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Preface

The “new statistics” of this book’s title are not themselves new, but adopt-
ing them as the main way to analyze data would, for many students 
and researchers, be new. It would also be an excellent development. Let 
me explain. 

“Children in the new program made significantly greater gains, p < .05.” 
In many disciplines, that’s the standard way to express a conclusion. It 
relies on null hypothesis significance testing (NHST), which uses p < .05 or 
p < .01 to establish a result as statistically significant. However, NHST is a 
very limited way to analyze and interpret data, because it focuses on the 
narrow question, “Is there an effect?” Other disciplines, including physics 
and chemistry, seldom use NHST, and usually report results as estimates 
by saying, for example: “the melting point of the plastic was 85.5 ± 0.2°C.” 
That’s usually much more informative than a statement that an effect is, 
or is not, statistically significant. The main message of this book is that we 
should shift emphasis as much as possible from NHST to estimation, based 
on effect sizes and confidence intervals. We should to some extent join 
physics, chemistry, and other disciplines that make enormous scientific 
progress with little use of NHST. 

For more than 50 years, scholars have explained the limitations of NHST 
and the advantages of estimation and other preferred techniques, yet in 
many disciplines we still feel obliged to use NHST. If we can progressively 
free ourselves from that obligation, I suspect we’ll find that what I’m call-
ing “the new statistics” match the way we naturally think of results and 
the interpretation of research. I don’t underestimate the challenge of over-
coming years of relying on p < .05, but once we are using the new statistics 
I suspect we’ll find that they “feel right.” I’ll also discuss easy ways to 
translate between the new and the old. 

Effect sizes and confidence intervals provide more complete informa-
tion than does NHST. Meta-analysis allows accumulation of evidence 
over a number of studies. Using these new statistics techniques, students 
and researchers will be better informed and science will progress faster. 
“Understanding” in the book’s title defines two goals: the “why” and the 
“what.” The first is understanding why the new statistics are better and 
why it’s worth the effort to change, and the second is understanding the 
techniques themselves and how to use them in practice. 

“It’s hard to change, do I really have to?” “Why now?” In reply I can say 
that, first, change is already happening. Many journal editors are requir-
ing effect sizes, more articles that report confidence intervals are being 
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published, and meta-analysis is becoming mainstream. Medicine has rou-
tinely used confidence intervals since the 1980s. Second, the Publication 
Manual of the American Psychological Association (APA) now recommends: 
“Wherever possible, base discussion and interpretation of results on point 
and interval estimates” (APA, 2010, p. 34). That’s an unequivocal state-
ment that researchers should report effect sizes and confidence intervals, 
then use them as the basis for interpreting results. The Publication Manual 
is used by more than 1,000 journals across numerous disciplines, so its 
advice matters. 

Intended Audience

Understanding The New Statistics is designed for use in any discipline that 
uses NHST, including psychology, education, economics, management, 
sociology, criminology and other behavioral and social sciences; medi-
cine, nursing and other health sciences; and biology and other biosciences. 
It includes examples from many such disciplines. 

The book assumes users have had at least some encounter with intro-
ductory statistics, and is not intended to provide comprehensive coverage 
of statistics and research methods. I’ve designed it for three main types of 
use. First, any course focused on the new statistics can use this book as the 
core text. Second, a course in any discipline in which the new statistics are 
part of the curriculum can use it alone or with another textbook. Third, 
students, researchers, and practitioners who wish to understand the new 
statistics can use it by themselves or with peers. 

I know the pressures on any statistics curriculum. I’ve designed this 
book so teachers can assign selected sections or chapters for self-study by 
students. Students are increasingly electing to learn when and where they 
want, either alone or in a small group. They discuss at a shared screen or 
in cyberspace. This book and the software have been developed to meet 
those demands. They have benefited from years of use by students in their 
homes, as well as in the classroom and lecture hall. 

You may be puzzled by the NHST ritual in which you (1) assume there’s 
no effect, even though you believe and hope there is an effect, then (2) cal-
culate a strange thing called a p value, then (3) apply an arbitrary rule 
that, you hope, rejects the initial assumption you never believed. Then you 
(4) conclude that, because you rejected the unbelievable possibility of no 
effect, there must be an effect after all! You wonder why research is done 
this way. How wise you are. Understanding The New Statistics is for anyone 
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who is thinking about alternatives to statistical significance testing. If you 
aim to become a researcher, if you are curious about how data are likely 
to be analyzed in the future, or if you simply wish to understand future 
reports of research, then this book is intended for you. I hope it serves 
you well. 

Features

This book may be the first statistics textbook that is, as much as possible, 
evidence-based. Evidence-based practice is expected in medicine, psychology, 
and many other professions. It should also be expected in statistics, so 
a student or researcher should be able to justify their choice of statisti-
cal technique by referring to evidence. That’s the evidence-based practice 
of statistics. Cognitive evidence may, for example, suggest that a particu-
lar way to present data is easily understood by readers. Therefore, where 
possible, I support my recommendations with evidence. Boxes summarize 
research on how people understand—or misunderstand—particular sta-
tistical concepts, and particular ways to present results. 

Learning and teaching should also be evidence based. This book draws 
on 40 years of my own teaching and researching, but I have also been 
guided by evidence from cognitive science about how people learn. That 
has led me to include exercises that refer back to earlier chapters, to help 
build strong and integrated understanding. Examples link new ideas back 
to familiar ideas. Excerpts from published research in a range of disci-
plines show concepts in action. Many ideas are presented in multiple 
ways—in the text, in examples and exercises, and by the software—to 
help build good understanding and cater to a range of learners’ preferred 
learning styles. The book encourages active exploration, but provides step-
by-step guidance at first. There are many opportunities to use your own 
data, to gain a more practical appreciation of the techniques discussed. 
Each chapter starts with pointers to what it contains, and closes with take-
home messages that provide a summary. 

I have written the Users’ Guide to “Understanding The New Statistics” 
to describe strategies, shaped by cognitive science, for getting the most 
out of the book and its software. It includes references to research I have 
found helpful and that you might also find useful. The Guide is available 
from the book’s website: www.thenewstatistics.com. I hope it helps make 
your time with the book effective and rewarding. 

www.thenewstatistics.com
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Software

I developed ESCI (“ESS-key,” Exploratory Software for Confidence 
Intervals) to provide vivid images and colorful simulations to help make 
important ideas clear. It also helps you use the new statistics with your 
own data. The book includes numerous figures from the software, and 
ESCI activities are integrated into many chapters. You can use the book 
without the software, but I invite you to use ESCI alongside the book, 
to the extent you find it helpful. ESCI runs under Microsoft Excel, on a 
Windows or Macintosh computer, and is a free download from www.
thenewstatistics.com. Appendix A explains how to get started with ESCI, 
and how to get the most from it. The website also provides further tips on 
loading and using ESCI, and the latest information about versions of Excel 
that are supported. 

Contents

Chapter 1 introduces the new statistics, then Chapter 2 discusses the advan-
tages that estimation and effect sizes have over NHST. 

Chapter 3 introduces confidence intervals (CIs). Enjoy the dance of the CIs, 
and the first three ways to interpret CIs. I discuss recommendations of the 
APA Publication Manual (APA, 2010). Chapter 4 describes two further ways 
to interpret CIs. Chapter 5 explores replication—what happens when you 
repeat an experiment—for CIs, and for p values. CIs give better informa-
tion, so they win. The sixth way to interpret CIs is based on replication. 
Chapter 6 discusses the two simplest, most familiar experimental designs 
for comparing two conditions, and how to use CIs for each. 

Chapter 7 introduces meta-analysis, with an emphasis on the forest plot, 
which is a neat picture that summarizes a few experiments or a whole 
research field. Chapter 8 describes two basic models for meta-analysis. 
Chapter 9 outlines the seven steps in conducting a large scale meta-
analysis. It explains moderator analysis and gives further examples of the 
practical value of meta-analysis. 

Chapter 10 is an optional extra chapter on the noncentral t distribu-
tion, which plays a central role in sampling, statistical power, and CIs for 
Cohen’s d. Chapter 11 discusses Cohen’s d, which is the basic standard-
ized effect size and a very useful measure. Chapter 12 considers statistical 
power. In the new statistics, power is replaced by the much better precision 
for planning, the topic of Chapter 13. How large an experiment do you need 
so your CI won’t be too wide? Chapter 14 discusses further effect sizes, 

www.thenewstatistics.com
www.thenewstatistics.com
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including Pearson’s correlation r, and proportions. Chapter 15 considers 
effect sizes and CIs for more complex designs, starting with randomized 
control trials (RCTs). I close with suggestions to assist practical adoption of 
the new statistics. 

Appendixes A, B, and C explain how to download and use ESCI, with 
numerous hints for getting the most out of the software. Look here to find 
the page you need to explore a concept, or to carry out calculations on 
your own data. 
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1
Introduction to The New Statistics

This book is about how to picture and think about experimental results. 
I’ll start with a simple pattern of results you may have seen many times, 
but first I should say what this chapter is about. It introduces

•	 Null hypothesis significance testing (NHST) and confidence 
intervals (CIs) as two different ways to present research results

•	 Meta-analysis as a way to combine results, and thus a third way 
to present them

•	 The desirability of shifting emphasis from NHST to CIs and 
meta-analysis, which are important parts of what I’m calling the 
new statistics

•	 Three ways of thinking that correspond to the three ways to pres-
ent results

•	 Evidence-based practice in statistics, statistical cognition, and 
some relevant evidence

•	 ESCI (pronounced “ESS-key,” Exploratory Software for 
Confidence Intervals)

A Familiar Situation: Lucky–Noluck

Consider first a simple pattern of results you may be familiar with.

First Presentation: NHST

Suppose you read the following in the introduction to a journal article:

Only two studies have evaluated the therapeutic effectiveness of a new 
treatment for insomnia. Lucky (2008) used two independent groups 
each of size N = 22, and Noluck (2008) used two groups each with N = 
18. Each study reported the difference between the means for the new 
treatment and the current treatment.

Lucky (2008) found that the new treatment showed a statistically 
significant advantage over the current treatment: M(difference) = 3.61, 
SD(difference) = 6.97, t(42) = 2.43, p = .02. The study by Noluck (2008) 
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found no statistically significant difference between the two treat-
ment means: M(difference) = 2.23, SD(difference) = 7.59, t(34) = 1.25, 
p = .22.

What would you conclude? Are the two studies giving consistent or incon-
sistent messages? Is the new treatment effective? What conclusions about 
the two studies would you expect to read in the next couple of sentences 
of the article?

Here are three possible answers:

	 1.	 Inconsistent “The Lucky result is clearly statistically significant at 
the .05 level, whereas the Noluck result is clearly not statistically sig-
nificant. The two results conflict. We can’t say whether the treatment 
is effective, and we should examine the two studies to try to find out 
why one found an effect and the other didn’t. Further research is 
required to investigate why the treatment works in some cases, but 
not others.”

	 2.	Equivocal “One result is statistically significant, and the other 
statistically nonsignificant, although the two are in the same 
direction. We have equivocal findings and can’t say whether the 
treatment is effective. Further research is required.”

	 3.	Consistent “The two results are in the same direction, and the 
size of the mean difference is fairly similar in the two studies. 
The two studies therefore reinforce each other, even though one 
is statistically significant and the other is not. The two results 
are consistent and, considered together, provide fairly strong evi-
dence that the treatment is effective.”

Choose which of the three answers is closest to your own opinion. You 
could also consider what conclusion would be most likely if such results 
were discussed in whatever discipline you are most familiar with. I invite 
you to note down your answers before reading on. Take some time; maybe 
have a coffee.

Second Presentation: Confidence Intervals

Now suppose that, instead, the introduction to the article described the 
two studies as follows:

Only two studies have evaluated the therapeutic effectiveness of a new 
treatment for insomnia. Lucky (2008) used two independent groups 
each of size N = 22, and Noluck (2008) used two groups each with N = 18. 
Figure 1.1 reports for each study the difference between the means for 
the new treatment and the current treatment, with the 95% confidence 
interval on that difference.
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Once again, take a minute to think what you would conclude. Are the two 
studies giving similar or different messages? Is the new treatment effec-
tive? Choose Inconsistent, Equivocal, or Consistent as coming closest to your 
opinion. Again, note down your answers.

Third Presentation: Meta-Analysis

Now, finally, suppose the introduction to the article described the two 
studies, then in Figure 1.2 reported the result of a meta-analysis of the two 
sets of results. (Chapters 7, 8, and 9 discuss meta-analysis. Think of it as a 
systematic way to combine the results from two or more related studies.)

Only two studies have evaluated the therapeutic effectiveness of a 
new treatment for insomnia. Lucky (2008) used two independent 
groups each of size N = 22, and Noluck (2008) used two groups each 
with N = 18. Each study reported the difference between the means 
for the new treatment and the current treatment.

Once again, think how you would interpret this result. Is the new treatment 
effective? How strong is the evidence? Again, note down your answers.

–2 0 2 4 6 8
Difference between the means

Lucky (Total N = 44)

Noluck (Total N = 36)

Figure 1.1
Difference between the means (mean for new treatment minus mean for current treatment) 
for treatments for insomnia in the Lucky (2008) and Noluck (2008) studies, with 95% confi-
dence intervals. A positive difference indicates an advantage for the new treatment.

–2 0 2 4 6 8

Difference between the means

Figure 1.2
Difference between the means (mean for new treatment minus mean for current treatment) 
for treatments for insomnia, with its 95% confidence interval, from a meta-analysis of two 
studies that compared a new treatment with the current treatment. Total N = 80. A positive 
difference indicates an advantage for the new treatment. The null hypothesis of no differ-
ence was rejected, p = .008.
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Some Terminology

I need to introduce some terminology, which may or may not be familiar 
to you. Statistical inference is the drawing of conclusions about the world 

(more specifically: about some popula-
tion) from our sample data. In the Lucky–
Noluck example we can assume that the 
population of interest is the notional set of 

all possible differences in scores between the current and new treatments, 
for all people affected by insomnia. A researcher should define the popu-
lation carefully (Which people? What definition of insomnia?), although 
often the reader is left to assume. We wish to make a statistical inference 
about the population parameter of interest, which here is the mean differ-
ence in scores.

You are probably familiar with null hypothesis significance testing (NHST), 
which is the most common way to carry out statistical inference in a range 
of disciplines, including many social and 
behavioral science disciplines, and some 
biosciences. I’ll refer to disciplines that 
rely at least to a moderate extent on NHST 
as NHST disciplines. To use NHST you 
typically specify a null hypothesis then calculate a p value, which you 
use to decide whether to reject or not reject the null hypothesis at some 
significance level, most commonly .05 or .01. The first presentation of the 
Lucky–Noluck results used an NHST format, and the conclusion whether 
or not to reject the hypothesis that the population mean difference is zero 
hinged on whether or not p was less than .05. In other words, a result 
was declared statistically significant or not, depending on whether p < .05 
or not.

A second approach to statistical inference is estimation, which focuses 
on finding the best point estimate of the population parameter that’s of 
greatest interest; it also gives an interval estimate of that parameter, to sig-

nal how close our point estimate is likely 
to be to the population value. The second 
presentation of the Lucky–Noluck results 
used an estimation format. Figure  1.1 
gives point estimates, which are the sam-

ple mean differences marked with the round dots. These are our best 
estimates, one from each study, of the true mean advantage of the new 
treatment. The 95% CIs are the interval estimates, and the fact that they 
are so long signals that our point estimates give only imprecise informa-
tion about the population values, although any interpretation of CI length 
requires understanding of the scale we’re using.

Statistical inference draws conclusions about 
a population, based on sample data. 

Null hypothesis significance testing (NHST) 
tests a null hypothesis—usually that there is 
no difference—and uses the p value to either 
reject or not reject that hypothesis. 

Estimation is a second approach to statisti-
cal inference. It uses sample data to calcu-
late point estimates and interval estimates of 
population parameters.
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The third presentation, in Figure 1.2, combines the Lucky and Noluck 
results. I calculated it using meta-analysis, which is a collection of tech-
niques for the quantitative analysis of the 
results from two or more studies. At its 
simplest, it gives a point estimate that is 
a weighted average of the separate study 
means. (The weights depend on the sample sizes and variances of the 
separate studies.) It also gives an overall interval estimate that signals 
how precise an estimate the weighted average is likely to be.

The Best Interpretation of Lucky–Noluck

All three presentations were based on exactly the same data. Therefore, 
whatever your interpretations, they should have been the same for all 
three presentations. Figure 1.1 indicates most clearly that the most justifi-
able interpretation is Consistent—we could even call it the correct answer. 
The CIs overlap very substantially, and if NHST is used to test whether 
there is any difference between the two studies, p = .55, so the two stud-
ies are as similar as could reasonably be expected even if the second was 
just a repetition of the first. The Lucky and Noluck results are entirely 
consistent, and therefore reinforce each other. Figure 1.2 shows the extent 
of reinforcement, where the CI resulting from the meta-analysis is shorter, 
indicating more precise estimation of the effect of the new treatment. Also 
the p value of .008 for the combined results would conventionally be taken 
as fairly strong evidence that the new treatment is more effective.

In later chapters we’ll explore the definition and calculation of CIs and 
discuss several ways to think about them. For the moment it’s worth not-
ing two of those ways.

First, a CI indicates a range of values that, given the data, are plausible for 
the population parameter being estimated. Values outside the interval are 
relatively implausible. Any value in the interval could reasonably be the 
true value, and so the shorter the interval the better.

Second, CIs can, if you want, be used to carry out NHST. If zero lies within 
a CI, zero is a plausible value for the true effect, and so the null hypothesis 
is not rejected. Alternatively, if zero is outside the interval, zero is not so 
plausible a true value, and the null is rejected. If the intervals in Figure 1.1 
are used for NHST, the results match those given in the NHST presentation: 
The Lucky CI does not include zero, which indicates p < .05 and a statisti-
cally significant result. The Noluck CI includes zero, which indicates p > .05 
and statistical nonsignificance. CIs can easily be used to carry out NHST, 
although doing so ignores much of the valuable information they provide.

Meta-analysis is a set of techniques for the 
quantitative analysis of results from two or 
more studies on the same or similar issues.
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The New Statistics Debate

At this point I invite you to reflect on the three presentations of the 
Lucky–Noluck data. How did you think about each? In each case, what 
language would you have chosen to describe the results and conclusions, 
and would that language have varied over the three formats? Did NHST 
suggest Inconsistent or Equivocal, but the CI format Consistent? Did the 
different formats suggest that different conclusions are warranted, even 
though you knew the underlying data were the same, and so conclusions 
should all be the same? Also, were you interested in knowing how effec-
tive the new treatment is, or only whether or not it worked?

In discussions of the three presentations of Lucky–Noluck with groups 
of researchers, I always ask what they consider the most likely interpre-
tations their disciplinary colleagues would make, or what they would 
expect to see in the journals with which they are most familiar. The most 
common opinion, from a number of disciplines, is that NHST is quite 
likely to suggest Inconsistent, and the CI format to suggest Consistent. 
That’s only anecdotal evidence—I describe better evidence below—but 
it supports my contention that Lucky–Noluck illustrates how different 
ways of presenting results can prompt dramatically different conclusions. 
NHST is more likely to prompt unjustified conclusions of inconsistency 
or disagreement, whereas CIs may prompt more justified conclusions of 
consistency or similarity, at least for the simple pattern of results we’ve 
been discussing.

The Lucky–Noluck example is a small illustration of the advantages of 
estimation over NHST. By the new statistics I am referring to a shift from 

reliance on NHST to the use of estimation 
wherever possible, and also of meta-anal-
ysis whenever it can help. There are fur-
ther statistical techniques that have great 
value and can help researchers shift from 
NHST, but in this book I focus on estima-
tion and meta-analysis. I should quickly 

say these techniques are hardly new: CIs have been around for almost a 
century, and meta-analysis for several decades. It’s the widespread and 
routine use of these techniques in disciplines traditionally reliant on 
NHST that would be new.

Perhaps you are feeling unsettled by my conclusion that Consistent is the 
best interpretation, and wish to dispute it. You may be thinking there’s not 
enough information to justify “fairly strong evidence” of an effect? Or that, 
although the results of the two studies are similar, it’s an artificial situation, 
with results falling just either side of the significance boundary, and it’s petty 
of me to criticize NHST for anomalies when results happen to fall close to the 

The new statistics refer to estimation, meta-
analysis, and other techniques that help 
researchers shift emphasis from NHST. The 
techniques are not new and are routinely 
used in some disciplines, but for the NHST 
disciplines, their use would be new and a 
beneficial change.
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decision boundary? In fact, however, CIs provide more and better informa-
tion than NHST in almost all situations, and not only for Lucky–Noluck.

You might also argue that NHST gives a basis for clear decisions, and 
often the world needs decisions. After all, the practitioner must decide 
either to use a therapy with a client, or not; and the regulatory author-
ity must either approve a drug or refuse approval. Yes, we do need to 
make decisions, but NHST often gives misleading guidance about deci-
sions, as it did for Lucky–Noluck, whereas estimation and meta-analysis 
present all the available evidence and are thus most informative for mak-
ing decisions.

Alternatively, you could argue that I’m criticizing not so much NHST as 
the way some people use it. Appropriate use of NHST with Lucky–Noluck 
would perhaps involve using NHST to compare the two—and find no sta-
tistically significant difference between them. Or perhaps NHST would 
be applied only to the result of the meta-analysis combining the two. 
Those are reasonable points to make, but my most fundamental criticism 
of NHST is not about the way it’s used, but that it gives such an incomplete 
picture, in contrast to the full information provided by estimation. In addi-
tion, I’ll report evidence that many researchers don’t understand NHST 
correctly and don’t use it appropriately. However, even if those problems 
could be overcome, the more fundamental shortcomings of NHST remain.

You could also protest that we don’t know how to interpret the scale 
of measurement: A difference of 3 may be trivial, and of little practical 
or scientific value. That’s true, and is an important issue we’ll discuss in 
Chapter 2, but it doesn’t undermine the conclusion that we have fairly 
strong evidence of some difference and, most usefully, a numerical esti-
mate of its size—whether we judge that large or small, important or triv-
ial. This book is mainly about the new statistics and how to use them in 
practice, but the comparison with NHST will come up in several places. 
In Chapter 15 I’ll discuss in more detail a number of queries a skeptic 
could raise about the new statistics, and give my answers.

In the next chapter I’ll discuss further the problems of NHST and 
describe how statistical reformers have, for more than half a century, 
been publishing critiques of NHST and advocating a shift to estimation 
or other techniques. The prospects for achieving real change may now be 
better than ever before, because the sixth edition of the Publication Manual 
of the American Psychological Association (APA, 2010) strongly recommends 
CIs, specifies a format for reporting them, and gives many examples. Like 
earlier editions, it also gives NHST examples, but its detailed guidance for 
estimation is new. The Manual is used by more than 1,000 journals across 
numerous disciplines—way beyond just psychology—and every year 
enormous numbers of students learn its rules of style. The new edition 
states unambiguously: “Wherever possible, base discussion and interpre-
tation of results on point and interval estimates” (p. 34). This is a strong 



 

8	 Understanding The New Statistics

endorsement of the new statistics, which I hope will be influential and lead 
to improvements in the way research in many disciplines is conducted.

Now I want to discuss three different ways of thinking that are related 
to my three presentation formats described previously, and which seem 
to me fundamental to all consideration of statistical reform and the new 
statistics. Changing our habits of thought may be one of the biggest chal-
lenges of moving to the new statistics, but also potentially a valuable out-
come of making the change.

Three Ways of Thinking

Dichotomous Thinking

The first presentation format of Lucky–Noluck emphasizes dichotomous 
decision making: NHST results in a decision that the null hypothesis 
is rejected, or not rejected. Such dichotomous decision making seems 

likely to prompt dichotomous thinking, 
which is a tendency to see the world in an 
either–or way. Experiments are planned, 
hypotheses formulated, and results ana-
lyzed, all within a framework of two com-
pletely opposed possibilities: A result is 

statistically significant or not. The first Lucky–Noluck presentation reports 
for each study the mean (M) and standard deviation (SD) of the differ-
ences, and values of t and p. Our point estimate of the difference between 
the new treatment and the old is M. Yes, M is reported, but NHST habits 
may prompt us to skim through the text searching mainly for the p value. 
Small p usually means success and may elicit joy; large p may elicit disap-
pointment and frustration. Such an either–or outcome goes with dichoto-
mous thinking: We formulate our research in terms of a null hypothesis of 
zero effect, and finish with a dichotomous decision that we can, or cannot, 
reject it. Dichotomy comes from the Greek “to cut in two,” and NHST gives 
us just two distinct options for decision. It seems plausible that dichoto-
mous thinking and use of NHST are mutually reinforcing. If so, dichoto-
mous thinking may be an obstacle to adoption of the new statistics.

Why does dichotomous thinking persist? One reason may be an inher-
ent preference for certainty. Evolutionary biologist Richard Dawkins 
(2004) argues that humans often seek the reassurance of an either–or 
classification. He calls this “the tyranny of the discontinuous mind” 
(p. 252). Computer scientist and philosopher Kees van Deemter (2010, p. 6) 

Dichotomous thinking focuses on making 
a choice between two mutually exclusive 
alternatives. The dichotomous reject-or-don’t-
reject decisions of NHST tend to elicit dichot-
omous thinking.
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refers to the “false clarity” of a definite decision or classification that 
humans clutch at, even when the situation is uncertain. To adopt the 
new statistics we may need to overcome a built-in preference for cer-
tainty, but our reward could be a better appreciation of the uncertainty 
inherent in our data.

Estimation Thinking

The most salient feature of Figure 1.1 is the CIs. The point estimates are 
the dots, and the intervals indicate the uncertainty of those point esti-
mates. Figure  1.1 permits dichotomous 
thinking—if the intervals are used merely 
for NHST—but there is no reason to limit 
their use in this way. CIs offer much more, 
provided we can move beyond dichotomous thinking and adopt estima-
tion thinking. Estimation thinking focuses on how big an effect is; know-
ing this is usually more valuable than knowing whether or not the effect 
is zero, which is the focus of dichotomous thinking. Estimation thinking 
prompts us to plan an experiment to address the question, “How much 
...?” or “To what extent ...?,” rather than only the dichotomous NHST ques-
tion, “Is there an effect?”

Meta-Analytic Thinking

One realization prompted by the use of CIs is that in most single stud-
ies the uncertainty is, alas, larger than we’d thought. CIs are in practice 
usually wider than we’d like, so we usually need to combine evidence 
from a number of studies. Meta-analysis gives us tools to do that, and 
so meta-analysis is a vital component in the new statistics. Meta-analytic 
thinking is the consideration of any result 
in relation to previous results on the same 
or similar questions, and awareness that 
combination with future results is likely 
to be valuable. Meta-analytic thinking is 
the application of estimation thinking to 
more than a single study. It prompts us to seek meta-analysis of previous 
related studies at the planning stage of research, then to report our results 
in a way that makes it easy to include them in future meta-analyses. Meta-
analytic thinking is a type of estimation thinking, because it, too, focuses 
on estimates and uncertainty. Cumulation of evidence over studies, by 
meta-analysis, usually gives a more precise estimate, signaled by a shorter 
CI. That’s excellent news, because more precise estimates are best.

Estimation thinking focuses on “how much,” 
by focusing on point and interval estimates. 

Meta-analytic thinking is estimation thinking 
that considers any result in the context of past 
and potential future results on the same ques-
tion. It focuses on the cumulation of evidence 
over studies.
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The Natural Statistics?

I’m arguing that we should move, as much as practical, from NHST to the 
new statistics, and from dichotomous thinking to estimation and meta-
analytic thinking. At one level these are drastic changes, and I don’t under-
estimate the difficulty of breaking the hold of p values and dichotomous 
thinking. More fundamentally, however, I suspect that the natural way 
we think about results is (1) to focus on the most direct answer they give 
to our research question, (2) to consider how precise that answer is, and 
(3) to think how our answer relates to other results. For an example of the 
three steps, think of the Lucky and Noluck means and CIs, and the relation 
between the two results. Based on the three steps, we use our judgment to 
interpret the Lucky–Noluck results and draw conclusions. But that’s simply 
a description of the new statistics in action! I suspect the new statistics may 
license us to think about our results in ways we’ll recognize as natural, and 
perhaps the ways we’ve secretly been thinking about them all along, even 
as we calculate and publish p values. If my hunch is correct—and it needs 
to be examined experimentally—then once we’ve overcome Dawkins’ tyr-
anny and van Deemter’s false clarity to move beyond dichotomous think-
ing, we may find that the new statistics feel rather natural. Adopting the 
new statistics may not feel like shifting to a different world, but as a release 
from restrictions and arrival at a somewhat familiar place. That place is 
already inhabited by disciplines that make comparatively little use of 
NHST, including, for example, physics and chemistry. In addition, NHST 
and the new statistics are based on the same underlying statistical theory, 
so in this way as well the new statistics may feel familiar.

Up to this point I’ve used the Lucky–Noluck example to describe three 
different ways to present results and, correspondingly, three different 
ways of thinking. I’ve also used the example to argue that estimation and 
meta-analysis can do a better job of statistical inference than NHST, and 
therefore researchers should, where possible, adopt the new statistics. 
Most fundamentally, the new statistics are simply more informative, but 
I would like, in addition, to be able to cite evidence about how research-
ers understand NHST and estimation. I’ll shortly report some cognitive 
evidence, but first I’ll introduce the ideas of evidence-based practice in 
statistics and statistical cognition.

Evidence-Based Practice in Statistics

Professional practitioners in medicine, health sciences, psychology, and 
many other fields strive for evidence-based practice. They should be able to 



 

Introduction to The New Statistics	 11

justify their treatment recommendation by referring to research showing 
that the treatment is likely to prove most effective in the circumstances. 
Clients, legislators, and the community increasingly expect nothing less, 
and in some cases any other approach may be ethically questionable. I sug-
gest that choice of statistical practices should similarly be evidence based. 
Relevant evidence is of at least two kinds: statistical and cognitive. The 
technical discipline of statistics is concerned with studying statistical mod-
els and techniques, and with assessing evidence of how suitable they are for 
a particular situation. Such statistical evidence is undoubtedly important.

The second type of evidence, cognitive evidence, may be just as impor-
tant if misconception is to be avoided, and readers are to understand 
results as well as possible.

Statistical Cognition

Statistical cognition is concerned with obtaining cognitive evidence about 
various statistical techniques and ways to present data. It’s certainly 
important to choose an appropriate statistical model, use the correct for-
mulas, and carry out accurate calculations. It’s also important, however, 
to focus on understanding, and to con-
sider statistics as communication between 
researchers and readers. How do research-
ers think about their results; how do they 
summarize, present, and interpret data; and how do readers understand 
what they read? These are cognitive questions, and statistical cognition 
is the research field that studies such questions (Beyth-Marom, Fidler, 
& Cumming, 2008). As I discuss in Chapter 2, statistical cognition has 
gathered evidence about severe and widespread misconceptions of NHST, 
and the poor decision making that accompanies NHST. It is beginning 
to study the new statistics, and will increasingly be able to advise how 
new statistical practices should be refined and used. In addition, studies 
of how best to teach and learn particular statistical concepts should also 
be helpful in guiding adoption of the new statistics.

I want to encourage the evidence-based practice of statistics and so, 
wherever possible, I’ll support recommendations in this book by includ-
ing boxes with brief accounts of cognitive evidence relevant to the statisti-
cal issues being discussed. Often, however, no such evidence is available. 
Statistical cognition is a small research field, with many vital outstand-
ing questions. Especially in relation to the new statistics there are many 
interesting cognitive issues that need to be investigated. Occasionally I’ll 
mention some. If you are interested in cognition or learning, and are look-
ing for a research project—or even a research career—you might consider 
these. Please feel warmly encouraged. This research is important and 
could be widely influential.

Statistical cognition is the empirical study of 
how people understand, and misunderstand, 
statistical concepts and presentations.
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How Do Researchers Think?

Box  1.1 describes my research group’s investigation of how leading 
researchers in three different disciplines interpret results presented in 
NHST or CI formats, as in the first two Lucky–Noluck presentations. We 
examined whether NHST might prompt dichotomous thinking, and CIs 
might prompt estimation thinking.

As often happens in research, we were surprised. As we expected, inter-
pretation of the CI presentation was better on average than interpretation 
of NHST, but the difference was small. The most striking finding was 
that those who saw CI results, as in Figure 1.1, tended to split, with some 
using NHST in their interpretation and others not. Those who used NHST 
said things like “one’s [statistically] significant but the other isn’t,” and 
they made such comments even though NHST was not mentioned in the 
results they saw. Those respondents tended to see the Lucky and Noluck 
results as different. On the other hand, those who didn’t mention NHST 
said things like “the intervals overlap a lot,” and almost all saw the results 
as similar, a much better interpretation. Yes, the new statistics prompt bet-
ter interpretation, but you need to think in estimation terms. If you use CIs 
merely to carry out NHST, you waste much of their potential and may mis-
interpret experimental results. Estimation thinking beats dichotomous 
thinking, but merely using CIs doesn’t guarantee estimation thinking.

Writing Your Take-Home Messages

At the end of each chapter I suggest take-home messages that express what 
I think are the chapter’s main points. However, it’s much better for you to 
write your own, rather than merely read mine. Therefore, I now invite you 
to pause, take a coffee break, think (or look) back over the chapter, and 
write your take-home messages. As possible hints I’ll mention that this 
first chapter used the Lucky–Noluck example to illustrate how different 
ways of presenting results can prompt different ways of thinking and dif-
ferent interpretations. I argued that estimation can give better interpreta-
tion than NHST. However, it’s not just the choice of statistical technique 
that matters, but the underlying thinking adopted by the reader and the 
researcher. Estimation thinking, which is fundamental to the new statis-
tics, is likely to give better understanding of results than the dichotomous 
thinking that naturally goes with NHST.

Finally, a word about ESCI. Use of ESCI is integrated into my discussion 
throughout the book, but in slightly different ways in different chapters. 
My aim is that you can readily work through the book without using ESCI 
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Box 1.1  How Researchers Interpret NHST and CIs

Coulson, Healey, Fidler, and Cumming (2010, tinyurl.com/cisbetter) 
investigated how researchers think about the Lucky–Noluck results, 
presented in NHST or CI formats, with the aim of testing the new 
statistics predictions that CIs elicit better interpretation. We emailed 
authors of articles published in leading psychology, behavioral neu-
roscience, or medical journals and presented results in either an 
NHST or a CI format. We asked researchers, “What do you feel is the 
main conclusion suggested by these studies?” We then asked them 
to rate their extent of agreement with statements that the two results 
are “similar” on a scale from 1 (strongly disagree), to 7 (strongly agree).

There was little sign of any differences between disciplines, so 
we combined the three. Overall, there was enormous variability in 
respondents’ interpretations and ratings, with all responses from 1 to 
7 being common. Recall that the two studies are actually consistent, 
and so the best answers are ratings of 6 or 7. The means were 3.75 for 
NHST and 4.41 for CI. The CI mean was greater by 0.66, 95% CI [0.11, 
1.21]. (Square brackets are the CI reporting style recommended in the 
APA Publication Manual and are what I will use throughout this book.) 
Yes, CIs gave higher ratings, which is good news for the new statistics, 
even if the difference of 0.66 points on the 1–7 scale is not large. (You 
noticed that the difference was statistically significant, because the CI 
did not include zero?) However, there was enormous variability, and 
mean ratings were close to the middle of the scale, not around 6 or 7. 
Most respondents performed poorly, even though the pattern of the 
Lucky–Noluck results was simple and no doubt familiar to many.

We analyzed the open-ended responses to the initial question 
about the “main conclusion suggested by these studies.” We were 
struck that many respondents who saw the CIs still mentioned 
NHST. We divided respondents into those who mentioned NHST 
when interpreting the CIs shown in Figure 1.1 and those who didn’t. 
Figure 1.3 shows for those two groups of respondents the percent-
ages of responses that described the Lucky and Noluck results as 
similar or consistent, or as different or inconsistent. Those who men-
tioned NHST were likely (33/55, or .60) to consider the results “differ-
ent,” as dichotomous thinking would suggest. In striking contrast, of 
those who avoided any reference to NHST almost all (54/57, or .95) 
gave a better answer by rating the results “similar,” as estimation 
thinking would suggest. In other words, most who mentioned NHST 
gave an incorrect answer, whereas almost all who did not mention 
NHST gave a correct answer. The two proportions of respondents 
who answered correctly by saying “similar” were 22/55, or .40, and 
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54/57, or .95, for the two groups of respondents, respectively. The dif-
ference between those two proportions is .55, [.39, .67]. (In Chapter 
14 we’ll use ESCI to find such a CI on the difference between two 
proportions.) In a second study we found evidence supporting this 
result. Our conclusion was that CIs can indeed give better interpre-
tation, but only if you adopt estimation thinking and regard them as 
intervals, and avoid merely using them to carry out NHST.
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Figure 1.3
Percentage of open-ended responses classified as indicating the Lucky and Noluck 
studies gave “Similar” or “Different” results, for respondents who “Mentioned 
NHST” or “Did not mention NHST.” Error bars are 95% CIs. Numbers of respondents 
are shown at the bottom. (Adapted with permission from M. Coulson, M. Healey, 
F. Fidler, & G. Cumming (2010). Confidence intervals permit, but do not guaran-
tee, better inference than statistical significance testing. Frontiers in Quantitative 
Psychology and Measurement, 1:26, 1–9.)

There’s a second part to the story. We included medical research-
ers because medicine has routinely reported CIs since the 1980s, 
although data interpretation in medical journals is still often based 
on NHST, even when CIs are reported. Despite their many years 
of experience with CIs, medical researchers did not perform better 
than researchers in the other disciplines. It seems that merely using 
CIs does not guarantee estimation thinking. This conclusion from 
medicine reinforces our finding that CIs can indeed give better inter-
pretation, but you need to avoid using them just to carry out NHST. 
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at all, but that using the software adds interest and encourages deeper 
understanding. Some of the book’s main messages are illustrated using 
simulations in ESCI that I hope make the ideas clear and memorable. In 
this first chapter I haven’t used ESCI yet, but the Exercises will now intro-
duce ESCI, then use it to explore the ideas in the chapter.

Hints for ESCI Exercises

In most chapters the main discussion in the text refers to ESCI, and the 
exercises at the end of each chapter also use it. At the back of the book 
there’s commentary on most of the exercises. I invite you to take the fol-
lowing approach to using ESCI:

•	 Focus on understanding. Can you explain the concept to some-
one else, perhaps using ESCI? Can you draw a picture, make 
your own example, and recognize the concept when you encoun-
ter it elsewhere?

•	 Look out for images in ESCI that represent a concept. In many cases 
I hope they are useful for remembering and understanding the con-
cept, and can serve as a signature or logo for it. These may be a pic-
ture or a movie—a running simulation. Examples to come include 
the mean heap, dance of the CIs, and diagrams showing rules of eye.

•	 Focus not on the software or the interface, but on the things that 
really matter—the statistical ideas.

•	 ESCI is intended first as a playground for understanding statis-
tics, and second as a set of tools for calculating and presenting 
CIs in simple situations. Watch out for tools you might find useful 
in the future—perhaps for calculating CIs or for making figures 
with CIs to present your own data.

•	 ESCI exercises are at first quite detailed, but I encourage you to 
explore as widely as you wish, perhaps using your own data and 
examples. In later chapters they will be much less step-by-step, 
and I’ll mainly give broad suggestions and invite you to use ESCI 
in whatever ways are most useful for you.

Exercises

	 1.1	 Load and run ESCI chapters 1–4. Appendix A can assist.
	 1.2	 Click the bottom tab to go to the page Two studies. Compare 

with Figure 1.4.
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	 1.3	 Find red 1 (the bold red 1 near the top left) and read the popout 
(hover the mouse near the little red triangle). A “slider” looks 
like a horizontal scroll-bar, and a “spinner” has small up and 
down arrowheads you can click.

	 1.4	 Use the top slider to set M(diff) = 3.61 for the Lucky study. Use 
the next slider to set SD(diff) as close as possible to 6.97. (The 
slider actually sets the pooled SD within groups, and SD(diff) 
is calculated from that.) Use the spinner to set N = 22 for Lucky.

If you ever seem to be in an ESCI mess, look for some helpful popout comments. 
Appendix A may help. Or experiment with the controls—you won’t break any-
thing—and see whether you can straighten things out. Or you can close the Excel 
module (don’t Save), then reopen it to start again.

	 1.5	 Note the description of the Lucky results at red 2. This is the 
NHST version. Check that it matches what you expect.

	 1.6	 At red 3, set the values from the first presentation for Noluck, 
including N = 18. Are the results as you expect?

	 1.7	 Click at red 4 to see the CI results. Do they match Figure 1.1? 
Reveal the meta-analysis results. Are these also as you expect?

Excel macros are needed to make that work. If you cannot see the figure with CIs, 
you may not have enabled macros. See Appendix A.

	 1.8	 Hide the CI results (click at red 4) and meta-analysis results. 
Focus on p for Lucky. How do you think this p would change if

•	 You increase M(diff); you decrease it?
•	 You increase SD(diff); you decrease it?
•	 You increase N; you decrease it?

	 1.9	 Play with the controls at red 1 to see whether your predictions 
about the p value for Lucky were correct.

There is evidence that making your own predictions like this, then experiment-
ing to test them out, can be an effective way to cement understanding. Did you 
actually make the predictions before you played? It’s worth making your best pre-
dictions and writing them down, before you start experimenting. That’s more 
effective use of your time.

	 1.10	Reveal results presented in the CI and meta-analysis formats 
(click at red 4 and red 8). Play around with the sliders and spin-
ners for Lucky and Noluck (at red 1 and red 3), and watch what 
happens in all three formats. Look for relationships between 
the formats. Make predictions then test them.
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Lots of this book’s exercises are like the last one: fairly open ended. They are prob-
ably of most use if you adopt strategies such as the following: Take time to explore, 
collaborate with someone else, set challenges for yourself or others, and write 
down your conclusions and questions. Where possible, try to find parallels with 
other statistics books with which you are familiar.

	 1.11	Focus on the Lucky CI in the CI figure (red 4). Click at red 6 to 
mark the null hypothesis. Adjust M, SD, and N, and note how p 
changes and whether the CI covers zero. What is p when the CI 
includes zero? When it misses zero? When the lower limit (LL) 
of the CI just touches zero?

	 1.12	Reveal the meta-analysis results. Play with the spinners at red 
5 and red 7—to the right of the display, not shown in Figure 
1.4—to see how you can control the horizontal axis in the CI 
and meta-analysis figures.

	 1.13	By now you have used every control on this page. Browse 
around the page and read the popouts, wherever you see little 
red triangles. Is everything as you expect? Does it make sense?

	 1.14	Play with the values for Lucky and Noluck, and watch how the 
meta-analysis result changes. What is the relation between the 
p value for the meta-analysis result, which is shown just below 
the meta-analysis figure, and whether the CI crosses zero?

	 1.15	Watch how the meta-analysis CI relates to the separate CIs for 
the two studies. Think of the meta-analysis as combining the 
evidence from the two studies, as expressed by the separate CIs. 
Usually, the meta-analysis CI will be shorter than each of the 
separate CIs. Does that make sense?

You can talk about CIs as being long or short, or equivalently as being wide or 
narrow. Either pair of terms is fine.

	 1.16	Make the means for Lucky and Noluck very different, so the 
two CIs don’t overlap. Would you regard the two studies as 
giving Consistent or Inconsistent results? How long is the meta-
analysis CI? Does that make sense?

	 1.17	Play around further, then write down some conclusions of your 
own. Do you prefer long or short CIs? Are you comfortable 
examining a CI figure and deciding whether the result is statis-
tically significant or not?

	 1.18	Think how you could use this page to invent games to chal-
lenge your friends—perhaps show them one format and have 
them predict what another will look like.
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	 1.19	 As you inspect the three formats, do they prompt the three differ-
ent ways of thinking? To which of the presentations do you find 
yourself returning? Which seems to give better insight? Can you 
recognize which type of thinking you are using at any particu-
lar moment?

	 1.20	Revisit your take-home messages. Improve them and extend 
the list if you can.

That takes time and effort, but the evidence is that generating your own summary 
is worthwhile and more valuable than merely reading mine.

Sometimes my “take-home messages” include a “take-home picture” or a 
“take-home movie.” These are images, static or moving, that I hope provide vivid 
mnemonics for a concept and help the concept make intuitive sense. Often, but 
not always, they come from ESCI. They’ve become sufficiently embedded in your 
thinking when you dream about them.
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Take-Home Messages

•	 The way results are presented really matters. Change the format 
and the researcher may interpret them differently, and a reader 
may receive a different message.

•	 Assessing what message a presentation format conveys is a cogni-
tive question that the research field of statistical cognition seeks 
to answer.

•	 Evidence-based practice in statistics is desirable, and cognitive 
evidence can help.

•	 CIs are more likely to give a better interpretation of results than 
an NHST format, at least for the frequently occurring pattern of 
results shown in Figure 1.1.

•	 Take-home picture: The Lucky–Noluck pattern of Figure 1.1. This 
figure illustrates that a large overlap of CIs can indicate consis-
tency of results, even when one CI includes zero and the other 
doesn’t, so that NHST suggests, misleadingly, that the two studies 
give inconsistent results.

•	 NHST may prompt dichotomous thinking, whereas CIs are likely 
to encourage estimation thinking and meta-analytic thinking.

•	 The fundamental advantage of estimation, CIs, and meta-analysis 
is that they provide much fuller information than NHST, which 
focuses on the very limited question, “Is there an effect?”

•	 Merely using CIs may not suffice to overcome dichotomous think-
ing. In addition, CIs should be interpreted as intervals, with no 
reference to NHST.

•	 The new statistics aim to switch emphasis from NHST to CIs and 
meta-analysis, and from dichotomous thinking to estimation 
thinking and meta-analytic thinking.

•	 NHST disciplines should be able to improve their research by 
progressively moving to the new statistics.
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2
From Null Hypothesis Significance 
Testing to Effect Sizes

There are two main parts to the statistical reform argument: the nega-
tives and the positives. The negatives are criticisms of NHST, and the 
positives refer to advantages of estimation and other recommended tech-
niques. Most of this book concerns the positives, but in this chapter I’ll 
first consider the negatives: NHST and how it’s taught and used.

This chapter focuses on

•	 NHST as it’s presented in textbooks and used in practice
•	 Problems with NHST
•	 The best ways to think about NHST
•	 An alternative approach to science and the estimation language it uses
•	 The focus of that language, especially effect sizes (ESs) and esti-

mation of ESs
•	 Shifting from dichotomous language to estimation language
•	 How NHST disciplines can become more quantitative

NHST as Presented in Textbooks

Suppose we want to know whether the new treatment for insomnia is bet-
ter than the old. To use NHST we test the null hypothesis that there’s no 
difference between the two treatments in the population. Many textbooks 
describe NHST as a series of steps, something like this:

	 1.	Choose a null hypothesis, H0: μ = μ0, where μ (Greek mu) is the 
mean of the population, which for us is the population of differ-
ence scores between the new and old treatments for insomnia. It’s 
most common to choose H0: μ = 0, and that’s what we’ll do here.

	 2.	Choose a significance level, most often .05, but perhaps .01 if you 
wish to be especially cautious.
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	 3.	Apply the appropriate statistical test, a t test, for example, to your 
sample data. Calculate a p value, where p is the probability that, 
if the null hypothesis were true, you would obtain the observed 
results, or results that are more 
extreme—meaning more inconsis-
tent with the null hypothesis.

	 4.	 If p < .05 (or whatever significance level you chose), reject the null 
hypothesis and declare the result “statistically significant”; if not, 
then don’t reject the null hypothesis, and label the result “not sta-
tistically significant.”

Sometimes, in addition to specifying H0, an alternative hypothesis, H1, 
is also specified. For example, if H0: μ = 0, then perhaps H1: μ ≠ 0, in which 
case the alternative hypothesis is two-tailed, meaning we’re interested in 
departures from the null that go in either direction—the new treatment 
being either worse than or better than the old. When a p value is calculated 
we need to include values that are more extreme than our observed result. 
Lucky (2008) obtained M = 3.61, so the set of results that is “more extreme” 
or “more favoring the alternative than the null hypothesis” includes val-
ues greater than 3.61. However, because the alternative hypothesis is two-
tailed, the set must also include results less than –3.61. Calculation of p 
includes results farther from zero than our result, in either direction.

A Type I error is the decision to reject H0 when it’s true. The probability 
of rejecting H0 when it’s true is called the 
Type I error rate and is given the symbol α 
(Greek alpha). This is the prespecified cri-
terion for p, which I referred to previously 
as “significance level.”

A further variation is that the alternative hypothesis may, like the null, 
be an exact or point hypothesis, H1: μ = μ1. For example, H1 may be a state-
ment that the new treatment gives, on average, sleep scores 4 units higher 

on our sleep scale than the old treatment. 
Specifying such a point alternative allows 
calculation of statistical power, which is the 
probability of rejecting the null hypoth-
esis if H1 is true. In other words, if there 

is a true effect, and it has the exact size μ1 specified by the alternative 
hypothesis, power is the probability our experiment will find it to be sta-
tistically significant. We’ll discuss power in Chapter 12. Specifying a point 
alternative also allows calculation of the Type II error rate, labeled β (Greek 
beta), which is the probability of failing to 
obtain a statistically significant result, if 
H1 is true. Therefore, power = 1 – β.

The p value is the probability of obtaining 
our observed results, or results that are more 
extreme, if the null hypothesis is true.

The Type I error rate, labeled α, is the prob-
ability of rejecting the null hypothesis when 
it’s true.

Statistical power is the probability of obtain-
ing statistical significance, and thus rejecting 
the null hypothesis, if the alternative hypoth-
esis is true.

The Type II error rate, labeled β, is the prob-
ability of not rejecting the null hypothesis 
when it is false.
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I invite you to examine one or two of the statistics textbooks you are 
most familiar with, and compare how they present NHST with my descrip-
tion above. Compare the steps in the sequence and the terminology. Note 
especially what they say about Step 2, the specification in advance of a 
criterion for statistical significance, perhaps labeled α. Then, for a possi-
bly very interesting comparison, in each book turn to much later chapters 
where NHST is used in examples. Does the textbook follow its own rules? 
If its equivalent of Step 2 states that the criterion, or α, must be chosen in 
advance, in later chapters does it state an α value at the start of each exam-
ple? Or does it state anywhere that a particular value of α will be used 
throughout the book? I suspect you might find that, instead, it follows the 
practice most common in journal articles, which is to calculate and report 
the p value, then interpret that in relation not to a single prechosen α level, 
but implicitly in relation to a number of conventional levels, such as .05, .01, 
and .001. In other words, rather than prespecifying α = .05, if you calculate 
p to be .034, you report the result as statistically significant, p < .05, but if 
you calculate p = .007, you claim statistical significance, p < .01. If, hap-
pily, you obtain p = .0003, then you claim statistical significance, p < .001. 
Sometimes use of a set of conventional levels is signaled by asterisks, with 
more asterisks for smaller p. You could declare the values previously men-
tioned as statistically significant: .034*, .007**, and .0003***. Sometimes lan-
guage is used to claim degrees of statistical significance, as when a two- or 
three-star result is described as “highly statistically significant.”

Even if you found the discrepancy I have described between how a 
textbook introduces NHST and how it uses NHST to analyze data, you 
may think the difference is no big deal. However, the distinction between 
(1) setting α in advance and (2) interpreting exact p values, such as .034, 
on a sliding scale of degrees of statistical significance is vitally important. 
The two are based on quite different interpretations of the p value. To 
explain why this matters, I need to describe a little history.

Two Strands in the History of NHST

I’ll give here only a very brief sketch of a famous controversy in the early 
days of NHST. If you are interested in knowing more I recommend Salsburg 
(2001), which is a book of fascinating stories about famous statisticians and 
the development of statistics, and which also provides further references. 
Sir Ronald Fisher made numerous fundamental contributions to statis-
tics, mainly during the first half of the twentieth century. He developed 
significance testing, in which the p value is used as a guide for reaching a 
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judgment about the hypothesis, taking account of all the circumstances. If 
p < .01, he would generally regard the result as clearly significant. He also 
used .05 as a reference point, although for quite a wide range of p values, 
perhaps from .01 to .20, he would typically discuss how follow-up experi-
ments could be used to investigate the effect further. Fisher thus regarded 
p as a measure of strength of evidence against the hypothesis—the smaller 
the p, the stronger the reason to doubt the hypothesis. He regarded large 
p values, perhaps p > .20, as indicating weak evidence, and he emphasized 
that such lack of statistical significance should definitely not be taken as 
meaning the hypothesis is true.

As Salsburg (2001) explains, Jerzy Neyman and Egon Pearson disliked 
Fisher’s approach and developed a more structured form of decision 
making. They called the hypothesis under test the null hypothesis and 
introduced the alternative hypothesis, so their approach became a choice 
between the two. They required α to be set in advance. The p value was 
compared with α, and a choice between the null and alternative hypoth-
eses was made according to whether or not p < α. Neyman and Pearson 
also introduced the ideas of power, and Type I and Type II errors.

They considered the Type I error rate, α, as a long-run proportion: If you 
carry out numerous experiments all with a true null hypothesis, then in 
the long run, if α = .05, you would reject the null hypothesis for just 5% 
of those experiments. This interpretation of the probability α could only 
be correct if α were chosen in advance and the data were not permitted to 
influence the choice of criterion for statistical significance. If α = .05 had 
been chosen, then even p = .0003 would lead simply to rejection of the null 
hypothesis at the α = .05 level.

Fisher strongly disagreed with the Neyman–Pearson approach, and 
both that approach and Fisher’s own ideas were extensively criticized. 
Now, approaching a century later, the criticism continues, but various 
mixtures of the two approaches are described in numerous textbooks and 
used by many disciplines as the basis for drawing conclusions from data. 
Gerd Gigerenzer (1993) described current NHST practices, not as a mix-
ture, but as “an incoherent mishmash” (p. 314) of the ideas of Fisher, and 
Neyman and Pearson. Raymond Hubbard (2004) referred to an “alphabet 
soup, blurring the distinctions between p’s and α’s” (p. 295).

I suspect that many statistics textbooks present NHST using some varia-
tion of the steps I set out earlier, which basically take a Neyman–Pearson 
approach. I also suspect that different disciplines have somewhat different 
traditions about how NHST is presented. It would be very interesting to 
know more about how NHST is described in textbooks, and whether that 
varies over disciplines, but I’ve been able to find only a few small studies 
on the topic, and none that make extensive comparisons across disciplines.

It seems the clear structure and decision making of the Neyman–
Pearson procedure is appealing. Also, this is the necessary approach 
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if the important topic of statistical power is to be discussed. Therefore, 
many textbook authors choose it as the framework for presenting NHST. 
However, researchers seem to have found the requirement to state α in 
advance too onerous, and unenforceable in practice. It seems irrational 
to obtain a seemingly clear-cut result with p = .0003, but then merely to 
reject the null hypothesis at the α = .05 level. So researchers may teach 
their students Neyman–Pearson and use that framework to introduce sta-
tistical power, but then in practice follow Fisher by reporting exact p val-
ues and interpreting these as measures of strength of evidence against the 
null hypothesis.

If my analysis is even partly accurate, it’s not surprising that many stu-
dents are confused. To some extent students may be expected to learn 
one rationale and procedure (Neyman–Pearson), but then see a quite dif-
ferent one (Fisher) modeled in the journal articles they read. It would be 
particularly interesting to investigate whether many textbooks exhibit the 
discrepancy I described: Do they teach Neyman–Pearson, but then a few 
chapters later follow Fisher when illustrating how researchers carry out 
data analysis in practice? It might be tempting to regard a mixture of the 
two approaches as possibly combining the best of both worlds, but the 
two frameworks are based on incompatible conceptions of probability. 
The mixture is indeed incoherent, and so it’s not surprising that miscon-
ceptions about NHST are so widespread.

I argued in Chapter 1 that NHST can lead to unjustified interpretations 
of results, whereas estimation provides more complete information. I now 
turn to a few further problems of NHST and discuss them in terms of 
how their dangers can be minimized. Box 2.1 reports some relevant evi-
dence from statistical cognition.

Box 2.1  Evidence of p Value Misconceptions

In his important book, Statistical Inference, Michael Oakes (1986) gave 
a scathing critique of NHST and a comparison with other approaches 
to inference. In his Chapter 3 he reported four statistical cognition 
experiments that explored the statistical intuitions of psychology 
researchers and postgraduate students. He found evidence of major 
misunderstanding of NHST, and also misconceptions about other 
issues we’ll discuss in future chapters, including replication and cor-
relation. In his first study he asked six simple true–false questions 
about the meaning and interpretation of a p value. Only three of his 
70 participants answered all six correctly.

Haller and Krauss (2002, tinyurl.com/nhstohdear) presented 
Oakes’s six questions to psychology students and academic staff in 
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six German universities. As in the Oakes study, a simple experiment 
was described that gave a p value of .01, then the true–false questions 
were posed. As an example, consider Question 4:

“You can deduce the probability of the experimental hypoth-
esis being true.”

We know that p = .01. If this means a 1% probability that the null 
hypothesis is true, then there’s a 99% probability that the null is false 
and the experimental hypothesis is true. That’s just a statement of 
the common incorrect belief that p is the probability that the results 
are due to chance. The correct answer to Question 4 is thus “false,” 
but Oakes reported that 66% of his respondents answered “true.”

Haller and Krauss (2002) reported that in their sample 59% of psy-
chology students incorrectly answered “true” to that question, as did 
33% of psychology academic staff who did not teach statistics. They 
also obtained responses from psychology academic staff who taught 
statistics: 33% of these answered “true” to Question 4, and only 20% 
answered all six questions correctly. Haller and Krauss described 
that evidence of NHST misconception among teachers of statistics in 
psychology departments as “flabbergasting” (p. 7). If a technique is 
not even understood correctly by its teachers, what hope is there for 
students and researchers who wish to use it?

Statistical cognition research aims to identify problems, but also 
to find ways to overcome them. Haller and Krauss (2002) did this by 
discussing how improved teaching might overcome p value miscon-
ceptions. Kalinowski, Fidler, and Cumming (2008) reported a small 
teaching experiment in which they evaluated two approaches: one 
proposed by Haller and Krauss, and the other an explanation of the 
basic logic of NHST. Both approaches were reasonably successful in 
improving students’ understanding of p values. However, it remains 
an enormous challenge to demonstrate that better teaching could 
overcome all of the many pervasive misconceptions of NHST and, 
even if we could achieve that, the fundamental problem would remain 
that NHST focuses only on the narrow question, “Is there an effect?”

There have been other studies of NHST errors, besides those of 
Oakes (1986) and Haller and Krauss (2002). My conclusion is that 
evidence of NHST misconception is now strong. Researchers, stu-
dents, and even teachers of statistics in psychology all have severe 
and persisting misunderstandings of p values and what they mean. 
It’s hardly surprising that NHST is so often misused. 
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Some Selected Problems of NHST

The best summary of NHST problems is Chapter 3 of Beyond Significance 
Testing by Rex Kline (2004). The chapter is available from tinyurl.com/
klinechap3 as a free download. Kline described 13 wrong beliefs about 
p values and the way they are used and interpreted. He also explained 
several major ways that reliance on NHST has damaged research and 
hampered research progress. His chapter concluded with recommenda-
tions about how to avoid or minimize NHST problems, and an outline of 
his version of the new statistics. I’ll now discuss some selected problems 
of NHST, all of which are additional to the central and fundamental limi-
tation that NHST focuses only on “is there an effect?” By contrast, estima-
tion is much more informative.

What p Is, and What It’s Not

The p value is the probability of getting our observed result, or a more 
extreme result, if the null hypothesis is true. So p is defined in relation 
to a stated null hypothesis, and requires as the basis for calculation that 
we assume the null is true. It’s a common 
error to think p gives the probability that 
the null is true: That’s the inverse probabil-
ity fallacy. Consider the difference between

	 1.	The probability that you speak English if you are reading this 
book (close to 1, I would think); and

	 2.	The probability that you will read this book, if you speak English. 
(Even if one million people read this book—I wish!—that’s still 
a probability close to 0, because so many million people in the 
world speak English.)

Here’s another example of the same distinction. Compare

	 3.	The probability of getting certain results if the null is true (that’s p); 
and

	 4.	The probability that the null is true if we’ve obtained certain 
results. (We’d like to know that but, alas, p can’t tell us.)

In both these examples, the two probabilities are fundamentally differ-
ent. Probability 3 is a conditional probability that’s easy to calculate if we 
assume the null is true. Probability 4 refers to truth in the world, and in a 
sense must be either 0 (the null is false) or 1 (the null is true), but we don’t 

The inverse probability fallacy is the incorrect 
belief that the p value is the probability that 
the null hypothesis is true.
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know which. Anyone can choose his or her own subjective probability that 
the null is true, but different people will most likely choose different values.

Suppose you run a coin-tossing experiment to investigate whether your 
friend can use the power of her mind to influence whether a coin comes 
up heads or tails. You take great care to remove any chance of trickery. 
(Consult a skilled conjurer to discover how difficult that is.) Your friend 
concentrates deeply then predicts correctly the outcome of nine of the first 
10 tosses. A surprising result! You calculate p = .011 as the probability that 
she would get nine or 10 predictions correct, if the null hypothesis of a fair 
coin and random guessing were true. (That’s Probability 3, the p value.) 
Are you going to declare statistical significance and buy her the drink 
she bet you? Or will you conclude that most likely she’s just had a lucky 
day? Sure, .011 is small (and less than .05), but you find her claimed power 
of the mind very hard to accept. You need to choose your own subjective 
probability that she was lucky, and .011 doesn’t give you exact help in 
making your choice. That’s the NHST dilemma, which we usually side-
step by using conventions that .05 or .01 are reasonable p value cutoffs for 
declaring a result as statistically significant. We duck the need for subjec-
tive judgment by resorting to a mechanical rule that takes no account of 
the situation.

Note carefully that .011 was the probability of particular extreme results 
if the null hypothesis is true. Surprising results may reasonably lead you to 
doubt the null, but p is not the probability that the null is true. Some sta-
tistics textbooks say that p measures the probability that “the results are 
due to chance”—in other words, the probability that the null hypothesis 
is correct. However, that’s merely a restatement of the inverse probability 
fallacy. It’s completely wrong to say the p value is the probability that the 
results are due to chance. Jacob Cohen (1994), a distinguished statistics 
reformer, wrote that NHST “does not tell us what we want to know, and 
we so much want to know what we want to know that, out of desperation, 
we nevertheless believe that it does!” (p. 997). In other words, we want 
to know whether the null is true (Probability 4), but p does not measure 
that—it measures Probability 3. In desperation we believe that p measures 
Probability 4 and, unfortunately, some textbooks perpetuate the error.

Beware the Ambiguity of “Significance”

If you read in a journal article that “there was a significant reduction in 
anxiety,” does “significant” mean important or large, or just that p < .05? 
The word is ambiguous and can easily mislead. Any good statistics text-
book will explain that statistical significance is different from scientific or 
practical significance. Small p does not guarantee that an effect is “large” 
or “important.” A tiny effect can be highly statistically significant if the 
experiment is sufficiently large, or a small experiment can find a large 
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effect that’s not statistically significant. Distinguish carefully between 
interpretation of the effect size (ES), and any NHST statement based on p. 
Unfortunately, it’s fairly common to find a 
fallacy I call the slippery slope of significance: 
In the Results section of an article, NHST 
is reported and an effect is declared to be 
statistically significant because p is small. 
However, in the Discussion section, and 
perhaps the abstract, the effect is described simply as “significant” and is 
discussed as if it’s important, or large. The ambiguous term “significant” 
silently morphs from one of its meanings to the other. Discussing an ES 
as large or important requires justification based on informed judgment, 
whether p is large or small.

Kline (2004) recommended that we simply drop the word “significant” 
and write, “there was a statistical reduction in anxiety,” if we’re reporting 
NHST and have rejected the null hypothesis. That’s a good idea. An accept-
able alternative is to say “statistically sig-
nificant” if that’s the intended meaning, 
and perhaps “practically significant” or 
“clinically important” if that’s your judg-
ment. I try to avoid using “significant” to 
mean important, and prefer to find some 
other word. The vital point is that reading the word “significant” should 
trigger your ambiguity alarm: Does the author make clear what’s intended? 
Is that justified? Beware the fallacy of the slippery slope of significance.

Beware Accepting the Null

If we conclude that there’s a statistically significant advantage of the new 
treatment for insomnia when there’s actually no difference in the popula-
tion, we’re committing a Type I error: We’re rejecting the null hypothesis 
when it’s true. NHST limits the risk of Type I errors by requiring small p 
before you reject the null. On the other hand, if we fail to find statistical 
significance when there is a population difference, we’re making a Type II 
error: We’re failing to reject the null hypothesis, even though it’s false. 
Often, however, little attention is paid to Type II errors. Box 2.2 reports evi-
dence of the low power of published research in many areas of psychology. 
In practice, in many disciplines, statistical power is often low, meaning 
that the risk of committing a Type II error is often large. In other words, 
many experiments have a high chance of failing to detect effects when 
they do exist. We must therefore be careful not to take statistical nonsignif-
icance (the null is not rejected) as evidence of a zero effect (the null is true).

All good statistics textbooks warn of the danger of accepting a null 
hypothesis, but the trouble is that the acceptance can be hidden. For example, 

I refer to the following fallacy as the slippery 
slope of significance: An effect is found to be 
statistically significant, is described, ambigu-
ously, as “significant,” and then later is dis-
cussed as if it had thereby been shown to be 
“important” or “large.”

A sidebar like this often gives the definition 
of a term. If it’s a term or expression of my 
invention I’ll usually say so, as I did for the 
slippery slope of significance, to signal that 
you probably won’t find it in other statistics 
textbooks.
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in the NHST presentation of Lucky–Noluck the Inconsistent interpretation 
amounts to concluding that Lucky found an effect but Noluck did not. The 
nonrejection of the Noluck null is interpreted as a zero effect. It’s absurd to 
use M = 2.23 as evidence that the true value is zero, but hidden under a pile 
of NHST ritual that’s what an Inconsistent interpretation does.

Box 2.2  Many Decades of Evidence of Low Power

Cohen (1962) studied 70 articles in the Journal of Social and Abnormal 
Psychology. He chose ES values to label as “small,” “medium,” and 
“large,” and then estimated the power of the experiments to find 
effects of various sizes. He found that estimated power varied greatly 
over studies, but the mean was only .48 (and median .46) to find 
medium-sized effects. Mean power to find small effects was .18, and 
only for large effects was mean power as high as .83. In summary, 
published research in a number of areas of psychology typically had 
only about a coin-toss chance of finding a medium-sized population 
effect to be statistically significant (p < .05). Cohen described those 
levels of power as “far too small” (p. 153) and urged researchers to 
increase their sample sizes and routinely subject their research plans 
to power analysis. Cohen noted that almost all the published articles 
reported statistically significant findings and reasoned that, given 
the low power, many experiments that failed to find statistically 
significant effects—thus making Type II errors—must have been 
conducted, but not published. They represent an enormous waste of 
research effort. Cohen’s study was before the arrival of meta-anal-
ysis, but we can now recognize that, because the published stud-
ies were a biased subset of all studies conducted, meta-analysis of 
published studies would give biased estimates—most likely overes-
timates—of population ESs.

Sedlmeier and Gigerenzer (1989) revisited the same journal 24 
years later. They found power to be just as low (median .44 to find a 
medium-sized effect), and even lower if they took account of alpha 
adjustment procedures used in many articles to account for multiple 
tests—procedures not in regular use at the time of Cohen’s (1962) 
study. Sedlmeier and Gigerenzer also reviewed studies of power in 
about 20 other journals from several disciplines. There was variation 
but, overall, power was similarly disappointingly low. Later stud-
ies have suggested little improvement in the following two decades 
(Maxwell, 2004), despite the efforts of Cohen and others to persuade 
researchers to consider power seriously. 
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If a null hypothesis is not rejected, watch 
out for another fallacy: the slippery slope of 
nonsignificance. In the Results section, p > 
.05 prompts a statement that the differ-
ence failed to reach statistical significance. That’s fine, but in the discus-
sion, or even the abstract, the statistically nonsignificant difference may 
quietly become no difference. Worse, this may be left implicit, as when 
the result is contrasted with some other, statistically significant effect. The 
Inconsistent interpretation of Lucky–Noluck includes no explicit statement 
that Noluck found a difference of zero, but making the contrast and stat-
ing the two results are inconsistent implicitly assumes that the statisti-
cally nonsignificant effect was zero. Example 2.1 is an example. Beware 
the fallacy of the slippery slope of nonsignificance.

Example 2.1  Does This Anti-Aging Cream Work?

In April 2009 queues formed outside some stores in the Boots chain 
of pharmacies in the United Kingdom as customers rushed to buy 
No. 7 Protect & Perfect Intense Beauty Serum. Their eagerness was 
prompted by media reports claiming that an article in the British 
Journal of Dermatology (Watson et al., 2009) provided scientific proof 
that the product, marketed as an anti-aging cream, actually worked. 
The original version of the article had just been published online. It 
was titled “A cosmetic ‘anti-ageing’ product improves photoaged skin: 
A double-blind, randomized controlled trial.” It stated, “The test prod-
uct produced statistically significant improvement in facial wrinkles 
as compared to baseline assessment (p = .013), whereas vehicle-treated 
skin was not significantly improved (p = .11)” (p. 420). The article con-
cluded, “An over-the-counter cosmetic ‘anti-ageing’ product resulted 
in significant clinical improvement in facial wrinkles” (p. 420).

The article reported a statistically significant improvement for the 
active ingredient, but no statistically significant improvement for 
the control treatment, which was “vehicle,” meaning cream lack-
ing the ingredient under test. No direct comparison was reported of 
results for the treated and control participants, and the conclusion 
was based on the differing p values. Do you recognize the pattern 
as classic Lucky–Noluck? The p values (.013 and .11) don’t justify the 
conclusion, and it’s a statistical error to claim they do.

Yes, the title of the article sounds convincing, with its statement 
that the product improves aged skin and that the experiment was 
a double-blind randomized control trial (RCT). Yes, a double-blind 
RCT is the gold standard of research designs for this situation. It’s 

I refer to the following fallacy as the slippery 
slope of nonsignificance: An effect is found 
to be statistically nonsignificant then later 
discussed as if that showed it to be zero.
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If You Use p, Report Exact Values

The traditional Neyman–Pearson approach emphasizes making a clear 
decision to reject the null hypothesis, or not. This requires simply noting 
whether or not p < .05, or, more generally, p < α. However, reporting the 
accurate value of p (e.g., p = .09, or p = .016) gives extra information and 

allows any reader either to compare p with 
a chosen α, or to interpret p as a measure 
of evidence against the null, as Fisher pro-

posed. The APA Manual (2010) states that “when reporting p values, report 
exact p values (e.g., p = .031)” (p. 114), although it permits the use of relative 
values (e.g., p < .05) or asterisks if necessary for clarity in tables. If you use 
p values, it’s best practice and is most informative to report exact values.

How to Think About p Values

There has been surprisingly little investigation of how researchers think 
about p values, the interpretations they make, or their emotional reactions 

not surprising that the media trumpeted the result, but using a good 
design doesn’t guarantee good statistical analysis.

The authors had second thoughts and the official published ver-
sion, which appeared in the August 2009 printed issue of the journal 
as well as online, included some amendments. The title became the 
neutral, “Effects of a cosmetic ‘anti-ageing’ product on photoaged 
skin”; it was additionally reported that a comparison of the two con-
ditions gave p = .10, and the conclusion claimed only a “[statistically] 
non-significant trend towards clinical improvement in facial wrin-
kles.” (Watson et al., 2009, p. 419. Note that this is the only version 
now available. It is the full version originally published online, but 
with a note explaining the amendments made later by the authors, 
including changes to the title and the conclusions.) Better science, but 
perhaps not so likely to trigger media enthusiasm and a rush to buy?

I don’t know what prompted the authors’ changes, but an article in 
the journal Significance (Bland, 2009) may have contributed. It made 
the criticism I described previously, as well as other criticisms of the 
original online version. That original version should not have been 
published, but we can take this case study as a lesson to never assume 
that journal referees will find every statistical error. We must always 
be statistically vigilant and, in particular, watch out for the Lucky–
Noluck pattern and the fallacy of the slippery slope of nonsignificance. 

If you report a p value, give an exact value 
(p = .006), not a relative value (p < .01).
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to p values that are large or small. These are all great topics for statistical 
cognition research. One early study was by Rosenthal and Gaito (1963), 
who asked graduate students and researchers in psychology to rate their 
degree of confidence in an effect, given a p value. They used p values rang-
ing from .001 to .9, and found that degree of confidence dropped rapidly 
as p increased. They identified what they 
called a cliff effect, which was a steep drop 
in the degree of confidence that an effect 
exists as p increased past .05. Poitevineau 
and Lecoutre (2001) pointed out that Rosenthal and Gaito’s cliff effect was 
steep but only moderate in size, and not shown by all participants. Their 
own investigation found that different participants showed different pat-
terns of change in confidence as p increased from very small to large. One 
extreme pattern is a smooth decrease in confidence as p increases, which 
fits with Fisher’s view of p as a measure of strength of evidence. The cliff 
pattern is quite different, and is a large and sharp drop in confidence at 
.05, which fits with a Neyman–Pearson dichotomous decision based on 
α = .05. It seems, from the little evidence available so far, that there are 
elements of each of these patterns in the ratings given by students and 
researchers, with most showing the gradual decrease and some showing 
in addition a small or large drop at .05—in other words an element of the 
cliff effect. There’s considerable variation in patterns shown by different 
respondents, which is consistent with NHST as it is practiced today being 
a confused mix of Fisherian and Neyman–Pearson ideas.

A good way to think about p is in terms of its definition, as a probability 
of obtaining particular results assuming that the null is true. Whenever 
you see a p value, bring to mind “assuming there’s actually no difference,” 
or a similar statement of the null hypothesis. However, I suspect research-
ers may most commonly follow Fisher and think of p as a measure of 
evidence against the null hypothesis, even though this interpretation of p 
is only occasionally mentioned in statistics textbooks. Other things being 
equal, the smaller the p, the more reason we have to doubt the null. In 
a later chapter I’ll demonstrate that p is actually an extremely poor and 
vague measure of evidence against the null. Even so, thinking of p as 
strength of evidence may be the least bad approach.

There’s also a better way to interpret a p value: Use it, together with 
knowledge of the null hypothesis and the obtained mean or other ES, to 
find the CI, as Chapter 4 explains. Then you’ll have a much better basis 
for interpretation.

I now want to turn from NHST to the new statistics—from the negatives 
to the positives. I’ll start with ESs. I’ll introduce ESs by considering some 
aims of science and the language used to express those aims.

The cliff effect is a sharp drop in the degree 
of confidence that an effect exists for p just 
below .05 (or another conventional criterion) 
and just above that criterion.
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The Questions That Science Asks

Think of the questions that science asks. Some typical questions are

	 Q1	 “What is the age of the Earth?”
	 Q2	 “What is the likely sea-level rise by 2100?”
	 Q3	 “What is the effect of exercise on the risk of heart attack?”
	 Q4	 “What is the relationship between pollution level and fish 

fertility?”

The answer to Q1 may be 4.54 ± 0.05 billion years, where 4.54 is our best 
point estimate of the true value, and 0.05 indicates the precision of that 
estimate. It’s natural and informative to answer such quantitative ques-
tions by giving a best value and an indication of how accurate you believe 
this is. Similarly, a news website reports, “Support for the prime minister 
is 62% in a poll with an error margin of 3%,” or you look out from the 
south rim of the Grand Canyon and say to your friend, “I’m guessing it’s 
10 kilometers to the other rim, give or take 5 k.” The answer to Q2 may be 
0.37 m, with a range of 0.18 to 0.59 m. The precision, or uncertainty, is indi-
cated by the error margin, the “give or take,” or the range of predictions.

The focus of such questions is an effect, and the size or nature of that 
effect. We use effect to refer to the age of the Earth, support for the prime 

minister, or distance to the north rim—in 
fact anything in which we might be inter-
ested. Therefore, an effect size (ES) is sim-
ply the amount of something that might 

be of interest. Estimating effect sizes is often the primary purpose of 
empirical science, and so inevitably the primary outcome is one or more 
ES estimates. “How much” questions, like Q1, Q2, and Q3, naturally lead 
to “this much” answers, and the main purpose of journal publication is to 
report those answers.

Many scientists would be astonished to find a chapter in a statistics text-
book that explains the importance of reporting ESs. Isn’t that obvious? 
How else could science proceed? NHST disciplines, however, often ask 
not “how much” questions, but “whether or not” questions, and they pub-
lish “statistically significant effect” or “no statistically significant effect” 
as the dichotomous answer to each.

Chapter 1 described dichotomous thinking, and estimation and meta-
analytic thinking. My argument here is that the language used by 
researchers can indicate which type of thinking predominates. The link 
may be even stronger: Deliberately choosing estimation language may 
encourage estimation and meta-analytic thinking, which are the types of 

An effect is anything we might be interested 
in, and an effect size is simply the size of any-
thing that may be of interest.
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thinking favored by the new statistics. Using estimation language to for-
mulate research questions should naturally encourage a focus on ESs and 
CIs for reporting and interpreting results.

At this point I want to mention the argument of Paul Meehl (1978), the 
distinguished psychologist and philosopher of science, who published 
strong criticisms of NHST over several decades. He stated that “reliance 
on merely refuting the null hypothesis … is basically unsound, poor sci-
entific strategy, and one of the worst things that ever happened in the 
history of psychology” (p. 817). Not only was dichotomous decision mak-
ing impoverished, he argued, but it limited the research aims, and even 
the theories that researchers formulated. He blamed “the Fisherian tradi-
tion [NHST], … [which] has inhibited our search for stronger tests, so we 
have thrown in the sponge and abandoned hope of concocting substantive 
theories that will generate stronger consequences than merely ‘the Xs dif-
fer from the Ys’” (p. 824). He urged researchers to abandon NHST, and to 
build theories that were more quantitative, so they could “generate numer-
ical point predictions (the ideal case found in the exact sciences)” (p. 824). 
Meehl is saying that, for example, focusing on how much better the new 
Lucky–Noluck treatment for insomnia is than the old should encourage 
us to consider a quantitative model of how the treatment works. More 
generally, the new statistics could lead to better theory as well as more 
informative research, so disciplines could become more quantitative and 
thus more sophisticated, and better able to explain the world.

The Language Researchers Use

I would like to be able to report evidence that shifting to estimation lan-
guage encourages the use of ESs and CIs, and leads to better research and 
more informative results. Lacking such evidence, I would at least like to 
be able to present evidence about how often researchers use dichotomous 
or estimation language to present their research aims and report their 
conclusions. Box 2.3 reports the only study I know of on these issues, and 
it presents only a partial picture: It didn’t examine how research aims are 
expressed, but found evidence in a leading psychology journal that con-
clusions are often expressed in dichotomous language.

As an initial tiny investigation of researchers’ language I picked up the 
most recent issue of Psychological Science, a leading journal that reports 
interesting findings across the whole of psychology. I scanned the first 10 
articles, looking for brief statements of an article’s main aim or question. 
(I’m not going to give referencing details for that issue, or the words I 
quote from those articles, because I’m presenting them as typical generic 
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fragments of language and don’t want to imply criticism of particular 
authors when I’m quoting only very few of their words.)

I must say I was impressed. Every article investigated interesting issues 
and reported ingenious experiments that provided relevant evidence and 
led to valuable conclusions. Psychological Science accepts only 10–20% of 
the manuscripts it receives, and the published articles describe some of the 
best psychological research from anywhere around the world. However, 
all 10 articles used NHST to identify effects as statistically significant or 
not, so dichotomous thinking still thrives. In two of the 10, significance 
language was avoided, but, even in these two articles, effects were still 
described as existing or not: p values provided the basis for statements 
like “proud participants … spent more time manipulating the puzzle … 
p = .04 …,” and “no difference was found between reaction times for the 
proximal and distal postures … p > .05.…” The reader is left to insert “sta-
tistically significant(ly)” at the appropriate point in each sentence. One 
example diverged from the usual p < .05 criterion for regarding an effect 
as real: “They were also perceived as more dominant by their partners … 
p = .07.” A null hypothesis was accepted with the statement, “As Figure 3 
shows … the magnitude of this effect was indistinguishable from the 
magnitude of the adaptation with consistent illumination … t(13) = 1.82, 
n.s.” The two points referred to were an easily distinguishable 4 mm apart 
in Figure 3, which is hardly good evidence for a zero difference, especially 
given that the unstated p value was .09.

All 10 articles reported means or other ESs, often in figures. Discussion 
often referred to the ESs. Aims were often expressed in a general way: 

Box 2.3  What Language Do Researchers Use?

Hoekstra, Finch, Kiers, and Johnson (2006) examined 266 articles 
published in Psychonomic Bulletin & Review, a leading psychology 
journal, during 2002 to 2004. They found that 97% of the articles used 
NHST, and only 6% reported any CIs. They also found that 60% of 
the articles that used NHST reported a statistically nonsignificant 
result then made the serious mistake of accepting the null hypothesis 
and claiming no effect—which sounds like the fallacy of the slippery 
slope of nonsignificance. In addition, 19% of the articles that used 
NHST reported a statistically significant effect, then those articles 
made the mistake of stating, on the basis of statistical significance, 
that the effect certainly existed, or was important. That sounds like 
the fallacy of the slippery slope of significance. Hoekstra et al. (2006) 
interpreted these mistakes as evidence that a majority of researchers 
did not appreciate the uncertainty in any NHST result, and stated 
their conclusions using dichotomous language that implied certainty. 
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“The goal of this study was to explore the mechanism by which gestur-
ing plays a role in learning.” Even so, in eight articles it was easy to find a 
main aim and corresponding conclusion each expressed in a dichotomous 
way. Here are some examples:

Aim 1: “We predicted that playing a violent video game … would 
decrease the likelihood of help.”

Conclusion 1: “Participants who played a violent game took signifi-
cantly longer to help.”

Aim 2: “We hypothesized that stressed participants would exhibit 
increased risky behavior on loss-domain trials but increased con-
servatism on gain-domain trials.”

Conclusion 2a: “Significantly fewer risky decisions (i.e., increased con-
servatism) were made on gain-domain trials under acute stress.”

The usual p = .05 cutoff was relaxed in order to make the following con-
clusion related to the first part of the aim:

Conclusion 2b: “On loss-domain trials, participants showed a trend 
toward making a higher number of risky decisions under acute 
stress … p < .10.”

Just two studies used estimation language and included no dichoto-
mous statements of aims. One stated, “The current study measured the 
degree to which the public’s interpretation of the forecasts … matches 
the authors’ intentions.” “Measured the degree to which” is the crucial 
estimation language. Discussion focused on the extent of differences. The 
aim of the other study was “estimating the financial value of pain.” Here 
“estimating the value of” is the crucial wording. Discussion focused on 
the price people would pay to avoid pain in various circumstances. Both 
studies used significance language as well, but were infused with esti-
mation language and estimation thinking, and focused on ES estimates 
as answers to the research questions asked. Just one of the 10 articles 
reported CIs, shown in a figure. However, the CIs were not mentioned in 
the text nor used for interpretation.

I conclude that much excellent current research relies on NHST, dichot-
omous thinking, and significance language, while also reporting ESs. 
I can’t be sure, but I suspect that at least some of the eight articles that 
used dichotomous language could have been more informative if estima-
tion ideas had shaped the questions and guided the data analysis and 
interpretation. The two studies that used estimation language to express 
their aims, and focused in their discussions on estimated ESs, suggest 
how future research might be different. Choosing estimation language 
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and CIs, and keeping the focus on ESs, should avoid errors caused by 
NHST, while also giving answers that are more quantitative. This should 
contribute to the broader goal of building more quantitative theories, and 
more quantitative and progressive disciplines.

I suggested previously that scientists in disciplines that don’t rely 
on NHST automatically assume that ESs are the focus of most experi-
ments. I suspect that researchers in NHST disciplines share this intuition 
about wanting a numerical value from an experiment, and informa-
tion about how good an answer to our question that value is. The prob-
lem is that NHST and dichotomous thinking to some extent suppress 
those intuitions. If I’m right, moving to estimation thinking and the new 
statistics will allow such intuitions to flourish, and researchers may thus 
feel the new statistics are somewhat natural, or even familiar.

Effect Sizes

Jacob Cohen (1990) wrote, “The primary product of a research inquiry is 
one or more measures of effect size.… Effect-size measures include mean 
differences (raw or standardized), correlations … whatever conveys the 
magnitude of the phenomenon of interest appropriate to the research con-
text” (p. 1310). This accords with my previous definition of an ES as the 
amount of anything that might be of interest. It can be as familiar as a 
mean, a difference between means, a percentage, a median, or a corre-
lation. It may be a standardized value, such as Cohen’s d (more on this 
later), or a regression coefficient, path coefficient, odds ratio, or percentage 
of variance explained (don’t worry if some of these aren’t familiar). The 
answer to Q3, about the effect of exercise on risk of heart attack, may be 
expressed as a percentage change in risk, or a decrease in the number of 
people in 1,000 who are likely to have a heart attack in one year, or in vari-
ous other ways, as I will discuss in Chapter 14, but in any case the answer 
is an ES.

If you measure the attitudes of a group of people before and after you 
present them with an advertising message, it’s natural to think of the 
change in attitude as an effect and the amount of change as the size of that 
effect. However, the term “effect size” is used much more broadly. It can 
refer to an amount, rather than a change, and there need not be any eas-
ily identifiable “cause” for the “effect.” The mean systolic blood pressure 
of a group of children, the number of companies that failed to submit 

tax returns by the due date, and the ratio 
of good to bad cholesterol in a diet are all 

A p value is not an ES. It cannot provide the 
answer to an estimation question.
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perfectly good ESs. Yes, many things are ESs, but p values are not. Let me 
emphasize that last point: A p value is not an ES, and it cannot provide the 
answer to a “how much?” estimation question.

Table 2.1 presents some example ESs. Don’t worry if some are unfamil-
iar. In later chapters we’ll discuss some of the ESs in the table further, 
especially Cohen’s d, Pearson’s correlation r, and proportions. We’ll also 
encounter further ESs. One of the messages of Table 2.1 is that there are 
many different ESs that can be described and classified in various ways. 
Another is that many ESs are probably very familiar to you already. Some 
authors write about ESs as if they are complex and unfamiliar, and the 
requirement to report ESs is a new and challenging demand for research-
ers. Indeed, some ESs may be unfamiliar and a little tricky to understand, 
but many ESs are highly familiar, and many researchers have always 
reported and discussed in their articles at least basic ESs, such as means 
or correlations.

All through the previous paragraph I wrote “ESs,” although “ES mea-
sures” may have been more precise wording. Many writers use “effect 

Table 2.1

Examples of ES Measures

Sample ES Description Example

Mean, M Original units Mean response time, M = 462 ms.
Difference between 
two means

Original units The average price of milk increased last year by 
$0.12/L, from $1.14/L to $1.26/L.

Median, Mdn Original units Median response time, Mdn = 385 ms.
Percentage Units-free 35.5% of respondents were in favor.

0.7% of responses were errors.
Frequency Units-free 39 states ran a deficit.
Correlation, r Units-free Income correlated with age (r = .28).
Cohen’s d Standardized The average effect of psychotherapy was d = 0.68 

(see Chapters 7 and 11).
Regression weight, b Original units The slope of the regression line for income 

against age was b = $1,350/year.
Regression weight, β Standardized The β-weight for age in the regression was .23.
Proportion of 
variance, R2

Units-free Three variables of age, education, and family 
status in the multiple regression together gave 
R2 = .48.

Risk Units-free The risk that a child has a bicycle accident in the 
next year is 1/45.

Relative risk Units-free A boy is 1.4 times as likely as a girl to have a 
bicycle accident in the next year.

Proportion of 
variance, ω2 (Greek 
omega-squared)

Units-free In the analysis of variance, the independent 
variable age accounted for ω2 = 21.5% of total 
variance.
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size” to refer sometimes to a single value, and at other times to the mea-
sure, such as M or d, as I did previously. Often I’ll write “ES measure” for 
clarity, but you need to be aware that “ES” is used in these two ways.

The population ES is simply the true value of an effect in the underly-
ing population. The sample ES is calculated from the data and is typically 
used as our best point estimate of the population ES. It is often referred 

to as an ES estimate. Estimated ESs are 
usually the main results of research, and 
should be the main focus of interpretation 
because they are the best information we 
have about the population.

What the Publication Manual Says

The Publication Manual (APA, 2010) is clear about the necessity of report-
ing ESs:

For the reader to appreciate the magnitude or importance of a study’s 
findings, it is almost always necessary to include some measure of 
effect size…. Effect sizes may be expressed in the original units (e.g., 
the mean number of questions answered correctly; kg/month for a 
regression slope) and are often most easily understood when reported 
in original units. It can often be valuable to report an effect size not 
only in original units but also in some standardized or units-free unit 
(e.g., as a Cohen’s d value) or a standardized regression weight. (p. 34) 

Sometimes a result is best reported both in original units, for ease of 
understanding by readers, and in some standardized measure for ease 
of inclusion in future meta-analyses. There will be examples in later 
chapters. Sources of advanced advice about ESs include Kirk (2003) and 
Grissom and Kim (2005).

Further important advice from the Publication Manual is the require-
ment to “mention all relevant results, including those that run counter to 
expectation; be sure to include small effect sizes (or statistically nonsignif-
icant findings)” (APA, 2010, p. 32). If, as often in the past, a finding is only 
reported in detail, with its ES, if it reaches statistical significance, then the 
published literature contains a biased sample of research findings. Other 
things being equal, smaller ES estimates are less likely to reach statistical 
significance and so would be more likely to remain unpublished, and thus 
be at risk of being omitted from meta-analyses. If that happens, meta-
analysis of published research would be likely to give overestimates of 
population effects. It’s an important part of meta-analytic thinking to 
understand that any ES found by any well-conducted experiment needs 
to be available for later meta-analysis, whether the ES is small or large, 
statistically nonsignificant or significant.

We calculate from our data the sample ES 
and use this as our estimate of the popula-
tion ES, which is typically what we would 
like to know.
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Cohen’s Reference Values

Jacob Cohen, the statistical reformer I’ve mentioned a couple of times, 
championed the use of statistical power. He hoped that if researchers 
routinely calculated and reported power, they would realize that power 
is often very low and so may be prompted to design larger and better 
experiments with higher power. Box 2.2 describes his early work, which 
revealed the very low power of much published research. Cohen’s (1988) 
Statistical Power Analysis for the Behavioral Sciences is his classic book on sta-
tistical power that remains a basic reference. Power, as I discussed earlier 
in this chapter, requires specification of an exact population ES. Cohen 
therefore needed ES measures for many situations, and d is his basic stan-
dardized ES, and the topic of Chapter 11. Now, d is expressed in SD units, 
and is thus a kind of z score. Consider, for example, IQ scores, which are 
often expressed on a scale that has SD = 15 in a large reference population. 
A difference of 7.5 IQ points is half of one SD, or equivalently d = 0.50. A 
sample value of d can be used to estimate the corresponding population 
ES of Cohen’s δ (Greek delta).

Cohen urged researchers to interpret their ESs by making an informed 
judgment in the research context. He also suggested values that might be 
regarded as “small,” “medium,” and “large.” For d these were 0.2, 0.5, and 
0.8, respectively. Therefore, a difference of 7.5 IQ points could be regarded, 
according to Cohen’s suggestion, as a medium-sized effect. Cohen favored 
knowledgeable interpretation in the situation, but offered his values as 
a “conventional frame of reference which is recommended for use only 
when no better basis … is available” (1988, p. 25). His values were, how-
ever, shrewdly chosen, and are reasonable for use in some, but far from 
all, situations. Cohen also suggested .1, .3, and .5 as small, medium and 
large values of Pearson’s correlation r.

Interpreting ESs

A focus on ESs can change the way results are reported and discussed. 
NHST might prompt a researcher to report “children were significantly 
less anxious after hearing the music, t(23) = 2.50, p = .02 (two-tailed)” and 
conclude that “the music significantly lowered children’s anxiety.” (When 
you read those statements, did you automatically insert “statistically” 
before each “significantly”?) That’s dichotomous thinking in action, and it 
tells us little about the experimental result. The mean anxiety scores may, 
or may not, be reported, but the focus is on p values and statistical signifi-
cance. It would be much more informative to report that “after hearing the 
music, the decrease in children’s anxiety scores had mean M = 5.1 units on 
the anxiety scale, 95% CI [0.88, 9.32]. A decrease of 5 on the anxiety scale 
is practically beneficial.” The focus is on the size of the difference, and the 
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CI tells us about the precision of the estimated ES. The “practically ben-
eficial” comment is an interpretive judgment by the researcher, based on 
knowledge of children, the anxiety scale, and the full context. It should be 
accompanied by a justification. Another researcher may prefer a different 
interpretation of the ES, but the CI provides information that assists any 
reader to assess an author’s interpretation. The primary interpretation of 
research should be such judgments about ESs, rather than ritualistic state-
ments about statistical significance based on p values. (Did you notice that 
the 95% CI does not include zero? You can thus declare the result statisti-
cally significant, p < .05, if you wish.)

Look back again at those NHST and CI results. Do you feel uncomfort-
able? Is the conclusion “the music [statistically] significantly lowered …” 
still appealing because it seems so clear-cut, so reassuring? In comparison, 
the very wide CI may be unsettling, even unbelievable. A large amount of 
careful work over several months, and all we can say is that improvement 
in anxiety was, most likely, somewhere between about 1 and 9? Sorry, but 
[0.88, 9.32] corresponds to p = .02. (More on that in Chapter 4.) The CI mes-
sage is accurate, and the apparent certainty of NHST is misleading. We 
need to come to terms with the large uncertainty in most experimental 
results and not blame the CIs. Don’t shoot the messenger. Appreciating 
the extent of uncertainty should lead, as I argued in Chapter 1, to meta-
analytic thinking and a search for opportunities to cumulate evidence 
over experiments.

Alternatively, you may be thinking that a statement of significance is 
more objective—simply note whether or not p < .05—whereas the “practi-
cally beneficial” interpretation is mere opinion. Yes, interpretation of ESs, 
like numerous other aspects of research, requires judgment, but readers 
can make their own interpretations of the published ES values if they wish. 
I will discuss interpretation of various types of ESs in later chapters. Most 
basically, the focus should be on ESs because they are of greatest interest, 
and estimates of ESs are highly informative. The research investigated 
the effect of music on anxiety, and what we most want to know—what is 
most valuable for a music therapist—is how large a reduction in anxiety 
music may give. That’s simply the ES, and the CI indicates how good an 
estimate it is. ESs and CIs together should usually provide the best basis 
for understanding results.

Sometimes a researcher is fortunate and can choose ESs likely to be 
familiar to all readers. Examples include height in meters, outcome in 
number of deaths, value in dollars, and temperature in degrees Celsius. 
Almost as fortunate is the opportunity to use ESs that are very famil-
iar in the discipline. Thus particular disciplines routinely use response 
time in milliseconds, attitudes on a 1-to-7 Likert scale from strongly 
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disagree to strongly agree, ability expressed as an age-equivalent score, 
or blood pressure in millimeters of mercury. Researchers can report and 
discuss these types of ESs with little ceremony, confident that their read-
ers will have a basic understanding. Even so, they will probably need to 
explain what particular values or differences mean in the research con-
text, and give reasons to justify interpretive judgments that an ES is, in the 
context, “large” or “important.”

Table  2.1 includes units-free ESs (e.g., Pearson correlations on a scale 
from –1 to +1) and standardized ESs (e.g., Cohen’s d, a number of SDs). In 
many cases a researcher can assume that these will be familiar to readers, 
although, again, particular values may need explanation in the context, 
whether or not the researcher chooses to use Cohen’s reference values for 
small, medium, and large. Other ESs are less well known, for example, ω2 
(Greek omega-squared) as a measure of the proportion of variance attrib-
utable to an independent variable in an analysis of variance. They may 
need further explanation, although often a research field develops tradi-
tions of using particular measures, and so even a generally little-known 
ES may be familiar to researchers in that field. In such cases the field may 
also develop its own reference standards for what’s regarded as large or 
small, important or trivial. Researchers should be wary, however, of writ-
ing for only their close colleagues, and should consider as broad a target 
audience as possible. Research results need to be widely available and 
reported so practitioners, for example, can readily understand.

I’ve mentioned Cohen’s reference values for some ESs. Many of the 
tests used in education, psychology, and other disciplines include refer-
ence values that can similarly be used to assist interpretation. The Beck 
Depression Inventory is an example: For the BDI-II (Beck, Steer, Ball, & 
Ranieri, 1996), scores of 0–13, 14–19, 20–28, and 29–63 are labeled, respec-
tively, minimal, mild, moderate, and severe levels of depression. As a less 
formal example, a neuropsychologist colleague of mine describes a rough 
guideline he uses: A decrease of about 15% in the memory score of a client 
with some brain injury, between two testing times, is the smallest dif-
ference he judges likely to be clinically noteworthy. It would be great if 
increased attention to ES interpretation encourages researchers to develop 
further formal or informal conventions for what various sizes of effect 
mean in various contexts.

My conclusion is that a researcher first needs to judge how much can be 
assumed and how much needs explanation about an ES measure itself, and 
then should explain and interpret the particular values being reported. 
Examples 2.2 illustrate a wide variety of types of ESs and various strate-
gies researchers can use to explain and justify their interpretations.
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Examples 2.2  Reporting and 
Interpreting Effect Sizes

Volcanic Residues in Lake Sediments

Schiff et al. (2008) reported a study of a core sample taken from a lake 
bed in Alaska. They found 67 layers of tephra—volcanic ash—that 
had been deposited by 67 eruptions of a nearby volcano. They were 
interested in the timing of those eruptions, which they estimated 
from the depths of tephra layers in the core. They carried out several 
types of mathematical modeling, with much use of CIs. That was all 
rather complicated, but the main ESs were simple: The researchers 
discussed depths, layer thicknesses, and particle sizes, all expressed 
in centimeters; and times in years. They provided graphics to illus-
trate how depth in the core (expressed in cm) translated into years 
into the past, and gave tables reporting the size of the ash particles 
in the various layers and the thickness of those layers. The layers 
ranged in thickness from 0.1 cm to 8.0 cm, and depths from 3 cm 
to 562 cm. Estimated eruption times ranged from the present back 
to 8,660 years ago. The reporting is so comprehensive, and the ESs 
measures (cm and year) so familiar, that any reader can understand 
the main findings. The researchers were fortunate in being able to 
use such familiar ESs, but they took full advantage by presenting 
well-designed graphs and a clear discussion of the numerous values 
they observed.

