465736 0.9070778 42 0.3820770 7.043307e-01
M1INTstringybark.south.DECEMBER 0.4236489 0.9070778 42 0.4670480 6.428795e-01
M1INTstringybark.north.JANUARY 0.8770096 0.9070778 42 0.9668515 3.391529e-01
M1INTstringybark.south.JANUARY -0.3992538 0.9070778 42 -0.4401539 6.620826e-01
M1INTstringybark.north.FEBRUARY -0.7076410 0.9070778 42 -0.7801326 4.396874e-01
M1INTstringybark.south.FEBRUARY -0.4631705 0.9070778 42 -0.5106183 6.122919e-01
M1INTstringybark.north.MARCH -1.0206102 0.9070778 42 -1.1251628 2.669091e-01
M1INTstringybark.south.MARCH -0.4904146 0.9070778 42 -0.5406533 5.916025e-01
M1INTstringybark.north.APRIL -3.6787781 0.9070778 42 -4.0556368 2.121728e-04
M1INTstringybark.south.APRIL -2.9485769 0.9070778 42 -3.2506329 2.271796e-03
M3 -0.1694208 0.3901841 6 -0.4342073 6.793175e-01
M4MONTH.L -2.8519544 0.8688652 42 -3.2823899 2.077910e-03
M4MONTH.Q 2.6538760 0.7858802 42 3.3769471 1.589463e-03
M4MONTH.C 1.8707252 0.7114088 42 2.6296065 1.189480e-02
M4MONTH^4 -0.8052867 0.6473149 42 -1.2440417 2.203827e-01
M4MONTH^5 -0.5718097 0.5935441 42 -0.9633821 3.408701e-01
M4MONTH^6 0.2912658 0.5490521 42 0.5304885 5.985672e-01
M4MONTH^7 0.2338856 0.5124500 42 0.4564067 6.504491e-01
M4MONTH^8 0.2999566 0.4823553 42 0.6218582 5.373964e-01
M4MONTH^9 1.0559569 0.4575438 42 2.3078816 2.600141e-02
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M4MONTH^10 -0.6102636 0.4369923 42 -1.3965087 1.698983e-01
M4MONTH^11 -0.7990633 0.4198714 42 -1.9031142 6.389469e-02
M7REGIONsouth:MONTH.L -0.6317390 1.2287610 42 -0.5141268 6.098580e-01
M7REGIONsouth:MONTH.Q 0.2460396 1.1114025 42 0.2213776 8.258712e-01
M7REGIONsouth:MONTH.C 0.5480297 1.0060840 42 0.5447156 5.888299e-01
M7REGIONsouth:MONTH^4 -0.9623348 0.9154415 42 -1.0512248 2.991664e-01
M7REGIONsouth:MONTH^5 0.1874495 0.8393981 42 0.2233142 8.243736e-01
M7REGIONsouth:MONTH^6 1.0241464 0.7764769 42 1.3189657 1.943270e-01
M7REGIONsouth:MONTH^7 0.6991233 0.7247138 42 0.9646889 3.402226e-01
M7REGIONsouth:MONTH^8 -0.4943705 0.6821535 42 -0.7247203 4.726419e-01
M7REGIONsouth:MONTH^9 -0.2695716 0.6470647 42 -0.4166069 6.790875e-01
M7REGIONsouth:MONTH^10 0.6410541 0.6180005 42 1.0373036 3.055298e-01
M7REGIONsouth:MONTH^11 0.3490852 0.5937879 42 0.5878955 5.597504e-01

• Explore the polynomial trends for the stringybark habitat. Only terms beginning with M4 are
relevant to the trends of interest.

> summary(mainEffects(mcgold.lme.2, at = HABITAT == "stringybark"))$tTable
Value Std.Error DF t-value p-value

(Intercept) 4.90293320 0.8840529 43 5.545972514 1.666066e-06
M1INTstringybark.north.MAY -3.90790610 0.9070778 5 -4.308237006 7.655410e-03
M1INTironbark.south.MAY -0.92202015 1.2828017 43 -0.718755004 4.761797e-01
M1INTironbark.north.JUNE 1.01268715 0.9804901 43 1.032837723 3.074541e-01
M1INTironbark.south.JUNE -1.36250300 1.2828017 43 -1.062130637 2.941054e-01
M1INTironbark.north.JULY 0.50111305 1.1666564 43 0.429529255 6.696828e-01
M1INTironbark.south.JULY -0.12998625 1.2828017 43 -0.101329963 9.197596e-01
M1INTironbark.north.AUGUST 0.91979925 1.2358358 43 0.744273003 4.607595e-01
M1INTironbark.south.AUGUST 0.52980735 1.2828017 43 0.413007985 6.816531e-01
M1INTironbark.north.SEPTEMBER -2.13400570 1.2634857 43 -1.688982842 9.846263e-02
M1INTironbark.south.SEPTEMBER -2.05112010 1.2828017 43 -1.598937763 1.171575e-01
M1INTironbark.north.OCTOBER -3.16207870 1.2748058 43 -2.480439496 1.711415e-02
M1INTironbark.south.OCTOBER -3.40210565 1.2828017 43 -2.652090045 1.115844e-02
M1INTironbark.north.NOVEMBER -2.82816400 1.2794831 43 -2.210395662 3.244846e-02
M1INTironbark.south.NOVEMBER -3.70517355 1.2828017 43 -2.888344719 6.041419e-03
M1INTironbark.north.DECEMBER -4.25447970 1.2814229 43 -3.320121431 1.840760e-03
M1INTironbark.south.DECEMBER -4.33155500 1.2828017 43 -3.376636435 1.566445e-03
M1INTironbark.north.JANUARY -4.78491565 1.2822286 43 -3.731718085 5.531570e-04
M1INTironbark.south.JANUARY -3.50865225 1.2828017 43 -2.735147776 9.022136e-03
M1INTironbark.north.FEBRUARY -3.20026515 1.2825634 43 -2.495210014 1.650603e-02
M1INTironbark.south.FEBRUARY -3.44473560 1.2828017 43 -2.685321954 1.025323e-02
M1INTironbark.north.MARCH -2.88729595 1.2827026 43 -2.250947218 2.955563e-02
M1INTironbark.south.MARCH -3.41749150 1.2828017 43 -2.664083987 1.082358e-02
M1INTironbark.north.APRIL -0.22912800 1.2827605 43 -0.178621026 8.590742e-01
M1INTironbark.south.APRIL -0.95932920 1.2828017 43 -0.747839039 4.586278e-01
M3 0.30209015 0.3901841 5 0.774224621 4.737980e-01
M4MONTH.L 1.24901756 0.8688652 43 1.437527379 1.578060e-01
M4MONTH.Q -0.98177900 0.7858802 43 -1.249273045 2.183231e-01
M4MONTH.C -1.78695751 0.7114088 43 -2.511857394 1.584424e-02
M4MONTH^4 -0.11226340 0.6473149 43 -0.173429348 8.631278e-01
M4MONTH^5 -0.89214089 0.5935441 43 -1.503074297 1.401293e-01
M4MONTH^6 -0.05988963 0.5490521 43 -0.109078228 9.136479e-01
M4MONTH^7 0.48363180 0.5124500 43 0.943763856 3.505631e-01
M4MONTH^8 -0.07322501 0.4823553 43 -0.151807182 8.800490e-01
M4MONTH^9 -0.58350498 0.4575438 43 -1.275298586 2.090508e-01
M4MONTH^10 -0.00290328 0.4369923 43 -0.006643778 9.947298e-01
M4MONTH^11 -0.71137170 0.4198714 43 -1.694260795 9.744800e-02
M7REGIONsouth:MONTH.L -1.82906078 1.2287610 43 -1.488540721 1.439063e-01
M7REGIONsouth:MONTH.Q 1.52817613 1.1114025 43 1.374997929 1.762546e-01
M7REGIONsouth:MONTH.C 1.12618526 1.0060840 43 1.119374982 2.691941e-01
M7REGIONsouth:MONTH^4 -1.07505548 0.9154415 43 -1.174357359 2.467148e-01
M7REGIONsouth:MONTH^5 0.80904989 0.8393981 43 0.963845241 3.405129e-01
M7REGIONsouth:MONTH^6 -0.56979251 0.7764769 43 -0.733817709 4.670423e-01
M7REGIONsouth:MONTH^7 0.77713462 0.7247138 43 1.072333205 2.895520e-01
M7REGIONsouth:MONTH^8 -0.17572494 0.6821535 43 -0.257603236 7.979420e-01
M7REGIONsouth:MONTH^9 0.84273171 0.6470647 43 1.302391783 1.997153e-01
M7REGIONsouth:MONTH^10 0.77844190 0.6180005 43 1.259613725 2.146029e-01
M7REGIONsouth:MONTH^11 0.38750858 0.5937879 43 0.652604416 5.174852e-01
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Conclusions - Whereas bird abundances in the ironbark habitat increased substantially during
the period from May-August (displaying a significant quadratic or even cubic trend through
time), no real temporal trend was observed within the stringybark habitat. Bird abundances
were not found to differ between the two regions and nor did the nature of the temporal trends
(see figure in Example 14E Step 10).
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Analysis of covariance (ANCOVA)

Previous chapters have concentrated on designs for either continuous (Regression) or
categorical (ANOVA) predictor variables. Analysis of covariance (ANCOVA) models
are essentially ANOVA models that incorporate one or more continuous variables
(covariates). Although the relationship between a response variable and a covariate
may itself be of substantial biological interest, typically covariate(s) are incorporated
to reduce the amount of unexplained variability in the model (analogous to blocking
-see Chapter 13) and thereby increase the power of any treatment effects.

In ANCOVA, a reduction in unexplained variability is achieved by adjusting the
response (to each treatment) according to slight differences in the covariate means as
well as accounting for any underlying trends between the response and covariate(s), see
Figure 15.1. To do so, the extent to which the within treatment group small differences
in covariate means between groups and treatment groups are essentially compared
via differences in their y-intercepts. The total variation is thereafter partitioned into
explained (using the deviations between the overall trend and trends approximated
for each of the treatment groups) and unexplained components (using the deviations
between the observations and the approximated within group trends). In this way,
ANCOVA can be visualized as a regular ANOVA in which the group and overall means
are replaced by group and overall trendlines. Importantly, it should be apparent that
ANCOVA is only appropriate when each of the within group trends have the same
slope and are thus parallel to one another and the overall trend (see Figures 15.1e-f
to visualize a situation in which slopes are not parallel). Furthermore, ANCOVA is
not appropriate when the resulting adjustments must be extrapolated from a linear
relationship outside the measured range of the covariate (see Figures 15.1g-h).

As an example, an experiment might be set up to investigate the energetic impacts
of sexual vs parthenogenetic (egg development without fertilization) reproduction on
leaf insect food consumption. To do so, researchers could measure the daily food
intake of individual adult female leaf insects from female only (parthenogenetic) and
mixed (sexual) populations. Unfortunately, the available individual leaf insects vary
substantially in body size as this is expected to increase the variability of daily food
intake of treatment groups. Consequently, the researchers will also measure the body
mass of the individuals as a covariate, thereby providing a means by which daily food
consumption can be standardized for body mass.

Although ANCOVA and blocking designs both aim to reduce the sources of
unexplained variation by incorporating additional variables, blocking designs do so by

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Fig 15.1 Fictitious data to illustrates the principles of analysis of covariance. The degree of
unexplained variability (residuals) from single factor ANOVA and ANCOVA are represented in
(a) and (b) respectively. (c) and (d) illustrate the use of the covariate in calculating adjusted
group means (effects). The consequences of heterogeneous slopes are illustrated in (e) and (f)
and the consequences of disparate covariate ranges on adjusted group means are illustrated in
(g) and (h).
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measuring a response to each level of a treatment factor under a similar (standardized)
set of unmeasured conditions. By contrast, ANCOVA attempts to reduce unexplained
variability by standardizing the response to the treatment by the effects of the
specific covariate condition. Thus ANCOVA provides a means of exercising some
statistical control over the variability when it is either not possible or not desirable
to exercise experimental control (such as blocking or using otherwise homogeneous
observations). From the example above, the researchers decided that the experiment
would be too drawn out if each individual were to be measured under both sexual and
parthenogenetic situations (due to the need to establish the new populations and allow
enough time to minimize the risks of carryover effects).

15.1 Null hypotheses

15.1.1 Factor A - the main treatment effect

H0(A) : µ1(adj) = µ2(adj) = . . . = µi(adj) = µ(adj) (the adjusted population group
means are all equal)

The mean of population 1 adjusted for the covariate is equal to that of population 2
adjusted for the covariate and so on, and thus all population means adjusted for
the covariate are equal to an overall adjusted mean. If the effect of the ith group is
the difference between the ith group adjusted mean and the overall adjusted mean
(αi(adj) = µi(adj) − µ(adj)) then the H0 can alternatively be written as:

H0(A) : α1(adj) = α2(adj) = . . . = αi(adj) = 0 (the effect of each group equals zero)

If one or more of the αi(adj) are different from zero (the response mean for this treatment
differs from the overall response mean), the null hypothesis is not true indicating that
the treatment does affect the response variable.

15.1.2 Factor B - the covariate effect

H0(B) : β1(pooled) = 0 (the pooled population slope equals zero)

Note, that this null hypothesis is rarely of much interest. It is precisely because of this
nuisance relationship that ANCOVA designs are applied.

15.2 Linear models

One or more covariates can be incorporated into single factor, nested, factorial and
partly nested designs in order to reduce the unexplained variation. Fundamentally,
the covariate(s) are purely used to adjust the response values prior to the regular
analysis. The difficulty is in determining the appropriate adjustments. Following is a
list of the appropriate linear models and adjusted response calculations for a range of
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ANCOVA designs. Note that these linear models do not include interactions involving
the covariates as these are assumed to be zero. The inclusion of these interaction
terms is however, a useful means of testing the homogeneity of slopes assumption (see
section 15.4.1).

Single categorical and single covariate

Linear model: yij = µ + αi + β(xij − x) + εij

Adjustments: yij(adj) = yij − b(xij − x)

Single categorical and two covariates (X&Z)

Linear model: yij = µ + αi + βYX(xij − x) + βYZ(zij − z) + εij

Adjustments: yij(adj) = yij − bYX(xij − x) − bYZ(zij − z)

Special attention must be paid to the issues raised for multiple linear regression (see
chapter 9).

Factorial designs (A&C categorical) with a single covariate)

Linear model: yijk = µ + αi + γj + (αγ )ij + β(xijk − x) + εijkl

Adjustments: yijk(adj) = yijk − b(xijk − x)

where β is the population slope between the response and the covariate.

Nested designs (A&C categorical) with a single covariate)

Linear model: yijk = µ + αi + γj(i) + β(xijk − x) + εijk

Adjustments: yijk(adj) = yijk − b(xijk − x)

Partly nested designs (A&C categorical) with a single covariate)

Linear model: yijkl = µ + αi + γj(i) + δk + (αδ)ik + γ δj(i)k + β(xijk − x) + εijkl

Adjustments: yijk(adj) = yijk − bbetween(xi − x) − bwithin(xijk − xi)

where bbetween and bwithin refer to the between and within block/plot/subject regression
slopes respectively.

15.3 Analysis of variance

In ANCOVA, the total variability of the response variable is sequentially partitioned
into components explained by each of the model terms, starting with the covariate and
is therefore equivalent to performing a regular analysis of variance on the response
variables that have been adjusted for the covariate. The appropriate unexplained
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Table 15.1 F-ratios and corresponding R syntax for simple ANCOVA (B is a covariate).

F-ratio

Factor d.f. MS A&B fixed A random, B fixed

A a − 1 MSA
MSA

MSResid

MSA

MSResid

B 1 MSB
MSB

MSResid

[
MSA

MSB×A′

]a

B×A a − 1 MSB×A
MSB×A

MSResid

MSB×A′

MSResid

Residual (=N′(B×A)) (n − 2)a MSResid

A&B fixedb

> Anova(aov(DV~A*B, data), type="III")c

aIf P > 0.25 for B×A′, pooled denominator for B could be (SSB×A′ + SSResid)/((a − 1) + (n − 2)a).
bFor mixed models, it is necessary to manually calculate the correct F-ratios and P values.
cTo use type III sums of squares, Factor A contrasts must first be defined as something other than ‘treatment’ (such as
‘sum’ or ‘helmert’) prior to fitting the model (> contrasts(data$A)<-contr.helmert).

residuals and therefore the appropriate F-ratios for each factor differ according to the
different null hypotheses associated with different linear models as well as combinations
of fixed and random factors in the model (see Tables 15.1 & 15.2). Note that since the
covariate levels measured are typically different for each group, ANCOVA designs are
inherently non-orthogonal (unbalanced). Consequently, sequential (Type I sums of
squares) should not be useda.

15.4 Assumptions

As ANCOVA designs are essentially regular ANOVA designs that are first adjusted
(centered) for the covariate(s), ANCOVA designs inherit all of the underlying assump-
tions of the appropriate ANOVA design. Readers should also consult sections 11.5,
12.4, 13.4 and 14.4. Specifically, hypothesis tests assume that:

(i) the appropriate residuals are normally distributed. Boxplots using the appropriate scale of
replication (reflecting the appropriate residuals/F-ratio denominator, see Tables 15.1-15.2)
should be used to explore normality. Scale transformations are often useful.

(ii) the appropriate residuals are equally varied. Boxplots and plots of means against variance
(using the appropriate scale of replication) should be used to explore the spread of
values. Residual plots should reveal no patterns (see Figure 8.5). Scale transformations
are often useful.

(iii) the appropriate residuals are independent of one another.

a For very simple Ancova designs that incorporate a single categorical and single covariate, Type I
sums of squares can be used provided the covariate appears in the linear model first (and thus is
partitioned out last).
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Table 15.2 F-ratios and corresponding R syntax for factorial ANCOVA (C is a covariate).

F-ratio

A fixed,
Factor d.f. A & B fixed B random A & B random

A a − 1
MSA

MSResid

[
MSA

MSB′×A

]a [
MS′

A

MSB′×A′

]a

B b − 1
MSB

MSResid

[
MSB′

MSResid

] [
MSB′

MSB′×A′

]a

B×A (b − 1)
(a − 1)

MSB×A

MSResid

MSB′×A

MSResid

MSB′×A′
MSResid

C 1
MSC

MSResid

[
MSC

MSC×A′

]a [
MSC

MSC×A′ + MSC×B′ + MSC×B′×A′

]a

C×A (a − 1)
MSC×A

MSResid

MSC×A

MSC×B′×A

a MSC×A

MSC×B′×A′

a

C×B (b − 1)
MSC×B

MSResid

MSC×B′
MSResid

MSC×B′
MSC×B′×A′

a

C×B×A (b − 1)
(a − 1)

MSC×B×A

MSResid

MSC×B′×A

MSResid

MSC×B′×A′
MSResid

Residual
(=N′(C×B×A))

(n − 2)ba MSResid

R syntax
A & B fixedb

> Anova(aov(DV~A*B*C, data), type="III")c

aPooling: higher order interactions with P > 0.25 can be removed to produce more exact denominators.
bFor mixed models, it is necessary to manually calculate the correct F-ratios and P values.
cTo use type III sums of squares, Factor A contrasts must first be defined as something other than ‘treatment’ (such as
‘sum’ or ‘helmert’) prior to fitting the model (contrasts(data$A)<-contr.helmert).

(iv) the relationship between the response variable and the covariate should be linear.
Linearity can be explored using scatterplots and residual plots should reveal no patterns
(see fig 8.5).

(v) for repeated measures and other designs in which treatment levels within blocks can not
be be randomly ordered, the variance/covariance matrix is assumed to display sphericity
(see section 13.4.1).

(vi) for designs that utilize blocking, it is assumed that there are no block by within block
interactions.

15.4.1 Homogeneity of slopes

In addition to the above assumptions, ANCOVA designs also assume that slopes of
relationships between the response variable and the covariate(s) are the same for each
treatment level (group). That is, all the trends are parallel. If the individual slopes
deviate substantially from each other (and thus the overall slope), then adjustments
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made to each of the observations are nonsensical (see Figures 15.1e-f). This situation
is analogous to an interaction between two or more factors. In ANCOVA, interactions
involving the covariate suggest that the nature of the relationship between the
response and the covariate differs between the levels of the categorical treatment.
More importantly, they also indicate that the strength or presence of an effect of the
treatment depends on what range of the covariate you are focussed on. Clearly then, it
is not possible to make conclusions about the main effects of treatments in the presence
of such interactions. The assumption of homogeneity of slopes can be examined
via interaction plots or more formally, by testing hypotheses about the interactions
between categorical variables and the covariate(s).

There are three broad approaches for dealing with ANCOVA designs with hetero-
geneous slopes and selection depends on the primary focus of the study.

(i) When the primary objective of the analysis is to investigate the effects of categorical
treatments, it is possible to adopt an approach similar to that taken when exploring
interactions in multiple regression. The effect of treatments can be examined at specific
values of the covariate (such as the mean and ± one standard deviation). This approach
is really only useful at revealing broad shifts in patterns over the range of the covariate
and if the selected values of the covariate do not have some inherent biological meaning
(selected arbitrarily), then the outcomes can be of only limited biological interest.

(ii) Alternatively, the Johnson-Neyman technique (or Wilxon modification thereof) procedure
indicates the ranges of the covariate over which the individual regression lines of pairs of
treatment groups overlap or cross. Although less powerful than the previous approach,
the Wilcox(J-N) procedure has the advantage of revealing the important range (ranges
for which the groups are different and not different) of the covariate rather than being
constrained by specific levels selected.

(iii) Use contrast treatments to split up the interaction term into its constituent contrasts
for each level of the treatment. Essentially this compares each of the treatment level
slopes to the slope from the ‘‘control’’ group and is useful if the primary focus is on the
relationships between the response and the covariate

15.4.2 Similar covariate ranges

Adjustments made to the response means (in an attempt to statistically account
for differences in the covariate) involve predicting mean response values along
displacedb linear relationships between the overall response and covariate variables (see
Figure 15.1d). However, when the ranges of the covariate within each of the groups
differ substantially from one another, these adjustments are effectively extrapolations
(see Figures 15.1g-h) and therefore of unknown reliability. If a simple ANOVA of the
covariate modelled against the categorical factor indicates that the covariate means
differ significantly between groups, it may be necessary to either remove extreme
observations or reconsider the analysis.

b The degree of trend displacement for any given group is essentially calculated by multiplying the
overall regression slope by the degree of difference between the overall covariate mean and the mean
of the covariate for that group.
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15.5 Robust ANCOVA

ANCOVA based on rank transformed data can be useful for accommodating data with
numerous problematic outliers. Nevertheless, the problems highlighted in section 12.7
about the difficulties of detecting interactions from rank transformed data obviously
have implications for inferential tests of homogeneity of slopes. Randomization tests
that maintain response-covariate pairs and repeatedly randomize these observations
amongst the levels of the treatments can also be useful, particularly when there is doubt
over the independence of observations.

15.6 Specific comparisons

Both planned and unplanned comparisons follow those of other ANOVA chapters
without any real additional complications. Notably, recent implementations of the
Tukey’s test (within R) accommodate unbalanced designs and thus negate the need for
some of the more complicated and specialized techniques that have been highlighted
in past texts.

15.7 Further reading

• Theory

Doncaster, C. P., and A. J. H. Davey. (2007). Analysis of Variance and Covariance.
How to Choose and Construct Models for the Life Sciences. Cambridge University
Press, Cambridge.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San
Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Fox, J. (2002). An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H., and J. Braun. (2003). Data Analysis and Graphics Using R - An
Example-based Approach. Cambridge University Press, London.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

15.8 Key for ANCOVA

Note, analysis of covariance (ANCOVA) design and analysis elements can be incorpo-
rated into more complex regression and ANOVA designs. The key presented here is
for simple ANCOVA designs comprising a single categorical and a single covariate. For
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more complex designs, use the following key in combination with other appropriate
keys from their respective chapters.

