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FOREWORD

This book is truly different.

It is rare that a textbook with so few technical prerequisites offers so much of value, not
just to its intended student audience, but also to all practicing statisticians. The book in your
hands is one of those rare ones. It is the product—over years—of careful study and deep
thought by its authors, who are practicing statisticians, education researchers, and root-deep
innovators.

Statistics, its teaching and its learning, have seen a number of exciting developments over
the last quarter century. Among these:

1.

Near-universal acceptance of the assertion that applied statistics textbooks should em-
phasize the priority of real data over mathematically driven abstract exposition.

A coming-of-age for computer-intensive methods of data analysis.

3. A parallel recognition by teachers of statistics that, along with an emphasis on real data

and reliance on applied context, computer simulation offers an alternative to abstract
derivations as an approach to exposition and understanding.

A cooperative development and broad embrace of R, the public domain, and open-
source software, whose growing community of contributors has made cutting edge,
computationally intensive methods freely available around the world.

A coming-of-age of statistics education as a research area in its own right, and, as a
result, a growing clarity about what is hardest for students to learn, and a sharpened
focus on what is most important for students to learn.

xxiii
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6.

FOREWORD

A change at the foundations of our subject: What we can compute shapes what we can
do; what we can do shapes what we actually do in practice; what we do in practice
shapes how we think about what we do. (As just one example, when I first was learning
statistics in the 1960s, Bayesian analyses were typically dismissed as mere idealism;
today, the combination of hierarchical models and Markov chain Monte Carlo has
turned Bayes resistors into old fogeys.)

By integrating these developments in a novel way, Comparing Groups deserves to be
regarded as one of this quarter-century’s pioneering textbooks aimed at introducing nonstatis-
ticians to contemporary thought and practice.

Many features are distinctive:

1.

The exposition is visual/intuitive/computational rather than haunted by the old headless
horseman of abstract derivations.

. The writing is strikingly good—the exposition reflects the authors’ careful attention to

word choice. (In my experience, it is rare in statistical exposition to read with a sense
that the writers made thoughtful, deliberate choices about wording after considering a
variety of options.)

3. The references are a gold mine.

. The use of modemn graphics is unusual for a book at this level. I refer, in particular, to

panel plots and kemel density estimates.

. Prerequisites are minimal. No calculus is needed. Although it helps to know about

vectors and matrices, one does not need a linear algebra course.

. The emphasis is practical throughout. For example, the exposition refers systematically

to APA guidelines and offers sample write-ups.

. Content reflects the current research literature. For example, the exposition recognizes

the importance of effect sizes, and the treatment of multiple testing addresses the recent
research on false discovery rates.

. Overall, the emphasis is on statistics with a purpose, statistics for deep interpretive

understanding.

In short, this is a book that reduces prerequisites, avoids technical baggage, focuses on
essentials, and teaches via authentic applications. It offers readers our profession’s current
best sense of how to understand data for comparing groups, taking full advantage of compu-
tationally intensive methods such as randomization and the bootstrap.

George W. Cobb
Robert L. Rooke Professor of Statistics, emeritus, Mount Holyoke College
Vernon Wilson Endowed Visiting Professor, Eastern Kentucky University
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Computational advances have changed the face of statistical practice by transforming what

we do and by challenging how we think about scientific problems.
—R. A. Thisted & P. F. Velleman (1992)

Drawing conclusions and inferences about the differences among groups is an almost
daily occurrence in the scholarly life of an educational or behavioral researcher.
Group comparisons are at the heart of many research questions addressed by these
researchers. These are questions about efficacy, such as “Is a particular curriculum
effective in improving students’ achievement?” and questions about magnitude such
as “How much lower are attendance rates for a particular population of students?”

The content in this book provides the statistical foundation for researchers inter-
ested in answering these types of questions through the introduction and application
of current statistical methods made possible through computation—including the use
of Monte Carlo simulation, bootstrapping, and randomization tests. Rather than focus
on mathematical calculations like so many other introductory texts in the behavioral
sciences, the approach taken here is to focus on conceptual explanations and the use
of statistical computing. We agree with the sentiments of Moore (1990, p. 100),
who stated, “calculating sums of squares by hand does not increase understanding; it
merely numbs the mind.”

XXv



xxvi PREFACE

At the heart of every chapter there is an emphasis on the direct link between
research questions and data analysis. Purposeful attention is paid to the integration
of design, statistical methodology, and computation to propose answers to research
questions based on appropriate analysis and interpretation of quantitative data. Practi-
cal suggestions for analysis and the presentation of results based on suggestions from
the APA Publication Manual are also included. These suggestions are intended to
help researchers clearly communicate the results of a data analysis to their audience.

Computation as a Tool for Research

Computation is ubiquitous in everyday life. This is in large part due to the progress
made in technology in thelast 20 years. The price of computational power continually
becomes less expensive and more powerful. In arecent New York Times article Caleb
Chung—the inventor of the electronic Furby toy—was quoted as saying, “the price
of processing power has dropped to the floor. I can buy the equivalent of an Apple II
processor for a dime” (Marriot, 2007, p. 9).

Computing has become an essential part of the day-to-day practice of statistical
work. It has not only greatly changed the practice of statistics itself, but has influenced
the development of new state-of-the-art statistical methodologies and broadened the
types of questions that can now be addressed by research scientists applying these
newly derived data analytic techniques. Previous to having the availability of such
computational power, the outcome of a research project may have been crucially
dependent on the efficiency or numerical accuracy of algorithms employed by a
methodologist. Computational advantages have allowed educational and behavioral
researchers to capitalize on sheer computing power to solve problems that previously
were impractible or intractable.

Although computer-based data analysis probably covers most of the activity that
educational and behavioral researchers use in their work, statistical computing is
more than just using a software package for the analysis of data. It also encompasses
the programming and development of new functionality or software, the analysis of
statistical and numerical algorithms, and data management. Furthermore, computing
is an important avenue for allowing statisticians and scientists to pursue lines of
inquiry that in the past would not have been possible. It is also an essential tool in
any modern collaborative effort.

To support and help facilitate the use of scientific computing, examples using the R
computer language will be used throughout the book. Rather than relegate examples
to the end of chapters, our approach is to interweave the computer examples with
the narrative of the monograph. R is free, which means it is available to individuals
with various resources. It is also a professional-level software environment that
implements many of the modern statistical methods emphasized in the monograph.
Furthermore, the architecture of the object orientation in R easily allows data analysis
to be performed based on structured inquiry, in which a series of interrelated and
increasingly complex questions are posed to guide and inform the process of data
analysis. In the classroom, structured inquiry can increase the opportunities for
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intellectual engagement (e.g., Badley, 2002; Cooper, 2005; Lee, 2005; Prince &
Felder, 2006). Lastly, since R is a functional programming language, it can be easily
extended for use in a great many analytic scenarios in the behavioral and educational
sciences.

Organization of the Book

The organization of thisbook has been shaped by the authors’ experiences in teaching
the statistical and computing content presented in many graduate courses for social
science students. The topics introduced represent the authors’ beliefs about relevant
content forinclusion in an introductory graduate-level statistics course for educational
and behavioral science students.

This content covers statistical computing, exploratory data analysis, and statistical
inference. The individual chapters in the book endeavor to integrate these ideas to
help guide educational and behavioral researchers through the process of data anal ysis
when making group comparisons. While most chapters address multiple strands of
the data analytic process, in surveying the computing and statistical content of each
chapter, it is clear that each chapter is primarily focused to address a particular strand.

Statistical Computing

The first two chapters are written primarily for educational and behavioral researchers
who may not have prior experience with computing environments and, in particular,
with the R statistical computing environment. Chapter 1 introduces the fundamentals
of R. Basic ideas of computation are presented as the building blocks for the remainder
of the monograph. In Chapter 2, these ideas are further developed through the reading
in and manipulation of external data (data saved outside of R). This chapter also
introduces script files as a way of recording useful syntax.

Exploratory Data Analysis

Chapters 3, 4, and 5 introduce graphical and numerical methods of exploratory
analysis for group comparisons. These chapters begin the integration of the statistical
and computing content. Chapter 3 focuses on graphical exploration of a marginal
distribution to introduce the statistical and computing content without the additional
cognitive load of making comparisons. Ideas of kernel density estimation are at the
forefront of this chapter. Additionally, the use of R to create publication quality plots
is highlighted.

Chapters 4 and 5 focus on the exploration of conditional distributions for two and
more than two groups, respectively. Graphical exploration is expanded to facilitate
comparisons (e.g., panel plots) and numerical summary measures are introduced to
quantify characteristics of the distributions.
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Statistical Inference

Chapter 6 is the first of two chapters on the use of Monte Carlo methods for statistical
inference. This chapter presents randomization and permutation tests to examine
group differences. Chapter 7, the second such chapter, presents parametric and
nonparametric bootstrap tests. Both of these chapters highlight the quantification
of how likely an observed statistic is given the expected variation in that statistic
because of chance. Chapter 6 highlights the expected random variation due to
random assignment, whereas Chapter 7 highlights the random variation due to random
sampling.

Chapter 8 expands on the differences between the randomization and bootstrap
tests by offering philosophical reasons for using each method apart from the design
employed by the researcher. This is especially highlighted for observational studies.
This chapter also offers an overview of differences between the Fisher and Neyman—
Pearson philosophies of statistical testing.

Chapters 9 and 10 expand the realm of statistical inference. Chapter 9 introduces
ideas of interval estimation. The bootstrap methodology is developed further in
this chapter, but under stratification of groups. Standardized and unstandardized
measures of effect size are discussed. In Chapter 10, testing and estimation for
dependent samples is introduced. Rather than do this through the use of repeated
measures, which is often the case in statistics books in the educational and behavioral
sciences, dependence is introduced via the use of blocking in the research design.

Chapters 11 and 12 introduce common methods in the educational and behavioral
sciences for comparing more than two groups. Chapter 11 is focused on planned
comparisons. Exploration, testing and estimation are revisited in the context of
multiple groups. The use of linear contrasts is introduced to facilitate these ideas.

Chapter 12 is focused on unplanned comparisons. Three common methods are
presented: (1) adjusted group comparisons without the omnibus test; (2) unadjusted
group comparisons following an omnibus test; and (3) adjusted group comparisons
following an omnibus test. Strengths, weaknesses, and criticisms of each method are
discussed. The use of ensemble-adjusted p-values and adjusted bootstrap intervals
are discussed in this chapter.

Extras

This book refers to and uses several data sets throughout the text. Each of these data
setsis available onlineathttp: //www.tc.umn.edu/~zief 0002/ComparingGroups
html. The codebook for each data set is also available at the Web site. Many of
thesedatasets were used in actual research studies that have been published and were
graciously provided by the authors and researchers involved in those studies.

The R script files for each chapter are also available at the URL mentioned above.
The commands are provided so that the reader can reproduce all the output and plots
discussed in the monograph.

Problems can be found at the end of each chapter, except Chapter 8. These
problems are meant to provide a platform to perform data analyses using real data
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which integrates and extends the main ideas from each chapter. We provide exemplar
solutions for each question as well as the R script necessary to carry out all necessary
computations.

In the book, there are several typographic conventions that are used. Text in the
book that appears in typewriter text indicates R commands or syntax. Bold-
faced text indicates a particular R package (see Chapter 1).
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CHAPTER 1

AN INTRODUCTION TO R

Computing is an essential component of statistical practice and research. Computational
tools form the basis for virtually all applied statistics. Investigations in visualization, model

assessment and model fitting all rely on computation.
—R. Gentleman (2004)

R is arich software environment forstatistical analysis. Hardly anyone can master the
whole thing. This chapter introduces the most basic aspects of R, such as installing
the system on a computer, command and syntax structure, and some of the more
common data structures. These ideas and capabilities will be further developed
and expanded upon in subsequent chapters as facility is built with using R for data
analysis. Lastly, this chapter introduces some of the practices that many R users feel
are instrumental, such as documenting the data analysis process through the use of
script files and syntactic comments.

Comparing Groups: Randomization and Bootstrap Methods Using R 1
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.



2 AN INTRODUCTION TO R

1.1 GETTING STARTED

This section introduces some of the initial steps needed to get started using R.
It includes steps for downloading and installing the R system on a computer and
instructions on how to download and install add-on packages for R.

R can be downloaded and installed from the CRAN (Comprehensive R Archive
Network) website athttp://cran.r-project.org/. Click on the appropriate link
for the operating system—Windows, MacOS X, or Linux—and follow the directions.
Atthe website, the precompiled binary rather than the source code should be selected.
Further instructions are provided below for the two most common operating systems,
Windows and Mac.

1.1.1 Windows OS

Click onthe base link and thenclickDownload R 2.12.0 for Windows (or what-
ever the latest version happens to be). Accept all the default options for installation.
After installation, an R icon will appear on the desktop. Double-click the icon to start
the program. If the software is successfully downloaded and installed, the opening
screen should look something like Figure 1.1.

1.1.2 Mac OS

Click the link for R~2.10. 1.dmg todownload (or whatever the latest version happens
to be). To install R, double-click on the icon of the multi-package R.mpkg contained
in the R-2.10.1.dmg disk image. Accept all the defaults in the installation process.
If installed successfully, an R icon will be created, typically in the Applications
folder. Double-click the icon to start the program. If the software is successfully
downloaded and installed, the opening screen should look like Figure 1.1.

1.1.3 Add-On Packages

R functions and data sets are stored in packages.! The basic statistical functions

that researchers in the educational and behavioral sciences use are part of packages
that are included in the base R system. The base system is part of the default R
installation. Other useful functions are included in packages that are not a part of
the basic installation. These packages, which often include specialized statistical
functionality, are contributed to the R community and can often be downloaded from
CRAN directly or installed from within R.

Toinstall a package, the install.packages () function is used. If this is the first
time a package is installed, after executing install. packages (), alist of all of the
CRAN mirror sites will be presented. After selecting a mirror site, a list of available
packages will appear. (This is the starting point after the first package installation.)
Select the appropriate package desired and R will download and install it.

Some authors and instructors will use the term library instead of package.
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R version 2.7.2 (2008-88-25)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-067-0

R is free software and cowes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()’ or 'licence()’ for distribution details.

Notural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()’ on how to cite R or R packages in publications.

Type ‘demo()’' for some demos, 'help()’ for on-line help, or
‘help.start()' for an HTML browser interface to help.
Type ‘q()' to quit R.

>

Figure 1.1: Example of the R console window on a Mac.

The name of the package can also be typed—inside of quotation marks-—directly
intothe install.packages () function. Command Snippet 1.1 shows the syntax for
downloading and installing the sm package which contains functions for smoothing,
which is used in Chapter 3. The command snippet shows the optional argument
dependencies=TRUE. This argument will cause R to download and install any other
packages that the sm package might require.

Command Snippet 1.1: Syntax to download and install the sm package.
L[ > install.packages (pkgs = "sm", dependencies = TRUE) J

Many package authors periodically update the functionality in their packages.
They may fix bugs or add other functions or options. The update.packages ()
function is used to update any packages that have been installed. Such updating
should be done periodically, say, every few months.

Installing a package downloads that package and installs it to the R library. To use
the functions that exist in these installed packages, the package needs to be loaded
into the R session using the 1ibrary() orrequired () function. Command Snippet
1.2 shows the syntax to load the sm package into an R session. After successfully
loading the package, all of the functions and data sets in that package are available
to use. The package will not need to be loaded again during the R session. However,
if the R session is terminated, the package must be loaded in the new session.

A multitude of add-on packages, called contributed packages, are available from
CRAN (see http://cran.r-project .org/web/packages/). Additional add-on
packages are available through other package repositories. For example, The Omega
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Command Snippet 1.2: Loading the sm package.

&7 > library(sm) J

Project for Statistical Computing (see http://www.omegahat.org/) includes a
variety of open-source packages for statistical applications, particularly for web-
based development. Bioconductor (see http://www.bioconductor.org/) is a
repository of packages for the analysis and comprehension of genomic data. A
repository of packages that are available, but still under development, is located at
R-Forge (see http://r-forge.r-project.org/).

In general, the argument repos= is added to the install.packages () function
to specify the URL associated with the package repository. For example, Command
Snippet 1.3 shows the syntax to download and install the WRS package from the
R-Forge repository. The websites for each of the repositories has more specific
directions for downloading and installing available add-on packages.

Command Snippet 1.3: Installing the WRS package from the R-Forge repository.

> install.packages (pkgs = "WRS", dependencies = TRUE, repos =
"http://R-Forge.R-project.org/")

In addition to the sm and WRS packages, the add-on packages colorspace, dichro-
mat, e1071, MBESS, quantreg, and RColorBrewer are used in this monograph.

1.2 ARITHMETIC: R AS A CALCULATOR

R can be used as a standard calulator. The notation for arithmetic is straightforward
and usually mimics standard algebraic notation. Examples are provided in Command
Snippet 1.4.

The character > in the R terminal window is called a prompt. It appears auto-
matically and does not need to be typed. The [1] indicates the position of the first
response on that line. In these simple cases, when there is only one response, the
[1] seems superfluous, but when output spans across several lines, this provides a
very useful orientation. Note the special value Inf returned for the computation 1/0.
There are three such special values: Inf, -Inf, and NaN. The first indicates positive
infinity, the second indicates negative infinity, and the third means the result is not a
number.

1.3 COMPUTATIONS IN R: FUNCTIONS

There are many buit-in functions for performing mathematical and statistical com-
putations in R. There are three basic components for any computation.
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Command Snippet 1.4: Examples of arithmetic computations.

## Addition
>3 + 2
[1]1 s

## Multiplication
>4 % 5
[11 20

## Exponentiation
> 10 ~ 3
[1] 1000

## Division
>1 /0
[1] Inf

e Function: e.g., sqrt (), log(), cos(), ...
e Arguments: The inputs to the function

e Returned Value: The output from the function applied to the arguments

Several examples of computations are given in Command Snippet 1.5. Examine the
first line of Command Snippet 1.5. The components of this computation are

Function
r— e
sqrt(x =100

> sqrt(g 0)
Argument

1] 10 + ReturnedValue

Notice that the returned value of a computation is indexed in the same way as the
returned value of arithmetic computations. In these initial examples, there is one
argument that is unnamed. Often in data analysis, more complex computations are
warranted. As more complex computations are used, there are a few simple rules to
observe. These are listed below and illustrated in Command Snippet 1.6.

e Argument(s) are always enclosed in parentheses.
e When there are multiple arguments, they are separated by commas.

e Many functions accept optional “named arguments” that specify some aspect
of the computation.

e The order of named arguments doesn’t matter, but the order of the other
arguments does.
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Command Snippet 1.5: Examples of computations using functions.

## Square root
> sqrt (100)
[1] 10

## Natural logarithm
> log(7)
[1] 1.94591

## Sine of angle given in radians
> sin(50)
[1] -0.2623749

Exponentiation base e
> exp(3)
L [1] 20.08554

Command Snippet 1.6: Examples illustrating how arguments are provided in func-
tions.

## Two unnamed arguments
> log (100, 10)
[1] 2

## Two unnamed arguments in reverse order
> log(10, 100)
[1] 0.5

## Two named arguments
> log(x = 100, base = 10)
[1] 2

## Two named arguments in reverse order
> log(base = 10, x = 100)
[1] 0.5

## First argument 1is unnamed and subsequent arguments are named
> log(100, base = 10)
[11 2

Many R users leave the first argument unnamed and name all subsequent argu-
ments. The precedent for most examples in the remainder of this monograph will
be to leave the first argument unnamed, and name all subsequent arguments in a
function.

Sometimes a computation does not make sense and R will produce an error
statement. Other times a computation is odd in some way—as judged by the people
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who wrote the software—and a value is returned, but there is also a warning message.
Recall that NaN is a special numerical value. It means ”Not a number.?

For novice users, the error statements and warnings may seem cryptic. However,
as familiarity with the language is developed, reading the error statement can often
help a data analyst figure out what is going wrong. It is often helpful to include
the error statement or warning message along with the code if one is seeking help.

Command Snippet 1.7 shows an example of both an error and warning message.

Command Snippet 1.7: Errors and warnings in computations.

## Error in computation
> log(X)
Error: object 'X' not found

## Warning message
> sqrt(-3)
[1] NaN

1.4 CONNECTING COMPUTATIONS

One of the advantages of R is that the return value from one computation can be taken
as the input to another computation. This is very helpful for performing successive
operations and for accessing important aspects of statistical output. For example,
suppose the goal is to find the natural logarithm of a number and then take the square
root of the result. There are two basic styles for doing this, chaining and assignment.

Chaining computations together uses one, or more, computations directly as the
argument(s) in another computation. Command Snippet 1.8 shows the use of chaining
to connect computations.

Command Snippet 1.8: Connecting computations through chaining.

## Find the sine of pi/2, and then take the square root of the
result

> sqrt(sin(pi / 2))

[1] 1

## Find the base 10 logarithm of 100, and then take the square
root of the result

> sqrt (log (100, base = 10))

[1] 1.414214

The second way of connecting computations uses assignment. The returned value
of a computation can be stored by assigning it to a named object. (Think of it as

2For the mathematically inclined, the computation of \/—3, for example, involves complex numbers. R
will perform complex arithmetic. For example, to compute \/—3 we use sqrt(-3+01i).
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storing the result of a computation into a variable.) Then, the named object can be
passed to the subsequent computation. The assignment operator is “<-"" constructed
by using the “<” key followed by the “~”” key. Command Snippet 1.9 shows the use
of assignment to connect computations.

Command Snippet 1.9: Connecting computations through assignment.

## Assign the base 10 logarithm of 100
> chili <- log(100, base = 10)

## Find the square root
> sqrt(chili)
[1] 1.414214

## Reassign the object name
> chili <- 3

## Find the square root
> sqrt(chili)
[1] 1.732051

## Reassign the object name
> chili <- 25

## Find the square root
> sqrt(chili)
[1] 5

## Print the value of the object
> chili
[1] 25

## List all objects assigned in the session
> 1s ()
[1] "chili"

When a name is reused to assign a different object, the previous value of that
object is lost irretrievably. To see the value associated with an object, use the name
as if it were a command in R. All currently assigned objects can be viewed by issuing
the list function, 1s (), with no arguments.

1.4.1 Naming Conventions
When naming objects in R, there are a few rules to abide by.
e Names can only include letters, digits, and periods.

e Names cannot begin with a digit, a period followed by a digit, or a special
character (e.g., #).
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e Some names should be avoided since they already have special meaning given
to them by R. For example, TRUE and FALSE, or their shortened versions T and
F.

Aside from the above rules, object names are fairly open. Itis good practice to
name objects so that they are descriptive of what they contain. For example, storing
the number 25 in chili is not descriptive of what the object contains. A better name,
describing the current contents might be n25. An even better alternative might be
number25, or even thenumbertwentyfive, though the longer the name the more
typing involved.

There are a number of conventional ways to create object names without spaces
that are easier for humans to read. One of those conventions is to use bumpy case.
Bumpy case combines upper- and lowercase letters to break up the different words
like TheNumberTwentyFive. As you look at that name, you will probably be able
to tell why it is referred to as bumpy case. Another naming convention—and the one
that will be used throughout the remainder of this monograph—is to replace spaces
with periods, as in the .number.twenty.five.

1.5 DATA STRUCTURES: VECTORS

One of the most fundamental data structures used in R is the vector. A vector is
a unidimensional array (arrangement) of values, either a row or a column. Vectors
are a nice way to display data from a single variable, known as univariate data. For
example, consider a vector of ages for five children arrayed as a column vector:

Ages =

~N N o e

1.5.1 Creating Vectors in R

Short vectors, like the five children’s ages above, can be entered directly into R
by “collecting” the data into a vector using the c() function. The c is short for
concatenate which simply appends each subsequent argument provided in the c ()
function into a single vector. The vector is typically assigned to an object so that
computations can be performed on the data in the collection. Command Snippet 1.10
shows the syntax to create the vector of ages in the example above and assign it to an
object called ages.

While very useful, using the ¢ () function is not the only manner in which a vector
can be constructed. Two other functions commonly used are seq() and rep (). The
seq () function produces a sequence of values using the arguments from=, to=, and
by=. For example, to create a vector containing elements that consist of the even
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numbers from 2 to 24, any of the computations in Command Snippet 1.11 could be
employed.

Command Snippet 1.10: The c() function is used to make a collection.

## Assign the vector of ages to an object
> ages <- c(1, 6, 7, 7, 10)

## Print the object
> ages
[1] 1 6 7 7 10

Command Snippet 1.11: Examples of creating a vector of the even numbers from
2 to 24 using the c () function and the seq() function.

## Using the c() function to create a vector
> X <- c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24)
> X

[1] 2 4 6 8 10 12 14 16 18 20 22 24

## Using the seq() function to create the same vector
> X <- seq(from = 2, to = 24, by = 2)

> X

[1] 2 4 6 8 10 12 14 16 18 20 22 24

When by=1, a shortcut is to use the colon operator (:). The colon operator can
be inserted between two values to produce the sequence having steps of 1 (e.g.,
= 12,13,14,...,23,24). When using the colon operator to create a sequence,
neither the c() nor seq() functions need be used. For example, to create a vector
of the sequential values from 1 to 10, the syntax in Command Snippet 1.12 is used.

Command Snippet 1.12: Examples of creating a vector of the sequential values
from 1 to 10 using the colon operator and the seq () function.

## Sequence using the colon operator
> X <- 1:10
> X

[1] 1 2 3 4 5 6 7 8 9 10

## Same sequence using seq()

> X <- seq(from =1, to = 10, by = 1)
> X

[1] 1 2 3 4 5 6 7 8 9 10

The rep() function is used to create vectors of repeated values in R. The first
argument to this function, x=, is the value to be repeated. The argument t imes= takes
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a value indicating the number of times the first argument is repeated. For example,
say the goal is to create a vector composed of 10 elements where each element is the
value 1. Command Snippet 1.13 shows the syntax for creating this vector using the
rep() function.

Command Snippet 1.13: Example of creating a vector composed of 10 elements
where each element is the value 1 using the rep () function.
> X <- rep(1, times = 10)
> X
(1 1111111111

The arguments x= and times= can also be collections, or vectors, of elements.
For example, if the object is to create a vector where the first 10 elements are the
value 1 and the next 15 elements are the value O, the syntax in Command Snippet
1.14 is used.

Command Snippet 1.14: Example of creating a vector composed of 25 elements
where the first 10 elements are the value 1 and the next 15 elements are the value O.

> X <- rep(c(1, 0), times = c(10, 15))
> X
[1J 1111 11111100000000000000O00

1.5.2 Computation with Vectors

Vectors can be used as an argument to many R functions or in arithmetic computations.
Some functions deal with vectors by applying the particular computation to each
element of the collection. Other functions combine the elements of the collection in
some way before applying the computation. Functions of both types are shown in
Command Snippet 1.15.

Command Snippet 1.15: Different functions applied to a collection of data.

## Add five to each element
> ages + 5
[1] 6 11 12 12 15

## Averages all of the elements
> mean(ages)
[1] 6.2

The functions available in R for performing computations on vectors are too
numerous to be listed here. R includes functions for several basic mathematical
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functions (log(), exp(), 1logl0(), cos(), sin(), sqrt(),...) as well as many
functions that are especially useful in statistics. In addition, there are other functions
that perform computations on vectors such as sort (), rev(), order (), rank(),
scale(), etc. that return more complex results. Each of these functions will be
discussed in detail when the need arises.

1.5.3 Character and Logical Vectors

The vectors created thus far are all numerical vectors—all of the elements are num-
bers. There are two other common types of vectors used in R. One of these is a
character vector. The elements of character vectors are character strings or literals.
Character strings are just a sequence of characters demarcated by quotation marks.
When elements are inside of quotation marks, this tells R not to look for a value.
Categorical data are often stored as character strings or as a closely related form
known as a factor. Command Snippet 1.16 shows an example creating a character
vector and assigning that vector to an object called educational.level.

Command Snippet 1.16: Examples of character and logical vectors.

## Character vector
> educational.level <- c("High School", "College", "Some
College", "College", "College" )

## Logical vector
> logical.vector <- c(FALSE, TRUE, FALSE, TRUE, TRUE)

## Conditional statement generating a logical vector
> ages > 5
[1] FALSE TRUE TRUE TRUE TRUE

## Assigning the logical vector to an object
> older.than.five <- ages > §

> older.than.five

[1] FALSE TRUE TRUE TRUE TRUE

Another type of vector that R supports is a logical vector. The elements in a logical
vectorareeither TRUE or FALSE (R requires these be in all uppercase). To differentiate
logical vectors from character vectors, there are no quotes around TRUE and FALSE
when they are used as values. Command Snippet 1.16 also shows an example creating
a logical vector and assigning that vector to an object called logical.vector.

While the c() function can be used to create a logical vector, they are more
often generated through the use of conditional statements. For example, a researcher
might want to keep track of which values of ages are greater than 5. She could
type the logical values for each element into a new collection. This method is
shown in Command Snippet 1.16 when assigning the logical values in the object
logical.vector. However, it is quicker to write a conditional statement and then
use the assignment operator to store the logical values produced into a new vector.
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This method is also shown in Command Snippet 1.16 in the assignment of the object
older.than.five.

1.6 GETTING HELP

The R Development Core Team has written several helpful documents for the novice
user, such as The R FAQ (Homik, 2010), An Introduction to R (Venables, Smith, & the
R Development Core Team, 2009), and R Data Import/Export (R Development Core
Team, 2009). These documents, along with many others, are available as PDF files
on the R website (http://cran.r-project.org/Documentation/Manuals) or
directly via the Help menu within R.

The R program installation includes extensive documentation for all the functions.
These can be accessed at any time by typing help(function) or ?function,
where function is the particular function for which help is sought (e.g., help(cor)).

There are two things to note about this documentation. First, function needs to be
an actual function that R recognizes. Secondly, the top portion of the help page usually
consists of options and usage operators of the function. The bottom portion of the
help page usually provides examples on the use of the function with particular options
and operators. As an example of the first point, suppose help(correlation) is
executed rather than help(cor). This will produce a pop-up window suggesting
that R cannot find the help documentation for that function. That is because there is
no function called correlation.

The help.search() function or ?? can be useful when the exact name of a
function is unknown. Each will search for strings of characters in all of the help
documentation that is available on the R system. For example, ??correlation, will
look for the word correlation” in the help documents. Depending on which packages
have been installed (see Section 1.1.3), there may be several potential functions which
could be used to compute the correlation. One of these is cor (). Thus, the help ()
function needs to be given cor as its argument rather than correlation. Command
Snippet 1.17 shows the syntax for using both 7 and ?7.

Command Snippet 1.17: Accessing the help documentation in R.

## Documentation for the cor() function
> ?cor

## Produces an error

> help(correlation)

No documentation for 'correlation' in specified packages and
libraries:

you could try '??correlation'

## String search for "correlation”
> ??7correlation

\
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This documentation is quite useful forexperienced users of R, but can be frustrating
for those who are new to R. Reading the documentation when first learning R is a
little like trying to learn English by studying the Oxford English Dictionary. But,
once a little of the language is learned, it becomes easier to understand the object of
the dictionary. For novice users, one of the best ways to find help or more readable
documentation is to do a Google search. As R is becoming more popular, many
documents, course notes, and books are being made readily available online.

1.7 ALTERNATIVE WAYS TO RUN R

The examples above have all involved a console-based graphical user interface(GUI)
torun R interactively, in which acommand is typed and then executed by R when the
Enter key is pressed. There are additional GUI-based options available that provide
a menu system with point-and-click options for carrying out operations. The most
mature of these options todate is the Remdr package (R Commander; http://cran.
r-project.org/doc/packages/Rcmdr.pdf.). Remdr must be downloaded and
installed like any other package. However, when the syntax library(Rcmdr) is
issued, the standard R console is replaced by the R Commander console. While a
point-and-click system might sound better than typing at the command line, as John
Fox, the author and programmer of R Commander, points out:

In my opinion, a GUI for statistical software is a mixed blessing: On the one
hand, a GUI does not require that the user remember the names and arguments
of commands, and decreases the chances of syntax and typing errors. These
characteristics make GUIs particularly attractive for introductory, casual, or
infrequent use of software.

On the other hand, having to drill one’s way through successive layers of
menus and dialog boxes can be tedious and can make it difficult to reproduce
a statistical analysis, perhaps with variations. Moreover, providing a GUI for
a statistical system that includes hundreds (or even thousands) of commands,
many incorporating extensive options, can produce a labyrinth (Fox, 2005, p. 2).

The opinion adopted in this monograph is that it is preferable to work with syntax
using the standard R console or with script files, as discussed in Chapter 2. It is also
worth noting that R can be run from Terminal on the Mac or the command window
on Windows computers. These methods of running R are primarily intended to be
used for batch use—several commands are issued for R to execute at a single time.

1.8 EXTENSION: MATRICES AND MATRIX OPERATIONS

Earlier in this chapter the vector was introduced as a unidimensional data structure
used in R. As previously discussed, a vector is created using the c(), seq(), or
rep () functions in R. Another common data structure is a matrix. InR, a matrix is a
two-dimensional data structure, having both rows and columns. Matrices (the plural
of matrix) are useful for displaying multivariate data and are also commonly used to



EXTENSION: MATRICES AND MATRIX OPERATIONS 15

mathematically express much of the computational aspects of applied statistics. In
textbooks, matrix names are often typeset using bold, capital letters with the number
of rows and columns listed below, separated by a “times” sign. For example, consider
the following matrix:

Ti1 Ti12 T13 T14
A = | zo1 22 T2z T24
T31 T32 T33 T34

Each z;; indicates an element, or value in the matrix, and the subscripts ¢ and j
indicate the element location—z is located in the ith row and jth column of matrix
A. Since the number of rows and columns vary from matrix to matrix, the number of
rows and columns, or dimensions, are listed along with the matrix name. Matrix A
is a 3 x 4 matrix, having three rows and four columns.

A matrix is defined in R withthe matrix () function. The function can take several
arguments including data=, which is a user-provided vector of elements that will be
converted to a matrix. The nrow= and ncol= arguments indicate the number of rows
and columns, respectively, that the matrix will have. The byrow= argument indicates
how the vector elements are to be filled into the matrix. When byrow=FALSE, the
default value for the argument, the elements are filled into successive columns of
the matrix starting with the first column. When byrow=TRUE, the elements are filled
into successive rows of the matrix starting with the first row. Command Snippet 1.18
shows the syntax for converting a vector of data that includes the integer values 1 to
12 to a matrix with three rows and four columns.

Once a matrix has been defined, then its elements can be accessed selectively
using an indexing system. The indexing system uses brackets separated by a comma,
[, ] The space before the comma refers to the rows, and the space after the comma
refers to columns. For example, to access (index) the value of the element in the
fourth row and second column of matrix B, the syntax B[2,4] is used. It can be
verified in Command Snippet 1.19 that this syntax will return the value of 8.

In addition to extracting a particular element, this type of indexing can also be
used to change an element’s value by assigning a new value to the indexed element.
Command Snippet 1.19 also shows the syntax to both index the element in the second
row and fourth column of B and change its value to 50. Entire rows or columns are
indexed by a blank in either the rows or columns space. For example, B[2, ] is used
to index the entire second row of B, and B[ ,4] is used to index the entire fourth
column. Additional examples are presented in Chapter 4.

1.8.1 Computation with Matrices

Addition of matrices can also be carried out as long as the matrices being added have
the same dimensions. This is because adding two matrices A and B together requires
adding their corresponding elements. This produces another matrix that has the same
dimensions. For example,
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1 4 7 10 1 2 3 4
31)}44—394: 25 8 11 |+[5 6 7 50
3 6 9 12 9 10 11 12

2 6 10 14

= 7 11 15 61

12 16 20 24

Command Snippet 1.18: Example of converting a vector of data that includes the
integer values 1 to 12 to a matrix with three rows and four columns. For the first
example, byrow=FALSE the elements are filled into successive columns of the matrix
starting with the first column. In the second example, byrow=TRUE fills the elements
into successive rows of the matrix starting with the first row.
## Vector of values 1 to 12
> X <= 1:12
> X

[1] 1 2 3 4 5 6 7 8 9 10 11 12

## Put the values in a matrix by columns
> A <- matrix(data = X, nrow = 3, ncol = 4, byrow = FALSE)

> A

[,11 [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,1] 3 6 9 12

## Put the values in a matrix by rows
> B <- matrix(data = X, nrow = 3, ncol = 4, byrow = TRUE)

> B
[,11 [,2] [,3] [,4]
[1,] 1 2 3 4
[2,1] 5 6 7 8
[3,1] 9 10 11 12
\

R performs arithmetic computation on matrices using the addition (+) operator.
Subtraction is carried out in a similar manner, except that one subtracts corresponding
elements of the matrices. In R, the subtraction operator, —, is used to perform matrix
subtraction. Command Snippet 1.20 shows the syntax for adding and subtracting two
matrices in R.

The operation of scalar and matrix multiplication can also be carried out on
matrices. A matrix can be multiplied by a single value, or scalar, by multiplying
each of the elements in the matrix by that scalar. For example,

1 4 7 10 3 12 21 30
3A =325 8 11 |=|6 15 24 33
x4 36 9 12 9 18 27 36
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To multiply a matrix by a scalar in R, we use the multiplication operator (*). Com-
mand Snippet 1.21 shows the syntax for multiplying a matrix by a scalar in R.

Command Snippet 1.19: Syntax to index the element in the second row and fourth
column of B. We also change the element’s value to 50 using assignment.

## Index the element in the second row and fourth column
> B[2, 4]
[1] 8

## Change the element to 50
> B[2, 4] <- 50

## Verify it was changed

> B

[,11 [,2) (,3) [,4)
[1,] 1 2 3 4
[2,] 5 6 7 50
[3,1] 9 10 11 12

Command Snippet 1.20: Example of adding and subtracting two matrices.

## Matrix addition

>A + B

[(,11 [,2] [,3] [,4]
[1,] 2 6 10 14
[2,] 7 11 15 61

[3,] 12 16 20 24

## Matrix subtraction

>A - B

[,11 €,2) [,3] [,4]
[1,] 0 2 4 6
[2,] -3 -1 1 -39

L (3,] -6 -4 -2 0

Command Snippet 1.21: Example of multiplying a matrix by a scalar.

> 3 * A

[,13 0,21 (,3] [,4]
[1,] 3 12 21 30
[2,] 6 15 24 33
[3,] 9 18 27 36

Multiplication of two matrices is more complicated requiring “row-column mul-
tiplication.” Corresponding elements in the ith row of A are multiplied by the jth
column of B and summed to produce the element in the ithrow and jth column of the
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product matrix. This sounds complicated, but an example should help make things
more clear. Consider the product of the matrices X and Y below:

{010 (3 2
2)><(2—<6 5) 2¥2_<7 9)

The element in the first row and first column of the product matrix would be found

by computing 0 x 3 + 10 x 7 = 70. Applying this rule for the remaining elements
gives

_({0x3+10x7 0x24+10x9\ (70 90
2x22x2 6x3+5%x7 6x2+5x%x9 “\ 53 57 )°

Multiplying two matrices together requires that they be conformable. This means
the number of columns of the first matrix must be equal to the number of rows of the
second matrix. To multiple X and Y, the syntax is X %% Y. Command Snippet 1.22
shows the syntax for multiplying two matrices.

Command Snippet 1.22: Example of multiplying two matrices using the matrix
multiplication operator.
## Create matrix A using the data in vector X

> X <- c(0, 10, 6, 5)
> A <- matrix(data = X, nrow = 2, ncol = 2, byrow = TRUE)

> A

[,11 [,2]
0,] 0 10
[2,] 6 5

## Create matrix B using the data in vector Y
>Y <- ¢c(3, 2, 7, 9
> B <- matrix(data= Y, nrow = 2, ncol = 2, byrow = TRUE)

> B

[,11 [,2]
[1,] 3 2
[2,] 7 9

## Matrix multiplication
> A %=*% B
[,11 [,2]
[1,1 70 90
[2,] 53 57

1.9 FURTHER READING

Becker (1994) presents an interesting account of the history of the S language,
which was the foundation for the R language. Venables and Ripley (2002) provides
a classical, albeit terse, reference book to the S and R languages. For a fairly
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complete compendium to the R environment, including several examples, see Crawley
(2007). There are also several free online resources. Two of note include the
R Wiki (http://wiki.r-project.org/rwiki/doku.php)—a site “dedicated to
the collaborative writing of R documentation,” which provides more useful examples
and generally has lengthier explanations than the official R documentation—and the
Contributed Documentation section of the CRAN website.

PROBLEMS

1.1 An overweight male on a diet plan weighed himself once a month throughout
the year. Suppose these weights from January to December were:

230, 226, 220, 217, 215, 215, 210, 204, 201, 199, 195, 190

Enter these data into a variable called weight. Use built-in R functions to compute
the answers to the following questions.
a) Create a variable called /oss using the diff () function to produce a vector
of the differences between each successive month’s weight.
b) What is the smallest amount of monthly weight loss?
¢) What is the largest?
d) How many months was the amount of weight loss greater than 4 pounds?
e) What is this person’s average monthly weight loss?
f) Usethe sum() function to find the total weight loss over the year.

1.2 UseR to create the vectors u and v, where

=
Il
(S U R
<
Il
WO N~ =

1
1

Use these vectors to perform the following computations in R.
au+ 3
b)v -1
¢) length(u)
d) length(v)
e) sum(u > 3)
f) sum(v[lv > 5])
g) prod(u < 2 | v > 7) read“"as‘“or”
h) prod(u > 2 & v < 7) read “&” as “and”
i) v[5]
) vlul
k) v[lv >= 5]

1.3 Use R to create the vector x, where
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= O OO N WO U =

Use this vector to perform the following computations in R.
a) Use the sum() function to find the sum of the elements in x divided by 10.
b) Use the log () function to find the natural log for each of the elements in x.
¢) Use chaining to compute the z-score foreach element in x. (Try tocomplete
this in one line of R syntax.) A z-score is computed using

;i —T
zZ = 5
Sz

where z; is an individual element in z, T is the average or mean of all of
the elements in x, and s,, is the standard deviation of all of the elements in
T.

d) Use the sort () function to sort the elements in x in ascending order.
e) Use the sort () function to sort the elements in x in descending order.

1.4 UseR to create the matrices X and Y, where

(30 (9 3
2§2_(2 3) 2¥2_<5 4)

Use these matrices to perform the following computations in R.
a) Use the matrix multiplication operator to find the product XY.
b) Use the multiplication operator (*) to compute X*Y. Describe the compu-
tation that the multiplication operator performs on matrices.



CHAPTER 2

DATA REPRESENTATION
AND PREPARATION

The word data is the plural of the Latin datum, meaning a given, or that which we take for
granted and use as the basis of our calculations . . . We ordinarily think of data as derived
from measurements from a machine, survey, census, test, rating, or questionnaire—most
frequently numerical. In a more general sense, however, data are symbolic representations

of observations or thoughts about the world.
—L. Wilkinson (2006)

Datastored outside of R—external to R—comes in many formats. It can be stored in
a database, or it can be stored electronically, within a web page itself. For example,
Zillow (http://www.zillow.com) keeps data on many variables related to real
estate prices, which can be accessed over the Internet (see Example 2.1).

Data can alsotake on a very different look than just numbers, for example, medical
researchers studying genetic information in the form of gene sequences (e.g., CAG,
GGA, etc.). Other researchers might use data that takes the form of multimedia
files— images (MRI scans, see Figure 2.1), audio files (speech recognition or music
classification), or video files (facial recognition software).

Example 2.1 and Figure 2.1 show how data in some of these formats may look.
Many devices from smart phones, to TiVos, to online accounts, such as Netflix and

Comparing Groups: Randomization and Bootstrap Methods Using R 21
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (© 2011 John Wiley & Sons, Inc.
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Example 2.1. Real estate data stored in the XML code within the Zillow webpage
.

<?xml version="1.0" encoding="utf-8"7>
<SearchResults:searchresults xsi:schemalocation="http://
www.zillow.com/static/xsd/SearchResults.xsd /vstatic/
71a179109333d30cfb3b2de866d9add9/static/xsd/SearchResults.xsd"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:SearchResults="http://www.zillow.com/static/xsd/
SearchResults.xsd">
<request>
<address>123 Bob’s Way</address>
<citystatezip>Berkeley, CA, 94217</citystatezip>
</request>

<message>
<text>Request successfully processed</text>
<code>0</code>

</message>

<response>
<results>

<result>
<zpid>1111111</zpid> <links>

Figure 2.1: MRI scan stored as an image file.

Google, are storing data. While the data may not seem useful to educational and
behavioral researchers, data are being used to remember who telephoned whom or
to make predictions about which movie or TV show one may enjoy. The types of
data being stored, the analyses being performed, and the questions that have begun
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to emerge about privacy and data ownership are something that educational and
behavioral researchers may do well to begin considering.

2.1 TABULAR DATA

Although educational and behavioral researchers use many data structures in their
research, most typically, they arrange data in a tabular fashion. In a tabular structure,
each row represents a particular participant or case, and each column represents a
variable. Here is an example:

ID Achieve ImmYear ImmAge English Mex
1 68.90 68.20 5.00 1 0
2 70.20 80.40 6.30 1 0
3 65.00 75.70 1.80 1 1
4 78.00 73.80 230 1 1
5 81.90 62.10 7.10 1 0
6 83.20 82.00 8.10 1 0

In this data set, each row represents a single participant, a student in this case, and
each column is an attribute of that student having been measured and recorded. It is
common to use a spreadsheet program to enter these type of data.

2.1.1 External Formats for Storing Tabular Data

Popular spreadsheet programs for entering data in a tabular structure include Excel or
Calc.! Calc is part of the OpenOffice suite of programs very similar to Microsoft
O0ffice. The OpenOffice website is http://www.openoffice.org/ where the
entire suite can be freely downloaded. Another free spreadsheet program for Windows
users is Gnumeric which is part of the GNOME project and is available at http://
WWw.gnome.org/projects/gnumeric/downloads.shtml. Many popular data
analysis programs (e.g., Minitab, Stata, SPSS) also include a spreadsheet-like editor
for data entry. All of these programs have a package-specific format for storing
tabular data. For example, Excel uses the *.xls or *.xlsx format and SPSS uses the
* sav format.

Spreadsheet programs such as Excel and Calc are useful for entering and editing
tabular data. Their native file formats, *.xls, *.xlsx, and *.odf, however, typically
go far beyond a simple tabular organization. They include separate sheets, or pivot

! Excel is a commercial program from Microsoft.
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tables, and so there is no simple way to read these formats.> A better option is to
use a package-independent format for storing tabular data. Two popular package-
independent formats for tabular data storage are *.csv and *.txt.

Both *.csv and *.dat are delimiter-separated value formats. Delimiter-separated
value formats store tabular data by separating or delimiting each value in the data
in a specific way. Often the separator is a character, such as a colon or comma,
or sometimes it is simply white space (e.g., a single space or tabbed space). A
new case is usually delimited by a line break. Figure 2.2 shows data stored in a
comma-separated value (*.csv) format.

ID,Ach

1,68.9,6
2,79.2,80.4,6.3,1,8
3,65,75.7,1.8,1,1
4,78,73.8,2.3,1,1
5,81.9,62.1,7.1,1,8
6,83.2,682,8.1,1,0
2,76.1,72.6,7.7,8,1
8,46.8,64.2,8.4,1,8
9,63.1,72.3,5.8,08,1
10,64.4,67.3,1.5,1,0

Figure 2.2: Latino education data opened in Text Editor on the Mac. The data are
delimited by commas and each case is delimited by a line break

2.2 DATA ENTRY

During the data collection and data entry processes, it is important to consider the
structure of the data before reading it into R. Here are some guidelines that can be
used to prepare or edit data while working in a spreadsheet.

e All of the data should be entered in a single sheet in one file.
o Enter variable names in the first row of the spreadsheet.

e Variable names should be reflective/descriptive of the measure being repre-
sented.

e Use variable names that begin with a letter.

2There are functions available to read data from both formats into R—read.x1s() from the RODBC
library and read.odf () from the ROpenOffice library available at http://www.omegahat.org/
ROpenOffice/.
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Variable names cannot contain spaces.

Always include an ID variable.

If a variable has multiple groups, include additional variables that indicate
group membership.

e For missing values, leave the cell blank.

2.2.1 Data Codebooks

When data are entered or prepared, a codebook should also be developed. A codebook
is a technical description of the data collected for a particular purpose. It describes
how the data are arranged in the computer file, what the various values indicate, and
any special instructions on proper use of the data. At a minimum, codebooks should
include the following:

o Description ofthestudy (e.g., how thestudy was performed, population studied,
how the sample was selected, etc.)

e Source (e.g., who were the researchers that collected the data)

e Technical information about the data set (e.g., number of observations, etc.)
e Variable names (e.g., what does MultAcc mean?)

e Variable values (e.g., 1 = male and 2 = female)

e Missing data codes (e.g., —999 for nonresponse, —888 for inability to locate
study participant)

e Measurement information for each variable (e.g., units and ranges)

Consider the codebook for the data stored in LatinoEd.csv. These data are used
in Chapter 7 to explore potential educational achievement level differences between
Mexican and non-Mexican Latino immigrants. The codebook for these data is shown
below.

Other example codebooks are available at the following locations: http://
global.sbs.ohio-state.edu/docs/Codebook-12-12-05.pdf and http://
nces.ed.gov/nationsreportcard/tdw/database/codebooks. asp

2.3 READING DELIMITED DATA INTOR

When using R, it is convenient to store the data in a file external to R, and then
analyze it after “reading it into” R. The data are not analyzed in the same “place” as
they reside, as with a spreadsheet-style program. This way, the original data never
need to be altered for the purposes of analysis. In order to read delimited data into
R, the following characteristics need to be identified:
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Data Codebook ,

Overview: The datacome from Stamps and Bohon (2006) who were predict-
ing variation in educational achievement of Latinos. The 150 Latinos included
in the sample are naturalized U.S. citizens living in Los Angeles and were drawn
from data collected during the 2000 U.S. Census. Variables included in the data
set are the following:

e ID: ID number.

e Achieve: Educational achievement level. This is a scale of educational
achievement, ranging from 1 to 100, in which higher values indicate higher
levels of educational achievement.

e ImmYear: Year in which the immigrant arrived in the United States. (This
indicates the year—to the nearest tenth—in which the immigrant arrived.
To get the full year, 1900 must be added to each value. For example, 81.5
is half way through 1981.)

e ImmAge: Immigrant’s age at time of immigration (age to nearest tenth of
a year).

e English: Is the individual fluent in English? (0=No; 1=Yes)
e Mex: Did the individual immigrate from Mexico? (0=No; 1=Yes.)
Reference: Stamps & Bohon (2006). Educational attainment in new and

established Latino metropolitan destinations, Social Science Quarterly, 87(5),
1225-1240.

e Where the data are located on the computer
e How the values are delimited

e Whether or not variable names have been included in the first row of the data
file

2.3.1 Identifying the Location of a File

External data files can reside on the computer or the web. In order to read the data
into R, the location of a file must be supplied, either as a file location in a directory
tree or as an Internet address. Files are typically stored on a computer using a type of
folder structure (see Figure 2.3). By double-clicking through this structure, files can
be located and opened. R does not locate files using this type of navigation. Instead,
R needs the literal location of the file specified in terms of the path and filename.
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Figure 2.3: Folder and file hierarchy on a computer system.

The term path may be novel to some readers because the graphical user interface
of the most popular operating systems have been designed to give the look and feel of
“picking” a file. The path is simply the navigation of the folder or directory hierarchy
provided as a character string.

The filename is a means of storing metadata about a particular file stored on
the computer via a character string (e.g., mydata.csv). The metadata that is human
readable often includes both the basename of the file itself and the extension. The
basename is the primary filename (e.g., mydata), while the extension (e.g., *.csv)—
which is optional on some operating systems—indicates how the data stored in the
file were encoded.

To find the path and filename of a data file, the function file.choose() is used
with no arguments (see Command Snippet 2.1). Execution of the function opens a
window showing the file structure, which can be used to navigate to and select the file
of interest. Once a file is selected by either double-clicking its name or clicking OK
in the window, the path name, filename, and file extension is ported to the R console.

Command Snippet 2.1: Finding the path name for the VLSSAge.csv file.

> file.choose ()
[1] "/Documents/Data/LatinoEd.csv"

The syntax in Command Snippet 2.1 is for an Apple computer. The syntax for a
Windows computer uses a backslash (\) rather than the forward slash (/) to separate
directories.> Command Snippet 2.2 shows the use of file.choose () and the output
based on the same directory hierarchy, but using Windows.

3Windows OS, which followed from MS-DOS 2.0 introduced the backslash as the directory separator in
the early 1980s. Although Unix, which the MacOS is based on, had previously introduced the forward
slash as the directory separator sometime around 1970, MS-DOS 1.0 was already using the forward slash
to introduce command-line options so they used a different character for their directory separator.
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Command Snippet 2.2: Finding the pathname forthe VLSSAge.csv file on Windows.

> file.choose ()
[1] "C:\\Documents\\Data\\LatinoEd.csv"

One thing to note about the path name used by R on Windows computersis that the
directory separator uses two backslashes. This is in contrast to the single backslash
that is standard for the Windows operating system. The backslash is a character that
has special meaning when used in a character string. It is called an escape character.
Thus, in order to let R know the intention is to specify a file location rather than an
escape sequence, the double backslashes must be used.

23.2 Examining the Data in a Text Editor

Ifthe data to be analyzed was not entered by the same person conducting the analysis,
then aspects of the data file might be unclear. Depending on the program used to
encode the data, the filename extension can be a useful first step in helping to identify
the delimiter used to separate the values. Often the extension *.csv is used for comma
delimiting and *.txt is used for space delimiting. It is sometimes worthwhile to also
examine the file via a text editor to visually assess which delimiter is used.* Besides
visually identifying the value delimiter, opening the data in a text editor also allows
the determination of whether the variable names are included in the first row of the
file.

The Latino education data has a file suffix of *.csv. A portion of the contents
is shown in Figure 2.3. The figure shows the Latino education data opened in Text
Editor on the Mac. Figure 2.3 indicates each datum is separated by a comma, and
the variable names are included in the first row. This information is important for
proper reading of the data.

2.3.3 Reading Delimited Separated Data: An Example

To read in delimited data, the read . table () function is used. This function requires
the argument file=. The argument takes the appropriate path and filename. The path
and filenames are character strings. As such, they should be enclosed in quotation
marks. For example,

file="/Documents/Data/LatinoEd.csv"

Two other arguments required in many cases are header= and sep=. The header=
argument takes a logical value of either TRUE or FALSE depending on whether the
variable names are included in the first row of the file. Since the Latino data includes
variable names in the first row of the data, the argument will be header=TRUE.

4TextEdit on the Mac and Notepad on Windows are good choices for this activity.
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The sep= argument provides a character string that identifies the delimiter used
to separate the values. Since the values in the Latino data are separated by commas,
the argument will be sep=",". The help menu for read. table () reveals that the
default values for these arguments are header=FALSE—there are not variable names
in the first row of the data—and sep=""—the value delimiter is one or more “white”
spaces or blank spaces.

Lastly, every time data is read into R, it is a good idea to assign the data to an
object. This makes it easier to manipulate and analyze the data set. In this example,
suppose the data are assigned to the object 1latino. The full command to read in the
data and assign it is given in Command Snippet 2.3.

Command Snippet 2.3: Using the read.csv() function to read in the data stored
in the LatinoEd.csv file.

> latino <- read.table(file = "Documents/Data/LatinoEd.csv",
header = TRUE, sep = ",")

It can be said that R operates on a “no news is good news” convention. After
executing the syntax in Command Snippet 2.3, it appears as if nothing happened!
No spreadsheet opens up and there is no message of confirmation the data were
correctly read. Error messages and possible warmning messages are typically issued if
something goes wrong, but nothing is output when things go right. In this case, the
LatinoEd.csv file has been successfully read into R and the program is waiting for
the next command.

2.4 DATA STRUCTURE: DATA FRAMES

When delimited, tabular data are read into R and assigned to an object, that object
is stored as a data frame. The data frame is another fundamental data structure used
in R. A data frame is a rectangular array, in which all of the columns have the same
length—similar to a matrix. Unlike matrices, however, data frames can have columns
of different types (e.g., numeric, factor, character, etc.). Because of this, data frames
are a better structure in which to store data that consist of both quantitative and
categorical variables. There are several R functions that have specific methods and
functionality for working with data frames. Some of these functions are described in
this section.

2.41 Examining the Data Read into R

Once data are read into R, manipulation and analysis is performed with the created
data frame (e.g., the 1latino object) rather than the original data file. Prior to any
analysis performed in R, the newly created data frame should be checked to help
ensure the data were correctly read. Examining the data frame also reveals how R
is treating variables. For example, are numerically coded factors being treated as
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numbers or factors? Examination of the data frame is also helpful for beginning the
process of datacleaning (e.g., finding errors in transcription or identifying problematic
observations).

By examining the first few rows of the data frame andthe last few rows of the data
frame, it can often be determined whether the data were properly read into R. This
is done by calling the head () and the tail() function on the data frame object, in
this case latino (see Command Snippet 2.4).3

Command Snippet 2.4: Examining the 1atino data frame.

## Examine the first part of the data frame
> head(latino)
ID Achieve ImmYear ImmAge English Mex

1 1 59.2 7.7 9.6 1 1
2 2 63.7 65.8 1.1 1
3 3 62.4 63.6 6.1 0 1
4 4 46 .8 55.3 2.1 1 1
5 5 67 .6 73.1 2.3 1 1
6 6 63.1 75.7 8.4 1 0

## Examine the last part of the data frame
> tail(latino)
ID Achieve ImmYear ImmAge English Mex

145 145 76.1 79 .4 9.9 1 1
146 146 70.2 62.8 5.5 0
147 147 41.6 70.7 0.8 0 1
148 148 70.2 82.0 10.4 1 1
149 149 63.1 56.6 1.2 1 0
150 150 81.9 66.0 0.7 1 0

Whenever data frames are printed in R (e.g., using the head () function), the row
names are printed along with each of the variables. The row names are printed in the
leftmost column. In this example, the row names are redundant to the information
in the ID variable. When the original data set has a variable that can be used for
identification (e.g., ID, names, etc.), it is sometimes convenient to use this variable
for the row names. This is accomplished by using the row.names= argument in the
read.table() function. This argument takes a character string indicating the name
of the variable to be used as the row names (e.g., row.names="1D"), or the column
number, which contains the values to be used as the row names (e.g., row.names=1
can be used). Command Snippet 2.5 shows the use of the row.names= argument in
the read.table() function to use the values in the ID variable as the row names of
the latino data frame.