Portion Sizes and Children’s Eating

Fisher and Kral (2008) investigated how portion sizes of presented 
food influenced how much children chose to eat. They discussed 
portion size in grams and amount eaten in grams and kilocalories. 
They used percentages freely. The ESs are sufficiently familiar for 
readers to easily understand the discussion. They spoke, for example, 
of their adolescents drinking “75% more juice when using a short …, 
wide glass than a taller …, narrower glass of the same volume” (p. 
43), and stated that “Doubling the … size of … a snack … increased 
energy intake … by 22% (~180 kcal)” (p. 41). The authors also defined 
the energy density of food; this measure may be unfamiliar to read-
ers, but the explanation given and its close link to weight in grams 
and energy in kilocalories mean that readers can understand. A typ-
ical conclusion was, “When the ED [energy density] of an entrée was 
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… reduced by 30%, 2- to 5-year-olds consumed 25% fewer [kilo]calo-
ries” (p. 41). Fisher and Kral used ES measures that were either very 
familiar or based on familiar measures, and therefore they could 
expect readers to readily understand their results and conclusions.

Dropping Out of Medical School

Dyrbye et al. (2010) surveyed students in a number of medical schools 
to study burnout and serious thoughts of dropping out. Their major 
ESs were the survey scores, so they described the questionnaires in 
the survey and referred to previous research that provided evidence 
of reliability and validity of the measures. They described in detail 
their own simple scale of “seriousness of thoughts of dropping out,” 
which ranged from “not seriously” to “extremely seriously.” They 
gave reference values for some measures, for example, by reporting 
that “mental quality of life” (QOL) scores have a mean of 49.2 and 
SD of 9.5 for the whole U.S. population. They also reported “pre-
established thresholds for health professionals” for several of the 
measures—for example, any score below 33 on the “low sense of 
personal accomplishment” scale is regarded as “low” for health 
professionals. These full descriptions and reference values gave a 
good basis for their discussion of the scores for their medical stu-
dents and interpretation of relationships between burnout measures 
and thoughts of dropping out. Once we know about the QOL mea-
sures, for example, we can grasp a summary statement that, other 
things being equal, a one-point-lower QOL score means a student 
is on average 5% more likely to have serious thoughts of dropping 
out during the following year. The main ES measures are unlikely to 
be familiar to readers, so full descriptions and reference values are 
needed, but then we can understand.

Improvement in Reading Ability

Edmonds et al. (2009) reported a meta-analysis of intervention stud-
ies that sought to improve the reading of teenagers with reading dif-
ficulties. They used “effect size, d” (p. 266) as their main measure, 
explained how it was calculated, then used Cohen’s reference values 
(0.2, 0.5, and 0.8) in their discussion. McGuinness (2004) also used 
d as the main ES in her large and impressive review of research on 
reading. (I discuss her work further in Chapter 7.) She didn’t mention 
Cohen’s reference values, but made statements such as, “Effect sizes 
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were low for comprehension (.10), marginal for word recognition, 
spelling, and writing (range .30 to .34), moderate for phoneme 
awareness (.56), and large for nonword decoding (.71)” (p. 148). She 
described a value of 0.74 as “solid” (p. 127). Her interpretations were 
thus largely consistent with Cohen’s reference values.

These two examples illustrate how a standardized ES, Cohen’s d, 
has become widely used and can serve as a good basis for discussion 
and interpretation. Researchers can use Cohen’s reference values or 
make their own evaluations of size, but should justify their choice in 
the particular context.

Risk of Colon Cancer

Moore et al. (2004) studied the relation between obesity and the risk 
of colon cancer. I’ll use their study to discuss two ESs: body mass 
index (BMI) and risk. BMI is calculated as a person’s weight in kilo-
grams divided by the square of his or her height in meters. Some 
experts criticize BMI because it makes no distinction between fat 
and muscle, but here I’ll follow Moore et al., who used BMI and the 
World Health Organization definitions of BMI <25 as normal, BMI 
between 25 and 30 as overweight, and BMI >30 as obese. Such refer-
ence values are useful for interpretation, but may change as research 
advances over the years, and different authorities may recommend 
different cutoffs. The risk of colon cancer is estimated as the pro-
portion of people in a particular group who developed the cancer 
during a defined period. Relative risk is the ratio of the risks for two 
different groups of people. One conclusion was that, for people aged 
30 to 54, other things being equal, being obese rather than of normal 
weight is associated with an increase in risk of colon cancer from 
1.2 to 1.8 in 1,000, which is a 50% increase in the risk. That’s reason-
ably understandable, but note that it’s important to be told the risks 
as well as the percentage increase, because a 50% increase in risk 
may have different implications if it’s an increase from a one-in-a-
million to a 1.5-in-a-million risk, or an increase from a 10% to a 15% 
risk. Each of those is a 50% increase in risk. (There’s more on this in 
Chapter 14.) Overall, Moore et al. gave sufficient explanation of BMI 
and risk, and of what various values mean, for their results and con-
clusions to be understandable to most readers.



 

From Null Hypothesis Significance Testing to Effect Sizes	 47

The main new statistics message of this chapter is that the focus of 
research should almost always be ESs. Adopt estimation thinking, use 
estimation language to express research goals as “how much” questions 
about ESs, report ES estimates with their CIs, then interpret those esti-
mates. However, there are also new statistics goals beyond ESs and CIs. 
For example, the answer to Q4 may be a negative correlation between pol-
lution level and fish fertility. A correlation is a perfectly fine ES, but even 
better may be a function that expresses the relation between the variables. 
The journal article may present a figure that plots how fertility changes as 
a function of pollution; there may even be an equation that describes the 
relation. Beyond “how much” questions are “what is the relation between” 
questions, whose answers can be even more informative, and the basis for 
what Paul Meehl (1978) wanted: theories and disciplines that are more 
quantitative. I hope the new statistics I discuss in this book encourage 
researchers to go further and develop and test such quantitative models.

It’s time for take-home messages. I invite you to write your own before 
looking ahead to mine. The preceding paragraph includes some reminders.

Greasing the Wheels

My final example is a cautionary tale. The title of Kim and Ruge-
Murcia’s (2009) article asks, “How much inflation is necessary to 
grease the wheels?” The researchers developed a complex math-
ematical model of one version of an ideal economy. Many strong 
assumptions were required. They then applied the model to the U.S. 
economy and concluded that an inflation rate of 0.35% per year leads 
to optimum results—if their model is correct and all the assump-
tions apply. Their ES of 0.35% for the inflation rate is familiar and 
easily grasped by most readers. We might possibly regard it as a low 
and desirable rate of inflation. However, figuring out what the whole 
study means in practice, and the extent to which the model and all 
the assumptions are realistic, is not nearly so straightforward. The 
simple and familiar final ES may even be misleading, if it tempts 
readers to overlook the complex underlying theory and its strin-
gent assumptions. No ES can be better than the data and models on 
which it’s based.
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Exercises

	 2.1	 Choose a journal of interest to you that reports empirical 
research. It’s best if it has relatively short articles. Find exam-
ples of poor NHST, including ambiguous use of the word 
“significant,” and use of relative p (e.g., p < .01) rather than 
exact p (e.g., p = .006).

	 2.2	 Find an example of the fallacy of the slippery slope of signifi-
cance: In the Results section of an article an effect is declared 
“significant,” or even “statistically significant,” because p is 
small. In the discussion, or the abstract, that effect is referred 
to as certain, or notable, or large, without any attempt to justify 
such an interpretation of the ES.

	 2.3	 Find examples of acceptance of a null hypothesis. Give yourself 
extra points for finding an example of the fallacy of the slippery 
slope of nonsignificance: An innocuous statement of “statistical 
nonsignificance” in the Results section becomes a statement of 
no difference in the discussion or the abstract.

	 2.4	 Read as much of Chapter 3 of Kline (2004, tinyurl.com/
klinechap3) as you find interesting. Focus on pp. 61–70 and 
85–91. Decide what attitudes you’ll take to NHST that you read 
in journal articles.

	 2.5	 Read as much of Haller and Krauss (2002, tinyurl.com/
nhstohdear) as you find interesting. Do the findings strike you 
as astonishing, or depressing? Print out the short question-
naire (in Section 2.2 of Haller and Krauss) including the six 
Oakes questions. Try them out on your friends—and maybe 
your teachers?

	 2.6	 Scan a few articles that report experimental results. In each arti-
cle, first identify a concise statement of the main experimental 
aim, if possible in relation to a single variable. Can you find a 
dichotomous statement of that aim? Is there also a “how much” 
statement of the same aim?

	 2.7	 Match some answers to the corresponding aims. Can you find a 
dichotomous statement that answers a dichotomous question? 
Can you find a “this much” answer to a “how much” question? 
In each case, go further and examine the conclusion or interpre-
tation: Is it expressed in dichotomous or estimation language?
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	 2.8	 Find a few dichotomous statements of hypotheses or experi-
mental aims. For each write down your own corresponding 
“how much” question.

	 2.9	 Here’s a challenging one: Find two results in a single article 
that are compared and that have the pattern of Figure 1.1. As 
in Lucky–Noluck, one should be statistically significant and the 
other not. (They need not appear in the article’s introduction, 
but could be results reported for two different groups or condi-
tions. See Example 2.1.) How are they compared? Is it concluded 
that they are different? Is there discussion about why they 
might be different? Is a null hypothesis implicitly accepted? If 
so, what wording is used to hide that? Suggest a better way to 
report and interpret the two results.

	 2.10	Look back at Figure 1.1. I criticized the strategy of concluding 
Inconsistent just because one result is statistically significant 
and the other is not. Could you use NHST to examine whether 
Inconsistent is justified? If so, how?

Exercises 2.9 and 2.10 are based on the previous chapter. There’s evidence that it 
helps learning to include questions about issues discussed earlier, so it’s best not 
to just skip them. Also try to find links with the current chapter.

	 2.11	Work at becoming a “new statistics aware” reader, always alert 
to misinterpretations caused by NHST, always asking the cor-
responding “how much” question.

	 2.12	Find examples of different types of ES estimates. They may be 
in the text, in tables, or in figures. Look for a mean, a percent-
age, a measure of change, and a correlation. For any statistical 
technique that you know about (analysis of variance, regres-
sion, chi-square, path analysis, factor analysis, etc.), look for 
examples of ES estimates.

	 2.13	For some of your ES examples, find where the ES is discussed 
or interpreted. Can you find at least one where the ES is given 
a substantive interpretation? In other words, find a statement 
about the meaning or importance of the observed size of 
the effect.

	 2.14	For an ES without such an interpretation, try to offer your own 
substantive interpretation: In your judgment, how important, 
or meaningful, or practically useful is an effect of the size 
observed? Justify your answer.
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	 2.15	Revisit your take-home messages. Improve them and extend 
the list if you can.

Take-Home Messages

•	 NHST as practiced in many disciplines is an uneasy mixture of 
Fisher’s idea that p is a measure of strength of evidence and the 
strict Neyman–Pearson rule to choose α in advance then decide 
between null and alternative hypotheses according to whether or 
not p < α.

•	 Beware NHST traps. A p value is a tricky conditional probability, 
assuming that the null hypothesis is true. It is not the probability 
that the results are due to chance.

•	 Whenever you read a p value, automatically think, “assuming the 
null hypothesis is true.”

•	 If reporting a p value, give an exact value, not merely a statement 
like p < .05.

•	 Beware the ambiguous word “significant.” Use it with great care, 
or avoid it.

•	 Statistical significance is different from practical importance—as 
you probably knew. But keep the distinction carefully in mind 
anyway. Beware the fallacy of the slippery slope of significance.
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•	 Avoid accepting a null hypothesis, even implicitly. Beware the fal-
lacy of the slippery slope of nonsignificance.

•	 Regarding p as a very rough index of strength of evidence against 
the null may be the least bad way to think about p.

•	 Notice the language used to express research aims and conclu-
sions. Wherever possible, prefer estimation language (“how much 
…?,” “to what extent …?”) to dichotomous language (“is there a 
difference …?”).

•	 An effect size (ES) is simply an amount of something that might 
be of interest. ES estimates from data are our best guide to popu-
lation ESs. ESs can be as familiar as a difference between means, 
a percentage change, or a correlation.

•	 The focus of research is usually effects. Report ESs and wherever 
possible the CIs, too.

•	 Interpret ES estimates, using knowledge of the research area and 
judgment, and justify the interpretation. Cohen’s conventional 
values may be useful. To what extent is each ES large or small, 
important or unimportant, useful to practitioners?

•	 The aim is to use estimation language, and estimation, in 
order to build more quantitative disciplines that make better 
research progress.
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3
Confidence Intervals

Soon we’ll sound the trumpets for the arrival of CIs, but we need to 
explore several other ideas first. Watch out for the dance of the means and 
the mean heap, then the margin of error. After that the trumpets won’t be 
far away. Here’s the plan for the chapter:

•	 The population and a random sample
•	 Sampling: dance of the means and the mean heap
•	 Errors of estimation, and the margin of error (MOE)
•	 Confidence intervals at last
•	 Reporting CIs
•	 Interpreting CIs: the first three approaches

There are two parts to this chapter: The first covers the first four bullet 
points and the second covers the last two. The first part is my version of the 
story that starts with sampling and finishes with CIs. Numerous textbooks 
give a version of that story. The main novel aspect of my version is that 
it focuses on understanding the extent of sampling variability—which, 
unfortunately, some people often underestimate. I hope ESCI pictures and 
simulations can help you build accurate intuitions about sampling vari-
ability. Because those pictures and simulations are so central, in the first 
part of the chapter I integrate ESCI activities more closely into the discus-
sion than in any other chapter. However, I include many figures, so I hope 
the discussion is useful even if you don’t work with ESCI as you read.

The second part of the chapter comprises the sections Reporting CIs 
and Interpreting CIs. These go beyond what many other textbooks say 
about CIs. I don’t need to integrate ESCI so closely into those sections.

Population and Samples

We need to start with a population and samples from that population. 
Suppose you are investigating the climate change awareness of university 
students in your country. You decide to use the Hot Earth Awareness Test 



 

54	 Understanding The New Statistics

(HEAT), which is a well-established survey—actually, I just invented it—
that asks questions about a respondent’s knowledge, attitudes, and behav-
ior in relation to climate change. You would like to know the mean HEAT 
score for students in your country. You plan to test a sample of students to 
estimate that mean.

Now we do some statistical assuming. (Box 3.1 gives extra detail, but it’s 
an optional extra.) Suppose there’s a large population of students in your 
country, and their HEAT scores are normally distributed with mean of μ 
and SD of σ (Greek sigma). You take a random sample of N students from 
that population, obtain their scores, and calculate the mean, M, and stan-
dard deviation, s, of your sample. You’ll use M as your point estimate of 
μ. Later you’ll calculate a CI to tell us the precision of your estimate—how 
close M is likely to be to the unknown μ.

That statistical model based on a normally distributed population and 
random sampling underlies many of the most commonly used statistical 
techniques. It’s the basis for the conventional CIs we discuss here, as well as 

Box 3.1  A Statistical Model

A statistics textbook says something like, “Consider random variable 
X with distribution N(μ, σ2). Let M be the mean of a random sample, 
size N, of X. Then M has distribution N(μ, σ2/N).” Those three sen-
tences summarize the first half of this chapter, but need some unpack-
ing. A random variable is simply a variable that can take some range of 
values, with various probabilities. The abbreviation N(μ, σ2) refers, as 
you probably guessed, to a normal distribution with mean μ and vari-
ance σ2, which implies standard deviation σ.

The sentences express a very widely used statistical model, based 
on a normally distributed population of X scores, with mean μ and 
standard deviation σ. The model considers random samples of X 
scores, each sample having size N. The sample mean is another ran-
dom variable M, and is normally distributed, with the same mean 
μ and smaller variance σ2/N. The SD of M is thus σ/ N . You may 
know that the distribution of M is referred to as the sampling distri-
bution of M, the sample mean, and that the SD of this distribution is 
called the standard error (SE). Therefore, SE = σ/ N . Sample mean 
M is a random variable because every time you take another sample 
you’ll get a slightly different value for M. Take numerous samples 
then the numerous values of M form the sampling distribution of M. 
The textbook probably also explains how sample statistics M and s 
are used as estimates of population parameters μ and σ. 
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for conventional NHST. It’s far from the only possibility, but it’s the model 
I use throughout this book. It makes important assumptions, notably

•	 Normality. In many cases in practice this strong assumption 
about the population distribution may be justified, in some cases 
a transformation of the dependent variable improves its appro-
priateness, and in some cases it’s not justified and some other 
approach should be taken.

•	 Random sampling. There are two vital aspects: First, every member 
of the population must have an equal probability of being sam-
pled, and second, all sample values must be chosen independently.

You should always keep these assumptions in mind and judge how closely 
they are met in a particular situation. In our example, the dependent vari-
able is the HEAT score, which we’ll refer to as X. It may be reasonable to 
assume at least approximate normality of HEAT scores in the population 
of all university students in your country. Considering random sampling, 
it’s unlikely you can ensure that every student has an equal chance of 
being included in your sample. Perhaps you can sample randomly from a 
range of disciplines in a variety of universities? You’ll need to judge how 
well you think your sampling strategy will give a sample representative of 
the population in ways that are relevant for your HEAT research question.

Independence, the second aspect of random sampling I mentioned, is 
crucially important. You need to make sure you choose each student in 
the sample separately, rather than, for example, choosing clusters of stu-
dents who are mutual friends, or who are in the same class. As so often 
in statistics, care and judgment are needed. This book is not primarily 
about research design, so I won’t extend this discussion. However, I must 
emphasize that the new statistics require attention to assumptions just as 
does NHST.

Note carefully the distinction between population and sample:

•	 The population is a supposedly infinite collection of university 
students in your country, or rather their HEAT scores. It’s com-
mon, if slightly confusing, to talk interchangeably of the popu-
lation comprising the students, or the 
HEAT scores. Anyway, it’s the HEAT 
scores, our dependent variable X, that 
we assume to be normally distributed. The population parameters 
are the mean μ and standard deviation σ of the population distri-
bution of X scores. The values of μ and σ are fixed but unknown—
because we can’t ever know the HEAT scores for every student in 
your country.

The population parameters μ and σ have 
values that are fixed but unknown.
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•	 By contrast, we know the N values of X that make up our sample, 
and can calculate the obtained sample mean M and standard 
deviation s. The sample statistics M and 
s have particular values for a particu-
lar sample, but if we repeat the experi-
ment—by taking another, independent 
sample—we would get different val-
ues for M and s.

In other words, we don’t know μ and σ, but we want to. We do know 
M and s for our sample, but we don’t especially care about those par-
ticular values, except to the extent they tell us something useful about 
μ and σ.

I’m about to turn to ESCI but, as I’ve said, I hope you can follow the 
discussion whether or not you use the software. I suggest you read 
the exercises, as well as the main text, but skim over references to the fine 
details of ESCI if you wish. Many of the exercises ask questions. Whether 
or not you use ESCI to find answers, you can consult the section near the 
back of the book that provides suggested answers. In any case, focus on 
the statistical ideas and the many figures I’ve included in the book.

Exercises

	 3.1	 Open the CIjumping page of ESCI chapters 1–4. Consult 
Appendix A for hints, especially the section Strategy for Getting 
Started With a New ESCI Page.

	 3.2	 Figure 3.1 shows the population, which for us is an idealized 
representation of all the HEAT scores of students in your coun-
try. It has a normal distribution, and the figure shows it’s a 
symmetric bell-shaped curve. Click near red 2 to display the 
population curve. Use the sliders to change population μ and σ, 
then set them back to the values μ = 50 and σ = 20, which we’ll 
assume are the population values for your country. (As you 
change σ, you can see the vertical scale automatically rescal
ing, so the curve is always displayed with a convenient verti-
cal height.)

	 3.3	 Click near red 2 to fill under the curve with random little blue 
circles, or data points, as shown in Figure 3.1. ESCI can’t display 
the infinite number of dots that, notionally, make the popula-
tion, but you get the idea.

The sample statistics M and s are calcu-
lated from our sample data. They would 
be different for a different sample. We use 
them as point estimates of μ and σ.
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	 3.4	 Click the Clear button near red 1—nothing happens, but we’re 
getting set. Click near red 4 to Display data points. Yes, still 
nothing, but now a dramatic moment: We’re about to take our 
first random sample.

Text that looks like Display data points refers to text or a label in the ESCI page.

	 3.5	 Use the spinner near red 3 to select your sample size, perhaps 
N = 20 or whatever you choose. Take a deep breath then click the 
Take sample button. You should see something like Figure 3.1. 
The scatter of points at the bottom is the 20 data points of our 
sample. That’s our simulated equivalent of finding a random 
sample of N students and testing them on the HEAT.

	 3.6	 Take more samples. The scatters of data points for successive 
samples vary greatly. As we’ll discuss in later chapters, ran-
domness is intriguing and weird. It’s important to develop 
good intuitions about randomness, although this is a chal-
lenge because there’s evidence that people often underesti-
mate the extent of random variability.

	 3.7	 Observe your samples of data points carefully. Would you agree 
that the sampled data points in the long run are about equally 
often below and above μ? That they tend to cluster fairly close 
to μ, but values farther from μ are quite common? Just occasion-
ally you get an extreme point? Those features of sampled values 
follow directly, of course, from the shape of the population and 
our sampling, which we assume gives every data point in the 
population an equal chance of being chosen.
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Figure 3.1
A part screen image from the CIjumping page of ESCI chapters 1–4. It shows the normally 
distributed population, with μ = 50 and σ = 20, and below, a scatter of points that’s a single 
random sample, N = 20, of HEAT scores taken from the population. We use X to refer to the 
HEAT scores.
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Sampling: The Mean Heap and Dance of the Means

The next important idea is the sampling distribution of the sample mean. 
Imagine taking lots of samples from a population—we’ll do that with ESCI 
in a moment. The means of those successive samples vary, but they tend 

to cluster around the population mean μ. 
Many such sample means form a distribu-
tion, called the sampling distribution of 
the sample mean. If we could take an infi-

nite number of samples, their means would form a normal distribution, 
thus demonstrating that the sampling distribution of the sample mean is 
normal. It’s an excellent question why this sampling distribution is nor-
mal in shape. The general answer to that question reveals a little magic.

The previous paragraph is an example of explanation that will shortly 
be followed by ESCI activities. If the text there is unclear, read on, and 
return after exploring the ideas with ESCI. Or peruse the text, and the 
ESCI exercises that follow, in parallel.

Some Statistical Magic, the Central Limit Theorem

You might wonder why statisticians choose the normal distribution as 
a statistical model. The answer is the central limit theorem, which is the 
central result in all theoretical statistics. If you make a variable (let’s call 
it X) by adding up lots of other variables, all independent, then X has, at 
least approximately, a normal distribution. The amazing thing is that it 
has a normal distribution pretty much whatever the distributions are of 
the other variables you add to get X. All those variables can even have 
distributions of different shapes but, provided they are all independent, 
their sum X is approximately normally distributed. If more variables are 
added, X is closer to normal. The normal distribution appears out of thin 
air, and in this way represents some fundamental aspect of the universe.

Shortly we’ll use ESCI to illustrate that the sampling distribution of 
the sample mean is normally distributed. ESCI currently offers only 
normal populations, but a future version might offer populations with 
distributions other than normal—maybe skewed, or with more than one 
hump, or different in other ways. The amazing thing is that even popu-
lations with weird distribution shapes will give a sampling distribution 
of means that’s approximately normal, and closer to normal for samples 
with larger N. We’re talking about two distributions here—the population 
and the sampling distribution of means. The central limit theorem states 
that the latter is approximately normal in shape, almost regardless of the 
shape of the population distribution.

The sampling distribution of the sample 
mean is the distribution created by the 
means of many samples.
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Think of the sample mean as the sum of lots of tiny, independent con-
tributions—the data points in the sample. The central limit theorem states 
that such sums have approximately a normal distribution. This way of 
thinking about the theorem gives a link with nature. Suppose you measure 
some natural quantity in the world, such as the length of adult ants or the 
time it takes for penguin eggs to hatch. Fairly often, although not always, 
a large set of such measurements is approximately normally distributed. 
If ant length or hatching time is determined by the addition of numerous 
separate influences—perhaps genetic, environmental, nutritional, or ran-
dom—then the central limit theorem says the result will be approximately 
normal. No doubt mere addition of independent influences is much too 
simplistic a biological model, but the idea probably does explain why the 
normal distribution often appears in nature, at least approximately. The 
central limit theorem and the normal distribution do seem to express 
some basic aspects of how the natural world functions.

The Standard Error

The SD of the sampling distribution of the sample mean is called the 
standard error (SE). That may be confusing, so it may be worth making it 
a chant. Dismay your friends at parties by intoning: "The standard error 
is the standard deviation of the sampling dis-
tribution of the sample mean." You can easily 
explain by pointing to the mean heap—
which we’ll discover in a moment. We’ll 
use ESCI to picture the SE, and to illus-
trate the formula:

	 SE = σ N 	 (3.1)

which is one of the few formulas you need to explore and remember.
We use ESCI to run simulations, which can be revealing. However, a 

simulation is not real life. It is vital to keep in mind two major ways that 
ESCI simulations differ from the usual research situation:

	 1.	A simulation requires that we assume some particular popula-
tion distribution. You choose a normal distribution, and values 
of μ and σ, which are shown on the screen. In our role as real-life 
researchers, however, we never know μ or σ—we are running the 
experiment to estimate them.

	 2.	We usually take many simulated samples, whereas in real life we 
almost always can run an experiment only once.

A chant: “The standard error is the standard 
deviation of the sampling distribution of the 
sample mean.”
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Distinguish carefully between playing around on the computer with 
simulations of many experiments, and running and analyzing a single 
experiment in real life.

Exercises

	 3.8	 We’ll now work toward generating pictures like those shown 
in Figure 3.2. Click Clear (button near red 1), and click near red 
3 to Display means. Take a sample. The sample mean is dis-
played as a green dot just below the scatter of data points.

	 3.9	 Click near red 4 to Show values. Values are shown on screen for 
M and s, the sample statistics for the latest sample you’ve taken. 
We can compare these values with the values we’ve chosen for 
their population counterparts μ and σ.

“Near red 4” can refer to anywhere in the colored area that has red 4 at its top 
left corner.

	 3.10	Click Take sample a few times. The means drop down the 
screen, as in Figure 3.2. Watch the values bounce around, and 
compare them with the μ value you set. Each click is equivalent 
to running an experiment, meaning you take a new sample of 
size N, obtain the HEAT scores for those N students, and then 
calculate M and s to use as estimates of μ and σ, the unknown 
parameters we’re studying.

	 3.11	Click Run-Stop and watch the sample means dancing down 
the screen. It’s the dance of the means, as in Figure 3.2, which illus-
trates the extent of variation or bouncing around of the mean 
from sample to sample. (If the dance is a bit slow, try clicking 
near red 2 to hide the popula-
tion.) Imagine (or play on your 
computer) your choice of backing 
music for the dance.

	 3.12	Click Run-Stop again to stop the dance, then Clear. Now think 
about two predictions: First, if you change N, what will happen 
to the dance? For example, will larger N give a more drunken 
dance—the means tending to vary side-to-side more—or a 
more sober dance? What about smaller N? Make your predic-
tions—write them down. The two halves of Figure 3.2 illustrate 

The dance of the means is my name for a 
sequence of sample means falling down the 
screen.
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Figure 3.2
Dance of the means—the dots dropping down the screen. Upper half: N = 15. Lower half: 
N = 60. In each case the population distribution is displayed at the top, and the latest sample 
appears as the scatter of N data points in a horizontal line just below.
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the dance for different values of N. Are your predictions consis-
tent with what that figure shows?

	 3.13	Second, what would happen if you increase or decrease σ? Any 
change to the drunkenness of the dance? Which way would it 
change? Lock in your predictions.

	 3.14	Experiment to test your predictions. Which change—a differ-
ent N or a different σ—tends to make more difference?

	 3.15	Click Mean heap near red 5 to see all the means collapse 
down into a pile of green dots, as Figure  3.3 illustrates. This 
is the sampling distribution of the 
mean, and I call it the mean heap. 
Run the simulation to build up a 
good-sized heap. Do this for vari-
ous values of N, and keep track of how wide the heap appears: 
Record for each N your eyeball estimate of the SD of the mean 
heap. (It may help to recall the rule of thumb that about 95% 
of the values in a normal distribution lie within 2SD on either 
side of the mean. If that’s unfamiliar, explore Appendix B.) 
Figure 3.3 shows the mean heap for two values of N. Should we 
prefer a narrow or a wide mean heap, bearing in mind that we 
are trying to estimate μ? Translate your conclusion into advice 
for a researcher who is considering what size sample to take.

In Figure 3.3, the mean of the latest sample, which has just been added to the mean 
heap, is highlighted as a large black dot. In ESCI it appears as a dark green dot, 
the same size as the dots for the other means. Small features sometimes appear to 
be a little different in the figures than in ESCI, to clarify what the figures show.

	 3.16	Click Display sampling distribution curve near red 6. The nor-
mal distribution displayed on the mean heap, as in the lower 
panel of Figure 3.4, is the theoretical sampling distribution of the 
sample mean. We can compare that 
with the mean heap, which is the 
empirical sampling distribution of 
the sample mean—the heap of just 
the means we’ve taken so far. The 
curve is the distribution theoreti-
cally predicted from knowing μ, σ, and N. (In ESCI, the curve is 
scaled vertically so it fits to the mean heap. Take more samples, 
and both the mean heap and sampling distribution curve grow 
higher—but not wider; the SD of the sampling distribution 
remains the same.)

Take an infinite number of samples and the 
distribution of their means is the theoretical 
sampling distribution of the sample mean. 
(The mean heap is my name for the empirical 
sampling distribution of the sample mean.)

The mean heap is my name for the sampling 
distribution of the sample mean. It’s a pile 
of green dots that represent sample means.
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Figure 3.3
The mean heap, in each case after taking 100 samples. Upper half: N = 15, and the eyeball 
estimate of the SD of the mean heap may be about 5. Lower half: N = 60, and the SD of the 
mean heap looks to be about 3. The mean of the latest sample is displayed as a highlighted 
dot when it is added to the heap.
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	 3.17	The SD of the sampling distribution of the sample mean is 
given the name standard error (SE), so the SE is just a particular 
SD. Think of the SE as summarizing the breadth or spread of 
the mean heap—or its curve.

	 3.18	Click Display SE lines near red 6 and see vertical lines marking 
SE units across the sampling distribution curve. These vertical 
lines are displayed in the lower panel of Figure 3.4.

	 3.19	Near red 6 find Curve SE and note its value. The popout com-
ment explains that it’s the SE of the sampling distribution curve. 
Does it change if you take further samples? Why?

	 3.20	Click Display SD lines near red 2 (if necessary, click Display 
population first). SD lines for the population curve are dis-
played, as in the upper panel of Figure 3.4. Compare these with 
the SE lines for the sampling distribution curve in the lower 
panel. In each case you can regard the lines as marking z = 0 
(the mean), and z = –2, –1, and +1, +2, etc., for the respective 
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Figure 3.4
The upper panel displays the population distribution, with lines marking SD units, show-
ing σ = 20. Below is the mean heap. The superimposed curve is the sampling distribution of 
the mean, with lines marking SE units. In this example, N = 15, and 200 samples have been 
taken. The SE = σ/ /N = =20 15 5 16. .
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normal distributions. (Click Display means near red 3 to hide 
the means, if you want to see the sampling distribution curve 
more clearly.)

	 3.21	The sampling distribution is normally distributed—as the 
curve on the mean heap illustrates—with mean μ and SD of 
σ/ N . The vital formula to remember is SE = σ/ N . Maybe 
write this formula down, for safekeeping. The mean heap, and 
its curve, is centered symmetrically under the population, and 
its SD is smaller than that of the population—by a factor of N .

	 3.22	If N is made four times bigger, N  becomes twice as large, 
so the SE should be halved. Compare the lower halves of 
Figures 3.2 and 3.3, for which N = 60, with the upper halves, for 
which N = 15. Does the lower dance seem about half as varied, 
half as wide as the upper? The lower mean heap about half 
as wide as the upper? Unfortunately, to halve the amount of 
variation we need to take a sample four times as big. That’s bad 
news for researchers trying to make precise estimates because, 
as we’ll see, the SE determines precision. A broad mean heap 
signals a large SE and imprecise estimates.

	 3.23	This might be a good spot to cross-check with any other statis-
tics textbook you are using. See if you can use ESCI to illustrate 
the way your other textbook explains sampling and sampling 
distributions.

	 3.24	Use the values of σ and N that you set, and which are shown 
near red 2 and red 3, to calculate SE. Check that the value 
shown at Curve SE is correct.

	 3.25	Suppose HEAT scores have mean = 50 and SD = 20 in your 
country. For samples of N = 30, what is the SE? (Use the formula 
to calculate it, then use ESCI to check.) Describe the sampling 
distribution of the mean.

	 3.26	That’s a typical textbook problem. Invent and solve a few more. 
Do a few from your other textbook. Maybe invent some, and 
swap with a fellow learner.

	 3.27	Recall our chant: “The standard error is the standard deviation 
of the sampling distribution of the sample mean.” If someone 
asks, “What’s a standard error?” you can bring to mind the 
mean heap as a pile of green dots, then explain about its SD.

	 3.28	Make up some exercises for discovery learning of the SE = σ/ N  
relation. You could suggest first making predictions, or guessti-
mates, of the SE of the mean heap (and the sampling distribution 
curve) for a few widely separated values of N that you nomi-
nate. Then, for each of those N values, take at least 50 samples 
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and eyeball the SD of the mean heap—which as you know is the 
SE. See Figure 3.3 and its caption. Compare those eyeballed esti-
mates with the ESCI values near red 6 for the Mean heap SE, 
which is the SE of the displayed mean heap. What does a graph 
of those SE values against N look like? How accurate were the 
original predictions? Find someone who doesn’t know about SE 
to try out your exercises.

Errors of Estimation, and the Margin of Error

We take a sample and calculate M because we want an estimate of μ. How 
good an estimate is it? The estimation error is (M – μ), and is different for 

every sample. The center of the mean heap 
is at μ, and the sample means, shown by the 
green dots, cluster around μ but generally 
fall a little to the right or left of μ. The dis-
tance away they fall is (M – μ), the estima-

tion error. We can think of the mean heap, and the sampling distribution 
of M, as the distribution of estimation errors. Most green dots fall fairly 
close to μ, so have small estimation errors; many fall a moderate distance 
away; and just a few fall in the tails of the sampling distribution, which 
signals large estimation errors.

We define the margin of error as the largest likely estimation error. 
The abbreviation is MOE, which you can read out as M-O-E, although I 
prefer to say it as “MOW-ee.” We usually 
choose “likely” to mean 95%, so there’s a 
95% chance that the estimation error is less 
than the MOE, and only a 5% chance that 
we have been unlucky and our sample mean M falls in one of the tails of 
the sampling distribution. You probably know the rule of thumb for any 
normal distribution: About 95% of the values fall within 2SD on either 
side of the mean. Therefore, 95% of sample means will fall within about 
2SE of the mean of the sampling distribution. (Remember that SE is the SD 
of that distribution. I sometimes suspect that those terms were selected 
to be as confusing as possible.) We can therefore state that MOE = 2SE, 
approximately, and that’s the value to remember for eyeballing purposes. 
More accurately, MOE = 1.96 × SE because 1.96 is the critical value z.95 from 
a normal distribution. (Appendix B does some relevant explaining.)

The 95% of the M green dots that fall within MOE (i.e., about 2SE) 
on either side of μ have estimation error less than MOE, and only the 
5% that fall farther than this from μ, within one or the other tail, have 

Estimation error is (M – μ), the distance 
between our point estimate based on the 
sample and the population parameter we 
are estimating.

The margin of error (MOE) is the largest 
likely estimation error. If “likely” is taken 
to mean 95%, MOE is approximately 2SE.



 

Confidence Intervals	 67

estimation error greater than MOE. Warm up the trumpets: The CIs are 
about to arrive.

Exercises

	 3.29	With the mean heap, sampling distribution curve, and SE 
lines displayed, click near red 6 to Display ±MOE around μ. 
Your screen should resemble Figure 3.5. On the bottom axis is 
a green stripe that indicates a distance of one MOE on either 
side of μ. At the ends of the stripe, heavier green vertical lines 
mark a distance of MOE on either side of μ. How many SE 
units away from μ are the heavier green vertical MOE lines? 
Is that what you expected?
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Figure 3.5
Same as Figure 3.4, but with MOE marked. The stripe at the bottom, which is green on the 
screen,  extends MOE on either side of the mean μ = 50, where MOE = 1.96 × 5.16 = 10.12. The 
ends of the stripe are marked with heavier vertical lines. We expect about 95% of means to 
fall between those lines and, correspondingly, we expect 95% of the area under the sam-
pling distribution curve to fall between those vertical lines.
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	 3.30	What percentage of green dots will fall between those MOE 
lines? What percentage beyond those lines to the left? Beyond 
them to the right?

	 3.31	 Click near red 5 to return from the mean heap to the dance of 
the means, run the simulation, and watch how often a mean 
falls outside the MOE lines, to the left or right.

	 3.32	Suppose HEAT scores have μ = 50 and σ = 20. For N = 36, calcu-
late the MOE (i) approximately, and (ii) exactly. Use your answer 
to (ii) to find an interval that in the long run should include 95% 
of sample means.

	 3.33	Set up that situation in ESCI, make sure Display ±MOE around 
μ is clicked on, and note the MOE value shown near red 6. 
Check that it’s the same as you calculated.

	 3.34	How would you expect MOE to change for different N? For dif-
ferent σ? Test out your predictions. In each case, note about how 
many green dots fall outside the MOE lines.

	 3.35	Consider our initial question about the mean HEAT scores in 
your country. State your aim in an estimation-thinking “how 
much” way.

CIs at Last: Sound the Trumpets!

We’ve talked about MOE as describing how sample means clump around 
μ. Informally, MOE tells us about the “width” of the mean heap, or of the 
sampling distribution: The green stripe at the bottom of the mean heap, as 
in Figure 3.5, is 2MOE long and includes 95% of means. In 95% of cases the 
estimation error is less than MOE, or in other words |M – μ| < MOE. (The 
vertical bars mean absolute value, so |M – μ| equals whichever of (M – μ) 
and (μ – M) is greater than zero.)

Figures 3.1 to 3.5 show simulations, in which we assume μ and σ are 
known. Now consider Figure  3.6, which shows all we know as typical 
researchers: our single sample of N = 15 data points and their mean. All 
this ESCI work with simulations is intended to build intuitions about 
what lies behind such a set of data. Whenever you see a data set, first bring 
to mind the population and recognize that you don’t know its μ or σ. In 
practice you usually also don’t even know whether or not the population 
is normally distributed, although here we’re assuming it is. Next, visual-
ize the dance of the means and the mean heap. We have a single green 
dot, but it’s randomly chosen from the infinite dance. The drunkenness of 
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the dance—meaning the amount the means bounce around from side to 
side—or the width of the mean heap, would tell us how far our M might 
be from the μ we want to estimate. As well as thinking of their own data, 
researchers should always think about what other values they easily 
could have obtained, if they’d happened to take a different sample. We 
could have obtained any of the means in the dance.

We’ll use our M to estimate μ, and we want to know how good an esti-
mate it is. Here’s a wonderful fact: We can use MOE to provide informa-
tion about that precision. We rely on this obvious relation: If M is likely 
to be close to μ—as the last page or two has illustrated—then μ is likely to 
be close to M. As simple as that. The simulation shows us that, for most 
samples, M falls pretty close to μ, in fact within MOE of μ. Now we have 
only a single M and don’t know μ. But, unless we’ve been unlucky, our M 
has fallen within MOE of μ, and so, if we mark out an interval extending 
MOE on either side of our M, most likely we’ve included μ. Indeed, and 
that interval is the confidence interval (CI)!

We define the interval [M – MOE, M + MOE] as the CI. In 95% of cases, 
that interval will include the unknown population mean μ. That’s the inter-

val we want, and so we can now celebrate 
with the trumpets. Recall that MOE = 1.96 
× SE = 1.96 × σ/ N . Therefore,

	 the 95% CI is [M – 1.96 × σ/ N , M + 1.96 × σ/ N ]	 (3.2)

For eyeballing purposes, use 2 in place of 1.96.
We can label the 95 as the level of confidence, C, because it specifies how 

confident we can be that a CI includes μ. 
It’s also referred to as the confidence level. 
We usually choose C = 95, but other val-
ues are possible and you can use ESCI to 
experiment with them.

The confidence interval on the sample mean 
M is the interval [M – MOE, M + MOE], 
which extends MOE on either side of M.

The level of confidence, or confidence level, 
is the 95 in “95% CI.” It specifies how con-
fident we can be that our CI includes the 
population parameter µ.
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Figure 3.6
All a researcher knows: a single sample of N = 15 data points and their mean.



 

70	 Understanding The New Statistics

You might have noticed a problem: MOE is calculated from σ but, you 
ask, how can we do that when we don’t know σ? You’re correct, but as a 
first step we’ll assume σ is known and use it to calculate MOE and the CI. 
As a second and more realistic step, we’ll use our sample s as an estimate 
of σ in our calculation of MOE for the CI. Assuming σ is known, MOE 
is calculated using z.95 = 1.96. Dropping that assumption and using s to 
estimate σ, we need instead to use a critical value of t. As you probably 
know, using t requires us to choose an appropriate value for the degrees of 
freedom (df). For our situation, with a single sample, df = N – 1, and the criti-
cal value we need is t.95(N – 1). Use the Normal z t page of ESCI chapters 
1–4 and the notes in Appendix B to find any critical values of z or t that 
you need. Then,

	 the 95% CI is [M – t.95(N – 1) × s N/ , M + t.95(N – 1) × s N/ ]	 (3.3)

Exercises

	 3.36	Display the dance of the means, click near red 8 to mark μ 
with a black vertical line, and click Display ±MOE around μ. 
Compare with Figure 3.7, upper half. Do you have any means 
beyond MOE? What percentage would you expect in the 
long run?

	 3.37	The green stripe at the bottom has length 2MOE. We are going 
to take a line of that length and place it over each mean to mark 
an interval extending MOE on either side of the mean. (At this 
point, make sure that Assume σ known near red 7 is clicked 
on, but Mean heap is not clicked.) 
Near red 7 click Display CIs, and 
there they are. Run the simula-
tion and enjoy the dance of the CIs. 
Music? Compare with Figure  3.7, 
lower half.

	 3.38	A CI includes μ, or captures μ, every time, unless the mean falls 
outside the MOE lines. Run the simulation and watch. What 
percentage of CIs will in the long run miss μ? What percentage 
will miss to the left? To the right?

	 3.39	All our CIs are the same length because we are using the same 
MOE value for each. That’s calculated from σ, which for the 
moment we’re assuming is known.

The dance of the confidence intervals is the 
sequence of CIs bouncing around for succes-
sive samples, as in Figure 3.7, lower half, and 
Figure 3.8.
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	 3.40	 Unclick Display ±MOE around μ to hide the MOE lines; then 
near red 9 click Show capture of μ, as in Figure 3.8, upper half. 
If a CI doesn’t capture μ, ESCI displays it in red. Do you have 
any red CIs? Explain.

	 3.41	 Click off Assume σ known near red 7. What happens? Compare 
with Figure 3.8, lower half. Click on and off a few times and 
watch carefully. If we drop the assumption that σ is known we 
are being much more realistic. MOE is now calculated using s 
as our estimate of σ.
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Figure 3.7
Dance of the means, N = 15 for each sample. A vertical line marks μ = 50. In each half of the 
figure a stripe at the bottom extends MOE on either side of μ, and the ends of the stripe are 
marked by vertical lines. Two means happen to fall outside those MOE lines. In the lower 
half, error bars of length MOE on either side of each mean are displayed: These are the 95% 
CIs. Only for the two means falling outside the MOE lines does the CI fail to include μ.
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	 3.42	Every sample has its own s, and so the CIs vary in length from 
sample to sample. What would happen for N = 10, or even 
smaller? Would s vary more or less, from sample to sample? 
Would s typically be a better or worse estimate of σ? Would you 
expect CI length to vary more, or less, from sample to sample? 
What about N = 100?

	 3.43	 Experiment to test your predictions. Explain.
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Figure 3.8
Dance of the CIs, N = 15 for each sample. CIs that miss μ are marked here with a larger black 
dot for the mean; in ESCI they are red. Upper half: Assuming σ is known. Lower half: That 
assumption is dropped and each CI is calculated using s for that sample, so the CIs vary in 
length. Whether a CI captures μ or not may change when the assumption about σ changes, 
as here for the sample 11th from the bottom.
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	 3.44	 Assuming σ is known, the CI was based on σ and the critical 
value of z. Without knowing σ, we use instead s and the critical 
value of t. So the 95% CI is [M – t.95(N – 1) × s N/ , M + t.95(N – 1) 
× s N/ ]. Suppose you choose N = 20, take a sample, and calcu-
late from your data that M = 44.2 and s = 17.5. Calculate the 95% 
CI. Use the Normal z t page of ESCI chapters 1–4 to find the 
critical value of t you need; Appendix B has suggestions to help. 
While you are using that ESCI page, have a play with the shapes 
of the t distribution for various values of df, and compare with 
the normal distribution.

	 3.45	 Calculating that CI is a typical textbook problem. Invent a few 
more, as varied as you can, and swap with a fellow learner. 
Work out the answers to each other’s problems. (That’s a good 
thing to do with a friend?) Do some similar exercises from 
another statistics textbook you know.

	 3.46	 Figure 3.9 is the same as Figure 3.6, but now we have calculated 
the 95% CI using s from our data points. How should we think 
about that CI?

What does the 95% mean? In general, how should we interpret a CI? We’ll dis-
cuss that in future chapters, but the figures around here give the basic answer. 
Our CI is one of an infinite sequence of possible CIs generated from the infinite 
dance of the means—from the infinite collection of samples, any of which we might 
have obtained in our experiment. In the long run, 95% of those CIs will capture μ, 
and 5% will miss. CIs that miss are shown in Figure 3.8 with a larger black dot, 
and in ESCI are shown in red.

It’s a basic CI slogan: “It might be red!” We 
can be 95% confident that our CI captures μ, 
but it might be red. In your lifetime of calcu-
lating and reading and considering numerous 

For any CI bear in mind, “It might be red!” It 
might be one of the intervals that don’t cap-
ture μ, although in real life we’ll never know.
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Figure 3.9
All that the researcher knows: the data points of a single sample with N = 15, as shown in 
Figure 3.6, but now the 95% CI has been calculated, using s.
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95% CIs, around 95% will include the population parameters they estimate, and 
5% will be red. It’s a great convenience that ESCI can display in red the CIs that 
miss μ. Alas, in real life CIs don’t come in color: You can never be sure whether 
any particular CI should be red or not.

	 3.47	 Return to ESCI CIjumping and set up the dance of the CIs, 
showing capture, as in Figure  3.8. What do you expect if we 
change C, the level of confidence? Would 99% CIs be narrower 
or wider than 95% CIs? You are aiming for higher confidence 
of capturing μ, so would you need a narrower or a wider net? 
What about 90% or 80% CIs? Lock in your predictions.

	 3.48	 Near red 7 is the spinner to set C. Read the popout. Change C 
and test your predictions. Does it make sense that CIs some-
times change color as you change C? (Note: The spinner will 
give you values up to 99, but you can type in values up to 99.9. 
Type in a value, then press Enter on your keyboard.)

	 3.49	 Play around with C. Think back to Figure 3.5, the mean heap, 
and MOEs and the percentage of the mean heap they include. 
Any surprises as you vary C over a wide range?

	 3.50	Set C = 95, the value we almost always use. Click Assume σ 
known on, so CIs are all the same length. Make sure capture of 
μ is indicated by deep green or red. Run the simulation, enjoy 
the dance of the CIs to your favorite backing music, and watch 
Percent capturing near red 9. What happens near the start of 
a run? What happens after a minute or two? After 10 minutes? 
After an hour or more?

	 3.51	 Do it all again without assuming σ known, so the CIs vary in 
length.

	 3.52	 Do it all a few more times, with various values of N including 
some very small values, and N = 100, the maximum this simula-
tion allows.

	 3.53	Do it all yet again for various values of C.

Early in a run, after taking a small number of samples, the percentage capturing 
may differ a bit from C. Do you find it impressive that, after a minute or two, and 
certainly after 10 minutes or more, the percentage capturing is close or very close 
to C? Even more impressively, that’s true for any N, any C, and whether or not 
you assume σ is known. Yes, the formulas for CIs predict extremely well how ran-
dom sampling behaves. (And the random number generator I am using in ESCI 
is very good.)
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	 3.54	Study Figure  3.9 again. That’s all a researcher knows. That’s 
all that’s available for the Results section in a journal article. 
Whenever you see such a figure, or a Results section, you 
should bring to mind two underlying things to illuminate how 
you think about the results. What are they? Hint: Look back to 
Figure 3.6 and the discussion of that.

Reporting CIs

This is a good moment to reflect on the journey so far. I’ve argued that 
NHST is deeply flawed, is often misunderstood, and can mislead. If used 
well, estimation not only avoids the problems of NHST, but prompts 
researchers to ask “how much?” questions, and these questions are likely 
to give more informative answers than NHST’s dichotomous questions. 
Estimation is based on point ES estimates, and interval estimates—which 
are the CIs we’ve just been discussing. So we’ve now encountered ESs and 
CIs, which are the basic building blocks for the new statistics. The main 
business of the rest of this book is to consider additional ESs, discuss six 
ways to interpret CIs, and introduce meta-analysis—which itself is based 
on ESs and CIs.

It’s worth celebrating CIs and what they have to offer. (Wine, coffee, or 
another play with CIjumping?) The simple message of this section is that 
we should always, where possible, report CIs for any ES estimates. Report 
them in the text, in tables, or in figures, as is most helpful for your read-
ers. I’ll now outline what the Publication Manual (APA, 2010) says about 
reporting CIs.

Recommendations of the APA Publication Manual

Your discipline may not use the Publication Manual, but journals in a very 
wide range of NHST disciplines refer to it, so its advice is influential. In 
any case, it says sensible things about CIs. It includes a strong statement 
about CIs:

The inclusion of confidence intervals (for estimates of parameters, 
for functions of parameters such as differences in means, and for 
effect sizes) can be an extremely effective way of reporting results…. 
Confidence intervals combine information on location and precision 
… they are, in general, the best reporting strategy. The use of confi-
dence intervals is therefore strongly recommended. (APA, 2010, p. 34)
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The Manual then goes on to make the key recommendation I have 
already mentioned that researchers should “wherever possible, base dis-
cussion and interpretation of results on point and interval estimates” 
(p. 34).

The Manual specifies that a CI reported in text should be shown in 
the square bracket format I have been using in this book: z = 0.65, 95% 
CI [0.35, 0.95]. Here’s another example: M = 30.5 cm, 95% CI [18.0, 43.0], 
which shows that the units of measure-
ment (cm) should not be repeated in the 
square brackets. You might think the 
simple matter of how to report a CI in text 
would have been decided years ago, and 
some nice, clear format would be everyone’s choice. Surprisingly, how-
ever, not even medicine has settled on a format that has become widely 
used, even though it has routinely reported CIs since the 1980s. I hope the 
Manual’s […, …] format will quickly become familiar as signaling a CI. 
The Manual uses the same format for other levels of confidence, so you 
could, for example, report a mean response time as M = 625 ms, 99% CI 
[564, 686]. My recommendation, though, is to use 95% CIs unless there are 
good reasons for choosing some other level of confidence. It’s challenging 
enough to build up good intuitions about the standard 95% level of con-
fidence without trying to cope with CIs having a variety of levels. There’s 
more about that in Chapter 4.

The Manual says the “95% CI” (or other level of confidence) should 
appear before the square brackets for the first CI reported in any para-
graph, but can be omitted for any further CIs reported in the same par
agraph. So a later report in the same paragraph might be z = 1.12, [0.66, 
1.58]. However, I hope the […, …] format will become so familiar for 95% 
CIs that the “95% CI” need only be stated once at the start of an article.

Chapter 5 in the Manual includes many examples of tables, and it’s excel-
lent that four of those examples include CIs. The wise advice is, “When a 
table includes point estimates, for example, means, correlations, or regres-
sion slopes, it should also, where possible, include confidence intervals” 
(APA, 2010, p. 138). To show CIs in a table you can either use the […, …] 
format, or use separate columns for the values of the interval endpoints: 
the lower limit (LL) and upper limit (UL) of each interval.

Tables  3.1 and 3.2 illustrate those two formats recommended by the 
Manual, using a small proportion of the data reported by Strandberg-
Larsen, Grønbœk, Andersen, Andersen, and Olsen (2009). The tables show 
point and interval estimates for the relative risk of postneonatal mortality, 
defined as an infant dying between 28 days and one year after birth, for 
various levels of drinking by the mother. The risk for mothers reporting 
no drinking is used as the comparison, so the first row of data shows 

To report a CI, use this format: “The mean 
response time was M = 567 ms, 95% CI [512, 
622].” For subsequent intervals, you can 
omit the “95% CI” if the meaning is clear.
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relative risk of 1.00. The values of relative risk are adjusted to allow for 
differences in many other characteristics, including maternal age, socio-
economic status, and smoking status. The tables suggest that levels of 
drinking up to an average of 3.5 drinks per week have little impact on 
postneonatal mortality, but a mean consumption of four or more drinks 
per week increases risk. The point estimate is an increase by a factor of 
about 3 but, despite the study analyzing data for about 80,000 births, the 
CI is wide—from about a 20% increase in risk to an increase by a factor of 
about 7. Having the CIs certainly gives a fuller picture of the results than 
either just the point estimates, or those estimates plus the information that 
only for the bottom row does the increase reach statistical significance.

Table 3.1

An Example Table Reporting the Association of Alcohol 
Consumption During Pregnancy With Infant 
Postneonatal Mortality

Alcohol Consumption 
(Average Drinks/Week)

Relative Risk of 
Postneonatal Mortality 

(Adjusted) 95% CI

0 1.00 —
0.5–1.5 0.82 [0.48, 1.39]
2–3.5 0.68 [0.27, 1.71]
4 or more 2.91 [1.22, 6.95]

Source:	 Data from K. Strandberg-Larsen, M. Grønbœk, A.-M. N. 
Andersen, P. K. Andersen, & J. Olsen (2009). Alcohol 
drinking pattern during pregnancy and risk of infant 
mortality. Epidemiology, 20, 884–891.

Table 3.2

A Second Example Table Reporting the Association of 
Alcohol Consumption During Pregnancy With Infant 
Postneonatal Mortality

Alcohol Consumption 
(Average Drinks/Week)

Relative Risk of 
Postneonatal Mortality 

(Adjusted)

95% CI

LL UL

0 1.00 — —
0.5–1.5 0.82 0.48 1.39
2–3.5 0.68 0.27 1.71
4 or more 2.91 1.22 6.95

Source:	 Data from K. Strandberg-Larsen, M. Grønbœk, A.-M. N. 
Andersen, P. K. Andersen, & J. Olsen (2009). Alcohol 
drinking pattern during pregnancy and risk of infant 
mortality. Epidemiology, 20, 884–891.
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Interpreting CIs

In this and the next two chapters I’ll describe six ways to think about and 
interpret CIs. The first is based on the definition of a CI. The following five 
I’ll describe in an order that’s convenient for presentation, but it is not an 
order of priority or preference. It’s helpful to have many possibilities in 
mind for interpreting CIs, and to use whichever one or ones are most illu-
minating in a particular situation. After I’ve discussed them all, Table 5.1 
provides a summary.

It may seem surprising, but the experts are not fully agreed on 
how best to interpret CIs. Of the six approaches I’ll describe, only 
the first, which is based on the definition of the level of confidence, is 
fully endorsed by everyone. The others each attract quibbles or criti-
cism from one or another expert. I’ll explain something about some 
of the issues, but mainly I’ll take a pragmatic approach and discuss 
approaches to interpretation that seem valuable to me. All six interpre-
tations I describe are, in my view, reasonable as well as often useful in 
practice.

CI Interpretation 1: One From the Dance

As I mentioned, it’s always correct to 
think of the CI calculated from our sam-
ple data as one from the potentially infi-
nite sequence of intervals that we’d obtain 
if the experiment were repeated indefi-
nitely. Each interval is just one randomly chosen from the dance of the CIs. 
As you inspect your interval, have in your mind’s eye the dance of similar 
intervals. You realize that if your interval is narrow, most likely the dance 
is quite sober, but the wider your interval, the more varied (and wider) the 
dance is likely to be. Most likely your interval captures the parameter you 
wish to estimate, but, by chance, you may have an interval that doesn’t 
include the parameter and that ESCI would show in red. Never forget, “It 
might be red!” Example 3.1 refers to the first interpretation of a CI.

CI Interpretation 2: Interpret Our Interval

It’s tempting to say that the probability is .95 that μ lies in our 95% CI. Some 
scholars permit such statements, while others regard them as wrong, mis-
leading, and wicked. The trouble is that mention of probability suggests μ 
is a variable, rather than having a fixed value that we don’t know. Our inter-
val either does or does not include μ, and so in a sense the probability is 
either 1 or 0. I believe it’s best to avoid the term "probability," to discourage 

Interpretation 1 of a CI. Our CI is one from 
the dance—an infinite sequence of repeats 
of the experiment. Most likely it captures the 
parameter we’re estimating, but, “It might 
be red!”
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any misconception that μ is a variable. However, in my view it’s acceptable 
to say, “We are 95% confident that our interval includes μ,” provided that 
we keep in the back of our minds that we’re referring to 95% of the inter-
vals in the dance including μ, and 5% (the red ones) missing μ.

By saying I’m 95% confident that our CI contains μ, I’m saying that 
the values in the interval are plausible as 
true values for μ, and that values outside 
the interval are relatively implausible—
although not impossible. We can thus 
consider substantive interpretation of the 

Example 3.1  Interpretation 1—
One From the Dance

We should always have in mind that our 95% CI is one from an infi-
nite sequence of repeated experiments. Researchers rarely write 
about this basic way of interpreting CIs, but I can give one exam-
ple that comes close. Scott, Lambie, Henwood, and Lamb (2006) 
reported an analysis of New Zealand crime statistics. Referring to 
a set of 96 convictions for rape, one question they examined was the 
relative chance that an intruder rapist (a person who intruded into 
a residence to commit the crime), compared with a nonintruder rap-
ist, had a previous conviction for trespass. The ES they used was the 
odds ratio, which is one way of expressing relative chances, or rela-
tive risk. Their estimate was 5.91, 95% CI [1.72, 20.35], meaning that 
the odds for having such a previous conviction were about six times 
higher for intruder that nonintruder rapists. The authors wrote that 
the “odds of an intruder rapist [compared with a non-intruder] hav-
ing a prior trespassing conviction lies 95% of the time, between 1.72 
and 20.35” (p. 270).

When they referred to 95% of the time, they no doubt had in mind 
the definition of a CI as one from an infinite sequence of CIs from 
repeated experiments. Their wording, however, doesn’t make that 
clear and may, I suspect, be confusing for many readers. If you wish 
to use Interpretation 1 in writing, it needs to be explained more fully. 
The key point is that the 95% refers to the whole process of taking 
a sample and calculating a CI, 95% of which will capture μ. Any 
particular CI, such as [1.72, 20.35], either does or does not capture 
μ, and so the 95% doesn’t apply directly to that interval, but to the 
process that generated it. We should always keep in mind the first 
interpretation of a CI, but it may not provide the best approach for 
discussing data. 

Interpretation 2 of a CI. Our CI is a range 
of values that are plausible for the parameter 
we’re estimating. The LL of our interval is a 
likely lower bound for the parameter, and the 
UL a likely upper bound.
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various values in the interval. We’d probably first interpret the mean, at 
the center of the interval, which of course is just our point estimate. We 
could also consider the lower and upper limits of the interval. The LL is 
a likely lower bound for the true value of μ, although we know that just 
occasionally the LL won’t be low enough (in 2.5% of cases, i.e., the red 
intervals that happen to land way to the right in the dance of the means). 
Similarly, the UL is a likely upper bound for μ (except in the 2.5% of cases 
in which it’s not quite high enough—the red intervals that land way to the 
left). This interpretation of a CI as a range of values that are plausible for μ 
is probably the most widely used approach, and is often my favorite. For 
example, in discussing Tables 3.1 and 3.2 previously, I spoke of the 95% CI, 
which was [1.22, 6.95], as suggesting that the risk for the heaviest drink-
ing group of mothers was raised by at least around 20% (referring to LL = 
1.22) and perhaps by as much as a factor of about 7 (referring to UL = 6.95). 
Examples 3.2 use the second interpretation of CIs.

Examples 3.2  Interpretation 2—The Interval 
and Its Lower and Upper Limits

Example 3.1 came from Scott et al. (2006). Those researchers also used 
my second interpretation explicitly: “Confidence intervals are infor-
mative because they provide a range of plausible values” (p. 269).

Vaccination for Rubella

Sfikas, Greenhalgh, and Lewis (2007) reported a study of vaccina-
tion policies that could eliminate rubella from England and Wales. 
An important parameter is R0, which is the average number of 
further infections produced by a single case of the disease. Sfikas 
et al. applied a somewhat complicated epidemiological model to a 
large database of blood samples to estimate R0 = 3.66, [3.21, 4.36]. 
For any given value of R0 they could apply their model and calcu-
late the minimum proportion of children that must be vaccinated 
for the disease to be eliminated. The higher the value of R0, the more 
infectious the disease, and so the nearer the vaccination rate must 
be to 100%. Assuming a single vaccination at birth, they calculated 
that the proportion of babies who must be vaccinated is .74, [.67, .76]. 
They commented that the point estimate is useful, but that the CI 
provides “a realistic idea of the limits within which the true propor-
tion lies” (p. 6). Exactly. They go on to conclude that, in practice, “it 
may be more prudent … to implement a campaign for which the 
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target vaccination proportion is closer to the upper 95 percentile 
limit rather than the point estimate in order to lower the risk of an 
epidemic” (p. 15). That’s an example of interpretation of the CI as a 
range of plausible values of the parameter of interest, then a focus on 
one of the CI limits as a likely upper-bound estimate that should be 
adopted as the target for policy.

Does the Speed of Light Vary?

Abdo et al. (2009) is an article in the journal Nature with more than 
200 authors from many countries. It reports astronomical data from 
ground stations and a telescope in orbit around the Earth that pro-
vide a test of an important challenge that has been made to Einstein’s 
special theory of relativity. The theory postulates that the speed of 
light in a vacuum is always exactly the same, whereas the challenge 
suggests that quantum gravity effects might lead to variation in the 
speed of light over extremely small distances. Previous research had 
found evidence of invariance of the speed of light, as Einstein’s the-
ory predicts, down to 1.6 × 10–32 cm, which is an exceedingly short 
distance. Abdo et al. reported data that allowed them to push that 
boundary down even further. Their 99% CI was [1.6 × 10–35, 1.3 × 
10–33]. They focused on the UL and claimed invariance of the speed 
of light has now been established down to 1.3 × 10–33 cm, a distance 
about one-twelfth the size of the previous boundary. They thus 
offered further support for Einstein’s theory.

I don’t claim to understand all aspects of Abdo et al. (2009), and 
my previous explanation is sketchy. You may be wondering why I 
chose this example. The researchers estimated the distance at which 
they had evidence of invariance of the speed of light and, naturally, 
they calculated a CI on their estimate. I’m interested because they 
chose to focus on the upper limit of their 99% CI. Their data gave 
reasonable evidence of invariance at even shorter distances, but they 
elected to choose the conservative end of their interval and claim 
they had shown invariance just down to 1.3 × 10–33 cm. Of course, 
the 99% CI they calculated for their data would be wider than the 
95% CI, so the upper limit would be greater for the 99% than the 95% 
interval. By using the 99% CI, they were thus adding a further degree 
of conservatism. 
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Examples 3.2 prompt me to make two further comments. First, what 
confidence level should we choose? Some statisticians advise choosing a 
level to suit how concerned we are that our CI includes the parameter 
we’re estimating. If it’s a life and death matter, choose a 99% or even 99.9% 
CI to increase our confidence that our CI includes the true value. If we’re 
not so concerned about the occasional miss, we might choose to report 
an 80% or 90% interval, these, of course, being considerably shorter than 
the 99%, let alone the 99.9% CI. That’s reasonable advice, but, even so, my 
recommendation is to use 95% routinely, unless there are strong reasons 
for choosing some other value. I’ve seen so much evidence of misinter-
pretation of CIs—as some of the boxes throughout this book report—that 
I feel it’s best to concentrate on understanding 95% CIs well, without the 
additional complexity of trying to interpret intervals with various differ-
ent levels of confidence. However, in the next chapter we’ll discuss how to 
translate easily between a 95% CI and an interval with some other level of 
confidence, so you should be able interpret a result, whatever level of con-
fidence is reported. The Abdo et al. (2009) situation, in which the research-
ers chose one limit as the primary finding, is a case where it could be 
justifiable to use a 99% CI, or an interval with some other level of con-
fidence you judge appropriate for the situation. The Sfikas et al. (2007) 
example of estimating the percentage of babies that need to be vaccinated 
is another case where the UL of a CI is used, and it may be prudent public 
policy to choose 99% or some other high level of confidence, rather than 
the 95% chosen by the authors. These are also cases in which we could 
consider a one-sided CI, rather than the usual two-sided CIs I’ve been dis-
cussing. One-sided CIs are not often used, but I discuss them in Chapter 4.

My second comment is that I hope you are getting the feeling that our 
approaches to the interpretation of a CI, two of which I’ve discussed so far, 
are very general. I’m deliberately choosing examples ranging over psy-
chology, criminology, economics, ecology, medicine, astronomy, and other 
disciplines. Whatever the ES, whatever the situation, you can most likely 
use any of our six approaches to the interpretation of a CI.

CI Interpretation 3: The MOE Gives the Precision

As we discussed, the MOE is the largest 
likely error of estimation, and so the MOE 
is a measure of the precision of our experi-
ment. A third approach to CI interpreta-
tion is to use the MOE as indicating how 
close our point estimate is likely to be to μ, or the largest error we’re likely 
to be making. It’s easy to get tangled up in language about precision, 
because our measure of precision is MOE, but increased precision means 

Interpretation 3 of a CI. The MOE, which is 
the length of one arm of our CI, indicates the 
precision and is the maximum likely error 
of estimation.
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a shorter MOE, and an increase in the MOE (taking a smaller sample, for 
example) means lower precision.

The 1594 ± 17 format used by Rutherford et al. (2007) (see Examples 
3.3) for reporting error margins is common in some disciplines, but it’s 
essential to be sure what quantity is being reported. Those researchers 

Examples 3.3  Interpretation 3—
The MOE Gives the Precision

Scott et al. (2006) used this third interpretation of CIs by speaking 
of precision and width and the desirability of narrow intervals. 
However, they also commented that a wide CI can be “an indicator 
of uncertainty as to where the result falls” (p. 269), but that may be 
misleading. We know exactly where our result falls—for example, 
our M. The uncertainty is about the population parameter, and so 
it may be clearer to say something like, “uncertainty as to where 
the true value lies.” Perhaps they meant “uncertainty as to where the 
result falls in relation to the unknown parameter.” They also made a 
reasonable comment about the precision of one of their intervals 
by describing it as “quite broad because of the small sample size” 
(p. 270). They thus referred to precision and CI width, but not specifi-
cally to MOE. The next example focuses on MOE.

The Ages of Rocks

Broken Hill has long been an important mining city in outback 
Australia, and so there has been intensive study of the complex geol-
ogy of surrounding areas. Rutherford, Hand, and Barovich (2007) 
reported estimates of the ages of a number of rock types, based on a 
large set of chemical analyses of rock samples. Their purpose was to 
use the age results to evaluate various models of how tectonic plates 
had moved and interacted in the area around 1.6 billion years ago. 
They reported their age estimates of the different rocks as, for exam-
ple, 1594 ± 17 Ma (million years) and 1585 ± 31 Ma, where the ±17 
and ±31 were stated to be 95% CIs, and so 17 and 31 were the MOEs. 
They reported and attended to MOEs throughout the article, for 
example, by commenting that “errors on mean ages range between 
15 and 40 Ma” (p. 70). The precision of age estimates was impor-
tant for their main conclusion, which was that an important tectonic 
event occurred between 1585 and 1610 million years ago, but that a 
previous suggestion of an earlier tectonic event occurring around 
1690 million years ago was mistaken. 
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stated explicitly that they were reporting 95% CIs, but the ± format is 
probably more often used to report the SE or SD. Further, in some dis-
ciplines including physics and chemistry it’s common to use ± to report 
measurement error, but without any statistical definition. A report of, 
for example, 32.5 ± 0.1 mm suggests that the researcher simply judged 
that the length scale could be read to an accuracy of about 0.1 mm. No 
statistical definition was intended.

This is a good point to mention the article by Cumming and Finch 
(2005, tinyurl.com/inferencebyeye), which introduces and explains CIs, 
and describes a number of ways to interpret them. Many of the issues 
discussed in this chapter and in the following three chapters are also dis-
cussed in that article.

Exercises

	 3.55	 In your own discipline find, or compose for yourself, some 
examples of interpretation of CIs. Then for each make a second 
interpretation, based on some different approach to thinking 
about CIs.

	 3.56	Identify in each case which of my first three ways to interpret 
a CI is being used—or perhaps some other way is being used, 
or a mixture.

	 3.57	Think of the dance of the means, the mean heap, and the dance 
of the CIs. Are you dreaming about them yet? You are suffi-
ciently familiar with them when they come up in your dreams.

	 3.58	Write down your own take-home messages from this chapter.

Reward yourself with chocolate or another play with ESCI if you actually write 
down your own before turning over to see mine.
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Take-Home Messages

•	 Our statistical model assumes random sampling from a normally 
distributed population that has mean μ and standard deviation σ, 
which are fixed but unknown parameters.

•	 The simplest experiment is to take a single sample of size N from 
the population, and use sample mean M and sample standard 
deviation s as estimates of μ and σ.

•	 Sampling variability is the variability from sample to sample, and 
is illustrated by the dance of the means: Larger variability gives a 
wider, or more drunken, dance.

•	 Take-home movie: The dance of the means, as in Figure 3.2.
•	 The mean heap is the empirical sampling distribution of the 

sample means. After a notionally infinite number of samples it 
becomes the theoretical sampling distribution—illustrated in 
ESCI by the sampling distribution curve.

•	 Take-home picture: The mean heap, as in Figures 3.3, 3.4, and 3.5.
•	 The sampling distribution of the sample mean is normally dis-

tributed, with mean μ and SD of σ/ N .
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•	 The SD of the sampling distribution is called the standard error, 
which gives the chant, “The standard error is the standard devia-
tion of the sampling distribution of the sample mean.” Just think 
of the mean heap: The SE measures its spread. It’s worth remem-
bering SE = σ/ N . That’s Equation (3.1).

•	 The green stripe interval in ESCI extends MOE (the margin of 
error) either side of μ, and includes 95% of sample means. MOE = 
2SE approximately, or more exactly MOE = 1.96 × SE = 1.96 × σ/ N .

•	 The MOE is the largest likely error of estimation. For 95% of sam-
ples, M lands within MOE of μ, or in other words, |M – μ| < MOE. 
For 5% of samples the mean falls outside the MOE lines, in a tail 
of the mean heap.

•	 The 95% CI extends MOE on either side of M, so the 95% CI is 
[M – MOE, M + MOE] or [M – 1.96 × σ/ N , M + 1.96 × σ/ N ]. That’s 
Equation (3.2). Those CIs are all the same length, based on known σ.

•	 We usually drop the unrealistic assumption of known σ and use 
s as an estimate of σ. Then the 95% CI is [M – t.95(N – 1) × s N/ , 
M + t.95(N – 1) × s N/ ], where t.95(N – 1) is a critical value of t, with 
(N – 1) degrees of freedom. That’s Equation (3.3).

•	 CIs based on s and t vary in length from sample to sample. Smaller 
N gives greater variation from sample to sample. For very small 
samples, CI length gives a poor indication of uncertainty, so we 
shouldn’t trust CI length for such samples.

•	 Take-home movie: The dance of the CIs, as in Figure 3.8.
•	 The level of confidence, C, is usually set to 95, but can be given 

other values. Larger C gives wider CIs.
•	 Researchers should, wherever possible, report CIs for any ES esti-

mates they report, then should interpret the ESs and CIs.
•	 See a CI reported, and automatically think, “It might be red!” 

Think of a CI as one from a potentially infinite dance of the CIs, 
C% of which capture the population parameter being estimated. 
That’s the first approach to interpreting a CI. We can be C% confi-
dent our CI includes μ. But it just might be red.

•	 The second way to interpret a CI is as a range of values that are 
plausible for μ. The LL is a likely lower bound for μ, and the UL a 
likely upper bound.

•	 The third approach to interpreting CIs is to consider MOE as the 
precision of estimation. MOE is the largest likely error of estima-
tion, meaning that the point estimate is likely to be within MOE 
of the parameter μ.
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4
Confidence Intervals, Error 
Bars, and p Values

This chapter presents more about CIs, including some beautiful pictures 
and two further approaches to CI interpretation. The main issues are

•	 Error bars, and how they can show various types of information 
in figures

•	 Cat’s-eye pictures that show the beautiful shape of a CI
•	 The fourth approach to interpreting CIs—in terms of their shape
•	 The relation between CIs and p values
•	 The fifth approach to interpreting CIs—with reference to p values
•	 One-sided CIs, which correspond to one-tailed NHST

The Error Bar, a Picture With a Dozen Meanings

Does Figure 4.1 show the mean number of ice creams consumed by 10-year-
olds or the median response time to a red stoplight? What do the error 
bars represent? These are good questions, 
and Figure  4.1 fails to provide answers. 
I’ll refer to the simple graphic shown on 
the column and dot in Figure 4.1 as error 
bars, or sometimes simply bars. Error bars define a range of values around 
a point estimate such as a mean. The trouble is that bars can be used to 
depict various different types of ranges.

When you see Figure 4.1, what questions spring to mind? Probably the 
most basic concern is the dependent variable, what it measures, and what 
its values mean. Ice creams or braking times? Then we need to know what 
the column and the big dot are reporting—perhaps the sample mean, a 
median, or a frequency? Labels on the figure or the figure caption needs 
to give clear answers to these questions.

Seeing the error bars should prompt an additional question, because, 
although the error bar graphic is familiar, it is, unfortunately, ambiguous. 

Error bars, or bars, are a simple graphic that 
marks an interval around a mean or other 
point in a figure.
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Do the bars show a CI? Or the SE? Or something else? We could refer, 
only slightly histrionically, to the tragedy of the error bar, which is that bars 
don’t automatically state what they are reporting. Seeing error bars needs 

to prompt questions about what they 
represent. Alas, figures often fail to state 
what the bars represent, in which case it’s 
impossible to make sense of the figure.

Column or Dot?

Error bars represent some measure of variability or uncertainty, but even 
the way the point estimate is depicted may influence our perception of 
variability. Referring to Figure 4.1, consider a further question: Column 
or dot? Both are common, but which prompts better interpretation? If 
the vertical axis starts at zero, the height of a column gives a direct rep-
resentation of effect size that can be useful for appreciating the effect. 
On the other hand, a column has a sharply defined top end. Yes, we can 
calculate the sample mean as precisely as we like and picture it with a 
sharp-topped column. But one main message of this book is that sampling 
variability is often greater than we suspect. A sharp-topped column may 
hint that we have precise information about the population. Even if the 
suggestion is subliminal, that would be misleading. On the other hand, a 
dot, as in Figure 4.1, reports the sample mean clearly, but may possibly not 

The tragedy of the error bar is how I refer 
to the unfortunate fact that error bars don’t 
automatically announce what they repre-
sent. We need to be told.
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Figure 4.1
Two ways to display a mean, or other descriptive statistic, with error bars.
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give such a strong hint about precision. Research is needed to investigate 
these speculations. In the meantime, I’ll generally prefer dots to columns. 
In either case, however, error bars should be used to provide explicit infor-
mation about variability or uncertainty.

While we’re thinking about columns and dots, I’ll mention Graph Design 
for the Eye and Mind, by Stephen Kosslyn (2006). It’s a book based on sta-
tistical cognition and other research about how people interpret—or mis-
interpret—graphs. Kosslyn uses the research findings to formulate good 
advice about how to design figures to report data. He discusses research 
on the column and dot issue (see pp. 46–53), but doesn’t consider what, for 
me, is the vital question—to what extent does each give an appreciation of 
the uncertainty in the data? That question awaits investigation. There is 
much that’s useful in Kosslyn’s book, although there is nothing on confi-
dence intervals and only a few mentions of error bars.

Confidence Intervals and SE Bars

The most common uncertainty is whether error bars represent a CI, or 
are SE bars, where SE bars are error bars that extend from one SE below to 
one SE above the mean, or other point esti-
mate. Unfortunately, different research 
fields have different customs. In medicine, 
for example, CIs are routinely reported, 
and so unidentified bars are probably 
CIs, although they might not be. In some 
biological disciplines, however, SE bars are routinely shown in figures, 
and some researchers regard any mention of “error bars” as automatically 
implying SE bars. I recommend the safer policy of using the term “error 
bars” to refer simply to the graphic illustrated in Figure 4.1, without any 
assumption of a particular meaning.

Should we prefer CIs or SE bars? You won’t be surprised to hear that I 
recommend CIs. To explain why, I need to discuss the role of N, the sample 
size, then introduce the idea of inferential information. Figure 4.2 illustrates 
95% CIs and SE bars for three samples, of sizes 5, 20, and 80. These are 
random samples from the same normal population, but I tweaked them a 
little so they all have the same M = 50 and same s = 17. That should help 
comparison of the error bars, which is the aim here. For each sample, the 
95% CI is on the left, and the SE bars are on the right. Overall, the two 
types of bars are very different, with CIs being around twice the length of 
SE bars, or longer. In addition, both CIs and SE bars show large changes 
in length with N. We’ll see that the relation between length and N is dif-
ferent in the two cases, and that this difference underlies the advantage 
of CIs.

Standard error bars, or SE bars, extend from 
one SE below to one SE above the mean. 
Unfortunately, some researchers and dis-
ciplines assume that “error bars” means 
SE bars.
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First I’ll focus on the CIs, which show an especially marked change in 
length across the three values of N. Using Equation (3.3) and N = 5, MOE 
for the CI is

	 t N s N t. .( ) ( ) . . .95 951 4 17 5 2 776 7 603 21 1− × = × = × =/ / 11.

For N = 5 the critical value of t is 2.776, and you can use Appendix B and 
ESCI Normal z t to check that the critical value is correct. For N = 20, the 
critical value of t is 2.093 and MOE is 7.96, and for the N = 80 sample, 
the critical value of t is 1.990 and MOE is 3.78.

Now consider the SE bars shown on the right for each sample. Because 
SE = s N/ , these bars also get shorter as N increases. There’s a factor of 
4 increase in sample size from one sample to the next from left to right 
across Figure 4.2, which means there should be a factor of 4  = 2 decrease 
in SE, from sample to sample. The SE bars in the figure do show that 
decrease: For the N = 5 sample, SE = 17 5/  = 7.60. For the N = 20 sample, 
SE = 3.80 and the bars are half as long. For N = 80, SE = 1.90 and the bars 
are again halved in length. Do these values look about right, as you read 
the SE bars in Figure 4.2?

Compare that pattern for SE bars with changes in the CIs for different 
values of N. The lengths of the three CIs reflect the three MOEs, which 
are 21.11, 7.96, and 3.78, from left to right—from the smallest to largest 
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Figure 4.2
Three samples, of sizes 5, 20, and 80, displayed as dot plots. All samples have the same 
mean M = 50, and same standard deviation s = 17. For each sample, the error bars on the left 
represent the 95% CI, and on the right are SE bars, which mark ± one SE.
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samples. Compare 21.11 and 7.96 to see that the CIs shorten by distinctly 
more than a factor of 2 from the N = 5 to the N = 20 samples. From the N = 
20 to the N = 80 samples, the CIs shorten by close to a factor of 2.

Another approach to considering CIs and SE bars is to compare the two 
sets of bars for each sample. For N = 5, the critical value of t is 2.776, consid-
erably larger than 2, and the CI appears considerably longer than double 
the length of the SE bars. However, for both the N = 20 and N = 80 samples, 
the 95% CI appears about double the length of the SE bars, because the 
critical values of t for those samples are 2.093 and 1.990, respectively—
both quite close to 2. Now I need to introduce inferential information and 
a rule of eye.

Inferential Information

CIs give us inferential information, which is information that supports 
an inference about the population. It’s calculated from the sample, but 
informs us about the underlying popu-
lation. The sample mean, M, gives infer-
ential information when we use it as our 
point estimate of the population mean. A CI provides inferential informa-
tion because it tells us how precise our point estimate is for μ, the param-
eter we’re estimating.

SE bars usually don’t provide accurate inferential information. Often 
you can interpret SE bars as being, approximately, the 68% CI; there’s 
more about that later in this chapter. Also, 
as we saw previously, you can double the 
length of SE bars to get, approximately, 
the 95% CI. That’s a useful rule of eye, by 
which I mean a generally useful guide-
line to remember when interpreting figures (Cumming & Finch, 2005, 
tinyurl.com/inferencebyeye). Like a rule of thumb, it’s not always exact, 
but it’s often helpful. If N is at least 10, the rule is reasonably accurate. 
For N = 10 or less, however, it becomes progressively more in error as N 
decreases. Figure 4.2 illustrates that, for N = 5, the 95% CI is almost three 
times the length of the SE bars. It would be seriously inaccurate to interpret 
SE bars when N = 5 as a 68% CI, or twice their length as a 95% CI. That’s 
the trouble with SE bars: They don’t provide what we want, which is accu-
rate inferential information. CIs by definition provide that information.

Why then are SE bars used so commonly, especially in some disci-
plines? That’s an excellent question. There has been almost no study of 
how researchers think about or interpret SE bars, but they are probably 
seen as providing a type of inferential information, perhaps a rough indi-
cation of precision. Yes, you can often interpret SE bars inferentially by 
doubling their length to get, approximately, the 95% CI, but, as we have 

A rule of eye: Double the length of SE bars 
to get, approximately, the 95% CI. This rule 
is reasonably accurate for means when N is 
at least 10.

Inferential information is based on the sam-
ple data, but tells us about the population.
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seen, that strategy fails for small samples. Also, for some measures, 
including correlations and proportions (see Chapter 14), CIs are not cal-
culated from the SE, so in those cases also SE bars could be misleading. 
The conclusion must be that CIs should be preferred to SE bars. Medicine 
agrees and expects researchers to report CIs. In Chapter 6 I’ll mention evi-
dence that many researchers don’t appreciate the distinction between SE 
bars and CIs, even though they differ by a factor of about 2! Anyone who 
doesn’t appreciate the difference might prefer SE bars because they are 
shorter and thus suggest less uncertainty in the data. However that’s an 
illusion, because it’s the CI that gives accurate information about uncer-
tainty—because that’s what they are designed to do. We should prefer CIs 
to SE bars. Simple as that.

Descriptive Information

Additional error bar confusion arises when bars are used to convey not 
inferential, but descriptive information. I need to leave error bars for a 
moment, and say something about descriptive information, which, as you 
would guess, describes the sample data. It 
may provide a complete description, like 
the dot plots in Figure  4.2, which mark 
every data point, or it may be a descriptive statistic that summarizes an 
important aspect of the sample. In Figure  4.1 the column and dot very 
likely mark the sample mean, which is the most common descriptive sta-
tistic as well as being a point estimate that provides inferential informa-
tion. Other descriptive statistics are s, the median, and the range. You may 
know about boxplots and frequency histograms, which are descriptive 
pictures of a sample. All of these give us information about the data points 
in the sample, their values, and how they are spread.

I’ve been referring to the set of data as “the sample,” and almost always 
in this book we’ll discuss data sets that are random samples from a popu-
lation, which is our real interest. However, there are other data sets. You 
might be investigating the world’s top 100 performers in your favorite 
sport. You could plot data showing their performance times or their earn-
ings. Your investigation would be based on a variety of descriptive statis-
tics and pictures, which tell you about those 100 sports people. There’s no 
thought of the data being a random sample from some larger population—
it’s descriptive information about those 100 people that fascinates you.

There’s another reason to be interested in descriptive information. 
To introduce it, I’ll mention Wilkinson and the Taskforce on Statistical 
Inference (1999, tinyurl.com/tfsi1999), which is the report from a group of 
statistical experts set up by the APA. I strongly recommend this report, 
which included much wonderful and down-to-earth advice, including this 
statement: “As soon as you have collected your data, before you compute 

Descriptive information tells us about the 
sample data.
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any statistics, look at your data” (p. 597, emphasis in the original). Examining 
descriptive displays and summary statistics allows you to appreciate the 
whole data set and identify problems, or intriguing aspects, before you 
launch into inferential analysis. You may be able to check assumptions. 
I’ll say little more about this vital first step of data analysis, and will usu-
ally assume the data we’re discussing have undergone this examination.

Error Bars for Descriptive Information

Error bars are sometimes used to report descriptive rather than inferen-
tial information, and it’s part of the tragedy of the error bar that the same 
error bar graphic is used for both. Descriptive bars tell us about the spread 
of data points within the sample. They may indicate the range, from the 
lowest to highest data points, or interquartile range, but most often indi-
cate the sample standard deviation s. Figure 4.3 is the same as Figure 4.2, 
but with SD bars also shown. The SD bars 
extend a distance s below M and s above 
M, and are the same for all the samples, 
being ±17 in each case. The data points 
might appear more widely spread in the N = 80 sample, and the range 
does increase with N, but that’s because larger N makes it more likely that 
at least a few extreme data points will be sampled. For a given population, 

SD bars describe the spread of data points in 
a sample. For a given population, they don’t 
change systematically as N changes.

M

N = 5 N = 20 N = 80 
0

10

20

30

40

50

60

70

80

90

D
ep

en
de

nt
 V

ar
ia

bl
e

CI
SE

SD

Figure 4.3
The same three samples as in Figure 4.2, with an additional set of error bars, on the right for 
each sample, that show the SD, which is s = 17 in every case.
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we don’t expect any systematic change in s if we take larger or smaller 
samples. Figure 4.3 illustrates how the CIs and SE bars change dramati-
cally with N, but the SD bars don’t.

A small complication is that the sample SD, like the sample mean, 
provides both descriptive and inferential information and, as Box  4.1 
explains, s can be calculated slightly differently for those two purposes. 
However, I follow common practice by using the same calculation of s, 
with (N – 1) in the denominator, whatever the purpose. Descriptively, 
s measures the spread of data points in the sample. Inferentially, whatever 
the value of N, s is our best estimate of σ, so we expect s to be roughly 
similar to σ, whatever the sample size. That’s why the pattern of SD bars 
in Figure 4.3 is so different from that for the other bars. Yes, the value of s 
is likely to bounce around for successive samples, as we saw in Chapter 3, 
Exercises 3.9 and 3.10, and more so for small N. But s is, on average, close to 
σ, and that’s true for any N. If that’s all a bit confusing, focus on Figure 4.3, 

Box 4.1  Two Different SDs

Here’s an optional extra point about SDs. As you may know, there 
are two different ways to calculate the SD of a data set. The first uses 
N in the denominator to give a descriptive statistic, the SD of the 
data set itself:

	 s
X

N

Mi

descriptive =





−∑
2

	 (4.1)

You might choose that SD to describe the heights of your 100 top 
athletes, because you are considering that data set in its own right, 
and not as a sample from a population. The other formula uses 
(N – 1) to give an inferential statistic that’s the best estimate of σ:

	 s
X

N

Mi

inferential =







−

−∑
2

1
	 (4.2)

Only when N is very small is there much difference between the 
two. I’m going to simplify things by always using the formula with 
(N – 1) and the symbol s, as I’ve been using so far. Many textbooks, 
software packages, and ESCI do likewise. That s is best for estimat-
ing σ, which is usually our main concern, but it’s also a pretty good 
descriptive measure of the variation within a data set. 
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which summarizes the main story: CIs and SE bars vary markedly with 
N, whereas SD bars don’t.

To show variability within a sample, SD bars can be useful, but con-
sider using a dot plot—as in Figures 4.2 and 4.3—or a boxplot instead. 
The main error bar question remains CIs versus SE bars, and on this issue 
the bottom line is: Report CIs, and if you 
see SE bars, double them in your mind’s 
eye to get approximate 95% CIs—unless 
the sample size is less than around 10. The 
further bottom line is that it’s absolutely essential that every figure with 
error bars states clearly what the bars represent. You’d think that wouldn’t 
need saying, but in a survey of psychology journals (Cumming et al., 2007) 
we found that 32% of articles that included figures with error bars did not 
state what the error bars represented. That’s terrible because, without that 
information, the figure is not interpretable. To repeat: It’s essential to fol-
low the requirement of the Manual (APA, 2010, Chapter 5) that every figure 
showing error bars must state clearly what the bars represent.

Many disciplines have confusions about error bars. Our article in 
the Journal of Cell Biology (Cumming, Fidler, & Vaux, 2007, tinyurl.com/
errorbars101) explained SD, SE, and CIs, and offered rules of eye. It’s 
very basic, but was a hit and was downloaded thousands of times. If you 
are comfortable with the different types of bars illustrated in Figure 4.3 
you are ahead of many published researchers out there. Take a pat on 
the back.

The Shape of a Confidence Interval

I now want to look inside a CI and develop a picture to give us a fourth 
way to interpret CIs. It’s a novel picture, but I hope it’s helpful for under-
standing CIs in practical situations. Here’s a preview: In Chapter 3 our 
second interpretation of a CI stated that values inside the CI are plausible 
as true values for μ, and values outside the interval are relatively implau-
sible, but not impossible. Our fourth interpretation refines that by describ-
ing how the plausibility that a value is μ is greatest for values near M, in 
the center of the CI. Plausibility then drops smoothly to either end of the 
CI, then continues to drop further outside the CI.

The Cat’s-Eye Picture

Consider Figure 4.4, which shows the dance of the CIs for samples of size 
N = 15 from a population of Hot Earth Awareness Test (HEAT) scores with 

Prefer CIs over SE bars. In any case, a figure 
showing error bars must state what the bars 
represent.
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mean μ = 55, which is marked by the vertical dotted line. I’ll divide my 
discussion into four steps, but before I start, note that I speak of “where M 
(or its CI) falls in relation to the unknown μ.” In other words, I take a sam-
ple and find that its M (or its CI) falls near to, or a little distance from, μ. 
That wording is a bit awkward, but emphasizes that it’s M and the CI that 
vary, whereas μ is fixed as well as unknown. That’s why, as I explained 
in Chapter 3, I talk about plausibility, not probability. Keep Figure 4.4 in 
mind, and the dance of the CIs.

	 1.	The curve at the bottom in Figure 4.4 is the sampling distribution 
of the sample mean, M. The shaded area includes 95% of sample 
means, so we know from Chapter 3 that it extends MOE on either 
side of μ. The height of the curve at any HEAT value on the hori-
zontal axis at the bottom indicates the relative likelihood that our 
M falls at that value. The curve is highest at μ = 55, and so M is 

µ

60
HEAT Score

70 80504030

Figure 4.4
Dance of the 95% CIs for samples of size N = 15 from a normally distributed population of 
HEAT scores with μ = 55, and σ = 20 assumed known. If a CI does not capture μ, the sample 
mean is shown as a large black dot. (In ESCI, those CIs would be red.) The curve at the bot-
tom is the sampling distribution of M. It’s a normal distribution and has a mean of 55 and 
standard deviation of SE = 20 15/  = 5.16. The shaded area includes 95% of sample means, 
and therefore extends MOE below and above μ.
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most likely to fall at, or very near, μ. At values a little way from μ, 
the curve is a little lower and, correspondingly, M is a little less 
likely to fall at those values. The height of the curve decreases 
smoothly, and at a distance of MOE to the left or right of μ (i.e., at 
either end of the shaded area) its height is about one-seventh as 
great as it is at μ. Therefore, M is about seven times as likely to 
land at μ as it is to land at MOE below μ, or at MOE above μ. In 
brief, the curve tells us how values farther from μ become pro-
gressively less likely for our M.

	 2.	Now consider estimation error (M – μ), which we encountered in 
Chapter 3. It’s the distance between the M of a particular sample 
and μ. I stated previously that the curve at the bottom in Figure 4.4 
is the sampling distribution of M, but it’s also the sampling distri-
bution of estimation errors, meaning (M – μ) values. Therefore, we 
can translate all the statements in Step 1 about the relative likeli-
hood of different M values into statements about the relative like-
lihood of different estimation errors. So “M is most likely to fall 
at, or very near, μ” translates to “(M – μ) is most likely to be zero, 
or very small.” The height of the curve tells us how progressively 
larger values of (M – μ), which occur when M falls progres-
sively farther to the right of μ, are progressively less likely. The 
likelihood that (M – μ) = MOE is only about one-seventh as great 
as the likelihood that (M – μ) = 0, so estimation errors as large as 
MOE are relatively rare. The curve keeps decreasing beyond the 
shaded area, so (M – μ) values greater than MOE do occur—and 
would give red CIs in ESCI—but are progressively even less likely 
as (M – μ) increases further. [All those statements refer to (M – μ) 
being positive, meaning M falls to the right of μ, but the curve 
is symmetric, so we can make similar statements about means 
that fall to the left of μ, for which (M – μ) is negative.] In brief, 
the curve tells us that estimation errors near zero are most likely, 
and illustrates how larger estimation errors become progressively 
less likely.

	 3.	This is the crucial step, probably deserving a drum roll. In prac-
tice we don’t know μ, and we have only the single value of M 
from our sample. But all the statements in Step 2 about estimation 
error apply. Therefore, we know that (M – μ) close to zero is most 
likely, meaning our M has most likely fallen close to the unknown 
μ. Larger estimation errors are progressively less likely, and, cor-
respondingly, it’s progressively less likely that our M has fallen 
those larger distances from μ. Now the drum roll: We can take the 
curve at the bottom of Figure 4.4, which is centered on μ, and cen-
ter it instead on our M—it will indicate the relative likelihood of 
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all possible sizes of estimation error of our M. Taking that curve 
and its mirror image and centering them on M is what I did to 
create Figure 4.5.

	 4.	Figure 4.5 shows several examples of 
what I call a cat’s-eye picture, or sim-
ply a cat’s eye. The cat’s eye comprises 
the sampling distribution of esti
mation errors and its mirror image, centered on M, in the middle 
of the interval. The fatness of the picture, meaning the horizontal 
width between the two curves, indicates the relative likelihood 

of different estimation errors, within 
and beyond the CI. Small estimation 
errors are most likely, as signaled by 
the fattest part of the picture near M. 
In other words, our M has most likely 
fallen close to μ. Therefore, values 

close to M are the most plausible for μ and are our best bets for 
μ. The cat’s-eye picture then gets progressively less fat for values 
toward either end of the CI, reflecting the fact that larger esti-
mation errors are progressively less likely, and therefore values 

Fatness is my term for the horizontal width of 
the cat’s-eye picture, as in Figure 4.5. Fatness 
is greatest at M and decreases smoothly for 
values that are progressively farther from M. 
Fatness indicates how the plausibility for μ 
varies for values within and beyond the CI.

The cat’s-eye picture is my name for any of 
the representations of intervals in Figure 4.5, 
complete with two sampling distribution 
curves and a shaded area.

27.6 6.83
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Figure 4.5
Cat’s-eye pictures of CIs for several levels of confidence, and of SE bars. For each inter-
val the sampling distribution of estimation errors, which is the curve at the bottom in 
Figure 4.4, plus its mirror image is centered at M, the sample mean. In each case the area 
between the curves that corresponds to the extent of the bars is shaded. The numbers at the 
top are the fatness ratio, which is the greatest fatness of the shaded area (at M) divided by 
the fatness at either end of the interval.
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farther from M are progressively less plausible for μ. Values in the 
unshaded tails beyond the CI are progressively even less fat, and 
therefore even less plausible for μ, although not impossible. A stat-
istician may prefer to say the fatness of the cat’s-eye picture shows 
how the relative likelihood of various values for μ varies within and 
beyond the CI. Note that fatness, plausibility, and relative likeli-
hood decrease smoothly with distance from M. There’s no sudden 
jump at either limit of the CI. There’s little difference in the plausi-
bility of values just inside or just outside a CI.

In brief, the cat’s eye summarizes the distribution of plausibility that 
your estimation error is small, medium, or large. It’s highly revealing 
about what intervals are telling us, so I see it as a beautiful picture.

The shaded area is the region between the two curves that corresponds 
to a particular CI, as in Figure 4.5. For the 95% CI, the shaded area is about 
seven times as fat at M as it is at either end of the CI. This reflects the fact 
that, in the dance of the means, a 95% CI is more likely to land so its M is 
very close to μ, than it is to land so its upper limit (UL) is very close to μ. In 
fact, about seven times more likely. And 
the same for its LL. We could refer to that 
ratio as the fatness ratio. In other words, the 
fatness ratio is the fatness, or width, of the 
shaded area at M, divided by the fatness at either the UL or LL of the CI. 
Figure 4.5 reports near the top the fatness ratios for the different intervals. 
It’s 6.83 for a 95% CI. In other words, M is about seven times as plausible, 
or seven times as good a bet for μ, as the UL. And the same for the LL.

In Figure 4.5 each picture is based on the same sample, so each has the 
same M and s. The two curves of the cat’s eye are the same for each and 
describe how plausibility varies smoothly over the full range of the depen-
dent variable. The five pictures differ only in the percentage of the area 
between the two curves that’s shaded, and that percentage equals the 
level of confidence. For SE bars, about 68% of the area is shaded, because 
SE bars mark, approximately, the 68% CI.

In Figures  4.4 and 4.5 the sampling distribution curves are normal 
distributions because so far I’ve been assuming σ is known. If we drop 
that assumption, the sampling distribution curves are t distributions, 
with (N – 1) degrees of freedom. The cat’s eye therefore comprises two 
t distribution curves rather than two normal curves. However, in most 
cases the shapes and ratios of fatness reported in Figure 4.5 would change 
only a little. For most practical purposes Figure 4.5 provides a sufficiently 
accurate guide, especially considering I’m proposing the cat’s-eye picture 
to assist understanding rather than as a basis for precise calculations. For 
small N, however, regarding SE bars as a 68% CI can be quite inaccurate.

The fatness ratio is my name for the fatness 
at M divided by the fatness at either limit of 
a CI.
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CI Interpretation 4: The Cat’s-Eye Picture

The cat’s-eye picture gives us our fourth way to interpret CIs. Our second 
way, in Chapter 3, referred to interpretation of the interval as giving a 
range of plausible values for μ. Now we can take that idea further and 
have in mind the cat’s-eye picture that signals how plausibility for μ var-
ies across and beyond the interval. Values close to M are most plausible for 
μ, and the cat’s eye shows how plausibility, or relative likelihood, drops 
toward LL and UL, then decreases further beyond the interval.

In Chapter 3 we explored how, for a given sample, changing the level of 
confidence, C, requires intervals of different length. Higher C requires longer 

intervals: The 99% CI is longer than the 95% 
CI. There’s no change in the sampling distri-
bution of M at the bottom of Figure 4.4, but 
the shaded area extends farther, to include 
99% rather than 95% of the total area under 
the distribution curve. In Figure  4.5, the 

shaded area for the 99% CI has to extend farther into the skinny tails of 
the curves to achieve such high confidence, and so there’s a large change in 
fatness across the CI—Figure 4.5 tells us that the fatness ratio is about 28. For 
the 90% CI, the cat’s-eye shading doesn’t extend as far. For 50% CIs, only the 
fat center of the picture is shaded, and so there’s little variation in plausibil-
ity within the interval, and the fatness ratio is only a little greater than 1. For 
SE bars there’s also only small variation in plausibility within the bars, but 
quite large tail areas beyond them. Note that the 50% CI is about one-third 
the length of the 95% CI, so about half the “weight” of a 95% CI is concen-
trated in the middle third of its length, where fatness varies little.