1 a. Check parametric assumptions

• Normality of the response variable at each level of the categorical variable -
boxplots

> boxplot(DV ~ Factor, dataset)

where DV and Factor are response and factor variables respectively in the dataset
data frame

• Homogeneity of variance - residual plots

> plot(aov(DV ~ CV + Factor, dataset), which = 1)

where DV, CV and Factor are response, covariate and factor variables respectively in
the dataset data frame

Parametric assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
b. Parametric assumptions NOT met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

2 a. Check assumptions of linearity and homogeneity of slopes See Examples 15A & 15B

> library(lattice)

> xyplot(DV ~ CV | FACTOR, dataset, type = c("r", "p"))

> # OR

> library(car)

> scatterplot(DV ~ CV | FACTOR, dataset)

> # inference test for interaction (non-homogenous slopes)

> anova(aov(DV ~ CV * FACTOR, dataset))

Homogeneity of slopes assumption met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3
b. Homogeneity of slopes assumption NOT met . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4

3 a. Perform analysis of covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 15A

> data.aov <- aov(DV ~ CV + FACTOR, dataset)

> anova(data.aov)

if Reject H0 - Significant difference between group means detected, consider planned
comparisons or post-hoc multiple pairwise comparisons tests . . . . . Go to Key 10.9a

4 a. Primarily interested in the effect of the categorical variable . . . . . . . . . . . . . . Go to 5
b. Primarily interested in the effect of the continuous covariate

> summary(lm(DV ~ CV, dataset, subset = FACTOR == "A"))

5 a. Able to sensibly divide the range of the covariate into a small set of meaningful
intervals (investigate the effect of the factor in each covariate interval separately
using factorial analysis of variance (see chapter 12)

> dataset$CV_F <- cut(dataset$CV, 4)

> data.aov1 <- aov(DV ~ CV_F * FACTOR, data = dataset)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Goto Key 12.11
b. Investigate the effect of the factor at different values of the covariate (nominally,

±1 and ±2 standard deviations around the mean)

> CV_sd2 <- mean(CV) - 2 * sd(CV)

> data.aov1 <- aov(DV ~ FACTOR + c(CV - CV_sd2), data = dataset)

> anova(data.lm2)
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c. Use the Johnson-Neyman procedure to investigate the range(s) of the covariate for
which the Factor levels are not significantly different . . . . . . . . . . . . See Example 15B

> data.lm <- lm(DV ~ CV * FACTOR, dataset)

> library(biology)

> wilcox.JN(data.lm, type = "H")

6 a. Attempt a scale transformation (see Table 3.2 for common transformation options)
Go to 1

b. Transformations unsuccessful or inappropriate - see the range of options available
for other analyses.

15.9 Worked examples of real biological data sets

Example 15A: Single factor ANCOVA
To investigate the impacts of sexual activity on male fruitfly longevity, Partridge and Farquhar
(1981), measured the longevity of male fruitflies with access to either one virgin female
(potential mate), eight virgin females, one pregnant female (not a potential mate), eight
pregnant females or no females. The available male fruitflies varied in size and since size
is known to impact longevity, the researchers randomly allocated each individual fruitfly to
one of the five treatments and also measured thorax length as a covariate (from Box 12.1 of
Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Partridge and Farquhar (1981) data set.

> partridge <- read.table("partridge.csv", header = T, sep = ",")

Step 2(Key 15.1) - Assess assumptions of normality and homogeneity of variance for each null
hypothesis ensuring that the correct scale of replicates are represented for each (they should
reflect the appropriate F-ratio denominators see Table 15.1).

> plot(aov(LONGEV ~

+ THORAX + TREATMENT,

+ partridge), which = 1)

> plot(aov(log10(LONGEV) ~

+ THORAX + TREATMENT,

+ partridge), which = 1)
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Conclusions - A distinct wedge shape is apparent in the residuals from the model fitted with
the raw longevity measurements suggesting homogeneity of variance issues. This issue is less
obvious in the residual plot based upon log10 transformed data, and thus analyses should be
based on the transformed data.

Step 3 (Key 15.2) - Assess assumptions of linearity, homogeneity of slopes and covariate range
equality (using log transformed data).

• Plot the relationship between male longevity and thorax length separately for each of the
treatment groups in a lattice

> library(lattice)

> print(xyplot(log10(LONGEV) ~ THORAX | TREATMENT, partridge,

+ type = c("r","p")))
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Conclusions - The slopes of each of
the relationships between the response
(longevity) and the covariate (thorax
length) appear similar and there is no
evidence of non-linearity.

• The homogeneity of slopes assumption can also be formally tested by fitting the full
multiplicative Anova model and examining the interaction term.

> anova(aov(log10(LONGEV) ~ THORAX * TREATMENT, partridge))

Analysis of Variance Table

Response: log10(LONGEV)

Df Sum Sq Mean Sq F value Pr(>F)

THORAX 1 1.21194 1.21194 176.4955 <2e-16 ***

TREATMENT 4 0.78272 0.19568 28.4970 <2e-16 ***

THORAX:TREATMENT 4 0.04288 0.01072 1.5611 0.1894

Residuals 115 0.78967 0.00687

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is no evidence that the slopes are not parallel (F4,115 = 1.56, P = 0.182).

• Additionally, each of the relationships between longevity and the covariate (thorax length),
could be placed on the same graph to enable simple comparisons of slopes and covariate
ranges.
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> library(lattice)

> print(with(partridge, xyplot(log10(LONGEV) ~

+ THORAX, groups = TREATMENT, type = c("p",

+ "r"), col = 1, par.settings = list(superpose.symbol =

+ list(pch = 1:5, col = 1), superpose.line = list(lty =

+ 1:6)), key = list(space = "right", lty = 1:5,

+ lines = T, points = T, pch = 1:5,

+ col = 1, text = list(levels(TREATMENT))))))
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• Formally, the covariate range disparity can be tested by modelling the effect of the
treatments on the covariate (thorax length)

> anova(aov(THORAX ~ TREATMENT, partridge))

Analysis of Variance Table

Response: THORAX

Df Sum Sq Mean Sq F value Pr(>F)

TREATMENT 4 0.03000 0.00750 1.2606 0.2893

Residuals 120 0.71389 0.00595

Conclusions - There is no evidence that the treatments affect male fruitfly longevity and
thus that the covariate ranges are not substantially different (F4,120 = 1.26, P = 0.289).

Step 4 (Key 15.3) - fit the linear model and produce an ANOVA table to test the null hypotheses
that there are no effects of treatment (female type) on the (log transformed) longevity of male
fruitflies adjusted for thorax length. Note that as the design is inherently imbalanced (since
there is a different series of thorax lengths within each treatment type), Type I sums of squares
are inappropriate. To be consistent with Quinn and Keough (2002) Box 12.1, Type III sums
of squares will be used. In addition to the global ANCOVA, the researchers are likely to have
been interested in examining a set of specific planned comparisons. Two such contrasts could
be pregnant versus virgin partners (to investigate the impacts of any sexual activity) and one
virgin versus eight virgin partners (to investigate the impacts of sexual frequency).
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> # define contrasts

> contrasts(partridge$TREATMENT) <- cbind(c(0, 0.5, 0.5, -0.5,

+ -0.5), c(0, 0, 0, 1, -1))

> # confirm that contrasts orthogonal

> round(crossprod(contrasts(partridge$TREATMENT)), 1)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 2 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

> partridge.aov <- aov(log10(LONGEV) ~ THORAX +

+ TREATMENT, partridge)

> library(biology)

> AnovaM(partridge.aov, type = "III", split = list(TREATMENT =

+ list('Preg vs Virg' = 1, '1 Virg vs 8 Virg' = 2)))

Df Sum Sq Mean Sq

THORAX 1 1.01749 1.01749

TREATMENT 4 0.78272 0.19568

TREATMENT: Preg vs Virg 1 0.54203 0.54203

TREATMENT: 1 Virg vs 8 Virg 1 0.19934 0.19934

Residuals 119 0.83255 0.00700

F value Pr(>F)

THORAX 145.435 < 2.2e-16

TREATMENT 27.970 2.231e-16

TREATMENT: Preg vs Virg 77.474 1.269e-14

TREATMENT: 1 Virg vs 8 Virg 28.492 4.567e-07

Residuals

THORAX ***

TREATMENT ***

TREATMENT: Preg vs Virg ***

TREATMENT: 1 Virg vs 8 Virg ***

Residuals

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - The quantity (F1,119 = 77.47, P < 0.001) and reproductive state (F1,119 = 28.49,
P < 0.001) of female partners that a male fruitfly has access to has a significant affect on male
longevity.

Step 5 - Summarize the trends in a plot. Note this is not the same as the plot produced by Quinn
and Keough (2002) (Figure 12.3). Whilst Quinn and Keough (2002) logged log10 transformed
data on the y-axis, I have elected to plot the raw data on a log-scale y-axis.
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> # create the base blank plot

> plot(LONGEV ~ THORAX, partridge, type = "n", axes = F, xlab = "",

+ ylab = "", log = "y")

> xs <- seq(min(partridge$THORAX), max(partridge$THORAX), l = 1000)

> # plot the None series

> part.lm <- lm(LONGEV ~ THORAX, partridge, subset = TREATMENT ==

"None")

> lines(xs, predict(part.lm, data.frame(THORAX = xs)), lty = 1)

> points(LONGEV ~ THORAX, partridge, subset = TREATMENT == "None",

+ type = "p", pch = 1)

> # plot the Preg1 series

> part.lm <- lm(LONGEV ~ THORAX, partridge, subset = TREATMENT ==

"Preg1")

> lines(xs, predict(part.lm, data.frame(THORAX = xs)), lty = 2)

> points(LONGEV ~ THORAX, partridge, subset = TREATMENT == "Preg1",

+ type = "p", pch = 23, bg = "gray")

> # plot the Preg8 series

> part.lm <- lm(LONGEV ~ THORAX, partridge, subset = TREATMENT ==

"Preg8")

> lines(xs, predict(part.lm, data.frame(THORAX = xs)), lty = 3)

> points(LONGEV ~ THORAX, partridge, subset = TREATMENT == "Preg8",

+ type = "p", pch = 24, bg = "gray")

> # plot the Virg1 series

> part.lm <- lm(LONGEV ~ THORAX, partridge, subset = TREATMENT ==

"Virg1")

> lines(xs, predict(part.lm, data.frame(THORAX = xs)), lty = 4)

> points(LONGEV ~ THORAX, partridge, subset = TREATMENT == "Virg1",

+ type = "p", pch = 23, bg = "black")

> # plot the Virg8 series

> part.lm <- lm(LONGEV ~ THORAX, partridge, subset = TREATMENT ==

"Virg8")

> lines(xs, predict(part.lm, data.frame(THORAX = xs)), lty = 5)

> points(LONGEV ~ THORAX, partridge, subset = TREATMENT == "Virg8",

+ type = "p", pch = 24, bg = "black")

> axis(1)

> mtext("Thorax length (mm)", 1, line = 3)

> axis(2, las = 1)

> mtext(expression(paste("Male fruitfly longevity (days)")), 2,

line = 3)

> legend("bottomright", legend = c("None", "1 pregnant",

+ "8 pregnant", "1virgin", "8 virgin"), bty = "n", title =

+ "Treatment", lty = 1:6, pch = c(1, 23, 24, 23, 24),

+ pt.bg = c(1, "gray", "gray", 1, 1))

> box(bty = "l")
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Example 15B: Single factor ANCOVA - nonparallel slopes
Constable (1993) compared the inter-radial suture widths of urchins maintained on one of
three food regimes (Initial: no additional food supplied above what was in the initial sample,
low: food supplied periodically and high: food supplied ad libitum). In an attempt to control
for substantial variability in urchin sizes, the initial body volume of each urchin was measured
as a covariate (from Box12.2 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Constable (1993) data set.

> constable <- read.table("constable.csv", header = T, sep = ",")

Step 2 (Key 15.1) - Assess assumptions of linearity and homogeneity of slopes.

> library(car)

> scatterplot(SUTW ~

+ IV | TREAT, constable)

> library(car)

> scatterplot(SUTW ~

+ I(IV^(1/3)) | TREAT,

+ constable)
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Conclusions - The relationship between suture width and initial volume shows some evidence
of being non-linear. Linearity appears to be improved by a cube-root ( 3

√) transformation, as is
initial volume normality.

> library(lattice)

> print(with(constable, xyplot(SUTW ~ I(IV^(1/3)),

+ groups = TREAT, type = c("p", "r"), col = 1,

+ par.settings = list(superpose.symbol = list(pch = 1:3,

+ col = 1), superpose.line = list(lty = 1:3)),

+ key = list(space = "right", lty = 1:3, lines = T,

+ points = T, pch = 1:3, col = 1,

+ text = list(levels(TREAT))))))
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> anova(aov(SUTW ~ I(IV^(1/3)) * TREAT, constable))

Analysis of Variance Table

Response: SUTW

Df Sum Sq Mean Sq F value Pr(>F)

I(IV^(1/3)) 1 0.0065364 0.0065364 15.5799 0.0001945 ***

TREAT 2 0.0167503 0.0083752 19.9626 1.660e-07 ***

I(IV^(1/3)):TREAT 2 0.0039443 0.0019721 4.7007 0.0123436 *

Residuals 66 0.0276899 0.0004195

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - There is clear evidence that the relationships between suture width and initial
volume differ between the three food regimes (slopes are not parallel and a significant interaction
between food treatment and initial volume). Regular ANCOVA is not appropriate.

Step 3 (Key 12.5cc) - Determine the regions of difference between each of the food regimes
pairwise using the Wilcox modification of the Johnson-Newman procedure (with Games-Howell
critical value approximation).

> library(biology)

> constable.lm <- lm(SUTW ~ I(IV^(1/3)) * TREAT, constable)

> wilcox.JN(constable.lm, type = "H")
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df critical value lower upper

High vs Initial 37 3.867619 3.260903 2.187197

High vs Low 34 3.885401 6.595600 2.263724

Initial vs Low 43 3.839446 -1.547142 2.938749

Conclusions - Suture widths on a high food diet were greater than on initial diet for body
volumes greater than 10.5 (2.193) ml and greater than a low food diet for body volumes greater
than 11.6 (2.263), the latter of which was also lower than on initial diet for body volumes
greater than 25.4 (2.943).

Step 4 (Key 12.18) - Summarize the trends in a plot. Bars at the bottom of the plot indicate
Wilcox pairwise simultaneous regions of differences. Regions are capped to the data range.
Note this plot also illustrates the use of Hershey fonts for special symbols (in this case a star).

> # fit the model and Wilcox modification of the Johnson-Newman

> constable.lm <- lm(SUTW ~ I(IV^(1/3)) * TREAT, constable)

> WJN <- wilcox.JN(constable.lm, type = "H")

> # create base plot

> plot(SUTW ~ I(IV^(1/3)), constable, type = "n", ylim = c(0,

+ 0.2), xlim = c(3, 50)^(1/3), axes = F, xlab = "",

+ ylab = "")

> points(SUTW ~ I(IV^(1/3)), constable[constable$TREAT ==

+ "Initial", ], col = "black", pch = 22)

> lm1 <- lm(SUTW ~ I(IV^(1/3)), constable, subset = TREAT ==

+ "Initial")

> abline(lm1, col = "black", lty = 1)

> points(SUTW ~ I(IV^(1/3)), constable[constable$TREAT ==

+ "Low", ], col = "black", pch = 17)

> lm2 <- lm(SUTW ~ I(IV^(1/3)), constable, subset = TREAT ==

+ "Low")

> abline(lm2, col = "black", lty = 4)

> with(constable[constable$TREAT == "High", ], text(SUTW ~

+ I(IV^(1/3)), "\\#H0844", vfont = c("serif", "plain")))

> lm3 <- lm(SUTW ~ I(IV^(1/3)), constable, subset = TREAT ==

+ "High")

> abline(lm3, col = "black", lty = 2)

> axis(1, lab = c(10, 20, 30, 40, 50), at = c(10, 20,

+ 30, 40, 50)^(1/3))

> axis(2, las = 1)

> mtext("Initial body volume (ml)", 1, line = 3)

> mtext("Suture width (mm)", 2, line = 3)

> Mpar <- par(family = "HersheySans", font = 2)

> library(biology)

> # the legend.vfont function facilitates Hershey fonts

> legend.vfont("topleft", c("\\#H0841 Initial", "\\#H0844 High",

+ "\\#H0852 Low"), bty = "n", lty = c(1, 2, 3),

+ merge = F, title = "Food regime", vfont = c("serif",
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+ "plain"))

> par(Mpar)

> box(bty = "l")

> mn <- min(constable$IV^(1/3))

> mx <- max(constable$IV^(1/3))

> # since lower<upper (lines cross within the range - two regions

> # of significance (although one is outside data range))

> # region capped to the data range

> arrows(WJN[3, 4], 0, mx, 0, ang = 90, length = 0.05,

+ code = 3)

> text(mean(c(WJN[3, 4], mx)), 0.003, rownames(WJN)[3])

> # since lower>upper (lines cross outside data range

> # region capped to the data range if necessary

> arrows(min(WJN[2, 3], mx), 0.01, max(WJN[2, 4], mn),

+ 0.01, ang = 90, length = 0.05, code = 3)

> text(mean(c(min(WJN[2, 3], mx), max(WJN[2, 4], mn))),

+ 0.013, rownames(WJN)[2])

> # since lower>upper (lines cross outside data range

> # region capped to the data range if necessary

> arrows(min(WJN[1, 3], mx), 0.02, max(WJN[1, 4], mn),

+ 0.02, ang = 90, length = 0.05, code = 3)

> text(mean(c(min(WJN[1, 3], mx), max(WJN[1, 4], mn))),

+ 0.023, rownames(WJN)[1])
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16

Simple Frequency Analysis

The analyses described in previous chapters have all involved response variables that
implicitly represent normally distributed and continuous population responses. In this
context, continuous indicates that (at least in theory), any value of measurementa

down to an infinite number of decimal places is possible. Population responses can
also be categorical such that the values could be logically or experimentally constrained
to a set number of discrete possibilities. For example, individuals in a population can
be categorized as either male or female, reaches in a stream could be classified as either
riffles, runs or pools and salinity levels of sites might be categorized as either high,
medium or low.

Typically, categorical response variables are tallied up to generate the frequency
of replicates in each of the possible categories. From above, we would tally up the
frequency of males and females, the number of riffles, runs and pools and the high,
medium and low salinity sites. Hence, rather than model data in which a response
was measured from each replicate in the sample (as was the case for previous analyses
in this book), frequency analyses model data on the frequency of replicates in each
possible category. Furthermore, frequency data follow a Poisson distribution rather
than a normal distribution. The Poisson distribution is a symmetrical distribution in
which only discrete integer values are possible and whose variance is equal to its mean
(see Figure 16.1).

Frequency analysis essentially involves comparing the frequency of each category
observed in a sample to the frequencies that might have been expected according to a
particular scenariob. More specifically, it involves comparing the observed and expected
frequency ratios. For example, if we are investigating population gender parity, the
observed frequency of males and females could be compared to the frequency expected
if the ratio of males to females was 1:1.

The frequencies expected for each category are determined by the size of the sample
and the nature of the (null) hypothesis. For example, if the null hypothesis is that
there are three times as many females as males in a population (ratio of 3:1), then a

a The term measurement is being used to refer to the characteristic of individual observations or
replicates. Therefore a measurement could be a linear measure, a density, a count, etc.
b Dictated by the null hypothesis - see sections 16.2.2 and 16.2.2.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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0 10 15 20 25 30 35 405

Fig 16.1 Poisson sampling distributions. The mean and variance of a Poisson distribution are
equal and thus distributions with higher expected values are shorter and wider than those with
smaller means. Note that a Poisson distribution with an expected less than less than 5 will
be obviously asymmetrical as a Poisson distribution is bounded to the left by zero. This has
important implications for the reliability of frequency analyses when sample sizes are low.

sample of 110 individuals would be expected to yield 0.75 ∗ 110 = 82.5 females and
0.25 ∗ 110 = 27.5 males.

16.1 The chi-square statistic

The degree of difference between the observed (o) and expected (e) sample category
frequencies is represented by the chi-square (χ2) statistic.

χ2 =
∑ (o − e)2

e

This is a relative measure that is standardized by the magnitude of the expected
frequencies. When the null hypothesis is true (typically this represents the situation
when there are no effects or patterns of interest in the population response cate-
gory frequencies), and we have sampled in an unbiased manner, we might expect
the observed category frequencies in the sample to be very similar (if not equal)
to the expected frequencies and thus, the chi-square value should be close to zero.
Likewise, repeated sampling from such a population is likely to yield chi-square val-
ues close to zero and large chi-square values should be relatively rare. As such, the
chi-square statistic approximately follows a χ2 distribution (see Figure 16.2), a math-
ematical probability distribution representing the frequency (and thus probability) of
all possible ranges of chi-square statistics that could result when the null hypothesis
is true.

The χ2 distribution is an asymmetrical distribution bounded by zero and infinity
and whose exact shape is determined by the degrees of freedom (calculated as the total
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Fig 16.2 χ 2 probability distributions for a range of degrees of freedom. The expected value of
the distribution is equal to the degrees of freedom. At low degrees of freedom, the χ 2 distribution
is highly asymmetrical and approaches a more symmetrical shape with increasing degrees of
freedom.

number of categories minus 1c). Note also that the peak of a chi-square distribution is
not actually at zero (although it does approach it when the degrees of freedom is equal
to zero). Initially, this might seem counter intuitive. We might expect that when a null
hypothesis is true, the most common chi-square value will be zero. However, the χ2

distribution takes into account the expected natural variability in a population as well
as the nature of sampling (in which multiple samples should yield slightly different
results). The more categories there are, the more likely that the observed and expected
values will differ. It could be argued that when there are a large number of categories,
samples in which all the observed frequencies are very close to the expected frequencies
are a little suspicious and may represent dishonesty on the part of the researcherd.

By comparing any given sample chi-square statistic to its appropriate χ2 distribution,
the probability that the observed category frequencies could have be collected from a
population with a specific ratio of frequencies (for example 3:1) can be estimated. As
is the case for most hypothesis tests, probabilities lower than 0.05 (5%) are considered
unlikely and suggest that the sample is unlikely to have come from a population
characterized by the null hypothesis. Chi-squared tests are typically one-tailed tests
focussing on the right-hand tail as we are primarily interested in the probability of
obtaining large chi-square values. Nevertheless, it is also possible to focus on the
left-hand tail so as to investigate whether the observed values are ‘‘too good to be true’’.

c Recall that degrees of freedom is a measure of how many values are free to vary when determining
independent estimates of parameters. Since estimations of the expected frequencies require multipli-
cation by the total frequencies (which thereby include each of the category frequencies), not all of the
frequencies are free to vary.
d Indeed the extraordinary conformity of Gregor Mendel’s pea experiments have been subjected to
such skepticism.
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16.1.1 Assumptions

A chi-square statistic will follow a χ2 distribution approximately provided;

(i) All observations are classified independently of one another. The classification of one
replicate should not be influenced by or related to the classification of other replicates.
Random sampling should address this.

(ii) No more than 20% of the expected frequencies are less than five. χ 2 distributions do
not reliably approximate the distribution of all possible chi-square values under those
circumstancese. Since the expected values are a function of sample sizes, meeting this
assumption is a matter of ensuring sufficient replication. When sample sizes or other
circumstances beyond control lead to a violation of this assumption, numerous options
are available (see section 16.5)

16.2 Goodness of fit tests

16.2.1 Homogeneous frequencies tests

Homogeneous frequencies tests (often referred to as goodness of fit tests) are used
to test null hypotheses that the category frequencies observed within a single variable
could arise from a population displaying a specific ratio of frequencies. The null
hypothesis (H0) is that the observed frequencies come from a population with a
specific ratio of frequencies.