The output in Command Snippet 2.5 shows that when the latino data frame is
printed now, there is no ID variable. This is because the ID variable is now being used

5Both the head () and tail() functions can be provided an optional argument, n=, which takes a numeric
value to indicate how many cases will be printed. For example, head(latino, n = 20) will print the
first 20 cases rather than the first 6 cases.
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Command Snippet 2.5: Examining the latino data frame after using
row.names="ID".
## Read in the Latino data

> latino <- read.table(file = "Documents/Data/LatinoEd.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the first part of the data frame
> head(latino)
Achieve ImmYear ImmAge English Mex

1 59.2 7.7 9.6 1 1
2 63.7 65.8 1.1 1 1
3 62.4 63.6 6.1 0 1
4 46 .8 55.3 2.1 1 1
5 67 .6 73.1 2.3 1 1
6 63.1 75.7 8.4 1 0

## Examine the last part of the data frame
> tail(latino)
Achieve ImmYear ImmAge English Mex

145 76.1 79.4 9.9 1 1
146 70.2 62.8 5.5 1 0
147 41.6 70.7 0.8 0 1
148 70.2 82.0 10.4 1 1
149 63.1 56.6 1.2 1 0
150 81.9 66.0 0.7 1 0

as the row names for the data frame object. The ID variable has not disappeared from
the originaldata, it is just no longer needed as a variable within R itself. If the function
row.names () is used on the latino data frame (e.g., row . names (latino) ), R will
print the vector of row names, which for all intents and purposes is the ID variable.
The ID variable can be re-created as a new column in the data frame by using the
syntax latino$ID <- rownames(X = latino).

After looking at the first and last few observations, the internal structure of the
data frame should be examined by use of the str() function. Recall that a data
frame can contain columns that are of different types, or classes. The str () function
will output the class for each of the columns (variables) in the data frame. Command
Snippet 2.6 shows the results of calling the str () function on the 1atino data frame.

The result from the str () function provides a lot of information. It provides the
data structure of the object being called—in this case a data frame—as well as the
number of rows (150 observations) and columns (5 variables). The last part of the
output lists each of the column names in the data frame, the class of each of these
variables, and the values for the first several cases. For example, R is treating these
variables as either numeric (num) or integer (int). Since certain functions in R can
only be used on variables of certain classes, it is very important to determine the class
for each variable.

Lastly, it is good to examine the data for observations that might have been mis-
keyed or that could be unusual. The summary () function is a useful first step in this
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Command Snippet 2.6: Examining the internal structure of the latino data frame.

> str(latino)
'data.frame': 150 obs. of 5 variables:
$ Achieve: num 59.2 63.7 62.4 46.8 67.6 63.1 63.7 63.1 67.6
30.6
$ ImmYear: num 77.7 65.8 63.6 55.3 73.1 75.7 72 69.9 63.9
77.5
$ ImmAge : num 9.6 1.1 6.1 2.1 2.3 8.4 4.9 5.2 12.7 9.2
$ English: int 1101110110
$ Mex :int 1111101111
\.

exploratory process. Using the summary() function on a data frame object elicits
summary information for each of the variables within the data frame, including
the values for the minimum, maximum, first and third quartiles, and the mean.®
Command Snippet 2.7 shows the results of using the summary() function on the
latino data frame.

Command Snippet 2.7: Examining each variable in the latino data frame using
the summary () function.

> summary(latino)

Achieve ImmYear ImmAge
Min. :21.50 Min. :15.30 Min. 0.000
1st Qu.:52.00 1st Qu.:65.83 1st Qu.: 3.675
Median :62.40 Median :72.25 Median 6.450
Mean :59.94 Mean :69.98 Mean 6.613
3rd Qu.:69.42 3rd Qu.:77.80 3rd Qu.: 9.550
Max. :96.20 Max. :83.40 Max. :12.900

English Mex
Min. :0.0000 Min. :0.0000
1st Qu.:0.2500 1st Qu.:1.0000
Median :1.0000 Median :1.0000
Mean :0.7467 Mean :0.7733
3rd Qu.:1.0000 3rd Qu.:1.0000
L Max. 1.0000 Max. :1.0000

A cursory examination of the summary information suggests that the values for
each of the variables seem reasonable based on the codebook. For example, the
minimum and maximum values fall within expected limits based on the nature of
each variable. It appears the data are ready for analysis.

The summary () function deals with classes of objects differently. For example, calling summary () ona
data frame produces different output than when it is called on an object that is of the 1m class.
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25 RECORDING SYNTAX USING SCRIPT FILES

AsanR session progresses, it is desirable to record and save syntax so the commands
can be accessed at a future point in time. One of the principal reasons for doing so
is that the session can be exactly reproduced at some later time. Reproducibility is a
major advantage of syntax-based statistical programs such as R. One way to record
commands is to save them in a script file. A script file not only allows R syntax to
be recorded, it also provides the foundation for documentation, debugging, revision,
and validation. A script file is often created using a script editor. Any editor is
permissible with R, but some are better than others.”

R comes with a simple scripteditor, which can be accessed using the menu system
within R. Select the File menu and then New script (New Document on a Mac),
which will open another window that is blank. In this blank window, commands
can be saved and executed or copied and pasted within or out of R. It is required
that separate commands be written on separate lines or separated by a semicolon
(;) if written on the same line. Furthermore, the script file must contain only valid
commands—no prompts or output are allowed unless contained in a commend that
is not read by R. Comments are preceded by at least one hash or pound sign (#).
Anything following a pound sign to the end of the current line will not be read by R.

Script File with Comments

## Read the Latino data into R
latino <- read.table(file = "Documents/Data/LatinoEd.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the Latino data head(latino)
tail(latino)

str(latino)

summary(latino)

## Graph the educational achievement scores
boxplot(latino$Achieve)
plot(density(latino$Achieve))

The main advantage of the script file is to save a record of the analyses, which can
be replicated in future R sessions. Another advantage in recording commands in a
script file is that the entire file of syntax or chunks of the syntax can be submitted to R
for processing directly. To submit the script for processing, highlight the commands

TThere are a number of R script editors available free of charge. A list is provided at: http://www.
sciviews.org/_gui/projects/Editors.html. Many of these script editors know about R syntax
and help in creating permissible syntax, such as matching parentheses, etc.
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to be executed, and from the menu select Edit and then Run line or selection
(Execute on a Mac). The commands will appear in the console window and will
be processed one by one. Alternatively, key strokes can be used for the submission.
On a Windows machine, highlighted syntax is submitted by using Ctrl-r. On a Mac
highlighted syntax is submitted by using Cmd-Return.

It is also a good idea to use comments to document the process in the script file.
Comments are human-readable, explanatory text that is inserted into the script file
along with the R commands. To insert a comment in the script file, start the line with
the hash or pound sign (#). This informs R that everything after # on the current line
is to be ignored and not executed.

2.5.1 Documentation File

In many analysis projects, it is useful to have a documentation file in addition to the
script file. A documentation file is a word-processing file containing information
(commentary, summaries, tables, figures) about the work being performed or the
results from that work. The information is usually intended to be read by a human.?
Ideally, a documentation file should give enough information about the related scripts
so that it is possible to determine the connection between the two, and even to revise
the documentation when the script is revised.’

2.6 SIMPLE GRAPHINGIN R

There are many graphing packages within R. These include the basic graphics
package, the lattice package, the gplots package, and the ggplot2 package, just to
name a few. Each package has its strengths and weaknesses. This monograph will
focus on using the first as it is automatically installed with the base package.

Many of these packages implement some of the same plots, albeit in a different
manner. For example, to plot a kernel density estimate, the graphics package uses
the plot () function on the density() function, whereas the lattice package uses
the function densityplot(). Similarly, a box-and-whiskers plot can be called
by the function boxplot() in the graphics package, and bwplot () in the lattice
library. There are, of course, many differences in the usage of these functions in
terms of arguments provided, output produced, etc. Throughout the remainder of
this monograph, the plotting capabilities in the graphics package will be explored in
detail. For now, focus is on some basic ideas to continue with the familiarization to
R.

One basic method for summarizing the distribution of a variable is the box-and-
whiskers plot or boxplot for short. To create a simple box-and-whiskers plot of the

8Script files can also be read by humans, and sometimes they are a proxy for documentation files. But
they are not suitable for presenting results.

9Scripts can also be integrated into documentation files. This is an advanced topic and one we will not
cover in this monograph. The interested reader is referred to the reference on Sweave in the list of further
reading.
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achievement scores provided in the Latino data set, the boxplot () function from the
graphics package is used. This package is automatically loaded when a R session is
initiated. The boxplot () function requires the argument x= giving the name of the
variable to be plotted. Command Snippet 2.8 shows what would seem to be logical
syntax for plotting the achievement scores.

Command Snippet 2.8: Creating a box-and-whiskers plot of the educational
achievement scores in the Latino data set.

[ > boxplot (Achieve)

Error in boxplot (Achieve) : object 'Achieve' not found

Calling the boxplot () function on the variable Achieve produces an error. The
problem is that R cannot find the object named Achieve. The reason is that Achieve
is in the data frame object latino, and this must be referenced in order to access
Achieve. To inform R that it needs to look “inside” the object latino to find
Achieve, the § operator is used, as in

latino$Achieve

Command Snippet 2.9 provides the correct syntax for creating a box-and-whiskers
plot of the achievement scores.

Another basic type of graph useful for examining the distribution of a variable
is the density plot. The second line of Command Snippet 2.8 provides the syntax
for creating a density plot of the achievement scores using the graphics package.
(Density plots are discussed in more detail in Chapter 3.) Figures 2.4 and 2.5 show
the resulting plots from these commands.

Command Snippet 2.9: Creating a box-and-whiskers and density plot of the educa-
tional achievement scores.

## Box-and-whiskers plot

> boxplot(latino$Achieve)

## Density plot
> plot(density(latino$Achieve))

2.6.1 Saving Graphics to Insert into a Word-Processing File

Once graphs are created, it is desirable to include them in the word-processing
document that describes the analysis. This document might be, forexample, the draft
of a professional journal article. There are several ways to insert a created plot into a
word-processing document. One of the easiest is to copy the picture in R and paste it
into the documentation file. On a Mac, after making sure that the R graphics Quartz
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density.default(x = latino$Achleve)

000

0010

N=150 Barchwictn - 4208

Figure 2.4: Box-and-whiskers plotofthe Figure 2.5: Density plot of the distri-
distribution of educational achievement bution of educational achievement scores
scores for 150 Latino immigrants. for 150 Latino immigrants.

window is the active window (clicking on it brings it to the front), choose Copy from
the Edit menu, and then paste it from within the documentation file. If Windows is
used, right-click on the graphics window directly and choose Copy, and again paste
it into the documentation file. This technique is fine for drafts and homework, but for
publishable quality plots, this technique might produce a sub-par quality graphic. 1°
The problem s that the copy function does not choose a high-quality image format.
The current default on most Macs is *png, whereas for most PCs it is * jpeg. Both
of these formats are good choices for the copy function as their compression scheme
provides a nice balance of moderate image quality and small file space. But, they
do not provide the level of image quality that most journals would require in their
printing process. This is because both of these image formats are bitmapped images.
Bitmapped images are essentially amap of bits or pixels.!! Iftheimage in question
is conceived of as a grid, then certain pixels, or squares, in that grid are filled in to
create the image. The grid can be made finer to look better at higher resolutions,
but when zooming in or out on the image, the quality deteriorates. The reason is
bitmapped images are dependent on the resolution at which they were created. For
images to appear on the Web, bitmapping works very well, since most computer
screens have a limited resolution. The size of the image is not restricted due to space
considerations, so the author often has a lot of control over how the image will appear.
This dependency, however, makes bitmapped images a poor choice for graphics
that are to appear in print, since many commercial printers can print at a very high
resolution. What looks good on a computerscreen may look terrible in print. A better

10 Actually, using a golfing metaphor this produces an “above-par quality graphic.”
1 Bitmapped images are also sometimes referred to as Raster images.
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option for images that are to appear in print is to use an image type that is vector
formatted. Vector-formatted images save strokes (vectors) and, thus, will redraw
correctly at a high resolution when the image is resized. Because the image is saving
vectors, these image types can be slow to open and often take up more disk space
than bitmapped images. Common vector formats for images include *pdf, *eps,
and *.svg.

R has several built-in functions to produce plots in various image formats. The
plots in this monograph, for example, were produced as *.pdf files. To save an image
as a *.pdf file, the pdf () function is used. The function takes the argument file=,
which requires the path and filename for saving the image. Other useful arguments
are width= and height= that can be used to specify the size of the created image in
common units of measure (e.g., in, cm, pt, etc.).

The pdf () function opens a graphics driver in R, and then each subsequent R
command writes to that PDF file. This continues to happen until the driver is turned
off by calling the dev . off () function. The full set of commands to produce a density
plot of the educational achievement scores and save it as a *.pdf file are provided
in Command Snippet 2.10. For a Windows-based computer, the path name must be
specified with the double backslashes as previously described.

Command Snippet 2.10: Creating a density plot of the educational achievement
scores in the Latino data set and saving it as a PDF file called VLSS-Age.pdf on the
desktop on a Macintosh computer.

## Open the graphics driver
> pdf (file = "/Desktop/VLSS-Age.pdf")

## Draw the plot
> plot(density(latino$Achieve))

## Turn off the graphics driver
> dev.off ()

2.7 EXTENSION: LOGICAL EXPRESSIONS AND GRAPHS FOR
CATEGORICAL VARIABLES

Based on the Latino data set introduced earlier, suppose the goal is to examine the
distribution of achievement scores for Latino immigrants who came to the United
States between the ages of 4 and 7. Since the age at immigration is recorded in the
variable ImmAge, this variable is used to filter the study participants. The achievement
scores for the Latinos must meet the two simultaneous conditions of ImmAge > 4
and ImmAge < 7.

In R, comparison operators are used to evaluate a particular condition. For
example, to evaluate whether animmigrantin the latino data frame was at least four
years old when she or he immigrated to the United States, the following expression
is used: latino$ImmAge >= 4. The comparison operators are shown in Table 2.1.
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Expressions involving comparisons are called logical expressions because they
return a logical value of TRUE or FALSE depending on the evaluation of the expression.
For example, the logical expression, latino$ImmAge >= 4 is evaluated as TRUE for
each Latino immigrant whose age at the time of immigration is greater than or equal to
4, and it is evaluated as FALSE otherwise. Command Snippet 2.11 shows the results
when the expression latino$ImmAge >= 4 is evaluated for the 150 immigrants

Comparison
Operator

represented in the latino data frame.

Command Snippet 2.11: Evaluation of the logical expression latino$ImmAge >=

Meaning

Less than

Greater than
Less than or equal to
Greater than or equal to

Equal to

Not equal to

4 for the 150 immigrants represented in the latino data frame.

[1]
[10]
[19]
[28]
[37]
[46]
[55]
[64]
[73]
[82]
[91]

[100]
[109]
[118]
[127]
[136]
[145]

TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE

> latino$ImmAge >= 4

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE

FALSE
TRUE
TRUE

FALSE

FALSE

FALSE
TRUE
TRUE
TRUE

FALSE
TRUE

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE

Table 2.1: Comparison Operators Used in R

TRUE TRUE
TRUE FALSE
TRUE TRUE
FALSE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
FALSE TRUE
TRUE TRUE
FALSE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
FALSE TRUE
TRUE FALSE

2.7.1 Logical Operators

Use of the logical expression latino$ImmAge >= 4 allows the determination of
which of the 150 immigrants in the latino data frame have met the first condition,
namely that ImmAge > 4. However, the goal is to identify which immigrants meet
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this condition and the second condition, ImmAge < 7. Logical operators are com-
mon computing tools to combine multiple logical expressions. A logical operator
can be used along with the logical expression to determine the immigrants who were
at least 4 years old but no older than 7 when they immigrated. Logical operators used
in R are shown in Table 2.2.

Table 2.2: Logical Operators Used in R

Logical
Operator Meaning
& And (intersection)

| Or (Union)

The & operator is used to combine both the logical expression latino$ImmAge
>= 4, and latino$ImmAge <= 7, to identify Latino immigrants who came to the
United States between the ages of 4 and 7. Command Snippet 2.12 shows the syntax
to evaluate these expressions.

Command Snippet 2.12: Use of the & operator to evaluate multiple logical expres-
sions.

> latino$ImmAge >= 4 & latino$ImmAge <= 7
[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
[10] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[19] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[28] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
[37] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[46] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[65] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[64] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[73] FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[82] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[91] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
[100] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
[109] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[118] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[127] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[136] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE TRUE FALSE FALSE FALSE FALSE

The & and | operators perform an element-wise or component-wise evaluation
using the logical expressions. In other words, there is a logical value produced for
each element in the latino$ImmAge vector. For example, the value for ImmAge
for the first case in the latino data frame is 9.6. The logical value produced by
the first component of the evaluation, latino$ImmAge >= 4, is TRUE. The logical
value produced by the second component of the evaluation, latino$ImmAge <= 7,
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is FALSE. Since at least one of the components is FALSE, the intersection of these
two logicals is FALSE.

There are two other logical operators, &% and | |, that perform scalar evaluation,
but this is not useful in the type of identification discussed here. Scalar evaluation
is very useful for programming when it is desirable to check that certain conditions
are met before another set of commands is executed. For example, if the goal is to
be sure that all the elements in a vector are positive and less than 10, using x >
0 && x < 10 would ensure this. The second logical expression (x < 10) is only
evaluated if the first logical expression evaluates to TRUE, and since this is a scalar
evaluation, it only evaluates to TRUE if all of the elements are positive. Similarly, the
second expression would also only evaluate to TRUE if all of the elements were less
than 10. So, if any of the elements did not meet the conditions, the entire expression
would produce a single logical of FALSE.

Logical operators are very useful for extracting asubset of the data for examination.
These operators are commonly used within the subset () function. The function
subset () can be used to extract all the Latino immigrants who came to the United
States between the ages of 4 and 7. The first argument in the subset() function,
x=, is the object to be subsetted, and the second argument, subset=, is the logical
expression(s) defining the selection conditions. The output from the subset ()
function can be assigned to a new object, which will have the same structure as the
original. Command Snippet 2.13 shows the use of the subset () function to identify
the Latino immigrants who came to the United States between the ages of 4 and
7. All the data associated with these immigrants is assigned to a new object called
latino. sub. The new object is examined using the summary () function. Note that
the variable ImmAge has minimum and maximum values appropriate to the subsetting
that occurred.

Any of the functions that have been introduced thus far for data examination,
plotting, or analysis can be used in the latino.sub data frame. For example, a
density plot of the distribution of achievement scores for these 41 immigrants who
came to the United States between the ages of 4 and 7 years of age can be produced
using the syntax plot(density((latino.sub$Achieve)). Figure 2.6 shows the
resulting plot of the command.

2.7.2 Measurement Level and Analysis

Both a density plot and a box-and-whiskers plot were used to visualize the distribu-
tion of achievement scores for Latino immigrants. Both of these plots are appropriate
graphics tools for summarizing data that are numerical—like achievement scores.
These graphs, however, are inappropriate for summarizing data that are categorical
(i.e., have categories). In general, appropriate methods for graphically and numer-
ically summarizing data depend on the measurement level of the variable being
summarized.

Paraphrasing N. R. Campbell, Stevens (1946, p. 677) wrote that “measurement,
in the broadest sense, is defined as the assignment of numerals to objects or events
according to rules.” Building on this definition, he pointed out that different rules
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Figure 2.6: Density plot of the distribution of educational achievement scores for 41
Latinos who immigrated to the United States between the ages of 4 and 7.

for assigning numbers lead to varying mathematical properties and, subsequently,
different statistical operations that can be employed. The classification that Stevens
proposes includes four distinct measurement levels that increase in their sophistica-
tion: nominal, ordinal, interval, and ratio.

We now briefly explain the four classifications, but the more interested student
should read the Stevens article or a modern treatment (e.g., Long, Feng, & Cliff, 2003).
The nominal level of measurement is used for variables in which the assignment of
numerals only represents labels or categories. Examples of nominal level variables
are race, sex, or political preference. The Ordinal level of measurement is attributed
to variables that can be rank ordered. In the educational and behavioral sciences,
education level and score on a Likert item or scale (e.g., 1 = low, 2 = medium, 3 =
high) are examples of ordinal data. The third level of measurement is the interval
level of measurement. The numerals representing interval scales not only have a
rank ordering to them, but each successive numeral represents the same “amount” of
whatever is being measured. An example is calendar time where a change of 10 days
constitutes the same amount of change in time whether it occurs in January, June,
or December. Lastly, the most sophisticated level of measurement is the ratio level.
In this level of measurement, the use of ratio (multiplicative) statements applied to
the numerals assigned is meaningful for the underlying construct being measured.
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Command Snippet 2.13: Creating and examining a subset of the 1atino data frame
that only includes immigrants who came to the United States between the ages of 4
and 7.

## Create a subset of the data

> latino.sub <- subset(latino, subset = latino$ImmAge >= 4 &
latino$ImmAge <= 7)

## Summaries of the object
> summary(latino.sub)

Achieve ImmYear ImmAge
Min. :36.40 Min. :20.60 Min. :4.000
1st Qu.:58.50 1st Qu.:64.00 1st Qu.:4.600
Median :63.10 Median :72.00 Median :5.400
Mean :62.38 Mean :67.74 Mean :5.412
3rd Qu.:68.90 3rd Qu.:76.70 3rd Qu.:6.100
Max. :85.80 Max. :80.80 Max. 7.000

English Mex

Min. :0.0000 Min. :0.0000
1st Qu.:1.0000 1st Qu.:1.0000
Median :1.0000 Median :1.0000
Mean :0.8049 Mean :0.7805
3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.0000

Variables that are at the ratio level of measurement always have an absolute zero.
Weight, length, density, and resistance are all examples of ratio-level scales.

27.3 Categorical Data

Categorical, or nominal, variables have values that represent groups or categories.
One of the variables in the 1atino dataframe is such a variable. English categorizes
immigrants by whether or not they are fluent in English. Those who are fluent in
English are given the value 1, and those who are not are given the value 0. As with a
number of categorical variables, English can be conceived of as an ordinal variable
as its value indicates the extent of fluency. However, if the order of the categories is
unimportant to the research questions—as it is here—then the variable is treated as
categorical.

Categorical data is generally summarized using contingency tables, bar plots,
or pie charts. Contingency tables are tabular representations of either the counts
or proportions for each category, or label, represented in the categorical variable.
The table() function can be used to count the number of cases in each category.
The function requires at least one variable that can be interpreted as a categorical
variable. Command Snippet 2.14 shows the syntax for creating a contingency table
for the English fluency data from the latino data frame.
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Command Snippet 2.14: Using the table() function to create a contingency table
of the data in the English variable of the 1atino data frame. This is assigned to an
object called my . tab which is then printed.

## Create contingency table
> my.tab <- table(latino$English)

## Print contingency table

> my.tab
0 1
38 112

In many cases, contingency tables are reported using proportions rather than the
actual frequencies. The function prop.table() can be used on the assigned table
to provide proportions in the contingency table. Command Snippet 2.15 shows the
use of prop.table().

Command Snippet 2.15: Using the prop. table () function to create a contingency
table of proportions for the data in the English variable of the latino data frame.

> prop.table(my.tab)

0 1
0.2533333 0.7466667

In this case, almost 75% of the sample is fluent in English. The table () function
can also take additional variables as arguments. When this is so, the contingency
table will produce counts of the cross-classification of the variables included. For
example, it may be of interest to know how many of the Latinos that immigrated from
Mexico are fluent in English versus the number that immigrated from other countries
that are fluent in English. Command Snippet 2.16 shows the syntax for creating a
contingency table for the cross-classification of English fluency and whether or not
the Latino immigrated from Mexico. The argument dnn= provides the dimension
names to be used by supplying a vector of labels for the dimensions. Without this
argument, the rows and columns are not labeled, and it must be remembered that the
first variable supplied to table() will be the rows and the second variable will be
the columns

Based on the contingency table, it can be seen that forthe Latinos who immigrated
from Mexico, 82 are fluent in English compared to 34 nonfluent English speakers.
For Latinos who immigrated from other countries, the ratio of fluent to nonfluent
speakers is even higher (30 : 4). One thing to note is that by summing the rows
(which represent the English fluent Latinos), sums of 38 and 112, respectively, the
same values are obtained as when the table() function is used on the English
variable alone. Summing the columns gives the counts for the number of Latinos
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Command Snippet 2.16: Using the table() function to create a contingency table
of the data in the English variable of the latino data frame. This is assigned to an
object called my . tab. 2 which is then called.

## Label the rows 1in the contingency table

## Create two-way contingency table and label dimensions

> my.tab.2 <- table(latino$English, latino$Mex, dmn =
c("English", "Mex"))

## Print contingency table
> my.tab.2

Mex
English 0 1
0 4 34
1 30 82

## Print contingency table of proportions
> prop.table(my.tab.2)

Mex

English 0 1
0 0.02666667 0.22666667
1 0.20000000 0.54666667

who immigrated from Mexico and those that did not. These are sometimes referred
to as the marginal counts.

It should be kept in mind that the table() function will interpret the variables
provided in its arguments as categorical. Recall from the output of the str()
function that both English and Mex are of type integer—even though they represent
measurements at the nominal level. Data analysts need to be aware not only of
the actual level of measurement for each variable in an analysis but also how R (or
any software for that matter) is treating those variables. This helps an analyst make
meaningful interpretations and inferences regarding the output that is produced.

2.7.4 Plotting Categorical Data

Categorical dataare typically plotted using a bar plot, which is a graphical summariza-
tion of the same information produced in the contingency table.'> The barplot ()
function in R will produce a bar for each of the interpreted categories from the
table() function, where the height of each bar is proportional to the case count
for each category. As such, a required argument for the barplot () function is the
height= argument which takes the output from the table() function. Command

12 Another common graph for displaying categorical data is the pie chart, which psychologists have pointed
out is a very bad way of displaying information. It is an undesirable method as humans are not good at
judging relative areas, especially areas produced in pie charts (e.g., Cleveland, 1993).
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Snippet 2.17 shows the syntax for producing a bar plot for the English fluency data.
The optional argument names . arg= can be used to provide a vector of names for
the bars. The first command will produce a bar plot showing the frequencies of each
category, and the second will produce a bar plot displaying the proportions. Figures
2.7 and 2.8 show the frequency bar plot and the proportion bar plot for the English
fluency variable, respectively.

Command Snippet 2.17: Using the barplot () function to produce a bar plot of
the data in the English variable of the latino data frame. The first command will
produce a bar plot showing the frequencies of each category and the second will
produce a bar plot displaying the proportions.

## Bar plot of the counts

> barplot(height = my.tab, names.arg = c("Not Fluent",
"Fluent"))

## Bar plot of the proportions
> barplot (height = prop.table(my.tab), names.arg = c("Not
Fluent", "Fluent"))

o P Fume Wk Funee

Figure 2.7: Bar plot showing the fre- Figure2.8: Bar plot showing the propor-
quencies for Latinos in the sample who tions for Latinos in the sample who are
are fluent and not fluent in English. fluent and not fluent in English.

2.8 FURTHER READING

The R documentation describes the import and export of data in many formats
(R Development Core Team, 2009). Spector (2008) presents more detail on the
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importing of data into R from a variety of formats and also how to effectively
manipulate that data. Zahn (2006) has written an article that describes the integration
of the script and documentation file through a system called Sweave. This program
can be used with R to write IXIgX documents in American Psychological Association
(APA) style, complete with results, tables, and figures.

Methodologically, the seminal paper by Stevens (1946) is a must-read for under-
standing the classification of levels of measurement. A more in-depth treatment can
be found in Stevens (1951). Lord (1953) provides an amusing and satirical take on
the same topic. A modern treatment is found in Long et al. (2003). Lastly, for more
instruction and insight for analysis involving categorical data, the interested student
is referred to Agresti (2002).

PROBLEMS

2.1 A data codebook is a printable file containing complete technical descriptive
information for each variable in the corresponding data file. It describes how the data
are arranged in the data file, what the various response values mean, a description of
response-code labels, and any special instructions on how to use the data properly.
Locate a data set (either one you have access to, a data set from a publication, or one
found via the Internet) and create a codebook for this data set. The codebook should
include:

e Description of the study including who carried out the study and what was
their purpose.

Sampling information: What was the population studied? How was the sample
selected?

Variable names.

Variable values and labels.

e Any missing data codes.

2.2 Data were obtained from the New York State Department of Conservation
(ozone data) and the National Weather Service (meteorological data) on daily air
quality in New York City. The data are located in the R package datasets as a
built-in data set called airquality. To read in a data set from this package we
first need to load the datasets package using the 1ibrary() function by typing
library(datasets) at the prompt. The data set is now available in a data frame
object called airquality. Typing the name of the object, airquality, at the
prompt should print the data to the screen. A codebook for the data can be examined
by typing help(airquality).
a) Produce a density plot of daily wind speeds. Describe the distribution by
pointing out any interesting features of the plot.
b) Using the subset () function, create an object that contains the air quality
data for only the month of June. Use this new object to produce a density
plot of solar radiation.
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¢) Produce a density plot for the solar radiation for the month of September.
Compare and contrast the solar radiation for the month of June and the
month of September.

d) This data set has missing values—as denoted by entries of NA in both the
Ozone and Solar.R variables. How does the mean () function deal with
missing values when finding the average?

e) At the prompt type mean(airquality$0zone, na.rm = TRUE). How
does themean() function deal with NA values when the argument na.rm
= TRUE is included?
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CHAPTER 3

DATA EXPLORATION: ONE VARIABLE

Let the data speak for itself.
—J. W. Tukey (1977)

In 1986, the Vietnamese government began a policy of doi moi (renovation) and
decided to move from a centrally planned command economy to a “market economy
with socialist direction.” As a result, Vietnam was able to evolve from near famine
conditions in 1986 to a position as the world’s third largest exporter of rice in the
mid-1990s. Between 1992 and 1997 Vietnam’s gross domestic product (GDP) rose
by 8.9% annually (WorldBank, 1999).

The first Vietnam Living Standards Survey (VLSS) was conducted in 1992-93
by the State Planning Committee (SPC) (now Ministry of Planning and Investment)
along with the General Statistical Office (GSO). The second VLSS was conducted
by the GSO in 1997-98. The survey was part of the Living Standards Measurement
Study (LSMS) that was conducted in a number of developing countries with technical
assistance from the World Bank.

The second VLSS was designed to provide an up-to-date source of data on house-
holds to be used in policy design, monitoring of living standards, and evaluation
of policies and programs. One part of the evaluation was whether the policies and

Comparing Groups: Randomization and Bootstrap Methods Using R 49
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programs that were currently available were age appropriate for the population. For
example, if a country has a higher proportion of older people, then there needs to be
programs available that appeal to that sector of the population. Another concern was
whether the living standards for different sections of the country were equitable.

Given the background above, data from the second VLSS (available in the
VLSSage. csv and VLSSperCapita. csv data sets) is used to examine the following
research questions:

1. What is the age distribution for the Vietnamese population?

2. Are there population differences in the annual household per capita expendi-
tures between the rural and urban populations in Vietnam?

3. Are there population differences in the annual household per capita expendi-
tures between the seven Vietnamese regions?

In the next few chapters we will use data exploration to answer these research
questions. Data exploration is a key first step in any statistical analysis. It helps
researchers discover both systematic structure in the data and also potentially prob-
lematic cases thatdeviate from thatstructure. Furthermore, good exploratory analysis
can guide later analyses by suggesting appropriate models that may be investigated
and also help the researcher to generate hypotheses not initially considered.

3.1 READING IN THE DATA

According to the codebook for the VLSSage . csv data, the variable Age contains the
ages of 28,633 individuals (in years ranging from O to 99) living in the 5999 sampled
households. To address the first research question regarding the age distribution, the
data must be read in, and graphical and numerical summaries examined.

To read in tabular comma-delimited data with no missing values and variable
names in the firstrow, the read. table () function is used with the arguments file=,
header=TRUE, and sep=",". Remember that the f ile= argument takes a character
string, which includes the entire path and filename of the data. The row.names=
argument can also be included to assign the ID variable as the row names. Command
Snippet 3.1 provides the syntax for reading in the VLSSage . csv data on a Mac (the
file location is slightly different on a Windows machine).

After reading the data into R, a check should be made that it has been properly
interpreted. It is good to examine the first few and last few rows of the data frame
to be sure that it looks consistent with expectations. This is done by calling the
head () and tail () functions on the assigned data frame object, respectively. The
examination of the data frame object v1ss is carried out in Command Snippet 3.1.

The output looks reasonable based on the codebook—there are two variables, and
the first few cases look plausible for the variable on hand. If, for example, the ages
had negative values, this would be evidence that something was amiss.

Secondly, the data structure—how R “sees” the data—should be inspected by
calling the str () function on the assigned data. The str () output provides useful
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Command Snippet 3.1: Read in and examine the VLSS age data. Note that the path
provided in the file argument of the read.table() function is from a Mac.

## Read in the VLSS age data
> VLSS <- read.table(file = "/Documents/Data/VLSSage.csv",
header = TRUE, sep = ",", row.names="ID")

## Examine the first six cases
> head(vlss)
Age
68
70
31
28
22
7

DD WN -

## Examine the last six cases
> tail(vlss)

Age
28628 6
28629 66
28630 48
28631 23
28632 19
28633 13

## Examine the data structure

> str(vlss)

'data.frame': 28633 obs. of 1 variable:
$ Age: int 68 70 31 28 22 7 57 27 23 0

## Summarize the data frame
> summary (vlss)
Age
Min. : 0.00
1st Qu.:12.00
Median :23.00

Mean 128 .14
3rd Qu.:41.00
Max. :99.00

information, which is also seen in Command Snippet 3.1. The output indicates that
there are 28,633 observations, and there are two variables. The last part of the output
lists the first few values of each variable in the data frame and indicates the type or
class of each variable. For example, R is storing each of these variables as integers
(int). This is important to determine since certain functions can only be used on
certain classes.

Lastly, basic statistics for each variable in the data frame are computed by using
the summary() function on the data frame object. This also aids in the detection
of entry errors and other strange values, etc. As seen in Command Snippet 3.1, the
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minimum and maximum values seem reasonable given the variable in question, age.
These initial inspections suggest that we can move on to the analysis addressing the
research question.

3.2 NONPARAMETRIC DENSITY ESTIMATION

Density estimation is one of the most useful methods for examining sample distribu-
tions. Nonparametric density estimation is an approach to estimating the distribution
of the population from which the sample was drawn. This allows the observed sample
data to provide insight into the structure of the unknown probability distribution un-
derlying the population. The density estimation is nonparametric in the sense thatthe
sample data suggest the shape, rather than imposing the shape of a know population
distribution with particular values of its parameters.

3.2.1 Graphically Summarizing the Distribution

Graphically displaying the data allows a researcher to examine the overall patterns
while also illuminating features or cases that are unexpected. For instance, there
might be cases that are extreme relative to the majority of the data. For the VLSS
data frame, we might have one or two very old people with ages greater than 100.
It is important to be aware of such extreme cases as they might require special
consideration in any statistical analysis to be performed.

3.2.2 Histograms

In the past, it was common for behavioral scientists to use a histogram to estimate
the population density. A histogram is one of the simplest nonparametric estimators
of a population density. Histograms, usually displayed as a graph, are essentially
enumerations, or counts, of the observed data for each of a number of disjoint
categories, or bins. Despite the popularity of the histogram, it has a number of
drawbacks that suggest it is not always the best method to use.

The bin width—which is often chosen by the software rather thanthe researcher—
has a great deal of influence on the shape of the histogram, and thus, on the inferences
made by the researcher. Most methods for creating histograms partition the observed
data into equally spaced bins using algorithms that typically focus on producing the
optimal bin count given the observed data (Freedman & Diaconis, 1981; Scott, 1979;
Sturges, 1926). These methods often have strong assumptions about the shape of the
underlying population distribution.

For example, when distributions are strongly skewed, the density estimate pro-
duced by the histogram may be misleading, since several of the bins chosen in the
optimization process can have very little data (e.g., Rissanen, Speed, & Yu, 1992).!

IRecently, Wand (1997) proposed a series of “plug-in” rules for selecting the bin width in a histogram.
The resulting histogram provides a better estimate for the density than other methods.
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Perhaps most importantly, histograms are essentially discontinuous step functions.
A discontinuous function is one in which there are clearly gaps when the graph of the
function jumps to each new x-value. So, if the researcher believes that the observed
sample data comes from a population with a continuous density, then other estima-
tion methods are preferable. Fortunately, there are substantially better methods of
estimating the population density.

3.2.3 Kernel Density Estimators

A much better estimate of the population density can be obtained by using kernel
methods. Nonparametric kernel density estimation can be thought of as a method of
averaging and smoothing the density estimate provided by the histogram. More for-
mally, kernel density estimation is a sophisticated form of locally weighted averaging
of the sample distribution.

Figure 3.1 shows a conceptual illustration of kernel density estimation (adapted
from Sain (1994)). The vertical lines below the axis represent the N = 6 sample
observations. The dashed lines represent the Gaussian kernel function, and the solid
line represents the overall density estimate. The smoothing parameter, represented
by the variation in each distribution, is fixed (i.e., it is the same value in each kernel).

Kernel density estimation works by estimating the density at each observation,
X, using a smooth, weighted function, known as a kernel. In Figure 3.1 the kernel
function is the normal, or Gaussian, distribution, however, there are several kernel
functions that can be used in density estimation. Each kernel function is centered
at one of the N = 6 observations and identically scaled. An estimate of the overall
density can then be found by summing the height of the kernel densities at each
observation.

Note that the variation (width) in the kernel determines the amount of overlap at
each observed value. Skinnier kernels have less overlap resulting in a smaller overall
sum, while wider kernels would result in more overlap and a larger sum. The data
analyst not only specifies the kernel function, but also the variation in the kernel
function. Figure 3.1 shows a visual depiction of the variation in the kernel functions
based on the half-width (i.e., half the width of each kemel) of the kernel. This is
also referred to as the smoothing parameter since it has a direct impact on the overall
smoothness of the plot.

3.2.4 Controlling the Density Estimation

Based on Figure 3.1, changing either the kernel function or the smoothing parameter
would affect the overall density that is estimated. There are several kernel functions
that can be used in R. While there are differences in the shape of the kernel functions,
these differences are negligible. The research literature suggests that the choice of
the functional form of the kernel has little effect on the estimation of the density—all
are essentially equivalently efficient in minimizing the error when approximating
the true density (e.g., Epanechnikov, 1969; Silverman, 1986)—and thus the default
Gaussian kernel function is often used.
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Figure 3.1: Illustration of the kernel density estimation (solid line) for N = 6
observations (vertical lines). A Gaussian kernel function (dashed lines) with a fixed
smoothing parameter was centered at each observation. The figure was adapted from
Sain (1994).

Selecting the smoothing parameter is another matter. Change in the amount of
variation in the kernel has a large effect on the appearance and interpretation of the
density estimate. This is similar to forcing fewer or additional bins in the traditional
histogram. Figure 3.2 shows the difference in appearance that is associated with
changing the smoothing parameter. The three density estimates are based on the
same sample of data, and all use the Gaussian kernel function. It can be seen that
using a smoothing parameter of 0.5 produces an estimate of the density which is quite
rough (left-hand plot), while using a smoothing parameter of 2 (middle plot) produces
asmoother estimate. A smoothing parameter of 10 (right-hand plot) produces an even
smoother plot. As the smoothing parameter increases, the density curve becomes
smoother.

If the researcher chooses a smoothing parameter that is too small, the density
estimate will appear jagged, spuriously highlighting anomalies of the data such as
asymmetry and multiple modes. Such features can appear because of chance variation
rather than because they are structures present in the probability distribution. If the
researcher chooses a smoothing parameter that is too large, she may obscure much
of the structure in the data, a phenomenon known as oversmoothing. Ideally a
smoothing parameter is chosen that is small enough to reveal detail in the graph but
large enough to inhibit random noise.

Several methods have been proposed to choose an optimum smoothing parameter
based on the data (see Sheather, 2004). While these methods tend to compute
smoothing parameters that perform well in simulation studies, for sample data that
is substantially nonnormal, some manual adjustment may be required. Another
method is the use of adaptive kernel estimation (e.g., Bowman & Azzalini, 1997,
Silverman, 1986; Terrell & Scott, 1992), especially for estimating densities of long-



NONPARAMETRIC DENSITY ESTIMATION 55

A ©
8 5 -
§ - S s
(=]
£ £ 1 g 2
2 ] 2 2 9]
g o & ¢ | & °
S >
15 ° 8 ]
i 4 S
=] -_l_ ' ' ' [ =] -_; 1 ¥ ' [ =] A T T T
0 20 40 60 80 100 0 20 40 60 80 10O 0 50 100
Age Age Age

Figure 3.2: Kernel density estimates using three different smoothing parameters.
Each estimate used a Gaussian kernel. The estimate on the left used a smoothing
parameter of 0.5. The estimate in the middle used a smoothing parameter of 2. The
estimate on the right used a smoothing parameter of 10.

tailed or multi-modal data. Adaptive kernel density estimation allows the kernels to
have differing smoothing parameters. Varying the smoothing parameter reduces the
potential of undersmoothing the density estimate where there are sparse data and also
the potential of oversmoothing the density estimate where there are heavy data.

Unfortunately, there is no one uniform best method for choosing the smoothing
parameter (Simonoff, 1996). Terrell (1990, p. 470) asserts that “most density es-
timates are presumably designed on aesthetic grounds: The practitioner picks the
smoothing parameter so that the density looks good. Clearly, though, such an indi-
vidualistic approach does not lead to replicable results; nor does it lead reliably to
sensible estimates from a novice.”

3.2.5 Plotting the Estimated Density

To obtain a kernel density estimate, the density () function is used. The function
is provided a vector of data via the argument x=. For the example, kernel density
estimation is performed for the Age variable from the VLSS data frame. In order
for R to recognize Age, it must be associated with the VLSS data frame. This is
accomplished by using the $ operator. The $ operator allows the extraction of one
variable, or access to one column of a data frame. Think of the data frame name
as the “family name” (e.g., Smith) and the variable name as the "given name" (e.g.,
John). Putting these together yields Smith$John.
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The density () function can also be supplied with the optional argument bw= to
adjust the smoothing parameter.? The output can be assigned to an object, say d,
which will store the estimated kernel density estimates. The density() function
produces density estimates for 512 equally spaced points by default. This object can
then be printed to provide summary information about the density estimates. For a
complete list of these values, the command d$x or d$y can be issued.

Command Snippet 3.2: Syntax to estimate the density of the Age variable. The
density object is then printed and plotted.

## Estimate the density
> d <- density(vlss$Age)

## Print the density object d

> d

Call:
density.default(vlss$Age)

Data: VLSS$Age (28633 obs.); Bandwidth 'buw' = 2.344
x y

Min. : -7.033 Min. 1.008e -07

1st Qu.: 21.234 1st Qu.:1.410e-03

Median : 49.500 Median :6.416e-03

Mean : 49.500 Mean :8.836e-03

3rd Qu.: 77.766 3rd Qu.:1.385e-02

Max. :106.033 Max. 2.587e-02

## Plot the density object d
> plot(d)

Command Snippet 3.2 shows the syntax used to assign, print, and plot the estimated
density of Age. Toplot the kernel density estimate, the plot () function is used on the
estimated densities, which are stored in the density object d. The plot() function
draws a line graph of the density based on the x and y values computed by the
density () function. The left-hand plot of Figure 3.3 shows the result of calling the
plot () function on the density object d.

In the example, the computed value of the smoothing parameter is 2.344 (see
Command Snippet 3.2).3 This value can be obtained by printing the density object
(see Command Snippet 3.2). Although the default smoothing parameter in this case
seems reasonable in providing a smooth plot, the prudent data analyst should try
several smoothing parameters to ensure that the plot is not oversmoothed. Figure 3.3
shows the original plot, as well as additional kernel density plots using the Sheather

2The argument kernel= can also be specified.

3The default value for the smoothing parameter is selected using Silverman’s rule of thumb.The method
popularized by Silverman—which was originally proposed for improved density estimation in histograms
(e.g., Deheuvels, 1977; Scott, 1979)—is a computationally simple method for choosing the smoothing
parameter. See Silverman (1986) for more details.
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Figure 3.3: Kernel density estimates using Silverman’s rule of thumb for the smooth-
ing parameter (left-hand plot). This is the default value for the smoothing parameter.
The middle plot uses the Sheather and Jones “solve the equation” method of com-
puting the smoothing parameter, and the right-hand plot uses an adaptive kernel
function.

and Jones “solve the equation” method of computing the smoothing parameter and an
adaptive kernel function. All the methods yield similar curves for the Age variable.

The second plot in Figure 3.3 can be created by adding the argument bw="SJ"
to the density() function (see Command Snippet 3.3). The argument bw= takes
either a numerical value to specify the smoothing parameter or a character string that
identifies the method that should be used to compute the smoothing parameter. For
example, bu="SJ" will compute the smoothing parameter based on the Sheather and
Jones “solve the equation” method. The plots in Figure 3.2 were created by using
bw=0.5, bw=2, and bw=10.

Command Snippet 3.3 also includes the syntax to estimate the density of the ages
using an adaptive kernel function. This is estimated using the akj () function which
is in the quantreg package. The vector that provides the data used for estimating
the density is provided to the x= argument. The z= argument takes an equispace
sequence of values for which the density should be estimated. From the output in
Command Snippet 3.2, recall that the density object, d, contains a set of equispaced
z-values at which the density was estimated. These can be accessed using d$x, which
is then supplied to the z= argument.

The estimated density is assigned to the object d.akd. Because of the iterative
method that adaptive kernel estimation uses, running the function can take some time
depending on the computer’s processor and the size of the sample. Lastly, the density
is plotted using the plot() function. Because the values for z and y, that are to be
plotted, are contained within different objects, we must specify this in the plot ()
function. The argument type="1" draws a line plot rather than just plotting the
ordered pairs of z and y.

Inall of the plots, the estimated kernel density shows that the population has three
potential modes in the distribution. These likely refer to three distinct age groups or
subpopulations. Each of these age groups has a higher density (taller distribution)
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Command Snippet 3.3: Changing the smoothing parameter in the density plot.

## Density plot using smoothing parameter from Sheather and
Jones method

> d.SJ <- density(vlss$Age, bw = "SJ")

> plot(d.SJ)

## Density plot using adaptive kernel density estimation
> library(quantreg)

> d.akd <- akj(x = vlss$Age, z = d$x)

> plot(x = age, y = d.akd$dens, type = "1")

L

and seems to have less variation (a thinner distribution) than the subsequent younger
age group.

3.3 SUMMARIZING THE FINDINGS

Researchers have many options when presenting their findings. Statistical analyses
are presented in tables, graphs, and/or prose. Statistics texts sometimes provide
little guidance for such reporting. This is likely due to the fact that reporting styles
vary widely based on the outlet for the work. What is appropriate for reporting in
a master’s thesis might be inappropriate for a professional journal and vice versa.
Throughout this monograph we will try to offer some guidance using the standards
put forth by the American Psychological Association (APA; American Psychological
Association, 2009).

When summarizing the findings, it is desirable to synthesize the statistical informa-
tion culled from the data analysis with the content and findings from the substantive
literature. This helps the researcher either verify or call into question what she is
seeing from the analysis. Relating the findings back to previous research helps the
researcher evaluate her findings. The results might verify other findings or question
them. The researcher might also question her own results if they are not consistent
with expectations and other studies. There are two things to keep in mind:

e There is no “right” answer in statistical analysis (Box & Draper, 1987; Box,
1979) but only explanation and presentation.

o There is a distinction between how most researchers do their analysis and how
they present their results.

With the accumulation of statistics knowledge comes the prospect of a greater
number of choices in the data analysis. Different researchers may make different
analytic decisions; and while, hopefully, the substantive findings about the research
questions will not change, it is possible that they may. Furthermore, different re-
searchers will choose to make different decisions about what information to present
in a paper. When presenting findings, regardless of the decisions made or analytic
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approach taken, there needs to be sufficient information included to judge the sound-
ness of the conclusions drawn. Section 3.2.2 provides an example of what constitutes
sufficient information in the write-up of the results.

3.3.1 Creating a Plot for Publication

The Publication Manual of the American Psychological Association (American Psy-
chological Association, 2009) is judicious in the encouragement of the use of graphs
and figures. However, figures are only appropriate when they complement the text
and can eliminate a lengthy textual discussion. According to the APA, a good graph
should have, “lines [that] are smooth and sharp; typeface [that] is ... legible; units
of measure are provided; axes are clearly labeled; and elements within the figure are
labeled or explained” (p. 153). R has functionality that allows the user to produce
highly customized graphs. One can add labels, titles, legends, etc., very easily to
almost any plot. R can be used to make a plot of publishable quality very quickly.

The main function for creating graphs discussed in this monograph is the plot ()
function. The plot() function includes several optional arguments that can be
included to create a figure that meets the APA standards. Below, some of these
arguments are illustrated to create a publication-quality figure displaying the density
of the age distribution for the VLSS data. The syntax used is provided in Command
Snippet 3.4, whereas the plot itself is shown in Figure 3.4.

Density
0.015 0.020 0.025
1 1 L

0.010
1

0.005
1

0.000

T T T T T T
0 20 40 60 80 100

Age (in years)

Figure 3.4: Kernel density estimate for the distribution of ages for a sample 0f28,633
Vietnamese citizens using an adaptive kernel method.
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Command Snippet 3.4: Code to plot the age data for publication.

## Add axes labels
> plot(x = d$x, z
years)", ylab

dakd$dens, type = "1", xlab = "Age (in
"Density")

## Remove main title

> plot(x = d$x, z = dakd$dens, type = "1", xlab = "Age (in
years)", ylab = "Demnsity", main = " ")

## Change box type

> plot(x = d¥x, z = dakd$dens, type = "1", xlab = "Age (in
years)", ylab = "Demnsity", main = " ", bty = "1")

Labels Axeslabels should be informative to the reader and include units of measure
if they aren’t readily apparent to the reader. The default x-axis label for the density
plot does not represent the x-axis scale, a problem that should be corrected. For the
figure, it is desirable to have a x-axis label of Age (in years). The default y-axis label
is fine. According to APA, axes labels should use text in “heading caps” parallel to
the axis. For example, the y-axis label should be readable when the graph is rotated
90 degrees clockwise. The arguments x1ab= and ylab= can be added to the plot ()
function to change the axes labels. Both arguments require a quoted character string,
which consists of the desired label.

Captions Although thetitle of the plot can be changed using the main= argument,
when preparing a figure for an APA journal, a plot title should not be included (omit
main=). Rather, a figure caption should be created in the word-processing document.
Sometimes R puts in a title by default, in which case it may be necessary to remove
it. By providing an empty character string, main=" ", it is possible to remove any
default title that R might input.

APA has specific guidelines pertaining to figure captions. Figure captions are
placed below the figure and use Arabic numerals in italics to define them (e.g., Fig-
ure 1.). Since the caption “’serves both as an explanation of the figure and as a figure
title” (American Psychological Association, 2009, p. 159), it needs to be descrip-
tive yet concise. The caption should also include any information a reader needs to
interpret the figure . .. “a reader should not have to refer to the text to decipher the
figure’s message” (p. 160). Captions are printed using standard typeface and end
with a period. For example, the title and caption for our plot might read

Figure 1. Kernel density estimate for the distribution of ages for a sample of 28,633
Vietnamese citizens using an adaptive kernel method.

Axes Some professional journals require there be no box around the plotting area.
That is, only the x-axis and y-axis are drawn. This practice is encouraged by the
APA. The box type around the plot can be controlled by including the bty= argument
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to the plot () function. The argument bty="1" is used to remove the top and right
side of the box so that only the x- and y-axes are included in the plot.*

The process suggested by the syntax in Command Snippet 3.4 is to build a plot,
piece by piece, saving code that produces the desired effects in the script file. For
example, one could initially start with a density plot of the ages, then add labels and
a title. There are many additional changes that can be made. Each time additional
syntax is executed, the plot feature is added to an existing graph. An error message
will be produced when there is an attempt to add a feature when there is no existing
graph. To remake an entire graph, the initial plot () command must be re-run. If
a command produces an undesirable result, it is easy to re-create the graph from the
beginning using alternative features by revising the syntax in the script file.

3.3.2 Writing Up the Results for Publication

When presenting results, researchers should integrate or synthesize information from
the data analysis with the content and findings from the substantive literature. The
writing should also be clear and concise. Since many journals have a page or word
limit, precious space should not be used up presenting every nuance of the statistical
results. Rather, focus should be on the results most relevant to the research questions.
Remember, the statistical analysis is used to inform the substantive area, and the
writing should reflect this. An example of a write-up for the age distribution analysis
might be as follows.

3.4 EXTENSION: VARIABILITY BANDS FOR KERNEL DENSITIES

One concern that is raised by using the density estimate in exploring univariate data
is the need to evaluate which features of the density estimate indicate legitimate
underlying structure and which can be attributable to random variation. For example,
does the Age variable in the VLSS data frame actually contain three modes? Or,
in particular, is the third mode attributable to chance variation produced by poor
estimation of the density at those age values? One method of capturing the uncertainty
associated with a density estimate is to create a variability band or interval around
the density estimate. As demonstrated by Bowman and Azzalini (1997), variability
bands around the density estimate, say, p(z), have the form

p(z) £2 x SEﬁ(z), (3.1

where SEﬁ(x) is the standard error computed from the variance estimate, which in
turn is computed using a Taylor series approximation (see Bowman & Azzalini, 1997,
for further details).

“Different boxes are drawn by using various character strings in the bty= argument. We use "1" since
the box we want—the left and bottom sides of a box—resemble and correspond to the letterL depicted on
the keyboard. Forotheroptions, use help(par).
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Sample Write-Up

Bowman and Azzalini (1997) have implemented functionality to compute and
plot the density estimate along with variability bands in R, using the sm.density ()
function from the sm package. For illustrative purposes, consider a random sample
of N = 1000, selected without replacement using the sample () function. Figure
3.5 shows the plotted density and variability bands for the subset of ages, using a
smoothing parameter h = 4.

Bowman and Azzalini (1997) show that the density estimate of the true underlying
density is biased” and the bias is a function of both the curvature of the estimate and
the value of the smoothing parameter, h. In particular, p(z) underestimates p(z) at
the peaks in the true density and overestimates it at the troughs. As h increases, bias
increases but variability decreases. As h decreases the opposite relation occurs.

Wand and Jones (1995) argue that the graphical display of the variance structure
can be helpful when determining if interesting features of the density are indeed part
of the underlying structure in the population. For example, the width of bands for the
VLSS data strengthens the evidence that the troughs and peaks of the small wiggles
seen in Figure 3.5 stay within each other’s variability bands suggesting that there is
no good evidence that the wiggles exist in the population. On the other hand, the
different plateau near ages 35 and 70 are clearly distinct.

Command Snippet 3.5 shows the syntax used to create Figure 3.5. The argument
display="se" inthe sm.density() function indicates that variability bands are to

JBias is defined as the difference being the true population density p(z) and its nonparametric estimate
B(z).
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be plotted along withthe density estimate. The argument h= indicates the smoothing
parameter to be used in the density estimation.

Density
0.015 0.020 0.025 0.030
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Figure 3.5: Kemnel density estimate (solid line) with variability bands (dotted lines)
for the distribution of ages for the Vietnamese population. A smoothing parameter
of h = 4 was used in the density estimation.

Command Snippet 3.5: Code to plot the kernel density estimate of the age data
along with variability bands.

> age.sample <- sample(vlss$Age, n = 1000, replace = FALSE)

> library(sm)

> sm.density(age.sample, h = 4, xlab = "Age", ylab = "Density",
xlim = c(-7,106), ylim = c(0, 0.03), display = "se",
rugplot = FALSE)

3.5 FURTHER READING

This section provides some references for the reader interested in building on the
material presented in this chapter. While this list is not complete, it does offer
some starting points. The philosophies underlying exploratory data analysis were
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introduced by Tukey (1962, 1977). Many other statisticians have written papers
building on and implementing Tukey’s initial ideas including Cleveland (1984), Dasu
and Johnson (2003), and Leinhardt and Leinhardt (1980). Regarding the ideas and
methods related to density estimation, the interested reader is referred to Bowman
and Azzalini (1997), Sheather (2004), and Wilcox (2004). Overviews and surveys
of the methods used to select a smoothing parameter are offered in Turlach (1991)
and Jones, Marron, and Sheather (1996). For further guidance on presenting results,
resources include American Educational Research Association (2006), American
Psychological Association (2010), and Cummins (2009).

PROBLEMS

3.1 Using the VLSSperCaptia.csv data set, create a plot of the kernel density
estimate for the marginal distribution of household per capita expenditures. Explore
the effect of changing the smoothing parameter to determine whether there is evidence
that this distribution is multimodal. Write up the results of your investigation as if
you were writing amanuscript for publication in a flagship journal in your substantive
area. Be sure to include a density plot of per capita expenditures using the smoothing
parameter that you have settled on.

3.2 Use the following commands to draw 50 randomly selected values from a
standard normal distribution—anormal distribution having amean of 0 and a standard
deviation of 1. (The line set.seed(100) will set the starting seed for the random
number generation so that the same set of random observations will be drawn.)

M > set.seed (100)

> x <- rnorm(n = 50, mean = 0, sd = 1)

a) Create a density plot of x using a smoothing parameter of 0.5.

b) The function density() has an optional argument, kernel= that al-
lows density estimates to be constructed from different shapes of kernel
functions. The default kernel function, when this argument is not in-
cluded, is to use a Gaussian density estimate (kernel = "gaussian").
Using the same smoothing parameter of 0.5, create a density plot of x
using each of the following kernel shapes: kernel = "triangular",
kernel = "rectangular", kernel = "epanechnikov", and kernel
= "biweight". (Note: You should have four different plots.)

¢) Describe the similarities and differences between the four plots.

3.3 Generate 100 values from a standard normal distribution and assign them to an
object called y.
a) Use the function sm.density () to create a density plot of y.
b) Create a density plot of y, but this time include the argument model =
"Normal" in the sm.density () function.
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When the argument model = "Normal" is included in the function, a
reference band, indicating where a density estimate is likely to lie when
the data are normally distributed, will be superimposed on the plot. Based
on this plot, is there evidence to suggest that the generated data are non-
normal? Explain.

Repeat the same exercise, but this time draw a random sample of 100
observations from a chi-square distribution (skewed to the right) with 3 de-
grees of freedom. The syntax to draw these datais z <- rchisq(n=100,
df=3). Create a density plot of z. Based on this plot, is there evidence to
suggest that the generated data are nonnormal? Explain.



sdfsdf



CHAPTER 4

EXPLORATION OF MULTIVARIATE
DATA: COMPARING TWO GROUPS

The nature of doing science, be it natural or social, inevitably calls for comparison.
Statistical methods are at the heart of such comparison, for they not only help us gain
understanding of the world around us but often define how our research is to be carried

out.
—T. F. Liao (2002)

In Chapter 3 the Vietnam Living Standards Survey (VLSS) was introduced. The
survey was designed to provide an up-to-date source of data on households to be
used in public policy formation, to assess current living standards, and to evaluate the
impact of public programs. The data set is used to address three research questions.