I’d like to insert an example here, in which a published researcher has 
referred to the relative plausibility of points within a CI. Alas, I haven’t 
found one, so if you choose to use the cat’s-eye picture to help you inter-
pret a CI calculated from your data, you’ll be at the forefront of CI interpre-
tation. I’ll now make a few suggestions of how we could use the cat’s-eye 
picture to interpret a CI, based on the first sample in Figure 4.4. That’s the 
sample at the bottom, just above the curve, which has M = 54.3. The MOE 
is 10.1 and so the 95% CI is [44.2, 64.4]. Thinking about cat’s-eye pictures 
could lead you to note that

•	 A value of 54 is about seven times as plausible for μ as a value of 
44, or one of 64;

•	 You can be 95% confident μ lies between about 44 and 64, and 50% 
confident it lies between about 51 and 57.5—which is about the 
middle third of the 95% CI (and approximately the 50% CI); and

•	 Plausibility doesn’t change much over the interval from 51 to 57.5, 
but drops outside that interval.

Interpretation 4 of a CI. The cat’s-eye pic-
ture describes how the plausibility, or rela-
tive likelihood, that a value is μ is greatest 
at M, in the center of the CI, then decreases 
smoothly to either end of the CI, then drops 
further beyond the interval.
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All those observations are justified and could guide your interpretive 
comments, but they should not be taken as exact probability statements 
about our particular interval. As always, bear in mind the dance of the 
CIs, and remember: Our interval just might be red.

Here’s another way to think about the message of Figure 4.5. The dis-
tribution of estimation errors, as shown by the curve at the bottom of 
Figure 4.4, conveys the full information in a sample about μ. Any CI tells 
us about that full distribution, but to interpret it correctly we need to pay 
careful attention to the level of confidence, C. It’s C that tells us what pro-
portion of the distribution the CI reports, and what percentage of the cat’s-
eye picture is shaded. I recommend routinely using 95% CIs so we can 
become skilled at interpreting the 95% cat’s eye, and don’t need to worry 
about intervals with the various other shaded shapes shown in Figure 4.5.

I’m not suggesting that journals should publish cat’s-eye pictures when-
ever they show CIs, but I do suggest that imagining a cat’s eye can help 
understanding and interpretation. In Figure 4.6 the error bars on the left 
are undefined: As in Figure 4.1 we’ve not been told what they represent, 
so we can’t interpret them and, in particular, can’t imagine the cat’s eye. 
If the bars show a 95% CI, the cat’s-eye picture in the center is correct, but 
if they show SE bars, the cat’s eye on the right is correct. Those two inter-
pretations of the bars must come from different data sets, with the SE bars 
signaling much less precise estimation than the 95% CI achieves: For the 
CI, the plausibility is more heavily concentrated around M. Therefore, for 
the SE bars, the N of the data set is smaller, and/or s is larger than for the 
95% CI. Contrast with Figure 4.5 where all the figures come from the same 
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Figure 4.6
On the left are undefined error bars. In the center is the cat’s-eye picture if the error bars 
represent a 95% CI. On the right is the cat’s-eye picture if they are SE bars.
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data. Now check that the fatness ratios of the two shaded areas are as 
you would expect, and as shown for the 95% CI and SE bars in Figure 4.5. 
Check that the general shapes of the shaded areas match those shown in 
Figure 4.5. The two cat’s eyes in Figure 4.6 emphasize the dramatic dif-
ference between SE bars and 95% CIs, and reinforce my conclusion that 
it’s a tragedy the two are often confused, and that we’re often not even 
told which we are seeing. Can you look at any error bars, as on the left in 
Figure 4.6, and imagine the appropriate cat’s-eye picture superimposed 
on them?

Finally, I should mention again our first and most basic way to inter-
pret CIs. Whenever considering a single CI calculated from data, bear in 
mind the infinite dance from which it came. Here you can think of that as 
an infinite dance of estimation errors, many being small, some medium, 
and just a few large. The cat’s-eye picture summarizes the distribution of 
plausibility that your estimation error is small, medium, or large. I find 
the cat’s eye highly revealing about what intervals are telling us, so I see 
it as a beautiful picture—especially the 95% CI cat’s eye. I hope you can 
share this feeling of beauty.

Confidence Intervals and p Values

I hesitate to mention p values, but they give us the fifth way to interpret CIs. 
It’s my least favorite approach, and in Chapter 1 I reported evidence that 
CI interpretation is better if NHST is avoided. Even so, it’s worth discuss-
ing the link between CIs and p to give a more complete picture. It’s also 
valuable to be able to read a p value and generate in your mind’s eye the 
corresponding CI. In psychology, almost all statistics textbooks explain p 
values first, then may or may not cover CIs. In some other disciplines most 
textbooks explain CIs first, then NHST and p values. Research is needed 
on the extent to which order might influence the quality of learning and 
number of misconceptions. I suspect CIs first may be better. Which order 
did your first statistics textbook use? What’s your opinion about order?

In Chapter 1, I introduced the rule that if a 95% CI includes μ0, we can’t 
reject H0. Therefore, two-tailed p > .05. If the interval does not include μ0, 
we reject H0 and note that p < .05. This rule makes sense because if μ0 lies 
outside the interval it’s a relatively implausible value for μ, and therefore 
it’s reasonable to reject it. Conversely, if μ0 lies in the interval, it’s a plau-
sible value for μ, and so we can hardly reject the hypothesis that states it 
is the value of μ. The boundary case occurs if a 95% CI falls so either of its 
limits is exactly at μ0, as in Figure 4.7, in which case p = .05.
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This rule generalizes for other levels of confidence simply by adjusting 
the p value. For a 99% CI, the p value is .01 if the interval falls so either 
limit is at μ0. For a 90% CI, p is .10 if either limit is at μ0, and so on. For a C% 
CI with a limit at μ0, p = (1 – C/100). Figure 4.7 illustrates any of these cases, 
and Box 4.2, which is an optional extra, explains that formula.

Note my slightly awkward wording, for example, “if the interval falls so 
either limit is at μ0,” when it might seem clearer to say, “if  μ0 is at one of 
the limits of the interval.” I prefer the first rather than the second wording 
to emphasize it’s the interval that’s the variable, not  μ0 or μ, but sometimes 
I’ll use the second wording. In any case, keep in mind the dance of the CIs.

Box 4.2 explains that, if a C% CI has a limit at μ0, then two-tailed p = 
(1 – C/100). The box makes a simple relation look pretty complicated, 
but does illustrate the fact that NHST and CIs are closely linked. Indeed, 
they’re based on the same underlying statistical model and assumptions. 
Given this common theoretical base, it may be surprising that they lead to 
such different thinking and consequences. Anyway, now for a picture that 
I hope makes the relation between C and p easy to grasp.

The CI Function

Figure  4.8 shows the CI function, another beautiful picture that reveals 
more about CIs. The easiest way to understand it may be to fire up ESCI 
chapters 1–4, and go to the CI function page. Drag the big slider up and 
down, and see the movable CI, shown in heavy black in Figure 4.8, sweep 
up and down, changing in length as it goes. The two limits of the interval 
mark out the big double curves that are the CI function. The left vertical axis 

µ0
Dependent Variable

MOEMOE

M

Figure 4.7
A CI that falls so one of its limits is at the null hypothesized value, μ0.
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Box 4.2  The Relation Between C and p

I stated that if a C% CI has a limit at μ0, then two-tailed p = (1 – C/100). 
Here’s an explanation of that relationship. To use NHST for a single 
group, we calculate the obtained value of t with (N – 1) degrees of 
freedom by using the formula

	 tobt(N – 1) = (M – μ0)/ ( )s N/ 	 (4.3)

which implies that

	 (M – μ0) = tobt(N – 1) × ( )s N/ 	 (4.4)

After calculating tobt(N – 1) we’d use tables or software (such as 
ESCI Normal z t) to find the corresponding two-tailed p value, which 
by definition is the probability of obtaining t > |tobt(N – 1)| if the null 
hypothesis H0: μ = μ0 is true. To put it another way, tobt(N – 1) is the 
critical value of t for that p value, and we write that critical value as 
t(1 – p)(N – 1). An example is that the critical value of t for a p value 
of .05 is t.95(N – 1). We can therefore substitute t(1 – p)(N – 1) in place of 
tobt(N – 1) in Equation (4.4) to obtain

	 (M – μ0) = t(1 – p)(N – 1) × ( )s N/ 	 (4.5)

Now consider CIs and recall from Chapter 3 that Equation (3.3) 
gave, for a 95% CI

	 MOE = t.95(N – 1) × ( )s N/

so for a C% interval we would use

	 MOE = tC/100(N – 1) × ( )s N/ 	 (4.6)

Notice that the MOE of the CI in Figure 4.7 is simply (M – μ0), so, 
for the CI in Figure 4.7, Equation (4.6) gives us

	 (M – μ0) = tC/100(N – 1) × ( )s N/ . 	 (4.7)

Compare Equations (4.5) and (4.7) to find that

	 t(1 – p)(N – 1) = tC/100(N – 1). 	 (4.8)

Therefore, (1 – p) = C/100 or, equivalently, for the situation of 
Figure  4.7 we have p = (1 – C/100), which is the relationship we 
wanted to explain. 
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shows the level of confidence C of the movable CI, and the right vertical 
axis shows the two-tailed p value for that CI when the null hypothesized 
value lies at either limit of the interval—as illustrated in Figure 4.7. The CI 
function is sometimes known as the p value function. A version was intro-
duced by Poole (1987), and it was discussed by Rothman (2002, Chapter 6).

Can you figure out what’s going on here, and why the curves sweep out 
so sharply at the bottom, at high values of C? Compare with Figure 4.5. 
For C around 90 or more, the cat’s-eye picture in Figure 4.5 is skinny near 
either of its limits, and so large increases in CI length are needed to yield 
a modest increase in shaded area and C. Therefore, in Figure 4.8 the CI 
function sweeps out dramatically near the bottom. It all hinges on the 
shape of the normal or t distribution that defines the cat’s eye and, to 
achieve high levels of confidence, our CI needs to extend into the tails of 
that distribution.

I’m not going to write out lots of small steps to suggest how you can 
use the CI function page in ESCI, as I did for CIjumping in Chapter 3. 
Explore the CI function as you wish. Here are a few pointers.
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Figure 4.8
The CI function, from the CI function page of ESCI chapters 1–4. It plots the level of con-
fidence C (left axis) and two-tailed p value (right axis) against the lower and upper limits of 
a CI. Fixed intervals are shown in gray, for comparison, and the movable interval, currently 
set to be an 88% CI, is shown in heavy black.
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•	 Enter M, SD, and N for your single sample. Adjust these values to 
control the position and width of the function.

•	 Observe the relation between CI length, C, and p values. Compare 
with Figure 4.5.

•	 Click below red 3 to display a cat’s-eye picture on the main CI. 
Watch how the shading changes as you zoom the CI up and down. 
The fatness ratio, which is reported below red 3, also changes, but 
the two mirror-image curves of the cat’s eye remain the same. 
The percentage of the area shaded always matches the level of 
confidence. Use the spinner below red 3 to change the amount 
of bulge: This changes the vertical scale of the cat’s-eye picture, 
but doesn’t change the fatness ratio or the interpretation.

•	 Click below red 1 to regard SD as the population value, so the CI 
is based on z, or to regard SD as the sample value, in which case 
the CI is based on t. See how the function changes, as well as the 
shape of the cat’s eye. If N is large there’s little change, but if N 
is small there’s considerable change—because, as you know, the 
t distribution differs greatly from the normal distribution at very 
small df.

Translating Between a 95% CI and p

The next step is to investigate how, in your mind’s eye, to skip back and 
forth between any p value and the corresponding 95% CI. First, notice in 
Figure 4.5 or Figure 4.8 that a 99% CI is roughly one-third longer than 
a 95% CI. If μ0 lies at the end of a 99% CI, p is .01, so if we’re looking at a 
95% CI, we know that if μ0 lies about one-third of MOE beyond the end 
of the interval, p must be .01. Apply that logic for CIs with other levels of 
confidence, and we can read any p value from where our standard 95% CI 
lies in relation to a hypothesized value. That turns out to be very useful.

Figure 4.9 shows the left arms of several CIs, with the 95% CI in bold as a 
reference interval. The dotted vertical lines mark where the CIs with vari-
ous levels of confidence, C, have their lower limit. These lines are labeled 
with the corresponding two-tailed p value, meaning p when μ0 lies at the 
position of the dotted vertical line. So, for example, the 99% CI has its 
lower limit at the line labeled with the p value .01. The fractions indicate 
distances from the left end of the 95% CI, in units of MOE (of that 95% CI), 
so the 99% CI extends approximately an extra one-third of MOE beyond 
the end of the 95% CI.

I suggest it’s worth remembering those four fractions, as approximate 
benchmarks for the corresponding four p values. They state that p = .01 
when μ0 lies about one-third of MOE beyond the end of a 95% CI, and p = 
.001 when it lies about two-thirds MOE beyond. Inside a 95% CI, about 
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one-sixth of MOE back from the end gives p = .10, and about two-thirds of 
MOE back from the end (or one-third MOE out from M) gives p = .50. Keep 
those benchmarks in mind, and interpolate for values between those ref-
erence points.

For practice, look back at Figure 1.1 and eyeball the p values from the 
figure showing the 95% CIs for Lucky and Noluck. For Lucky, zero (the 
null hypothesized value) lies beyond the interval but not as far away as 
one-third of MOE. So p will be less than .05 but not as small as .01. If you 
estimated around .02, you are getting the idea fast. For Noluck, zero is 
further back from the limit of the CI than one-sixth MOE, so we know p 
is greater than .10, but zero is well beyond the benchmark for .50. If you 
estimated around .20, you are, again, doing very well.

Here’s a bigger challenge: Run this guesstimating backwards. Read the 
first presentation of Lucky–Noluck, which reported M and p, and try to 
generate in your mind’s eye the figure showing the two 95% CIs. Note that 
we’re using μ0 = 0, and for each study you know M and the p value. For 
Lucky, M is around 3.6 and p is .02, so you know the 95% CI will extend 
most of the way from 3.6 toward zero, but will stop short by less than one-
third of MOE. Therefore, the lower limit of the 95% could be around 0.5 or 
a little more, which suggests that MOE is around 3. Therefore, the 95% CI 
is roughly [0.6, 6.6]—which Figure 1.1 shows is a pretty good eyeballing 
result. For Noluck, consider M of about 2.2 and p of about .20, so we know 
the interval extends from 2.2 past zero, and by more than one-sixth MOE 
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Figure 4.9
Left arms of a number of CIs for the same data, as labeled at the right. The null hypoth-
esized value, μ0, can be given any value on the horizontal axis at the bottom. If μ0 has the 
value marked by the heavy dotted vertical line, then p = .05, as marked at the top of that line. 
If μ0 has the value marked by any of the light dotted vertical lines, then two-tailed p has 
the value marked at the top of that line. The dotted vertical lines also mark the ends of the 
CIs corresponding to the various p values. The four fractions are approximate benchmarks 
worth remembering. They state how much longer or shorter the MOEs are than the MOE 
for the 95% CI, which is shown in bold and serves as a reference.
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because p is greater than .10. I guesstimated MOE to be a bit more than 3, 
which Figure 1.1 shows to be about right, or maybe a bit short. It’s close 
enough for eyeballing purposes.

You can play around with p and the position of μ0 in relation to a 95% CI 
by using the CI and p page of ESCI chapters 1–4. Use the big vertical slider 
to move the 95% CI up and down, changing its position relative to μ0, which 
remains fixed. Click to show or hide an axis showing a wide range of p val-
ues, the four benchmarks, and the accurate p value. Use the page for guess-
ing games: For example, hide p values and the benchmarks, position the CI 
as you wish, and then compete with someone else to estimate p. Click to 
reveal the p value. Who’s more accurate? Another example: Compete with 
someone else to position the CI to give some stated target p value. You’ll 
both quickly become fast and accurate, and you’ll have a useful skill that 
most researchers lack—or perhaps don’t even realize is possible.

In a world full of p values, but lacking CIs, it can often be revealing to 
generate in your mind’s eye what the 95% CIs would look like, given only 
some p values. Note, for example, what happens for p = .30, or some other 
value that’s clearly not statistically significant. The CI is quite long relative 
to the ES—which is the distance from M to μ0—so there’s considerable 
uncertainty and, almost certainly, no justification for accepting the null 
hypothesis. Translating to a CI may be the best way to interpret a p value.

I’ve mostly been using the normal distribution, to keep things simple. 
I’ve therefore usually been assuming σ is known, or that we’re using very 
large samples. I mentioned that if we drop that assumption and use the 
t distribution with df = (N – 1), the cat’s-eye pictures would change shape 
a bit, and the CI function would be different—most noticeably when N is 
very small. The CI and p page allows you to click to display the 95% CI 
and p values based on t rather than z: The two are displayed side-by-side, 
so you can compare, consider the benchmarks, and see how the differ-
ence varies as you change N. The figures, from Figure 4.4 onward, and the 
benchmarks I’ve suggested describe intervals and p values based on z. For 
our estimation purposes, they are all accurate enough to be practically 
useful. Just bear in mind that if N is small, say, less than about 10, our 
eyeballing may be a little astray.

I discussed cat’s-eye pictures, benchmarks for p, and various other things 
in this chapter in an article in the journal Teaching Statistics (Cumming, 2007).

CI Interpretation 5: The Relation Between CIs and p Values

The fifth way to interpret a CI is in terms of p values: Note where the 95% 
CI lies in relation to μ0, then estimate p. It’s my least favorite approach 
to finding meaning in a CI, but it’s still worth being able to do such eye-
balling. More useful may be the ability to run this process backwards 
and generate in your mind’s eye the 95% CI, given only μ0, the sample 



 

Confidence Intervals, Error Bars, and p Values	 109

mean, and p. If you can do that, you have 
additional insight into the great mass of 
research that’s published with p values, 
but not CIs. And you have a valuable skill 
I suspect is rare.

At this point you may be expecting examples of how CIs can be inter-
preted with reference to p values. I’m not going to include any, however, 
because I don’t want to encourage this approach. You’ll recognize such 
examples easily enough by mention of inclusion or exclusion of a null 
hypothesized value, or stating of a p value. There are also exercises at the 
end of the chapter.

One-Tailed Tests, One-Sided CIs

So far in this book I’ve discussed two-tailed NHST and two-sided CIs. 
You may have wondered whether I’ve avoided one-tailed tests because 
they are a strength of NHST that estima-
tion can’t match. Not so! One-sided CIs 
are analogous to one-tailed tests but, as 
usual, the estimation approach is better. Strangely, most NHST textbooks 
describe one-tailed tests, but even textbooks that include CIs rarely men-
tion one-sided intervals—which can, however, be useful, and are worth 
knowing about. I’ll use an example and Figure 4.10 to explain.

Suppose a well-established therapy for a certain type of wrist injury 
in elite cyclists gives, after 20 sessions, the ability to lift with the injured 
wrist an average 520 g in a standard exercise device; the SD is 88 g. You 
are estimating the effectiveness of a new therapy, but are only interested if 
it’s better. You observe a group of N = 31 cyclists use the new therapy and 
calculate M = 548 g for their ability to lift in the exercise device.

Let’s assume that the mean and SD stated for the standard therapy are 
population values, perhaps estimated precisely by a meta-analysis. So, for 
NHST, we’ll use H0: μ0 = 520 g as the null hypothesis. Then Figure 4.10 
panel A shows the sampling distribution of M, for N = 31 and σ = 88 g, 
and the rejection region for a two-tailed statistical significance test with 
α = .05. We’ll reject the null hypothesis if M falls in a shaded tail area, 
meaning M > 551 or M < 489. However, we’re only interested in whether 
the new therapy is better, so we could justifiably use a one-tailed test, as 
illustrated in panel B. That rejects the null hypothesis if M > 546—an 
easier criterion to meet than the 551 of the two-tailed test. The key thing 
about the one-tailed test is that, yes, it makes statistical significance easier 
to obtain, but we should only choose it when the situation is genuinely 

One-sided CIs are analogous to one-tailed 
tests, but more informative.

Interpretation 5 of a CI. Where a 95% CI falls 
in relation to the null hypothesized value 
signals the p value. Use the benchmarks to 
eyeball an estimate of p.
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(A)

(B)

(C)

(D)
One-sided 95% CI
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Two-sided 95% CI
[517, 579]

One-tailed rejection region
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Figure 4.10
Panel A shows the sampling distribution of M, the mean weight lifted by a group of N = 
31 cyclists recovering from a wrist injury, and the two-tailed rejection region when α = .05, 
and μ0 = 520 g is the population mean and σ = 88 g is the population SD. Panel B shows the 
same for a one-tailed test. Critical values are shown as Mcrit. Assuming M = 548 is observed, 
as marked by the dotted vertical line, panel C shows two images of the two-sided 95% CI, 
and panel D a one-sided 95% CI.
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asymmetric and we only care about one specified direction of effect. Also, 
we have to commit in advance to using the one-tailed test.

For your N = 31 cyclists you calculated M = 548 g, as marked by the 
dotted vertical line in the figure. That would reject the null hypothe-
sis, with α = .05, if we had committed to a one-tailed test, but not if we 
were using the two-tailed test. Panel C shows the 95% CI around M = 
548. That conventional two-sided interval includes the null value, 520, 
consistent with the result of the two-tailed test. Panel D shows the 95% 
one-sided CI around M = 548 to be [522, infinity], meaning the interval 
extends indefinitely to the right. The one-sided CI does not include 520, 
consistent with the result of the one-tailed test. If we think of whether 
or not the CIs include the null value, there’s a direct correspondence 
between, respectively, the two- and one-tailed tests, and the two- and 
one-sided intervals.

Note that the curves of the cat’s-eye picture are identical in panels C 
and D. In Figure 4.5, CIs with various levels of confidence have different 
percentages of the cat’s eye shaded, but the curves are always the same. 
This is similar in Figure 4.10 for two-sided and one-sided CIs: The differ-
ence is in which 95% of the area we choose to shade. For the two-sided CI, 
2.5% of the area of the cat’s eye lies beyond each end of the CI, whereas for 
the one-sided CI, all 5% of the area outside the interval lies to the left. The 
one-sided CI extends indefinitely to the right, because the cat’s-eye picture 
extends indefinitely both ways. In practice there’s an upper limit to what 
any human wrist can lift, but I can’t give an exact value for that, so I’ll state 
“infinity” as the upper limit (UL) of the CI.

I should mention that we need to be careful of how a one-sided CI is 
described. I’ve seen an interval such as that shown in panel D described as

•	 A lower end-point CI
•	 A lower one-sided CI
•	 An upper one-sided CI
•	 An upper-tailed one-sided CI

I suggest that “lower end-point CI” is the 
least ambiguous, and thus what we might 
prefer. However, always state the numeri-
cal limits or refer to a figure to make clear which one-sided interval you 
mean—is the short arm below or above the mean?

We can use any of our approaches to interpreting a CI to think about 
a one-sided CI. Considering the dance of the CIs, in the long run 95% of 
one-sided CIs will include the population mean, just as we expect for two-
sided intervals. In the two-sided case, the red CIs that don’t capture the 
population mean will split between those missing high and those missing 

Refer to a one-sided CI like that in Figure 4.10 
as a lower end-point CI, but also report val-
ues or a figure for clarity.
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low, whereas all 5% of one-sided intervals that miss will miss high (for 
the lower end-point case, as in panel D). We can say we’re 95% confident 
our one-sided interval includes the true value. We can say the lower limit 
(LL) of the one-sided CI (522 for our example) is a likely lower bound for 
the true value, meaning that for 5% of replications the LL will exceed the 
true value. Compare that with the LL of the two-sided CI (517 for our 
data), which is also a likely lower bound, but with a different meaning of 
“likely” because the LL of the two-sided CI will exceed the true value for 
just 2.5% of replications.

Calculating a One-Sided CI

ESCI doesn’t display one-sided CIs, but it’s easy to calculate them if you 
wish. Note again the cat’s-eye picture in panel D, in which 5% of the area 

is below the interval. The 90% two-sided 
CI has 5% of the area of the cat’s eye below 
and another 5% above, so its LL is the 
same as the left limit of the one-sided 95% 

CI illustrated. To find a 95% one-sided interval, use ESCI or any other soft-
ware to find the 90% two-sided interval, then choose the LL or UL of that 
CI as your single limit of the one-sided 95% CI that you seek.

You may recall z.95 = 1.960 is the critical value we use to calculate the 
MOE of a two-sided 95% CI. For a two-sided 90% CI we use z.90 = 1.645, so 
that’s the value we need to calculate the one-sided 95% CI. Now, 1.645 is 
16% less than 1.960, so the lower arm of the one-sided CI in panel D should 
be 16% (about one-sixth) shorter than either arm of the two-sided CI in 
panel C. To my eye, that’s about what the figure shows. Here’s a different 
example: If M = 10.0, 95% CI [6.1, 13.9], then the upper end-point one-sided 
95% CI is [–infinity, 13.3].

Two-Sided or One-Sided CIs?

It’s useful to know about one-sided CIs because they provide an additional 
option. A one-sided CI parallels the one-tailed test and gives additional 
information beyond the test result, but I’d rather think about one- and 
two-sided CIs without reference to NHST. The key is to bear in mind pan-
els C and D of Figure 4.10. Think of the cat’s-eye picture and decide which 
CI is more appropriate, given your research questions. Arguably you 
should do that in advance of collecting data, just as you need to commit 
to a one-tailed test in advance. However, if you refrain from interpreting 
CIs merely to carry out NHST, and appreciate how one- and two-sided CIs 
relate, I’m comfortable with your choosing between a one- or two-sided 
CI as you analyze your data. Is it more informative for your readers who 
are interested in the new wrist therapy if you report and discuss your 

The short arm of a one-sided 95% CI is the 
same as either arm of a two-sided 90% CI. 
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findings using the two-sided CI in panel C or the one-sided CI in panel D? 
Which fits better with your research aims?

Examples 3.2 in Chapter 3 included a CI for the vaccination rate 
needed to avoid an epidemic, and a CI for the tiny distance down to 
which a prediction of Einstein’s special theory of relativity has been 
confirmed. In each case the researchers chose to interpret the UL of 
their two-sided CI, that being in each case a conservative value. Each 
team of researchers could reasonably have chosen instead to use upper 
end-point one-sided CIs.

I don’t use one-sided CIs often, but it’s unfortunate that they are usually 
ignored even by textbooks that cover CIs. They provide a useful addi-
tional option for understanding and communicating research results. 
Also, I suspect that understanding one-sided CIs, via the cat’s-eye picture, 
probably increases our understanding of estimation in general.

In the next chapter I discuss replication, and what’s likely to happen 
if you repeat your experiment over and over. That discussion follows 
on from what we’ve been considering in this section and gives the sixth 
approach to CI interpretation.

It’s time for you to write your take-home messages from this long chap-
ter. Have you been jotting them down as we go? Here are some hints, 
before I give you my list:

•	 Many types of error bars. Inferential and descriptive statistical 
information.

•	 Beautiful pictures of CIs. The fourth way to interpret CIs.
•	 The relation between CIs and p values. The fifth way to inter-

pret CIs.

Exercises

	 4.1	 You are listening to a research talk about an evaluation of a chil-
dren’s fitness program. The speaker displays Figure 4.11, which 
depicts the average improvement in performance scores after 
the program. You raise your hand and ask what the error bars 
represent. The speaker is flustered and anxiously consults col-
leagues, but eventually says “a confidence interval.” You decide 
to wait until after the talk to seek confirmation it’s a 95% CI. 
Assuming it is, suggest three interpretations without mention-
ing NHST or a p value. In each case identify which interpreta-
tion you’re using.
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	 4.2	 The speaker is unsettled by your question, stops and consults 
notes, then apologizes and states that the figure shows SE bars. 
On this assumption suggest three interpretations, without men-
tioning NHST or a p value.

	 4.3	 Now interpret the result using a p value, first assuming a 95% 
CI, then assuming SE bars.

	 4.4	 Suppose the speaker now stated that N = 5. Would any of your 
previous answers change? How?

	 4.5	 Use the Normal z t page of ESCI chapters 1–4 to find the fat-
ness ratio for the cat’s-eye picture for a 95% CI when N = 30 and 
when N = 5. Compare with the ratio for σ known. Hint: You can 
use Normal z t to find the height of the z or t distribution at any 
point by clicking near red 5 to turn on Heights. Click to display 
Two tails then move the slider to find the height you want. To 
find, for example, the fatness ratio for a 95% CI, you could divide 
the height at the center of the distribution by the height at the .05 
tail boundary.

	 4.6	 Find an example in your own work or in a journal article, or 
invent an example, for which using the cat’s-eye picture is help-
ful for interpreting a CI. Explain.

	 4.7	 Use the CI and p page to find a benchmark, additional to 
those shown in Figure 4.9, for p = .20. Hint: Some eyeballing is 
required.
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Figure 4.11
Mean improvement in children’s performance after a fitness program.
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	 4.8	 Suppose Figure 4.12 shows means and 95% CIs, and that N is 
large or σ known. The vertical axis represents change scores 
and so we choose zero to be the null hypothesized value. 
Considering each result independently, estimate two-tailed p 
for each result.

	 4.9	 Sketch a figure showing the mean and 95% CIs for the follow-
ing results. Consider each independently, and assume in every 
case that N is large or σ known, and zero is the null hypoth-
esized value:

	 (i)	 M = 5 and two-tailed p = .60
	 (ii)	 M = 20 and two-tailed p = .15
	 (iii)	 M = 15 and two-tailed p = .002
	 4.10	 In Figure 4.12, suppose result b is a 90% CI. Estimate p. Suppose 

result d is a 99% CI. Estimate p.
	 4.11	Find, in your own discipline, a report of a one-sided CI, or 

(probably easier) a one-tailed test. Is it used appropriately? 
What would you recommend?

	 4.12	Before reading on, check your own take-home messages. Revise 
or expand if you wish.
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Figure 4.12
Some example means with 95% CIs.
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Take-Home Messages

•	 In a figure, a dot may be preferable to a column to represent a 
sample mean or other point estimate, because the sharp top of a 
column may suggest unwarranted precision.

•	 It’s often valuable to show CIs as error bars in a figure. CIs pro-
vide inferential information, meaning information based on the 
sample that informs us about the population.

•	 The familiar error bar graphic is, unfortunately, used to show a 
range of different quantities. It’s essential that every figure with 
error bars states clearly what the bars represent.

•	 Unfortunately, SE bars are common in some disciplines. SE bars 
don’t give clear descriptive information or accurate inferential 
information. Always prefer CIs to SE bars.

•	 Choose 95% CIs unless there are good reasons to use a different 
level of confidence.

•	 A rule of eye is that double the length of SE bars gives, approxi-
mately, the 95% CI. The rule is reasonably accurate in many cases, 
but not all. For example, when N < 10 the 95% CI is longer than 
double the SE bars.

•	 Bars may also be used to represent descriptive information about 
a sample, for example, the SD or range.
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•	 The sampling distribution of the sample mean is also the sam-
pling distribution of estimation errors. Place that distribution 
(and its mirror image) on a CI and obtain the beautiful cat’s-eye 
picture of a CI, which shows how plausibility, or relative likeli-
hood, varies across and beyond the interval.

•	 Take-home picture: The cat’s-eye picture of a 95% CI, as in 
Figure 4.5.

•	 Plausibility of a value for μ is greatest at M in the center of a CI. 
For a 95% CI it drops to about one-seventh at either limit. For a 
50% CI it drops little to either limit but there are large tails beyond 
the interval. A 99% CI has to extend into the thin tails to achieve 
such a high level of confidence.

•	 The cat’s-eye picture gives our fourth way to interpret CIs, by 
indicating how plausibility varies across and beyond the interval.

•	 The CI function is two smooth curves that plot the level of con-
fidence, C, and two-tailed p value against the lower and upper 
limits of a CI.

•	 Take-home movie: At the CI function page, turn on the cat’s eye 
and sweep the slider up and down to see how CI length and the 
cat’s eye shaded area change with C.

•	 If a 95% CI lands with one limit at the null hypothesized value μ0, 
two-tailed p = .05. Use the four benchmarks to estimate p for any 
position of a 95% CI in relation to μ0. Approximately: One-third 
MOE of the 95% CI out from M gives p = .50; one-sixth MOE back 
from a limit of the CI gives p = .10; one-third MOE beyond a limit 
gives p = .01; and two-thirds MOE beyond a limit gives p = .001.

•	 Those benchmarks also allow imagining in the mind’s eye the 
95% CI, given μ0, M, and p. That’s a useful ability in a world that 
reports p values, but often not CIs.

•	 Our fifth way to interpret CIs is in terms of p values, although this 
is nonpreferred and may often not give the best interpretation.

•	 One-sided CIs correspond to one-tailed NHST, but are more infor-
mative. Choose one- or two-sided CIs depending on the research 
questions and the context.
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5
Replication

What’s likely to happen if you repeat an experiment? Suppose you obtain 
Hot Earth Awareness Test (HEAT) scores for a group of students, and cal-
culate M = 54.3, [44.2, 64.4] and p = .072 to test the null hypothesis H0: μ0 = 
45. Does the CI give useful information about the likely result of a repeat 
of the experiment? Does the p value? These are the two main questions I 
discuss in this chapter. Those results actually refer to Experiment 1, near 
the bottom of Figures 5.1 and 5.8, so you could, if you like, scan either of 
those figures for a peek ahead at what repeats of that initial experiment 
might give.

This chapter is about what happens if you replicate an experiment over 
and over. Replication is fundamental to good scientific practice, so it’s rea-
sonable to ask what the statistical analysis of an initial experiment can 
tell us about what’s likely to happen on replication. I’m most interested, 
of course, in how CIs compare with p values in the information they give 
about replication. Here’s the plan:

•	 Replication in science.
•	 CIs and replication. What’s the chance that the mean of a replica-

tion experiment will fall inside the CI of the initial experiment?
•	 Dance of the capture percentages.
•	 The sixth way to interpret a CI—as a prediction interval.
•	 p values and replication. What information does a p value give 

about what’s likely to happen next time?
•	 Dance of the p values.
•	 Intuitions about randomness, and why they matter.

It turns out that CIs give useful information about replication, but p val-
ues give only extremely vague information. Considering replication thus 
gives one further reason to prefer the new statistics.
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Replication in Science

Replication is at the heart of science. If you read a study claiming that 
toast usually lands buttered side down, you’ll probably want to find at 
least one replication before you begin to take the result seriously. That’s 
good scientific practice. A replication experiment inevitably differs a little 
from the initial experiment—the toast was a little different in shape and 
dropped in a slightly different way—and so again finding a similar result 
gives some reassurance that the initial result was not caused by some 
quirk of the initial experiment.

The most basic reason to want to replicate is to reduce the chance that 
the initial result was just a fluke—just an unlikely sampling fluctuation, 

just a CI that misses the parameter and so 
would appear red in ESCI. Any real-life 
replication will differ in small ways from 
the initial experiment, but we can think of 

an idealized replication, in which everything is identical except we take a 
fresh random sample from the same population. ESCI CIjumping does 
that, so the dance of the means and the dance of the CIs illustrate ideal-
ized replication experiments, and idealized replications are what I discuss 
in this chapter.

Replication is so central to science that it’s natural to ask, whenever 
we read the result of an experiment, “What would happen if we did that 
again?” Whether the experiment investigated buttered toast or anything 
else, we can think of it as the first of a string of replications. It would be 
very helpful if that initial experiment could tell us what those replica-
tions are likely to find. In particular, what information does the CI or the 
p value from an initial experiment give us about replication experiments? 
What do they tell us about what’s likely to happen next time?

Confidence Intervals and Replication

Figure  5.1 shows again the results of 25 idealized replications of our 
experiment in which we obtained HEAT scores from a sample of 15 stu-
dents in a country where the population of students’ HEAT scores has 
μ = 55 and σ = 20. For the moment we’re assuming σ is known, and so all 
CIs are the same length. Let’s consider our 
initial experiment, shown as Experiment 
1 near the bottom. I’ll refer to its CI as the 

An idealized replication is identical to the 
initial experiment, except it uses a different 
random sample.

I refer to the CI given by the initial experi-
ment as the initial CI, and the mean of a rep-
lication experiment as a replication mean.



 

Replication	 121

initial CI, and the means of replication experiments as replication means. 
What does the initial CI tell us about replication means? What percent-
age of those means fall within the initial CI? To my eye, in Figure 5.1 the 
CI of Experiment 1 near the bottom includes all but one of the replication 
means above it. In considering CIs and replication, that’s the question I’ll 
focus on: Given an initial CI, what percentage of replication means are 
captured by that CI? I’ll refer to that percentage as the capture percentage 
(CP) of the initial CI.

You can also think of CP as the percent-
age chance that, if we carried out one rep-
lication experiment, its mean would fall 
within the initial CI. Consider the curve at the bottom in Figure 5.1: That’s 
the sampling distribution of the means of all replications, and so the ques-
tion I’m asking is what proportion of the area under that curve lies within 
the interval defined by the CI of the first experiment?

The capture percentage (CP) is the percent-
age of replication means that, in the long 
run, fall within the initial CI.
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Figure 5.1
The 25 simulated results shown in Figure 4.4. The experiments are numbered. Experiment 1, 
the first experiment, is at the bottom.
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Reflect on that for a moment. The sampling distribution curve in 
Figure 5.1 tells us where replication means will, in the long run, fall. I can 
focus on any interval I like, for example, from 34 to 54, then the area under 
the curve corresponding to that interval is the probability a replication 
mean lands within the interval. The interval 34 to 54 extends for most of 
the curve left of center, so I’m estimating that the area is a little less than .5, 
perhaps .45, and so that’s my guess of the chance that a replication mean 
will fall in that interval. That interval is roughly the extent of the CI for 
Experiment 5, so my estimate of the CP for that experimental result is 45%.

Now consider Experiment 4, which happened to fall so M was almost 
exactly at μ. The central 95% of the area of the sampling distribution curve 
is shaded, and its width is 2MOE—the same as the width of each of the 
CIs displayed. The CI of Experiment 4 happens to line up almost perfectly 
with the shaded area, and so, if Experiment 4 is our initial experiment, its 
CP is almost exactly 95%. Returning to Experiment 1, whose CI happened 
to land a little left of center, what’s the area under the curve for that CI? It 
would be the same length as the shaded area in the figure, but shifted a 
little to the left. The curve is highest in the center and is symmetric, so any 
shift from the center reduces the shaded area. The small shift to align the 
area under the CI for Experiment 1 would decrease the shaded area only 
a very small amount, and so CP for the first experiment would be a little 
less than 95% of replication means, perhaps 93% or 94%.

To estimate the area under the curve corresponding to any CI, imagine 
lines dropping down from each end of the CI to the curve. What’s the 
area between those two imaginary lines? My eyeballing of that area cor-
responding to the CI for Experiment 6 gives CP of rather more than half 
the total area under the curve, perhaps 65%. We’ve already made a rough 
estimate of 45% for CP for the Experiment 5 interval. That interval misses 
μ, and so would be shown as red by ESCI. In the long run, 5% of 95% CIs 
appear red in ESCI, and those 5% of experiments would give CIs with CP 
less than 50%.

Most generally, the idea is that a CI gives some idea of how wide the 
dance of the means is. The width of the CI of our initial experiment 

gives some idea of how widely replica-
tion means are likely to dance around. A 
further important point is that, as we’ve 
seen, CP varies, depending on where our 
initial CI happens to fall. At first sight 

that might seem surprising. Shouldn’t a 95% CI have a .95 chance of 
including a replication mean? Well, no, as we’ve seen: If the CI falls so 
M is close to μ, it would capture close to 95% of replication means, but 
if the initial CI falls a little way from μ, its CP is less than 95%. If we’re 
unlucky and obtain an extreme initial interval, its CP can even be less 
than 50%.

Most CIs fall with their M close to μ and have 
a CP close to 95%. CIs that fall farther from 
μ have a lower CP. CIs that miss μ have a CP 
less than 50%.
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A Simulation of CIs and Replication

Now for an investigation of those ideas, using the ESCI page CIs and 
replication. Rather than writing detailed exercises, as in Chapter 3, I’ll 
outline my own exploration and make a few suggestions. I invite you to 
fire up ESCI chapters 5–6 and work along with me, but as usual you can 
follow the bold red numbers on screen, read the popouts, and explore as 
you wish. Figure 5.2 represents the population by marking μ with a hori-
zontal line and indicating at the left a distance of σ above and σ below μ 
using vertical shaded bars. I’m using μ = 47 and σ = 50 to give CIs that 
happen to fit conveniently in the display area. We’ll take samples of size 
N = 15. At the right is the sampling distribution of replication means. The 
central 95% area under that curve is shaded and marked by horizontal 
dotted lines.

You can think of Figure 5.2 as similar to CIjumping, but tipped on its 
side because I needed space on the screen for the lower figure as well. 
Here I’m using a different way of representing the population, by show-
ing μ and σ at the left. Note the SE value of 12.9 reported near red 1. That’s 
σ/ N  and is the SD of the sampling distribution curve at the right. Make 
sure the box near red 2 is checked to indicate we’re assuming σ is known.

I clicked the One initial experiment button near red 3 to run an experi-
ment. Its 95% CI is shown in Figure 5.3. To estimate its CP of replication 
means, eyeball the area under the curve that’s defined by the range of the 
CI. To my eye, CP is roughly 90%. If you’re working in ESCI you’ll have 
a different CI and different CP. I then unclicked Shading near red 2 to 
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Figure 5.2
A figure from the CIs and replication page of ESCI chapters 5–6, showing the population 
mean μ and standard deviation σ at left, and the sampling distribution of sample means at 
right. The central 95% (or C%) of the area under the curve is shaded and marked by hori-
zontal dotted lines.
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remove shading from the central 95% under the curve, and clicked near 
red 4 to see CP—which for me is actually 91%—displayed at the top of the 
CI, and to see the corresponding area under the curve shaded green.

I then clicked to take a further 19 samples, until my display looked like 
Figure 5.4. You can see my first interval, with CP = 91%, now at the far left. 
The latest CI is at the right, with CP = 88%—the shaded area under the 
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Figure 5.3
Click to take one initial sample and display its 95% CI. Its capture percentage (CP) of rep-
lication means is marked as 91% and is the shaded area under the sampling distribution 
curve within the range defined by the CI.
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Figure 5.4
The first 20 initial samples, each with its 95% CI. The CP for each interval is marked at the 
top, giving the dance of the CP values. The shaded area indicates the CP for the latest CI, 
which is 88%. One CI just missed μ and has CP = 49%. Its mean is shown as a large black dot.
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curve. I had one red CI, which just missed 
μ and had CP 49%. In Figure 5.4 its mean 
is shown as a large black dot. We could 
refer to the sequence of values as the dance of the CP values.

Let’s take stock. Examine Figure  5.4 or your ESCI display. Whatever 
our initial experiment—represented by its CI—the distribution of replica-
tion means will, in the long run, be the sampling distribution curve on 
the right. Our initial CI will capture some percentage of those replication 
means—the CP—depending on where it happens to fall in relation to μ. 
Most CIs fall with their M close to μ, and these have CP close to 95%—the 
maximum possible. For CIs that happen to fall farther from μ, the area 
they define under the curve drops and so their CP is lower. CIs that miss 
μ have CP less than 50%.

Distribution of the Capture Percentages

You may have noticed that in the lower figure ESCI builds a dot histo-
gram of the CP values, as in Figure 5.5. Click Clear, take 20 samples, then 
check that the 20 CP values shown in the upper figure, like Figure 5.4, 
match the 20 dots in the lower figure. I next clicked the Run–Stop button 
and watched the green shaded area under the curve bounce around, and 
the dance of the CP values marked on the intervals. When the simulation 
stopped after 500 samples the lower display looked like Figure 5.5.

Cumming and Maillardet (2006) investigated the distribution of CP val-
ues, as shown in Figure 5.5, and found that, in the long run, the mean of 
the CP distribution for 95% CIs is 83% and the median 90%. The differ-
ence between mean and median is, of course, caused by the strong nega-
tive skew. The maximum CP is 95% and the most common is 94% to 95%. 
Most CIs will capture around 85% to 95% of replication means, with some 
capturing less, and just a few capturing considerably less. On average, a 
95% CI captures 83% of replication means. Keep clear the distinction: 95% 
of such intervals will capture μ—that’s the definition of a 95% CI—but on 
average such an interval captures 83% of replication means.

The dance of the CP values is my term for 
the sequence of capture percentages in 
Figure 5.4.

100%90%80%70%60%50%40%30%20%10%

Dot histogram of the capture
percentages for all CIs in the
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Figure 5.5
The distribution of CP values of the 95% CIs for 500 samples, with σ assumed known.
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The next step is to unclick the box near red 2, so we’re no longer assum-
ing σ is known. Now we’re using t and s for each sample to calculate the 
CI for that sample, and so the CIs vary in length. If N is small, they vary 
greatly in length. Length variation means additional variation in CP 
values. Most noticeable is that there are now dots indicating CP values 
greater than 95%, as Figure 5.6 shows for the same 500 samples shown 
in Figure 5.5. Study the top figure in ESCI to see what’s going on: When 
an interval that happens to be rather long—its s happens to be larger 
than σ—lands so its M is close to μ, it can span a very large area under the 
curve, meaning its CP is large and greater than 95%.

Play around with the simulation as you wish. Once you’ve taken a run of 
samples, you can click on and off the assumption that σ is known, and also 
vary the value of C. Watch how the dot histogram changes. If you change 
N, or the parameters of the population, you need to start sampling again.

Cumming and Maillardet (2006) found, perhaps surprisingly, that the 
mean and median CP values do not change greatly with sample size. For 
N = 10, mean CP is 86% and median CP is 92%—only a little greater than 
the 83% and 90% for large N, or σ assumed known. Therefore, for practi-
cal purposes, we only need to remember mean 83% and median 90% as a 
general summary of the information a 95% CI gives about replication. Do 
researchers know this? Box 5.1 reports our study, which found evidence 
that researchers generally have quite good understanding of CIs and rep-
lication, but tend to underestimate the extent of variability. Many believe, 
incorrectly, that a 95% CI will in the long run include 95% of replication 
means, rather than the correct average of 83%.

Consider what the average CP of 83% tells us in practice. As researchers, 
we have only the one 95% CI calculated from our single data set. We know 
its CP will most likely be around 90% to 95%, or perhaps more if we used 
t to calculate the interval, but perhaps its CP is lower, and just possibly it’s 
very much lower. We’ll never know the accurate CP of a particular inter-
val, because we don’t know μ and can’t carry out a very large number of 
replications. But over a lifetime of working with 95% CIs, average CP will 
be 83%. We can also say that the probability a single replication will give 
a mean that lands within our particular CI is .83.
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Figure 5.6
The distribution of CP values of the 95% CIs for the 500 samples shown in Figure 5.5, with 
N = 15 and σ not assumed known.
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Box 5.1  Researchers’ Understanding 
of CIs and Replication

How well do researchers understand what information CIs give 
about replication? Cumming, Williams, and Fidler (2004) sent emails 
to authors of articles in leading journals of medicine, behavioral 
neuroscience, and psychology, inviting them to visit a website where 
they saw a mean and 95% CI as in Figure 5.7. They were asked to 
click to indicate where they thought the means of 10 replications of 
the original experiment might plausibly fall. As they clicked, hori-
zontal lines appeared to mark where they’d clicked. We then asked 
for comments about how they did the task, and how they thought 
about CIs and replication experiments.
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Figure 5.7
Respondents saw the mean and 95% CI at left, then clicked in 10 positions where 
they thought the means of 10 replication experiments might plausibly fall. Lines 
appeared where they clicked, for example, as at right.

Patterns of responses varied considerably, but Figure 5.7 shows a 
typical response. Fully 55% of respondents included all 10 means 
within the CI. In their comments, many stated that they expected 
that 95% of means would on average fall in the original CI. There 
were no signs of any differences between disciplines, or between 
early- and late-career researchers.

We concluded that in some important ways the respondents had 
good understanding of CIs and replication. They appreciated that 
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CI Interpretation 6: Prediction Interval for a Replication Mean

Considering replication gives our sixth way to interpret a CI. A 95% CI 
has a .83 chance of including the mean of a replication experiment. In 

other words we can regard any 95% CI as 
an 83% prediction interval for a replication 
mean, meaning it’s an interval that has 
an 83% chance of including the mean of a 
replication experiment. That 83% chance 
is an average over the majority of intervals 

with CP around 90% to 95% or more, and the small proportion of intervals 
with lower CP. Keep in mind the distributions shown in Figures 5.5 and 
5.6, and the chance that we may have been unlucky and obtained a CI 
with a low CP.

The width of our CI gives a reasonable idea of how much replication 
means are likely to bounce around, and we can say that there’s a .83 
chance that a single replication mean will fall within our CI. My conclu-
sion is that a CI gives useful information about what’s likely to happen on 
replication, although as usual we need to bear in mind the possibility that 
our interval misses μ—and would be red in ESCI—and so gives not such 
helpful information about replication.

This is the spot for a couple of examples of researchers interpreting a 
CI as a prediction interval when discussing their results. Alas, I haven’t 

the CI gave information relevant for positioning and spreading their 
10 responses, and that means are likely to follow, approximately, a 
normal distribution, as indicated by the bunching of central posi-
tions and spreading of upper and lower positions. On the other 
hand, most believed incorrectly that 95% of replication means will 
on average fall within the CI. They therefore tended not to spread 
their responses sufficiently, and to include too many of them within 
the CI, compared with the accurate average of 83% of replication 
means falling within a 95% CI. CIs appear much more frequently in 
medical journals than in journals of behavioral neuroscience or psy-
chology, so it’s interesting that the presumed much greater familiar-
ity of medical respondents with CIs was not reflected in any notable 
differences in their performance.

Overall, we concluded that researchers have quite good under-
standing of CIs in relation to replication, although here, as in many 
other cases, they tend to underestimate the extent of sampling 
variability.

Interpretation 6 of a CI. A 95% CI has an 
83% chance of capturing the mean of a 
replication experiment, so we can regard it 
as an 83% prediction interval for a replica-
tion mean.
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found suitable examples, so the exercises at the end of the chapter will 
have to suffice.

We’ve now met all six ways I’m suggesting for interpreting a CI. Table 5.1 
summarizes the six, for the case of a 95% CI around M that estimates μ. 
All the interpretations can be used for CIs that estimate any other param-
eter, and for intervals with any level of confidence.

p Values and Replication

A CI gives useful information about replication, but does a p value? You 
carry out Experiment 1 in Figure 5.1, calculate p = .072, then repeat the 
experiment. What p value is the replication likely to give? Unfortunately, 
and perhaps surprisingly, the answer is “just about any value,” and so 
the conclusion is that p does not give good information about replication. 
Figure 5.8 shows the same 25 simulated results shown in Figure 5.1, but 
with the addition of a null hypothesized value μ0 = 45. Perhaps 10 years 
ago, when there was less awareness of climate change, a large national 

Table 5.1

Six Ways to Interpret a 95% CI for μ

1 One from the dance Our interval is randomly chosen from an infinite sequence, the 
dance of the CIs. In the long run 95% capture μ, and 5% 
miss—this is the definition of confidence level. Intervals that 
miss appear red in ESCI.

2 Interpret our 
interval: a range of 
plausible values

The interval is a range of plausible values for μ. We’re 95% 
confident that our interval includes μ. Interpret any point in 
the interval, including the central point M, and the lower and 
upper limits (LL and UL). Values outside the interval are 
relatively implausible for μ. The limits are likely lower and 
upper bounds for μ.

3 MOE gives the 
precision

MOE gives the precision of estimation. It’s the likely maximum 
error of estimation, although larger errors are possible.

4 The cat’s-eye picture The cat’s-eye picture shows how plausibility, or relative 
likelihood, varies within and beyond the CI. Plausibility is 
about 7 times greater at M than at a limit.

5 The relation 
between CIs and 
p values

If the CI falls so either limit is at μ0, the null hypothesized 
value, then two-tailed p = .05. Use benchmarks to estimate p 
for the CI falling so μ0 is inside the interval (in which case 
p > .05), or outside it (p < .05).

6 Prediction interval for 
a replication mean

On average, a 95% CI is an 83% prediction interval. There’s a .83 
chance that a 95% CI will capture the mean of a single 
replication experiment.
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survey in our country established that the mean HEAT score for students 
was 45. Now we take a sample of 15 students—yes, I know, unrealisti-
cally small—to estimate how much HEAT scores may have changed over 
the 10 years. Figure 5.8 shows a few of the infinite sequence of results we 
might obtain, and gives for each the two-tailed p value for testing that null 
value of 45.

The sample means in Figure 5.8 bounce around either side of μ, with any 
of the CIs giving some idea of how wide that dance of the means is. Can 

the dance of the p values add anything to 
that familiar picture? The p values reflect 
where the CIs fall in relation to the μ0 line 
at 45. We can use the benchmarks from 

Chapter 4 to confirm that the p values shown are at least roughly correct. 
If the LL of a CI is close to 45, p is close to .05. For CIs farther to the right, 
p becomes successively smaller, and for CIs farther to the left, p becomes 

I refer to the bouncing around of p values 
with replication, as in Figure  5.8, as the 
dance of the p values.
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Figure 5.8
The 25 simulated results shown in Figure 5.1, but with a null hypothesized value μ0 = 45 
added, and the two-tailed p values shown at left. The p values are labeled with conventional 
asterisks: *** for p < .001; ** for .001 < p < .01; * for .01 < p < .05; and with “?” for .05 < p < 
.10. The figure illustrates the dance of the means, the dance of the CIs, and the dance of the 
p values.
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successively larger. However, it’s the distance of M from µ0 that determines 
p, and so, for CIs so far to the left that M falls below µ0, two-tailed p starts 
decreasing for M farther below µ0. For this reason, p for Experiment 5 is a 
little lower than p for Experiment 9.

CIs and p values are based on the same underlying statistical theory, 
and we discussed in Chapter 4 how it’s possible to translate from one to 
the other. Even so, I suggest that Figure 5.8 shows a dramatic difference 
in how CIs and p values reflect sampling variability and the information 
they give about replication. The dance of the means and the dance of the 
CIs may be wider than we’d like, but at least any single CI gives some idea 
of the extent that the means bounce around. In stark contrast, however, 
the dance of the p values ranges from <.001 to .93, which is almost the full 
range possible for p. Replicate, and we could get just about any p value at 
all. In other words, any single p value could easily have been very differ-
ent if we’d just happened to draw some other random sample, and a single 
p value seems to give very poor information about the whole dance.

Consider our usual research situation in which we have just a single 
experiment. Would you prefer to know M and the CI, or M and the 
p value? I suggest that knowing the CI gives some idea of the whole infi-
nite sequence of potential results, whereas knowing p gives hardly any 
information at all about the potential infinite sequence of p values. To put 
it differently, the CI is an 83% prediction interval for a replication mean, 
but a single p value hardly gives a basis for predicting anything at all 
about replication. Knowing p = .072 for Experiment 1 hardly says any-
thing about the full set of p values shown in Figure 5.8.

The Sampling Variability of p

There’s a further surprising thing about the variability of p. Consider any 
introductory statistics textbook you know. Very likely it has a chapter on 
sampling, with careful explanations of the sampling distribution of the 
mean, and the SE. If CIs are discussed there may be a figure like Figure 4.4 
to illustrate sampling variability for CIs. The experimental design chapter 
may discuss strategies to reduce sampling variability.

That’s all good and proper. The surprising thing is the contrast with 
p. The sampling variability of p values is large, as Figure 5.8 illustrates, 
but that basic fact is hardly ever mentioned in statistics textbooks. Far 
from considering p as subject to large sampling variability, usual NHST 
practice is to make decisions by comparing the exact calculated p value 
with an exact criterion such as .05. Alternatively, following Fisher, and as I 
explain in Chapter 2, a p value accurate to two or three decimal places may 
be used as an index of strength of evidence against the null hypothesis. In 
either case, using exact p values suggests that researchers are not aware 
that p could easily have been very different merely because of sampling 
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variability. Yes, I know that in Chapter 2 I recommended reporting p = .03 
instead of p < .05, because p = .03 is more informative about the strength 
of evidence. It is, but now we know that neither gives us good information 
about replication or evidence or anything else. In any case, it seems that 
researchers are very aware of sampling variability in many contexts, but 
have a blind spot in relation to p. This may be one reason they place too 
much confidence in NHST.

You may be thinking that I should take my own advice and go back 
to Chapter 4 and think again about all those calculations and estimates 
of p values. Indeed! I generally use p values as little as possible and, if I 
do use them, I regard them as giving only very rough suggestions. I’ll 
certainly never fret about whether p is .04 or .06, and I’ll probably hardly 
notice whether it’s .03 or .08. The benchmarks of Chapter 4 are useful to 
know, but take them and indeed most p values with a very large grain 
of salt. Similarly, if ever we’re examining whether a CI includes a null 
hypothesized value or not, we shouldn’t worry whether it’s just inside or 
just outside the interval. The smooth shape of the cat’s-eye picture tells us 
that just within or just beyond a CI limit are very similar outcomes.

p Intervals

Suppose you obtain p = .05 in an initial experiment. If you repeat the 
experiment, are you likely to get p within an interval like (.04, .06)? Or 
(.01, .2)? Or do you need to consider even wider intervals? That’s my ques-
tion here: I discuss p and replication by considering prediction intervals 
for p. I hope my discussion is understandable, but, if you wish, you can 
skip to the bulleted conclusions at the end, then go on to the next section, 
Dance of the p Values.

Let’s refer to the p value given by a replication experiment as replication 
p, and let’s define a p interval as an 80% prediction interval for replica-

tion p. In Cumming (2008) I discussed 
p intervals and explained how to calcu-
late them. If pobt = .05 is the two-tailed 
p value we obtain in our initial experi-
ment, then the p interval is (0, .38), 

which means there’s an 80% chance that a replication experiment gives 
two-tailed p somewhere between 0 and .38, and fully a 20% chance that 
p is greater than .38. Perhaps surprisingly, based on reasonable assump-
tions I described in the article, pobt = .05 always gives that p interval of 
(0, .38). Shortly we’ll use ESCI p intervals to do the calculations.

Why not the 95% prediction interval for replication p? One reason is that 
80% intervals are so extremely wide I was worried that if I focused on 95% 
intervals, which are even wider, people might dismiss my analysis as too 
extreme. For example, if pobt = .05, the 95% prediction interval for two-tailed 

I refer to the p value given by a replication 
experiment as replication p, and define a p 
interval as an 80% prediction interval for 
replication p.
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p is actually (0, .82), or virtually any value at all. That’s consistent with what 
we saw in Figure 5.8. You might also ask why I don’t discuss CIs for p. The 
answer is that a CI estimates a population parameter, but there’s no popu-
lation parameter corresponding to p, so no CI for p is possible.

My hope is that appreciating how very wide p intervals are should 
lead researchers to be very cautious in concluding anything from a 
p value. Perhaps researchers should be required to report the p interval 
whenever they report a p value, just as they are expected to report a CI 
with every point estimate. That would be an excellent idea. For example, if 
a researcher obtained the results in Experiment 1 in Figure 5.8 and wished 
to report a test of the null hypothesis μ0 = 45, the report should include a 
statement like p = .072, p interval (0, .44). That’s a justifiable way to repre-
sent the vagueness of the p value, and requiring the report of such p inter-
vals could be a great way to encourage the adoption of the new statistics.

In Cumming (2008) I explained two ways to calculate p intervals. One is 
based on the assumption that M = μ, meaning M in the initial experiment 
estimates the population mean precisely. This is an unrealistic assumption, 
but it’s often made because it simplifies the formulas. The other approach 
does not require that assumption and is the method used in the p inter-
vals page of ESCI, which you can use to calculate the p interval for any pobt.

There are two further slight complications I need to explain. Previously 
I described p intervals for two-tailed replication p. As an alternative, after 
calculating two-tailed pobt for the initial experiment it could be reasonable 
to consider one-tailed p for replication experiments, focusing on results 
going in the same direction as the initial experiment. If so, you want the 
p interval for one-tailed replication p. As examples, if two-tailed pobt = .05, 
the p interval for one-tailed replication p is (0, .22), and if pobt = .072, the 
interval is (0, .27).

The second slight complication is quite different, although unfortu-
nately it’s easy to confuse with the question of one- or two-tailed repli-
cation p. The p intervals I’ve mentioned 
so far have been one-sided, meaning their 
left limit is zero, and there’s a 20% chance 
that replication p falls beyond their right 
limit. For example, I’ve just stated that 
when two-tailed pobt = .05 the p inter-
val for one-tailed replication p is (0, .22). 
That’s a one-sided p interval because 
0 is the lower limit. As an alternative, we could consider two-sided p 
intervals, where there’s a 10% chance that replication p falls below the 
left limit of the interval, and a 10% chance that it falls above the right 
limit. For pobt = .05, the two-sided p interval for one-tailed replication p 
is (.00008, .44). Two-sided p intervals may seem more natural for larger 
p values. For example, if pobt = .30, the interval is (.002, .78). Just to spell 

A one-sided p interval has zero as its lower 
limit, and there’s a 20% chance that repli-
cation p is greater than the upper limit. A 
two-sided p interval has a 10% chance that 
replication p falls below its lower limit, and 
10% that it falls above its upper limit. (In 
either case, replication p may be one- or 
two-tailed: That’s a different issue.)
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out what that means, if an initial experiment gave two-tailed pobt = .30, 
we know there’s an 80% chance that a replication experiment will give 
one-tailed p falling in that interval, a 10% chance that p < .002, and a 10% 
chance that p > .78. As usual, the p interval is extremely wide.

I should also mention that the p interval calculations assume that σ is 
known and are based on z rather than t, but in Cumming (2008) I reported 
simulations showing that p intervals based on t are broadly similar. All 
my general conclusions still hold if σ is not assumed known and calcula-
tions are based on t.

You may care to fire up the ESCI p intervals page and check the p inter-
val values I’ve mentioned, and calculate any others you are interested in. 
Use the slider to set your initial pobt, which is assumed to be two-tailed. 
You then have a choice of four p intervals. The yellow panel reports p 
intervals for one-tailed replication p, and the tan panel for two-tailed. 
Each panel gives both a one-sided and a two-sided p interval. Select with 
care, and always state clearly which p interval you are reporting.

You might be wondering why I’ve hardly mentioned N, and why the p 
intervals page doesn’t require you to enter a value of N. It may seem sur-
prising, but p intervals depend only on pobt and not on N. Note that pobt is 
calculated from N and the sample ES. A given pobt may reflect a larger N 
and smaller sample ES, or smaller N and larger sample ES, but the p inter-
val reflects only the pobt, and not the particular values of N and sample ES 
that gave it. I explained this further in Cumming (2008).

By now you might be suspicious of my discussion of p values. The 
intervals might seem so enormously wide, the implications for NHST 
so drastic, that surely, you think, I have somehow exaggerated things, 
or hidden something? It’s good to be skeptical, and to insist on see-
ing convincing arguments and clear examples. I believe, however, 
that the picture I’m painting is fair and accurate. In Cumming (2008) 
I illustrated in several different ways the large uncertainty in p, and 
gave several explanations as to why a p value is such a poor basis for 
inference. I cited references that made the same points. My conclusions 
were as follows:

•	 A p value gives only extremely vague information about replica-
tion, or what our initial experiment might have obtained instead, 
simply because of sampling variability.

•	 A p value is typically a very poor measure of the strength of evi-
dence against a null hypothesis.

•	 To the extent that it does indicate strength of evidence, a p value 
typically exaggerates the amount of evidence against the null 
hypothesis. In most cases, only very small p values (p < .001 
or, perhaps, p < .01) give a reasonable basis for rejecting a null 
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hypothesis. Often in such cases, however, the effect is large and 
clear, so statistical analysis is scarcely required to reach a con-
clusion. The effect probably passes the “interocular trauma test,” 
meaning it hits you between the eyes, so very small p hardly tells 
us anything extra anyway.

•	 Anything other than a very small p value gives virtually no use-
ful information at all.

Considering CIs and replication, Box 5.1 reported our study that found 
researchers generally have a reasonable understanding of CIs and repli-
cation, although they underestimate to some extent the amount of varia-
tion with replication. For p values, however, Box 5.2 reports evidence that 
researchers underestimate quite considerably the extent of variability of 
p values with replication. Researchers’ judgments about CIs in relation to 
replication therefore seem to be better than their judgments of p in rela-
tion to replication.

In the following final section about p values and replication I’ll describe 
an animation of the dance of the p values and a picture of the distribution 
of p. It turns out that statistical power is important—as it usually is, if 
we’re using NHST.

Dance of the p Values

The Dance p page of ESCI uses a simulation of an experiment compar-
ing two independent groups: an Experimental group (E) and Control 
group (C). That may strike you as more realistic than the single group 
experiments I’ve mainly been using so far. Figure 5.9 illustrates one exper
iment, after I clicked the button near red 2 to run an experiment, then 
clicked near red 4 to display the floating difference axis, and again to 
display a CI on the difference. Let’s think of the dependent variable as 
relaxation scores, where the C population mean is 50 and the E popula-
tion, with mean 60, refers to people who’ve had the benefit of your new 
relaxation therapy. Your therapy thus increases relaxation scores by an 
average 10 points.

I’m assuming normally distributed populations, each with known stan-
dard deviation σ = 20. Both E and C samples have size N = 32. The popu-
lation ES is the difference between the E and C means, which is 10. This 
is half of σ, so Cohen’s δ = 0.50, as marked in Figure 5.9; that’s a medium-
sized effect. (There’s more about Cohen’s d and δ in Chapter 11.) As usual, 
you can explore the simulation as you wish. Change the E and C means, 
and σ, and see the population effect size δ change.

I clicked Display p values near red 4 and saw p = .08 displayed to the 
left of the CI for the first experiment. I then took a further 24 experiments 
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and watched the dance of the CIs, until my display appeared as in 
Figure 5.10. My first experiment, as in Figure 5.9, now appears at the bot-
tom in Figure 5.10. I clicked Display μdiff line near red 4 to get the vertical 
dotted line marking the population ES of 10. As we’d expect, Figure 5.10 
shows the CIs bouncing around that line. It also shows the very great 

Box 5.2  Researchers’ Understanding 
of p Values and Replication

Lai, Fidler, and Cumming (in press) investigated how researchers 
think about p values and replication. We conducted three email sur-
veys that asked about p values in three different ways, but I’ll describe 
here just one of the question formats we used. We sent emails to 
authors of articles published in journals in medicine, psychology, or 
statistics. Here is a shortened version of what the email presented:

Suppose you conduct a study to compare a Treatment and a 
Control group, each N = 40. A test of the difference gives p = .02 
(two-tailed). Suppose you carry out the experiment a further 
10 times.

Respondents were then asked to “enter 10 p values that could plau-
sibly be obtained in this series of replications.” They typed in 10 p 
values. Note that the task was parallel with that described in Box 5.1 
for our study of CIs and replication.

For each response set of 10 p values we used the spread of the val-
ues to calculate an estimate of the respondent’s subjective p interval, 
meaning the interval the respondent thinks has an 80% chance of 
including p from a replication experiment. We then used a formula 
from Cumming (2008) to calculate the chance that interval actually 
has of including replication p.

Many respondents described the task as unfamiliar and diffi-
cult. We found great variation over respondents, but 98% of sub-
jective p intervals were too short, meaning respondents almost 
always underestimated the extent that p varies with replication. On 
average, estimated intervals were 40% intervals, rather than 80% 
intervals. Results were similar for respondents from medicine, psy-
chology, and statistics. The other two surveys used different ques-
tion formats, but gave broadly similar results. We concluded that 
there’s great variability over individuals, but, in general, research-
ers tend to severely underestimate the extent that p varies over rep-
lications of an experiment.
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variation in p values we first encountered in Figure 5.8. The variation in 
p is highlighted by asterisks and color patches that shade from bright red 
for *** to deep blue for p > .10. The values are rounded to three decimal 
places, so a value of .000 means p < .0005.

At this point I suggest you watch the video Dance p, available from 
this book’s website: www.thenewstatistics.com. It shows the dance of 
the p values in several different ways. Click Dance of the p values near 
red 4 for one of them. Run a typical experiment and you are visiting 
the p value casino: Your obtained p is chosen randomly from the infinite 
sequence of p values, 25 of which appear in Figure 5.10. Obtaining low p 
is a bit like winning a prize at the casino. Click Display casino below the 
buttons to play.

If you click near red 5, you can turn on sounds to mark different p val-
ues. (The sound files must be in the same folder as ESCI; see Appendix 
A.) A three-star result, meaning p < .001, gives a high, bright trumpet, 
whereas p > .10 is marked by a low, sad trombone. Click near red 9 to see 
little figures that jump for joy at *** but show deep sadness for p > .10. The 
buttons near red 8 let you try them out. I’m speculating that p values can 
trigger such emotions. It would be intriguing to investigate the extent to 
which various p values do elicit different emotions. So far as I know, that 
remains an unexplored question.
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Figure 5.9
The Dance p page of ESCI, showing one experiment comparing two independent groups, 
each N = 32. For the Control (C) and Experimental (E) samples, the 32 data points appear as 
a dot plot, with the sample mean and 95% CI. The lower axis is a difference axis, with zero 
positioned at the mean of the C sample. The cross and dot beneath it mark the (E – C) mean 
difference, with the 95% CI on that difference.
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The Distribution of the p Value

Running the simulation builds a frequency histogram of the p values. 
Click near red 6 to see the histogram. Figure 5.11 shows my histogram 
after 1,500 experiments. (To speed up the simulation try turning off dis-
play of various features, such as p values and the difference axis.) Each 
small square in a column represents p from one experiment. Above the 
columns are the percentages of p values that fell in different columns and 
the percentages expected by theoretical calculation. The horizontal lines, 
which are red on the screen, mark the column heights expected theoreti-
cally, given the number of experiments run so far. Figure 5.11 shows that 
there’s good agreement between theoretical expectations and the results 
of the 1,500 experiments in my simulation run.

The histogram in Figure 5.11 represents the distribution of the p value 
for a two-independent-groups experiment, N = 32 in each group, with a 
population ES of δ = 0.5. ESCI reports near red 3 that the power of this 
experiment is .52 if two-tailed α = .05. Power, as we discussed in Chapter 2, 
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Figure 5.10
Twenty-five experiments as they appear in ESCI Dance p, with their two-tailed p values 
shown at left. The first experiment appearing at the bottom is the one shown in Figure 5.9. 
The p values are marked with asterisks and “?” as in Figure 5.8. They are also marked with 
color patches that on the screen shade from bright red for *** to deep blue for p > .10.
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is the probability that the experiment gives a p value less than .05 for a 
stated population ES. Power is thus the chance of getting a *, **, or *** 
result, which is the sum of the probabilities of landing in any of the three 
rightmost columns in Figure 5.11. Adding the theoretical percentages (red 
on the screen) for those columns gives 23.4 + 18.4 + 9.8 = 51.6%, or a power 
of .516. Adding the percentages observed for our run of simulations gives 
23.9 + 18.9 + 10.0 = 52.8%, in reasonable agreement with theory.

I chose an example with power around .50 because, as Box 2.2 reported, 
much research in NHST disciplines has average power of only around .5 
to find a medium-sized effect, such as δ = 0.5. My examples are thus typi-
cal of much published research.

It turns out that the distribution of p values depends only on power. 
(I’m still assuming σ is known.) Any experiment, whatever the N and δ, 
will have the distribution of p shown in Figure 5.11 if the power is .52. The 
experiment shown in Figures  4.4, 5.1, and 5.8 is a single-group experi-
ment with N = 15 and δ = 0.5. This has power .49, so the distribution of 

p > .10

527 182 358

Observed
�eoretical
prediction

283 150
35.1% 12.1% 23.9% 18.9% 10.0%
36.1% 12.3% 23.4% 18.4% 9.8%

? * ** ***

Figure 5.11
The frequency histogram of p values, for 1,500 simulated experiments like those shown in 
Figure 5.10. The highlighted point at the top of the * column marks p for the most recent 
experiment. Above each column the top number reports the frequency for that column, 
then the number below is the percentage of the 1,500 p values that landed in that column. 
The number below that (red in ESCI) is the percentage expected theoretically in the col-
umn. The solid horizontal lines (also red in ESCI) indicate the theoretically expected height 
of each column.
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p is similar, as the similarity of the sets of p values in Figures  5.8 and 
5.10 reflect.

If you simulate an experiment with higher power, how would you expect 
the distribution of p to differ from that shown in Figure 5.11? Would ** and 
*** results be more or less frequent? What about an experiment with lower 
power? Make some guesses and sketch what the histogram might look 
like in each case.

To check out your predictions, click near red 2 to Clear the simulation 
then adjust the slider near red 7 so the columns have a convenient height. 
You’ll see a pattern like those in Figure 5.12. The columns depict the theo-
retically calculated distribution of p for experiments with power as shown 
near red 3. You can change the vertical scale at any time with the slider. 
You can change the power by using any of the controls. Start by using 
the slider near red 1 to change the E mean. Watch how the E distribution 
moves and δ changes, and observe the consequent changes in power and 
the p histogram. Then restore the E mean to 60, and adjust N. This time δ 
doesn’t change, but power and the distribution of p do change.

Here are two questions to explore:

	 1.	How do the p distributions compare for various combinations of 
δ and N that give the same power? For example, try δ = 1.0, N = 8; 
then δ = 0.5, N = 32; then δ = 0.25, N = 128. (As before, adjust the E 
mean to change δ.) All those pairs of values give power = .52.

	 2.	 In general, does power seem more responsive to changes in δ or to 
changes in N?

Figure 5.12 shows the distribution of p for four values of power. In every 
case the distribution is wide—the variation in p is large. The top left panel 
shows the distribution when the null hypothesis is true, so δ = 0 and the 
alternative hypothesis is the same as the null hypothesis. Therefore power 
is the same as the Type I error rate, which we set to be α = .05, and so 
power for the top left panel is .05. When the null hypothesis is true, the 
distribution in the top left panel applies whatever the value of N. The 
other three panels show the distribution of p for larger values of power. 
The δ values shown give the stated values of power when N = 32. The 
lower left panel describes the distribution of p for the experiment illus-
trated in Figures 5.9, 5.10, and 5.11, with power = .52. I chose also to illus-
trate power = .8 because, as I’ll mention in Chapter 12, power = .8 is often, 
for planning purposes, regarded as reasonable. Power of .9, as illustrated 
in the lower right panel, is very high by the standards of most published 
research in NHST disciplines.

Consider the dilemma if you want to base inference on, for example, 
pobt = .03. You wish to make a statement about the true value of δ, so you 
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need to consider which distribution of p your value of .03 comes from. 
Figure 5.12 shows that such a * result has a 4% chance of occurring if δ = 0 
(top left panel), and a 23.4% chance if δ = .50 (bottom left panel). Those two 
likelihoods are different by less than a factor of 6, so p = .03 is hardly a 
good reason for rejecting the null hypothesis in favor of δ = .50. Yes, a *** 
result is a fairly good reason for rejecting the null hypothesis in favor of 
δ = .50, but comparing the heights of the ** columns suggests that even a ** 
result gives only modest grounds for rejecting the null hypothesis in favor 
of any of the other distributions in Figure 5.12. Such arguments underlie 

Frequency histogram of p valuesFrequency histogram of p values

Frequency histogram of p valuesFrequency histogram of p values

5.0%

36.1%

p > .10 ? * ** ***

p > .10 ? * ** *** p > .10 ? * ** ***

p > .10 ? * ** ***

12.3% 9.8% 5.5% 4.5% 15.3% 48.0%26.7%18.4%23.4%

12.4% 7.6% 31.2%27.7%21.1%90.0% 4.0%
Power = .05

δ = 0

Power = .52
δ = 0.50

Power = .90
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Power = .80
δ = 0.70

Null hypothesis true

0.9% 0.1%

Figure 5.12
The distribution of the p value for four values of power. In the top left panel, the null 
hypothesis is true, so δ = 0. This distribution applies for any value of N. In the other three 
panels, the value shown for δ gives the stated value of power when N = 32. The lower left 
panel matches Figure 5.11, except with a different vertical scale.



 

142	 Understanding The New Statistics

the conclusions I reported earlier that only very small p values may give 
useful information, and other p values tell us very little. In Cumming 
(2008) I discussed these issues further.

Note that by comparing heights of the * columns I’m not saying that 
δ = .50 is about six times more probable than δ = 0. To say that would be 
to commit the inverse probability fallacy we discussed in Chapter 2. All 
we can say is that the relative column heights give us some idea of how 
relatively plausible the different values of δ may be, given the results of 
our single experiment.

The four panels in Figure 5.12 also illustrate one of the main principles 
of experimental design: It’s important to have power as high as possible. 
High power means a greater chance of the *** (or, perhaps, **) results that 
give a reasonable basis for rejecting the null hypothesis.

Returning to the two questions I raised earlier, the distribution of p is the 
same for a particular power, whatever combination of δ and N values give 
that power. The distribution is thus the same for the three combinations 
of δ and N I suggested in the first question, and the same as that shown in 
Figure 5.11 and the lower left panel of Figure 5.12. Note how δ and N influ-
ence power: If we halve the population effect size δ, we must multiply N 
by 4 to achieve the same power. In this way δ generally influences power 
more than N does. To increase the power of our experiment, looking for 
a larger population effect may be a better strategy than increasing N. Yes, 
as a Christmas gift you would like big N, but perhaps you would be even 
happier to find that the size of the effect you’re investigating is large.

There are two main reasons why I’m spending so much time discuss-
ing p, even though my overall message is that the new statistics should be 
preferred to NHST. First, the advantages of CIs in relation to replication 
may be clearer if they are contrasted with the shortcomings of p in rela-
tion to replication. It seems to me that the dance of the p values does that 
quite emphatically. Second, a CI expresses all the information a data set 
provides about the population parameter, whereas the previous discus-
sion of the distributions of p in Figure 5.12 suggests that p usually gives 
a very poor basis for choosing among various hypothesized values of δ. 
Now I’m going to leave p values and even CIs for a while and talk about 
the intriguing topic of randomness—which has been an underlying theme 
all through this chapter.

Intuitions About Randomness

So far in this book we’ve observed many cases of random variability and 
discussed how large or small it is. Unfortunately, however, researchers 
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and other people tend to hold two misconceptions about variability and 
randomness that are troublesome for research. In this section I’ll describe 
the misconceptions and encourage you to bear them in mind when ana-
lyzing data or reading research results. Here are the two misconceptions:

	 1.	People often underestimate the extent of sampling variability.
	 2.	People often don’t understand that randomness is lumpy in the 

short term and highly predictable in the long term.

As a consequence of these misconceptions, researchers may over-interpret 
particular aspects of sample data that reflect only random sampling vari-
ability. In addition they underestimate the extent to which results are 
likely to be different if an experiment is repeated, or if results of several 
similar experiments are compared.

I suggest that we need two strategies to counter these misconceptions, 
and I hope this book contributes to both. First, demonstrations should 
help students and researchers understand random variability better and 
increase awareness of possible misconceptions. Second, we should rou-
tinely use CIs to give an accurate picture of uncertainty in data, and thus 
help any readers of our research reports make better interpretations, less 
influenced by misconceptions. Those two suggestions seem to me reason-
able, but need further empirical investigation. I’ll now discuss four exam-
ples of randomness to illustrate the issues.

Stars, Glowworms, and Penguins

As a first example, consider Figure 5.13. Look carefully at each of the four 
squares in turn. For each square, decide whether the points are positioned

	 1.	Randomly, or
	 2.	Randomly but with a bias toward clumping, or
	 3.	Randomly but with a bias toward spacing out of points.

Perhaps ask one or two friends to inspect the four scatters of points and 
make their judgments also. Write down your answers.

While you’re still thinking about Figure 5.13, and before I explain the 
penguins, I’ll describe my second example. Consider Figure 3.1 again. It 
shows a normal population and a dot plot, or scatter, of 20 data points 
from that population. You may care to fire up the CIjumping page of 
ESCI chapters 1–4 and see the live version. Focus first on the dot plot 
of a sample. As in Figure 3.1, the points are probably scattered haphaz-
ardly, with a few little clumps and a gap or two. Take another sample and 
the new scatter probably shows a different haphazard pattern of clumps, 



 

144	 Understanding The New Statistics

gaps, and single points. Take more samples and watch how successive 
samples appear different. Try little prediction games—Where will the 
tightest clump be? Will there be a point or two way out in the tails?—but 
the samples most likely seem impervious to insight, and your predictions 
correct only by occasional fluke.

However, if we combine numerous samples together, we’d find 
close agreement with an exact pattern—the population distribution. 
Combined over many, many samples, very close to exactly the expected 
proportions of data points would fall in a narrow interval at μ, and a 
different proportion in a narrow interval at any other point along the 
horizontal axis, as signaled by the height of the population normal dis-
tribution at that point.

Those observations of samples illustrate the central idea: In the long 
term, and very long term, randomness is close to perfectly predictable but, 

in dramatic contrast, in the short term it 
is haphazard, lumpy, surprising, and not 
at all predictable. Now, back to my first 
example and the penguins. Last chance to 

write down your judgments about Figure 5.13.
In Figure 5.13 the top left square is random, and the other three squares 

have various degrees of bias toward spacing of points. No square has a 
bias toward clumping. The short lines in the lower left corner of three 

In the long term, randomness is highly pre-
dictable. In the short term, true randomness 
is often lumpy.

Figure 5.13
Four scatters of points, which may represent stars in the sky, glowworms in a cave, or pen-
guin nests on a hillside. For each square, consider whether the points are scattered ran-
domly, or with a bias toward clumping or spacing.
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of the squares indicate the minimum spacing of points in that square. 
In other words, draw a circle with that radius around any point in the 
square, and there will be no other point within that circle. No such limita-
tion applies in the top left square, and so points in that square are posi-
tioned randomly.

Did you judge the top left square, or perhaps the top two squares, to 
have a bias toward clumping? If so, you’re in good company: Many people 
tend to see clumps in truly random patterns or sequences. Ask someone 
to make random dots on a sheet of paper, and chances are he or she will 
produce a pattern more like one of the three squares with a bias toward 
spacing, rather than like the top left square.

Stephen Jay Gould (1991), in one of his fascinating essays about nature, 
evolution, baseball, and numerous other topics, discussed how glow-
worms position themselves across the roof of Waitomo Cave in New 
Zealand. Glowworms are territorial and risk being eaten if they get too 
close. Gould described the spectacular display of thousands of green dots 
in the dark, which look totally haphazard unless you look carefully and 
observe that there are no clumps, but a small minimum spacing between 
the glowing dots. Gould contrasted this with the pattern of stars in the 
sky, which in a small area is essentially random and certainly does have 
apparent clumps. He presented pictures like the top left and bottom left 
squares in Figure 5.13 to illustrate, respectively, stars in the sky and glow-
worms in the cave.

I’ve seen similar patterns in the way penguins space their nests. 
Chinstrap penguins, for example, usually nest on bleak open hillsides 
on Antarctic and sub-Antarctic islands. They build nests of small stones, 
or moss—whatever’s available. At first sight the thousands of nests seem 
randomly positioned, but look closely and you’ll realize they’re carefully 
spaced to be beyond pecking distance from any neighbor.

I used the Random page of ESCI chapters 5–6 to make Figure 5.13. That 
page displays two squares: one with a random scatter of points and the 
other a scatter of points with a bias toward spacing. Every time you click Go, 
a new random choice is made whether the left or right square will show the 
random scatter. You choose the number of points, the amount of bias in the 
spaced square, and whether or not to display the small line in the lower left 
of whichever is the spaced square. The line indicates the minimum spac-
ing. Test out how well your friends can recognize true randomness. Click to 
hide the minimum spacing line, click Go, wait as the points are generated, 
guess which scatter is random and which spaced, then display the mini-
mum spacing line to see if you were correct. Note that if you specify too 
many points, or too large a minimum spacing, the generation of points may 
be slow or may not run to completion. See the popout comments.
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For Figure 5.13 I chose 200 points, and the minimum spacing was 1.5%, 
2.5%, and 4% for the top right, bottom left, and bottom right squares, 
respectively. (The spacing is expressed as a percentage of the length of 
one side of the squares.)

My third example is another case of clumping in ESCI. Consider Figure 
3.1 again. The area under the population distribution curve is filled with 
a random scatter of points. Does it look random? Do you see clumps and 
small clear areas? At the CIjumping page, click Fill random twice to get 
a new random scatter under the curve. Most likely you’ll see different 
clumps and clearings.

This is a good moment to mention the book Statistics as Principled 
Argument, by Bob Abelson (1995). It contains much that’s interesting and 
wise. Abelson’s first law of statistics is “chance is lumpy.” However, he 
makes clear that he’s referring to local lumpiness, and that in the long run 
lumps average out.

Dancing CIs Again

As a fourth and last example of randomness, set up CIjumping to show 
the dance of the CIs as in Figure 3.7, with capture of μ indicated by the 
color of the CIs. Run the simulation. Do you see sequences or patterns in 
the way the means dance? Several red intervals may come close together, 
or there may be none for a while. It can be very tempting to interpret such 
apparent patterns—that’s a great danger when considering real experi-
mental results, just as it is when watching a simulation. Whenever we 
see patterns in data we need to keep in mind the possibility that they are 
mere patterns in random sampling variability.

Now Clear and start a new dance. Watch near red 9 the percentage of CIs 
capturing μ. At first this may differ from the C you have set near red 7, and 
it probably jumps around a lot. After the first couple of hundred samples 
it settles down and shows only smaller changes. Then, gradually, it makes 
much smaller changes and gets on average closer to C. If, by chance, there 
were a clump or two of red intervals near the start, so the percentage cap-
turing was lower than C, the fact that it eventually settles very close to C 
does not mean there’s any compensation for the early clumps of red. A 
random sequence has no such memory. The influence of early clumps is 
not compensated for, but is gradually diluted as many more samples are 
taken.

The dance of the CIs illustrates again that randomness close up can be 
surprisingly suggestive of differences, trends, and patterns. These may 
tempt interpretation, but that’s unjustified. In the very long run, however, 
percent capturing is very close to C and so, when viewed from a long dis-
tance, randomness is very predictable.
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You may be thinking that my examples of randomness aren’t based on a 
truly random process like coin tossing or choosing numbers from a well-
shaken hat. Instead, I’m using computer simulation, which relies on a ran-
dom number generator to calculate a sequence of numbers that isn’t truly 
random. Yes, ESCI uses a random number generator, but it’s a good one, 
and the numbers it produces are, for all practical purposes, random.

I confess that I’ve often found ESCI output surprising. The dance of the 
CIs may start with three red in four samples, or perhaps no red in the first 
100 samples. Sometimes I find a programming error, but usually I run 
the simulation for a long time, apply statistical evaluation to the output, 
and conclude that the output is just as it should be. I can even examine 
lumpiness and find that it’s lumpy to just the right extent. I’m not immune 
from the temptation to seek real causes, such as a programming error, for 
lumps in the randomness!

A Law and a “Law”

Statisticians refer to the long-run predictability of randomness as the law 
of large numbers, which is fundamental in statistical theory. It states that 
very large random samples resemble the 
underlying population very closely. It’s 
this law that assures us that, if we keep 
increasing our sample size N, sample 
means will tend to be closer and closer 
to μ. Here the law is operating via the N  in the denominator of the for-
mula for the SE, so for larger N the dance of the means becomes less broad 
and the mean heap becomes narrower.

Box 5.3 reports a classic statistical cognition experiment that found that 
even researchers tend to underestimate sampling variability and over
estimate the chance that a repeat of an experiment will give a similar result. 

The authors called this misconception 
of probability the “law” of small numbers, 
which states that many people, including 
many researchers, believe that small sam-

ples behave like very large samples. The law of large numbers is a genu-
ine statistical law, which says that very large samples closely resemble the 
population. The ironically named law of small numbers, however, labels a 
human misconception, because small samples actually often differ a great 
deal from the population, simply because of random sampling variability.

In summary, random variability is often large in the short term, but 
probability and randomness give good guidance in the long term. If I con-
sider today a few dozen 95% CIs, perhaps none of them is red, but tomor-
row I might consider only half a dozen, and two or three will be red. Well, 

The law of large numbers is a law of math-
ematical statistics. It states that when random 
samples are sufficiently large they match the 
population extremely closely.

The “law” of small numbers is a widespread 
human misconception that even small sam-
ples match the population closely.
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they would be red if CIs were colored in real life. On the other hand, I 
can be sure that close to 5% of the numerous 95% CIs I consider in my 
lifetime miss the parameter they are estimating. I hope that practice with 
CIjumping, and other ESCI simulations to come, can help us all improve 
the accuracy of our intuitions about sampling variability. Unfortunately, 
we’re often likely to find that the sampling variability is larger than we’d 
hoped or expected.

Time for coffee, chocolate, or maybe some well-spiced pea soup. Here 
are some hints to help you write down your take-home messages from 
this chapter.

•	 CIs and replication. What’s the chance that a 95% CI will capture 
a replication mean?

Box 5.3  The “Law” of Small Numbers

Tversky and Kahneman (1971) presented the following statement 
to research psychologists: “Suppose you have run an experiment 
on 20 subjects, and have obtained a significant result … z = 2.23, 
p < .05, two-tailed. You now … run an additional group of 10 sub-
jects” (p. 105). The psychologists were then asked to estimate the 
probability that the results for the second group would be statisti-
cally significant, by one-tailed test.

To work out an appropriate answer we could assume that the first 
experiment estimated the true effect accurately, in which case the 
second has about a 50–50 chance of obtaining a smaller or larger 
effect than the first. There are a few complications in the calcula-
tions, but a good estimate of the probability that the second study 
gives p < .05, one-tailed is .47.

The median answer given by the psychologists was, however, 
.85. The participants, including some mathematical psychologists, 
grossly overestimated the chance that the second experiment would 
also give a statistically significant result. Tversky and Kahneman 
(1971) interpreted this result, and those of several related experi-
ments, as indicating that many people severely underestimate the 
extent of sampling variability. Their research psychologists, includ-
ing some with a mathematical interest, believed that results even 
from small experiments are likely to be replicated quite closely. 
Tversky and Kahneman labeled those misconceptions of random-
ness and variability “the law of small numbers.”
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•	 The sixth way to interpret a CI, as a prediction interval for a rep-
lication mean.

•	 What information does a p value give about what’s likely to hap-
pen next time?

•	 Dance of the p values. Distribution of the p value.
•	 Randomness, lumpiness, glowworms, penguins, and a strange 

“law.”

Exercises

	 5.1	 Consider Figure 5.1. Does the CI of Experiment 1 capture the 
next replication mean? That’s the mean for Experiment 2, so 
the answer is yes. Does the CI for Experiment 2 capture its 
next mean? Again, yes. Work your way up the figure, record-
ing (Y for yes, N for no): Y, Y, Y, Y, N, etc. What percentage of 
the 24 cases give Y? What would you expect the percentage 
to be in the long run? You could use CIjumping to examine 
a longer sequence. How do these questions relate to the first 
half of Chapter 5?

	 5.2	 Find some issues raised in the chapter that you think could be 
interesting to investigate experimentally. Suggest some statisti-
cal cognition experiments.

	 5.3	 Figure 5.6 shows that, for N = 15, CP values are widely spread 
around 95% and extend almost up to 100%. What would 
you expect for larger N, say, N = 40 and N = 200? Test your 
predictions.

	 5.4	 I stated that a 95% CI is on average an 83% prediction interval. 
What about a C% CI? Cumming et al. (2004) explained how to 
calculate the prediction percentage for any C and included a 
graph of the prediction percentage against C. You may wish to 
read that article. Here’s the formula for a 95% CI, expressed in 
Excel functions, assuming N is very large or σ is known:

Prediction % = 
100 * (2 * (NORMSDIST((NORMSINV(.975)/SQRT(2))) – .5))

	 You could type that into Excel and verify that it gives 83.422. For 
any C of your choice, replace the .975 with (1 – (100 – C)/200). 
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Find the prediction percentage for a 99% CI and a 90% CI. For 
SE bars, the formula is

	 Prediction % = 100 * (2 * (NORMSDIST(1/SQRT(2)) – .5))

	 Find that prediction percentage and interpret. Ask your friends 
to estimate these various prediction percentages. How well do 
they do?

	 5.5	 I conclude that one reason a CI is valuable is that its width gives 
useful information about how widely replication means are 
likely to bounce around. Is this true even for small N? Explain.

	 5.6	 Use the p intervals page of ESCI chapters 5–6 to calculate 
some p intervals of your choice. Find a couple of examples, 
in your own work or published in a journal, where a p value 
is reported. Amend the report by adding the corresponding 
p interval. Interpret.

	 5.7	 Use the p intervals page to calculate p intervals for a set of p 
values of your choice. Make a table and keep it for reference.

	 5.8	 Suppose you read that M = 54.3, [44.2, 64.4], p = .072, as at the 
start of the chapter. Give an interpretation of the CI as a predic-
tion interval, and also give a p interval and interpret. Compare 
the two prediction interpretations. Repeat for another example.

	 5.9	 Use the Dance p page of ESCI chapters 5–6 to prepare, then 
deliver, a presentation to your statistics study group or class. You 
might choose to focus on, for example, the contrast of CIs and 
p values, or the role of power, or the spread of the distribution of p, 
or the role of N.

	 5.10	At the Random page of ESCI chapters 5–6, set the spinner for 
some larger number of points; 1,000 is the maximum, but large 
numbers may be slow to generate. You’ll need to set a small 
minimum spacing, perhaps 1% or less, or the generation may 
not complete—there may hardly be room for so many points 
spaced more widely. Experiment with various values of the 
minimum spacing, and see how well you or your friends can 
pick which is the random square. How subtle can clumping be 
and still be discernible?

	 5.11	Think of the various beliefs about randomness that keep gam-
blers going back to the roulette wheel, or slot machine, and keep 
the casinos in business. How might belief in the law of small 
numbers contribute? What might be the role of apparent clump-
ing in a random sequence?
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	 5.12	Revise your list of take-home messages if you wish.

Take-Home Messages

•	 Replication is central to science, and so it’s reasonable to ask what 
information a statistical technique gives about replication.

•	 To investigate sampling variability we consider idealized replica-
tions, such as those illustrated in ESCI simulations.

•	 The capture percentage (CP) is the percentage of replication means 
that in the long run fall within the CI of an initial experiment.

•	 Capture percentages for 95% CIs have mean 83% and median 
90%. Most intervals have CP around 90 to 95%, or even more than 
95% if based on t rather than z, and just a few have much lower 
values of CP. The 5% of intervals that miss the parameter being 
estimated—and that ESCI shows as red—have CP less than 50%.

•	 The sixth way to interpret a 95% CI is as an 83% prediction inter-
val for the mean of a replication experiment. There’s a .83 chance 
that our 95% CI will capture the mean of a single replication.

•	 With replication, p values vary enormously. The dance of the p 
values is very wide. In many typical cases, a replication can give 
almost any p value, and obtaining very low p is somewhat like 
winning at a casino.
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•	 Take-home movie: Your choice of the dance of the p values, the p 
value casino, or the sequence of p values to the left in Figure 5.10—
on screen, with colored patches. Are you dreaming of dances yet?

•	 A p interval is the 80% prediction interval for replication p, and 
p intervals are typically very wide.

•	 A CI gives useful information about replication, but a p value 
gives only extremely vague information about replication—about 
what’s likely to happen next time.

•	 The distribution of the p value is wide and depends on statisti-
cal power.

•	 Only very small values of p (*** results, or just possibly ** results) 
give reasonably useful information. Other values of p give hardly 
any information at all and provide a poor basis for inference.

•	 In the short term, randomness is often surprisingly lumpy, and it 
can be tempting to interpret such lumpiness as patterns or trends 
with real causes. Stars or penguins?

•	 In the very long term, randomness yields very close to the results 
we expect. That’s the law of large numbers in action.

•	 Uncertainty attributable to random sampling variability is, unfor-
tunately, often underestimated. That’s one manifestation of the 
law of small numbers, which is not a law but a misconception. 
An important function of CIs is to picture uncertainty accurately 
and clearly.
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6
Two Simple Designs

Many of the simplest experiments compare two conditions, perhaps using 
the two-independent-groups design or the paired design. You may be famil-
iar with these designs in the context of the independent-groups t test and 
paired t test. This chapter discusses how to use CIs to present and inter-
pret results from these two designs. Here’s the agenda:

•	 The dreadful ambiguity of conventional figures

The two-independent-groups design:

•	 Displaying the data
•	 A rule of eye for estimating the p value
•	 Presenting your own data
•	 Illustrating the great variability with replication

The paired design:

•	 Displaying the data
•	 The correlation between measures
•	 Presenting your own data
•	 Illustrating why this design can be sensitive

Figures With Error Bars: Even More Ambiguity

Your wine club gives you the onerous task of evaluating a fine red wine 
from the Napa Valley, California, and another from McLaren Vale, South 
Australia. To avoid bias, you mask the bottles and label them A and B. It’s 
easy to recruit volunteers, but you need to choose whether to use inde-
pendent groups of tasters for the two wines, or a single group who taste 
both, some A then B, and others B then A. After collecting the data, your 
assistant prepares Figure 6.1. What extra information does a reader need 
to understand it?
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In Chapter 4 we discussed the tragedy of the error bar—bars are ambig-
uous and we need to be told what they represent. A further deep ambi-
guity can lurk in figures, because there’s no conventional way to signal 
whether an independent variable refers to independent groups or is a 

repeated measure. Without that informa-
tion we can’t use error bars to interpret 
the figure. If you were considering a t test 
for the data reported in Figure 6.1, you’d 
immediately ask whether A and B are 
independent groups, or a repeated mea-

sure. We need to ask the same question to be able to interpret the error 
bars. Every figure with error bars must make clear, with labels or in its 
caption, the status of each independent variable.

Pictures of Two Independent Groups

Display the Difference With Its CI

It’s best to have the ESs and CIs that relate most directly to the effects we’re 
investigating. You’d think that would hardly need saying, but Figure 6.1 
is a common example that may not provide what we want. If our interest 

To interpret a figure with error bars, it’s 
essential to know for each independent vari-
able whether it refers to independent groups 
or is a repeated measure.
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Figure 6.1
Mean quality ratings for two wines, A and B, with error bars. What questions need answer-
ing before you can interpret the figure?
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is to score the two wines separately, perhaps to compare with many oth-
ers, then the figure is fine. However, let’s assume that our main interest 
is to compare the two, in which case we need the point and interval esti-
mates of the difference between A and B. Figure 6.2 is a nice solution that 
still displays MA and MB, the two group 
means, and also (MB – MA), the differ-
ence between them. (I’m using (MB – MA) 
for the difference, rather than (MA – MB), 
for convenience and to be consistent with ESCI. However it’s an arbitrary 
choice.) The difference is plotted on a difference axis that “floats” so its 
zero is aligned with the mean of A. The figure displays results for two 
independent groups of tasters, each of size N = 30.