16.2.2 Distributional conformity - Kolmogorov-Smirnov tests

Strictly, goodness of fit tests are used to examine whether a frequency/sampling
distribution is homogeneous with some declared distribution. For example, we might
use a goodness of fit test to formally investigate whether the distribution of a response
variable deviates substantially from a normal distribution. In this case, frequencies of
responses in a set of pre-defined bin ranges are compared to those frequencies expected
according to the mathematical model of a normal distribution. Since calculations of
these expected frequencies also involve estimates of population mean and variance
(both required to determine the mathematical formula), a two degree of freedom loss
is incurred (hence df = n − 2).

16.3 Contingency tables

Contingency tables are used to investigate the associations between two or more
categorical variables. That is, they test whether the patterns of frequencies in one
categorical variable differ between different levels of other categorical variable(s) or

e Expected frequencies less than five result in asymmetrical sampling distributions (since they must
be truncated at zero) and thus potentially unrepresentative χ 2 distributions.
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could the variables be independent of another. In this way, they are analogous to
interactions in factorial linear models (such as factorial ANOVA).

Contingency tables test the null hypothesis (H0) that the categorical variables are
independent of (not associated with) one another. Note that analyses of contin-
gency tables do not empirically distinguish between response and predictor variables
(analogous to correlation), yet causality can be implied when logical and justified by
interpretation. As an example, contingency tables could be used to investigate whether
incidences of hair and eye color in a population are associated with one another (is one
hair color type more commonly observed with a certain eye color). In this case, neither
hair color nor eye color influence one another, their incidences are both controlled by
a separate set of unmeasured factors. By contrast, an association between the presence
or absence of a species of frog and the level of salinity (high, medium or low) could
imply that salinity effects the distribution of that species of frog - but not vice versa.

Sample replicates are cross-classified according to the levels (categories) of multiple
categorical variables. The data are conceptualized as a table (hence the name) with
the rows representing the levels of one variable and the column the levels of the
other variable(s) such that the cells represent the category combinations. The expected
frequency of any given cell is calculated as:

(row total) × (column total)

grand total

Thereafter, the chi-square calculations are calculated as described above and the
chi-square value is compared to a χ2 distribution with (r − 1)(c − 1) degrees of
freedom.

Contingency tables involving more than two variables have multiple interaction
levels and thus multiple potential sources of independence. For example, in a three-
way contingency table between variables A, B and C, there are four interactions (A:B,
A:C, B:C and A:B:C). Such designs are arguably more appropriately analysed using
log-linear models (see section 17.3.2).

16.3.1 Odds ratios

The chi-square test provides an indication of whether or not the occurrences in one
set of categories are likely to be associated with other sets of categories (an interaction
between two or more categorical variables), yet does not provide any indication of
how strongly the variables are associated (magnitude of the effect). Furthermore,
for variables with more than two categories (e.g. high, medium, low), there is no
indication of which category combinations contribute most to the associations. This
role is provided by odds ratios which are essentially a measure of effect size.

Odds refer the likelihood of a specific event or outcome occurring (such as the
odds of a species being present) versus the it not occurring (and thus the occurrence
of an alternative outcome) and are calculated as πj/(1 − πj) where πj refers to the
probability of the event occurring. For example we could calculate the odds of frogs
being present in highly saline habitats as the probability of frogs being present divided
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by the probability of them being absent. Similarly, we could calculate the likelihood of
frog presence (odds) within low salinity habitats.

The ratio of two of these likelihoods (odds ratio) can then be used to compare
whether the likelihood of one outcome (frog presence) is the same for both categories
(salinity levels). For example, is the likelihood of frogs being present in highly saline
habitats the same as the probability of them being present in habitats with low levels
of salinity. Although odds and thus odds ratios (θ) are technically derived from
probabilities, they can also be estimated using cell frequencies (n).

θ = n11n22

n12n21
or alternatively

θ = (n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)

where 0.5 is a small constant added to prevent division by zero. An odds ratio of
one indicates that the event or occurance (presence of frogs) is equally likely in both
categories (high and low salinity habitats). Odds ratios greater than one signify that the
event or occurance is more likely in the first than second category and vice versa for
odds ratios less than one. For example, when comparing the presence/absence of frogs
in low versus high salinity habitats, a odds ratio of 5.8 would suggest that frogs are 5.8
times more likely to be present in low salinity habitats than those that highly saline.

The distribution of odds ratios (which range from 0 to ∞) is not symmetrical
around the null possition (1) thereby precluding confidence interval and standard
error calculations. Instead, these measures are calculated from log transformed (natural
log) odds ratios (the distribution of which is a standard normal distribution centered
around 0) and then converted back into a linear scale by anti-logging.

Odds ratios can only be calculated between category pairs from two variables and
therefore 2 × 2 contingency tables (tables with only two rows and two columns).
However, tables with more rows and columns can be accommodate by splitting the
table up into partial tables of specific category pair combinations. Odds ratios (and
confidence intervals) are then calculated from each pairing, nothwithstanding their
lack of independence. For example, if there were three levels of salinity (high, medium
and low), the odds ratios from three partial tables (high vs medium, high vs low,
medium vs low) could be calculated.

Multi-way tables

Since odds ratios only explore pairwise patterns within two-way interactions, odds
ratios for multi-way (three or more variables) tables are considerably more complex
to calculate and interpret. Partial tables between two of the variables (e.g frog
presence/absence and high/low salinity) are constructed for each level of a third
(season: summer/winter). This essentially removes the effect of the third variable by
holding it constant. Associations in partial tables are therefore referred to as conditional
associations-since the outcomes (associated or independent) from each partial table are
explicitly conditional on the level of the third variable at which they were tested.
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Interpretation of odds ratios from three-way tables are summarised as:

• The odds ratios of partial tables (between X and Y) are the same for each level of Z and
implies that the degree of association between X and Y (or effect of X on Y) is the same
at all levels of Z. This is referred to as homogeneous association and is indicative of an
absence of a three-way interaction.

• The odds ratios of partial tables (between X and Y) are all equal to 1 for each level of Z. This
is a special case of homogeneous association referred to as conditionally independence. It
implies that X and Y are not associated (independent) at all levels of Z.

• The odds ratios of partial tables (between X and Y) differ between the levels of Z implying
that the degree of association between X and Y is not consistent across the levels of Z. This
is equivalent to a three-way interaction between X, Y and Z.

16.3.2 Residuals

Specific contributions to a lack of independence (significant associations) can also be
investigated by exploring the residuals. Recall that residuals are the difference between
the observed values (frequencies) and those predicted or expected when the null
hypothesis is true (no association between variables). Hence the magnitude of each
residual indicates how much each of the cross classification combinations differs from
what is expected. The residuals are typically standardized (by dividing by the square
of the expected frequencies)f to enable individual residuals to be compared relative
to one another. Large residuals (in magnitude) indicate large deviations from what
is expected when the null hypothesis is true and thus also indicate large influences
(contributions) to the overall association. The sign (+ or −) of the residual indicates
whether the frequencies were higher or lower than expected.

16.4 G-tests

An alternative to the chi-square test for goodness of fit and contingency table analyses
is the G-test. The G-test is based on a log likelihood-ratio test. A log likelihood ratio is
a ratio of maximum likelihoodsg of the alternative and null hypotheses. More simply, a
log likelihood ratio test essentially examines how likely (the probability) the alternative
hypothesis (representing an effect) is compared to how likely the null hypothesis (no
effect) is given the collected data.

The G2 statistic is calculated as:

G2 = 2
∑

o.ln
(o

e

)
where o and e are the observed and expected sample category frequencies respectively
and ln denotes the natural logarithm (base e).

f Residuals can also be adjusted by dividing each residual by the square roots of the expected frequency
as well as the observed frequency expressed as proportions of row and column totals.
g Recall that maximum likelihood refers to the maximum probability of obtaining a particular
outcome given the observed data (see section 3.7.2).
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When the null hypothesis is true, the G2 statistic approximately follows a theoretical
χ2 distribution with the same degrees of freedom as the corresponding chi-square
statistic. The G2 statistic (which is twice the value of the log-likelihood ratio) is
arguably more appropriate than the chi-square statistic as it is closely aligned with
the theoretical basis of the χ2 distribution (for which the chi-squared statistic is a
convenient approximation). For large sample sizes, G2 and χ2 statistics are equivalent,
however the former is a better approximation of the theoretical χ2 distribution when
the difference between the observed and expected is less than the expected frequencies
(ie |o − e| < e). Nevertheless, G-tests operate under the same assumptions are the
chi-square statistic and thus very small sample sizes (expected values less than 5) are
still problematic. G-tests have the additional advantage that they can be used additively
with more complex designs and a thus more extensible than the chi-squared statistic.

16.5 Small sample sizes

As discussed previously, both the χ2 and G2 statistics are poor approximations of
theoreticalχ2 distributions when sample sizes are very small. Under these circumstances
a number of alternative options are available:

(i) If the issue has arisen due to a large number of category levels in one or more of the
variables, some categories could be combined together.

(ii) Fishers exact testh which essentially calculates the probability of obtaining the cell
frequencies given the observed marginal totals in 2 × 2 tables. The calculations involved
in such tests are extremely tedious as they involve calculating probabilities from
hypergeometric distributions (discrete distributions describing the number of successes
from sequences of samples drawn with out replacement) for all combinations of cell
values that result in the given marginal totals.

(iii) Yates’ continuity correction calculates the test statistic after adding and subtracting 0.5
from observed values less than and greater than expected values respectively. Yates’
correction can only be applied to designs with a single degree of freedom (goodness-of-fit
designs with two categories or 2 × 2 tables) and for goodness-of-fit tests provide p-values
that are closer to those of an exact binomial. However, they typically yield over inflated
p-values in contingency tables.

(iv) Williams’ correction is applied by dividing the test statistic by

1 + (p2 − 1)6nv

where p is the number of categories, n is the total sample size (total of observed
frequencies) and v is the number of degrees of freedom (p − 1). Williams’ corrections
can be applied to designs with greater than one degree of freedom, and are considered
marginally more appropriate than Yates’ corrections if corrections are insisted.

(v) Randomization tests in which the sample test statistic (either χ 2 or G2) is compared to
a probability distribution generated by repeatedly calculating the test statistic from an

h So called because as resulting p-values and assumptions are exact rather than approximated.
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equivalent number of observations drawn from a population (sampling with replacement)
with the specific ratio of category frequencies defined by the null hypothesis. Significance
is thereafter determined by the proportion of the randomized test statistic values that are
greater than or equal to the value of the statistic that is based on observed data.

(vi) Log-linear modelling (see section 16.6)

16.6 Alternatives

The χ2 statistic has many limitations when applied to contingency table analyses
(particularly concerning the testing and interpretation of interactions) and these issues
are exacerbated with increasing numbers of categories and variables. Log-linear models
are considered more appropriate than traditional chi-square statistics for analyzing
contingency tables (particularly for multiway tables). Briefly, log-linear models (see
section 17.3.2 for more complete treatment) are a form of generalized linear model in
which the (natural log) expected frequencies of the category combinations (cells of the
contingency table) are modelled against a combination of categorical variables around
a Poisson distribution of residuals. This approach is analogous to analysis of variance,
and thus, both individual and interaction effects can be estimatedi.

16.7 Power analysis

Power analyses are most usefully performed to provide an estimate of the sample size
required to pick up a particular pattern (significant departure of category frequencies
from the null hypothesis). Hence, in order to perform a power analysis, it is necessary
to first define one or more possible patterns (effect sizes). To do so, we consider what
percentage deviation from the null pattern would be considered biologically important
and use these deviations to generate possible data sets that represent alternative
hypotheses and thus effect sizes.

The overall effect size (ws) is expressed as a standardized difference between the
hypothetical proportions reflecting alternate and null hypotheses:

ws =
√∑ (PA − P0)2

P0

where PA and P0 represent the proportions expected according to the alternate and
null hypotheses respectively. Note that this is just the square root of the χ2 statistic
comparing the alternate hypothesis frequencies to the null hypothesis frequencies.
Note also that since mean and variance are related, power analysis calculations do not
require estimates of population variation. Although power analysis is only available
for χ2 tests, since χ2 and G-tests essentially approximate the same thing, the estimates
based on χ2 test should be equally appropriate for G-tests.

i Parameters are estimated by maximum likelihood and hypothesis tests are performed by comparing
the fit (as measured by log-likelihood) of appropriate sets of full and reduced models.
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16.8 Simple frequency analysis in R

Chi-square analysis for both goodness-of-fit and contingency analyses are accommo-
dated by the chisq.test() function. Kolmogorov-Smirnov tests of distributional
conformity are accomodated via the ks.test() function. G-tests are performed using
the g.test()j function.

16.9 Further reading

• Theory

Fowler, J., L. Cohen, and P. Jarvis. (1998). Practical statistics for field biology. John
Wiley & Sons, England.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Sokal, R., and F. J. Rohlf. (1997). Biometry, 3rd edition. W. H. Freeman, San Francisco.

Zar, G. H. (1999). Biostatistical methods. Prentice-Hall, New Jersey.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Dalgaard, P. (2002). Introductory Statistics with R. Springer-Verlag, New York.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

16.10 Key for Analysing frequencies

1 a. Sampling units classified by a single category . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
b. Sampling units cross classified according to multiple categories - tests of association

(Continguency tables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 3
2 a. Expected frequencies calculated from sample data according to a theoretical ratio

(Homogeneous frequencies, chi-square test) . . . . . . . . . . . . . . . . . . . See Example 16A

> chisq.test(c(C1, C2, ..))

> # OR

> chisq.test(data.xtab)

where C1, C2,.. are the tabulated counts (frequencies) of each classification and
data.xtab is a table of observed values.

• To check assumption that no more than 20% of expected frequencies are less than 5,
append the above function with $res, e.g. chisq.test(data.xtab)$res

• To specify an alternative ratio of expected values, use the p=c() argument
• To perform G-tests, use the g.test() function in the biology package . . . . . See

Example 16B

j Pete Hurd provides R syntax for a version of a g.test on his web page http://wwwych.ualberta.ca/
phurd/cruft/. I have included his function within the biology package.
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b. Expected frequencies calculated from a mathematical model representing a distri-
bution (Goodness of fit test - Kolmogorov-Smirnov test)

> ks.test(DV, DIST, ...)

> # OR

> ks.test(DV, "dist", ...)

> # For example

> ks.test(DV, "pnorm", mean(DV), sd(DV))

where DV is the name of the dependent variable. The second argument is either a numeric
vector (DIST) representing the distribution to compare the dependent variable to, or
else a character string ("dist") representing the cummulative distribution function (as
illustrated for a normal distribution above). The third and forth arguments in the above
example provide parameters to the cummulative distribution function.

3 a. Two way continguency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
b. Three or more way continguency table (consider GLM as an alternative) . . . . Go to

Chapter 17
4 a. Check the assumption that no more than 20% of expected frequencies are less

than 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 16C

> chisq.test(data.xtab, corr = F)$exp

Assumption met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5a
b. Assumption not met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 5b

5 a. Analyse contingency table using chi-square test - all expected values greater
than 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 16C

> chisq.test(data.xtab, corr = F)

• To perform G-tests, use the g.test() function in the biology package . . . . . See
Example 16C

If null hypothesis is rejected

• Examine the residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 16C
Append the above function with $res,
e.g. chisq.test(data.xtab,corr=F)$res

• Examine odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
• To construct a summary figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

b. Analyse contingency table using Fishers exact test

> fisher.test(data.xtab)

If null hypothesis is rejected

• Examine odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
• To construct a summary figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 7

6 Calculate odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 16C

> library(biology)

> oddsratios(data.xtab)

7 a. Structure plot - summary figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 16C

> library(vcd)

> strucplot(data.xtab, shade = T)
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16.11 Worked examples of real biological data sets

Example 16A: Goodness of fit test - homogeneous frequencies test
Zar (1999) presented a dataset that depicted the classification of 250 plants into one of four
categories on the basis of seed type (yellow smooth, yellow wrinkled, green smooth and
green wrinkled). Zar (1999) used these data to test the null hypothesis that the sample came
from a population that had a 9:3:3:1 ratio of these seed types (Example 22.2).

Step 1 - Create a dataframe with the Zar (1999) seeds data

> COUNT <- c(152, 39, 53, 6)

> TYPE <- gl(4, 1, 4, c("YellowSmooth", "YellowWrinkled",

+ "GreenSmooth", "GreenWrinkled"))

> seeds <- data.frame(TYPE, COUNT)

Step 2 - Convert the seeds dataframe into a table. Whilst this step is not strictly necessary, it
does ensure that columns in various tabular outputs have meaningful names.

> seeds.xtab <- xtabs(COUNT ~ TYPE, seeds)

Step 3 (Key 16.2) - Assess the assumption of sufficient sample size (≤ 20% of expected values
< 5) for the specified null hypothesis.

> chisq.test(seeds.xtab, p = c(9/16, 3/16, 3/16, 1/16),

correct = F)$exp

YellowSmooth YellowWrinkled GreenSmooth GreenWrinkled

140.625 46.875 46.875 15.625

Conclusions - all expected values are greater than 5, therefore the chi-squared statistic is likely
to be a reliable approximation of the χ 2 distribution.

Step 4 (Key 16.2) - Test the null hypothesis that the sample could have come from a population
with a 9:3:3:1 seed type ratio. Yates’ continuity correction is not required (correct=F).

> chisq.test(seeds.xtab, p = c(9/16, 3/16, 3/16, 1/16),

correct = F)

Chi-squared test for given probabilities

data: seeds.xtab

X-squared = 8.9724, df = 3, p-value = 0.02966

Conclusions - reject the H0. The samples are unlikely to have come from a population with a
9:3:3:1 ratio

Example 16B: G-test for goodness of fit test - homogeneous frequencies test
Smith (1939) crossed a complex combination of two varieties of beans yielding a total of 241
progeny across eight phenotypes. Mendelian theory should have resulted in phenotypic ratios
of 18:6:6:2:12:4:12:4. Sokal and Rohlf (1997) used these data to test the null hypothesis
that the observed frequencies could have come from a population with a 18:6:6:2:12:4:12:4
phenotypic ratio (Box 11.1).
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Step 1 - Create a dataframe with the Smith (1939) beans data

> COUNT <- c(63, 31, 28, 12, 39, 16, 40, 12)

> PHENOTYPE <- gl(8, 1, 8, c("Pt", "Pt", "Rb", "Rt", "P", "O",

+ "B", "T"))

> beans <- data.frame(PHENOTYPE, COUNT)

Step 2 - Convert the beens dataframe into a table so as to allow for more meaningful output.

> beans.xtab <- xtabs(COUNT ~ PHENOTYPE, beans)

Step 3 - Define the expected probabilities based on the null hypothesis

> H0 <- c(18, 6, 6, 2, 12, 4, 12, 4)

> H0.prob <- H0/sum(H0)

Step 4 (Key 16.2) - Assess the assumption of sufficient sample size (≤ 20% of expected values
< 5) for the specified null hypothesis.

> library(biology)

> g.test(beans.xtab, p = H0.prob)$exp

Pt Pt Rb Rt P O B T

67.78125 22.59375 22.59375 7.53125 45.18750 15.06250 45.18750 15.06250

Conclusions - all expected values are greater than 5, therefore the chi-squared and G-statistics
are likely to be a reliable approximation of the χ 2 distribution. As one of the expected
frequencies is close to 5 it could be argued that the G-statistic will more closely approximate
the χ 2 distribution.

Step 5 (Key 16.2) - Test the null hypothesis that the sample could have come from a population
with a 18:6:6:2:12:4:12:4 seed type ratio. As one of the expected values is close to 5, we will
apply a Williams’ correction - although this is unlikely to make much of a difference.

> g.test(beans.xtab, p = H0.prob, correct = "williams")

Log likelihood ratio (G-test) goodness of fit test

data: beans.xtab

Log likelihood ratio statistic (G) = 8.7694, X-squared df = 7,

p-value = 0.2696

Conclusions - do not reject the H0. There is no evidence to suggest that the samples didn’t
come from a population with a 18:6:6:2:12:4:12:4 phenotypic ratio.

Example 16C: Two-way contingency table
In order to investigate the mortality of coolibah (Eucalyptus coolibah) trees across riparian
dunes, Roberts (1993) counted the number of quadrats in which dead trees were present
and the number in which they were absent in three positions (top, middle and bottom)
along transects from the lakeshore up to the top of dunes. In this case, the classification
of quadrats according to the presence/absence of dead coolibah trees will be interpreted as
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a response variable and the position along transect as a predictor variable (see Box 14.3 of
Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Roberts (1993) data setk.

> roberts <- read.table("roberts.csv", header = T, sep = ",")

Note that this data set contains the uncollated raw data (cross-classification of each quadrat).

Step 2 - Convert the dataframe into a collated table in preparation for contingency table
analysis

> roberts.xtab <- table(roberts$POSITION, roberts$DEAD)

> roberts.xtab <- with(roberts, table(POSITION, DEAD))

> roberts.xtab

DEAD

POSITION With Without

Bottom 15 13

Middle 4 8

Top 0 17

Step 3 (Key 16.4b) - Assess the assumption of sufficient sample size (≤ 20% of expected
values < 5) for the specified null hypothesis.

> chisq.test(roberts.xtab, corr = F)$exp

DEAD

POSITION With Without

Bottom 9.333333 18.66667

Middle 4.000000 8.00000

Top 5.666667 11.33333

Conclusions - only one (1/6 = 16.67%) of the expected values are less than 5, therefore the
χ 2 statistic should be a reasonably reliable approximation of the χ 2 distribution. Nevertheless,
G-test will also be performed to confirm the outcome.

Step 4 (Key 16.5) - Test the null hypothesis that there is no association between the
presence/absence of coolibah trees and position along transect.

> chisq.test(roberts.xtab, corr = F)

Pearson's Chi-squared test

data: roberts.xtab

X-squared = 13.6607, df = 2, p-value = 0.001080

> library(biology)

> g.test(roberts.xtab, corr = "williams")

k Note that for such a small dataset, it is also possible to tally the data up and enter it directly into a
dataframe, however, in the interests of illustrating computer tallying, we will import the full data set
containing the classification of each replicate.
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Log likelihood ratio (G-test) test of independence with

Williams' correction

data: roberts.xtab

Log likelihood ratio statistic (G) = 17.7815, X-squared df = 2,

p-value = 0.0001377

Conclusions - the null hypothesis of no association would be rejected via both the χ 2 test and
the G-test. The mortality of coolibah trees was found to be significantly associated to position
along lakeside-dune transects (χ 2 = 13.67, df = 2, P = 0.001).

Step 5 (Key 16.5) - Explore the pattern of standardized residuals to reveal which cross
classifications deviate greatest from the expected values and thus contribute greatest to the lack
of independence between coolibah mortality and transect position.

> chisq.test(roberts.xtab, corr = F)$res

DEAD

POSITION With Without

Bottom 1.854852 -1.311578

Middle 0.000000 0.000000

Top -2.380476 1.683251

Conclusions - clearly there were fewer quadrats at the bottom of the transects with dead
coolibah trees (and more at the top of the transects) than would be expected if there was no
association. This implies that coolibah mortality is greatest further up the dunes.

Step 6 (Key 16.6) - Explore the odds ratios to statistically compare the mortality of coolibah
trees between each pairing of the transect positions. Note, we will use the modified Wald’s
odds ratio calculations that correct (by adding 0.5) for the impacts of observed frequencies of
zero. Note also that since odds ratios can only be calculated for 2 × 2 tables, odds ratios must
be calculated in a number of steps.

> library(biology)

> oddsratios(roberts.xtab + 0.5)

Comparison estimate lower upper midp.exact

1 Bottom vs Middle 2.168724 0.5590128 8.413699 2.675536e-01

2 Bottom vs Top 40.185185 2.2016841 733.460860 6.449331e-05

3 Middle vs Top 18.529412 0.8912652 385.226628 1.806240e-02

fisher.exact chi.square

1 0.3147544186 0.2585776014

2 0.0000805218 0.0003656938

3 0.0180623974 0.0173950255

Conclusions - the odds of having dead coolibah trees is significantly higher at the top of
the transect than the bottom (95% CI 2.2-733.5) or to a lesser degree, the middle (95% CI
0.9-385.2) of the transect.