1. What is the age distribution for the Vietnamese population?

2. Are there differences in the annual household per capita expenditures between
the rural and urban populations in Vietnam?

3. Are there differences in the annual household per capita expenditures between
the seven Vietnamese regions?
Comparing Groups: Randomization and Bootstrap Methods Using R 67

First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.
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The first research question was addressed in Chapter 3. Inthis chapter, focus is on
whether the living standards for urban and rural Vietnamese are equitable and related
questions about differences between the two groups.

4.1 GRAPHICALLY SUMMARIZING THE MARGINAL DISTRIBUTION

According to the codebook, the data set VLSSperCapita.csv contains data on the
household per capita expenditures for N = 5999 households along with two demo-
graphic variables. Assuming that a new R session is started, we will again need to
read in the data. The structure of the data is like the structure of the data in the
VLSSage.csv file considered previously, namely tabular. Recall that tabular data is a
cases (rows) by variables (columns) array. The variable names are included in the
first row, each of the values is separated by a comma, and there are no missing data.

The data are read into R using the read.table() function. Command Snippet
4.1 provides an example. In the command snippet, after the data are read in, the
data frame is examined using head (), tail (), str (), and summary(). The output
looks reasonable based on the codebook—there are four variables, and the first few
cases look plausible for all four variables.

Initially, the density estimate of the per capita expenditures for all 5999 households—
ignoring whether they are urban or rural—is examined. The distribution ignoring the
population area is known as the marginal distribution. Recall that in the last chapter,
marginal density plots were created using the density() and plot() functions.
The syntax to plot the density estimate for the marginal distribution of the per capita
expenditures is shown in Command Snippet 4.2.

The plot of the marginal distribution shown in Figure 4.1 indicates that the per
capita expenditures data is right skewed, as the majority of dollar amounts pile up
at the low end, and taper off moving to the right. This suggests that many of the
households in Vietnam have a low per capita expenditure (around $100 U.S.). It also
shows some households that may be potential outliers in the marginal distribution.
Theseare households with very high expenditures relative to therest of the households
in the sample.

4.2 GRAPHICALLY SUMMARIZING CONDITIONAL DISTRIBUTIONS

Examining the marginal distribution is useful in an initial examination of the data, but
it does not help in answering the research question about rural and urban differences.
To help address the research question, the distribution of per capita expenditures for
each area must be examined separately. The distributions of per capita household ex-
penditures for each area are called conditional distributions because they are defined
conditional on area.

To graphically examine the conditional distributions, two new variables are cre-
ated, one that contains the household per capita expenditures for the rural households
and one for the urban households. The per capita expenditures for these two variables
are plotted separately. Since there is a factor variable that specifies whether each
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Command Snippet 4.1: Syntax to read in the per capita expenditure data.

## Read in the data

> household <- read.table(file =
"/Documents/Data/VLSSperCapita.csv", header = TRUE, sep =
“,", row.names = "ID")

## Examine the first part of the data frame

> head(household)

Dollars Area Region
184.33 Rural
62.73 Rural
119.13 Rural
76 .61 Rural
97 .46 Rural
132.09 Rural

OGP WN -
a0 on

## Examine the last part of the data frame
> tail(household)
Dollars Area Region

5994 320.83 Urban
5995 351.78 Urban
5996 119.21 Urban
5997 298.80 Urban
5998 303.77 Urban
5999 652.42 Urban

wwwwww

## Examine the structure of the data frame

> str(household)

'data.frame': 5999 obs. of 3 variables:

$ Dollars: num 184.3 62.7 119.1 76.6 97.5

$ Area : Factor w/ 2 levels "Rural","Urban": 1 1 1 1 1111
11 ..

$ Region : int 5 5 5 5 5 5 55 5 5

## Summarize the data frame
> summary (household)

Dollars Area Region
Min. . 23.82 Rural: 4269 Min. :1.000
1st Qu.: 111.41 Urban:1730 1st Qu.:3.000
Median : 159.80 Median :5.000
Mean : 212.58 Mean :4.361
3rd Qu.: 247.40 3rd Qu.:6.000
Max. :3053 .45 Max. 7.000

household in the sample is urban or rural (i.e., Area), the indexing operations in R
are used to subset the data. The indexing operations in R are quite powerful and
allow access to subsets of cases, or subsets of variables, or both, from the original
data frame.
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Figure 4.1: Kernel density estimate for the marginal distribution of household per
capita expenditures (in U.S. dollars).

Command Snippet 4.2: Syntax to plot the marginal per capita household expendi-
tures.

= non)

L[ > plot(density(household$Dollars), xlab = "U.S. Dollars", main J

4.2.1 Indexing: Accessing Individuals or Subsets

An element of a matrix or data frame is accessed using the bracket notation, x [i,
jJ1, where x is the name of the matrix or data frame, i is the row number, and j
is the column number. The household data frame has 5999 rows and 5 columns,
or 5999 x 5. To access the first household’s per capita expenditure, the following
syntax is used, household[1, 2]. Indexingis not limited to single elements; entire
rows or columns can be selected or subsetted. To select an entire row or column, the
appropriate index location is left blank. For example, x[1 , ] selects the first row
and all the columns. The syntax x[ , ] selects all the rows and all the columns.
The syntax x[ , ] can be shortened to x, which is convenient in many applications.
Command Snippet 4.3 provides examples of syntax for indexing elements and vectors
from the household data frame and elements from the vector household$Dollars.
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Command Snippet 4.3: Indexing elements from the household data frame.

## Access the first household's per capita expenditure.
> household[1, 1]
[1] 184.33

## Access all the variables for the first household.
> household[1, ]

ID Dollars Urban Region Urban.Factor
1 12225 184.33 0 Northern Uplands 0

## Access every household's per capita expenditure.
## Note that the output is suppressed.
> household[ ,1]

## Access the first household's per capita expenditure.
> household$Dollars[1]
[1] 184.33

4.2.2 Indexing Using a Logical Expression

The first objective is to obtain the household per capita expenditures for only the
rural households. Rather than select a single element from the household$Dollars
vector, we will select those households for which Area is Rural. Command Snippet
4.4 shows the syntax for obtaining the household per capita expenditures for the rural
and urban households, respectively, and assigning those values to new objects.

Command Snippet 4.4: Indexing using a logical expression.

> rural.households <- household$Dollars[household$Area
"Rural"]

> urban.households <- household$Dollars[household$Area
"Urban"]

Notice the use of two equal signs in the indexing in Command Snippet 4.4. It
would seem that one or two equal signs should not make for a big difference, but to a
program like R, it signifies a great deal of difference. A double equal sign indicates
a Boolean or logical expression in R. A logical expression is an expression that is
either evaluated as TRUE or FALSE.

The logical expression in the indexing is essentially asking if the value of
household$Area “is equal to” Rural. If so, the logical expression is evaluated
as TRUE and the value of household$Dollars for that household should be in-
cluded in the new variable. If the logical expression is evaluated as FALSE, the
household’s per capita expenditure should not be included. Quotation marks must
appear around Rural since it is a character string. Likewise, a variable that only con-
tains urban households can be created using the logical expression Area=="Urban".
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Command Snippet 4.4 shows the syntax for separately creating variables containing
the household per capita expenditures for both the rural and urban households.

423 Density Plots of the Conditional Distributions

A graph of the density estimate for the rural households can be constructed by using
the density() function with rural.households. Then the plot() function is
used to plot the density of the per capita expenditures for the rural households. The
same thing is done for the urban households. For purposes of comparisons, it is
useful to draw both densities on the same plot. The plot () function does not allow
for this. Rather, the 1ines () function must be used to add additional densities to an
existing plot.

A density plot of the household per capita expenditures for the urban households
is added to the existing plot of the rural households. To differentiate between the
two densities, different types of lines are used, a solid line for the rural density and a
dotted line for the urban density. The argument 1ty="solid" is used with plot()
for the rural density curve and 1ty="dotted" is used with lines() for the urban
density curve. The effect of the 1ines() function is to add the new density to the
existing plot. Command Snippet 4.5 shows the syntax for plotting the densities for
both conditional distributions on the same graph.

Command Snippet 4.5: Plotting the density curves for the rural and urban house-
holds.

## Plot density curve for the rural households

> d.rural <- demsity(rural.households)

> plot(d.rural, main = " ", xlab = "Household Per Capita
Expenditures (in U. S. Dollars)", 1lty = "solid", bty = "1")

#4# Add density curve for the urban households
> d.urban <- density(urban.households)
> lines(d.urban, 1ty = "dotted")

Figure 4.2 shows a single graph-—or panel—with the conditional density curves
superimposed and coded by line type. By having both conditional distributions in
the same panel, this type of plot makes it psychologically easier for people to make
comparisons. As can be seen in the plot, the urban curve is shifted to the right of the
rural curve toward higher dollar amounts. In addition, the peak of the urban curve is
lower than that of the rural curve, and both distributions are positively skewed.

4.2.4 Side-by-Side Box-and-Whiskers Plots

Another graph that is useful for making comparisons is the side-by-side box-and-
whiskers plot. The function to create a side-by-side box-and-whiskers plot is
boxplot (). Toproduce side-by-side box-and-whiskers plots, the boxplot () func-
tion is supplied with the name of each variable to be plotted, separated by commas.
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Figure 4.2: Kemel density plots for the distribution of household per capita ex-
penditures (in dollars) conditioned on area. The density of household per capita
expenditures for urban households is plotted using a solid line and that for rural
households is plotted using a dotted line.

The optional argument names= is used to produce better labels for each box plot.
Command Snippet 4.6 shows the syntax used to create the side-by-side graphs in Fig-
ure 4.3. If the textlabels are long, the plot may have to be resized to accommodate
them.

Command Snippet 4.6: Syntax to plot the distribution of per capita household
expenditures conditioned on area using a side-by-side box-and-whiskers plot.

> boxplot(rural.households, urban.households, names =
c("Rural", "Urban"))

Box-and-whiskers plots provide a flexible and effective manner in which to graphi-
cally summarize the distributions of the variables. They highlight the center (median)
of the data, the variation in the central part of the data, how the tails relate to the
central part of the data, and they display potential outliers. The box and the “fences”
connected to it provide an indication of the asymmetry and variation in the middle
part of the distribution. The horizontal line in the box represents the median. The
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length of the box provides an indication of the range for the central 50% of the scores
in the distribution. When the median is close to the lower box edge, this indicates a
positively skewed distribution. The box-and-whiskers plot forrural in Figure 4.3 is an
example. When the median is close to the upper box edge, this indicates a negatively
skewed distribution. When the median line is roughly in the center of the box, then
the middle 50% of the distribution is relatively symmetric. The box-and-whiskers
plot forurban in Figure 4.3 is an example, as the median is approximately equidistant
from the box edges. However, the numerous points in the upper portion indicate the
overall distribution is not symmetry, only the middle 50%.

™

Hamshald Per Cagta Gxpardtures |m U.&. Dotor|
1
000

Figure 4.3: Side-by-side box-and-whiskers plots for the conditional distributions of
household per capita expenditures (in U.S. dollars) using the names= argument.

43 NUMERICAL SUMMARIES OF DATA: ESTIMATES OF THE
POPULATION PARAMETERS

After graphically examining thedata, it is desirable to obtain a more precise numerical
summarization of the estimated population distribution. The numerical summaries
can generally be split into two different types:

e Measures of location, or central tendency
e Measures of variability, or dispersion

Measures of location are single values that represent the measurement of a typical
individual or unit in the distribution being studied. For example, in Figure 4.3, a typ-
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ical household in the distribution might be defined as having a per capita expenditure
at the dollar amount directly below the peak of the curve. Based on this, the typical
urban household has a higher per capita expenditure than the typical rural household.
Measures of variability provide an indication of how different, or variable, the
measurements in the distribution happen to be. For instance, Figure 4.3 shows that
the urban distribution spans a longer interval than the rural distribution, indicating
the former has greater variation. Researchers are often interested in the measures of
location and variation in the population as they constitute relatively clear summaries
of important aspects of distributions. The numerical summaries of the population
distribution are called parameters. Parameters are estimated using sample data.

4.3.1 Measuring Central Tendency

The three most common measures of location are the mean, the median, and the mode.
The mode describes a typical measurement in terms of the most common outcome or
most frequently occurring score. In Figure 4.2, the mode of each distribution is the
dollar amount directly under the peak of the curve. A limitation in using the mode
is that a distribution can have more than one. This indicates that the mode will not
always have a unique value and, thus, cannot be recommended for general use.

In contrast to the mode, the median and mean are always unique values. The
median is the middle-most score in a distribution. The median() function is used to
find the median of the distribution. The best known and most frequently used measure
of central tendency is the mean, or the average. The mean () function is used to find
the mean of a distribution. The use of the median () and mean () functions is shown
in Command Snippett 4.7.

Command Snippet 4.7: Syntax to obtain numerical summaries of location for per
capita household expenditures.

## Marginal median household per capita expenditure
> median(household$Dollars)
[1] 159.8

## Marginal mean household per capita expenditure
> mean(household$Dollars)
[1] 212.5778

The median household per capita expenditure is $160, and the mean household
per capita expenditure is $213. In symmetric distributions, the mean and median
can be equal or nearly so. However, in asymmetric distributions, the two can differ,
sometimes drastically so.

The mean and median computed previously summarize the marginal distribution,
as Area is ignored. Though the marginal estimates are useful, the goal is to compute
the conditional estimates of a typical household per capita expenditure for each area.
Unfortunately, the mean () and median () functions, by themselves, do not allow for
conditioning on Area. For conditional results, the tapply() function is used.
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The tapply () function applies some other function (e.g., mean()) to a numeric
response variable, conditional on the levels of a predictor variable, the latter being
a grouping or factor variable. The arguments for the function are the quantitative
vector (X=), the conditioning factor (INDEX=), and the function to be applied (FUN=).
The tapply() function also takes optional arguments for the function being ap-
plied. For example, the argument na.rm=TRUE—which is an optional argument for
median() and mean() for the treatment of missing values—can be appended as a
fourth argument in the tapply () function.

The syntax for computing the mean household per capita expenditure conditioned
on area is shown in Command Snippet 4.8. The output in that snippet shows that the
mean for the urban area is more than twice that for the rural area. This is consistent
with Figure 4.2 that shows the urban distribution being right-shifted relative to the
rural distribution. This suggests that the average household per capita expenditure
differs for urban and rural areas in the sample.

Command Snippet 4.8: Syntax to obtain numerical summaries of central tendency
for per capita household expenditures conditioned on area.
> tapply(X = household$Dollars, INDEX = household$Area, FUN =
mean)

Rural 157.4192
Urban 348.6887

4.3.2 Measuring Variation

When an analysis deals with atleasttwo groups, as in the rural/urban comparisons, it is
important to consider group differences in variability and well as location. Variability
withinthe groups influences the evaluation of location differences. High within-group
variability can be an overwhelming feature that can render location differences as
irrelevant, or at least less relevant. On the other hand, low within-group variability
can work to accentuate location differences.

Consider the examples of Figures 4.4 and 4.5. In both figures the mean difference
between the distributions is the same. However, the large within-group variation in
the rural distribution in Figure 4.4 makes the interpretation of group differences less
clear for these data than for the data shown in Figure 4.5. In fact, it can be argued
that the most important feature is the fact that the urban distribution is almost entirely
contained within the rural distributions. This means, for example, that though the
rural mean is lower than the urban mean, there are several rural households that are
higher than the urban mean, and some that are higher than any urban households.

In contrast, consider Figure 4.5. There is essentially no overlap between the two
distributions. This means that the mean difference also characterizes the difference
between almost every pair of households from the two distributions. If we were
to randomly select one rural and one urban household, the rural household would
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almostsurelyhave alowerannual income. The same cannotbe said of the overlapping
distributions in Figure 4.4.
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Figure 4.4: Simulated density plots for Figure 4.5: Simulated density plots for
the distribution of household per capita the distribution of household per capita
expenditures (in dollars) conditioned on expenditures (in dollars) conditioned on
area showing large within-group varia- area showing small within-group varia-
tion. tion.

Two summary measures of variation—the standard deviation and variance—are
based on the deviations of the data from the mean. The sd () and var () functions can
be used to compute these quantities, respectively. Command Snippet 4.9 illustrates
the use of the functions to find the variance and standard deviation for both the
marginal and conditional distributions of household per capita expenditures.

Based on these conditional summaries, the rural households show less variation
than the urban households. This is consistent with Figure 4.2 that shows the urban
distribution being wider relative to the rural distribution. The average household per
capita expenditure is more homogenous for rural than for urban households. There
are some caveats regarding indexes of variation. Most notably, measures of variation
are sensitive to asymmetry, and their values can be inflated by even a single extreme
value. For this reason, the skewness of the distributions should be considered when
comparing measures of variation computed on such distributions.

Another measure of variation that often gets reported in the educational and
behavioral sciences, is the standard error of the mean. The idea underlying the
standard error is that different samples drawn from the same population have different
values of the sample mean. This is a consequence of random sampling and the fact
that sample information is always incomplete relative to the population. The standard
error of the mean is the standard deviation of all the possible sample means for a
given sample size. As such, this measure offers an indication of the precision of the
sample mean, when it is used as an estimate of the population mean. The smaller the
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Command Snippet 4.9: Syntax to obtain numerical summaries of variation for per
capita household expenditures.

## Marginal variance for the household per capita expenditures
> var(household$Dollars)
[1] 32221.84

## Marginal standard deviation for the household per capita
expenditures

> sd(household$Dollars)

[1] 179.5044

## Variance for the household per capita expenditures
conditioned on area

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
var)

Rural 9384.822

Urban 62564.272

## Standard deviation for the household per capita expenditures
conditioned on area

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
sd)

Rural 96.8753

Urban 250.1285

standard error the greater the precision. The standard error for the mean is computed
as

SDy

7 4.1

SEy =

where SDyv is the standard deviation of the observed measurements on some variable
Y. The standarderror of the mean is computed for both the urban and rural households
in Command Snippet 4.10. The standard error for the rural group is approximately
four times smaller than that of the urban group (% =~ 4). This suggests that
the sample mean for the rural households is a more precise estimate of the rural
population mean than the sample urban mean is for the urban population. The use
of the sample estimates and standard error for estimating population parameters is

discussed further in Chapter 9.

4.3.3 Measuring Skewness

Skewness is a numerical measure that helps summarize a distribution’s departure
from symmetry about its mean. A completely symmetric distribution has a skewness
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Command Snippet 4.10: Syntax to compute the standard error of the mean for both
the rural and urban households.

## Standard deviations
> numerator <- tapply(X = household$Dollars, INDEX =
household$Area, FUN = sd)

## Square root of sample sizes
> denominator <- sqrt(table(household$Area))

## Standard errors

> numerator / denominator
Rural Urban

1.482689 6.013678

attr(,"class")

[1] "table"

value of zero.! Positive values suggest a positively skewed (right-tailed) distribution
with an asymmetric tail extending toward more positive values, whereas negative
values suggest a negatively skewed (left-tailed) distribution with an asymmetric tail
extending toward more negative values.

The 1071 package? provides a function called skewness (), which computes the
skewness value for a sample distribution based on three common algorithms. This
function is supplied with the argument type=2 to compute G/, a slightly modified
version of skewness that is a better population estimate (e.g., Joanes & Gill, 1998).
Command Snippet 4.11 shows the use of skewness() for both the marginal and
conditional distributions. To find the skewness for the conditional distributions, the
argument type=2 provided in the skewness () function is appended as an additional
argument in the tapply() function.

The output for the skewness () function suggests that both the urban and rural
distributions are positively skewed, but more so for the rural group. The following
guidelines are offered as help in interpreting the skewness statistic. Like all guidelines
these should be used with a healthy amount of skepticism. All statistics should be
interpreted in terms of the types and purposes of the data analysis, as well as the
substantive area of the research.

e If G; = 0, the distribution is symmetric.
e If |G| < 1, the skewness of the distribution is slight.?

e If1 < |G| < 2, the the skewness of the distribution is moderate.

!Technically this is only true for an index of skewness that has been “corrected” or “standardized” so that
the normal distribution has a skewness of zero. Skewness indices need not be zero for a normal distirbution
in general.

2 An alternative package is moments.

3|G1| indicates the absolute value of G1 (cut off the sign).
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Command Snippet 4.11: Functions to compute G1 for the marginal and conditional
distributions of household per capita expenditures.

## Load el071 package
> library(e1071)

## Skewness measure for the marginal distribution of household
per capita expenditures

> skewness (household$Dollars, type = 2)

[1] 3.791977

## Skewness measure for the distribution of household per
capita expenditures conditioned on area
> tapply (X = household$Dollars,INDEX = household$Area, FUN =
skewness, type = 2)
Rural Urban
4.276803 2.728186

e If |G| < 2, the distribution is quite skewed.

The above guidelines indicate that both distributions in the example are severely
positively skewed. Furthermore, the rural distribution is more asymmetric than the
urban distribution. This is again consistent with Figure 4.2, which shows the rural
distribution has a longer tail relative to its mean than the urban distribution. The
distribution of rural households shows relatively less density for household per capita
expenditures above the mean than below the mean. This asymmetry is even more
evident for urban households.

4.3.4 Kurtosis

Kurtosis is often used as a numerical summarization of the “peakedness” of a distribu-
tion, referring to the relative concentration of scores in the center, tail, and shoulders.
Normal distributions have a kurtosis value of zero and are called mesokurtic.* Dis-
tributions that reflect a more peaked and heavy-tailed distribution than the normal
distribution have positive kurtosis values, and are said to be leptokurtic. Distributions
which are flatter and lighter-tailed than the normal distribution have negative kurtosis
values and are said to be platykurtic. Dyson and Cantab (1943, p. 360) suggest an
“amusing mneumonic”’—which was attributed to Gossett (Student, 1927)—for the
above terms.

Platykurtic curves, like the platypus, are squat with short tails. Leptokurtic
curves are high with long tails, like the kangaroo—noted for “lepping”.

Figures 4.6 and 4.7 depict distributions with different kurtosis values. The
mesokurtic distribution is shown for a basis of comparison in both figures. The

4Again, technically this is only true for indices of kurtosis that have been “corrected” so that a normal
distribution has a kurtosis of zero.
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distributions in Figure 4.6 show positive kurtosis, whereas the distributions in Figure
4.7 show negative kurtosis.
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Figure 4.6: Kernel density estimate fora Figure 4.7: Kernel density estimate for a
mesokurtic distribution (solid line) and a mesokurtic distribution (solid line) and a
leptokurtic distribution (dotted line). The platykurtic distribution (dotted line). The
leptokurtic distributions are skinnier and platykurtic distribution is flatter than the
more peaked than the mesokurtic distri- mesokurtic distribution.

bution.

The kurtosis () function provided in the e1071 package can be used to compute
the sample kurtosis value for a distribution based on three common algorithms. We
use this function with the argument type=2 to compute G2, a slightly modified
version of the kurtosis statistic that is a better population estimate of kurtosis (e.g.,
Joanes & Gill, 1998). Command Snippet 4.12 shows the use of kurtosis() to
compute the kurtosis values for both the marginal and conditional distributions. To
find the kurtosis for the conditional distributions, the argument type=2 is provided in
the kurtosis() function, again appended as an additional argument in the tapply ()
function.

The kurtosis statistics for the conditional distributions suggest that both distribu-
tions are severely leptokurtic indicating that these distributions are more peaked than
a normal distribution. They also have more density in the tails of the distribution
than we would expect to see in a normal distribution. One can see in Figure 4.2 that
the rural distribution is even more peaked than the urban distribution.

While the kurtosis statistic is often examined and reported by educational and be-
havioral scientists who want to numerically describe their samples, it should be noted
that “there seems to be no universal agreement about the meaning and interpretation
of kurtosis” (Moors, 1986, p. 283). Most textbooks in the social sciences describe
kurtosis in terms of peakedness and tail weight. Balanda and MacGillivray (1988,
p. 116) define kurtosis as “the location- and scale free movement of probability mass
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Command Snippet 4.12: Functions to compute G2 for the marginal and conditional
distributions of household per capita expenditures.

## Kurtosis measure for the marginal distribution of household
per capita expenditures

> kurtosis(household$Dollars, type = 2)

[1] 26.23688

## Kurtosis for the distribution of household per capita
expenditures conditioned on area

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
kurtosis, type = 2)
Rural Urban

42 .66108 14.02895

from the shoulders of a distribution into its center and tails . . . peakedness and tail
weight are best viewed as components of kurtosis.” Other statisticians have sug-
gested that it is a measure of the bimodality present in a distribution (e.g., Darlington,
1970; Finucan, 1964). Perhaps it is best defined by Mosteller and Tukey (1977) who
suggest that like location, variation, and skewness, kurtosis should be viewed as a
“vague concept” that can be formalized in a variety of ways.

4.4 SUMMARIZING THE FINDINGS

The APA manual (American Psychological Association, 2009) provides suggestions
for presenting descriptive statistics for groups of individuals. The information should
be presented in the text when there are three or fewer groups and in a table when there
are more than three groups. While this number is not set in stone, we want to present
results in a manner that will facilitate understanding. Typically we report measures
of location, variation, and sample size for each group, at the very least. We present
the results of our data analysis in box below.

4.41 Creating a Plot for Publication

Inthis section, a plot suitable for publication is constructed that addresses the research
question regarding differences in living standards for urban and rural areas. Earlier
in this chapter, there was an illustration of how to plot two density estimates on the
same graph (see Command Snippet 4.5). For interpretability, it is helpful to add a
legend to the plot or in some way label the distributions.

The plots of the two estimated densities are re-created for the rural and urban
households using the syntax in Command Snippet 4.5. The text () function is used
to add text to an existing plot. This function writes the text—provided as a quoted
character string—given in the argument labels=. The text is drawn at a given
coordinate in the plot specified using the arguments x= and y=. The argument pos=4
is also provided so that the text is written to the right of the given coordinate rather
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Sample Write-Up

than centered. The full syntax is in Command Snippet 4.13, and the resulting graph
is in Figure 4.8.

4.4.2 Using Color

In Figures 4.2 and 4.8, the two conditional distributions were differentiated by chang-
ing the line type. Another common way to differentiate between elements on a graph
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Command Snippet 4.13: Syntax to plot the conditional densities on the same graph
and differentiate the two by varying the line type.

> plot(d.rural, main = " ", xlab = "Household Per Capita
Expenditures (in U. S. Dollars)", 1ty = "solid", bty = "1")
> lines(d.urban, 1ty = "dotted")
> text(x = 182, y = 0.0059, labels = "Urban Households", pos =
4)
> text(x = 495, y = 0.0012, labels = "Rural Households", pos =
4)
\&
0007 —
0006 ~ Urban Households
z
2
&
Rural Households
i i |
[ 500 1000 1500

Household Per Capita Expenditures (in U.S. Dollars)

Figure 4.8: Plots of the kernel density estimates for the distribution of household
per capita expenditures (in dollars) for the rural (n = 4269) and urban households
(n = 1730).

is to use color. The col= argument can be added to either the plot () or 1ines()
function. This argument takes a color which can be specified in many ways.

One way to specify color is to use the RGB color model.> This model superim-
poses varying intensities of red, green, and blue light to compose a broad palette of

SMost electronic devices, such as computer monitors use the RGB color space to manage colors, which
makes it an ideal choice for viewing color which will be displayed on your screen.
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colors. RGB colors are specified using the rgb() function. This function requires a
numerical value for each of the three arguments, red=, green=, and blue=.

A value of 0 for any of the colors makes the associated color fully transparent. The
maximum value for any color, which is set using the argument maxColorValue=,
will make the color opaque. For the examples below, the maximum color value is
set using maxColorValue=255.° Table 4.1 shows some common colors and their
associated RGB values.

Table 4.1: Common Colors and Their Associated RGB Values Using a Maximum
Color Value of 255

RGB Value
Color Red Green Blue
White 0 0
Red 255 0
Green 0 255
Blue 0 0 255
Black 255 255 255

The RGB color values are supplied to the col= argument in the plot () func-
tion. To draw the density plot of the rural households in dark red, the rgb setting
of red=139, green=0, blue=0, maxColorValue=255 is used. The rgb com-
bination of red=0, green=0, blue=139, maxColorValue= 255 is supplied to
the col= argument in the lines () function to specify that the density plot for the
urban household be drawn in dark blue. Since colors are used to differentiate the
two distributions, we also change the 1ty= argument in the 1ines() function to
"solid". Command Snippet 4.14 shows the syntax to create such a plot.

The polygon () function can be used to shade the densities being plotted. Similar
tothe lines () function, polygon() addsto anexisting plot. Wesupply the assigned
density as an argument to the polygon () function. We also use the optional argument
col= to shade the densities in dark red and blue, respectively, by declaring them in
the rgb() function. This time, however, an additional argument is added to the
RGB color space. This fourth argument, alpha=, is called an alpha value, and
it sets the degree of transparency of the color. The alpha value is set to 100 to
make the color mostly transparent—again using the scale of O to 255, where O is
completely transparent and 255 is opaque. Finally, the argument 1ty= is supplied to

5The maximum value of 255 is an artifact of restrictions in the hardware used in early personal computers
which could encode 256 distinct numerical values (0-255) on a single 8-bit byte—the standard currently
used in the computing industry. Higher-end digital processors typically use a 16-bit byte-—or in some
cases a 40-bit byte. Using a 16-bit byte increases the values which can be encoded on a single byte from
256 to 65,536. This allows 100 trillion colors to be represented rather than only 16.7 million using an
8-bit byte.
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Command Snippet 4.14: Using the RGB color model in the plot() and lines()
functions.

> plot(d.rural, main = " ", xlab = "Household Per Capita
Expenditures (in U. S. Dollars)", bty = "1", col = rgb(red
= 139, green = 0, blue = 0, maxColorValue = 255), 1lty =
"solid")

> lines(d.urban, col = rgb(red = 0, green = 0, blue = 139,
maxColorValue = 255), lty = "solid")

> text(x = 182, y = 0.0059, labels = "Urban Households", pos =
4)

> text(x = 495, y = 0.0012, labels = "Rural Households", pos =
4)

Mousahokd Par Capha Expendiures (n U.S. Doliars)

Figure 4.9: Kernel density plots for the distribution of household per capita ex-
penditures (in dollars) conditioned on area. The density of household per capita
expenditures for both distributions are shaded using the polygon() function. The
plot appears in grayscale in this book, but should print in color on a computer.

the polygon () function to set the line type for the border of the density plot. The
type= argument to the plot () function is used to control how data are plotted. The
argument type="n" is used for no plotting, which can be useful to set up a plot for
latter additions. The syntax is displayed in Command Snippet 4.15 and the resulting
plot is displayed in Figure 4.9.

There are two additional features that often make plotting easier. First, one
common way to specify color is to use a character string that provides a named
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Command Snippet 4.15: Using the RGB color space to semitransparently shade a
density plot in the polygon () function.

> plot(d.rural, main = " ", xlab = "Household Per Capita
Expenditures (in U. S. Dollars)", bty = "1", type = "n")

> polygon(d.rural, col = rgb(red = 139, green = 0, blue = O,
alpha = 100, maxColorValue = 255), 1lty = "solid")

> polygon(d.urban, col= rgb(red = 0, green = 0, blue = 139,
alpha = 100, maxColorValue = 255), 1lty = "solid")

> text(x = 182, y = 0.0059, labels = "Urban Households", pos =
4)

> text(x = 495, y = 0.0012, labels = "Rural Households", pos =
4)

color. For example, col="red" is the same as col=rgb(red=255, green=0,
blue=0, maxColorValue=255). R recognizes 657 color names, and a list of these
names along with their colors is provided at http://www.stat.columbia.edu/
~tzheng/files/Rcolor.pdf. Thesenames can also be accessed and printed to the
R terminal window by using the colors () function with no arguments. It should be
noted, however, that use of the named colors does not allow for transparency through
an alpha value.

Secondly, an alternative to providing the specific x- and y-coordinates in the
text () function, is to use the command locator (1). This allows for a point-and-
click specification of the location of the text in the graph. The syntax for using this
functionality is shown in Command Snippet 4.16. The argument pos=4 will position
the text to the right of the clicked location, rather than centering the text at that
location.

Command Snippet 4.16: Syntax to use the locator () function to position the text
on a graph.
(7 > text(locator (1), labels = "Rural Households", pos = 4)

4.4.3 Selecting a Color Palette

Choosing a good color palette is important. Physiological studies have suggested
that color can influence a reader’s attention, their perception of area, and their ability
to distinguish different groups (see Cleveland & McGill, 1983; Thaka, 2003, for more
details). Unfortunately, choosing a color palette is also a difficult exercise since
humans can distinguish millions of distinct colors and the sheer size of this “search
space” makes it hard to find good color combinations. This problem is compounded,
when colors are evaluated in the presence of other colors, since the appearance of
colorschange whenthey are displayed with other colors. Some guidance for choosing
a color palette can be found in the principles of design that have been used by artists
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for centuries (see Brewer, 1999; Zeileis & Hornik, 2006; Zeileis, Hornik, & Murrell,
2007). One package that uses these principles is the RColorBrewer package.

The RColorBrewer package can be used for selecting color palettes for plots. It
provides a rich collection of suitable palettes for coding various types of information.
There are three types of color schemes that are distinguished: (a) qualitative, (b) se-
quential, and (c) diverging (Brewer, 1999; Brewer, Hatchard, & Harrower, 2003;
Harrower & Brewer, 2003). The first is used for coding categorical information and
the latter two are for coding ordinal and continuous variables. Each color scheme has
several different palettes to choose from. Brewer et al. (2003) presents the palette
choices available within each color scheme.

The function brewer.pal ) in the RColorBrewer can be used to select a suitable
color palette for the density plot. This function takes two arguments. The first, n=,
takes a value indicating the number of colors being used in the plot. The second,
name=, takes a character string indicating the name of the color palette.

Returning to the example, color is being used to differentiate the urban and rural
households, so a palette from the qualitative color scheme is appropriate for the plot.
The palette Set 1 is one such color palette. Command Snippet 4.17 shows the syntax
to determine colors for the plot of household per capita expenditures conditioned on
area.

Command Snippet 4.17: Choosing a qualitative color palette for two groups.

## Load RColorBrewer package
> library(RColorBrewer)

## Choosing a color palette for two groups
> brewer.pal(n = 2, name = "Setl")
[1] "#E41A1C" "#377EB8" "#4DAF4A"
Warning message:
In brewer.pal(n = 2, name = "Setl")
minimal value for n is 3, returning requested palette with 3
different levels

## Load the colorspace package
> library(colorspace)

## Convert the hexadecimal values to RGB

> hex2RGB(brewer.pal(n = 3, name = "Setl"))
R G B

[1,] 0.79240771 0.01512116 0.01683345

[2,] 0.05014993 0.23774340 0.50961270

[3,] 0.09217427 0.46004311 0.08562281

In Command Snippet 4.17, a warning is printed since the minimum number of
levels for the palette is three, and the colors associated with the three-color palette are
printed. For two groups, the first two values can be used. The color values returned
are expressed as hexadecimal values. These values can be issued directly to the col=
arguments in the plot (), lines(), and polygon() functions. Alternatively, the
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hex2RGB() function from the colorpace package can be used to convert these values
to RGB values. Converting them to RGB values allows the use of an alpha value to
make the colors semitransparent.

Command Snippet 4.17 shows the syntax for converting the hexadecimal color
values to RGB values. Note that the RGB values are on a scale from O to 1 rather than
0 to 255. To use these values the maxColorValue= argument in the rgb () function
would need to be set to 1.

When choosing a color palette, it is important to consider whether or not the work
will be published in color. Many colors do not translate well to black and white, so
the information that is conveyed in the plot via color may be lost. If information
on a plot is best displayed using color, but will be published in black and white,
a good option is to use a grayscale palette. Another consideration is readers who
are color-blind. Given thatabout 10% of men have some degree of red—green color
blindness, it is worth trying to avoid graphics that communicate information primarily
through red-green distinctions (Lumley, 2006). The dichromat () function in the
dichromat package can be used to approximate the effect of the two common forms
of red—green color blindness, protanopia and deuteranopia, on the palette you have
chosen.

4.5 EXTENSION: ROBUST ESTIMATION

The sample mean, variance, and standard deviation can be inordinately influenced
by outliers that may be present in the sample data. The outliers usually consist of a
small proportion of extreme observations in one or the other tail of the distribution.
Because of this, in some distributions—such as skewed distributions—the sample
mean and variance are not good representatives of the typical score and variation in
the population. Thus, the examination of these statistics may offer a poor summary
of how the populations differ and also of the magnitude of those differences. Better
estimates of the typical score and variation in such cases are computed using robust
estimates. Robust estimates reduce the effects of the tails of a sample distribution
and outliers by either trimming or recoding the distribution before the estimates are
computed. An advantage of a robust estimate is that its associated standard error will
typically be smaller than its conventional counterpart.

4.5.1 Robust Estimate of Location: The Trimmed Mean

One strategy for reducing the effects of the tails of a distribution is simply to remove
them. This is the strategy employed by trimming. To find a trimmed mean, a certain
percentage of the largest and smallest scores are deleted and the mean is computed
using the remaining scores. Table 4.2 shows an example of 20% trimming on a small
data set. The original data in the first column contains the outlying case of 250. The
outlier results in a mean value of 40, which is well out of the range of the majority of
the scores—it does not summarize a typical score in the distribution. Based on Table
4.2, the resulting trimmed mean is
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13+14+15+19+22+22

21.
5

Table 4.2: Small Data Set (original data) Showing Results of Trimming (trimmed
data) and Winsorizing (winsorized data) Distribution by 20%

Original Data Trimmed Data Winsorized Data
10 13
12 13
[ T 2T T R
14 14 14
15 15 15
19 19 19
22 22 22
22 22 22
B I
250 22
M =40.00 M =17.50 M =17.50
Var = 5465.78 Var = 16.30 Var = 18.06

Compare this value to the conventional sample mean of 40 for the original data in
Table 4.2. The conventional mean is highly influenced by the sample observation of
250. The trimmed mean is robust in the sense that the single extreme score of 250
in the tail does not exert undue influence and the trimmed mean is more similar to
the majority of the nonoutlying scores. The optional argument tr= in the mean()
function can be used to compute a trimmed mean. This argument can also be added
as an additional argument in the tapply() function. Command Snippet 4.18 shows
the syntax to compute a 20%, or .20, trimmed mean for the marginal and conditional
distributions of household per capita expenditures.

One last note that bears mentioning is that the median is also sometimes used as
a robust estimate of location. In fact, the median is just a trimmed mean with the
percentage of trim equal to

1 1

5~ 2 42)
where n is the sample size. This is an excessive amount of trimming. For example,
based on the data in Table 4.2, the trimming would be

0.50 — (0.05) = .45.
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The median trims 45% of the data!

Command Snippet 4.18: Syntax to obtain robust estimates of the central tendency
for the per capita household expenditures.

## Marginal 20% trimmed mean
> mean(household$Dollars, tr = 0.2)
[1] 168.9201

## Conditional 20% trimmed means

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
mean, tr = 0.2)

Rural 139.4673

Urban 291.8670

## Marginal median
> median(household$Dollars)
[1] 159.8

## Conditional medians

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
median)

Rural 134.870

Urban 278.505

4.5.2 Robust Estimate of Variation: The Winsorized Variance

It is also possible to compute a robust estimate for the variation in a data set. A
robust estimate of variation can be obtained by recoding extreme observations to
be less extreme. This recoding is known as Winsorizing.” In essence, Winsorizing
the distribution recodes a particular percentage of scores in the upper tail of the
distribution to the next smallest score. Likewise, a certain percentage of scores in
the lower tail of the distrbution are recoded to the next largest score. Table 4.1 shows
the result of Winsorizing a distribution by 20%. The variance of the original data in
the first column is highly influence by the outlier of 250. Its value is 5465.78, which
appears to grossly overrepresent the variability among the majority of scores.
The Winsorized variance is computed as

. 1 .
o = n_IZ(wi—uw)2, (4.3)

where w; are the values in the Winsorized distribution, and fiw is the Winsorized
mean. The Winsorized standard deviation can be found by taking the square root of
the Winsorized variance. Computing a Winsorized variance for the data in Table 4.2
results in 18.06. Compare this value to the conventional variance of 5465.78.

7 Among the mathematicians recruited by Churchill during the Second World War was one Charles Winsor.
For his efforts in removing the effects of defective bombs from the measurement of bombing accuracy, he
received a knighthood and we received a new statistical tool—Winsorized means.
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The Winsorized variance is used as an accompanying measure of variation for the
trimmed mean. The winvar () function, available in the package WRS, can be used
to compute this robust measure of variability.? The argument tr= sets the percentage
of Winsorizing. Command Snippet 4.19 provides the syntax for loading the WRS
package. It also provides the syntax for computing the 20% Winsorized variance for
both the marginal and conditional distributions.

Command Snippet 4.19: Syntax to obtain the Winsorized variance.

## Load the WRS package
> library (WRS)

## Marginal 20% Winsorized variance
> winvar (household$Dollars, tr = 0.2)
[1] 4640.54

## Conditional 20% Winsorized variances

> tapply(X = household$Dollars, INDEX = household$Area, FUN =
winvar, tr = 0.2)

Rural 1820.721

Urban 12831.518

## Conditional 20% Winsorized standard deviation for the rural
households

> sqrt(tapply(X = household$Dollars, INDEX = household$Area,
FUN = winvar, tr = 0.2))

Rural Urban

42 .66990 113.27629

Based on the output from Command Snippets 4.18 and 4.19, these robust esti-
mators tell a slightly different story than the conventional estimates. Although the
conditional means suggest urban and rural differences in household per capita ex-
penditures, the 20% trimmed means suggest that the economic difference between a
typical urban household and a typical rural household is less pronounced. The 20%
Winsorized variances, while still suggesting a great deal of variation within each
area, also suggest that much of that variation is likely due to the influence of outlying
households. This can be seen in Table 4.3, in which both the conventional and robust
estimates are provided for comparison.

Decisions about when to use a robust estimator such as a trimmed mean or
Winsorized variance and also about how much to trim or Winsorize are not trivial
tasks. Trimming or Winsorizing 20% of the data is common, while for very heavy
tailed distributions, 25% may be more appropriate (Rosenberger & Gasko, 1983;
Wilcox, 2005). Although statistically sound, many disciplines within the behavioral
and educational sciences do not report or perform analyses with robust estimates. If
an applied researcher in these fields chooses to use such estimates, she/he may need

8The WRS package needs to be installed from R-Forge (see Chapter 1).
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Table 4.3: Comparison of Conventional and Robust Estimates of Location and
Variation for Conditional Distributions of Household per Capita Expenditures

Rural Households Urban Households
Estimates M SD M SD
Conventional 157 97 349 250
Robust 139 43 292 113

to defend that choice or at the very least offer references that do. The following is an
example of the write-up that may accompany the use of robust estimates.

Sample Write-Up

46 FURTHER READING

Pearson (1894) and Pearson (1895) are of historical importance for their introduction
of statistical terms and symbols (e.g., skewness, kurtosis, ¢) and more narrative
details of these origins are available in Fiori and Zenga (2009) and David (1995). An
introduction to the ideas underlying robust estimates can be found in Huber (1981),
Hampel, Ronchetti, Rousseeuw, and Stahel (1986), Staudte and Sheather (1990),
and Wilcox (2001, 2005). Other views can be found in Andrews et al. (1972),
Rosenberger and Gasko (1983), and Dixon and Yuen (1999). Excellent views on
designing graphs can be found in Tufte (1990) and Wainer (1984). Research on
the perception of color can be found in Zhang and Montag (2006) and Kaiser and
Boynton (1996). Research on the choices of color palettes in graphs are provided in
Zeileis and Hornik (2006) and Zeileis et al. (2007).

PROBLEMS

4.1 Dataon U.S. citizens were collected in 2000 by the U.S. Census Bureau. The
data set LatinoEd.csv—a subset of the Census data—contains data for a sample of
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Latino immigrants who were naturalized U.S. citizens living in Los Angeles. The
variable Achieve in this data set provides a measure of educational achievement (see
the codebook for more information regarding the interpretation of this variable).

a) Construct a plot of the kernel density estimate for the marginal distribution
of the educational achievement variable. Discuss all interesting features of
this plot.

b) Examine plots of the variable Achieve conditionedon the variable English
to compare the educational achievement of Latino immigrants who are flu-
ent in English and those who are not. Create a single publishable display
that you believe is the best visual representation of the results of this anal-
ysis. In constructing this display, think about the substantive points you
want to make and create a graph that best allows you to highlightthese con-
clusions. Write a brief paragraph explaining why you chose to construct
your graph the way you did and how it helps answer the research question
of interest.

¢) Compute appropriate numerical summaries of achievement conditioned on
English fluency. Use these summaries (along with evidence culled from
your plot) to provide a full comparison of the distributions of achievement
scores for immigrants who are fluent in English and those immigrants
who are not fluent in English. Be sure to make comparisons between the
measures of center and variation in the distributions. Use the problem
context to help you write your answer. Be selective in what you report,
remembering that you want to be succinct yet thorough.

4.2 Hearing of your more sophisticated data analysis, the Center for Immigration
Studies has asked you to write no more than a one-page editorial for your local
newspaper summarizing your results. In particular, they would like you to address
the following:

o Arethere achievement disparities between immigrants who are fluent in English
and immigrants who are not fluent in English? How do the achievement scores
for these groups compare to one another?

e How much variation is there in the achievement scores of immigrants who
are fluent in English? If so, how does this compare to the variation in the
achievement scores of their nonfluent counterparts?

e Does your analysis tell us anything about how schools could improve the
achievement scores of their nonfluent students? If you could use the bully
pulpit of your local newspaper to bring pressure on the education system to
do additional research on improving these achievement scores, what type of
study, or what type of evidence might you encourage them to pursue?

As you write this editorial, remember that in general, newspaper readers are not
familiar with technical terms, so be sure to express your statistical evidence in a way
that would be understandable to the general public.



CHAPTER 5

EXPLORATION OF MULTIVARIATE
DATA: COMPARING MANY GROUPS

Researchers from nearly every social and physical science discipline have found themselves
in the position of simultaneously evaluating many questions, testing many hypothesis, or

comparing many point estimates.
—A. Gelman, J. Hill, & M. Yajima (in press)

In Chapter 3, the Vietnam Living Standards Survey (VLSS) was introduced to answer
three research questions to inform an evaluation of policies and programs in Vietnam.
These research question were:

1. What is the age distribution for the Vietnamese population?

2. Are there differences in the annual household per capita expenditures between
the rural and urban populations in Vietnam?

3. Arethere differences in the annual household per capita expenditures between
the seven Vietnamese regions?

The first question regarding the nature of the age distribution was addressed in
Chapter 3. The second question concerning whether the living standards for urban
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First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (© 2011 John Wiley & Sons, Inc.



96 EXPLORATION OF MULTIVARIATE DATA: COMPARING MANY GROUPS

and rural Vietnamese is equitable was addressed in Chapter 4. In this chapter the
third research question of whether there are economic differences by region of the
country is addressed.

5.1 GRAPHING MANY CONDITIONAL DISTRIBUTIONS

To address the research question, the VLSSperCapita.csv data again needs to be
read into R using the read.table () function. As always, the data frame should be
examined to be sure the data were read in correctly and to evaluate whether there
are problems that may exist in the data. Command Snippet 5.1 provides an example
of this syntax. The marginal distribution of per capita household expenditures for
all 5999 households is again examined. The output and results of these commands
are not presented here, nor are the interpretations, since they are the same as was
presented in Chapter 4.

Command Snippet 5.1: Code to read in the per capita data, examine the data frame,
and plot the marginal distribution of household per capita expenditures.

## Read in the data
> household <- read.table("/Documents/Data/VLSSperCapita.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the data frame
> head (household)

> tail(household)

> str(household)

> summary (household)

## Plot the marginal distribution
> plot(density(household$Dollars), xlab = "Dollars", main = "
u)

Examining the marginal distribution is useful in an initial examination of the data,
but it does not help in answering the research question about regional differences. In
order to address questions about regional differences, conditioning on the Region
variable is necessary. In Chapter 4, indexing was introduced as a way to access
subsets of a vector or data frame. Examination of the codebook for these data
provides the region names associated with each of the integer values in the Region
variable. Command Snippet 5.2 shows the use of indexing to create subsets of the
household per capita expenditures for each region.

The plot () and lines() functions can then be used in conjunction with the
density() function to produce the conditional density plots. Recall from Chap-
ter 4 that the first region’s density is plotted using the plot() function, and the
remaining regions’ densities are plotted using the 1ines() function. Since there
are several groups’ densities that need to be plotted, differentiation of the regions
is best performed through color rather than line type. Command Snippet 5.3 shows
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Command Snippet 5.2: The use of indexing to create subsets of the household per
capita expenditures for each region.

> central.coast <- household$Dollars[household$Region == 1]
central.highlands <- household$Dollars[household$Region == 2]
mekong.delta <- household$Dollars[household3Region == 3]
north.coast <- household$Dollars[household$Region == 4]
northern.uplands <- household$Dollars[household$Region == 5]
red.river.delta <- household$Dollars[household$Region == 6]
south.east <- household$Dollars[household$Region == 7]

vV V V V V V

the syntax to use the RColorBrewer package (see the previous chapter) to select a
qualitative color palette, plot the household per capita expenditures densities for all
seven regions, and add a legend. The resulting graph is shown in Figure 5.1.

Command Snippet 5.3: Plotting the densities of the household per capita expendi-
tures for all seven regions.

## Determine colors for the seven regions

> library(RColorBrewer)

> brewer.pal(n = 7, name ="Setl")

[1] "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3" "#FF7F00"
"#FFFF33" "#A65628"

## Plot the density for the first region

> plot(density(central.coast), main = " ", xlab = "Household
Per Capita Expenditures (in U.S. Dollars)", bty = "1",
xlim = c(0, 3100), ylim = c(0, 0.008), col = "#E41A1C")

## Add the densities for the remaining regions
lines(density(central.highlands), col = "#377EB8")
lines (density(mekong.delta), col = "#4DAF4A")
lines (density(north.coast), col = "#984EA3")
lines(density(northern.uplands), col = "#FF7F00")
lines(density(red.river.delta), col = "#FFFF33")
lines(density(south.east), col = "#A65628")

## Add a legend
legend(x = 2000, y = 0.0075, legend = c("Central Coast",

"Central Highlands", "Mekong Delta", "North Coast",
"Northern Uplands", "Red River Delta", "South East"),
lty="solid", col = c("#E41A1C", "#377EB8", "#4DAF4A",
"#984EA3", "#FFTF00", "#FFFF33", "#A65628"))

Examining the plot produced in Figure 5.1, it is very difficult to interpret the
differences in per capita household expenditures between the seven regions. The
primary difficulty is that having many superimposed densities on the same plot,
especially when those distributions overlap, makes it very difficult to make out group
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differences. There are two solutions to this difficulty, panel plots and side-by-side
box-and-whiskers plots.

0008 =
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Figure 5.1: Kernel density plots for the distribution of household per capita expen-
ditures (in dollars) conditioned on region. The graph is problematic as the various
regions are difficult to sort out. The plot appears in grayscale in this book, but should
print in color on a computer.

5.1.1 Panel Plots

One solution to the difficulty of many superimposed densities is to plot the kernel
density estimate for each region in a different graph or panel. All the panels have the
same scale, so that all the graphs are comparable.

To permit paneling, the graphical parameters in R need to be changed. The
graphical parameter mfrow= can be used to draw multiple panels on the graphics
device or window. This argument takes a vector of the form c(rows, columns),
where rows and columns are values to determine the array of panels in the graphical
device. Figures 5.2 and 5.3 show two different panel arrays.

Graphical parameters were encountered in past chapters, but were not explicitly
named as such. Arguments such as 1ty=, bty=, and col= are all examples of
graphical parameters. These parameters all have default values in R, but the values
can be changed to produce certain graphical effects, such as dotted lines, colors,
etc. By referring to these parameters in functions such as plot () or lines() the
parameters are changed locally, meaning that they only change for a particular graph.
The par () function changes graphical parameters globally, for every plot created
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Plot 1 Plot2 Plot 3

Plot 1

Plot 4 Plot 5 Plot6

Figure 5.2: The default panel array is Figure 5.3: This panel array is
mfrow=c(1,1). This array has one row mfrow=c(2,3). This array has two rows
and one column. and three columns.

until the R session is ended or the parameters are reset. It is always a good idea
to return to the default settings after the global parameters have been altered for
construction of a specific graph.

Command Snippet 5.4 shows the syntax to display the density estimates for each
region on a different panel. First, par (mfrow=c(4,2)) is used to display the plots
using four rows and two columns. Todraw on a different panel, the plot () function
is used. To label each panel, the argument main= is utilized in the plot () function.
The x- and y-limits are also set to identical values in each of the seven panels.
Furthermore, the x-label needs to be written foreach plot. Lastly, the par () function
is used again to restore the default parameter of one panel being displayed in the
graphing device. The resulting panel plot is shown in Figure 5.4. The panel plots
in Figure 5.4 clearly show the density for each region. Forcing the same axis scales
facilitates comparison. For example, it is clear that the peak of the South East region
is the lowest of all the regions.

5.1.2 Side-by-Side Box-and-Whiskers Plots

Another method of displaying information about several distributions simultaneously,
is side-by-side box-and-whiskers plots. To produce side-by-side box-and-whiskers
plot, the boxplot () function is used. The syntax details of this function are provided
in Chapter 4. Command Snippet 5.5 presents the syntax for producing the side-by-
side box-and-whiskers plot displayed in Figure 5.5. Figure 5.5 shows that all the
distributions are positively skewed with several potential outliers. There are median
differences among the regions with the South East having the largest value. The
South East distribution is also the most varied for the innermost 50%, as its box
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length is greater than the other regions. The South East also has the most extreme
outlier, with at least one household per capita value greater than $3000 (households
with identical values are superimposed).

Command Snippet 5.4: Syntax for panel plots of the per capita household expendi-
tures data conditioned on region.

## Set plotting array
> par(mfrow=c(4, 2))

## Define parameter options for the plots

> my.bty <- "1"

> my.xlab <- "Household Per Capita Expenditures (in U.S.
Dollars)"

> my.xlim <- c(0, 3100)

> my.ylim <- c(0, 0.008)

## Panel 1
> plot(density(central.coast), main = "Central Coast", xlab =
my.xlab, bty = my.bty, xlim = my.xlim, ylim = my.ylim)

## Panel 2

> plot(density(central.highlands), main = "Central Highlands",
xlab = my.xlab, bty = my.bty, xlim = my.xlim, ylim =
my.ylim)

## Panel 3

> plot(density(mekong.delta), main = "Mekong Delta", xlab =

my.xlab, bty = my.bty, xlim = my.xlim, ylim = my.ylim)

## Panel 4
> plot(density(north.coast), main = "North Coast", xlab =
my.xlab, bty = my.bty, xlim = my.xlim, ylim = my.ylim)

## Panel 5

> plot(density(northern.uplands), main = "Northern Uplands",
xlab = my.xlab, bty = my.bty, xlim = my.xlim, ylim =
my.ylim)

## Panel 6

> plot(density(red.river.delta), main = "Red River Delta", xlab

= my.xlab, bty = my.bty, xlim = my.xlim, ylim = my.ylim)

## Panel 7
> plot(density(south.east), main = "South East", xlab =
my.xlab, bty = my.bty, xlim = my.xlim, ylim = my.ylim)

## Reset plotting array to default
> par(mfrow = c(1, 1))
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Command Snippet 5.5: Syntax to produce side-byside box-and-whiskers plots of
the household per capita expenditures (in dollars) conditioned on region.

> boxplot(central.coast, central.highlands, mekong.delta,
north.coast, northern.uplands, red.river.delta, south.east,

names = c("Central Coast", "Central Highlands", "Mekong
Delta", "North Coast", "Northern Uplands", "Red River
Delta", "South East"))

Coreon Casst Corkow Higrarce Uowreg Pts s Comat Narman Liisass P Fives Seenae

Figure 5.5: Side-by-side box-and-whiskers plots of household per capita expendi-
tures (in U.S. dollars) conditioned on region.

5.2 NUMERICALLY SUMMARIZING THE DATA

The density plots in Figure 5.4 and the side-by-side box-and-whiskers plots in Figure
5.5 indicate that each distribution is positively skewed with potential outliers. Because
of the extreme skewness and potential outliers in these distributions, we are inclined
to use the more robust estimates for mean and variance. Recall that robust estimates
are less affected by extreme scores than conventional estimates and, thus, are arguably
more desirable summaries. The focus here is on the trimmed mean and Winsorized
variance introduced in the last chapter. Since there are multiple distributions, it
is advantageous to use some of the programming knowledge developed in the past
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chapters. For instance, rather than taking the square root of each of the seven
Winsorized variances, we will chain the tapply () function to the sqrt () function.
The syntax is provided in Command Snippet 5.6, along with syntax to obtain the
sample sizes for each region.

Command Snippet 5.6: Robust estimates for the parameters for household per
capita expenditures conditioned on region.

## Obtain the conditional 20% trimmed means
> tapply(X = household$Dollars, INDEX = household$Region, FUN =

mean, tr = 0.2)
1 2 3 4 5 6
164 .7023 126.1242 162.4833 137.9229 126.7494 176 .9796
7
289.1686

## Load the WRS package
> library (WRS)

## Obtain the conditional 20% Winsorized standard deviations
> sqrt (tapply (X = household$Dollars, INDEX = household$Region,
FUN = winvar, tr = 0.2))

1 2 3 4 5
59.27969 44.81304 57.21359 42.48159 45.73762
6 7

66.34581 119.69151

## Obtain the sample size for each region
> table(household$Region)

1 2 3 4 5 6 7
754 368 1112 708 859 1175 1023

The numerical evidence shows there are regional differences in both the typical
household per capita expenditure and in the variation within regions. Consistent with
the plots, the trimmed mean for the South East region is the largest, and so is its
Winsorized variance. It is yet to be seen whether the sample differences suggests
differences in the population.

5.3 SUMMARIZING THE FINDINGS

When the information for several groups is presented, the statistical data should be
summarized in either a table or graph, rather than in the text. This makes it easier
for readers to take in and understand the information. In the narrative describing
the results, reference is made to the table(s) and/or graph(s). The narrative of the
manuscript is used to emphasize particular analyses that highlight interpretations,
rather than to re-report all of the statistics in the text (American Psychological
Association, 2009).
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Regarding the results of the example, there are several issues that should be
considered. Because of the asymmetry and outliers in the data (see Figure 5.5),
it is desirable to report the values for the trimmed mean and Winsorized standard
deviations, rather than the conventional estimates. The sample size for each region
is also reported to further inform comparisons. When reporting numerical values—
both in text and tables, the APA manual recommends that they be “express|[ed]
to the number of decimal places that the precision of measurement justifies, and
if possible, carry all comparable values to the same number of decimal places”
(American Psychological Association, 2009, p. 137). For the example, rounding
to the nearest U.S. dollar seems appropriate given that the original responses were
recorded to the nearest dong, which is the standard Vietnamese currency. The decimal
points in the data result from the conversion from Vietnamese dong to U.S. dollars.