Here’s what I did to build such a figure. For the 95% CI on MA, I used 
Equation (3.3) to calculate:

	 MOEA = t.95(NA – 1) × s NA A/

where the A subscripts refer to the A group. I calculated MOEB similarly. 
Then for the 95% CI on the (MB – MA) difference we want the MOE for the 
difference, which is MOEdiff. You may recognize the next calculations as 
very similar to those for an independent groups t test. First, I calculated a 
pooled estimate of the within-group SD, which we’ll assume is the same 
for the A and B populations:

Figures are most useful if they present ESs 
and CIs for effects of primary research 
interest.
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Figure 6.2
The two means shown in Figure 6.1. Error bars are 95% CIs. A and B are independent 
groups, each of size N = 30, and the difference between the B and A means is plotted on 
a floating difference axis, whose zero is aligned with the A mean. The triangle marks the 
difference on that axis, and the 95% CI on that difference is displayed.
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	 s
N s N s

N Np
A A B B

A B
= −( ) + −( )

+ −
1 1

2

2 2

	 (6.1)

Then

	 MOEdiff = t.95(NA + NB – 2) × sp
1 1

N NA B
+ 	 (6.2)

If sample sizes are large, say, both at least 30, we could use Equation (3.2) 
and z rather than t. If, as well, the two sample sizes are equal and the two 
sample SDs are equal, then the formulas become much simpler: MOEA = 
MOEB and MOEdiff is just 2  times (which is about 1.4 times) larger than 
either of them. In Figure 6.2, the two groups are each of size 30, and MOEA 
and MOEB are similar, so the conditions stated previously are approximately 
met, and MOEdiff does appear roughly 1.4 times as long as MOEA and MOEB.

Does the pattern of error bars in Figure 6.2 look familiar? Compare it 
with Figure 5.9, which also shows the means of two independent groups, 
a floating difference axis, and the difference with its CI—which is about 
1.4 times as long as the CI on E or C. For successive experiments in a set, 
Figure 5.10 displays not the separate E and C means and CIs, but the dif-
ference with its CI because that’s most relevant. Our main interest is the 
difference between the E and C means, so seeing that difference with its 
CI is most useful to us.

Once we have that difference and its CI we could choose whichever one 
or more of the six ways to think of a CI that seem most illuminating in the 
particular situation. But if we had only Figure 6.1 rather than Figure 6.2 
we’d lack the crucial CI on the difference, and thus lack the basis for direct 
interpretation of what primarily interests us. A new statistics focus on 
the interpretation of estimates should lead to figures like Figure 6.2 being 
provided more often.

In Example 6.1, however, what matters for each group and each heading 
is the match between the data and a theoretical prediction. The difference 
between group means was not of particular interest, so reporting means 
and CIs for the separate groups was appropriate. As ever, data presenta-
tion and interpretation must be shaped by the research questions.

Independent Means With Their CIs

When we have independent groups, however, the CIs on the separate 
means can help indirectly. Consider the previous formulas. The CIs on 
the two means are calculated from sA and sB, the two sample SDs. The CI 
on the difference is based on the pooled SD, which is also calculated from 
those same sA and sB. The CIs on the two means therefore represent the 
same information about variability as does the CI on the difference. In 
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other words, if you knew only the CIs on the means (and the sample sizes), 
you could figure out the CI on the difference. If the CIs on the means 
were roughly equal in length, then 1.4 times that length would be a good 
estimate of the length of the CI on the difference. Therefore, one way to 
interpret Figure 6.1 is to note the difference between the means, then eye-
ball an interval about 40% longer than either of the two CIs shown and use 
that as the CI on the difference.

Overlap of CIs on Independent Means

I’ll now describe another approach to thinking about Figure 6.1 that is use-
ful even though it uses p values. In Figure 6.2 you can use the benchmarks 
of Chapter 4 to eyeball the p value, by noting where the CI on the differ-
ence falls in relation to zero on the difference axis. It’s p = .07; did your 
eyeball agree? Because the CI on the difference is based on the same vari-
ability information as the two CIs on the means, those two CIs can also be 

Example 6.1  The Compass Used by Birds

Zapka et al. (2009) investigated the physiological mechanisms that 
may underlie birds’ ability to use the Earth’s magnetic field for 
navigation. In one of their studies they examined the idea that 
magnetoreceptors in the upper beak transmit information about 
compass bearing through the trigeminal nerve from the eye to the 
brain. They compared orientation performance by European rob-
ins with intact trigeminal nerves (control birds), and those whose 
trigeminal nerves had been severed (treated birds). They reported 
that control birds oriented at 10°, [350, 30] in the earth’s magnetic 
field, and at 245°, [219, 271] in an artificial magnetic field aligned 
to 240°. (I’m referring here to compass bearings, magnetic north 
being 0° and 360°, south 180°, etc.) The treated birds oriented in the 
same two conditions at 354°, [334, 14], and 264°, [230, 298], respec-
tively. The researchers concluded that both groups could orient 
reasonably successfully to natural north and to the artificial north 
induced at 240°, so those robins seem able to navigate without 
relying on input via their trigeminal nerve. The sample sizes were 
small (6 and 7) but in all cases the accurate heading (0° or 240°) was 
well within the 95% CI, and the CIs for the 0° and 240° headings 
were very well separated. The original article included ingenious 
circular figures that showed each bird’s response as well as the CI, 
but my purpose here is to illustrate how even CIs reported in text 
can simply and compactly summarize results and can sometimes 
give a good basis for interpretation and comparison of groups.
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used to estimate the p value for the difference. Simply focus on the overlap 
of the two CIs, or the gap between them. Figure 6.2 illustrates the amount 
of overlap for p = .07. Move the B mean a little higher, so the lower limit of 
the CI on the difference just touches zero, and find that p = .05 corresponds 
to considerable overlap of the CIs on the A and B means. Surprising? Not 
after a play with ESCI, but first I’ll describe an overlap rule of eye.

The Overlap Rule for Two Independent Means

The overlap rule of eye, from Cumming and Finch (2005, tinyurl.com/
inferencebyeye), distinguishes three situations:

	 1.	 If the 95% CIs on two independent means just touch end-to-end, 
overlap is zero and the p value for testing the null hypothesis of 
no difference is approximately .01.

	 2.	 If there’s a gap between the two CIs, meaning no overlap, then 
p < .01.

	 3.	Moderate overlap (see the following) of the two CIs implies that 
p is approximately .05. Less overlap means p < .05.

Moderate overlap is overlap of about half 
the average MOE, as in Figure  6.3. MOE, 
of course, is the length of one arm of a CI, 
so average MOE is the average of the arm 
length of the two CIs. Figure 6.3 includes horizontal lines to mark overlap. 
I express the amount of overlap as a proportion of the average MOE, and 
refer to it as proportion overlap, or just overlap. Figure 6.3 shows overlap of a 
little more than 0.5 and p a little less than .05, illustrating that the rule is 
often a little conservative—p is often a little less than the rule states. In 
Cumming (2009) I reported evidence that the rule is reasonably accurate 
when both sample sizes are at least 10 and the two MOEs do not differ by 
more than a factor of about 2.

Rules of eye are approximate and intended for eyeballing, not as a 
replacement for calculation of exact p values if that’s your interest. They 
give a handy guide for use, for example, when you’re listening to a research 
talk and see a slide showing means with error bars. Check that the means 
are independent and the error bars are 95% CIs, then use the overlap rule 
as a rough guide whether some difference of interest would earn * (CIs 
overlap no more than about half the average MOE) or ** (CIs touch or show 
a gap). Box  6.1 reports evidence that many researchers in several disci-
plines have a poor understanding of how the extent of overlap relates to p.

I’ve strongly recommended 95% CIs over SE bars, but figures with SE 
bars are still common, especially in some biology disciplines. Unless N is 

For two independent means, if the two 95% 
CIs just touch, p is approximately .01, and if 
they overlap by about half the average MOE, 
p is approximately .05.
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small, say, less than 10, SE bars are about half the width of the 95% CI. The 
overlap rule can therefore be translated to apply to SE bars:

	 1.	 If the gap between SE bars on two independent means is about 
twice the average SE, the p value for testing the null hypothesis of 
no difference is approximately .01.

	 2.	 If the gap is larger, then p < .01.
	 3.	 If the gap is equal to the average SE, p is approximately .05. Larger 

gap means p < .05.

You can make a picture in your mind’s eye to illustrate the third case: 
Simply halve the lengths of the error bars in Figure 6.3. The rule for SE bars 
is also reasonably accurate, provided both sample sizes are at least 10 and 
the SEs of the two groups don’t differ by more than a factor of 2. Box 6.1 
reports evidence that, alas, many researchers in several disciplines have a 
poor understanding of the distinction between 95% CIs and SE bars.

ESCI for Two Independent Groups: Compare A B

I suggest now firing up the Compare A B page of ESCI chapters 5–6. On 
opening, you’ll see a figure like Figure 6.1. Don’t for the moment click at 

Two Independent Groups

p = .040Overlap = 0.55
0

20

40

60

80

100

120

140

A B

Q
ua

lit
y R

at
in

g 
 

Figure 6.3
Two independent means, a little different from those in Figure 6.2, and their 95% CIs. 
Overlap is the distance between the horizontal lines, expressed as a proportion of the aver-
age of the MOEs for the two CIs. The figure illustrates the overlap rule.
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Box 6.1  Researchers’ Understanding 
of Error Bars

Belia, Fidler, Williams, and Cumming (2005) reported a study of 
how researchers understand error bars. We sent emails to authors 
of articles in leading journals in medicine, behavioral neuroscience, 
and psychology. The emails included a link to a figure like Figure 6.1 
that allowed respondents to click and drag the right-hand mean and 
its error bars up or down.

There were three conditions, but any respondent saw only one. 
The CI condition stated that the means were for two independent 
groups and the bars were 95% CIs. The SE condition was the same, 
except the bars were SE bars. In the repeated measure condition, the 
means were for the pretest and posttest for a single group of partici-
pants. Respondents were asked to set the right-hand mean so they 
judged the two means just statistically significantly different at the 
.05 level. We emphasized that we were asking for eyeballing, not 
calculations.

We chose the three disciplines because a preliminary study of their 
journals confirmed that they have very different error bar customs. 
(That was in 1999–2002. Some practices have changed since then.) 
In psychology, CIs and error bars were seldom used; in behavioral 
neuroscience about half the articles included figures with SE bars, 
but CIs were seldom reported; and in medicine about two thirds of 
the articles reported CIs as numerical values, but seldom included 
CIs or SE bars in figures.

Our first finding was that for every discipline and every condition 
there was a very broad range of responses and, overall, performance 
was poor: Only 22% of responses were positioned so that p was 
between .025 and .10. Second, responses were similar for the three 
disciplines despite the very different experiences the three groups 
of respondents would have had with CIs and error bars in figures. 
Third, CI bars were on average set too far apart, corresponding on 
average to p = .01, whereas SE bars were set too close, correspond-
ing on average to p = .11. Indeed, the amounts of response overlap 
or gap were quite similar for CIs and SE bars, suggesting that many 
researchers did not appreciate the distinction between the two. 
Fourth, it was popular to set bars just touching end-to-end. For CIs, 
34% of responses were just touching, indicating the use of the incor-
rect overlap rule. For SE bars, 30% of responses were just touching, 
suggesting the application of the incorrect rule to the wrong type 
of bars!
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red 6 to reveal a second figure, which is for the paired design. The main 
interest is to investigate the three checkboxes at red 3. Note their popouts. 
Click the top one to reveal the difference with its 95% CI, displayed on a 
floating difference axis as in Figure 6.2. Click the next checkbox to mark 
overlap with horizontal lines and to see values at the bottom for overlap 
and two-tailed p, as in Figure 6.3. You can now investigate any aspect of 
the overlap rule of eye for 95% CIs. Here are a few suggestions:

•	 Adjust the A or B mean so p = .05, and note overlap.
•	 Adjust the A or B mean so overlap = .50, and note the p value.
•	 Repeat, for p = .01, and overlap = 0.
•	 Try various values of the SDs and Ns to check out the robust-

ness of the rule. Try some very small values of N; change the SDs 
so the two MOEs differ by a factor of 2 of more. Do you agree that 
the rule is sufficiently accurate provided both Ns are at least 10, 
and the two MOEs don’t differ by more than a factor of 2?

•	 With the floating difference axis clicked off, note overlap and 
imagine what the CI on the difference would look like and where 
it would fall in relation to zero. Click to display the difference axis 
to check. Can you find someone willing to make this a competi-
tive challenge?

Later in this chapter we’ll consider the repeated measure design 
and will find that, for this design, overlap cannot be used to eyeball p 
for the difference. Therefore, our task is impossible in the paired case.  
Only 11% of our respondents in this condition recognized the problem.

We had also asked how many years ago a respondent published 
his or her first journal article. Responses ranged from 0 to 48 years, 
but there was no sign of any relation with accuracy on the task, so 
neither long experience nor recent training leads to better under-
standing of error bars.

We concluded that we’d identified a range of severe misunder-
standings that many researchers in each of the three disciplines 
hold. You might be tempted to respond that CIs and other error bars 
seem so problematic that even NHST is preferable. You won’t be sur-
prised to hear that our response was different: We took the findings 
as helping to define what’s needed if CIs are to be widely and appro-
priately used. It may be best if new graphical conventions make it 
immediately obvious what an error bar represents, and whether an 
independent variable represents independent groups or is a repeated 
measure. Better guidelines and education are also needed.
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Did you confirm that the rule is usually a bit conservative? If overlap = 
.50, p is often around .036. Have you become slick at eyeballing amount of 
overlap in terms of proportion of average MOE?

Now click the third checkbox near red 3 to display cat’s-eye pictures, 
and see something like Figure  6.4. Perhaps you were wondering why 
overlap as large as .5 can give p < .05? The cat’s eyes indicate that the 
overlapping is of the “thin ends” of the 95% CIs, and so even a fair amount 
of overlap is consistent with low p and thus some evidence of difference.

Before seeing cat’s eyes, the two CIs in Figure 6.1 might suggest that we 
need zero overlap to have reasonable grounds for concluding that there’s 
a true difference between A and B. In medicine that intuition is stated as a 

rule in some textbooks, and Schenker and 
Gentleman (2001) found many examples 
in medical and health science journals in 
which authors equated 95% CIs not over-
lapping with statistical significance at the 

.05 level. The rule that independent 95% CIs just touching is equivalent to 
p = .05 is incorrect, but seems to be widely believed, especially in medi-
cine. Requiring just touching or a gap amounts to using a p = .01 criterion, 

Especially in medicine, many people believe, 
incorrectly, that independent 95% CIs just 
touching is equivalent to p = .05. It’s actually 
approximately equivalent to p = .01.
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Figure 6.4
A figure from ESCI Compare A B showing two independent means and their 95% CIs, and 
the difference with its 95% CI on a floating difference axis. The data are slightly different 
from those in previous figures. The CI on the difference just touches zero, so two-tailed 
p is .05. Overlap of the CIs on the A and B means is 0.61. The cat’s eyes illustrate that overlap 
is of the “thin ends” of the intervals.
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which may be fine, but researchers should be aware of what p criterion 
they are using. Box 6.1 reports evidence that many researchers in several 
disciplines believe the incorrect rule.

Example 6.2 describes an experiment that used four independent 
groups. I prepared Figure 6.5 to show the separate means and CIs, and 
provide a basis for interpretation. We could also use the overlap rule to 
eyeball p values from that figure.

Example 6.2  Randomness and Belief in God

Kay, Moscovitch, and Laurin (2010) investigated two factors that might 
influence people’s stated belief that the universe is controlled by God 
or a similar nonhuman entity. Four small groups of students, 37 in all, 
served as participants—one group for each combination of the two 
manipulations. All participants were given an “herbal supplement,” 
which was actually inert. Two groups were led to believe that it may 
mildly increase anxiety or arousal; two were given no such sugges-
tion. That was the “arousal suggestion” manipulation. All participants 
then completed a word task. The second manipulation was whether or 
not the words emphasized chance and randomness. Participants then 
rated several statements about their belief that God or karma governs 
the universe. Ratings were on a scale from 1 to 7, where high ratings 
indicate stronger belief. Kay et al. reported ESs, NHST analyses, and 
several p values, the smallest being .03. I calculated CIs and prepared 
Figure 6.5 to display the main result. They suggested that belief in 
the supernatural may be heightened by thoughts of chance or ran-
domness, unless an alternative explanation is available for the anxiety 
or arousal that such thoughts are presumed to elicit. For the arousal 
groups the “herbal supplement” provided such an explanation, so the 
researchers expected only the randomness-and-no-arousal group to 
give higher ratings. They interpreted the figure as confirming that 
expectation: The top left point is higher than the other three points, 
which are not statistically significantly different.

Their conclusion may be correct, but the pattern of means and CIs 
in Figure 6.5 suggests the extent of uncertainty. You could consider 
how much weight to give the p value of .03, and the extent that inter-
val width might influence how you think about the three means that 
are not statistically significantly different. The experiment used four 
independent groups, so you can use the overlap rule to compare any 
two means in Figure 6.5. You could also think of the CIs as predic-
tion intervals and imagine what patterns of the four means might 
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I’ve discussed the rules of eye, despite my recommendation to avoid 
NHST whenever possible, because they may sometimes prove handy in 
practice. In addition, eyeballing overlap and p may help bring to mind 
what the CI on the difference would look like, and how it relates to zero. 
It’s vital to keep in mind, however, the message of Chapter 5: p values give 
only very vague information. At most we should use p or overlap as a 
rough guide—along with considering whether the difference is useful or 
meaningful in the particular context.

ESCI: Data Two

The Data two page of ESCI chapters 5–6 is the first that’s designed pri-
marily for you to display your own data. Perhaps you have some suitable 
data for two independent groups, or you could invent some. Enter that 
data and see a figure displaying the means and CIs, as in Figure 6.6. As 
usual, follow red numbers and popout comments to discover what’s pos-
sible, how to enter data, and how to display various features. For example, 
you can display the data points as two dot plots and mark overlap of the 

be given by replications of the experiment. In Chapter 15 we’ll con-
sider estimation beyond simple comparisons of two means, and also 
the issue of multiple testing. However, my suggested ways to think 
about the results raise cautions about the authors’ conclusions.
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Figure 6.5
Mean ratings of strength of belief in the supernatural, with 95% CIs, for the four 
independent groups used by Kay et al. (2010). Means are slightly offset so all CIs can 
be easily seen.
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CIs, as in Figure 6.6. See Appendix A for further advice. You can click near 
red 9 to reveal a second figure that also displays the difference between 
the means, with its CI, on a floating difference axis.

ESCI is not intended to be a fully functioned data analysis tool. One 
of its limitations is that there’s no general import or export capability for 
data. You need to enter your data either by typing it in, or by using the 
clipboard to copy and paste it in, one group at a time. Pasting requires 
the use of Paste Special/Values. See the popout at red 1.

Previous ESCI pages have generally used figures with fixed limits for 
the axes so, for example, you can explore means within only a fixed range, 
often 0 to 100. Your own data, however, may be large or small, negative or 
positive, and so Data two adjusts the range of the vertical axis to suit the 
data you enter. The floating difference axis is also changed.

The Compare A B page assumes that the SDs of the A and B popu-
lations are equal. That’s the homogeneity of variance assumption, often 
made when using an independent groups t test. Data two has an option to 
avoid this assumption by using the Welch–Satterthwaite method, which 
gives good approximations for p and the CI on the difference without 
assuming that the A and B SDs are equal. Box 6.2 gives a brief description 
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Figure 6.6
A figure from ESCI Data two showing two independent means and their 95% CIs. The 
individual data are shown as dot plots, and overlap of the CIs is marked.
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Box 6.2  The Welch–Satterthwaite Approach

You can skip this explanation if you wish. Just note the final sentence 
in the box.

For the two-independent-groups design, the conventional approach 
to calculating t and p for the difference between means, and the CI 
on that difference, assumes homogeneity of the two population vari-
ances. The Welch–Satterthwaite approximation avoids that assump-
tion. For the SE of the difference it uses
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where the WS subscript refers to the Welch–Satterthwaite value. 
This can be contrasted with
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that appears in Equation (6.2). Recall that sp is the pooled SD within 
groups, given by Equation (6.1).

The Welch–Satterthwaite approximation also requires a change to 
the degrees of freedom. Instead of df = NA + NB – 2, it uses
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That number is often not an integer, and so calculating p, and also 
MOE for the CI on the difference, requires interpolation between the 
values given by integer values of df next below and next above dfWS. 
If you select No at red 7 in Data two, so the approximation is used, 
you may see a noninteger value of df near red 8.

The conventional approach that assumes homogeneity of variance 
calculates the pooled within-group SD by weighting sA

2 and sB
2 by 

(NA – 1) and (NB – 1), respectively, as in Equation (6.1). If one sample 
is much larger, it contributes more to the pooled value, and that’s 
appropriate if we’re assuming that the two samples are estimating 
the same population value. By contrast, the Welch–Satterthwaite 
formula shown above for SEWS weights the contributions of the two 
samples close to equally. The bottom line is that if the two methods 
give notably different results, it’s probably better to choose Welch–
Satterthwaite by clicking No at red 7 in Data two.
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of the method. Click near red 7 in Data two to select whether or not you 
wish to assume homogeneity of variance. Click between Yes and No to 
observe how the results change. They usually only differ much when the 
two samples have considerably different sample sizes and SDs. In such 
cases it’s probably better to click No to avoid making the assumption.

I hope Data two helps you report CIs and figures with CIs. For either a 
single group or two independent groups it gives you the numerical values 
of CIs, for 95% or any other level of confidence, with or without assuming 
homogeneity of variance. There are a variety of display options. You can 
also use any Excel editing facilities to change a figure, before copying it to 
a Word document (see Appendix A for details).

ESCI: Simulate Two

Simulate two lets you simulate independent-groups experiments using 
population characteristics and sample sizes you specify. The purpose is 
simple: to get a feel for the amount of variability over replication. Yes, it 
usually turns out to be surprisingly large. You may feel that earlier chap-
ters made that point, but I feel that it’s so important that it’s worth explor-
ing replication here, too.

I believe that, whenever you see a mean or any other ES reported with 
its CI, you should automatically be aware of roughly the range of values 
that could easily have been obtained instead, simply because of sampling 
variability. If there are several ESs, you should intuitively appreciate what 
other patterns of values could easily have been obtained. I don’t know 
of research that has investigated how to develop such intuitions, but I’m 
hoping that working with simulations will help. Simulate two allows you 
to explore replication for data that’s similar to your own, providing that 
the values are within certain limits.

As usual, you can start by simply exploring. Follow the red numbers, 
read the popout comments, adjust the controls, and use the buttons to run 
the simulation. It’s too confusing to have all features of the display clicked 
on at once, so investigate them one or two at a time.

Let’s suppose that you entered data into Data two, perhaps from your 
own wine tasting. The sample sizes were 13 and 9, sample means 47.8 and 
60.2, and sample SDs 14.6 and 11.7. You found the CIs you wanted, investi-
gated the effect of assuming homogeneity of variance, and made yourself 
a nice figure for your report. Now you’re interested to see what alterna-
tive results your experiment might have obtained or, equivalently, what 
results a replication of your experiment might give. However Simulate 
two needs population parameters, which is difficult because, of course, 
you don’t know them. You can try any parameter values you like, but it’s 
probably most useful to choose values by assuming that your experiment 
happened to give accurate estimates. Here are some suggestions:
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•	 Click near red 3 in Simulate two to enter your two sample sizes, 
13 and 9.

•	 Round off your sample means, and use 48 and 60 as the two pop-
ulation means. Use the spinners near red 7 to enter those values 
as μ1 and μ2. (If the population parameter values are not visible, 
click to Show values of population parameters.)

•	 Simulate two assumes homogeneity of variance, so let’s use 13 as 
the population SD, because 13 is the rounded off average of your 
sample SDs. Enter 13 for σ near red 7.

•	 Click Display difference between 
means near red 5. Run the simula-
tion and see how the difference 
marked in pink varies over replica-
tion. We could call it the dance of the 
differences. Its variation is a compounding of the variation in each 
sample mean, so it’s not surprising that the variation of the dif-
ference is larger. Correspondingly, we expect the CI on the dif-
ference to be about 1.4 times as long as the CI on either mean. 
The dance you’re watching may remind you of Figure 5.10 and 
the dance of the p values.

•	 Now click Display difference between means off, and near red 6 
click Display CIs and Display CI overlap on. Run the simulation 
and enjoy. (Click to hide extraneous display features as you wish.) 
Note the large variation in p, which is reported below red 9. Yes, 
this is another version of the dance of the p values.

•	 Take single experiments (button at red 1) and note how the extent 
of overlap corresponds to the p value. Practice translating between 
the two.

•	 Click Display CI overlap off, run more experiments, and refine 
your ability to guesstimate p by inspecting two CIs and eyeball-
ing overlap or gap. Enjoy.

Whatever parameter values you set, I suspect your main conclusion is 
that the difference between two independent means varies greatly over 
replication. Alas, probably surprisingly so.

The Paired Design

Perhaps your volunteers were so keen to taste both wines that you decided 
to use a repeated measure design, in which the N participants in a single 

For two independent groups, what I call the 
dance of the differences illustrates how the 
difference between the means varies over 
replication even more than either group 
mean varies.



 

Two Simple Designs	 169

group each gave values for both A and B. I’ll refer to this simply as the 
paired design, which gives us N pairs of A and B data values. This design 
may also be appropriate for data from pairs of matched participants. 
You’re probably familiar with the trade-offs that guide the choice between 
a two-independent-groups and a paired 
design, but this isn’t a book about experi-
mental design so I won’t go into detail. 
I’ll just mention that the paired design 
often is more sensitive and gives a more precise estimate of the difference 
between A and B, although we need to be wary of possible carry-over 
effects—such as learning or fatigue that means the first measurement 
from a participant influences the second. You’ll arrange, if possible, for 
some participants to have A first then B, and others the reverse order. 
We’ll see a simulation that highlights why the design is often sensitive. 
Two key features of the paired design are that measures A and B are cor-
related, and that we focus on the differences from the N pairs.

For a start, go back to Compare A B. Click at red 6 to reveal a second 
figure, which assumes that A and B are measures in a paired design. 
You’ll probably see two figures something like Figure 6.7. If the figure is 

For the paired design, as for the paired t test, 
focus on the paired differences and the CI for 
the mean paired difference.
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Figure 6.7
Two figures from ESCI Compare A B showing, at left, two independent means and their 
95% CIs, and the difference with its 95% CI plotted on a floating difference axis. Sample size 
is N = 40 for each group. The figure at right is for the same data values, but in this case A 
and B refer not to independent groups, but to two measures for a single group of N = 40 
participants. Again, means and 95% CIs are shown, including the CI on the mean differ-
ence, on a floating difference axis. The correlation between the A and B measures is r = .70. 
The two-tailed p value for testing the difference against zero is shown for each design. The 
overlap rule may be used in the left panel, but not the right.
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blank, check that NA = NB at red 1 and red 2. The left panel in Figure 6.7 
assumes two independent groups, one being NA = 40 values of A, and 
the other NB = 40 values of B. The focus is on (MB – MA), the difference 
between the two group means. The right panel is based on the same data, 
but assumes that the data set is N = 40 pairs of A and B values. The dif-
ference is Mdiff, the mean of the N paired differences. You can see that the 
values of (MB – MA) and Mdiff are the same; this is always the case, even 
though they are described differently. I’m using Figure 6.7 to illustrate the 
difference between the two designs, but it’s highly artificial. In real life, an 
experiment either has two independent groups or it’s a paired design—it 
can’t be both, and so only one of the figures could be correct.

The figure for paired data assumes that the correlation between the 
two measures is r = .70. Because this correlation is substantial, the paired 
design gives a more precise estimate of the difference between A and B, 
and a much smaller p value. You can use the slider near red 7 to adjust 
the assumed correlation of A and B, and watch how the width of the CI 
on the mean difference changes. Other things being equal, the paired 
design gives a more precise estimate of Mdiff, the effect of interest, the 
higher the correlation between the two measures. If you set a negative 
correlation, the CI for the difference in the paired design is larger than 
the corresponding CI for the two-independent-groups design. Such a neg-
ative correlation is rare in practice, but does caution that a paired design is 
not guaranteed to be more sensitive.

For both designs illustrated in Figure 6.7, the CI shown on the floating 
difference axis is the CI on the difference between A and B, and that’s what 
most interests us. Therefore, in both cases that CI, which is displayed at 
the right in each panel, is most important for interpretation. However, the 
vital contrast between the designs is, unfortunately, not made obvious in 
the display. It’s another aspect of the tragedy of the error bar and a big 
issue for the paired design. Recall that I made a big deal of explaining for 
two independent groups that the CI on the difference is based on the same 
information about variability as the CIs on the two group means. Know sA 
and sB and you can calculate the CI on the difference. That’s the basis for 
the overlap rule, which we can apply in the left panel of Figure 6.7. There’s a 
parallel with the t test: You use sA and sB to calculate independent groups t.

For the paired design, however, the CI on the difference is based on 
entirely different information about variability: sdiff, the SD of the paired 
differences. Again there’s a parallel with the t test: You need sdiff to calcu-
late paired t. Knowing only sA and sB is not sufficient to calculate paired t, 
and it’s not sufficient to calculate the CI on the difference in the paired 
design, which is displayed on the difference axis in the right panel in 

Figure  6.7. In fact, knowing sA and sB, or 
the CIs on the two separate measures 
in the paired design, gives virtually no 

For the paired design, the CIs on the two 
measures are virtually irrelevant for assessing 
the difference. No overlap rule is possible.
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information about the CI on the difference. To put it another way, the CI 
on the difference is sensitive to the correlation between the A and B mea-
sures. We found that adjusting r changed the width of the CI on the dif-
ference for the paired design—as in the right panel of Figure 6.7—from 
zero to much wider than either of the A and B CIs. But changing r made 
no difference to the separate CIs on A and B. Therefore, seeing only the 
CIs on A and B in the paired design, and not knowing r, leaves us almost 
totally ignorant about what we really want to know—the precision of our 
estimate of the difference between A and B.

In summary, Figure 6.7 displays for both designs the CI on the differ-
ence, and in both cases that’s what we usually need for interpretation. 
For two independent groups (the left panel) we can consider overlap of 
the two separate CIs as an alternative to 
interpreting the CI shown on the differ-
ence axis. For the paired design, however, 
we can’t do that, and we must interpret 
the CI of the mean differences, which is 
displayed on the difference axis. The contrast arises because the CI on the 
difference is calculated differently for the two designs.

In Compare A B, click at red 3 to turn Display Difference axis off, then 
you can inspect the two CIs in the left figure and use the overlap rule to 
compare the A and B means. You can even generate in your mind’s eye 
the CI on the difference. In stark contrast, in the right figure we don’t have 
sufficient information to do that. We have virtually no idea of the length of 
the CI on the difference. For the paired design, no overlap rule is possible. 
Box 6.1 reports evidence that many researchers in several disciplines do 
not appreciate that overlap of error bars is irrelevant in the paired design.

It’s a great failing of our graphical conventions that they don’t automati-
cally provide the crucial information as to whether an independent variable, 
such as A versus B, represents independent groups, or a repeated measure 
as in our paired design example. Example 6.3 is a simple experiment with 

Any figure with error bars must make clear 
the nature of the independent variable(s): 
independent groups or a repeated measure? 
Otherwise the figure is not interpretable.

Example 6.3  Television Viewing and Obesity

Robinson (1999) evaluated an 18-lesson program designed to reduce 
television viewing by third- and fourth-grade students. He also 
investigated any associated improvements in eating behavior and 
body mass index (BMI). He used an intervention group of 92 chil-
dren and a control group of 100. Before and after the intervention he 
assessed a number of measures of television viewing habits, exercise, 
eating habits, and body size and weight. He found that television 
viewing was reduced by about one-third, and some eating behaviors 
and BMI were also better in the intervention than the control group.
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one independent-groups and one repeated-measure independent variable. 
Figure 6.8 reports the means and CIs for one of the measures. In that fig-
ure, a line joining the means indicates a repeated measure: That’s a use-
ful convention, but not sufficiently well established to solve the problem. 
When designing a figure, make very clear, using labels or the caption, the 

In Figure 6.8 I’ve plotted parents’ estimates of the number of meals 
eaten in front of the television. The intervention and control groups 
are independent, but the baseline and postintervention measures 
are, of course, on the same children. Therefore, we’re justified to use 
the CIs in the figure to compare the two groups at either time point, 
but not to compare baseline and postintervention means for either 
group. The CIs on the average change from baseline to postinterven-
tion may be much shorter than the CIs shown, but Figure 6.8 doesn’t 
include them. Robinson (1999) reported that the mean difference 
between the changes on this measure for the two groups was 1.07, 
[0.18, 1.96]. That’s the difference between the groups in the change 
from baseline to postintervention. The CI is wide, but the result sup-
ports his conclusion that there were useful improvements in some 
eating behaviors.
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Figure 6.8
Means, and 95% CIs, of estimated numbers of meals eaten by children in front of 
television, for two groups of children at two time points. (Data from “Reducing chil-
dren’s television viewing to prevent obesity. A randomized controlled trial,” by T.N. 
Robinson, 1999, Journal of the American Medical Association, 282, 1561–1567.)
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nature of the independent variables. When seeing a figure, any reader 
must automatically ask, what do the error bars show and, for each inde-
pendent variable, do we have independent groups or a repeated measure? 
If you can’t answer those questions, you can’t interpret the figure.

ESCI: Data Paired and Simulate Paired

There are two final ESCI pages to discuss in this chapter, and I can be brief. 
Data paired allows you to present your own data for the paired design. 
Figure 6.9 is from that page and displays what could be your paired data 
and, for each pair, a difference score marked by a triangle against the float-
ing difference axis. One data pair and its corresponding difference are 
highlighted. Compare how the data pairs are represented here with the 
separate dot plots in the two-independent-groups example in Figure 6.6. 
The two designs are entirely different, and I hope the different figures 
make the distinction crystal clear. We need a graphical convention that 
can make the distinction just as clear when only means and CIs are dis-
played. In the meantime, the figure caption must describe the design.
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Figure 6.9
A figure from ESCI Data paired showing means and 95% CIs of pretest and posttest mea-
sures, which are response times in milliseconds (ms). The mean paired difference is shown 
with its 95% CI against a floating difference axis, whose zero is lined up with the pretest 
mean. The paired data are shown as small circles joined by lines. The differences are shown 
as triangles on the difference axis. One data pair and its difference are highlighted.
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Just to be sure, note the p value, shown below red 6. It’s .04, which cor-
responds to the 95% CI on the mean paired difference just missing zero. 
It’s totally irrelevant that the CIs on the pretest and posttest measures 
show large overlap. Data paired doesn’t mark that overlap, because for 
this design it’s always irrelevant. The correlation of pretest and posttest 
is shown below red 7 and is .89 for this data set. The high correlation 
explains the comparatively short CI on the difference, which indicates 
that we have a sensitive experiment.

Simulate paired requires population means between 0 and 100, so we 
can’t enter values similar to those of the data set in Figure 6.9. If, however, 
we subtract 400 from the means and keep the SD the same, we can explore 
variation over replication for the pattern of data illustrated in Figure 6.9. 
I used the spinners to enter 45 and 51 as rounded off values for μ1 and 
μ2 below red 8 in Simulate paired, and 13 for σ. (Once you change any-
thing the figure goes blank until you click at red 1 to simulate an experi-
ment.) Subtracting 400 to transform from means of 445 and 451 to 45 and 
51 changes only the values marked on the vertical axis. The pattern of data 
and means and all the CIs will be unchanged.

Rather than entering a value for the correlation in the population, we 
need to enter a value for σdiff, which is the population SD of paired dif-
ferences. High correlation between the measures suggests that the paired 
differences don’t vary widely, and so their SD, which in the population 
is σdiff, will be small. I adjusted the value of σdiff until the population cor-
relation, which is shown below red 8, was .89—same as for the data we 
entered into Data paired. Using σdiff = 6 did the trick. I chose N = 8 at red 4 
and was set to go.

I clicked to run the simulation. At first I ran single experiments and 
watched how very widely the value of p varied—it’s shown below red 10. 
No surprises there. I also saw that the correlation reported below red 9 
varied considerably from experiment to experiment, reflecting the espe-
cially large variability of correlation in such small samples.

There’s one further observation to describe, and it’s an important one—
the main reason for building and using Simulate paired. I clicked at 
red 12 to run a sequence. I used the spinner to find a convenient speed—
about two experiments per second. Then I focused on how the overall 
figure, meaning the pretest and posttest means and their CIs, jumped 

up and down from experiment to experi-
ment. I tried to get a feel for the extent 
of that jumping, which was often quite 
large. I then focused on a different thing: 
the variation from experiment to experi-
ment in the mean difference—the vertical 

separation between the two dotted lines. If you like, click near red 6 to 
mark this distance with a pink line. Yes, this vertical distance varied, but 

For the paired design, the CIs on the two 
measures are typically wider than the CI 
on the difference. If so, expect large varia-
tion over replication in the two means, but 
smaller variation in the mean difference.
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usually not nearly as much as the overall variation in the vertical position 
of the pretest and posttest means. To overstate the observation a bit, the 
mean paired difference—where the big pink triangle falls on the differ-
ence axis—didn’t change much, even as the whole configuration includ-
ing the floating difference axis jumped up and down crazily.

That pattern of variation reflects why the paired design is sensitive. The 
variability of the paired differences, σdiff in the population, is small com-
pared with the person-to-person variation, σ in the population. The design 
largely removes interindividual variation and focuses on the differences. 
It does this most successfully when the correlation is high, which is when 
σdiff is small compared with σ. Of course, you can use Simulate paired to 
vary any of those parameters and see how things change. Correlations 
around .8 and .9, as I’ve been using, are high, but in practice a paired 
design often gives correlations around those values, so my illustrations 
are realistic.

Here’s one last way to think about the paired design, and a new skill 
to enjoy. At red 5 click off Display differences and Display data pairs. 
Note the long CIs on the pretest and posttest means, and shorter CI on 
the difference. The CIs tell us we’ve estimated the pretest and posttest 
means only with low precision, but the difference much more precisely. 
Now consider the CIs as 83% prediction intervals for replication means. 
The two long CIs signal that the pretest and posttest means—in other 
words, the whole configuration of means and floating axis—will jump 
up and down considerably with replication. The short CI signals that the 
difference—in other words, the separation between the two dotted hori-
zontal lines—is likely to vary less over replication. That’s exactly what we 
observed. Once again, CIs tell a beautiful and revealing story, in this case 
about the patterns of variation that are typical of the experimental design 
we’re using. Relish your ability to hear the story, and see in your mind’s 
eye the patterns of variation over replication, simply by noting the CIs.

It’s time for take-home messages. Are you allowed red wine for such 
special occasions? I’m afraid I’ve mislaid the key to my labeling of the red 
wines, so I can’t tell you whether it was Napa Valley or McLaren Vale that 
produced B, the wine my tasters preferred. Anyway, here are some hints 
to help you write your take-home messages.

•	 Ambiguity of figures.
•	 A floating difference axis.
•	 Overlap rule for the two-independent-groups design.
•	 Welch–Satterthwaite. Data two and Simulate two.
•	 The paired design. Correlation between the two measures.
•	 Data paired and Simulate paired.
•	 Patterns of variability with replication.
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Exercises

	 6.1	 In Example 6.3, the mean difference between the changes for 
the two groups was 1.07, [0.18, 1.96]. Estimate the p value.

	 6.2	 Look back at the cat’s-eye pictures in Figure 4.5. When CIs 
are different lengths because they have different values of C, 
the curves of the cat’s eye are the same, and the only differ-
ence is that different proportions of the area between them are 
shaded. It’s the same in CI function as you vary C. However, 
in Compare A B, left figure, display cat’s eyes then change the 
SD of one of the groups. The CIs on MA and MB are different 
in length, but the cat’s-eye pictures also differ. Why? Why the 
difference from Figure 4.5?

	 6.3	 In Figure 6.5, estimate the p values for the comparison of arousal 
with no arousal, for the random and the not random conditions. 
Do you have any concerns about those estimates?

	 6.4	 Can you use the statistical software package you’re most famil-
iar with to generate figures like Figure 6.1, with labels?

	 6.5	 In Figures 6.5 and 6.8 I displaced the means slightly so all the 
CIs are clearly visible. The Publication Manual (APA, 2010, p. 156) 
suggests this strategy, although its one example uses SE bars, 
not CIs. Can you find a way to produce such figures?

	 6.6	 In journals or textbooks you read, find a few example figures 
that permit you to use the overlap rule, for 95% CIs or for SE 
bars, to estimate p values. Check your estimates.

	 6.7	 In Example 6.1, did you notice that observed bird orientation 
for the north and 240° magnetic fields was a repeated measure? 
Each bird was observed in both of those fields, so we have a 
paired design. Comparing the separate 95% CIs for the two 
fields ignored the possible correlation between the two mea-
sures. What additional information do we need?

	 6.8	 In Compare A B, set up sA = sB and NA = NB. Click at red 6 to 
display the figure for paired data, and near red 3 to turn on 
the difference axis. Adjust the correlation r near red 7. What 
value of r gives the shortest possible CI on the mean paired 
difference, and how long is that CI? Explain. What value of r 
gives the longest possible CI on the mean paired difference? 
Explain. How long is that CI compared with the CI on MA or 
MB? When r = 0, what happens?
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	 6.9	 In journals or textbooks you read, look for example ways to dis-
play CIs on separate means and CIs on a difference. Figure 6.7 
does this, but there are other ways. Do you have any suggestions?

	 6.10	Compare Figure  6.5, which shows four independent groups, 
and Figure 6.8, which shows two groups and one repeated mea-
sure—which is indicated by a line joining the relevant means. 
Can you find example figures that follow this convention for 
marking a repeated measure? Example figures that don’t? Are 
my captions for those two figures adequate?

	 6.11	 In your other statistics textbook find some interesting exercises 
for which Data two or Data paired is helpful. You can enter 
data into those pages to calculate CIs and get a figure to copy 
into a report of yours.

	 6.12	Revisit your list of take-home messages, and revise if you wish.
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Take-Home Messages

•	 Any figure must make clear for each independent variable 
whether it refers to independent groups or is a repeated measure.

•	 For interpretation it’s best to have an ES estimate and a CI for each 
effect of primary interest.

•	 If the (MB – MA) difference is of interest, it’s best to have the CI for 
the difference, not just for MA and MB separately. A floating differ-
ence axis can show that nicely.

•	 For two independent groups, the overlap rule allows us to use the 
95% CIs on the means to assess the difference. If overlap is zero 
then two-tailed p = .01, approximately, and if overlap is .5 of the 
average MOE then p = .05, approximately.

•	 The overlap rule is sufficiently accurate when both sample sizes 
are at least about 10 and the two MOEs don’t differ by more than 
a factor of about 2.

•	 Take-home picture: Overlapping 95% CIs for independent groups 
that illustrate the rule of eye for p = .05, including cat’s eyes, as in 
Figure 6.4.

•	 We prefer 95% CIs to SE bars, but SE bars are usually about half 
the width of 95% CIs, unless N is small, and so there’s an overlap 
or gap rule for SE bars on two independent means.

•	 For the two-independent-groups design, the CI on the difference 
is usually calculated by assuming homogeneity of variance. So 
are t and p for the independent t test.

•	 The Welch–Satterthwaite approximation avoids that assumption, 
and should be preferred when sample sizes and sample SDs differ 
more than a little.

•	 Data two analyzes your own data for two independent groups, 
either with or without the assumption of homogeneity of vari-
ance, and provides figures to display your data. Take-home picture: 
The CIs and the data displayed as two dot plots, as in Figure 6.6.

•	 Simulate two displays replications of a two-independent-groups 
experiment. See the dance of the differences, which is wider than 
the dance of either group mean.

•	 In the paired design, the focus is on the differences, as for the paired 
t test. Interpretation must focus on the CI for the mean paired dif-
ference, which can be shown against a floating difference axis.
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•	 The correlation of the measures determines how the length of the 
CI for the difference compares with the lengths of the CIs on the 
two separate means. The higher the correlation, the shorter the CI 
for the difference and the more sensitive the design.

•	 For the paired design, the length of the CI for the difference can 
be anything from zero to much longer than the CIs on the sepa-
rate means, which are irrelevant for assessing the difference. No 
overlap rule is possible.

•	 Data paired analyzes your own data for the paired design. Take-
home picture: The three CIs and the data displayed as pairs of 
points joined by lines, with the corresponding differences shown 
against the floating difference axis as in Figure 6.9.

•	 Simulate paired allows the exploration of replication of a paired 
experiment. Think of the CIs as prediction intervals, and foresee 
how, typically, the means will jump around a great deal but the 
mean difference won’t change nearly as much.
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7
Meta-Analysis 1: Introduction 
and Forest Plots

Meta-analysis can produce strong evidence where at first sight there 
seems to be only weak evidence. It can turn long CIs into short ones (well, 
sort of), find answers in what looks like a mess, and settle heated contro-
versies. Much of what it does can be revealed in a beautiful picture called 
a forest plot. In this chapter I’ll discuss forest plots and explain why I think 
meta-analysis and meta-analytic thinking are so great. Then in Chapter 8 
there’s more about ESCI and the two most important meta-analysis mod-
els. Chapter 9 outlines how to conduct a large meta-analysis and describes 
even more meta-analysis goodies.

At La Trobe University our large classes of beginning psychology stu-
dents have for years used ESCI forest plots to discover the basics of meta-
analysis. I think meta-analysis is so central to how science should be done 
that every introductory statistics course should include an encounter with 
it, and forest plots are the pictures that make that easy.

Here’s the menu for this chapter:

•	 Meta-analysis on a small scale
•	 The forest plot for Lucky and Noluck, and the basics of forest plots
•	 What the Publication Manual says
•	 The story of meta-analysis, and meta-analysis making a difference
•	 Further meta-analysis pages in ESCI

Meta-Analysis on a Small Scale

Combining Two or Three Studies

Figure 7.1 is a combination of the CI and meta-analysis presentations of the 
Lucky and Noluck results. It’s simply a combination of Figures 1.1 and 1.2, 
and it’s our first forest plot. A forest plot 
is a picture of CIs that present the results 
from a number of comparable studies, and 

A forest plot is a CI picture that displays 
results from a number of studies, and a meta-
analysis of those studies.
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another CI at the bottom that presents the result of a meta-analysis com-
bining the evidence over all the studies. Lewis and Clarke (2001) said it’s 
called a forest plot because it can look like a forest of lines—there may be 
dozens of studies each contributing a CI. You could also say it helps us see 
the forest rather than only the trees.

Before we start playing with ESCI, try the following questions, which 
ask about your intuitions of small-scale meta-analysis:

	 7.1	 Suppose you have two separate estimates of some ES. The two 
point estimates are similar, and the two CIs each happen to 
have MOE = 10 units. (Recall that MOE is the length of one arm 
of a CI.) Suppose we combine the two results by meta-analysis; 
what’s your guesstimate of MOE for the result?

	 7.2	 Same as 7.1, but now you have three independent estimates, all 
with MOE = 10.

	 7.3	 Suppose you have two separate results, very similar, and each 
with p = .10. What’s your guesstimate of the p value for the com-
bined result?

	 7.4	 Same as 7.3, but now you have three independent results, and 
each happens to give p = .10. (I know that’s incredibly unlikely 
to happen in practice.)

Write down your best guesses in answer to those four questions. In 
a while I’ll introduce an ESCI page that lets you find the answers, but 
perhaps you can use the Two studies page in ESCI chapters 1–4 to find 
answers to 7.1 and 7.3?

Time passes … as you and I each fire up ESCI and use the Two studies 
page …

On that page I adjusted things to give Figure 7.2, which helps answer 
those two questions. I set both Ns large and both SD(pooled) values to 
the maximum, then I adjusted the two M(diff) values to be the same and 

–2 0 2 4 6 8
Difference between the means

Lucky (Total N = 44)

Noluck (Total N = 36)

MA combination

Figure 7.1
A forest plot that combines Figures 1.1 and 1.2. It shows the Lucky (2008) and Noluck (2008) 
results and their meta-analytic (MA) combination.
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moved them both until Lucky and Noluck both had p = .10, as close as 
possible. Figure 7.2 is a forest plot that combines the two figures from Two 
studies after I’d made those adjustments. When I was building the 
Two studies page, I deliberately didn’t report MOE values, because I 
hadn’t introduced MOE back then in Chapter 1, and I didn’t want the page 
to get too complicated. So we’ll have to estimate the MOEs from the fig-
ures. Or you can do what I did and scroll right and find the values labeled 
MOE among the off-screen calculations. They’re shaded pink. I noted the 
MOEs for Studies 1 and 2, and for the meta-analysis. I could have cal-
culated that the meta-analysis MOE was 29.3% shorter, or I could have 
noted the value conveniently reported by ESCI just below the MOEs. If 
the MOEs for the two studies were 10 units, as in Questions 7.1 and 7.3, the 
MOE for the meta-analysis would be about 29% less, or 7.1 units.

The p values of .10 are shown for each study, and for the combined 
studies p = .02 is shown below the meta-analysis figure. You may have 
obtained slightly different answers, depending on your Ns. When each 
N is 10 the shrinkage is 34%. For very large N, the meta-analysis MOE is 
( )1 2/  times as large as the MOE of either study, assuming those two are 
the same, meaning it’s 29.3% shorter. Remember 30% as an approximate 
guide to the amount of MOE shrinkage when you combine the results of 
two similar studies.

The Good News of Meta-Analysis

Did you read Questions 7.1 to 7.4 and think you’d better adjust your first 
guesses in the pessimistic direction? Just about every time in this book so 
far the answers to judgment questions I’ve asked have been discouraging. 
Almost always, CIs are wider, sampling variability greater, and the result 
of replication more different than we might have guessed. So perhaps you 

–2 0 2 4 6 8

Difference between the means

Study 1 

Study 2 

MA combination

Figure 7.2
A forest plot to help answer Questions 7.1 and 7.3. It shows the results of two fictitious stud-
ies that happened to give the same ES and MOE, and for each of which two-tailed p = .10, 
to test the null hypothesis of zero difference, which is marked by a dotted vertical line. The 
MOE for the meta-analytic (MA) combination is 29.3% shorter than the MOE of either of 
the two studies, and its p value is .02.



 

184	 Understanding The New Statistics

tweaked your answers to those questions to make the MOEs longer and 
p values larger? I don’t blame you—after all, it’s one of the main messages 
of this book that sampling variation is often larger than we’d have guessed.

I’m pleased to say that meta-analysis breaks that mold and often deliv-
ers encouragingly good news. Two results combining to give a CI that’s 
about 30% shorter is a very useful increase in precision. Within traditional 

NHST thinking, it may be even more sur-
prising that two results as weak (in tra-
ditional NHST terms) as p = .10, could 
combine to give a result as strong (again, 
in traditional terms) as p = .02. The first 
main conclusion of this chapter is a happy 

one: Even two or three indications of an effect can, when combined, pro-
vide quite strong evidence for the effect. The indications need to broadly 
agree and must be at least largely independent of each other. If those con-
ditions are met, the combination of evidence is probably encouragingly 
strong. In many situations, researchers should spend less time worry-
ing about exactly how small a single p value is, and more effort looking 
for any other converging evidence they may be able to find. Even a small 
amount of separate, converging evidence makes a useful strengthening of 
a conclusion.

Example 7.1 illustrates how meta-analysis on even a small scale can be 
very useful. There’s further good news: Many disciplines have adopted 
meta-analysis fairly readily, with little resistance or criticism. It’s a com-
ponent of the new statistics that’s rapidly becoming mainstream. That 
is good news, but the way meta-analysis is usually understood needs 
to be broadened. So far, appreciation of meta-analysis has usually been 
restricted to its role in large-scale literature reviews, rather than as a tool 
for use in various different situations. To put it differently, I suspect that 
many researchers think of meta-analysis as a set of somewhat difficult 
and specialized techniques that can be used by statisticians, or research-
ers with an interest in methodology, to carry out large-scale quantitative 
reviews of research. In support of this view, any good book on meta-anal-
ysis describes a challenging sequence of steps needed to carry out a major 
meta-analysis. I’ll outline that process in Chapter 9, but here I want to 
highlight meta-analysis at the smaller scale.

Meta-analysis permits us to combine evidence from studies that address 
similar questions. Combining even two studies can give a useful increase 
in precision. Researchers can use meta-
analysis to combine evidence from related 
experiments in their research program as 
we did in Example 7.1, or even from related results within a single experi-
ment. Such small-scale uses of meta-analysis may prove in many situations 
to be the best way to respond to the disappointingly large uncertainty 

Two similar and independent results, when 
combined, give a CI about 30% shorter (if 
sample sizes are not too small) than the CI for 
a single result. They also give a much lower 
p value.

Use meta-analysis whenever it’s appropriate, 
even to combine just two or three results.
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Example 7.1  Assessing the Uncertainty of Experts

This is an example of small-scale meta-analysis in action. One of my 
research interests is the study of decision making by experts. Society 
often has to rely on expert advice when there’s insufficient good 
evidence to guide decisions, but we’d like to know how uncertain an 
expert is in a particular case. We’d like from the expert not just a best 
point estimate, but an interval estimate that has some stated chance 
of including the true value. (You see why I’m interested in expert 
decision making—CIs in a different guise!)

The custom is to seek an 80% uncertainty interval around an 
expert’s best point estimate. For example, we might ask our eco-
logical expert to estimate the number of small marine species 
likely to be lost from a bay at a certain level of water pollution. In 
addition to a best estimate, perhaps 30, we’d like an 80% uncer-
tainty interval. Just asking the expert to state such an interval—
say, (10, 60)—usually gives intervals that are too narrow and that 
include the true value in only around 50% of situations. In other 
words, experts often think their estimates are better than they 
really are. However, research has found that different ways of 
asking about uncertainty can give more accurate intervals—even 
just asking separately for the lower and upper limits of the inter-
val helps.

In the article by Speirs-Bridge et al. (2010) we reported one study in 
which public health experts made forecasts about rates of infectious 
diseases, and another in which ecological experts gave estimates 
about the effect of marine pollution. For each study we had data we 
could use to assess the accuracy of the experts’ point estimates, and 
their 80% uncertainty intervals. One of our aims was to compare 
two different ways of questioning the experts to establish their 80% 
uncertainty intervals. The first asked separately for the two limits of 
the interval, and the second was a slightly more elaborate version in 
which we didn’t specify 80% uncertainty, but asked the participant 
to nominate the percentage for the interval they gave us. Then we 
calculated the equivalent 80% interval. In both our studies this sec-
ond way of questioning gave better uncertainty intervals—meaning 
intervals that included the true value in closer to 80% of cases. We 
expressed the difference in accuracy of the intervals given by the 
two question formats as a Cohen’s d value. For our study with pub-
lic health experts the advantage of the more elaborate format was 
d = 0.92 [–0.12, 1.96], and for the ecological experts it was d = 0.47 
[–0.21, 1.15]. Both studies thus gave a substantial ES in favor of the 
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revealed by wide CIs. Reporting such a meta-analysis can be as simple as 
reporting the combined result with its CI, as in Example 7.1, and stating 
the model of meta-analysis used—Chapter 8 explains about models.

In addition, you may have noticed while working with Two studies 
that you can consider CIs and meta-analysis with little or no reference to 

p values. Meta-analysis can make NHST 
largely irrelevant. Perhaps the NHST dis-
ciplines will at last shift emphasis from 
NHST to estimation and other better 

techniques, not because of the exhortations of statistical reformers, but 
because wider use of meta-analysis leads to a natural decline in the use of 
NHST. That would be a great advance.

I’m arguing that meta-analysis has value much more widely than just 
as a specialist tool for large literature reviews. This position of mine has 
two further consequences. First, if meta-analysis will be used as widely 
as I think it deserves, students should learn the basics of meta-analysis at 
an early stage. In Cumming (2006b, tinyurl.com/teachma) I argued that 
software based on forest plots makes it practical to do this, even in the 
introductory statistics course. I hope ESCI can help.

The second consequence is that meta-analytic thinking is important, 
right from the start of research planning. If estimation thinking guides our 
research, we’ll probably soon encounter CIs that are wide and data sets that 
don’t seem to permit confident conclusions. We can resolve to design more 
informative experiments, as we’ll discuss in Chapters 12 and 13, but there 
are usually practical limits. More generally, we should adopt meta-analytic 
thinking. Think of every result as one line in a forest plot. There may be pre-
vious studies and other results from our own research that we can add to the 
forest plot. We need to bear in mind that future research, by us or others, is 

second question format, but our precision was low, despite our hav-
ing assembled as many as 24 public health experts and 34 ecologists 
to participate in our studies. As so often happens when humans 
are involved, the variation was large. You may have noticed also 
that both CIs included zero. We meta-analyzed the two results and 
obtained d = 0.60 [0.04, 1.17] as our overall estimate of how much bet-
ter our second question format performed. That final CI is still wide, 
but not as wide as those for the separate studies. We concluded that 
we had very encouraging evidence from two quite different areas 
of expertise that the second, slightly more elaborate questioning 
format is better and definitely worth further investigation. Small-
scale meta-analysis, as in Figures 7.1 and 7.2, provided the basis for 
our conclusion.

NHST is almost irrelevant to meta-analysis, 
and so it may be the spread of meta-analysis 
that helps prompt the retreat of NHST.
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likely to contribute further lines. Any study contributes at least one tree, but 
it’s the forest that’s important, and the forest plot is a beautiful picture that 
reminds us of that. Next I’ll use ESCI to describe basic features of forest plots.

Forest Plots: The Basics

ESCI Meta-Analysis provides a number of pages for carrying out meta-
analysis. The simplest is Original 7, which allows you to enter results for 
up to six experiments, plus one labeled as the “current” study. For each 
study you enter an identifying name, then the mean, SD, and sample size. 
The ES of interest is the mean, expressed 
in the measurement units of the depen-
dent variable. I refer to those units as the 
original units, in contrast to standardized 
units such as Cohen’s d that we’ll consider 
in Chapter 11.

I imagined experiments that investigated response times to words. Near 
red 1 I typed in the units (ms), and then I invented names and data for six 
past studies and our current study. Figure 7.3 shows what I entered. The 
ES of each study is represented in the forest plot by a square and the 95% 
CI by error bars. The dots, with their error bars, report a meta-analysis 
of the past six studies and—the lower dot—of those six plus our current 
study. Compare the two dot results, or the two overall means reported 
near red 3 and red 5 (i.e., 435 and 443 ms), to see what our study has added 
to the overall picture. Hmm, only a very little?

You may be wondering about the strange stuff near red 16, 18, and 19. 
We’ll get to that in Chapter 8 but, for now, just make sure that Fixed effect 
is clicked at red 16.

Weighting the Studies in a Meta-Analysis

You can see on the screen, or in Figure 7.3, 
values reported for the means and MOEs, 
and for the variance of the mean. In 
Chapter 8 I’ll explain formulas for meta-
analysis, but here I’ll note that meta-
analysis calculates a weighted combination of the studies. The usual 
weighting, which I use in this book and in ESCI, is the inverse of the vari-
ance of the ES. We’re using here the mean as our ES. Recall that the SD 
of the mean is SE = σ/ N . Therefore, variance of the mean is SE2 = σ 2/N, 
which is estimated for each study as s2/N, where s is the SD of the study. 

Original units are the units in which a 
dependent variable was originally measured. 
Examples are centimeters, milliseconds, num-
ber of errors, and units on a scale.

A meta-analysis usually weights the contrib-
uting studies by the inverse of the variance 
of the ES. Large weights go with small SD 
and large N, and are represented by larger 
squares in the forest plot.
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These estimates of variance are used to calculate the weights, and percent-
age weights for each study in the overall meta-analysis of seven studies 
are reported below red 15. A small study with large SD, such as Dudley 
(2003—one of the fictitious studies appearing in the figures), has large 
variance of the mean and thus low weight (2.9%) in the meta-analysis. 
Aden (1993) has relatively small SD and large N, thus smaller variance and 
higher weight (28.8%). Small weights go with wide CIs, and large weights 
with short CIs. That’s as we’d expect, because both MOE and the weights 
are calculated from the SE of a study.

One problem with CIs is that wide intervals tend to attract the eye, but 
give poor information. Short CIs give better information, but appear less 
prominent. To overcome this problem, we can use the weightings to adjust 
how the forest plot represents the different studies. Figure 7.4 shows the 
usual way to do this: The squares representing study means are varied in 
size, with their areas adjusted to reflect, approximately, the study weights. 
I clicked at red 12 to get the weighted display. Large and precise stud-
ies have large squares marking their mean, and thus attract the eye even 
though their CIs are short.

Figure  7.4 also illustrates how forest plots often represent the results 
of meta-analysis with a diamond, rather than a mean marker with error 
bars. I clicked at red 9 to get diamonds. We can think of the diamond as a 
stylized version of the cat’s eye for a CI.

Meta-Analysis and NHST

I next supposed that someone has published a theory that predicts the 
mean response time for the word task we’re investigating is 300 ms. 
I clicked at red 6 to add a null hypothesis line to the forest plot, then typed 
in 300 at red 7 and pressed the Enter key. (The slider doesn’t supply values 
that high.) Figure 7.4 marks that null hypothesized value. You can click at 
red 8 to show NHST results, or we can just note in the forest plot where 
the CIs fall in relation to the line at 300. Your skill from Chapter 4 at esti-
mating p values can be useful when inspecting forest plots—if you wish 
to use NHST. Buggs (1995) and Fox (2009) are not statistically significant 
(p > .05), and are therefore at most risk of not achieving publication. Click 
to clear their checkboxes below red 11, and thus remove them from the 
meta-analysis. Note how the meta-analysis results change. Other things 
being equal, studies giving ES estimates close to a null hypothesized 
value are more likely to give p > .05. If that means they’re less likely to be 
published, then a meta-analysis of published studies will give a biased 
result—an estimated ES that’s likely to be too large.

Clicking to remove those two studies illustrates the file drawer effect. If 
researchers believe p > .05 results are unlikely to be published, they’re 
likely to leave the results of such studies in their filing cabinets or on their 
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hard disks, rather than undertake the large 
task of writing up and submitting for pub-
lication. Or, if the results are submitted to 
a journal, they are likely to be rejected and 
so end up in the file drawer anyway. The Publication Manual (APA, 2010) 
recognizes the problem by stating, “Mention all relevant results … be sure 
to include small effect sizes (or statistically nonsignificant findings) …” (p. 
32). It’s essential that results from all well-conducted studies are available 
for future meta-analysis. Publication decisions based on p values are likely 
to distort the published research literature and bias the results of meta-
analyses. That’s further bad news about NHST.

Figure 7.3 includes no mention of a null hypothesis or p values, yet pres-
ents a full picture of multiple studies and their meta-analysis. It thus illus-
trates that NHST is largely irrelevant to the estimation of ESs, and to the 
combination of evidence over studies to find more precise estimates. As I 
mentioned earlier, experience with forest plots and meta-analysis might 
persuade researchers that NHST is often unnecessary—as well as possi-
bly distorting the published research literature.

Cumulative Meta-Analysis

There’s one further trick in the forest plot repertoire. The studies in 
Figure  7.3 are ordered chronologically. Imagine carrying out a meta-
analysis after each successive study became available. That would give a 
sort of time-lapse movie of how knowledge has advanced, as successive 
studies provided extra evidence about the 
ES we’re estimating. Click at red 13 to see 
the cumulative meta-analysis. Rather than 
illustrating what happens in Original 7, 
I’m including an illustration from the next page in ESCI meta-analysis. 
That’s Original 31, which is exactly like Original 7 except 30 rather than 
six past studies can be entered. Figure  7.5 shows the cumulative meta-
analysis for the first six studies in the previous figures, plus 10 additional 
studies. As before, the squares show the weighted results of individual 
studies. The darker gray dots show the meta-analysis of the first two stud-
ies, the first three, and so on. ESCI also reports the mean and MOE for the 
cumulative results at red 14, to the right of the forest plot.

Examining Figure 7.5 suggests several conclusions:

•	 Successive cumulative meta-analyses generally home in on a final 
best estimate of the ES, with the CIs generally becoming shorter.

•	 As we’d expect, studies with large weights shift the cumulative 
mean more than studies with small weights. Compare the shifts 
caused by Golly (2009) and Heavy (2009).

The file drawer effect is the tendency for 
results that are not statistically significant to 
remain unpublished. This can seriously bias 
future meta-analyses.

Cumulative meta-analysis refers to a 
sequence of meta-analyses, each including 
one additional study.
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•	 Early studies influence the cumulative result considerably, but 
studies beyond the first few generally have only a smaller influ-
ence. Toward the end of the set, additional studies give diminish-
ing returns, meaning they shift the cumulative mean less.

•	 I designed Over (2011) and Percy (2011) to have the same weights 
as Golly and Heavy, and also to be the same distance from the 
immediately preceding cumulative means. It’s clear in the plot 
that Over and Percy shift the mean much less—only about half as 
far—as did the two earlier studies. That’s a further illustration of 
the diminishing influence of later studies.

The conclusion is that successive studies added into a meta-analysis 
give very useful increases in precision, provided the results don’t vary 
too much. (If they differ considerably, the picture is more complicated, as 
I discuss in Chapter 8.) After a few studies, further increases in precision 
are smaller, as Figure 7.5 illustrates. The main message, however, is the 
wonder of meta-analysis: Give it long CIs and it can give back a highly 
desirable short CI. It’s unfortunate that the wonder of meta-analysis has 
not yet been investigated from a cognitive perspective. Box 7.1 describes 
one of the very few studies that touch on how people think about meta-
analysis. Now, after all this playing with forest plots, I’ll report what the 
Publication Manual says about meta-analysis, and then I’ll describe some 
examples of meta-analysis changing the world.

Box 7.1  Thinking About Meta-Analysis

I’d like to know how people think about meta-analysis and inter-
pret forest plots, but the statistical cognition of meta-analysis has 
hardly been studied. Numerous interesting questions await inves-
tigation. I can find only one study to mention here. It’s a very early 
comparison by Cooper and Rosenthal (1980) of traditional reviewing 
with an early form of meta-analysis based on combining p values. 
Psychology graduate students and faculty members were randomly 
assigned to use one or the other reviewing method. All were given 
a set of seven articles on the same topic and instructed either to read 
and consider the articles as they usually would if preparing a review, 
or to apply a set of instructions to calculate a combined p value. They 
then answered questions about what overall conclusions they felt 
were justified. The study found that the meta-analysis prompted 
generally better conclusions—stronger support for the hypothesis of 
an effect, and a larger estimated ES. Both of those conclusions were 
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What the Publication Manual Says

The fifth edition of the Publication Manual (APA, 2001) mentioned meta-
analysis only a few times, briefly. In striking contrast, meta-analysis 
appears in the sixth edition of the Manual (APA, 2010) in many places. 
A two-page appendix (pp. 251–252) presents the new Meta-Analysis 
Reporting Standards (MARS), which are guidelines describing in detail 
the information that should be included in a report of a large meta-
analysis. An example manuscript describes a meta-analysis (pp. 57–59), 
and two subsections (pp. 36–37, 183) discuss meta-analyses and how they 
should be reported. There are more than a dozen other mentions of meta-
analysis. All that discussion and advice in the sixth edition signals that 
meta-analysis is now mainstream. That’s a great step forward.

As I mentioned earlier, the Manual states that all relevant ESs must be 
reported, even if not statistically significant. That’s vital for avoidance of 
the file drawer effect. The Manual emphasizes the point by stating that, 
“even when a characteristic is not used in analysis of the data, reporting it 
may … prove useful in meta-analytic studies that incorporate the article’s 
results” (APA, 2010, p. 30). The usual minimum is point and interval esti-
mates of any effect. That information, together with N, should allow its 
inclusion in a meta-analysis. Reporting as a Cohen’s d or a correlation r, as 
well as in original units, may be even more helpful to a future meta-analyst.

The study of gender differences provides a cautionary tale about incom-
plete reporting. In the 1970s, reviews of research about the abilities and 
behaviors of boys and girls usually reported a long list of well-established 
differences—in verbal ability, mathematical ability, aggressiveness, and so 
on (Maccoby & Jacklin, 1974). Some differences were large. The published 
research justified such conclusions, but psychologists interested in gender 
gradually realized that selective publication was distorting the picture. 
Some researchers set out to study gender differences, and no doubt some 
of their studies languished in file drawers, but there was an additional 
type of incomplete reporting. Numerous researchers primarily studied 
issues other than gender and, being careful researchers, they explored 
their data. Often they could compare scores for boys and girls, even though 
they had no particular interest in gender. They might even prefer to find 

justified by the set of results. Cooper and Rosenthal were especially 
interested to see whether using meta-analysis might prompt their 
participants to merely apply the procedure and not think critically 
about the studies. This didn’t happen, however, so meta-analysis 
emerged well from this early evaluation.
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no difference because then they could simplify things by combining the 
data for boys and girls. The trouble was that if such a secondary, explor-
atory analysis gave no statistically significant difference, the researchers 
were likely to omit any mention of gender from their journal articles, and 
would certainly not report separate means and SDs for boys and girls. It 
didn’t help that journal space was always at a premium and editors often 
instructed authors to shorten their manuscripts. Anything of lesser inter-
est had to go, and nonsignificant effects were first overboard. On the other 
hand, if exploratory subgroup analyses happened to find a statistically sig-
nificant difference, this result (and, with luck, the means and SDs) would 
probably be reported, and perhaps given some interpretation in relation 
to the issues being studied. The published research on gender differences 
was distorted by studies in the file drawer, but also by selective reporting 
of subgroup analyses. We might say that the unreported subgroup analy-
ses of gender occupied a secret compartment within the file drawer.

More recent reviews of gender identify fewer and generally smaller dif-
ferences, and a list of abilities on which there is little if any difference 
(Hyde, 2007). The study of gender differences is a case study in how esti-
mation and complete data reporting will help reviewers build an accurate 
picture, whereas old habits of dichotomous thinking, NHST, and selective 
reporting can easily give a highly distorted picture. Also, pressure of jour-
nal space is no longer an excuse for incomplete reporting, because journals 
now provide online supplementary material to accompany an article.

My conclusion is that the sixth edition of the Manual does a good job 
advising reviewers of research who wish to carry out meta-analysis. 
That’s great but, perhaps even more importantly, it instructs all research-
ers to bear future meta-analysis in mind as they conduct and report their 
research. Report complete results, and give sufficient detail—in an online 
supplement if necessary—to assist the inclusion of your results in a future 
meta-analysis. That’s excellent advice.

Meta-Analysis Making a Difference

I’m emphasizing in this chapter the value of meta-analysis on a small scale. 
Even so, the main impact so far has been by large-scale meta-analyses used 
for research synthesis. Research synthesis is a term gaining popularity, and 
meta-analysis is a set of techniques for carrying out research synthesis in 
a quantitative way. A similar term, widely used in medicine, is systematic 
review. Almost all systematic reviews use 
meta-analysis for the quantitative combi-
nation of evidence. In this section I’ll first 

Research synthesis and systematic review 
refer to the integration of research evidence, 
usually by meta-analysis.
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sketch briefly the story of meta-analysis, with some examples to illustrate 
its value, then I’ll describe further examples of meta-analysis in medicine, 
education, and—would you believe—physics.

Gene Glass and the Advent of Meta-Analysis

Early approaches to meta-analysis included combining correlations, or 
combining p values from different studies. However, the term meta-anal-
ysis was coined and the basic technique arrived in a big way when Gene 
Glass gave a famous presidential address to the American Educational 
Research Association in San Francisco in 1976. Glass was a young educa-
tional researcher with statistical interests who had been greatly annoyed 
by attacks on psychotherapy by H. J. Eysenck. Eysenck had claimed that 
psychotherapy was ineffective, and there were no evaluative data to prove 
otherwise. Glass had personally experienced what he felt to be great 
benefit from psychotherapy, and he believed that he could apply his sta-
tistical skills to prove Eysenck wrong. For two years he and Mary Lee 
Smith labored hard to track down articles, dissertations, and reports that 
described evaluations of psychotherapy. In those days, before computer-
ized databases and computerized search, Glass and Smith spent many 
hours in libraries and at the photocopying machine. They located more 
than one thousand promising documents, only to find on closer inspec-
tion that many did not include a control group, or did not provide any 
measure of therapy outcome.

They judged 375 of the studies adequate for their analysis. Glass then 
calculated for each an ES for the effect of therapy: “the mean difference on 
the outcome variable between treated and untreated subjects divided by 
the within group standard deviation” (Glass, 1976, p. 6). That’s Cohen’s d, 
which we’ll discuss in Chapter 11. Glass found that many of the reports 
gave incomplete statistical information, and he had to use his statistical 
ingenuity to estimate a value for d, given, for example, only means and 
a p value, or only correlation or regression measures. Overall, the mean 
advantage of therapy was d = 0.68, a substantial and valuable effect. That’s 
equivalent to an average increase of 10 IQ points on an intelligence test 
with an SD of 15. It’s also equivalent to saying that, on average, therapy 
advances a person at the median (the 50th percentile) of the control dis-
tribution to the 75th percentile of that distribution. Glass and Smith also 
coded their selected studies on a number of important characteristics, 
including level of training of the therapist and type of psychotherapy. 
They found that what they classified as client-centered therapies, behavior 
modification, and rational emotive therapy all produced, on average, very 
similar improvement. That’s an example of meta-analysis going beyond 
giving just an overall average ES; we’ll discuss this further in Chapter 9.
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Despite his fears about presenting a novel and possibly strange statisti-
cal technique, Glass’ presidential address was enthusiastically received. 
You can read a shortened version in the Educational Researcher (Glass, 1976) 
and a description of the psychotherapy meta-analysis in the American 
Psychologist (Smith & Glass, 1977). Eysenck (1978) responded in a typically 
outspoken way, in an American Psychologist comment titled, “An Exercise 
in Mega-Silliness.” He derided the inclusion of lesser-quality studies as 
“garbage in—garbage out” (p. 517). Nevertheless, the pioneering work of 
Glass and Smith has been enormously influential, and their findings have 
been confirmed by subsequent work by others.

The Glass story is told near the start of Morton Hunt’s book, How Science 
Takes Stock: The Story of Meta-Analysis (1997). I highly recommend this 
book, which reads more like a novel than a textbook. There are tales of 
the pioneers of meta-analysis, and numerous examples of meta-analysis 
finding important conclusions in what had seemed like a collection of 
messy and conflicting results. Hunt reports that Glass was highly critical 
of NHST, and quotes Glass as saying in an interview, “Statistical signifi-
cance is the least interesting thing about the results. You should describe 
the results in terms of measures of magnitude—not just, does a treatment 
affect people, but how much does it affect them? That’s what we needed to 
know” (pp. 29–30, emphasis in the original). Exactly.

I’ll mention just one of the case studies Hunt describes. A certain pro-
gram in the United States provided a range of support to low-income preg-
nant women and mothers with young children. There were strident lobby 
groups who supported the program, and others who believed it should be 
abolished. Studies of its effectiveness gave conflicting results. By 1983 it 
had been running for around a decade, with an ever-growing budget. In 
advance of Senate hearings on its fate, a meta-analysis was commissioned 
to synthesize the evaluation studies. This found positive results, espe-
cially in terms of increased infant birth-weight, and was probably crucial 
in the decision to continue the program. This example of meta-analysis 
reaching a quantitative and well-justified conclusion from a number of 
studies, many of which were flawed in some way, illustrates how deci-
sion making can be evidence based, even in a complex and ideologically 
charged area of social policy.

There’s a lesson also for social and behavioral science research. Possibly 
the most convincing way to ensure future funding for such research is 
to show that research, even on messy social questions, can give conclu-
sions that are well supported by evidence and have important practical 
implications. Few individual studies are able to do that, but meta-analysis 
often can. The arrival of meta-analysis has probably been crucial for main-
taining public support of social and behavioral science research—as well 
as, of course, deriving from such research conclusions that can improve 
people’s lives.
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Hunter and Schmidt

At around the same time, but working independently of Glass, Jack 
Hunter and Frank Schmidt developed a somewhat different set of tech-
niques for carrying out meta-analysis. They worked mainly in the area of 
industrial–organizational psychology, and often used correlations as the 
basis for meta-analysis. They (Hunter & Schmidt, 2004) described a strik-
ing example of how meta-analysis has changed conclusions from research, 
and also business practice. Tests of job aptitude are widely used to select 
people likely to be most suitable for a particular job. The validity of such 
tests has been examined in numerous studies, which typically focus on the 
correlation between test score and some later measure of job performance. 
Published studies have reported a wide range of correlations, some attain-
ing statistical significance, and some not. One important question was how 
widely a test could be used. Was a test that seemed valid for a particu-
lar job in one company also valid for a similar job in a different company, 
or for a related but not identical job in the first company? Reviews of the 
literature generally concluded that validity did not generalize: Tests were 
usually only valid for the particular job and situation for which they had 
been designed. That’s bad news, of course, because it severely limits the 
usefulness of tests. It also undermines the general idea of testing. Can we 
take seriously a test that can’t even predict performance in two seemingly 
similar jobs?

Hunter and Schmidt (2004, Chapter 4) concluded that the widely vary-
ing correlations found by individual studies were produced largely by 
sampling variability and other sources of extraneous variation, such as 
measurement error. (I’ll say more about that in Chapter 9.) The research 
studies, when synthesized by meta-analysis, actually provided strong evi-
dence that validity generalizes considerably. Within limits, it’s justifiable 
to use a well-developed test of job suitability in a range of different set-
tings. That conclusion has provided important support for job testing and 
is now widely accepted. Meta-analysis corrected the erroneous conclu-
sions that had originally been drawn from research findings.

In their first chapter, Hunter and Schmidt (2004) gave their own persua-
sive account of the value of meta-analysis. As an example of a meta-analysis 
influencing decision making by the U.S. Congress, they described a meta-
analysis of studies on the value of producing binary chemical weapons:

The meta-analysis did not support the production of such weapons. 
This was not what the Department of Defense (DOD) wanted to hear, 
and the DOD disputed the methodology and the results. The method-
ology held up under close scrutiny, however, and in the end Congress 
eliminated funds for these weapons. (p. 30)
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Meta-Analysis in Medicine

Hunt (1997, Chapter 4) described a number of case studies from medicine 
in which meta-analysis allowed clear conclusions to be drawn from col-
lections of highly variable or even conflicting research studies. Medicine 
now increasingly uses meta-analysis to synthesize and present the evi-
dence for evidence-based practice, as I’ll discuss further in Chapter 9. 
That’s a great development, which is important also for any other disci-
pline wishing to adopt evidence-based practice.

My first medical example includes comparisons with other approaches 
to reviewing research. Antman, Lau, Kupelnick, Mosteller, and Chalmers 
(1992) reported a meta-analysis of 17 studies of the effects of oral β-blockers 
for reducing the risk of mortality in heart-attack survivors. There was 
clear evidence that the drug therapy is effective. The studies had been 
published between 1972 and 1988, and the researchers used cumulative 
meta-analysis to consider how evidence had accumulated during that 
period. They found that, by around 1982 after the first nine studies had 
appeared, the issue should have been declared decided. From 1982 the 
drug should have been used routinely. Unless the later studies asked 
additional worthwhile questions, it was not justifiable to expend the time 
and effort running the later studies, and it was not ethical to subject their 
patients randomized into the control group to the increased risk of the 
placebo drug—the ineffective sugar pill—instead of the oral β-blocker. 
Most importantly, a confident recommendation to practitioners could 
have been made much earlier, with a consequential saving of many lives 
around the world.

Antman et al. (1992) also examined review articles published during 
the period covered by the 17 studies. They concluded that many of these 
did not reflect the then most recent evidence, and did not combine evi-
dence effectively. They often reached poor conclusions and sometimes 
recommended practices that research had by then shown to be hazardous. 
Wider use of meta-analysis and better ways to disseminate the results 
were needed.

My second medical example is heart-rending. Sudden infant death 
syndrome (SIDS), or crib death, is the death while sleeping of apparently 
healthy babies. It remained largely inexplicable during most of the twenti-
eth century. When my wife and I were young parents in the late 1970s we 
carefully followed what seemed to be the best advice for reducing the risk 
of SIDS: Our three babies slept on their front on a sheepskin. A generation 
later, Gilbert, Salanti, Harden, and See (2005) reported a meta-analysis of 
evidence on the effect of sleeping position on risk of SIDS, and also a his-
torical review of the advice given by authors of childcare books, includ-
ing Doctor Spock, on baby sleeping position. Gilbert et al.’s cumulative 
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meta-analysis found that by 1970 there was reasonably clear evidence that 
back sleeping was safer than front. The evidence strengthened during 
subsequent years, although there was little good research until around 
1986. However, they also found frequent recommendation of front sleep-
ing, even as late as 1988. They estimated that, if back sleeping had been 
widely recommended from 1970, as many as 50,000 infant deaths could 
have been prevented in Europe, the United States, and Australasia. Had 
meta-analysis been available and used in 1970, much tragedy could have 
been averted. I’m happy to report that our grandchildren are resolutely 
put down to sleep on their backs.

The Struggle for Phonics

In a fascinating book titled, Teaching to Read, Historically Considered, 
Mitford Mathews (1966) described how the favored method for teaching 
reading has changed since the days of Greek slaves teaching rich Romans 
to read. Numerous methods have come and gone. The pendulum of pop-
ularity has swung back and forth between largely phonic (or synthetic) 
methods and largely whole-word (or analytic) methods. Phonic methods 
pay careful attention to the ways letters represent sounds, whereas ana-
lytic methods emphasize complete words in context. Mathews reviewed 
the research literature and concluded that synthetic beats analytic, but 
his voice was only one among many. In many English-speaking countries 
ideology and fashion, rather than evidence, seemed to guide educational 
policy on teaching reading, and to shape teachers’ beliefs and practices.

Especially during the 1960s and 1970s, large research studies were con-
ducted, and repeated efforts were made to review the evidence. However, 
conclusions were often equivocal and different experts gave different 
advice. Entrenched belief, rather than evidence, continued to drive policy 
and practice. Then the U.S. National Reading Panel (2000) made a con-
certed effort to bring order to the enormous research literature. To con-
duct a meta-analysis on the effects of different teaching methods they 
winnowed 1,072 studies down to only 38 that met their selection criteria—
which included requirements as simple as having a control group and 
providing sufficient statistical information to calculate ESs. The analyses 
of the Panel were scrutinized and extended, and in some cases corrected, 
by Diane McGuinness, whose book, Early Reading Instruction: What Science 
Really Tells Us About How to Teach Reading (2004), is impressive and read-
able. Her discussion in Chapter 5 is based on estimated ESs derived from 
the meta-analysis of various groups of research studies. She makes a per-
suasive argument that we now know how to teach reading successfully: 
It’s essential to focus early on phonics, starting with phonemes (sound 
elements of the language) and how letters most commonly represented 
them. Mathews was right, in 1966. This is an example of meta-analysis not 
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merely summarizing evidence that gradually accumulates, but determin-
ing in decisive fashion a long-standing and heated controversy. There’s 
more, as McGuinness’ Chapter 11 describes, but largely thanks to meta-
analysis we can now draw clear evidence-based conclusions from an enor-
mous and terribly messy literature. The pendulum should swing no more.

Hard Science and Soft Science

Larry Hedges is a statistician who has made major contributions to the 
techniques of meta-analysis. In 1987 he published a fascinating article 
whose title asks the question, “How Hard Is Hard Science, How Soft Is 
Soft Science?” In the supposedly “soft” social and behavioral sciences 
we’re familiar with disagreement among research findings, but, he asked, 
what about in physics, the supposedly “hard” discipline, if we go out to 
the research frontiers? He found that particle physicists who study ques-
tions such as, “What is the lifetime of the muon?” and “What is the mass 
of a charged pion?” often have to contend with differing answers found 
by different research groups. Hedges found that physicists have devel-
oped statistical techniques to combine the results from different laborato-
ries to give a single best estimate, with a CI. Physicists don’t use the term 
“meta-analysis,” but Hedges explained that their techniques were very 
similar to what we know as meta-analysis.

Hedges (1987) went further and applied a measure of heterogeneity to 
13 reviews of results from particle physics and 13 meta-analyses in social 
science. In both cases he included reviews he judged to be representative 
and of good quality. He found the average amount of heterogeneity to be 
virtually identical for the physics and social science reviews. In other words, 
he found the extent of disagreement between studies in a review to be, on 
average, very similar for physics and the social sciences. Yes, he concluded, 
physics may in many cases be able to measure to more decimal places, 
but in terms of the extent of agreement or disagreement among studies 
at the research frontier, physics may not be any more “hard” a discipline 
than the social sciences. Meta-analysis seems to be needed in traditionally 
hard as well as soft sciences, and can also give an additional interesting 
perspective on how whole disciplines compare. Recently, Petticrew (2001) 
described how meta-analysis is used in numerous disciplines, ranging 
from archaeology and astronomy through ecology and law to zoology.

These examples illustrate the great power of meta-analysis to bring 
order where there’s disorder and to settle major disputes. However, I don’t 
want to give the impression that all questions can be answered by apply-
ing meta-analysis to existing research, or that meta-analysis is always 
simple and without challenges. Often an important contribution of a meta-
analysis is to highlight deficiencies in existing knowledge and provide 
guidance for future research. Also, carrying out a large meta-analysis can 
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be a daunting task, and critical analysis and judgment informed by good 
understanding of the topic area are as important for meta-analysis as for 
any other way to review research. Even so, meta-analysis does offer magic.

Further Pages in ESCI Meta-Analysis

I’ve used Original 7 and Original 31 for playing with forest plots. ESCI 
Meta-Analysis also provides further pages for your exploration. These 
are primarily intended to illustrate aspects of meta-analysis and help 
build intuitions for meta-analytic thinking. They can also, within limits, 
be used to carry out calculations for the meta-analysis of real data.

First I’ll mention a couple of extra things about the two Original pages. 
Excel automatically adjusts the scale of the horizontal axis at the top of the 
forest plot, depending on the values you type in. That’s usually best, but 
occasionally you might like to stop the axis changing as you experiment, 
for example, by clicking to include or exclude a study from the meta-anal-
ysis. Simply click the checkbox near red 17 to freeze or unfreeze the axis.

One further goodie may lie off the screen, but is signaled at red 20. 
Scroll right to see a second forest plot, which displays the included stud-
ies of the first six or first 30 and only the first summary meta-analysis. 
It can display by weightings (red 12) but not cumulative meta-analysis 
(red 13). It’s intended for copying to word processing software—I’m try-
ing to encourage everyone to use forest plots whenever they can be use-
ful. This figure, like all others in ESCI, can be edited using any of Excel’s 
facilities. If you wish to include details of the studies as well as the forest 
plot, you might consider using a selection from a screen capture, as I did 
to make Figure 7.3 and others like it. Appendix A can assist.

Original two groups carries out meta-analysis of studies that compare 
two independent groups, for example, an experimental group and a con-
trol group. Enter the original units and names for the two groups near 
red 1, then for each study enter for each group the M, SD, and N. The ES 
of interest is the difference (M2 – M1) between the two study means. The 
variance of this ES is shown and is used to calculate the weights, which 
are shown below red 6. NHST assumes that the null hypothesis is a differ-
ence of zero. Cumulative meta-analysis is not supported.

Standard 7 is a little more complicated because it offers a choice between 
original units and the simplest type of standardized units. We’ll see in 
Chapter 11 that the standardized ES Cohen’s d can be calculated in various 
ways. The simplest requires that we know a value for σ, the population 
SD. Standard 7 requires such a σ and assumes it’s the same for all studies 
entered. That’s not quite as unrealistic as it might seem. For example, a 
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number of different IQ tests give scores that have been scaled so that the 
mean and SD in some large reference population are 100 and 15, respec-
tively. So we might judge it reasonable to use 15 as the σ for a population 
of children we’re studying. Suppose we’ve found several studies that esti-
mate the mean IQ scores of that population. In Standard 7, type in near 
red 1 the original units (“IQ score”), then 15 as the value of σ, then M and 
N for each study. Near red 1, click the radio button—the little clickable 
circle—next to Mean to show the results of the meta-analysis in original 
units (IQ scores) or the other button, next to d, to show them as Cohen’s d 
values. Values in original units appear on the screen in blue, and d values 
in purple. The forest plot displays IQ scores or d values, as you select. The 
formula for calculating di for a study is

	 d Mi i= −( )µ σ0 	 (7.1)

where Mi is the mean of a study, and μ0 is the population mean that serves 
as the reference point from which we wish to measure d. ESCI uses the 
μ0 value at red 7 as this reference value, and so for d to be calculated we 
need a suitable μ0 value specified at red 7, and the checkbox at red 6 must 
be clicked on so the μ0 reference line is displayed. The popout comments 
near the d radio button and near red 6 explain. As you’d expect by now, 
Standard 31 is an expanded version of Standard 7. There are also three 
further pages—d single group, d two groups, and Subgroups—that I’ll 
discuss in later chapters.

It’s time for take-home messages. Playing further with ESCI may help 
you write yours. Recall that this chapter started with Lucky–Noluck and 
the combination of two or three studies. ESCI provided forest plots to 
illustrate some of the basics, including weighting, cumulation, and the 
file drawer effect. What’s the role of NHST? I mentioned the Publication 
Manual then described some case studies. I finished by mentioning fur-
ther ESCI pages for meta-analysis.

Exercises

	 7.1	 Figure 6.5 reported the results of Kay et al. (2010) about belief 
in the supernatural. Eyeball a meta-analytic combination of the 
three lower means and use the overlap rule to compare that 
with the top left mean. Does that seem justified?

	 7.2	 In your own work, or a journal article, find two or three 
results that are reasonably independent—perhaps from differ-
ent studies or different groups—but that relate to the same or 
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similar questions. Does meta-analysis seem justified? Would it 
be valuable?

	 7.3	 For the results in 7.2, if you have means and SDs on the same 
measure for each result, use Original 7 to carry out the 
meta-analysis.

	 7.4	 In another statistics textbook, try to find examples or exer-
cises that include several results for which meta-analysis 
seems appropriate, and that can be entered into Original 7. 
Carry out the meta-analysis.

	 7.5	 Figure 7.2 illustrates that the combination of two similar results 
gives a CI about 30% shorter. Use Original 7 to explore what 
happens when you add further studies, all with the same SD 
and N (make this reasonably large), and means that are the 
same, or don’t differ much. Find the answer to Question 7.2 at 
the start of this chapter. What happens when you add a fourth, 
fifth, sixth, and seventh study?

	 7.6	 Use Original 7 to find the answer to Question 7.4 at the start of 
this chapter. Give all studies the same mean as well as the same 
SD and N. Click at red 8 to reveal NHST. Type in various μ0 
values at red 7 until p for each study is close to .10, or whatever 
you choose.

	 7.7	 Explore what happens to p when you add further identical 
studies.

	 7.8	 Suppose you have two results that are correlated, for example, 
two measures of memory performance for a single group of 
participants. Would it make sense to combine the results by 
meta-analysis? If you did, what result would you expect? Why?

	 7.9	 Find one or two published meta-analytic reviews in your own 
discipline. Are forest plots included? What features of meta-
analysis discussed in this chapter do the reviews illustrate? Are 
there conclusions with practical implications?

	 7.10	Revisit your list of take-home messages. Revise and extend if 
you wish.
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Take-Home Messages

•	 Meta-analysis is a set of quantitative techniques for combining 
evidence from a number of related studies.

•	 A forest plot is a simple and beautiful picture that represents 
separate results as CIs, and their meta-analytic combination as a 
further CI.

•	 Using meta-analysis to combine even only two or three stud-
ies can give a very useful increase in precision of estimation—
around 30% reduction in CI width when a second study is added, 
a little more if samples are small.

•	 Using meta-analysis to combine two or three studies can give a 
large, even dramatic reduction in the p value.

•	 NHST is largely irrelevant for meta-analysis, and wider use of 
meta-analysis may help NHST become superseded.

•	 Studies in a meta-analysis are usually weighted by the inverse of the 
ES variance. Short CIs mean larger weights, long CIs smaller weights. 
Forest plots represent study weights by using squares of various 
sizes, and often show the result of the meta-analysis as a diamond. 
Take-home picture: A forest plot of your choice, perhaps Figure 7.4.

•	 The file drawer effect is the possibility that results that are not 
statistically significant are less likely to be published, thus bias-
ing meta-analyses.

•	 If results are ordered by date, cumulative meta-analysis illus-
trates how the best combination of evidence has developed over 
time. The first few studies typically give large increases in pre-
cision (narrowing of CIs), and later studies yield progressively 
smaller changes.

•	 The sixth edition of the Publication Manual (APA, 2010) advises that 
all ESs of interest must be reported, even if small or not statistically 
significant—this helps avoid the file drawer effect. The Manual 
also gives detailed guidelines for the reporting of meta-analyses.

•	 Meta-analysis became widely recognized during the late 1970s 
and 1980s. It has become increasingly used across a wide range of 
disciplines, and is essential for research synthesis and for prepar-
ing systematic reviews. It assembles the evidence for evidence-
based practice.

•	 There are now numerous examples of research progress as well 
as practical applications that rely on the results of meta-analysis.

•	 ESCI Meta-Analysis provides pages for data in original units, 
for a single group and two independent groups; and for data in 
standardized units (Cohen’s d), with known σ for a single group.
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8
Meta-Analysis 2: Models

This chapter discusses the two most common models for carrying out 
meta-analysis. There are formulas and calculations, but also pictures and 
examples, and advice about what to do in practice. Here’s the list:

•	 An overview of the two models, starting with Lucky and Noluck
•	 The fixed effect model
•	 The random effects model
•	 Comparing the two models, and making a choice

If you wish to skip the detail and the formulas, you’ll get the main idea if 
you read just the overview that comes next. You might also find Box 8.1 
and Example 8.1 interesting.

Overview of the Two Models for Meta-Analysis

Suppose we’ve just seen a newly published third study of the treatment 
for insomnia that Lucky and Noluck evaluated. Figure 8.1 is a forest plot 
of those two studies from Chapter 1, plus the new study, which I’ll call 
Sleepy1. The means and CIs for the three studies look as though they could 
easily have come from a dance of the CIs, so I’m happy to regard the three 
as consistent. We say that the studies are homogeneous, because the study-
to-study variation in the means can reasonably be accounted for by sam-
pling variation. Meta-analysis of the three studies gives the mean and CI 
shown at the bottom, labeled MA. That mean is the weighted average of the 
study means, and its CI is shorter than any of the other CIs, as we’d expect.

Outline of the Fixed Effect Model

So far no surprises, but consider what we’re assuming. Without quite say-
ing so, we’ve been assuming that all the studies in a meta-analysis esti-
mate a single common population ES, which we’ll refer to as μ. When 
studies are as consistent as in Figure 8.1, that seems reasonable. This is 
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our first and simplest model of meta-analysis, the fixed effect model, which 
assumes a single fixed μ that is being estimated by each of the studies. 
This model implies that we’re regarding the studies as idealized replica-
tions—although possibly with various sample sizes—from a single popu-
lation with mean μ. The forest plot resembles a dance of the CIs.

Now suppose our recently published third study was not Sleepy1, but 
Sleepy2, as in Figure 8.2. This time the means and CIs for the three stud-
ies hardly seem consistent. Yes, three such CIs could be thrown up by a 
dance of the CIs, but we’re suspicious. The variation over studies seems 
greater than sampling variation can reasonably explain, and so we say 
that the studies are heterogeneous. The lack of overlap of the CIs suggests 
that Sleepy2 is estimating a different population ES. If so, our fixed effect 
model would be wrong, but our second model, the random effects model 
could apply.

If we ignore our suspicions about Sleepy2 and carry out a fixed effect 
meta-analysis, we get the result labeled “MA fixed effect” in Figure 8.2. 
The CI is the same width as that in Figure 8.1 but here looks much too 
short, given the wide variation from study to study in Figure 8.2. The fixed 

–2 0 2 4 6 8 10 12
Difference between the means

Lucky 

Noluck  

MA 

Sleepy1

Figure 8.1
A forest plot for the Lucky and Noluck studies from Chapter 1, and a third study, Sleepy1, 
on the same issue. MA is the result of meta-analysis of the three studies. Error bars are 
95% CIs.
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Difference between the means
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MA fixed effect
MA random effects

Sleepy2

Figure 8.2
Same as Figure 8.1 except the third study is Sleepy2, and meta-analytic results are shown 
for both fixed effect and random effects models.
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effect meta-analysis takes no account of heterogeneity, and thus most 
likely has given us a too-short, overly optimistic CI on the result.

Outline of the Random Effects Model

The random effects model assumes that different studies estimate some-
what different values of the population parameter we’re investigating. 
The greater the heterogeneity between studies, the more those different 
parameter values are likely to vary. If studies are homogeneous, there’s no 
such variation, all studies estimate the same μ, and we have the fixed effect 
model. The random effects model estimates the overall mean of all the 
possible parameter values that different studies could estimate. Applying 
that model gives the result labeled “MA random effects” in Figure 8.2. 
Its mean is again a weighted average of the study means, although the 
weighting is slightly different for this model. The random effects model 
takes account of the heterogeneity by recognizing that there’s consider-
able uncertainty about where the overall mean of all possible parameter 
values lies. It acknowledges this uncertainty by producing a very wide CI. 
Informally, the very wide CI on the random effects mean reflects the large 
variation of the three study means. To my eye, the wide random-effects CI 
seems to be a better summary of the three studies in Figure 8.2 than the 
short fixed-effect CI.

Way back in Exercise 1.16 (you remember it well?), using the Two stud-
ies page, I suggested that you make the means for Lucky and Noluck very 
different, so the two CIs don’t overlap. The meta-analysis then gives a long 
CI—longer than either the Lucky or Noluck CIs. In the Commentary on 
Selected Exercises section at the back of the book, I say, “If, however, the 
evidence from the two studies conflicts, the meta-analysis CI will be long, 
reflecting the large amount of overall uncertainty.” I didn’t say so at the 
time, but Two studies uses a random effects model, and therefore gives a 
wide CI when studies are inconsistent.

Choosing Between the Models

Until roughly 2005, published meta-analyses most likely used the fixed 
effect model. It was the first developed and most widely known, and is 
relatively easy to calculate. However, in many practical situations it’s 
unrealistic, because studies are often heterogeneous, and so we should 
usually prefer the random effects model, even though it requires stronger 
assumptions. The random effects model is now becoming the most widely 
used, and an advantage of using it routinely is that, if applied to homoge-
neous studies, it gives the same result as the fixed effect model. So noth-
ing’s lost by always choosing it. For Figure 8.1, for example, both models 
give the same result, as displayed in the figure.
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The report of any meta-analysis must state clearly what model was 
used, and every forest plot should likewise state in its caption the model 
being used. Back in Chapter 1, Figure 1.2 would be the same whichever 
model was used, but even so the caption should state the model. At the 
Two studies page of ESCI chapters 1–4, the popout at red 8 states that 
a random effects model is used. Throughout Chapter 7 I used the fixed 
effect model, but didn’t always mention that. From now on I, and you, 
should always state clearly what model we’re using.

In Chapter 9 we’ll discuss how heterogeneity can lead to valuable 
insight, if we can find moderating variables that help account for it. 
However, here the message is that the fixed effect model is simpler, but 
the random effects model should be our choice. Fortunately, software now 
makes it easy to see the result of applying either model. Every page in 
ESCI Meta-Analysis allows you to choose between the models with a 
click of a radio button, so it’s easy to compare the two. But make your final 
click the selection of random effects.