Step 7 (Key 16.7) - Summarize the findings with a mosaic plotl.

l Note an association plot can be produced with the assoc() function using similar syntax usin.



SIMPLE FREQUENCY ANALYSIS 481

> library(vcd)

> strucplot(roberts.xtab, shade=T, labeling_args=list(

+ set_varnames=c(POSITION="Transect position",

+ DEAD="Dead coolibah trees"), offset_varnames = c(left = 1.5,

+ top=1.5)), margins=c(5,2,2,5))
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Example 16D: Power analysis for contingency tables
In the absence of a good biological example of a power analysis for contingency tables in
any of the main biostatistics texts, a fictitious example will be presented. A marine ecologist
was interested in investigating whether North Stradbroke Island hermit crabs were selective
in the shells they occupied (what a wet ecologist does on holidays I guess!). He intended
to conduct a survey in which shells were cross-classified according to whether or not they
were occupied and what type of gastropod they were from (Austrocochlea or Bembicium).
Shells with living gastropods were to be ignored. Essentially, the nerd wanted to know
whether or not hermit crabs occupy shells in the proportions that they are available (null
hypothesis). A quick count of shells on the rocky shore revealed that approximately 30%
of available gastropod shells were occupied and that there were less Austrocochlea shells
available than Bembicium shells (40:60%). The ecologist scratches his sparsely haired scalp,
raises one eyebrow and contemplates performing a quick power analysis to determine how
many observation would be required to have an 80% chance of detecting a 20% preference
for Austrocochlea shells.

Step 1 - Using the marginal proportions (0.7 and 0.3 for absent and occupied; 0.4 and 0.6 for
Austrocochlea and Bembicium), calculate the proportions of each cross-classification for the
null hypothesis (no association or selection).

> H0.tab <- matrix(c(0.7 * 0.4, 0.7 * 0.6, 0.3 * 0.4, 0.3 * 0.6),

+ nrow = 2)

> rownames(H0.tab) <- c("Aust", "Bemb")

> colnames(H0.tab) <- c("Empty", "Occupied")

> library(epitools)
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> table.margins(H0.tab)

Empty Occupied Total

Aust 0.28 0.12 0.4

Bemb 0.42 0.18 0.6

Total 0.70 0.30 1.0

Step 2 - Create proportions to represent the alternative hypothesis (20% more selective for
Austrocochlea). Note that this does not mean that the hermit crabs are necessarily expected to
occupy Austrocochlea 20% more than Bembecium, but rather that they are more selective for
them.

> HA.tab <- matrix(c(0.7 * 0.4, 0.7 * 0.6, 0.3 * 0.5, 0.3 * 0.5),

+ nrow = 2)

> rownames(HA.tab) <- c("Aust", "Bemb")

> colnames(HA.tab) <- c("Empty", "Occupied")

> table.margins(HA.tab)

Empty Occupied Total

Aust 0.28 0.15 0.43

Bemb 0.42 0.15 0.57

Total 0.70 0.30 1.00

Note from this alternate hypothesis, we expect to see hermit crabs occupying the different
shells in equal proportion, despite Austrocochlea shells being less available.

Step 3 - Calculate the effect size corresponding to hermit crabs being 20% more selective for
Austrocochlea shells.

> ws <- sqrt(chisq.test(as.vector(HA.tab),

p = as.vector(H0.tab))$stat[[1]])

Step 4 - Calculate the approximate sample size required to have an 80% change of detecting
such an association between shell type and occupancy.

> library(pwr)

> pwr.chisq.test(df = 1, w = ws, power = 0.8)

Chi squared power calculation

w = 0.1118034

N = 627.9088

df = 1

sig.level = 0.05

power = 0.8

NOTE: N is the number of observations

Conclusions - The ecologist would need to contemplate sampling at least 628 shells in order
to be confident of detecting a 20% greater selectivity of hermit crabs for Austrocochlea shells.
Holidays don’t get any better than that!
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Generalized linear models (GLM)

General linear models (Chapters 8-15) provide a set of well adopted and recognised
procedures for relating response variables to a linear combination of one or more
predictors. Nevertheless, the reliability and applicability of such models are restricted
by the degree to which the residuals conform to normality and the mean and variance
are independent of one another. There are many real situations for which those
assumptions are unlikely to be satisfied. For example, if the measured response to a
predictor treatment (such as nest parasite load) can only be binary (such as abandoned
or not), then the differences between the observed and expected values (residuals) are
unlikely to follow a normal distribution. Instead, in this case, they will follow a binomial
distribution. Furthermore, the variance will likely be tied to the mean in that the higher
the expected probability of an event, the greater the variability in this probability.

Transformations to normalize the residuals and stabilize variances are useful in many
instances (as demonstrated in numerous examples in previous chapters). However,
the biological interpretations of models and parameters can be greatly complicated
by scale alterations and scale transformations are not always successful. For example,
response variables that represent counts (e.g. the number of individuals of a species
per quadrat), are often highly skewed and contain an abundance of zeros. Thus, linear
models based on transformed data in such situations can be unsuitable.

Generalized linear models (GLM’s) extend the application range of linear modelling
by accommodating non-stable variances as well as alternative exponentiala residual
distributions (such as the binomial and Poisson distributions). Generalized linear
models have three components:

(i) The random component that specifies the conditional distribution of the response
variable. Such distributions are characterised by some function of the mean (canonical
or location parameter) and a function of the variance (dispersion parameter). Note that
for binomial and Poisson distributions, the dispersion parameter is 1, whereas for the

a The exponential distributions are a class of continuous distribution which can be characterized
by two parameters. One of these parameters (the location parameter) is a function of the mean
and the other (the dispersion parameter) is a function of the variance of the distribution. Note
that recent developments have further extended generalized linear models to accommodate other
non-exponential residual distributions.

Biostatistical Design and Analysis Using R: a Practical Guide, 1st edition. By M. Logan.
Published 2010 by Blackwell Publishing.
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Table 17.1 Common generalized linear models and associated canonical link-distribution pairs.

Response Predictor Residual
Model variable variable(s) distribution Link

Linear regressiona Continuous Continuous/
Categorical

Gaussian
(normal)

Identity g(µ) = µ

Logistic regression Binary Continuous/
Categorical

Binomial Logit g(µ) = loge
µ

1 − µ

Log-linear models Counts Categorical Poisson Log g(µ) = logeµ

aIncludes the standard ANOVA and ANCOVA designs.

Guassian (normal) distribution the dispersion parameter is the error variance and is
assumed to be independent of the mean.

(ii) The systematic component that represents the linear combination of predictors (which
can be categorical, continuous, polynomial or other contrasts). This is identical to that
of general linear models.

(iii) The link function which links the expected values of the response (random component)
to the linear combination of predictors (systematic component). The generalized linear
model can thus be represented as:

g(µ) = β0 + β1X1 + β2X2 + . . .

where g(µ) represents the link function and β0, β1 and β2 represent parameters broadly
analogous to those of general linear models. Although there are many commonly
employed link functions, typically the exact form of the link function depends on the
nature of the random response distribution. Some of the canonical (natural) link function
and distribution pairings that are suitable for different forms of generalized linear models
are listed in Table 17.1.

The generalized nature of GLM’s makes them incompatible with ordinary least
squares model fitting procedures. Instead, parameter estimates and model fitting are
typically achieved by maximum likelihoodb methods based on an iterative re-weighting
algorithm (such as the Newton-Raphson algorithm). Essentially, the Newton-Raphson
algorithm (also known as a scoring algorithm) fits a linear model to an adjusted
response variable (transformed via the link function) using a set of weights and then
iteratively re-fits the model with new sets of weights recalculated according to the
fit of the previous iteration. For canonical link-distribution pairs (see Table 17.1),
the Newton-Raphson algorithm usually converges (arrives at a common outcome or
equilibrium) very efficiently and reliably.

The Newton-Raphson algorithm facilitates a unifying model fitting procedure across
the family of exponential probability distributions thereby providing a means by which
binary and count data can be incorporated into the suit of linear model designs

b Recall that maximum likelihood estimates are those maximize the likelihood of obtaining the actual
observations for the chosen model.
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described in chapters 8-15. In fact, linear regression (including ANOVA, ANCOVA
and other general linear models) can be considered a special form of GLM that features
a normal distribution and identity link function and for which the maximum likelihood
procedure has an exact solution. Notably, when variance is stable, both maximum
likelihood and ordinary least squares yield very similar parameter estimates.

17.1 Dispersion (over or under)

The variance of binomial or Poisson distributions is assumed to be related to the
sample size and mean respectively, and thus, there is not a variance parameter in their
definitions. In fact, the variance (or dispersion) parameter is fixed to 1. As a result,
logistic regression and log-linear modelling assume that sample variances conform to
the respective distribution definitions. However, it is common for individual sampling
units (e.g. individuals) to co-vary such that other, unmeasured influences, increase
(or less commonly, decrease) variability. For example, although a population sex ratio
might be 1:1, male to female ratios within a clutch might be highly skewed towards one
or other sex. Positive correlations cause greater variance (overdispersion) and result
in deflated standard errors (and thus exaggerated levels of precision and higher Type I
errors). Methods of diagnosing and modelling over-dispersed data are described in
section 17.4.

17.2 Binary data - logistic (logit) regression

Logistic regression is a form of GLM that employs the logit-binomial link distribution
canonical pairing to model the effects of one or more continuous or categorical
(with dummy coding) predictor variables on a binary (dead/alive, presence/absence,
etc) response variable. For example, we could investigate the relationship between
salinity levels (salt concentration) and mortality of frogs. Similarly, we could model
the presence of a species of bird as a function of habitat patch size, or nest predation
(predated or not) as a function of the distance from vegetative cover.

17.2.1 Logistic model

Consider the fictitious data presented in Figure 17.1a&b. Clearly, a regular simple
linear model (straight line, Figure 17.1a) is inappropriate for modelling the probability
of presence. Note that at very low and high levels of X, the predicted probabilities
(probabilities or proportions of the population) are less than zero and greater than one
respectively - logically impossible outcomes.

The logistic model (Figure 17.1c) relating the probability (π(x)) that the response
(yi) equals one (present) for a given level of xi (patch size) is defined as:

π(x) = eβ0+β1x

1 + eβ0+β1x
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Fig 17.1 Fictitious data illustrating a binary response variable modelled with (a) a linear model
and (b) an equivalent logistic regression model. Not only does the linear model violate linearity
and normality, the predicted values are not bounded by the logical probability limits of 0 and 1.
Accordingly, the inappropriately fitted linear model (a) implies that at very low levels of X,
individuals are expected to be less than absent! Subfigures (c) and (d) represent the general
logistic model and binomial probability distribution respectively.

Appropriately, since eβ0+β1x (the ‘‘natural constant’’ raised to a simple linear model)
must evaluate to between 0 and infinity, the logistic model must asymptote towards
(and is thus bounded by) zero and one. Alternatively, the logit link function:

ln

(
π(x)

1 − π(x)

)

can be used to transform π(x) such that the logistic model is expressed as the log odds
(probability of one state relative to the alternative) against a familiar linear combination
of the explanatory variables (as is linear regression).

ln

(
π(x)

1 − π(x)

)
= β0 + β1xi

Although theβ0 (y-intercept) parameter is interpreted similar to that of linear regression
(albeit of little biological interest), this is not the case for the slope parameter (β1).
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Rather than representing the rate of change in the response for a given change in the
predictor, in logistic regression, β1 represents the rate of change in the odds ratio (ratio
of odds of an event at two different levels of a predictor) for a given unit change in the
predictor. The exponentiated slope represents the odds ratio, the proportional rate at
which the predicted odds change for a given unit change of the predictor.

odds ratio = eβ1

17.2.2 Null hypotheses

As with linear regression, a separate H0 is tested for each of the estimated model
parameters:

H0 : β1 = 0 (the population slope equals zero)

This test examines whether the log odds of an occurrence are independent of the
predictor variable and thus whether or not there is likely to be a relationship between
the response and predictor.

H0 : β0 = 0 (the population y-intercept equals zero)

As stated previously, this is typically of little biological interest.
Similar to linear regression, there are two ways of testing the main null hypothesesc

(i) Parameter estimation approach. Maximum likelihood estimates of the parameters and
their asymptoticd standard errors (Sb1 ) are used to calculate the Wald t (or t ratio) statistic:

W = b1

Sb1

which approximately follows a standard z distribution when the null hypothesis is true.
The reliability of Wald tests deminishes substantially with small sample sizes. For such
cases, the second option is therefore more appropriate.

(ii) (log)-likelihood ratio tests approach. This approach essentially involves comparing the fit
of models with (full) and without (reduced) the term of interest:

logit(π ) = β0 + β1X1 (Full model)

logit(π ) = β0 (Reduced model)

The fit of any given model is measured via log-likelihood and the differences between the
fit of two models is described by a likelihood ratio statistic (G2 = 2(log-likelihood reduced

c Note, that whilst in simple regression, the parameter and model comparison approaches yield
identical outcomes, this is not the case and that the degree of correspondence depends on sample
sizes. For small sample sizes, the model comparisons approach is considered more reliable.
d A parameter is refered to as an assymptotic estimate if their reliability is sample size dependent - they
become progressively more accurate with increasing sample size, albeit with diminishing returns.
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model - log-likelihood full model)). The G2 quantity is also known as deviance and is
analygous to the residual sums of squares in a linear model. When the null hypothesis is
true, the G2 statistic approximately follows a χ 2 distribution with one degree of freedom.
An analogue of the linear model r2 measure can be calculated as:

r2 = 1 − G2
0

G2
1

where G2
0 and G2

1 represent the deviances due to the intercept and slope terms respectively.

17.2.3 Analysis of deviance

Analogous to the ANOVA table that partitions the total variation into components
explained by each of the model terms (and the unexplained error), it is possible to
construct a analysis of deviance table that partitions the deviance into components
explained by each of the model terms.

17.2.4 Multiple logistic regression

Multiple logistic regression is an extension of logistic regression in the same way that
multiple linear regression is an extension of simple linear regression.

logit(π) = β0 + β1x1 + β2x2 + . . .

Each of the parameters can be estimated either via Wald statistics or via a sequence of log-
likelihood (G2) tests comparing models with and without each predictor term. These
estimatated parameters are partial logistic regression parameters. That is, they are the
effect of one predictor on the odds of an occurance holding all other predictors constant.

Since the systematic component of GLM’s is identical to that of linear models, mul-
tiple logistic regression shares the issues and diagnoses concerning (multi)collinearitye

with multiple linear regression.

Model selection and model averaging

Selecting the best (most parsimonious) model as well as assessing the relative impor-
tance of each of the predictor variables follows similar procedures to those outlined
in sections 9.7 & 9.7.1 and can be based on the following measures (see Table 9.2 for
more formula and R syntax):

• Differences in deviance (G2) between model pairs
• r2 - analogous to multiple linear regression
• AIC (preferred). The Akaike Information Criterion (AIC) for generalized linear models is

the deviance (G2) penalized for the number of predictors (p) and either the number of

e Recall from chapter 9 that the assumption of multicollinearity concerns the issues that arise when
two or more of the predictor variables are correlated to one another.
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observations (n) or unique category combinations (D):

AIC = G2 − n + 2p

AIC = G2 − D + 2p

When comparing two possible models from a family of models, this is reduced to:

AIC = G2 − 2df

where df is the difference in degrees of freedom of the two models. Models with the
smallest AIC are the most parsimonious.

• QAIC. The Quasi Akaike Information Criterion is adjusted for the degree of overdispersion
of lack of fit

• AICC and QAICC. Both AIC and QAIC also have versions that correct for small (n < 30)
sample sizes. Model selection should be based upon models fitted using maximum
likelihood (ML) rather than restricted maximum likelihood (REML) as the former is more
appropriate for comparing models with different fixed and random effects structures. The
resulting ‘best’ model should then be refit using REML.

17.3 Count data - Poisson generalized linear models

Another form of data for which scale transformations are often unsuitable or unsuc-
cessful are count data. Count data tend to follow a Poisson distribution (see Figure 16.1)
and consequently, the mean and variance are usually related. Generalized linear models
provide appropriate means to model count data according to two design contexts:

(i) as an alternative to linear regression for modeling count data against a linear combination
of continuous and/or categorical predictor variables (Poisson regresssion)

(ii) as an alternative to contingency tables in which the associations between categorical
variables are explored (log-linear modelling)

17.3.1 Poisson regression

The Poisson regression model is:

log(µ) = β0 + β1x1

where log(µ) is the link function used to link the mean of the Poisson response
variable to the linear combination of predictor variables. Poisson regression otherwise
shares null hypotheses, parameter estimation, model fitting and selection with logistic
regression (see section 17.2).

17.3.2 Log-linear Modelling

Contingency tables were introduced in section 16.3 along with caveats regarding the
reliability and interoperability of such analyses (particularly when expected proportions
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are small or for multiway tables). In contrast to logistic and Poisson regression, all
variables in a log-linear model do not empirically distinguish between response and
predictor variables. Nevertheless, as in contingency tables, causality can be implied
when logical and justified by interpretation.

Log-linear models

The saturated (or full) log-linear model resembles a multiway ANOVA model (see
chapter 12). The full and reduced log-linear models for a two factor design are:

log(fij) = µ + λA
i + λB

j + λAB
ij (full)

log(fij) = µ + λA
i + λB

j (reduced)

where log(fij) is the log link function, µ is the mean of the (log) of expected frequencies
(fij) and λA

i is the effect of the ith category of the variable (A), λB
j is the effect of the jth

category of B and λAB
ij is the interactive effect of each category combination on the (log)

expected frequencies.
Reduced models differ from full models in the absence of all higher orderf interaction

terms. Comparing the fit of full and reduced models therefore provides a means of
assessing the effect of the interaction. Whilst two-way tables contain only a single
interaction term (and thus a single full and reduced model), multiway tables have
multiple interactions. For example, a three-way table has a three way interaction
(ABC) as well as three two-way interactions (AB, AC, BC). Consequently, there are
numerous full and reduced models, each appropriate for different interaction terms
(see Table 17.2).

Null hypotheses

Consistent with contingency table analysis, log-linear models test the null hypothesis
(H0) that the categorical variables are independent of (not associated with) one another.
Such null hypotheses are tested by comparing the fit (deviance, G2, see section 17.2.2)
of full and reduced models. The G2 is compared to a χ2 distribution with degrees of
freedom equal to the difference in degrees of freedom of the full and reduced models.
Thereafter, odds ratios are useful for interpreting any lack of independence.

For multi-way tables, there are multiple full and reduced models.

Complete dependence:
H0: ABC = 0. No three way interaction. Either no association (conditional independence)

between each pair of variables, or else the patterns of associations (conditional dependen-
cies) are the same for each level of the third. If this null hypothesis is rejected (ABC = 0),
the causes of lack of independence can be explored by examining the residuals or odds
ratios. Alternatively, main effects tests (testing the effects of two-way interactions separately

f In this context, higher order refers to interaction terms containing the term of interest as well as
other factors/interactions.
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Table 17.2 Full and reduced log-linear models for three-way tables in hierarchical order.

H0 Log-linear model df G2 (reduced-full)

Saturated model
1 A + B + C + AB+ 0

AC + BC + ABC
Complete dependence
2 ABC = 0 A + B + C+ (I − 1)(J − 1) 2-1

AB + AC + BC (K − 1)
Conditional independence
3 AB = 0 A + B + C + AC + BC K(I − 1)(J − 1) 3-2
4 AC = 0 A + B + C + AB + BC J(I − 1)(K − 1) 4-2
5 BC = 0 A + B + C + AB + AC I(J − 1)(K − 1) 5-2
Conditional independence
6 AB = 0 A + B (I-1)(J-1) 6-(A + B + AB)
7 AC = 0 A + C (I-1)(K-1) 7-(A + C + AC)
8 BC = 0 B + C (J-1)(K-1) 8-(B + C + BC)
Complete independence
9 AB = AC = BC = 0 A + B + C 9-2

at each level of the third) can be performed. If the three-way interaction is not rejected
(no three-way association), lower order interactions can be explored.

Conditional independence/dependence:
If the three-way interaction is not rejected (no three-way association), lower order interactions

can be explored.

H0: AB = 0. A and B conditionally independent (not associated) within each level of C.

H0: AC = 0. A and C conditionally independent (not associated) within each level of B.

H0: BC = 0. B and C conditionally independent (not associated) within each level of A.

Marginal independence:

H0: AB = 0. No association between A and B pooling over C

H0: AC = 0. No association between A and C pooling over B

H0: BC = 0. No association between B and C pooling over A

Complete independence:
If none of the two-way interactions are rejected (no two-way associations), complete

independence (all two-way interactions equal zero) can be explored.

H0: AB = AC = BC = 0. Each of the variables are completely independent of all
the other variables.

Analysis of designs with more than three factors proceed similarly, starting with
tests of higher order interactions and progressing to lower order interactions only in



492 CHAPTER 17

the absence of higher order interactions. Selection of the ‘‘best’’ (most parsimonious)
model is on the basis of the smallest G2 or AIC where:

AIC = G2 − 2df

17.4 Assumptions

Compared to general linear models, the requirements of generalized linear models are
less stringent. In particular, neither normality nor homoscedasticity are assumed. Nev-
ertheless, to maximize the reliability of null hypotheses tests, the following assumptions
do apply:

(i) all observations should be independent to ensure that the samples provide an unbiased
estimate of the intended population.

(ii) it is important to establish that no observations are overly influential. Most linear model
influence (and outlier) diagnostics extend to generalized linear models and are taken
from the final iteration of the weighted least squares algorithm. Useful diagnoses include:
(a) Residuals - there are numerous forms of residuals that have been defined for

generalized linear models, each essentially being a variant on the difference between
observed and predicted (influence in y-space) theme. Note that the residuals from
logistic regression are difficult to interpret.

(b) Leverage - a measure of outlyingness and influence in x-space.
(c) Dfbeta - an analogue of Cook’s D statisic which provides a standardized measure of

the overall influence of observations on the parameter estimates and model fit.
(iii) although linearity between the response and predictors is not assumed, the relationship

between each of the predictors and the link function is assumed to be linear. This linearity
can be examined via the following:
(a) goodness-of-fit. For log-linear models, χ 2 contingency tables (see chapter 16) can

be performedg, however due to the low reliability of such tests with small sample
sizes, this is not an option for logistic regression with continuous predictor(s) (since
each combination is typically unique and thus the expected values are always 1).

(b) Hosmer-Lemeshow (Ĉ). Data are aggregated into 10 groups or bins (either by
cutting the data according to the predictor range or equal frequencies in each group)
such that goodness-of-fit test is more reliable. Nevertheless, the Hosmer-Lemeshow
statistic has low power and relies on the somewhat arbitrary bin sizes.

(c) le Cessie-van Houwelingen-Copas omnibus test. This is a goodness-of-fit test for
binary data based on the smoothing of residuals.

(d) component+residual (partial residual) plots. Non-linearity is diagnosed as a substan-
tial deviation from a linear trend.

Non-linearity can be dealt with either by transformation or generalized additive modelling
(GAM, see section 17.5) depending on the degree and nature of the non-linearity.

(iv) (over or under) dispersion (see section 17.1). The dispersion parameter (degree
of variance inflation or over-dispersion) can be estimatedh by dividing the Pearsons

g This is really examining whether the data could have come from a population that displays that
specific fitted logistic model
h Overdispersion can also be diagnosed graphically from deviations on a q-q plot.
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χ 2 by the degrees of freedom (n − p, where n is the number of observations in p
parameters). As a general rule, dispersion parameters approaching 2 (or 0.5) indicate
possible violations of this assumption. Where over (or under) dispersion is suspected
to be an issue, quasibinomial and quasipoisson families can be used as alternatives
to model the dispersion. These quasi-likelihood models derive the dispersion parameter
(function of the variance) from the observed data. Test statistics from such models
should be based on F-tests rather than chi-squared tests.