5.3.1 Writing Up the Results for Publication

For the write-up, we will use substantive content knowledge to help summarize and
interpret the statistical findings.

Sample Write-Up

5.3.2 Enhancing a Plot with a Line

Figure 5.4 can be used in a publication, but to make the plot more informative, the
poverty line could be added to each panel. As discussed in Chapter 4, a line can
be added to a plot using the abline() function. This draws a line to an existing
plot or panel. To add the poverty line to each panel in Figure 5.4, the abline ()
function needs to be executed after each of the plot () calls. Command Snippet 5.7
shows the syntax for adding the poverty line to the figure. The syntax produces the
paneled graph in Figure 5.6. As the graph shows, the distributions of most regions
have typical scores at or very close to the poverty line. The South East region appears
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to be the only one whose curve peak is slightly to the right of the poverty line (i.e.,
higher).

Table 5.1: Mean, Standard Deviation and Sample Sizes for Household per
Capita Expenditures (in dollars) Conditioned on Region®

Region M, SDw n
Central Coast 165 59 754
Central Highlands 126 45 368
Mekong Delta 162 57 1112
North Coast 138 42 708
Northern Uplands 127 46 859
Red River Delta 177 66 1175
South East 289 120 1023

“The mean was trimmed by 20%. The standard deviation was computed from a variance that was
Winsorized by 20%.

Command Snippet 5.7: Syntax to add the poverty line to each panel of a plot. This
syntax needs to be issued after each plot () call.

{, > abline(v = 119, 1ty = "dashed")

5.4 EXAMINING DISTRIBUTIONS CONDITIONAL ON MULTIPLE
VARIABLES

Now that regional differences in household per capita expenditures have been identi-
fied in the sample—and in Chapter 4 urban and rural differences were evident—there
is interest in examining urban and rural differences within each region.

Indexing can again be used to create objects that contain the household per capita
expenditures for a particular area (urban or rural) for each region. As discussed in
Chapter 2, the logical operator & can be used to subset a particular region and area.
Command Snippet 5.8 shows the syntax for creating these subsets of data for one
region. The syntax needs to be repeated for all 7 regions (i.e., a total of 14 objects).

A side-by-side box-and-whiskers plot can be created in the same manner as pre-
sented in Command Snippet 5.6. The help menu for the boxplot () function offers
additional arguments to fine-tune the plot. The panel plot for the density estimates
can also be constructed. This is carried out in a similar manner as the previous panel
plot (see Command Snippet 5.5). This time, the 1ines() function is used to add an
additional density estimate to the same panel. Command Snippet 5.9 shows the
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Figure 5.6: Plot of the estimated density of household per capita expenditures (in
U.S. dollars) conditioned on region with the poverty line (shown as a dashed line)
demarcated.



EXAMINING DISTRIBUTIONS CONDITIONAL ON MULTIPLE VARIABLES 107

syntax used in each of the seven panels. The resulting panel plot for all seven regions
is displayed in Figure 5.7.

Command Snippet 5.8: The use of indexing to create subsets of the household per
capita expenditures for the Central Coast region.

> central.coast.urban <- household$Dollars[household$Region =

1 & household$Area == "Urban"]
> central.coast.rural <- household$Dollars[household$Region ==
1 & household$Area == "Rural"]

Numerical summaries can be computed using the tapply() function, but this
time instead of giving only one factor to the INDEX= argument, we provide a list of
factors using the 1ist () function. Theuse of 1ist () in INDEX= allows conditioning
on multiple factors. Each factor is provided as an additional argument to the 1ist ()
function.

The table() function can be used to obtain sample sizes, for the combination
of region and area. Command Snippet 5.10 provides the syntax to obtain the 20%
trimmed means, the 20% Winsorized standard deviations, and the sample sizes for
each of the 14 groups.

Notice that the output for the urban area of the Central Coastland region is the
value NA. The sample size for this region and area combination is 0, meaning there
are no scores for which to compute the summary statistics. This can be seen from the
output of the table () function. This can also be seen in Figure 5.7 in which there is
no plot for urban households in this region. All the summaries can again be placed
in a table for publication as shown in Table 5.2.

Table 5.2: Mean, Standard Deviation and Sample Sizes for Household per
Capita Expenditures (in dollars) Conditioned on Urbanicity and Region

Rural Urban
Region M, SDw n M; SDw n
Central Coast 138 43 502 243 92 252
Central Highlands 126 45 368 — — 0
Mekong Delta 143 40 830 262 104 282
North Coast 128 35 600 242 98 108
Northern Uplands 109 29 672 215 52 187
Red River Delta 145 37 783 291 107 392
South East 208 66 514 406 150 509

¢ The mean was trimmed by 20%. The standard deviation was computed from a variance that was
winsorized by 20%.
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Figure 5.7: Plotted density estimates of the per capita household expenditures for
the urban households (solid line) and rural households (dotted line) conditioned on
region. The poverty line of $119 is expressed as a vertical dashed line in each panel.
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A write-up of the complete results might be as follows.

Sample Write-Up

Command Snippet 5.9: Syntax used to plot the density estimates of the per capita
household expenditures for both the urban and rural households within each panel.
For the remaining six panels, the object names associated with each region would be
used.

## Panel 1 - Plot the density for rural households

> plot(density(central.coast.rural), main = "Central Coast",
xlab = my.xlab, bty = my.bty, xlim = my.xlim, ylim =
my.ylim)

## Plot the density for urban households
> lines(density(central.coast.urban), 1lty = "dotted")

## Add the poverty line
> abline(v = 119, col = "red", 1ty = "dashed")
\ )

5.5 EXTENSION: CONDITIONING ON CONTINUOUS VARIABLES

In Chapter 4 and also earlier in this chapter, we examined distributions conditioning
on one or more variables. In all of the examples, the conditioning variables were
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categorical in nature. It is also possible to condition the response variable on factors
that are ordinal in nature, or even on continuous variables. To illustrate this type
of conditioning, another data set is considered. The data set is from a study that
had the primary research question of whether there are differences in mathemat-
ics achievement for students who spend differing amounts of time on mathematics
homework.

Command Snippet 5.10: Numerical summaries for household per capita expendi-
tures conditioned on region and area.

## Conditional 20% trimmed means

## The use of list() in INDEX= conditions on region and area

> tapply(X = household$Dollars, INDEX = list(household3Region,
household$Area), FUN = mean, tr = 0.2)

Rural Urban
138.2698 243.1534
126.1242 NA

142.7892 262.1644
127 .6951 242.0429
108.7761 214.8263
144 .9908 290.5272
208.3707 405.7063

NO O WN

## 20% Winsorized standard deviations conditioned on region and
area

> sqrt(tapply(X = household$Dollars, INDEX =
list (household$Region, household$Area), FUN = winvar, tr =

0.2))
Rural Urban
42.54099 91.98587
44 .81304 NA

40.04903 103.79783
34.53080 97.55267
29.49418 51.81709
36.83317 107.21399
65.60108 150.27420

NO O WN -

## Sample sizes conditioned on region and area
> table(household$Region, household$Area)

Rural Urban

1 502 252
2 368 0
3 830 282
4 600 108
5 672 187
6 783 392
7 514 509

During the spring of 1988, the National Center for Education Statistics initi-
ated a longitudinal study—the National Educational Longitudinal Study (NELS)—
of eighth-grade students attending 1052 high schools across the 50 states and the
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District of Columbia. These students, who constituted a nationally representative
sample, were surveyed on a variety of topics related to education, and also given
achievement tests in four content areas—reading, social studies, mathematics, and
science. Samples of the original 27,394 participants were also surveyed and assessed
again in 1990, 1992, 1994, and 2000.! The data in MathAchievement.csv is a pared
down sample from the original 1988 data that consists of two variables— the aver-
age amount of time (in hours) spent on mathematics homework per week, and the
student’s mathematics achievement score for 100 students. The achievement scores
are T-scores, which are based on a transformation resulting in a distribution with a
mean of 50 and a standard deviation of 10.

The data are read in and the marginal distribution of mathematics achievement is
examined. The distributions of mathematics achievement conditioned on the time
spent on mathematics homework are also examined. Command Snippet 5.12 shows
this syntax. The density plot of the marginal distribution of mathematics achievement,
not shown, indicates the estimated density for the mathematics achievement scores is
roughly symmetric. As expected for T-scores, the typical value is around 50. There
is also variation in the scores.

Side-by-side box-and-whiskers plots are used to examine the distribution of math-
ematics achievement conditioning on the amount of time spent on homework. When
the levels of the factor are not provided in a codebook, the table () function returns
the levels in addition to the sample sizes corresponding to those levels. Command
Snippet 5.12 shows the syntax used to determine the levels of Homework. Then
indexing is used to create the subsets of mathematics achievement scores at these
levels, and box-and-whiskers plots of the conditional distributions are created using
the boxplot () function. The optional argument at= is included in the boxplot ()
function to provide a vector of locations where the box-and-whiskers plots are to
be drawn. Without this argument, the box-and-whiskers plots would be drawn at
the locations 1 to 8 The limits on the x-axis are also changed to include all of the
box-and-whiskers plots in the plotting area. Figure 5.8 shows the resulting plot.

The side-by-side box-and-whiskers plots, shown in Figure 5.8, and the numerical
summaries suggest that the conditional distributions of mathematics achievement
are not extremely asymmetric; and all have roughly the same amount of within-
group variation. We also see evidence of differences in mathematics achievement
for the differing amounts of time spent on mathematics homework. The side-by-
side box-and-whiskers plots show that the typical mathematics achievement score
is increasing across the conditional distributions. They also show that the variation
in mathematics achievement scores are roughly similar for the differing amounts of
time spent on mathematics homework. The small amount of variation shown in the
box-and-whiskers plots on the right-hand side of the plot (i.e., at the values of 6, 7,
and 10) is likely an artifact of the extremely small sample sizes at those values.

!For more information on the methodology used in the NELS study, visit the official website: http:
//nces.ed.gov/surveys/NELS88/.
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Figure 5.8: The distribution of mathematics achievement conditioned on average
weekly time spent on mathematics homework. Achievement is reported as a T-score
which are transformed scores having a mean of 50 and a standard deviation of 10.

5.5.1 Scatterplots of the Conditional Distributions

When the conditioning variable is continuous or is measuring a trait that is assumed
to be continuous, it can be useful to use a scatterplot to examine the conditional
distributions. The plot () function is used to produce a scatterplot. To produce a
scatterplot, the function requires the arguments x= and y= be specified, with = being
the conditioning variable and y being the response variable. Command Snippet 5.11
uses plot () to produce the scatterplot displayed in Figure 5.9.

Command Snippet 5.11: Syntax to plot the conditional distributions of mathematics
achievement using a scatterplot.

> plot(x = nels3Homework, y = nels$Achievement, xlab = "Average
Weekly Time Spent on Mathematics Homework (in Hours)",
ylab = "Mathematics Achievement")

Figure 5.9 shows a scatterplot of the relationship between time spent on mathe-
matics homework and mathematics achievement scores for the sample of 100 eighth-
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Command Snippet 5.12: Syntax to read in and examine the NELS data, plot the
marginal distribution of mathematics achievement scores, determine the levels asso-
ciated with the Homework variable, use indexing to create the subsets of achievement
scores at these levels, and plot the conditional distributions.

## Read in the NELS data
> nels <- read.table("/Documents/Data/NELS.csv", header = TRUE,
sep = ",", row.names = "ID")

## Examine the data frame
> head(nels)

> tail(nels)

> str(nels)

> summary(nels)

## Plot the marginal distribution
> plot(density(nels$Achievement), main = " ", xlab =
"Mathematics Achievement")

## Determine sample sizes and levels of the factor
> table(nels$Homework)

0 1 2 3 4 5 6 710
19 19 25 16 11 6 2 1 1

## Indexing to create subsets of mathematics achievement
## scores at each level

> zero <- nels$Achievement[nels$Homework == 0]
> one <- nels$Achievement [nels$Homework == 1]

> two <- nels$Achievement [nels$Homework == 2]

> three <- nels$Achievement [nels$Homework == 3]
> four <- nels$Achievement[nels$Homework == 4]
> five <- nels$Achievement[nels$Homework == 5]
> six <- nels$Achievement [nels$Homework == 6]

> seven <- nels$Achievement [nels$Homework == 7]
> ten <- nels$Achievement [nels$Homework == 10]

## Plot the conditional distributions
> boxplot(zero, one, two, three, four, five, six, seven, ten,
at = c(0:7, 10), xlim = c(-0.4, 10.4))

grade students. A point is represented by an open circle and is defined by a person’s
achievement score and hours of homework. The scatterplot shows the same overall
increasing trend in typical mathematics achievement scores as the side-by-side box-
and-whiskers plots in Figure 5.8. It also shows the same pattern of variation in the
conditional distributions.

Figure 5.10 shows the same scatterplot with side-by-side boxplots superimposed
on the plot. This is easily accomplished by plotting the scatterplot and then adding
the optional argument add=TRUE to the boxplot () function. This argument adds the
side-by-side box-and-whiskers plots to the already existing plot. Command Snippet
5.11 illustrates the syntax that produced Figure 5.10. Superimposing side-by-side
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boxplots on the scatterplot is a nice way to display smaller data sets. The side-by-side
boxplots allow the examination of each conditional distribution, while the scatterplot
still shows the individual cases.
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Figure 5.9: Scatterplot showing the Figure 5.10: Scatterplot and side-by-

distribution of mathematics achievement side box-and-whiskers plots showing the

conditioned on average weekly time distribution of mathematics achievement

spent on mathematics homework. conditioned on average weekly time
spent on mathematics homework.

Command Snippet 5.13: Syntax to plot the conditional distributions of mathematics
achlevement using a scatterplot.

## Plot the data using a scatterplot
## The limits on the x~axis are changed
## pch= changes the point character to solid dots

> plot(x = nels$Homework, y = nels$Achievement, xlab = "Average
Weekly Time Spent on Mathematics Homework (in Hours)",
ylab = "Mathematics Achievement", xlim = c(-0.4, 10.4), pch
= 20)

## Add the side-by-side box-and-whiskers plots

## boxwex= changes the width of the boxes

## Transparent color is added to enhance the plot

> boxplot(zero, one, two, three, four, five, six, seven, ten,
at = ¢c(0:7, 10), add = TRUE, axes = FALSE, boxwex = 0.4,

L col = rgb(red = 0.2, green = 0.2, blue = 0.2, alpha = 0.3))

5.6 FURTHER READING

Panel plots were introduced by Cleveland (1993) as a part of a data visualization
framework called trellis graphics that was developed at Bell Labs. A more exten-
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sive implementation of the trellis graphics framework in R is the lattice package.
Sarkar (2008) provides an excellent starting point for the readerinterested in learning
more about this package. For more information on the use and interpretations of
scatterplots, any good regression book would suffice (e.g., Cook & Weisberg, 1999;
Mosteller & Tukey, 1977; Sheather, 2009).

PROBLEMS

5.1 Using the LatinoEd.csv data set, plot the distribution of Achieve conditioned
on ImmAge in a scatterplot. Also, include side-by-side box-and-whiskers plots.
Based on the plot, describe the relationship between age at immigration and level
of educational achievement for these Latino immigrants. Be sure to examine the
pattern in variation as well as the pattern in locations. Write up the results of your
investigation as if you were writing a manuscript for publication in a journal in your
substantive area.

5.2 There are two variables in the LatinoEd.csv data set which are dichotomously
scored—English and Mex. Together these variable represent four distinct subgroups
of the sampled Latino immigrants: (1) fluent in English—immigrated from Mexico;
(2) fluent in English—didn’t immigrate from Mexico; etc. Provide both graphical and
numerical summaries to compare the educational achievement of these four groups.
Write up the results as if you were writing a manuscript for publication in a journal
in your substantive area. Be sure to comment on any interesting facets of the data
when they are examined in this manner.
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CHAPTER 6

RANDOMIZATION AND PERMUTATION
TESTS

... it is only the manipulation of uncertainty that interests us. We are not concerned with
the matter that is uncertain. Thus we do not study the mechanism of rain; only whether it

will rain.
—D. Lindley (2000)

In Chapter 4, differences between two groups were examined. Specifically, the ques-
tion of whether there were differences in the annual household per capita expenditures
between the rural and urban populations in Vietnam was addressed. In that chapter,
exploratory methods, such as graphical and numerical summarizations, were used to
quantify the differences in the two distributions of household per capita expenditures.
Exploration is often only the starting point for examining research questions involv-
ing group differences. These methods, however, do not always provide a complete
answer to the research question. For example, most educational and behavioral re-
searchers also want to determine whether the differences that might have shown up
in the exploration phase are “real,” and to what population(s) the “real’” effect can be
attributed. A “real” effect is a sample effect that is caused by an actual difference
in the population of interest. For example, suppose the mean per capita household
expenditures for the entirety of Vietnam is actually less for rural regions. Then a

Comparing Groups: Randomization and Bootstrap Methods Using R 117
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.
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sample result would be expected to reflect this, provided the sample was obtained in
a particular way, namely, randomly (see below). In addition to evaluating whether
effects are “real”, it is important to estimate the size of the effect. Uncertainty is
always involved in this endeavor, which relates to the precision of the estimate.

Questions of whether or not group differences are “real”, estimates of the size
of group differences, and the precision of these estimates are typically problems of
statistical inference. In the next several chapters, some useful methods to answer
these types of inferential questions are introduced. First, however, two research
questions regarding group differences that have been studied by educational and
behavioral scientists are presented.

Research Question 1 Demands for accountability and delinquency prevention in
recent years have led to rising popularity of after-school programs in the United States.
The intuitive appeal of these programs is based on the perception that adolescents
left unsupervised will either simply waste time or, worse, engage in delinquent and
dangerous behaviors.

To empirically study the effects of attending an after-school program, Gottfredson,
Cross, Wilson, Rorie, and Connell (2010) randomly assigned middle-school students
to either a treatment group or control group. The treatment consisted of participation
in an after-school program, whereas the control group engaged in their usual routine,
but control students were invited to attend one after-school activity per month. Data
on several outcome measures were collected on the study participants. These data are
available in AfterSchool.csv. The researchers were interested in determining whether
there is a difference in the effect of delinquency between students who participated
in the after-school program and students that did not.

Research Question 2 The Center for Immigration Studies at the United States
Census Bureau has reported that despite shifts in the ethnic makeup of the immi-
grant population, Latin America—and Mexico specifically—remains this country’s
greatest source of immigrants. Although the average immigrant is approximately 40
years old, large numbers are children who enroll in U.S. schools upon arrival. Their
subsequent educational achievement affects not only their own economic prospects
but also those of their families, communities, and the nation as a whole.

Stamps and Bohon (2006) studied the educational achievement of Latino immi-
grants by examining a random sample of the 2000 decennial Census data, a subset
of which is provided in LatinoEd.csv. One interesting research question that has
emerged from their research is whether there is a link between where the immigrants
originated and their subsequent educational achievement. Specifically, the question
is if there is a difference in the educational achievement of immigrants from Mexico
and that of immigrants from other Latin American countries.

Random Assignment & Random Sampling While both of these research questions
may seem similar—apart from their context—they are in fact very different. In the
first situation, the researchers used a volunteer sample and randomly assigned the
participants in their sample to the two groups—treatment and control. In the second
situation, the researchers randomly selected their sample from a larger population
(the 2000 census), but the two groups were not assigned by the researchers. These
examples illustrate two important differences: (1) how the sample is selected and



119

(2) how the treatments, or groups, are assigned. Table 6.1 shows the four potential
situations that educational and behavioral science researchers could face.

Table 6.1: Four Potential Scenarios Researcher Could Face When Making
Inferences

Scenario RS? RA’  Type of Research

Scenario 1 v Generalizable research

Scenario 2 v Randomized experimental research

Scenario 3 v v Generalizable, randomized experimental research
Scenario 4 Nongeneralizable, nonexperimental research

2 RS = Random sample
b RA = Random assignment

Each of these scenarios impacts the conclusions that a researcher can draw from
quantitative results. How the sample is selected has a direct impact on the gener-
alizations that a researcher can draw. For example, random sampling helps ensure
that the conclusions drawn from the sample data can be generalized to the population
from which the sample was drawn. In contrast, how the treatments are assigned has
a direct impact on the causal inferences a researcher can make. Random assignment
to treatments facilitate these causal inferences by allowing the attribution of sample
differences to the differences in treatments.

The nomenclature used in Table 6.1 is employed in this monograph to help educa-
tional and behavioral researchers make clearer distinctions between these scenarios.
Unfortunately, the discipline of statistics uses no consistent terminology to describe
each of these scenarios. For example, in research that employ random assignment,
the term “‘experiment” is sometimes used, but as Kempthorne (1979, p. 124) points
out:

The literature of statistics has been plagued with difficulties about the use of
the word “experiment.” Interestingly enough, so also has the general world of
science. The problem is that a loose use of the word “experiment” permits it to
be applied to any process of examination of a space-time section of the world.

The use of random sampling and/or random assignment are the components that
allow statistical inference to take place. The mathematical theory for inferential
methods is, in fact, intrinsically tied to the employment of one or both of these
random mechanisms. In this chapter, methods that allow researchers to answer
research questions in which the researcher has randomly assigned the treatments are
examined. In Chapter 7, methods that allow researchers to answer research questions
if the study used random sampling to select the sample are examined. The other two
scenarios—generalizable, randomized experimental research and nongeneralizable
research—are touched on in both Chapters 6 and 7 and are discussed further in
Chapter 8.
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6.1 RANDOMIZED EXPERIMENTAL RESEARCH

Consider researchers who are studying whether after-school programs have an effect
on delinquency. What if they observed that students who participate in after-school
programs tended to have a low measure of delinquency? What could be said about
the effect of after-school programs on delinquency? Should the researchers conclude
that after-school programs lessen delinquency for students? That, of course, is one
explanation for the observed relationship. However, there are several alternative
explanations as well. One rival explanation is that students with a low propensity
for delinquency to begin with were the ones who participated in the after-school
program. And, had these students not participated in the after-school program, they
still would have had low measures of delinquency. Because there is no comparison
group—no variation in the treatment predictor—there is no way to establish which
explanation is correct.

When examining the effect of a treatment or intervention, it is essential that
educational and behavioral researchers specify a comparison group—often referred
to as a control group. The comparison group attempts to answer the question, what
would have happened to the group of students if they did not receive the treatment?
Without a comparison group, it is impossible to rule out alternative explanations for
the “effect” that is being examined. In fact, because the conclusions drawn from
research that is conducted without comparison groups are relatively weak, many
experts suggest that such research is a waste of time and “at best, offer indecisive
answers to the research questions, and, at worst, might lead to erroneous conclusions”
(Light, Singer, & Willett, 1990, pp. 104-105).”

What comparison group should the after-school program researchers choose? Per-
haps they should compare the students who participated in the after-school program
to other students who did not participate in the program. Should the students in
the comparison group be from the same school as those in the treatment group? Or
maybe from the same neighborhoods? Another option is to use the same students in
the comparison and treatment group. The researchers could compare these students’
delinquency measures both before and after they participated in the after-school pro-
gram. This type of design is often referred to as a pre—post design and will be
examined in more detail in Chapter 10. Each of these comparison groups would
yield a different answer to whether or not the after-school program has an effect on
delinquency. Furthermore, depending on how the comparison group is selected, there
may still be alternative explanations that cannot be ruled out, because the apparent
effects could be due to attributes or characteristics, called confounding variables,
that are systematically related to the treatment (e.g., socioeconomic status, scholastic
engagement, etc.).

Because of the potential problems with confounding variables, the choice of
a comparison group is an important task in research design. The best comparison
group is one that is “composed of people who are similar to the people in the treatment
group in all ways except that they did not receive the treatment” (Light et al., 1990,
p. 106). The use of random assignment, or randomization, to assign students to
conditions is a statistical means of simultaneously considering all of the potential
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confounding variables, both known and unknown. The word condition is a generic
term that includes the comparison group and the treatment group. Specifically,
random assigment of participants to conditions (or conditions to participants) is a
methodthatensures that the treatment group and the comparison groupareequivalent,
on average, for all attributes, characteristics, and variables other than the treatment.

Again, consider the after-school program research study described in the previous
section. Because the researchers randomly assigned middle-school students to either
a treatment group or control group, the two groups of students should be equivalent,
on average, for any variable that might be related to the treatment. Because of the
randomization, any effects or differences in delinquency that the researchers find,
must be due to the variation in conditions because the equivalence induced by the
random assignment rules out other explanations. Variation in conditions in this
context means the students either participated in an after-school program or they did
not.

6.2 INTRODUCTION TO THE RANDOMIZATION TEST

Randomization tests are statistical tests that can be used to evaluate hypotheses
about treatment effects when experimental units have been randomly assigned to
treatment conditions. To help illustrate the concept of the randomization tests, a
pedagogicalexample is considered. Imagine a counseling psychologist was interested
in determining if there was an effect of cognitive-behavioral and social problem-
solving training on perceived social competence in school-aged aggressive boys. !
The researcher randomly assigned three aggressive boys to a control group and
two others to a treatment group who received both cognitive-behavioral and social
problem-solving training. After the study, a scale of perceived social competence
was administered to all five participants, and their scores, respectively, were

Treatment (T): 54, 66 Control (C): 57, 72, 30,

with higher scores indicating a higher degree of perceived social competence. Does
the higher average measure of perceived social competence in the treatment group—
60 versus 53—provide convincing evidence that the training is effective? Is it possible
that there is no effect of training, and that the difference observed could have arisen
just from the nature of randomly assigning the five participants into groups? After all,
it cannot be expected that randomization will always create perfectly equal groups.
But, is it reasonable to believe the random assignment alone could have lead to this
large of a difference? Or is the training also contributing to this difference?

To examine the above questions, one approach is to imagine the scenario under
which the training had no effect whatsoever. One can go even further and always
consider this scenario to be the default scenario. The purpose of statistical inference
is to evaluate the default scenario. If there is sufficient evidence against the default

IThis example was inspired by a similar study carried out by Lochman, Lampron, Gemmer, Harris, and
Wyckoff (1989).
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scenario, then it would be discarded as implausible. If there is insufficient evidence
against the default scenario, then it would not be discarded. Specifically, in this
example, an assumption would be made that the training has no effect. Then,
evidence would be collected to determine if the difference that was observed in the
data is too large to probabilistically believe that there is no effect of training. This
statement or assumption of no treatment effect is called the null hypothesis and is
written as

Hj : The training is not effective.

If the training is truly ineffective, then each participant’s perceived social compe-
tence score is only a function of that person and not a function of anything systematic,
such as the training. The implication of the participant’s perceived social competence
score not being a function of anything systematic is that, had a participant been as-
signed to the other condition (through a different random assignment), his perceived
social competence score would have been identical since, in a sense, both conditions
are doing nothing in terms of affecting the perceived social competence scores.

One can take advantage of the fact that each participant’s perceived social com-
petence score would be identical whether they are assigned to treatment or control
and examine all possible random assignments of the participants to conditions. Table
6.2 shows all 10 possible permutations (i.e., arrangements) of the data, as well as the
mean difference in perceived social competence scores for those assignments. The
notation T and C are used for the mean of the treatment group and mean of the control
group, respectively. The term permutation here refers to a unique rearrangement of
the data that rises from random assignment.2 Mathematically, there are

such rearrangements, where 5 = (5)(4)(3)(2)(1), and similarly for the other values.
In general, the number of unique permutations of 7 measurements into samples of
size k and n — k is computed using

n n!
(k) T kl(n k) ©.1)

where n! = (n)(n — 1)(n —2) ... (1).

The result that was observed, a difference of 7 points, is of course one of the
possibilities under the assumption that there is no effect of training. The big question
is whether or not it is likely that an observed mean difference of 7 points is large
enough to say that it is due to something (i.e., the training) affecting the perceived
social competence scores, or is it simply an artifact of the random assignment?
Typically, educational and behavioral researchers provide a quantification of the
strength of evidence against the null hypothesis called the p-value, which helps them

2Note that the term permutation as used in this context is different from the strictly mathematical definition,
which is a reordering of the numbers 1, . .., n and is computed as n! (n factorial).
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Table 6.2: Ten Possible Permutations of the Perceived Social Competence Scores
and Difference in Mean Perceived Social Competence Scores

Score Treatment Control T-C
1 54, 66 57,72, 30 60-53=7
2 54, 57 66, 72, 30 55.5 — 56 = —-0.5
3 54,72 66, 57, 30 63 — 51 =12
4 54, 30 66, 72, 57 42 — 65 = -23
5 57, 66 54,72, 30 61.5—-52=9.5
6 72, 66 57, 54, 30 69 — 47 = 22
7 30, 66 57,72, 54 48 — 61 = —13
8 57,72 54, 66, 30 64.5 — 50 = 14.5
9 57,30 66, 72, 54 43.5 — 64 = -20.5
10 72, 30 66, 54, 57 51 —-59 = -8

answer this question. Tocompute the p-value, the proportion of random permutations
of the data that provide a result as extreme or more extreme than the one observed
is computed. Nine of the 10 potential results are as extreme or more extreme than a
7-point difference. Mathematically, this is written as

P(‘observed difference’ > 7) = %,
where | - | is the absolute value.

If there is no effect of training, 9 out of the 10 permutations of the data that are
possible would produce a result as extreme or more extreme than a 7-point difference.
The p-value obtained from a study is a piece of evidence that can be used to evaluate
the tenability of the null hypothesis. Smaller p-values provide stronger evidence
against the null hypothesis. For example, the p-value of 0.5 provides very weak
evidence against the null hypothesis that training is ineffective.

Many educational and behavioral researchers use a p-value to make a decision
about the null hypothesis. This is a very bad idea. For one thing, p-values are
tremendously impacted by the size of the sample. For example, in this example,
the psychologist who was evaluating whether or not the training was effective had
conditions in which the sample sizes were n; = 2 and n, = 3. The p-value could
have been large simply because the sample sizes were so small. With such little data,
the number of possible permutations is limited, meaning the amount of information
for evaluating the null hypothesis is also limited.

Secondly, decisions about null hypotheses often impact lines of research, and it is
unclear if the results from one study should carry such weight. The null hypothesis
test was developed by R. A. Fisher, who initially proposed the p-value as an informal
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index to be used as a measure of discrepancy between the observed data and the
null hypothesis being tested, rather than a part of a formal inferential decision-
making process (Fisher, 1925). He went on to suggest that p-values be used as part
of the fluid, nonquantifiable process of drawing conclusions from observations, a
process that included combining the p-value in no one specific manner with field
substantive information and other research evidence. Above all, one can say that
Fisher’s emphasis was on replication of results. Only if a result was replicated could
it possible carry sufficient weight to impact a line of research.

What was considered above is one example of a randomization test. As the
plural, randomization tests, in the chapter title implies, this name refers to a class of
procedures, and not a single test or procedure. All randomization tests, however, are
derived from the same fundamental principle. Namely, that the reference distribution
of a particular statistic can be obtained by assuming no differences between the
groups. Under this assumption, the statistic of interest, such as the mean difference,
is calculated under all the potential random assignments of the treatment conditions
on the observed data. Then the reference distribution is used to evaluate the likelihood
of seeing a result as extreme or more extreme than the one observed in the original
data.

6.3 RANDOMIZATION TESTS WITH LARGE SAMPLES: MONTE
CARLO SIMULATION

In the last section, the p-value calculated from the randomization test was exact. It
was exact because all possible permutations of the data were used in the calculation
of its value. When N = 5, it is possible to list all of the permutations of the
data. However, for larger sample sizes, the computation of all the permutations
becomes an impractical or even impossible task. To illustrate, the data from the after-
school research study introduced in Research Question 1 (see above) is examined to
determine whether there is a difference in the effect of delinquency between students
who participated in an after-school program and students that did not. These data
can be found in AfterSchool.csv.

After an initial inspection of the data codebook, the data can be read into R and
both graphical and numerical summaries can be examined. Command Snippet 6.1
shows the syntax. Henceforth, only selected exploratory results from the R Command
Snippets will be presented.

Figure 6.1 shows the kernel density plots for the distribution of the standardized
delinquency measure conditioned on treatment condition.

Examination of Figure 6.1 reveals similarities in the distributions of the two
groups. The numeric summaries indicate there are slight differences between the
treatment and control groups. The sample means suggest that the difference in T-
scaled delinquency measures between these groups is, on average, 1.5 (50.7—49.0 =
1.7).

Is this difference within the chance variation one would expect given random
assignment? Or is it outside of those expectations? In other words, what is the
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Command Snippet 6.1: Syntax to read in and examine the after-school data.

## Read in the data
> asp <- read.table(file = "/Documents/Data/AfterSchool.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the data frame object
## Output is suppressed

> head(asp)

> tail(asp)

> str(asp)

> summary (asp)

##Exploratory density plot for treatment group

> plot(density(asp$Delinq[asp$Treatment == 1], bw = 3), main=
" ", xlab= "T-Scaled Delinquency Measure", bty = "1", col =
"#377EB8", 1ty = "solid")

##Exploratory density plot for control group
> lines(density(asp$Delinq[asp$Treatment == 0], bw = 3), col =
"#E41A1C", 1ty ="dashed")

## Add legend

> legend(x = 70, y = 0.085, legend = c("Control Group",
"Treatment Group"), col = c("#E41A1C", "#377EB8"), 1lty =
c("dashed", "solid"), bty = "n")

## Conditional means

> tapply(X = asp$Delinqg, INDEX = asp$Treatment, FUN = mean)
0 1

50.72559 49.01896

## Conditional standard deviations

> tapply(X = asp3Delinq, INDEX = asp$Treatment, FUN = sd)
0 1

10.52089 8.97423

## Sample sizes
> table(asp$Treatment)

0 1
187 169

expected mean difference if there is no effect of after-school programs and different
students had been randomly assigned to the treatment and control groups? For this
example, there are over 3.93 x 101°% permutations of the data! This would take
a very long time indeed to list out the possible rearrangements of the data. For
this reason, researchers use Monte Carlo simulation to approximate the p-value in
situations where the number of permutations is prohibitively time consuming to list.

Monte Carlo simulation is a method that uses a much smaller random sample (say
5000) of all of the random permutations to approximate the reference distribution of
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the test statistic under inquiry. The approximation is generally very good, and thus,
approximate methods are in wide use. At the heart of Monte Carlo methods is the
simple idea of selecting a statistical sample to approximate the results rather than
to work out the often much more complicated exhaustive solution.?> Dwass (1957)
used the Monte Carlo method to simplify the problem of examining all permutation
results and found that it provided a close match to the exact results.

- Control Group
—— Treatment Group

0.08 ~

Density

004 —

0.02 -

000

T-Scaled Delinquency Measure

Figure 6.1: Kernel density plots for the distribution of the T-scaled delinquency
measure for students who participated in the after-school program (solid line) and for
students who did not (dashed line).

6.3.1 Rerandomization of the Data

A random permutation of data can be drawn using the sample() function. This
function samples the original scores without replacement. It is comparable to writ-
ing each of the delinquency scores on a notecard, shuffling those cards, and then
dealing them out into a new order. This results in a random rearrangement of the
original delinquency scores. Command Snippet 6.2 shows the syntax for assigning
the randomly permuted delinquency measures to an object called permuted.

How does one know which of the scores in permuted will be “assigned” to the
control group and which to the treatment group? Recall from the exploratory analysis

3In fact, themethod was initially proposed by Stanislaw Ulam, in 1946, who wanted toknow the probability
that a Canfield solitaire laid out with 52 cards would be sucsessful (Eckhardt, 1987). Aftertrying in vain to
solve the problem exhaustively through mathematical combinatorics, Ulam laid out several random deals
and counted the number of successes.
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that there are 187 participants in the original control group and 169 participants in
the treatment group. Replicating the same sizes with our permuted data is the
most important part of the problem—so long as this assignment is consistent from
permutation to permutation. Thus, the first 187 scores in the vector can be assigned
to the control group and the remaining 169 scores to the treatment group. Command
Snippet 6.3 shows the use of indexing to compute the mean difference for the permuted
control scores and the permuted treatment scores.

Command Snippet 6.2: Syntax to randomly permute the delinquency measures and
assign them to an object called permuted.

## Randomly permute the delinquency measures
> permuted <- sample(asp$Delinq)

## Examine the vector of permuted measures
> head(permuted)
[1] 44.46308 76.81361 44.46308 57.40329 76.81361 44.46308

> tail(permuted)
[1] 44.46308 44.46308 44.46308 57.40329 44.46308 50.93319

> summary (permuted)
Min. 1st Qu. Median Mean 3rd Qu. Max.
44 .46 44 .46 44 .46 49 .92 50.93 89.75

Command Snippet 6.3: Syntax to find the mean difference for the permuted control
scores and the permuted treatment scores.

> mean(permuted [1:187]) - mean(permuted[188:356])
[1] -0.4070047

6.3.2 Repeating the Randomization Process

To obtain a Monte Carlo p-value, many random permutations of the data will need to
be drawn. For each permutation the mean difference will also need to be computed.
Statistical computing tasks often require repeated computations. This can be per-
formed in a number of ways in R. Use of the replicate() function is one method
in which to automate such tasks. This function applies a computation repeatedly a
given number of times and collects the results into a vector or matrix, whichever is
convenient. There are two arguments used with the function, the number of replica-
tions to perform using n=, and the computation to carry out in the argument expr=.
Command Snippet 6.4 shows the use of the replicate() function to carry out4999
random permutations of the delinquency scores.

The assigned object permuted is a 356 x 4999 matrix, where each column contains
one of the 4999 random permutations of the data. It is now desirable to compute the
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difference between the mean of the first 187 scores and the mean of the remaining
169 scores for each column. Todo this, an R function is written to compute this mean
difference. This new function is then executed on all 4999 columns of the matrix.
The next section describes how to write simple functions in R.

Command Snippet 6.4: Syntax to carry out 4999 random permutations of the
delinquency scores and store them in the object permuted.

{L > permuted <- replicate(n = 4999, expr = sample(asp$Delinqg)) J

6.3.3 Generalizing Processes: Functions

Functions are the fundamental structure of “modern” programming. A function is a
way of organizing operations and computations to allow them to be used over and
over again without duplicating the commands themselves. To define a new function
in R the function operator will be utilized. The basic syntax for this operator
follows the following pattern.

> function(argument, argument, ...){
expression 1;
expression 2 ;

}

Functions are typically assigned to an object, which then becomes the name of
the function. The arguments are the inputs that the function will take, each being
separated by a comma. The expressions—which are enclosed in braces*—make
up the body of the function. Each expression, or computation, needs to be sepa-
rated by a semicolon, or a carriage return. In Command Snippet 6.5 a function,
called mean.diff (), is written to compute the mean difference between the first 187
scores and the remaining 169 scores for a vector of length 356.

Command Snippet 6.5: A function to compute the mean difference between the
first 187 scores and the remaining 169 scores for a vector of length 356.
mean.diff <- function(data) {

mean(data[1:187]) - mean(data[188:356])
}

“If the function only contains a single expression, it does not have to be enclosed in braces, but it is good
practice to do so anyway.
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By not specifying the argument data as a particular value, the function will be
able to use any vector of scores that is supplied as an input. After executing the
syntax from Command Snippet 6.5 in R, the function can be used just like any other
function. In Command Snippet 6.6 the new function, mean.diff (), is used to find
the mean difference between the first 187 and last 169 permuted delinquency scores
in the observed data. Since the dataare ordered such that the first 187 scores belong to
the control group and the last 169 scores belong to the treatment group, the function
returns the observed mean difference. When the data are sorted by the treatment
factor, this can be a good way to test that the function is working correctly.

Command Snippet 6.6: Using the mean.diff () function to find the mean differ-
ence between the first 187 and last 169 delinquency scores in the observed data.

> mean.diff (asp$Deling)
[1] 1.706636

6.3.4 Repeated Operations on Matrix Rows or Columns

The goal is to execute the mean.diff () function on all 4999 columns of the
permuted matrix. The apply() function is used to carry out a particular func-
tion or computation on each row or column of a matrix or data frame. This function
takes the arguments X=, MARGIN=, and FUN=. The first argument indicates the name
of the matrix or data frame to be used. The second argument indicates whether the
function should be applied to the rows (MARGIN=1), columns (MARGIN=2), or both
(MARGIN=c(1, 2)). The last argument, FUN=, is the name of the function that should
be applied, in this case FUN=mean.diff. Since the mean.diff () function needs
to be carried out on each column in permuted, the arguments X=permuted and
MARGIN=2 are used. Command Snippet 6.7 shows the syntax for carrying out this
computation and assigning the computed mean differences to a vector object called
diffs. Note that mean.diff () is used without the parentheses in the syntax.

Command Snippet 6.7: Syntax tocompute the mean difference between the first 169
and last 187 permuted delinquency scores in each column of the object permuted.

L[ > diffs <- apply(X = permuted, MARGIN = 2, FUN = mean.diff) J

6.3.5 Examining the Monte Carlo Distribution and Obtaining the
p-Value

To examine the mean differences, exploratory methods are utilized on the new vector
object, diffs. It is always useful to plot the Monte Carlo distribution to assess if
the permutations were correctly carried out. The syntax to plot the density of the



130 RANDOMIZATION AND PERMUTATION TESTS

permuted mean differences is provided in Command Snippet 6.8, along with the
syntax to summarize this distribution.

Command Snippet 6.8: Syntax to compute the mean difference between the first 169
and last 187 permuted delinquency scores in each column of the object permuted.

## Plot the density of the permuted mean differences
> plot(density(diffs))

## Numerically summarize the distribution of the permuted mean
differences
> summary (diffs)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.468000 -0.698500 0.030300 0.009232 0.759100 3.529000

## Examine the variation of the permuted mean differences
> sd(diffs)
[1] 1.053810

The plot of the kernel density estimate—shown in Figure 6.2—indicates that the
distribution of the 4999 permuted mean differences is roughly normally distributed.
As seen in Figure 6.2, the mean differences are, on average, close to 0, as this value
is at the base of the curve peak. This is confirmed by examining the printed summary
output. Since the delinquency scores were permuted under the assumption of no
difference between the two groups, an average mean difference near zero is expected.
The standard deviation of 0.10 is relatively small. This suggests that there is little
variation in the mean differences based on only differences in random assignment.
Because the standard deviation is quantifying the variation in a statistic (e.g., the
mean difference), it is referred to as a standard error.

To obtain the Monte Carlo p-value, recall that the proportion of permuted sample
mean differences as extreme or more extreme than the original observed difference of
1.7 needs to be computed. The sort () function can be used to sort a vector from the
smallest to the largest element. The elements as extreme or more extreme than 1.7
could then be manually counted. This is, of course, quite time consuming—especially
when the number of permutations is large.

A better method is to use indexing to identify these elements and the length()
function to count them. Command Snippet 6.8 shows the syntax for using indexing to
count the elements of diffs that are greater than or equal to 1.7 and also the number
of elements that are less than or equal to —1.7. The abs () function can also be used
to reduce this to one line by taking the absolute value of the mean differences. This
is shown in the third line of Command Snippet 6.9.

Based on the random permutations of data, 577 of the 4999 random permutations
resulted in a mean difference as extreme or more extreme than the observed mean
difference of 1.7. This would seem to suggest that the p-value is

S77
i > 0. = —— =0.115.
P(|observed d1fference| >0 17) 1999 0.11
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Figure 6.2: Kernel density plot for the distribution of permuted mean differences.
The point represents the observed mean difference of 1.7. The shaded area represents

the p-value.

This proportion is an estimate of the shaded area in Figure 6.2. It turns out that
this method of calculating a p-value gives a biased estimate in that it tends to under-
estimate the true p-value when using Monte Carlo simulation. This happens because
only a random sample of all possible permutations has been taken. Davison and

Hinkley (1997) provide a correction to the Monte Carlo p-value as
T+1
= —, 6.2
P= %+ (6.2)

where r is the number of permutations (replicates) that are as extreme or more extreme
than the observed statistic, and k is the number of randomly sampled permutations

performed in the Monte Carlo simulation. Using the correction,® the Monte Carlo
p-value for our example would be
977 +1
= ——— =0.116. 6.3
P= 4999 +1 (63)

Based on either the corrected or uncorrected p-value, the null hypothesis is not
discarded. That is, the statistical evidence is not particularly strong to rule out no
difference between the treatment and control groups. It is important to note that when

5This adjustment is why some researchers prefer to have the sampled number of permutations end in a 9

(e.g., 4999 or 9999).
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the number of permutations thatare sampled is large, the difference between the value
of the corrected and uncorrected p-value is virtually nonexistent, and furthermore,
that this correction is not universally carried out (Boos, 2003). Aside from producing
a less biased estimate of the true p-value, this correction also avoids the problem of
obtaining a p-value of 0 when the observed test statistic is greater than any that were
randomly sampled in the simulation, since the minimum possible estimate would be
1/(k+1). Because of this, it is a good habit to always use the adjustment in practice.

Command Snippet 6.9: Using indexing to count the elements in my.vector that
are greater than or equal to 0.17 and the number of sample differences that are less
than or equal to —0.17.

## Count the number of permuted mean differences lower than
-1.7

> length(diffs[diffs <= -1.7])

[1] 270

## Count the number of permuted mean differences higher than
1.7

> length(diffs[diffs >= 1.7])

[1] 307

## Count the number of permuted mean differences more extreme
than 1.7

> length(diffs[abs(diffs) >= 1.7])

[1] s77

6.4 VALIDITY OF THE INFERENCES AND CONCLUSIONS DRAWN
FROM A RANDOMIZATION TEST

The validity of the inferences and conclusions one can draw from any statistical
test always need to be evaluated. For example, in order to validly use the p-value
obtained from a statistical test as a measure of the strength of evidence against
the null hypothesis, there are certain criteria or assumptions that need to be met.
These assumptions vary depending on the statistical test that is performed. For the
conclusions from the randomization test to be valid, the assumption of exchangeability
needs to hold.

6.4.1 Exchangeability

Exchangeability for the randomization testspecifies that, under the null hypothesis, all
possible permutations of the data are equally likely. In other words, each permutation
of the data is exchangeable with any other permutation of the data. This assumption
is required since the computation of the p-value used in the randomization test gives
equal weight to each permutation of the data.
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In randomized experimental research, whether generalizable or not, the assump-
tion of exchangeability is tenable. The randomization test permutes data in a manner
that is consistent with the procedure of random assignment. Thus, the results ob-
tained are valid when random assignment has been initially used in the study. In the
after-school example previously considered, exchangeability was assumed to hold,
as the participants were randomly assigned to the conditions.

6.4.2 Nonexperimental Research: Permutation Tests

In nonexperimental research studies that do not employ random sampling, the as-
sumption that each permutation of the data is equally likely is a very hard case to
make. Some permutations of the data are probably more likely than others. In the
absence of random assignment, is it possible to validly draw conclusions from the
results of applying this procedure? When the same procedure is applied to data from
groups which were randomly sampled rather than randomly assigned, the procedure
is called a permutation test rather than a randomization test. 6 Oscar Kempthome, who
has written extensively about the theory of randomization, has distinguished between
randomization and permutation tests, writing, “the distinction between randomiza-
tion tests and permutation tests is important. The latter are based on the assumption
of random sampling, an assumption that is often patently false or unverifiable, even
though necessary to make an attack on the substantive problem being addressed”
(Kempthome, 1986, p. 524).

The use of permutation tests in nonexperimental research is becoming more
widespread. When random sampling has been employed, but random assignment
to conditions has not been implemented, Pitman (1937) has provided theoretical
justification for the use of permutation methods in producing valid results. An exam-
ple of random sampling without random assignment is the example comparing the
educational achievement between Mexican and non-Mexican immigrants.

The rationale for permutation tests, however, is quite different from that for
randomization tests. For nonexperimental research with random sampling, the per-
mutations of data do not provide potential outcomes for the same participants, but
rather outcomes for other participants that may have been drawn from hypothetical,
infinitely sized, populations. In such cases, although the use of the permutation
method is justified, the results and conclusions need to be interpreted with caution. It
is no longer the case that the results can be used to claim cause and effect arguments.

6.4.3 Nonexperimental, Nongeneralizable Research

More likely, in education, is the situation in which there is no random sampling and
no random assignment. In nonexperimental, nongeneralizable research showing that
the assumption of exchangeability has been met is a very difficult exercise. It is
not supported via random assignment nor through random sampling. Should one not
bother analyzing data in which neither random sampling nor random assignment have

61t is important to note that some authors use the two terms synonymously.
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taken place? The authors of this monograph take the position that some information
is better than no information, even if the information is less precise or need to be
qualified in some fashion. Winch and Campbell (1969) argued that although the
results from nonexperimental research in which random sampling did not occur
cannot be used to identify causes of observed differences, small p-values can help
researchers rule out chance differences due to random fluctuations in the data. Such
conclusions can be very powerful. They suggest that such conclusions might help a
researcher decide whether or not follow-up research might be worth pursuing, or if
one should abandon pursuit of the investigation in question. Perhaps the best advice
was proffered by Charles Babbage (in Blackett, 1968, p. xiii), who said, “Errors using
inadequate data are much less than those using no data at all.”

6.5 GENERALIZATION FROM THE RANDOMIZATION RESULTS

In the after-school program example, the data used to examine the effects was obtained
from a research design that used random assignment. Based on the design and data
collection methods, what are the conclusions that can be drawn and the inferences
that can be made regarding after-school programs?

As Campbell and Stanley (1963, p. 5) point out, typically, educational and behav-
ioral researchers are interested in two types of validity questions, namely (1) whether
“the experimental treatments make a difference in this specific experimental in-
stance”; and (2) “to what populations, settings, treatment variables, and measure-
ment variables can this effect be generalized.” These two questions refer to types of
validity—internal and external—respectively.

The random assignment of students to conditions allows the researchers to draw
conclusions about the effects of the treatment in this particular study—it provides
evidence of internal validity. It is unlikely that there are average differences between
students who participated in after-school programs and those that did not—there is
no effect of after-school program on delinquency—for students who participated in
the study.

Do the results from this specific study, no treatment effect of the after-school
program, hold for different students in different schools in different communities?
The answer to this question is unclear. As Edgington and Onghena (2007, p. 8) point
out, “statistical inferences about populations cannot be made without random samples
from those populations .. . in the absence of random sampling, statistical inferences
about treatment effects must be restricted to the participants (or other experimental
units) used in an experiment.”

Does this imply that the conclusions regarding the effects of treatment can only
be made about the 356 students used in this study? Statistically, the answer to
this question is “yes.”” However, nonstatistical inferences can be drawn on the
basis of logical considerations. Drawing nonstatistical generalizations is a common
practice in educational and behavioral research where samples are often not randomly
sampled from a particular population (see Edgington, 1966; Edgington & Onghena,
2007; Shadish, Cook, & Campbell, 2002). This involves drawing inferences about
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populations and settings that seem similar to the participants and settings involved in
the study conducted, especially in terms of characteristics that appear relevant. For
example, a researcher might make nonstatistical inferences about students that have
similar educational and socioeconomic backgrounds as those in our study.

6.6 SUMMARIZING THE RESULTS FOR PUBLICATION

When reporting the results from a randomization or permutation test, it is important to
report the method used to analyze the data along with the p-value. It is also necessary
to report whether the p-value is exact or approximated via Monte Carlo methods. If
the latter is the case, the number of data permutations that were carried out should be
reported, and whether the correction for the p-value was used. The following is an
example that might be used to summarize the results from the after-school program
research.

Sample Write-Up

6.7 EXTENSION: TESTS OF THE VARIANCE

In the educational and behavioral sciences, it is often the case that the researcher will
test whether the locations of two distributions (i.e., means, medians) are equivalent.
Sometimes it can also be more informative to examine whether the variation between
two distributions is equivalent. For example, in research related to educational
curriculum, comparisons are of ten made between old and new curricula. It is common
for researchers to find no differences in the average achievement between old and
new curricula, yet have the achievement scores of the new curricula be smaller than
those of the old curricula. This is an example of a treatment effect that manifests itself
through changes in variation rather than location. Again, consider the after-school
program research. The original null hypothesis was that
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Hj : The after-school program does not have an effect on delinquency.

It was found that in terms of average levels of delinquency, the evidence was weak in
refuting the null hypothesis. What about in terms of variation? The two samples show
differences in variation, with the control group (s? = 110.7) having more variation
in delinquency measures than the treatment group (s?> = 80.5). Does the sample
difference of 30.2 provide convincing evidence that the after-school program has an
effect on the variation of delinquency measures? Specifically, the null hypothesis,

2 — .2
OControl — OTreatment»
is tested. This hypothesis is equivalent to

Créontro] - Cr’%‘rea\.tment =0.

The same process of simulation introduced earlier in the chapter can be used to
obtain a Monte Carlo p-value for this analysis. The only difference is that instead of
writing a function to compute the mean difference, the function needs to compute the
difference in variances. Command Snippet 6.10 shows the syntax for carrying out
4999 permutations of the data and computing the difference in variances. Using the
correction for Monte Carlo p-values,

_ 1198 +1

P= 4999 +1

The probability of obtaining a sample difference in variance as extreme or more

extreme than the observed difference of 30.2 is 0.240. This p-value is weak evidence

against the null hypothesis and does not indicate that there are differences in variation
that are attributable to participation in after-school programs.

= 0.240. (6.4)

Command Snippet 6.10: Syntax to permute the difference in variances.

## Function to compute the difference in variances
> var.diff <- function(data) {

var (data[1:187]) - var(data[188:356])

}

## Carry out the var.diff() function on the original permuted
data
> var.diffs <- apply(X = permuted, MARGIN = 2, var.diff)

## Compute the p-value
> length(var.diffs[abs(var.diffs) >= 30.2])
[1] 1198

6.8 FURTHER READING

Major sources on the theory of randomization include Kempthorne (1955, 1977)
and Fisher (1935). Ernst (2004) provides a readable account of both randomization
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and permutation methods, including application of such procedures. Edgington
and Onghena (2007) provide an extensive treatise on randomization tests for many
situations. An implementation of permutation tests under a unified framework in R
is explained in detail in Hothorn, Hornik, van de Wiel, and Zeileis (2008).

PROBLEMS

6.1 Use the data in the AfterSchool.csv data set to examine whether there are
treatment effects of the after-school program on victimization measures.

e Carry out an exploratory analysis to initially examine whether there are treat-
ment effects of the after-school program on victimization measures.

e Use the randomization test to evaluate whether there is convincing evidence
that the after-school program has an effect on victimization.

Write up the results from both sets of analyses as if you were writing a manuscript
for publication in a journal in your substantive area.

6.2 Using the data in the AfterSchool.csv data set, investigate how the number of
permutations of the data may effect the statistical conclusion or inference regarding
the treatment effects of the after-school program on victimization measures. Carry
out the randomization test from the previous problem again, except this time permute
the data (a)100; (b) 500; (c) 1000; (d) 5000; (e) 10,000; and (f) 100,000 times.

a) Compare the p-value across each of these analyses and comment on how
the number of permutations might effect the statistical conclusions. What
advice would you offer other researchers who are beginning to use the
randomization test in their own studies?

6.3 Read the methods section of the article by Gottfredson and her colleagues
(Gottfredson et al.,, 2010), paying particular attention to the sample used in the study.
(This article can be accessed online through the library.) Given what you know about
the characteristics of the sample and the sampling design, describe the population
that the results of the after-school program intervention could be generalized to.
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CHAPTER 7

BOOTSTRAP TESTS

Left to our own devices, . .. we are all too good at picking out non-existent patterns that
happen to suit our purposes.
—B. Efron & R. Tibshirani (1993)

In Chapter 6, the use of the randomization test as a method that a researcher can
use to examine group differences was introduced under the auspices of random
assignment. When using the randomization test to draw inferences regarding the
observed data, the distribution of the mean difference was considered based on
the potential random assignments that could have occurred. This distribution was
referred to as the randomization distribution of the mean difference. By examining
the expected variation in the randomization distribution, that is, the variation of the
mean difference, a decision regarding the likelihood of the observed difference being
due only to the random assignment could be made.

The key question addressed by using any statistical method of inference is “how
much variation is expected in a particular test statistic simply because of the random-
ness employed?” With randomization tests, the “randomness employed”” was random
assignment. In this chapter the use of bootstrap methods to test for group differences
isexamined. Bootstrapping does not assume random assignment to groups, but rather

Comparing Groups: Randomization and Bootstrap Methods Using R 139
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.



140 BOOTSTRAP TESTS

that the samples were randomly drawn from some larger population. Here the key
question is “how much variation would be expected in a particular test statistic, if
one repeatedly draws random samples from the same population?”

Bradley Efron introduced the methodology of bootstrapping in 1979 as acomputer-
based simulation framework to replace the inaccurate and complicated approxima-
tions that theoretical methods provide.! The bootstrap methodology uses Monte
Carlo simulation to resample many replicate data sets from a probability model as-
sumed to underlie the population, or from a model that can be estimated from the
data. The replicate data sets can then be used to examine and quantify the variation in
a particular test statistic of interest. Moreover, depending on the information one has
about the population model, the bootstrapping can be parametric, semiparametric, or
nonparametric. In this chapter, the use of the parametric bootstrap and the nonpara-
metric bootstrap as inferential methods to test for differences between distributions
is discussed.

7.1 EDUCATIONAL ACHIEVEMENT OF LATINO IMMIGRANTS

Recall that in Chapter 6 two research questions were laid out. The first question
regarding whether there is a difference in the effect of delinquency between students
who participated in the after-school program and students that did not was answered
in Chapter 6 using the randomization test. The second research question posed was
whether there is a difference in the educational achievement of immigrants from
Mexico and that of immigrants from other Latin American countries. This question
came out of research being performed by Stamps and Bohon (2006) who studied the
educational achievement of Latino immigrants by examining a random sample of the
2000 decennial Census data (a subset of which is provided in LatinoEd. csv). In the
course of their research, they began to wonder whether there could be a link between
where the immigrants originated and their subsequent educational achievement. This
chapter explores whether there is a difference in the educational achievement of
immigrants from Mexico and that of immigrants from other Latin American countries.
The focus here is on statistical inference. Thus, the exploration entails exploring
whether there are population differences among the groups.

After examining the codebook for the data and reading the data into R, an initial
inspection of both graphical and numerical summaries suggest that there is a sample
difference in educational achievement. Command Snippet 7.1 shows the syntax for
the exploration of these data.