The Fixed Effect Model

Both of our models can combine estimates of any population param-
eter, but I’ll focus on the simplest case—single means in original units, 
as Original 7 and Original 31 handle. The fixed effect model assumes 
that there’s a single fixed but unknown underlying population mean μ, 
and that every study estimates this single value. The meta-analysis com-

bines data from the studies to give M and 
its CI as our best point and interval esti-
mates of μ. This overall M is calculated 
as a weighted average of the means of 
the separate studies, where the weights 

for different studies reflect the precision of the information about μ each 
study contributes. As we’d expect, large and precise studies are weighted 
more heavily than small and imprecise studies.

I’ll now use an example in ESCI to show how the fixed effect model 
gives us point and interval estimates of μ. Suppose we enter data for 
k studies into Original 7 or Original 31. For each we enter Mi, si, and Ni; 
that is, the sample mean, SD, and size for Study i. Our ES of interest is Mi, 
which has standard error = s Ni i/ , and so we can label its variance, which 
is the square of the SE, as Vi = si

2/Ni. The weight for Study i is the inverse 
variance, so Wi = 1/Vi. The fixed effect model uses these weights to find an 
overall ES estimate M as a weighted average of the study means:

The fixed effect model assumes that there is 
a single underlying population parameter, 
for example, μ, and all studies are estimat-
ing that μ.



 

Meta-Analysis 2: Models	 211

	

M
WM

W

i i

i

= ∑
∑ 	

(8.1)

(All the summations in this chapter, indicated by Σ, run from i = 1 to 
i = k.) The variance of M is estimated as
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and so the SD of M is VM . We can use this and Equation (3.2) to calculate 
the C% CI around M to be

	
M z V M z VC M C M− + / /,  100 100

	
(8.3)

where, as in Chapter 3, zC/100 is the critical value of z for our chosen C. Of 
course, for C = 95, zC/100 = 1.96.

Incidentally, in these types of discussions “standard error” and “stan-
dard deviation” are often used interchangeably. We’re talking about effect 
size measures Mi and M, which are means. Remember that SE is defined 
as the SD of the sampling distribution of a mean, so it’s correct to refer to 
VM as the variance of M, and VM  as either the SE or the SD of M.

We can check any of these formulas against Original 7. To keep things 
very simple, Figure 8.3 shows a meta-analysis of just the first two stud-
ies from Figure 7.3. For Aden (1993), the variance is V1 = s1

2/N1 = 1422/24 = 
840.17 as shown in the figure. The weights of the two studies are W1 = 
1/840.17 = 0.00119 and W2 = 1/3566.3 = 0.000280. The first study weight W1 
as a proportion of the total of the weights is thus
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or 80.9%. Percentages like that appear in the Study weighting column 
near red 15, as in Figure  8.3. The MOE for Aden (1993) is t.95(24 – 1) × 
840 17.  = 2.069 × 28.99 = 59.96, again, as in the figure. Based on M1 and 

this MOE, the 95% CI for the first study is [394.0, 514.0], and this is the 
interval displayed in the forest plot and reported by ESCI to the right of 
the forest plot, although not shown in Figure 8.3.
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Now for the meta-analysis itself. Using Equation (8.1) our combined 
point estimate is

	
M = × + ×

+
=0 00119 454 0 000280 317

0 00119 0 000280
. .

. .
4427 9.

as Figure 8.3 reports near red 3. Using Equation (8.2) the variance estimate 
for M is

	

1 1
0 00119 0 000280

679 97
1 2W W+

=
+

=
. .

.

and MOE = 1.96 ×   679 97.  = 51.11. Both values match those in the figure. 
Using Equation (8.3) the 95% CI around M is therefore [427.9 – 51.11, 427.9 + 
51.11], or [376.8, 479.0], as shown by ESCI just to the right of the forest plot.

We can therefore report that the fixed effect meta-analysis of Aden (1993) 
and Buggs (1995) gives an estimated ES of M = 427.9 ms, [376.8, 479.0]. Now, 
on to the next model.

The Random Effects Model

The fixed effect model assumes that every study estimates the same μ, but 
it’s almost always more realistic to assume that different studies estimate 
somewhat different population ESs. Let’s 
say Study i estimates μi. The random effects 
model takes this approach, and assumes 
that there’s a population of μi values, and 
that each study estimates a randomly 
sampled value of μi from that population. The model usually goes further 
and assumes that the μi values are normally distributed, let’s say with 
overall mean μ and standard deviation τ. That’s lowercase Greek tau, 
which has the units of M. I’ll refer to τ, but also to τ2, the variance of the 
distribution of μi values, because it appears in various formulas. If τ2 = 0 
(i.e., τ = 0), all the μi are the same as μ, and we have the fixed effect model. 
Sampling variability can reasonably account for variability of the study 
means, and we say that the studies are homogeneous. On the other hand, 

if τ2 is large, the μi being estimated by the 
different studies are quite different and so 
the studies are likely to differ a lot, and we 
can say that the studies are heterogeneous.

A set of studies is homogeneous if sampling 
variability can reasonably account for the 
variation between studies, and heteroge-
neous if variation between studies is larger 
than this.

The random effects model assumes that 
there is a distribution of population param-
eters, and different studies estimate different 
values from that distribution.
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As I’ve mentioned a couple of times, heterogeneity may offer opportu-
nity for insight, if we can find one or more variables that can account for at 

least some of it. In Chapter 9 we’ll discuss 
such moderating variables, or moderators, 
which explain some of the variability of 
the study means. Meanwhile, the random 

effects model uses the symbol Q for a measure of the extent of heterogene-
ity, which influences the calculation of M and, as we saw in Figure 8.2, the 
width of the CI on M.

If you know about fixed and random effects in analysis of variance, you 
might notice a kind of parallel with the two models for meta-analysis we’re 
discussing. If not, don’t worry. You might also be thinking that the assump-
tions of the random effects model are strong and a bit arbitrary: We assume 
that there’s a normal distribution of μi values that just happens to account 
for what could be a wide variety of types of differences from study to study. 
The random effects model is becoming widely used, but its assumptions 
are demanding and perhaps often unrealistic. That’s a big reason why 
researchers and statisticians continue to explore new models for meta-
analysis, always seeking models that are tractable—meaning formulas can 
be found and calculations made—and also fit well to sets of real research 
studies. Keep a lookout for promising new models for meta-analysis.

Heterogeneity and the Random Effects Model

Heterogeneity is central to the random effects model. We’ll use Q as our 
measure of heterogeneity, or variability between study means. It’s a stan-
dardized measure, the total weighted sum of squares between studies, 
but saying that may not help much. We calculate it using

	 Q WM
WM
Wi i
i i

i
= ∑ −

∑( )
∑

2
2

	 (8.4)

If the fixed effect model is accurate, the expected value of Q is just the 
degrees of freedom, df = (k – 1). (Remember that k is the number of studies 
in the meta-analysis.) So the next step is to compare Q with df. A Q value 
close to (k – 1) is consistent with homogeneity and a fixed effect model. 
A Q value notably greater than (k – 1) indicates that the studies are het-
erogeneous, the random effects model is needed, and τ2 is greater than 
0. (Remember τ2 is the variance of the distribution of μi.) How great is 
“notably greater than”? Can we calculate a CI around our Q value? Good 
questions. Hold those thoughts for a moment.

Next consider T 2, which is an estimate of τ2 for our studies. The formula is

A moderating variable or moderator is a vari-
able that influences the ES being studied in a 
meta-analysis.
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	 T
Q df

W W
W

i
i

i

2
2

= −

∑ − ∑
∑

	 (8.5)

So T2 is (Q – df), which is the amount by which Q exceeds what we’d 
expect if τ2 = 0, divided by a factor that depends only on the weights. This 
makes sense: Small T2 means that Q is not notably larger than df, and our 
estimate of τ2 is small. Large T2 means that Q is notably larger than df, 
there’s lots of bouncing around of the Mi, our estimate of τ2 is large, and 
we need a random effects model. I’m happy to say that we can calculate 
a CI around our T value, and this is a CI for τ. The details are too compli-
cated to give here, but are in Chapter 16 of Borenstein, Hedges, Higgins, 
and Rothstein (2009). We’ll just let ESCI do the calculations for us.

Let’s see what Original 7 offers. Figure 8.4 is the same as Figure 8.3, 
but shows the additional information reported below the meta-analysis 
results. You’ve probably noticed the radio buttons near the bottom left 
in Figure 8.4. These let you select a fixed effect or random effects model 
for calculation of the meta-analysis result. The popout comment at red 16 
explains. (Red 16 is positioned just left of the image shown in Figure 8.4.) 
The value of Q is reported at red 19. For our two studies, Q = 4.259, which 
is much larger than df = (k – 1) = 1. The df is shown just below Q, so it’s easy 
to compare the two values. We seem to have heterogeneity, and there-
fore suspect that τ2 may be large. At red 18, ESCI reports T rather than 
T 2, where T is our estimate of τ. I usually prefer to think about T and τ 
because they’re SDs. ESCI used Equation (8.5) to calculate T 2 = 7181.3 then 
took the square root to find T = 84.7 ms, as reported at red 18. ESCI also 
reports that the 95% CI for τ is [0, 197.6]. With only two studies, it’s not 
surprising that this CI is so enormously wide.

If through sampling variability Q happens to be quite small, (Q – df) can 
be negative, in which case a negative value is calculated for T 2. However, 
T 2 is a variance, which cannot be negative, so T 2 is set to zero. Also T, our 
estimate of τ, is set to zero, so ESCI reports T = 0 rather than a negative 
value. Similarly, if a negative value is calculated for the lower limit of the 
CI, 0 is reported instead.

There are two further things to mention before we play around by 
changing some of the data. One more way to think about heterogeneity is 
to calculate I2, which is another measure of heterogeneity, by using

	
I

Q df
Q

2 100= − × %
	

(8.6)

In this equation, (Q – df) is the extra amount of variability between 
studies beyond what we’d expect under a fixed effect model. Also Q, 
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the denominator in the equation, is the total variability between stud-
ies. So I2 is the percentage of the total variability that reflects real differ-
ences in the μi, rather than the bouncing around of sampling variability 
that CIjumping illustrates. Large I2 signals heterogeneity is large, and 
close-to-zero I2 suggests that we have homogeneity. ESCI reports I2 
below Q. In our example, I2 = 76.5%, again suggesting that we have 
considerable heterogeneity.

The last thing to mention here is the p value that ESCI reports at red 19. 
This is a p value calculated from Q for testing the null hypothesis that the 
studies are homogeneous. In our example, p = .039, so we have statistically 
significant (p < .05) heterogeneity, despite having such a small meta-anal-
ysis. I’d prefer, of course, to tell you about a CI around Q, but the statisti-
cians advise that this is a situation in which the approximate formulas 
that the random effects model uses can give us a reasonable value for p, 
but not such a useful approximation to a CI. Indeed, they advise that the 
p value for Q probably gives better guidance than the approximation to a 
CI around T that I described before and that ESCI reports at red 18. Even 
so, I couldn’t resist including that CI in ESCI.

Note that the message from the p value for Q conflicts with the mes-
sage from the CI for τ. The p value is just less than .05, whereas the 95% CI 
around T is very wide but includes 0. In other words, Q is large enough 
to reject the null hypothesis of homogeneity, but the CI around T does not 
exclude τ = 0 as a plausible value. (Recall that τ = 0 indicates zero hetero-
geneity, i.e., homogeneity.) Small inconsistencies like this arise because 
approximations have been used to derive the formulas we need to use. We 
simply have to live with the occasional disagreements. Rarely, if ever, will 
they cause real problems. Also, as usual, we shouldn’t pay much attention 
to the precise value of p—or to whether a CI falls so it just includes, or just 
excludes, a null hypothesized value.

Before switching Original 7 to the random effects model, it’s worth try-
ing different values for M1 to see what happens to Q and T. I typed in 440, 
420, 400, and then 380 for the mean of Aden (1993), but you can try any val-
ues you like. (You may want to click at red 17 to freeze the ES axis, so the 
forest plot doesn’t automatically rescale when you change M1.) I watched 
as the forest plot changed, Q decreased, its p increased, I2 decreased, 
T decreased, and the upper limit of the CI around T also decreased. (Note 
that in some cases, for example, M1 = 400, ESCI doesn’t report a CI for τ 
because in some circumstances the approximations used to calculate such 
a CI fail when df = 1. Don’t worry about this—in virtually every realistic 
case, ESCI reports a CI at red 18.)

As I made the two study means less different, heterogeneity decreased, 
as did our estimate of τ, which is the SD of the distribution of μi values 
assumed by the random effects model. I hope that makes sense: As the 
difference between the two study means decreases, it’s less plausible that 



 

218	 Understanding The New Statistics

they’re estimating different μi, and so not as necessary to prefer a random 
effects model over the fixed effect model that ESCI is still displaying.

The Random Effects Model in Action

Now for the random effects meta-analysis. As with the fixed effect model, 
we start with the variance of the ESs for the separate studies, calculate 
study weights, and then use these to calculate a weighted average that’s 
our overall point estimate of the ES, and a CI. It’s all very similar, but the 
answer may be different because to calculate weights we first calculate a 
modification of the ES variance for each Mi. The total variability of Mi has 
two components: The variability of Mi around μi, and the variability of μi 
around μ. We estimate the first as Vi and the second as T 2, and therefore 
our estimate of the variance of Mi is Vi* = Vi + T 2, where I’m adding * to 
symbols to mark the version used with the random effects model.

The weights are once again the inverse variance, so Wi* = 1/Vi*. We com-
pute the result of the random effects meta-analysis using a modification 
of Equation (8.1):

	 M
W M
W
i i

i

*
*

*= ∑
∑ 	 (8.7)

The variance of M* is estimated as

	 V
W

M
i

* *
=

∑
1

	 (8.8)

which is a modification of Equation (8.2). The SE of M* is

	 VM*

and we use this SE to calculate the C% CI around M* to be

	 M z V M z VC M C M
*

/
*

/* *,− +



100 100 	 (8.9)

which is an adaptation of Equation (8.3).
At Original 7 we can now click between the two options at red 16 to 

see the meta-analysis results for either model. Figure 8.5 is the same as 
Figure 8.4, but shows results for the random effects model. The final CI 
is dramatically wider, reflecting the large disagreement between the two 
studies, in other words, large heterogeneity. Click back and forth to see 
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changes in the forest plot, the value of M near red 3, and the CI around 
M that’s shown to the right of the forest plot. If you try this for various 
values for M1, the mean for Aden (1993), you’ll quickly notice that results 
from the two models differ only when T > 0, because only then is V* dif-
ferent from V. And T is only greater than zero when Q > df. [Recall that 
Equation (8.5) gives T 2 = (Q – df) divided by a factor depending on the 
weights.] Therefore, as you try different values of M1, or make any other 
changes to the data that you wish, watch for Q to become larger than df = 
(k – 1) (remember that k is the number of individual studies), so T becomes 
greater than zero and the results of the two models start to differ. When 
T is zero, the two models give identical results.

Now, back to the data shown in Figures 8.4 and 8.5. The values of Q, df, 
p, I2, T, and the CI on T are all calculated from the study data and are inde-
pendent of the meta-analysis model chosen, so their values are the same 
in Figures 8.4 and 8.5.

We can check some calculations, as we did earlier for the fixed effect 
model. For Aden (1993), the variance needed for the random effects model 
is V1* = V1 + T 2 = 840.17 + 7181.3 = 8021.5. For Buggs (1995), V2* = V2 + T 2 = 
3566.3 + 7181.3 = 10747.6. Note that the study variance and MOE shown 
below and left of red 15 are the values for the studies themselves, so, for 
example, V1 rather than V1* is reported, whichever meta-analysis model 
is selected. The weights of the two studies for random effects are W1* = 
1/8021.5 = 0.000125 and W2* = 1/10747.6 = 0.0000930. The proportion weight 
for the first study is thus

	

W
W W

1

1 2

0 000125
0 000125 0 0000930

573
*

* *

.
. .

.
+

=
+

=

or 57.3%, as in Figure 8.5. The weights reported at red 15, unlike study 
variance and MOE, reflect the selected meta-analysis model.

Now for the meta-analysis itself. Using Equation (8.7) our combined 
point estimate is

	
M* . .

. .
= × + ×

+
0 000125 454 0 0000930 317

0 000125 0 00000930
395 4= .

as Figure 8.5 reports near red 3. Using Equation (8.8) the variance estimate 
for M* is

	
V

W WM* * * . .
.=

+
=

+
=1 1

0 000125 0 0000930
4593 3

1 2
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and MOE = 1.96 × 4593 3.  = 132.8. Both values match those in the figure. 
Using Equation (8.9) the 95% CI around M* is therefore [395.4 – 132.8, 395.4 
+ 132.8], or [262.6, 528.3], as shown by ESCI just to the right of the forest plot.

Weighting the Studies

A central difference between the two models is the way they weight 
the studies. The fixed effect model shown in Figure  8.4 weights Buggs 
(1995) at only 19.1%, because its variance is so high (3566.3), reflecting its 
small N and slightly larger SD. In contrast, the random effects analysis of 
Figure 8.5 weights Buggs at 42.7%, because the variances used to calculate 
the weights are calculated as Vi* = Vi + T 2. When T 2 > 0 the variances for 
the different studies are all larger by this 
amount, and therefore are overall more 
similar. As you change M1 and watch 
the amount of heterogeneity change, T 2 
changes, and also the pattern of weights. 
Large heterogeneity gives large T 2, which 
means that the weights are more similar—large and small studies are more 
similarly weighted. Of course, that’s why the sizes of squares in the forest 
plot often change as you click between the two meta-analysis models.

More generally, the different patterns of weights arise because the ran-
dom effects analysis pays attention to the k different μi values. Study i 
is the only source of information specifically about μi, so even if Study i is 
small it can’t be ignored. As I mentioned previously, our estimate of the 
variance of Mi is Vi* = Vi + T 2. Informally, a study gets one vote that 
depends on its size (that’s Vi, the variance for a particular study mean) 
and another vote simply for being in the meta-analysis (that’s T 2, same for 
every study). If heterogeneity is large, T 2 is large and so the second vote 
has increased influence and all the study weights are more similar. Both 
votes contribute to the study weights, the overall M* results and, most 
notably, the width of the CI around that final point estimate.

A Larger Example

I’d like to consider briefly a random effects meta-analysis for more than 
two studies. Figure 8.6 includes all seven studies and is the same as Figure 
7.4, except it shows random effects meta-analysis and includes extra infor-
mation at the bottom. ESCI reports Q = 10.51, somewhat more than df = 6, 
for the overall meta-analysis reported at red 5. In addition, p = .10 and T = 
36.9 ms [0, 75.8]. The I2 value of 42.9% is an estimate of the percentage of 

The random effects model generally weights 
studies more evenly than does the fixed 
effect model, because it takes into account 
the heterogeneity of the set of studies as well 
as the variance of each study’s ES.
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overall variability between studies that reflects true variability in the μi 
that the studies estimate. These values suggest a considerable amount of 
heterogeneity, although the CI on T includes zero (and p > .05) so τ = 0 
cannot be ruled out.

Let’s think for a moment of all the CIs in Figure 8.6 as prediction inter-
vals and imagine what would happen on replication of all the studies. 
Imagine an ESCI page MAjumping (sorry, it doesn’t exist) that allows you 
to specify μi and Ni for each of a number of studies, then produces on each 
simulation cycle a complete display like Figure 7.4 or Figure 8.6. As we 
repeated the simulation, all the Mi would bounce around. The M or M* 
would also bounce around, although not as much as the Mi. The Q, T, and 
I2 would all bounce around considerably, although relatively less if k were 
larger, meaning that we had more studies in the analysis. I’m suggesting 
this thought experiment to emphasize that we can’t justify any hard and 
fast conclusion from noting that Q = 10.51, or T = 36.9 ms [0, 75.8]. The wide 
CI indicates that a wide range of models is plausible, given our data, all 
the way from a fixed effect model (τ = 0) to a random effects model with τ 
around 75 ms. That’s a model in which different studies estimate popula-
tion means (μi values) from a distribution with SD as large as 75 ms. There 
should be no question of trying to decide on a single “correct” or “true” 
model. That’s a form of dichotomous thinking and, as usual, it’s better to 
think in terms of estimation—T as our estimate of τ, and M* as our esti-
mate of μ, the ES we’re studying. As usual, the CIs indicate the precision 
of our point estimates.

Here’s a further observation: Click back and forth at red 16 between 
the two models and focus on the weights. In agreement with our earlier 
discussion of weights, the weights for the random effects model vary 
much less between studies. In the random effects analysis the largest 
weight is 22.0%—about 4.5 times the smallest weight of 4.9%. In the fixed 
effect analysis the largest is 28.8%—about 10 times the smallest weight of 
2.9%. In the random effects analysis, the largest is not so dominant, and 
even the smallest makes a contribution. The sizes of squares in the forest 
plot change accordingly between the two models. If heterogeneity were 
greater, the weights for the random effects model would vary even less.

Finally, consider how we might think about heterogeneity, especially as 
part of interpreting meta-analytic results. Box 8.1 describes one of the very 
few studies on this issue. It highlights how little we know of the cogni-
tion of meta-analysis. It identifies heterogeneity and the differing results 
of different meta-analytic models as a particular interpretive challenge. 
I suspect that there are useful developments of the forest plot that can 
represent heterogeneity, and perhaps even the effects of moderating vari-
ables, in some ingenious graphical ways that help understanding. You 
could take that as a challenge.



 

224	 Understanding The New Statistics

Box 8.1  Interpreting a Meta-Analysis

Shrier et al. (2008) studied how eight experts interpreted a series of 
meta-analyses that combined evidence from randomized control 
trials (RCTs). The trials assessed the value of giving intravenous 
magnesium soon after a heart attack—a topic chosen because the 
evidence is inconsistent. A series of small and medium-sized RCTs 
had found various results, generally in favor of treatment; then a very 
large RCT in 1995 found virtually no effect; then further RCTs again 
found various results. There was therefore considerable heterogene-
ity in the final set of studies. The researchers prepared five packages 
of materials, which represented knowledge just after the first RCT 
was published, after the first three RCTs, then after the first 10, 20, 
and 23 RCTs. In each case the package included a meta-analysis giv-
ing both fixed effect and random effects results, reports of the RCTs 
themselves, and summaries of review articles on relevant issues 
that were available at each successive time. The participants were all 
experts in a relevant medical field and also in meta-analysis. They 
were given a package, and asked to study it carefully and state their 
opinion about whether the treatment is effective and whether they 
would recommend it for clinical use. They were asked to rely only on 
the materials in the package. After giving their judgments they were 
given the next package to study. The aim was to obtain judgments 
based on knowledge available at each of the five successive times. 
Forest plots provided an essential overview of the information in 
each package.

Over the first three times the meta-analysis results became more 
precise. There was little sign of heterogeneity, so the fixed effect 
and random effects results were very similar. The p value decreased 
to < .001. Then the results of the very large RCT and some further 
smaller RCTs arrived, the set of results became heterogeneous, and 
the two meta-analysis models gave different results. This general 
pattern persisted to the final time.

The experts differed widely in their judgments and recommenda-
tions. Some became more positive toward the treatment over time, 
others more negative. They also reacted differently to the arrival of 
the very large study that disagreed with many of the other RCTs. 
The researchers had clearly given the experts some difficult scien-
tific and clinical judgments to make, exactly as they had intended.

The overall conclusion was simply that even experts who have 
access to full information can arrive at different judgments. 
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Choosing a Model

I’ve already recommended that we routinely use the random effects 
model, but here I’ll discuss the choice a little further. Some older books 
advise first examining Q and its p value and then, if p < .05 (or what-
ever other value you choose as a cutoff), conclude that there’s statistically 
significant heterogeneity and thus a random effects model is needed. 
The trouble with this strategy is that finding p > .05 is, as we’ve seen in 
Figure 8.6, hardly good grounds for deciding that the studies are homo-
geneous and a fixed effect model is appropriate. That would amount to 
accepting the null hypothesis—a bad policy. The good news is that we 
really don’t need to decide: Always use a random effects model. Even if 
you use that model when heterogeneity is low, you get the same result as 
the fixed effect model gives. Recall that whenever Q < df, we saw T = 0 and 
clicking between the models made no difference. If Q is only a little more 
than df, the two models give very similar results.

In the past, the complexity of doing the random effects calculations 
led to the fixed effect model being widely used. Schmidt, Oh, and Hayes 
(2009) studied meta-analyses published in Psychological Bulletin, psychol-
ogy’s leading journal for review articles. They found that the first meta-
analysis appeared in 1978, and they examined meta-analyses published 
up to 2006. They found that fixed effect models predominated, and only 

Interpreting even the best-presented systematic reviews may 
require careful critical thought and relevant expertise. Carrying out 
the whole experiment, and finding eight suitable experts willing 
to spend the many hours needed to participate, was a large task. 
Even so, with only eight sets of responses, no finer-grain analysis of 
what caused the differences was possible. At each time point, meta-
analysis integrated the mass of evidence, and forest plots revealed 
patterns and presented overall results, but interpretation was still a 
challenge. The experiment suggested that interpreting heterogene-
ity can be a particularly difficult challenge.

It’s tempting to ask the extent to which the experts gave “correct” 
judgments, but of course that’s not possible to answer. We can only 
hope that further research will give more precise estimates, and help 
explain heterogeneity. Eventually we hope that expert consensus will 
be possible—this is the closest we can ever come to a correct answer.



 

226	 Understanding The New Statistics

around 2003–2004 were there signs of a swing to random effects models. 
They reanalyzed some of the earlier fixed effect meta-analyses and found 
considerable heterogeneity. They concluded that many of them produced 
final interval estimates that were too narrow, because they should have 
employed random effects models, and these would have given wider CIs. 
The final CIs for the analyses they reexamined were on average only about 
half as wide as Schmidt et al. calculated they should be, using random 
effects models. They cautioned that many published conclusions based on 
meta-analysis may give overly precise final estimates of effects.

The recommendation of many meta-analysts now is that we should 
routinely use random effects models. Nothing to lose: Even when 
they’re not necessary, they give useful results, the same as a fixed 
model would have given—or very similar. Other meta-analysts sug-
gest examining the results of both models to highlight the influence 
of heterogeneity. I agree that’s often worth considering. A forest plot 
could easily display two CIs at the bottom, one for each model, as in 
Figure 8.2. Example 8.1 extends the discussion of our research on how 
researchers think about p values that I first described in Box 5.2. The 
example includes Figure 8.7, which also displays in a forest plot the 
results given by both meta-analytic models.

More thoughtfully, any choice of model should reflect our concep-
tualization of the problem and how that matches the assumptions of 

the model. If you have a set of studies 
designed to be very similar and all esti-
mating the same ES, it may make sense 
to choose a fixed effect model. In practice 
that rarely happens. The random effects 
approach is our more general tool and 

should be our routine choice, but it does make strong assumptions, so 
we should look out for any better options that may emerge.

If you’d like a more extensive presentation of models for meta-analysis 
I suggest the excellent book by Michael Borenstein and colleagues 
(Borenstein et al., 2009). That book’s approach and formulas are used in the 
software, Comprehensive Meta-Analysis (CMA; www.meta-analysis.com), 
which is becoming widely used. Any page of ESCI Meta-Analysis requires 
the same kind of data for each study—for example, Original 7 requires M, 
SD, and N for each. CMA, however, accepts ES information in more than 
100 formats, and can combine studies even when their data are entered in a 
variety of formats. It’s flexible and powerful software. You can download a 
copy and use it freely for a trial period. If you are planning a meta-analysis 
beyond ESCI’s capabilities, you should consider CMA.

It’s time for take-home messages. Scan back through this chapter’s sec-
tion headings and figures for some prompts for writing your own take-
home messages. Or play a bit more with Original 7 and let the labels and 

The random effects model should be our 
routine choice, despite its strong assump-
tions. If studies are homogeneous it gives 
results the same as, or similar to, those of the 
fixed effect model.

www.meta-analysis.com
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Example 8.1  Three Surveys 
of Subjective p Intervals

Box 5.2 described our study of how researchers think about p values 
in relation to replication (Lai et al., in press). It reported that we con-
ducted three email surveys, which asked about p values in slightly 
different ways. Each survey allowed us to calculate a p interval that 
a respondent judged would have an 80% chance of including the 
p value of a replication. Box 5.2 included results only of Survey 1, 
which found that the respondents’ estimated intervals were on aver-
age 40.0% intervals, rather than the target 80% intervals. In other 
words, the average underestimation was 80.0 – 40.0 = 40.0 percentage 
points. Yes, the mean just happened to be 40.0, so intervals had, on 
average, just half the target coverage of replication p. This result of 
Survey 1 and its 95% CI are shown at the top in Figure 8.7. Surveys 2 
and 3 found average underestimation of 29.5 and 30.4 percentage 
points, respectively, as the figure also shows.

To find an overall best estimate, we applied meta-analysis. 
Figure 8.7 shows the results for both fixed effect and random effects 
models. The fixed effect result has a short CI, as we’d expect, but 
hardly seems to represent the three surveys well because of the con-
siderable difference of the Survey 1 result from the other two results. 
When I say “considerable difference,” I’m noting that the difference 
is large compared with the CI widths—in fact the Survey 1 CI is not 
close to overlapping either of the other CIs. It’s therefore not surpris-
ing to find that heterogeneity was Q = 20.1, which is very large con-
sidering that there are three studies and so df = 2. Also, I2 = 90.0%. 
We should therefore prefer the random effects model and it gives, as 
we’d expect, a much wider CI.

0 10 20 30 40 50
Underestimation (percentage points)

Survey 1

Survey 3 

MA random effects

Survey 2 

MA fixed effect

Figure 8.7
The average extent of underestimation of subjective 80% p intervals, with 95% CIs, 
from three email surveys, and the meta-analytic (MA) combination of the three 
results using a fixed effect model and a random effects model.
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popout comments remind you of things. This is also a moment to reflect: 
If you have followed this long discussion of the two models then you have 
some important understanding and are ahead of many researchers out 
there. Take a pat on the back.

Exercises

	 8.1	 Fire up CIjumping in ESCI chapters 1–4. Enter μ = 50, σ = 20, 
N = 10, and click near red 4 to Show values. Take a single sam-
ple, and record its mean M and standard deviation s shown 
near red 4. Repeat until you have a list of ten M and s values. 
Type these into Original 31 as the mean and SD for 10 studies. 
Enter N = 10 for each. Examine the values reported near red 18 
and 19. Are these as you expect? Do the two models of meta-
analysis give different results? Is this as you expect? Discuss.

	 8.2	 If you have the patience, repeat Exercise 8.1 a couple more times, 
maybe with different values of N. You could even vary N from 
sample to sample, but make sure to enter the appropriate N for 
each study in the meta-analysis. Consider the same questions.

	 8.3	 Revisit Exercise 7.2, which asked you to find results that may be 
amenable to meta-analysis. If you found some, consider which 
model you would choose and why.

	 8.4	 In Original 31, enter SD = 10 and N = 20 for every study. (You 
could type in the values for the first study, then use the Copy 
command and then the Paste Special/Values command for 
the rest.) Type in 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 as the means of 
Studies 1–10. Record full information about the meta-analysis 

We concluded that the question format of Survey 1 gives somewhat 
greater underestimation, meaning shorter subjective p intervals. We 
could only speculate why that is, but our main aim in using three 
question formats was to avoid a result that may have been depen-
dent mainly on some idiosyncrasy of a single format. Using three 
formats, with broadly consistent findings, suggests that our overall 
conclusion is reasonably robust. Yes, the three studies estimated 
different amounts of underestimation, but they broadly agree that 
underestimation is severe, around 30 to 40 percentage points—and 
that’s our main conclusion.
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for each model. Now enter the same 10 values as the means of 
Studies 11–20. Again, record full information for each model. 
Repeat: Enter the same means for Studies 21–30 and record full 
information. Which quantities remain exactly or approximately 
the same as you combine 10, then 20, then 30 studies? Which 
change? Explain.

	 8.5	 Revisit Exercise 7.4, which asked you to find in another statistics 
textbook several results you could meta-analyze using Original 
7. Carry out the meta-analysis with both models and compare.

	 8.6	 Invent results for several similar studies in the research area 
with which you’re most familiar. Choose a single group design 
and data you can enter into Original 7 or Original 31. Within 
these limitations, make the results as realistic as possible. 
Carry out the meta-analysis using the two models. Compare 
and discuss.

	 8.7	 Find several published meta-analyses in journals in your dis-
cipline. For each, find any analysis of heterogeneity that’s 
reported. Identify the model(s) used and the justification given 
for choice of model. Make your own comments.

	 8.8	 Revise your take-home messages if you wish.
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Take-Home Messages

•	 The fixed effect model for meta-analysis, as used in Chapter 7, 
assumes that all studies are estimating the same single value of 
the population parameter, for example, μ. It thus assumes that the 
studies are homogeneous.

•	 A fixed effect analysis weights studies by the inverse variance of 
their means.

•	 A random effects model assumes a distribution of population 
parameters, and that different studies estimate different values 
from that distribution. It may assume that Study i estimates μi, 
where the μi have a normal distribution with mean μ and vari-
ance τ2.

•	 A moderating variable, or moderator, is a variable that accounts 
for some of the variability of the μi.

•	 If τ2 > 0, the studies are heterogeneous and a random effects model 
is needed. Q is a measure of heterogeneity, with expected value 
df = (k – 1), where k is the number of studies in the meta-analysis.

•	 T 2 is an estimate of τ2, and reflects the amount by which Q exceeds 
df. Large (Q – df) gives large T 2, which indicates large heteroge-
neity and therefore study means that bounce around distinctly 
more than CIjumping suggests.

•	 I2 is the percentage of the total variability of study means that 
reflects real differences in the μi they are estimating, rather than 
the bouncing around of sampling variability. Homogeneity gives 
I2 = 0, and large heterogeneity gives large I2.

•	 Weights in a random effects meta-analysis reflect both the vari-
ance of individual studies and the overall T 2 estimate. They gen-
erally differ less over studies than for a fixed effect model.

•	 The width of the overall CI from a random effects meta-analysis 
reflects both the combination of evidence over studies (if more 
studies then narrower CI) and the amount of heterogeneity (if 
large heterogeneity then wider CI).

•	 It’s usually best, and a safe choice, to use a random effects model, 
although it makes strong assumptions.

•	 Careful thought and informed judgment are likely to be needed 
at many stages in carrying out and interpreting a meta-analysis.
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9
Meta-Analysis 3: Larger-Scale Analyses

In Chapter 7 I used forest plots to introduce meta-analysis and described 
how meta-analysis can summarize messy sets of results and find answers 
to important questions. In Chapter 8 I described two models and argued 
that we should almost always choose the random effects model. In this 
chapter I’ll discuss larger meta-analysis projects. The main messages are, 
first, that doing a large meta-analysis is a big job with many issues to con-
sider and, second, that such an analysis can make an enormous contribu-
tion, and even answer research questions beyond the questions addressed 
by any of the individual studies. That’s more meta-analysis magic.

Here’s the agenda:

•	 Seven steps to conducting a full meta-analysis
•	 Finding moderators that account for ES variation
•	 Analyzing more than one ES measure
•	 Correcting for measurement error
•	 Assessing publication bias
•	 Meta-analysis becomes mainstream—the Cochrane and 

Campbell Collaborations

Seven Steps to a Full Meta-Analysis

Anyone who publishes a high-quality large-scale meta-analysis should, 
in my opinion, receive a gold medal, a large promotion, and a long, fully 
paid vacation. Such a research synthesis can be an immensely valuable 
scholarly contribution that brings order to confusion, helps set a future 
research agenda, and at the same time gives the best evidence-based prac-
tical advice. Such a project may take a year or more of work by a team, 
depending on the range of questions asked and the size and complex-
ity of the relevant research literature. In this chapter I’ll outline the steps 
to undertaking a large-scale meta-analysis and issues to consider. It’s a 
daunting list, but I don’t want to be discouraging: Graduate students are 
increasingly carrying out a small to medium meta-analysis as the first 
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part of their research. Yes, a meta-analysis can take anything from five 
minutes to more than a year of effort, but somewhere in that vast range 
may be a project that’s right for you. Even if there’s already a good meta-
analysis on your topic of interest, perhaps you can update and improve it.

I outline below the seven main steps in conducting a large-scale meta-
analysis. I’ve chosen two meta-analytic review articles to illustrate the 
steps. The first investigates the effectiveness of acupuncture, and I’ll 
mention aspects of that study as I describe the steps. Then I’ll outline 
my second example review, about how we perceive the person we love, 

also in terms of the seven steps. My steps 
largely follow a book by Harris Cooper 
(2010), which I highly recommend. Use 
it as the text for a reading seminar to 

help you and some like-minded people develop your understanding of 
meta-analysis, or as a guide to carrying out your own meta-analysis. At 
every step there are choices to be made, based on your research goals, 
knowledge of the research area, and understanding of research methods 
and meta-analysis. Research synthesis demands creativity and scholarly 
wisdom; it’s no mere mechanical exercise. In the descriptions below of 
my two examples, note that I’m being very selective and including only 
small parts of what are two substantial reviews.

Acupuncture and the Seven Steps

Low back pain is often chronic, but analgesics used for long periods may 
cease to offer relief and bring damaging side effects. To what extent can 
acupuncture help? Manheimer, White, Berman, Forys, and Ernst (2005) 
reported a systematic review, mainly based on meta-analysis, of 33 ran-
domized control trials (RCTs) that compared acupuncture with various 
comparison treatments. This is an example of a meta-analysis that asks 
a simple question, especially common in medicine: “What’s the effect of 
this treatment?”

Step 1: Formulate Your Problem

Here you set the scope of your project. You’ll probably use an existing 
theoretical framework to help you decide how to conceptualize the main 
variables and specify how they are measured. What types of studies will 
you include? What limits will you set on the questions addressed by stud-
ies to be included? What information must those included studies provide?

The question, “What’s the effect of acupuncture?” may seem simple, 
but Manheimer et al. (2005) still needed to decide the scope of their 
review and operationalize important variables. In recognition of the wide 
use of acupuncture around the world, they chose to seek studies from 

A large meta-analysis requires seven steps, 
as described, for example, by Cooper (2010).
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many countries, and they elected to include the rather different Chinese, 
Japanese, and Western styles of acupuncture.

Choices at this first stage may need to be revisited after you work on later 
steps. For example, research reports you find might require you to refine 
your variable definitions. Or locating more research than you expected 
might prompt you to narrow the scope of the whole study, to keep it 
within your time and resource constraints. The seven steps are not strictly 
separate and sequential; you may need to move backward and forward as 
the project proceeds.

Step 2: Search the Literature and Select Studies

You should cast a very wide net to come as close as possible to find-
ing all studies with a chance of providing data you would choose to 
include. That’s the best strategy to minimize the risk of publication bias. 
Manheimer et al. (2005) searched seven bibliographic databases and con-
tacted experts in six countries, asking for any relevant reports they could 
provide. They consulted the reference lists of all reviews and reports they 
retrieved. They made extra efforts to find studies via Japanese sources. 
They included reports in English, Japanese, Korean, and Chinese, as 
well as a range of European languages, although resource limitations 
precluded a search of Chinese databases. They identified 561 potentially 
relevant reports, then two researchers independently considered these 
against selection criteria they had established, which required, for exam-
ple, the random assignment of participants to acupuncture or a control 
group, and data on outcome measures of pain or functional status. Other 
criteria reflected definitions adopted for the main variables and decisions 
about scope. For example, acupuncture was defined as needle insertion, 
meaning that laser acupuncture was excluded. After applying all selec-
tion criteria, 33 studies were included.

Step 3: Code the Studies and Collect Data

Coding the studies and entering the data into your main data file is a 
large task. Start with a draft coding scheme that specifies all the study 
characteristics and types of data you wish to record about each study. 
Among many other things, record information about the participants, the 
experimental design, the experimental manipulations, and the measures 
reported. Record statistical information, including sample sizes, ESs, and 
measures of variance. Box 9.1 has more on this. Test your scheme by cod-
ing several studies, then refine it. You may need to train coders and check 
that they all use the scheme in a similar way. If practical, have every study 
coded by two coders working independently, or at least have a second 
coder independently code a proportion of the studies. In either case, use 
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Box 9.1  Information Needed 
to Calculate Effect Sizes

In an ideal world, every report of research would include point and 
interval ES estimates and descriptions of how these were calculated. 
Smith and Glass (1977) encountered motley and incomplete statisti-
cal information in many of the evaluations of psychotherapy they 
analyzed, and one of their notable achievements was to find ways to 
estimate d from such fragments. Sadly, more than 30 years later it’s 
still often difficult or impossible to extract sufficient information to 
calculate ESs and CIs for a meta-analysis.

Meta-analysis requires a point estimate and a relevant variance 
estimate, so we can calculate the CI that represents the study in 
the forest plot. Suppose, like Manheimer et al. (2005), we are meta-
analyzing differences between group means from RCTs. To calculate 
the mean difference and its CI we first need either the two group 
means or the difference. If we are not given the CI on the difference, 
we need the two group sizes and the SDs or SEs for each group so we 
can calculate it. If SD and SE information is missing but we are given 
t or the p value for a comparison of the groups, we can calculate 
the CI, although assumptions are required. Things quickly get com-
plicated and statistical advice may be needed. In ESCI Effect sizes 
there are two relevant pages: Both 2 ind means same variance and 
2 ind means general support the range of options I mentioned ear-
lier in this paragraph. For example, you can enter the means, group 
sizes, and a p value, and ESCI will calculate and display the differ-
ence with its CI. The popout comments explain. The Comprehensive 
Meta-Analysis (CMA) software supports around 20 options for the 
set of information you enter, to get the difference between two inde-
pendent means with its CI. Different studies very likely provide dif-
ferent information, so a range of methods is needed to calculate the 
CIs in the forest plot. A central task of coding is to extract for each 
study some combination of information sufficient to calculate ESs 
and CIs.

Embark on a meta-analysis and you are, alas, for some studies 
likely to have difficulty finding sufficient information. Take that les-
son to heart. A key part of meta-analytic thinking is appreciating 
that our current study will, we hope, be included in future meta-
analyses, so we’d better report full and clear statistical information 
to make that easier.
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some measure of agreement between the coders as an indicator of cod-
ing reliability. Your final coding scheme should strike a balance between 
extracting all the information needed for any analyses you contemplate, 
acceptable coding reliability, and the amount of time and effort needed. 
Don’t code aspects you are unlikely to need; for example, you may not 
need to record NHST details. It often happens that you simply can’t code 
some characteristic reliably and so you need to find a better way to iden-
tify it, or drop it from your plans. My colleagues and I once wanted to 
record the number of dependent variables used by each of a set of studies, 
but, surprisingly, often found it impossible to agree on that number. We 
had to drop that variable from our planned analysis.

Manheimer et al. (2005) reported that for non-English-language reports 
they relied on one expert, but otherwise two researchers independently 
extracted all data from the studies. Differences were resolved by discus-
sion, or consultation with a third researcher. They recorded ES data for 
five types of measures, including pain and return-to-work measures, and 
for all time points for which data were reported. They decided to define 
data for times up to 6 weeks following treatment as “short term,” and for 
the meta-analysis they used the data for the time point closest to 3 weeks. 
Note that such decisions must not be influenced by the results reported in 
the studies, to avoid biasing the meta-analysis.

Step 4: Choose What to Include, and Design the Analyses

Here you examine your data, consider study quality, and plan your analy-
ses. You may need to drop studies that are deficient in some way. You 
need to tailor your analyses to the studies and the data you have.

Manheimer et al. (2005) decided that 11 of their 33 studies were so 
diverse that they could not reasonably be included in a meta-analysis. 
The other 22 all assessed Chinese acupuncture for chronic low back pain, 
but compared it with a wide variety of other treatments, sham treat-
ment, or no treatment. These comparison conditions differed so much 
that the researchers decided to conduct six separate meta-analyses, each 
combining only two to eight studies, for the six different comparison 
conditions. It’s a little unusual to split a group of studies like that, but 
it does illustrate that every situation is different, and the meta-analyst 
needs to make many judgments.

In addition, Manheimer et al. (2005) followed medical custom by giving 
each included study a score for quality, the score reflecting, for example, 
how appropriate a procedure for randomization had been used, and the 
extent to which information was provided about patient dropouts. They 
could enter the quality score into their analyses to explore whether qual-
ity was related to outcomes.
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Step 5: Analyze the Data

A meta-analysis may combine data from studies whose results are 
reported using a variety of ESs. It’s a valuable feature of the CMA soft-
ware that it accepts many different ESs and, in many cases, can convert 
data entered using one ES measure into a different ES measure. Box 9.2 
has more about conversion among different ES measures.

Manheimer et al. (2005) used CMA and random effects models with d 
as their ES. They concluded that acupuncture is more effective than sham 
treatment, d = 0.54, [0.35, 0.73], but that there’s no evidence that it is more 
effective than other active therapies. Manheimer et al. found no substan-
tial heterogeneity, probably because they conducted several meta-analy-
ses, each combining a small set of similar studies. They included quality 
scores in their tables and reported no relation between study quality and 
results. They also looked for any evidence of publication bias in their data 
sets, but I’ll postpone description of that analysis to the section below on 
publication bias.

Box 9.2  Conversion Among Different 
Effect Size Measures

Two ESs often used for meta-analysis are Cohen’s d and Pearson’s 
correlation r, and it’s possible to convert between the two. To calcu-
late r from a d value, CMA uses

	 r
d

d
=

+2 4
	 (9.1)

for the case where N1 = N2. To do the reverse and calculate d from an 
r value it uses

	 d
r

r
=

−
2

1 2
	 (9.2)

Whenever using any conversion between ES measures we must 
consider whether the conversion makes conceptual sense, and also 
check that any necessary assumptions are reasonable. To convert r to d, 
for example, we need to assume that the data used to calculate r came 
from a bivariate normal population, and that one of the variables was 
dichotomized to create the two groups whose mean difference is 
expressed as d. Borenstein et al. (2009) explain much more about the 
important topic of conversions among different ES measures.
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Step 6: Interpret the Findings

Here, as you’d expect, you discuss your findings in relation to past lit-
erature, your theoretical framework, and your initial research questions. 
Draw out the implications for theory, for future research, and for practice. 
As you’d also expect, I recommend that interpretation should focus on the 
overall ES estimates given by your meta-analyses and the CIs on those 
estimates. In particular, interpret the ESs themselves.

Manheimer et al. (2005) based their discussion on ESs and NHST, but 
provided a good example of interpreting an ES. They referred to a visual 
analog scale for severity of pain, which requires that the patient make a 
mark somewhere on a 10 cm line labeled “no pain” at one end and “worst 
possible pain” at the other. They reported that an established standard in 
pain research, widely accepted by researchers and clinicians, is that a dif-
ference of 1 cm or more on the scale is regarded as clinically important. In 
their study, 1 cm corresponds to d = 0.4. Therefore, the d = 0.54 advantage 
they found for acupuncture over sham treatment corresponds to 1.4 cm 
on the scale, which is clearly a clinically important difference.

Step 7: Present the Review

The report of a meta-analytic review usually follows the familiar pat-
tern of introduction, method, results, and discussion. The Meta-Analysis 
Reporting Standards (MARS) presented in the Publication Manual (APA, 
2010, pp. 251–252) provide detailed guidance. Expect to see explanations 
for various choices made at each stage of the review, and critical analysis 
and discussion of many issues.

Large tables are often used to provide information about all included 
studies. Manheimer et al. (2005) used one table to describe the 11 
included studies not subjected to meta-analysis, but which were men-
tioned occasionally in the discussion, and another to describe the 22 
studies included in the meta-analyses. Forest plots illustrated all the 
meta-analyses. Further information about the study, and in particular the 
analyses, was provided as supplementary material available at the jour-
nal’s website. I’ll now turn to my second example meta-analytic review, 
and again divide my brief description into the seven stages.

Rose-Tinted Glasses, in Seven Steps

Fletcher and Kerr (2010) asked whether love is blind, or maybe insightful? 
Compared with the acupuncture review, this second example paid much 
more attention to theory. The researchers studied judgments people make 
of their partner in a heterosexual romantic relationship. To what extent do 
we see our loved one through rose-tinted glasses, and to what extent can 
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we judge objectively? They reported two main meta-analyses: one of 98 
studies and the other of 48.

Step 1: Formulate Your Problem

Before formulating their meta-analysis questions, Fletcher and Kerr (2010) 
proposed their own theoretical model of how people think about and 
make judgments about their partners, and used this new model to under-
pin their whole project. They defined two separate measures of how people 
judge, or rate, their partners. Consider ratings of, for example, “warmth” 
or “attractiveness.” Each of the two measures compared the rating of a 
person made by the person’s partner against the rating that person made 
of him- or herself. I’ll refer to partner ratings and self-ratings, and we can 
think of these in two equivalent ways. If the partner rating is the rating 
you make of your partner, then the self-rating is the rating your partner 
makes of him- or herself. Equivalently, the partner rating could be by your 
partner of you, in which case the self-rating is your own self-rating. Just 
keep in mind that partner and self-ratings always refer to the same person.

The first measure was of the extent to which partner ratings are on aver-
age higher than the self-ratings. In other words, does your partner gener-
ally rate you more highly than you rate yourself? Equivalently, do people 
generally rate their partners more highly than those partners rate them-
selves? If so, they are seeing them through rose-tinted glasses, and I’ll 
refer to the difference between the ratings as the rose-tinted glasses (RTG) 
score, where a larger score means stronger rose tinting.

The second measure is of discrimination, and assesses how well partner 
ratings and self-ratings correlate in a group. You and your partner may 
generally agree that you score high on warmth, whereas in another couple 
both your friend and her partner agree that she is rather low on warmth. 
(That could be the case whether the average RTG scores are high or low: 
The two measures I’m describing are largely independent.) If there’s such 
broad agreement within couples, there will be in the group a high correla-
tion between partner and self-ratings. This implies that partner and self-
ratings generally agree on who should be rated high and who low. To the 
extent that the two ratings correlate across the group, people are using 
the rating scale in a discriminating way and making objective discrimi-
nations about their partners. In summary, the RTG score measures aver-
age bias within couples, whereas discrimination is a correlation across the 
whole group that measures the extent that people are accurate in rating 
their partners high or low.

The general message here is that the researchers presented a substantial 
theoretical discussion, a new model, and some carefully defined variables 
as part of this crucial first step. They used that essential preliminary work 
to specify selection criteria for studies to be included in the meta-analyses. 
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Important among these were detailed requirements of exactly what judg-
ment procedures had been used and what measures reported, so the 
researchers could derive estimates of RTG, or discrimination, or both.

Step 2: Search the Literature and Select Studies

Fletcher and Kerr (2010) searched the Web of Science and PsycINFO data-
bases, and used a particularly wide range of search terms because they 
expected to find relevant studies published in a range of disciplines that 
were likely to use different terminology. They stated that they were open 
to studies including homosexual partners, but that all studies they found 
included only heterosexual relationships.

Step 3: Code the Studies and Collect Data

The researchers encountered a problem with studies that didn’t provide 
full information about whether participating couples were dating, mar-
ried, or merely sharing a residence; they developed rules to classify such 
studies. Another problem was that, for married couples, length of rela-
tionship was usually reported as length of the marriage. Based on data 
reported by some studies, they decided that adding 2.5 years to the length 
data for married couples would improve comparability with data for 
cohabiting and dating couples. They therefore made that adjustment.

Step 4: Choose What to Include, and Design the Analyses

Fletcher and Kerr (2010) found that they had 38 studies that provided data 
on both RTG and discrimination, 10 that provided data only on RTG, and 
60 only on discrimination. They therefore planned separate meta-analyses 
on their two basic measures.

Step 5: Analyze the Data

The researchers used CMA and random effects models. They elected to use 
correlation r as their ES measure, and used CMA to convert ESs reported 
in other ways into r values. For RTG, d seems to me more understandable, 
so I used Equation (9.2) to convert the overall average r they reported into 
d, and found that average RTG was d = 0.20, [0.08, 0.30]. I didn’t convert the 
discrimination measure because it is a correlation between partner and 
self-ratings. Overall, mean discrimination was r = .47, [.44, .50].

Fletcher and Kerr (2010) found substantial heterogeneity, meaning vari-
ation in mean ESs across studies. I’ll postpone description of their mod-
erator analysis until the next section. They also looked for any evidence of 
publication bias, as I describe in the section below on that topic.
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Step 6: Interpret the Findings

Overall RTG of d = 0.20 means that, averaging over all the qualities rated 
by participants, partner ratings averaged d = 0.20 higher than self-ratings. 
That’s a rose-tinted glasses effect. The average discrimination measure of 
r = .47 indicates that partner ratings tend to be high or low in broad agree-
ment with high or low self-ratings. Ratings about a partner thus convey a 
strong element of realism. These two results together indicate that, yes, we 
do tend to see our romantic partner in a rose-tinted way, but also that we 
are realistic and discriminate whether a high or low rating is deserved.

The researchers reported CIs, but based their discussion and interpreta-
tion on ESs and NHST. They referred to the overall RTG mean, equiva-
lent to d = 0.20, as “positive,” and the overall discrimination of r = .47 as 
“substantial” and “moderately strong.”

Step 7: Present the Review

The first third, approximately, of Fletcher and Kerr’s (2010) article was the 
introduction and discussion of their proposed theoretical model. Much 
of the final discussion was also based on this model, with considerable 
attention devoted to theoretical implications of the findings and promis-
ing directions for future research. The emphasis on the critical analysis of 
theory is a strong feature of this review article.

Reflecting on the Seven Steps

I’ve given just a very brief skip through the seven steps, with selected 
fragments from my two example reviews. Reading a good meta-analytic 
review can be fascinating: It gives a bird’s-eye view of a whole research 
literature. It tells a story of how the researchers defined their questions, 
selected studies that had adequate methodology and reported relevant 
data, then carried out a meta-analysis and found the best answers to their 
questions that current knowledge can provide. There’s critical comment 
throughout, and the discussion is related to the wider literature. Please 
feel encouraged to read some meta-analysis reports, and then do one 
yourself, even if on a small scale.

Finding Moderators That Account for ES Variation

Fletcher and Kerr (2010) examined whether gender might account for 
some of the variation in RTG results. They found that 34 of their studies 
reported separate data for males and females. I converted the r values they 



 

Meta-Analysis 3: Larger-Scale Analyses	 241

reported to d, and obtained average RTG of d = 0.17 for women and d = 
0.15 for men. Clearly any gender difference on RTG was negligible. Recall 
our definition in Chapter 8 that a moderating variable, or moderator, is a 
variable that accounts for some ES variation. Fletcher and Kerr found that 
gender is not a notable moderator of RTG.

Gender is an example of a dichotomous moderator—a variable with two 
possible values. More generally, a categorical moderator is a variable with 
two or more possible discrete values, such as ethnic group or academic 
grade on a scale from A to F. A continuous 
moderator is simply a variable measured 
on a continuous scale, such as time spent 
learning, or age, or cost. Moderator analysis 
seeks to identify moderators and estimate the extent to which they can 
account for the variability in ES over studies. I will consider two cases: 
examining a potential dichotomous moderator, and meta-regression, 
which examines a potential continuous moderator.

In the early days, meta-analysis was criticized for attempting to com-
bine studies that differed in important ways, but we now understand that 
differences between studies can be coded as potential moderating vari-
ables—for example, gender. If moderators explain some of the variation 
in outcome of different studies, the meta-analysis may even throw light 
on questions that haven’t been addressed by any of the individual studies 
in the meta-analysis. That’s a wonderful strength of meta-analysis.

Dichotomous Moderators

The Subgroups page of ESCI Meta-analysis carries out the simplest 
moderator analysis, which assesses a dichotomous moderator like gender. 
It’s based on Original 31, so it needs ESs in original units. You enter the 
mean, SD, and N for each study. Figure 9.1 is an image from Subgroups 
that shows data I invented for 16 studies that measured response time 
(RT) in milliseconds (ms) for some task. The wide scatter of the CIs in the 
forest plot suggests lots of heterogeneity. Recall that I2 is the estimated 
percentage of variation over studies that reflects true variation in popula-
tion ES, rather than sampling variability. The I2 value reported below red 
16 doesn’t appear in the figure, but was 87%, confirming that heterogene-
ity is large. Can we find a moderator to account for some of that?

I imagined that some studies used pictures as stimuli and others used 
words. In the subgroups column below red 2 I typed “Pics” or “Words” 
for each study. I left a blank for Study 8, which I imagined didn’t use either 
of those stimuli. Then I clicked at red 5 to see a subgroups analysis, as in 
Figure 9.2. ESCI displays the groups as red and blue, but here I’ve made 
them light and dark gray. The white diamond reports a random effects 
meta-analysis of all 15 included studies, and the two gray diamonds report 

Moderator analysis seeks moderator vari-
ables that can account for some of the ES 
variability between studies.
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the results of separate subgroups analyses. Meta-analysis results are also 
reported in the red 4 and red 6 panels. The red 7 panel reports that the 
difference between the two group means is –43 ms, meaning responses 
to Pics (light gray diamond) are on average 43 ms slower than those to 
Words (dark gray diamond). This difference and its 95% CI are displayed 
on a difference axis at the bottom. The CI is [–167, 82], which is very wide 
and indicates that our small set of studies gives a very imprecise estimate 
of how responses to Pics and Words compare. Also, the CI is wide com-
pared with the 43-ms difference. We conclude that stimulus type is not 
the moderator we seek.

I next imagined that I could identify gender as another potential mod-
erator, and that most of the studies used either all females or all males as 
participants. For 14 of the studies I entered a group label, Male or Female, 
below red 2, as shown in Figure  9.3. This time the group difference 
reported near red 7 was large, at 153 ms, with CI reported in the same 
row just to the right of the forest plot as [56, 250]. This difference and its 
CI are displayed on the difference axis at the bottom of the forest plot. 
All four CIs displayed at the bottom of the forest plot are wide, as we’d 
expect given our small number of studies and great variation from study 
to study. However, the difference between male and female of 153 ms is 
large, and much larger than the MOE of its CI displayed at the bottom, so 
we can conclude that gender is one moderator that helps account for the 
large variation over studies.

Consider the forest plots in Figures 9.2 and 9.3, and in each compare 
the patterns of light and dark gray squares. Does it seem to your eye that, 
overall, light and dark differ considerably in the second figure, but hardly 
at all in the first? Do the diamonds for the two groups, and the differ-
ence with its CI marked on a floating difference axis at the bottom, help 
you appreciate the subgroups analysis? So far as I know, these are novel 
features of a forest plot for subgroups. They need evaluation, but I look 
forward to further proposals to make forest plots even more useful by 
making further features of the meta-analysis easier to grasp.

You may be thinking it’s unlikely that almost all studies would use 
either all females or all males. Yes, indeed. Fletcher and Kerr’s (2010) mod-
erator analysis for gender was more complex, because it included studies 
that presented data only from females, others only from males, and others 
from both, but the idea is the same as I’ve illustrated.

Consider a meta-analysis in which every study uses just one level of the 
moderator, for example, all males or all females. Then our moderator analy-
sis asks a research question—how do males and females compare?—that no 

single study asked. That’s an important 
way in which meta-analysis can go beyond 
what any of the contributing studies offer.

A moderator analysis may be able to address 
questions that no single study in the meta-
analysis has addressed.
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Near red 15 you can click to select fixed effect analyses if you wish, but 
the figures illustrate random effects, our usual choice. For random effects 
analyses within the groups we need to make one further choice: Will we 
estimate τ2 separately for each group, or pool over the groups? If that ques-
tion seems too daunting, feel free to skip to the next paragraph. Recall that 
τ2 is the variation in the true population ES, and we calculate T2 from our 
data as an estimate of τ2. We need T2 to calculate the random effects weights. 
We can either calculate a separate T2 for each group of studies, or we can 
assume that τ2 is the same for the populations underlying the two groups 
and calculate a single T2 pooled over the groups. With subgroup analysis 
clicked on at red 5, you can click near red 15 to choose either separate esti-
mates or a pooled estimate of τ2. If you have many studies in each group, 
choose separate, but if not, choose pooled unless you have strong reason to 
think that true ES variation is different for the two groups. For Figures 9.2 
and 9.3 I chose pooled. Click back and forth between the two options to see 
the difference. Often in practice it makes little difference which you choose.

Figure 9.3 may remind you of Figure 6.2, which displays the means of 
two independent groups and their difference with its CI on a floating dif-
ference axis. Yes, there is a parallel. Study means in our subgroups analy-
sis, which are the light and dark gray squares in Figure 9.3, correspond 
to individual data points in a two-independent-groups design. The main 
difference is that studies are differentially weighted in the meta-analyses, 
using weights shown below red 13, whereas all data points are treated 
equally in calculating the group means in Figure 6.2. There are further 
small calculation differences between the two situations, but even so it’s 
useful to appreciate the parallel.

There is, however, a crucial contrast between the two situations. If partic-
ipants are randomly assigned to the two groups, the independent-groups 
design permits inferences of causality: If a difference emerges, beyond 
what sampling variability can reasonably explain, then it must have 
been caused by the different treatments experienced by the two groups. 
However, in a moderator analysis there is no random assignment of stud-

ies to the two levels of the moderator. 
We may note a large correlation between 
gender and average RT, but that doesn’t 
justify an inference of causality. The stud-

ies using males and those using females may differ in some way other 
than the gender of their participants, and that other difference may have 
caused the RT difference. The most the analysis can tell us is that a mod-
erator correlates with an ES difference. Any further interpretation must 
rely on our judgment in the research situation. The correlation is likely at 
least to provide a promising suggestion for further research investigation.

Subgroup analysis can be extended to categorical moderators with more 
than two values. Perhaps the studies in Figure 9.1 used pictures, words, 

A moderator analysis may identify a correla-
tion between a moderator and the main ES, 
but this does not imply causality.
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or digits, with each study using just one type of stimulus. We would 
have three groups, and could carry out meta-analysis of each group and 
see three group diamonds at the bottom of the forest plot. The parallel 
is with analysis of variance that compares three independent groups of 
data points rather than studies. Of course, we could have more than three 
groups in our meta-analysis and in the analysis of variance. Borenstein 
et al. (2009) explain further and provide formulas.

Continuous Moderators

Suppose each study in Figure 9.1 reported the average amount of previous 
experience its participants had at the task, and suppose average experience 
varied widely over the studies. Amount of experience, a continuous vari-
able, would then be a potential moderator that might account for some 
of the observed heterogeneity of ESs. Informally, think of calculating the 
correlation over studies between amount of experience and study means. 
A substantial correlation would suggest 
amount of experience is an important 
moderator. Alternatively, you could calcu-
late the regression of study mean against 
amount of experience—informally, think of the straight line of best fit in 
a plot of study means against experience. Yes, there’s a parallel between 
those simple correlation and regression calculations, and meta-regression, 
which is the analysis we use to investigate a possible continuous modera-
tor. Again, the main difference is that studies are weighted differentially 
in a meta-regression, as Borenstein et al. (2009, Chapter 20) explain.

I’ll illustrate meta-regression with an example from Fletcher and Kerr 
(2010), who investigated whether RTG score was related to relationship 
length. Are our glasses more strongly rose-tinted in the first flush of love 
than after many years together? They found 13 studies that reported RTG 
and average length of relationship. Figure 9.4 illustrates their meta-regres-
sion, carried out in CMA, of RTG against relationship length. The left axis 
shows RTG as r transformed to Fisher’s z. (There’s more on that transfor-
mation in Chapter 14.) Equivalent d values are shown at right. Length of 
relationship is shown on a log scale on the horizontal axis, with length 
in years shown at the top. The negative slope of the meta-regression line 
indicates much stronger RTG, on average, for shorter relationships: d is 
around 1 for RTG during the first year or two, and declines to around zero 
after several decades. Over the years, the rose tinting seems to fade.

Note that meta-regression, like other forms of moderator analysis, may 
address a question that no single study can address. Again, that’s a won-
derful strength of meta-analysis. However, we are again observing a cor-
relation that doesn’t imply causality: Perhaps increasing age is the cause 
of reduced RTG, and age is confounded with relationship length in our 

Meta-regression seeks to identify a continu-
ous moderator. 
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studies. Or perhaps it’s a cohort effect, meaning the important factor is 
year of birth and people contributing data for short relationships, who 
were mostly born more recently, won’t show decreased RTG as they age. 
Or, again, it may be a selection effect, if couples with high RTG tend to split 
up and so can’t contribute toward the right in Figure 9.4. Any conclusion 
we draw from the correlation established by meta-regression is a matter 
for informed judgment in the research context and, as ever, it’s important 
to consider alternatives. We could suggest further research to explore the 
correlation further, but sometimes that’s difficult or impossible.

It’s best to identify likely moderators at the planning stage. Draw on 
your theoretical framework and understanding of the research context. 
Once you’ve chosen likely moderators, code the data from your studies 
that you need for the moderator analyses. In addition, after you’ve exam-
ined all the data, you can carry out further analyses for any other likely 
looking variables. The risk is that such data snooping may capitalize on 
chance, so any conclusion about a moderator identified during exploration 
is especially tentative.

Analyzing More Than One ES Measure

Many research studies include more than one dependent variable, in 
which case you have a number of options, including
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Figure 9.4
Meta-regression of rose-tinted glasses (RTG) score against length of relationship. The left 
axis shows RTG values transformed from r to Fisher’s z, with equivalent d values shown at 
right. The lower axis is log of relationship length in years, and equivalent values in years 
are shown at the top. Each circle represents a study, with circle area indicating weight in the 
meta-regression. Plotted from original data kindly provided by Garth Fletcher.
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•	 Choose a single ES for meta-analysis and ignore others.

•	 Carry out more than one meta-analysis, one for each ES of inter-
est. For example, Fletcher and Kerr (2010) reported separate meta-
analyses for RTG and for discrimination.

•	 Consider in advance how the measures relate conceptually. You 
may decide that measures of reasoning and of language are both 
measures of cognitive skill, which is your primary research inter-
est. You could combine the scores into a single measure for meta-
analysis, perhaps by averaging, or by converting each to a d value 
then averaging.

I’ll describe Peter Wilson’s PhD project (Wilson & McKenzie, 1998) on 
clumsiness in children to illustrate one way to take advantage of having 
many measures. Wilson located 50 studies that met his inclusion crite-
ria and carried out separate meta-analyses on a large number of differ-
ent measures of children’s abilities. He found an especially large deficit, 
equivalent to d = 1.31, for clumsy children compared with control children 
on complex visuospatial tasks, which included, for example, visual dis-
crimination of shapes and building with blocks. However, by exploring 
many measures and focusing on the one that gave the largest overall 
ES, Wilson risked capitalizing on chance. He knew his conclusion was 
tentative, and therefore carried out an empirical comparison of groups 
of clumsy and control children. He used a battery of tests, including 
10 visuospatial tasks, and confirmed that clumsy children find such tasks 
especially difficult. This deficit had not previously been identified as a 
particular problem for clumsy children. Wilson’s project illustrates how 
meta-analysis can identify a key variable in a messy literature. Meta-
analysis plus a follow-up study could shape subsequent theoretical and 
empirical research on clumsiness.

Correcting for Measurement Error

So far in this book I’ve focused on sampling variability—the troublesome 
variation from sample to sample that’s pictured in all the dances. It’s a 
common assumption that sampling variability is the only cause of error 
in our data, and many statistics books don’t mention any other source 
of error. In the real world, however, it’s unfortunate that our data also 
reflect various other types of error, including especially measurement error. 
Measurement error is the difference between the data value we observe 
and what is, in some sense, the true underlying value. For example, we 
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think of a child as having some true level of verbal ability, say, XTRUE, but 
when today we gave the child a test of verbal ability we obtained XOBSERVED 
as the score. Then we can write

	 XOBSERVED = XTRUE + e

where e is the measurement error—the difference between the true score 
XTRUE and our observed score XOBSERVED. If we tested the same child tomor-
row, we might assume that XTRUE is virtually unchanged, but we are likely 
to obtain a different XOBSERVED because any number of aspects of the child 
and the testing situation may be slightly different, which we summarize 
by saying that the measurement error will be different. One measure of 
the reliability of a test is how well tomorrow’s XOBSERVED correlates with 
today’s XOBSERVED across a group of children.

The field of psychometrics studies tests and measurement. It develops 
tests that have, among other desirable properties, high reliability. It has 
developed sophisticated techniques to quantify and deal with measure-
ment error. An unfortunate separation has developed between the field of 
statistics, which, as I mentioned, often pays little or no attention to mea-
surement error, and psychometrics, which takes measurement error seri-
ously, but may or may not take full account of sampling variability. It’s 
also unfortunate that a somewhat parallel partial separation has devel-
oped within meta-analysis. The most common approach to meta-analysis, 
which I’ve been discussing in these three meta-analysis chapters, usu-
ally takes little or no account of measurement error, although it could. 
As I mentioned in Chapter 7, a second major approach to meta-analysis 
has been developed primarily by Jack Hunter and Frank Schmidt (2004). 
The subtitle of their book is Correcting Error and Bias in Research Findings, 
which describes their focus on multiple sources of error. They pay careful 
attention to measurement error and state that all data contain measure-
ment error, to some extent. Usually, however, researchers are most likely 
to consider measurement error when analyzing data from questionnaires 
or other tests. Measurement error generally tends to reduce the values of 
r, d, or other ESs calculated from data. The reduction is small if reliability 
is high and larger if reliability is medium or low. Hunter and Schmidt 
provide techniques and software for adjusting the values of ESs, to com-
pensate for the reductions estimated as being caused by measurement 
error. The techniques require information about the reliability of the ES 
measures, and they result in an increase in ES values.

In Chapter 7 I mentioned the example from Hunter and Schmidt (2004) 
of the validity of job aptitude tests. Those researchers applied meta-
analysis to a very heterogeneous research literature and found that 
various identifiable sources of error, an important one of which was mea-
surement error, could largely account for the variation over studies. Their 
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conclusion was that the tests do have a certain breadth of applicability, 
and this was an important change from what had previously been the 
accepted view. This example shows that it can be vital to correct for mea-
surement error.

In Chapter 8 I mentioned the study by Schmidt, Oh, and Hayes (2009) 
of published meta-analyses. Those researchers reported that 63% of the 
articles they studied took the most common approach to meta-analysis, as 
I’ve discussed in these last three chapters, whereas 11% took the Hunter 
and Schmidt (2004) approach. (The remaining 26% took a variety of 
other approaches.) Measurement error should more often be considered 
within statistics and, in particular, as part of meta-analysis. I look for-
ward to developments in guidance and software that will assist research-
ers to routinely consider measurement error, especially when conducting 
meta-analysis.

Borenstein et al. (2009) and the CMA software focus on what I’ve been 
referring to as the most common approach to meta-analysis. Borenstein 
et al. included a few pages (pp. 341–352) that outline what they call 
“psychometric meta-analysis,” which is the approach of Hunter and 
Schmidt (2004), including correction for measurement error. Borenstein 
et al. also explain how information about test reliability can be used to 
correct ES values calculated from data. The corrected values can then be 
entered into CMA, or ESCI, for meta-analysis.

I draw two conclusions from this brief discussion of measurement error. 
First, we should always be conscious that, in practice, data are likely to 
reflect measurement error as well as sampling variability. Especially if 
we suspect that the reliability of our measures is not high, we should 
consider making some adjustment in our meta-analysis to remove the 
estimated effect of measurement error. Second, and most important, we 
should make every effort in designing our research and selecting mea-
sures to minimize measurement error. It’s far better to reduce it than try 
to compensate later. Strategies include choosing measures with high reli-
ability, controlling testing conditions closely, and measuring more than 
once and averaging.

Assessing Publication Bias

We need to cast a wide net when searching for studies for possible inclu-
sion in a meta-analysis, although we can never be sure we’ve found every-
thing that’s relevant. There are, however, ways to estimate whether some 
types of publication bias have distorted the results of a meta-analysis. I’ll 
describe one common approach: the funnel plot, which is a scatterplot 
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of individual study standard error (SE) against individual study effect 
size (ES). (With funnel plots, it’s even easier than usual to get confused 
between SEs and ESs.) Figure  9.5 is from the Subgroups page of ESCI 
Meta-analysis and shows data for 16 studies that I imagined had reported 
the mean increase in RT resulting from a given amount of fatigue on a 
task. The left panel is the forest plot with the result of a random effects 
meta-analysis, and the right panel is a funnel plot, with a diamond report-
ing the same result. The vertical axis in the funnel plot represents for each 
study the standard error of the ES; this is the square root of the variance 
values shown in the column just to the right of red 2. Note that the SE axis 
has zero at the top and values increasing downward. That’s the custom, 
although there’s no good reason for it. Studies with large N, which I’ll call 
“large” studies, tend to have a small SE and so are plotted as dots near the 
top, whereas studies with small N, which I’ll call “small” studies, tend to 
have a large SE and appear near the bottom.

The idea is that, at any given value of SE, meaning any given vertical 
position in the plot, the ESs should be approximately evenly spread to the 
left and right of the vertical line that marks the overall result of the meta-
analysis. Large studies, higher in the plot, should be more tightly bunched 
near the line because of their smaller SE, and small studies, near the bot-
tom, should spread further from the line because they have a larger SE. 
The slanting lines, whose funnel shape names the plot, indicate approxi-
mately the relative amount of spread we’d expect at different SE values.

We examine the funnel plot, looking for any sign that, for any particular 
SE, the studies are not spread symmetrically left and right of the verti-
cal line above the diamond, as they should be. Small studies with an ES 
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Figure 9.5
The left panel is a forest plot of 16 fictitious studies, whose ES is increase in mean RT with 
fatigue. The right panel is a funnel plot of the same 16 studies. The diamonds report a ran-
dom effects meta-analysis.
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around zero are likely to be statistically nonsignificant, and thus at risk of 
not being published and of being missed by the meta-analyst, and there-
fore not appearing in the funnel plot. If so, lower in the funnel plot there 
would be dots to the right of the vertical 
line but fewer dots to the left, around the 
null hypothesis of zero. Larger studies are 
at less risk of being missed because they 
are likely to achieve statistical signifi-
cance for almost any ES. The funnel plot in Figure 9.5 illustrates a com-
mon pattern when there is publication bias: Higher in the plot the larger 
studies are approximately evenly spread left and right of the line, but 
smaller studies—lower in the plot—mostly have larger ESs and appear 
well to the right in the figure. They are not balanced by dots around zero 
and to the left of the line—perhaps missing studies, not statistically sig-
nificant, sitting neglected in file drawers or on hard drives.

At the Subgroups page, if subgroups analysis is not selected at red 5, 
then all studies are shown in the funnel plot to the right of the forest plot. 
You may need to scroll right. The slanting funnel lines may assist in esti-
mating whether dots are missing low in the plot. If you like, you can use 
the slider below the funnel plot to adjust the slope of the lines so they 
enclose most of the dots, to help you judge whether small studies with 
small ESs may be missing. After some practice, you’ll be able to look at 
a forest plot and guess what the funnel plot would look like. In the for-
est plot, note how the means marked by large squares, which represent 
large studies, are distributed left and right of the diamond, and then note 
how the small squares are distributed. To my eye, the asymmetry of small 
squares revealed by the funnel plot is also pretty clear in the forest plot 
shown at left in Figure 9.5.

Of course it’s rather subjective to examine the funnel plot and judge 
whether you think there’s much sign of publication bias, and the method 
usually isn’t sensitive to small amounts of bias. It also relies on having 
a spread of study sizes. You can apply a more objective procedure that 
suggests what studies may be missing by, for example, adding phantom 
studies marked by dots lower in the funnel plot that are mirror images, 
around the vertical line, of the studies that do appear. Borenstein et al. 
(2009) describe that “trim and fill” procedure, as well as a variety of other 
approaches to estimating possible biases in the set of included studies. 
The methods typically don’t work well with small sets of studies, and all 
require various assumptions. They can often identify severe cases of bias 
in study selection, but can never guarantee that our set of studies is free 
from bias. Using statistical significance to determine whether a study is 
published is a prime cause of publication bias. This risk of bias provides a 
further reason for adopting the new statistics.

A funnel plot is a plot of study SE against 
study ES. Marked lack of symmetry low in 
the plot suggests that studies are missing 
because of publication bias.
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Other Reasons for Publication Bias

Besides the pernicious influence of NHST there are many other possible 
causes of bias. Egger et al. (1997), for example, compared RCTs published 
in leading German-language medical journals with RCTs published by 
the same authors in English-language journals. They found no differ-
ence in the quality of the studies reported in the two types of journals, 
but results published in English were much more likely to be statistically 
significant. It seems that researchers direct their lower p value results to 
English language journals, which are likely to be more influential than 
journals published in German. Egger et al. concluded that a meta-analysis 
that ignores non-English-language reports may be biased.

NHST can have a damaging influence even when studies that 
don’t achieve statistical significance are published. Boutron, Dutton, 
Ravaud, and Altman (2010) studied published reports of 72 medical 
RCTs in which the primary outcome was not statistically significant. 
They looked for what they called spin, meaning that the discussion 
attempted to divert attention from a nonsignificant main finding, or a 
definite conclusion was stated that was not justified by the nonsignifi-
cant finding or sufficiently by other considerations. They found that 
18% of article titles and 68% of abstracts included spin, and 26% of the 
conclusion sections included what they rated as high-level spin, for 
example, failing to acknowledge a nonsignificant finding, or recom-
mending the use of a treatment in clinical practice with insufficient 
justification and despite a nonsignificant finding. The bias here is not 
nonpublication, but misleading interpretation. Any reader must read 
with a critical eye, and the meta-analyst must in addition look beyond 
the words to the data reported.

Perhaps the most sinister and damaging cause of bias is deliberate 
withholding of negative findings, and here the pharmaceutical industry 
has a terrible record. A few days before I wrote this section, my local 
newspaper reported the latest international scandal, as described in the 
British Medical Journal (Eyding et al., 2010). The antidepressant rebox-
etine has been widely used in Europe, and meta-analysis of published 
trials indicated its efficacy. However, the German Institute for Quality 
and Efficiency in Health Care decided to review the drug. They sus-
pected that the manufacturer, Pfizer, was withholding relevant unpub-
lished data. Pfizer at first declined to release further information, but 
eventually provided data from 10 unpublished studies. Eyding et al. 
reported a meta-analysis of all published and unpublished trials and 
concluded that reboxetine is no better than placebo, is less effective than 
other antidepressants, and has harmful side effects. Their meta-analysis 
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included data from 4,098 patients, but data had been published for only 
about one-quarter of those. The company had withheld fully three-quar-
ters of the relevant data! In their discussion Eyding et al. referred to eight 
other cases in which pharmaceutical industry involvement in research 
has been implicated in selective reporting of more favorable results, or 
other bias—and that’s just for research on antidepressants. It’s a life and 
death issue that all relevant data be publicly available. Researchers should 
be required to release all data, whatever the outcome. Alas, we have not 
yet achieved that goal.

Meta-Analysis Becomes Mainstream

Back in Chapter 7 I mentioned that “research synthesis” and “systematic 
review” are terms used for a review that focuses on integrating research 
evidence from a number of studies. Such reviews usually employ the 
quantitative techniques of meta-analysis to carry out the integration. 
Often such reviews are themselves referred to as “meta-analyses.” The 
three terms are sometimes given different meanings, but often are used 
more or less interchangeably. I suggest that we shouldn’t be too concerned 
about differences of meaning for the three.

Since 2005 The Lancet, a leading medical journal, has included in its 
instructions to authors the requirement that “the relation between exist-
ing and new evidence should be shown 
by direct reference to an existing system-
atic review and meta-analysis; if neither 
exists, authors are encouraged to do their 
own” (tinyurl.com/lancetma). When introducing that requirement, the 
editors wrote, “Those who say that systematic reviews and meta-analyses 
are not ‘proper research’ are wrong; it is clinical trials done in the absence 
of such reviews and meta-analyses that are improper, scientifically and 
ethically” (Young & Horton, 2005, p. 107). Introducing that requirement 
was a pioneering step, but now journal editors across a number of disci-
plines are increasingly asking authors of empirical articles to include a 
reference to an existing meta-analysis, or to do their own. Nothing con-
centrates the mind of a researcher faster than a rejection letter from a 
journal, so I’m not surprised that researchers I know are expanding their 
interest in meta-analysis, and their skills in carrying out meta-analysis 
in their own research area. Meta-analysis is thus becoming mainstream, 
and with good reason: Without good understanding of past research, how 

Journals are increasingly requiring empiri-
cal articles to refer in their introduction to a 
relevant meta-analysis.
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can we know whether this new study is necessary, or appreciate what 
contribution it makes? Widespread adoption of meta-analytic thinking by 
researchers is an excellent development. Better and more easily under-
stood textbooks for meta-analysis are beginning to appear, with, I hope, 
more to come.

The Cochrane Collaboration

Medicine has led the way in the widespread adoption of meta-analysis. 
The centerpiece of this development, and the world’s primary resource 
for evidence-based healthcare, is The Cochrane Library, an online data-
base of systematic reviews on a vast range of health and medical top-
ics. These are developed and maintained by the Cochrane Collaboration 

(www.cochrane.org), a network of centers 
and researchers that involves, in various 
ways, more than 28,000 people in over 
100 countries, most of them volunteers. 

The Collaboration, which started in 1993, is named after Archie Cochrane 
(1909–1988), a British epidemiologist who in the 1970s was an early advo-
cate of evidence-based medicine. He envisaged a library containing the 
results, data analysis, and conclusions of every controlled clinical trial 
ever carried out anywhere. The Cochrane Library now contains more than 
2,000 reviews, and the Collaboration is aiming for at least 10,000.

I’m lucky that Australia, like an increasing number of countries, has a 
national subscription, which allows anyone to have free access to the full 
Cochrane Library. If your country does not have such a subscription you 
can see the abstract and consumer summary of any review, but will need 
to find a subscribing library to obtain full access.

The Library includes, of course, numerous reviews that evaluate the 
efficacy of various drugs for various illnesses, but there are also reviews 
relating to health policy, cost-benefit questions, psychological treatments, 
and many other kinds of issues. During some quick browsing of the 
Library I discovered that

•	 Meta-analysis of 11 studies suggested that making treatment pro-
grams cheaper or free for smokers wishing to quit increases the 
use of such programs and their success. The differences are small 
but benefits outweigh costs.

•	 There is great interest in gluten-free or other exclusion diets for 
children with autism, and suggestions as to why they may be 
effective. However, only two small RCTs could be found, with 
equivocal results. There is currently no good evidence to support 
the use of such diets. Good research is sorely needed.

The Cochrane Library is an online database 
of systematic reviews that support evidence-
based healthcare practice.

www.cochrane.org
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•	 Extracts of St. John’s wort are widely used to treat depression, and 
are often prescribed by physicians in German-speaking countries. 
The review located 29 studies involving 5,489 patients and concluded 
that, overall, some extracts are superior to placebo, and are similarly 
effective as standard antidepressants but with fewer side effects.

Of course, the full reports give more detailed conclusions, sometimes 
with important qualifications, and more detailed guidance for practice 
than any brief summary can convey.

The Collaboration website provides open access to extensive resources 
that may be used by anyone preparing reviews, including Archie and 
RevMan. Archie is an online file sharing system that helps researchers 
around the world collaborate on a review, and RevMan is software you 
install on your own computer and use for many tasks, including carrying 
out a meta-analysis, and preparing forest and funnel plots. The 22-chap-
ter Cochrane handbook (Higgins & Green, 2008) advises on numerous 
aspects of preparing a review. You can buy it as a hardcover book, or 
download the latest version free from the website. There are chapters on 
all stages of carrying out a review, including my seven steps. Other chap-
ters discuss numerous topics including how to use qualitative evidence, 
how to use individual patient data, and a range of statistical issues. All 
these resources help ensure that reviewers follow the best reviewing prac-
tices and that reviews are presented in the standard Cochrane format.

Wherever possible, reviews use meta-analysis to integrate evidence 
from a number of studies, although sometimes there are too few suit-
able studies for this to be possible. All too often a review tackles an 
important topic, describes great efforts to locate relevant research, then 
states that no conclusion can be made because there is little or no rel-
evant evidence. If you are ever seeking ideas for healthcare research, an 
hour with the Cochrane Library will throw up any number of interest-
ing possibilities.

The Collaboration is keen to communicate with practitioners and the 
public around the world. Every review has a brief summary in plain lan-
guage, and many have a podcast. For me, as you’d expect, it’s often the 
forest plots that do the best job of telling the story. Open a review of your 
choice, read the abstract and plain language summary, then scroll to the 
end to see the forest plots. There may be a number of these, for different 
measures or different aspects of the question being addressed. You can 
see at a glance how much relevant evidence was found, the heterogeneity, 
and the diamonds that summarize the findings.

The Cochrane Collaboration is a great achievement and provides a won-
derful resource, which is essential if evidence-based practice of medicine 
and health sciences is to flourish. It has been growing at around 20% per 
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year over the last 5 years. It has centers in many countries and large num-
bers of specialist groups and networks that collaborate in cyberspace. It 
seeks contributors and users from around the world. There is a Spanish-
language version. The Collaboration is meta-analysis in action.

The Campbell Collaboration

What about other disciplines? The Campbell Collaboration (www.
campbellcollaboration.org) was established in 2000, with aims similar to 
Cochrane’s, for the fields of social welfare, crime and justice, and educa-

tion. It, too, is an international network 
of researchers. It’s named after Donald T. 
Campbell (1916–1996), an American psy-
chologist who argued that public policy 

should be evidence based, and that policy initiatives should be regarded 
as experiments and evaluated as such to guide future policy choices.

The Campbell Collaboration has so far released around 60 reviews, all 
available free online, and many more are in preparation. During some 
quick browsing I discovered that

•	 A meta-analysis of 44 studies led to the conclusion that school-
based antibullying programs can be effective. Program elements 
that increase effectiveness have been identified, and also other 
elements that are counter-productive.

•	 Parental involvement with children’s schooling leads to improved 
academic performance (average d = 0.45, from 18 studies), despite 
median program length being only 11 weeks.

•	 Military-style boot camps are often advocated for juvenile offend-
ers, but evidence from 43 studies involving 120,000 participants 
indicates that they are not effective in reducing future offending.

Once again, the full reports give more detailed conclusions, and guidance 
for public policy.

Considering psychology, some issues relevant to health and clinical 
psychology are included in Cochrane. Others, related to education, wel-
fare, or criminal behavior, are included in Campbell. Psychology thus par-
ticipates in both, but there remain many areas in psychology that don’t fit 
either, at least at present. Psychology needs a broadening of Cochrane or 
Campbell, or both, or needs to find some other way to support evidence-
based practice across the whole discipline and profession.

The Campbell Collaboration provides sys-
tematic reviews, online, in the fields of social 
welfare, crime and justice, and education.

www.campbellcollaboration.org
www.campbellcollaboration.org
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Meta-Analysis as a Continuing Process

The Cochrane Collaboration has the worthwhile but ambitious aim of 
updating all its reports every 2 years, Campbell every three. You can 
imagine what an immense task that is and how many researchers need to 
be involved, considering the many types of specialist expertise required 
to update reviews over such a broad range of topics.

At its simplest, updating a meta-analysis may require little more than 
typing the data for a few new studies into the appropriate page of ESCI 
Meta-analysis and noting the updated overall ES. In reality, however, 
updating requires each of the seven steps to be revisited, and changes 
made where necessary. In general we can hope that more precise estimates 
will result. Conclusions may change little, but the reboxetine example I 
described earlier is an extreme case in which adding previously withheld 
data reversed the original conclusions. With more data, additional moder-
ator analyses may become feasible. Improved meta-analytic models may 
have become available, so better analysis may be possible even without 
new studies to add. Perhaps the world has changed, so some earlier stud-
ies are no longer relevant for the revised form of the main questions we 
now consider appropriate.

Researchers have so far paid little attention to what’s needed to support 
future updating of meta-analyses, and to develop tools to assist. A good 
start would be for every systematic review to make full data sets and full 
details of all analyses available, no doubt 
online. Journals may need a new category 
of article that’s a brief updating of an ear-
lier review, when full reworking is not 
required. There are also some subtle questions to consider. For example, 
a good meta-analysis will, we hope, influence future research, but then 
the results of that research are hardly independent of the original meta-
analysis. Is it justified to combine the new research with the original in an 
expanded meta-analysis? I expect updating of meta-analyses to receive 
increasing attention; that would be an excellent development. Regarding 
any meta-analysis as a work in progress is an important part of meta-
analytic thinking.

It’s time for take-home messages. You might find that browsing through 
Cochrane or Campbell helps you write yours, although perhaps it’s more 
likely to provide fascinating distraction. Can you recall the seven steps 
of a major meta-analysis? Moderators, both categorical and continuous? 
Coping with more than one dependent variable? Measurement error? 
Publication bias? The Collaborations, and meta-analysis expanding?

Meta-analyses need to be regularly updated 
to provide the best possible support for evi-
dence-based practice and policy making.
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Exercises

	 9.1	 Read some recent meta-analytic reviews in your discipline. 
Identify as many of my seven steps as you can. Is anything 
important not covered by any of the steps?

	 9.2	 Explore the Subgroups page of ESCI Meta-analysis. Modify 
my invented data, or enter your own from a real meta-analysis. 
Investigate possible dichotomous moderators, including one 
that accounts for little ES variance, and one that has a strong 
moderating effect.

	 9.3	 When and why does ESCI gray out a study?
	 9.4	 Note how ESCI displays in the forest plot the result of an analy-

sis for a categorical moderator. Click at red 8 to see an alterna-
tive display. Can you find in any published meta-analysis some 
other display of a subgroups analysis? Can you suggest a bet-
ter display?

	 9.5	 Click among the three options at red 15. What difference does 
that make? Explain.

	 9.6	 Find in a published meta-analysis the report of a meta-
regression. Is there a figure? Would a figure help? What figure 
would be best?

	 9.7	 Find some examples in published meta-analyses of different 
ways to deal with multiple ES measures.

	 9.8	 In Subgroups, make sure Subgroup analysis is off at red 5, and 
Display by weightings is on at red 9, then explore the funnel 
plot. Add studies to the analysis, or remove studies, and observe 
changes in the forest and funnel plots. Hint: To remove a study, 
you can just delete its N.

	 9.9	 In published meta-analyses, note any methods used to examine 
publication bias. If necessary, look in Borenstein et al. (2009) or 
elsewhere for an explanation.

	 9.10	Browse the Cochrane Collaboration website. Is there a 
Cochrane Center near you that may run local activities? Find 
some reviews on topics you find interesting, and observe the 
report structure, especially the forest plots. Suggest improve-
ments to the displays.

	 9.11	Find some Campbell reports on topics you find interesting. 
Suggest how the report format could be improved, especially 
bearing in mind the Cochrane reports.
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	 9.12	Revisit your take-home messages. Improve them and extend 
the list if you can.

Take-Home Messages

•	 Meta-analysis may be valuable at any scale, from the quick com-
bination of two or three results to a large-scale team project that 
reviews a complex research literature.

•	 The seven steps of a large meta-analysis start with (1) formulation 
of the problem, then (2) literature search, obtaining of relevant 
articles and reports, and selection of studies.

•	 A major step is (3) refining the coding scheme, then coding the 
studies and extracting information for entry into a data file.

•	 Then you (4) examine the data, consider study quality, and refine 
the planned analysis.

•	 Then comes (5) data analysis, most likely including analysis of 
moderators.

•	 Identifying categorical or continuous moderating variables can 
be a valuable outcome of a meta-analysis. A moderator analysis, 
for example, meta-regression, may address questions that no indi-
vidual study in the meta-analysis addressed.

•	 A moderator analysis may reveal correlation, but doesn’t imply 
causality.
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•	 The final steps are (6) to interpret the findings and (7) to present 
the review.

•	 Careful critical thought and expert judgment are needed at every 
stage of a meta-analysis, for example, to decide how to handle 
multiple ESs and complex designs.

•	 A funnel plot is a plot of individual study SEs against study ESs. 
Asymmetry of the plot for small studies suggests publication 
bias caused by selective publication of studies that achieve sta-
tistical significance.

•	 Other causes of publication bias may include omission of non-
English-language reports and deliberate withholding of studies 
that find negative results.

•	 The Cochrane Collaboration is a worldwide network of research-
ers who prepare systematic reviews on a wide range of healthcare 
issues. The Cochrane Library provides these reviews online as a 
resource to support evidence-based practice in healthcare.

•	 The Campbell Collaboration prepares and publishes systematic 
reviews to support evidence-based practice and policy making in 
the social sciences.

•	 Meta-analyses need to be recent to be most useful, so they should 
be updated regularly. Researchers need to pay more attention to 
what’s required to support such updating.
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10
The Noncentral t Distribution

I find the noncentral t distribution fascinating, but it’s an optional extra 
topic. If you like, read the brief overview, glance at some of the figures, 
and maybe take a look at the fairy tale. Then you can safely skip to the 
next chapter. Here’s the agenda:

•	 A brief overview of noncentral t and why we might care.
•	 Sampling when the null hypothesis is true—first assuming σ is 

known, and then dropping that assumption.
•	 Arrival of the s pile, that being the sampling distribution of sam-

ple SDs.
•	 Sampling when the alternative hypothesis is true, first with σ 

known, then unknown: The beautiful noncentral t distribution 
emerges.

•	 Noncentral t: of bumps and tails.
•	 A fairy tale: the Nulls and Alts in Significance Land.

The Brief Overview

First the one-sentence version: If the null hypothesis is true we need the 
ordinary familiar t distribution, but if the alternative hypothesis is true—
and very often in the world it is—the t statistic turns out to have an inter-
esting humped and skewed distribution called noncentral t.

Now for the slightly longer version. Consider taking samples of size N from 
a normally distributed population—the shape of population that Figure 3.1 
illustrates. As usual, the sample mean is M and standard deviation s. You’re 
probably familiar with the test statistic for the one-sample t test:

	
t

M
s N

= − µ0

	
(10.1)

You probably recall that, if the null hypothesis (H0: μ = μ0) is true, then 
the statistic calculated using Equation (10.1) has a t distribution with 
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df = (N – 1). The t distribution, as we saw back in Chapter 3, generally 
resembles the normal distribution but has fatter tails. We can think of t as 
measuring how far M is from μ0 [that’s the numerator in Equation (10.1)], 
in units of s N/  (that’s the denominator). Take many samples and we get 
a pile of t values in the shape of the t distribution. For any sample, we can 
use tables of the t distribution (or the Normal z t page of ESCI chapters 
1–4) to calculate the p value and carry out NHST.

However, what happens if the null hypothesis is not true and some 
alternative point hypothesis is true? By “point hypothesis” I mean one 
that states an exact value for μ, for example, H1: μ = μ1. Samples from such 
a population, with mean μ1, have M values likely to be close to μ1 rather 
than μ0. As usual we calculate t as the distance from μ0, as in Equation 
(10.1). It turns out that the t values for such samples have a noncentral t 
distribution. Noncentral t is asymmetric and requires not only df but 
an additional parameter, the noncentrality parameter Δ (Greek uppercase 
delta), which depends on the difference between μ1 and μ0. The larger that 
difference, the more the noncentral t distribution is skewed. In contrast, 
the t distribution that applies when H0 is true is the distribution we’re 
familiar with—the central t distribution, which is symmetric and has Δ = 0 
and, therefore, depends on only the single parameter df.

That’s the brief story of noncentral t, which arises when an alternative 
point hypothesis is true. It’s important because, in the world, there often 
is a real effect and so alternative hypotheses often are true. In addition, 
statistical power is a probability calculated assuming that an alternative 
point hypothesis is true, so we generally need noncentral t to calculate 
power. Also, noncentral t is the sampling distribution of Cohen’s d and 
so it’s needed to calculate CIs for d, although that’s a story for Chapter 11.

If you’d like to skip now to the next chapter, that’s fine, but you may care 
to have a peek at Figure 10.8, which shows the shapes of noncentral t for 
various combinations of df and Δ. You may also be interested to see the s pile, 
which first appears in Figure 10.3: Just as the mean heap is the sampling 
distribution of the sample mean, the s pile is the sampling distribution of 
the sample SD. Finally, you may care to read the section, “A Fairy Tale From 
Significance Land.” If you wish, you could return to this noncentral t chap-
ter after seeing Cohen’s d and power in the following two chapters.

Our Sampling Example

I’m now going to use ESCI to illustrate sampling, first with H0 assumed 
true, then with H1 true. In each case we’ll first assume that σ is known, 
which leads to normal distributions, and then that σ is not known, which 
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gives us central and noncentral t distributions. We’ll meet the s pile, and 
also the rubber ruler for t, which I believe is the key to understanding sam-
pling and t.

Here’s our sampling example:

•	 The dependent variable is X.

•	 The null hypothesis is H0: μ = μ0, and the alternative hypothesis 
is H1: μ = μ1.

•	 The population is normally distributed with mean μ0 = 40 when 
the null hypothesis is true, and μ1 = 65 when the alternative 
hypothesis is true. Population SD is σ = 15.

•	 Sometimes I’ll assume σ is known, so z is our test statistic, and 
sometimes I’ll assume σ is not known, so we need to use t.

•	 I’ll take samples of size N = 6. Such small samples should give a 
clearer illustration of the discussion because, when N is small, t dis-
tributions are more different in shape from normal distributions.

You may care to make up a cover story in your discipline to give mean-
ing to this example. Perhaps X is the score on a memory test, which is 
scaled to give μ = 40 and σ = 15 in some large reference population. We 
suspect that gifted children have mean μ = 65. We’ll take a random sample 
of N = 6 from a famous school, and carry out NHST to investigate the 
memory ability of children at that school. Or you may prefer to think of 
X as the number of seeds produced by a flower you are studying, where 
higher temperature may lead to greater seed production. Or X may be the 
time in seconds that it takes to process a routine insurance claim: This 
time might be longer near the end of the working day.

You may find it a bit artificial to dream up such a cover story. Why, you 
ask, don’t we simply take a sample then use the mean and a CI to estimate 
what’s going on? Surely that would be more informative? Yes, indeed. But 
to explore noncentral t we need to suspend our new statistics instincts 
and consider NHST for a bit.

Sampling When H0 Is True: Four Easy Steps

Step 1: Assume That σ Is Known

You may care to join me in firing up the Sampling page of ESCI chap-
ters 10–13. The next seven figures are from that page. The top panel of 
Figure 10.1 shows the population when H0 is true, so its mean is μ0 = 40 
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and σ = 15. The second panel shows the mean heap for the 201 samples I’ve 
taken so far, each of size N = 6, and the curve is the theoretically expected 
sampling distribution of means—which is normal with mean μ0 and stan-
dard deviation σ/ N. For any sample mean M, I can calculate the z score:

	
z

M
N

= − µ
σ

0

	
(10.2)

This measures how far M is from μ0 in units of σ/ N , which is the SE, 
with value σ/ N  = 6.12. I’ve marked the axis in the bottom panel with 
those z score units, zero at μ0.
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Figure 10.1
A figure from the Sampling page of ESCI chapters 10–13 that shows at the top a normally 
distributed population with μ0 = 40 and σ = 15. The second panel shows 201 sample means  
represented as dots, and in the bottom panel, the z scores for those means represented as 
small triangles. Sample size is N = 6 and the latest sample is shown as the dot plot just under 
the X axis near the top. The large dot in the second panel at X = 50.5 shows the mean M of that 
latest sample. Each z unit on the bottom axis is σ/ N  = 6.12 of X units, and the vertical lines 
indicate that zero on the z axis is lined up under X = 40. The large triangle in the bottom panel 
is marked z for the latest sample and is lined up under M of that sample. The curve in the sec-
ond panel is the theoretically expected sampling distribution of means, which is a normal dis-
tribution and identical with the corresponding curve for z values shown in the bottom panel.
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The dot plot of my latest sample is just below the population curve in 
Figure 10.1. The large dot in the second panel is the mean of that sam-
ple, M = 50.5. (This and other values for the latest sample are shown near 
red 5.) The triangles in the bottom panel are the z scores for my 201 sample 
means calculated using Equation (10.2), so I’m assuming σ is known. The 
z axis at the bottom is marked in units of the population SE, which is 
σ/ N  and equals 6.12 in terms of X units. Therefore, the heap of triangles 
in the bottom panel is identical to the heap of dots in the second panel. 
The large triangle at z = 1.72 is for my latest sample and aligns exactly with 
the large dot in the second panel. The curve in the bottom panel is the 
theoretically expected distribution of z values, with mean 0 and standard 
deviation 1, and is identical to the curve in the middle panel.