17.5 Generalized additive models (GAM’s) - non-parametric GLM

Generalized additive modelsi are non-parametric alternatives to generalized linear
models and are useful when the relationships are expected to be complex (not simple
linear trends). In generalized additive models, the slope coefficients are replaced by
smoothing functions;

g(µ) = β0 + f1xi1 + f2xi2 + . . .

where f1 and f2 are non-parametric smoothing functions. The weighted smooth-
ing functions permit trends to deviate at critical regions throughout the data
cloud (see Figure 17.2) and thus the resulting smoother estimates tend to be less
variable (or smoother) than the corresponding regression coefficients. Generalized
additive models are fitted using a modification of the Newton-Raphson scoring algo-
rithm in which the partial residuals are iteratively smoothed in a process known as
backfitting.

Common smoothers include cubic splines and Loess smoothers (as well as running
means, running medians, running lines, and kernel smoothers). Selection of the appro-
priate smoother(s) and smoothing coefficients usually follows scatterplot examination.
Note that it is possible to apply different smoothers and smoothing coefficients for
each of the predictor variables.

GAM’s potentially model the nature of the data trends more ‘‘truly’’ and yield better
fits in the presence of non-linear trends. However, they are substantially more complex
to fit than GLM’s, requiring consideration of not only the appropriate distribution
and linkage function, but also the appropriate smoothers and smoothing coefficients.
GAM’s must also be fitted judiciously to avoid over-fittingj. GAM’s can also be more
difficult to interpret than GLM’s, particularly with respect predictions. The principles
of parsimony should be applied by verifying the fit of the GAM against the equivalent
GLM.

Early methodologies extended the application of smoothing and local regression
(as described in section 8.3) to generalized linear models. More recent developments in

i GAM’s are a form of additive model. Additive models fit each of the model terms additively. That
is, there are no interactions in the model.
j Over-fitting occurs when overly complex models are fitted to data. This is analogous to fitting a very
high order polynomial to a data cloud. Whilst the model fits the observed data well, it does not reflect
the true nature of the relationship.



494 CHAPTER 17

X

Y

Linear regression line

Predicted Y values

(a) (b)

R
es

id
ua

ls

X

Y

Cubic spline smoother

Predicted Y values

(c) (d)

R
es

id
ua

ls

Fig 17.2 Fictitious relationship between Y and X contrasting the fit of (a) linear and (c) loess
smoothers as well as the corresponding residual plots (b) and (d) respectively. The cubic spline
fits the data substantially better than the fitted linear regression line.

the field of GAM’s have expanded their capabilities to provide more sophisticated
optimization of smoothing as well as accommodating mixed effects modelling
approaches to hierarchical designs and correlations structures.

Clearly this has been a very brief and non-technical description of GAM’s
and is intended as an introduction to the existence of additional non-parametric
alternatives.

17.6 GLM and R

Generalized linear models can be fit using the glm() function with the family parameter
to specify the random component. The optional link parameter can be used to specify
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non-canonical link functions, otherwise the link function will be determined as
appropriate for the specified family. Full and reduced models can be compared using
the anovak. GAM’s are supported by two packages, gam and mgcv, reflecting the simple
and more modern generalized additive modelling techniques respectively.

17.7 Further reading

• Theory

Hastie, T. J., and R. J. Tibshirani. (1990). Generalized Additive Models. Chapman &
Hall.

Quinn, G. P., and K. J. Keough. (2002). Experimental design and data analysis for
biologists. Cambridge University Press, London.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman
& Hall/CRC.

• Practical - R

Crawley, M. J. (2007). The R Book. John Wiley, New York.

Faraway, J. J. (2006). Extending Linear Models with R: generalized linear mixed effects
and nonparametric regression models. Chapman & Hall/CRC.

Venables, W. N., and B. D. Ripley. (2002). Modern Applied Statistics with S-PLUS,
4th edn. Springer-Verlag, New York.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. (2009). Mixed
Effects Models and Extensions in Ecology with R. Springer.

17.8 Key for GLM

1 a. Binary response variable (logistic regression) . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 2
b. Count (frequency) data (Poisson generalized linear models) . . . . . . . . . . . . . Go to 5

2 a. Logistic regression - single predictor variable . . . . . . . . . . . . . . . . . . See Example 17A

> data.glm <- glm(DV ~ IV, dataset, family = "Poisson")

• Check that the model adheres to the assumptions . . . . . . . . . . . . . . . . . . . . . Go to 3
• To examine (over) dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
• To get the model parameter estimates

> summary(data.glm)

• To get the deviance table

> anova(data.glm, test = "Chisq")

• Examine the odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6

k Alternatively, the Anova function can be used to support Type II and Type III analogues when
designs are not balanced.
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b. Multiple predictor variables - multiple logistic regression . . . . . . . . . . . . . . . . . . . . See
Examples 17B & 17C

> data.glm <- glm(DV ~ IV1 + IV2 + ..., dataset,

+ family = "Poisson")

• Check for issues with (multi) collinearity . . . . . . . . . . . . . . . . . . . . . . . See Chapter 9
• Check that the model adheres to the assumptions . . . . . . . . . . . . . . . . . . . . . Go to 3
• To examine (over) dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
• To get the model parameter estimates

> summary(data.glm)

OR

> anova(data.glm, data.glmR, test = "Chisq")

where data.glmR is a reduced model containing constructed by ommitting the term
of interest.

• Examine the odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
• Perform model selection and model averaging . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

3 a. Check the assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 17A–17C.
In the following, data.glm is the fitted generalized linear model.

• Lack of fit

• le Cessie-van Houwelingen normal test statistic

> library(Design)

> data.lrm <- lrm(formula, dataset, y = T, x = T)

> resid(data.lrm)

where formula is a formula relating the response variable to the linear combination
of predictor variables

• Pearson χ 2

> pp <- sum(resid(data.lrm, type = "pearson")^2)

> 1 - pchisq(pp, data.glm$df.resid)

• Deviance (G2)

> 1 - pchisq(data.glm, data.glm$df.resid)

• Linear relationship between predictors and link function (component+residual
plot)

> library(car)

> cr.plots(data.glm, ask = F)

• Influence

> influence.measures(data.glm)

Assumptions met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go back
b. Assumptions not met - Transformations of the predictor variable scale can be useful

in improving linearity, otherwise consider GAM’s (Go to 7)
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4 a. Examine (over) dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 17A – 17C

• Pearson’s residuals

> sum(resid(data.glm, type = "pearson")^2)/data.glm$df.resid

• Deviance

> data.glm$deviance/data.glm$df.resid

Dispersion does not deviate substantially from 1 . . . . . . . . . . . . . . . . . . . . . . . Go back
b. Model is over dispersed

• Refit model with ‘‘quasi’’ distribution

> data.glm <- glm(DV ~ IV, dataset, family = "quasibinomial")

> anova(data.glm, test = "F")

• Consider a negative binomial

> data.glm <- glm.nb(DV ~ IV, dataset)

> anova(data.glm, test = "F")

5 a. Continuous predictor variable(s) (Poisson regression)

> data.glm <- glm(DV ~ IV1 + ..., dataset, family = "poisson")

• Check that the model adheres to the assumptions . . . . . . . . . . . . . . . . . . . . . Go to 3
• To examine (over) dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 4
• To get the model parameter estimates

> summary(data.glm)

OR

> anova(data.glm, data.glmR, test = "Chisq")

where data.glmR is a reduced model containing constructed by ommitting the term
of interest.

• To calculate the odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
• To perform model selection and model averaging . . . . . . . . . . . . . . . . . . . . . . Go to 8

b. Categorical variables only (log-linear modelling) . . . . . . . . See Examples 17D & 17E

> data.glm <- glm(DV ~ CAT1 * CAT2 * ..., dataset,

+ family = "poisson")

• To examine conditional independence

> data.glm1 <- update(data.glm, ~. - CAT1:CAT2, dataset)

> anova(data.glm, data.glm1, test = "Chisq")

See Table 17.2 for appropriate full and reduced log-linear models for examining
complete and conditional dependence and independence

• To calculate odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 6
• To perform model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

6 a. Calculate odds ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 17A – 17E

> library(biology)

> odds.ratio(data.glm)
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7 a. Generalized additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Example 17F

> library(gam)

> data.gam <- gam(DV ~ lo(CAT1) + lo(CAT2) + ...,

+ family = "gaussian", dataset)

• The family=parameter can be used to specify the appropriate error distribution
• To check that the model adheres to the assumptions
• To examine the parameter estimates

> sumamry(data.gam)

• To perform model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Go to 8

8 a. Perform model selection . . . . . . . . . . . . . . . . . . . . . . . . . . See Examples 17B, 17C & 17F
In the following model is the fitted model from either glm or gam

> library(MuMIn)

> dredge(data.glm)

> model.avg(get.models(dredge(model)))

OR

> library(biology)

> Model.selection.glm(model)

17.9 Worked examples of real biological data sets

Example 17A: Logistic regression
As part of an investigation into the factors controlling island spider populations, Polis et al.
(1998) recorded the physical and biotic characteristics of the islands in the Gulf of California.
Quinn and Keough (2002) subsequently modelled the presence/absence (PA) of a potential
spider predator (Uta lizards) against the perimeter to area ratio (RATIO) of the islands to
illustrate logistic regression (from Box 13.1 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Polis et al. (1998) data set

> polis <- read.table("polis.csv", header = T, sep = ",")

Step 2 (Key 17.2) - Fit the logistic regression model relating the log odds of Uta presence
against perimeter to area ratio

(
ln

(
π(µ)

1−π(µ)

)
= β0 + β1(P/A ratio)

)
> polis.glm <- glm(PA ~ RATIO, family = binomial, data = polis)

Step 3 (Key 17.3) - Check the (lack of) fit and appropriateness of the model with goodness-of-fit
tests

• le Cessie-van Houwelingen normal test statistic

> library(Design)

> polis.lrm <- lrm(PA ~ RATIO, data = polis, y = T, x = T)

> resid(polis.lrm, type = "gof")
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Sum of squared errors Expected value|H0 SD

2.2784683 2.2633569 0.1462507

Z P

0.1033257 0.9177045

• Pearson χ 2 p-value

> pp <- sum(resid(polis.lrm, type = "pearson")^2)

> 1 - pchisq(pp, polis.glm$df.resid)

[1] 0.5715331

• Deviance (G2) significance

> 1 - pchisq(polis.glm$deviance, polis.glm$df.resid)

[1] 0.6514215

• Estimated dispersion parameter (Key 17.4)

> pp/polis.glm$df.resid

[1] 0.901922

Conclusions - no evidence for a lack of fit or over-dispersion (value not approaching 2) in the
model.

Step 4 (Key 17.3) - Confirm linearity between the log odds ratio of lizard presence and perimeter
to area ratio with a component+residual plot

> library(car)

> cr.plots(polis.glm, ask = F)

Conclusions - no evidence of non-linearity.
Thus no evidence to suggest that data did
not come from population that follows the
logistic regression- not evidence for a lack
of fit of the model
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Step 5 (Key 17.3) - Examine the influence measures

> influence.measures(polis.glm)

Influence measures of

glm(formula = PA ~ RATIO, family = binomial, data = polis) :
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dfb.1_ dfb.RATI dffit cov.r cook.d hat inf

1 0.182077 -0.007083 0.447814 1.043 5.50e-02 0.109124

2 0.167005 -0.141263 0.169959 1.235 6.62e-03 0.111730

3 -0.723849 1.079157 1.278634 0.537 8.43e-01 0.151047 *

4 -0.239967 0.028419 -0.546081 0.953 9.01e-02 0.108681

5 0.248270 -0.126175 0.359999 1.117 3.30e-02 0.110025

6 0.028088 -0.196986 -0.437403 1.110 5.00e-02 0.129177

7 0.077131 -0.102575 -0.111591 1.250 2.81e-03 0.108288

8 0.140334 -0.247315 -0.332565 1.242 2.65e-02 0.155414

9 -0.562402 0.338850 -0.723598 0.805 1.89e-01 0.112842

10 0.257651 -0.162838 0.319655 1.157 2.52e-02 0.114067

11 0.176591 -0.147771 0.180516 1.234 7.49e-03 0.113765

12 0.104228 -0.093408 0.104419 1.225 2.46e-03 0.090774

13 0.135395 -0.118138 0.136380 1.233 4.23e-03 0.102909

14 0.000410 -0.000476 -0.000481 1.131 5.14e-08 0.001445

15 0.000218 -0.000251 -0.000254 1.130 1.43e-08 0.000817

16 0.139447 -0.248090 -0.335881 1.239 2.70e-02 0.155114

17 0.143708 -0.240774 -0.311977 1.255 2.31e-02 0.156543

18 0.074831 -0.068694 0.074832 1.211 1.26e-03 0.075520

19 0.108633 -0.097001 0.108890 1.226 2.68e-03 0.092718

Conclusions - Although the Dfbeta (Cook’s D equivalent) values of islands 3 (Cerraja) and
9 (Mitlan) where elevated relative to the other islands, no observations are considered overly
influential.

Step 6 (Key 17.2) - Examine the parameter estimates from the fitted logistic regression model.

> summary(polis.glm)

Call:

glm(formula = PA ~ RATIO, family = binomial, data = polis)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6067 -0.6382 0.2368 0.4332 2.0986

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.6061 1.6953 2.127 0.0334 *

RATIO -0.2196 0.1005 -2.184 0.0289 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 26.287 on 18 degrees of freedom

Residual deviance: 14.221 on 17 degrees of freedom

AIC: 18.221

Number of Fisher Scoring iterations: 6
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Conclusions - reject the null hypothesis. An increase in perimeter to area ratio was associated
with a significant decline in the chances of Uta lizard presence on Gulf of California islands
(b = −0.202, z = −2.184, P = 0.029).

Step 7 (Key 17.2) - Compare the fit of full and reduced models (G2) as an alternative
(potentially more reliable given the relatively small sample size) to the individual parameter
based approach

> anova(polis.glm, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: PA

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 18 26.2869

RATIO 1 12.0662 17 14.2207 0.0005

Conclusions - reject the null hypothesis. An increase in perimeter to area ratio was associated
with a significant decline in the chances of Uta lizard presence on Gulf of California islands
(G2 = 12.066, df = 1, P < 0.001).

Step 8 (Key 17.6) - Examine the odds ratio for the occurrence of Uta lizards.

> library(biology)

> odds.ratio(polis.glm)

Odds ratio Lower 95

RATIO 0.8028734 0.659303 0.9777077

Conclusions - the chances of Uta lizards being present on an island decline by 0.803 (20%)
for every unit increase in perimeter to area ratio.

Step 9 - Estimate the strength (r2) of the association

> 1 - (polis.glm$dev/polis.glm$null)

[1] 0.4590197

Conclusions - 46% of the uncertainty in Uta lizard occurrence is explained by the perimeter to
area ratio of the islands.

Step 10 - Calculate the LD50 (perimeter to area ratio at which there is a 50% chance of Uta lizard
occurrence).

> -polis.glm$coef[1]/polis.glm$coef[2]

(Intercept)

16.42420
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Step 11 - Summarize the association between Uta lizard occurrence and island perimeter to
area ratio.

> # Calculate predicted values based on fitted model

> xs <- seq(0, 70, l = 1000)

> polis.predict <- predict(polis.glm, type = "response", se = T,

+ newdata = data.frame(RATIO = xs))

> # construct base plot

> plot(PA ~ RATIO, data = polis, xlab = "", ylab = "", axes = F,

+ pch = 16)

> # Plot fitted model and 95% CI bands

> points(polis.predict$fit ~ xs, type = "l", col = "gray")

> lines(polis.predict$fit + polis.predict$se.fit ~ xs,

+ col = "gray", type = "l", lty = 2)

> lines(polis.predict$fit - polis.predict$se.fit ~ xs,

+ col = "gray", type = "l", lty = 2)

> mtext(expression(paste(italic(Uta), "presence/absence")), 2,

+ line = 3)

> axis(2, las = 1)

> mtext("Permenter to area ratio", 1, line = 3)

> axis(1)

> box(bty = "l")
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Example 17B: Multiple logistic regression
Bolger et al. (1997) investigated the impacts of habitat fragmentation on the occurrence
of native rodents. Quinn and Keough (2002) subsequently modelled the presence/absence
native rodents against some of the Bolger et al. (1997)’s biogeographic variables (area of the
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canyon fragment, percent shrub cover and distance to the nearest canyon fragment) (from
Box 13.2 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Bolger et al. (1997) data set

> bolger <- read.table("bolger.csv", header = T, sep = ",")

Step 2 (Key 9.3 & 17.2b) - Investigate the assumption of (multi)collinearity

> library(car)

> scatterplot.matrix(~RODENTSP + DISTX + AGE + PERSHRUB,

data = bolger)
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> bolger.glm <- glm(RODENTSP ~ DISTX + AGE + PERSHRUB, family =

+ binomial, data = bolger)

> vif(bolger.glm)

DISTX AGE PERSHRUB

1.117702 1.971138 2.049398
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Conclusions - Although there is clearly a relationship between fragment age and percent
shrub cover, variance inflation values do not indicate a major collinearity issue (values less
than 5).

Step 3 (Key 17.3) - Check the (lack of) fit and appropriateness of the model with goodness-of-fit
tests

• le Cessie-van Houwelingen normal test statistic

> library(Design)

> bolger.lrm <- lrm(RODENTSP ~ DISTX + AGE + PERSHRUB, data =

+ bolger, y = T, x = T)

> resid(bolger.lrm, type = "gof")

Sum of squared errors Expected value|H0 SD

3.1538988 3.0291378 0.1382219

Z P

0.9026142 0.3667307

• Pearson χ 2p − value

> pp <- sum(resid(bolger.lrm, type = "pearson")^2)

> 1 - pchisq(pp, bolger.glm$df.resid)

[1] 0.4697808

• Deviance (G2)

> 1 - pchisq(bolger.glm$deviance, bolger.glm$df.resid)

[1] 0.5622132

• Estimated dispersion parameter (Key 17.4)

> pp/bolger.glm$df.resid

[1] 0.991585

Conclusions - no evidence to suggest that data did not come from population that fol-
lows the logistic regression (no evidence for a lack of fit of the model). Furthermore, the
estimated dispersion parameter is essentially one and thus there is no evidence of over-
dispersion.

Step 4 (Key 17.3) - Confirm linearity between the log odds ratio of rodent presence and the
biogeographic variables with a component+residual plot

> library(car)

> cr.plots(bolger.glm, ask = F)
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Conclusions - no substantial evidence of non-linearity.

Step 5 (Key 17.3) - Examine the influence measures

> influence.measures(bolger.glm)

dfb.1_ dfb.DIST dfb.AGE dfb.PERS dffit cov.r cook.d hat inf

1 -0.2416 0.17167 0.19092 0.2339 0.2945 1.536 0.010863 0.2486

2 -0.0507 0.01588 0.03176 0.0635 0.0702 1.289 0.000603 0.0693

3 -0.1286 0.08647 0.08633 0.1393 0.1640 1.367 0.003342 0.1397

4 -0.1331 -0.05235 0.14044 0.1744 0.2180 1.366 0.005983 0.1551

5 0.0853 0.02470 -0.14900 0.0436 0.4100 1.101 0.024581 0.1239
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6 0.7766 -0.58021 -0.58883 -0.4920 1.0292 0.822 0.200988 0.2300

7 -0.0112 -0.00293 -0.04378 0.0337 -0.1114 1.317 0.001530 0.0976

8 -0.0474 0.00919 -0.03268 0.0664 -0.1578 1.272 0.003141 0.0906

9 -0.0806 -0.72577 0.22425 0.1696 -0.8547 1.773 0.095918 0.4319 *

10 -0.0302 0.11865 -0.06183 -0.0776 -0.4350 0.952 0.030802 0.0952

11 -0.0291 0.09988 -0.08901 0.0438 -0.1893 1.386 0.004468 0.1563

12 -0.0476 0.00555 0.02388 0.0705 0.0872 1.291 0.000936 0.0756

13 -0.0650 -0.03614 0.05294 0.1024 0.1365 1.324 0.002310 0.1093

14 -0.0592 0.06048 -0.00219 0.0613 -0.1017 1.298 0.001276 0.0841

15 -0.0316 -0.57390 0.12542 0.0908 -0.6971 1.426 0.066536 0.3097

16 -0.2834 0.30568 0.14991 0.1456 -0.4906 1.131 0.035237 0.1595

17 -0.1710 0.05037 0.12748 0.1513 -0.1798 1.322 0.004060 0.1223

18 -0.0429 -0.02244 0.02273 0.0769 0.1100 1.309 0.001494 0.0928

19 -0.3040 0.22753 0.95111 -0.0251 1.5502 0.352 0.813906 0.2120 *

20 0.8191 0.12450 -0.96546 -0.5818 1.1426 0.860 0.240598 0.2675

21 -0.2730 0.12393 0.22277 0.1531 -0.4288 1.090 0.027170 0.1271

22 -0.0278 0.05457 -0.03695 0.0370 -0.1020 1.329 0.001279 0.1022

23 -0.0315 -0.01174 0.01115 0.0580 0.0841 1.297 0.000868 0.0781

24 0.3076 -0.05357 -0.29988 -0.4401 -0.6763 0.731 0.094200 0.1175

25 0.0636 0.20880 -0.33862 -0.0242 -0.4887 1.568 0.030804 0.3042

Conclusions - Although the Dfbeta (Cook’s D equivalent) value of one of the fragments (19)
was substantially higher than the others, it was not considered overly influentiall.

Step 6 (Key 17.2b) - Examine the parameter estimates from the fitted logistic regression model.

> summary(bolger.glm)

Call:

glm(formula = RODENTSP ~ DISTX + AGE + PERSHRUB, family = binomial,

data = bolger)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5823 -0.5985 -0.2813 0.3699 2.1702

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9099159 3.1125426 -1.899 0.0576 .

DISTX 0.0003087 0.0007741 0.399 0.6900

AGE 0.0250077 0.0376618 0.664 0.5067

PERSHRUB 0.0958695 0.0406119 2.361 0.0182 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

l Note that as indicated by Quinn and Keough (2002), the model would not converge in the absence
of this observation and thus its lack of influence on the fit of the model could not be varified.
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Null deviance: 34.617 on 24 degrees of freedom

Residual deviance: 19.358 on 21 degrees of freedom

AIC: 27.358

Number of Fisher Scoring iterations: 5

Conclusions - The chances of native rodent occurence increases significantly with increasing
shrub cover (b = 0.096, z = 2.361, P = 0.0182), yet were not found to be affected by fragment
isolation age or distance.

Step 7 (Key 17.2b) - Compare the fit of full and reduced models (G2) as an alternative
(potentially more reliable given the relatively small sample size) to the individual parameter
based approach.

> # saturated model

> bolger.glmS <- glm(RODENTSP ~ DISTX + AGE + PERSHRUB,

+ family = binomial, data = bolger)

> # Reduced model for distance

> bolger.glm.Dist <- glm(RODENTSP ~ AGE + PERSHRUB,

+ family = binomial, data = bolger)

> #OR

> bolger.glm.Dist <- update(bolger.glmS, "~.-DISTX")

> anova(bolger.glmS, bolger.glm.Dist, test = "Chisq")

Analysis of Deviance Table

Model 1: RODENTSP ~ DISTX + AGE + PERSHRUB

Model 2: RODENTSP ~ AGE + PERSHRUB

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 21 19.3576

2 22 19.5135 -1 -0.1559 0.6929

> # Reduced model for age

> bolger.glm.Age <- update(bolger.glmS, "~.-AGE")

> anova(bolger.glmS, bolger.glm.Age, test = "Chisq")

Analysis of Deviance Table

Model 1: RODENTSP ~ DISTX + AGE + PERSHRUB

Model 2: RODENTSP ~ DISTX + PERSHRUB

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 21 19.3576

2 22 19.8022 -1 -0.4446 0.5049

> # Reduced model for shrub cover

> bolger.glm.Shrub <- update(bolger.glmS, "~.-PERSHRUB")

> anova(bolger.glmS, bolger.glm.Shrub, test = "Chisq")

Analysis of Deviance Table
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Model 1: RODENTSP ~ DISTX + AGE + PERSHRUB

Model 2: RODENTSP ~ DISTX + AGE

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 21 19.3576

2 22 28.9152 -1 -9.5577 0.0020

Step 8 (Key 17.6) - Examine the odds ratio for the occurrence of native rodents.