Figures 7.1 and 7.2 show that the distribution of educational achievement for
both groups is roughly symmetric. For Latin American immigrants from Mexico
(M = 59), thetypical educational achievement score is approximately 6 points lower

The nomenclature of bootstrapping comes from the idea that the use of the observed data to generate
more data is akin to a method used by Baron Munchausen, a literary character, after falling “in a hole
nine fathoms under the grass, . . . observed that I had on a pair of boots with exceptionally sturdy straps.
Grasping them firmly, I pulled with all my might. Soon I had hoist myself to the top and stepped out on
terra firma without further ado” (Raspe, 1786./1948, p. 22).
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(within rounding) than for those immigrants from other Latin American countries
(M = 66). Theachievement scores for Mexican immigrants also show more variation
(SD = 16 vs. SD = 13) indicating that Latinos from countries other than Mexico
are more homogenous in terms of their educational achievement level.

Command Snippet 7.1: Syntax to read in and examine the Latino education data.

-
## Read in the data

> latino <- read.table(file = "/Documents/Data/LatinoEd.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the data frame object
## Output is suppressed

> head(latino)

> tail(latino)

> str(latino)

> summary(latino)

## Density plots conditioned on Mex

> plot(density(latino$Achieve[latino$Mex == 0], bw = 5.5),
main= " ", xlab = "Educational Achievement", bty = "1", 1ty
= "dashed", x1lim = c(0, 100))

> lines(density(latino$Achieve[latino$Mex == 1], bw = 5.5), 1ty
= "so0lid")

> legend(x = 5, y = 0.030, legend = c("Non-Mexican Immigrants",

"Mexican Immigrants"), 1ty = c("dashed", "solid"), bty =

||nu)

## Side-by-side box-and-whiskers plots
> boxplot(latino$Achieve[latino$Mex == 0],
latino$Achieve[latino$Mex == 1], horizontal = TRUE)

## Conditional means

> tapply (X = latino$Achieve, INDEX = latino$Mex, FUN = mean)
0 1

64.5147 58.5931

## Conditional standard deviations

> tapply(X = latino$Achieve, INDEX = latino$Mex, FUN = sd)
0 1

13.03141 15.62688

## Sample sizes
> table(latino$Mex)

0 1
34 116

Similar to the question asked in Chapter 6, the key statistical question to be
answered here is whether the difference of six achievement points is expected given
the variation that one would expect in the mean difference just due to chance alone.
Here, the chance variation is not due to differences in random assignment—after all,
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Figure 7.1: Density plots for the distri- Figure 7.2:  Side-by-side box-and-

bution of educational achievement condi- whiskers plots for the distribution of

tioned on whether or not the Latin Ameri- educational achievement conditioned on

can country of emmigration was Mexico. whether or not the Latin American coun-
try of emmigration was Mexico.

the two groups in this example were not randomly assigned—but rather it is due
to random sampling. If a different random sample of Mexican and non-Mexican
immigrants had been drawn, it would be expected that their mean achievement would
be slightly different. This is likely, even when the population means for Mexican and
non-Mexican Latino immigrants are identical.

How much of a difference in means is expected when drawing different random
samples? Suppose it was possible to draw many different random samples from the
populations of Mexican and non-Mexican immigrants. Then the extent of variation
due to random sampling could be determined. This information could be used as
a reference for evaluating the mean difference of six achievement points that were
found for the single random sample considered above. If the probability model
underlying the population(s) is known, or some assumptions about the probability
model can be made, the parametric bootstrap can be used to simulate the distribution
of the test statistic. Before further explanation of this methodology, a short digression
is offered on the use of probability models in statistics—an essential element of the
parametric bootstrap test.

7.2 PROBABILITY MODELS: AN INTERLUDE

The fundamentals of probability distributions can be illustrated with some coin flip-
ping problems. Suppose a person tosses 10 fair coins and counts the number of
heads. What are the possible outcomes? Now imagine the person tossing these 10
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coins over and over again, and recording the number of heads each time. What is the
probability attached to each of the possible outcomes?

Suppose the number of heads is denoted by X. Because the number of heads will
vary each time the 10 coins are tossed, the variable X is referred to as a random
variable. The possible outcomes of X comprise what is known as the sample space,
which for this example can be mathematically expressed as

X = {17273) 4a5a6a 7a8a93 10}

To be clear, these are all the possible number of heads that can occur when 10 coins
are tossed. While there are 10 outcomes possible, they do not occur with equal
probability. For example, there are multiple ways to get 5 heads,

HHTTHTTTHH or
HTHHHTHTTT,

but only one way to get 10 heads, namely

H,H,H,H,H,H,H,H,H, H.

To find the probability attached to each of the possible outcomes, all the possible
outcomes have to be enumerated. Once all of the outcomes have been enumerated, a
probability can be assigned to each of the k possible outcomes. Each probability is
symbolized as

P(X = k) = px (7.1

The probabilities have the constraints that,

e The individual probabilities must sum to one, ) pr = 1; and

e Each individual probability must be between the values of 0 and 1 inclusive,
0<px <1.

A correspondence between each and every outcome and the associated probability
is called a probability distribution. Probability distributions can be represented in a
table, graph, or formula. For example, the probability distribution of X, the number
of heads in 10 coin tosses, is presented in both Table 7.1 and Figure 7.3

7.3 THEORETICAL PROBABILITY MODELS IN R

How does one obtain probability values for the possible outcomes? In practice, it
is common to specify a theoretical probability distribution that can be used as a
model to assign probabilities for each outcome. These probability distributions are
models because they don’t exactly reproduce reality in terms of the populations they
represent. To be useful, the specific probability assignments need to be consistent
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Table 7.1: Probability Distribution of Random Variable X for Number of Heads
When Tossing 10 Coins

Outcome Probability Symbolic Notation
0 0.001 P(X =0)=0.001
1 0.010 P(X =1)=0.010
2 0.044 P(X =2)=0.044
3 0.117 P(X =3)=0.117
4 0.205 P(X =4)=0.205
5 0.246 P(X =5)=0.246
6 0.205 P(X =6) =0.205
7 0.117 P(X=T7)=0.117
8 0.044 P(X =8) =0.044
9 0.010 P(X =9)=0.010

10 0.001 P(X =10) =0.001

with reality. There are several probability distributions that serve as useful models
in the educational and behavioral sciences. For example, tossing a coin 10 times can
be modeled using the binomial probability distribution. The binomial distribution
results from a process in which

e There are a fixed number n of observations.
e Each observation is independent.

e Each observation results in one of only two possible outcomes-—called a suc-
cess or failure.

e The probability of a success is the same for each observation.

Our coin tossing example is an example of a binomial process, because each of the
10 tosses is independent of one another. Each toss results in one of two possible
outcomes—heads or tails, and the probability of a head (success) is 0.5 for each toss,
assuming a fair coin .2 R has several built-in probability distributions in addition to the
binomial that are useful in modeling “real-world” processes or populations. A list of
probability distributions included in base R, as well as other probability distributions
available in add-on packages can be found at http: //cran.r-project.org/web/
views/Distributions.html.

2Sometimes this is referred to as a Bernoulli process rather than a binomial process.
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Figure 7.3: Spike plot of the probability distribution of the outcome for the number
of heads in 10 tossed coins.

In parametric bootstrapping, observations are sampled—with replacement—f{rom
a particular probability distribution (i.e., population). To draw random values from a
probability distribution, the prefix r is attached to the root name of the distribution.
For example, to draw random observations from a population or process that is
normally distributed, the r prefix is attached to the root name norm. This results in
a function rnorm(). The website mentioned above also provides the root names for
all the probability distributions in the base R system.

7.4 PARAMETRIC BOOTSTRAP TESTS

In the Latino data, the observed sample mean difference is 5.82 achievement points.
Is this enough evidence to suggest that there are population differences in educational
achievement between Mexican and non-Mexican Latino immigrants? To examine
this question, the following null hypothesis is tested:

Hy :There is no population difference in achievement scores
between Mexican and non-Mexican immigrants.
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Similar to what was done in Chapter 6, the null hypothesis is assumed to be true
and then the variation in the distribution of the test statistic of interest (e.g., mean
difference) is examined under this assumption. In this case, the null hypothesis is a
statement about the population of achievement scores for Mexican and non-Mexican
immigrants. In particular, it claims that the underlying probability distributions for
both populations are identical. This is equivalent to the claim that both samples were
randomly drawn from a single probability distribution. This probability distribution
for the population of achievement scores is specified (i.e., a parametric model is
chosen), and the random sampling that took place in the study is replicated by
resampling from this distribution.

7.41 Choosing a Probability Model

How does one choose a particular probability model to use in our parametric boot-
strap? This is a very good question to ask, and a very difficult question to answer. The
model needs to be chosen to reflect the probability distribution of the population that
underlies the observations from the original sample. The decision of which model to
sample from can have drastic effects on the results and thus, on the inferences that
one draws.? Because of this, the choice of model should be guided by theoretical or
substantive knowledge.

Lest the bootstrap methodology is boo-hooed because of the seemingly subjective
choice of the underlying model, it is important to point out that the choice of paramet-
ric models is not limited to bootstrap methods. Most inferential methods employed in
statistics make some assumption about the probability distribution of the underlying
population. For example, the independent samples ¢-test—a commonly used method
used to test mean differences between two populations—makes the assumption that
the probability distribution of scores underlying both populations is normal. This
implies that one can do no worse with the bootstrap if normality is assumed.

7.4.2 Standardizing the Distribution of Achievement Scores

Prior empirical research on achievement suggests that the normal distribution is a
reasonable choice for our parametric model. The normal distribution, like almost all
probability distributions, is really a family of distributions. The family is defined by
the mean and the standard distribution. The distribution will always be bell-shaped,
but can be located at different mean values, and can be skinnier or wider depending
on the value of the standard deviation. Since there are many normal distributions,
there is a need to further define the distribution by specifying the mean and standard
deviation. This is referred to as parameterizing the distribution.

This is an even more difficult task than choosing the probability distribution, since
the researcher typically has no idea what the mean and standard deviation of the
population of scores should be. The sample data could, of course, be used to estimate

3Because the validity of the inferences drawn is tied to the choice of parametric model, some researchers
have proposed the examination of several models to examine the robustness of the results.
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these parameters, however, these estimates are often biased. Luckily, this can be
easily side-stepped by re-sampling from the standard normal distribution.

The standard normal distribution is parameterized having a mean of zero, and a
standard deviation of one. Symbolically this distribution is expressed as A (mean =
0, standard deviation = 1), or more simply, A/(0, 1). To express that a variable has
this normal distribution,

~N(0,1), (7.2)

is used. While this distribution is completely parameterized, there is still the problem
that the original achievement observations are not on this new scale. In order to
transform the original achievement scores to this scale, a common method called
standardizing is used to reexpress the data on this scale. To standardize data, the
mean score is subtracted from each of the observed scores and then this difference
is divided by the standard deviation. This reexpresses the data using a metric that
quantifies each observation in terms of its distance from the mean expressed in
standard deviation units. The transformed scores are called z-scores. Mathematically
they are computed as

Y~
2 = SD, (7.3)

A vector of z-scores for the Latino achievement scores is created either by carrying
out the computations directly or by using the scale() function. This function takes
the argument x= which is used to define the vector of scores to standardize. In Com-
mand Snippet 7.2 the scale() function is used to standardize the Achieve variable
using the marginal mean and standard deviation. This new vector of standardized
scores is also appended into the latino data frame.

Figures 7.4 and 7.5 show the conditional density plots and side-by-side box-and-
whiskers plots for the standardized achievement scores. The shapes of these distri-
butions have not changed after standardization.* The location of these distributions
have shifted. The mean difference for the standardized achievement scores between
the Mexican (M = —0.09) and non-Mexican (M = 0.30) immigrants is 0.39. Re-
call that the variation has also changed so that these scores are expressed in standard
deviation units. Thus, the mean difference of 0.39 suggests that the non-Mexican
immigrants, on average, score 4/10 of a standard deviation higher than the Mexican
immigrants. In the next section the use of the parametric bootstrap to test whether
this sample difference provides statistical evidence that Mexican and non-Mexican
immigrants have different mean achievement in the population is explained.

4]t is a common misconception that standardizing normalizes a distribution. This is probably due to tests
that use z-scores from a normal distribution. It is stressed that computing z-scores based on sample data
does not change the original distribution.
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Command Snippet 7.2: Creating a vector of standardized achievement scores.

## Standardize the achievement scores
> latino$z.achieve <- scale(x = latino$Achieve)

## Re-examine the latino data frame
> head(latino)

Achieve ImmYear ImmAge English Mex z.achieve
1 59.2 77.7 9.6 1 1 -0.04824848
2 63.7 65.8 1.1 1 1 0.24701645
3 62.4 63.6 6.1 0 1 0.16171769
4 46.8 55.3 2.1 1 1 -0.86186738
5 67.6 73.1 2.3 1 1 0.50291272
6 63.1 75.7 8.4 1 0 0.20764779

## The marginal mean of the standardized scores is 0
> mean(latino$z.achieve)
[1] 6.27847e-17

## The marginal standard deviation of the standardized scores
is 1
> sd(latino$z.achieve)

[1] 1

## The conditional means

> tapply(X = latino$z.achieve, INDEX = latino$Mex, FUN = mean)
0 1

0.30047291 -0.08806965

7.5 THE PARAMETRIC BOOTSTRAP

In this section, an explanation of the methodology underlying the parametric bootstrap
is provided. Consider a sample of data, ¥;,¥y2,¥s,- . - Yy, drawn from an infinitely
large population that has a known probability distribution. The steps to bootstrap the
distribution for a particular test statistic, V,are provided in Figure 7.6.

7.5.1 The Parametric Bootstrap: Approximating the Distribution of
the Mean Difference

To perform a parametric bootstrap under the null hypothesis that there are no dif-
ferences in the educational achievement scores between Mexican and non-Mexican
Latino immigrants, a parametric model to bootstrap from is specified, the standard
normal distribution. Two replicate samples are then bootstrapped from this popula-
tion distribution—one having n; = 34 observations and the other having ny = 116
observations, as these are the original group sample sizes. The mean difference be-
tween these two replicate samples is then computed. This process is repeated many
times, say R = 4999.
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--- - Non-Mexican Immigeants
—  Mexicanimmigrank

Mexican Immigrants

Figure 7.4: Density plots forthe distribu- Figure 7.5:  Side-by-side box-and-
tion of standardized educational achieve- whiskers plots for the distribution of stan-
ment conditioned on whether or not the dardized educational achievement condi-
Latin American country of emmigration tioned on whether or not the Latin Ameri-
was Mexico. can country of emmigration was Mexico.

Because the null hypothesis is assumed to be true, both replicate samples are
sampled from the same probability distribution. This computationally simplifies the
process in that one need only draw a single vector of size n = 34 + 116 = 150
from the standard normal distribution and then compute the mean difference using
the first 34 and the last 116 observations. (Or the first 116 and the last 34—since this
is a random draw from the population, which observations are put in which group
is really a moot point.) Thus, the key steps in the simulation, which is illustrated in
Figure 7.7, are

e Bootstrap 150 observations from a standard normal distribution.
e Computethemeandifference betweenthe first 34 and the last 116 observations.

e Repeat this process many times, each time recording the bootstrapped mean
difference.

In Chapter 6, the replicate() and apply() functions were used to repeat
computations such as permutations. These same functions could also be used to
produce many bootstrap replicate data sets and obtain the bootstrap distribution of
the mean difference. The boot package in R, however, is a much more elegant
and complete implementation of the bootstrap methodology. This package comes
as part of the base R system and only needs to be loaded into the session using the
library() function.
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e Randomly generate n observations {y7,¥;,¥3.Y3,---,Y5} from the
population distribution. This is called a bootstrap replicate because
it is a replication of the observed data in the sense that it is another
possible sample of size n that could have been drawn from the known
population.

e Compute V—the test statistic of interest—using the newly generated
observations y7, 1, Y3, Y3, - -« Yn-

e Repeatthese first two steps many times, say £t times, each time record-
ing the statistic V.

e The distribution of V;, Vs, Vg, " VR can be used as an estimate of
the exact sampling distribution of V. This is called the bootstrap
distribution of V.

Figure 7.6: Steps for bootstrapping the distribution for a particular test statistic, V/,
from a known probability distribution.

7.6 IMPLEMENTING THE PARAMETRIC BOOTSTRAP IN R

The boot () function—from the boot package—can be used to generate bootstrap
replicates of any statistic(s) of interest. To perform a parametric bootstrap, this
function takes four required arguments. The first argument, data=, specifies the
name of the data frame or vector of scores constituting the observed data. The
argument R= provides the number of bootstrap replications to be performed.

The arguments sim="parametric" and ran.gen= each require a user-written
function—the first describes how the bootstrap observations will be randomly sam-
pled (e.g., which probability distribution, etc.), and the second indicates how the test
statistic will be computed using the bootstrapped resamples.

7.6.1 Writing a Function to Randomly Generate Data for the boot()
Function

For use in the boot () function, the random data generation function requires two
arguments, data and mle. The first argument, data, takes the data frame or vector
of scores provided in the boot () function in the random data generation (e.g., to
compute how many observations to sample). The second argument, mle, consists
of any other information needed for the process of data generation (e.g., parameter
estimates).
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Parametric Assumption
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Bootstrapbed
Mexican Replicates

Boo_t:strapped
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V = Yitexican ~ Yon—Mexican

Figure 7.7: Visualization of the process used to parametrically bootstrap 150 ob-
servations from the standard normal distribution. The first 34 observations, the X
replicates, constitute the replicated “non-Mexican immigrants” and the last 116 ob-
servations, the Y replicates, constitute the replicated “Mexican immigrants.” V' is the
test statistic (e.g., the mean difference) computed for each replicate data set.

To write a function to randomly sample observations from the standard normal
probability distribution, the rnorm() function is used. This function takes the
arguments n=, mean=, and sd=. The first argument indicates how many observations
to randomly draw, and the latter two arguments specify the parameters that define
the probability distribution from which to draw. To draw from the standard normal
distribution, for example, the arguments mean=0 and sd=1 are used. Note that these
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values are the default values for the arguments, so they do not need to be explicitly
included in this example.

The first argument can be a particular number (e.g., n=150), but is instead provided
the expression length (data). By using this expression rather than an actual value,
the function will sample the same number of observations that are included in the
original vector of scores assigned to the object data, which is specified in the
boot () function. In Command Snippet 7.3 a function, called 1lat.gen(), is written
to randomly sample observations from the standard normal probability distribution.

Command Snippet 7.3: A function to sample 150 observations from the standard
normal distribution. Although the argument mle is not used in this function, it needs
to be included in the function for the boot () function to work.

> lat.gen <- function(data, mle){

roorm(n = length(data), mean = 0, sd = 1)

}

7.6.2 Writing a Function to Compute a Test Statistic Using the
Randomly Generated Data

A function that will compute a test statistic—in this example, the mean difference—
for each of the bootstrapped replicate data sets is also needed. This function requires
that the argument, data, be specified (similar to the function written in Chapter
6 to compute the mean difference) and an additional argument, indices. The
first argument obtains the data randomly generated in the function lat.gen().
The second argument is a vector of indices, frequencies, or weights defining the
observations from the bootstrap sample to be used.> Similar to the mle argument,
in the random data generation function, this argument is included, but it will not be
used by the function during this computation. In Command Snippet 7.4, a function,
mean.diff (), is written that will compute the mean difference between the first 34
bootstrapped observations and the last 116 bootstrapped observations.

Command Snippet 7.4: A function to compute the mean difference in the boot-
strapped achievement scores.
> mean.diff <- function(data, indices) {

mean (data[1:34]) - mean(data[35:150])
}

50ne can improve the computational efficiency by only using particular observations or weighting certain
observations as more important. This is beyond the scope of this monograph, but Kahn (1954) provides a
fairly readable treatment of these ideas.
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Both the lat.gen() and mean.diff () functions can be executed so that they
can be implemented in the boot () function. Command Snippet 7.5 shows the
final implementation of the parametric bootstrap via the boot () function. The two
functions lat.gen() and mean.diff () are provided to the arguments ran.gen=
and statistic=, respectively. Note that the parentheses are not needed when
including the functions in the boot() function. The argument R=4999 is also
included to draw 4999 bootstrap replicates. The results are then assigned to an object
par.boot.

Command Snippet 7.5: The use of the boot () function to perform a parametric
bootstrap.

## Load the boot package
> library(boot)

## Carry out the parametric bootstrap
> par.boot <- boot(data = latino$z.achieve, statistic =
mean.diff, R = 4999, sim = "parametric", ran.gen = lat.gen)

7.6.3 The Bootstrap Distribution of the Mean Difference

The object par.boot contains several elements including the 4999 bootstrapped
mean differences. To list the components of the bootstrap object that are accessible,
the str () function is called on the assigned bootstrap object (see Command Snippet
7.6). Each of the 4999 bootstrap mean differences is contained in the t element of
the bootstrap object par.boot.

Similar to the process used in Chapter 6 to examine the permutation distribution,
the bootstrap distribution of the standardized mean difference is plotted. Command
Snippet 7.7 shows the syntax to plot the 4999 replicate mean differences shown in
Figure 7.8. This distribution is an approximation of the exact sampling distribution
of the mean difference under the normal distribution. When the number of bootstrap
replicates, R, is infinite (R — o00) then the bootstrap distribution and the exact
sampling distribution are identical. In practice, however, the number of bootstrap
replicates drawn is finite, so the bootstrap distribution is only an approximation of
the exact distribution. This approximation differs only because of simulation error.

Note that the bootstrap distribution of the sample mean difference is roughly
normally distributed. It is also roughly centered around zero—the difference between
the population means assumed under the null hypothesis. This is confirmed by
examining the mean of the bootstrap distribution, which is approximately zero. This
suggests that the average mean difference, under the null hypothesis, is zero. The
standard deviation of the bootstrap distribution is the approximation of the standard
error (SE) for the mean difference. The SE of 0.2 suggests that there is not a lot of
variation from the average mean difference of zero. The mean differences do not
vary much just because of the random sampling.
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Command Snippet 7.6: Listing the elements from the bootstrap object.

> str(par.boot)
List of 10
$ to : num -0.243
$t : num [1:4999, 1] -0.334 -0.193 -0.181 0.114 0.219
$ R : num 4999
$ data : num [1:150, 1] -0.0482 0.247 0.1617 -0.8619
0.5029
.- attr(*, "scaled:center")= num 59.9
.- attr(*, "scaled:scale")= num 15.2
$ seed : int [1:626] 403 426 -1087594034 -1689997951
-1154526649 800955270 -1940498415 1227735036 -619234920
-9902028
$ statistic:function (data, indices)
.- attr(*, "source")= chr [1:3] "function(data, indices) {"
$ sim : chr "parametric"
$ call : language boot(data = latino$z.achieve, statistic
= mean.diff, R = 4999, sim = "parametric", ran.gemn =
lat.gen)
$ ran.gen :function (data, mle)
.- attr(*, "source")= chr [1:3] "function(data, mle){"
$ mle : NULL
- attr(*, "class")= chr "boot"
\

Command Snippet 7.7: Examine the bootstrap distribution of the mean difference.

## Plot the bootstrap distribution
> plot(density(par.boot$t))

## Draw a vertical line at 0
> abline(v=0)

## Mean of the bootstrap distribution
> mean(par.boot$t)
[1] 0.002673093

## Standard deviation of bootstrap distribution
> sd(par.boot$t)
[1] 0.1958675

Recall that the p-value measures the evidence against the null hypothesis by
quantifying the probability of observing a sample statistic at least as extreme as
the one estimated in the sample data assuming the null hypothesis is true. For the
bootstrap test, this boils down to finding the proportion of times a bootstrapped
statistic is at least as extreme as the observed statistic. In the example, the observed
sample mean difference in standardized achievement scores is 0.39. Using the
length() function and indexing, as shown in Command Snippet 7.8, the number
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of bootstrapped statistics that are greater than or equal to 0.39 and the number of
bootstrapped statistics that are less than or equal to —0.39 are counted.

Density

-05 0.0 05

Standardized Mean Diferenca

Figure 7.8: Bootstrap distribution of the mean difference in achievement scores be-
tween non-Mexican and Mexican immigrants for 4999 replicates under the hypothesis
of no difference. The vertical line is drawn at 0.

Command Snippet 7.8: Syntax to count the number of bootstrapped statistics that
are as extreme or more extreme than the observed mean difference.

> length(par.boot$t[abs(par.boot$t) >= 0.39])
[1] 231

Using the Monte Carlo adjustment introduced in Chapter 6, this suggests that the
probability of observing a sample mean difference as extreme or more extreme than
the observed sample difference of 0.39—assuming that there is no population mean
achievement score difference between Latino immigrants from Mexico and Latino
immigrants from other countries—is

23141
P= 4999 +1
— 0.046.

The p-value of 0.046 is moderate evidence against the null hypothesis.
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7.7 SUMMARIZING THE RESULTS OF THE PARAMETRIC
BOOTSTRAP TEST

The results of the parametric bootstrap test are reported similarly to otherMonte Carlo
inferential methods. Good (2005b, p. 232) suggests that when reporting the results,
one should “provide enough detail that any interested reader can readily reproduce
your results.” Details would include the chosen test statistic, the assumptions of the
method, and any results obtained. For example, the test of the mean educational
achievement differences for the Latino data via the parametric bootstrap might be
reported as follows.

Sample Write-Up

7.8 NONPARAMETRIC BOOTSTRAP TESTS

When differences between the Mexican and non-Mexican achievement scores were
tested using the parametric bootstrap, an assumption was made that the probability
model underlying the population of achievement scores was known. What if there
was no theoretical knowledge to suggest the particular probability model? The
density plot of the standardized achievement scores is again examined, but this time
with the addition of variability bands (see Section 3.4). Command Snippet 7.9 shows
the syntax for plotting the kernel density estimates with variability bands for both the
Mexican and non-Mexican immigrants using the sm.density () function.

Figures 7.9 and 7.10 show the resulting plots. These plots suggest very slight
misfit between the normal probability model and the observed data for the Mexican
achievement scores. Depending on the degree of misfit between the normal model
and the data, a researcher may no longer believe that the population of achievement
scores is normally distributed, or may want to examine the validity of the parametric
results by seeing whether the level of evidence changes if one no longer imposes
this particular probability model on the data. If there is no substantive knowledge
to support the use of a different parametric model, the probability model for the
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population can remain completely unspecified. The empirical distribution (i.e., the
distribution suggested by the sample data) can then be used as a proxy for the
population distribution and the researcher can use nonparametric bootstrapping to

test for population differences.

Figure 7.9: Density plot (dashed line)
with variability bands of the distribution
of standardized educational achievement
for Mexican immigrants. The solid line is
the density curve of the standard normal
probability model.
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Figure 7.10: Density plot (dashed line)
with variability bands of the distribution
of standardized educational achievement
for non-Mexican immigrants. The solid
line is the density curve of the standard
normal probability model.

Command Snippet 7.9: Syntax to plot the kernel density estimates for both the
Mexican and non-Mexican immigrants along with variability bands for the normal

model.

## Load the sm library
> library(sm)

non-Mexican immigrants

rugplot = FALSE)

immigrants

rugplot = FALSE)

## Plot the kernel density estimate of

> sm.density(latino$Achieve[latino$Mex ==

## Plot the kernel density estimate of

> sm.density(latino$Achieve[latino$Mex ==

achievement for

0], model = "normal",

achievement for Mexican

1], model = "mnormal",

Nonparametric bootstrapping is another Monte Carlo simulation method for ap-
proximating the variation in the distribution of a test statistic. Nonparametric refers
to the idea that the sample data are not generated from a particular parameterized



158 BOOTSTRAP TESTS

probability model. In fact, nonparametric bootstrapping makes no assumptions about
the probability model underlying the population. This method uses the distribution
of the observed sample data, the empirical distribution, as a proxy for the population
distribution. Replicate data sets are then randomly generated, with replacement from
the empirical data. Since, in theory, the observed sample data should represent the
population from which they are drawn, replicates drawn from these data should rep-
resent what one would get if many samples from the population were drawn. Figure
7.11 represents the concept of the nonparametric bootstrap.
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Figure 7.11: Nonparametric bootstrapping involves resampling from the pooled
observed sample with replacement. The bootstrap distribution of a statistic obtained
from this method is typically a good approximation of the exact distribution.

Consider a sample of data {y;,y2, ¥, . . . ¥» } drawn from an infinitely large pop-
ulation that has some unknown probability distribution. Because the probability is
unknown, the empirical distribution based on the observed data is used as a represen-
tation of the population distribution. The steps used to bootstrap the distribution for
a particular test statistic, V,are provided in Figure 7.12.
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e Randomly resample n observations from the observed sample with
replacement {y},y1,¥3,Y3,-- -, Y} This is called a bootstrap repli-
cate because it is a replication of the obscrved data in the sense that it
is another possible sample of size n that could have been drawn from
the unknown population.

e Compute V —the test statistic of interest—using the bootstrapped ob-
servations {7, yi,¥3,¥3»---,Yn}-

e Repeat these first two steps many times, say R timcs, cach time record-
ing the statistic V.

e The distribution of Vl, V2, 173, ceey VAR can be used as an estimate of
the exact sampling distribution of V. This is called the bootstrap
distribution of V.

Figure 7.12: Steps for using the sample data to bootstrap the distribution for a
particular test statistic, V', when the probability distribution is unknown.

7.8.1 Using the Nonparametric Bootstrap to Approximate the
Distribution of the Mean Difference

Because the null hypothesis of no difference is again assumed to be true, the sample
observations can once again be pooled together and replicate bootstrap samples
from the pooled distribution can be drawn (see Figure 7.11). This again simplifies
the process in that one sample of size n = 150 from the observed data can be
drawn and the mean difference can be computed using the first 34 and the last 116
observations. Because there is no assumptions made about the population distribution
of achievement scores, there is no longer a need to bootstrap the standardized scores.
Instead, the raw achievement scores can be used in the nonparametric bootstrap.
Consider the key steps involved in using a nonparametric bootstrap to obtain the
distribution of the mean difference in educational achievement for the Latino data.

e Bootstrap from the 150 raw observations in the pooled sample.

e Compute the mean difference between the first 34 and the last 116 bootstrapped
observations.

e Repeat this process many times, each time recording the bootstrapped mean
difference.
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7.8.2 Implementing the Nonparametric Bootstrap in R

The nonparametric bootstrap is also implemented in R using the boot () function.
For nonparametric bootstrapping, only the arguments data=, statistic=, and
R= are used. Because of the manner in which the boot () function resamples, in
nonparametric bootstrapping, the data= argument takes the name of a data frame
containing the observed data, even though one is really only interested in the vector
of achievement scores. This is because the boot () function uses the row numbers
of the data frame to keep track of which observations were resampled during the
bootstrapping process. The argument R=, similarly to parametric bootstrapping, is
the number of bootstrap replicates to be drawn. For nonparametric bootstrapping, the
argument statistic= again takes a function that when applied to the bootstrapped
data returns the statistic of interest. But, this time an expression is included in the
function that indicates the computation should be carried out on the observations
drawn in the bootstrap process.

Command Snippet 7.10 includes a function called mean.diff.np() that when
applied to the Latino data will compute the mean difference between the first 34
resampled achievement scores and the last 116 resampled achievement scores. Note
that the first line of this function uses indexing to create a new data frame object
called d. The rows of d are the bootstrapped rows—which were stored internally
in indices=—from the original data frame. This new data frame d is then used in
all remaining computations in the function. The snippet also includes the syntax for
carrying out the nonparametric bootstrap on the Latino data.

Command Snippet 7.10: A function to compute the mean difference between the
first 34 resampled observations and the last 116 resampled observations. The first
line indicates that all rows of the data frame are to be used. The boot () function is
then used to bootstrap the mean difference in achievement scores for 4999 replicates.

## Function to compute the mean difference
> mean.diff.np <- function(data, indices) {
d <- datal[indices, ]
mean(d$Achieve[1:34]) - mean(d$Achieve [35:150])

}
## Carry out the nonparametric bootstrap
> nonpar.boot <- boot(data = latino, statistic = mean.diff.np,
R = 4999)

A plot of the bootstrap distribution is shown in Figure 7.13. Command Snippet
7.11 shows the syntax to examine the bootstrap distribution of the standardized mean
difference. The distribution of these 4999 bootstrapped mean differences is again
an approximation of the exact sampling distribution of the mean difference. Note
that here again the bootstrap distribution of the sample mean difference is roughly
normally distributed. It is also roughly centered around zero—the population mean
difference assumed in the null hypothesis. These mean differences, again, show very
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little variation, having a small SE of approximately 2.9. Command Snippet 7.11 also
shows the syntax to count the number of bootstrapped standardized mean differences
that are as extreme or more extreme than the observed standardized mean difference
of 0.39.

092 ~

0.10

Density

Figure 7.13: Bootstrap distribution of the mean difference (using nonparametric
bootstrapping) in achievement scores between non-Mexican and Mexican immigrants
for 4999 replicates assuming there are no population differences. The vertical line is
drawn at zero.

Using the Monte Carlo adjustment, this suggests that the probability of observing
a sample mean difference as extreme or more extreme than the observed sample dif-
ference of 5.9 standard deviations—assuming that there is no population differences
in standardized achievement scores between Latino immigrants from Mexico and
Latino immigrants from other countries—is

2541
P= %4999 + 1
— 0.045.

This simulated p-value of 0.045 is moderate evidence against the null hypothesis.
It is noted that the p-value for the nonparametric bootstrap is very similar to that
of the parametric bootstrap. This consistency speaks to the robustness of the result
under different assumptions about the probability distributions.
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Command Snippet 7.11: Syntax to examine the bootstrap distribution of the mean
difference from the nonparametric bootstrap, and count the number thatare as extreme
or more extreme than the observed standardized mean difference of 0.39.

## Plot the bootstrap distribution
> plot(density(nonpar.boot$t))

## Draw a vertical line at 0
> abline (v=0)

## Mean of the bootstrap distribution
> mean(nonpar.boot$t)
[1] 0.06338843

## Standard error of bootstrap distribution
> sd(nonpar.boot$t) I
[1] 2.942154 '

## Count the mean differences as or more extreme than 0.39 !
> length(nonpar.boot$t[abs (nonpar.boot$t) >= 5.9]1) !
[1] 225

7.9 SUMMARIZING THE RESULTS FOR THE NONPARAMETRIC
BOOTSTRAP TEST

The results of the nonparametric bootstrap test are reported almost identically to
those of the parametric bootstrap tests. For example, the test of mean educational
achievement differences for the Latino data via the nonparametric bootstrap might
be reported as follows.

Sample Write-Up
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7.10 BOOTSTRAPPING USING A PIVOT STATISTIC

In the current example, the test statistic of interest is the mean difference. There
are of course many different statistics one could choose. How does one choose a
statistic? In order to answer this, the null hypothesis needs to be considered. The
null hypothesis is really a statement that specifies some or all of the parameters in
the assumed probability model. For example, the null hypothesis of no difference in
the population distributions of achievement scores suggests that both the population
distribution for the Mexican and non-Mexican achievement scores are identical.

A test statistic is used as a measure of the discrepancy of the sample with respect
to the null hypothesis. For example, by choosing to examine the mean difference,
the way the samples are discrepant with respect to the populations being identical is
in their locations (i.e., means). Some researchers, in fact, write the null hypothesis
in terms of the population parameters that they believe are discrepant. For example,

Hj : ptMexican = HMnon-Mexican-

This hypothesis can also be written in terms of the hypothesized difference in location,

Hp : piMexican — Knon-Mexican = 0.

Note that the difference in variances, or some other measure, could just as easily
have been chosen as the test statistic, depending on how the difference in the samples
was represented. The distribution of the test statistic is then built up from the
assumption that the null hypothesis is true—if there is no difference, the average
standardized mean difference from all possible random samples that could have been
drawn is zero.

In the first example using the parametric bootstrap, the achievement scores were
initially standardized to have a mean of zero and standard deviation of one. Recall
that this was done so that the probability model used was completely parameterized.
Otherwise, even with a specified probability model such as the normal distribution,
there still would have been many normal models from which to choose (e.g., models
where the standard deviation could vary).

When the probability model is not completely specified, the p-value is generally
not well defined because of its dependence on which probability model is selected.
For example, the p-value might have changed depending on the standard deviation
that was selected for the normal probability model. In practice, there are different
ways in which statisticians deal with this problem. One way to deal with the problem
is to choose a test statistic that has the same distribution under the null hypothesis
for any set of parameters that are chosen for a particular family of models. Such a
statistic is referred to as a pivot statistic.

7.10.1 Student’s £-Statistic

One such pivot statistic for examining the difference in location between two popu-
lations is Student’s t-statistic. The t-statistic was developed by William Sealy Gosset
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whose work as a statistician at Guinness Brewery forced him to deal with small
samples with around 8 to 10 observations.® At the time he published his landmark
paper in 1908, there was only theoretical work in place to deal with sample sizes in
excess of 150 observations. At that point in time, the standard method to examine
the precision in a mean estimate was to examine the ratio of the mean to its standard
error. As Senn (2008, p. 37) points out, “this created a problem, since the standard
approaches to dealing with a precision of the mean related it to the standard error
but made no allowance for the fact that in small samples the standard error itself
was subject to considerable random variation.” Gosset was able to investigate how
the random variation impacted the precision of the mean estimate in small samples
using empirical data. He then determined the sample sizes at which point Pearson’s
theoretical work could be applied, also providing alternative computations for sample
sizes that were below these cutoffs.

Fisher was the first to acknowledge Gosset’s work recognizing that the z-statistic
was not dependent on “the unknown value of some nuisance parameter.” He extended
Gosset’s initial example beyond the one-sample case, and also made it a major part
of his classic book Statistical Methods for Research Workers. Fisher’s adaptations to
Gosset’s original statistic allowed for testing two samples from different populations.
The ¢-statistic can be computed as

X —
t= Y , (7.4)

2 1 1
\/Spoo]ed (H + W)

where X and Y are the mean for sample X and sample Y, nx and ny are the
sample sizes for sample X and sample Y, and 52,4 is the weighted average of the
two sample variance estimates s% and s called the pooled variance. The pooled
variance is computed as

9 _(nx —1)s% + (ny —1)s%
Spooled = nx +ny — 2 .

(7.5)

The numerator of the z-statistic is the mean difference. The denominator is the
numeric approximation of the standard error of the mean difference. Note that
this value is comparable to the standard error from the nonparametric bootstrap
analysis presented earlier. The r-statistic is just the ratio of these two quantities
which expresses the mean difference using the units of the standard error. Expressing
observations using standard error units is referred to as studentizing the observations.
Command Snippet 7.12 shows the computation of the studentized mean difference
in achievement for the Latino data.

The observed studentized mean difference of 2.01 shows a difference of a little
more than two standard errors between the mean achievement scores for Mexican
and non-Mexican immigrants. Again the question is asked whether this observed

5Guiness had a strict no publication policy for their research scientists to deter their company’s commercial
secrets from being stolen. As such, Gosset was forced to publish under the psuedonym Student.
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difference is large relative to the variation expected in the studentized mean difference
due only to differences in random sampling. To examine this, the nonparametric
bootstrap test is used. Command Snippet 7.13 shows the syntax to write a function
called studentized.mean.diff () and also the application of this statistic in the
boot () function. The adjusted Monte Carlo simulated p-value based on the ¢-statistic,
p = 0.044, provides moderate evidence against the null hypothesis.

Command Snippet 7.12: A function to compute the studentized mean difference
for the Latino achievement data.

## Compute the conditional sample means

> tapply(X = latino$Achieve, INDEX = latino$Mex, FUN = mean)
0 1

64.5147 58.5931

## Compute the conditional sample standard deviations

> tapply(X = latino$Achieve, INDEX = latino$Mex, FUN = var)
0 1

169.8177 244.1993

## Compute the sample sizes
> table(latino$Mex)

0 1
34 116

## Compute the mean difference
> numerator <- 64.5 - 58.6

> numerator

[1] 5.9

## Compute the pooled variance

> pool.var <- (33 * 169.8 + 115 * 244.2) / 148
> pool.var

[1] 227.6108

## Compute the standard error of the mean difference
> denominator <- sqrt(pool.var * (1 / 34 + 1 / 116))
> denominator
[1] 2.942210

## Compute the t-statistic

> t <- numerator/denominator
>t

[1] 2.005296

Table 7.2 shows the nonparametric bootstrap results using raw achievement scores,
standardized achievement scores (not presented in the chapter), and the studentized
scores. All three analyses produce comparable results based on the p-values. The
major difference between using the standardized mean difference and the studentized
mean difference is the time in the analysis at which the reexpression takes place. In
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the use of the standardized mean difference, the achievement scores are standardized
prior to carrying out the bootstrap. This is referred to as prepivoting the data. In the
use of the studentized mean difference, the bootstrapping is carried out on the raw
data and the reexpression, or pivot, takes place in the computation of the test statistic.
There is some evidence that prepivoting reduces the error in the rejection probability
and increases the reliability of the inferences (see Beran, 1987; Efron, 1982; Hinkley
& Wei, 1984).

Table 7.2: Results of Carrying Out Nonparametric Bootstrap Test for Three
Different Test Statistics®

Statistic Observed SE p-Value
Raw mean difference 5.92 2.94 0.045
Standardized mean difference 0.39 0.20 0.044
Studentized mean difference 2.01 1.02 0.044

@ All tests used 4999 replications of the data.

7.11 INDEPENDENCE ASSUMPTION FOR THE BOOTSTRAP
METHODS

As with any inferential method, the bootstrap test has certain assumptions that need
to be met in order for valid inferences. The major assumption for both the parametric
and nonparametric bootstrap test is that the observations in the original sample are
independent of one another.

Observations are statistically independent if the value or occurrence of a particular
measurement in no way influences or changes the probability of the occurrence or
value of any other measurements. Another way to think about independence is that
the measurements in one sample are unrelated (uncorrelated) with the measurements
in the other sample—that is, the variation in one sample is unrelated to the variation
in the other. Independence is a function of the data collection method. Random
sampling ensures the sample observations are independent. In practice, the tenability
of actually obtaining a random sample depends on the research context.

Without a random sample, justification for this assumption is incumbent on the
researcher, and is often based on logical argument resting on the researchers knowl-
edge of the substantive area. There is currently no statistical method that is available
to directly assess whether the measurements in the two samples are independent.
In research that does not employ random sampling, often the assumption of inde-
pendence is violated because there are often correlations that exist among the study
participants, such as genetic relationships or physical proximity. Such violations
could result in a systematic underestimate of the variation in the population which
leads to erroneous conclusions.
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Command Snippet 7.13: A function to compute the z-statistic between the first
116 resampled observations and the last 34 resampled observations. The boot ()
function is then used to bootstrap the mean difference in achievement scores for 4999
replicates.

## Function to compute t-statistic
> studentized.mean.diff <- function(data, indices) {
d <- datalindices, ]
nonmex <- d$Achievel[1:34]
mex <- d$Achieve[35:150]
num <- mean(nonmex) - mean (mex)
pool.var <- (33 * var(nonmex) + 115 * var(mex)) / 148
den <- sqrt(pool.var * (1 / 34 + 1 / 116))
num/den

}

## Carry out nonparametric bootstrap
> studentized.boot <- boot(data = latino, statistic =
studentized.mean.diff, R = 4999)

## Plot the bootstrap distribution
> plot(density(studentized.boot$t), xlab="Bootstrapped
t-Statistic", main=" ")

## Mean of the bootstrap distribution
> mean(studentized.boot$t)
[1] 0.02357806

## Standard deviation of bootstrap distribution
> sd(studentized.boot$t)
[1] 1.016181

## Compute the p-value
> length(studentized.boot$t[abs(studentized.boot$t) >= 2.01])
[1] 219

## Compute the Monte Carlo adjusted p-value
> (219 + 1) / (4999 + 1)
[1] 0.044

There are two common situations in the educational and behavioral sciences, both
related to the data collection method in which the independence assumption is gener-
ally violated. The first such violation occurs when there are multiple measurements
made on the same participant. For example, a common research design in the ed-
ucational and behavioral sciences is the pre—post design, in which measurements
are taken from the same participants both prior to and after some intervention has
occurred. The researcher using such designs is often interested in whether there are
mean differences between the pre- and postintervention measurements. These two
samples, which consist of measurements taken on the same individuals, would not
be independent of one another.
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Another common violation of independence, especially in educational research,
occurs when the assignment of the intervention is at one level and the unit of analysis
at a different level. For example, an educational researcher might assign an interven-
tion at the classroom level (i.e., a whole classroom gets the intervention), and then
mistakenly perform the analysis as though it were the students who were randomly
assigned.

7.12 EXTENSION: TESTING FUNCTIONS

It is often good practice to test a function that has been written before using it in
an analysis. For example, it would be good to know that the computations in the
function written to compute the mean difference in Command Snippet 7.4 were being
performed correctly. One method to test the function would be to execute it on the
observed data, and then compare the results to the mean difference that was actually
computed. Command Snippet 7.14 shows the results of executing mean.diff () on
the vector of standardized achievement scores.

Command Snippet 7.14: Executing the function mean.diff () on the vector of
standardized achievement scores.

> mean.diff(latino$z.achieve)
[1] -0.2430629

The computed result from the mean.diff () function of —0.24 is not the same as
the difference of 0.39 that was computed based on the conditional means using the
tapply () function in Command Snippet 7.1. The problem, however, is not with the
function.

The function computes the difference between the mean of the first 34 observations
in the vector submitted to the function and the mean of the last 116 observations in
the vector. The computed mean difference from the function is not the difference in
the conditional means since the first 34 observations do not correspond to the 34 non-
Mexican Latino immigrants in the data, nor do the last 116 observations correspond
to the Mexican immigrants.

7.12.1 Ordering a Data Frame

In order to evaluate if the function is working properly, the data frame needs to be
sorted so that the first 34 rows correspond to the non-Mexican immigrants and the
last 116 rows correspond to the Mexican immigrants. This can be accomplished by
ordering the rows based on the values of the Mex variable.

The order () function sorts a variable and produces output that can be used to sort
the rows of a data frame.This function takes the name of the variable to be sorted on.
Command Snippet 7.15 shows the results of ordering on the Mex variable. Indexing
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can then be used to order the data frame. Command Snippet 7.16 shows the syntax
to order the rows of the latino data frame using the Mex variable.

Command Snippet 7.15: Syntax to return the order of therows in the latino data
frame based on the value of the Mex variable. The rows are in ascending order.

> order(latino$Mex)

[1] 6 12 16 19 32 33 35 36 37 38 42 47 52
[14] 66 71 76 78 79 80 82 84 86 102 105 110 116
[27] 117 118 124 141 143 146 149 150 1 2 3 4 5
[40] 7 8 9 10 11 13 14 15 17 18 20 21 22
[53] 23 24 25 26 27 28 29 30 31 34 39 40 41
[66] 43 44 45 46 48 49 50 51 53 54 55 57 58
[79] 569 60 61 62 63 64 65 66 67 68 69 70 72
[92] 73 74 75 77 81 83 85 87 88 89 90 91 92

[105] 93 94 95 96 97 98 99 100 101 103 104 106 107
[118] 108 109 111 112 113 114 115 119 120 121 122 123 125
[131] 126 127 128 129 130 131 132 133 134 135 136 137 138
[144] 139 140 142 144 145 147 148

Command Snippet 7.16: Syntax to order the rows in the latino data frame based
on the value of the Mex variable. The rows are in ascending order.
## Order the rows of the latino data frame by Mex

> ordered.latino <- latino[order(latino$Mex), ]

## Examine the first part of ordered.latino
> head(ordered.latino)

Achieve ImmYear ImmAge English Mex z.achieve
6 63.1 75.7 8.4 1 0 0.20764779
12 46.2 81.6 8.7 1 0 -0.90123603
16 66.3 72.9 5.1 1 0 0.41761396
19 87.8 71.6 3.4 1 0 1.82832415
32 54.6 79.1 5.3 1 0 -0.35007484
33 59.2 72.0 4.6 1 0 -0.04824848

## Examine the last part of ordered.latino
> tail(ordered.latino)

Achieve ImmYear ImmAge English Mex z.achieve
140 83.9 81.4 8.6 1 1 1.5724279
142 70.9 63.8 0.5 1 1 0.7194403
144 96.2 57.5 0.8 1 1 2.3794853
145 76.1 79.4 9.9 1 1 1.0606354
147 41.6 70.7 0.8 0 1 -1.2030624
148 70.2 82.0 10.4 1 1 0.6735102

The vector of standardized achievement scores from this newly ordered data frame
can then be used to test the mean.diff () function. Command Snippet 7.17 shows
the results of executing the mean.diff () function on the standardized achievement



170 BOOTSTRAP TESTS

scores from ordered.latino. This result is consistent with the difference in the
observed conditional means.

Command Snippet 7.17: Executing the function mean.diff () on the vector of
standardized achievement scores from the ordered data frame.

> mean.diff (ordered.latino$z.achieve)
[1] 0.3885426

7.13 FURTHER READING

A historical outline of bootstrap methods can be found in Hall (2003). Earlier
work on resampling methods can be found in Quenouille (1949, 1956) and Tukey
(1958). A very readable account of the bootstrap methodology can be found in Boos
(2003). Theoretical foundations for the bootstrap methods can be found in Efron
(1979) and Efron (1982), both of which are quite mathematical. Efron and Tibshirani
(1993) and Davison and Hinkley (1997) provide a more thorough treatise of bootstrap
methods with the latter providing the framework for their implementation through the
boot package in Canty (2002), which includes examples. The treatment of missing
data using bootstrap methods are broached in Efron (1994). For additional reading
concerning Gosset and his work on the z-distribution, both Senn (2008) and Tankard
(1984) provide good starting points, and the paper that started it all should not be
overlooked (Student, 1908).

PROBLEMS

7.1 The National Center for Education Statistics (NCES) is mandated to collect and
disseminate statistics and other data related to education in the United States. To that
end, NCES began collecting data on specific areas of interest including educational,
vocational, and personal development of school-aged children, following them from
primary and secondary school into adulthood. The first of these studies was the
National Longitudinal Study of the High School Class of 1972 (NLS-72). High
School and Beyond” (HS&B) was designed to build upon NLS-72 by studying high
school seniors, using many of the same survey items as the 1972 study. A sample of
N = 200 students from the 1980 senior class cohort from HS&B were obtained and
are located in the HSB.csv data set.

Use a nonparametric bootstrap to test if there is a difference in the variances of
science scores, between public and private school students. That is, test the null
hypothesis, Ho : 03 ,p1ic = Obrivate- Write up the results from the analysis as if you
were writing the results section for a manuscript for publication in a journal in your
substantive area.

7For more information about HS&B including access to datasets gotohttp: //www.nber.org/~kling/
surveys/HSB.htm.
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7.2 A pivot statistic for examining the difference in variability between two popu-
lations is the F-statistic. The F-statistic can be computed as

2
g
F=,
03

where o] and 0% are the variances for group 1 and group 2, respectively. Ratios
near one would indicate no difference in variances in the two populations. Use
a nonparametric bootstrap test to again test the hypothesis of no difference in the
variance of science scores between public and private school students, but this time
use the F-statistic. Write up the results from both analyses as if you were writing a
manuscript for a publication in a journal in your substantive area.

7.3 Compare and contrast the results from the two analyses.

7.4 The “ideal” number of bootstrap replicates to have no simulation error is inf.
How large should one make R, the number of bootstrap replications in practice?
You will investigate this question empirically. Rerun the nonparametric bootstrap
for the F-statistic using six different values for the number of bootstrap replicates,
namely R = 25, 50, 100, 250, 500, and 1000. Compute the p-value for the observed
F-statistic using each of the R values. Compare these values and give some recom-
mendation as to the number of bootstrap replicates needed.
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CHAPTER 8

PHILOSOPHICAL CONSIDERATIONS

Forthe past 40 yearsthere has been confusion on the difference between tests of significance
and tests of hypotheses to the point where data interpretation is presented as an accept—

reject process.
—O. Kempthorne & T. E. Doerfler (1969)

Chapters 6 and 7 introduced two methods—the randomization test and the bootstrap
test—that can be used by researchers to examine questions of interest by providing
a degree of statistical evidence based on observed data for or against a particular
assumed hypothesis (i.e., the null hypothesis). One decision that researchers have to
make in the process of analyzing their data is which of these methods should be used
or should an entirely different method be used. This is just one of many decisions
that researchers face in the process of data analysis.

In this chapter, a glimpse is offered at a few of the decisions that need to be made
along the way regarding the choice of an analysis method and of a philosophical
testing framework. It must be acknowledged that there are entire books written about
each of these issues and in some cases entire books written about subtopics of these
issues.

Comparing Groups: Randomization and Bootstrap Methods Using R 173
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.
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This chapter offers a limited survey of the relevant issues and readers are en-
couraged to pursue secondary sources to more fully explore topics of interest. This
chapter is different from the others in the monograph as it offers no analyses nor
computing work. As such, no end of chapter problems are offered. In addition, there
is no Further Reading section in this chapter. Rather, references are interspersed
throughout the chapter and all offer more in-depth treatment of specific topics.

8.1 THE RANDOMIZATION TEST VS. THE BOOTSTRAP TEST

The randomization/permutation test and the bootstrap test were introduced in the
previous two chapters as methods to test for group differences. Which method
should be used? From a statistical theory point of view, the difference between
the two methods is that the randomization method is conditioned on the marginal
distribution under the null hypothesis. This means each permutation of the data
will have the same marginal distribution. The bootstrap method allows the marginal
distribution to vary, meaning the marginal distribution changes with each replicate
data set. If repeated samples were drawn from a larger population, variation would be
expected in the marginal distribution, even under the null hypothesis of no difference.
This variation in the marginal distribution is not expected; however, there is only one
sample from which groups are being randomly assigned so long as the null hypothesis
is true. Thus the choice of method comes down to whether one should condition on
the marginal distribution or not.

The choice of whether to condition on the marginal distribution has been debated;
see Upton (1982), Yates (1984), Rice (1988), D’ Agostino (1998), and Little (1989).
The key question addressed in all of these articles is, how is the variation in the
chosen test statistic (i.e., the standard error) being computed? As Westfall and Young
(1993) point out, this question is directly tied to the question “what is the scope of
inference?”

In Chapter 6, four research scenarios were presented in which the method of
obtaining a sample of data and the method used to assign subjects to treatments was
either random or not. It was pointed out that the inferences a researcher could make
were different in each of these situations. Table 8.1 re-presents these four scenarios
but includes the valid scope of inference for each.

As an illustration, consider the After-School Program data, which had random
assignment, but not random sampling, depicted in row 2 of Table 8.1. If evidence had
been found against the null hypothesis, it would have been valid to suggest that the
after-school program was better than the “treatment as usual” in terms of lowering
delinquency rates. It would not have been valid to say that this was the case for
different populations of students.

For the Latino achievement data, which included random selection but not random
assignment, the inference that Mexican and non-Mexican immigrants differ in their
levels of achievement can be extended to the larger population of Latino immigrants in
the Los Angeles area (Table 8.1 row 1). However, that difference cannot be attributed
in a causal manner to the difference in areas from which the persons emigrated.
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Table 8.1: Four Potential Scenarios Researcher Could Face When Making
Inferences®

Type of Research RS® RA° Scope of Inference
1. Generalizable v Population

2. Randomized Experimental v Sample

3. Generalizable, Randomized Experimental v v Population

4. Non-Generalizable, Non-Experimental Sample

@ The valid scope of inference is presented for each scenario.
b RS=Random sample
¢ RA=Random assignment

In light of Table 8.1, the choice of method for the data analysis—the randomization
test or the bootstrap test—seems obvious in these two research scenarios. In the other
two situations of Table 8.1, where both the selection and assignment of subjects are
random (row 3) or both the selection and assignment are not random (row 4), the
choice is not as clear. Consider the case where subjects are randomly sampled from
a population and randomly assigned to treatments. The choice of analysis method
rests solely on the scope of inferences the researcher wants to make. If inferences to
the larger population are to be made, then the bootstrap method should be used, as it
is consistent with the idea of sample variation due to random sampling. In general,
there is more variation in a test statistic due to random sampling than there is due to
random assignment. That is, the standard error is larger under the bootstrap. Thus,
the price a researcher pays to be able to make broader inferences is that all things
being equal, the bootstrap method will generally produce a higher p-value than the
randomization method.

In many observational studies, the observed data can be treated as one of the many
potential random samples that could have been drawn from the population(s). In
these cases, the variation in the test statistic needs to be consistent with the variation
produced through the sampling process. Because of this, the bootstrap test has been
recommended for use with observational data. Using bootstrap resampling with
observational data, however, is not a magic bullet that changes the scope of the
inferences. Care needs to be taken when the results are being interpreted so that the
researcher does not overgeneralize.

8.2 PHILOSOPHICAL FRAMEWORKS OF CLASSICAL INFERENCE

The method of statistical testing thathas madeitsway into most introductory statistics
textbooks is a hybrid of two very different philosophical frameworks. The approach
that is typically presented is an amalgam of the ideas posited by R. A. Fisher (1890—
1929) on one hand and Jerzy Neyman (1894-1981) and Egon Pearson (1895-1980)
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on the other. It is ironic that this combination has taken place considering that the
philosophies are in stark contrast to one another. What has led to considerable confu-
sion is that p-values, confidence intervals, and the like are used in both frameworks.
What is different is the interpretation of these quantities.

8.2.1 Fisher’s Significance Testing

Fisher’s experience as a scientist and his views on inductive inference led him to take
an objective and practical approach to statistical testing. His inductive inference is
the philosophical framework that allows a researcher “to argue from consequences
to causes, from observations to hypotheses” (Fisher 1966, p. 3). Fisher referred to
his testing framework as inductive inference. It was in contrast to the earlier work of
Thomas Bayes (1702—-1761) and Pierre-Simon Laplace (1749-1827), who developed
the idea of inverse probability.! The object with inverse probability was to provide
the probability of a hypothesis (H) given the data

P (H | Data) . 8.1)

Fisher rejected this idea and instead embraced the method of direct probability, which
is based on the probability of the data given a particular hypothesis,

P (Data | H) . (8.2)

Central to Fisher’s method of inductive inference was the specification of what he
referred to as the null hypothesis, Hy. Using a known distribution of a test statistic,
T, under the assumption detailed in the null hypothesis, Fisher then assigned a
probability to the same statistic computed in the observed data by determining the
density in the test distribution that exceeded the observed value of T'. This probability
value (i.e., achieved significance level) could then be used as a strength of evidence
argument against the null hypothesis.

The null hypothesis could be “rejected” if the strength of evidence met a certain
degree of significance. Fisher set this degree at 5% writing, “It is usual and convenient
forexperimenters to take 5 percent, as a standard level of significance, in the sense that
they are prepared to ignore all results which fail to reach this standard” (Fisher, 1966,
p. 13). If the achieved significance level fell below this mark, the null hypothesis
would be rejected, or in his words, “Every experiment may be said to exist only in
order to give the facts a chance of disproving the null hypothesis™ (Fisher, 1966,
p. 16). But in other places he suggested 1%, or advocated even greater flexibility,
depending on the situation.