Step 2: Assume That σ Is Not Known

For my second sampling step I unclicked near red 5 to remove the assump-
tion that σ is known. Figure 10.2 is the result. It’s the same as Figure 10.1 
except the bottom panel now doesn’t show z values, but a heap of t val-
ues calculated using Equation (10.1). When we don’t know σ we have to 
use s from the sample instead as our best estimate of σ, just as Equation 
(10.1) does. The lower axis is the same as before, marked in units of σ/ N , 
the population SE. For any sample, t measures how far M is from μ0, but 
the “measuring stick” is the sample standard error s/ N  [the denominator 
in Equation (10.1)] and this differs from sample to sample.

The dot plot just below the population curve shows the six data points 
in my latest sample. They happen to be tightly bunched and have s = 8.45, 
rather less than σ = 15, and so for this sample t = ( . ) . )50 5 40 8 45 6− /( /  = 
3.05, as marked by the large triangle at the bottom in the figure. This is 
considerably larger than z = 1.72 for that sample because t uses s = 8.45, 
which is smaller than the σ = 15 used to calculate z. If you take more 
samples, one at a time, with σ still assumed not known, you can com-
pare for each sample the large triangle marking z in the bottom panel and 
large dot marking M in the second panel. They typically don’t line up 
vertically because s is typically not equal to σ. The key point is that s var-
ies from sample to sample, so our “measuring stick” of s N/  also varies 
from sample to sample. We’ll now investigate this further.

Step 3: The s Pile

The third sampling step, still assuming that H0 is true and σ is not known, 
introduces the s pile. That’s my name for the sampling distribution of 
the sample SD, and Figure  10.3 shows a 
picture. Values of M, the sample mean, 
bounce around and form the mean heap, 

The s pile is my name for the sampling distri-
bution of sample SDs, or s values, as shown 
in Figure 10.3.
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shown in the second panel. In the same way, values of s, the sample SD, 
bounce around and form the s pile, shown in the third panel. Each tiny 
square marks s for one of my samples, so there are 201 squares in the pile 
in Figure 10.3. The large square marks s of my latest sample, which is s = 
8.45 and thus falls to the left of the line marking σ at 15.

The s pile is aligned with its zero under M of the latest sample. Run 
more samples and see the s pile shift left and right so it’s always aligned 
under the latest M. That should make it easier to think of s as a mea-
sure of variation around M. The large square in the s pile indicates how 
the points in the latest sample vary around the large dot in the second 
panel. For our latest sample the points happen to be tightly bunched, so 
s is small.

There are a few points worth noticing about the s pile:
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Figure 10.2
Same as Figure 10.1 except now we assume that σ is not known. The bottom panel shows 
t, calculated using s for each sample, rather than z as shown in Figure 10.1. The large tri-
angle marks t for the latest sample, which is so large because s for that sample happens to 
be considerably smaller than σ. The curve in the bottom panel is the central t distribution 
with df = 5.
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•	 The s values vary greatly, at least for the small samples (N = 6) 
we’re using. There are plenty of values of s less than 10 and greater 
than 20. Therefore, the “measuring stick” s N/  and the values of 
t will also vary greatly.

•	 The distribution of s is positively skewed, with a longer tail of 
higher values. It’s hump-shaped with the maximum lower than 
σ. The mean of the s values is, in the long run, very close to σ, but 
more than half the values of s are less than σ.

•	 If you know about chi-square you may also know that the sample 
variance s2 has a chi-square distribution. The sample standard 
deviation s thus has a chi distribution, with df = (N – 1). That’s the 
curve shown on the s pile in Figure 10.3.

•	 As N increases, the SD of the s pile decreases—the pile becomes nar-
rower—and the shape of the pile approaches a normal distribution.
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Figure 10.3
Same as Figure 10.2 except the s pile is now displayed. This is the sampling distribution 
of the sample SDs, or s values, from the 201 samples. The s pile is positioned with its zero 
aligned under the mean of the latest sample. The s value of the latest sample is marked by 
the large square.
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You may be wondering why I didn’t introduce the s pile much earlier, 
perhaps back in Chapter 3 along with the dance of the means and the mean 
heap. Why doesn’t CIjumping have an s pile? That’s a good question, and 
maybe it should, because back there we discussed how CI width varies from 
sample to sample when σ is not assumed known, and of course it’s variation 
in s that gives the different widths. I felt, however, that things were already 
complicated enough for such an early chapter, so I held the s pile until now.

Step 4: The Rubber Ruler for t

The fourth step is to introduce the rubber ruler for t, which is my name for 
a measuring stick with zero at μ0 and sample standard error s N/  as 

its unit of measurement. Figure 10.4 shows 
the rubber ruler for t, which is marked in 
units of s N/ /= 8 45 6.  = 3.45, the SE for 
our latest sample. Now comes the crucial 
step: Place our sample mean—the large 

dot—on the rubber ruler, and read off the value of t. Figure 10.4 suggests 
that t = 3, approximately. The accurate value reported near red 5 is t = 3.05. 
(The picture is only approximate because M values have been adjusted into 
bins, so the mean heap looks neat.) Figure 10.4 is a picture of Equation (10.1) 

I describe t as measured on a rubber ruler 
because t expresses the distance of M from 
μ0 in units of s N/ , which differs from sam-
ple to sample.
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Figure 10.4
Same as Figure 10.3 except the rubber ruler for t is displayed and the heap of t values no 
longer appears. The rubber ruler has zero at μ0 and is marked in units of s N/ , the SE for 
the latest sample whose s value is marked by the large square in the s pile. The large dot on 
the rubber ruler gives the value of t.
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in action: The numerator in the equation is the distance of the large dot 
from μ0 = 40 in the mean heap, and the denominator is the unit of the rub-
ber ruler. Therefore, t is the result we read from the rubber ruler, about 
3. Take a few more samples and see why it’s a rubber ruler: It stretches 
in and out from sample to sample because we’re assuming that σ is not 
known, and therefore s N/  varies from sample to sample.

Figure 10.5 puts it all together. I want to make a heap of all the t values 
given by the rubber ruler for t as it stretches in and out. The t axis allows us 
to do that because it’s marked in units of the population SE, which doesn’t 
change from sample to sample. The slanting lines in Figure 10.5 show how 
the units of the rubber ruler (the sample SE, which changes from sample 
to sample because we’re assuming that σ is not known) map to the t axis. 
Our t value on the rubber ruler maps to the same numerical value on the 
t axis, marked by the large triangle. Take more samples and see the lines 
slant in or out, depending on whether the rubber ruler is stretched out or 
in, and see the pile of t values build. If s happens to be smaller than σ, the 
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Figure 10.5
Same as Figure 10.4 except the heap of t values, as in Figures 10.2 and 10.3, is displayed as 
well. The slanting lines indicate how units of the rubber ruler for t (the sample SE) map to 
the units of the t axis (the population SE).
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rubber ruler has small units, the lines slant out as in Figure 10.5, and the 
big triangle showing t is farther from zero than the big dot showing M is 
from μ0. If s happens to be larger than σ, the rubber ruler is stretched out, 
the lines slant in, t is smaller, and the big triangle is closer to zero than M 
is to μ0.

The four steps of sampling with H0 as true resulted in the heap of t val-
ues, which in the long run has a t distribution with df = (N – 1). That’s the 
curve displayed in the bottom panel in Figure  10.5 and is the familiar 
central t distribution. Now we can take the same steps again with just one 
crucial change: Assume that the alternative hypothesis H1 is true.

Sampling When H1 Is True: Noncentral t Arrives

In Sampling I clicked near red 1 to display both populations, then near 
red 2 to assume that H1 is true. I used μ1 = 65 for the population, and σ = 15, 
same as before. Figure 10.6 shows the result of 196 samples, with Assume σ 
known selected near red 5. The sampling distributions of M and z are nor-
mal, just as Figure 10.1 showed for H0 true—in fact, Figure 10.6 shows those 
H0 true heaps as well, in pale gray. No surprises there. I clicked to display as 
well the s pile and the rubber ruler. I’m now going to jump ahead to the last 
step of sampling with H1 true. It’s the moment for a drum roll: What do you 
guess will happen when we unclick near red 5 so σ is assumed not known?

Figure  10.7 provides the answer. At bottom left the pale gray curve 
for samples from the null population changes to the central t distribu-
tion, as we’d expect and as Figure 10.2 showed. It’s the heap of t values at 
lower right and its theoretically expected curve that provide the surprise: 
They’re strongly skewed. The curve is actually the noncentral t distribu-

tion. Why is it skewed? Even though my 
latest sample mean, marked by the large 
dot, falls very close to μ1, its t is out to the 
right. That sample has M = 64.75 and s = 

11.19, so Equation (10.1) gives its t as ( . ) ( . )64 75 40 11 19 6− / /  = 5.42. The key 
is to notice that t is measured from μ0 even when we’re assuming that the 
alternative hypothesis is true so we’re sampling from a population with 
mean μ1. It’s measured from μ0 because NHST is based on calculations that 
assume that the null hypothesis is true: The p value is defined as a certain 
probability if the null hypothesis is true, and t is calculated using Equation 
(10.1), which measures how far M is from the null hypothesized value μ0.

When we assume that the alternative hypothesis is true, the M values 
cluster around μ1, but the rubber ruler for t still has its zero at μ0. Take some 
more samples and watch how the distance between μ1 and μ0 influences t. 

Noncentral t is the sampling distribution 
of t that emerges when μ1 is true and σ is 
assumed not known.
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Samples with s > σ give a stretched rubber ruler and values of t bunched 
mainly to the left of μ1, whereas samples with s < σ give a squashed ruler, 
as in Figure 10.7, and larger values of t that extend out to the right of μ1. 
The occasional quite small values of s usually give very large values of t, 
so the distribution has a long tail to the right.

You can use the sliders to change μ0, μ1, or σ, although the display may 
take a little time to update. The curve in the lower right of the figure is 
noncentral t, for df = 5 and with a noncentrality parameter Δ that depends 
on how far μ1 is from μ0, and whose value is shown near red 6. The far-
ther μ1 is from μ0, the larger is Δ, and the more skewed is the curve. If you 
change N the display clears and you need to take fresh samples. If Δ is 
very large the noncentral t curve may not be displayed—see the popout 
comments near red 6.

Investigations using the Sampling page illustrate how the normal, cen-
tral t, and finally the noncentral t distributions all emerge from simple 
random sampling—from null or alternative populations, with σ known 

–6 –5 –4 –3
z

–2 –1 0 1 2 3 4 5 6 7 8 9

z values

Populations

Sample means

0 10 20
X

X

30 40 50 60 70 80 90 100

H1 true
µ0 µ1

Figure 10.6
Same as Figure  10.1, assuming that σ is known, but now the alternative hypothesis is 
assumed true and 196 samples with size N = 6 have been taken from the population with 
μ1 = 65, σ = 15. The population and sampling distributions for the null hypothesis true are 
still visible, but are shown in pale gray. All sampling distributions are normal.
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or not known. Why might we care about noncentral t? As researchers we 
usually don’t know σ and very often there’s some true effect in the world, 
so the null is not true. Such cases give noncentral t. That’s our main con-
clusion from this long discussion of the Sampling page: When the alter-
native hypothesis is true and we don’t know σ, sampling gives noncentral 
t. Now let’s briefly consider the distribution itself.

The Noncentral t Distribution

The noncentrality parameter Δ is calculated as

	 ∆ = −µ µ
σ
1 0

/ N
	 (10.3)
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Figure 10.7
Same as Figure 10.6 but σ is assumed not known and so the bottom panel shows t not z. 
The s pile and rubber ruler for t are also displayed. The bottom right curve is a noncentral 
t distribution.
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Comparing Equations (10.3) and (10.2) 
indicates that Δ is the z score for μ1, the 
mean of the population we’re sampling 
from when that noncentral t distribution arises. For our example, Δ = 
( ) ( )65 40 15 6− / /  = 4.08. Accordingly, in Figure 10.7 the μ1 line falls at 4.08 
on the lower axis.

Figure 10.8 shows the shape of central and noncentral t distributions for 
a range of values of df and Δ. It shows that the skewness and wide spread 
of noncentral t are both greater for small df and larger Δ, meaning smaller 
sample sizes and a larger difference between μ1 and μ0. It also illustrates 
that noncentral t is centered approximately around Δ. If you shift the μ1 

The noncentrality parameter of noncentral t 
is Δ. It’s the z score of μ1, and is calculated 
using Equation (10.3).
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Figure 10.8
The central and noncentral t distributions for three values of df. At each df value, the left 
curve is central t, with Δ = 0, then successive curves have Δ = 2, 5, and 10. (Reproduced from 
“A primer on the understanding, use and calculation of confidence intervals that are based 
on central and noncentral distributions,” by G. Cumming and S. Finch, 2001, Educational 
and Psychological Measurement, 61, 532–574. Copyright © 2001 Sage Publications, by permis-
sion of Sage Publications.)



 

276	 Understanding The New Statistics

slider in Sampling for our example with N = 6, you can see a range of 
shapes like those in the bottom panel of Figure 10.8.

The Noncentral t page of ESCI chapters 10–13 allows you to investigate 
central and noncentral t distributions further. As well as adjusting df and 
Δ, you can show shaded tail areas, which may help appreciation of the 
asymmetry of noncentral t curves. You can set Δ to be positive or nega-
tive, which illustrates that noncentral t for a negative Δ is just the mirror 
image, reflected around a vertical line through μ0, of the curve for the 
corresponding positive Δ. You can also click near red 5 to display a cur-
sor and see the size of tail areas under a noncentral t curve. These are the 
probabilities of t falling below or above the cursor, which can be set to any 
chosen value of t.

A Fairy Tale From Significance Land

Once upon a time, many long years ago, there was only one t distribution. 
It was the familiar symmetric t distribution with a single parameter, df. 
The Null Hypotheses (the Nulls), who were the high priests in Significance 
Land, had a monopoly on this t distribution. The Nulls tended to be 
grumpy because most of them had the very uninteresting value μ0 = 0, and 
also because—although they tried to keep this quiet—almost all of them 
were false! Furthermore, although researchers constantly invoked Nulls, 
they seemed to be interested merely in rejecting them. Little wonder that 
morale among Nulls was low, and that they guarded their monopoly on 
the only t distribution jealously.

One day several smart young Alternative Hypotheses (the Alts) were 
discussing their predicament. There were many more Alts than Nulls, and 
the Alts tended to be much more interesting and lively than the cantan-
kerous old Nulls. Alts tended to have interesting values (μ1 values) and 
were proud of the fact that many Alts were actually true! Surely, research-
ers should be much more interested in finding true μ1 values, knowl-
edge that could have practical use in the world, or could perhaps give 
strong support to a scientist’s theory? A few enlightened researchers used 
estimation and CIs to make their best estimate of true effects, but most 
researchers still seemed interested only in examining a Null and hoping 
desperately that they could reject it—as if this told them anything specific 
about what was actually true!

One especially smart Alt had been watching the Nulls carefully; she 
wondered whether the Nulls received so much attention because of their 
t distribution. Researchers seemed to use t values all the time, and stu-
dents, as part of their induction into the weird statistical significance ritu-
als declared compulsory by the high priests, were given lots of instruction 
about the t distribution. Perhaps if the Alts could invent some sort of 
t distribution to suit their wonderful μ1 values, the monopoly of the Nulls 
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would be broken, and researchers might take Alts more seriously? The Alt 
think tank thought this an excellent idea. Soon they had developed what 
they called the noncentral t distribution, in contrast to the Nulls’ dull old 
central t distribution.

The think tank did a great job. Noncentral t is asymmetric and, thus, 
much more interesting to behold. As well as df, it has a noncentrality param-
eter Δ, whose value depends on μ1 or, more precisely, on the (μ1 – μ0) dif-
ference between μ1 and the null hypothesized value. Different Alts had 
different μ1 values and therefore had differently shaped noncentral t dis-
tributions. Cool young Alts took to carrying their own distributions with 
them, clearly visible in the shape of their backpacks. The think tank had 
designed the new distribution as the sampling distribution of t when you 
sample from a population with mean μ1. It turns out to have at least two 
really useful functions. First, unless you know the population standard 
deviation σ—and you rarely do—then to calculate statistical power it’s 
necessary to find an area under the noncentral t distribution. Second, if 
you use Cohen’s d you need to use noncentral t to calculate a CI for your 
d value.

Alas, even those valuable uses were not sufficient for the new distribu-
tion to be a bestseller. Perhaps the Nulls were too entrenched, or perhaps 
the Alts did not have sufficiently clever media relations? The beautiful, 
intriguing, and useful noncentral t distribution was rarely taught to stu-
dents, and remained little known among researchers. It’s one of the secrets 
of Significance Land, yet to be fully appreciated.

Noncentral t in Action

In the following two chapters we’ll need noncentral t for the two purposes 
mentioned above: To calculate power and to find CIs for d. Cumming and 
Finch (2001) discussed noncentral t further. I’ve adapted the fairy tale from 
Cumming (2006a, tinyurl.com/noncentralt). Kline (2004) and Grissom and 
Kim (2005) gave further discussions of noncentral t and its uses. Now it’s 
time to write your take-home messages.

Exercises

	 10.1	 Try out all the features of the Sampling page of ESCI chap-
ters 10–13. Click near red 5 to toggle between σ known and not 
known, and see changes in the bottom panel. What happens for 
larger sample sizes? For μ1 closer to or farther from μ0?
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	 10.2	 Explore what the Noncentral t page offers. For a fixed non-
centrality parameter Δ, what happens as you increase df to the 
maximum of 200? Try various values of Δ.

	 10.3	 At the Noncentral t page set Δ = 4.08 and df = 5. At red 5 click to 
display the cursor and move it to t = 4.08. What’s the probability 
that noncentral t is less than 4.08? What’s the value of t when the 
right tail is of size .05?

	 10.4	 Appendix B suggests using Normal z t to watch how the central 
t distribution becomes more like the normal distribution as df 
increases. For df more than about 30, it’s traditionally assumed 
that the central t distribution is sufficiently similar to the nor-
mal distribution for researchers to use z rather than t. Use the 
Noncentral t page to investigate whether the noncentral t dis-
tribution approaches the normal distribution in shape. How 
and when?

	 10.5	 To make Figures 10.1 to 10.7 I deliberately stopped the sampling 
with the most recent sample having small s because I wanted to 
illustrate how large values of t are generated; these large values 
build the impressive right-hand tail of the noncentral t distribu-
tion. How is the picture different if the most recent sample hap-
pens to have s > σ? Answer the question for H0 assumed true, 
and H1 assumed true.

	 10.6	 In Sampling, investigate how the s pile changes for different N. 
Does it approach the normal distribution in shape? How and 
when?

	 10.7	 Consider the central t distribution. What values of s tend to give 
t in the tails of that distribution? What does the shape of the s 
pile say about such values of s? Why does the central t have fat-
ter tails than the normal?

	 10.8	 Find any mention of noncentral t in any other statistics textbook 
you have at hand. Can you discover anything further about the 
distribution or its uses? Can you use ESCI to help solve any 
noncentral t problems in those textbooks?

	 10.9	 If you use one of the major statistical packages, see whether it 
has a function to calculate noncentral t. If so, use it to find the 
answers to Exercise 10.3. Compare with the values given by 
ESCI.

	 10.10	 In Sampling, click near red 5 to hide the s pile, and also near 
red 6 to hide the z-or-t heap in the bottom panel. Click to dis-
play the rubber ruler for t. Now you can click at red 8 to mark 
in red the rejection region for conducting NHST with the two-
tailed α value you set near red 8. Explore how this rejection 
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region works. Try changing α. Try σ assumed known, then not 
known. Try sampling when H0 is true, then when H1 is true. 
Explain.

	 10.11	Revise your take-home messages if you wish.

Take-Home Messages

•	 The familiar t distribution is central t. When σ is not known, cen-
tral t is the sampling distribution of the t statistic when sampling 
from a population with mean μ0, the null hypothesized value.

•	 When σ is not known, noncentral t is the sampling distribution 
of the t statistic when the null hypothesis is not true, and we’re 
sampling from a population with mean μ1.

•	 Noncentral t requires specification of df and also the noncentrality 
parameter Δ.

•	 Central t is symmetric, but noncentral t is asymmetric, with more 
skew when df is smaller and/or Δ is larger. The long tail is on the 
side farthest from μ0.
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•	 The noncentrality parameter Δ can take any positive or negative 
value and is the z score corresponding to μ1, so Δ is larger when μ1 
is farther from μ0.

•	 Take-home picture: The shape of noncentral t in the bottom right of 
Figure 10.7, or in Figure 10.8.

•	 Noncentral t approaches the normal distribution in shape as df 
increases, but only slowly, and more slowly for larger Δ.

•	 The s pile is the sampling distribution of the sample SD. It has a 
humped distribution that’s positively skewed and approaches the 
normal distribution in shape as N increases. Values of s less than 
σ are more common than values greater than σ.

•	 The rubber ruler for t is marked in units of the sample SE, which 
is s N/ . It illustrates Equation (10.1), which states that t is the dis-
tance of M from μ0, measured in units of s N/ , whether the null 
hypothesis is true and we sample from a population with mean 
μ0, or the alternative hypothesis is true and we sample from a 
population with mean μ1.

•	 Noncentral t is needed to calculate power when σ is not known, 
and CIs for Cohen’s d.
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11
Cohen’s d

Cohen’s d is the widely used standardized ES we’ve encountered many 
times already. The idea that d is a number of SDs is fairly simple, but in 
practice there can be tricky choices to make. I suspect that most research-
ers don’t appreciate the wide range of measures that appear in journals 
with the label “d.” The first decision is the choice of SD to use for the stan-
dardization, and then you need to decide whether to adjust d to remove 
bias. It’s essential to think carefully about the choices, then state clearly 
how you calculate the d you report. When you see d appearing in an arti-
cle, it’s essential to know how the author calculated that d—otherwise, 
the values are not interpretable. Here are the main topics for this chapter:

•	 An introduction to d
•	 Pictures of various sizes of d
•	 Options for calculating d
•	 The distribution of d: using the rubber ruler for d
•	 CIs on d
•	 Meta-analysis based on d

An Introduction to Cohen’s d

Cohen’s d is an ES measure that’s simply a number of SDs, but it can be 
tricky to calculate, tricky to interpret, and tricky to calculate CIs for. So, is 
it worth the trouble? Yes, for two main reasons. First, it can help readers 
appreciate the size of an effect. Consider an example: Suppose you find 
a new numeracy exercise that increases the average score in a class of 
children by 5 points on an established numeracy test. It’s likely that only 
someone familiar with the particular test could understand what 5 points 
means. If there’s a conversion table provided with the test you could trans-
late 5 points into its equivalent of, for example, 3 months of numeracy 
age. A much wider group of people would probably understand that. A 
further option would be to note that the test has been scaled to have SD = 
15 in the reference population for the test. If you decide that’s a suitable 
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reference for your research, you could express the observed change as d = 
5/15 = 0.33, or one-third of an SD.

The change expressed in SD units can be appreciated most widely, with-
out the need for any familiarity with numeracy tests or numeracy ages, 
although you should interpret the d of 0.33. There are various approaches 
you could take. One is to compare it with Cohen’s reference values (0.2, 0.5, 
0.8 for small, medium, and large, respectively) and pronounce it small to 
medium. Another is to make your own judgment, taking account of all the 
circumstances, as to how important and substantial such an effect is. If it 
was produced by a brief intervention, you might regard it as impressive. 
Of course, you’ll want to see the CI on the point estimate before you get 
too enthusiastic.

That numeracy example illustrates the first big advantage of Cohen’s d: 
It can help ES communication to a wide range of readers, especially when 
the original units first used to measure the effect are not widely familiar. 
The example also raised the question of how to interpret d. In Chapter 2 
we discussed a range of ESs, with a focus on choosing a measure and find-
ing a good way to help readers appreciate the size and meaning of effects. 
Yes, interpretation is a vital issue for any ES measure, but it’s especially 
important for standardized ESs whose SD units may have no immediate 
natural meaning in a particular context.

The meaning or importance of a change of a particular fraction of an SD 
may be very different in different circumstances. Suppose a friend excit-
edly tells you she’s improved her marathon time by d = 0.2. Personally, 
I’m impressed by anyone who completes a marathon, whatever the time, 
but perhaps you’re less easily impressed. What do you make of that d? 
Considering everyone who completes one of the large and famous street 
marathons, the SD of times may be, say, 40 minutes. If that’s the standard-

izer, d = 0.2 represents 0.2 × 40 = 8 minutes. 
Then your friend calls you again, even 
more excitedly, and says she’d made a 
mistake and her improvement was really 
d = 1.3! You inquire a bit further and dis-

cover that she’d decided to use as the standardizer the SD of times of elite 
marathoners, which she says is 6 minutes. Her 8-minute improvement 
suddenly became d = 8/6 = 1.33. You express pleasure at her improvement, 
but also take a moment to explain the importance of choice of standard-
izer for d, and the need to explain clearly what standardizer is being used 
whenever d is reported. She calls again a little later and says maybe you’re 
right about the standardizer, but she’s been thinking that even a d of 0.1, 
or even less, may matter. Such a difference may be only a few seconds, but 
if it’s the difference between a top-20 and a top-5 finish, or even the differ-
ence between a bronze and a gold medal, then surely even a tiny d may be 
crucially important? At your next coffee date, you and your friend agree 

The standardizer for Cohen’s d is the SD 
that’s chosen as the unit of measurement of 
d. Divide the ES in original units by the stan-
dardizer to get d.
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that you’re both right: Understanding a value of d requires knowledge of 
both the standardizer and the context, and consideration beyond Cohen’s 
reference values.

It’s vital to think of d as a ratio: the observed effect divided by some 
SD. Both numerator and denominator are expressed in original units, and 
both need interpretive attention. The value of d is obviously sensitive to 
the numerator, but the marathon example shows that it’s also very sensi-
tive to the denominator—the SD used as the standardizer. If people don’t 
vary much on some attribute, the SD is small and it may be easy for some-
one to achieve a large d by improving only a little. Conversely, if people 
vary greatly, SD is large and it may be difficult for a person to achieve even 
a small d improvement. The generality of Cohen’s d is a great strength, but 
must also prompt care in interpretation. My first reason for valuing d is 
that it can assist readers’ understanding of effects; therefore, it’s unfortu-
nate that d values are sometimes reported but then not mentioned further. 
It’s important to report d, explain the standardizer, and then also discuss 
what the d tells us.

The second reason for valuing d is that it permits meta-analysis even 
when studies have used different original measures. If the studies all esti-
mate the same effect, and if the various measures can all be transformed 
to d using in each case an appropriate SD, then we can meta-analyze the 
d values. In some disciplines, any study on a question is likely to use 
the same measure. Medicine, for example, often has the luxury of con-
sistency: Numbers of deaths, blood pressure in millimeters of mercury, 
risk in number of cases in 100,000—these are all natural or at least widely 
established measures. No transformation to d or any other standardized 
ES is needed if all studies in a meta-analysis use the same original mea-
sure. In social and behavioral sciences, however, there is often inconsis-
tency. Reading ability, or anxiety, or socioeconomic status is likely to be 
measured using different scales by different researchers. Standardization 
may have challenges, but in such cases it may be the only way to carry out 
a meta-analysis. Now let’s consider pictures that may help the apprecia-
tion of various values of d.

Pictures of Cohen’s d

Figure 11.1 is adapted from the d picture page of ESCI chapters 10–13. 
It illustrates the separation and overlap of distributions that correspond 
to δ = 0.50, which is a medium-sized effect if we judge Cohen’s reference 
values to be appropriate in the context. Here, as earlier, I’m using δ for the 
population ES, and d for the sample ES we use to estimate δ. (Sometimes d 
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is also used as a general label, without specifying whether population or 
sample is intended.) The d picture page uses

	 δ = (μE − μC)/σC	 (11.1)

where μE and μC are the Experimental (E) and Control (C) population 
means, and σC is the control population SD. In the figure, the population 
SD is the same for E and C, but often a treatment increases the SD of E as 
well as its mean, in which case we may think of C as the reference distri-
bution and therefore prefer σC as the standardizer, as in Equation (11.1).

You may feel that Figure 11.1 shows a clearly visible difference between 
the two curves, but also very large overlap. Yes, as usual variability is 
large, perhaps surprisingly large. Even for a difference between means 
we regard as medium or large there’s considerable overlap and thus many 
individual E cases that fall below many C cases. Another way to think of 
overlap is to note that, as shown by the shading in Figure 11.1, when δ = 
0.50 about 69% of cases in the E distribution will fall above the mean of 
C, and so the other 31% of E cases will actually fall below the mean of C.

A further way to think of a value of δ is to consider taking a random 
case from the E distribution and a random case from the C distribution, 
then finding the probability that the E case is greater than the C case. 
In other words, what’s the chance that a randomly chosen point under 

the Experimental curve in Figure 11.1 lies 
to the right of a randomly chosen point 
under the Control curve? The curves over-
lap so much that the probability has to be 

The probability of superiority of E over C is 
the probability that a randomly chosen value 
from the E distribution is greater than a ran-
domly chosen value from C.

150140130120110
X

Control Experimental
69.1%


0.50
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Figure 11.1
An image adapted from the d picture page of ESCI chapters 10–13 that shows the extent 
of overlap corresponding to a population effect of Cohen’s δ = 0.50. The shaded area shows 
that 69.1% of cases from the Experimental distribution fall above the mean of the Control 
distribution.
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considerably less than 1. The probability is called the probability of superior-
ity, and it’s shown in d picture below red 3. For δ = 0.50, d picture reports 
it to be .64. So, for a medium-sized effect there’s only a 64% chance that a 
random value from E will be higher than a random value from C.

In d picture you can vary the E and C means and SDs, and see how 
everything changes. You might think in terms of samples rather than 
populations and click near red 3 to label the difference as d rather than δ. 
You can easily find that the probability of superiority is .58 for d = 0.30, 
a small effect, and .71 for d = 0.80. Yes, even for a large effect there’s only 
a 71% chance that a random value from E will be higher than a random 
value from C.

Figure  11.2 illustrates another way to think about variability and d. 
I opened the Dance p page of ESCI chapters 5–6 and noted that the 
population means differed by 10 and the population ES was δ = 0.50. I 
clicked near red 2 to run an experiment and saw the data points for C 
and E samples. To remove the display of the sample means and their CIs, 
I scrolled right to see a pink area with a checkbox. I unclicked that box to 
see the data points uncluttered by means and CIs. I also unclicked near 
red 1 to hide the populations. I could then watch the patterns of just the 
E and C data points, their variability, and their overlap, as I clicked to 
simulate further experiments. I clicked Display difference axis near red 
4 and stopped sampling when I had an experiment with a difference close 
to 10, the value in the population. I then unclicked to remove the differ-
ence axis. Figure 11.2 shows what I saw. (ESCI doesn’t display d for the 
latest experiment, but d = 0.51 for the result shown in Figure 11.2, very 
close to the population value of δ = 0.50). To my eye, the dots in the figure 
suggest variation and large overlap, rather than E generally exceeding C. 
I conclude that a mean difference can be substantial and perhaps impor-
tant even if not immediately visible in the data. Cohen (1988) chose 0.5 as 
a medium-sized effect because he felt it was “large enough to be visible to 
the naked eye” (p. 26). Of course, we calculate means and other descrip-
tive statistics to make effects more easily visible. However, we must never 
become so blinkered by working with means and ESs that we forget the 
underlying variability. It’s essential to plot and examine the data, and 
appreciate that an effect may be large and important while many indi-
vidual data points go against the trend.

C

E

Figure 11.2
Two samples of size N = 32 from Dance p. There is extensive variation in each sample and 
extensive overlap, even though d = 0.51.
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Options for Calculating d

In this section I’ll start with the d we’ve already met that uses a population 
SD as standardizer, then move on to consider sample SDs as standardiz-
ers. In either case, d is a kind of z score. Near the end of Chapter 7 I intro-
duced the Standard 7 and Standard 31 pages of ESCI meta-analysis. At 
those pages you enter study means, then ESCI transforms these to d using

	 di = (Mi − μ0)/σ	 (7.1)

where di and Mi refer to Study i, and μ0 and σ are the population mean and 
SD. We might be entering IQ scores, and be happy to use μ0 = 100 and σ = 
15 because the IQ test was scaled to have that mean and SD in a reference 
population. The ESCI pages assume that the μ0 and σ values you enter are 
appropriate for all studies. However, if different studies used different IQ 
measures that are scaled in different ways, we can still use Equation (7.1) 
to calculate a di for each study. We’d simply use the reference population 
values of μ0 and σ that are appropriate for each different IQ measure.

The Single-Group Design

If we know an appropriate population σ, that’s almost always the best 
choice of denominator for Cohen’s d because it’s a precise value. It’s much 
more common, however, to have to use an SD calculated from the sample 
data as the standardizer. The obvious disadvantage is that such an esti-
mate is imprecise because it includes estimation error. For a single-group 
design, the general formula for Cohen’s d is

	 d = (M – μ0)/s	 (11.2)

where s is the sample SD, and μ0 is a reference value from which we wish 
to measure d. The value of d is thus simply the distance of sample mean M 
from reference value μ0, expressed in units of s. As usual it’s a kind of z score.

Table 11.1 shows data I invented for an experiment in which 20 students 
were randomly assigned to spend the afternoon reading in the library—
the Control condition—or reading in the local botanical gardens—the 
Experimental condition. I’m imagining the weather was fine, and that at 
the end of the afternoon each student completed a measure of his or her 
perceived well-being. It’s a two-groups experiment, but in this section let’s 
just consider the Control group. Suppose the well-being measure we’re 
using is scaled to have a mean of 40 for young people in our country, so 
μ0 = 40. I can then use Equation (11.2) to calculate d = (42.20 – 40)/10.41 = 
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0.21 for the Control group. If the test manual reports the SD in an appro-
priate reference population I would use that σ. However, I’m assuming 
that no such value is available and I’m forced to use the sample SD of sC = 
10.41 as the standardizer, even though, with an N of only 10, my sample 
SD is an imprecise estimate. Later we’ll calculate a CI on d and discover 
just how imprecise an estimate our d is. The d of 0.21 tells us that the 
Control mean of 42.2 differs only a little from the reference mean of 40.

You probably know that, for the single-group t test, to test the null 
hypothesis H0: μ = μ0 you calculate the test statistic

	 t
M
s N

= − µ0

/
	 (10.1)

(That formula appeared back in Chapter 10.) The s used to calculate that 
t is simply the SD of the group, which was also our choice as the standard-
izer to calculate d for a single group. Compare Equations (11.2) and (10.1) 
and note that

	 d t N= / 	 (11.3)

There’s thus a close link: Equation (10.1) states that t measures how far M is 
from μ0 in units of s N/ , the SE, whereas Equation (11.2) states that d mea-
sures how far M is from μ0 in units of s, the SD. (Recall that SE = s N/ .) 
Therefore, it’s not surprising that d will turn out to have the same distribu-
tion as t—most commonly a noncentral t distribution.

Table 11.1

Well-Being Scores for Two Independent Groups

Control (C) Experimental (E)

34 66
54 38
33 35
44 55
45 48
53 39
37 65
26 32
38 57
58 41

Mean MC = 42.20 ME = 47.60
SD sC = 10.41 sE = 12.46
Pooled SD sp = 11.48
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The Two-Independent-Groups Design

For the two-independent-groups design, the general formula for Cohen’s 
d is
	 d = (M2 – M1)/s	 (11.4)

where M1 and M2 are the two group means. Sometimes (M1 – M2) is used 
rather than (M2 – M1), but it’s arbitrary which you choose. Just be consis-
tent, and be sure to state which direction of difference is signaled by a 
positive value of d. The big question is what to use for s: Which SD is best 
to choose as the standardizer for d? In other words, what units provide 
the most appropriate basis for d? First, however, note a crucial feature of 
Equations (11.2) and (11.4): In both cases the numerator and denominator 
both include sampling error. The numerator is a sample mean or differ-
ence between sample means and thus is an ES in original measurement 
units—perhaps scale units or milliseconds or dollars. The denominator 
is in the same original units but is an SD, also estimated from the data. 
With estimation error in both numerator and denominator we can expect 
values of d to bounce around a very great deal with replication.

If we assume homogeneity of variance—in other words, that both 
Control and Experimental conditions have the same underlying popula-
tion variance—then the pooled within-groups SD is a natural choice for 
the standardizer. That’s calculated using Equation (6.1) and is the same 
pooled SD used for the conventional two groups t test. Table 11.1 shows 
it to be sp = 11.48. Using Equation (11.4) we get d = (47.60 – 42.20)/11.48 = 
0.47, suggesting that the visit to the gardens prompted a medium-sized 
increase in well-being just afterward, although with better knowledge of 
the scale and research area we might interpret a d of this size differently.

Quite often a treatment increases the SD of scores as well as the mean, so 
we might hesitate to make the assumption of homogeneity of variance. We 
might prefer to take the Control condition as a baseline for comparison and 
use sC = 10.41 as our standardizer, in which case d = (47.60 – 42.20)/10.41 = 
0.52. Our two d values of 0.47 and 0.52 were calculated using the same ES 
expressed in original units; they differ only because we made different 
choices of standardizer. As I said previously, it’s vital to think of d as a 
ratio whose value depends on both the numerator and the denominator.

The choice between sp and sC is a matter for judgment. One consider-
ation is that sp is based on two groups rather than one and so has larger df 
and therefore is likely to be a more precise estimate of the population SD 
than sC is. In Table 11.1, sp is based on df = (NC + NE – 2) = 18, where NC and 
NE are the two sample sizes, whereas sC is based on only df = (NC – 1) = 9. 
On the other hand, if samples are very large and there’s concern that the 

assumption of homogeneity of variance 
may not be justified, sC may be a good 
choice. The most common choice is sp, and 

For two independent groups, the best choice 
of standardizer for d is usually but not always 
sp, the pooled within-groups SD.
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that’s my recommendation unless there are good reasons for preferring 
some other option.

As we did for a single group, we can compare d and t. For two independent 
groups, the conventional t test assumes homogeneity of variance and uses

	 t
M M

s
N N

= −

+

( )2 1

1 2

1 1
p

	 (11.5)

Use sp for s in Equation (11.4) then compare with Equation (11.5) and 
deduce that

	 d t
N N

= +1 1

1 2

	 (11.6)

Equation (11.5) states that t measures the difference between the two 
sample means in units of the SE of the difference—that’s the denomina-
tor. Equation (11.4) states that d measures that same difference in units of 
the pooled standard deviation sp. For two groups, as for the single group 
case, there’s a close link between d and t. Equation (11.6) states that link.

To calculate d we should first identify the population SD that makes 
best conceptual sense as the unit for d, then choose as standardizer the 
best available estimate of that population SD. So far we’ve considered a 
published population σ or some s from our study, but there may be other 
options. Suppose, for example, we had data for one or more other studies 
that used the same measure of well-being, also with students. We might 
judge the control conditions in all those studies to be sufficiently similar 
that we’re prepared to consider them all as estimating the same control 
population SD we want as our unit for d. We could therefore pool over the 
several control groups to obtain our best estimate to use as s in Equation 
(11.2) or (11.4). That strategy could work even if the different experiments 
investigated different questions and used different treatments—just so long 
as their control groups were comparable. To pool over two control groups, 
use Equation (6.1). Having data for even more control groups should give 
an even more precise estimate to use as the standardizer. Simply extend 
the formula in Equation (6.1). For three groups, for example, it becomes

	 s
N s N s N s

N N Np = − + − + −
+ + −

( ) ( ) ( )1 1
2

2 2
2

3 3
2

1 2 3

1 1 1
3

	 (11.7)

where the subscripts refer to the three control groups providing data for 
the pooled estimate. Enter that sp value into Equation (11.2) or (11.4) to 
calculate d for our current data. Example 11.1 illustrates d for the two-
independent-groups design, and some common shortcomings in how d is 
reported and used.
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The Paired Design

Table 11.2 presents data I invented for an alternative, possibly less good, 
design for my study of well-being. A single group of 10 students first com-
pleted the well-being measure as a Pretest, spent the afternoon reading 
in the botanical gardens, then gave well-being scores once again as the 
Posttest. We therefore have a repeated measure, which gives us paired 
data. The table reports the (Posttest – Pretest) differences, and the mean 
and SD of the differences, Mdiff and sdiff. What standardizer should we 

Example 11.1 Using d for Two Independent Groups

An Interaction Between Form of a Gene 
and Asymmetry of Brain Activity

Schmidt, Fox, Perez-Edgar, and Hamer (2009) studied how “soothabil-
ity” of infants, as rated by their mothers, was predicted by whether 
the child had the long or short allele form of a particular gene, and 
whether the child showed greater left or right frontal brain activ-
ity. Means for soothability were reported and NHST was the main 
analysis strategy. On several occasions a t value was accompanied 
by d, for example, “t(34) = 3.51, p = .001, d = 1.20” (p. 834). The d values 
reported ranged from 0.66 to 1.20. Discussion was in terms of statis-
tical significance or nonsignificance, although there was one general 
statement that was probably a reference to the d values: “Although 
the effect sizes were medium to large, the results need to be repli-
cated to ensure their reliability” (p. 836). There was no information 
about how d was calculated. However, when I applied Equation (11.6) 
to the t and N values, the d values I calculated matched the reported 
d values quite closely. Equation (11.6) assumes that d is based on sp, 
so I concluded that the researchers most likely used sp, the pooled 
within-groups SD, as standardizer for all their d values.

Scanning recent articles in psychology I found that d was reported 
in only a small proportion of articles, although I suspect it would be 
valuable to know d in many more. Of those reporting d, most often 
there was no comment about how d was calculated. In addition, 
there was usually no comment about the d values themselves, and 
discussion and interpretation of the results mainly relied on NHST. 
Schmidt et al. (2009) largely fit this pattern, although sufficient clues 
were given for a detective to figure out that sp was used as standard-
izer, and there was one interpretive comment about the sizes of the 
effects. However, detective work should not be needed—we should 
be told, and interpretation should make full use of the ES informa-
tion reported.
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choose to convert Mdiff, our ES expressed in original units, into d? The best 
choice is once again an estimate of the variability of well-being scores in 
the population, and spre is an attractive option, leading to

	 d
M
s= = =diff

pre
/4 10 12 88 0 32. . . 	 (11.8)

Usually, however, a slightly better estimate is given by an averaging of 
spre and spost, using

	 s
s s

av
pre
2

post=
+ 2

2
	 (11.9)

which Table 11.2 reports to be 11.93. Therefore, our preferred calculation is

	 d
M
s= = =diff

av
/4 10 11 93 0 34. . . 	 (11.10)

and this value is roughly in line with the 0.47 from the two-groups experi-
ment. If the treatment is expected to increase the SD notably, it may be 
preferable to regard the Pretest condition as a baseline, choose spre as the 
standardizer, and use Equation (11.8). However sav is usually the better 
choice, meaning we’d use Equation (11.10).

Consider again how calculating d relates to t tests. To calculate d in the 
single and two-groups cases, we used as our standardizer the same SD as 
the t test. Now, for the paired design, note that the t test uses

Table 11.2

Well-Being Scores for a Single Group Tested 
Before and After a Treatment

Participant Pretest Posttest Difference

  1 43 51 8
  2 28 33 5
  3 54 58 4
  4 36 42 6
  5 31 39 8
  6 48 45 –3
  7 50 54 4
  8 69 68 –1
  9 29 35 6
10 40 44 4

Mean Mpre = 42.80 Mpost = 46.90 Mdiff = 4.10
SD spre = 12.88 spost = 10.90 sdiff = 3.57

sav = 11.93

Note:	 Difference is Posttest minus Pretest.
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	 t
M

s N
= diff

diff/
	 (11.11)

Choosing sdiff, the SD used in the paired t test, as our standardizer 
would lead us to calculate

	 d
M
s= = =diff

diff
/4 10 3 57 1 15. . . 	 (11.12)

However, does that seem reasonable? Our ES, expressed in original units, 
is 4.1 points on our well-being scale, similar to the 5.4 points in the two-
groups experiment. In the two-groups case we calculated d = 0.47 using our 
preferred standardizer, sp. I think it hardly seems reasonable that a slightly 
smaller ES (4.1 rather than 5.4) gives d more than twice as large (1.15 rather than 
0.47) merely because we’re using a different experimental design. Equation 
(11.12) uses the variability over participants in the difference between the two 
treatments as the unit for d. This is estimated by sdiff, but seems to me hardly 
a unit with clear conceptual importance that we’d choose as a measurement 
unit. A number of statistics texts recognize the option of using sdiff as the 
standardizer, and the CMA software also supports this option. However, 
I’ve never found an example in which it seems to me the best choice. If you 
find an example in which it seems to you the best choice please let me know. 
Meanwhile, I’ll stick with my preference for Equation (11.10).

Using sav for d, rather than sdiff, means that our d is comparable with 
the d calculated for the single group or two-independent-groups designs, 
because in each case we’re using a standardizer that is our best estimate 

of the SD of well-being scores in the popu-
lation. In summary, for the paired design 
we need sdiff for the t test, but sav to cal-
culate d. Using those two different SDs 

for the two purposes means that for the paired design there’s no simple 
link between d and the t test, as there was for the single group and two-
independent-groups designs. So be it.

I have one further comment about the paired design. In Chapter 6 we 
noted that a high correlation between the two scores generally implies 
a sensitive design and precise estimation of the mean difference. In 
Table 11.2 the correlation between Pretest and Posttest is .97 and sdiff is less 
than one-third of sav, so the design is sensitive. The small sdiff implies that 
d standardized against the poor choice of sdiff is much larger than d stan-
dardized against the good choice of sav. Occasionally you may encounter 
published values of d that seem too high. It’s quite likely, if you dig deep 
to find out how they were calculated, you’ll find that a repeated measure 
was involved and an sdiff used as the standardizer. The more sensitive 
the experiment, the more such a poor choice of standardizer inflates d. 

For the paired design, the best choice of 
standardizer for d is usually sav, the best esti-
mate of the population SD.
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This case illustrates again the general lesson that unless you know how a 
d value was calculated you can’t interpret it. Example 11.2 illustrates d for 
the paired design.

I can summarize this discussion by saying that choosing a standardizer 
requires two steps. First, choose the SD that makes best conceptual sense 

Example 11.2 Using d With a Paired Design

A Multimedia Program to Tackle Eating Disorders

Winzelberg et al. (1998) evaluated a multimedia program designed 
to reduce the damaging effects of eating disorders in young women. 
An intervention group who worked through the program, and a 
control group who didn’t, each completed a number of questionnaire 
measures at baseline and again on completion of the experiment. 
Analysis used NHST, but the researchers also stated that “effect size 
was calculated by taking the change score between the first and last 
measurement for the intervention group and subtracting the change 
score for the control group…. This difference was … divided by the 
pooled standard deviation … at baseline” (p. 344). In other words, 
they calculated (posttest – pretest) as a measure of change for the 
intervention group, and did the same to get the change score for the 
control group, and then found the difference of the two change scores. 
That seems to me an appropriate “difference of the differences” way 
to estimate the effect of the program. They pooled the pretest SD of 
the two groups to get their standardizer to calculate d; again, that 
seems to me appropriate. ES values ranged from 0.27 to 0.56 for vari-
ous measures of body image and attitudes toward eating. In discus-
sion, there was one interpretive comment about the “modest” effects 
of the program. In addition, the ESs for body image (which ranged 
from 0.48 to 0.56) were compared with values reported in the litera-
ture for comparable therapist-provided interventions (which ranged 
from 0.80 to 1.50) and text-based programs (0.57).

It’s interesting that they referred simply to “effect sizes” and did 
not use d (for Cohen’s d), g (for Hedges’ g), or any other symbol. It’s 
poor practice not to explain, but if you read “effect size” with no 
explanation it most likely means Cohen’s d.

Winzelberg et al. (1998) did well by explaining how they calcu-
lated their ESs, and by using ES as a metric for making compari-
sons with published previous evaluations of other approaches to the 
issue. Consideration is needed as to whether the populations inves-
tigated in the previous studies and the Winzelberg study are reason-
ably comparable, so their standardizers would be comparable, but 
overall this is an example of standardized ESs being used effectively.
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as a measurement unit. In all cases so far, that’s been the population SD 
for some control or baseline condition. Second, if that population SD is 
known—as it may be if the test has been scaled to give stated μ and σ in 
a relevant reference population—then use that σ. If not, use the best esti-
mate available of that σ, noting that different experimental designs may 
estimate σ in different ways. You should choose your best estimate—for 
example, sp or sav or spre—by using your understanding of the research 
area and the measures, but before examining the data. Otherwise, your 
choice might be influenced, unconsciously of course, by which gives a pre-
ferred value of d.

Finally, be sure to report what standardizer you are using and how it 
was calculated. Now I have to introduce an additional complication.

An Unbiased Estimate of δ

We’ve been using d as our estimate for the population effect size δ, but 
unfortunately d overestimates δ, especially for small samples. Thus d is a 
biased estimate of δ. Fortunately, the bias can be removed by multiplying 
d by an adjustment factor, to give an unbiased estimate of δ. An unbiased 
estimate has a sampling distribution whose mean equals the popula-

tion parameter being estimated. In other 
words, if an estimate is unbiased it will 
on average neither underestimate nor 
overestimate the parameter. I’ll call the 
unbiased estimate dunb, which I refer to as 

“dee-un-bee,” although you can say it as you wish. The accurate adjust-
ment needed to find dunb was described by Hedges (1981), and that’s what 
ESCI uses. Table 11.3 reports example values of that accurate adjustment 
factor, and also the percentage bias, meaning the percentage by which d 
overestimates δ. Hedges also described a very good approximate adjust-
ment, which is

	 d
df

dunb = −
−







×1
3

4 1
	 (11.13)

That’s what the CMA software uses. The df in the equation is the 
degrees of freedom of the SD estimate we’re using as the standardizer for 
d. For the single-group and paired-design cases, df = (N – 1), and for the 
two-independent-groups case using sp as the standardizer, df = (N1 + N2 
– 2). The adjustment factor depends only on df. Table 11.3 shows that bias 

is substantial for small df, meaning small 
samples. In practice we’re almost always 
using d because we want an estimate of δ. 
Therefore, we should routinely prefer dunb, 

An unbiased estimate of a parameter is, on 
average, equal to the parameter. On average 
it neither underestimates nor overestimates 
the parameter.

I refer to the unbiased estimate of δ as dunb. 
It’s easily calculated from d using Equation 
(11.13), and probably should be used much 
more widely.
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although Table 11.3 suggests that when df is, say, 50 or more, we probably 
don’t need to worry about making the adjustment. Of course, if the soft-
ware you’re using offers dunb, that’s almost always the best choice.

Names and Symbols

I now have to mention an unfortunate aspect of current ES practice: The 
terminology is a mess. The story gets confusing, so, if your eyes start to 
glaze over, skim ahead a couple of paragraphs and refocus when you 
get to “My approach in this book …”. You’d think something as basic as 
dunb would have a well-established name and symbol, but it has neither. 
Further, there are several terms and symbols used for various options for 
calculating what I’m calling d, and these are used inconsistently. Cohen 
(1969) originally used d for the population rather than the sample ES. In 
the early days the two-independent-groups d calculated using sC as the 
standardizer in Equation (11.4) was referred to as Glass’ d or Glass’ Δ 
(delta), and the two-independent-groups d calculated using sp as stan-
dardizer was referred to as Hedges’ g. For example, the important book 
by Hedges and Olkin (1985, pp. 78–81), which is still often cited, used g in 
that way, and used d for what they explained as g adjusted to remove bias. 
So their d is my dunb. By contrast, leading scholars Borenstein et al. (2009, 
pp. 26–27) swapped the usage of d and g, so now their d is the version with 
bias, and Hedges’ g refers to my dunb. May be hard to believe, but true. The 
CMA software also uses g to refer to dunb. In further contrast, Rosnow and 
Rosenthal (2009) is a recent example of other leading scholars explaining 
and using Hedges’ g with the traditional meaning of d standardized by 
sp and not adjusted to remove bias. Yes, that’s all surprising, confusing, 
and unfortunate. If you don’t really follow, don’t worry. The inconsistency 
of terminology in the literature means it’s essential whenever you see a 
published value of d (or g) to find out how it was calculated. Similarly, it’s 
essential to state clearly how you calculated any d you report.

Table 11.3

The Adjustment Factor to Convert d to dunb

Degrees of Freedom
df Adjustment Factor Percent Bias of d (%)

  2 0.564 77.2
  5 0.841 18.9
10 0.923   8.4
20 0.962   4.0
30 0.975   2.6
50 0.985   1.5

Note:	 Multiply d by the adjustment factor to get dunb.
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Another symbol you might encounter for dunb is δ̂, which you can read 
as “delta hat,” where “hat” is used by statisticians to signal “estimate of.” 
In medicine you may encounter SMD, which stands for standardized mean 
difference, another term for Cohen’s d.

My approach in this book and in ESCI is to use δ for the population 
ES; d for any estimate calculated from data whether it uses σ, sC, sp, sav, 

or some other standardizer; and dunb for 
an unbiased estimate of δ. That’s my 
recommended practice, but it must be 
supported by explanation of how d is cal-
culated. If an article reports d and gives 
no information about how it was calcu-

lated, the best guess is usually Equation (11.4): the difference between 
two-independent-group means, standardized using sp, with no adjust-
ment to remove bias. But, of course, we shouldn’t be left to guess.

Finally, before we turn to ESCI, you might ask why anyone even men-
tions d when dunb is what we really want. That’s a fair question. In fact, 
d is much more widely used than dunb, despite virtually all researchers 
wanting estimates of δ. I suspect it’s partly tradition, partly lack of under-
standing of the bias of d, and partly the appeal of d as a simple z score. Yes, 
d should be reasonably easy to grasp as a number of SDs—as a mean (or 
mean difference) divided by some SD. That’s how I introduced d and how 
ESCI pictures d. It’s unfortunate that we need to multiply by an adjust-
ment factor to get dunb, which is what we really want. Anyway, dunb should 
be our routine choice, and should probably be used much more widely 
than it is. It’s fortunate that we now have software that can often do most 
things for us—except the thinking.

Cohen’s d in ESCI

In Chapter 6 we discussed two pages from ESCI chapters 5–6 that sup-
port calculations based on your own data for the two-independent-groups 
and paired designs, and another two that show simulations of those 
designs. Although I didn’t mention it back then, the four pages also sup-
port calculation of d and dunb. In each case you simply scroll way to the 
right to reveal a checkbox. Click this, and d and dunb are revealed—with 
a CI for δ, of which more later. Use these pages as you will, but here are a 
few suggestions to start with:

•	 In Data two, scroll to the right, click at red 11, and see sp, d, and 
dunb reported at red 12 for the data you enter. ESCI uses the pooled 
within-groups SD to calculate d, so it uses Equation (11.4) with 
sp in the denominator. As the popout comments explain, d is 
only shown if Yes is selected at red 7 to assume homogeneity of 

I recommend using δ for the population 
parameter, d for any estimate calculated 
from data, and dunb for the unbiased estimate 
of δ. Beware inconsistent use of symbols in 
the literature.
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variance. Use this page for d calculations based on your own data 
for two independent groups.

•	 Simulate two uses the same formula for d as Data two. Scroll 
right, click at red 11, and see d and dunb just to the right of the fig-
ure. Note that d is the ES divided by sp, and both of these values 
are reported just below red 9. You can therefore click at red 1 to 
take further experiments and watch how ES and sp both bounce 
around, and, consequently, d also bounces around—a lot.

•	 In Data paired, scroll right and click at red 9 to see d and dunb near 
red 10, calculated using Equation (11.10). The value of sav is shown 
just above d. Use this page for calculations based on your own 
paired data.

•	 Simulate paired uses the same formula for d as Data paired. 
Scroll right, click at red 13, and see d, dunb, and sav just to the right 
of the figure. ES is reported below red 10. You can click at red 1 
to take further experiments and watch ES and sav both bounce 
around, and see how in consequence d also bounces around.

Watching the two Simulate pages in action should emphasize that d 
is a ratio, and both the effect size in the numerator and the standardizer 
in the denominator are estimates that vary over replication. A d of, for 
example, 0.5 might come from an ES estimate of 10 divided by a standard-
izer estimate of 20, or 8 divided by 16, or any of infinitely many other pairs 
of values. When comparing two d values, we need to be alert to the possi-
bility that the difference is in the standardizer—the unit of measurement 
of d—and not necessarily in the ES, even if the ES is our primary interest.

Overview of the Calculation and Reporting of d

Here are the summary steps for calculating d:

	 1.	Choose an SD that makes conceptual sense as the unit for measur-
ing d.

	 2.	 If you know the population value σ of that SD, use it as 
standardizer.

	 3.	 If as usual you don’t know σ, Table  11.4 summarizes the main 
options for calculating d using an estimate as standardizer.

	 4.	 If suitable data from additional experiments are available, con-
sider pooling to get a more precise estimate to use as standardizer.

	 5.	After calculating d using any estimated SD as standardizer, use 
Equation (11.13) to remove bias and calculate dunb.
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Values of d can be reported in text, tables, or figures. The Publication Manual 
(APA, 2010) gives an example of reporting d and its CI in text along with 
NHST results: “t(177) = 3.51, p < .001, d = 0.65, 95% CI [0.35, 0.95]” (p. 117). Of 
course, you don’t have to report NHST along with d. The Manual also gives 
on p. 143 an example table that includes a column of d values. Whichever 
way you choose to report d, don’t forget to explain how it was calculated.

In the next two sections I’ll discuss the distribution of d, and the calcula-
tion of CIs on d. Both are optional extra sections, so feel free to read just 
the first paragraph of each then skip ahead to meta-analysis based on d if 
you wish.

The Distribution of d: The Rubber Ruler for d in Action

Consider a single-group design, and suppose we take many samples and 
calculate d for each. I’m assuming we don’t know σ, and use s and Equation 
(11.2) to calculate d. What is the sampling distribution of those d values? 
For this simple situation, d = t N/ , as Equation (11.3) states, so d and t dif-
fer only by the scale factor N , and therefore if we know the sampling 
distribution of t, we simply divide by the scale factor to get the sampling 
distribution of d. Chapter 10 explained that the sampling distribution of t 
is in general the noncentral t distribution. So d is also distributed as non-
central t. In the following I’ll use the d heap page of ESCI chapters 10–13 
to illustrate the distribution of d. If you are about to skip ahead, that’s fine, 
but note the main message, which is that—as I keep saying—d uses s as its 
measurement unit, and s varies from sample to sample. Thus d is measured 
with a “rubber ruler” that stretches and contracts as we take successive 
samples. You can see the rubber ruler for d in action at the d heap page.

You may want to fire up d heap and follow as I describe how I made 
Figures 11.3 and 11.4. I thought of IQ scores, so I set μ0 = 100 near red 1 as 
the reference mean and σ = 15 as the reference population SD, then I set μ = 
130, which I’m assuming is the mean IQ of students from our university. 

Table 11.4

Summary of Calculation of d

Design df
Preferred 

Standardizer Equation
Equation 
Number Comment

Single group (N – 1) s d = (M – μ0)/s (11.2)
Two independent 
groups

(N1 + N2 – 2) sp d = (M2 − M1)/sp (11.4) Consider sC

Paired design (N – 1) sav d = Mdiff/sav (11.10) Consider spre
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That’s the population shown in the top panel of the two figures. I assume 
σ = 15 also for that population. Near red 1, ESCI reports δ = 2, which makes 
sense because my μ is just 2 × σ larger than μ0. I planned to take samples 
of size N = 6, so I set that value at red 2. I took some samples and watched 
the mean heap build in the second panel down. (Make sure Display data 
points, Display heaps, and Display distributions are clicked on near 
red 4.)

I clicked near red 4 to display the s pile, the next panel down, which is the 
sampling distribution of sample SDs. Near red 5 I clicked the radio button 
for s, rather than the button for σ. Note that 
zero on the horizontal s axis of the s pile 
is lined up under the mean of the latest 

The s pile is what I call the sampling distribu-
tion of s. It’s a pile of small squares that mark 
the SDs of samples in the current set.

–1

Unit: s
Rubber ruler 0 1s

s
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Sample SDs

Sample means
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d values

Figure 11.3
The d heap figure. From the top, it shows the population, the mean heap for samples of size 
N = 6, the s pile for SDs from those samples, the rubber ruler for d marked in units of the 
latest s, and the pile of d values. The mean of the latest sample is highlighted as the large 
dot, first in the mean heap, and then dropped down onto the rubber ruler. The SD of the 
latest sample is displayed as the large square in the s pile, and also as the thick line segment 
labeled s that appears near the top of the s pile and again as the unit of the rubber ruler. 
The d for the latest sample is displayed as the large triangle, first in the d pile in the bottom 
panel, and then dropped down onto the bottom d axis. For the latest sample, the mean of 
142.1 is larger than μ = 130, s is larger than σ, and together these give d = 2.14.
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sample, which is marked by the large dot. This arrangement should help 
us see the latest value of s, which is marked by the large square, as show-
ing variability about the latest M. Take a few more samples and see the s 
pile jump around, always lined up underneath the latest M. The numeri-
cal values of the latest M and s are reported near red 4.

The data points of the latest sample appear as a dot plot in Figure 11.3 
just below the population. Only 5 are visible because one happens to be 
171, so it is just off screen to the right. Bearing in mind the off-screen point, 
their mean looks larger than μ. Accordingly, the large dot in the second 
panel is to the right of μ, and the value reported near red 4 is M = 142.1. 
The data points appear widely spread and, correspondingly, the SD is s = 
19.6, rather larger than σ, as marked by the large square and the thick 
horizontal line segment near the top of the s pile.

Now click Display rubber ruler near red 5 to see the rubber ruler, which 
we’ll use to measure d. The ruler has its zero at μ0, because that’s our ref-
erence value from which d is measured, and is marked in units of our 
latest s, as indicated by the thick horizontal line segment labeled “s” on 
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σ
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X
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Figure 11.4
Same as Figure 11.3, but here the latest sample happens to have a low mean and small s, 
which together give d = 2.10, similar to the value in Figure 11.3.
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the ruler—same as the line segment in the 
s pile. The large dot on the rubber ruler 
for d marks the latest M and looks to be 
at about 2.1, so that’s our eyeball esti-
mate of d for the latest sample. Next click 
Display d heap near red 5 to reveal the pile of d values at the bottom. The 
slanting lines show how s units on the rubber ruler map to d units on the 
horizontal axis at the bottom. The d for the latest sample is shown by the 
large triangle at d = 2.14. That’s the value reported near red 5, and we can 
confirm it by using Equation (11.2) and calculating d = (142.1 – 100)/19.6 = 
2.14. That completes what’s shown in Figure 11.3.

As a quick experiment, click near red 5 to choose σ rather than s as the 
unit for d. The bottom d heap becomes normal and both the rubber ruler 
and the bottom axis are marked in units of σ, so the slanted lines slant no 
more: They are vertical, and don’t change as we take further samples.

Figure 11.4 illustrates another sample, again using s rather than σ, which 
happens to have a lowish M of 119.9 and s of 9.48, smaller than σ. These val-
ues together give d = 2.10. Figures 11.3 and 11.4 illustrate how similar values 
of d, 2.14 and 2.10, can arise from quite different pairs of M and s values. The 
rubber ruler is stretched out by the large s in Figure 11.3, but squashed by 
the smallish s in Figure 11.4. As I’ve mentioned a few times, the main mes-
sage is that d is a ratio, and reflects both M and the value of s—as the rubber 
ruler illustrates. You can take further samples and watch how a large varia-
tion in s gives a rubber ruler that stretches and squashes dramatically. The 
d values reflect large variation in both M and s, so it’s not surprising that the 
distribution of d displayed at the bottom is so widely spread.

The distribution of s values is shown by the s pile. I mentioned in Chapter 
10 that the sampling distribution of s2, the sample variance, is a chi-square 
distribution. (Don’t worry if that’s unfamiliar; just skim over these couple 
of sentences that mention chi-square and chi.) Therefore, the curve shown 
in the s pile, which is the sampling distribution of s, the sample SD, is the 
chi distribution. It’s positively skewed with a humped peak a little below 
σ. Its mean is very close to σ, but values less than σ are more frequent than 
those greater than σ. Small s values tend to give large d values, so the pre-
dominance of smallish s values is one reason the distribution of d has a long 
right tail. The distribution of d, based on s, is a noncentral t distribution 
with df = (N – 1) = 5, and noncentrality parameter Δ given by Equation (10.3):

	
∆ = − = − =µ µ

σ
0 100

15 6
4 90

N
130

.
	

(10.3)

When s rather than σ is selected near red 5, the value of the noncentrality 
parameter Δ is reported, also near red 5.

The rubber ruler for d is what I call the axis 
for measuring d that is marked in units of σ, 
which is constant, or s, which changes in size 
from sample to sample.



 

302	 Understanding The New Statistics

Explore d heap as you wish, but here are a few things you could try:

•	 Use the sliders to change μ0, μ, or σ, and watch the heaps and 
curves change, especially the distribution of d. Turn off various 
aspects of the display if you want to reduce clutter. Note that the 
noncentral t curve is not displayed if Δ is very large—see a pop-
out comment near red 5 for explanation.

•	 Investigate how various things, especially the shape of the dis-
tribution of d and the width of the s pile, change for larger values 
of N.

•	 Select σ at red 5, to assume that σ is known and is used to calcu-
late d. The rubber ruler for d stretches no more. Click back and 
forth between s and σ to appreciate the role of the rubber ruler. 
Compare what happens when you take further samples, using s 
and using σ.

•	 When s rather than σ is being used to calculate d, the value of dunb 
is shown at red 6. Compare with d for various values of N.

My conclusions from this discussion of the distribution of d are

•	 Cohen’s d based on s has a noncentral t distribution, and there’s 
a strong parallel between the sampling that led to the noncentral 
t distribution in Chapter 10 and sampling using d heap to find the 
distribution of d.

•	 The rubber ruler for d emphasizes that d depends on s as well as 
M. It can thus be a challenge to interpret d values and compare 
different d values.

•	 Only with large N is the variability of s markedly reduced, as the 
s pile shows. If possible, find s with large df to use as a standard-
izer for d.

Confidence Intervals on d

The brief story is that, because d has a noncentral t distribution, there’s 
no formula that permits the precise calculation of CIs for δ. An iterative 
or successive approximations method is needed. The CI for d page of 
ESCI chapters 10–13 illustrates how this works. The CI for δ, which I’ll 
also refer to as the CI on d, is usually slightly asymmetric, meaning that 

its upper and lower arms are different 
in length. The pages Data two and Data 
paired of ESCI chapters 5–6 allow you to 

To calculate a CI on d we need to use an 
iterative procedure based on noncentral t. 
The CI is a little asymmetric.
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calculate CIs on d for your own data. If you are not too concerned about 
how those CIs are calculated, you can simply use the CIs for δ that ESCI 
reports and skip ahead now to the following section on meta-analysis.

For d based on σ the sampling distribution of d is normal, the com-
plexity of noncentral t is not required, and the conventional formulas of 
Chapter 3 can be used to calculate CIs. For d based on s, perhaps it’s not 
surprising that having a distribution as strange as noncentral t is likely 
to make life difficult. Cumming and Finch (2001) explained why CIs on d 
require a successive approximations strategy, and how to find such CIs. 
Here I won’t attempt a full explanation, but I’ll use CI for d to illustrate 
the process. That page finds the CI on d for the two-groups case, assum-
ing homogeneity of variance. I fired up the page then entered values for 
an example I invented: a d of 1.21 and two sample sizes of 8. Figure 11.5 
illustrates at the top the final 95% CI on that d, but the CI you see at first 
may not be accurate, in which case it is displayed pale gray. We need to 
adjust things until it becomes the accurate 95% CI on our d, which ESCI 
signals by displaying the CI in black.

First, what about dunb, which is probably what we really want to know? 
Use Equation (11.13) and our df of 8 + 8 – 2 = 14 to calculate the adjustment 
to be .945. (This is very close to the precise value used by ESCI.) So dunb = 
.945 × d, and we can easily calculate that our dunb = .945 × 1.21 = 1.14, as 
ESCI reports near red 1.

An Iterative Procedure for the CI on d

Now comes a tricky bit, but in a moment we’ll use ESCI to explore it. Think 
of the CI on our d shown in Figure 11.5 as a set of plausible values for the 

4321

dL dUd

0

0.116 1.21 2.268

d
–1–2

Figure 11.5
A figure from the CI for d page of ESCI chapters 10–13. The 95% CI is shown for d = 1.21 
for two groups, each of size 8. Homogeneity of variance is assumed. The dL and dU values 
are the lower and upper limits of the CI. Regard these as population values δL and δU, and 
then the curves are the sampling distributions of d when δL (left curve) or δU (right curve) is 
true. The two small tail areas beyond d = 1.21 are shaded.
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population effect size δ. The lower limit of the interval is dL. Regard this as 
a population value δL, and then the left curve is the sampling distribution 
of d when δL is the true population value. The upper tail of this distribu-
tion, beyond our d = 1.21, is shaded dark gray and is by definition the 
one-tailed p value if δL is our null hypothesized value. If that’s puzzling, 
think back to the definition of p as the probability of getting our result or 
a more extreme result if the null hypothesis is true. Here that’s the prob-
ability of getting d larger than 1.21 if δL is the true value, and that’s just the 
area shaded dark gray. For the interval shown around d to be the 95% CI, 
that dark gray shaded area needs to be .025 so the two-tailed p value is .05. 
Recall the fifth approach to interpreting a CI, which notes that p = .05 when 
a 95% CI has either of its limits exactly at the null hypothesized value.

That may make better sense if we use ESCI to shift the left curve a 
bit. You can use the slider near red 6 to do that. Shift it a bit left, and δ 
is smaller and the upper tail area beyond our d becomes smaller, so p is 
smaller and the δ value would be rejected at the .05 level. Shift the curve 
right and δ is larger, the right tail area is larger, p is larger, and this δ would 
not be rejected. To get an accurate 95% CI we need to shift the left curve 
so its upper tail area is .025, and shift the right curve so its lower tail area, 
shaded in light gray, is also .025. The δL and δU values that give those tail 
areas are what we need for dL and dU, the limits of the CI. The sizes of the 
two shaded tail areas are shown just below the figure in CI for d, and the 
target sizes are also shown. If you use the sliders carefully until the two 
shaded tail areas match the .025 target, the interval will turn from gray to 
black to signal that we have the 95% CI we’re seeking. Alternatively, you 
can click the buttons at red 6 and red 7 and see Excel shift the curves for 
you. It may take a little time for Excel to do its work. Check that the tail 
areas are as they should be when Excel finishes and the CI on d turns black.

The tricky thing is that the two curves have the shape of noncentral t 
distributions, so they change shape as we change δ to slide the curves left 
or right. It’s that change of shape that means we can’t make any simple 
calculation of CIs on d and need to use successive approximations. What 
are the noncentrality parameters of the two curves? (Skip to the next para-
graph if you’re not too concerned about that question.) Equation (10.3) 
gave the formula for the noncentrality parameter Δ for the single sample 
case. For the two-groups case, the formula is

	

∆ = −

+

µ µ

σ

2 1

1 2

1 1
N N 	

(11.14)

From Equation (11.1) we have the definition of population effect size δ:

	 δ µ µ
σ

= −2 1 .	 (11.15)
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Substitute that expression for δ into Equation (11.14) and find a relation 
similar to that of Equation (11.6):

	 ∆ =
+

δ
1 1

1 2N N

	 (11.16)

ESCI uses Equation (11.16) to convert between Cohen’s δ values and the 
noncentrality parameter Δ needed to calculate the noncentral t curves. 
The sliders change δ, and thus Δ, and thus the shapes and positions of the 
curves. ESCI reports the values of ΔL and ΔU, which are the noncentrality 
parameters for the two curves displayed. For the curves in Figure  11.5 
they are 0.233 and 4.54, respectively.

Noting the values of dL and dU in Figure 11.5, we can report that our 
d = 1.21, [0.116, 2.268]. The two arms of the CI are 1.210 – 0.116 = 1.094 
(lower arm) and 2.268 – 1.210 = 1.058 (upper arm), so they differ a little.

A CI on d or a CI on dunb?

You may be wondering why I’m describing the CI on d, rather than a CI on 
dunb. If so, that’s a good thought. Indeed dunb is our best point estimate of δ, 
but it turns out that the CI on d, as the CI 
for d page calculates, is our best interval 
estimate for δ. There’s no need to adjust 
the limits of the CI on d to remove bias. 
I explain more about that in Box 11.1.

Use the CI for d page of ESCI chapters 10–13 to explore as you wish. 
When d = 0, the CI is symmetric—after, of course, you have clicked Find 
LL and Find UL and you have a black CI on d. For larger d the two curves 
generally look increasingly different, although the CI is usually only 
slightly asymmetric—the two arms differ only a little in length.

Another approach to finding CIs on d is to use a formula that allows 
easy calculation of approximate CIs for d, without needing the curve slid-
ing of the accurate noncentral t method. Such approximations usually 
give symmetric intervals. Cumming and Fidler (2009) evaluated one such 
approximation; we found it to be quite accurate, almost always giving arm 
lengths within 2–3% of the correct length even for small N. However, if 
ESCI is handy you can have it calculate CIs on d, using the noncentral t 
procedure. For the two-independent-groups case use the CI for d page 
of ESCI chapters 10–13, or the Data two page of ESCI chapters 5–6. For 
paired data use the Data paired page of ESCI chapters 5–6, which uses 
the approximate method of Algina and Keselman (2003). I say more about 
this in Box 11.1. For single-group d, calculate CIs by using one of the meta-
analysis pages for d—to which we now turn.

The best point estimate for δ is dunb, which is 
unbiased. The best interval estimate for δ is 
the CI on d.
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Box 11.1  Choosing Point and 
Interval Estimates for δ

For both the single-group and two-independent-groups designs, 
the noncentral t method gives accurate CIs for δ. For the paired 
design, however, no such accurate method has been found. Algina 
and Keselman (2003) proposed a method based on noncentral t for 
finding approximate CIs for this situation, and reported evidence 
that their method performs well, within limits. The Data paired and 
Simulate paired pages of ESCI chapters 5–6 use their method to 
calculate CIs on d.

It’s legitimate to ask how we can assess the result given by such 
an approximate method when we can’t calculate an exact result 
to use as a benchmark. After all, if we had an exact method, we’d 
not be wasting effort on a mere approximation. The solution is to 
use simulation.

Back in Chapter 3 I discussed the dance of the CIs, and we explored 
how, if we run that dance in CIjumping for a long time, we get very 
close to 95% of CIs capturing μ—assuming that we’ve set C = 95. 
Algina and Keselman (2003) ran an extensive series of simulations to 
evaluate their approximate method. I modified the Simulate paired 
page so I could also carry out such simulations. At each step, ESCI 
takes a paired sample, uses the Algina and Keselman method to 
calculate a CI on d, then notes whether that CI captures the popula-
tion δ specified for that simulation run. ESCI keeps count over many 
thousands of samples. If close to 95% (assuming I’ve set C = 95) of the 
intervals capture δ, the method is working well.

For the paired-design case, there are several variables we need to 
explore: sample size N, population effect size δ, and also the cor-
relation ρ in the population between the two measures. Recall from 
Chapter 6 that the higher this correlation, the more sensitive the 
design. Algina and Keselman (2003) reported that for N at least 10, δ 
between –1.8 and 1.8, and ρ between 0 and .8, their procedure gives 
95% CIs that in almost every case capture δ between 95% and 97% of 
the time. For practical purposes that’s a good result, in the absence 
of any better method.

My investigations confirmed those results and extended them a lit-
tle. Accordingly, the Data paired and Simulate paired pages report 
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a 95% CI on d whenever N is at least 6, and δ lies between –2 and 
2. (Be sure to scroll right and click to reveal the panels that display 
Cohen’s d and the CI for δ.) Correlation ρ can take any value. Note 
that the method has been tested only for C = 95, so C must be set in 
ESCI to 95 for CIs to be reported. Popout comments describe those 
limitations as to when ESCI can calculate a CI on d in the paired case.

In other simulations of mine, ESCI calculates both d and dunb for 
each of a large number of experiments, and then compares average d 
and average dunb with δ. For both the single-group and two-indepen-
dent-groups designs my results confirm that dunb is indeed an unbi-
ased point estimate of δ, whereas d is biased, being on average larger 
than δ. For the paired design, dunb is a better estimate of δ than is d, 
although dunb is not entirely unbiased.

I have also investigated by simulation the CI on d, and various other 
interval estimates for δ including the CI calculated from dunb (for an 
individual study) that the CMA software uses. I found the CI on d to 
be clearly the best interval estimate of δ of any I investigated. It’s best 
because it captures δ for very close to C% of samples. This conclusion 
applies for both the single-group and the two-independent-groups 
designs. These simulation results led to my advice that (i) dunb is in 
general the best point estimate of δ, and (ii) the CI on d is in general 
the best interval estimate for δ.

Later in this chapter, when discussing meta-analysis of d and dunb, 
I report that I haven’t been able to find any such investigations of 
which CI on the overall result of the meta-analysis gives the best 
interval estimate of δ. I therefore follow the practice of Borenstein 
et al. (2009) and CMA and give a different overall CI, depending on 
whether d or dunb has been selected as the ES for meta-analysis. I look 
forward to further research on which of these CIs is better.

It’s important to keep these considerations of accuracy in perspec-
tive. In practice we should not be too concerned about the precise 
width of a CI, which is likely to vary—perhaps considerably—on 
replication. In practice, deficiencies in our experimental procedure, 
or departures from the assumptions underlying our statistical 
model, may be more serious problems than whether an approximate 
method of calculation gives us a 95% or a 96% CI. As ever, careful 
critical judgment is required, and accuracy of calculation is only one 
of a number of issues we need to bear in mind.
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Meta-Analysis Based on d

The main value of d is to allow meta-analysis of studies that have asked 
similar questions, but used different measures. As usual with meta-
analysis, we need to be satisfied that the studies are sufficiently compa-
rable. Do they estimate a population parameter for which the fixed effect 
or—more likely—the random effects model is reasonable? If we know a 
suitable σ that’s the same for all studies, life is simple and we can use ESCI 
pages Standard 7 or Standard 31 as discussed in Chapter 7. More often we 
need to use standardizers calculated from the data to find d for each study, 
before using meta-analysis to estimate an overall population δ. To assess 
the comparability of the studies we need to consider both the numerator 
and denominator of d. In the numerator, are the ESs in original units from 
the studies sufficiently similar conceptually? In the denominator, are our 
selected standardizers estimating sufficiently comparable SDs? If both 
answers are yes we can proceed to the meta-analysis.

A Meta-Analysis of Critical Thinking

I’ll use the meta-analysis of critical thinking by Claudia Ortiz (2007) to 
illustrate what’s needed. Her aim was to assess the effectiveness of various 
critical thinking courses in increasing students’ critical thinking skills. 
She found 52 studies that met her selection criteria. The studies used vari-
ous measures of critical thinking ability, including the California Critical 
Thinking Skills Test and the Watson–Glaser Critical Thinking Appraisal. 
She was satisfied that they all assessed critical thinking, so she answered 
yes to the numerator question. Considering the denominator, one possi-
bility was to use as standardizer the various SDs published for the various 
tests, based on the population used in each test’s development. However, 
those populations did not in every case comprise college students, her 
population of interest, so she decided to use standardizers calculated from 
the studies themselves. First she calculated a d for each study, using the sav 
for the particular study, even though some studies reported data for only 
10–20 students and so their sav values were imprecise estimates. (She used 
d rather than dunb throughout her thesis, although, given that some sample 
sizes were not large, it would have been a desirable refinement to use dunb.) 
She decided also to pool SDs over the studies that used the same measure 
to get her best estimate of sav for that measure, using an equation similar 
to Equation (11.7). For example, she pooled over all the studies using the 
California Test and used the resulting sav value to calculate d for each of 
those studies. Similarly, she pooled over the studies that used the Watson-
Glaser and used the resulting sav to find d for those studies.
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Ortiz (2007) carried out two meta-analyses: one using d based on sav 
for the individual studies and the other using d based on the pooled sav 
values. The results were very similar, although the pooled sav strategy not 
surprisingly gave somewhat shorter overall CIs. Her conclusions, inciden-
tally, were that traditional critical thinking courses in philosophy depart-
ments are only moderately effective and produce an average improvement 
of d = 0.34, [0.21, 0.48] in one semester. By contrast, courses based on argu-
ment mapping (van Gelder, Bissett, & Cumming, 2004) are much more 
effective, giving average gains of d = 0.78, [0.67, 0.89] in a semester. That’s a 
very impressive increase for any educational intervention, especially one 
lasting only one semester. Examples 11.3 are further illustrations of meta-
analysis based on d.

Meta-Analysis of d in ESCI

Once you’ve decided that meta-analysis based on d is appropriate, and 
you’ve calculated d for each study, there are two pages in ESCI Meta-
analysis that may assist. For a single-group design, fire up the d single 
group page and type in d and N for each study. Similarly, for a two-
independent-groups design, d two groups requires only d, N1, and N2 for 
each study. It assumes homogeneity of variance and that d from a study is 
standardized using the sp of that study. At each of these pages, immedi-
ately to the right of the d values you typed in, ESCI reports the correspond-
ing values of dunb. Figure 11.6 shows a part image of the d single group 
page. You need to click one of the radio buttons at red 2 to indicate your 
choice of d or dunb as the effect size to be meta-analyzed. In Figure 11.6, dunb 
has been chosen.

After entering d and N data for all studies, click the button at red 4 to 
trigger the calculation for each individual study of the CI on d. (The CI on 
d is the best interval estimate of δ, which is why I refer interchangeably to 
the “CI on d” or the “CI for δ.”) This calculation uses the noncentral t pro-
cedure I described earlier in the Confidence Intervals on d section. If you 
ever change any of the data, or change C at red 3, you need to click again 
to trigger recalculation of the CIs for δ. The limits of these CIs are shown 
below red 15, toward the right in Figure 11.6.

If you simply want to calculate the CI for δ, for your single-group or 
two-independent-groups d, you can just type the d and sample size(s) into 
the appropriate page, maybe as Study 1, then click the button at red 4 and 
see below red 15 the CI you want.

Whether you choose d or dunb as your preferred point estimate of δ, and 
as the ES for the meta-analysis, the CIs for δ shown below red 15 do not 
change. As I mentioned earlier, and explain further in Box 11.1, the best 
interval estimate for δ is the CI on d found by the noncentral t procedure. 
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Examples 11.3  Meta-Analysis Based on d

Are Positive Self-Statements Valuable?

Wood, Perunovic, and Lee (2009) assessed the value of making posi-
tive self-statements (“I’m a lovable person”) for people with low or 
high self-esteem. They reported multiple regression and other analy-
ses, and NHST was prominent. In a small part of the analysis, two 
of their studies suggested that positive self-statements were detri-
mental to participants with low self-esteem, with p = .012 and .044 
in the two studies. For participants with high self-esteem, the benefit 
of such statements “approached but did not reach [statistical] signifi-
cance in either study” (p. 865) with p = .10 and .06. The researchers 
then reported that they used meta-analysis to combine results of the 
two studies, giving d = 0.66, p = .013 for the benefit for people with 
high self-esteem, and d = –0.72, p = .002 for the detrimental effect of 
the positive statements for people with low self-esteem. In the discus-
sion was a comment that for people with high self-esteem “the boost 
was small” (p. 865). There was no comment about why d of 0.66 was 
considered small.

I’m all in favor of such small-scale meta-analyses, although in this 
case no information was given about how d was calculated or how 
the meta-analysis was conducted. We need to know.

Can Shrubs Help Tree Seedlings Grow?

Gómez-Aparicio et al. (2004) reported 146 experiments that over 
several years studied reforestation of Mediterranean mountains. 
They explored whether tree seedlings do better if planted in cleared 
ground or under the canopy of established shrubs. They used ran-
dom effects meta-analysis to combine their findings and investigate 
the effects of site, species, and other factors that varied within or 
across experiments. The authors “chose the standardized difference 
between means (d index) to estimate the effect of the presence of 
shrubs on two response variables: seedling survival and seedling 
growth” (p. 1131). Their description suggests to me that sp was used 
as the standardizer, although that was not stated clearly. They found 
that surrounding shrubs increased seedling survival at 1 year by an 
overall d = 0.89, [0.51, 1.27], an effect they described as “large” and 
“more than doubled.” Surrounding shrubs increased initial seedling 
growth by an overall d = 0.27, [0.15, 0.39], an effect they described as 
“small” and “consistent.” This is a good example of meta-analysis in 
action within a research program, rather than as a tool for reviewing 
a whole literature.
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So ESCI always reports these CIs on d below red 15, and displays these 
CIs as the error bars in the forest plot. Try clicking between the two radio 
buttons at red 2 to change your ES selection between d and dunb. Not only 
does the highlighting swap between the d and dunb columns, but the green 
squares in the forest plot that mark the point estimates for the individual 
studies shift a tiny amount left and right. Those solid green squares dis-
play either d or dunb, whichever is selected, and so shift slightly whenever 
you change that selection. The green error bars that mark the CIs for δ for 
the individual studies do not change—the green squares simply shift their 

Evaluating Treatments For Binge Eating Disorder

Vocks et al. (2010) reported meta-analysis of 38 studies that evalu-
ated psychotherapy, pharmacotherapy (drug), and self-help treat-
ments for binge eating disorder. This is the one example I’ll include 
here of a large-scale meta-analysis. They meta-analyzed several ES 
measures and used different meta-analysis models for different 
parts of the overall analysis. They stated that “for between-group 
effects …, standardized mean differences (… Hedges’ d) were cal-
culated” (p. 207). Also, “within-group effects for single treatment 
groups were computed by dividing the difference of pre- and 
post-means by the pooled standard deviations at the measurement 
times” (p. 207). I consulted the references they cited for those ES 
calculations, which suggested that their Hedges’ d is my dunb, the 
unbiased estimate, but left me suspecting—although I couldn’t be 
sure—that the d they calculated for the within-group effects was 
not adjusted to remove bias. They meta-analyzed between-group 
and within-group comparisons separately, and presented tables 
of overall d values with their CIs, for a number of attitude and 
behavior measures. Values of d ranged from near zero to 1.5 and 
more. Their discussion made much of statistical significance or 
nonsignificance, but also interpreted d values as small, medium, 
or large using Cohen’s reference values. They concluded that, on a 
range of measures, cognitive behavioral therapy was effective and 
gave substantial improvement. Pharmacotherapy, mainly using 
antidepressants, was generally less effective. Self-help gave some 
large improvements, but any conclusion about self-help is tentative 
because relatively little evidence was available. Detailed examina-
tion of d values on different measures and for different groups of 
studies led to suggestions of promising lines for future research. 
Overall, despite uncertainty about how d was calculated, this meta-
analysis is a good example of d in action.
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position a little on the fixed green line. Just to the right of the forest plot, 
below red 16, the lengths of the left and right arms of the CIs are shown.

The weighted average d or dunb value, which is the primary result of the 
meta-analysis, is reported at red 5 and displayed in red, with its CI, at the 
bottom of the forest plot. As usual, you can click near red 11 to direct ESCI 
to use either a fixed effect or a random effects model. The usual results 
relating to heterogeneity are shown at red 12 and 13.

If you have d values from studies with a two-independent-groups 
design, simply use the d two groups page of ESCI Meta-analysis. For 
each study, type in your d and the two sample sizes, N1 and N2, below red 
2. The page layout is very similar to that of d single group, and all of my 
discussion applies to either page.

Calculations for Meta-Analysis of d

When launching into a meta-analysis with a different ES, the main addi-
tional information we need is a formula for the variance of that ES. Given 
that, we can use the formulas of Chapters 7 and 8 to carry out all the meta-
analytic calculations. ESCI uses the formulas given by Borenstein et al. 
(2009) for the variance of d and dunb. They describe the formulas as very 
good approximations. CMA also uses these formulas.

You can skip over the formulas and simply let ESCI do the work, but I 
want to say one thing about them, so I’ll include the formulas here. For a 
single group, the variance of d is

	
V

N
d
Ni

i

i

i
= +1 2

2 	
(11.17)

where di, Ni, and Vi are the effect size, sample size, and variance of d for 
Study i. The variance of dunb, which Borenstein et al. (2009) and CMA refer 
to as Hedges’ g, is

	 ′=V J Vi i
2

	 (11.18)

where J is the adjustment factor for converting d to dunb, and Vi’ is the vari-
ance of dunb for Study i. Note that Equation (11.13) gives an approximate 
value of J.

For two independent groups, the variance of d is

	
V

N N
N N

d
N Ni

i i

i i

i

i i
= + +

+
1 2

1 2

2

1 22( ) 	
(11.19)

where N1i and N2i are the two sample sizes for Study i. The variance of dunb 
is again
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	 ′=V J Vi i
2

	 (11.18)

although in this case Vi comes from Equation (11.19).
Yes, you can skip over those formulas, but the thing I want to mention is 

that it’s interesting to note that the variance of d is the sum of two compo-
nents: The first term on the right hand side in Equations (11.17) and (11.19) 
reflects the variance of the numerator of d, the ES in original units, and the 
second term reflects the variance of the denominator, the standardizer for 
d. Yes, uncertainty in both the numerator and denominator of d contribute 
to the variance of d, and thus to the bouncing around of d with replication.

There’s one further thing you may be puzzling about—if not, you can 
safely skip to the next paragraph. If you click between d and dunb, the vari-
ance shown for the individual ES values changes—these values appear in 
the column headed Variance of chosen ES. The values change because 
ESCI chooses between Equations (11.17) and (11.18), depending on whether 
d or dunb is to be meta-analyzed. [For the d two groups page, ESCI chooses 
between Equations (11.19) and (11.18.)] Those variance values are used to 
calculate the CI on the overall ES, which is shown just below red 10. Click 
between d and dunb and watch that CI change a little and, correspondingly, 
the red error bars on the overall ES, which is displayed at the bottom of the 
forest plot, also change slightly. Why does the result of the meta-analysis 
change as you click between d to dunb, but the CIs for the individual studies 
stay the same? That’s an excellent question, and Box 11.1 explains why I’ve 
designed ESCI to show such apparently inconsistent behavior. In brief, I 
don’t think we yet have good evidence whether the CI on overall d or the 
slightly different CI on overall dunb gives the better CI for δ, which is what 
we want as one important result of our meta-analysis. So I’ve followed 
Borenstein et al. (2009) and CMA. Keep an eye out for future develop-
ments that may help us decide.

Summary of d and Meta-Analysis

ESCI provides pages that calculate the CI for δ for any d you enter, 
for either a single-group or two-independent-groups design. As I dis-
cussed earlier, I’d prefer dunb as my point estimate for δ, and the CI 
shown below red 15 as my interval estimate for δ. Considering the 
meta-analysis, click to choose whether you wish d or dunb to be the ES 
that is meta-analyzed. I suspect that choosing dunb is likely to give our 
best overall point estimate of δ—the value is shown near red 5. As I 
mention in Box  11.1, I’m not sure whether the CI on overall d or the 
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CI on overall dunb is a better interval estimate of δ. Fortunately, in just 
about every practical situation there’s little problem because these two 
intervals are very similar. Based on the simulation results I mention in 
Box 11.1, my guess is that the CI on overall d may turn out to be better, 
but future research may prove me wrong. Please let me know if you 
find any research on this issue.

Let me summarize what ESCI provides if you wish to calculate the CI 
on d for your data, assuming σ is not known:

•	 For a single sample, use the d single group page of ESCI Meta-
analysis. Type in your d and N, perhaps as Study 1, and click 
Calculate CIs.

•	 For the two-independent-groups design, you can enter all the 
data into the Data two page of ESCI chapters 5–6, or you can 
enter d, N1, and N2 into the CI for d page of ESCI chapters 10–13, 
or the d two groups page of ESCI Meta-analysis.

•	 For the paired design, you can enter all the data into the Data 
paired page of ESCI chapters 5–6.

It’s time for take-home messages. We’ve considered numerous aspects 
of d, which is the most commonly used standardized ES, and you are jus-
tified in feeling pleased if you’ve followed it all. To prompt some mem-
ories and help you write your messages, you may care to revisit some 
of the many ESCI pages mentioned in this chapter. There are four pages 
in ESCI chapters 5–6 that calculate d, dunb, and the CI on d for the two-
independent-groups and paired designs. ESCI chapters 10–13 provides a 
page that pictures d, another that illustrates how sampling produces the 
distribution of d, and a third that demonstrates the iterative process of 
finding the CI on d. ESCI Meta-analysis provides two pages for finding 
CIs and carrying out meta-analysis based on d or dunb.

Exercises

	 11.1	 Use the d picture page of ESCI chapters 10–13 to examine how 
the C and E distributions appear, for small, medium, and large 
values of δ. In each case, what proportion of E lies above the 
mean of C? Explain the meaning of such a proportion in the con-
text of an example of your choice.
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	 11.2	 In d picture, for a given value of δ, increase the SD of E. What 
happens to d? What happens to the proportion of E that lies 
above the mean of C? Explain. What standardizer would be best 
for d? Does d tell the full story?

	 11.3	 I used IQ scores, scaled so that σ = 15 in a reference population, 
as my example in which it may be reasonable to assume that a 
population SD is known and can be used as a standardizer for 
d. It’s the example commonly used in textbooks. Can you find 
another example, perhaps in your discipline?

	 11.4	 Calculate d for the Experimental group in Table 11.1. Consider at 
least two choices of standardizer and justify your preference.

	 11.5	 Equation (11.3) allows you to calculate d for the single-group 
design, given only t and the sample size. Equation (11.6) does the 
same for the two-independent-groups design. Find an example 
of each design for which t and the sample size(s) are reported, 
but not d. You might look in some other statistics textbook or in 
your favorite journal. Use those simple equations to calculate d. 
Does knowing d help you interpret the results?

	 11.6	 Find a small data set for the two-independent-groups design, 
perhaps in the exercises of another statistics textbook. Calculate 
d. Type the values into the Data two page of ESCI chapters 5–6 
and verify your calculation of d. Note also dunb and the CI on d. 
Use your selection of those to interpret the results.

	 11.7	 The same as Exercise 11.6, but for a paired design and using the 
Data paired page of ESCI chapters 5–6. Calculate the correla-
tion between the two measures, and also calculate d using sdiff 
as the standardizer. Discuss.

	 11.8	 Use Equation (11.13) to extend Table 11.3 by adding values of the 
adjustment factor for additional df values. Calculate the adjust-
ment factor given by Equation (11.13) for df = 2, 5, and 10, and 
compare with the accurate values in my table. If you can, set up 
a spreadsheet and tabulate and graph the adjustment factor for 
values of df from 2 to 50. What do you conclude?

	 11.9	 What terminology does your discipline use for d? Can you 
find any examples in your favorite journals or textbooks of d 
in action? Is the bias of d mentioned and, if so, what name and 
symbol are used for dunb?

	 11.10	Near the end of the section “The Distribution of d: The Rubber 
Ruler for d in Action,” revisit the bullet point suggestions for 
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things to try at the d heap page of ESCI chapters 10–13. Work 
further on your selection of those.

	 11.11	 I mentioned that the s pile is positively skewed, and in the long 
run a majority of s values will fall to the left of σ. I mentioned 
chi-square, but find out more about the theoretical sampling 
distribution of s2, the sample variance. What shape does it have, 
and what does that say about the s pile?

	 11.12	Use the CI for d page of ESCI chapters 10–13 to verify dunb and 
the CI on d you found for Exercise 11.6. Use CI for d to verify 
dunb and the CI on d for a couple of cases of d, N1, and N2 you 
type into d two groups.

	 11.13	Use the d single group page of ESCI Meta-analysis to find the 
95% CI for d, for the Control group in Table 11.1.

	 11.14	Find the 95% CI for d for the difference between the Control and 
Experimental groups in Table 11.1, using sp as the standardizer.

	 11.15	Find the 95% CI for d for the treatment effect in Table 11.2.
	 11.16	Look for a meta-analysis in your discipline that combines stud-

ies that used different measures. How was it done? What com-
mon ES measure was used? If d was not used, could it have been?

	 11.17	Suppose you find in the literature just three studies that have 
investigated whether a new team-building game improves 
cooperation in the workplace. Each reported a comparison of an 
experimental group that played the game and an independent 
control group that spent the time on some irrelevant activity. 
Unfortunately, each study used a different measure of coopera-
tion. Table 11.5 presents the data. Calculate a suitable d for each 
study and conduct a meta-analysis of the three studies. Explain 
the main decisions you need to make. Interpret your findings.

Table 11.5

Data for Three Studies of Workplace Cooperation

Study MC sC NC ME sE NE

ABC Inc.   11   8 20   16   5 20
PQR Inc.   44 21   8   37 28   9
XYZ Inc. 148 33 15 177 43 11

Note:	 M, s, N are mean, SD, and sample size, respectively; 
C subscript = control condition, E subscript = 
experimental condition.
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	 11.18	Revisit your take-home messages. Improve them and extend 
the list if you can.

Take-Home Messages

•	 Cohen’s d is a standardized ES. It’s a mean or difference between 
means expressed as a number of SDs. It’s therefore a kind of 
z score. Choosing an SD to use as the standardizer requires 
judgment.

•	 The standardizer must make conceptual sense as a unit to mea-
sure ES. If an appropriate population SD is known, it’s usually 
the best choice as standardizer. If not, we want the best available 
estimate of the most appropriate population SD.

•	 Expressing a result in terms of d can assist interpretation, and also 
inclusion of the result in future meta-analyses. Don’t only report 
d, but discuss what it implies.

•	 When interpreting any d it’s essential to know what standardizer 
was used and how d was calculated. When reporting d it’s essen-
tial to state clearly that same information. Beware of terms and 
symbols that are used inconsistently. For example, Hedges’ g is 
currently used with at least two different meanings.

•	 Think of d as a ratio of an ES in original units divided by an SD 
estimate. Unless the standardizer is a population SD, there’s error 
of estimation in both numerator and denominator, and interpreta-
tion must pay attention to both.
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•	 As the d picture page of ESCI chapters 10–13 illustrates, even 
large d is accompanied by considerable overlap of distributions, 
and probabilities of superiority that are larger than .5 but not 
close to 1.0. Even if an effect is large, many individual cases may 
go against the trend.