> library(biology)

> odds.ratio(bolger.glm)

Odds ratio Lower 95

DISTX 1.000309 0.9987922 1.001828

AGE 1.025323 0.9523639 1.103871

PERSHRUB 1.100615 1.0164046 1.191803

Conclusions - the chances of native rodents being present in fragments increases slightly (1%)
for every 1% increase in shrub cover.

Step 9 (Key 17.8) - Compare the fit of all additive combinations of predictor variables to select
the most parsimonious model and perform model averaging to estimate the relative contribution
of each of the predictor variables (based on AICc).

> library(biology)

> Model.selection.glm(bolger.glm)

Model selection

Response: RODENTSP

Deviance AIC AICc deltaAIC wAIC qAIC

1. DI 34.24479 38.24479 38.79024 14.195496 0.000466208 15.5

2. AG 28.92306 32.92306 33.46852 8.873775 0.006670784 15.5

3. PE 20.04929 24.04929 24.59474 0.000000 0.563757818 15.5

4. DI+AG 28.91524 34.91524 36.05810 11.463358 0.001827494 17.0

5. DI+PE 19.80219 25.80219 26.94505 2.350306 0.174072445 17.0

6. AG+PE 19.51350 25.51350 26.65636 2.061614 0.201103152 17.0

7. DI+AG+PE 19.35758 27.35758 29.35758 4.762839 0.052102098 18.5

qAICc Select

1. DI 16.04545

2. AG 16.04545

3. PE 16.04545 *

4. DI+AG 18.14286

5. DI+PE 18.14286

6. AG+PE 18.14286

7. DI+AG+PE 20.50000 *

Model averaging

Response: RODENTSP

Sum Estimate Unconditional_SE Lower95CI

DISTX 0.2284682 8.008503e-05 6.688235e-05 -5.100437e-05
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AGE 0.2617035 6.202364e-03 5.591199e-03 -4.756386e-03

PERSHRUB 0.9910355 8.106718e-02 6.891972e-03 6.755891e-02

Upper95CI

DISTX 0.0002111744

AGE 0.0171611152

PERSHRUB 0.0945754434

attr(,"heading")

[1] "Model averaging\n" "Response: RODENTSP \n"

Conclusions - The most parsimonious model relates the presence of native rodents to percent-
age shrub cover only (on the basis of AICc). Model averaging indicated that the percentage of
shrub cover was substantially more influential than the other predictors.

Step 10 - construct the predictive model

> bolger.glm <- glm(RODENTSP ~ PERSHRUB, family = binomial,

data = bolger)

> summary(bolger.glm)

Call:

glm(formula = RODENTSP ~ PERSHRUB, family = binomial, data = bolger)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4827 -0.6052 -0.2415 0.5421 2.5218

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.90342 1.55775 -2.506 0.01222 *

PERSHRUB 0.07662 0.02878 2.663 0.00775 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.617 on 24 degrees of freedom

Residual deviance: 20.049 on 23 degrees of freedom

AIC: 24.049

Number of Fisher Scoring iterations: 5

Conclusions - The predictive model is: g(PArodents) = (0.08 × Shrubcover) − 3.90. Express-
ing this in terms of likelihood of rodents being present, the predictive model becomes:

presence = 1
(1 + exp −(0.08×Perc Shrub)−3.9))

Step 11 - Summarize the association between native rodent occurrence and percentage shrub
cover.
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> xs <- seq(0, 100, l = 1000)

> bolger.predict <- with(bolger, (predict(bolger.glm, type =

+ "response", se = T, newdata = data.frame(DISTX = mean(DISTX),

+ AGE = mean(AGE), PERSHRUB = xs))))

> plot(RODENTSP ~ PERSHRUB, data = bolger, xlab = "", ylab = "",

+ axes = F, pch = 16)

> points(bolger.predict$fit ~ xs, type = "l", col = "gray")

> lines(bolger.predict$fit + bolger.predict$se.fit ~ xs, col =

+ "gray", type = "l", lty = 2)

> lines(bolger.predict$fit - bolger.predict$se.fit ~ xs, col =

+ "gray", type = "l", lty = 2)

> mtext("Native rodent presence/absence", 2, line = 3)

> axis(2, las = 1)

> mtext("Percentage shrub cover", 1, line = 3)

> axis(1)

> box(bty = "l")
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Example 17C: Multiple logistic regression
Gotelli and Ellison (2002) investigated the biogeographical determinants of ant species
richness at a regional scale. Ellison (2004) then used an excerpt of those data to contrast
inferential and Bayesian approaches. Specifically, ant species richness was modelled against
latitude, elevation and habitat type (bog or forest) using Poisson regression.

Step 1 - Import (section 2.3) the Gotelli and Ellison (2002) data set

> gotelli <- read.table("gotelli.csv", header = T, sep = ",")

Step 2 (Key 9.3b & 17.2b) - In anticipation of fitting a multiplicative poisson regression model,
the continuous predictor variables should be centered to avoid obvious collinearity issues.

> gotelli$cLatitude <- scale(gotelli$Latitude, scale = F)

> gotelli$cElevation <- scale(gotelli$Elevation, scale = F)
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Step 3 (Key 9.3 & 17.2b) - Investigate the assumption of (multi)collinearity

> library(car)

> scatterplot.matrix(~Srich + Habitat * cLatitude * cElevation,

+ data = gotelli)
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> gotelli.glm <- glm(Srich ~ Habitat * cLatitude * cElevation,

+ family = poisson, data = gotelli)

> vif(gotelli.glm)

Habitat cLatitude

1.167807 3.113812

cElevation Habitat:cLatitude

3.563564 3.220434

Habitat:cElevation cLatitude:cElevation

3.609016 3.477485

Habitat:cLatitude:cElevation

3.644151

Conclusions - no evidence of collinearity for the centered predictor variables.
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Step 4 (Key 17.3) - Check the (lack of) fit and appropriateness of the model with goodness-of-fit
tests

• Pearson χ 2

> pp <- sum(resid(gotelli.glm, type = "pearson")^2)

> 1 - pchisq(pp, gotelli.glm$df.resid)

[1] 0.2722314

• Deviance (G2)

> 1 - pchisq(gotelli.glm$deviance, gotelli.glm$df.resid)

[1] 0.3057782

Conclusions - no evidence for a lack of fit of the model).

Step 5 (Key 17.3) - Examine the influence measures (I have truncated the output to save
space).

> influence.measures(gotelli.glm)

dfb.1_ dfb.HbtF dfb.cLtt dfb.cElv dfb.HbF.L dfb.HF.E dfb.cL.E

1 2.57e-16 -0.18734 2.40e-16 -9.36e-17 0.21122 -0.151987 -7.36e-17

2 -9.16e-18 0.01983 -1.62e-17 2.03e-17 -0.01912 -0.035302 -3.52e-17

3 9.54e-17 0.17021 2.74e-16 6.18e-17 -0.16883 -0.016553 1.08e-16

4 3.98e-17 0.04115 1.93e-17 -1.34e-16 -0.03238 -0.078512 -1.30e-16

5 8.01e-18 -0.07957 -4.75e-17 2.98e-17 0.07837 -0.017767 -1.23e-17

6 1.84e-17 0.05225 -1.49e-17 2.78e-17 -0.03326 -0.041660 -8.27e-18

7 2.63e-16 -0.19210 7.70e-17 -3.16e-16 0.10281 0.223120 -7.27e-16

8 -1.45e-19 0.32864 4.13e-17 -7.36e-17 -0.29425 0.368322 -1.51e-16

9 -2.71e-17 0.06155 -1.61e-17 1.35e-17 -0.03276 -0.027660 1.35e-17

...

Conclusions - no observations are overly influential.

Step 6 (Key 17.4) - Estimate the dispersion parameter to evaluate over (or under) dispersion in
the fitted model

> # via Pearson residuals

> pp/gotelli.glm$df.resid

[1] 1.129723

> # OR via deviance

> gotelli.glm$deviance/gotelli.glm$df.resid

[1] 1.104765

Conclusions - the dispersion parameter is not substantially greater than 1, overdispersion is
unlikely to be an issue.

Step 7 (Key 17.2b) - Examine the parameter estimates and associated null hypothesis tests.

> summary(gotelli.glm)

Call:

glm(formula = Srich ~ Habitat * cLatitude * cElevation, family =

poisson, data = gotelli)
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Deviance Residuals:

Min 1Q Median 3Q Max

-2.1448 -0.7473 -0.0856 0.5426 2.6453

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5237266 0.1044276 14.591 < 2e-16 ***

HabitatForest 0.6284757 0.1292095 4.864 1.15e-06 ***

cLatitude -0.2257304 0.1059277 -2.131 0.0331 *

cElevation -0.0006575 0.0006878 -0.956 0.3391

HabitatForest:cLatitude -0.0089115 0.1314652 -0.068 0.9460

HabitatForest:cElevation -0.0006053 0.0008531 -0.710 0.4780

cLatitude:cElevation 0.0004718 0.0007208 0.655 0.5127

HabitatForest:cLatitude:cElevation -0.0003348 0.0008941 -0.375 0.7080

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 102.763 on 43 degrees of freedom

Residual deviance: 39.772 on 36 degrees of freedom

AIC: 216.13

Number of Fisher Scoring iterations: 4

Conclusions - Species richness of native rodents was found to be significantly greater in forest
than bog habitats (P < 0.001) and was found to decline significantly with increasing latitude
(b = −0.226, z = −2.131, P = 0.0331)

Step 8 (Key 17.8) - Select the most parsimoniousm model on the basis of AICc.

> library(MuMIn)

> model.avg(get.models(dredge(gotelli.glm)))

Model summary:

Deviance AICc Delta Weight

1+2+3 40.7 210 0.00 0.510

1+2+3+5 40.3 212 2.14 0.175

1+2+3+4 40.3 212 2.19 0.170

1+2+3+6 40.7 213 2.51 0.145

Variables:

1 2 3

cElevation cLatitude Habitat

4 5 6

cElevation:cLatitude cElevation:Habitat cLatitude:Habitat

Averaged model parameters:

Coefficient Variance SE Unconditional SE

cElevation -1.07e-03 4.05e-14 0.000436 0.000449

cLatitude -2.33e-01 2.32e-05 0.067900 0.070000

HabitatForest 6.31e-01 2.14e-04 0.121000 0.125000

(Intercept) 1.53e+00 9.72e-05 0.099300 0.102000

cElevation:cLatitude 4.35e-05 1.61e-15 0.000117 0.000119

m model with greatest fit considering the number of predictor terms (including interactions).
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cElevation:HabitatForest -8.65e-05 1.88e-14 0.000223 0.000227

cLatitude:HabitatForest -3.66e-03 5.60e-06 0.021600 0.022200

Lower CI Upper CI

cElevation -0.00195 -0.000190

cLatitude -0.37000 -0.095300

HabitatForest 0.38700 0.876000

(Intercept) 1.33000 1.730000

cElevation:cLatitude -0.00019 0.000277

cElevation:HabitatForest -0.00053 0.000357

cLatitude:HabitatForest -0.04710 0.039800

Relative variable importance:

cElevation cLatitude Habitat

1.00 1.00 1.00

cElevation:Habitat cElevation:cLatitude cLatitude:Habitat

0.18 0.17 0.15

Conclusions - the most parsimonious model includes only the three main factors (elevation,
habitat and latitude), which are of roughly equivalent relative importance.

Step 9 - Examine the parameter estimates from the best fitting model. Note , there is no need for
these variables to be centered as there are no interactions.

> gotelli.glm <- glm(Srich ~ Habitat + Latitude + Elevation,

+ family = poisson, data = gotelli)

> summary(gotelli.glm)

Call:

glm(formula = Srich ~ Habitat + Latitude + Elevation, family =

poisson, data = gotelli)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.20939 -0.72643 -0.05933 0.51571 2.60147

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.9368121 2.6214970 4.553 5.28e-06 ***

HabitatForest 0.6354389 0.1195664 5.315 1.07e-07 ***

Latitude -0.2357930 0.0616638 -3.824 0.000131 ***

Elevation -0.0011411 0.0003749 -3.044 0.002337 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 102.763 on 43 degrees of freedom

Residual deviance: 40.690 on 40 degrees of freedom

AIC: 209.04

Number of Fisher Scoring iterations: 4
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Step 10 - Produce a summary figure relating the species richness of ants to latitudinal variation
for forests and bog habitats.

> # Produce base plot

> xs <- seq(40, 45, l = 1000)

> plot(Srich ~ Latitude, data = gotelli, type = "n", axes = F,

+ xlab = "", ylab = "")

> # Plot the points and predicted trends

> points(Srich ~ Latitude, data = gotelli, subset = Habitat ==

+ "Forest", pch = 16)

> pred <- predict(gotelli.glm, type = "response", se = T, newdata

+ = data.frame(Latitude = xs, Habitat = "Forest", Elevation =

+ mean(gotelli$Elevation)))

> lines(pred$fit ~ xs)

> points(Srich ~ Latitude, data = gotelli, subset = Habitat ==

+ "Bog", pch = 21)

> pred <- predict(gotelli.glm, type = "response", se = T, newdata

+ = data.frame(Latitude = xs, Habitat = "Bog", Elevation =

+ mean(gotelli$Elevation)))

> lines(pred$fit ~ xs)

> # Axes titles

> mtext("Ant species richness", 2, line = 3)

> axis(2, las=1)

> mtext(expression(paste("Latitude (", degree*N, ")")), 1,

+ line = 3)

> axis(1)

> legend("topright", legend = c("Forest", "Bog"), pch = c(16, 21),

+ title = "Habitat", bty = "n")

> box(bty = "l")
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Example 17D: Log-linear modelling
Sinclair and Arcese (1995) investigated the association between predation, sex and health
(via marrow type) in Serengeti wildebeest. Quinn and Keough (2002) used these data to
illustrate log-linear modelling (Box 14.5 of Quinn and Keough (2002)).
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Step 1 - Import (section 2.3) the Sinclair and Arcese (1995) data set

> sinclair <- read.table("sinclair.csv", header = T, sep = ",")

Step 2 (Key 17.5b & 17.8) - Fit the various combinations of log-linear models heirarchically
(starting with the highest order, or saturated, model).

• Fit the full saturated model

> sinclair.glm <- glm(COUNT ~ SEX * MARROW * DEATH, family =

+ poisson, data = sinclair)

• Perform model selection to identify the most parsimonious model (on the basis of AIC)

> library(MuMIn)

> dredge(sinclair.glm, rank = "AIC")

Model selection table

(Intr) DEATH MARROW SEX DEATH:MARROW DEATH:SEX MARROW:SEX

19 3.258 1 1 1 1 1 1

9 2.944 1 1 1

16 2.971 1 1 1 1 1

18 3.072 1 1 1 1 1 1

12 2.953 1 1 1 1

15 2.976 1 1 1 1 1

5 3.146 1 1

14 3.173 1 1 1 1

8 3.155 1 1 1

17 3.195 1 1 1 1 1

13 3.178 1 1 1 1

3 3.341 1

11 3.367 1 1 1

7 3.350 1 1

2 2.741 1

6 2.750 1 1

10 2.773 1 1 1

1 2.936

4 2.944 1

DEATH:MARROW:SEX k Dev. AIC delta weight

19 1 12 -1.776e-15 24.00 0.000 0.435

9 6 1.326e+01 25.26 1.260 0.231

16 9 8.465e+00 26.46 2.465 0.127

18 10 7.188e+00 27.19 3.188 0.088

12 7 1.324e+01 27.24 3.243 0.086

15 8 1.316e+01 29.16 5.156 0.033

5 4 4.278e+01 50.78 26.780 0.000

14 7 3.798e+01 51.98 27.980 0.000

8 5 4.276e+01 52.76 28.760 0.000

17 8 3.790e+01 53.90 29.900 0.000

13 6 4.268e+01 54.68 30.680 0.000
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3 3 4.990e+01 55.90 31.900 0.000

11 6 4.510e+01 57.10 33.100 0.000

7 4 4.988e+01 57.88 33.880 0.000

2 2 6.983e+01 73.83 49.830 0.000

6 3 6.982e+01 75.82 51.820 0.000

10 4 6.973e+01 77.73 53.730 0.000

1 1 7.695e+01 78.95 54.950 0.000

4 2 7.693e+01 80.93 56.930 0.000

Conclusions - On the basis of AIC, model 19 (the full saturated model) is the best fit (lowest
AIC). However, model 9 (~DEATH+MARROW+DEATH:MARROW) is not a significantly poorer fit
(its deltan is less than 2) than the model with the smallest AIC. Note, this is a slightly different
conclusion to that drawn by Quinn and Keough (2002). The model selection procedure used
by Quinn and Keough (2002) used a hierarchical step function to generate the set of possible
model fits, whereas the function above assesses the fit of all possible model combinations.
Furthermore, the AIC values reported by Quinn and Keough (2002) are AIC delta values.

Step 3 (Key 17.5b) - Fit a range of full and reduced models (according to Table 17.2) to
examine conditional dependence.

• Full saturated model

> sinclair.glm <- glm(COUNT ~ SEX * MARROW * DEATH, family =

+ poisson, data = sinclair)

• Complete dependence (SEX:MARROW:DEATH= 0)

> sinclair.glm1 <- update(sinclair.glm, ~. - SEX:MARROW:DEATH,

+ data = sinclair)

> anova(sinclair.glm, sinclair.glm1, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ SEX * MARROW * DEATH

Model 2: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + SEX:DEATH

+ MARROW:DEATH

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 -6.883e-15

2 2 7.1883 -2 -7.1883 0.0275

• Conditional independence (SEX:DEATH= 0)

> sinclair.glm2 <- update(sinclair.glm1, ~. - SEX:DEATH, data =

sinclair)

> anova(sinclair.glm1, sinclair.glm2, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + SEX:DEATH

+ MARROW:DEATH

Model 2: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + MARROW:DEATH

n Delta is the difference between a models’ AIC and the smallest AIC.
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Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 7.1883

2 3 8.4647 -1 -1.2763 0.2586

• Conditional independence (SEX:MARROW= 0)

> sinclair.glm4 <- update(sinclair.glm1, ~. - SEX:MARROW, data =

sinclair)

> anova(sinclair.glm1, sinclair.glm4, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + SEX:DEATH

+ MARROW:DEATH

Model 2: COUNT ~ SEX + MARROW + DEATH + SEX:DEATH + MARROW:DEATH

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 7.1883

2 4 13.1560 -2 -5.9677 0.0506

• Conditional independence (DEATH:MARROW= 0)

> sinclair.glm3 <- update(sinclair.glm1, ~. - DEATH:MARROW,

data = sinclair)

> anova(sinclair.glm1, sinclair.glm3, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + SEX:DEATH

+ MARROW:DEATH

Model 2: COUNT ~ SEX + MARROW + DEATH + SEX:MARROW + SEX:DEATH

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 7.188

2 4 37.898 -2 -30.710 2.145e-07

Conclusions - reject the null hypothesis of no three-way interaction. There is an association
between cause of death, sex and marrow type (health condition) in Serengeti wildebeest
(G2 = 7.19, df = 2, P = 0.028).

Step 4 - Investigate the patterns of association further

• Pearson residuals

> xtabs(resid(sinclair.glm1, type = "pearson") ~ SEX + MARROW +

+ DEATH, sinclair)

, , DEATH = NPRED

MARROW

SEX OG SWF TG

FEMALE 0.9479718 -0.8907547 -0.4245814

MALE -1.0876228 1.2484046 0.3639733

, , DEATH = PRED
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MARROW

SEX OG SWF TG

FEMALE -0.7301089 0.5406249 0.7186928

MALE 0.7090967 -0.6413988 -0.5215390

Conclusions - there were more healthy males (SWF marrow type) and fewer undernourished
(OG marrow type) that died of non-predation causes than expected, whereas the reverse was
the case for females.

• Split the analysis up and investigate the associations between cause of death and marrow
type for each sex separately.

> # females

> sinclair.glmR <- glm(COUNT ~ DEATH + MARROW, family = poisson,

+ data = sinclair, subset = SEX == "FEMALE")

> sinclair.glmF <- glm(COUNT ~ DEATH * MARROW, family = poisson,

+ data = sinclair, subset = SEX == "FEMALE")

> anova(sinclair.glmR, sinclair.glmF, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ DEATH + MARROW

Model 2: COUNT ~ DEATH * MARROW

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 13.9626

2 0 -2.220e-15 2 13.9626 0.0009

> # males

> sinclair.glmR <- glm(COUNT ~ DEATH + MARROW, family = poisson,

+ data = sinclair, subset = SEX == "MALE")

> sinclair.glmF <- glm(COUNT ~ DEATH * MARROW, family = poisson,

+ data = sinclair, subset = SEX == "MALE")

> anova(sinclair.glmR, sinclair.glmF, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ DEATH + MARROW

Model 2: COUNT ~ DEATH * MARROW

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 23.935

2 0 3.331e-15 2 23.935 6.346e-06

Conclusions - an association exists between cause of death and marrow type for both males
and females, although it is perhaps strongest for the latter.

• Odds ratios of being killed by predation vs non-predation for each sex and marrow type
combination (Key 17.6)

> # Males

> library(biology)

> male.tab <- xtabs(COUNT ~ DEATH + MARROW, data=sinclair,

+ subset=SEX == "MALE")
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> # transpose to express in the context of cause of death

> male.tab <- t(male.tab)

> oddsratios(male.tab)

Comparison estimate lower upper midp.exact

1 OG vs SWF 0.5581395 0.18389618 1.6939979 3.199869e-01

2 OG vs TG 0.1073345 0.04067922 0.2832085 2.247925e-06

3 SWF vs TG 0.1923077 0.06004081 0.6159519 5.465174e-03

fisher.exact chi.square

1 3.762577e-01 2.998756e-01

2 2.928685e-06 1.865442e-06

3 5.794237e-03 4.123680e-03

> # Females

> female.tab <- xtabs(COUNT ~ DEATH + MARROW, data=sinclair,

+ subset=SEX == "FEMALE")

> female.tab <- t(female.tab)

> oddsratios(female.tab)

Comparison estimate lower upper midp.exact

1 OG vs SWF 3.5208333 1.26009037 9.8376018 0.0137649202

2 OG vs TG 0.4062500 0.15034804 1.0977134 0.0788761506

3 SWF vs TG 0.1153846 0.03378972 0.3940136 0.0003808416

fisher.exact chi.square

1 0.0206121992 0.0133633241

2 0.0914047377 0.0718385552

3 0.0003765135 0.0002797362

Conclusions - the odds of being killed by predation for males with TG marrow type are less
than that for either OG or SWF marrow types, whereas female wildebeest with SWF marrow
type were less and more likely to be killed by predation than females with OG and TG marrow
type respectively.

Step 5 (Key 17.6) - Summarize the predation odds ratios for bone marrow type pairs according
to sex.