UInverse probability gave rise to awhole different philosophical framework and set of methods for inference
referred to as Bayesian methods. Chatterjee (2003) provides a detailed summarization of the Bayesian
approach to statistical induction within the historical evolution of statistical thought.
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8.2.2 Neyman-Pearson Hypothesis Testing

To Neyman and Pearson, one question that Fisher had not answered sufficiently was
why a particular test statistic, say 741, should be used rather than another say 75.
Neyman and Pearson sought to address this issue in their work (e.g., Neyman &
Pearson, 1928a, 1928b, 1933). Because Fisher’s work was a touchstone, Neyman
and Pearson initially viewed their method as building and expanding on Fisher’s
approach to statistical testing. Their solution for choosing a test statistic involved the
statement of both the null hypothesis, as well as a class of alternative hypotheses. In
contrast, Fisher conceived only of a null hypothesis.

The Neyman—Pearson approach was based on inductive behavior rather than
inductive inference. Inductive behavior focued on rules for deciding between the two
complementary hypotheses. The decision did not explicitly involve an evaluation of
evidence based on sample data, as emphasized by the single-hypothesis framework
of Fisher. In explaining the concept of inductive behavior, Neyman (1950, p. 1, 259-
260) writes, “[inductive behavior] may be used to denote the adjustment of our
behavior to limited amounts of information. The adjustment is partly conscious
and partly subconscious. The conscious part is based on certain rules (if I see this
happening, then I do that) which we call rules of inductive behavior.” Explaining
further that “to accept a hypothesis H means only to decide to take action A rather
than action B. This does not mean that we necessarily believe that the hypothesis H
istrue...[and toreject H] ... means only that the rule prescribes action B and does
not imply that we believe that H is false.”

Once a decision to take an action has been made, Neyman and Pearson acknowl-
edged that an error could have occurred. Thus, it was important to quantify the
probabilities associated with making two types of errors regarding the null hypoth-
esis, namely a false rejection (“error of the first type”) and false acceptance (“error
of the second type™). This specification of error probabilities is what led them to a
solution as to which test statistic should be used. The optimal test statistic is one that
minimizes the error in falsely accepting the null hypothesis (Type II) while at the
same time keeping the probability of falsely rejecting the null hypothesis (Type I) at
a particular set bound.

Once the bound for the probability of falsely rejecting the null hypothesis, also
called the significance level, has been determined, then the probability of falsely
accepting the null hypothesis can be computed for each of the alternative hypotheses,
as well as the power for each test. Power is the probability of correctly rejecting
the null hypothesis as a function of the alternative hypothesis being tested. This
probability can be used in “assessing the chance of detecting aneffect (i.e., a departure
from H) when it exists, determining the sample size required to raise this chance
to an acceptable level, and providing a criterion on which to base the choice of an
appropriate test” (Lehmann, 1993, p. 1244).
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8.23 p-Values

One issue at the heart of the difference between Fisher and Neyman—Pearson is
the interpretation of the p-value. Fisher interpreted the p-value as a sample-based
measure of evidence against the null hypothesis. Neyman—Pearson regard it as a
device for making a decision for one of the two hypotheses (and against the other).
The point is that in Fisher’s system, the size of the p-value matters, as it conveys effect
size information regarding the discrediting of the null hypothesis. In the Neyman—
Pearson system, the exact p-value is inconsequential, only that it is above or below a
particular threshold (Hubbard & Bayarri, 2003).

This inconsistency in interpretation also manifests itself in the reporting of research
results. Style guides, such as the Publication Manual of the APA, appear to suggest
reporting practices that would satisfy neither Fisher nor Neyman and Pearson. For
example, asterisks are suggested in tables to denote statistical significance (surpassing
a threshold), but there is also a recommendation that the exact p-value be reported.
This marriage of incompatible philosophies and methodologies has led to confusion
and misinterpretation of the results by researchers and consumers of research. These
problems have been widely documented and criticized (e.g., Cohen, 1990, 1994;
Kupfersmid, 1988; Rosenthal, 1991; Rosnow & Rosenthal, 1989; Shaver, 1985;
Sohn, 2000; Thompson, 1994, 1997).

For applied researchers, the Fisherian philosophy of testing and p-value inter-
pretation appears to have advantages. The authors of this monograph believe, as
Fisher did, that the scientific process is primarily about evaluating evidence, not just
an exercise in decision making. Under Fisher’s framework, the p-value assists the
learning process by serving as a continuous measure of evidence in the larger “pro-
grammatic” sense. This is more sensible than trying to draw conclusions from the
results of a single study, the absolutism of declaring a treatment “significant” or “not
significant’,” based on what is often an arbitrary threshold. When Fisher used 1 in 20
as a benchmark, he realized that if a study reported a p-value of 0.06 and the treatment
in question was truly useful, another researcher might replicate the results and show
it to be useful. Thus, rather than tossing out the treatment altogether under the guise
of “nonsignificant,” “marginal p-values” suggest that the effect of the treatment could
be studied further using a better research design.

Adopting a Fisherian stance, the following recommendations are offered for re-
porting and interpreting the results from statistical tests.

o Treat the p-value as a sample-based measure of evidence against the null
hypothesis. Report the numerical p-value rather than the more ambiguous
inequality statements, such as p < .05. Try to refrain from including asterisks
next to results. Avoid phrases such as, “the result is statistically significant,”
which implies that a definitive decision was made. An alternative is to use the
term “statistically reliable” when the p-value is sufficiently small (see below).

e Offer qualitative descriptions along with the p-value to emphasize that
the results are part of the larger corpus of the scientific process.. Efron
and Gous (2001) offer descriptions of effect size for various p-values based on
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Fisher’s writings. Table 8.2 presents these descriptions. Based on the table,
a p-value of 0.06 is considered “weak” evidence, which is very different than
“no” evidence.

Table 8.2: Fisher’s Descriptions for Scale of Evidence Against the Null
Hypothesis®

Strength of Evidence p-Value
Borderline or weak 0.100
Moderate 0.050
Substantial 0.025
Strong 0.010
Very strong 0.005
Overwhelming 0.001

®Based on a table presented in Efron and Gous (2001).

Based on these recommendations, the write-up for the Latino achievement analysis
might be revised to read as follows:

Sample Write-Up
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CHAPTER9

BOOTSTRAP INTERVALS AND
EFFECT SIZES

One of the great questions in statistical inference is: How big is it?
—J. Simon (1997)

In Chapters 6 and 7, the use of the randomization/permutation test and the boot-
strap test were introduced as methods that a researcher can use to examine group
differences. But, as Kirk (2001) points out, the group differences question often
expands into three questions: (a) Is an observed effect real or should it be attributed
to chance? (b) If the effect is real, how large is it? and (c) Is the effect large enough
to be useful? Using the inferential methods introduced thus far, only the first of
Kirk’s three questions can be answered. As noted by Pearson (1901) early in the
history of statistics, the results from inferential tests provide only the answer to the
first question and therefore must be supplemented.

Recently, numerous researchers have argued for the use of effect sizes to comple-
ment or even replace tests of significance (Cohen, 1990, 1994; Kirk, 1995, 1996;
Thompson, 1996, 2007). Effect size is a term used to describe a family of indices that
characterize the extent to which sample results diverge from the expectations specified
in the null hypothesis. These measures help researchers focus on the meaningfulness
of significance testing results by providing answers to Kirk’s second two questions

Comparing Groups: Randomization and Bootstrap Methods Using R 181
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
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and also provide a method by which to compare the results between different studies.
Effect sizes have been fully embraced by the APA. Its Publication Manual (American
Psychological Association, 2009, p. 25) states, “For the reader to fully understand
the importance of your findings, it is almost always necessary to include some index
of effect size or strength of relationship in your Results section.” It further states that
the “failure to report effect sizes” may be found by editors to be one of the “defects
in the design and reporting of results” (p. 5).

9.1 EDUCATIONAL ACHIEVEMENT AMONG LATINO IMMIGRANTS:
EXAMPLE REVISITED

Consider, again, the data on the educational achievement among Latino immigrants—
found in LatinoEd. csv. In Chapter 7, the question of whether there was a difference
in the educational achievement of immigrants from Mexico and that of immigrants
from other Latin American countries was examined. Moderate evidence against
the null hypothesis of no population differences, p = 0.045, was found, using
the nonparametric bootstrap test. This suggests that Mexican and non-Mexican
immigrants likely differ in their educational achievement. Consider what is known
and not known at this point.

e There is statistical evidence of differences in educational achievement between
the population of Latino immigrants from Mexico and Latino immigrants from
other countries.

e However, it is not known how the populations differ, in term of the direction
of the difference.

e Nor is the magnitude of the difference known.

Using the sample evidence (e.g., sample means), more insight into how the two
groups differ can be provided. For example, the mean educational achievement score
for Latino immigrants from Mexico is 58.6 and that for non-Mexican immigrants is
64.5. The sample evidence suggests that non-Mexican immigrants have, on average,
a higher level of educational achievement than Mexican immigrants. The magnitude
of the difference is 5.9 achievement points. Using substantive knowledge, one could
then make decisions about whether a difference this large is meaningful or not.

9.2 PLAUSIBLE MODELS TO REPRODUCE THE OBSERVED RESULT

The magnitude of the difference between the two populations is estimated using the
sample mean difference. This is an estimate of the population effect,

m— = |YMexican - _non-Mexican|
= |64.5 — 58.6|
=5.9.
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The conclusion is that the estimated educational achievement for Latino immigrants
from Mexico is, on average, 5.9 points lower than for Latino immigrants from other
countries. This is a model for the true population mean difference in educational
achievement between Latino immigrants from Mexico and Latino immigrants from
other countries. This model can be expressed as

Model 1 : Mnon-Mexican — HMexican = 9.9, or
© UDifference = 5.9.

Itis stressed that Model 1 is a hypothesis, as the true population difference cannot
be determined based on sample data. The p-value produced had this model been
tested, rather than the model having a population mean difference of zero, would not
have provided evidence against the model. That is because the model having the
parameter value of 5.9 would reproduce the observed mean difference with a high
likelihood. Mighttherebe other models that would also reproduce the observed mean
difference of 5.9 with reasonably high likelihood?

Figure 9.1 shows the density plot of the bootstrap distribution of the mean dif-
ference for three other models (hypotheses). The first bootstrap distribution (dotted
line) shows the distribution of mean differences based on the model in which the
population mean difference is assumed to be 0. The second bootstrap distribution
(dashed line) shows the distribution of mean differences based on the model in which
the population mean difference is assumed to be 3. The third bootstrap distribution
(dot-dashed line) shows the distribution of mean differences based on the model
where the population mean difference is assumed to be 10. The point in the plot
demarcates the observed mean difference in the data of Yoon-Mexican — YMexican = 9-9-
The second model, which has the parameter value of 3, has the highest likelihood
of reproducing the sample mean difference. This is illustrated by the fact that the
point in Figure 9.1 is in the neighborhood of the peak of the distribution. Compare
this with the model of no difference and also the model having a mean difference
of 10. These two models have a lower likelihood of reproducing the sample mean
difference.

These plots illustrate the following.

o Different models (or hypotheses) for the population mean difference will gen-
erate different distributions of the mean differences.

e Some models will generate simulated data that reasonably reproduce the ob-
served result. These models can be considered as plausible.

e Other models will not generate simulated data that seem to reasonably repro-
duce the observed result. These models should probably be considered as
implausible.

9.2.1 Computing the Likelihood of Reproducing the Observed Result

Of the three models presented in Figure 9.1, it is evident that the model having a
parameter value of 3 is a more plausible candidate for the model that generated the
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Figure 9.1: The bootstrap distributions of the standardized mean difference based on
the model with parameter value O (dotted), parameter value 3 (dashed), and parameter

value 10 (dot-dashed). The point in the plot demarcates the observed mean difference
in the data of 5.9.

sample result of 5.9 than the other two models. Figure 9.1 clearly illustrates that
there is substantial separation between the center of the distribution for the model of
no population mean difference (dotted line) and the observed mean difference of 5.9.
However, the separation is not always so dramatic. When the separation is not so
clear, it is helpful to quantify the likelihood of a particular model in generating the
observed data.
To quantify the likelihood of reproducing the observed data, a one-sided p-value
can be computed for each potential model. The p-value is one-sided because the
discrepancy between the observed result and the model’s parameter value is being
measured in a particular direction (in terms of the figure, either to the left or to the
right). For example, in the model which has a parameter value of 3 (dashed line) in
Figure 9.1, the parameter value is smaller than the observed mean difference of 5.9.
Thus, the p-value for this model is quantifying the probability of obtaining a mean
difference as large or larger than the observed mean difference of 5.9. Since the
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observed mean difference is in the right-hand side of the bootstrap distribution for
this model, the p-value needs to measure the discrepancy from the parameter value
in this direction. The model which has the parameter value of 10 (dot-dashed line) in
Figure 9.1, on the other hand, has a parameter value that is larger than the observed
mean difference of 5.9. Thus, the p-value for this model is quantifying the probability
of obtaining a mean difference as small or smaller than the observed mean difference
of 5.9.

To examine the likelihood of a potential model to reproduce the observed data,
the parameter value under consideration is added to the mean difference computed
in the function used in the nonparametric bootstrap. Command Snippet 9.1 shows
the syntax for bootstrapping the mean difference under the model that the population
mean difference is 3. (See Chapter 7 for details on the nonparametric bootstrap.)

Command Snippet 9.1: Syntax for bootstrapping the mean difference under the
model that the population mean difference is 3. The bootstrap distribution is plot-
ted along with the observed mean difference of 3. The one-sided p-value is also
computed.

## Function to compute the mean difference under the model

## with the parameter value of 3

> pv.3 <- function(data, indices) {
d <- datal[indices,]
mean(x = d$Achieve[1:34]) - mean(x = d$Achieve[35:150]) + 3
}

## Carry out the nonparametric bootstrap
> model.boot <- boot(data = latino, statistic = pv.3, R = 4999)

## Compute the mean of the bootstrap distribution
> mean(model.boot$t)
[1] 3.068308

## Compute the SE for the bootstrap distribution
> sd(model.boot$t)
[1] 2.992834

## Count the bootstrapped mean differences at or below 5.9
> length(model.boot$t[model.bootdt >= 5.9])
[1] 875

## Compute the one-sided p-value
> (875 + 1)/(4999 + 1)
[1] 0.175

Figure 9.2 shows a plot of the bootstrap distribution. The vertical dashed line at
three demarcates the model’s parameter value. The plot is centered at the parameter
value, as also evidenced by the mean of the bootstrapped mean differences in Com-
mand Snippet 9.1. The standard error of the distribution is identical to the standard
error of the distribution that assumed no population mean difference (see Chapter
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7). The one-sided p-value of 0.175 suggests that this model has some likelihood of
reproducing the observed data. That is, a sample value of 5.9 is not a particularly
rare event under the model (or hypothesis) that the population difference is 3.

0 =

0,40 — f \I

Density

Moan Difference

Figure 9.2: The bootstrap distribution of the mean difference based on the model
with parameter value 3. A vertical dashed line is drawn at 3, the model’s parameter
value. The point in the plot demarcates the observed mean difference in the data of
5.9. The one-sided p-value, indicating the likelihood of this model to reproduce the
observed data, is shaded.

Table 9.1 presents the parameters for several potential models for reproducing the
observed data. The one-sided p-value for each model is also presented. The goal of
such an analysis is to identify a range of plausible models that would reproduce the
observed data. Lastly, the qualitative descriptors from Efron and Gous (2001) are
listed to describe the strength of evidence against each model.

The models that have parameter values between 2 and 10 seem to plausibly
reproduce the observed mean difference of 5.9. By this it is meant that the single
sampleresults of 5.9 is consistent with parametric bootstrap models that have a mean
of 2 to 10. The plausibility criterion here is that the p-value provides less than a
moderate degree of evidence against the model (p > 0.05), though other levels of
evidence could be used. It should also be mentioned that Table 9.1 is based on
parameter values that are integer. Greater continuity in the p-values is achieved when
fractions are considered for the parameter value (e.g., 1.1, 1.2, etc.).
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Recall that the parameter value indicates the population mean difference in the
achievement scores between the non-Mexican and Mexican immigrants. The range
of parameter values that plausibly reproduce the observed result can then be con-
sidered candidates for the true population mean difference. The range of [2,10] is
an interval estimate—often referred to as a confidence interval—for the population
mean difference. It provides a range of plausible values for the sample estimate,
accounting for the expected variation due to either random sampling or random
assignment. Though not pursued here, greater precision is gained by considering
fractional parameter values near the endpoints (e.g., 2.5 and 9.5, etc.).

It is also noted that the data produce the weakest degree of evidence (highest
p-value) against the model having a parameter value of six. The model having the
parameter value of the sample mean difference, 5.9, will produce the highest p-value.
That is because this model has the highest likelihood of reproducing the observed
mean difference. As the parameter value gets further away from the observed mean
difference of 5.9, the models are less likely to plausibly reproduce the observed data.

Table 9.1: Parameter Value, p-Value, and Qualitative Description of Strength of
Evidence Against the Model for 11 Potential Models

Model Parameter p-Value Strength of Evidence
0 0.026 Substantial
1 0.051 Moderate
2 0.099 Borderline
3 0.175 Weak
4 0274 Negligible
5 0.397 Negligible
6 0.475 Negligible
7 0.347 Negligible
8 0.238 Negligible
9 0.149 Weak

10 0.086 Borderline
11 0.039 Substantial
12 0.017 Strong

%The p-value for each model is based on drawing 4999 bootstrap replicates.

9.3 BOOTSTRAPPING USING AN ALTERNATIVE MODEL

The search method for obtaining the range of plausible values just presented has two
issues. First, it is unclear what range of values of the mean difference should be used.
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Second, it can be very time consuming to test the large number of models required for
greater accuracy. As mentioned, only integer parameter values were considered in
Table 9.1 and a more accurate assessment would involve fractional values. A useful
shortcut to finding the interval estimate is to bootstrap the mean difference under the
assumption that there is a difference between the two groups. In effect, this approach
is equivalent to the approach taken in Table 9.1, but using all possible parameter
values in some interval, say 2 to 10.

Chapter 7 discussed the testing of the hypothesis of no average achievement
difference using bootstrap replicates drawn under the auspices of the null hypothesis.
In this scenario, the observations were pooled and then the bootstrap replicates were
drawn from the pooled sample. Now the strategy is changed so that the bootstrap is
conducted under the auspices of an alternative hypothesis. It is now assumed that the
samples represent two different populations with two different mean values.

In these situations, a plausible alternative model is “automatically” selected based
on the following nonparametric bootstrap method. Since it is believed that the
samples represent two different populations with two different mean values, the
replicate data sets are drawn from the two samples separately—the first replicate
sample is bootstrapped only using the observations from the first sample, and the
second replicate sample is bootstrapped only using the second observed sample.
The groups are kept separate, meaning that randomization occurs only within a
group—not among the groups—which yields an estimate of the distribution of mean
differences under the assumption that the populations are different. Thus, the method
can be thought of as an evaluation of a range of general null hypotheses. This method
is convenient as it, in effect, produces results similar to those in Table 9.1, but uses
continuous parameter values rather than just integer values.

Figure 9.3 represents the concept of the nonparametric bootstrap under an alterna-
tive model. Consider two samples of data, {z;,z2,%s,...Zn, } and {y1,y2,¥3,---
Yn. }, €ach drawn from an infinitely large population where both probability dis-
tributions are unknown. Because these probability distributions are unknown, the
empirical distributions based on the observed data can be used as representations
of the two population distributions. Figure 9.4 shows the steps to bootstrap the
distribution for a particular test statistic, V.

Consider how a nonparametric bootstrap would be used to draw replicate data
sets under the alternative model in order to estimate the model parameter values that
would plausibly reproduce the observed mean difference of 5.9. Recall that in the
observed data, there were 116 Mexican immigrants and 34 non-Mexican immigrants.

o First, resample with replacement 34 observations from the sample of only the
non-Mexican immigrants achievement scores. Then, resample with replace-
ment 116 observations from the sample of achievement scores for only the
Mexican immigrants. This is the bootstrap replicate data set.

e Calculate the mean difference for the bootstrap replicate data set by subtracting
the mean for the resampled Mexican achievement scores from the mean for the
resampled non-Mexican achievement scores (or vice-versa).
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o Repeat the process many times and record the mean difference each time. The

resulting collection of means differences constitute the bootstrap distribution
of the mean differences under the alternative hypothesis.

e Use the bootstrap distribution to determine a plausibility range of values for
the population parameter.
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Figure 9.3: Nonparametric bootstrapping under an alternative model involves re-
sampling from the observed sample with replacement within defined strata.

9.3.1 Using R to Bootstrap under the Alternative Model

It is worth reiterating that the difference between the bootstrap carried out under the
null hypothesis and the bootstrap carried out under the alternative model is that the
latter does not combine the data of the groups prior to resampling. The groups are
left intact (separate) for the resampling. To bootstrap under the general alternative
model in R, the boot package is again used. Command Snippet 9.2 includes a function
called mean.diff.alt () that when applied to the Latino data will compute the mean
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Figure 9.4: Steps for using the sample data to bootstrap the distribution for a
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Randomly resample n; observations from the first observed sam-
ple with replacement {z},z},z3,3,...,%}, }, and resample n,
observations from the second observed sample with replacement
{yi 0l 93,95, umy )

Compute V,—the test statistic of interest—using the bootstrapped
observations {z1,z},23,23,..., 25, } and {1, 47,93,55, ..., 45, }
(e.g., V, might be the mean difference).

Repeat the first two steps many times, say I times, each time recording
the value of the statistic V..

The distribution of 171 , 172, f/§ E T3 VR can be used as an estimate of
the sampling distribution of V' under the alternative model.

particular test statistic, V, under an alternative model.

difference between the achievement scores for the resampled Mexican immigrants
and the resampled achievement scores for the resampled non-Mexican immigrants.
Because the bootstrapping needs to be carried out within groups, the manner in which
the groups were formed in Chapter 7—using the first 116 observations sampled and
the last 34 observations—can no longer be used. Instead, the groups are indexed

using the Mex variable.

Command Snippet 9.2: A function to compute the mean difference between
the achievement scores for the resampled Mexican immigrants and the resampled
achievement scores for the resampled non-Mexican immigrants. The first line indi-

cates that all rows of the data frame are to be used.

> mean.diff.alt <- function(data, indices) {
d <- datalindices, ]
mean(d$Achieve [d$Mex == 0]) - mean(d$Achieve[d$Mex == 1])

}

Since the groups are being indexed via the Mex variable, the function can be tested
on the latino data frame without having to reorder the data as was shown in Section
7.12. Command Snippet 9.3 shows the use of the mean.diff.alt() function on
the latino data frame. The function correctly returns the observed mean difference

of 5.9 (within rounding).
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Command Snippet 9.3: The use of mean.diff.alt () on the latino data frame
to test that it is computing the mean difference correctly.

I( > mean.diff.alt(latino)
uﬁ [1] 5.921602

After executing this function inR, itis used as an argument in the boot () function
as statistic=mean.diff.alt. The optional argument strata= is also included
so that the bootstrapping is performed within each strata or group. Command Snippet
9.4 shows the syntax for using the boot () function to bootstrap the mean difference
in achievement scores for 4999 replicates. The results are assigned to an object called
altmodel.boot.

Command Snippet 9.4: Bootstrapping the mean difference in achievement scores
between Mexican and non-Mexican immigrants for 4999 replicates. The bootstrap-
ping is carried out within strata rather than by pooling as in the last chapter. These
results are also plotted and displayed.

## Bootstrap under the alternative model

> altmodel.boot <- boot(data = latino, statistic =
mean.diff.alt, R = 4999, strata = latino$Mex)

## Plot the bootstrap distribution of mean differences
> plot(density(altmodel.boot$t))

## Mean of the bootstrapped mean differences
> mean(altmodel.boot$t)
[1] 5.946968

## Standard error of the bootstrapped mean differences
> sd(altmodel.boot$t)
[1] 2.631824

Figure 9.5 shows the plotted results of the bootstrapped mean difference under the
alternative model. Unlike the plot under the null model, this distribution is centered
at 5.9, the observed mean difference, rather than at 0. The estimated standard error is
smaller than the estimated standard error based on the null model. This is because the
resampling was carried out within each group separately, it was stratified. Stratified
sampling reduces the standard error when the variation of scores within each group
is less than the variation in the pooled scores (Lohr, 2010).

There is still one issue that is left unaddressed. The height of the bootstrap
distribution in Figure 9.5 is an indication of the plausibility of sample values. As
the values spread out from the center, they become increasingly implausible. It is
usually desirable to establish limits for plausibility by determining endpoints for a
certain area under the bootstrap curve. This topic is now addressed.
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Figure 9.5: Bootstrap distribution of the mean difference in educational achievement
scores between non-Mexican and Mexican immigrants for 4999 replicates. The
resampling was carried out under the alternative model, thus centering the distribution
around the observed mean difference of 5.9 (dashed line).

9.3.2 Using the Bootstrap Distribution to Compute the Interval Limits

The computation of the endpoints, or limits, for the interval estimate is fundamentally
based on the sampling distribution of the statistic of interest (e.g., the distribution of
all possible standardized mean differences). The sampling distribution is typically
used to compute the standard error of the statistic of interest, which is then used to
compute the interval limits.

9.3.3 Historical Interlude: Student’s Approximation for the Interval
Estimate

Historically, researchers in the educational and behavioral sciences have used Stu-
dent’s z-distribution as an approximation to the sampling distribution for many
statistics (e.g., mean, mean difference, etc.). This distribution is used because un-
der certain assumptions—repeated, independent sampling from normally distributed
populations— the probability density of the z-distribution is known and can be used
to compute the standard error of the estimate.

Consider the analytic formula for ¢,
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where V is an observed statistic that is being used to estimate a parameter E(V),
and SE; is the estimated standard error of the sampling distribution of V. Using
Equation 9.1, it can be shown that the interval limits are computed as

V + B x SEy, 9.2)

where B is the quantile from the ¢-distribution which demarcates a threshold for the
strength of evidence. This quantile is chosen to differentiate between a model that
plausibly reproduces the observed result, and one that does not. In the educational
and behavioral sciences, the threshold value is often set near the value of two. This
is because in a r-distribution, the quantile of two produces the approximate rule of
p < 0.025 (substantial evidence against the model) for eliminating a model as a
candidate.

9.3.4 Studentized Bootstrap Interval

Consistent with the overarching philosophy of this monograph, bootstrap intervals
are emphasized over the completely analytic approach of Equation 9.1. One method
of obtaining bootstrap intervals is the studentized bootstrap method. The studentized
bootstrap method has the same form as Equation 9.2, but the estimate of SEy; is
obtained from the bootstrap results. From the results printed in Command Snippet
9.4, the estimate for the SE for the mean difference is 2.6. To construct the interval,
the observed mean difference of 5.9, B = 2 and the bootstrap SE of 2.6 are used.
Substituting these into Equation 9.2 yields

5.9+2x26
5.9+5.2.

This gives an interval estimate of [0.7,11.1]. Having computed the interval, it is
important to discuss the meaning of the values in brackets. Therefore, issues of
interpretation are now discussed.

9.4 INTERPRETATION OF THE INTERVAL ESTIMATE

There are different interpretations of the above interval depending upon the philo-
sophical framework that is followed, as pointed out in Chapter 8. Underthe Neyman—
Pearson paradigm, the focus is on the relative frequency of the method to produce an
interval that includes the parameter based on hypothetical repetitions of the process
that produced the data (i.e., under repeated sampling from the population). This type
of interpretation focuses on the process of constructing the interval under repeated
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sampling, rather than on the values of the single interval obtained in practice. For
this reason, the Neyman—Pearson interpretation does not appear to provide statistical
evidence for examining the plausibility of population parameters (Berger, 2003). In
this sense, the Neyman—Pearson approach may not be particularly useful for applied
research.

The Fisherian interpretation of the interval is evidence-based. The interval identi-
fies parameter values for the population mean difference thatare plausible candidates
to reproduce the observed mean difference of 5.9. In other words, the interval gives
the range of parameter values that are plausible candidates for the true mean differ-
ence. The interpretation of the interval is as a list of likely values for the population
mean difference. For the example, the likely values for the mean difference between
Mexican and non-Mexican Latino immigrants ranges from 0.7 to 11.1.

9.5 ADJUSTED BOOTSTRAP INTERVALS

In some situations, the interval produced using the studentized method can be biased
orinaccurate. Many statisticians have proposed adjustments to the interval to improve
particular properties (see Carpenter & Bithell, 2000; Good, 2005a, for a review
of these methods). For example, Efron (1981a) proposed methods for adjusting
the interval limits based on bias correction adjustments. Many other methods for
improving the interval limits using bootstrap methods have been proposed. The
section on Further Reading offers many places to start learing about these methods.

One method that tends to produce good interval limits in practice is the bootstrap
bias-corrected-and-accelerated (BC,) method. The calculation of the limits based
on this method is beyond the scope of this monograph, but both Efron (1987) and
DiCicco and Tibshirani (1987) provide more details for the interested reader.

The BC, method of adjustment is implemented in the boot.ci () function from
the boot package. This function takes the bootstrap object as a required argument.
The optional argument type="bca" is used to specify that the bias-corrected-and-
accelerated adjustment should be computed. Command Snippet 9.5 shows the syntax
for finding the BC, interval for the mean difference in educational achievement
between non-Mexican and Mexican Latino immigrants.

The interval limits based on the BC, method of adjustment are slightly different
than those based on the studentized interval estimate. This method has resulted in a
smaller range of values than Equation 9.2.

9.6 STANDARDIZED EFFECT SIZE: QUANTIFYING THE GROUP
DIFFERENCES IN A COMMON METRIC

When the raw or original metric is being used to compute the effect, Kirk’s question
about the magnitude of the effect can be difficult to answer. For example, is the mean
difference of 5.9 educational achievement points a small difference? A moderate
difference? A large difference? Sometimes reporting raw estimates of effect can
make sense from the standpoint that other researchers can relate to the metric being
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used. For example, many people can relate to a 7% difference in graduation rates
because they understand the magnitude of a percent. However, other times the raw
effect cannot be readily interpreted.

Command Snippet 9.5: Obtaining the limits for the nonparametric bootstrap BC,
confidence interval for the mean difference in achievement scores for4999 replicates.
pa

> boot.ci(boot.out = altmodel.boot, type = "bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL
boot.ci(boot.out = altmodel.boot, type = "bca")

Intervals

Level BCa

95% ( 0.553, 10.945 )

Calculations and Intervals on Original Scale

To alleviate the problemsin interpretations o f magnitude, researchers tend to report
standardized effect sizes rather than raw effect sizes when the metric is not universally
known. In considering differences between groups, there are two common standard-
ized effect sizes that researchers use: distance measures and variance accounted for
measures. While both of these measures characterize the extent to which sample
results diverge from the expectations specified in the null hypothesis, they do so in
a different manner. In this section, distance measures of effect are introduced. In
Chapter 11, variance accounted for measures of effect size are discussed.

9.6.1 Effect Size as Distance—Cohen’s &

Jacob Cohen (1962) introduced the first commonly recognized effect size in an effort
to call attention to statistical power in the behavioral sciences. Later, in his landmark
1965 book, he named this standardized effect size § (pronounced “delta”). It has
henceforth been referred to as Cohen’s §. The calculation of this standardized effect
size is

5= 1 — pal
a
where g, and po are the two population means and o is the standard deviation of
the population. It is assumed the populations have different means (2, and p2) buta
common standard deviation, o.
An estimate of this effect size is obtained by substituting the sample estimates for
the mean and standard deviation into Equation 9.3. To identify this as an estimate, it
is renamed d.

9.3)

d= |Y1 _>Y3|
S

9.4)
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Cohen pointed out thatsincethe variances—and therefore the standard deviations—
for the two populations are assumed to be equivalent, that the standard deviation
estimate from either group could be used. However, in practice it is common to use
the average of the two sample estimates, if the groups have equal sample sizes, or
the pooled estimate,! if the groups do not have equal sample sizes. All that Equation
9.3 is doing is expressing the estimated effect between the population means of the
two groups in terms of the size of the standard deviation—which is equivalent to
computing the standardized mean difference.

To compute Cohen’s d using R, the smd () function found in the MBESS library is
used. The function takes six arguments, Mean. 1=, Mean.2=, s. 1=, s.2=,n. 1=, and
n.2=. These arguments take the values of the mean, standard deviation, and sample
size for the two samples, respectively. The estimate of the standardized effect size is
computed in Command Snippet 9.6.

Command Snippet 9.6: Computing the standardized effect size for the Latino data.

-

## Load MBESS package

> library(package = MBESS)

## Compute Cohen's d for latino data

> smd(
Mean.1 = mean(latino$Achievellatino$Mex == 0]),
Mean.2 = mean(latino$Achieve[latino$Mex == 1]),
s.1 = sd(latino$Achieve[latino$Mex == 0]),
s.2 = sd(latino$Achieve[latino$Mex == 1]),
n.1 = length(latino$Achieve[latino$Mex == 0]),
n.2 = length(latino$Achieve[latino$Mex == 1])
)

[1] 0.3924999

\

Note that the estimated value for Cohen’s d is the same as the mean difference
based on the standardized achievement scores that was computed in Chapter 7. The
reason is that the standard deviation of the standardized achievement scores is equal
to 1, and thus the value of Cohen’s d is simply the mean difference. Cohen (1965)
provided some guidelines for further interpretation of the magnitude of the computed
standardized effect size. These are

d =.2 Small Effect Size,
d=.5 Medium Effect Size, and
d =.8 LargeEffect Size.
While it is common to provide an indication of the magnitude along with the

computed effect size when reporting results, like all other guidelines, these should
not be used without careful thought. In fact, Cohen (1965, p. 23) himself specified

IThe pooled estimate is a weighted average based on the two groups’ sample sizes.
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that these conventions only made sense in the behavioral sciences, and even then
cautioned researchers writing,

The terms “small,” “medium,” and “large” are relative, not only to each other,

but to the area of behavioral science or even more particularly to specific content

and research method being employed in any given investigation.

9.6.2 Robust Distance Measure of Effect

Researchers for years have used the sample means and standard deviations in place of
the parameters when estimating Cohen’s 8. These estimates, however, are not robust,
and therefore small changes in the distribution—such as a single extreme value—can
greatly impact the estimates. Because of this issue, recent literature has suggested
that in many situations using the sample means and standard deviation results in a
systematically poor estimate of the true effect size (e.g., Staudte & Sheather, 1990;
Wilcox, 2005). Algina, Keselman, and Penfield (2005) have proposed a solution
to this problem by using robust estimates of the population means and standard
deviation. Their estimate, called dg, is computed as

dp = 642 (Bms_;th—l'> 9.5)

where Y;; and Y}, are the 20% trimmed means for the two groups. Sw is the square
root of the pooled 20% Winsorized variance. The value, 0.642, is a scaling constant
used to ensure that dp and d are equal when the distributions for the two groups
are normally distributed with equal variances. To compute dg, the smd () function
is again used. The robust estimate of the standardized effect size is computed in
Command Snippet 9.7. The robust estimate is slightly smaller than Cohen’s d.

Command Snippet 9.7: Computing the robust effect size for the Latino data.

## Load WRS library to use the winvar () function
> library (WRS)

## Compute robust effect size for latino data
> 0.642*smd (

Mean.1l = mean(latino$Achieve[latino$Mex == 0], tr = 0.2),

Mean.2 = mean(latino$Achieve[latino$Mex == 1], tr = 0.2),

s.1 = sqrt(winvar(latino$Achieve[latino$Mex == 0], tr =
0.2)),

s.2 = sqrt(winvar(latino$Achieve[latino$Mex == 1], tr =
0.2)),

n.1 = length(latino$Achieve[latino$Mex == 0]),

n.2 = length(latino$Achieve[latino$Mex == 11)

)

[1] 0.3822657

Similar to an interval estimate for a sample statistic, an interval estimate for the
effect size can be computed. The boot () and boot.ci() functions can be used to
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find an interval estimate for this robust measure of effect. The use of these functions
to compute the limits for the nonparametric bootstrap BC, interval is presented in
Command Snippet 9.8. In this case, the estimated robust group difference is proposed
to be as small as 0.0089 and as large as 0.7230.

Command Snippet 9.8: Function and nonparametric bootstrap for the robust stan-
dardized effect size for the mean difference in achievement scores based on 4999
replicates.

## Function for robust standardized effect
> robust.std.effect <- function(data, indices) {
d <- datal[indices,]

0.642*smd (
Mean.1 = mean(d$Achieve [d$Mex == 0], tr = 0.2),
Mean.2 = mean(d$Achieve[d$Mex == 1], tr = 0.2),
s.1 = sqrt(winvar(d$Achieve[d$Mex == 0], tr = 0.2)),
s.2 = sqrt(winvar(d$Achieve[d$Mex == 1], tr = 0.2)),
n.1 = length(d$Achieve[d$Mex == 0]),
n.2 = length(d$Achieve [d§Mex == 1])
)

}

## Nonparametric bootstrap of robust standardized effect
> robust.boot <- boot(data = latino, statistic =
robust.std.effect, R = 4999, strata = latino$Mex)

## Density plot of the bootstrap distribution
> plot(density(robust.boot$t))

## Mean of the bootstrapped effect size
> mean(robust.boot$t)
[1] 0.378868

## Standard error for the bootstrapped effect size
> sd(robust.boot$t)
[1] 0.1824919

## Obtaining the bootstrap limits

> boot.ci(boot.out = robust.boot, type = "bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL

boot.ci(boot.out = std.boot, type = "bca")
Intervals

Level BCa

95% ( 0.0089, 0.7230 )
Calculations and Intervals on Original Scale

Figure 9.6 shows a plot of the kernel density for the 4999 bootstrapped measures
of robust standardized effect. This plot suggests that the bootstrap distribution is
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approximately normally distributed about the mean of 0.38. The SE of 0.18 suggests
that there is a fair amount of variation in the bootstrap distribution.

9.7 SUMMARIZING THE RESULTS

Both point estimates and interval estimates of effect size should be reported in any
write-up that includes results of hypothesis tests. Itis up to the researcher whether she
reports the standardized or unstandardized estimates. The write up for the analysis
of the Latino data might include the following.

Sample Write-Up

9.8 EXTENSION: BOOTSTRAPPING THE CONFIDENCE ENVELOPE
FOR AQ-QPLOT

A quantile-quantile (Q-Q) plot is often used as a graphical assessment of how far
empirical data deviate from a particular probability distribution. This graph plots
the empirical quantiles of the sample data versus the theoretical quantiles one would
expect from a normal distribution. Often a reference line is added to the Q-Q plot
to show what would be expected if the empirical and theoretical quantiles were
equivalent. Command Snippet 9.9 shows the syntax to create a Q-Q plot of the
standardized Mexican achievement scores using the qqnorm() function. A line is
also added using the abline() function. The arguments a= and b= indicate the
y-intercept and slope of the line to be plotted, respectively. Using a y-intercept of 0
and a slope of 1 will produce the reference line y=x.

Figure 9.7 shows the Q-Q plot of the standardized Mexican achievement scores.
The observed standardized scores show deviation from the reference line indicating
that these scores are not perfectly consistent with a normal distribution. Remember
sample data are never normally distributed; the best one can hope for is consistency
with such a distribution. Figure 9.8 shows the density plot of the empirical standard-
ized Mexican achievement scores overlaid on the normal distribution. This plot and
the Q-Q plot both show the same deviation between the empirical and theoretical
distributions.
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Figure 9.6: Density plot of the 4999 bootstrapped robust standardized effect sizes.
The resampling was carried out under the alternative model, thus centering the
distribution around the observed robust standardized effect of 0.38 (vertical dashed
line).

Command Snippet 9.9: Syntax to create a Q-Q plot of the standardized Mexican
achievement scores.

## Create a vector of standardized Mexican achievement scores
mex.z <- latino$z.achieve[latino$Mex == 1]

## Create the Q-Q plot
> qqnorm(mex.z, ylab = "Empirical Quantiles", xlab = "Normal
Quantiles")

## Add the reference line
> abline(a = 0, b = 1)

9.9 CONFIDENCE ENVELOPES

Often researchers use graphical assessments to make decisions about whether the
empirical data were drawn from a population that follows some particular probability
distribution, such as the normal distribution. This is very useful when evaluating
whether parametric assumptions of a model are plausible. In making this assessment,
some amount of deviation is expected between the empirical data and theoretical
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models, since deviation occurs simply because of sampling variation. The key
question is whether the deviation is within the expected variation due to sampling.

Normal Q-Q Plot

Emprical Cuntes.

Figure 9.7: Q-Q plot of the standardized Figure 9.8: Density plot of the empir-
Mexican achievement scores. The line ical standardized Mexican achievement
references where the points would lie if scores. The normal probability model is
the sample of scores were normally dis- shown with the dashed line.

tributed.

A common approach to visualizing the expected variation from the reference line
is to superimpose a confidence envelope on the Q-Q plot. A confidence envelope
is essentially an interval estimate for a line or curve. It is called an envelope, since
it graphically shows the degree of sampling error by placing an “envelope” around
the reference line. To create this envelope, a parametric bootstrap is used. In the
parametric bootstrap, replicate data sets are drawn from a theoretical distribution,
such as the normal distribution, rather than from the observed data. Consider the
process for using the parametric bootstrap to plot a confidence envelope for the Q-Q
plot of the standardized Mexican achievement scores.

e Resample, with replacement, 116 observations from a standard normal distri-
bution.

e Plot these observations versus the quantiles from the theoretical distribution.
e Repeat this process many times.

Since the replicate data sets are drawn from a known distribution—the standard
normal—the Q-Q plot of the bootstrapped observations will deviate from the ref-
erence line only because of sampling error. By continually superimposing each of
the bootstrapped Q-Q plots, one can visually see the expected variability from the
reference line, which will aid assessment of the initial normality assumption.
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Recall from Chapter 7 that the boot () function implements a parametric bootstrap
using the argument sim="parametric" and ran.gen=, which takes a user-written
function that describes how the bootstrapped observations are being generated. Com-
mand Snippet 9.10 shows a function used to sample observations from the standard
normal distribution. The argument n=length(data) will compute the length of the
vector provided in the data= argument of the boot () function and then sample that
number of observations from the standard normal distribution. In this example 116
observations (the sample size of the Mexican group) will be sampled.

Command Snippet 9.10: A function to sample observations from the standard
normal distribution.
> mex.gen <- function(data, mle){

roorm(n = length(data), mean = 0, sd = 1)

}

Command Snippet 9.11 shows the implementation of the parametric bootstrap.
Each of the 4999 bootstrap replicates contained in mex.qqgboot has 116 resampled
scores drawn from the standard normal distribution. Furthermore, the bootstrapped
scores in each replicate are sorted in order from smallest to largest using the sort ()
function.

Command Snippet 9.11: The use of the boot () function to perform a parametric
bootstrap.

> mex.qgboot <- boot(data = mex.z, statistic = sort, R = 4999,
sim = "parametric", ran.gen = mex.gen)

Figure 9.9 shows a plot of the bootstrapped scores drawn in the first replicate versus
the theoretical quantiles based on the standard normal distribution. The distribution
of the bootstrapped observations shows very good agreement with the theoretical
distribution. This is expected since the bootstrapped observations were resampled
from a standard normal distribution.

Note that in Figure 9.9, while there is generally good agreement, there is still
deviation from the reference line. Since the bootstrapped observations were drawn
from a known standard normal distribution, this deviation is due only to sampling
variation. To visually depict the expected deviation from the reference line due
to sampling, many of the bootstrapped replicates are plotted versus the theoretical
quantiles. Figure 9.10 shows the results of plotting 25 of these replicates.

Figure 9.10 visually shows the variation from the reference line. The envelope()
function in the boot package is a quicker way in which to determine the limits for
the confidence envelope. This function takes as its only required argument the
results from the parametric bootstrap. Command Snippet 9.12 shows the use of this
function to obtain the limits on the confidence envelope. These results are assigned
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to an object, mex. env, and the structure of the object is examined using the str ()

function.

Empecel Cusntien

Normal Q-Q Plot

Nommal Duansies

Figure 9.9: Q-Q plot of the bootstrapped scores drawn in the first replicate. The line
references where the points would lie if the sample of scores was consistent with a
normal distribution.

Command Snippet 9.12: The use of the envelope () function to obtain the limits

on the confidence envelope.

P

List of 7
point
overall:
k.pt
err.pt
k.ov
err.ov

P EP PR R P R A

err.nom:

num
num
num
num
num
num
num

[1:
12,
:2]
:2]
:2]
:2]
:2]

[1
[1
[1
[1
[1
[1

2,

## This may produce an error message which can be ignored
> mex.env <- envelope(boot.out =

mex.qgboot)

## Examine the structure of the bootstrap object
> str(mex.env)

1:116] -1.87

1:116] -1.58

125 4875

0.05 0.569

4 4996

0.0016 0.0422
0.05 0.05

-3.56
-4.43

-1.68
-1.42

-2.86
-3.41

-1.54
-1.32

The limits for the 95% simultaneous envelope are provided in the component
called overall in the bootstrap envelope object mex.env. This component is a
2 x 116 matrix that contains the upper limits of the envelope in the first row and
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the lower limits of the envelope in the second row. In Command Snippet 9.13 the
lines () function (see Chapter 4) is used to plot the limits ofthe confidence envelope.

Empricai Ouarales

Figure 9.10: Q-Q plot of the bootstrapped standardized scores for R = 25 replicates
of n = 116 resampled observations from the standard normal distribution. The bold
line references where the points would lie if the sample of scores was consistent with
a normal distribution.

The plot is shown in Figure 9.11. As seen in the figure, the points deviate from
the reference line, although it is not more than one would expect because of sampling
variation alone—mostare inside of the confidence envelope. This is evidence that the
distribution of the observed standardized achievement scores for Mexican immigrants
could potentially have been drawn from a normally distributed population. Figure
9.12 shows the density plot for the standardized achievement scores along with a
confidence envelope for the density plot. This was introduced in Section 3.4. These
two plots both show the same pattern in the consistency with the normal model.

9.10 FURTHER READING

The bootstrap method for obtaining confidence intervals was introduced by Efron
(1979). Efron (1981b) initally published on the methods for adjusting the confidence
limits through studentizing and bias correction adjustment. Since that time many
other methods for improving confidence limits using bootstrap methods have been
proposed, including the approximate bootstrap confidence interval method (ABC;
DiCicco & Efron, 1992) for dealing with multiparameter estimation; the use of
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calibration for improving coverage accuracy (Hall, 1986; Beran, 1987; Loh, 1987;
Hall & Martin, 1988); the use of acceleration for bias correction (Efron, 1987,
DiCicco, 1984); and the use of tilting to overcome difficulties associated with the

BC, estimation (Efron, 1981b).

Normas) Q-Q Piot

Figure 9.11: Q-Q plot of the studen-
tized Mexican achievement scores along
with a 95% confidence envelope. The
confidence envelope was computed us-
ing R = 4999 replicates of n = 116 ob-
servations resampled using a parametric
bootstrap from the N (0, 1) distribution.

0s
1

Figure 9.12: Density plot of the empir-
ical standardized Mexican achievement
scores. The confidence envelope based
on the normal probability model is also
added to the plot.

Command Snippet 9.13: R syntax to plot the Q-Q plot of the Mexican achievement
scores along with the 95% confidence envelope.

## and assign them to my.gq
> my.qq <- qqnorm(y =

> lines(x = my.qq$x, y =

> lines(x =

my.qqdx, y =

sort (mex.z),

## Plot the empirical versus the theoretical quantiles
## for the sorted Mexican standardized achievement scores

ylim = c(-3.5, 3.5), ylab =

"Empirical Quantiles", xlab = "Normal Quantiles")
## Add the reference line
> abline(a = 0, b = 1, col = "red")

## Add the envelope's upper limits
mex.env$overall[1, 1)

## Add the envelope's lower limits
mex.env§overall[2, ])
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Several studies have been undertaken to empirically compare these methods (Hall,
1988; Lee & Young, 1995; DiCicco & Efron, 1996). The last of these—a survey of the
bootstrap methodology at the time—was followed by four articles in which authors
commented on the bootstrap methodology. Carpenter and Bithell (2000) wrote an
especially readable treatise on many of the bootstrap interval methods. Finally, it
should be pointed out that Rubin (1981) proposed a methodology for bootstrapping
that is Bayesian in nature.

PROBLEMS

9.1 Institutional data from 30 Minnesota colleges and universities were obtained
from 2006 and can be found in the MNColleges.csv data set. Among the variables
collected were expenditures per student, Expend (in U.S. dollars), and whether the
college or university is a private or public institution, Sector. Of interest is whether
expenditures differ by sector.

a) Conduct a nonparametric bootstrap test of the mean difference.

b) Compute the bootstrap interval using the bias-corrected-and-accelerated
(BC,) method.

¢) Compute the studentized bootstrap interval.

d) Compare and contrast the two intervals.

e) Compute a point estimate of the standardized effect size for the mean differ-
ence in expenditures by sector. Should a robust effect size be alternatively
used? Explain.

f) Based on your answer to the previous question, provide an interval estimate
for the true population standardized effect.

g) Write up the results from all analyses, in no more than three paragraphs,
as if you were writing a manuscript for publication in a journal in your
substantive area.



CHAPTER 10

DEPENDENT SAMPLES

Statistical independence is far too often assumed casually, without serious concern for how
common is dependence and how difficult it can be to achieve independence (or related

structures).
—W. Kruskal (1988)

In Chapter 7, the method of the bootstrap was introduced to examine group differences
when the assumption of independence has been met. However, in many cases, this
assumption is not met. Sometimes the study design employed by the researcher leads
to cases where the two samples are dependent. For example, research study designs
that use matching, as well as within-subjects research designs (e.g., pretest—posttest
designs) both induce dependence among the observations. In such cases, the analytic
methods for inference introduced thus far would be inappropriate. In this chapter
methods are presented that can be used to analyze group differences when the two
samples are not independent.

Comparing Groups: Randomization and Bootstrap Methods Using R 207
First Edition. By Andrew S. Zieffler, Jeffrey R. Harring, & Jeffrey D. Long
Copyright (©) 2011 John Wiley & Sons, Inc.
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10.1 MATCHING: REDUCING THE LIKELIHOOD OF NONEQUIVALENT
GROUPS

Recall from Chapter 6, that the specification of a comparison group is an essential step
in the design of good educational research. Recall further, that the best comparison
group is one that is “composed of people who are similar to the people in the treatment
group in all ways except that they did not receive the treatment” (Light et al., 1990,
p- 106). The best way to achieve this is through random assignment of the study
participants to treatment and control groups. In Chapter 6, random assigment of study
participants to conditions (or conditions to participants) was described as a method
that ensures that the treatment group and the comparison group are equivalent, on
average, on all attributes, characteristics, and variables other than the treatment.

While this is a true description of what should happen with random assignment,
what happens in practice may not meet this description. Many researchers find that
even with random assignment, their two groups differ on average—even reliably—on
certain characteristics or measures. This may not be a failure of the random assign-
ment to produce groups that are, on average, equivalent. Rather, these differences
may be “due to chance” and are to be expected, especially when the sample size is
not large. Across several studies it is expected that the differences would balance out
between the groups. This is the true description of equivalent groups “on average.”

One method of ensuring that gross imbalances among the groups does not occur is
to match samples using variables that relate to the outcome under study, or covariates.
When matching, researchers group study participants with similar scores on a covari-
ate prior to the random assignment. Every pair of matched participants—which are
referred to as a block—are then split after matching, and one is randomly assigned
to the treatment group and the other to the control group.! The idea of matching is
that the researcher can create control and treatment groups that are more alike—at
least on the covariate(s) used in the matching—thereby reducing the probability that
imbalance will occur.

10.2 MATHEMATICS ACHIEVEMENT STUDY DESIGN

Consider the following study in which the researchers are interested in whether a
particular curricular approach is effective for increasing the mathematics scores for
at-risk students. The researchers have 40 at-risk students who have volunteered to
take part in a summer program during which the curricular approach to be evaluated
will be compared to the older approach. The researchers intend to randomly assign
these 40 students to each of the two curricula. Because of the small sample size,
however, the researchers are a little nervous that simple random assignment to the
control and treatment curricula may result in imbalance between the two groups.

1Some authors and textbooks distinguish between blocking—using groups with similar scores—and
matching—using groups with the exact same scores. In this monograph the terms are used interchangeably.
It is also possible to have more than two groups by creating blocks using more participants.
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They have decided to match students based on their PSAT mathematics score—a
variable they believe should be related to their outcome variable.

The data set PSAT.csv contains data on the 40 at-risk students’ PSAT scores along
with their participant ID number. Command Snippet 10.1 shows the syntax to read
in the PSAT.csv data and examine the data frame object.

Command Snippet 10.1: Syntax to read in the PSAT.csv data and the use of the
order () function.

## Read in the data
> psat <- read.table(file = "/Documents/Data/PSAT.csv", sep =
",", header = TRUE, row.names = "ID")

## Examine the data frame object
## Output 1is suppressed

> head(psat)

> tail(psat)

> str(psat)

> summary (psat)

After reading this data into R, the sort () function can be used to order the
participants’ PSAT scores. This function takes an argument x= to provide a vector
on which the sort () function will order the scores. By default, the vector is sorted
in ascending order. The optional argument decreasing=TRUE can be provided to
sort in descending order. Command Snippet 10.2 shows the syntax to arrange the
participants’ PSAT scores in ascending order.

Command Snippet 10.2: Syntax to use of the sort() function to arrange the
participants’ PSAT scores in ascending order.

#### Read in the data
> sort (math$PSAT)

[1] 270 275 335 360 400 405 415 415 450 460 475 475 480
[14] 480 485 485 490 490 495 495 500 510 530 535 540 540
[27] 545 545 550 550 575 585 630 635 640 645 680 700 780
[40] 795

Since there are two treatments in the study, blocks can be formed by pairing the
two study participants with the highest PSAT scores, the next two highest PSAT
scores, etc. The random assignment is then carried out within each block. Thus
for the first block, either the participant with a PSAT score of 270 (participant 19)
or the participant with a PSAT score of 275 (participant 8) is randomly assigned to
treatment and the other to control. Likewise, one of the participants from the second
block (the participant with a PSAT score of 335 and the participant with a PSAT score
of 360) is randomly assigned to treatment and the other to control. The process is
continued in this manner until all of the study participants have been assigned.
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The data set OrderedPSAT.csv contains the PSAT scores for the 40 participants.
There is also a variable indicating the condition that the participant was assigned to.
Command Snippet 10.3 shows the syntax to read in the OrderedPSAT.csv data and
examine the data frame object.

Command Snippet 10.3: Code to read in the OrderedPSAT.csv data and examine
the data frame object.

## Read in the OrderedPSAT.csv data
> psat2 <- read.table(file = "/Documents/Data/OrderedPSAT.csv",
sep = ",", header = TRUE)

## Make sure the data read in correctly
## Output is suppressed

> head(psat2)

> tail(psat?2)

> str(psat2)

> summary(psat2)

To determine whether the matching achieved the desired goal of balancing the two
groups—at least on the covariate of PSAT score—the distribution of the covariate for
each group is examined. Command Snippet 10.4 shows the syntax used to examine
the PSAT scores for the two treatments. Figure 10.1 shows the density plots of
the PSAT scores for both the control and treatment conditions. These plots suggest
that the two groups are very similar in terms of their PSAT scores. Numerical
summaries of these distributions also suggest that the PSAT scores for the control
group (M = 516,SD = 116) and the treatment group (M = 517,SD = 118) are
similar.

Command Snippet 10.4: Syntax to examine the distribution of PSAT scores condi-
tional on treatment condition.

## Plot the PSAT scores for each condition

> plot(density(psat2$PSAT[psat2$§Condition == "Control"]), 1lty =
"dashed")

> lines(density(psat23PSAT[psat2$Condition == "Treatment"]),
1ty = "solid")

## Mean of PSAT scores

> tapply(X = psat2$PSAT, INDEX = psat2$Condition, FUN = mean)
Control Treatment
516.75 515.50

## Standard deviations of the PSAT scores

> tapply(X = psat2$PSAT, INDEX = psat2$Condition, FUN = sd)
Control Treatment
116.4189 117.7967
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Figure 10.1: Distribution of PSAT scores conditioned on treatment.

These analyses suggest that the matching was effective in balancing the two
groups—on PSAT scores—prior to receiving the curricula.

10.2.1 Exploratory Analysis

After being exposed to either the control curriculum or the treatment curriculum, all
students were given a mathematics achievement test. The data set BlockedPSAT.csv
contains the PSAT scores for the 40 participants, the condition each participant
was assigned to, and the participants’ mathematics achievement scores. Command
Snippet 10.5 shows the syntax used to read in these data, examine the data frame
object, and carry out the exploratory analysis on the mathematics achievement scores.

The density plots (see Figure 10.2) and side-by-side box-and-whiskers plots (see
Figure 10.3) suggest that the distribution of students’ mathematics achievement scores
for both curricula are negatively skewed. They also suggest that there is comparable
variation in these achievement scores between the two curricula. Finally, there is
a difference in location for these two distributions, with students who experienced
the treatment curriculum showing both a higher median and mean mathematics
achievement score than students who experienced the control curriculum.

While the sample distributions suggest a difference in the average mathemat-
ics achievement scores, again the broader question is asked of whether or not this
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Command Snippet 10.5: Syntax to examine the distribution of mathematics achieve-
ment scores conditional on treatment condition.

## Read in the BlockedPSAT.csv data
> math <- read.table(file = "/Documents/Data/BlockedPSAT.csv",
sep = ",", header = TRUE)

## Make sure the data read in correctly
## Output is suppressed

> head(math)

> tail(math)

> str(math)

> summary (math)

## Density plots

> plot(density(math$Achievement [math$Condition == "Control"],
bw = 4), lty = "dashed")

> lines(density(math$Achievement{math§Condition ==
"Treatment"], bw = 4), 1lty = "solid" )

## Side-by-side box-and-whiskers plots

> boxplot (math$Achievement [math$Condition == "Control"],
math$Achievement [math$Condition == "Treatment"], names =
c("Control", "Treatment"))

## Conditional means

> tapply(X = math$Achievement , INDEX math$§Condition, FUN =

mean)
Control Treatment
26 .55 29.35

## Conditional standard deviations
> tapply(X = math$Achievement, INDEX
sd)
Control Treatment
5.529585 6.983251

math$Condition, FUN =

observed sample mean difference of 2.8 achievement points is just an artifact of
the random process used to assign students to treatments, or if it is a “real” effect
reflecting population group differences. To examine this, the null hypothesis,

Hy : The new curricular approach is no more effective than the older approach,

is tested.

In order to test this hypothesis, a randomization test is carried out. This is a test
of the expected variation in the mean difference under the assumption of no effect.
However, because these data come from study participants who have been matched
prior to the employment of random assignment, the assumption of exchangeability
required for the randomization method is no longer appropriate.
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Figure 10.2: Density plots for the dis- Figure 10.3: Side-by-side box-and-

tribution of mathematics achievement whiskers plots for the distribution of

scores conditioned on treatment. mathematics achievement scores condi-
tioned on treatment.