•	 For the two-independent-groups design, if we’re willing to assume 
homogeneity of variance the best choice of standardizer is usually 
sp, the pooled within-groups SD. However, if the experimental 
group is expected to have a considerably larger SD than the con-
trol group, we may choose sC, the control SD, as the standardizer, 
especially if that group is large.

•	 If data are available from more than one comparable study, or con-
trol group, consider using an SD pooled over studies or groups as 
the standardizer.

•	 For the paired design it’s almost always best to use sav as the stan-
dardizer, calculated using Equation (11.9) from the SD of each of 
the measures. Using sdiff, the SD of the differences, is usually not 
meaningful and often gives an inflated value of d. Be especially 
cautious when interpreting d for paired or repeated measure 
designs: How was d calculated?

•	 Use Equation (11.13) to adjust d to give dunb, an unbiased estimate 
of δ. The unbiased estimate dunb should usually be preferred to d, 
and should probably be used much more widely.

•	 Four pages in ESCI chapters 5–6 allow you to calculate d, dunb, and 
the CI on d for your own data and for simulated experiments.

•	 When, as usual, σ is not known and s is the standardizer, d has 
a noncentral t distribution, as illustrated by the d heap page of 
ESCI chapters 10–13. The s pile and rubber ruler for d illustrate 
how the value of d depends on s, which changes from sample to 
sample. Take-home movie: The d heap rubber ruler in action.

•	 Finding accurate CIs on d requires the use of noncentral t and 
successive approximations, as illustrated by CI for d. CIs on d are 
usually a little asymmetric.

•	 Meta-analysis based on d can in suitable cases combine results 
from studies that used a variety of original units measures. There 
are two pages in ESCI Meta-analysis that may assist. To judge 
whether meta-analysis is appropriate, it’s essential to consider the 
comparability of effects estimated by the different studies, and 
also the comparability of the standardizers used to calculate d for 
the different studies.
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12
Power

I’m ambivalent about statistical power. On one hand, if we’re using NHST, 
power is a vital part of research planning. Also, funding bodies and eth-
ics review boards often require power calculations. On the other hand, 
power is defined in terms of NHST, so if we don’t use NHST we can ignore 
power and instead use precision for research planning, as I discuss in 
Chapter 13. However, I feel it’s still necessary to understand power, partly 
because power calculations are often required, and partly to help under-
stand NHST and its weaknesses. I have therefore included this chapter, 
although I hope that, sometime in the future, power will need only a small 
historical mention.

Statistical power has a narrow technical definition, but sometimes 
“power” is used more broadly to refer to the extent that an experiment 
provides information to help solve our research problems, and gives us 
insight about the world. I’ll use the term informativeness to refer to this 
more general characteristic of an experiment, and I’ll distinguish it from 
the less important concept of statistical power. Informativeness will 
remain an important idea, even if we move on from NHST and no longer 
use statistical power.

In this chapter we’ll discuss

•	 An introduction to power
•	 A take-home image—the power picture
•	 Calculating power
•	 Intuitions about power
•	 Post hoc power—illegitimate power
•	 What we really want—informativeness
•	 High power, high informativeness
•	 Reporting power

Introduction to Power

Back in Chapter 2 I defined statistical power: It’s the probability of obtain-
ing statistical significance—and therefore rejecting H0—if a precisely 
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stated alternative hypothesis is true. It’s 
the chance that we’ll be able to reject the 
null hypothesis if there’s a true effect of 
a particular stated size in the population. 

Informally, power is the chance that our experiment will identify a par-
ticular real effect, if it exists.

Calculating power requires the alternative hypothesis to be a precise 
statement of an ES, for example, that a new analgesic reduces headache by 
exactly 1.0 scale units on our 0 to 10 pain scale. It’s much more common 
for researchers to use NHST to test H0 against a vague alternative, such 
as H1: δ ≠ 0, and so having to choose a precise value for H1 is an unfamil-
iar task. It’s also a difficult task because, most likely, the more pain relief 
the better, and there isn’t any exact amount of pain relief in which we’re 
particularly interested. Therefore, the pre-
cise H1 is often an arbitrary choice. In addi-
tion, it may or may not be an estimate of 
the population ES that’s true in the world. 
I’ll refer to it as target δ to emphasize that 
it’s our choice of a value to use in a power calculation. So target δ is a value 
that’s specified by H1, and it can be any value we care to choose for our 
power calculation.

To illustrate some basic features of power I’ll discuss the simulation we 
used in Chapter 5 for the dance of the p values. It was a two-indepen-
dent-groups experiment that evaluated your new relaxation therapy. We 
assumed that δ = 0.5 for your therapy, and that σ was known. We used 
groups of size N = 32. For power calculations we chose target δ = 0.5, 
the value assumed true in the simulation. ESCI calculated that, with two-
tailed α = .05, the power is .52. Back in Chapter 5, Figure 5.11 shows the 
frequency histogram of the p values we obtained in 1,500 simulations of 
that experiment. Close to 52% of them were less than .05, which illustrates 
power as the chance that an experiment will reject the null hypothesis 
when target δ is true in the (simulated) world.

As a further illustration of power, I fired up the Dance p page of ESCI 
chapters 5–6 and set up the simulation as before, then increased N until 
ESCI reported near red 3 that power is .80. Using N = 63 did the trick. I 
then ran 1,500 simulations and enjoyed the dance of the CIs and the dance 
of the p values. Figure 12.1, which is analogous to Figure 5.11, shows the 
frequency histogram of the 1,500 p values I obtained. Above each column, 
the observed and theoretically predicted percentages of p values in that 
column are displayed, where “theoretically predicted” refers to the result 
of a power calculation using our target δ = 0.5. Adding the observed per-
centages for the *, **, and *** columns indicates that 80.4% of my p val-
ues were less than .05, close to the 80.1% total of the three theoretically 

Statistical power is the probability of obtain-
ing statistical significance if the alternative 
hypothesis is true, that is, if there really is a 
population effect of a stated size.

Target δ is a precise value of the population 
ES that we choose for the H1. It may or may 
not be an estimate of the population ES that’s 
true in the world.
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predicted percentages—which is the power of .80. Here are my comments 
on this illustration of power:

•	 We had inside knowledge that the simulation assumed δ = 0.5, 
and therefore we could select target δ = 0.5 for our power calcu-
lation. Because those two values were the same, the percentage 
(80.4%) of simulated experiments that rejected H0 matched closely 
our calculated power of .80. If we simulated many more experi-
ments, the match would be even closer.

•	 To calculate power we need to know the experimental design, the 
sample size N, our α, and a target δ. We changed N from 32 to 
63 and saw power change. Change any of those features of an 
experiment and power will change.

•	 It therefore makes no sense to say “my experiment has power of .85” 
if you don’t tell us all those other things about your experiment. 

p > .10

�eoretical
prediction

Observed

181
12.1%
12.3%

114
7.6%
7.6%

307
20.5%
21.0%

432
28.8%
27.7%

466
31.1%
31.4%

Power, for α = .05

? * ** ***

Figure 12.1
The frequency histogram of p values, for 1,500 simulated experiments that evaluated your 
new relaxation therapy. The experiments used two independent groups, each with N = 63, 
and δ = 0.5, so, with two-tailed α = .05, the power = .80. Back in Chapter 5, Figure 5.11 shows 
the corresponding histogram when N = 32 and power = .52. Above each column the top 
number reports the frequency for that column, then the numbers below are the observed 
and theoretically expected percentages of p values in that column. The sum of the percent-
ages for the *, **, and *** columns is power.
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The most common omission is tar-
get δ. Any stated value of power 
describes a particular experiment, 
for a stated exact target δ.

•	 The histogram in Figure 12.1 can also tell us power for some other 
values of two-tailed α. For example, for α = .01 we add percent-
ages for the ** and *** columns and find that 59.9% of my p values 
were less than .01, close to the 59.1% total of the two theoretically 
expected percentages. Power was thus .59, which is lower than .80 
because we adopted a more stringent α = .01 criterion for statisti-
cal significance. Yes, change α, and power will change.

•	 Power is a single value, say .80, but it’s based on a distribution of 
p values. We found in Chapter 5, and Figure 12.1 further demon-
strates, that this distribution of p is very wide. Recall how very 
wide p intervals usually are: For all but extremely high values of 
power, any experiment can give a p value from a very wide range.

A more general conclusion from all this discussion of NHST, p values, 
and power may be that our conclusion in Chapter 5 was correct: It’s more 
informative to use estimation instead, and to have in mind meta-analysis 
to combine evidence over experiments. I hope this discussion of power 
may reinforce such new statistics intuitions, which are worth keeping in 
mind even as I continue to use NHST to discuss power.

It’s time for a picture: I believe a picture is needed to make power—like 
just about any other concept—understandable and memorable. The power 
picture is my suggestion for a take-home image. I’ll use that picture as a 
context to describe power and how to calculate it.

The Power Picture

Recall the Hot Earth Awareness Test (HEAT)—the fictitious test I intro-
duced in Chapter 3. Suppose we’re investigating HEAT scores in our 
country. The HEAT has population mean μ = 50 and standard deviation 
σ = 20 in the reference population used in the development of the test, 
so we’ll use H0: μ = μ0 = 50 as our null hypothesis. We’ll take a sample of 
10 students—way too small, I know, but small N emphasizes interesting 
features of the power picture. For such a single-group design, assuming σ 
is not known, the test statistic is

	
t

M
s N

= − µ0

	
(10.1)

A stated value of statistical power refers to 
an experiment with a specified design, for 
stated values of N, α, and target δ. In par-
ticular, target δ must be specified.
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We encountered that formula in Chapters 10 and 11. We’ll choose α = 
.05 and, as usual, a two-tailed test. We can insert μ0 = 50, N = 10, and our 
sample M and s into Equation (10.1) to calculate t. Figure 12.2 shows the 
distribution of t if the null hypothesis is true. The rejection region for our 
test is the two tails of that distribution beyond plus and minus the critical 
value of t, which is t.95(N – 1) = t.95(9) = 2.26. We encountered t.95(N – 1) back 
in Chapter 3, Equation (3.3), when we were calculating 95% CIs. As usual, 
you can use the Normal z t page of ESCI chapters 1–4 to find that critical 
value, with help from Appendix B if you wish. Figure 12.2 marks the two 
tails that make up the rejection region. We reject the null hypothesis if the 
t value we calculate falls in either tail.

A Point Alternative Hypothesis

To calculate power, we need to specify a target δ, which is the exact value 
stated by the alternative hypothesis. As I mentioned earlier, target δ is a 
value we choose that may or may not be an estimate of the true popula-
tion ES. I’ll discuss below how we might choose target δ. For our example 
here, suppose a large national survey reports that the mean HEAT scores 
for students in Awareland is 68. We hope students in our country are just 
as aware of climate change issues, so we’ll choose H1: μ1 = 68 as our point 
alternative hypothesis. The corresponding target population ES is then
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Figure 12.2
The distribution of t if H0 is true, for a single group with N = 10, assuming σ is not known. 
The rejection region for a two-tailed test with α = .05 is the two shaded tail areas, which 
extend above t = 2.26 and below t = –2.26. The curve is the central t distribution with df = 
(N – 1) = 9.
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	 δ µ µ
σ

= − = − =1 0 68 50
20

0 90. 	 (12.1)

In other words, μ1 is 0.90 of a population SD higher than μ0. In terms of 
Cohen’s conventions, that’s a large effect. To find power we need to know 
the distribution of the t statistic, as given by Equation (10.1), when the 
alternative hypothesis is true. Figure 12.3 is an example of what I call the 
power picture and shows that distribution. Power is the area under that H1 
distribution for all values of t in the rejection region, which means power 

is the large area under that curve corre-
sponding to the right rejection tail, plus 
a tiny invisible area under the H1 curve 
corresponding to the left rejection tail. We 
can usually ignore that second, tiny area, 

although ESCI doesn’t. The large area to the right is shaded dark gray, 
although note that this area includes the right tail rejection area shaded 
light gray—think of the dark gray continuing behind the light gray.

For our single group example, with N = 10, α = .05, and target popula-
tion ES of 0.90, the power is .72. The dark shaded area in Figure 12.3 is 
72% of the total area under the H1 curve. If we run our experiment, and 
students in our country really do have a mean HEAT score of 68, then 

The power picture is what I call a figure like 
Figure 12.3 that displays the distributions of 
the test statistic, z or t, when H0 is true, and 
when H1 is true.
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Power

Figure 12.3
The example of Figure 12.2, but showing also the distribution of t when H1 is true. The 
population ES under H1 of δ = 0.90 determines the H1 distribution, which is noncentral t 
with noncentrality parameter Δ = 2.85 and df = 9. The vertical line on the right marks Δ = 
2.85. Power = .72, which is the area under the H1 curve for t in the rejection region. This is 
the area on the right corresponding to the right rejection area tail, plus a tiny invisible area 
under the H1 curve corresponding to the left rejection area tail.
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there’s a 72% chance that we’ll obtain p < .05 and can reject the null 
hypothesis that their population mean is 50. Even with a large population 
ES we have a 100 – 72 = 28% chance of failure, because our sample size is 
so small.

You may feel that my example is contrived and unrealistic, and the 
choice of an exact value for the alternative hypothesis may seem espe-
cially artificial. Why not simply use our M and its CI to give an estimated 
ES for students in our country? The CI would, no doubt, be wide and tell 
us that we have only an imprecise estimate, but that’s the truth. Yes, such 
doubts about these power discussions are justified, and it’s worth keeping 
in mind the estimation alternative as we continue to discuss NHST.

Sampling Distribution When H1 Is True

It’s easiest to think of power in terms of the power picture and areas under 
the H1 curve. How would Figure 12.3 change for a different population ES 
under H1, meaning a different value of μ1 and therefore a different value 
of target δ? The H1 curve would shift—to the right for larger δ and to the 
left for smaller δ. Figure 12.4 is another version of the power picture that 
illustrates a smaller δ and an H1 curve shifted left. Less of the curve cor-
responds to the right rejection tail, so power is smaller. That’s what we’d 
expect: A smaller true effect is less likely to give p < .05. In Figure 12.4 I’m 
using μ1 = 60, and so δ = 0.50, which gives power of .29.
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Figure 12.4
Same as Figure 12.3, but with population ES of δ = 0.50, so the H1 curve is shifted left. That 
curve is a noncentral t distribution with noncentrality parameter Δ = 1.58 and df = 9. The 
vertical line on the right is positioned at Δ = 1.58. Power is now .29.
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The H1 curve is a noncentral t distri-
bution. If that’s sufficient (or too much) 
information about the H1 distribution, 
feel free to skip to the next paragraph. To 
find the noncentrality parameter Δ, recall 
from Chapter 10 that

	 ∆ = −µ µ
σ
1 0

/ N
	 (10.3)

Substitute from Equation (12.1) to obtain the beautiful relation that

	 ∆ = δ N 	 (12.2)

The noncentrality parameter Δ simply reflects the target population ES and 
the sample size. For Figure 12.3, δ = 0.90 and Equation (12.2) gives Δ = 0.90 × 
10  = 2.85. This value is marked by the vertical line at approximately the 

mean of the H1 curve. Similarly, for Figure 12.4, δ = 0.50 and Δ = 0.50 × 10 = 
1.58, and this is the value marked by the vertical line. In any such case, to 
find power we need to calculate an area under the noncentral t distribution.

This would be a good moment to cross-check with some other statis-
tics textbook you know. If it discusses power, it probably has a figure like 
Figure 12.3, but note two likely differences. First, it probably assumes that 
σ is known and therefore shows two normal distributions. That’s a per-
fectly fine way to introduce power, and is the approach I used for the 
dance of the p values in Chapter 5. It’s more realistic, however, to assume 
that σ is not known, in which case we need the central and noncentral t 
distributions, as in Figures 12.2 to 12.4.

Second, in Figures  12.3 and 12.4 we’re assuming that H1 is true, so I 
faded the H0 curve and the rejection regions to light gray, whereas I high-
lighted the H1 curves in black and areas for power in dark gray. Most text-
books simply show two similar curves in their power picture. That may 
be misleading because it doesn’t emphasize that at any moment only one 
hypothesis can be true. I used the strategy of highlighting and graying 
out in Chapter 10 when discussing sampling, first assuming H0 true, then 
assuming H1 true. When examining any power picture, it’s essential to be 
clear which hypothesis you are currently assuming true, and it may help 
if the picture itself makes that obvious.

ESCI’s Power Picture

Figures 12.2 to 12.4 come from the Power picture page of ESCI chapters 
10–13. If you fire up that page, you can explore many things about power 

When σ is unknown, t is our test statistic. 
When the alternative hypothesis is true, t has 
a noncentral t distribution, so power is an 
area under a noncentral t curve.
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for the single-group case. Figure 12.5 shows the control panels; power is 
reported near red 4. Here are some suggestions:

•	 Use the spinner near red 1 to select sample size N. Change N 
freely, because intuitions about sample size are central to under-
standing power.

•	 Click the radio buttons near red 3 to specify whether you are 
assuming that H0 or H1 is true. See corresponding aspects of the 
figure highlighted or faded to gray.

•	 Click the radio buttons near red 1 to specify whether or not σ 
is assumed known. Note the change between using z as the test 

Figure 12.5
The control area in the Power picture page of ESCI chapters 10–13.
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statistic and seeing two normal curves, and using t and seeing 
central and noncentral t curves.

•	 Use the slider near red 2 to change target δ, the population ES if H1 
is true. The H1 curve shifts left and right: Watch the big changes in 
its shape and in power, which is reported near red 4.

•	 Use the spinner near red 3 to change two-tailed α.
•	 Use this page to calculate power for a single group experiment.

Calculating Power

A Two-Independent-Groups Example

Suppose you plan with a colleague in another country to compare HEAT 
scores. She can organize a sample of 80 students, and you can find 60. You 
decide to use α = .05, and agree that the difference in mean HEAT scores 
between countries may only be small, say δ = 0.2, so that’s your target δ.

To calculate power for the two-independent-groups case, fire up the 
Simulate two page of ESCI chapters 5–6, scroll far right to see check-
boxes at red 11 and 12, click them both on, then scroll back left to see a 
blue panel for power at red 13. Figure 12.6 shows part of the control area 
for that page, including the panel for power.

Set the two sample sizes at red 3, and use the spinner for C near red 6 to 
adjust the α value shown at red 13. Adjust the spinners near red 7 for pop-
ulation parameters μ1, μ2, and σ until δ = 0.2 is shown in the red 7 area. You 
can choose any convenient values that give δ = 0.2, which is what’s used 
to calculate power. For example, set μ1 = 50 and σ = 10, then adjust μ2 until 
you see the δ you want. Click Another experiment near red 1 to trigger 
calculation of d, and power using t. That’s how I created the screen shot 
shown in Figure 12.6. Power is .21 assuming that you’ll use t as the test 
statistic. (Using z it’s .22—very similar, as we might expect given the fairly 
large samples.) Oh dear, such low power! You investigate other options. 
Increasing both sample sizes to 100 only increases power to .29. However, 
you find that the seemingly small change of target δ from 0.2 to 0.3 (as 
before, adjust μ2 to obtain the δ you want) lifts power to .56. That’s better, 
but hardly good. Hmm, can you just change target δ at whim like that? 
Later I’ll discuss ways to choose and justify target δ, but for the moment 
we’ll assume that it’s simply your choice. Using δ = 0.4 gives power .80, 
and δ = 0.5 gives power .94. Much better. You know that you can also 
increase power by increasing α, but you agree with your colleague that 
increasing α is a bad strategy. You recall the conclusion of Chapter 5 that 
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only very small p values tell us much at all, so you’d strongly prefer to use 
α = .01. You set C = 99 at red 6, so α = .01, then find that, for δ = 0.2, power 
is a pathetic .12. For target δ = 0.50, however, power is a more encourag-
ing .82. You agree to hope for the best and go ahead with the experiment 
using α = .01 and two groups of 100.

My imaginary discussion illustrates a common way to use power cal-
culations to guide research planning, by exploring trade-offs between 
various features that determine power. That’s useful because it helps us 
understand our options, but, on the other hand, it offers scope for fudg-
ing: Set δ just a little higher and we’ll get a more respectably high value 
for power. I’ll discuss that fudging problem later. First, however, note 
that the calculations are based on the assumptions we usually make, 
but which may or may not be reasonable in a particular real-life situa-
tion. We’re assuming that each sample is a random sample from a nor-
mal population, and that the two populations—students’ HEAT scores 
in the two countries—have the same SD. Using those assumptions, we’ve 
found that power is often disappointingly low, that larger sample sizes 
can increase power but only to a moderate extent, and that to use a more 
reassuring α = .01, rather than .05, we pay a considerable price in terms of 

Figure 12.6
Part of the control area in the Simulate two page of ESCI chapters 5–6. Sample sizes are 
N1 = 80 and N2 = 60.
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decreased power. In addition, target δ, the 
population ES we’re aiming to find, has a 
dramatic influence on power. All of those 

conclusions are important and quite general facts about experimental 
design that are highlighted by power calculations. These harsh realities 
about the difficulty of designing experiments with high power may be 
a big reason why researchers usually don’t calculate or report power. 
Perhaps they really don’t want to know how low it is?

Finally, for this two-independent-groups example, consider the experi-
ment you decided to run: Two groups of 100 seems, by the standards of 
many research fields, quite comfortable. But even with those groups, it 
takes a medium-sized effect of δ = 0.5 before power reaches a comfort-
able .94 using α = .05, or .82 using α = .01. Cohen (1969, 1988) introduced 
the custom that power of .8 may be acceptable. Medicine also sometimes 
uses .8 as a planning target for power, although .9 or even higher values 
are sometimes used. However, if we go with the custom and use power 
of .8, there’s still only an 80% chance of obtaining p < α if our target δ is a 
true effect. Running the experiment amounts to choosing a p value from 
the wide distribution in Figure 12.1, and a 20% chance that we’ll be disap-
pointed. Power of .8 may be hard to achieve, but it is hardly high enough 
for comfort. If you run your HEAT study with two samples of 100 and 
α = .01, then power is .82 and you have an 18% chance of failing to obtain 
statistical significance even if the true effect is δ = 0.5. Perhaps the slogan 
for this chapter should be, “No free lunch!”? Meta-analysis of a number of 
experiments springs to mind: Yes, indeed.

A Paired Design Example

A further and important way to improve things is to use a more sen-
sitive experimental design. Suppose you are interested in possible 
changes in HEAT scores in your country over the last 2 years. You could 
compare two independent groups of students at the two times, but, for-
tunately, 2 years ago a sample of 40 students gave HEAT scores and you 
are able to test the same students again this year. You decide that the 
paired design is appropriate, so you investigate the Simulate paired 
page of ESCI chapters 5–6. Scroll far right, click at red 13 and 14 then 
scroll back left to see the blue power panel at red 15. Figure 12.7 shows 
part of the control area, including the power panel. Set N near red 4, and 
α by adjusting C near red 7. For the paired design you also need to set a 
value for the correlation in the population between the two measures. 
You decide to use .9, because you expect there will be a very high cor-
relation between HEAT scores at the two times. You need to adjust both 
σ, the SD within each population, and σdiff, the SD of the population of 

In general, power is influenced by sample 
size, but is influenced more by α and even 
more by δ, the target population ES.
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paired differences, which together determine the population correla-
tion between the two measures. Recall from Chapter 6 that the higher 
this correlation, the more sensitive the design. Here’s an easy way to 
do it: Set μ1 = 10 and σ = 40, then adjust μ2 until δ is as you want it, for 
example, δ = 0.2. Now adjust σdiff until the correlation shown near red 
8 is as close as possible to what you want, for example, correlation = 
.9. Click Another experiment to trigger calculation, and see the power 
values near red 15.

You play around with various values and find that, when you set N = 
40, correlation of .9, and α = .01, the power is .55 for δ = 0.2, as Figure 12.7 
illustrates. For δ = 0.3 power is a wonderful .93. Even with correlation 
of .8, power values are considerably higher than for a comparable two-
independent-groups experiment. Once again you find that N makes a dif-
ference, but it’s target δ and the correlation between the two measures that 
have the really big influences on power.

Yes, the paired design can be powerful and, as we saw in Chapter 6, 
it’s an attractive design, but, of course, only when it suits the situation. 

Figure 12.7
Part of the control area in the Simulate paired page of ESCI chapters 5–6. Sample size is 
N = 40.
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Might carry-over effects between the two measures be a problem? As 
ever, careful thinking is needed. In this case, be very clear about the two 
ways of investigating the question, “Have HEAT scores changed over 
the last 2 years?” A two-independent-groups experiment that compares 
beginning students in 2011 with beginning students in 2009 is compar-
ing two cohorts of students. By contrast, a paired design experiment that 
compares beginning students in 2009 with the same students in 2011 is 
assessing change in a single cohort of students. At second testing, those 
students may be different not only because the world is different in 2011 
but because they are older and have experienced 2 years at university. 
Either experiment may give interesting findings, but they are investigat-
ing different interpretations of our original question.

Choosing Target δ, Correlation, and α

Where do the values come from that I’m plugging into ESCI to calculate 
power? That’s a good question. We need to choose values appropriate for 
our particular research situation. I’ll start by discussing three approaches 
to choosing δ and correlation values. I’ll focus on target δ, but similar con-
siderations apply to choosing the correlation in the paired design case.

First, we could look for an estimate of the true value of δ in the popu-
lation. Previous research, ideally a meta-analysis of previous research, 
might provide a good estimate of δ. More generally, knowledge of the 
research field may suggest typical values. Perhaps you’ve already carried 
out similar experiments and they can suggest values to use in planning 
the next experiment? Some books suggest running a small pilot study, 
but usually such a study gives only a poor, imprecise estimate of δ, and 
we know that small differences in target δ can give large differences in 
power. The central problem is that, if we had good knowledge of δ, we’d 
hardly need to run our planned experiment at all.

A second approach is to choose for target δ a value that’s of theoretical 
or practical interest. If the theory you are testing predicts that there’s a 
small to medium-sized effect, you could choose δ = 0.3 as your target ES. 
Or you might judge a decrease of 3 points on the depression scale you 
are using to be the minimum improvement that’s of clinical interest, or 
of value to the client, so you choose 3 points as your target ES. You need 
as well an SD estimate for the depression scale to use as a standardizer. 
The manual published with the scale, or previous research with the scale, 
may provide an SD value for an appropriate population. The discussion 
in Chapter 11 about finding a suitable standardizer may suggest further 
options. Divide 3 by your chosen SD to get a value of δ to use as the target 
population ES in your power calculation.
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The third and most common approach is to recognize that there usually 
isn’t just a single value of target δ that’s of interest. Often it’s useful to calculate 
power for various combinations of values relevant for our intended research. 
My imagined discussion between you and your colleague as you plan your 
HEAT experiment is an example, and illustrates how power calculations often 
alarm researchers about how weak their contemplated experiment is, then 
guide them to some compromise between what size experiment is achievable 
and what target δ that experiment can seek with reasonable power.

Now let’s consider α. A strategy that’s often recommended is to choose 
an α level that reflects the costs and benefits of making Type I and II errors 
in a particular situation. For a life-and-death decision about approving a 
drug for public use we might use α = .001, which Figure 12.1 shows would 
give, for our earlier example, power of only .32 (the theoretical expectation 
for the *** column). Low power, yes, but possibly intelligent decision mak-
ing if we are using NHST. On the other hand, for an exploratory experi-
ment in a little-researched area, we may be looking for hints of anything 
that could on further investigation prove interesting. We might elect to use 
α = .10, or some other high value, to reduce the chance of a Type II error. 
Power would be high, but so would the risk of Type I error. Considering 
costs and benefits is an appealing strategy for choosing α, but conventions 
about using α = .05 or .01 are strong, and few researchers would consider 
α greater than .05.

Does it strike you as disturbingly subjective to have to choose so many 
values to calculate power? If so, I agree, and I find it even more disturb-
ing that above I could give only vague advice about how to select target 
values for δ and the population correlation—two features of an experi-
ment that are especially influential on power. Earlier I mentioned the pos-
sibility of fudging a power calculation. Yes, the need to specify so many 
values gives, unfortunately, large scope to 
choose a set of values that gives a power 
value to fit your needs, even if it may not 
represent reality. For target δ there may 
even be scope to choose both the numera-
tor (3 points on the depression scale, but 
why not 4?) and the denominator SD we need as a standardizer. A small 
amount of tweaking of each and we might be able to argue that any of a 
wide range of δ values is reasonable. I suspect that many power analy-
ses presented to funding bodies and ethics review boards reflect some 
creative adjustment of various assumptions so the final proposed sample 
sizes are more or less achievable and target δ values not too unbeliev-
able. You may now be thinking that a quite different approach based 
on estimation and meta-analysis is especially appealing. Well, I’d never 

Exploring how power varies for different val-
ues of N, α, and target δ (and, for a paired 
design, correlation) can give insight, but sub-
jectivity of variable choice means power cal-
culations are open to fudging.
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discourage that thought. Next I’ll turn to some ESCI pages intended to 
help build accurate intuitions about power.

Intuitions About Power

There are few formulas in this chapter because I’m more interested in 
intuitions. Also I can’t give you a simple formula for tail areas under the 
noncentral t distribution, and Figures 12.3 and 12.4 show that we need 
such tail calculations to find power. We’ll let ESCI do the number crunch-
ing while we focus on the intuitions. Much of my previous discussion 
was about how different aspects of an experiment have smaller or larger 
influences on power. This section continues the theme, but with pictures.

The Two-Independent-Groups Design

Figure 12.8 shows power curves that illustrate how power changes with N 
for the two-independent-groups design, using t as the test statistic. Sample 
size N is assumed the same for each group. For groups of different sizes, 
use Simulate two, as discussed in the previous section. The figure uses 
α = .05, and each curve is for a particular value of δ. The curve for δ = 0.5 
is highlighted, and three other curves are labeled with their δ values. A 
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Figure 12.8
Power curves for the two-independent-groups design, with α = .05, using t as the test statis-
tic. Sample size N, the same for each group, is plotted on the horizontal axis. Each curve is 
for a particular value of target δ. The curve for δ = 0.5 is highlighted, and three other curves 
are labeled with their δ values. The N cursor is positioned for power close to .5, for δ = 0.5, 
and shows N = 32 gives that power.



 

Power	 337

vertical cursor reports power for a chosen N, in this case showing power = 
.50 when we have two groups of size 32.

Study Figure 12.8 for a moment and consider what messages it’s send-
ing. For me, it’s saying that target δ is the most important influence on 
power, and that the power curve is quite different in shape for different 
values of δ. Even modest experiments, with two groups of 20 or 30, have 
high power to find large or very large population effects—δ of 0.8 or more. 
But if we’re looking for small effects—δ of 0.2 or 0.3—even groups of 100 
have very low power.

Figure 12.9 is similar, but for α = .01. It shows in addition a horizontal 
cursor for power, which is set to power = .8. The vertical N cursor has been 
placed where the power cursor intersects the δ = 0.5 curve, and shows 
that, with α = .01, two independent groups of size 95 have power of .8 to 
find a population effect of size δ = 0.5. Compare the two figures. To me 
they say that, for large and very large δ, power is still in most cases quite 
high when α = .01. However, for small and medium effect sizes, lower α 
comes at the price of considerably lower power. Not even large N—well, 
N = 100, anyway—can give large power with α = .01 unless we’re looking 
for a substantial δ.

Figures 12.8 and 12.9 come from the Power two page of ESCI chapters 
10–13. Figure 12.10 shows that page’s control area. At red 1, click to assume 
that σ is known and z is the test statistic, or σ is not known and therefore 
t is the test statistic. The spinner at red 1 selects α. Be warned that, when 
using t, if you change α the whole figure must be recalculated, which 
requires roughly 3,000 noncentral t calculations. It can take a while, and 
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Figure 12.9
Same as Figure 12.8 but with α = .01. A horizontal power cursor has been added, at power = 
.8. The N cursor has been moved to where the power cursor cuts the δ = 0.5 power curve, 
and shows that N = 95 for that power and population ES.
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nothing seems to be happening. (Here’s a hint: If you want to change α by 
more than a click or two of the spinner, select z, change α, and then switch 
back to t. It’s faster because the calculations for z are much faster than 
those for t.) The spinner near red 2 selects which curve is highlighted. 
As usual, explore the checkboxes that control various display features. 
When the N cursor is displayed, the slider below the figure shifts it left 
and right. When the power cursor is displayed, the spinner near red 5 
shifts it up and down. For values of N larger than 100, which lie beyond 

Figure 12.10
Control area for the Power two page of ESCI chapters 10–13. For N greater than 100, use 
the bottom panel. The values shown tell us that, for α = .05 and target δ = 0.2, an N of 309 is 
needed to achieve power of .7.
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the horizontal axis in the figure, use the bottom panel at red 6. This panel 
calculates power using z, but for such large N the results are very similar 
to those based on t.

Table  12.1 provides a further approach to building intuitions about 
power. It shows the smallest N needed to achieve target power shown at 
the left, for selected values of α and δ. The test statistic is t, except that z is 
used when N > 100.

The Paired Design

For the paired design, use the Power paired page of ESCI chapters 10–13. 
Figure 12.11 is from that page and shows the power curves for the paired 
design, for α = .01, using t. The horizontal axis shows N, the number of 
pairs. The population correlation between the two measures is shown as ρ 
(Greek rho) and is set to .70. Figure 12.12 shows the control area, including 
the slider near red 1 that sets ρ. The cursors in Figure 12.11 illustrate that 40 
is the smallest N that gives power at least .90. Compare Figures 12.11 and 
12.9, and note that α = .01 in both. Even with ρ only .70, a correlation likely 
to be exceeded in many practical cases, the considerably higher values of 
power in Figure  12.11 illustrate once more the advantages of the paired 
design—assuming, of course, that it’s appropriate for the research situation.

The Power paired page provides similar scope for setting values and 
for exploration of the paired design as Power two provides for the two-
independent-groups design. The main addition is the slider near red 1 that 
sets ρ, the population correlation between the two measures. Table 12.2 
gives a further perspective on power for the paired design. The left half 

Table 12.1

Minimum Sample Size Required to Achieve Various Levels 
of Power for the Two-Independent-Groups Design, for Selected 
Values of α and δ

Target 
Power

α = .05 α = .01

δ 0.2 0.3 0.5 0.8 1.0 0.2 0.3 0.5 0.8 1.0

.50 193   87   32 14   9 332 148   55 23 15

.60 245 109   41 17 11 401 178   66 27 18

.70 309 138   51 21 14 481 214   79 32 21

.80 393 175   64 26 17 584 260   96 39 26

.90 526 234   86 34 23 744 331 120 49 32

.95 650 289 104 42 27 891 396 143 58 38

Note:	 Values are sample size N, where N is the size of each of the two groups. 
The test statistic is t except that, for N > 100, the test statistic is z. For 
such large sample sizes, using z gives the same or very similar N to that 
found using t.



 

340	 Understanding The New Statistics

of the table is for ρ = .50, and the right half is for ρ = .80. Both use α = .01, 
so you can compare any N in Table 12.2 with those in the right half of 
Table 12.1, which also uses α = .01.

Enjoy the generally high power of the paired design, even with modest 
values of ρ, for example, in the range .4 to .7. In practice, the paired design 
often gives ρ of .8 or even .9 or more, and so even quite small experiments 

can have considerable power. Pretest-
posttest experiments with a single group 
of participants are a common example of a 
paired design. They often have a high cor-
relation between the pretest and posttest 

measures, and so are likely to give high power. As usual, we need to be 
sure that the paired design is appropriate for our situation, and we don’t, 
for example, have serious carry-over effects between the two measures.

After all this exploration of how power varies with α, δ, N, and other 
features of an experiment, I need to mention, or rather warn you about, 
post hoc power. Then we can consider ways to increase power.

Post Hoc Power—Illegitimate Power

There’s a sinister side to political power, and most people know to 
watch out for it. Unfortunately, there’s also a sinister side to statistical 

A repeated measure design, such as the 
paired design, can give high power, but 
make sure the design is appropriate for the 
particular circumstances.
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Figure 12.11
Power curves for the paired design, with α = .01, test statistic t, and population correla-
tion ρ = .70 between the two measures. The horizontal axis shows N, the number of data 
pairs. The curve for δ = 0.5 is highlighted, and three other curves are labeled. The power 
cursor marks .90, and the N cursor shows 40 is the smallest N giving at least that power.
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power, and we all need to watch out for 
that. I’m referring to post hoc power, and 
I’m going to recommend that you never 
use it and are careful not to be misled by 
reports of power that are actually values 
of post hoc power.

The key is δ: What value of target δ is used to calculate power? I’ve dis-
cussed various ways to choose a target value for δ, but the one possibility 

Post hoc power is calculated after complet-
ing the experiment, using as target δ the 
effect size d obtained in the experiment. It 
can easily mislead, so never use it.

Figure 12.12
Control area for the Power paired page of ESCI chapters 10–13. For N greater than 100, use 
the bottom panel. The values shown tell us that, for α = .01, ρ = .80, and target δ = 0.2, an N 
of 179 is needed to achieve power of .95.
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I’ve not mentioned is using the result of the experiment itself. You may 
have wondered, why all this concern to find a target value of δ by con-
sidering previous research, or choosing an ES likely to be of practical 
importance? Why not simply carry out the experiment then use d, the ES 
obtained by the experiment, as target δ for power? Well, yes, we can easily 
do that, and calculating power using our obtained d for target δ gives us 
what’s called post hoc or observed power.

For example, Figure 12.6 shows that, when target δ = 0.2, the Simulate 
two page of ESCI chapters 5–6 reports power of .21 for our two-
independent-groups HEAT experiment, with groups of size 80 and 60 and 
two-tailed α = .05. I used that page to run some simulations of the experi-
ment. The first gave dunb = 0.29 as the unbiased estimate of δ. Figure 12.13 
shows the power panel, as in Figure 12.6, but now I’ve clicked to show also 
the value of post hoc power, which is .4. In other words, after running the 

Table 12.2

Minimum Sample Size Required to Achieve Various Levels 
of Power for the Paired Design for α = .01, for Selected Values 
of Correlation ρ, and Population Effect Size δ

Target 
Power

α = .01, ρ = .50 α = .01, ρ = .80

δ 0.2 0.3 0.5 0.8 1.0 0.2 0.3 0.5 0.8 1.0

.50 166   78 30 14 10   70 33 14   8   6

.60 201   93 36 16 12   84 39 17   9   7

.70 241 107 42 19 13 100 47 19 10   8

.80 292 130 51 22 16 117 56 23 11   9

.90 372 166 63 27 19 149 70 28 13 10

.95 446 198 75 32 22 179 83 32 15 11

Note:	 Values are N, the number of pairs. The test statistic is t except that, for 
N > 100, the test statistic is z. For such large sample sizes, using z gives 
the same or very similar N to that found using t.

Figure 12.13
Part of Figure  12.6, but now post hoc power is displayed. The two-independent-groups 
HEAT experiment obtained dunb = .29, and appears as Replication 1 in Table 12.3.
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experiment and observing dunb = 0.29, ESCI used that dunb as target δ and 
calculated power to be .4.

First, there’s a small logical problem with post hoc power. Power is the 
probability that an experiment will reject H0 if an effect of the stated tar-
get size, δ, exists. However, after completing the experiment we’ve either 
rejected H0 or we haven’t, and so it doesn’t make sense to talk about “the 
probability that our experiment will reject H0.” OK, we carefully say, “Our 
experiment, before we ran it, had power of .4 to find target δ = 0.29.” That’s 
fine. Now let’s see what happens if we repeat the experiment a few times.

Table  12.3 shows the results of the first 10 replications of our HEAT 
experiment, as given by Simulate two. The first replication gives post hoc 
power as shown in Figure 12.13. Based on the values in the table, we can 
make statements like, “Our experiment, before we ran it, had power of 
.07 to find target δ = –0.07” (that’s based on Replication 2) or, “Our experi-
ment, before we ran it, had power of .90 to find target δ = 0.56” (based on 
Replication 10).

Those are all perfectly acceptable statements, but do they tell us any-
thing useful? Table 12.3 illustrates the close inverse relation between dunb 
(or d) and p that we observed in Chapter 5: Small dunb (or d) gives large p, 
and large dunb (or d) gives low p. It also illustrates the very large variation 
of p over replication that we saw in the dance of the p values. Examine the 
dunb and post hoc power columns: Post hoc power has a close and direct 
relation with dunb. Now examine the p and post hoc power columns: Post 
hoc power has a strong inverse relation with the p values. Post hoc power, 
like dunb and p, varies greatly with replication, but the main problem is 
that it doesn’t tell us anything further about our experiment beyond what 
dunb and p have already told us. It’s a mere restatement of our experimen-
tal result. The danger is that any statement of a power value is likely to 

Table 12.3

Results of 10 Replications of the Two-Independent-Groups 
HEAT Experiment Shown in Figure 12.6

Replication Obtained dunb Two-Tailed p Post Hoc Power

  1 0.29 .09 .40
  2 –0.07 .70 .07
  3 0.20 .25 .21
  4 –0.17 .32 .17
  5 0.47 .007 .77
  6 0.23 .18 .27
  7 0.07 .69 .07
  8 –0.02 .90 .05
  9 0.11 .52 .10
10 0.56 .001 .90
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be read as telling us something about the experiment, whereas a post hoc 
power value really only tells us about the result of running the experiment 
once. A post hoc power value can thus be severely misleading, especially 
if it’s not accompanied by the full statement, as in my examples above, 
including the target δ value.

Hoenig and Heisey (2001) explained in more detail the reasons for avoid-
ing post hoc power. They described a number of incorrect beliefs held 
by some researchers about how post hoc power might be able to assist 
in the interpretation of results found to be not statistically significant. I 
have never seen a convincing case made for any worthwhile use of post 
hoc power. I recommend never using it, and I express my disapproval by 
the gray background shading and the comments at the power panel in 
Simulate two and Simulate paired, where you can click if you insist on 
seeing post hoc power.

I’ve labeled post hoc power as illegitimate power to highlight the contrast 
with legitimate power, which uses a target δ that’s chosen for its research 

interest. It’s legitimate power that we’ve 
discussed at length in earlier sections of 
this chapter. Usually we calculate it as 
part of planning, in advance of running 
the experiment, but you can calculate 

legitimate power after collecting the data. The crucial point is that target δ 
is chosen for its research or practical interest, and is not merely the result 
of our experiment.

So, why am I going on at such length about something we should all 
avoid? I’m doing so because some widely used computer packages report 
post hoc power simply labeled as “power” or “observed power.” No doubt 
many users, not understanding how legitimate and post hoc power dif-
fer, simply accept what the computer says and report that value as the 

power of their experiment. No doubt it’s 
an awkward extra step for a software 
package to ask the user for a target value 
of δ before it calculates power. However, 
I believe it’s reprehensible for software to 

duck the issue of choosing an appropriate target δ, and simply report post 
hoc power. At the very least, any post hoc power value should come with 
a clear label and warning. My recommendation is never to calculate post 
hoc power and always to watch out for post hoc power being passed off 
as legitimate power. I strongly recommend the wonderful free software 
G*Power 3 (tinyurl.com/gpower3). G*Power calculates power for numer-
ous designs and measures beyond the few simple cases I discuss in this 
chapter and that ESCI supports.

Legitimate power is my name for power cal-
culated for a target δ that’s chosen as being 
of research interest. Contrast it with post 
hoc power.

If statistical software reports power without 
specifying a population ES, it’s probably post 
hoc power. Don’t use that value. Be very 
cautious.
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Informativeness

Let’s step aside from statistical power for a moment and consider the fun-
damental aim of experimental research, which is to inform us about the 
world. We want experiments that answer our research questions, provide 
useful knowledge, and give us insight into how the world works. We 
don’t have an agreed name for this desirable feature of an experiment, 
but “strong,” “insightful,” “good,” or “sensitive” come close. However, I 
think “informative” is best: An experi-
ment is highly informative if it gives us 
useful information and insight about the 
world. Informativeness is highly desirable 
and, almost always, the more of it the better.

I’m introducing informativeness because I want to consider, very gener-
ally, how we can improve our experiments. Many books and articles give 
wonderful advice about ways to improve research. Often they focus on 
how to increase statistical power, but most of the advice actually applies 
more broadly and is valuable even if we don’t use NHST. I want the benefit 
of the advice, but without having to use NHST or power. I’ll therefore try 
as much as possible to interpret the advice in terms of increasing informa-
tiveness rather than statistical power. If that succeeds, we can follow the 
advice, but without using NHST.

Many strategies to improve experimental design are likely to increase 
both informativeness and statistical power. Examples include using larger 
N, using larger ρ in a paired design, and finding ways to reduce measure-
ment error. On the other hand, increasing α will increase statistical power 
but is unlikely to change informativeness—the experiment is unlikely to 
give us greater insight if we use α = .05 rather than .01. Informativeness 
and statistical power are related, but informativeness is the more general 
concept and reflects better the value of an 
experiment. Increasing informativeness is 
more generally beneficial than increasing 
statistical power. However, I’m not going 
to attempt any quantitative definition of informativeness, which will thus 
remain a more abstract concept, in contrast to statistical power for which 
we can calculate a numerical value if we make certain assumptions.

Back in Chapter 2 I introduced Jacob Cohen, the great statistical 
reformer. Box  2.2 described evidence, first presented by Cohen in 1962, 
that published research typically has depressingly low power. If research-
ers realized this, Cohen thought, surely they would stop wasting their 
time and insist on bigger, better-designed experiments with higher 

I refer to the informativeness of an experi-
ment as its ability to give information to 
answer research questions, or to give insight 
about the world.

Informativeness is related to, but more fun-
damental than, statistical power, which has 
meaning only within NHST.
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power? His book about power (Cohen, 1969, 1988) was pioneering and 
remains an important resource, but, alas, Cohen’s campaign was not fully 
successful. Researchers may now be more aware of power, but Maxwell 
(2004) reported that later surveys have found that the average power of 
published research is still, in many cases, about as low as Cohen found 
half a century ago.

Cohen discussed power but his argument can, I believe, be read in 
terms of informativeness. He wanted researchers to improve their designs 
and use larger sample sizes—and these are ways to increase informative-
ness. Maxwell (2004) also couched his advocacy of improved practices in 
terms of power, but in addition explained the importance of estimation 
and meta-analysis for achieving scientific progress. Again, I see his main 
argument as addressing informativeness rather than the narrower con-
cept of statistical power. The Publication Manual (APA, 1994) introduced in 
its fourth edition the advice to “take seriously the statistical power con-
siderations associated with your tests of hypotheses.… Routinely provide 
evidence that your study has sufficient power to detect effects of substan-
tive interest” (pp. 16–17). Almost identical statements appeared in the fifth 
and the current sixth editions. That’s NHST language, but I’d like to think 
that the intent is broader: to improve the informativeness of research.

I’m arguing that, if we don’t use NHST, and therefore don’t use sta-
tistical power, the substance of arguments in favor of higher power can 
usually be recast in terms of increased informativeness. Doing this may 
actually strengthen those arguments, for example, by removing any hint 
that merely increasing α, which increases power but not informative-
ness, might suffice. Increasing informativeness is a fundamental goal of 
research planning, and thinking in terms of informativeness may allow 
us to avoid NHST if we wish, but still benefit from so much excellent 
advice about experimental design.

High Power, High Informativeness

Any discussion of power should consider how power can be increased 
to improve the experiments being planned. However, I’ve argued that, 
more fundamentally, we should be trying to increase informativeness, 
not merely statistical power. I’ll therefore hold until the next chapter my 
general discussion of how, during research planning, we can improve 
our intended experiments. There are just two issues I’d like to discuss 
here in the context of power. They both relate to the question, “Can power 
be too high?”
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In many research situations it’s difficult to achieve power that the 
researchers regard as sufficiently high. A number of studies combined 
by meta-analysis may be needed before even a moderate amount of evi-
dence can be accumulated. By contrast, consider surveys involving many 
thousands of people. With such very large samples, CIs are very narrow 
and even tiny differences are highly statistically significant. It’s a waste of 
time to calculate power or a p value: Power is luxuriously high whatever 
realistic target δ we choose, and p is minuscule. The focus needs to be 
on the effects themselves and their interpretation. Some may be highly 
statistically significant, yet so tiny that they have no importance. It’s not a 
problem that power is too high, but thinking about power or p values may 
distract us from more important concerns, including the representative-
ness of our samples and the quality of our survey measures.

Second, note that any experiment has costs, which must be balanced 
against the value of the knowledge it’s likely to provide. Is the size of our 
proposed experiment justified? Would a smaller, less costly study suffice 
for our research purposes? These questions are especially pertinent when 
costs include discomfort and risks to participants. It’s highly valuable to 
know that a small daily dose of aspirin can reduce the risk of heart attack. 
However, gaining such knowledge usually requires many participants to 
be randomly assigned to receive the inert placebo pill, and so miss any 
benefit of aspirin. Clearly, such studies need to be scrutinized by an inde-
pendent ethical review board before being approved. An analysis based 
on precision may be better, but an analysis of statistical power is one way 
to give guidance about the proposed study, so it’s large enough to give 
useful knowledge, but no larger than it needs to be, to minimize partici-
pant harm.

Reporting Power

If we decide to calculate power, how should we report it? As I mentioned, 
the Publication Manual advises us to “routinely provide evidence that the 
study has sufficient power to detect effects of substantive interest” (APA, 
2010, p. 30). However, it gives no advice on how to report power, and no 
power values appear anywhere in its numerous examples.

In medicine, some articles report power, but what about in other disci-
plines? I took a peek at Psychological Science—just one journal in one disci-
pline—but I suspect that what I found is typical for many journals, at least 
across the social and behavioral sciences. I conducted a full-text search for 
“power” in the 259 articles published in Psychological Science in the last year. 
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Just 22 articles (8%) mentioned statistical power, of which four reported 
power values, ranging from .79 to .99. Another 10 made brief comments 
about experimental design or statistical analysis, mentioning, for exam-
ple, the combination of groups or the use of meta-analysis as strategies to 
increase power. All those comments were reasonable, and all can be read as 
referring to informativeness.

The remaining eight articles all referred to power while discussing 
effects that were not statistically significant. For example, they suggested 
that considering power may justify accepting the null hypothesis, or that 
a result that was found not statistically significant might, with higher 
power, achieve statistical significance. However, even high power rarely, 
if ever, provides good grounds for accepting a null hypothesis and con-
cluding that we have a zero effect. The CI always provides much clearer 
guidance for interpretation, as we’ve seen in earlier chapters.

The articles did not provide a good example of how to report power—if 
you must. Suppose you wish to present one of our HEAT experiments to 
your ethics review board, which requires a power analysis. In the context 
of your research goals, and bearing in mind available participants and 
resources, you need to justify your choices of experimental design, α, tar-
get δ, ρ (if a paired design), and N. It may be useful to describe how power 
changes for different values of those variables before you justify the set of 
values for which you seek approval. Pay particular attention to explaining 
your choice of target δ. Be as realistic as you can, bearing in mind the risk 
of fudging. In a journal article a briefer version is needed, but allocate a 
few words to justifying your choice of target δ.

However, I have yet to find a case in which I think a power analysis is 
more illuminating than a precision analysis could be. I hope funding bod-
ies and ethics review boards will accept a precision analysis instead and, 
soon, require one. Considering journal publication, very few researchers 
have “routinely provide[d] evidence that the study has sufficient power” 
(APA, 2010, p. 30), as the Publication Manual requires. I see no signs that 
researchers are likely to adopt this advice. It’s one of the few guidelines in 
the Manual I don’t endorse.

It’s almost time to embrace the new statistics and move beyond NHST 
and statistical power to precision as a tool for planning research. That’s the 
topic of the next chapter.

It’s time for take-home messages. To help you write yours, you may 
want to look back over the figures in this chapter. We started with a simu-
lation and a wide spread of p values, then came the power picture for the 
single-group design, using noncentral t. Two pages in ESCI chapters 5–6 
allow you to calculate power for the two-independent-groups and paired 
designs. How should we select target δ? Two pages in ESCI chapters 
10–13 present power curves for the two-independent-groups and paired 
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designs. Intuitions about power are important, especially understand-
ing which factors influence power most strongly. Avoid post hoc power! 
Consider the informativeness of an experiment, not just statistical power. 
How should we report power, if we choose to?

Exercises

	 12.1	 You are planning a study of attitudes to the length of jail sen-
tences for homicide, using a scale running from –4 to +4, where 
0 indicates a judgment that current sentences are about right. 
Previous research suggests that the population SD for the scale 
is 1.2. You plan to use a single sample and would like to be 
able to detect a true effect of 0.5 scale units, using α = .01. If you 
use N = 100, what is the power? Explore power for various other 
choices of effect size, α, and N.

	 12.2	 You wish to use the same scale to compare attitudes in two 
very different neighborhoods. You would like to be able to 
detect a difference of 0.3 scale units. Consider power and make 
recommendations.

	 12.3	 Again using the same scale, you wish to compare attitudes in 
a single neighborhood, using a single sample of people who 
respond both before and 3 months after a state election. You 
would like to be able to detect a change of 0.2 scale units. Previous 
research using the scale has reported correlations between pre-
test and posttest attitudes in the range .72 to .89. Consider power 
and make recommendations.

	 12.4	 If you are using another statistics textbook, find worked exam-
ples or exercises about power for which the ESCI pages dis-
cussed in this chapter are helpful. Compare the methods used 
by that other book with ESCI’s, and also compare the results.

	 12.5	 A leading researcher in clinical psychology uses the rule of thumb 
that, roughly speaking, most well-established types of psycho-
therapy give an improvement of around δ = 0.5 to 0.7, whereas 
comparisons between any two such therapies are likely to give 
differences of around δ = 0 to 0.3. Suppose you are planning a 
two-independent-groups experiment to assess such a therapy, 
using target δ = 0.6, and a second two-independent-groups exper-
iment to compare two such therapies with target δ = 0.2 for the 
difference. Compare the two experiments you will need.
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	 12.6	 What does the tiny invisible area to the left under the H1 curve 
in Figures 12.3 and 12.4 represent? Why is it so small?

	 12.7	 Invent a game to help build your intuitions about power. 
Challenge a friend to estimate power for an experiment you 
describe—you’ll need to state the design, and also α, δ, and N 
(and ρ if a paired design). Practice using the Power two and 
Power paired pages of ESCI chapters 10–13 until you can find 
answers quickly. Develop the game to focus on estimating just 
one factor, while holding others constant. For example, for a 
two-independent-groups experiment with δ = 0.5 and α = .01, 
what is the power for N = 100? What is N to obtain power = .80? 
How big a δ can you detect if N = 100 and power = .80?

	 12.8	 Use that game, or relevant ESCI pages, or Tables 12.1 and 12.2 
to identify some sets of values that seem especially relevant 
for your discipline. Choose a handful of these to remember, to 
serve as benchmarks for judgments about published research 
you read.

	 12.9	 Explore any statistical software you use. Does it give you a 
value for power? Is this legitimate power, or post hoc power? 
Is it clearly labeled?

	 12.10	Even if that software reports post hoc power, perhaps as a 
default, try to find a way to have it calculate and report legiti-
mate power, after you specify a target population effect size.

	 12.11	Download G*Power 3 (tinyurl.com/gpower3). Explore as you 
wish. Use it to check one or two values in Table 12.1 or 12.2.

	 12.12	Find a journal article in your discipline that mentions statistical 
power. If possible, find an article that reports a power calcu-
lation. Do these articles discuss and use power appropriately? 
Can you make any recommendations? You could try a full-text 
search for “power,” as I used to investigate power in Psychological 
Science. You should be able to conduct a single search for a whole 
selected date range of journal issues, before opening only those 
articles identified as containing the word “power.”

	 12.13	Find a journal article in your discipline that could usefully men-
tion statistical power or report a power calculation, but doesn’t. 
Make your recommendations.

	 12.14	Larger N gives smaller variation in M over replication—in other 
words, the dance of the means is narrower for larger N. Simi
larly, s varies less over replication when N is large. In Chapter 5 
we found, perhaps surprisingly, that for a given initial p value, 
the variation in replication p does not change with N, even for 
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large N. Consider the amount of variation in post hoc power 
over replication. For a given level of legitimate power, would 
you guess that variability in post hoc power decreases with 
larger N, or remains about the same? Use the Simulate two 
page of ESCI chapters 5–6 to check out the variation in post hoc 
power. You could, for example, set up an experiment with N1 = 
N2 = 8, then adjust δ until power is about .7. Take 20 experiments 
and write down the values of post hoc power. Then set up an 
experiment with N1 = N2 = 64 and a much smaller δ so power is 
again about .7. Again record 20 values of post hoc power. Is the 
amount of variability similar? Try other experiments if you like. 
What do you conclude about post hoc power?

	 12.15	Consider every way you can think of to increase statistical 
power. For each, decide whether you are also increasing the 
informativeness of the experiment.

	 12.16	Revisit your take-home messages. Improve them and extend 
the list if you can.
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Take-Home Messages

•	 I’m ambivalent about statistical power, which is only defined in 
the context of NHST, so the new statistics do not use it. We should 
keep in mind our new statistics intuitions even while discussing 
power within NHST.

•	 Statistical power is the probability of rejecting H0 if there is a true 
population effect of size target δ. The value of power depends on 
the experimental design, N, α, target δ, and in the paired case ρ, 
the population correlation between the two measures.

•	 The informativeness of an experiment is its ability to answer 
our research questions and give us information about the world. 
Informativeness is more fundamental than statistical power.

•	 It’s often difficult to achieve high power, and the power of pub-
lished research is often disappointingly low, despite the efforts of 
Jacob Cohen and other statistical reformers.

•	 The power picture shows the distribution of the test statistic when 
H0 is true and when H1 is true. For σ known the test statistic is z and 
the two distributions are normal. For σ not known the test statistic 
is t and the distributions are the central and noncentral t distribu-
tions. Take-home picture: The power picture, for example, Figure 12.3.

•	 The Simulate two page of ESCI chapters 5–6 allows you to cal-
culate power for the two-independent-groups design, and the 
Simulate paired page for the paired design.

•	 It’s important to build intuitions about power. In general, larger 
N gives higher power and smaller α lower power, but target δ 
is even more influential: Small changes in δ can give substantial 
changes in power. The paired design can give high power, espe-
cially if ρ is at least moderately large.

•	 The power curves of the Power two and Power paired pages of 
ESCI chapters 10–13 illustrate how power varies with N and 
other aspects of an experiment. These pages also give the values 
of N shown by Tables 12.1 and 12.2 for selected situations.

•	 Post hoc or observed power is calculated after data collection, 
using the Cohen’s d obtained in the experiment as target δ. It 
reflects the result rather than any basic feature of the experiment, 
and varies greatly with replication. Don’t use post hoc power, 
which can be highly misleading. Watch out for software that 
reports post hoc power without saying so.
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•	 If you intend to use NHST, a power calculation may be useful, 
for example, to justify the design and sample sizes of a planned 
experiment.

•	 To adopt the new statistics and move beyond NHST, use precision 
rather than power.
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13
Precision for Planning

Precision is indicated by the width of a CI. Actually it’s MOE, the half-
width of the CI, or one arm of the CI that’s our measure of precision. 
Higher precision is signaled by a shorter CI, and short CIs are good news. 
Precision is a highly valuable idea, but not sufficiently recognized or used. 
It usually contributes to what in Chapter 12 I called the informativeness of 
an experiment.

Most of this book so far has been about using CIs to report and inter-
pret results, and one valuable approach to interpreting a CI focuses on 
MOE as a measure of precision. This chapter considers a further use of 
precision—in the planning of experiments. To carry out a precision analy-
sis for planning, we first select a target CI width, and then the analysis 
tells us what sample size is likely to give CIs no wider than that target. 
In general, researchers have not yet made precision a central part of their 
research planning. When they do, they’ll no longer need to use statisti-
cal power. Precision for planning has the great advantage that it uses, 
before the experiment, CI concepts and judgments that correspond closely 
with those we use after the experiment for interpretation. This contrasts 
strongly with power, which really only applies before the experiment.

Here’s the agenda for this chapter:

•	 Precision as arm length
•	 Precision for research planning, for three experimental designs
•	 Precision for planning using ESCI
•	 Precision with assurance: finding N so we can be reasonably assured 

our CI won’t be wider than the target width we’ve chosen
•	 Precision for planning using Cohen’s d
•	 Ways to increase precision

Precision as Arm Length

Consider any of the HEAT (Hot Earth Awareness Test) experiments we 
discussed in Chapter 12. To report our main result we’d no doubt use a CI, 
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which we’d display as the graphic on the left in Figure 13.1. I’ve labeled the 
arms of the CI as MOE because my focus in this chapter is on precision, as 
pictured by arm length and measured by MOE. Whenever we include a CI 

in a figure we’re using precision to report 
our results. Precision is also the basis for 
our third approach to interpreting a CI, 

as we discussed in Chapter 3—see also Table 5.1. Precision indicates the 
maximum likely error of estimation, although, of course, larger errors are 
possible—our CI just may be red, meaning it does not capture μ, or what-
ever population parameter it’s estimating. Vary the level of confidence, C, 
and MOE and thus precision change. Our measure of precision therefore 
relates to a particular C, usually 95.

Figure 13.1 shows on the left the CI on our sample mean M. This CI is 
symmetric and so the lower and upper arms can both be labeled as MOE. 
On the right is X, the point estimate of a population ES, with a CI that is 
asymmetric, meaning its two arms differ in length. We’ve already encoun-
tered in Chapter 11 asymmetric CIs on Cohen’s d. In Chapter 14 we’ll find 
that CIs on correlations and proportions are also generally asymmetric. 
Figure 13.1 distinguishes the two arms of the asymmetric CI by labeling 
the upper and lower arms as MOEU and 
MOEL, respectively. For symmetric inter-
vals I’ll use MOE for the length of either 

I define precision as the arm length of a CI, 
and refer to it as MOE.

For an asymmetric CI, our measure of preci-
sion is MOEav, which is the average of the 
two arm lengths.
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Figure 13.1
On the left is a symmetric CI on a sample mean M. On the right is an asymmetric CI on 
some ES measure X, the point estimate of the corresponding population ES. The upper and 
lower arms of the intervals are labeled.
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arm. For asymmetric intervals we’ll need to label the arms differently, as 
in Figure 13.1. For asymmetric intervals our measure of precision is sim-
ply MOEav, the average length of the two arms, and so

	 MOEav = (MOEL + MOEU)/2

It may feel strange to say increased precision gives shorter CI arms, or a 
smaller MOE, but that’s what I will do. Watch out for possible ambiguities 
in what you read or write about precision. Wide CIs mean low precision, 
and small MOE means high precision. If 
necessary, add a few words to make what 
you mean totally clear.

Precision for Research Planning

You are investigating the effectiveness of a new reading program and wish 
to estimate the gain in reading age produced by 12 weeks on the program. 
How large an experiment do you need? Rather than asking about power 
to detect a true gain of a stated target size, if it exists, focus on estima-

tion. How wide could a CI be and still give 
useful information? How short a CI arm 
length would you like to achieve? What’s 

the maximum error of estimation you can readily accept? You need to 
answer one of those questions by stating your target MOE, which is the 
precision you want your experiment to achieve, then you (usually mean-
ing ESCI) can calculate what N you need. That’s precision for research 
planning, the topic of this chapter.

Within NHST, statistical power contributes to planning, but precision 
can do a better job in that role. Precision often allows us to avoid NHST 
both for planning before the experiment, 
and also for data analysis and interpre-
tation after the experiment. Precision for 
planning requires no specification of α 
and null and alternative hypotheses. Also, it allows us to think in terms of 
estimation before data collection as well as for reporting our research, and 
the judgments needed for planning correspond closely with those we use 
for interpretation of our results. Precision is better than power.

I’ll discuss how we can set target MOE, then use this to calculate the 
N needed so we can expect our experiment to give precision at least that 
great. We specify a desired arm length, then calculate what minimum 
N is likely to give us a CI with arms no longer than that. I’ll consider 

Take care with language. A shorter CI means 
lower values of MOE, and greater precision. 
Larger MOE means worse precision.

Target precision, or target MOE, is the preci-
sion we want our experiment to achieve.

Given a target MOE, precision calculations 
tell us what N we need. Precision can thus 
replace power.
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three experimental designs: single group, two independent groups, and 
paired—each for the case where σ is known and we use z as the test statis-
tic, and the more realistic case in which σ is not known and we use t. First 
I’ll use means as our ES, then Cohen’s d. There are formulas, but you can 
let ESCI do the work if you wish.

You may be thinking about the dance of the CIs when t is our test statis-
tic: CI length varies from experiment to experiment. How can we say that 
N is adequate to give a particular target MOE if arm lengths bounce all 
over the place? That’s an excellent question. Notice that I carefully referred 
above to N sufficiently large that we can expect our experiment to give us 
sufficiently high precision. The first big step, when we’re using t, is to find 
minimum N that will on average give us CI arms no longer than target 
MOE. In other words, minimum N that’s likely to give us CI arms no lon-
ger than target MOE. Almost 50% of experiments will give MOE greater 
than our target, the other experiments MOE less than our target. We can’t 
guarantee that our single experiment will have the precision we want, but 
we can be sure that numerous repeated experiments will on average give 
at least our desired precision. Later we’ll do even better when we consider 
assurance, but, for the moment, we’ll consider what minimum N is likely 
to give arm length no greater than target MOE. Later I’ll also explain why, 
even when we think about variation over experiments, precision is better 
than power. Now let’s turn to the simplest cases of precision analysis.

Finding N for the Single-Group Design

Recall from Chapter 12 that the HEAT has μ = 50 and σ = 20 in the refer-
ence population. Suppose you take a single sample of N = 10 students and 
find M = 57.0. Assuming that σ is known, you use Equation (3.2)—remem-
ber way back then?—to find the 95% CI by calculating

	 MOE / /= × = × =1 96 1 96 20 10 12 40. . .σ N

and so the CI is [44.6, 69.4]. You are a bit disappointed that MOE is so 
large, although you realize your sample is very small. How large a sam-
ple, you wonder, would you need to get smaller MOE, say, 10 instead of 
12.4? The 10 is your choice, made by using your judgment, based on your 

understanding of the HEAT scale and the 
research context. We’ll call 10 your target 
MOE. You fiddle with the MOE formula 
a bit and decide that you should express 

target MOE as a fraction of σ. I’ll use f for that fraction, so I can say that 
your target MOE is f = 0.5, because 10 is just half of σ. Our basic formula 
for target MOE is therefore

	 Target MOE = f × σ	 (13.1)

We express our chosen target precision as 
f × σ, so f is usually a fraction, for example, 
f = 0.5.
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Think of f as a kind of z score, a number of SDs. Your fiddling with the 
MOE formula gave you

	 N = (1.96/f )2	 (13.2)

For f = 0.5 you calculate N = 15.4. Round 
that up to 16, obtain the HEAT scores 
for a sample of N = 16 students, and use 
Equation (3.2) to calculate MOE = 1.96 × 
σ/ /N = ×1 96 20 16.  = 9.80. Success! Your MOE is just less than your tar-
get of 10—slightly less because we rounded N up from 15.4 to 16. You 
are also pleased to note that we get this MOE every time: We’re using z, 
because we’re assuming that σ is known, and so MOE doesn’t vary from 
experiment to experiment.

Therefore, if we’re using a single sample and test statistic z: To get MOE 
no more than half of σ we need to use N at least 16. That’s a general statement 
and a useful one—exactly the information we need to help us plan our 
study. Choose a different f and we’ll almost certainly need a different N, 
but Equation (13.2) will give us that N. Equation (13.2) states a general rela-
tionship, which does not depend on σ: Given only f, we can calculate N.

Figure 13.2 shows 95% CIs on a sample mean, with arm lengths that are 
various fractions f of σ. The line segment at left marks σ, and the leftmost 
CI has f = 0.5, meaning MOE = 0.5σ, as you used previously. We found 
that such a CI requires N = 16, and this value is reported below the CI 
as N using z. The figure tells us that if we want, for example, f = 0.2, we 
need N at least 97. Yes, high precision, meaning small f, comes at the price 
of considerably larger N. Equation (13.2) indicates that halving f requires 
N four times as large.

Now let’s be more realistic and assume that we don’t know σ, and so 
our test statistic is t. Box 13.1 explains more about the formulas and tells 
us that, using t,

	 N = [t.95(N – 1)/f ]2	 (13.3)

where t.95(N – 1) is the critical value of t for a 95% CI. Note carefully that 
this N will give precision of target MOE on average, or in the long run, 
rather than in our single experiment. Figure 13.2 shows near the bottom 
such values with the label N using t. These are the minimum N values 
that give CIs having on average our target MOE. In every case, N needs to 
be a little higher when we use t rather than z.

Choose f = 0.5 and use t, and Equation (13.3) tells us that N = 18 is required 
for our average MOE to be no more than 10, our target MOE. That’s also 
the value reported as N using t in Figure 13.2 under the leftmost CI. Take 
a sample of 18 students, test them on the HEAT, and calculate the 95% CI: 
MOE may be more or less than 10, but repeat the experiment numerous 

If σ is known, turn around the formula for 
MOE to calculate N that gives a particular tar-
get MOE.
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times and, in the long run, the average MOE will be 10, or slightly less 
because N has been rounded up to an integer.

Note that the amount of bouncing around of CI arm length would be 
very different for small and large samples. For the smallest CI shown in 
Figure 13.2, which requires N of 387, there would be hardly any variation 
of MOE over replication, whereas with N of 18 there would be consider-
able variation. For small samples, the N using t in Figure 13.2 will give 
average MOE no more than our target MOE, but any single experiment 
could give MOE considerably bigger or smaller than our target.

There’s one troubling thing about Equation (13.3). The value of t.95(N – 1) 
we need on the right-hand side of the equation depends on N, which is 
what we are trying to calculate. Change N, and df = (N – 1) changes and 

the critical value t.95(N – 1) also changes. 
We need to take an iterative or trial-and-
error approach to solving Equation (13.3). 
We can leave the details to ESCI but, in 
outline, first use z instead of t to get an ini-

tial estimate of N, then check whether, using t, this N gives a sufficiently 
short MOE. If not, try (N + 1) and again check MOE. Continue until N is 
sufficiently large to give MOE just less than our target MOE.

If σ is not known, t is the test statistic. Use 
Equation (13.3) and an iterative approach to 
find minimum N that gives on average a par-
ticular target MOE.

N using z 16

MOE as a fraction of σ

f = 0.5 0.10.20.30.4

25 43 97 385
N using t 18
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27 46 99 387

MOE = 0.2 σMOE = 0.5 σ

M

σ

Figure 13.2
The line segment at left indicates the population standard deviation, σ. Then 95% CIs on 
M are shown with MOE of various fractions f of σ, as shown at the top. Using z, N using z 
is the size of a single sample that gives the CI in the figure. Using t, N using t is the size of 
a single sample that gives, on average over many experiments, the CI in the figure. (In each 
case a slightly shorter CI may be given, because N has been rounded up to an integer.) As 
Equations (13.2) and (13.3) state, the values of N depend only on f, not on σ.



 

Precision for Planning	 361

Box 13.1  Calculating N Given a Target MOE

We specify target MOE as f × σ, as in Equation (13.1).

Single-Group Design

Back in Chapter 3 we calculated the 95% CI for a mean, when σ is 
known and z is the test statistic, as

	 [M – 1.96 × σ/ N, M + 1.96 × σ/ N ]	 (3.2)

Therefore, precision is

	 MOE = 1.96 × σ/ N 	 (13.4)

More generally, for a C% CI using z, precision is

	 MOE = zC/100 × σ/ N 	 (13.5)

where zC/100 is the critical value of z for the C% confidence level. The 
Normal z t page of ESCI chapters 1–4 can provide critical values for 
z and t (see Appendix B). Substitute MOE = f × σ in Equation (13.5) 
and find that
	 N = (zC/100/f )2	 (13.6)

which for C = 95 becomes

	 N = (1.96/f )2	 (13.2)

Equation (13.6) is the basic formula for precision for planning 
with the single-group design, with σ assumed known. It’s what the 
Precision one page of ESCI chapters 10–13 uses to calculate N when 
using z.

For σ not assumed known and t as the test statistic, back in Chapter 
3 we calculated the 95% CI by using Equation (3.3), which gives

	 MOE = tC/100(N – 1) × s N/

where tC/100(N – 1) is the critical value of t for the C% confidence level. 
Substitute MOE = f × σ and find that

	 N = [tC/100(N – 1)/f ]2× (s/σ)2

On average, (s/σ)2 = 1, so we can calculate

	 N = [tC/100(N – 1)/f ]2	 (13.7)
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which for C = 95 becomes

	 N = [t.95(N – 1)/f ]2	 (13.3)

providing we note carefully that this N gives target MOE on average. 
(Or slightly less because N is rounded up to an integer.) Any single 
experiment may give precision larger or smaller than target MOE. 
For very large N, there is little variation in MOE with replication, 
but small N gives large variation in MOE from experiment to experi-
ment. Think of the s pile in Chapters 10 and 11. Even N up to 50 or 
more gives noticeable variation in MOE with replication.

Because N appears on the right-hand side in Equations (13.3) and 
(13.7)—it affects the critical value of t—as well as the left, we need 
an iterative strategy of successive approximations to solve either of 
those equations for N. Precision one uses Equation (13.7) and an 
iterative approach to calculate N when using t.

Two-Independent-Groups Design

For the two-independent-groups design, our focus is on the differ-
ence between the group means and the CI on that difference. We 
assume that the two groups are each of size N. Using z, the equation 
for N that corresponds to Equation (13.6) is

	 N = 2(zC/100/f )2	 (13.8)

which is the smallest N that gives arm length of the CI on the differ-
ence between the sample means, calculated using z, no greater than 
target MOE. The Precision two page of ESCI chapters 10–13 uses 
Equation (13.8) to calculate N when using z.

Using t, the equation for N that corresponds to Equation (13.7) is

	 N = 2[tC/100(2N – 2)/f ]2	 (13.9)

which is the smallest N that gives, on average, arm length of the CI 
on the difference between the sample means, calculated using t, no 
greater than target MOE. Precision two uses Equation (13.9) and an 
iterative approach to calculate N when using t.

Paired Design

For the paired design, N is the number of data pairs and our focus 
is on the mean of the differences, and the CI on that mean. Using z, 
the equation for N that corresponds to Equations (13.6) and (13.8) is
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ESCI for Precision for the Single-Group Design

Fire up the Precision one page of ESCI chapters 10–13. Figure 13.3 shows 
part of the control area. Figure 13.4 is the main display, whose curve shows 
how N varies as a function of target precision, using z. If C = 95 is set near 
red 1, the values of N shown on the curve correspond to the N using z val-
ues shown at the bottom in Figure 13.2. Figure 13.4 shows a vertical cursor 
positioned at a target MOE of f = 0.2 units of σ. This cursor is controlled 
by the large slider that appears on the screen below the figure. The value 
of N marked by the cursor is 97, which is the value shown for f = 0.2 in 
Figure 13.2, using z. 

The vertical axis in the main figure needs to span a very wide range of 
N values. Adjust the slider near red 1 that’s labeled Truncate display at, 
as shown in Figure 13.3, and the curve disappears for lower values of f. 
The vertical axis rescales automatically to display a smaller range of N 
values. Figure 13.5 shows the figure truncated at f = 0.4, meaning that 0.4 
is the minimum value of f for which the curve is displayed. The curve for 
N using t is also displayed. Check that the values displayed correspond 
with those in Figure 13.2 for N using t.

Choosing Target Precision

How should we choose our target MOE? For our HEAT experiment we 
chose 10 score units as our target MOE. That was for the single-group 
case, but the discussion in this section applies also for other situations, 

	 N = 2(1 – ρ)(zC/100/f )2	 (13.10)

where ρ is the correlation in the population between the two mea-
sures. Equation (13.10) gives the smallest N so arm length of the CI 
on the mean difference, calculated using z, is no greater than tar-
get MOE. The Precision paired page of ESCI chapters 10–13 uses 
Equation (13.10) to calculate N when using z.

Using t, the equation for N that corresponds to Equations (13.7) 
and (13.9) is
	 N = 2(1 – ρ)[tC/100(N – 1)/f ]2	 (13.11)

which is the smallest N that gives, on average, arm length of the 
CI on the mean difference no greater than target MOE. Precision 
paired uses Equation (13.11) and an iterative approach to calculate N 
when using t.
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including the other two designs we’re considering in this chapter. We 
chose 10 by using our judgment in the research situation, based on under-
standing of the HEAT scale and differences in HEAT scores likely to be 
of research interest. We expressed that target MOE of 10 original units as 
f = 0.5, meaning 0.5σ. We could do that because we were assuming that we 
knew σ = 20. In many situations, however, we don’t know σ and use t as 
the test statistic. Even so, we can still express target MOE as f, in terms of 
the unknown σ. If we then choose N given by the formulas in Box 13.1 or 
by one of the ESCI precision pages, we know that, on average, MOE cal-
culated from our data will be no greater than f × σ. That will be true, even 
though we don’t know σ and so can’t express target MOE = f × σ in origi-
nal units. After we’ve run our experiment we shift attention from target 
MOE and simply report the CI calculated from our data, then use this to 
guide our interpretation. We could also, if we wish, use s from our experi-
ment to estimate σ. When thinking about the next experiment, we would, 
of course, take into account the extra knowledge we now have—about σ 

Figure 13.3
Part of the control area of the Precision one page of ESCI chapters 10–13. The checkboxes 
near red 1 turn on the curves that show how N varies as a function of target MOE. Click at 
red 3 to turn on a vertical cursor to mark target MOE, which is set by a large slider below 
the main figure that appears on the screen to the right of the control area.
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as well as the population ES—as we set target MOE to guide our choice 
of N for that next experiment. Choosing the f for our target MOE is still a 
matter for judgment, but it’s now better-informed judgment.

One way to think about f for planning is in general terms as a fraction of 
the unknown population SD, much as in Chapter 11 we discussed values 
of d or δ in numerous contexts as a number of SDs. In either case we might 
think in terms of Cohen’s benchmarks for small, medium, and large ESs, 
or use our experience in the research context to focus on a relevant fraction 
of population SD—even if we can’t express that σ exactly in original units.

Another approach is to find an estimate for σ, perhaps based on past 
research—preferably a meta-analysis—and use that as the SD needed to 
convert our chosen target MOE from original units to f. In Chapter 11 we 
discussed a range of approaches to finding such a standardizer. ESCI can 
do the arithmetic: In the panel at red 5, which is shown in Figure 13.3, you 
can enter your target MOE and a value for known or estimated popula-
tion SD, both in any original units. The figure illustrates our case where 
we chose 10 as the target MOE and 20 as the population SD, both in HEAT 
scale units. ESCI calculates f = 0.5 and reports that N is 16 using z, and 18 
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Figure 13.4
The main figure of Precision one. The curve shows N required to give target MOE for 
a 95% CI, using z as the test statistic. On the screen this curve is black. In this figure, 
and the following figures like it, the three legend entries at upper right are distinguished 
on the screen by color.
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using t, as we found before. Note that this panel is quite separate from the 
main figure. It’s simply a small self-contained calculator that allows you 
to find N for values of target MOE that may not be displayed in the main 
figure. As usual, see the popout comments for further explanation.

You might be thinking that this is all rather subjective and there could 
be scope for fudging to get a value of N that we find acceptable. That may 
be true to some extent, depending on how well the research area and the 
measures we are using are understood. But, after we’ve run our experi-
ment, the CI calculated from our data gives us precision information 
directly, and may give useful guidance for planning the next experiment.

The great advantage of precision, compared with power, is that the tar-
get MOE we use for planning corresponds closely to MOE of the CI we 
report after completing the experiment. Both may be in original or stan-
dardized units. Both require, for interpretation, our understanding of the 
measurement scale in the research context. In both cases the examples 
and discussion of standardizers in Chapter 11 may be relevant. We use 
our knowledge and judgment to interpret the reported CI, and that’s a 
key part of interpreting our results. As our understanding of the measure-
ment scale and research context develops, our interpretation of the CIs 
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Figure 13.5
The main figure of Precision one, as in Figure 13.4, except that the curve for N using t is also 
displayed, and the curves are truncated at f = 0.4. The vertical N axis rescales accordingly. 
On the screen the lower curve, using z, is black, and the upper curve, using t, is red. The 
cursor marks f = 0.5 and shows N = 16 for z, and N = 18 for t.
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that express our results improves. The same increased understanding can 
inform our precision analysis for planning.

Choice of target MOE is an important topic for discussion as research-
ers experiment with using precision for planning. I hope examples are 
published, and conventions and guidelines developed, but the important 
point is that improvement in how researchers use precision for plan-
ning should naturally accompany—and contribute to—improvement in 
researchers’ interpretations of ESs and CIs based on data.

Finding N for the Two-Independent-Groups Design

For the two-independent-groups design I consider only cases in which 
N1 = N2, and so we have two groups each of size N. The focus is on 
the difference between the group means and the CI on that difference. 
Box 13.1 provides Equations (13.8) and (13.9) for this design, which cor-
respond to Equations (13.6) and (13.7) for the single-group case. Once 
again, when using t an iterative approach is required, and N is the value 
that on average gives target MOE—or a little less because N is rounded 
up to an integer.

The ESCI page is Precision two, which is very similar in layout to 
Precision one. Figure 13.6 shows its main figure, with truncation at 0.45 
and the vertical cursor positioned at f = 0.5. Compare with Figure 13.5 and 
note, for example, the N values marked by the vertical cursor when using 
z. A single-group experiment needs one group of size N = 16 to give a 95% 
CI on the sample mean with an arm length of 0.5σ. By contrast, a two-
independent-groups experiment needs groups each with N = 31, a total of 
62 participants, to give a 95% CI on the difference of the two means with 
that same arm length.

Finding N for the Paired Design

For the paired design, our focus is on the mean of the differences and the 
CI on that mean difference. We need to specify a value for ρ, the population 
correlation between the two measures, and we might look in the literature 
or rely on our judgment to choose a value for ρ that seems reasonable 
for the research situation. In Chapter 12 we found that the value of ρ is 
very influential on power. It’s also very influential on precision: Higher ρ 
means that a much smaller N is needed to achieve our desired precision. 
Yes, the paired design is sensitive and efficient, for situations in which it is 
appropriate, and especially so if the two measures are highly correlated.

Box 13.1 provides Equations (13.10) and (13.11) for the paired design. Once 
again, when using t an iterative approach is required, and N is the value 
that on average gives target MOE—or a little less because N is rounded up 
to an integer.
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The ESCI page is Precision paired, and Figure 13.7 shows a small part 
of the control area of that page, including the slider that allows setting 
of a value for population correlation ρ between the measures. Change ρ 
and watch the marked changes in the curves of N against f, the target 
MOE. Figure  13.8 shows the main figure from Precision paired, when 
C = 95 and ρ = .7 have been set near red 1. With these settings, N of 10 for 

Figure 13.7
The top control panel of Precision paired. The upper slider allows the setting of a value for 
ρ, the population correlation between the two measures.
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The main figure of Precision two. The lower curve shows N for z, and the upper curve 
shows N for t, for two independent groups each of size N. The lower axis shows target MOE 
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z and 12 for t are sufficient to achieve the target f = 0.5. (For t, have you 
automatically added the mental comment “on average, in the long run”?) 
Increase ρ and even smaller N will suffice. Alternatively, aim for greater 
precision—meaning smaller target MOE—and find that even then N need 
not be large. Adjust the lower slider at red 1 to shift the truncation of the 
curves and reveal N for smaller values of f. Note that N = 3 is the smallest 
N that ESCI permits in any precision calculations.

Precision with Assurance

Use t as the test statistic, as we usually must, and so far we can only cal-
culate N that guarantees an arm length that on average isn’t too large. 
It’s a concern that almost half of the experiments conducted with that N 
will give MOE greater than our target. The next step is to calculate N so 
there’s a 99% chance that our sample MOE will not exceed the target MOE. 
The 99% is one possible value of what’s called assurance, which I’ll give 
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Figure 13.8
The main figure from Precision paired. The lower curve gives N using z, and the upper 
gives N using t. The curves relate to 95% CIs and ρ = .7.
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the symbol γ (Greek lowercase gamma). Assurance γ is the probability, 
expressed as a percentage, that our sample MOE is no greater than target 
MOE. We can choose γ = 99, or γ = 80 (the lowest value ESCI supports), 

or some other value less than 100. (Some 
authors use the term “certainty,” but 
“assurance” is becoming the most widely 
used term and is my preference.) I don’t 

know of any convention to guide our choice of γ, but I’m inclined to choose 
γ = 99 so that my MOE is rarely larger than target MOE. I try to avoid γ 
= 95 because that may encourage confusion between γ and C, the level of 
confidence.

You’ve probably noticed panel 2, which appears on each of the precision 
pages and in Figure 13.3. Panel 2 provides a spinner to set assurance γ. 
You can also click to see an additional curve in the figure, which appears 
above the z and t curves, and gives N for the selected value of γ. Figure 13.9 
shows an example from Precision one. It’s the same as Figure 13.5 except 
a third curve now gives N with assurance γ = 99. Using t as our test sta-
tistic, we noted before (and saw in Figure 13.2) that N = 18 suffices to give, 
on average, MOE of 0.5σ. Read the value of N where the vertical cursor 

Assurance γ is the percentage of experiments 
whose MOE is less than target MOE.
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Figure 13.9
Same as Figure 13.5, for a single group, but with the curve for N with assurance γ = 99 also 
displayed. On the screen, the assurance curve is pink.
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intersects the top curve in Figure 13.9, and see that N = 29 is needed if we 
are to be 99% assured that our MOE will be no more than the target f = 
0.5. We need a considerably larger sample to gain 99% assurance that our 
MOE won’t be longer than we want. Box 13.2 says a little about the calcula-
tion of N with assurance.

I suggest that precision calculated with assurance is highly useful, and 
probably should be our routine practice for finding N during the planning 
of experiments. We can’t be absolutely guaranteed we won’t get a CI lon-
ger than we want, but select γ = 99 and we can be pretty sure. Of course, 
if we use the larger N that’s needed to achieve that degree of assurance, 
our expected MOE will be shorter. Figure 13.9 shows that N = 27 gives an 
expected target MOE of f = 0.4, using t. Therefore, if we use N = 29, on aver-
age our MOE will be a little shorter than f = 0.4. Also, on 99% of occasions 
our MOE will be shorter than target f = 0.5, so on only 1% of occasions will 
it be longer than that target. In summary, on average our MOE will be 
about 0.4σ and only rarely will it be greater than 0.5σ: That’s good infor-
mation about the precision that our planned experiment will achieve.

Box 13.2  Calculating N with Assurance

When we use t, assurance γ is the percentage of experiments whose 
MOE is no greater than target MOE. In earlier chapters I mentioned 
that s2 has a sampling distribution with the shape of the chi-square 
distribution. Think also of the s pile, shaped like a chi distribution, 
which has a single hump and positive skew. When s (or s2) happens 
by chance to be large—to be in the upper tail of its sampling distri-
bution—the CI we calculate for that experiment is especially large. 
We can use knowledge of the sampling distribution of s2 to calculate 
how much larger N needs to be so that only a small upper tail of that 
distribution, with area (1 – γ/100), gives a CI that is wider than we 
want. That’s the basis for assurance calculations.

I’m not going to explain those calculations in detail, but the basic 
formula for the single-group case is

	 N = [tC/100(N – 1)/f ]2 × [χ2
γ/100/(N – 1)]	 (13.12)

where χ2
γ/100 is the critical value of χ2 for our selected γ, with df = 

(N – 1). Note that N appears on the right-hand side of the equation, 
so, as before with t, we need a step-by-step, successive approxima-
tions procedure to find the smallest N that will satisfy our require-
ment for MOE to be shorter than target MOE on at least γ% of 
occasions. As usual, ESCI takes care of those details.
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Precision Beats Power

Compare precision with power. From Chapter 5 we know that the p value 
has an extremely wide distribution and so, in advance of our experiment 
we have very little idea indeed of what p value we’ll get, even if target 
δ used in the power calculation equals δ in the population. All a power 
analysis can tell us is that, assuming that target δ equals population δ, we 
have an 80% chance of obtaining p < .05—if power is .8 and we’re using 
α = .05. In addition, even for very large N, the distribution of p is just as 
wide, so the uncertainty about our obtained p is just as great, no matter 
how large N is. In stark contrast, using precision for planning has at least 
three advantages:

	 1.	 It gives us information about arm length, which should be read-
ily interpretable in the research context, and corresponds directly 
with the CIs we use for interpretation of our results.

	 2.	With an assurance analysis, the information about arm length 
is fairly detailed, as I described previously: We know both an 
expected MOE and a likely upper bound.

	 3.	The extent of bouncing around of arm length decreases for larger 
N, so the uncertainty in a precision analysis, unlike a power anal-
ysis, steadily decreases with increasing N.

Yes, precision beats power.
In my assurance example above, N needed to be increased from 18 to 29 

when we required 99% assurance that our MOE was no longer than our 
target f = 0.5. That’s a 61% increase in N. It’s large because, for the particu-
lar situation and sample size, CI length bounces around considerably with 
replication. That observation accords with a general theme of this book 
that, unfortunately, in many situations the amount of variation over repli-
cation is large, even surprisingly large. Think of the dance of the p values. 
However, with assurance there’s good news. For many typical cases that 
arise in practice, the increase in N required to achieve high assurance is 
small. For example, use Precision two and set a target MOE of f = 0.3. For 
95% CIs, N needs to be increased from 87 to 108 to achieve assurance of 
γ = 99, a more reasonable increase of 24% in sample size. Explore differ-
ent designs and various targets for MOE and find that the increase in N 
needed to achieve high assurance can often in practice be modest. Kelley 
and Rausch (2006, pp. 375–379) discussed this issue in the context of an 
example in which achieving γ = 99 required an increase of only 7% in N. 
Using assurance as well as precision to plan experiments may be one of 
the rare situations in which sampling variability is often not surprisingly 
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large. Consider also what peace of mind γ = 99 can give: We’re almost 
guaranteed that our experiment will give a CI no longer than the target 
used in the assurance analysis.

Precision for Planning Using Cohen’s d

This chapter has so far referred to means, but now I’ll consider 
Cohen’s d. What N do we need for expected MOEav of the CI on our d 
to be no more than some target? (Recall from Figure 13.1 that MOEav is 
the average of the two arms of an asymmetric CI. By “expected MOEav” 
I’m referring to the long-run average MOEav over many experiments.) 
That’s possible to calculate, but tricky. Recall that to find the CI on 
an observed d, we need an iterative (i.e., successive approximations) 
procedure that uses noncentral t. Chapter 11 tells the story, and the 
CI for d page of ESCI chapters 10–13 can do the work. If we have a 
two-independent-groups experiment with N = 20 for both groups, and 
observe d = 0.45, CI for d calculates the 95% CI for δ to be [–0.18, 1.08] 
and MOEav = 0.63. Yes, quite a wide CI, so perhaps we should be using 
larger N?

You may have noticed that the three precision pages in ESCI have a 
panel at red 6 for calculations for Cohen’s d. This d panel is a self-contained 
calculator. It uses values of C and γ set in the control panels above it, 
but has no links with the main figure. Figure 13.10 shows this panel for 
Precision one. The panel for Precision two is very similar. Set C near red 
1 and γ near red 2, and then use the spinner in the upper right of this panel 
to set your desired target MOEav. This, like f, is a number of population 

Figure 13.10
The control panel for Cohen’s d from Precision one. In the panels above this one, as shown 
in Figure 13.3, C = 95 and γ = 99 have been set. This figure shows results for N after both 
buttons have been clicked.
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SDs, or, most often, a fraction of the population SD, which is σ. Note that d 
and δ are also expressed as a number of population SDs, so we can think 
of the target MOEav as a number expressed on the same scale as d and δ. 
Next, click the Calculate N button to trigger calculation of the smallest N 
that gives on average in the long run MOEav no larger than your target. 
Box 13.3 describes a little about the calculations, which require a double 
iteration process that may take some time, perhaps a minute or more. As 
ESCI labors away, you can watch as successive MOEav and N values are 
shown to the right of the button. At the far right a counter reports the 
number of main iterative steps taken so far. If ESCI cannot complete the 
calculation, No is shown instead of a value of N.

Similarly, you can click the N for γ button and watch as ESCI finds N for 
the assurance level γ you have set. When either process successfully gives 
a value of N, the value shown as av. MOE just beside the button should 
be equal to, or a little less than, the MOEav you set as target. As usual, see 
the popout comments for further details, including limits on the values 
that ESCI can handle.

In the top left of the panel is a spinner that sets a value labeled Planning 
ES and δ. It’s an added complication that an assumed value of population 
δ is required for use in the calculations. The value you set for planning δ 
makes a difference, but not an enormous difference. Figure 13.10 shows 
that N values of 49 (using Calculate N) and 59 (using N for γ) are needed 
when δ = 0.5 is the planning value, and other settings (C, γ, and target 
MOEav) are as described above. Change δ to 0.2 and find the N values 
become 44 and 50. Change δ to 0.8 and the N values become 57 and 72. 

Box 13.3  Precision and Assurance 
Calculations for Cohen’s d

My calculations for d are partly based on the work of Kelley and 
Rausch (2006). The idea is that we start with a guess for N and use 
the iterative procedure also used by the CI for d page of ESCI chap-
ters 10–13 to find expected MOEav. If this is larger than the target 
MOEav, increase N and try again. If it’s smaller, decrease N. Stop 
when N is the smallest that gives expected MOEav that’s not greater 
than the target. That brief version skips over some details, notably 
how we calculate expected MOEav. But the general picture is that we 
need two nested iterative or successive approximation procedures, 
the inner one to find the expected MOEav for a given N, and the outer 
one to try different values of N until we home in on the value we 
want. Finding N for a particular assurance complicates the picture 
further, but the basic idea of nested iterations still applies.
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Yes, the planning value you set for δ matters, but the N values I’ve just 
described relate to δ values ranging from small (0.2) to large (0.8), which 
in practice is a very wide range. The differences here in N are nothing 
like the dramatic differences in power that even a much smaller change 
in target δ gives. In practice, you usually have a rough idea of the likely 
δ in your research situation, and can use that as your planning value for δ. 
To be conservative (and get slightly larger N values), err on the high side 
when setting your planning δ. Of course, you can try out more than one 
planning δ.

The Precision paired page also includes a panel for Cohen’s d. In 
Chapter 11 I described the approximation I used to calculate CIs on d for 
the paired design, and the limitations of its applicability. Those limita-
tions apply here also. Our C must be 95 (set that value near red 1) and 
planning δ can be no larger than 2. The N we calculate for our nominated 
target MOEav will be an approximation, but it’s a reasonably accurate 
approximation, sufficiently accurate for practical purposes. You’ll notice 
that there’s no second button inviting you to click to carry out an assur-
ance calculation. I haven’t been able to find any published analysis of such 
a calculation for the paired design. So far as I’m aware, it remains an inter-
esting problem awaiting a good solution.

The Future of Precision for Planning

I hope precision for planning will become more widely used. I regard pre-
cision and assurance calculations for planning as having great value, even 
though they have to date been seldom used by researchers. They offer 
quantitative guidance for research planning within the world of estima-
tion, while avoiding the baggage and disadvantages of statistical power. 
There’s a close and natural link from a planning analysis that considers 
target precision to the reporting of results using CIs—which tell us the 
precision of our findings. I would like to include published examples of 
researchers reporting their precision calculations to illustrate the practi-
cal usefulness of precision and assurance for planning. Unfortunately, 
I haven’t been able to find suitable examples. It remains a somewhat pio-
neering exercise to use precision and assurance for planning, put please 
be encouraged to try. I hope the exercises at the end of this chapter help.

The Publication Manual (APA, 2010) acknowledges precision analysis as 
part of planning. It recognizes that an alternative to power calculations 
are “calculations based on a chosen target precision (confidence interval 
width) to determine sample sizes” (p. 31). It also refers to “how sample size 
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was determined … [based on] precision of parameter estimates” (p. 248). 
That’s important legitimation of the approach.

I used only means and Cohen’s d in my discussion of precision for plan-
ning. However, we could use correlations, proportions, odds ratios—or 
any other ES measure appropriate for our research—although considerable 
further statistical development is needed before we will have proven meth-
ods for all the ES measures researchers wish to use, and easily accessible 
software to do the work. Precision hasn’t yet received sufficient attention, 
and assurance has received even less. I’m hoping that wider use of the new 
statistics will prompt rapid developments. It will be great to have conve-
nient software to easily carry out any precision or assurance analysis we 
wish, to inform our research planning. Meanwhile, back on planet Earth …

Actually, there is hope. Researchers are publishing new techniques for 
precision calculations for various situations, and also investigations of the 
accuracy and applicability of those techniques. Much of this research is 
labeled “accuracy in parameter estimation” (AIPE). I mentioned before the 
work of Kelley and Rausch (2006), which guided my calculations using d. 
More recently, Maxwell, Kelley, and Rausch (2008) reviewed AIPE and 
compared and contrasted the power and AIPE approaches to planning.

When using precision and assurance for planning, it may be useful to 
take an exploratory approach and get a feel for how N and f trade off, 
for various experimental designs in your research situation. In each of 
the ESCI pages for precision, the main figures show how N varies with 
target f, for means. The figures make it easy to investigate what happens 
for various values of f and γ, and to compare different designs. The calcu-
lations for Cohen’s d take longer, and it’s not feasible for ESCI to display 
curves showing how N relates to target MOEav, but it can still be valu-
able to explore variations. Investigate how N changes as you set different 
values for MOEav, and different values for planning δ. This may help build 
intuitions about experiments you could run in your own research context.

Ways to Increase Precision

In Chapter 12, I distinguished statistical power from the informative-
ness of an experiment. I also need to distinguish informativeness from 
precision. Informativeness is a very general concept, whereas precision 
refers specifically to the size of estimation error. The most general way 
to increase informativeness is to apply ingenuity and creativity—and 
brainstorming, consultation, deep thought, and the exploration of possi-
bilities—to improve the match between the planned experiment and the 
research problems it addresses. What experiment will give us the greatest 
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insight into the way the universe works? That’s what really matters. More 
prosaically, increasing the precision of the estimates an experiment gives 
is likely, in many situations, to improve informativeness. I mentioned in 
Chapter 2 the call by Paul Meehl (1978) for a shift from NHST and a focus 
on building a more quantitative discipline of psychology. Increasing pre-
cision is likely, in many situations, to contribute to that worthy goal.

When I listen to graduate students presenting their research plans, I’m 
often impressed with their logic and their care to choose appropriate 
manipulations and experimental design. However, I’m often dismayed 
at their optimism that the effects they are so passionate to investigate 
will actually emerge. In other words, their ingenuity has often identified 
experiments that potentially are highly informative, but which lack pre-
cision, and therefore risk being uninformative. The problem is not con-
fined to students—witness the continuing evidence that much published 
research typically has low power (Maxwell, 2004).

A vital part of any research planning is repeated brainstorming about 
how to increase informativeness. Usually, some of that effort should be 
devoted to improving precision, and it’s this aspect I’ll focus on here. 
Gather colleagues or fellow students, and spend time trying to find ways 
to increase precision. Here are a few suggestions:

•	 Consider a more sensitive design. Matching? Repeated measures?