> # make a table for females

> female.tab <- xtabs(COUNT ~ DEATH + MARROW, data = sinclair,

+ subset = SEX == "FEMALE")

> library(biology)

> # calculate the odds ratios for females

> # the table should be transposed such that cause of death

# # are in columns

> sinclair.or <- oddsratios(t(female.tab))

> plot(estimate ~ as.numeric(Comparison), data = sinclair.or,

+ log = "y", type = "n", axes = F, xlab = "", ylab = "", ylim =

+ range(c(upper, lower)), xlim = c(0.5, 3.5))

> # plot the female data displaced to the right slightly

> with(sinclair.or, points(as.numeric(Comparison) + 0.1, estimate,

+ type = "b"))



GENERALIZED LINEAR MODELS (GLM) 521

> with(sinclair.or, arrows(as.numeric(Comparison) + 0.1, upper,

+ as.numeric(Comparison) + 0.1, lower, ang = 90, length = 0.1,

+ code = 3))

> # make the male table

> male.tab <- xtabs(COUNT ~ DEATH + MARROW, data = sinclair,

+ subset = SEX == "MALE")

> sinclair.or <- oddsratios(t(male.tab))

> # plot the male odds ratios

> points(estimate ~ Comparison, data = sinclair.or, type = "b",

+ pch = 16)

> with(sinclair.or, arrows(as.numeric(Comparison), upper,

+ as.numeric(Comparison), lower, ang = 90, length = 0.1,

+ code = 3))

> abline(h = 1, lty = 2)

> with(sinclair.or, axis(1, at = as.numeric(Comparison),

lab = Comparison))

> axis(2, las = 1, cex.axis = 0.75)

> mtext("Marrow type", 1, line = 3)

> mtext("Odds ratio of death by predation", 2, line = 3)

> legend("topright", legend = c("Male", "Female"), pch = c(16,

+ 21), bty = "n", title = "Sex")

> box(bty = "l")
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Example 17E: Log-linear modelling
To investigate the effects of logging (treatment) on the demographics of southern flying
squirrels, Taulman et al. (1998) recorded the age and sex of squirrels captured over three
years in experimentally logged and unlogged sites. Quinn and Keough (2002) used these
data to illustrate log-linear modelling in which squirrel age has considered and interpreted as
a response variable (Box 14.6 of Quinn and Keough (2002)).

Step 1 - Import (section 2.3) the Taulman et al. (1998) data set

> taulman <- read.table("taulman.csv", header = T, sep = ",")

Step 2 - Define year of capture as a categorical, factor vector

> taulman$YEAR <- as.factor(taulman$YEAR)
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Step 3 (Key 17.5b & 17.8) - Fit the various combinations of log-linear models heirarchically
(starting with the highest order (saturated) model). As the investigators were primarily
interested in demographic (age) patterns, age (juvenile or adult) was considered a response and
the investigators were primarily interested in the conditional independence of year by treatment
interactions. Consequently, when examining the selection of possible fitted models, it is logical
to include this interaction in all the possible models.

• Full saturated model

> taulman.glm <- glm(COUNT ~ TREAT * YEAR * AGE, family = poisson,

+ data = taulman)

• Note, as age is considered to be a response variable, all fitted models should include the
treatment by year interaction term.

> dredge(taulman.glm, rank = "AIC", fixed = ~TREAT:YEAR)

Model selection table

(Intr) AGE TREAT YEAR AGE:TREAT TREAT:YEAR AGE:YEAR

5 3.843 1 1 1 1 1 1

4 3.813 1 1 1 1 1

6 3.829 1 1 1 1 1 1

2 3.654 1 1 1 1

3 3.676 1 1 1 1 1

1 3.332 1 1 1

AGE:TREAT:YEAR k Dev. AIC delta weight

5 10 1.882e+00 21.88 0.0000 0.448

4 9 4.126e+00 22.13 0.2443 0.397

6 1 12 4.122e-10 24.00 2.1180 0.155

2 7 4.651e+01 60.51 38.6300 0.000

3 8 4.627e+01 62.27 40.3900 0.000

1 6 1.021e+02 114.10 92.2600 0.000

Step 4 (Key 17.5b) - Examine patterns of conditional independence.

• Complete dependence (TREAT:YEAR:AGE= 0)

> taulman.glm1 <- update(taulman.glm, ~. - TREAT:YEAR:AGE,

data = taulman)

> anova(taulman.glm, taulman.glm1, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ TREAT * YEAR * AGE

Model 2: COUNT ~ TREAT + YEAR + AGE + TREAT:YEAR + TREAT:AGE

+ YEAR:AGE

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 4.122e-10

2 2 1.88187 -2 -1.88187 0.39026

> AIC(taulman.glm1) - AIC(taulman.glm)

[1] -2.118125



GENERALIZED LINEAR MODELS (GLM) 523

• Conditional independence

• Ho: AGE:YEAR=0

> taulman.glm2 <- update(taulman.glm, ~. - YEAR:AGE -

+ TREAT:YEAR:AGE, data = taulman)

> anova(taulman.glm, taulman.glm2, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ TREAT * YEAR * AGE

Model 2: COUNT ~ TREAT + YEAR + AGE + TREAT:YEAR + TREAT:AGE

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 4.122e-10

2 4 46.27 -4 -46.27 2.163e-09

> AIC(taulman.glm2) - AIC(taulman.glm)

[1] 38.27045

• Ho: TREAT:AGE=0

> taulman.glm3 <- update(taulman.glm, ~. - TREAT:AGE -

+ TREAT:YEAR:AGE, data = taulman)

> anova(taulman.glm, taulman.glm3, test = "Chisq")

Analysis of Deviance Table

Model 1: COUNT ~ TREAT * YEAR * AGE

Model 2: COUNT ~ TREAT + YEAR + AGE + TREAT:YEAR + YEAR:AGE

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 4.122e-10

2 3 4.1262 -3 -4.1262 0.2482

> AIC(taulman.glm3) - AIC(taulman.glm)

[1] -1.873847

> dredge(taulman.glm, rank = "AIC", fixed = ~TREAT:YEAR)

Model selection table

(Intr) AGE TREAT YEAR AGE:TREAT TREAT:YEAR AGE:YEAR

5 3.843 1 1 1 1 1 1

4 3.813 1 1 1 1 1

6 3.829 1 1 1 1 1 1

2 3.654 1 1 1 1

3 3.676 1 1 1 1 1

1 3.332 1 1 1

AGE:TREAT:YEAR k Dev. AIC delta weight

5 10 1.882e+00 21.88 0.0000 0.448

4 9 4.126e+00 22.13 0.2443 0.397

6 1 12 4.122e-10 24.00 2.1180 0.155

2 7 4.651e+01 60.51 38.6300 0.000

3 8 4.627e+01 62.27 40.3900 0.000

1 6 1.021e+02 114.10 92.2600 0.000
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Conclusions - Whilst, squirrel age was not found to be dependent on the logging treatment
in any year (G2 = 4.13, df = 3, P = 0.248), squirrel age was found to be dependent on
year within both logging and control treatment sites (G2 = 46.27, df = 4, P < 0.001). The
relative abundance of adult squirrels declined between 1994 and 1995 in both logging and
control sites, however, this demography was restored by 1996 (see figure below).

Step 5 - Summarize the adult odds ratios for year pairs according to the logging treatment.

> control.tab <- xtabs(COUNT ~ AGE + YEAR, data = taulman, subset =

+ TREAT == "CONTROL")

> library(biology)

> taulman.or <- oddsratios(t(control.tab), corr = T)

> plot(estimate ~ as.numeric(Comparison), data = taulman.or,

+ log = "y", type = "n", axes = F, xlab = "", ylab = "", ylim =

+ range(c(upper, lower)), xlim = c(0.5, 3.5))

> with(taulman.or, points(as.numeric(Comparison) + 0.1, estimate,

+ type = "b", pch = 21))

> with(taulman.or, arrows(as.numeric(Comparison) + 0.1, upper,

+ as.numeric(Comparison) + 0.1, lower, ang = 90, length = 0.1,

+ code = 3))

> harvest.tab <- xtabs(COUNT ~ AGE + YEAR, data = taulman, subset =

+ TREAT == "HARVEST")

> taulman.or <- oddsratios(t(harvest.tab), corr = T)

> points(estimate ~ Comparison, data = taulman.or, type = "b",

+ pch = 16)

> with(taulman.or, arrows(as.numeric(Comparison), upper,

+ as.numeric(Comparison), lower, ang = 90, length = 0.1,

code = 3))

> abline(h = 1, lty = 2)

> axis(1, at = as.numeric(taulman.or$Comparison),

lab = taulman.or$Comparison)

> axis(2, las = 1, cex.axis = 0.75)

> mtext("Year", 1, line = 3)

> mtext("Odds ratio of adults", 2, line = 3)

> legend("topright", legend = c("Logging", "Control"), pch = c(16,

+ 21), bty = "n", title = "Sex")

> box(bty = "l")
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Example 17F: Generalized additive models
Quinn and Keough (2002) used a subset of the Loyn (1987) bird abundances across
fragmented landscapes data to illustrate generalized additive models. Whilst this example
is suboptimal in that the fitting of a generalized additive model cannot be entirely justified
over a simpler multiple linear regression, there are no more suitable examples throughout the
common biostatistics literature (Box 13.3 of Quinn and Keough (2002))o

Step 1 - Import (section 2.3) the Loyn (1987) data set

> loyn <- read.table("loyn.csv", header = T, sep = ",")

Step 2 (Key 9.3) - Investigate the assumptions of normality, predictor linearity (multi)collinearity
using a scatterplot matrix.

> scatterplot.matrix(~ABUND + AREA + I(1987 - YR.ISOL) + DIST,

+ data = loyn, diag = "boxplot")
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o Note that in Example 9A, years of isolation was effectively treated as the date (year) that patches
became isolated, whereas in this example it will be treated as the number of years that fragments have
been isolated up to 1987.



526 CHAPTER 17

Conclusions - there is no evidence of non-normality in the response variable (bird abundance)
and therefore a Gaussian probability distribution (and identity link function) is appropriate.
Consistent with Quinn and Keough (2002), log10 transformations of fragment area and distance
to the nearest patch were applied and improve normality of those variables. As previously
indicated, linear conformity would normally mean that a generalized additive model approach
is not necessary (or even appropriate) for these data. Nevertheless, concordant with Quinn and
Keough (2002), the additive model incorporating Loess smoothing functions for each variable
will be fit to the data.

Step 3 (Key 9.3) - Confirm the assumptions of (multi)collinearity for the form of model using
variance inflation. Note, (multi)collinearity is investigated as if for a regular linear or generalized
linear model.

> library(car)

> vif(glm(ABUND ~ log10(AREA) + I(1987 - YR.ISOL) + log10(DIST),

+ family = gaussian, data = loyn))

log10(AREA) I(1987 - YR.ISOL) log10(DIST)

1.207990 1.098115 1.114780

Step 4 (Key 17.7) - Fit a generalized additive model (GAM) with a Gaussian probability
distribution and nonparametric smoothers. Note, to perform an analysis equivalent to the one
presented by Quinn and Keough (2002) (who fitted the GAM using S-Plus), we will use the
gam package version of the gam function. Alternatively, a more sophisticated GAM can be
fitted using the gam function from the mgcv packagep.

> library(gam)

> loyn.gam <- gam(ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL)) +

+ lo(log10(DIST)), family = gaussian, data = loyn)

Step 5 (Key 17.3) - Check the (lack of) fit via Deviance (G2)

> paste("Deviance:", format(loyn.gam$deviance))

[1] "Deviance: 1454.26"

> 1 - pchisq(loyn.gam$deviance, loyn.gam$df.resid)

[1] 0

Examine the residuals associated with each of the predictor variables.

> # extract the Pearson's residuals from the fitted gam

> loyn.Res <- residuals(loyn.gam, "pearson")

> #generate a data frame with all transformations

> loyn.mod <- with(loyn, data.frame(ABUND, L10AREA = log10(AREA),

+ YRSISOL = I(1987 - YR.ISOL), L10DIST = log10(DIST)))

> # rearrange this data frame such that each of the predictors

> # become levels of a factor vector

p > library(mgcv)

> loyn.gam <- gam(ABUND ˜ s(log10(AREA)) + s(I(1987 - YR.ISOL)) + s(log10(DIST)),

family = gaussian, data = loyn).
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> loyn.L <- reshape(loyn.mod, direction = "long", varying =

+ list(c(2, 3, 4)), timevar = "Predictor", v.names = "Var", times =

+ names(loyn.mod[, c(2, 3, 4)]))

> # add the residuals to this data frame

> loyn.L$Res <- rep(loyn.Res, 3)

> # construct a lattice graphic

> library(lattice)

> print(xyplot(Res ~ Var | Predictor, data = loyn.L, scales = list(

+ alternating = TRUE, x = list(relation = "free")), xlab=

+ "Predictor variables", panel = function(x,y) {

+ panel.points(x, y, col = 1, pch = 16)

+ panel.loess(x, y, lwd = 2, col = 1)

+ }

+ ))
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Conclusions - no evidence to suggest that the model did not fit. Note, it is not necessary to
investigate overdispersion as this is not an issue for models fitted with a gaussian distribution.
the data.

Step 6 (Key 17.7) - Examine the parameter estimates from the fitted GAM.

> summary(loyn.gam)

Call: gam(formula = ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL))

+ lo(log10(DIST)), family = gaussian, data = loyn)

Deviance Residuals:

Min 1Q Median 3Q Max

-13.8785 -2.8945 0.5522 2.5558 12.1815

(Dispersion Parameter for gaussian family taken to be 35.882)

Null Deviance: 6337.929 on 55 degrees of freedom

Residual Deviance: 1454.26 on 40.529 degrees of freedom

AIC: 374.2495

Number of Local Scoring Iterations: 2

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept) 1.0

lo(log10(AREA)) 1.0 4.2 1.8169 0.14213

lo(I(1987 - YR.ISOL)) 1.0 3.3 0.6189 0.62008

lo(log10(DIST)) 1.0 4.1 2.5767 0.05115 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusions - as expected from the linearity displayed in the scatterplot matrix, none of the
nonparametric terms fit the data significantly greater than their parametric equivalents (although
log10 distance is close).

Step 7 - Quinn and Keough (2002) compared the fit of the full model to a series of reduced
models (each omitting a single predictor variable) as a way of investigating the importance of
each of the factors.

• Patch area

> loyn.gam1 <- update(loyn.gam, ~. - lo(log10(AREA)), family =

+ gaussian, data = loyn)

> anova(loyn.gam, loyn.gam1, test = "F")

Analysis of Deviance Table

Model 1: ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL))

+ lo(log10(DIST))

Model 2: ABUND ~ lo(I(1987 - YR.ISOL)) + lo(log10(DIST))
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Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 40.5290 1454.3

2 45.6833 3542.6 -5.1543 -2088.3 11.291 6.021e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Years of isolation

> loyn.gam2 <- update(loyn.gam, ~. - lo(I(1987 - YR.ISOL)),

+ family = gaussian, data = loyn)

> anova(loyn.gam, loyn.gam2, test = "F")

Analysis of Deviance Table

Model 1: ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL))

+ lo(log10(DIST))

Model 2: ABUND ~ lo(log10(AREA)) + lo(log10(DIST))

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 40.5290 1454.26

2 44.7957 1872.38 -4.2666 -418.12 2.7311 0.03912 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Distance to the nearest patch

> loyn.gam3 <- update(loyn.gam, ~. - lo(log10(DIST)), family =

+ gaussian, data = loyn)

> anova(loyn.gam, loyn.gam3, test = "F")

Analysis of Deviance Table

Model 1: ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL))

+ lo(log10(DIST))

Model 2: ABUND ~ lo(log10(AREA)) + lo(I(1987 - YR.ISOL))

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 40.5290 1454.26

2 45.5791 1795.78 -5.0501 -341.52 1.8847 0.1177

Conclusions - bird abundance in fragmented landscapes is significantly effected by the size
and duration of isolation of the habitat patches, but not the distance between patches.

Step 8 (Key 17.8) - Select the most parsimonious model relating bird abundances to the
landscape variables.

> library(MuMIn)

> dredge(loyn.gam)

Model selection table

(Intr) l(I(-Y l(10(A l(10(D k Dev. AIC AICc delta weight

8 20.62 -0.1223 9.107 -2.271 5 1454 374.2 375.4 0.000 0.614

5 16.41 -0.1224 8.221 4 1796 376.0 376.7 1.297 0.321

7 16.23 10.720 -3.026 4 1872 379.9 380.7 5.203 0.046
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3 10.40 9.778 3 2326 381.9 382.4 6.923 0.019

2 27.38 -0.2112 3 4087 411.7 412.2 36.710 0.000

6 20.57 -0.2178 3.188 4 3543 413.8 414.6 39.140 0.000

1 19.51 2 6338 427.7 428.0 52.520 0.000

4 12.23 3.287 3 5779 432.7 433.1 57.680 0.000

Conclusions - the model with all three predictor variables has the lowest AIC (and AICC).
However, the delta for the model with patch area and years of isolation is less than two units,
indicating that this latter model is not significantly less parsimonious than the former model.
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-> ->>= (assignment), 11
: (sequence), 10, 11, 12
:: (name space), 11
< (less than?), 11
<- <<-= (assignment), 11
<= (less than or equal?), 11
= (assignment), 11
== (is equal?), 11
> (greater than?), 11
>= (greater than or equal?), 11
? (help), 8, 11
[ (indexing), 11, 21–23, 56
[[ (indexing), 11 23–24
$ (component), 54, 11
%in% (matching operator), 57
& (logical AND), 11
&& (logical AND), 11
^ (exponentiation), 11
| (logical OR), 11
|| (logical OR), 11
%/% (integer divide), 6, 11
%% (modulus), 6, 11
~ (formula), 11, 154

abbreviate() (abbreviate strings), 14
abline() (trendline), 109, 191, 109–192
abs() (absolute value), 243–244
aggregate() (aggregate data set), 58, 299
AIC() (AIC & BIC), 249–250
AICc() (AIC - second order

correction) 216
Anova() (ANOVA tables), 382–384
anova() (anova tables), 197, 267, 305–306
AnovaM() (ANOVA tables), 337
aov() (ANOVA models), 198, 266, 301
aovlmer.fnc() (lmer p-values), 420
apply() (replicating along matrix

margins), 29, 243–244
apropos() (search for functions by

name), 9
arguments, 3
arrows() (arrows), 111, 337, 111–337

as. (object conversion), 20, 20
asin() (arc-sine), 69, 244
assignment (<-), 5, 11
assoc() (association plot), 129
association plots, see assoc() 129
attr() (contents of object), 19
attributes() (contents of object), 19
av.plots() (partial regression

plots), 229–230
axis() (axis), 85, 107, 108, 108

bargraphs, see barplot() 127
barplot() (bar and column graphs), 127,

143
bitmap() (bitmap device), 39
boot() (bootstrapping), 149–150,

203–206, 280–281
boxplot() (boxplots), 85, 119–120,

125–126, 142–143
bquote() (complex labels), 105–106

C() (set contrasts), 417–418
c() (concatenation), 10
cbind() (vectors to matrix), 16, 78, 263
ceiling() (rounding up), 27
character vector, 12, 13–14

abbreviate strings, see
abbreviate(), 14

join character vectors, see paste(), 13
subset strings, see subset(), 14

chisq.test() (Pearsons’s chi-square
test), 477

ci() (confidence interval), 70
citation() (citing R), 46
class() (type of object), 18
cloud() (3D scatterplots), 124–125
colnames() (matrix column names), 17
colors() (color palette), 99
colors.plot() (display palette), 99
command prompt (>), 4
comparisons (unary), 11
Comprehensive R Archive Network

(CRAN), 1, 42
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concatenation, see c() 10
confidence ellipses, see matlines() 113
confint() (confidence intervals), 190,

350–351
contr.helmert() (Helmert

contrasts), 159–160
contr.poly() (polynomial

contrasts), 160, 199, 336
contr.sum() (sum to zero contrasts), 158
contr.treatment() (treatment

contrasts), 157
contrast matrices

Helmert contrasts, see
contr.helmert, 159

polynomial contrasts, see
contr.poly, 160

sum to zero contrasts, see
contr.sum, 158

treatment contrasts, see
contr.treatment, 157

user defined contrasts, 160–161
contrasts() (contrast

matrices), 157–161, 220, 270
cor.test() (correlation), 185–187
Cp() (Mallow’s Cp) 217
cr.plots() (component-residual

plots), 499
crossprod() (matrix cross product), 270

data frames, 18, 48–64
aggregating, see aggregate(),

gsummary() , 58
constructing, see data.frame(), 47,

48–49
exporting, see write.table(), 52,

52–53
importing, see read.table(), 40,

50–52
reshaping, see reshape(), 59, 59–60
reviewing, see fix(), 49
subsets, see subset(), 56, 56–57

data sets, see data frames 48
data.frame() (create data frame), 49, 78
demo() (demonstration of function

usage), 8
density() (density plots), 117–118, 179
dev.copy() (copy device), 41, 115
dev.cur() (list active device), 41, 116
dev.list() (list devices), 41, 116
dev.next() (next device), 116
dev.off() (close device), 41, 114, 116
dev.prev() (previous device), 116
dev.print() (copy and close device), 42
dev.set() (new device), 116
dev.set() (new/change device), 40

devices, 84, 96
available, see ?Devices, 39
bitmap, see bitmap(), 39
dimensions, 90, 91
jpeg, see jpeg(), 40
pdf, see pdf(), 40
postscript, see postscript(), 40

dredge() (run all model
combinations), 223, 513–514

dump() (save object as text), 53

example() (example of function usage), 8
exists() (object exists?), 34
exporting data, see data frames 52
expression, 5
expression() (complex

labels), 104–105, 191–192
extractAIC() (AIC & BIC), 217

factor() (vector to factor), 15, 48, 54, 266
factors, 15–16

levels, see levels(), 54, 54–55
fix() (review data frame), 49
floor() (rounding down), 27
for (for loop), 31–32
format() (object formatting), 78
formatC() (C-like number formating), 28
formatting

number formatting, see formatC(), 28
rounding, see rounding, 28

formula (~), 154, 165
friedman() (non-parametric randomized

complete block ANOVA), 396
function() (new function), 34–35
functions, 3, 9–10

g.test() (G-test), 478
gam() (generalized additive model), 526
getwd() (get current working directory), 7
gl() (generate factors), 15, 55, 477
glht() (general linear hypothesis tests),

267–268, 350–351
glm() (generalized linear model), 498
graphics, 85–133

arrows, see arrows(), 111
axes titles, see mtext(), 101
axis, see axis(), 85
complex labels, see expression(),

bquote(), substitute(), 104
confidence ellipses, see matlines(), 113
error bars, see arrows(), 111
formats, see devices, 39
interactive, see interactive graphics, 113
legend, see legend(), 102
lines, see lines(), segments(), 85
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multiple devices, see dev., 40
parameters, 89–99

axes, 92, 92
character sizes, 93, 93
colors, 98–99
fonts, 96, 97, 96–98
line types, 94, 93–94
plotting characters, 94, 95, 93–96
text justification, 98, 98

plotting, see plot(), 36
points, see points(), 85
saving, see devices, 114
shapes, see rect(), polygon(), 111
smoothers, see smoothers, 112
text, see text(), 85

grep() (searching by pattern), 24
gsub() (replacing patterns), 26
gsummary() (aggregate data set), 58, 299

help, see ? 11
demonstrations, see demo(), 8
examples, see example(), 8
manuals, see help(),?, 8
methods of function, see methods(), 18
search, see help.search(),

help.start(), 9
help() (help manual), 8
help.search() (search for functions by

keyword), 9
help.start() (search for functions by

keyword (HTML)), 9
hier.part() (hierarchical

partitioning), 240–241
hist() (histogram), 85, 116–117

I() (interpretation), 245–246, 462
identify() (interactive labelling), 113
if(), ifelse (conditional execution), 31
importing data, see data frames 50

from Minitab, see read.mtp(), 52
from Sas, see read.xport(), 52
from Spss, see read.spss(), 52
from Systat, see read.systat(), 51

indexing, 20–24, 56–57
influence.measures() (regression

diagnostics), 189
installed.packages(), 44
installing, 2–3
integer vector, 12
interaction plots, see

interaction.plot(),
plotmeans() 126

interaction.plot() (interaction
plots), 126, 378

interactive graphics, 113–114

identifying coordinates, see
locator(), 114

labelling, see identify(), 113
IQR() (interquartile range), 70
is. (object interrogation), 18, 19
is.balanced() (design balanced?), 300
is.na() (missing value?), 34

jpeg() (jpeg device), 40

kruskal.test() (Kruskal-Wallis
test), 275

ksmooth() (kernel smoothers), 112, 179

lapply() (replicating by lists), 30
legend() (legends), 102–104, 103
length() (object length), 34
LETTERS (capital letters), 14, 17
letters (letters), 17
levels() (factor levels), 55, 299
library() (load package), 45
Line() (create spatial line), 82
linear models, 154–162

summarizing, see summary(), 155
lines() (lines), 85, 109–110, 460–461
list() (vector(s) to list), 17, 263
list.files() (list files in path), 7
lists, 17–18

from vectors, see list(), 17
indexing, see [[, 23, 23–24

lm() (linear model), 154, 188
lm.II() (model II regression), 200
lme() (linear mixed effects models), 274,