These data are arranged based on the matching and assignment that was carried
out on the PSAT scores. Note that in this data set each row, or case, is a block rather
than an individual student. This is a common format for organizing matched data so
that the matched participants are linked via the row.

10.3 RANDOMIZATION/PERMUTATION TEST FOR DEPENDENT
SAMPLES

When researchers have matched study participants and then randomly assigned them
to treatment and control within those blocks, an appropriate analysis to determine
whether there are statistically reliable differences between the groups is the random-
ization test. Recall that in order to obtain the reference distribution in which to
evaluate the observed mean difference, the null hypothesis is assumed to be true, and
the data are randomly permuted in a manner that is consistent with the initial design
assumed to give rise to the observed data.

For independent samples, all the observations were put into one “supergroup” as
the null hypothesis of no difference was assumed to be true. Then the observations
were randomly permuted to treatment and control groups consistent with the original
design. For a design that uses matching, the random assignment takes place only
within each block. Thus the supergroup is not all observations, but rather a block.
This is consistent with the null hypothesis, which suggests that there is no difference
in groups after matching on PSAT scores.

Because the null hypothesis says that the two populations are identical only after
matching on PSAT scores, the way in which the data is permuted needs to be modified
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for this design. If the assumption of the null hypothesis of no difference is true, the
treatment and control labels would have no meaning only after matching on PSAT
scores. Thus, permuting the data under this hypothesis randomly assigns scores to
“treatment” and “control” only after the matching has taken place. Thus, the data
are randomly permuted with the caveat that observations of a particular block are
assigned to different groups.

After forming the treatment and control scores by randomly permuting the ob-
servations in each block, one could calculate the mean difference in mathematics
achievement for the two permuted groups. If the sample size is small enough, all
possible mean differences could easily be produced by just listing out all of the
possibilities. The observed mean difference can then be evaluated in that exact dis-
tribution. Instead, a Monte Carlo method is used to simulate the exact distribution
and compute a simulated p-value.

10.3.1 Reshaping the Data

The math data frame is arranged so that each row contains the data for a single
participant in the study. This representation, referred to as the long format, is the
arrangement that has been used thus far in the monograph. Matched data are often
presented in the wide format. The wide format typically arranges the data so that
each row corresponds to a block, rather than a participant. Tables 10.1 and 10.2 show
the data for the participants in the first two blocks in both the long and wide formats,
respectively.

Table 10.1: Data for Participants in First Two Blocks Presented in Long Format

Block PSAT Condition Achievement
1 270 Control 15
1 275 Treatment 27
2 335 Control 15
2 360 Treatment 12

The reshape () function is used to rearrange the data between the two formats.
In this function, the data= argument is used to specify the data frame that will be
rearranged. The direction= argument takes a character string of either "wide"
or "long", depending on the format the data should take. The idvar= argument
indicates the variable(s) in the long formatted data that identify multiple records from
the same block, group, or individual. The timevar= argument specifies the variable
in the long formatted data that differentiates multiple records from the same block,
group, or individual. Lastly, the argument v.names= indicates which of the variables
in the long formatted data are to be made into multiple variables when the data is
rearranged into the wide format.
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Table 10.2: Datafor Participants in First Two Blocks Presented in Wide Format

Control Treatment
Block PSAT Achievement PSAT Achievement
270 15 275 27
2 335 15 360 12

For example, to rearrange long formatted data from Table 10.1 to the wide format
in Table 10.2 the argument direction="wide" is provided in the reshape () func-
tion. The Block variable identifies the records that are in the same block, so the argu-
ment idvar="Block" is used. The argument timevar="Condition" is used since
the Condition variable differentiates the two conditions for each block. Finally,
v.names = c("PSAT", "Math") is provided to create multiple variables—one for
control and one for treatment—out of both the PSAT and Achievement variables.
Command Snippet 10.6 shows the complete syntax to reshape the math data frame.

Command Snippet 10.6: Syntax to reshape the math achievement data.

## Reshape the math achievement data to the wide format

> math.wide <- reshape(data = math, direction = "wide", idvar =
"Block", timevar = "Condition", v.names c("PSAT",
"Achievement"))

## Examine the first part of the data frame object
> head (math.wide)
Block PSAT.Control Achievement.Control

1 1 270 15

3 2 360 15

5 3 400 24

7 4 415 24

9 5 460 26

11 6 475 19
PSAT.Treatment Achievement.Treatment

1 275 27

3 335 12

5 405 22

7 415 27

9 450 20

11 475 27

Before carrying out the randomization, the data frame is simplified by only con-
sidering the data in the Achievement.Control and Achievement.Treatment
columns. These columns are stored in a new data frame object called math2. Com-
mand Snippet 10.7 shows the syntax to create this new data frame object.
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Command Snippet 10.7: Syntax to create a new data frame object containing only
the math achievement scores for the control and treatment groups.

(; > math2 <- math.wide[ ,c(3, 5)]

10.3.2 Randomization Test Using the Reshaped Data

In terms of the data frame, the problem becomes one of randomly permuting the
observations within each row, as they are the blocks. To permute the data the
sample() function is used. Recall from Chapter 6 that the apply() function is
used to apply a particular function to the rows or columns of a matrix or data frame.
Since the observations in a block need to be randomly assigned to groups, MARGIN=1
is used. The argument FUN=sample applies the sample() function to each row.
Command Snippet 10.8 shows the syntax for sampling within rows of the math data
frame.

Command Snippet 10.8: Syntax to sample within each row of the math data frame. )

> apply(X = math2, MARGIN = 1, FUN = sample)
1 3 6 7 9 11 13 15 17 19 21 23 25 27 29 31
[1,] 15 12 24 27 20 27 25 28 32 27 34 32 31 31 38 34
[2,] 27 15 22 24 26 19 23 22 27 24 25 30 38 33 29 32
33 35 37 39
[1,] 32 39 29 36
[2,] 34 29 36 30

The result from using the apply() function is a matrix with 2 rows and 20
columns. The first row is arbitrarily designated the control group and the second
row, the treatment group. To find the mean for each row, the apply() function is
again used—this time changing the FUN= argument to apply the mean() function.
Command Snippet 10.9 shows the syntax to perform the permutation and compute
the mean for both groups’ permuted observations.

Command Snippet 10.9: Syntax to sample within each row of the math data frame
and then compute the mean for each row in the resulting matrix.
> apply(X = apply(X = math2, MARGIN = 1, FUN = sample), MARGIN
= 1, FUN = mean)
[1] 28.65 27.25

To compute the difference between these two means, the diff () function can be
used. Command Snippet 10.10 shows the syntax to perform the permutation, compute
the mean forboth groups’ permuted observations, and compute the difference between
those means.
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Command Snippet 10.10: Syntax to sample within each row of the math data
frame, compute the mean for each row in the resulting matrix, and compute the mean
difference.

> diff (apply (X = apply(X = math2, MARGIN = 1, FUN = sample),

MARGIN = 1, FUN = mean))
[1] -1.4

The replicate() function is now used to carry out many permutations of the data,
each time computing the difference between the permuted groups’ means. Command
Snippet 10.11 shows the syntax for carrying out this computation. The randomization
distribution is also plotted and examined. Finally, the observed mean difference of 2
is evaluated in the randomization distribution.

Command Snippet 10.11: Syntax to carry out a Monte Carlo simulation of the
randomization test for the matched achievement data.

## Carry out 4999 permutations of the data

> permuted <- replicate(n = 4999, expr = diff(apply(X = apply(X
= math2, MARGIN = 1, FUN = sample), MARGIN = 1, FUN =
mean)))

## Plot the randomization distribution
> plot(density(permuted), xlab = "Permuted Mean Difference",
main = " ")

## Compute the mean of the randomization distribution
> mean(permuted)
[1] -0.001380276

## Compute the standard error of the randomization distribution
> sd(permuted)
[1] 1.355299

## Count the number of permuted mean differences
## as extreme or more extreme than 2.8

> length(permuted[abs(permuted) >= 2.81])

[1] 211

## Compute p-value
> (211 + 1) / (4999 + 1)
[1] 0.0424

The Monte Carlo randomization distribution (shown in Figure 10.4 is approxi-
mately normal with mean of O and an estimated standard error of 1.4. This indicates
that under the assumption of no difference of achievement scores between the two
treatments, that the variation expected in the mean difference simply because of ran-
dom assignment is quite small. It is expected that most of the mean differences to be
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within £2.8 achievement points from zero based on these 4999 permutations of the
data. Of the 4999 permuted mean differences, 211 were as extreme or more extreme
than the observed sample difference of 2.8. Using the correction for the Monte Carlo
simulation, the Monte Carlo p-value for the example would be

21141
P= 2900+ 1

This p-value shows moderate evidence against the null hypothesis of no effect of the
new curricular approach on mathematics achievement.

= 0.042. (10.1)

030

025 ~

015

Density
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Mean Differance

Figure 10.4: Randomization distribution of the mean difference under the null
hypothesis of no difference. A vertical line (solid) is drawn at O, the hypothesized
mean difference.

10.4 EFFECT SIZE

The effect size for two dependent samples is computed quite similarly to that for
independent samples. Of interest is finding out how different the mean of the
treatment group is from the mean of the control group in the population. This can
be estimated from the sample means. Since the raw scores are difficult to interpret,
the metric is standardized by dividing this difference by the standard deviation of the
control groups’ achievement scores. This standardized measure of effect is called
Glass’s delta. Glass (1977) argued that when a study has employed an actual control
group, by using the standard deviation of the control group, rather than the pooled
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estimate introduced in Chapter 9 in the denominator, the standardized effect would
not change due to differences in variation when several treatment options are being
compared. In general this Glass’s delta is computed as

A= | Treatment — Hcontroll

; (10.2)
O Control
which can be estimated using the sample data in this example as
A= .|29.35 = 26.55|_ — 051 (103)

5.53
This indicates that on average, the scores in the experimental and control conditions
differ by 0.51 standard deviations. It is also possible to compute an interval estimate
for the standardized mean difference using block bootstrapping (see Section 10.7).

10.5 SUMMARIZING THE RESULTS OF A DEPENDENT SAMPLES
TEST FOR PUBLICATION

An example write-up for the randomization test results is given below. As with any
simulation method, it is important to report the method used to analyze the data
along with the p-value. It is also necessary to report whether the p-value is exact or
approximated via Monte Carlo methods. If the latter is the case, you should indicate
the number of data permutations that were carried out and whether the correction for
the p-value was used.

Sample Write-Up
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10.6 TO MATCH OR NOTTO MATCH ... THAT IS THE QUESTION

Consider what would happen had the assumption of independence incorrectly been
made. Then the permutations of the data would be carried out under random assign-
ment of all the data rather than within blocks. Command Snippet 10.12 shows the
syntax for carrying out the Monte Carlo randomization under this incorrect assump-
tion.

Command Snippet 10.12: Using the math data to carry out a Monte Carlo random-
ization test under the incorrect assumption of independence.

## Put all scores in one common vector
> all.math <- c(math2$Achievement.Control,
math2$Achievement.Treatment)

## Obtain 4999 permutations of the data
> permuted.ind <- replicate (n = 4999, expr = sample(all.math))

## Write a function to compute the mean difference
> mean.diff <- function (data) {

mean (data[1:20]) - mean(data[21:40])

}

## Compute the mean difference for each vector of permuted data
> diffs <- apply(X = permuted.ind , MARGIN = 2, FUN =
mean.diff)

## Count extreme values
> length(diffs[abs(diffs) >= 2.8])
[1] 928

##Compute the p-value
> (928 + 1) / (4999 + 1)
[1] 0.1858

The p-value based on the method carried out under the assumption ofindependence
is 0.186. This would suggest that the data show very weak evidence against the null
hypothesis of no effect of the new curriculum. This inference is very different than
the prior inference from the randomization method (p = 0.042). An important thing
to remember is that the validity of the inferences you draw are directly reliant on
whether or not the observed datameets the assumptions of the method you are using.

Why does the p-value change this dramatically? The size of the p-value is
directly related to the variation in the distribution of the test statistic. In this case
it is the distribution of the mean difference. Figure 10.5 shows the randomization
distribution of the mean difference for both the assumptions of independence and
dependence. Both of these randomization distributions are symmetric and centered
at zero. The variation for the randomization distribution assuming independence
is SE = 2.05. This is much higher than that for the distribution not assuming
independence, SE = 1.36.
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Figure 10.5: Randomization distribution of the mean difference for both the as-
sumptions of independence and dependence. A vertical line (dotted) is drawn at the
hypothesized mean difference of 0.

This implies that the mean difference varies much more assuming independence
just because of random assignment. Because of this, the observed difference of 2.8,
or a difference more extreme, is much less likely when the data are dependent than
when they are independent.

The variation in the randomization distribution is affected by (1) the variation in
the observed data, (2) the sample size, and (3) the number of permutations of the
data carried out. The effect of the number of permutations on the variation was
addressed in Chapter 6. Chapter 9 addressed how sample size affects this variation.
The assumption of independence or dependence affects the first of these, namely the
variation in the observed data.

When a researcher uses blocking, the blocks should be more homogeneous (less
variable) in terms of the blocking variable than the whole set of participants. Since
the blocking variable is chosen because of its relation to the outcome variable,
this implies that there will also be less variation on the outcome variable within
blocks. Thisreduction in variation directly impacts the variation in the randomization
distribution.

If a design with matching is employed, it is essential that the researcher matches
using covariate(s) thatrelate to the outcome being measured (see Shadish et al., 2002).
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Because of this, a pretest or baseline measure of the outcome variable is often the best
covariate on which to match study participants. If a pretest is not possible to obtain,
the covariate should be as closely related to the outcome as possible. Matching on
covariates unrelated to the outcome variable provide little benefit, as the variation on
the outcome will not be reduced within blocks. This can actually lead to a reduction
in the likelihood of finding evidence of an effect.

10.7 EXTENSION: BLOCK BOOTSTRAP

The block bootstrap is a nonparametric bootstrap method in which observations are
drawn from the sample without replacement. Rather than resampling individual
observations, however, this method resamples entire blocks of observations. By
resampling blocks of observations, the dependent nature of the data is kept intact.
Figure 10.6 shows the steps used to carry out the block bootstrap to obtain the
distribution for a particular test statistic, V, under the alternative model.

—
| 1

e Randomly resample n blocks from the observed sample data with |

replacement {b3,b},b3,b3,...,b% }. l

e Compute V —the test statistic of interest—using the observations ob-
tained from the bootstrapping.

e Repeat the first two steps many times, say R times, each time recording
the statistic V.

e The distribution of V;, Va, Vg, et ,VR can be used as an estimate of
the sampling distribution of V' under the alternative model. '

Figure 10.6: The steps used to block bootstrap the distribution for a particular test
statistic, V', under the alternative model.

Consider how the bootstrap distribution would be created under the alternative
model. The purpose is to estimate the standardized difference of the effect in mathe-
matics achievement for the mathematics achievement data.

e First, resample 20 blocks of paired observations with replacement from the
sample of mathematics achievement data. This is the bootstrap replicate data
set.

e Calculate Glass’s standardized effect for the bootstrap replicate data set.
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e Repeat the process many times to obtain the bootstrap distribution of Glass’s
standardized effect.

To bootstrap under this alternative model in R, the boot package is used. The
boot package implements block bootstrapping using the tsboot () function. This
function requires the initial data to be a time-series object, which will suffice for any
type of dependence among pairs of observations, as in the matching example. The
as. ts () function is used in Command Snippet 10.13 to coerce the math?2 data frame
into a time-series object.

Command Snippet 10.13: Coercing the math2 data frame into a time-series object.

(, > ts.math <- as.ts(math2) J

It is common to treat matched dependent data and time-series data in a similar
manner. Since the study participants were matched prior to being randomly assigned
to treatments, the two participants in the same block can be treated as the “same”
participant who was measured pretreatment and then again posttreatment—as in
a time series. A function is then written that will compute Glass’s standardized
effect. Command Snippet 10.14 includes a function called glass.delta() that
when applied to the ts.math object will compute the Glass’s delta between the
mathematics achievement scores for the resampled treatment and control participants.
Two things to note about this function are that the argument indices is not provided,
and the variables are accessed via the column numbers rather than their names.

Command Snippet 10.14: A function to compute the standardized effect between the
mathematics achievement scores for the resampled treatment and control participants.
The columns in a time-series object need to be called through indexing. The function
is also tested on the time-series data.

## Function to compute Glass's delta

> glass.delta <- function(data){
numerator <- abs(mean(datal ,2]) - mean(datal ,1]))
denominator <- sd(datal ,1])
numerator / denominator

}

## Test the glass.delta() function
> glass.delta(ts.math)
[1] 0.5063671

After executing this function inR, it is tested by using it with the time-series data
in ts.math. This result is within rounding of the value for Glass’s delta obtained
in Command Snippet 10.3. The tsboot () function is used to perform the actual
bootstrapping. This function takes the arguments tseries= to input the name of
the time-series object to be bootstrapped; statistic= to indicate the name of the
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function that determines what is to be computed with each replicate data set; R=
to indicate how many replicate data sets should be resampled; sim="fixed" to
indicate that block resampling is to be carried out; and 1= to indicate the length
of each block. Command Snippet 10.15 shows the syntax for using the tsboot ()
function to bootstrap the standardized difference in achievement scores for 4999
replicates. The results are assigned to an object called match.boot.

Command Snippet 10.15: Bootstrapping the mean difference in achievement scores
for 4999 replicates. The bootstrapping is carried out within strata rather than by
pooling as in the last chapter. These results are also plotted and displayed.

## Load the boot package
> library(boot)

## Carry out the block bootstrap
> match.boot <- tsboot(tseries = ts.math, statistic =
glass.delta, R = 4999, sim = "fixed", 1 = 2)

## Plot the bootstrap distribution
> plot(density(match.boot$t))

## Mean of the bootstrap distribution
> mean(match.boot$t)
[1] 0.5548091

## Standard error of the bootstrap distribution
> sd(match.boot$t)
[1] 0.2510088

## Examine the bootstrap object
> match.boot

BLOCK BOOTSTRAP FOR TIME SERIES
Fixed Block Length of 2
Call:

tsboot (tseries = ts.math, statistic = glass.delta, R = 4999,
1 =2, sim = "fixed")

Bootstrap Statistics
original bias std. error
L ti* 0.5063671 0.048442 0.2510088

Figure 10.7 shows the plotted results of the bootstrapped Glass’s delta under the
alternative model. This distribution is centered at 0.55, which is higher than the
observed effect of 0.51. This difference, which is quantified in the bias statistic,
along with the asymmetry in the plot indicate that the estimated effect may be
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Density

Glass' Detta

Figure 10.7: Bootstrap distribution of the standardized mean difference as measured
by Glass’s delta in mathematics achievement scores between treatment and control
participants for 4999 replicates. The resampling was carried out using block boot-
strapping under the alternative model. The vertical line (dotted) is drawn at the
observed standardized mean difference of 0.51.

slightly positively biased (an overestimate of the population effect).? The ci.boot ()
function is used to obtain an interval estimate for this effect. Since bias-corrected-
and-accelerated intervals cannot be computed for time-series data, the results based
-on the percentile interval are reported. The percentile interval limits can be obtained
using the argument type="perc" as shown in Command Snippet 10.16. In this case,
the interval of plausible standardized differences is [0.13,1.12].

10.8 FURTHER READING

The use of statistical matching in the design of research has a long history. Through-
out this history, many different methods used to match study participants have been
proposed and used including exact matching, caliper matching, index matching, clus-
ter group matching, and optimal matching, to name a few. Matching on composites
created from multiple variables can also be carried out. For further reading on these
methods, see Cochran (1965), Cochran and Rubin (1973), Henry and MacMillan
(1993), and Rosenbaum (1995).

2Using a more robust estimate of the standardized effect would result in a statistic that is less biased.
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Command Snippet 10.16: Obtaining the limits for the nonparametric percentile
bootstrap confidence interval for the standardized mean difference in mathematics
achievement scores for 4999 replicates.

> boot.ci(match.boot, type = "perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL

boot.ci(boot.out = match.boot, type = "perc")
Intervals

Level Percentile

95'% ( 0.1346, 1.1184 )
L Calculations and Intervals on Original Scale

Current work using matching is being carried out in the development and ap-
plication of propensity score methods (PSM). These methods use matching in an
attempt to create equivalent groups in observational studies to strengthen the causal
inferences that can be drawn. Rosenbaum and Rubin (1983) wrote the seminal paper
on PSM. Some other good starting points to read more about PSM include Shadish
et al. (2002), Oakes and Johnson (2006), and D’ Agostino (1998).

PROBLEMS

The Brief Psychiatric Rating Scale (BPRS) assesses the level of symptom constructs
(e.g., hostility, suspiciousness, hallucination, grandiosity, etc.) in patients who have
moderate to severe psychoses. Each symptom is rated from 1 (not present) to
7 (extremely severe) and depending on the version between a total of 18 and 24
symptoms are scored. The data set BPRS.csv contains 2 measurements, a baseline
and posttreatment measurement, based on the 18 symptoms scale for each of 40 men.
The researchers who collected these data were interested in whether or not there is
an effect of treatment on improving (lowering) the measured symptoms. Because it
was felt that every participant would benefit from the treatment, a traditional control
group could not be used. Rather, the researchers employed a pre—post design where
each participant acts as her/his own control. In this sense, the measurements are
considered matched—the pre—post measurements for each study participant can be
considered a block. Use these data to answer the following problems.

10.1 Perform an exploratory data analysis of these data, using both numerical and
graphical summaries, to determine whether or not there is an effect of treatment on
improving (lowering) the measured symptoms. Write up the results of this analysis.

10.2 Perform an inferential analysis of this data. Use a randomization test to
evaluate whether there is an effect of the treatment for the 40 male participants. In the
analysis, compute a point estimate for the standardized effect. Use a nonparametric
block bootstrap to compute the 95% percentile interval for this effect. Write up
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the results as if you were writing a manuscript for publication in a journal in your
substantive area.
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CHAPTER 11

PLANNED CONTRASTS

. .. contrast analysis permits us to ask focused questions of our data . . . to ensure that the
results are compared to the predictions we make based on theory, hypothesis, or hunch.
—R. Rosenthal & R. L. Rosnow (1985)

In Chapters 6-9 methods of inference for comparing two groups were presented.
These methods can be considered as extensions of the exploratory analyses introduced
in Chapter 4. In Chapter 5, the exploratory analysis focused on the comparison
of more than two groups. In particular the research question of whether there
were per capita expenditure differences between the seven regions of Vietnam was
examined. In this chapter, methods of inference are presented in which the focus is
the comparison of more than two groups.

When dealing with more than two groups, a useful distinction is between an
omnibus test and specific comparisons. An omnibus test involves all the groups, and
is used to evaluate the general null hypothesis that the group means are equal. A
specific comparison typically involves a subset of the group—usually a pair—and
evaluates the more specialized null hypothesis that the two given group means are
equal. There is only one omnibus test, but usually many specific comparisons. The
specific comparisons can be quite numerous if the number of groups is large (say,
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10 or so). Because of the number of specific comparisons, some researchers and
statisticians have been concerned with possible complications of conducting many
tests. This has led to the development of the adjustment procedures discussed in
Chapter 12. The adjustment or lack thereof is related to a number of considerations,
especially whether the comparisons were planned prior to the analysis.

There are four common approaches in the educational and behavioral sciences
when it comes to comparing multiple groups. These are

e Planned comparisons without an omnibus test
e The omnibus test followed by unplanned but unadjusted group comparisons
e The omnibus test followed by unplanned but adjusted group comparisons

e Unplanned but adjusted group comparisons without the omnibus test

Each approach has merits, and each has been criticized from different statistical,
philosophical, and practical perspectives. In the remainder of this chapter, the first
approach, planned comparisons without an omnibus test, is discussed. Chapter 12
presents the last three methods, as well as highlighting the strengths and weaknesses
of all four approaches. By understanding the perspectives surrounding each method,
a decision can be made regarding the most useful approach for dealing with the
research problem at hand.

11.1 PLANNED COMPARISONS

In planning a research study, researchers typically have in mind a specific set of
hypotheses that the experiment is designed to test. This may also be the case in either
experimental or nonexperimental research. In general, planned comparisons are
derived directly from research questions that motivate a researcher to plan a study in
the first place. They are so named because the comparisons that the researcher wishes
to examine are planned in advance of exploring the data.! Planned comparisons, often
few in number, are based on the researcher’s substantive knowledge and theoretical
work in the field.

11.2 EXAMINATION OF WEIGHT LOSS CONDITIONED ON DIET

Consider a 12-month study that compared 4 weight-loss diet regimines representing
a spectrum of low to high carbohydrate intake (Gardner et al,, 2007). The 240 par-
ticipants, overweight, nondiabetic, premenopausal women, were randomly assigned
to follow the Atkins, Zone, LEARN, or Omish diets (n = 60 in each group). Each
participant received weekly instruction for 2 months, then an additional follow-up

IPlanned comparisons are sometimes referred to as a priori comparisons or hypotheses.
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at 10 months. After 12 months, the participants’ change in weight (in kg) was
recorded. The data, contained in Diet.csv, will be used to answer the following
research questions, which were espoused prior to examining the data.

1. Is there a difference in weight loss between subjects assigned to the most
carbohydrate-restrictive diet (Atkins) and subjects assigned to the least
carbohydrate-restrictive diet (Omish)?

2. Is there a difference in weight loss between subjects assigned to the most
carbohydrate-restrictive diet (Atkins) and subjects assigned to lesser
carbohydrate-restrictive diets (Zone, LEARN, and Ornish)?

3. Isthere adifference in weight loss between subjects assigned to a carbohydrate-
restrictive diet (Atkins and Zone) and subjects assigned to a behavior modifi-
cation diet (LEARN and Ornish)?

The analysis of these comparisons begins like any other, by graphically and
numerically exploring the data. Command Snippet 11.1 shows the syntax to read in
the Diet.csv data and examine the data frame object. This will be used to examine
the three planned research questions.

Command Snippet 11.1: Syntax toread in the Diet.csv data, examine the data frame
object, and obtain graphical and numerical summaries for each group.

## Read in the data
> diet <- read.table(file = "/Documents/Data/Diet.csv", header
= TRUE, sep = ",", row.names = "ID")

## Examine the data frame object
## Output is suppressed

> head(diet)

> tail(diet)

> str(diet)

> summary (diet)

11.2.1 Exploration of Research Question 1

Command Snippet 11.2 shows the syntax to create the groups and obtain graphical
and numerical summaries necessary to examine differences in weight loss between
study participants assigned to the Atkins diet and study participants assigned to the
Ornish diet. The subset () function, introduced in Chapter 2, is initially used to
create a new data frame called diet.1 containing only the data from participants
assigned to the Atkins and Ornish diets.

Figure 11.1 shows the density plots for the weight loss for study participants
assigned to the Atkins diet and study participants assigned to the Ornish diet. These
plots show that there are sample differences in weight loss between subjects that
were assigned to these diets. Those assigned to the Atkins diet (M = —14) lost
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Command Snippet 11.2: Syntax to examine the first research question.

## Subset the data frame
> dietl <- subset(x = diet, subset = Diet == "Atkins" | Diet ==
"Ornish")

## Density plots of the data

> plot(density(dietl$WeightChange[diet1$Diet == "Ornish"]),
main = " ", xlab = "12-Month Weight Change", xlim = c(-80,
40), bty = "1")

> lines(density(dietl$WeightChange [diet1$Diet == "Atkins"]),
1ty = "dashed")

> legend(x = -75, y = 0.025, legend = c("Atkins", "Ornish"),
1ty = c("dashed", "solid"), bty = "n")

## Conditional means
> tapply(X = dieti1$WeightChange, INDEX = diet1$Diet, FUN

mean)
Atkins LEARN Ornish Zomne
-14.482533 NA -5.943527 NA

## Conditional standard deviations

> tapply(X = dietl$WeightChange, INDEX = dieti1$Diet, FUN = sd)
Atkins LEARN Ornish Zone

14 .91540 NA 14.95681 NA

more weight, on average, than those assigned to the Omish diet (—6). However,
there was overlap of the distributions, as shown in Figure 11.1. In both diets some of
the subjects lost weight, while others gained weight. The Atkins diet seems to have
had better success in weight loss with approximately 75% of the subjects assigned to
the Atkins diet losing weight, while only about 50% of the subjects assigned to the
Ornish diet lost weight. The variation in weight loss is roughly equal for both diets
(SD = 15 for both diets).

11.2.2 Exploration of Research Question 2

Command Snippet 11.3 shows the syntax to create the groups and graphical and
numerical summaries necessary to examine difference in weight loss between study
participants assigned to the Atkins diet and study participants assigned to the other
three diets. A new data frame called diet.2 is created from the original data.
The levels of the Diet factor in this new data frame are then reassigned using the
levels () function.

Figure 11.2 shows the density plots for the weight loss for study participants
assigned to the Atkins diet and study participants assigned to the other three diets
combined. These plots show that there were differences in weight loss between the
subjects assigned to Atkins (M = —14) and the subjects assigned to the other three
diets (M = —6). Subjects assigned to the Atkins diet typically lost more weight
than the subjects assigned to the other diets. The plots also suggest that there is more
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Figure 11.1: Conditional density plots showing the distribution of weight loss for
the Atkins and the Ornish diets.

variation in weight loss for subjects on the Atkins diet (SD = 15), indicating that the
weight loss for subjects on less carbohydrate-restrictive diets (SD = 14)) is slightly
more homogeneous.

11.2.3 Exploration of Research Question 3

Command Snippet 11.4 shows the syntax to create the groups and graphical and
numerical summaries necessary to examine difference in weight loss between study
participants assigned to the carbohydrate-restrictive diets (Atkins/Zone) and study
participants assigned to the behavior modification diets (LEARN/Omish). A new
data frame called diet.3 is created from the original data. The levels of the Diet
factor in this new data frame are then reassigned using the levels() function.
Figure 11.3 shows the density plots for the weight loss for study participants
assigned to the Atkins or Zone diets and subjects assigned to the LEARN or Orish
diets. These plots highlight differences in weight loss between the subjects assigned
to carbohydrate-restrictive diets and the subjects assigned to behavior modification
diets, although the differences were minimal. The typical weight loss for participants
assigned to a carbohydrate-restrictive diet (M = —10) was, on average, higher than
for participants assigned to a behavior modification diet (M = —7). The variation in
weight loss was similar for these groups (SD = 15 and SD = 14, respectively).
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Command Snippet 11.3: Syntax to examine the second research question.

## Create new data frame
> diet2 <- diet

## Reassign levels of diet
> levels(diet2%Diet) <- c("Atkins", "Others", "Others",
"Others")

## Density plots of the data

> plot(density(diet2$WeightChange [diet2$Diet == "Others"]),
main = " ", xlab = "12-Month Weight Change", xlim = c(-80,
40), bty = "1")

> lines(density(diet2$WeightChange [diet2$Diet == "Atkins"]),
lty = "dashed")

> legend(x = -75, y = 0.030, legend = c("Atkins", "Others"),
1ty = c("dashed", "solid"), bty = "n")

## Conditional means

> tapply(X = diet2$WeightChange, INDEX = diet2$Diet, FUN =
mean)
Atkins Others

-14.482533 -6.245896

## Conditional standard deviations

> tapply(X = diet2$WeightChange, INDEX = diet2$Diet, FUN = sd)
Atkins Others

14.91540 13.73757

11.3 FROM RESEARCH QUESTIONS TO HYPOTHESES

In order to answer the research questions, a test statistic is chosen that will quantify
group differences in the sample data. Mean differences, then, will be the basis for
examining group differences in the sample, and also the objects of inference. That s,
the goal is to make inferences about population mean differences among the groups.
This in turn will be used to express the null hypotheses for the comparisons. Using
the mean difference, the null hypothesis for each of the three research questions can
be delineated as the following.

1. Hy; : There is no difference in the average weight loss between subjects
assigned to the Atkins diet and subjects assigned to the Ornish diet.

2. Hyz: There is no difference in average weight loss between subjects assigned
to the Atkins diet and subjects assigned to the other diets (combined).

3. Hys: There is no difference in average weight loss between sub jects assigned
to the carbohydrate-restrictive diets (Atkins/Zone) and sub jects assigned to the
behavior modification diets (LEARN/Ornish).
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Figure 11.2: Conditional density plots showing the distribution of weight loss for
the Atkins and the other three diets.

To test each of these hypotheses, the test statistic computed from the observed
data needs to be evaluated as to whether or not it is unlikely given the expected
variation across the potential random assignments. Before this can be done, however,
the test statistic needs to be computed. With many groups, the statistic is slightly
more complicated than just the simple arithmetic means of the groups indicated in
the research questions. In the next section, the contrast is introduced as a general
index of differences among group means.

11.4 STATISTICAL CONTRASTS

A contrast is a statistical comparison of two or more group means. More formally,
it is a mathematically expressed sum (or difference) of the group means, where each
mean is multiplied by some coefficient (or weight). These expressions, called linear
combinations, can be symbolically written as

¥ = wi (1) +wap2) +wslps) + - + wipw), (11.1)

where k is the number of groups. The weights, w,ws,ws,...,wy, take either
positive or negative values with the caveat that the set of weights must sum to zero.?

2When the groups have unequal sample sizes (unbalanced design), this sum is adjusted using the sample
sizes as weights.
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Command Snippet 11.4: Syntax to examine the third research question.

## Create new data frame
> diet3 <- diet

## Reassign levels of diet
> levels(diet3$Diet) <- c("CR", "BM","BM","CR")

## Density plots of the data

> plot(x = demsity(x = diet3$WeightChangel[diet3$Diet == "BM"]),
main = " ", xlab = "12-Month Weight Change", x1lim = c(-80,
45), bty = "1")
> lines(density(diet3$WeightChange[diet3$Diet == "CR"]), 1ty =
"dashed")
> legend(x = -75, y = 0.030, legend =
c("carbohydrate-restrictive", "Behavior Modification"), 1ty
= c("dashed", "solid"), bty = "n")

## Conditional means
> tapply(X = diet3$WeightChange, INDEX = diet3$Diet, FUN =
mean)
CR BM
-9.873035 -6.737075

## Conditional standard deviations

> tapply(X = diet3$WeightChange, INDEX = diet3$Diet, FUN = sd)
CR BM

14.51608 14.28824

In Equation 11.1, p; is the population mean for the jth group. The values for the
set of weights are chosen by the researcher to reflect the comparisons that he or she
wants to test; several examples are considered below.

Contrasts have actually been previously mentioned, but they were not labeled as
such for purposes of brevity. A contrast was used every time differences between
two groups were tested in Chapters 6, 7, and 9—although they were not explicitly
referred to as contrasts in those chapters. For example, in Chapter 7, the null
hypothesis that the average educational level for Mexican immigrants was equal to
the average educational level for non-Mexican immigrants was tested. This difference
in population means can symbolically be expressed as

Hp : pMexican — Hnon-Mexican = 0.

In this hypothesis, the contrast is the difference in means, or

¥ = fiMexican — Mnon-Mexican;

which is equivalent to

v = (1)/1'Mexican + (_l)ﬂnon-Mexican-
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Figure 11.3: Conditional density plots showing the distribution of weight loss for
the Atkins/Zone and the LEARN/Ormish diets.

In this contrast, the weight for the first group (Mexicans) is positive one, and the
weight for the second group (non-Mexicans) is negative one. The sum of these two
weights is zero. The opposite signs on the contrast weights indicate the means which
are being compared. A contrast created for testing the differences between two group
means is called a simple or pairwise contrast. The contrast is then written as a null
hypothesis,

Hy: U =0. (112)

Notice that the contrast is not equivalent to the null hypothesis, but represents
only the differences among the mean within the null hypothesis. The simple contrast
regarding the difference in average weight loss between subjects assigned to the most
carbohydrate-restrictive diet (Atkins) and subjects assigned to the least carbohydrate-
restrictive diet (Ornish) can be expressed as

U, = (1)patkins + (0)uLEARN + (—1)£Ornish + (0)Kzone,

where the subscript 1 in ¥, indicates that this is the first contrast. Notice that all the
group means are considered, but the means for the LEARN and Zone diets drop out
of the contrast. Even though the interest is in only two of the groups, the contrast
is written using all of the groups. By using a weight of zero for both the Zone
and LEARN means, the comparison will not include these two groups. The null
hypothesis, again denoted with a subscript of 1, is
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Hy, : (1)pactkins + (0)pLEARN + (—1)20Ornish + (0)#Zone = 0,

or more compactly,

Ho1: pAtking — MOrnish = 0.

11.4.1 Complex Contrasts

Contrasts can also be formulated to make comparisons between more than two
groups. These are called complex contrasts. For example, the second and third
research questions listed in Section 11.2 involve testing complex contrasts. In the
second research question the goal is to test whether there are differences in the
average weight loss between subjects assigned to the most carbohydrate-restrictive
diet (Atkins) and subjects assigned to lesser carbohydrate-restrictive diets (Zone,
LEARN, and Omish combined). This contrast can be expressed as

_ HLEARN *+ [Ornish + [4Zone
Wy = MAtkins — 3 .

The entire contrast can be multiplied by 3 to clear the fraction so that

(3)¥2 = (3)1Atkins — (HLEARN + MOrnish + HZone) -
Each of the means for LEARN, Omish and Zone can be multiplied by —1 to yield

(3)¥s = (3)1atkins + (—1)pLEARN + (—1)£Ornish + (—1)zZone-

Under the null hypothesis, (3)¥, = 0, and thus, ¥, = 0. Therefore, the multiplier
of ¥, can be disregarded and the null hypothesis can be expressed as,

Hoy @ (3)pAtkins + (—1)pLEARN + (—1)0rnish + (—1)tzone = 0.

This is a complex contrast as more than two means have weights that are not zero
(all the weights are nonzero in this case). As usual, the weights sum to zero. The third
research question requires us to examine whether there are differences in the average
weight loss between subjects assigned to a carbohydrate-restrictive diet (Atkins and
Zone) and subjects assigned to a behavior modification diet (LEARN and Ormnish).
Symbolically this contrast can be expressed as

g, = HAtkins + HZone  MLEARN + HOrnish
- 2 2 ‘

Following the same process to remove the fractions, carrying through the negative,
and adding contrast weights, the linear contrast is

(2)¥3 = (1)patkins + (—1)LLEARN + (—1)KOrnish + (1) 1Zone;

and the null hypothesis for the contrast as
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Hyz : (1)patkins + (—1)pLEARN + (—1)#0rnish + (1)#Zone = 0,

or collecting terms,

Hos : (#tAtkins + BZone) — (MLEARN + HOrnish)-

In each of the contrasts, whether they are simple or complex, opposite signs on
the contrast weights indicate which groups are being compared. For example, in
the third contrast, both the Atkins and Zone means have a positive contrast weight,
whereas the means for LEARN and Ornish have a negative contrast weight. This
indicates thatthe comparison is between the Atkins and Zone diets combined and the
LEARN and Omish diets combined.

11.5 COMPUTING THE ESTIMATED CONTRASTS USING THE
OBSERVED DATA

For each of the three contrasts, a point estimate is computed using the observed data.
This estimate is denoted as ¥, and is computed by substituting the observed sample
means for the population means in the contrast of interest. Each of the three contrasts
estimates for the diet comparisons are listed and computed below.

For the first comparison, recall that the contrast denoted ¥ is

¥y = (1)patkins + (0)2LEARN + (—1)Ornish + (0)Zone-

Using the sample mean weight loss for each of the diets from the exploratory
analysis, the contrast can be estimated as

@) = (1) packins + (0)uLEARN + (—1)HOrmish + (0)KZone
(1)(=14.5) + (0)(=7.5) + (=1)(=5.9) + (0)(—5.3)
=-14.5+5.9

= —8.6.

To reiterate, the weights are set by the researcher and the means are estimated
based on the sample data. The estimated difference using the observed datain average
weight loss between subjects assigned to the most carbohydrate-restrictive diet and
subjects assigned to the least carbohydrate-restrictive diet is 8.6 kg. This estimate
can also be directly computed using R. To carry out the computation a vector of
the contrast weights is created. To determine the order of the contrast weights, say
w; = [1,0,-1,0] vs. w; = [1,0,0, —1], the order that the means are printed when
the tapply () function is executed can be examined. This istypically in alphabetical
order by level name. Recall that the levels () function is used to obtain the levels
of the factor of interest. The vector of contrast weights is then multiplied by the
vector of sample group means obtained through the tapply () function. Lastly,
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Command Snippet 11.5: Syntax to compute the estimate of the first contrast.

## Determine the order of the levels
> levels(diet$Diet)
[1] "Atkins" "LEARN" "Ornish" "Zone"

## Create a vector of the contrast weights
> conl <- c¢(1, 0, -1, 0)

## Multiply the contrast weights and sample means together

> tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN = mean)
* conl
Atkins LEARN Ornish Zone

-14.482533 0.000000 5.943527 0.000000

## Sum the products

> sum(tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN =
mean) * conl)

[1] -8.539006

these products are added together using the sum () function. Command Snippet 11.5
shows the syntax to carry out the computation for estimating the first contrast (¥ ).

Similarly, the estimates for the other two complex contrasts are computed. Com-
mand Snippet 11.6 shows the syntax for finding these sample estimates. The sample
datasuggest that the difference in the average weight loss between subjects assigned to
the most carbohydrate-restrictive diet and subjects assigned to lesser carbohydrate-
restrictive diets is 24.7 kg. These data also suggest that there is, on average, a
difference in the weight loss between subjects assigned to a carbohydrate-restrictive
diet and subjects assigned to a behavior modification diet of 6.3 kg.

Command Snippet 11.6: Syntax to compute the estimates for the two complex
contrasts.

## Create the vectors of the contrast weights
> con2 <- c(3,-1,-1,-1)
> con3 <- c(1,-1,-1,1)

## Compute the estimate for the second contrast

> sum(tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN
mean) * con2)

[1] -24.70991

## Compute the estimate for the third contrast

> sum(tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN
mean) * con3)

[1] -6.27192
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11.6 TESTING CONTRASTS: RANDOMIZATION TEST

The question of whether each of these sample differences is “real” or just due to the
variability expected under random assignment is now addressed. After computing
the observed estimate for each contrast, each of the null hypotheses can be tested.
Since the study participants were randomly assigned to diets, the randomization test
can be used to examine the variation expected in each of these contrasts because of
random assignment. Figure 11.4 presents the steps used to carry out a randomization
test to obtain the distribution for a particular contrast under the null model of no
difference.

Randomly permute the observed sample data.

Compute W—the estimated contrast from the permuted data.

Repeat these first two steps many times, say R times, each time record-
ing the estimated contrast ¥,

The distribution of ¥ 1 \i’g, @3, ey ¥ r can be used as an estimate of
the sampling distribution of ¥ under the null model. The value of ¥
from the observed data can be evaluated using this distribution.

Figure 11.4: Steps used to carry out a randomization test to obtain the distribution
for a particular contrast under the null model of no difference.

The only difference between the above randomization test and the one introduced
in Chapter 6 for the simple mean difference is that with complex contrasts, the
weighted mean difference (the estimated value of the contrast) is being computed for
each permutation of the data rather than the arithmetic mean difference. Otherwise,
the method is completely the same. Command Snippet 11.7 shows the syntax for
permuting the observed data 4999 times, a function to compute the contrast value
for the first contrast, the application of that function to the permuted data, and the
calculation of the Monte Carlo p-value. The output in Command Snippet 11.8 shows
that the p-value is extremely small for the first contrast. This is strong evidence that
the difference between the Ornish and Atkins diet is a “real” population difference.

The randomization test for the other two contrasts is carried out in a similar manner.
The permuted samples that have already been collected for the first test can be used in
each of the other two contrast tests. Command Snippet 11.8 and Command Snippet
11.9 show the syntax for carrying out the randomization test for the second and
third contrasts, respectively. Based on these results, there is overwhelming evidence
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that there are mean differences between participants assigned to the Atkins diet and
those assigned to the Ornish diet (p = 0.001). There is also overwhelming evidence
that there are mean differences between participants assigned to the Atkins diet and
participants assigned to the other three diets (p = 0.0002). There is, however, only
borderline evidence to support that there are mean differences in the weight loss
between participants assigned to carbohydrate-restrictive diets (Atkins/Zone) and
participants assigned to behavior modification diets (LEARN/Omish; p = 0.10).

Command Snippet 11.7: Set of commands to carry out the randomization test for
the first contrast.

## Permute the WeightChange scores
> permuted <- replicate(n = 4999, expr =
sample (diet$WeightChange))

## Function to compute the estimated contrast
> contrast.l <- function(data) {

(1) * mean(data[1:60]) +

(0) * mean(datal[61:120]) +

(-1) * mean(data[121:180]) +

(0) * mean(data[181:240])

}

## Check the function with the observed data
> contrast.l1(diet$WeightChange)
[1] -8.539006

## Apply the contrast to each of the 4999 permuted samples
> perm.contrasts.l <- apply(X = permuted, MARGIN = 2, FUN =
contrast.1)

## Examine the distribution of the contrast for the
##permuted samples

> plot(density(perm.contrasts.1))

> mean(perm.contrasts.1)

[1] 0.005443845

> sd(perm.contrasts.1)

[1] 2.629473

## Calculate the Monte Carlo p-value

> length(diffs[abs(perm.contrasts.1) >= 8.6])
[1]1 4

> (4 + 1) / (4999 + 1)

[1] 0.0009998

11.7 STRENGTH OF ASSOCIATION: A MEASURE OF EFFECT

The results of any statistical test should always be accompanied by a measure of
effect regardless the degree of evidence proffered by the p-value. A conventional
supplement to the results of a contrast test is to provide a measure of the strength



STRENGTH OF ASSOCIATION: A MEASURE OF EFFECT 243

Command Snippet 11.8: Set of commands to carry out the randomization test for
the second contrast.

## Function to compute the estimated contrast
> contrast.2 <- function(data) {

(3) * mean(datal[1:60]) +

(-1) * mean(datal[61:120]) +

(-1) * mean(data[121:180]) +

(-1) * mean(data[181:240])

}

## Check the function with the observed data
> contrast.2(diet$WeightChange)
[1] -8.539006

## Apply the contrast to each of the 4999 permuted samples
> perm.contrasts.2 <- apply(X = permuted, MARGIN = 2, FUN =
contrast.2)

## Examine the distribution of the contrast for the
##permuted samples

> plot(density(perm.contrasts.2))

> mean(perm.contrasts.2)

[1] 0.03796324

> sd(perm.contrasts.2)

[1] 6.5019

## Calculate the Monte Carlo p-value

> length(perm.contrasts.2[abs(perm.contrasts.2) >= 24.7])
[1] o

> (0 + 1) / (4999 + 1)

[1] 0.00019996

of the association between the group differences identified in the contrast and the
outcome variable. The most popular measure of association is eta-squared (7% )—also
called the correlation ratio (Huberty, 2002).

Eta-squared provides an estimate of the variation in the outcome variable ac-
counted for by differences in contrast groups, and is computed separately for each of
the a priori linear contrasts. Eta-squared is computed as

2 SSy,

_ we 113
SSTotal (11.3)

where SSy, is the sum of squares for the kth contrast, and SStotal is the total sum
of squares.

11.7.1 Total Sum of Squares

The total sum of squares, SStotal, 1S @ measure of the total variation in the observed
outcome variable. In order to quantify this variation, the squared deviations from the
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Command Snippet 11.9: Set of commands to carry out the randomization test for
the third contrast.

## Function to compute the estimated contrast
> contrast.3 <- function(data) {

(1) * mean(data[1:60]) +

(-1) * mean(datal[61:120]) +

(-1) * mean(data[121:180]) +

(1) * mean(data[181:240])

}

## Check the function with the observed data
> contrast.3(diet$WeightChange)
[1] -6.27192

## Apply the contrast to each of the 4999 permuted samples
> perm.contrasts.3 <- apply(X = permuted, MARGIN = 2, FUN =
contrast.3)

## Examine the distribution of the contrast for the
##permuted samples

> plot (density(perm.contrasts.3))

> mean(perm.contrasts.3)

[1] -0.06031592

> sd(perm.contrasts.3)

[1] 3.732738

## Calculate the Monte Carlo p-value

> length(perm.contrasts.3[abs(perm.contrasts.3) >= 6.3])
(11 a77

> (477 + 1) / (4999 + 1)

[1] 0.0956

mean for each of the observed values of the outcome variable is summed. In general
the computation is

SSrotar = 3 (Yi = V), (11.4)

where Y; is the ith observation and Y is the marginal mean (sometimes referred to as
the grand mean). To compute the total sum of squares for the weight change variable,
the sum of squared deviations from the marginal mean of —8.3 is computed for each
of the 240 observed weight change values as

SSTotal = (—63.4 + 8.3)°
+(—55.6 + 8.3)% + (—48.5+8.3)° + --- + (15.1 + 8.3)?
= 49959.

This value is a quantification of the total variation in the observed data. This is easily
computed from the sample variance, which is defined as
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n—1 (11.5)
_ SStotal
N-1’
where N is the total sample size, N = nj + ng + - -+ + ng. Thus, the total sum of
squares can be computed by multiplying the sample variance by the quantity N — 1.
Command Snippet 11.10 shows this computation for the observed weight changes.

Command Snippet 11.10: Computation of the total sum of squares for the observed
weight changes.

> var(diet$WeightChange) * (length(diet$WeightChange) - 1)
[1] 49959.62

11.8 CONTRAST SUM OF SQUARES

The contrast sum of squares, SS\i,k, is a measure of the variation in the observed
outcome variable that can be explained via the groups identified in the contrast. This
can be found using

~

2
v
S
n;
where W}, is the estimated value of the contrast, w; is the contrast weight associated
with the jth group, and n; is the number of observed values (i.e., sample size) for the

Jjth group. To calculate the contrast sum of squares for the first contrast, the following
is used:

SSg, = (11.6)

S — (—8.5)2
\I; - 1)2 0)2 —1 2 (0 2
ot S+ &
729 (11.7)
~0.03
= 2187.

This can also be computed using the syntax in Command Snippet 11.11.

11.9 ETA-SQUARED FOR CONTRASTS

The effect size for the contrast, eta-squared 7’\21; , is the ratio of the contrast sum of
k
squares and the total sum of squares, namely,
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SS¢

2 W)

2 = . 11.8
e, SSTotal (11.8)

Using the values computed thus far, the effect size for the first contrast is

, 2187
e T 19960
= 0.044.

This implies that 4.4% of the variation in weight change can be accounted for by
differences between the Atkins and Ornish diets. The eta-squared value for the other
two contrasts can be computed in a similar manner. Command Snippet 11.12 shows
the syntax forcomputing the contrast sum of squares and the eta-squared value forthe
second and third contrasts. The total sum of squares does not change from contrast
to contrast so that value is not recomputed.

Command Snippet 11.11: Computation of the contrast sum of squares for the first
contrast.

## Numerator

> psi <- sum(tapply(X = diet$WeightChange, INDEX = diet$Diet,
FUN = mean) * conl)

> numerator <- psi "~ 2

> numerator

[1] 72.91463

## Denominator

> denominator <- sum(conl "~ 2 / table(diet$Diet))
> denominator

[1] 0.03333333

## Contrast sum of squares
> numerator / denominator
[1] 2187 .439

11.10 BOOTSTRAP INTERVAL FOR ETA-SQUARED

Just as was done for the distance measures of effect introduced in Chapter 9, an interval
estimate for each of the eta-squared estimates should also be computed and reported.
The confidence interval for these measures can also be bootstrapped. The function
used in the boot () function will need to compute the estimate of eta-squared for
each bootstrap replicate rather than an estimate of Cohen’s d. In Command Snippet
11.13 syntax is provided to bootstrap the interval estimate for the effect size for the
first contrast using a nonparametric bootstrap. The computation for the other two
effect size estimates is left as an exercise for the reader.
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11.11  SUMMARIZING THE RESULTS OF A PLANNED CONTRAST
TEST ANALYSIS

An example write-up reporting the results for the first planned contrast in the diet
example is given below. The write-ups for the other two planned contrasts are again
left as an exercise for the reader.

Sample Write-Up

11.12 EXTENSION: ORTHOGONAL CONTRASTS

Educational and behavioral researchers in some circumstances choose their contrast
weights to produce orthogonal contrasts. Orthogonal contrasts are contrasts designed
to test completely uncorrelated hypotheses. This means that when a contrast is tested
it does not provide any information about the results of subsequent contrasts that are
orthogonal to it (Kirk, 1995). One advantage of orthogonal contrasts is that their
independent influence on the total effect size can be determined.

Suppose there are two linear contrasts, the first having weights a; and the second
having weights b;. The two contrasts are orthogonal if

J
> aibi = a1by + ashy + agbs + - - +a;b; = 0, (11.9)

i=1



248 PLANNED CONTRASTS

Command Snippet 11.12: Computation of the contrast sum of squares and eta-
squared for the second and third contrasts.

## Contrast 2

> numerator <- sum(tapply(X = diet$WeightChange, INDEX =
diet$Diet, FUN = mean) * con2) ~ 2

> denominator <- sum(con2 ~ 2 / table(diet$Diet))

## Contrast SS
> numerator / denominator
[1] 18317.39

## Eta-squared estimate
> 18317 / 49960
[1] 0.3666333

## Contrast 3

> numerator <- sum(tapply(X = diet$WeightChange, INDEX =
diet$Diet, FUN = mean) * con3) ~ 2

> denominator <- sum(con3 ~ 2 / table(diet$Diet))

## Contrast SS
> numerator / denominator
[1] 590.0546

## Eta-squared estimate
> 590 / 49960
[1] 0.01180945

assuming that the group sample sizes are equal. As an example, consider the sets
of contrast weights for each of the three a priori contrasts introduced earlier in this
chapter:

Wy, = [1:0:_1:0]’
Wy, = [3, _1a _1a _1] )
wy, = [1,-1,-1,1].

The first and second contrasts are not orthogonal since

DA+ 0)(=1) + (-1)(-1) + (0)(-1) =4 # 0.

R can be used to examine whether the two contrasts are orthogonal by multiplying
the vectors of contrast weights together and then using the sum() function on the
product to see if the result is zero. Command Snippet 11.14 shows the syntax for the
computations to examine the orthogonality of the first and third contrasts, as well as
the second and third contrasts.

In a family of several contrasts, if every pair of contrast weights shows the property
that the sum of the corresponding products is zero (i.e., the contrasts are orthogonal),
the set or family of contrasts is considered to be mutually orthogonal. A researcher
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Command Snippet 11.13: Use of the nonparametric bootstrap tocompute an interval
estimate for eta-squared for the first contrast.

## Function to compute eta-squared
> eta.squared <- function(data, indices) {
d <- datalindices,]
num <- sum(tapply(X = d3WeightChange, INDEX = d3Diet, FUN =
mean) * conl) ~ 2
den <- sum(conl ~ 2 / table(d$Diet))
SS.con <- num / den
SS.tot <- var(d$WeightChange) * 239
SS.con / SS.tot
}

## Test eta.squared() function
> eta.squared(diet)
[1] 0.04378414

## Nonparametric bootstrap

> library(boot)

> nonpar.boot <- boot(data = diet, statistic = eta.squared, R =
4999, strata = diet$Diet)

## Examine the bootstrap distribution

> plot(density(nonpar.boot$t), xlab = "Bootstrapped
Eta-Squared", main = " ")

> nonpar.boot

STRATIFIED BOOTSTRAP

Call:
boot (data = diet, statistic = eta.squared, R = 4999, strata =
diet$Diet)

Bootstrap Statistics
original bias std. error
tix 0.04378414 0.004400037 0.02721602

## Blas—-corrected-and-accelerated interval

> boot.ci(boot.out = nonpar.boot, type = "bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL
boot.ci(boot.out = nonpar.boot, type = "bca")

Intervals

Level BCa

95% ( 0.0051, 0.1071 )

Calculations and Intervals on Original Scale
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must examine each pair of contrast’s weights when determining if a set of contrasts
is mutually orthogonal. If there are g groups, one can find a set of g — 1 contrasts
that are mutually orthogonal.

That is, the total effect size for comparing the g groups can be partitioned exactly
into the set of g — 1 mutually orthogonal contrasts. It is important to note that when
contrastsare not orthogonal, the independent contributions of the contrasts to the total
effect cannot be determined. Each of the individual contrasts is tainted by redundant
information and misleading to an unknown extent. Redundancy also is caused by the
design not being balanced, meaning the group sample sizes are not equal.

Command Snippet 11.14: Computation to check orthogonality between the three
contrasts.

## Contrast 1 and contrast 2 are not orthogonal
> sum(conl * con2)
[1] 4

## Contrast 1 and contrast 3 are not orthogonal
> sum(conl * con3)
[1]1 2

## Contrast 2 and contrast 2 are not orthogonal
> sum(con2 * con3)
[1] 4

In spite of the above point, it is recommended that researchers not attempt to
construct orthogonal contrasts for the sake of producing uncorrelated hypotheses.
Rather, researchers should create contrasts that reflect the important hypotheses that
are driving the analysis.

In the context of planned comparisons, one situation where orthogonal contrasts
are theorized in advance is conducting a trend analysis using orthogonal polynomial
contrasts. The analyses discussed thus far have been concerned with identifying
differences among group means, where the comparisons represent complex contrasts
among groups or simple pairwise comparisons. Polynomial contrasts, on the other
hand, are used to examine and test the pattern (or trend) in the group means. This only
makes sense when the groups have some type of natural ordering, as when the groups
represent increasing doses of a medication. In this case, if the pattern in the plotted
group means was, say, U-shaped, the researcher might test whether a quadratic trend
is present or whether the bend is just due to random variation. Wikipedia—as well
as most algebra textbooks—show plots of several polynomial functions that could
be examined. Remember, however, that polynomial contrasts are only useful if the
factor separating the groups is at the interval level of measurement. Polynomial
contrasts would not be appropriate for the diet data since the factor is categorical in
nature and there is no natural ordering of the groups.

To provide additional context, consider the situation in which a researcher hy-
pothesizes that study time has a positive effect on word recall. In other words, the
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researcher believes that on average, people that study a list of words for a longer
period of time will be able to recall more words. Furthermore, the researcher be-
lieves that the effects on word recall increase at a quadratic rate. A quadratic effect
would imply that the increase is not constant but rather U-shaped—the effect of time
spent studying on word recall is smaller for lesser amounts of study time and larger
at greater amounts of study time.

To examine this issue, 48 middle school students are randomly assigned to three
study time conditions (30 min, 60 min, 90 min). The recall period lasts for 2 min
and begins immediately after the study period ends. The hypothetical data for this
example can be obtained in the WordRecall.csv data set. Command Snippet 11.15
shows the syntax for reading in these data and computing the mean word recall across
the three study time conditions.

L L]
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Figure 11.5: Side-by-side box-and-whiskers plots showing the distribution of word
recall conditioned on time spent studying. The conditional means are each marked
with a triangle. The dotted line, which connects the conditional means, shows a
potential polynomial trend.

Figure 11.5 depicts the side-by-side box-and-whiskers plots showing the distribu-
tion of word recall conditioned on time spent studying. The conditional means are
each marked with a triangle. The dotted line, which connects the conditional means,
shows an increasing trend in the average word recall in the sample. Recall that a
statistical test can be used to determine whether this trend in the sample means is
“real” or whether it is due only to the expected variation in the random assignment.

To test for trends in these means, researchers use a set of contrast weights to
produce a set of orthogonal polynomial contrasts. Recall, that there are exactly
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g — 1 orthogonal polynomial trends that can be tested for g groups. For the word
recall example, with three means, two polynomial trends can be tested: (1) a linear
trend (straight line), and (2) a quadratic trend (bent line). To determine the contrast
weights to test polynomial trends, the contr.poly() function in R can be used.
This function requires the argument n=, which indicates the number of levels in the
factor.

Command Snippet 11.15: Syntax to read in and examine the study data, compute
the mean word recall conditional on study time, and plot the conditional distributions.

-

## Read in the Study.csv data
> word <- read.table(file = "/Documents/Data/WordRecall.csv",
header = TRUE, sep = ",", row.names = "ID")

## Examine the data frame object
## Output is suppressed

> head(word)

> tail(word)

> str(word)

> summary (word)

## Scatterplot of the relationship between recall and study

> plot(x = word$Study, y = word$Recall, xlab = "Time Spent
Studying", ylab = "Number of Words Recalled", xlim=c(0.4,
3.4), ylim = c(0, 30), bty = "1", pch = 20)

## Superimpose the conditional boxplots on the scatterplot

> boxplot(word$Recall [word$Study == 1], word$Recalll[word$Study
== 2], word$Recall[word$Study == 3], at = c(1:3), add =

TRUE, axes = FALSE, boxwex = 0.2, col = rgb(red = 0.2,
green = 0.2, blue = 0.2, alpha = 0.3))

## Compute the conditional means
> tapply(X = word$Recall, INDEX = word$Study, FUN = mean)
1 2 3

8 11 17

## Compute the conditional standard deviations

> tapply(X = word$Recall, INDEX = word$Study, FUN = sd)
1 2 3

3.011091 2.065591 7.465476

## Compute the conditional sample sizes
> table(word$Study)

1 2 3
16 16 16

Command Snippet 11.16 shows the syntax to find the contrast weights to examine
mean trends (linear and quadratic) for three groups. These contrast weights are
printed in the columns of the resulting matrix. Thus, to test a quadratic trend, the
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weights [0.4082483, —0.8164966, 0.4082483] are used. It should be mentioned that
the polynomial weights are not easily interpretable and researchers usually rely on
computer programs such as R for their derivation.

Command Snippet 11.16: Syntax to find the contrast weights for testing polynomial
trends in three group means. The syntax is also provided to assign the trend weights
to two separate vectors.

## Obtain the polynomial contrast weights
> poly.cont <~ comntr.poly(3)
> poly.cont

.L .Q
[1,] -7.071068e-01 0.4082483
[2,] 4.350720e-18 -0.8164966
[3,] 7.071068e-01 0.4082483

## Weights for the linear trend

> con.linear <- poly.cont[ ,1]

> con.linear

[1] -7.071068e-01 4.350720e-18 7.071068e-01

# Weights for the gquadratic trend

> con.quad <- poly.cont[ ,2]

> con.quad

[1] 0.4082483 -0.8164966 0.4082483

Tests and effect sizes for these contrasts are then carried out in the same manner
as any other contrast. It is typical to examine all of the trends and report which ones
were found. The computation of these polynomial contrasts and corresponding effect
size measures are included as an exercise at the end of this chapter.

11.13 FURTHER READING

The method of contrast analysis has been known since Fisher introduced analysis of
variance in the 1930s [Abelson (1962) as cited in Rosenthal and Rosnow (1985)]. A
more complete treatment of analysis of contrasts, including analysis for more complex
research designs, is provided in Rosenthal, Rosnow, and Rubin (2000). Kirk (1995)
and Oehlert (2000) describe contrast analysis among groups with unequal sample
sizes. The choice of contrast weights (e.g., orthogonal, trend, etc.) is addressed
in Rosenthal et al. (2000), Kirk (1995), and Oehlert (2000). Furthermore, Lomax
(2007) and Pedhazur (1997) present the computation of orthogonal contrast weights
for groups in which the sample sizes are unequal.

PROBLEMS

11.1 Word recall depends on a number of factors including level of processing and
word encoding strategies. Study time can also have an effect on word recall. The
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data in WordRecall.csv contain the number of words recalled for 48 subjects who
were randomly assigned to 3 study time conditions (1 = 30 min, 2 = 60 min, and 3 =
90 min).

a) Test both a linear and quadratic trend in words recalled among the three
study conditions using a randomization test.

b) Compute a point estimate of an effects size for each polynomial contrast
and compute the 95% bootstrap interval estimate for each contrast using
the BC, method.

¢) Demonstrate that the eta-squared effect sizes for the linear and quadratic
trend add up to the overall between study condition effect size.

11.2 A researcher comes to you for advice about designing an experimental study
to compare multiple groups. The researcher is worried about sample size equality
across the treatment conditions under investigation. Provide a short report (no more
than one page) in which you outline, compare, and contrast the advantages and
disadvantages of carrying out the study with both equal sample sizes and unequal
sample sizes. Based on what you find, make a recommendation to the researcher
about how she should proceed. Reference at least three sources—-other than this
monograph—that reinforce the rationale of your recommendations.



CHAPTER 12

UNPLANNED CONTRASTS

No aphorism is more frequently repeated in connection with field trials, than that we must
ask Nature few questions, or, ideally, one question at a time. The writer is convinced
that this view is wholly mistaken. Nature, he suggests, will best respond to a logical and
carefully thought out questionnaire; indeed, if we ask her a single question, she will often

refuse to answer until some other topic has been discussed.
—R. A. Fisher (1926)

In Chapter 11, methods of inference regarding group differences with more than
two groups were examined. The discussion focused on the case in which specific
research questions were purposed in advance of collecting the data, and certainly
before commencing with any data analysis. These a priori hypotheses were referred
to more broadly as planned comparisons. Recall that a priori hypotheses are often
few in number, are theoretically grounded, and are scientifically defensible. In
this chapter, methods of inference for group differences that fall into three general
categories are examined: (1) unplanned, but adjusted group comparisons without the
omnibus test; (2) the omnibus test followed by unadjusted group comparisons; and
(3) the omnibus test followed by adjusted group comparisons. Each approach has
merits, and each has its drawbacks. Even though methodological research for some of

Comparing Groups: Randomization and Bootstrap Methods Using R 255
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Copyright (©) 2011 John Wiley & Sons, Inc.
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these approaches dates back to the 1930s, no resolution as to the single best approach
has emerged. In fact, a consensus may never be reached because each approach
takes a different statistical, philosophical, and practical perspective to the problem of
multiple group comparisons. At the end of the chapter, strengths and weaknesses of
each approach are presented. By understanding the perspectives surrounding each
method, researchers can decide which approach is most useful for the problem at
hand.

To motivate each of the three approaches, the Diet.csv data set is once again used.
Recall, these data were obtained from a 12-month study that compared four weight-
loss regimens on a sample of N = 240 overweight, nondiabetic, premenopausal
women (Gardner et al.,, 2007). The 240 participants were randomly assigned to
follow the Atkins, Zone, LEARN, or Omnish diets (n; = 60 in each group). Each
participant received weekly instruction for 2 months, then an additional 10-month
follow-up. Weight loss, in kilograms, at 12 months was the primary outcome. In all
three comparison approaches, the goal is to answer the following research questions:

1. Are there mean differences in weight loss for the four diets (Atkins, LEARN,
Ornish, and Zone)?

2. If so, how do the diets differ?

12.1 UNPLANNED COMPARISONS

The three approaches for examining group differences between many groups pre-
sented in this chapter are exploratory in nature. Unlike the example presented in the
Chapter 11, in which group comparisons were planned in advance of examining the
data, post-hoc or a posteriori group comparisons are formulated by researchers who
do not have specific hypotheses in mind prior to examining their data. As pointed out
earlier, educational and behavioral researchers typically take one of three approaches
to the exploratory testing of unplanned comparisons:

e The omnibus test followed by unadjusted group comparisons
e The omnibus test followed by adjusted group comparisons
e Unplanned, but adjusted group comparisons without the omnibus test

In the remainder of this chapter, these three methods are presented. At the end
of this chapter, the strengths and criticisms of these methods, and that of planned
comparisons without the omnibus test, will be discussed.

12.2 EXAMINATION OF WEIGHT LOSS CONDITIONED ON DIET

Consider the comparisons of the weight loss groups from the perspective of no
planned hypotheses. This is a scenario in which the researcher has little or no idea
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of the effectiveness of the diets. The analysis begins like any other, by graphically
and numerically exploring the data. Command Snippet 12.1 shows the syntax to
read in the Diet.csv data and examine the data frame object. The distribution of
12-month weight change is also examined conditioning on diet. Figure 12.1 shows
the side-by-side box-and-whiskers plots.

Command Snippet 12.1: Syntax to read in the Diet.csvdata,examine the data frame
object, and obtain graphical and numerical summaries for each group.

## Read in the data
> diet <- read.table(file = "/Documents/Data/Diet.csv", header
= TRUE, sep = ",", row.names = "ID")

## Examine the data frame object
## The output is suppressed.

> head(diet)

> tail(diet)

> str(diet)

> summary(diet)

## Examine the marginal distribution
## The plot is not shown.
> plot(density(diet$WeightChange)

> mean(diet$WeightChange)
[1] -8.305055

> sd(diet$WeightChange)
[1] 14.45808

## Examine the conditional distributions

> boxplot(WeightChange ~ Diet, data = diet, main = " ", ylab =
"Weight Change (in kg)", xlab = "Diet", col = rgb(red =
0.3, green = 0.3, blue = 0.3, alpha = 0.3), boxwex = 0.4)

> tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN = mean)
Atkins LEARN Ornish Zone
-14.482533 -7.530623 -5.943527 -5.263537

> tapply(X = diet$WeightChange, INDEX = diet$Diet, FUN = sd)
Atkins LEARN Ornish Zone
14.91540 13.66677 14.95681 12.62222

Figure 12.1 and the summary measures of the conditional weight change distribu-
tions (see Table 12.1) show that participants on all 4 diets, on average, lost weight.
Figure 12.1 shows that the median values are all less than 0. The distributions are
reasonably symmetric indicating the mean values are also less than 0. Participants
assigned to the Atkins diet, on average, lost the greatest amount of weight. Partici-
pants on the other diets seemed to, on average, have a comparable 12-month weight
change. The variation in weight change is greater than 0, and comparable across
all 4 diets. In all 4 diets, the majority of participants lost weight after 12 months as
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indicated by the median being below 0 in each case. However, in all 4 diets, there

were some participants who gained weight after 12 months.

Athirss

Figure 12.1: Side-by-side box-and-whiskers plots of 12-month weight change con-

ditioned on diet.

Table 12.1: Mean and Standard Deviation for 12-month Weight Change (in kg)

Conditioned on Diet.®
Diet

Atkins

LEARN

Ornish

Zone

2The sample size for each diet wasn = 60.

M

—14.5
-7.5
-5.9
-5.3

SD

14.9
13.7
15.0
12.6
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12.3 OMNIBUS TEST

The first two approaches mentioned above involve the omnibus test of group differ-
ences. The omnibus test is the simultaneous test of all possible contrasts between the
groups. In other words, it is a test of any difference among the groups. Recalling
the general comparison notation from the last chapter, the null hypothesis for the
omnibus test is written as

Hy:U, =0 forallk. (12.1)

Another way that this null hypothesis can be written is in terms of the group
means. For j groups, it is written as

Hy:py =p2=...= pj. (12.2)

If all the group means are equal, the value of any contrast, simple or complex, is
zero. Thus, these are equivalent ways of writing the same hypothesis.

As was pointed out in Chapter 4, differences between groups need to be evaluated
relative to the variation within each group. When there are more than two groups, the
differences between the groups cannot be expressed as a simple difference between
the group means as when comparing two groups. With multiple groups, the difference
between the groups is expressed through the variation among the group means. The
premise for analyzing whether or not there are group differences is to examine the
variability among the sample means (i.e., the between-group variation) relative to
the variability of the individual observations within the groups (i.e., the within-group
variation).

Analysis of variance (ANOVA) is a statistical method for partitioning the observed
variation in a set of measurements into different components. By using this method,
the total observed variation can be partitioned into a between-group component and
a within-group component. The ratio of these two components is then computed and
evaluated to determine whether the groups differ beyond what is expected because
of either random assignment or random sampling. The justification for the analysis
of variance lies in the assumption of a specific statistical model, called the general
linear model, underlying the relationship between the observed scores and population
parameters.

12.3.1 Statistical Models

Statistical models are simplified representations of relationships among variables.
They can be used to model people, organizations, or any other type of social unit. In
other words, all the kinds of models an educational or behavioral researcher would
expect to develop or fit to data. Unlike mathematical models, statistical models are
not deterministic. Consider mathematical modeling of a square geometric shape.

Perimeter = 4(side)
Area = (side)?
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Although one of these models is linear, and the other is nonlinear, both of these
models are deterministic because all squares behave this way. Once the “rule” for
computing the perimeter or area is known, it can always be used to fit the model to
data perfectly. Statistical models, on the other hand, must allow for

e Systematic components not initially included in the model or not measured
e Measurement error

e Individual variation

The statistical model itself, represents the relationship between outcome variables
and predictor variables. The goal in statistical modeling is to use a set of predictor
variables to explain the total amount of variation in a set of outcome variables.
Conceptually, a statistical model looks like the following:

Outcome = Systematic Components + Residual. (12.3)

The systematic components represent the set of predictors that are being used to
explain the variation in the outcome. The residual represents the part of the model
that allows for other systematic components not initially included in the model or not
measured, and also measurement error and individual variation. Of the total variation
in the outcome, the systematic part of the model more broadly represents the amount
of that variation that can be explained, and the residual part more broadly represents
the unexplained part of the variation.

Though this was not emphasized in the last chapter, it is true that this conceptual
model underlies many of the classical statistical analyses that are used in educational
and behavioral research. For example, the t-test, ANOVA, analysis of covariance
(ANCOQOVA), regression analysis, factor analysis, cluster analysis, multidimensional
scaling, and a plethora of other methods all can be represented with this model. The
more mathematic formulation of this conceptual model, called the general linear
model, is expressed as

K=§0+ﬁ1X1 +ﬂ2X2+...+BkaI+ € (12.4)
Systematic‘Cromponents Residual

where Y; is the observed score for the ith individual. Theset of 3; are the parameters
that express the relationship between the set of predictor variables (X1, X2, X3, ...,
X&) and the response. This relationship is the same for all individuals; that is, the
systematic portion of the model characterizes the average relationship and imposes
this for each individual. Individual deviation from the average model is represented
by the residual, €;.

12.3.2 Postulating a Statistical Model to Fit the Data

The variation in the observed response scores can be broken down into “explained”
and “unexplained” portions. The explained portion is that part accounted for by the
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predictors, or the systematic components. The unexplained portion is everything left
over. To break down the observed scores into explained and unexplained portions,
an appropriate statistical model needs to be postulated and then fitted to the data.
As such, a researcher needs to articulate the research questions in terms of outcome
variables and predictors. For the example presented earlier, the research question
examined by the omnibus analysis can be articulated as follows. Does diet (predictor)
explain variation in 12-month weight change (outcome variable)?

A technical complication here is that diet is not a single predictor under the general
linear model (GLM) because it is a categorical variable. Categorical variables are
represented in the GLM by a series of dummy variables. A dummy variable is
a variable whose values offer no meaningful quantitative information, but simply
distinguish between categories (it is “dumb” in this respect). For example, a dummy
variable called Atkins could be created to distinguish between study participants
that were on the Atkins diet and those that were not.

Atkins = 0 if the participant was not on the Atkins diet,
Atkins =1 the participant was on the Atkins diet.

When considering dummy variables, by convention,

e The variable name corresponds to the category giventhe value 1.

e The category given the value O is called the reference category.
One would think that in the diet example, that four dummy variables would be needed:

e A variable called Atkins to distinguish between study participants on the
Atkins diet and those who are not

e A variable called LEARN to distinguish between study participants on the
LEARN diet and those who were not

e A variable called Ornish to distinguish between study participants on the
Omnish diet and those who were not

e And finally, a variable called Zone to distinguish between study participants
on the Zone diet and those who were not

However, it can be shown that only three dummy variables are needed in this
case. In fact, including all four of the dummy variables in the GLM will create
problems for estimation with sample data. Four dummy variables are not needed
because some of the information is redundant. As an example, consider the first three
dummy variables just described. The three predictors Atkins, LEARN, and Ornish
are mutually exclusive and exhaustive. The last dummy variable is not needed. The
reason is that if an individual has a value of zero on the first three dummy variables,
then it is known the individual is on the Zone diet as this is the only alternative. In
general, only j — 1 dummy variables are required to fit a statistical model having
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a categorical predictor with j levels or groups. The general linear model for the
omnibus analysis in this case is written as

WeightChange, = fp + (1 (Atkins) + (2(Zone) + 33(LEARN) + i
Systematic‘éomponents Residual
(12.5)
If a person is on the Atkins diet, then Atkins = 1 and all other dummy variables
are zero. Therefore, the GLM for people on this diet is WeightChange, = 8y + f;.
If a person is on the Zone diet, then Zone = 1 and all other dummy variables are
zero. The GLM for people on this diet is WeightChange, = o + (2. Following the
same logic, the GLM for people on the LEARN diet is WeightChange, = [y + (.
If a person has zero on all three dummay variables, they are on the Ornish diet. The
GLM for Omish diet people is WeightChange, = (5. In this way, different diets
have different models meaning that the group means can potentially be different. The
B parameters in Equation 12.5 represent group differences. The details of exactly
how this works out is beyond the scope of the monograph and it is simply illustrated
that this is the case in the examples below.

12.3.3 Fitting a Statistical Model to the Data

Using the observed data, sample estimates of each parameter (3) can be obtained.
The general linear model is fitted in R using the 1m() function. This function takes as
its argument a model formula. Model formulas in R use a concise, flexible syntax to
specify statistical models, intitially proposed by Wilkinson and Rogers (1973). The
tilde (~) operator is used to define a model formula. The tilde separates the outcome
and the predictor variables in the model formula,

outcome ~ predictorl + predictor2 + . ... (12.6)

The tilde can be read as “is modeled by,” so that Equation 12.6 indicates that the
response variable is modeled by the predictor(s). A potential point of confusion is
that dummy variables do not need to be constructed by the researcher. Rather, a
single categorical grouping variable, as in the example, can be specified as the sole
predictor. The grouping variable must be a factor variable (see Chapter 4). Then the
1m() function recognizes that the factor variable has multiple groups and constructs
the dummy variables that are used in the GLM, but are unseen by the researcher.
For example, to fit the omnibus statistical model for the diet example, the following
model formula is used:

diet$WeightChange ~ diet$Diet.

The single Diet variable is specified on the right-hand side, and the 1m() function
will internally create the required dummy variables. The syntax to fit the omnibus
model to the data and examine the output is provided in Command Snippet 12.2.
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Command Snippet 12.2: Syntax to fit the omnibus model to the diet data and
examine the output.

## Fit the omnibus model
> omnibus.model <- lm(diet$WeightChange ~ diet$Diet)

## Obtain the estimated parameters
> omnibus.model

Call:
lm(formula = diet3WeightChange ~ diet$Diet)

Coefficients:
(Intercept) diet$DietLEARN diet$DietOrnish
diet$DietZone
-14.483 6.952 8.539
9.219

These estimates can be used as a substitute for the parameters in the systematic
part of the statistical model postulated earlier, namely,

WeigﬂC\hangei = —14.5 + 7.0(LEARN) + 8.5(0rnish) + 9.2(Zone). (12.7)

Having written Equation 12.7, the meaning of the parameters and estimates in the
GLM can now be discussed. Recall that above it was shown that each group has a
different model. Solving the model for each group yields that group’s mean value.
To see this, note that the model includes three of the four levels of Diet. The group
corresponding to the first level of the factor in alphabetical order is dropped. The
hat over WeightChange signifies that it is a predicted 12-month weight change
based on only the systematic portion of the model. The predicted 12-month weight
change can be computed for every participant on a particular diet by substituting the
appropriate values for each dummy variable.

For example, to compute the 12-month weight change for a person on the LEARN
diet, the following is used:

Weigmangei = —14.5 + 7.0(LEARN) + 8.5(0rnish) + 9.2(Zone),
WeightChange, = —14.5 + 7.0(1) + 8.5(0) + 9.2(0),
Weigmangei = -7.5.

The predicted 12-month weight change for a study participant on the LEARN diet is
—7 kg, which is also the conditional mean for the group. This means that the best
guess regarding change for a given person is the group average change. In a similar
manner, the predicted value, or equivalently, the sample mean value can be computed
for people in the other groups. The details are left to the reader who should verify
that the mean for Ormish is —6 kg, and the mean for Zone is —5.3 kg.
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For participants on the Atkins diet, their value on all of the dummy variables
included in this model is 0. Thus, the predicted 12-month weight change for a study
participant on the Atkins diet is —14.5 kg. This is directly represented in the above
equation as the estimate for 8y, or the intercept. The level of the categorical value
that was dropped is referred to as the reference level. This is because the 3 estimate
for every other level of the predictor expresses the difference between the predicted
(mean) for that level and the predicted (mean) value for the reference level. For
example, the 3 estimate associated with the LEARN diet of 7.0 indicates that a study
participant on the LEARN diet has, on average, a 12-month weight change that is
7 kg more than a study participant on the Atkins diet (—7.5 kg versus —14.5 kg
respectively). In this way, the mean differences between the Atkins group and each
of the other groups is represented in the GLM.

12.3.4 Partitioning Variation in the Observed Scores

Recall that the goal of the omnibus model is to partition the variation in 12-month
weight change between that which can be explained by differences in diet (systematic
component) and that which cannot (residual). This partitioning is based on the
deviation between each observed score and the marginal mean. Figure 12.2 shows
this deviation for a single observed score in the data.

Figure 12.2 shows the marginal mean of —8.3 demarcated by a solid horizontal
line. Four observations (weight change) are identified as solid points. The deviation
between each observation and the marginal mean is shown as a solid vertical line.

Each deviation can be decomposed into the piece that can be explained by diet
(the deviation between the marginal and conditional means) and that which cannot
(the deviation between the observed value and the conditional mean). Each observed
score’s deviation from the marginal mean can be decomposed in a similar manner.
This method is sometimes referred to as ANOVA decomposition.

Figure 12.3 shows the decomposition of the deviation for four observations. The
marginal mean of —8.3 isagain demarcated by a solid horizontalline. The conditional
mean for each diet is demarcated by a dotted horizontal line. Each deviation is
decomposed into two parts. The explained part of the deviation, between the marginal
and conditional means, is shown as the vertical, solid line. The unexplained part of
the deviation, between the conditional mean and the observation, is shown as the
vertical, dashed line.

The fitted model is used to decompose the deviation for each participant’s observed
12-month weight change into the explained part (i.e., predicted) and that which cannot
be explained (i.e., residual). The explained part of the deviation, the portion between
the marginal and conditional mean, is computed as

Ve -V, (12.8)

where Y} is the conditional mean and ¥ is the marginal mean. The unexplained part
of the deviation, the portion between the conditional mean and the observation itself,
is computed as
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Figure 12.2: The deviation between the observed score and the marginal mean
(horizontal line) for four observations.

Y; - Yi, (12.9)

where Y; is the ith observation and Yk is the conditional mean. This is called
the residual. Equation 12.10 shows the decomposition for the 163rd diet study
participant.

Yies — ¥ = (Yies — V) + (Yie3 — Yie3),
3.1+8.3=(=5.9+8.3) + (3.1+5.9), (12.10)
114 =24 +9.0.

This decomposition is carried out on all 240 deviations. The decomposed devia-
tions can be used to study the amount of explained variation in the data. The total
variation in a set of scores is expressed as the sum of squared deviations from a mean
value. This is referred to as a sum of squares. The equation for the sum of squares
for the response is

2
ssy:Z(Y,-—Y) (12.11)
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Figure 12.3: The deviation between the observed score and the marginal mean
(horizontal line) for four observations. Each has now been decomposed into the part
of the deviation that can be explained by diet (solid) and that which cannot (dashed).

where Y; is the observed value for the ith individual, and Y is the mean value for all
the Y;, that is, the marginal mean. For example, the total variation in the observed
12-month weight changes can be found using

2
SSWeightChange = Z (WeightChangei + WeightChange)

A visual representation of the squared deviations from the marginal mean weight
change for an observation from each diet is shown in Figure 12.4. The area of each
square represents the squared deviation for a single observation. If this was carried
out for each of the 240 observations and these squared deviations (i.e., areas) were
summed, that would be the sum of squares for the total variation in the data for
12-month weight change.

As pointed out in Chapter 11, the sum of squares for the response is the same
quantity in the numerator of the sample variance. Using this information, SSy can
be computed using the syntax in Command Snippet 12.3.

The 1m() object omnibus.model has computed and stored the predicted val-
ues and the residuals for each of the 240 observations based on the decomposi-
tion specified in the model. The 240 predicted values are stored in a component
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Figure 12.4: Graphical representation of the squared deviations from the marginal
mean weight change for four observations.

called fitted.values, and the 240 residuals are stored in a component called
residuals. These can be accessed using either omnibus.model$fitted.values
or omnibus.model$residuals, respectively.

Command Snippet 12.3: Syntax to compute the total variation in WeightChange
via the sum of squares. -

> var(diet$WeightChange) * (240 - 1)
[1] 49959.62

After decomposing each participant’s observed score, the amount of variation that
is not explained by diet is partitioned into the residual value. As pointed out, the
variation in a set of scores is expressed as the sum of squared deviations from a mean
value. The residuals are a deviation from the conditional mean (predicted) value.
A graphical representation of the variation based on the decomposed deviations is
shown in Figures 12.5 and 12.6.

Figure 12.5 shows the squared decomposed model (explained) deviations for four
observations. The area of each square represents the squared deviation between the
conditional and marginal mean. Figure 12.6 shows the squared decomposed residual
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Figure 12.5: Graphical representation of the squared decomposed model deviations
for four observations—the deviation between the conditional mean (dotted horizontal
line) and the marginal mean (solid horizontal line). The squares represent the squared
model deviations for the four observations.

(unexplained) deviations for four observations. The area of each square represents
the squared deviation between the conditional mean and the observation.

To find the variation that is unexplained by diet, the squared residuals are summed
using

2
SSResidual = Z (éi)

This can be computed using the syntax in Command Snippet 12.6. Lastly, the vari-
ation explained by diet is the leftover variation after removing the residual variation
from the total observed variation. This is also computed in Command Snippet 12.4.

The two measures of variation, the explained and unexplained, are often tumed
into proportions based on the total variation. The proportion of the total variation that
can be explained by the predictors is the estimate of the omnibus measure of effect

7.
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Figure 12.6: Graphical representation of the squared decomposedresidual deviations
for four observations—the deviation between the conditional mean (dotted horizontal

line) and the observed value. The squares represent the squared residual deviations
for the four observations.

Command Snippet 12.4: Syntax to compute the variation in residuals via the
sum of squares.

## Compute the residual variation
> sum(omnibus.model$residuals ~ 2)
[1] 46744.3

## Compute the variation explained by diet
> 49959.62 - 46744.3
[1] 3215.32

o 3215
~ 49,960
= 0.064

Thus, of the total variation in the observed 12-month weight change, differences in
diet explain roughly 6% of that variation and roughly 94% remains unexplained due
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to other systematic components not initially included in the model or not measured,
and measurement error or individual variation.

12.3.5 Randomization Test for the Omnibus Hypothesis

In considering the omnibus effect, the inferential question is whether or not the effect
is bigger than would be expected because of the random assignment to diets. In order
to determine this, the null hypothesis of no effect is assumed, that is,

H : There is no effect of diet on 12-month weight change.

This is equivalent to saying the weight loss means of all the groups are equal
Under this hypothesis, the observed 12-month weight change measurements could
be permuted since the diet makes no difference on the participants’ weight change.
To carry out a randomization test to obtain the distribution for the omnibus effect
under the null hypothesis, the steps presented in Figure 12.7 are used.

Randomly permute the observed sample data.

Compute 7°—the estimated effect from the permuted data.

Repeat these first two steps many times, say R times, each lime record-
ing the estimated contrast 72,

The distribution of #%,%3,73,...,H% can be used as an estimate of
g the sampling distribution of ? under the null model. The value of #?
a from the observed data can be evaluated using this distribution.
w

—

Figure 12.7: Steps to carry out a randomization test to obtain the distribution for the
omnibus effect under the null hypothesis.

Command Snippet 12.5 shows the syntax for carrying out the randomization test
based on the null hypothesis of no effect. When testing hypotheses for models,
the permutations can be drawn in the 1m() function. The sample() function is
used within the 1m() function to permute the response scores. The residuals based
on the permuted data are then accessed. This is all completed in a single chained
computation which makes up the expr= argument of the replicate() function.
Based on these results, there is very strong evidence against the null hypothesis of no
effect (p = 0.002).
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Command Snippet 12.5: Set of commands to carry out the randomization test for
the first contrast.

## Permute the data within the model
> permuted <- replicate(n = 4999, expr =
lm(sample(diet$WeightChange) ~ diet$Diet)$residuals)

## Function to compute the estimated effect size
> eta.squared.omnibus <- function(data) {
ss.total <- 49959.62

ss.residual <- sum(data =~ 2)
ss.diet <- ss.total - ss.residual
ss.diet / ss.total

}

## Apply the effect size to each of the 4999 permuted samples
> perms <- apply(X = permuted, MARGIN = 2, FUN =
eta.squared.omnibus)

## Calculate the Monte Carlo p-value
> length(perms[abs(perms) >= 0.064])

(1] 8
> (8 + 1) / (4999 + 1)
[1] 0.0018

124 GROUP COMPARISONS AFTER THE OMNIBUS TEST

If researchers find strong evidence against the null hypothesis for the omnibus test,
then many go on to test further contrasts to explore how the groups are different.
While any contrast can be tested, a common approach is to test all the simple or
pairwise contrasts. Recall from earlier in this chapter that pairwise contrasts examine
the mean difference between exactly two groups at a time.

In the analysis of the diet data, there are six pairwise contrasts that could be tested:
that is, Atkins versus LEARN, Atkins versus Omish, etc. In general, with j groups,
there are j(j — 1)/2 pairwise comparisons. Each of the null hypotheses associated
with the six pairwise contrasts is presented below.

Hy) : pAtking — MzZone =0
Hos : patking — BLEARN =0
Hog : ftatkins — HOrnish = 0
Ho4 @ pzone — HLEARN = 0
Hys : HZone — MOrnish = 0
Hog : pLEARN — HOrnish = 0

These contrasts are tested in the exact same manner as they are in planned com-
parisons. Table 12.2 presents the contrast coefficients, observed contrast value,
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randomization test results, eta-squared estimate, and bootstrap results for the interval
estimate of eta-squared for each of the six pairwise contrasts. The syntax is not
presented, but follows along the same lines as the syntax presented earlier for the first
planned contrast.

After the pairwise contrast tests are carried out, there are two main schools of
thought about whether these p-values should be reported as they are, or whether the
p-values can be reported as is in Table 12.2, or whether they should be adjusted for the
fact that multiple unplanned tests are performed. Methods of adjustment invariably
adjust the p-values upwards, making them larger than unadjusted p-values. When an
unadjusted p-value is very small or very large, rarely will an adjustment change the
judgment regarding statistical reliability. It is only for those unadjusted p-values that
hover around thresholds of statistical reliability, such as 0.05, that adjustment might
lead to a different judgment than under unadjustment.

125 ENSEMBLE-ADJUSTED p-VALUES

In exploratory analyses, after the omnibus test is performed, there are some re-
searchers who may want to adjust their p-values based on the number of contrast tests
that were carried out. Rosenthal and Rubin (1983, p. 540) refer to this as computing
an “ensemble-adjusted p-value.” The rationale behind ensemble adjustment is that
the contrast in question are unplanned. This implies the researcher does not know if
any of the null hypotheses evaluated will be rejected. It can be shown that if all the
null hypotheses being evaluated are true, then the false-positive (type I error) rate of
the collection of statistical tests will be higher than any one test. This is analogous
to walking into a mine field with only one mine as opposed to many. Suppose a
mine represents a false-positive result and a hypothesis tests is analogous to root
around in the mine field. If there is only one mine, there is a much smaller chance
of setting it off when exploring the mine field than when there are multiple mines.
Ensemble-adjusted p-valuesact as special protection in the case of multiple mines in
the field. The method attempt to limit the possible triggering of a mine to the case
when only one mine is in the field.

One of the most common methods for computing ensemble-adjusted p-values,
and also one of the straightforward methods, is the Dunn—-Bonferroni (Dunn, 1961)
adjustment. This method is presented here for pedagogical purposes, but the pro-
cedure is not generally recommended due to the conservative p-values it produces,
especially with large numbers of contrasts. The Dunn—Bonferroni method adjusts
the p-value based on the number of contrasts being tested using,

Padj. = Pk X m, (12.12)

where py, is the unadjusted p-value obtained from the randomization or bootstrap test
for the kth contrast, and m is the number of contrasts being tested. Using the Monte
Carlo p-values from each of the nonparametric bootstrap tests, the Dunn—Bonferroni
adjusted p-values are computed in Command Snippet 12.6. The p-values in the output



Table 12.2: Contrast Coefficients, Observed Contrast Value, Randomization Test Results, Eta-Squared Estimate, and Bootstrap
Results for Interval Estimate of Eta-Squared for Each of Six Pairwise Contrasts®

Comparison Contrast Coefficients
Atkins vs. Zone [1,0,0, 1]
Atkins vs. Omish [1,0,—-1,0]
Atkins vs. LEARN [1,-1,0,0]
Zone vs. LEARN [0,-1,0,1]
LEARN vs. Omish [0,1,-1,0]
Zone vs. Omish [0,0,—1,1]

2The p-value is based on the randomization test using 4999 pernutations of the data. The bootstrap interval is a bias-corrected-and-accelerated adjusted interval based

on a nonparametric bootstrap using 4999 replicate data sets.
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are interpreted with the same standard as mentioned previously. Most commonly, the
judgments of effect size in Table 8.2 are used.

Command Snippet 12.6: Computation of the ensemble-adjusted p-values for each
of the six pairwise contrasts.

## Create a vector of the unadjusted p-values
> p.unadjusted = c(0.0008, 0.0010, 0.0092, 0.3896, 0.5374,
0.7896)

## Perform the Dunn-Bonferroni adjustment
> p.unadjusted * 6
[1] 0.0048 0.0060 0.0552 2.3376 3.2244 4.7376

Consistent with what was previously mentioned, each ensemble-adjusted p-value
is larger than the associated unadjusted p-value. The problem with the Dunn-
Bonferroni method is that it tends to overadjust, making the prospect of rejecting
an null hypothesis more difficult than it should be. Another comment regarding the
output in Command Snippet 12.6 is that some of the ensemble-adjusted p-values are
greater than 1. In theory this is not possible and computer programs typically set 1
as the upper boundary.

There are many ensemble adjustment methods that are superior to the Dunn—
Bonferroni method, in the sense that they do not overadjust. These methods have
various underlying approaches. For example, some use simultaneous adjustment,
where all of the p-values are adjusted at the same time, while others use sequential
adjustment, where the adjustment method begins with either the most or least extreme
p-value, and then a series of successive adjustments is made on the remaining p-values
in turn [e.g., the Holm method (Holm, 1979)]. Some methods are more conservative
(i.e., producing higher p-values) than others [e.g., the Sheffé method (Scheffé, 1953)).
Hochberg and Tamhane (1987) and Hsu (1996) offer detailed descriptions of many
ensemble adjustments.

12.5.1 False Discovery Rate

False discovery rate (FDR) is a relatively new approach to the multiple comparisons
problem. Instead of controlling the chance of at least one type I error, FDR controls
the expected proportion of type I errors. Methods of testing based on the FDR are
more powerful than methods based on the familywise error rate simply because they
use a more lenient metric for type I errors. Less technically speaking, the FDR
methods are less prone to overadjustment than many other methods, especially the
Dunn-Bonferonni method. However, if there is truly no difference in the groups, a
FDR-controlling method has the same control as the more conventional methods.
One method for controlling the FDR is called the Benjamini—Hochberg procedure
(Benjamini & Hochberg, 1995). Since its introduction, there has been a growing
pool of evidence showing that this method may be the best solution to the multiple
comparisons problem in many practical situations (Williams, Jones, & Tukey, 1999).
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Because of its usefulness, the Institute of Education Sciences has recommended this
procedure for use in its What Works Clearinghouse handbook of standards (Institute
of Education Sciences, 2008).

The Benjamani—Hochberg adjustment to the p-value can be implemented using
the p.adjust () function.! This function takes two arguments to make ensemble
adjustments. The first, p=, provides the function a vector of unadjusted p-values.
The second argument, method=, takes a character string that identifies the adjust-
ment method to use. The Benjamani—Hochberg adjustment is carried out using the
argument method="BH". Command Snippet 12.7 shows the use of this function to
obtain the Benjamani—-Hochberg ensemble-adjusted p-values for the pairwise con-
trasts tested in the diet analysis. Of interest is that the ensemble-adjusted p-values
in the output are larger than the unadjusted versions (except for the largest one,
which does not change). However, the adjustment is not as severe as with the Dunn—
Bonferroni. The FDR method strikes a good balance between protection from a false
positive and the ability to reject a false null hypothesis.

Command Snippet 12.7: Computation of the Benjamani-Hochberg ensemble-
adjusted p-values for each of the six pairwise contrasts.

> p.adjust(p = p.unadjusted, method = "BH")
[1] 0.00300 0.00300 0.01840 0.58440 0.64488 0.78960

12.6 STRENGTHS AND LIMITATIONS OF THE FOUR APPROACHES

For any researcher interested in drawing inferences about group differences, there are
key analytic decision points that must be made at different stages of an analysis. One
initial consideration is the analytic framework used to compare the groups. Chapters
11 and 12 were both framed in terms of four common approaches typically used by
educational and behavioral science practitioners when it comes to comparing multiple
groups. They are: (1) planned comparisons; (2) unplanned, but adjusted group
comparisons without the omnibus test; (3) the omnibus test followed by unadjusted
group comparisons; and (4) the omnibus test followed by adjusted group comparisons.
Strengths and weaknesses of all four approaches are examined in the context of the
ongoing controversy surrounding these analytic paths.

12.6.1 Planned Comparisons

Planned comparisons are confirmatory in nature and as such often reflect the re-
searcher’s substantive knowledge and theoretical work in the field. If orthogonal
contrasts are planned in advance, contemporary practice favors adopting unadjusted

I This function also implements the Holm (1979), Hochberg (1988), Hommel (1988), Dunn (1961), and
Benjamini and Yekutieli (2001) adjustments.
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p-values; meaning testing each hypothesis at the nominal (i.e., theoretical) level of
statistical reliability, usually 0.05. For planned, but nonorthogonal contrasts, opin-
ions differ as to whether an adjustment should be made. One line of thought is that
nonorthogonal contrasts involve redundant information; and the outcome of one test
is not independent of those for other tests. In such cases, some method of adjustment
is typically advocated. In fact, the degree of redundancy among the contrasts is
the basis for many different p-value adjustment procedures (Hancock & Klockars,
1996). The other perspective is to use unadjusted p-values for the small number of
theoretically driven hypothesis tests that are performed (Keppel & Wickens, 2007).
This approach is more likely to detect true population differences.

12.6.2 Omnibus Test Followed by Unadjusted Group Comparisons

When no hypotheses are stated in advance of examining the data, then the analysis
is exploratory in nature. As an initial exploratory step, researchers have historically
examined the simultaneous differences among group means. If the primary research
question focuses on detecting omnibus mean differences among groups, then the
analysis of variance is the statistical vehicle to answer this question. If on the other
hand, the omnibus test is used as a ritual to performing any subsequent follow-up
group mean comparisons—for example, as a method of controlling the type I error
rate---contemporary wisdom suggests that this course of action may be unnecessary.
This perspective runs counter to R. A. Fisher’s (1935) view that follow-up multiple
comparisons were permissible only after rejecting the omnibus hypothesis. Rejection
of the omnibus hypothesis provided the requisite type I error protection such that no
adjustments were needed for subsequent hypothesis tests. The broader question about
whether or not to adjust the p-values comes from the question of type I error control
and the value the researcher places on this.

A number of authors have advocated that no adjustment for the multiple group
comparisons is necessary (e.g., Rothman, 1990; Saville, 1990). Their arguments
are varied, but essentially boil down to supporting a per-comparison approach to
controlling type I errors. This will lead to more type I errors when the complete null
hypothesis is true (i.e., yu; = po = --- = pg). Yet, they argue that this scenario is
almost never true and therefore, in those cases in which the hypothesis is false, the
chance of committing a type II error (incorrectly retaining a false null hypothesis)
necessarily increases. For some researchers, committing a type II error is seen as
more egregious than that of committing a type I error. Thus, unadjusted comparisons
are attractive to them. In support of this position, Hochberg and Tamhane (1987, p. 6)
note that when “inferences are unrelated in terms of their content or intended use
(although they may be statistically dependent), then they should be treated separately
and not jointly.”

12.6.3 Omnibus Test Followed by Adjusted Group Comparisons

In the context of the omnibus test, the alternative hypothesis allows for inequality
among the group means, and if the null hypothesis is eventually rejected, all that can
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be said is that there is some type of linear contrast of the group means that is non-
zero. A conventional analytic strategy upon rejecting the omnibus null hypothesis
would be to conduct further hypothesis tests corresponding to contrasts that are of
particular interest or those suggested by the data. Researchers that worry about
type I error control in these unplanned multiple tests favor some sort of p-value
adjustment. The looming issue is that the type I errorrate will become inflated due to
the number of tests within a family of tests—assuming that the null hypotheses within
this family are true. For example, if there are six comparisons to make, under the
guise that all six null hypotheses are true, then the probability of making at least one
type I error when testing all six contrasts is not 0.05 but a whopping 0.26! Rothman
(1990) points out that adjustment for multiple comparisons is like an insurance policy
against mistakenly rejecting a null hypothesis when the null is actually true. These
adjustments usually involve increasing the p-value, thus making it more difficult to
reject any one hypothesis.

Regrettably, the cost of the insurance policy is to increase the frequency of an
incorrect statement (or conclusion) that asserts there is no mean difference when in
reality a true difference exists. Because of this, there is some dissatisfaction for
these adjustments in general, and in particular for multiple testing stemming from
an exploratory analysis. As Tukey (1953) suggests, exploratory analyses are for
generating hypotheses for future research. If the analysis is exploratory, why not run
all the comparisons and rank-order them in terms of their unadjusted p-values? This
will certainly help indicate which hypotheses may be useful to examine in future
research. Modem multiple comparison procedures, like those mentioned in this
chapter, acknowledge the trade-off between statistical power and control over type
I errors. They attempt to hold the familywise error rate at the nominal level while
providing the greatest chance of finding a true difference if it exists.

12.6.4 Adjusted Group Comparisons without the Omnibus Test

Some controversy exists regarding the question of whether one should even run the
omnibus test on groups before embarking on comparisons that seem most interest-
ing. A number of authors (Cohen, 1994; Hancock & Klockars, 1996; Rosnow &
Rosenthal, 1996; Serlin & Lapsley, 1993) have criticized the efficacy of the omnibus
test of this null hypothesis. In their critiques several compelling reasons have been
provided of why researchers should avoid the omnibus testing all together. First and
foremost, it is not a very compelling hypothesis. Knowing that some type of mean
difference exists among groups is not particularly interesting as it seems obvious to
be the case in many research contexts. It could be argued that it is better to bypass the
omnibus test altogether and jump right to the comparisons suggested by the data. As
Games (1971, p. 560) stated, “There seems to be little point in applying the overall
[omnibus] test prior to running ¢ contrasts by procedures that set [the familywise
error rate] < « ... if the ¢ contrasts express the experimental interest directly, they
are justified whether the overall [omnibus test] is significant or not and [familywise
error rate] is still controlled.” Secondly, the term unplanned or post-hoc frequently
is misinterpreted as the follow-up to an omnibus test. Researchers are frequently
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Table 12.3: Randomization Test Results for Both Unadjusted Method and
Ben jamani-Hochberg Ensemble-Ad justed Method ¢

Comparison Unadjusted Ensemble Adjusted
Atkins vs. Zone 0.0008 0.0030
Atkins vs. Omish 0.0010 0.0030
Atkins vs. LEARN 0.0092 0.0184
Zone vs. LEARN 0.3896 0.5844
LEARN vs. Omish 0.5374 0.6449
Zone vs. Omish 0.7896 0.7896

“The p-value for both methods is based on the randomization test using 4999 permutations of the data.

encouraged to conduct multiple comparisons only after rejecting the null hypothesis
of the omnibus test, the rationale being that it provides protection from the perils of
inflated type I errors (see, e.g., Hinkle, Wiersma, & Jurs, 2003). The supposition
that an omnibus test offers protection is not, however, completely accurate. In the
situation when the omnibus null hypothesis is false, the conventional analysis of vari-
ance does not maintain control over the type I errorrate for the family of subsequent
comparisons (Hancock & Klockars, 1996). In addition, many procedures that are
used to adjust p-values, like those included in this chapter, control the type I error
rate all by themselves making the omnibus test redundant. In fact, this redundancy
could potentially hinder the probability of detecting real differences by unnecessarily
increasing the probability of a type II error.

12.6.5 Final Thoughts

There are many potential decision points in an analysis of comparing groups. This
monograph has presented four popular methods of testing group mean differences,
each having their own advantages as well as limitations. In the end, it is the responsi-
bility of every researcher to provide a rationale for the methodological choices that he
or she makes. This rationale should be based on sound, principled statistical and/or
theoretical arguments in favor of one path over another.

12,7 SUMMARIZING THE RESULTS OF UNPLANNED CONTRAST
TESTS FOR PUBLICATION

An example write-up for the unplanned contrast results is provided below. As with
any contrast analysis, it is important to indicate the approach that was taken. For
example, a researcher using the omnibus test and then adjusting the p-value for the
pairwise contrasts might provide the following write-up.
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Sample Write-Up

12.8 EXTENSION: PLOTS OF THE UNPLANNED CONTRASTS

Researchers often produce plots to convey information about the group differences.
One plot that is commonly reported is the dynamite plot. An example of a dynamite
plot that a researcher might produce for the weight change data is shown in Figure
12.8. Dynamite plots, so called because of their resemblance to the dynamite detona-
tor used in cartoons, represent the conditional means via the height of the bar and the
standard error of the mean in the length of the whisker. Figure 12.8 shows a distinct
difference between the Atkins diet and the three other diets. The difference between
Atkins and LEARN appears to not be attributable to sampling error. The standard
error “detonator” atop the LEARN bar does not overlap with the top of the Atkins
bar. Apart from the Atkins diet, there is overlap among the standard error bars of all
the other diets, suggesting they may have equal means within sampling error.

The dynamite plot is relatively primitive in that it can be difficult to determine
precisely which group means are different. For example, in Figure 12.8, the error bar
for the Atkins diet does not descend below the top of its solid bar. Therefore, it cannot
be determined precisely from the plot if the Atkins group mean has a statistically
reliable difference compared to the LEARN mean. In fact, Koyama (n.d.) suggests
that dynamite plots are not helpful, pointing out that such plots hide the actual data
in each group, masking important features of each distribution such as sample size
and variation. More importantly, this display does not easily allow consumers of the
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Figure 12.8: Dynamite plot showing the conditional mean weight change and stan-
dard error for each diet.

research to identify group differences, except in extreme cases, such as the Atkins
diet in Figure 12.8. A better graphical presentation of the differences examined using
the unplanned contrasts can be created by plotting the bootstrap interval of the mean
difference for each of the six contrasts.

To create this plot, three vectors are created. These vectors contain the point
estimates, the lower bootstrap limits, and the upper bootstrap limits for the contrasts.
Command Snippet 12.8 shows the creation of these three vectors based on the diet
analysis.

Command Snippet 12.8: Create vectors of the point estimates, lower bootstrap
limits, and upper bootstrap limits.

## Vector of point estimates

> point.estimate <- c(-9.2, -8.5, -7.0, -2.3, -1.6, 0.7)

## Vector of lower limits
> lower.limit <- c(-14.2, -13.9, -12.2, -6.9, -6.3, -5.8)

## Vector of upper limits
> upper.limit <- c(-4.3, -3.1, -2.1, 2.6, 3.8, 4.1)

L

The plot () function is used to set up the plot as shown in Command Snippet
12.9. Recall that the argument type="n" draws the plot according to the graphing
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parameters set in the function, but does not plot any results. Inclusion of the argument
yaxt="n" will omit the y-axis. Even though the axis itself is not included, the
argument y1lim= is still included to set the limits of the plotting area to correspond to
the number of contrasts.

Command Snippet 12.9: Set up the plotting area for the plot of the bootstrap
intervals of the mean difference for the six contrasts.

> plot(x = point.estimate, xlab = "Contrast Value", ylab = " ",
xlim = c¢(-30, 10), ylim = c(1, 6), type = "n", bty = "n",
yaxt = "a")

The bootstrap interval for each contrast can then be added to the plot using the
segments () function. This function adds a line segment to an existing plot. It takes
the arguments x0=, yO=, x1=, and y1=to indicate the starting coordinates (zo, ¥o) and
ending coordinates (z;, y;) for the line segment to be drawn. Additional arguments,
such as col=, 1ty=, etc., can also be included in this function.

Command Snippet 12.10: Syntax to draw the six bootstrap intervals.

> segments(x0 = lower.bound, y0 = 1:6, x1 = upper.bound, yl =
1:6, 1ty = "dotted")

J

Rather than type this function six times, one for each contrast, the vectors created
earlier are used in the function as shown in Command Snippet 12.10. Note that the first
four arguments, indicating the coordinates, are each composed of a vector having six
elements, respectively. The 1ty= argument only has one element. This is because
R uses a recycling rule that extends any vector that is shorter by “recycling” the
elements until it has the same length. Thus, because of the recycling, it is equivalent
to using 1ty = c("dotted", "dotted", "dotted", "dotted", "dotted",
"dotted").

Lastly, the point estimate of the mean difference for each contrast is added to the
plot as a solid point using the points () function. This function takes the arguments
x= and y= to indicate the coordinates at which the point is to be drawn. The argument
pch= is also included to change the default plotting character from an open circle to
a solid point. This is shown in Command Snippet 12.11.

Labels are also added to the plot to identify the contrasts using the text () function,
also shown in Command Snippet 12.11. Figure 12.9 shows the resulting plot of the
estimates of the mean difference for each contrast based on 4999 bootstrap replicates.
To aid interpretation, a vertical line is plotted at zero, the parameter value associated
with no difference. The contrasts that show strong evidence of a difference in 12-
month weight change between the two diets based on the interval estimates have also
been given a different line type. This plot is congruent with the results of the analysis.
In contrast to the dynamite plot, Figure 12.9 depicts the bootstrap intervals about the
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means. Thus, the intervals can be inspected to see if O falls within the bounds. If so,
the groups do not have a statistically reliable difference. If O is not in the bootstrap
interval, the difference is statistically reliable. Inspection of Figure 12.9 shows that
the bottom three group comparison intervals do not contain 0. Therefore, the bottom
three comparisons are statistically reliable, whereas the top three are not.

Ornish-Zone e P ST

LEARN-Ornish PR

LEARN-Zone POPPUITS FOIO

Atkins—LEARN z

Atkins-Ornish *

Atkins-Zone =

Weight Change (inkg)

Figure 12.9: Plot showing the point estimate and bootstrap interval estimate of
the mean difference for each contrast based on the bias-corrected-and-accelerated
adjustment using 4999 bootstrap replicates.
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12.8.1 Simultaneous Intervals

Like the p-values produced for these analyses, the bootstrap interval estimates can be
unadjusted or adjusted. If the researcher has used an ensemble adjustment method,
then it is also appropriate to provide an adjusted interval estimate. Adjusted interval
estimates are referred to as simultaneous intervals. The adjustment for the interval
estimate is carried out by including the argument conf= in the boot.ci() function.
The value that this argument takes is

1-a*, (12.13)

where, a* is the ensemble-adjusted significance level. The Benjamani—-Hochberg
procedure uses a different adjusted significance level for each contrast. In order to
find the ensemble-adjusted significance levels, the contrasts are ordered, based on
their unadjusted p-values, from most evidence against the null hypothesis (smallest)
to least evidence against the null hypothesis (largest). Then, the ensemble-adjusted
significance level is computed by dividing the position in the sequence by the number
of contrasts and multiplying this quantity by an overall significance level. Table 12.4
shows each contrast and the adjusted level of significance.

Command Snippet 12.11: Syntax to add the point estimate for each contrast to the
plot.

## Add the point estimates to the plot
> points(x = point.estimate, y = 1:6, pch = 20)

## Label each contrast

> text(x = -30, y = 1:6, label = c("Atkins-Zone",
"Atkins-0Ornish", "Atkins-LEARN", "LEARN-Zone",
"LEARN-Ornish", "Ornish-Zone"), cex = 0.8, pos = 4)

## Add vertical line at 0
> abline(v = 0)

The quantity 1 — o* can then be used in the optional conf= argument for the
boot.ci() function. For example, to compute the BC, interval limits for the
contrast to compare the Atkins and Omish diets, the argument conf=0.983 is added
to the boot.ci() function. It is noted that for readers interested in a computing
challenge, a function could be written to more easily compute the ensemble-adjusted
significance levels. The unadjusted and adjusted (simultaneous) interval estimates
for the unplanned pairwise contrasts are presented in Table 12.5.

Figure 12.10 shows a plot of the simultaneous intervals for each of the six contrasts
based on the Benjamani—-Hochberg adjusted significance level. To aid interpretation,
a vertical line is plotted at zero, the parameter value associated with no difference.
The contrasts that show strong evidence of a difference in 12-month weight change
between the two diets based on the interval estimates have a different line type.
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Table 12.4: Computation of Adjusted Significance Level for Benjamani-
Hochberg Simultaneous Confidence Intervals Based on Sequential Unad justed
p-Values

Adjusted Comparison p-Value Position a*

Atkins vs. Zone 0.0008 1 1/6 x 0.05 = 0.008
Atkins vs. Omish 0.0010 2 2/6 x 0.05 =0.017
Atkins vs. LEARN 0.0092 3 3/6 x 0.05 = 0.025
Zone vs. LEARN 0.3896 4 4/6 x 0.05 = 0.033
LEARN vs. Omish 0.5374 5 5/6 x 0.05 = 0.042
Zone vs. Omish 0.7896 6 6/6 x 0.05 = 0.050

Table 12.5: Unad justed and Simultaneous Bootstrap Intervals for Each of Six
Contrasts®

Comparison Unad justed Interval Simultaneous Interval
Atkins vs. Zone [—14.2,-4.3] [-16.1,-2.7]
Atkins vs. Omish [—13.9,-3.1] [-15.1,-1.8]
Atkins vs. LEARN [—-12.2,-2.1] [—13.2,-1.2]
Zone vs. LEARN [-6.9,2.6] [—7.3,3.0]
LEARN vs. Omish [—6.3,3.8] [-6.5,4.0]

Zone vs. Omish [—5.8,4.1] [—5.8,4.1]

%The simultaneous interval is computed based on the Benjamani~Hochberg adjusted significance level.
Each bootstrap interval is a bias-corrected-and-accelerated adjusted interval based on a nonparametric
bootstrap using 4999 replicate data sets.

129 FURTHER READING

The examination and testing of multiple comparisons has a long history, being dis-
cussed as early as 1843 when the problem was identified as aresult of the exploration
of subpopulation differences all within a single population (Cournot, 1843/1984).
Since that time numerous methods for simultaneous inference have been introduced.
Of the more promising approaches beyond those discussed in this chapter is a pairwise
comparison procedure based on information criteria computed within a maximum
likelihood estimation framework (Dayton, 1998, 2003) and best subsets approach
within this same framework (Dayton & Pan, 2005). Westfall (1997) demonstrated
how to bootstrap adjusted p-values directly. This interesting approach allows mod-
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Figure 12.10: Plot showing the point estimate and bootstrap interval estimate of
the mean difference for each contrast based on the Benjamani~Hochberg adjusted
significance level. Each interval uses the bias-corrected-and-accelerated adjustment
using 4999 bootstrap replicates. A vertical line is plotted at zero, the parameter value
associated with no difference.

els corresponding to mean comparisons to be specified to correspond to empirically
based distributional assumptions as well as variance equality. Gelman, Carlin, Stern,
and Rubin (2003) discuss the multiple comparison problem within a Bayesian and
multilevel modeling framework. Several books and papers over the years have com-
prehensively examined many of these procedures. Hochberg and Tamhane (1987),
Westfall and Young (1993), and Shaffer (1995) provide good starting points. Bretz,
Hothom, and Westfall (2011) present many of these methods in R under a more
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classical framework. Lastly, it is noted that the debate over whether to use ensemble
p-values and simultaneous confidence limits when making multiple comparisons—
especially when those comparisons are hypothesized a priori—is still an active debate.
Many methodologists have provided good reasons for not adjusting inferences when
multiple comparisons are being performed (e.g., Duncan, 1955; O’Brien, 1983;
Rothman, 1990).

PROBLEMS

12.1 In Chapter 5 the VLSSperCapita.csv data set was used to explore whether
economic differences existed among seven nonoverlapping, distinct regions of the
Socialist Republic of Vietnam. Both conditional plots and descriptive statistics were
examined to begin understanding these differences.

The seven regions include two heavily populated areas known as the Red River
Delta and Mekong Delta, respectively. The other regions are: Northem Uplands,
North Central Coast, Central Coast, Central Highlands, and the Southeast. In the
midst of the country’s relative prosperity, the question of economic parity across
regions, as measured by annual household per capita expenditures, remained largely
unanswered.

a) Refer back to Chapter 5. Based on the descriptive statistics and plots gen-
erate three hypotheses for two simple contrasts and one complex contrast,
based on your preliminary examination. Test these three hypotheses using
one of the approaches presented in Chapter 11 or 12. Be sure that you write
a justification for the approach you chose.

b) Compute the standardized mean difference as an effect size measure for
both pairwise contrasts. Compute eta-squared as a measure of effect for
the one complex contrast. Check the distributions of the variables involved
with the contrasts. If the distribution of expenditures for regions in the
pairwise contrasts is nonnormal, then execute the effect size computation
using a robust estimator. Is there a robust estimator for eta-squared? Try
to find an answer to this question by looking on the Intemet.
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