309–311
lmer() (mixed effects models), 306
load() (load workspace), 7
load() (save workspace), 53
locator() (interactive identification), 114
loess() (loess smoothers), 112, 179
log() (logarithm), 69
log10() (logarithm base 10), 192
logical vector, 12
looping, 31–34

for loops, see for, 32
while, see while, 33

lrm() (logistic regression model), 498–499
ls() (list objects), 6

mad() (median absolute difference), 70
mainEffects() (main effects tests), 340
matlines() (confidence ellipses), 113,

191–192
matricies, 16–17

dimension names, see colnames(),
rownames(), 17
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matricies, (Cont’d)
from vectors, see matrix(), cbind(),

rbind(), 16
indexing, see [, 22, 22–23

matrix() (vector to matrix), 16, 82,
481–482

Mbargraph() (bargraphs), 268
mblm() (robust (median based)

regression), 202–203
mcmcpvalue() (MCMC p-values), 312
mean() (arithmetic mean), 70
median() (middle value), 70
methods() (functions of a method), 18
min(), max() (min, max value), 70
missing values

identifying, see is.na(), 34
removing, see na.rm, 34

model.avg() (model averaging), 223,
513–514

Model.selection() (Model
selection), 223

Model.selection.glm() (Model
selection (GLM)), 508–509

mosaic plots, see strucplot() 128
mt.raw2padjp() (pairwise tests), 265, 278
mtext() (axes titles), 101, 102, 102

na.omit() (omit missing values), 347
na.rm (remove missing values), 34
names() (vector element names), 14
nls() (non-linear modelling), 212–213,

249
npmc() (non-parametric multiple

comparisons), 275–276
numeric vector, 12

object
contents, see attributes(),

attr(), 19
conversion, see as., 20, 20
interrogation of, see is.(), 18
load to file, see load(), 53
names, 4–5
save as text, see dump(), 53
save to file, see save(), 53
type of, see class(), 18

objects, 3
odds.ratio() (odds ratio), 501
oddsratios() (multiple pairwise odds

ratios), 480
oneway.test() (Welch’s test), 277, 303
operators, 3
order() (ordering), 26, 58
ordered() (ordered factor levels), 55,

434

p.adjust() (p-value adjustments), 265,
281–282

packages, 42–45
installing, 43–44
listing,
Design, 498
MuMIn, 216
Rcmdr, 124
UsingR, 128
alr3, 377
biology, 200
boot, 149
car, 121
epitools, 99
foreign, 51
gmodels, 70
gplots, 126
hier.part, 240
languageR, 306
lattice, 124
lme4, 58
mblm, 202
mgcv, 526
multcomp, 267
multtest, 265
nlme, 58
npmc, 275
psych, 70
pwr, 207
scatterplot3d, 123
sp, 79
tree, 251
vcd, 128

loading, see library(), 45
obtaining, see Comprehensive R Archive

Network (CRAN), 43
pairs() (scatterplot matrices

(SPLOM)), 85, 121
pairwise.t.test() (pairwise tests), 265,

277–278
pairwise.wilcoxon.test() (robust

pairwise tests), 265
palette() (color palette), 99
par() (graphical parameters), 89–99
parameters, 3
paste() (joining character vectors), 13,

78, 100–101, 191–192
pchisq() (chi-square distribution

probabilities), 499
pdf() (pdf device), 40, 114–115
pivot tables, see tapply() 30
plot() (plotting function), 36–39,

85–88, 187
plotmeans() (interaction plots), 126
points() (points), 85, 99–100, 207
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poly() (polynomials), 213
Polygon() (create spatial polygon), 79
polygon() (polygons), 112
Polygons() (create spatial polygons), 80
postscript() (postscript device), 40,

114–115
predict() (predicted values), 109–110,

190–191, 195–196, 252
pretty() (tick mark spacing), 127, 276
prune.tree() (pruning of regression

trees), 253
pvals.fnc() (p-values and MCMC

intervals), 306–307
pwr.chisq.test() (power analysis -

frequency analyses), 482
pwr.r.test() (power analysis –

correlation and regression), 207

q() (quit R), 8
QAIC() (quasi-AIC), 217
qAICc() (quasi-AIC with second order

correction), 217
qf() (F quantiles), 198
qqnorm() (Q-Q normal plots), 118
quartz() (MacOSX graphics device), 115

rand.hp() (randomization test for
hierarchical partitioning), 241

random numbers, see distributions 62
random sampling, see sample(),

spsample() 76
rank() (ranking), 27
rbind() (vectors to matrix), 16, 143
rbinom() (random numbers), 63
read.mtp() (import Minitab data), 52
read.spss() (import Spss data), 52
read.systat() (import Systat data), 51
read.table() (import text file), 50–51
read.xport() (import Sas data), 52
rect() (rectangles), 111–112
regexp() (searching by pattern), 25
rep() (repeat), 11, 13
replacing, 25–26

by pattern, see gsub(), 26
replicate() (replicating functions), 28,

84
replication

along matrix margins, see apply(), 29
by groups, see tapply(), 30
by lists, see lapply(), sapply(), 30
elements, see rep(), 11
functions, see replicate(), 28

replications() (number of
replicates), 300

reshape() (reshape data set), 60, 382–384

residuals() (residuals), 252
resplot() (Tukey’s non-additivity

test), 377–378
rev() (reversing), 27
rexp() (random numbers), 63
rlnorm() (random numbers), 63
rm() (remove objects), 7
rnbinom() (random numbers), 63
rnorm() (random numbers), 63
round() (rounding to decimal places), 27
rounding, 27

down, see floor(), 27
to a decimal place, see round(), 27
towards zero, see trunc(), 27
up, see ceiling(), 27

row.names() (data frame row names), 49,
76

rownames() (matrix row names), 17
rpois() (random numbers), 63
rug() (rug charts), 120
runif() (random numbers), 77, 63
runmed() (running median

smoothers), 179

sample() (random sampling), 76–78
sapply() (replicating by lists), 30
save() (save workspace), 53
save.image() (save workspace), 7
scale() (scaling/centering variables), 233
scatter3d() (3D scatterplots), 124
scatterplot() (scatterplot), 85, 121, 185
scatterplot.matrix() (scatterplot

matrices (SPLOM)), 123, 225
scatterplot3d() (3D scatterplots), 123
scatterplots, 120–125

3D scatterplots, see scatterplot3d(),
scatter3d(), cloud(), 121

scatterplot matrices (SPLOMS), see
pairs(),
scatterplot.matrix(), 121

scripts, 45–46
loading, see source(), 45

sd() (standard deviation), 34, 70
searching, 24–25

by pattern, see grep(), regexp(), 24
segments() (lines), 110–111
sem() (standard error of mean), 34
seq() (sequence), 9, 12, 460
sequences, see seq, : 9
setwd() (set working directory), 7
simple.violinplot() (violin plots), 128
smooth.spline() (splines), 179
smoothers, 112, 179

kernel, see ksmooth(), 112
loess, see loess(), 112



540 R INDEX

smoothers, 112, (Cont’d)
running median, see runmed(), 179
splines, see smooth.spline(), 179

sort() (sorting), 26, 78
sorting, 26–27

ordering, see order(), 26
ranking, see rank(), 27
reversing, see rev(), 27
sorting, see sort(), 26

source() (load script), 45
SpatialPolygons() (create spatial

polygons), 80
sprintf() (string formatting), 78
spsample() (sample from spatial

polygon), 79–82
sqrt() (square-root), 69, 148
SSasymp() (asymptotic self start

model), 212, 250
SSlogis() (logistic self start model), 212
SSmicmen() (Michaelis-Menton self start

model), 212
SSweibull() (Weibull self start

model), 212
strptime() (string to time), 78
strucplot() (mosaic plot), 128, 480–481
subset() (subset of data set), 56
substitute() (complex labels), 106
substr() (subset strings), 14
summary() (summarize linear model),

155, 190, 271, 301–302
summary statistics

arithmetic mean, see mean(), 70
confidence interval, see ci(), 70
interquartile range, see IQR(), 70
median, see median(), 70
median absolute difference, see

mad(), 70
min, max, see min(), max(), 70
standard deviation, see sd(), 70
variance, see var(), 70
winsorized mean, see winsor(), 70

t() (transpose), 519–520
t.test() (t-test), 143, 145
table() (cross tabulation), 479

table.margins() (table marginal
totals), 481–482

tapply() (replicating by groups), 30, 58,
266

text() (text), 85, 100, 100
transformations (scale)

arc-sine, see asin(), 69
square-root, see sqrt(), 69

tree() (regression trees), 251
trellis graphics, 129–133

conditional plots, 130
conditional scatterplots, see

xyplot(), 130
trunc() (rounding towards zero), 27, 78

unique() (unique values), 337–338
update() (modify fitted model),

386–387
update.packages(), 44

var() (variance), 70
VarCorr() (variance components), 274,

302
vectors, 3, 11–16

indexing, see [ , 21, 21–22
vif() (variance inflation factor), 227
violin plots, see

simple.violinplot() 128

while (while loop), 33–34
wilcox.JN() (Johnson-Neyman

technique), 463–464
wilcox.test()

(Mann-Whitney-Wilcoxon
test), 148

windows() (windows graphics
device), 115

winsor() (winsorized mean), 70
with() (define context), 59
write.table() (write text file), 52

X11() (Linux graphics device), 115
xtabs() (cross tabulation), 477
xyplot() (conditional scatterplots), 130,

130–133, 458–459
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accuracy, 71
additive model (Model 2), 363, 366, 403
Adjusted r2, 215, 216, 238–239
Akaike information criterion (AIC), 215,

216, 238–239, 488
quasi (QAIC), 215, 216, 489
sample size corrected (AICC), 489
second order correction, 216, 238–239

allometric scaling, 174
analysis of covariance (ANCOVA), 449,

448–465
assumptions, 452–454
examples, 457–465
linear models, 450–451
null hypotheses, 450
partitioning of variance, 452, 451–452,

453
analysis of deviance, 488
analysis of variance (ANOVA)

partitioning of variance, 257, 256–257,
258

single factor, 254
association plots, 129

bargraphs, 127
Bayesian information criteria (BIC), 215,

216
best linear unbiased predictors

(BLUP’s), 291
binary data, see logistic regression 485
Bonferroni test, 259, 265
boxplots, 119, 119–120, 126–124

categorical variable, 153
causality, 167
cell means model, 162, 323, 324
central limit theorem, 67, 71
chi-square (χ2) statistic, 467–469

assumptions, 469
coefficients, 73, 152
collinearity, 210–211
complete independence, 491

compound symmetry, 366, 367
conditional association, 471
conditional independence, 472, 490, 491
confidence, 170
confidence ellipse, 170
confidence interval, 70, 72, 71–72
contingency tables, 469–474

examples, 478–482
contrast coefficients, 157, 260, 260
contrast matrices, 260

Helmert contrasts, 159–160
polynomial, 160
sum to zero contrasts, 158, 159
treatment contrasts, 157–158
user defined, 160–162

Cook’s D, 176
correlation, 169, 167–170

assumptions, 169
coefficient, 169
null hypothesis, 169
robust, 169

cost complexity curve, 253
count data, see Poisson regression,

log-linear modelling 489
covariance, 168, 169
covariance matrix, 170
covariate, 448
covary, 167
curvilinear, 177

degrees of freedom, 72–73, 135
density plots, 117–118
deviance, 249–250, 488, 490
Dfbeta (log-linear modelling), 492
dispersion (measures), 70–71
dispersion parameter, 483
distributions, 66–68, 117, 483

binomial, 483, 485
bivariate normal, 173
chi-square (χ2), 467, 468, 468
exponential, 483
F-distribution, 171, 172, 257
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distributions, (Cont’d)
log-normal, 67, 68
normal (Gaussian), 67, 67, 72
Poisson, 466, 467, 483, 485, 489
probability, 66, 67, 73, 74
t-distribution, 72, 136, 171

dummy data sets, 62–64
dummy variables, 153, 153

effect size (ES), 138
single factor ANOVA, 261

effects model, 154, 156
equation, 168, 208
error, 151
estimate, 152
estimation, 73–74, 156
examples (worked)

analysis of covariance
(ANCOVA), 457–465

contingency table (two-way), 478–481
power analysis, 481–482

correlation, 184–185
Spearman rank, 186–187

factorial ANOVA, 334–341
missing cells, 352–356
missing cells & unbalanced, 356–359
model III, 342–346
unbalanced, 346–352

frequency analysis,
G-test, 477–478
goodness of fit test, 477
homogeneous frequencies, 477

generalized additive model, 525–530
linear regression, 188–196

Kendall’s robust, 201–203
model II, 199–201
multiple values, 196–199
power analysis, 206–207
randomization, 203–206

log-linear modelling, 515–524
logistic regression, 498–502
multiple linear regression, 224–237

hierarchical partitioning, 240–241
model averaging, 237–240
model selection, 237–240
polynomial regression, 244–248
randomization, 241–244

multiple logistic regression, 502–515
nested ANOVA, 298–302, 307–312

model II, 303–307
non-parametric, 302–303

non-linear regression, 248–251
partly nested ANOVA, 413–418

linear mixed effects, 419–421,
442–447

polynomial contrasts, 272–273
randomized complete block

ANOVA, 391–394
model I, 376–379
non-parametric, 394–398
unbalanced, 388–391

regression trees, 251–253
repeated measures ANOVA, 379–388

complex, 421–429, 433–442
linear mixed effects, 429–433

single factor ANOVA,
Kruskal-Wallis test, 274–276
randomization, 279–282
Welch’s test, 276–279
with planned comparisons, 268–272
with Tukey’s test, 265–268

t-test,
Mann-Whitney-Wilcoxon signed rank

test, 147–148
paired, 145–147
pooled variances, 142–144
randomization, 148–150
separate variances (Welch’s), 144–145

variance components, 273–274
experimental design, 83–84

F-distribution, see distributions 171
F-ratio, 164, 164, 172, 256, 257
factor, 153
factorial ANOVA, 314, 313–359

assumptions, 321
examples, 334–359
linear model, 314
null hypotheses, 314–317
partitioning of variance, 318, 319,

317–321
unbalanced designs, 322–325, 326

factorial variables, 156
Fisher’s exact test, 473
fixed factors (effects), 254–255
frequency analysis, 466–482

examples, 477–478
Friedman’s test, 371, 396
full model, 163

G2 statistic, 472, 488
G-tests, 472–473, 488
generalized additive model

(GAM’s), 483–530, 494, 493–494,
524–530

Poisson regression, see Poisson
regression, 489

log-linear modelling, see log-linear
modelling, 489
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logistic regression, see logistic (logit)
regression, 485

over dispersion, 485
Goodness of fit tests, 469
gradient, 170, 170
graphics, 85–133

parameters, 89–99
Greenhouse-Geisser epsilon, 368, 381

Helmert contrasts, 159–160
hierarchical partitioning, 218, 240–241
highest posterior density (HPD)

intervals, 292
histogram, 67, 116–117
Holm pairwise p-value correction, 281–282
homogeneity of slopes, 453–454
homogeneity of variance, 137, 177, 367

linear regression, 173
homogeneous association, 472
homogeneous frequencies test, 469, 477
Hosmer-Lemeshow (Ĉ), 492
Huber M-estimates, 176
Huynh-Feldt epsilon, 368, 381
hypothesis, 134
hypothesis testing, 134–136, 162–164

indicator variables, 153
influence, 1764

log-linear modelling, 492
inter-quartile range, 70, 71
interaction plots, 126
interactions, 313, 315, 321
intercept, 153

Johnson-Neyman technique, 454

Kendall’s correlation coefficient (τ ), 169
Kendall’s robust regression, 176, 201–203
Kolmogorov-Smirnov tests, 469
Kruskal-Wallis test, 259, 274–276

L-estimators, 70
le Cessie-van Houwelingen-Copas omnibus

test, 492
least squares, 73
leverage, 176

log-linear modelling, 492
line of best fit, 170
linear mixed effects models

(LME), 290–292, 309–311
linear models, 152–166
linear regression, 170–180, 188–199, 207

assumptions, 172
diagnostics, 176
full model, 171

linear model, 171
model II, 173, 199–201
null hypotheses, 171
reduced model, 171

linearity, 169, 172, 177
link function, 484

generalized linear models, 484
location (measures), 69–70
log likelihood, 472, 487
log-linear modelling, 491, 489–493

assumptions, 492–493
examples, 515–524
null hypotheses, 490–492

logistic (logit) regression, 486, 485–489
examples, 498–502
logistic model, 485
multiple logistic regression, 488,

502–515
null hypotheses, 487

M-estimators, 70
main effects, 321, 340
Mallow’s Cp, 215, 216
Mann-Whitney-Wilcoxon test, 139
marginal independence, 491
Markov chain Monte Carlo (MCMC), 292,

312
maximum, 70
maximum likelihood, 74, 74, 156
mean

trimmed, 70
arithmetic, 70
winsorized, 70

mean squares, 164, 164, 172, 215, 257
measurement, 66
median, 70
median absolute deviation, 70, 71
minimum, 70
missing cells (combinations), 323,

324–326
missing observations, 322–325
mixed models see linear mixed effects

models 309
model, 151
model selection

generalized linear models, 488
model averaging, 215–218, 237–240
model I regression, 173

see also linear regression, 173
model II ANOVA, 313–314
model II regression, 173, 174, 175
model III ANOVA, 313–314
model parameters, 152
model selection, 214–218, 237–240
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mosaic plots, 128–129
multiple linear regression, 208–219,

224–237
assumptions, 210–211
linear model, 209
null hypotheses, 209–210
regression trees, see regression trees, 218

multiple responses, regression, 173
multivariate ANOVA (MANOVA), 368,

382–384

nested ANOVA, 284, 283–312
assumptions, 289
examples, 298–312
linear model, 284–285
mixed model, 284
model I, 284
model II, 284
null hypotheses, 285–286
partitioning of variance, 286, 286, 287
unbalanced designs, 290

Newton-Ralphson algorithm
generalized linear models, 484, 493

non-additive model (Model 1), 363, 366,
403

non-linear regression, 214, 248–251
non-parametric test, 139, see robust

tests 147, 169
normal, see distributions 67
normality, 169, 172
normalized, see transformations (scale) 69
null hypothesis, 134, 162

observation, 65, 66
odds ratios, 470–472
one-tailed test, 136
ordinary least squares (OLS), 173, 174, 175
orthogonal, 259
orthogonal parameters, 157
outliers, 70, 74–75
over dispersion

diagnosing and handling, 492
generalized linear models, 485, 489

over-parameterized, 157

p-value, 136
adjustments, 259–260, 265

parameters, 151
parametric test, 137
partial regression slopes, 208
partial residual plots

log-linear modelling, 492
partitioning variance, 171
partly nested designs, 400, 399–447

assumptions, 403–408

examples, 413–418, 419–421, 421–447
linear model, 402–403
null hypotheses, 400–402
partitioning of variance, 403, 404, 405,

407
Pearson’s product moment correlation

(r), 168, 184–185
planned comparisons, 260, 260–261
Poisson regression, 489
polarity, 169
polynomial contrasts, 160
polynomial regression, 211–213,

244–248
pooling (denominator terms), 289–290,

320
population, 66
population (statistical), 65
population parameters, 65, 73, 170
post-hoc pairwise comparisons, 259–260
power, 138
power analysis

correlation and regression, 177–178,
206–207

frequency analyses, 474, 481–482
nested ANOVA, 292–293, 327
randomized complete block

ANOVA, 371
single factor ANOVA, 261
t-tests, 137, 139

precision, see standard error 70
predictive model, 168, 208
predictor variable, 151
probability, 65, 67
probability distribution, see distribution 66

Q-Q normal plots, 118
quasi F-ratios, 320–321
quasibinomial, 493
quasipoisson, 493

r2, 216
random factors (effects), 254–255
random numbers, 62–64
random sampling, 76–82
randomization tests

contingency tables, 473
factorial ANOVA, 327
linear regression, 203–207
multiple linear regression, 241–244
randomized complete block

ANOVA, 371
regression, 176
single factor ANOVA, 259, 279–282
t-tests, 139, 148–150
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randomized complete block ANOVA, 361,
366, 360–398

assumptions, 365–370
examples, 376–398
linear model, 363
null hypotheses, 363–364
partitioning of variance, 365,

364–365
specific comparisons, 370
unbalanced designs, 370–371

regression, 167
logistic regression, see generalized linear

models (GLM), 485
Poisson regression, 489

regression trees, 218–219, 251–253
relationship, 167, 170
replicates, 154
residuals, 153, 171, 176, 177

contingency tables, 472
log-linear modelling, 492

response variable, 151
robust, 70, 71
robust tests, 139

analysis of covariance, 455
factorial ANOVA, 326–327
Mann-Whitney-Wilcoxon test, 139,

147–148
nested ANOVA, 292
partly nested designs, 408
randomization tests, see randomization

tests, 139
randomized complete block

ANOVA, 371
regression, 176–177
Spearman’s rank correlation (rs), 169
Wilcoxon signed-rank test, 139

rug charts, 120

sample, 66
sample size (n), 138
sample statistics, 65
sampling

random coordinates, 78–81
random distances, 81–82
random times, 76–78

scatterplots, 120–125
3D scatterplots, 123–125
scatterplot matrices

(SPLOMS), 121–123
Siegel repeated medians, 176
single factor ANOVA, 258, 254–282

assumptions, 258
examples, 265–274
linear model, 255–256
null hypotheses, 255

slope, 153, 170, 170
smoothers, 178, 179, 493

kernel, 178, 179
lowess & loess, 178, 179, 494
running medians, 178, 179
splines, 178, 179

Spearman’s rank correlation (rs), 169,
186–188

sphericity, 366–368, 403
spread, 70
standard deviation

population (σ ), 70
population (σ ), 73
sample (s), 71

standard error, 70–72, 134
statistical criteria, 137
statistical model, 151
strength, 167, 169
sum to zero contrasts, 158–159
sums of squares, 163, 163, 164, 172, 257
systematic component

generalized linear models, 484

t-distribution, see distributions 72, 135,
136, 137

t-statistic, 135, 137, 169, 171
t-test, 136

assumptions, 137
paired samples, 137, 145–147
pooled variance, 137, 142–144
separate variance, 137, 144–145
single population, 136
student, 137
Welch’s test, 137

term, 152
tolerance (multiple linear regression),

211
transformations (scale), 68–69

arc-sine, 69
logarithmic, 69
square-root, 69

treatment contrasts, 157–158
treatments, 154
trellis graphics, 86, 129–133
Tukey’s HSD test, 259, 265–268
Tukey’s non-additivity test, 368
two-tailed test, 136
Type I error, 138, 259
Type I sums of squares, 322, 325
Type II error, 138
Type II sums of squares, 322, 326
Type III sums of squares, 324, 326

variability (measures), 70–71
variable, 66
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variance
population (σ 2), 70
population (σ 2), 73
sample (s2), 71

variance components, 273–274, 286–289
variance inflation factor (VIF), 211, 227
variance-covariance structure, 367, 368

Wald statistic, 487, 488
Welch’s test, 137, 259, 276–279
Wilcoxon signed-rank test, 139
Williams’ correction, 473

y-intercept, 170, 170, 171
Yate’s continuity correction, 473
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