•	 Can you increase ρ in a paired design, perhaps by better matching?

•	 Increase sample sizes.

•	 Reduce error of measurement. Consider measuring more than 
once and averaging.

•	 Find better measures, likely to have higher reliability and validity.

•	 Can meta-analysis usefully combine results from several of your 
studies, or from several outcomes of a large study?

You should be able to extend that list considerably. I’ll end by repeating 
my main point. Calculation of precision and assurance can be a very use-
ful part of research planning, and I hope they become widely used and 
appreciated. However, they should inform, not replace, careful thought, 
creativity, ingenuity, and judgment about what experiment is likely to be 
most informative in your research situation.

It’s time again for take-home messages. I started this chapter by defining 
precision as CI arm length. Precision is better than power. Turn around 
the formula for a CI and we can calculate N likely to give a particular 
target precision. Three experimental designs, and three precision pages 
in ESCI. Assurance as well as precision. Cohen’s d. How to increase preci-
sion, and what’s really important.
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Exercises

	 13.1	 Revisit some discussions of CIs, or figures of CIs, in earlier 
chapters, and recast the discussion, or describe the pictures, in 
terms of precision.

	 13.2	 Scan any other statistics textbook you are using for any men-
tion of precision. Does it arise as a concept, even by some other 
name, in connection with calculating or reporting CIs? In con-
nection with interpreting CIs? As part of research planning? 
In any other way?

	 13.3	 If you, or some friends or colleagues of yours, have knowledge 
about physics, chemistry, engineering, or some other technical 
discipline, investigate what’s meant in that discipline when you 
see a measurement reported as, for example, 18.5±0.1. What’s 
meant by the “±0.1” value, and how is it defined and measured? 
Is there any link to precision as I use the term?

	 13.4	 Could we have a “dance of the precision values”? If so, what 
use might it have, and how would it relate to the various other 
dances we’ve encountered?

	 13.5	 Refer back to Exercise 12.1. In that situation, suppose you would 
like to achieve precision of MOE = 0.2 scale units, using z. What 
N would you need? Using t, what N would give you expected 
precision of that target value? What N would you need to have 
90% assurance of obtaining that target precision?

	 13.6	 Refer back to Exercise 12.2. In that situation, what N would you 
need to achieve precision of MOE = 0.1, using z? Using t, if that’s 
to be the expected precision? With 99% assurance?

	 13.7	 Refer back to Exercise 12.3. Carry out a precision and assurance 
analysis, and discuss.

	 13.8	 Refer back to Exercise 12.5. Carry out a precision and assurance 
analysis, and discuss.

	 13.9	 Refer back to Exercise 12.7. Do the comparable things for 
precision.

	 13.10	Refer back to Exercise 12.8. Choose a few benchmark cases of N 
and precision to remember.

	 13.11	 Refer back to Exercise 12.9. Do the comparable things for 
precision.

	 13.12	If you are using any other statistics textbook, try to find some 
worked examples or exercises for which the ESCI precision 
pages are relevant. Compare the answers given by ESCI and 
that textbook.
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	 13.13	In your own discipline, try to find in journal articles some use, 
or even mention, of precision. Compare with the discussion in 
this chapter.

	 13.14	Extend the bullet point list of ways to increase precision that I 
gave near the end of this chapter.

	 13.15	Revisit your take-home messages. Improve them and extend 
the list if you can.

Take-Home Messages

•	 Precision is measured by the arm length of a CI and is referred to 
as MOE, the margin of error. For asymmetric CIs we use MOEav, 
which is the average of the two arm lengths of the CI. MOE varies 
with C, the level of confidence of the CI.

•	 Precision is the largest likely error of estimation, as indicated 
by MOE.

•	 Watch out for ambiguous language: High or large precision is 
indicated by short or small MOE, and low or poor precision by a 
long or wide CI.
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•	 Adopting estimation, and reporting and interpreting CIs means 
that precision is being reported. Any CI can be interpreted in 
terms of precision—its arm length—as Interpretation 3 of CIs 
states. This can often be a valuable approach.

•	 For planning, precision is better than power and avoids any need 
to invoke NHST or specify α and null and alternative hypoth-
eses. There is a strong correspondence between the target MOE 
used in planning and MOE of the CI calculated from data. Similar 
knowledgeable judgment is needed to set target MOE and, later, 
to interpret the obtained CI.

•	 Precision can have a valuable role in research planning. Turn 
around the formula for a CI, and calculate what N is required to 
achieve a CI that’s not too long.

•	 If z is the test statistic, we can calculate N to achieve a target MOE. 
When using t, MOE varies with replication and so we calculate 
N to achieve a target expected MOE, meaning the average MOE 
given by an indefinitely large number of replications.

•	 When using t, we can also calculate N so there’s a γ% chance that 
MOE is no more than a specified target MOE. Then γ is the assur-
ance, and we may choose γ = 99, for example.

•	 The pages Precision one, Precision two, and Precision paired 
of ESCI chapters 10–13 show, for those three designs, the rela-
tion between N and target MOE, which is expressed as f stan-
dard deviation units. Take-home picture: Three curves of N plotted 
against target MOE, for z, t, and assurance, as in Figure 13.9.

•	 Using Cohen’s d as the ES, those ESCI pages can carry out preci-
sion calculations and assurance calculations for the single-group 
and two-independent-groups designs. For the paired design, an 
approximation must be used to calculate CIs on d, and only lim-
ited precision calculations can be carried out.

•	 Precision has so far been little used by researchers for planning, 
but has great potential. Further developments are needed in tech-
niques, software, and practical guidance for researchers.

•	 A fundamental aim of research planning is to increase the infor-
mativeness of experiments. Increasing their precision can often 
contribute. Achieving higher precision is often worth great atten-
tion and effort.
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14
Correlations, Proportions, and Further 
Effect Size Measures

In earlier chapters, means and Cohen’s d are almost the only ESs I’ve dis-
cussed. Here I’ll go further and consider other measures we can use for 
the point estimates we want. Correlations and proportions are the main 
focus, and then I’ll briefly mention some other ESs. As usual, I’ll empha-
size variation with replication, and the value of CIs. Here’s the agenda:

•	 Pictures of correlations
•	 CIs on Pearson’s r
•	 CIs on r, and replication
•	 Comparing two correlations
•	 The ESCI Effect sizes software for effect sizes and CIs
•	 Proportions and their CIs
•	 Further effect size measures

Correlation Measured by Pearson’s r

Suppose you read, for a group of N = 50 children, that the correlation 
between reading scores at age 6 and scores 3 years later was r = .56. 
That’s Pearson’s r, which measures the linear component of the rela-
tionship between two variables, tradi-
tionally labeled X and Y. In our case, 
X and Y are the two reading scores. 
Correlation r is a units-free measure, 
which means simply that it has no units of measurement. It can range 
between –1 and 1. I’m not going to attempt a full introduction to r, with 
formulas, but will focus on pictures and CIs. As usual, I’m interested 
in intuitions about the extent of sampling variability, and the insights 
CIs can give. Correlation r is worth our attention because it’s so widely 
used, is interestingly different from means, and is a favored ES for 
meta-analysis.

Pearson’s r is a widely used, units-free mea-
sure of correlation between X and Y. It ranges 
from –1 to 1.
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Pictures of Correlations

First some pictures. The scatterplot is a simple graph of Y against X, in our 
case reading score at age 9 against score at age 6. We have N individuals 
or items, and each contributes an (X, Y) data pair that appears as one of 
the N dots in the plot. Figures 14.1 and 14.2 present examples. Scatterplots 
can be wonderfully revealing pictures of the relations between variables; 
I recommend using them often. Most textbooks that discuss correla-
tion include scatterplots to illustrate values of r. Unfortunately, these are 
often stylized diagrams in which dots are carefully arranged into a neat 
tilted oval shape. Reality is virtually always more messy, more like the 
haphazard-looking scatters of dots in Figures 14.1 and 14.2.

Inspect the three scatterplots in Figure  14.1 and estimate the correla-
tions they illustrate. How strong is each relation between X and Y? Do the 
same for the three plots in Figure 14.2. Write down your guesses before 
reading on.

For a little suspense before giving the answers, I’ll describe the ESCI 
page I used to prepare those figures. It’s See r in ESCI chapters 14–15, and 
Figure 14.3 shows part of its control area. The idea is that you specify at red 1 

Figure 14.2
Another three scatterplots, each with N = 30. What are the r values?

Figure 14.1
Three scatterplots, each with N = 30. Each is the plot of Y against X for 30 individuals, rep-
resented by 30 dots. What are the r values?
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an r value that you wish to see illustrated in a scatterplot, and at red 2 a value 
of N. Click the New data set button at red 3 and ESCI generates a data set of 
N points for which r equals your target r, and displays it as a scatterplot.

ESCI generates the data sets from a population having a standard bivar-
iate normal distribution. That’s a distribution whose properties include 
the following: Both X and Y are normally distributed, the means of X and 
Y are zero, and the SDs of X and Y are 1. We can therefore think of the 
X and Y values as being z scores. As Figure 14.3 illustrates, ESCI reports 
at red 4 the mean and SD of X and Y for the current sample. We expect 
the means to be around 0 and the SDs around 1, because these are the 
population values. You may care to fire up See r and experiment with 
various r values, then perhaps revise your estimates for the scatterplots in 
Figures 14.1 and 14.2.

Figure 14.3 shows near red 4 a checkbox labeled Display cross through 
means. Click to see lines that divide the scatterplot into four quadrants. 
Figure 14.4 shows the three plots of Figure 14.1 with such lines. The lines 
go through the mean of X and mean of Y for the current sample. We can 
use the lines to roughly estimate the number of points in the top right and 
bottom left quadrants, and note how that compares with the number in the 
top left and bottom right quadrants. If the first total is much higher than 

Figure 14.3
Part of the control area of the See r page in ESCI chapters 14–15.
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the second, r is quite high—we have a large positive correlation. If the first 
total is only a little larger, r is small but still positive. If the second total is 
higher, r is negative. You can practice estimating those totals of points in 
the two pairs of diagonally opposite quadrants, first with the cross lines 
displayed, then without the lines visible so you need to imagine them. 
Would you care to revise your estimates for r one more time?

Only a little further suspense. I’ll mention that Cohen (1988, pp. 79–81) 
suggested values of .1, .3, and .5 for small, medium, and large values of r, 
respectively. Note that these differ from the corresponding values of 0.2, 
0.5, and 0.8 he suggested for d. In both cases Cohen’s reference values are 
somewhat arbitrary and in many cases won’t be suitable; we must not use 
them as a substitute for knowledgeable judgment in the particular research 
situation. For r, different authors suggest quite different reference values. 
Hinkle, Wiersma, and Jurs (2003), for example, labeled r values above .9 as 
“very high positive,” values between .7 and .9 as “high positive,” between 
.5 and .7 as “moderate positive,” between .3 and .5 as “low positive,” and 
between -.3 and .3 as “little if any correlation” (p. 109). Take this set of dif-
ferent reference values as a warning that, for r perhaps even more than 
most ESs, interpretation of values must be made relative to the particular 
context. You could investigate in See r what scatterplots look like, for r = 
.1, .3, and .5, or any other value of your choice, and perhaps even amend 
once more your estimated r values for Figures 14.1 and 14.2.

Alright, no further delay. The three scatterplots in Figure  14.1 illus-
trate, from left to right, r values of .1, .5, and .3. They illustrate correlations 
that are, by Cohen’s convention, respectively small, large, and medium. 
Figure  14.4 does the same. The middle scatterplot illustrates r = .5, but 
shows substantial scatter. We’d expect the scatterplot for our reading 
scores, with r = .56, to look something like that middle plot, although with 
50 rather than 30 points. A correlation that is, in Cohen’s terms, large still 
shows a wide range of X values at any given value of Y—or conversely a 

Figure 14.4
The same three scatterplots shown in Figure 14.1, with lines drawn through the mean of X 
and mean of Y to divide the scatterplot into four quadrants.
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wide range of Y values at any given value of X. It may be a “large” correla-
tion, but it’s not a very close relationship between X and Y.

Figure 14.2 is different: All three scatterplots illustrate r = .3. The three 
are the plots I obtained on three clicks of the New data set button in 
the See r page, when I had r = .3 and N = 30 set at red 1 and 2. To my 
eye, the amount of variation in overall appearance from plot to plot in 
Figure 14.2 is considerable. I refer to such 
plots as alternative clouds for r. Simply keep 
clicking the New data set button to see 
further alternative cloud pictures for a 
single r. Note carefully that we’re not watching the variation in r that’s 
inevitable when we take successive random samples from a population 
with some fixed correlation ρ (Greek rho). We’ll consider that later, but 
here we are seeing alternative dot pictures that ESCI ensures all have the 
same r. These vary in appearance, perhaps to a surprising extent.

I find it a bit difficult to estimate r from realistic scatterplots, such as 
those in Figures 14.1 and 14.2, although I find the lines added in Figure 14.4 
helpful. Sure, it’s easy to distinguish r = .8 from r = .2, and sometimes we 
are dealing with correlations as large as .8 or more, but estimating values 
smaller than .5 can be tricky. No wonder many textbooks resort to cartoon 
scatterplots, in which points are tidily arranged in unrealistic neat clouds.

Here are my conclusions so far:

•	 At least over the range r = .1 to .5, Cohen’s small to large correla-
tions, it can be difficult to estimate r from a scatterplot. Adding 
lines as in Figure  14.4 and considering the relative numbers of 
dots in the two pairs of diagonally opposite quadrants can help. 
Usually we need to imagine such lines to help estimate r.

•	 Even with r as large as .5 there is very considerable scatter, so even 
a “large” correlation is hardly a very close relationship between 
X and Y. Of course, that’s “large” by Cohen’s reference values, but 
only “low” or “moderate” by those of Hinkle et al. (2003).

•	 For a given value of r, the scatterplot can look quite different for 
different samples. Figure 14.2 shows three alternative clouds for 
r = .3.

I invite you to use See r for your own explorations. Try large and small 
N. Try r values over the full range from –1 to 1. Try estimating r with and 
without the lines turned on.

I have one final thing to say about pictures of correlations. You can make 
a scatterplot and calculate r whatever the relationship between X and Y. 
The r of a data set is a measure of the linear component of that relation-
ship, but the plot may suggest that’s only part of the story. A departure 

Alternative clouds for r is my name for differ-
ent scatterplots that all have the same value 
of sample r.
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from linearity may be readily visible, especially if N is large. You should 
therefore always examine the scatterplot for any (X, Y) relationship you 
care about.

I learned that lesson many years ago when some colleagues and I were 
studying children learning to read. We had reading scores for a large group 
of children at about age 6, then again at age 9. I remember that the correla-
tion was about .5. I’m glad to say that we printed out the scatterplot of age-9 
scores against age-6 scores and made an interesting discovery: Virtually all 
the points fell in three quadrants, and the lower right quadrant was virtu-
ally empty. The data haven’t survived, but Figure 14.5 shows the pattern: 
If a child at age 6 scored below the mean, then at age 9 that child might 
be below or above the mean—in the lower left or upper left quadrant. 
However, if a child scored above the mean at age 6, the child was virtu-
ally guaranteed of scoring above the mean at age 9, and thus being in the 
upper right quadrant. That’s good news: If a child “gets it” (scores above 
the mean) by age 6, the child will continue to progress. They can read. If 
by age 6 they still don’t quite get it (they score below the mean), then they 
may or may not get it by age 9. Few children slip considerably backwards. 
Our r of about .5 was unsurprising, but didn’t tell the whole story. Our 

main conclusion was given not by r but 
by the pattern revealed by the scatterplot. 
It’s the same old lesson again: Always plot 

Examine the scatterplot for any (X, Y) rela-
tionship you care about.
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Figure 14.5
Invented data for N = 50 children showing a correlation of r = .56 between reading scores at 
age 6 and age 9. Note the almost empty lower right quadrant.
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your data in whatever ways are revealing, and think carefully about what 
the pictures might be telling you. Don’t be blinded by calculations of r, CIs, 
or anything else, but use these along with pictures to seek the messages 
within your data.

Confidence Intervals on Pearson’s r

Consider a CI on, for example, r = .9. Because r is bounded at –1 and 1, 
the CI can’t be something like .9 ± .2 because that extends beyond 1. The 
upper arm, closer to the boundary, needs to be squashed, and so we get an 
asymmetric CI. We might expect a less extreme value—r = .6, for example, 
would need less squashing and have a less asymmetric CI. It turns out 
that a good way to do the right amount of squashing and to calculate 
good approximate CIs for r is to use Fisher’s r to z transformation. Yes, 
that’s Sir Ronald Fisher of p value fame. Figure 14.6, from the r to z page 
of ESCI chapters 14–15, shows near the left a dot marking r = .6, with 
its 95% CI assuming that N = 30. Click the checkbox near red 4 at that 
page to reveal the large right panel, whose heavy curve is the Fisher r to 
z transformation, with r plotted vertically and z horizontally. The central 
part of the curve shows that, for small r, there is close to a linear relation 
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Figure 14.6
A figure from the r to z page of ESCI chapters 14–15. At left is a plot of r = .6, with its 95% 
CI, for N = 30. The heavy curve is Fisher’s r to z transformation, with r plotted on the vertical 
axis and z on the horizontal. The horizontal and vertical lines, and the numbered callouts, 
show how r = .6 is transformed to zr = 0.693, a symmetric 95% CI is calculated for z, and then 
the limits are transformed back to give the asymmetric 95% CI on the original r value. In 
the r to z page, click the Step button repeatedly to see the process illustrated step by step.
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Box 14.1  The Fisher r to z Transformation 
and Calculating a CI on r

The Fisher r to z transformation is

	 z
r
rr = × +

−




0 5

1
1

. ln 	 (14.1)

where “ln” is the natural logarithm and I’m using zr for the result of 
the transformation to reduce confusion with the critical value of z, 
which we need in the next equation. For these calculations we need 
to assume that the population is bivariate normal. Now we use the 
conventional formula to find a symmetric CI around zr:

	 z z
N

z z
N

r C r C− ×
−

+ ×
−







/ /,100 100
1

3
1

3
	 (14.2)

As usual, zC/100 is the critical value for z, which you can get from 
the Normal z t page of ESCI (see Appendix B). Of course, z.95 = 1.96. 
The ( )1 3/ N −  term is the SE of zr. Equation (14.2) gives us zr values 
for the two limits of the CI; we transform those two values back to r 
values using the inverse of the Fisher transformation, which is
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Let’s consider an example. We’ll take it step by step, using the 
numbers in the callouts in Figure 14.6.

	 1.	Set r = .6 and N = 30.
	 2.	Equation (14.1) gives zr = 0.693 as the transformation of r = .6.
	 3.	The SE of that zr is ( )1 30 3/ −  = 0.192, and Equation (14.2) 

gives 0.693 ± 1.96 × 0.192, or [0.316, 1.070] as the symmetric 
95% CI that’s shown on the horizontal axis in Figure 14.6.

	 4.	Equation (14.3) transforms the LL of the CI on zr back to r = 
.306, and the UL of the CI on zr back to r = .790. So the 95% CI 
on r = .6 when N = 30 is [.306, .790].

	 5.	This asymmetric 95% CI around r = .6 appears on the left in 
Figure 14.6. The two limits of this are also reported near red 3 
in the r to z page.
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between r and z. The ends of the curve show that, as r approaches either 
of its limits, the curvature increases, with the result that extreme values 
of r are stretched out when transformed 
to the z scale. Box 14.1 gives the formulas 
for using the transformation and calculat-
ing a CI on r, but you can leave the donkey 
work to ESCI if you wish.

Click the Step button several times to see a step-by-step demonstration 
of how the CI on r is calculated. The callouts in Figure 14.6 illustrate the 
sequence, and their numbers correspond to the following steps:

	 1.	Use the slider near red 1 to set r = .6.
	 2.	The r = .6 value is carried across to the heavy curve and dropped 

down to the z axis, at zr = 0.693. That’s the transformation in action.
	 3.	A conventional symmetric 95% CI is calculated on the horizontal 

z axis.
	 4.	The transformation is applied backwards by taking the limits of 

the CI up to the heavy curve and horizontally back to give the two 
limits of the 95% CI on r that we seek.

	 5.	See the CI on r.

The curvature of the Fisher transformation means that a symmetric CI 
on the z axis is transformed back to an asymmetric CI on r. Use the slider 
near red 1 to change r and watch the CIs. The CI on the z axis is always 
the same length, and symmetric, but the CI on r changes in length and the 
degree of asymmetry also changes, being greatest for r near –1 or 1.

Recall from Chapter 4 the cat’s-eye picture of a CI in Figure  4.5. 
Interpretation 4 of a CI uses the cat’s eye to indicate the relative likelihood 
of different values being the true population value. Figure 14.7 is the same 
as Figure 14.6, but with cat’s-eye pictures shown on the CIs. The cat’s eye is 
symmetric for the CI on the horizontal axis, but asymmetric for the CI on r 
to the left in the figure. At the r to z page, simply click near red 2 to display 
the cat’s eye on r, and near red 4 for the cat’s eye on z. The cat’s eye on the 
asymmetric CI on r in Figure 14.7 tells us that the best bets for the popula-
tion correlation ρ (yes, Greek rho, nothing to do with p) are close to r. The 
longer tail, especially, extends to values that are distinctly less good bets 
for ρ. You may elect to use the cat’s eye to help interpret a CI on r, but you 
can, of course, use any of our six approaches to CI interpretation that are 
summarized in Table 5.1—choose any one or more, as seems best in the 
research context.

Explore the r to z page as you wish. Change N as well as r. Do the 95% 
CIs on r seem to you surprisingly wide? How large an N do you need for 
r to be what you regard as a reasonably precise estimate of ρ? In other 

We use Fisher’s r to z transformation to cal-
culate CIs on r. The method is approximate 
but very good.
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words, for the CI to be sufficiently narrow? There’s more on such ques-
tions in the exercises at the end of this chapter.

Interpretation 5 of a 95% CI states that any value outside the interval can, 
if considered as a null hypothesis, be rejected at the .05 level. NHST can, 
however, be more than usually misleading when used with r. The trouble 
is that many researchers routinely test the null hypothesis of zero corre-
lation in the population, in other words, H0: ρ = 0 (yes, again that’s rho), 
without considering whether that null hypothesis makes sense. Many 
software packages also routinely report p values, or assign asterisks to 
r values, assuming a zero null hypothesis. However, when, for example, 
we consider r as a measure of test–retest reliability, or of validity, and 
also in many other situations, we’re interested in large values and would 
scarcely consider the possibility that the population value might be zero. 
Cohen’s reference values are completely inappropriate. A reliability esti-
mate as low as r = .6, for example, may be terrible news, and it’s irrelevant 
and misleading even to report that it’s highly statistically significantly 
greater than zero. Far more useful is to report a reliability estimate as r = 
.6, [.44, .72]—which is the 95% CI if N = 80—and to interpret those values 
as suggesting very poor, or at best moderate reliability, as we judge appro-
priate in the situation. Example 14.1 illustrates the problem.

Bruce Thompson (1997), long-time editor of Educational and Psychological 
Measurement, wrote, “I am especially troubled by researchers using sta-
tistical tests with a null hypothesis that ρ = 0 in validity and reliability 
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Figure 14.7
Same as Figure 14.6, but with cat’s-eye pictures. The cat’s eye is symmetric for the CI on the 
z axis, and asymmetric for the CI on r.
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studies in which hugely non-zero population effects are expected and 
demanded” (p. 30). He refused to publish p values that tested reliability 
or validity estimates against zero. Nonsensical null hypotheses seem par-
ticularly attracted to r, although they can pop up anywhere. Whenever 
you see a p value or statement about statistical significance, automatically 
think of what null hypothesis is being tested and consider whether it 
makes sense. Be skeptical of any p value, but be especially skeptical of any 
p reported with an r value.

CIs on r, and Replication

Figure 14.2 illustrates alternative clouds that all have exactly the same r. 
Now for a quite different issue: I want to investigate the sampling vari-
ability of r, meaning the way r varies when we take repeated samples 
from a population with correlation ρ. I’ll use the ESCI page Sample r and 

Example 14.1  Leadership and 
Intelligence in Gifted Students

One important use of r is to assess the reliability and validity of 
questionnaires and other scales. The best scales, including some 
IQ tests, can have reliability and validity around .9. Validity can 
be defined in various ways, an important one being convergent 
validity, which is the correlation of the measure of interest with 
another measure already known to be valid. Chan (2007) used a 
battery of measures to study leadership in gifted Chinese students 
in Hong Kong. In his discussion he stated, “Leadership gifted-
ness as assessed by the Chinese RRSL [a self-rating scale of lead-
ership] correlated significantly with … (r = .38, p < .01, …) … the 
leadership subscale of the SRBCSS [a rating scale used by parents 
or teachers] … suggesting that the Chinese RRSL has convergent 
validity when compared with Chinese SRBCSS leadership scores” 
(p. 160).

Such a low correlation, around .4, would usually be considered 
poor evidence for validity. The N was 92, so the 95% CI on r = .38 
is [.19, .54] and so the validity correlation could plausibly have been 
as low as .2. Perhaps it was the low p value that misled Chan (2007) 
to speak of the result as suggesting convergent validity? Yes, r was 
statistically significantly greater than zero, but was still small. As 
usual, it would have been much better to report r with its CI, and 
then interpret the point and interval estimates with no reference to 
the p value.
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N = 30. Figure  14.8 came from that page 
and shows the dance of the r values—25 
dots dancing on either side of ρ = .6. Below 
is the wide r heap, a pile of dots for all the 
r values for the 273 samples I’ve taken so 

far. The scatterplot at upper right in the figure illustrates the latest sample, 
for which r = .78. The dance is drunken, meaning quite wide, and the r 
heap has negative skew.

I took a few more samples, then clicked near red 3 to display 95% CIs on 
the r values in the dance, and at red 4 to mark population ρ with a vertical 
line at .6 and to mark capture of ρ by the CIs. Figure 14.9 shows the result. 
The CIs are all asymmetric, as we expect for CIs on r, and they vary greatly 
in width because r varies so much. In the dance, open circles mark two 
recent CIs that do not capture ρ and, in the heap, open circles mark values 
of r in the tails whose CIs did not capture ρ. For the latest sample, r = .54, 

The dance of the r values is my name for 
the sequence of different r values given by 
repeated sampling. The r heap is the sam-
pling distribution of r values.
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Figure 14.8
A part screen image from the Sample r page of ESCI chapters 14–15. So far, 273 indepen-
dent random samples of size N = 30 have been taken from a standard bivariate normal 
population whose correlation is ρ = .6. The r heap at the bottom shows the 273 r values. The 
dance of the r values above shows the most recent 25 r values. The latest sample has r = .78, 
which is the top dot in the dance and the large dot in the r heap. This sample is illustrated 
in the scatterplot at upper right.
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as marked by the top dot in the dance and the large dot in the heap. This 
sample is displayed in the scatterplot.

Click to take further samples and watch the great variation in r, the CIs, 
and the scatterplots. I refer to the sequence of scatterplots as the dance of 
the r clouds. Watch the dance of the r val-
ues, and see the r heap build. Explore what 
happens for different values of N and ρ. 
Sample r may remind you of what we 
found with CIjumping in Chapter 3: Sampling variation is often large and 
the dances wide. Both here with r and in Chapter 3 with means, smaller 
N gives larger sampling variability and larger N gives dances that are less 
wide. The main difference here is that the bounds of –1 and 1 on r mean 
that CIs vary in length and are asymmetric, and the r heap is skewed.

In Chapter 3, with means and 95% CIs, after a very long series of sam-
ples, very close to 95% of the CIs capture μ. Here, with r, our method for 
calculating CIs on r is approximate, so the long-run percentage of CIs 

The dance of the r clouds is my name for 
the sequence of different scatterplots given 
by repeated sampling.
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Figure 14.9
Same as Figure 14.8, except a further nine samples have been taken. Also, a vertical line 
marks the population ρ = .6, and 95% CIs are shown on each r in the dance. The r values 
whose CIs do not capture ρ are marked by open circles in the dance and in the r heap below. 
The latest sample has r = .54, as illustrated by the top dot in the dance and the heavy dot in 
the heap. This sample is displayed in the scatterplot.
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capturing ρ may differ a little from 95%, especially for very small N. For N 
of 30 or more, long-run capture is almost always between 94% and 95.5%, 
but for N = 10 the long-run capture is around 91%.

The Sample r page illustrates the sampling variability of r. In Chapter 9 
I explained that sample statistics often reflect measurement error as well 
as sampling variability. It can be especially important to consider mea-
surement error when using r, because r is so often used with data from 
questionnaires or other tests that have less than perfect reliability. Any 
correlation involving scores from such a test is attenuated—which simply 
means reduced—by measurement error. The lower the reliability is, the 
greater the reduction in our observed r value. If we have an estimated 
reliability for the test, we can calculate an unattenuated value for r—which 
is a larger value of r obtained after removing the estimated influence of 
measurement error. Borenstein et al. (2009, pp. 342–344) explain how to 
carry out such calculations. If you are using tests with less than high reli-
ability, you should consider an adjustment for measurement error. You 
should also, as I said in Chapter 9, try hard, as part of research planning, 
to minimize measurement error.

Comparing Two Correlations

Researchers often wish to compare two correlations. The Two correlations 
page of ESCI chapters 14–15 does this for two independent correlations. 
Correlations are independent when they come from different groups of 
participants. Therefore, the correlation of height and weight for a group of 
boys and the same for a group of girls would be independent. However, 
if you measure the height–weight correlation in a group of children, then 
also assess the correlation of those same children’s physical activity and 
eating behaviors, the correlations are not independent. If two correlations 
are not independent, we can’t draw any conclusion from comparing them, 
and I know of no general way to calculate a CI on the difference. I’ll con-
sider only the case of independent correlations.

Suppose you are investigating how medical students learn to interpret 
X-ray images. The students score the degree of pathology indicated by 
each image. For a set of 30 images you calculate r = .2 between the scores 
of a beginning student and those of an expert. For another comparable 
set of 30 images you calculate r = .6 between the scores of an advanced 
student and those of the expert. First, you would interpret the .2 for the 
beginner and the .6 for the advanced student, each with their CIs, but then 
you may wish to compare the two. Figure 14.10 shows independent r val-
ues of .2 and .6, from groups of size 30, with their 95% CIs. The two inter-
vals differ considerably in length and degree of asymmetry, even though 
N = 30 for each. The difference (r2 – r1) = .4 is plotted as the solid triangle 
on a floating difference axis, with its 95% CI. It’s a bit tricky to calculate the 
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CI on the difference between two r values, but ESCI uses a good approxi-
mate method described by Zou (2007). The Two correlations page reports 
near red 5 the CI on the difference to be [–.04, .82] and this is the interval 
shown on the right in the figure. We shouldn’t be surprised that this CI 
is so wide, because it combines uncertainty in each of the two r values as 
expressed by the individual CIs.

The CI on the difference gives the best basis for comparing two correla-
tions, but consider what that CI tells us. The limits, –.04 and .82, are dif-
ferences, not correlations. The lower limit tells us that the two population 
correlations may differ by as little as about 0; perhaps both are around .4, 
halfway between .2 and .6? The upper limit says that the two may plausi-
bly differ by as much as .8; perhaps they are around 0 and .8? Most likely 
the true difference is somewhere around the center of the CI on the differ-
ence, say, between about .2 and .6.

You may have wondered why the second advanced student rated a dif-
ferent set of images. To compare students, surely it’s better for each to 
rate the same set? That’s a fair point, but I had to assume different sets 
for the two correlations to be fully independent, meaning they are calcu-
lated for separate sets of people or objects—in this case X-ray images. That 
makes my example a bit unrealistic, but does emphasize the care needed 
to ensure that correlations are independent. Example 14.2 is a more realis-
tic case of a comparison of two correlations.
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Figure 14.10
A figure from Two correlations, showing independent correlations of r1 = .2 and r2 = .6, 
with 95% CIs, when N = 30 for each group. The difference (r2 – r1) = .4 is plotted as the solid 
triangle on a floating difference axis, with its 95% CI.
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The Overlap Rule for Two Independent Correlations

Yes, it’s best to examine the CI on the difference, but we may only be given 
the two r values and their CIs, as in Figure 14.11. Fortunately, the overlap 

rule we discussed in Chapter 6 for 95% 
CIs on independent means works also for 
independent correlations. The rule distin-
guishes three situations:

	 1.	 If the 95% CIs on two independent r values just touch end to end, 
overlap is zero and the p value for testing the null hypothesis of 
no difference is approximately .01.

	 2.	 If there’s a gap between the two CIs, meaning no overlap, then 
p < .01.

	 3.	Moderate overlap (see the following) of the two CIs implies that 
p is approximately .05. Less overlap means that p < .05.

Moderate overlap is overlap of about half the average length of the over-
lapping arms. In Figure  14.11, the overlapping arms are the upper arm 

Example 14.2  Assessing the Validity 
of a Food Questionnaire

Zou (2007) used the study of Morris, Tangney, Bienias, Evans, and 
Wilson (2003) to illustrate the calculation of a CI on the difference 
between two r values. Morris et al. assessed the validity of an eating 
questionnaire by correlating its scores with the results of a dietary 
interview. They suspected that males may be less patient in complet-
ing the questionnaire, so they compared the validity correlations in 
their male and female groups. Their 87 males gave a correlation of 
.36 and their 145 females a correlation of .49. Morris et al. reported 
that these correlations were not statistically significantly different. 
I entered r1 = .36 and N1 = 87, and r2 = .49 and N2 = 145 near red 1 in 
Two correlations. The figure showed large overlap of the two CIs, 
and a wide CI on the difference: That CI was reported near red 5 to 
be [–.09, .36]. In other words, the validity for females was greater than 
that for males by .13 [–.09, .36]. Had Morris et al. calculated this CI, 
they could have stated that the difference between male and female 
validities is plausibly anywhere in the wide interval [–.09, .36]—a 
conclusion that’s more informative than their statement of no (statis-
tically) significant difference.

A version of the overlap rule can be 
applied to the 95% CIs on two independent 
correlations.
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of the left CI, and lower arm of the right CI. That figure, from Two cor-
relations, shows overlap for our example r values to be a bit larger than 
moderate. We therefore expect p to be a bit larger than .05, and it is: ESCI 
reports p = .072 near red 4. That p value, a little larger than .05, is also 
consistent with the CI on the difference extending just past zero on the 
difference axis, as in Figure 14.10.

In Cumming (2009) I reported evidence that this rule is reasonably accu-
rate when both group sizes are about 30 or more, and the arm ratio (the 
length of the longer overlapping arm divided by the length of the shorter) 
is no more than about 2. In other words, the rule requires overlapping 
arms that don’t differ in length by more than a factor of about 2.

ESCI Software for Effect Sizes and CIs

The ESCI Effect sizes module provides calculation and graphing of CIs 
for a range of ESs. At the Correlations page you can enter up to 10 r values, 
each with its N, and see information about the CIs and a figure displaying 
the correlations with their CIs. Figure 14.12 shows an example. At red 2 
I typed in r and N values, then ESCI reported for each 95% CI the limits, 
arm lengths, and measure of precision MOEav. Figure 14.13 shows the fig-
ure. The values I chose illustrate a few interesting points about CIs on r:

r1

r2

–.2

0

.2

.4

.6

.8

1.0

r

Figure 14.11
The same independent correlations shown in Figure 14.10, but here the difference axis is not 
displayed and the overlap of the two CIs is marked.
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•	 Correlations 1 and 2 (also 6 and 7) show that the CIs on r and –r 
are mirror images.

•	 Correlations 2, 3, 4, and 5 (also 7, 8, 9, and 10) show how interval 
length varies with r, while N remains constant. The CI is much 
shorter for r close to –1 or 1, meaning a very strong correlation. 
Also, the extent of asymmetry varies with r: CIs are symmetric 
when r = 0, and have increasing asymmetry as r becomes closer 
to –1 or 1.

•	 Comparing CIs for a fixed r, with N = 30 and N = 120 (e.g., correla-
tions 2 and 7), shows that when N is four times as large, the CI is 
shorter by a factor of roughly N  = 2. This is as we’d expect from 
Chapter 3, although here the relationship is only approximate.

The Diff correlations page of ESCI Effect sizes allows you to enter up 
to 10 pairs of independent correlations, r1 and r2, each with its N, and see 
information about the CIs on the (r2 – r1) differences and a figure display-
ing those differences and CIs. I’ll leave you to explore that page and the 
other pages of ESCI Effect sizes, which include pages for single means, 
paired data, and means for two independent groups. In every case ESCI 
calculates and reports CIs, and also displays in a figure up to 10 ESs with 
their CIs.

Now, having spent all of this chapter so far discussing correlations, I’ll 
turn to other effect size measures. First come proportions, then measures 
of risk.

Figure 14.12
A part screen image from the Correlations page of ESCI Effect sizes. Enter r and N values 
at red 2 and see information about the 95% CIs on those correlations.
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Proportions and Their CIs

If five eggs in a package of a dozen are broken, the proportion broken is 
simply 5/12 = .42. A proportion is such a fraction, or ratio of two integers, 
let’s say x/N, where N is the total number 
of things we’re considering (12 eggs), and 
x is the number having some property of 
interest—five are broken. So x takes some 
value between 0 and N, and the proportion lies between 0 and 1. The N 
in the denominator must refer to separate, discrete things—such as eggs.

Proportions are another widely used ES that, like correlations, are 
bounded, but note the difference: Correlations lie between –1 and 1, but 
proportions between 0 and 1. ESCI Effect sizes has two pages for propor-
tions: Proportions and Diff proportions. At the Proportions page you 
enter up to 10 x and N values, then ESCI calculates proportions as P = 
x/N. Figure 14.14 shows an example. At red 2 I typed in x and N values, 

A proportion is the fraction of a number of 
discrete things that have a property of inter-
est. It lies between 0 and 1.
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Figure 14.13
The figure from the Correlations page that displays the correlations and 95% CIs reported 
in Figure 14.12.
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then ESCI reported the proportions and information about the 95% CIs. 
Figure 14.15 shows the figure.

You may be familiar with using the normal approximation to the bino-
mial distribution to carry out NHST for proportions and to calculate 
CIs. That approach is reasonable if N is very large and P is not close to 0 
or 1. ESCI, however, uses the method recommended by Newcombe and 
Altman (2000), which gives good approximate CIs on proportions even 
when N is small and/or P is close to, or even equal to, 0 or 1. To calculate 
CIs using either method we need to assume that the N things we’re con-
sidering are separate or independent.

Are proportions the same as percentages? Well, any proportion can be 
expressed as a percentage, so I can say 42% of the eggs are broken, but 
not every percentage is a proportion. I can say it rained 18% of the time 
yesterday, but that refers to time as a continuous variable. I can’t express 
the 18% as a proportion, with the definition we’re using here, because that 
definition is a ratio with, in the denominator, N discrete things: items, 
people, events—or eggs. I could measure time to the nearest minute, and 
say that yesterday it rained for 130/720 of the minutes between 8 a.m. and 
8 p.m. Even then, however, I don’t have a proportion, as I’m defining it 
here, because the 720 minutes in the denominator are not separate, inde-
pendent things.

The example in Figures  14.14 and 14.15 illustrates some interesting 
points about CIs on proportions:

•	 Proportions 1, 2, and 3 are examples of CIs when P = 0 or 1.
•	 Proportions 2 and 3 (also 4 and 5) show that CIs on P and (1 – P) 

are mirror images.

Figure 14.14
An image from the Proportions page of ESCI Effect sizes. Enter x and N values at red 2 
and see the proportions P = x/N, and information about the 95% CIs on those proportions.



 

Correlations, Proportions, and Further Effect Size Measures	 401

•	 Proportions 1, 5, and 8 show how interval length varies with P, for 
a fixed N. The CI is shorter for P close to 0 or 1. Also, the extent of 
asymmetry varies with P: There’s greater asymmetry when P is 
closer to 0 or 1.

•	 Proportions 5, 6, and 7 suggest that, for a fixed P, when N increases by 
a factor of 4 the interval becomes shorter by a factor of roughly 2, as 
we’d expect. However, proportions 1 and 2, and also proportions 8, 
9, and 10 show that this relation doesn’t hold generally. Yes, larger N 
gives shorter intervals, but the relation doesn’t follow a simple rule.

The Overlap Rule for Two Independent Proportions

You are probably seeing many parallels between proportions and cor-
relations. Yes indeed. I’ll leave it to you to imagine a sampling page for 
proportions, like Sample r for correlations. Given the parallels, it’s not 
surprising that the overlap rule works for proportions—consider, for 
example, the CI overlap for proportions 4 
and 5 in Figure 14.15. The rule requires the 
proportions to be independent, meaning 

A version of the overlap rule can be 
applied to the 95% CIs on two independent 
proportions.
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Figure 14.15
The figure from the Proportions page that displays the proportions and 95% CIs reported 
in Figure 14.14.
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that, for proportions x1/N1 and x2/N2, the N1 and N2 must refer to different 
sets of things. The rule distinguishes three situations:

	 1.	 If the 95% CIs on two independent proportions just touch end to 
end, overlap is zero and the p value for testing the null hypothesis 
of no difference is approximately .01.

	 2.	 If there’s a gap between the two CIs, meaning no overlap, then 
p < .01.

	 3.	Moderate overlap (see the following) of the two CIs implies that 
p is approximately .05. Less overlap means that p < .05. (So p < .05 
for proportions 4 and 5 in Figure 14.15.)

Moderate overlap is overlap of about half the average length of the over-
lapping arms. In Cumming (2009) I reported evidence that this rule is 
reasonably accurate when the arm ratio (the length of the longer overlap-
ping arm divided by the length of the shorter) is no more than about 2. In 
other words, the rule requires overlapping arms that don’t differ in length 
by more than a factor of about 2. We can, however, use the rule even for 
very low N, for proportions like 1/2 or 0/3. There’s no minimum N for 
the overlap rule for proportions, whereas for correlations we needed N to 
be at least around 30.

You could apply the rule to any pair of CIs in Figure 14.15, if the propor-
tions are independent. Proportions 6 and 9, for example, overlap a little 
less than half the average of the overlapping arms, so I’d estimate a p value 
of a little less than .05.

The Diff proportions page allows you to enter pairs of proportions and 
see information about the CI on the (P2 – P1) = (x2/N2 – x1/N1) difference. 
To check the comparison of proportions 6 and 9 I just referred to, type 
x1 = 4 and N1 = 28 for the first proportion into the first yellow panel near 
red 3, and x2 = 12 and N2 = 28 into the second yellow panel. ESCI reports 
the proportions as P1 = .143 and P2 = .429, and the difference as (P2 – P1) = 
.286. The 95% CI on the difference is [.048, .486], which easily misses zero, 
so we know that the p value for the difference is less than .05, as the over-
lap rule suggested.

Further Effect Size Measures

There are numerous further ESs I could discuss, but I’ll mention only a 
few measures used to express risk, or differences in risk. The main mes-
sage is that choice of ES can make a crucial difference in how readers 
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understand results. I’ll be brief, and won’t even discuss CIs. I will, how-
ever, mention some good sources of further ES advice.

Suppose the risk that a woman over 40 will die of breast cancer is about 
0.4%. This value can be stated in at least three ways, using three different 
ES measures for risk:

	 1.	The probability of death is about .004.
	 2.	The chance of death is about 0.4%.
	 3.	On average, about four in 1,000 women over 40 will die of breast 

cancer.

Now suppose that mass screening mammography reduces the risk so that, 
among women over 40 who participate in the screening, we can say that

•	 The probability of death is about .003.
•	 The chance of death is about 0.3%.
•	 On average, about three in 1,000 participating women will die of 

breast cancer.

If we focus on the reduction in risk we could say that

•	 Mass screening reduces the probability of death from .004 to .003.
•	 Mass screening reduces the chance of death from 0.4% to 0.3%.
•	 Mass screening reduces the number of deaths from about four to 

about three in 1,000.
•	 There is a 25% reduction in risk.
•	 The risk ratio is .75. (The risk ratio is the new risk divided by the 

old risk.)

All those statements are reasonable, consistent with each other, and typi-
cal of statements about risk that appear in mass media and also in medical 
journals. There is clear evidence, however, that they are not all accurately 
understood by people in general, or even by many medical practitioners, 
although some are understood better than others. I’ll illustrate with a story 
told by Gerd Gigerenzer (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, 
& Woloshin, 2007, pp. 54–55). In Chapter 2 I referred to Gigerenzer as a 
critic of NHST. He also leads research on the best ways to present infor-
mation about risk.

Gigerenzer recounts that, in 1995, news media in Britain reported evi-
dence that taking third-generation contraceptive pills increases the risk of 
a dangerous type of blood clot by 100% over the risk when taking other 
contraceptive pills. This news led to panic, and many women stopped tak-
ing the third-generation pills. As a result, unwanted pregnancies increased 
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and there were an estimated additional 13,000 abortions. The increase in 
risk of the blood clots was actually from about one in 7,000 to about two 
in 7,000 women. Yes, that’s a 100% increase in risk, but had the result been 
expressed in terms of one or two in 7,000, perhaps women would have 
reacted differently. The harm of the extra abortions probably greatly out-
weighed the harm of what would have been small numbers of extra blood 
clots expected if women had continued with the third-generation pills. 
However, a headline announcing a 100% increase in risk no doubt sells 
more newspapers than fiddly figures about so many in 7,000.

One conclusion from many studies by Gigerenzer and others is that 
it’s usually best to report risk, and changes in risk, in terms of natural 
frequencies. Natural frequencies are simply whole numbers expressing a 

risk in terms of so many per hundred, or 
thousand, or other convenient number. 
Saying that risk increases from one to two 
in 7,000 gives a clear message that the risk 

is small, although not to be ignored. It also says doubling the risk gives a 
risk that’s still small. Reporting a comparison of two risks as a percent-
age difference, or a risk ratio, tends to exaggerate the difference, and also 
the risk itself, as it did for the report of a 100% increase. There’s evidence 
that people, including health professionals, often severely misunderstand 
risk reported in that way. In contrast, 
reporting risks and comparisons of risks 
in terms of natural frequencies generally 
gives more accurate understanding.

There’s a further twist to this tale. Sedrakyan and Shih (2007) inves-
tigated how risks are expressed in medical journals. They studied 119 
systematic reviews of evaluations of drug and other therapies that were 
published in three leading medical journals during 2004–2006. They 
found that 48% of the reviews did not use natural frequencies to express 
any of the risks they reported. That’s one discouraging result. They also 
noted that 55% of the reviews reported information on both benefits and 
harms of the therapies being studied. Of these, about one third presented 
the probability information relating to benefits and harms using differ-
ent ESs. In most cases, relative risk was used to express benefits, whereas 
frequencies were reported for harms. An example of benefit expressed as 
relative risk is a therapy reported as giving a 150% increase in the chance 
of a full recovery, or a relative chance of recovery of 2.5 times the chance 
without the therapy. By contrast, a harmful side effect might be expressed 
as occurring on average for 12 people in 100. Such reporting may eas-
ily give an exaggerated perception of the benefit, but a fairly accurate 
understanding of the risk of the harm—because that risk was expressed 
in natural frequencies. Even in the best journals there may be a need for 

A risk expressed in natural frequencies is 
stated as so many per hundred, or thousand, 
or other convenient number.

It’s usually best to express risks in terms of 
natural frequencies.
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improvement in the choice of ESs. Gigerenzer et al. (2007) explained much 
more about ways to present risk, with numerous examples.

There is much scope for interesting statistical cognition research on how 
risk and differences in risk should be presented for best understanding, 
by professionals and by the public. For example, what graphical represen-
tations are best? In the meantime, natural frequencies are usually the best 
choice. If you see a risk expressed as .004 or .4%, translate it in your head 
to 4 in 1,000. If you see a risk difference expressed as a percentage or a risk 
ratio, try to find the two risks being compared and translate them into 
natural frequencies.

My broader conclusion is that there are often a number of ES measures 
that a researcher can choose for the analysis and reporting of results. It’s 
vital to choose carefully. If statistical cognition evidence is available to help 
guide the choice, that’s great. If not, we could consider conducting cogni-
tive research on the issue. In any case, we need to think carefully about 
what ES to choose, appreciating that the effectiveness of our communica-
tion with readers can be strongly influenced by the ES measure we use.

Further Information about Effect Sizes

An interesting discussion of the history of ES measures used in psychol-
ogy and education is given by Huberty (2002). Kirk (1996, 2003) gives 
classic discussions of ESs. Altman, Machin, Bryant, and Gardner (2000) 
compiled a book with the beautiful title Statistics with Confidence that gives 
practical guidance on how to use many of the ESs most commonly used 
in medicine, and how to calculate CIs for these. It has chapters on, among 
others, means, medians, proportions, correlation and regression, and 
measures of risk. Grissom and Kim (2005) wrote an important book that 
gives a detailed discussion of many ESs and their CIs.

It’s time for reflection on this chapter, and take-home messages. To help 
you write yours, recall that I started with correlations and scatterplots. 
I discussed CIs on r, the variation of r over replication, and the comparison 
of two independent correlations. ESCI Effect sizes provides pages for a 
number of ESs, including correlations and proportions, and their differ-
ences. Finally, I mentioned ESs for expressing risk and differences in risk.

Exercises

	 14.1	 Use the See r page of ESCI chapters 14–15 to explore the varia-
tion in scatterplot appearance for a fixed r, as illustrated in 
Figure 14.2. Try different values of r and N.
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	 14.2	 Use See r to practice estimating r from a scatterplot. Challenge 
a fellow learner. Does it help to display the cross lines through 
the means? Vary r and N.

	 14.3	 Compare the correlation chapter in another statistics textbook 
with this chapter. Note any important points made here but not 
in the other book—or vice versa.

	 14.4	 Use ESCI Effect sizes to find answers for correlation exercises 
in that other textbook.

	 14.5	 Make up some typical textbook exercises about correlation, 
then use ESCI to solve them. Swap exercises with a fellow 
learner. Include comparison of independent correlations, and 
(of course) use of CIs. Make the exercises relevant to a research 
area about which you know.

	 14.6	 Use the r to z page of ESCI chapters 14–15 to explain to some-
one who hasn’t heard of Fisher’s r to z transformation what the 
transformation does and why we use it.

	 14.7	 Use r to z to choose a few benchmarks worth remembering, 
preferably ones relevant to your discipline. Choose a few pairs 
of r and N values so that r is just statistically significantly 
greater than zero, and a few pairs so that the 95% CI is roughly 
±.1 or ±.2.

	 14.8	 Use the Sample r page of ESCI chapters 14–15 to investigate 
how the dance of the r values changes for various ρ and N.

	 14.9	 Explain the difference between alternative clouds for r, and the 
dance of the r clouds.

	 14.10	How good are our approximate CIs on r? Use Sample r to inves-
tigate the percentage capture of 95% CIs, for various ρ and N.

	 14.11	The r heap in Figure  14.9 shows negative skew. If we trans-
formed all those r values using Fisher’s r to z transformation, 
what’s your guess of the shape of the heap?

	 14.12	Use the Two correlations page of ESCI chapters 14–15 and the 
overlap rule to estimate p for various comparisons of two r val-
ues, then check against p reported near red 4. Challenge some-
one else.

	 14.13	Two correlations uses Fisher’s r to z transformation to calcu-
late an approximate p value for the comparison of two r values. 
It uses Zou’s (2007) method to calculate an approximate CI on 
the difference. Assess how well these two methods agree. For 
example, choose C = 95 then adjust things so that the CI just 
touches zero on the floating difference axis. Does the reported 
p value equal .05?
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	 14.14	 Scan your favorite journal for articles that use r. Can you find 
any examples of a CI on r? Find some cases where CIs were not 
used, but you think they should have been.

	 14.15	Enter r and N values into the Diff correlations page of ESCI 
Effect sizes. Enter the same values into the Two correlations 
page of ESCI chapters 14–15 and check that the CI on the dif-
ference is the same.

	 14.16	Adapt Exercises 14.3, 14.4, 14.5, 14.12, and 14.14 to apply to pro-
portions rather than correlations. Use the Proportions and Diff 
proportions pages of ESCI Effect sizes.

	 14.17	Find the website of Gerd Gigerenzer’s Max Planck Institute in 
Berlin and browse for results about how risk is understood and 
how it should best be represented. You may find at least one 
video of an interesting talk given by Gigerenzer.

	 14.18	Scan your favorite journal for examples of risk being reported. 
Note the ES used. If necessary, translate into natural frequen-
cies and assess whether that’s an improvement.

	 14.19	Watch out for media reports of recent research findings that 
include statements about risk, or a change in risk. Ask your 
friends to interpret. If necessary, translate into natural frequen-
cies and again ask them to interpret. Any better?

	 14.20	What ESs not mentioned in this book are used in your disci-
pline? Can you calculate CIs for them? Try to find a way to cal-
culate such CIs.

	 14.21	If you are familiar with some other statistical software, try to 
find out how to calculate CIs for correlations and proportions, 
and their differences. Can you display these CIs?

	 14.22	Revisit your take-home messages. Improve them and extend 
the list if you can.
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Take-Home Messages

•	 Pearson’s correlation r is a widely used ES. It’s a units-free mea-
sure that lies between –1 and 1. It measures the linear component 
of the relation between two variables, usually labeled X and Y. 
Correlation r refers to N pairs of values, each being (X, Y).

•	 A scatterplot is a beautiful picture of the relation between X and 
Y, in which each data pair is represented by a dot. For a given 
r value, the appearance of the scatterplot can vary considerably, 
as Figure 14.2 illustrates.

•	 Cohen suggested r = .1, .3, and .5 for small, medium, and large 
correlations, respectively, but other reference values have also 
been suggested. Interpretation of any r value is highly dependent 
on context.

•	 It can be a little difficult to estimate r by inspection of a scatter-
plot, although imagining lines that divide the display into quad-
rants can help. Compare the numbers of points in the diagonally 
opposite pairs of quadrants to estimate r.

•	 If repeated samples of N data pairs are taken from a bivariate 
normal population, we get the dance of the r values, which may 
appear wide unless N is very large. Those r values form the r heap, 
which is skewed toward 0, meaning it has a longer tail closer to 0. 
The scatterplots for successive samples are likely to vary greatly 
in appearance.

•	 Assuming that the sample is from a bivariate normal population, 
we can use Fisher’s r to z transformation to calculate an approxi-
mate CI on r. For given N, the CI is shorter for r closer to –1 or 1. 
The CI is typically asymmetric, the longer tail being closer to 0.

•	 If two correlations come from different groups they are indepen-
dent, and we can calculate an approximate CI on the difference 
(r2 – r1). Given 95% CIs on r2 and r1, the overlap rule gives approxi-
mate information about the p value for the difference.

•	 ESCI Effect sizes allows the calculation and display of CIs on 
correlations, and differences between two independent corre-
lations. It also supports the calculation and display of CIs for a 
number of other ESs.

•	 The proportion, P = x/N, where x and N are integers and 0 ≤ x ≤ N, 
is another useful ES that is bounded. It lies between 0 and 1. ESCI 
Effect sizes allows the calculation and display of CIs on propor-
tions, and differences between two independent proportions. CIs 
on proportions are typically asymmetric.
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•	 Many other ESs are used by researchers. An important class of 
ESs is those expressing risk, or differences in risk. In general, it’s 
better to express risk using natural frequencies, for example, 4 in 
1,000, rather than as probabilities (.004 or .4%).

•	 Two risks can be compared by stating both as probabilities (.004 
and .003), by using a risk ratio (.003/.004 = .75), by stating the dif-
ference as a percentage (the second is 25% less than the first), or 
by using natural frequencies (3 rather than 4 in 1,000). In general, 
risk ratio and percentage difference may be poorly understood 
and may exaggerate the difference. Natural frequencies usually 
give better understanding.

•	 It’s vital to consider carefully what ES is best for presentation of a 
research result, especially considering how clearly and accurately 
it conveys the message to readers. Statistical cognition evidence, 
where available, can offer valuable guidance.
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15
More Complex Designs and The New 
Statistics in Practice

Researchers often use more than one measure and more than two condi-
tions. Can the new statistics cope with realistically complex situations, 
such as factorial designs, multivariate analyses, and model fitting? That’s 
the first question I discuss in this chapter, and my answer is “increasingly, 
yes, although sometimes it takes extra effort.”

My second question concerns the practicalities of adopting the new sta-
tistics, given all the pressures of the modern research world. I’ll discuss a 
number of strategies that may help.

As a unifying theme I’ll use a general strategy for estimation that won’t 
surprise you at all: Find the ES most appropriate for the research question, 
place a CI on it, then make a figure and interpret the ES and its CI. That’s 
the first section:

•	 A four-step general strategy for estimation

The reasons for preferring the new statistics to NHST are just as strong 
for complex designs as they are for the simple situations we’ve been dis-
cussing. I’ve chosen a few topics to illustrate how we can gain the advan-
tages of the new statistics more widely. I’ll start with

•	 Analysis of variance (ANOVA) designs, especially randomized 
control trials (RCTs)

I’ll then take a side-step and discuss

•	 General issues that ANOVA designs raise, including multiple 
testing and data exploration

Then I’ll return to discuss further types of analysis:

•	 Model fitting
•	 Multivariate analyses
•	 Continuous data

Finally, I’ll move on to my second question and discuss strategies for 
putting the new statistics into practice.



 

412	 Understanding The New Statistics

A General Strategy for Estimation

Grayson, Pattison, and Robins (1997) noted that “attacks on significance 
testing … have largely taken place in the context of simple models with 
few parameters” (p. 69). Their comment largely applies to this book so 
far, because I’ve mainly discussed single samples, single correlations, 
and the simple two-condition designs of Chapter 6. To what extent is 
the new statistics beneficial for more complex designs? To address this 
crucial question, I’ll first state explicitly a general strategy for estima-
tion that we’ve used many times in earlier chapters. Here’s a small 
example to illustrate it: In Chapter 12 we considered an experiment 
to compare the HEAT (Hot Earth Awareness Test) scores for groups 
of students from two countries. If we’d run that experiment, we could 
have entered the data into the Data two page of ESCI chapters 5–6 
and clicked near red 9 on that page to reveal a figure like Figure 15.1. 
This shows the two means with their CIs, and the difference between 
the means with its CI, displayed on a difference axis. This example 
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Figure 15.1
A figure from the Data two page of ESCI chapters 5–6 showing means and 95% CIs for an 
imaginary experiment that compared HEAT scores for independent groups of 30 students 
from two countries. The solid triangle marks the difference between the means, with its 
95% CI, on a floating difference axis.
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illustrates our general strategy for estimation, which has the following 
four steps:

	 1.	Choose one or more ESs most relevant to the research question.
	 2.	Place CIs around those ESs.
	 3.	Make a figure.
	 4.	 Interpret.

The ES of primary interest in our experiment is the difference between 
the means; and the CI on that difference, as displayed in Figure 15.1, is 
what we need to guide our interpretation. You may feel that this exam-
ple is by now so familiar that it’s not necessary here, but I’ve included 
it and the figure to emphasize that our four-step strategy often requires 
more than is traditionally reported: probably just the separate means, per-
haps with CIs, but not the difference with its CI—which is what’s crucial 
for interpretation.

I’m going to use the four-step strategy to suggest how estimation can be 
used in a range of more complex situations, starting with ANOVA designs. 

ANOVA Designs: Randomized Control Trials (RCTs)

ANOVA designs are factorial designs with two or more independent 
variables, each of which may be a between-groups variable or a repeated 
measure. I’ll first discuss ANOVA designs that are RCTs, because the RCT 
design is very widely used across medicine, psychology, and a range of 
other disciplines, and is often regarded as the gold standard for providing 
evidence to support evidence-based practice. In addition, it raises impor-
tant interpretive issues because it includes both independent groups and 
the within-groups variable of testing time.

The upper panel of Figure 15.2 shows invented data for an RCT in which 
participants were randomly assigned to a Treatment group that received 
therapy for anxiety, or a Control group that didn’t. The figure reports 
means and 95% CIs for anxiety test scores at four time points. At first sight, 
the results look encouraging for the therapy: The groups were similar at 
Pretest, the Control group changed little with time, and the Treatment 
group showed improvement that was maintained after therapy at the two 
follow-up measuring times.

How can we use CIs to guide interpretation? Recall the discussion in 
Chapter 6 about using CIs to compare means. Because our two groups are 
independent, we can use the CIs to compare the Treatment and Control 
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means at any time point. Do that first for Pretest and Posttest, and con-
clude that the pattern of means and CIs for the two groups support our 
initial observation that the groups had comparable averages at the start, 
and that at Posttest the Treatment group had scores averaging consider-
ably lower than the Control group.

Within a group, however, the situation is different because time point 
is a within-group variable, and so the four measures for a group are 
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Figure 15.2
Data from a fictitious RCT of a therapy for anxiety. The upper panel shows invented means 
and 95% CIs for two independent groups, with measures at four time points. The gray line 
labeled “clinical threshold” marks a reference value. The lower panel shows for each group 
the mean (Posttest–Pretest) difference with its 95% CI, and marks three reference values for 
ES changes. Note that the vertical scales differ in the two panels. The figure comes from the 
Figure page of ESCI chapters 14–15.
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correlated. Therefore, we cannot use the displayed CIs to compare, for 
example, the Pretest and Posttest means for a single group. For the paired 
design in Chapter 6 I used a floating difference axis to display the mean 
of the differences with its CI. An RCT is more complex and so it’s better to 
use a separate figure, as in the lower panel 
of Figure  15.2, which shows the mean 
(Posttest–Pretest) difference, with its CI, 
for each group. Those CIs are appropri-
ate for assessing the improvement in any group and for comparing the 
improvement of different groups. Here, as usual, we’re benefiting from 
the repeated measure design by seeing CIs in the lower panel that are 
much shorter than those in the upper panel, thus indicating relatively pre-
cise estimation of changes over time. (Note that ESCI sets each vertical 
scale to fit the data being presented, and here the vertical scales in the two 
panels are different.) The lower panel shows a large and very clear differ-
ence in the average size of change in the two groups. We could similarly 
plot means and CIs for any other within-group comparison of interest, for 
example, Follow Up 1 versus Posttest.

Knowledge of anxiety, the clinical condition under study, and the anxi-
ety scale should guide interpretation of the results. The gray line in the 
upper panel at 60 marks what I’m assuming is the threshold for anxiety 
to be considered clinically distressing. We can conclude that both groups 
initially averaged above that score, and after therapy the Treatment group 
averaged below the threshold. Further knowledge of the scale may per-
mit statements about the initial and final average severity of anxiety in 
the groups. The lower panel includes three reference values for changes 
in anxiety score. Reference values may reflect established conventions 
within a relevant body of professionals, or the clinical judgment of the 

researchers. I recommend using reference 
values, where possible, but authors need 
to justify and explain them. Reference 

values can guide interpretive statements. For example, inspecting the 
lower panel in Figure 15.2 might prompt statements such as “the average 
decrease in anxiety in the Control group was at most small, and quite 
likely negligible,” and “in the Treatment group, it was between medium-
large and very large.”

The editors of the British Medical Journal describe a similar approach 
when they ask for interpretation of CIs: “There will always be some 
uncertainty … Using wording such as ‘our results are compatible with 
a decrease of this much or an increase of this much’ … is more accurate 
and helpful to readers than ‘there was no effect …’” (tinyurl.com/bmjcis).

As well as interpreting the figure showing means and CIs, we should 
examine individual data, perhaps by including dot plots in the figure, 

CIs on means may be used to assess dif-
ferences for independent groups, but not a 
repeated measure.

Mark reference values for ESs and ES differ-
ences in figures, if that helps interpretation.
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as in Figures 6.6 and 6.9. We could also use additional ES measures, for 
example, a count of the number of participants in each group who meet 
diagnostic criteria for clinical anxiety or severe clinical anxiety, and then 
examine how those numbers change with therapy.

A traditional analysis would probably apply an omnibus ANOVA model 
to the data in the upper panel of Figure 15.2. Interpretation would be in 
terms of the interaction between group and time, perhaps with post hoc 
tests to examine components of the interaction, despite such tests proba-
bly having low power. The hope would be that the analysis shows compa-
rability of the groups at Pretest and a statistically significantly lower score 
for the Treatment group at the other time points. However, “the problem 
is that omnibus tests … do not usually tell us anything we really want to 
know” (Rosenthal, Rosnow, & Rubin, 2000, p. x). I expect that our estima-
tion approach based on Figure 15.2 would be more informative.

Box 15.1 describes evidence that published reports of RCTs, at least in 
psychiatry and psychology, often provide only incomplete information. 
Fidler, Faulkner, and Cumming (2008) described guidelines for reporting 
RCTs that we developed partly in response to that evidence. The guide-
lines start with examination of the main patterns in the data, then prepa-
ration of figures to show means and CIs. We explained how to use the 
statistical software SPSS or Excel to produce relevant figures. We consid-
ered moderators and then integration of our results into a meta-analysis. 
Our aim was to use the new statistics to give researchers and practitioners 
what they say they want from RCTs, including especially an estimate of 
the size of the effect, which is highly relevant for evidence-based prac-
tice. Rather than repeat what we included in that book chapter, I’ll now 
describe what ESCI offers.

ESCI for the Analysis of ANOVA Designs

Figure 15.2 comes from the Figure page of ESCI chapters 14–15. Figure 15.3 
shows part of the control area of that page and part of the data displayed 
in Figure 15.2. The page can display up to four data series, each with up 
to four points. You type in labels for the data series and the points, so 
Figure 15.3 shows the labels “Treatment” and “Control” for Series 1 and 
2, and “Pretest,” etc., for Points 1, 2, and 3. Checkboxes at the left indicate 
that Series 1 and 2, but not 3, are being displayed. Values of the means are 
entered in the columns labeled Mean, and MOEs in the columns labeled 
Bars. For every case in Figure  15.3 the lower cell for Bars, labeled “–”, 
is blank, which prompts ESCI to use the same value for both upper and 
lower arms of the CI. As usual, popout comments give full explanations.

At the top in Figure 15.3 are checkboxes for each point. If exactly two 
of those four checkboxes are checked, then Figure displays the difference 
between the means for those two points, for each series selected for display. 



 

More Complex Designs and The New Statistics in Practice	 417

Box 15.1  What Researchers Want from RCTs

For her dissertation in clinical psychology, Cathy Faulkner examined 
how published RCTs were analyzed (Faulkner, Fidler, & Cumming, 
2008). She located 193 reports of RCTs of psychological therapies 
published in prominent psychiatry and psychology journals during 
1999–2003. She found that 99% of her reports used NHST for analysis 
and interpretation, and only 31% reported any CIs. Worse, only 2% of 
articles made any use of CIs for interpretation. That’s a common find-
ing, even in medicine: Even if CIs are reported, they are very often 
ignored and not used to inform interpretation, which is largely based 
on NHST. In a second study, she surveyed the authors of her RCT 
articles by email, to ask them what information they most wished to 
know when they read a report of an RCT. They told her they wished 
to know (a) whether there is an effect, (b) how large the effect is, 
and (c) to what extent the effect is clinically important. They rated 
all three as very important. Faulkner made the reasonable assump-
tion that practicing psychologists are likely to have similar prefer-
ences. She contrasted these preferences with what the RCT articles 
provided: They focused on NHST to answer (a) and, in many but not 
all cases, they included discussion about (c). CIs and discussion to 
address (b) were largely missing. She concluded that reports of RCTs 
often don’t provide the information that practitioners say they want.

igure 15.3
Part of the control area of the Figure page of ESCI chapters 14–15, showing part of the data 
displayed in Figure 15.2. Figure displays data for up to four data series, each with up to four 
points. To enter data, use the spinners or type in values.

2 Labels:

- -

-

- -

-

-

-

-

F
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In Figure  15.3, only Points 1 and 2 are checked, so the mean (Posttest–
Pretest) difference is displayed for the Treatment and Control series, as 
in the lower panel of Figure 15.2. You need to enter the MOEs for the CIs 

on the differences. Because the four points 
within a series are assumed correlated, 
ESCI can calculate the differences but not 
the CIs. Enter those MOEs in the Bars col-

umn below red 8, not shown in Figure 15.3. Also not shown are the areas 
at red 6 and red 9 where you type in your labels and specify the values 
to use as reference values, if you wish these to be displayed. Figure 15.2 
shows example reference values, marked by gray lines: “Clinical thresh-
old” at 60 in the upper panel and the three values for changes in anxiety 
score in the lower panel.

In Figure 15.2 the means for Treatment and Control, for each of the 
four points, are slightly offset horizontally, so CIs can be easily seen 
even if they overlap. Use the spinner at red 5 to adjust the amount of 
horizontal offset. Being able to offset means so all error bars are clearly 
visible is a crucial feature of any graphical software for the new statis-
tics. Many standard statistical packages cannot yet do this, but let’s hope 
they soon will.

Figure has spinners beside the data cells, as Figure 15.3 shows. These 
provide values between 0 and 200, and allow you to easily explore changes 
in the figures by adjusting means and CIs. Alternatively, simply type in 
your values, whether or not they lie within that range.

The general approach I’ve described for the analysis of RCTs can be 
applied to the more complex designs Figure can display—up to four data 
series—and beyond, but always keep in mind the distinction we dis-
cussed in Chapter 6 between independent groups and repeated measures. 
As we discussed above for an RCT, if the different data series come from 
independent groups, we can use the upper-panel CIs to compare groups 
at a time point. When, as is often the case, the points within a data series 
represent a repeated measure, we need the differences and their CIs in 
the lower panel to compare results at different points. You can also use 
Figure to display data for a design in which both independent variables 
vary across groups. For this design, the points in each series represent 
independent groups and we can use the CIs in the upper panel to assess 
differences between any points, whether in the same or different series. 
In Figure you can click below red 3 to display or not display lines joining 
the means in a data series. I think it’s a good convention to use such lines 
for a repeated measure, and to omit them for independent groups, but the 
convention is far from universal, so beware. In any case, you need to make 
crystal clear in the figure caption the status of each independent variable 
as varying across participants (i.e., independent groups) or within partici-
pants (i.e., a repeated measure).

Using CIs to compare means and evaluate 
differences can be a good way to interpret 
RCTs.
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Interpretive Issues Prompted by ANOVA Designs

I’ll now step aside for a moment from discussing more complex designs 
and consider some interpretive issues raised by the new statistics. This is 
a convenient moment, because ANOVA designs provide a natural context 
for discussing these issues. You may already have been thinking about 
some of the queries or doubts I’ll mention. I’ll frame them as objections 
posed by a skeptic, followed by my response.

Covert NHST

Skeptic: “Your conclusions are, or should be, consistent with what p values indi-
cate, so you’re conducting NHST by stealth, and it would be better to have it out 
in the open.” First, an interpretation of, for example, the Treatment group 
ES in the lower panel of Figure 15.2 as “around large” is consistent with 
the NHST conclusion of a statistically significant decrease, but is preferable 
because it’s more informative—the CI gives information about precision. 
Second, it’s true that taking nonoverlap of independent 95% CIs as reason-
ably clear evidence of a difference is approximately equivalent to using a 
p < .01 criterion. However, considering the CIs as ranges of plausible true 
values, and bearing in mind the cat’s-eye picture, gives a clear interval-
based rationale for the conclusion, keeps the focus on ESs, and suggests 
how large the difference is likely to be. Estimation conclusions, even if con-
sistent with those of NHST, are likely to be more informative.

Decisions

Skeptic: “You are avoiding clear decisions, which are often needed in practice.” 
Yes, we often need to make decisions, such as whether or not to use this 
therapy, or approve that procedure for use in schools. In a famous article 
titled “Conclusions vs. Decisions,” the eminent statistician John Tukey 
(1960) described such decisions with the words, “let us decide to act for 
the present as if” (p. 424), meaning that we should take account of the best 
evidence available now, whether that’s weak or strong. Evidence may be 
provided by a single study, but preferably is combined over studies, most 
likely by meta-analysis. Tukey distinguished such decisions from scien-
tific conclusions, which should be “withheld until adequate evidence has 
accumulated” (p. 425). Again that’s meta-analysis, but it emphasizes that 
the conclusion should wait until we feel the evidence is sufficiently strong, 
or estimates sufficiently precise. Yes, we can distinguish decisions and 
conclusions, but the commonality is important: Both should be based on 
the best evidence we have at the moment, and that’s given by estimation, 
not p values.
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Subjectivity and Fuzzy Interpretations

Skeptic: “Interpretations of ESs such as ‘medium to large’ and ‘most likely neg-
ligible’ are subjective, fuzzy, and hard to summarize.” Yes, interpretation of 
ESs is based on judgment, but so are numerous other aspects of planning, 
conducting, and reporting research. Such wording is intended to capture 
not only the ES but also the uncertainty, as expressed by the CI. Therefore, 
any less fuzzy wording would be claiming too much precision and would 
misrepresent the data by downplaying uncertainty. Recall my argument 
in Chapter 2 that statements of statistical significance can suggest cer-
tainty, but that such certainty is illusory, whereas CIs give an accurate 
picture of the uncertainty in the data.

More than One Degree of Freedom

Skeptic: “The problem is that you are considering only simplistic comparisons of 
means, thus missing insight provided by interactions and other effects with more 
than one degree of freedom.” Yes, omnibus effects that are more complex than 
a comparison, and which therefore have more than one degree of freedom, 
can sometimes provide insight, but in many cases they don’t match closely 
the research questions being asked, and may be difficult to interpret. The 
Publication Manual (APA, 2010) states the following: “Multiple degree-
of-freedom effect-size indicators are often less useful than effect-size 
indicators that decompose multiple degree-of-freedom tests into mean-
ingful one degree-of-freedom effects—particularly when the latter are the 
results that inform the discussion” (p. 34). I agree. I recommend Rosenthal 
and Rosnow’s (1985) book titled Contrast Analysis: Focused Comparisons in 
the Analysis of Variance, which explains how to use contrasts and simple 
comparisons to analyze ANOVA designs, and why that approach can give 
better interpretations. The authors explain why planned comparisons, 
specified in advance, can be especially valuable. Rosenthal et al. (2000) 
developed the approach further, but I still like the accessibility of the 
1985 book.

Other ES Measures

Skeptic: “You are ignoring other ES measures that, with complex designs, provide 
valuable information.” Yes, my simple comparisons use means and differ-
ences as ESs in original units, or we could use Cohen’s d as in Chapter 11. 
Other ESs are indeed used with ANOVA designs. When Cohen (1988, 
Chapter 8) discussed such designs, he introduced an effect size measure, f, 
which is the SD of the standardized group means. The G*Power software 
uses f, but otherwise it’s little known, although it probably deserves to be 
more widely used, because it’s expressed in original units and I suspect 



 

More Complex Designs and The New Statistics in Practice	 421

may be easier to interpret than the measures I’ll mention now. The ES mea-
sures most commonly used with ANOVA are estimates of the proportion 
of total variance that’s attributable to an independent variable. Slightly 
different approaches measure this as η2 (Greek eta-squared) and ω2 (Greek 
omega-squared). Most widely used is η2, although estimates of ω2 are less 
biased. Grissom and Kim (2005, Chapter 6) and Hays (1973, Chapters 10 
and 12) explained these ESs and provided formulas for calculating them. 
Grissom and Kim (pp. 124–127) discussed issues of definition, estimation, 
and interpretation of such ESs for ANOVA.

It can be a challenge to interpret ES measures that are a proportion of 
variance, including η2 and ω2, and, in the context of multiple regression, R2. 
One problem is that they are expressed in squared units, such as ms2 or cm2, 
which may be less intuitive than the original units, milliseconds or centi-
meters. Another problem is that they are proportions of total variance, and 
this total may depend on many things, including experimental design, and 
numbers of levels of the independent variables. It can therefore be hard to 
appreciate what, for example, η2 = .04 or R2 = .30 mean. ESs that are propor-
tions of variance can be useful, but we should recognize their challenges. If 
appropriate, consider using comparisons of means instead, as Rosenthal and 
Rosnow (1985) described.

Multiple Comparisons

Skeptic: “By making many comparisons of pairs of means, you are ignoring the 
problem of multiple comparisons and an inflated Type I error rate.” If we carry 
out a number of statistical significance tests, some are likely to give p < .05, 
even if all null hypotheses are true. The more tests, the greater the chance 
that we’ll incorrectly reject a null hypothesis and thus commit a Type I 
error. This is the well-known problem of multiple testing and α inflation. 
Students of NHST learn about the Bonferroni correction and post hoc test 
procedures that protect against the problem, typically by making the tests 
more conservative, to keep the Type I error rate down but at the cost of 
increasing the risk of committing a Type II error. The mainstream view is 
that Type I errors are the major concern, and therefore multiple compar
isons are problematic, a simple p < .05 criterion applied to each compari-
son separately is untenable, and the Bonferroni correction or some other 
protection strategy is needed. On the other hand, a number of scholars, 
for example, Rothman (1990), have presented cogent arguments that such 
a protection strategy is overly conservative and risks missing important 
findings. They are comfortable with using a possibly large number of 
tests, just so long as any statistically significant result is regarded as an 
interesting possibility needing further investigation, rather than an estab-
lished finding.
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Using estimation does not make the issue of multiple comparisons go 
away. Figure 15.4 shows the dance of the CIs for the first 20 samples in a 
set from the CIjumping page of ESCI chapters 1–4. Focus on one of the 
largest sample means—which lie farthest to the right in the figure—and 
one of the smallest, and compare their CIs. Not much overlap, or even a 
gap! You could use the overlap rule and judge p < .05 or even p < .01, or you 
could ignore NHST and think in terms of cat’s-eye pictures for both CIs, 
and conclude that there’s quite strong evidence of a difference between 
the underlying population means. However, those samples all come from 
the same population, so any conclusion of a difference would be spuri-
ous. Looking at the data and comparing extreme results, as we did just 
then, is a bad strategy, likely to prompt overinterpretation of what’s really 
just sampling variability. That’s capitalizing on chance, and likely to give 
erroneous findings.

In the estimation world there’s no well-established CI adjustment com-
parable to the Bonferroni correction. I think that’s a good thing, because 
I’d prefer to rely on careful judgment than on an arbitrary numerical 
adjustment. Recall my conclusion in Chapter 5 that, nearly always, a 
p value conveys very little information. There’s little point in calculating 
a “corrected” criterion for evaluating a p value when on replication p could 
easily be markedly different.

Considering judgment, one issue is the number of comparisons of poten-
tial interest. Another is whether comparisons chosen for interpretation 

Figure 15.4
The dance of the CIs: mean and 95% CI for the first 20 samples, each with N = 25, and with 
σ not known, from the CIjumping page of ESCI chapters 1–4.



 

More Complex Designs and The New Statistics in Practice	 423

are specified in advance, preferably with some theoretical rationale, or 
are selected post hoc after inspecting the data. Those two issues combine 
to give a continuum: With few effects, all specified in advance, we can 
reach reasonably confident conclusions. At the other extreme, however, we 
examine many means or comparisons and 
focus on any effect that seems interesting, 
thus running the risk of capitalizing on 
chance and obtaining spurious findings. How conservative should we be? 
Rothman’s (1990) answer was that “scientists should not be so reluctant 
to explore leads that may turn out to be wrong that they penalize them-
selves by missing possibly important findings” (p. 43). In other words, we 
shouldn’t be too conservative, and should explore our data for possibly 
important findings.

Exploratory Data Analysis

Skeptic: “You’ve mentioned data exploration, but that risks capitalizing on 
chance and unjustified interpretations.” The previous objection focused on 
the negative—the problem of multiple comparison and inflated α; this 
objection concerns the same underlying issue but hints at the positive—
the insight that may be given by data exploration. My comments here 
therefore overlap with my previous comments. I suggest considering two 
stages of data analysis. After first examining the data, Stage 1 focuses on 

the small number of effects you’ve speci-
fied in advance as addressing your main 
research questions. In Figure  15.2 these 
probably include the two differences in 
the lower panel and their comparison. You 

can have reasonable confidence in conclusions about those effects. Then 
Stage 2 is a full exploration of everything. The trade-off is that Stage 2 
risks spurious findings by capitalizing on chance. Keep in mind the dance 
of the CIs, shown in Figure 15.4, and the risk that you are only focusing 
on effects that are large because of sampling variability. It’s often sober-
ing to examine a figure such as Figure 15.2 and imagine what’s likely to 
happen on a full replication. Every CI is just one from a dance, so, on rep-
lication, every mean may be considerably different, and the overall pat-
tern of means may look very different. The CIs give us some idea of how 
different. Also bear in mind that any of our findings may—and probably 
should—be included in a meta-analysis, which is usually the best way to 
come close to knowing truth.

In 1977 John Tukey published a famous book with a bright orange cover 
titled Exploratory Data Analysis (EDA). Tukey introduced many new rep-
resentations of data and gave numerous examples of data exploration, 
usually based on several different pictures of the data. Tukey’s EDA was 

Use exploration of data, and judgment, but 
be wary of the risk of capitalizing on chance.

Exploration of data is valuable, but effects 
that emerge as interesting should be sug-
gested for further investigation rather than 
stated as firm conclusions.
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detective work: Investigate the data until its messages become apparent. 
Tukey was well aware of the multiple comparison issue, but regarded 
exploration as necessary if experimental results are to yield their greatest 
possible value. Rothman would agree, and so do I. My Stage 2 therefore 
includes any replotting of data that might be illuminating. Just make clear 
that findings from exploration need follow up.

A valuable and insufficiently appreciated strategy is to seek converging 
evidence. Suppose you notice in Figure 15.2 that the Treatment group’s 
mean scores drop from Follow Up 1 to Follow Up 2, suggesting a delayed 
positive effect of the therapy. Click to select those two time points to display 
mean differences in the lower panel. For the Treatment group, the differ-

ence is encouraging: 10, [3, 17], but are we 
overinterpreting randomness? Recall the 
warning in Chapter 5 about interpreting 
lumps in randomness. Of course, you can 

suggest further research, and you can search the literature for evidence 
you could combine with your result by meta-analysis. But first you can 
search for supporting hints in your current data. If you have any other 
measure of anxiety, perhaps ratings by the therapist or reports by a close 
family member of the participant, you could examine whether those mea-
sures show a similar late drop. Perhaps you can go back to your therapists 
and ask them, even if you didn’t think to do so at the time. If you split your 
Treatment group into participants starting with more or less severe anxi-
ety, does the late drop appear in both subgroups? If further data explora-
tion can find any hints of support that are even partly independent of your 
original observation, then you have stronger grounds for suspecting that 
you’ve found a real effect, definitely worth further study.

Now, after stepping aside to cope with interruptions from the skeptic, 
I’ll return to considering further more complex analyses.

Model Fitting

As theorizing in a discipline becomes more sophisticated, data analysis 
more often focuses on assessing how well a particular model fits a data 
set. NHST often does an especially poor job of this, primarily because it 
doesn’t give us a measure of how well a model fits a set of data—p values 
can’t tell us that. Such a measure is an ES measure—it quantifies the good-
ness of fit, which is our primary interest. We’d like such an ES measure 
to help us compare how well a particular model fits different data sets, 
and to compare different models fitted to a single data set. Then we could 

Converging evidence strengthens a result and 
reduces the risk that we’re capitalizing on 
chance.
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apply our estimation strategy. I have two examples of using ESs and CIs 
for model fitting.

Categorical Variables and Frequency Tables

Suppose you are interested in the access that corporations have to finance. 
You survey 20 large and 20 small corporations in your city, and ask them 
whether they have been able to obtain sufficient finance in the last 2 years. 
Table 15.1 presents your results. The table entries are the numbers of large 
and small corporations that stated that they did or did not have adequate 
access to finance. The traditional analysis of such a frequency table is to 
use a χ2 (chi-square) test to examine the goodness of fit of the observed 
frequencies to the model stated by the null hypothesis. This model is 
that there is no association between the two categorical variables: large 
or small corporation, and satisfactory or unsatisfactory access to finance. 
The test statistic is χ2 = 4.29 with df = 1, p = .04, so the traditional NHST 
decision would be to reject the null hypothesis of no association, with α = 
.05, and conclude that large corporations have better access to finance.

Using NHST to assess goodness of fit encounters the old problem that 
a p value is not an ES. Two p values don’t give a sound basis for compar-
ing, for example, how well a model fits two data sets. In addition, with 
a medium or large data set, NHST can often in practice be overly sensi-
tive, in that even a small and perhaps unimportant discrepancy between 
a model and the data can give a small p value and a misleading conclusion 
that the model does not fit.

To apply my four-step estimation strategy, we first focus on the propor-
tion of corporations having satisfactory access to finance, and compare 
that proportion for large and small corpo-
rations. The proportions are independent, 
so you could use the Diff proportions 
page of ESCI Effect sizes. Type in the two 
proportions 17/20 and 11/20, and find that the proportions are .85 and .55, 
and the difference is .3, [.02, .53]. The 95% CI just misses zero, which is con-
sistent with p = .04 for the χ2 analysis. As usual, the estimation approach is 

If two proportions are independent, a CI 
on the difference may offer an estimation 
approach to analyzing a frequency table.

Table 15.1

Numbers of Large and Small Corporations Having Satisfactory 
or Unsatisfactory Access to Finance

Large Corporations Small Corporations Total

Satisfactory access 17 11 28
Unsatisfactory access   3   9 12
Total 20 20 40
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more informative because it gives us an estimate of the difference, which 
is the ES most directly relevant to our research question, and a CI to tell 
us the precision of that estimate. It’s not surprising that this small sample 
gives such a wide CI.

We can use Diff proportions when the two proportions are indepen-
dent. For larger tables of frequencies, for which χ2 is also the usual NHST 
approach, we can also calculate the difference between any two indepen-
dent proportions that are of research interest, again with a CI. Grissom 
and Kim (2005, Chapter 8) described further estimation approaches to 
assessing goodness of fit for larger tables of frequencies.

Pictures of CIs to Assess Goodness of Fit

Wayne Velicer and his colleagues have for more than 20 years been devel-
oping the Transtheoretical Model of behavior change, which is widely 
used, especially to help design and evaluate programs to improve peo-
ple’s health-related behaviors. I won’t try to summarize the complex 
model here, but will just say that 15 variables are used to capture a range 
of people’s thoughts, feelings, motivations, and behaviors. If applied, for 
example, to smoking, the model postulates relationships between those 
variables and a person’s current smoking status—meaning where that 
person is along a continuum from regular smoker to successful quitter. 
The model has been developed to predict the size, as well as the direction, 
of the relationship between a variable and smoking status.

For one large project, the team chose  ω2 as the main ES, an estimate of 
the proportion of total variance in smoking status attributable to each of a 
number of predictor variables. The researchers used the model to derive 
predictions for each variable on a scale of zero, small, medium, and large 
effects. Then they used expert judgment and existing data sets to cali-
brate these labels, and decided to regard ω2 values of .01, .08, and .18 as 
small, medium, and large, respectively.

I was invited to join the team for the final stage of assessing the model’s 
predictions against results from a new group of 3,967 smokers. Figure 15.5, 
from Velicer et al. (2008), shows our strategy and main findings. The gray 
dots mark the model’s predictions, at ω2 = 0, .01, .08, or .18, for zero, small, 
medium, and large effects, respectively. The short lines mark estimates 
from the data, with 95% CIs. The predictions fall within the CIs for 11 
of the 15 variables, which we interpreted as strong support for most 
aspects of the model. Because the discrepancies between predictions 
and data are quantitative, we could examine each and decide whether 
to adjust our calibration values of ω2, modify an aspect of the model, or 
await further empirical testing. In the article we discussed our test of the 
Transtheoretical Model more broadly as an illustration of the value of CIs 
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for model fitting, and looked forward to progress that may enable predic-
tions to be fully quantitative, rather than restricted to the four levels of ω2 
that we used.

More generally, proposing models and assessing their fit to data is an 
enormous, fascinating, and important area of research. As one step in 
complexity beyond anything I discuss here I recommend Mick McCarthy’s 
(2007) book titled Bayesian Methods for Ecology. The ideas and methods he 
discussed are being applied very widely beyond ecology.

Multivariate Analyses

Multivariate analyses are widely used and likely to become more so. 
NHST is the usual approach to inference, although ESs and methods for 
calculating CIs are now available for many types of multivariate analysis. 
There is also scope for improved textbooks, guidance, and software to 
encourage greater use of estimation in multivariate analysis.

Different research communities tend to choose different multivariate 
techniques, and have developed differing customs: Some routinely report 
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ESs and CIs, although most rarely do. Some use 95% CIs, but others rou-
tinely use 90% CIs, so be careful. In some areas discussion continues in 
the literature about the merits of various ES measures, and further statisti-
cal investigation is needed. The good news is that progress continues, and 
it’s increasingly possible to find a suitable ES measure and software to 
calculate a CI. In the next three short subsections, I’m going to make brief 
remarks about the use of estimation in the context of just three multivari-
ate techniques.

Multiple Regression

Suppose you are studying the severity of sentences for violent assault. 
You have a measure of sentence severity, and for a set of offenses you 
have data about the offender, including age, level of education, and degree 
of remorse; and about the victim, including gender, age, and severity 
of injury. You could use multiple regression to investigate the extent to 
which those variables predict sentence severity. Multiple regression poses 
many challenges of interpretation, with subtle patterns of suppressor 
variables—variables that hide the influence of other variables—being just 
one possible problem. The worst approach, however, is to rely on p values 
to indicate which variables make large or important contributions. For 
estimation, the most commonly used ES is R2, the proportion of variance 
of the dependent variable that is accounted for by one or more indepen-
dent variables. The R2 values, together with CIs on those values, could 
provide the main guide for interpretation, although, as I’ve mentioned, 
R2 can be challenging to interpret. It’s also possible, although less com-
mon, to use R values and CIs on those R values for interpretation. Michael 
Smithson (2001) explained that CIs for R2 are based on the noncentral 
F distribution. He discusses CIs for R2 and other ESs in his little green 
book, Confidence Intervals (Smithson, 2003). He also provides scripts at his 
website (tinyurl.com/mikecis) to assist the calculation of CIs on R2 and 
various other ESs, using SPSS or SAS software.

Multivariate Analysis of Variance (MANOVA)

Again, consider the four-step strategy. Commonly used ESs for MANOVA 
are η2 and partial η2, and both require CIs based on noncentral F. Here, 
too, the scripts provided by Smithson support use of SPSS or SAS to calcu-
late CIs. Tabachnick and Fidell (2007, Chapters 6 and 7) explain and give 
examples. The 2007 edition of that text added calculation and discussion 
of CIs into many of its chapters. It’s a good source of estimation advice for 
many types of multivariate analysis.
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Structural Equation Modeling (SEM)

In some disciplines, SEM is a growth industry. SEM investigates network 
models of interrelated variables, and evaluates the fit of such models to 
data. Several fit indices can be used as ESs, and the root mean square 
error of approximation (RMSEA) is perhaps the most often chosen. I’m 
glad to say RMSEA values are often reported with CIs—usually 90% CIs, 
and most SEM software reports such CIs, thus providing the basis for our 
four-step strategy. Tabachnick and Fidell (2007, Chapter 14) and Fabrigar 
and Wegener (2009) are good sources of advice.

Continuous Data

As a final example area for applying estimation, consider large and com-
plex data sets. These are becoming common and raise interesting issues 
for analysis. Streams of data that are continuous across space or time, or 
both, can be valuable, but are especially challenging to analyze. Consider, 
for example, images produced during brain scans. Statistical techniques 
are used to identify which brain areas, at which times, show heightened 
activity when the participant engages in, say, a reasoning task, compared 
with passively relaxing.

My example is simpler. My colleagues Melanie Murphy, Sheila Crewther, 
and David Crewther are studying environmental influences on how 
vision develops. If children or adolescents habitually spend many hours 
at a computer screen, are they likely to develop shortsightedness? As part 
of investigating how environmental influences might work they recorded 
electrical responses in the retina of anesthetized chicks as light is switched 
on and off. They compared responses for animals previously treated with 
drug DAAA, which disrupts one aspect of retinal function, or the placebo 
control drug PBS. They averaged 20 recordings for each chick. Figure 15.6 
is their figure showing the recordings averaged for 7 DAAA chicks and 
13 PBS chicks. The shaded areas indicate 95% confidence limits.

A smooth curve is plotted, but the voltage was actually recorded every 
0.1 ms. At each time point, the 20 voltages for a chick were averaged, then 
the 7 averages for the DAA chicks were used to calculate the mean and 
95% CI plotted at that time point. Similarly, the 13 averages for the PBS 
chicks were used to calculate the mean and CI for the control condition. 
Just as in Figure 15.2, the two groups are independent but measurements 
at successive time points are a repeated measure and are, no doubt, highly 
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correlated from one moment to the next. We can therefore use the shaded 
confidence areas to assess the difference between the groups at any time, 
but not to assess the change from one time to another within a single 
group. Whenever the two stripes don’t overlap we have quite strong evi-
dence that the responses in the two drug conditions differ, and at any 
time point we can estimate the difference from the figure. This figure is a 
lovely example of an ingenious way to display CIs to help readers under-
stand the data and draw justifiable conclusions.

A key point to appreciate is that the CIs are calculated with N = 7 for 
DAAA, not N = 7 × 20 = 140. It’s good to have 20 recordings per chick, 
because the average of 20 gives a better estimate of that chick’s retinal 
function, but those 20 values are correlated because they come from a 
single chick. The CI around the DAAA group mean must be calculated 
from the N = 7 independent values, one from each chick in the DAAA 
group. That CI may be wide if there is considerable chick-to-chick varia-
tion, but it’s the appropriate CI to indicate the precision of our DAAA 
average curve, and to guide our comparison of DAAA with PBS. When 
sample sizes are small, as they often are in some areas of biology (cell 
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Recordings in volts (V) from the retina of anesthetized chicks treated with active drug 
DAAA (N = 7) or placebo drug PBS (N = 13). The trace at the bottom signals that light is 
turned ON at time 0 and then OFF at time 500 ms. The shaded regions indicate 95% confi-
dence limits. (Unpublished figure courtesy of Melanie Murphy, Sheila Crewther, and David 
Crewther.)
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biology often uses N = 3), it is, alas, fairly common to see CIs calculated 
with N equal to the total number of observations, not the number of ani-
mals. That’s a bad error, likely to give CIs that are much too short.

I’ll now turn from discussing how to use estimation in complex situa-
tions to my second question, which concerns the practicality of adopting 
the new statistics.

The New Statistics in Practice

“I included effect sizes and confidence intervals, but the editor tells me 
there’s no room, and I have to take them out and only report p values. 
What should I do?” I’ve been asked that question many times. I hope 
such questions will quickly fade into history, but we all have to live in the 
research world as we find it. You may need to write a report or disserta-
tion that pleases the examiners, and we all need to find good journals that 
will publish our papers. My reply is that the justification for the new sta-
tistics is strong, the world should change and is changing, and it’s impor-
tant to keep up our efforts to help it change further.

I don’t underestimate the difficulty for many people of switching from 
reliance on p values. You may agree that the new statistics are desirable, 
but, if you are in an NHST discipline, you may feel that p-value conscious-
ness is so deeply ingrained that you have to conform. I’ve taught p values 
for more than 40 years so I deeply understand those feelings. I’ve also 
taught CIs for almost as long, so I know change is possible. I have some 
suggestions. Our most persuasive reason for using the new statistics may 
be that it’s simply more informative—it gives a more complete picture of 
what our data are able to reveal.

Core References

Besides this book and ESCI, there are three references I especially rec-
ommend as starting points for the new statistics. Keep them handy, 
and recommend them to others if that might be useful. They are free 
downloads, and I’ve given them tiny URLs to make things easier. Kline 
(2004, Chapter 3, tinyurl.com/klinechap3) gave a pithy overview of 
why using NHST is almost always a bad idea, and what we should do 
instead. Wilkinson et al. (1999, tinyurl.com/tfsi1999) is a fine statement 
of good practice in design and data analysis. Cumming and Finch (2005, 
tinyurl.com/inferencebyeye) is an introduction to CIs. I could add the 
easy reading of Hunt’s (1997) story of meta-analysis, with many examples. 
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I also recommend the wonderful book by Fiona Fidler (forthcoming) that 
tells the story of NHST and statistical reform for medicine, psychology, 
and several other disciplines.

Pushing the Boundaries

I have a two-part strategy for writing up research. It aims to use the new 
statistics as fully as possible, and also give statistical reform a nudge ahead. 
First, I analyze the data as best I can, which usually involves exploration 
and figures that show the results in various ways. I’ll follow the four steps 
of my general strategy for estimation, and avoid NHST if I can, or use it as 
little as possible. Making good figures to convey the messages in the data 
is usually a large part of preparing a research manuscript.

For my second part I’ll consider the pragmatics of communicating the 
research. I may add some short explanations and a reference to justify my 
analysis strategy. When submitting the manuscript to a journal I might 
add a sentence to the covering letter stating that I’m following the advice 
of the Publication Manual (APA, 2010) to base interpretation on point and 
interval estimates. If the editor and referees want changes, I may add some 
p values alongside estimation, but I won’t switch from using estimation as 
the basis for interpretation. The Publication Manual’s recommendations are 
an important imprimatur for the new statistics, and you may choose to 
refer to them in your courteous letter to the editor explaining why you 
prefer to make only small changes to your original data analysis.

If you are writing a dissertation, you may decide to include a paragraph 
or two to outline your analysis strategy, with explanations and a few ref-
erences, so your examiners can see that your approach is carefully consid-
ered and can be justified from the literature.

Many Others Do It

Increasing numbers of researchers are reporting ESs and CIs in their arti-
cles, and using meta-analysis. That’s good, but in a range of technical dis-
ciplines I suspect that many researchers would be bemused by this whole 
new statistics discussion. Their disciplines, including physics, chemistry, 
and engineering, have made wonderful progress with hardly a mention 
of a p value. Experimental results are routinely reported as “435 ± 0.5 mm” 
and there are well-developed practices to cope with the precision of mea-
surements, as quantified by the “± 0.5.” When we adopt estimation, we are 
to some extent merely catching up with those long-established practices. I 
can also mention that many great advances in the NHST disciplines were 
accomplished by leading scholars who predated NHST, or elected not to 
use it. In psychology, prominent examples are Ebbinghaus for memory, 
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Skinner for behaviorism, and Piaget for child development. In a number 
of ways, the new statistics are not at all new.

Enjoy the Feeling

I speculated back in Chapter 1 that, once the requirement to focus on 
p is weakened, we may feel that it’s natural to focus on the ES because 
that’s usually the best answer the data can give to our research ques-
tion. Using CIs rather than p to guide interpretation may also feel 
natural because CIs are in the same units as the ES and therefore can 
also be given meaning in the research context. I speculated further 
that perhaps we’ll even recognize ESs and estimation as how we had, 
informally, been thinking about results, even as we calculated and pub-
lished p values. So the new statistics might even seem a bit familiar. My 
speculations need investigation but, if they resonate at all with you, 
enjoy the feeling.

Evidence-Based Practice of Statistics

We should adopt evidence-based practice in doing statistics, just as in 
practicing our professional discipline (Fidler & Cumming, 2008). I have 
tried in this book to refer to cognitive evidence that can inform how we 
analyze and present results. Yes, there are gaps in the statistical cognition 
literature, with opportunities for many interesting projects, but we should 
make the best use of what we have and new evidence as it becomes avail-
able. In any debate about what’s best, the conclusions should be based on 
evidence. There’s much evidence of the problems of NHST, but we should 
also be guided by evidence about how people may misunderstand CIs 
(e.g., Belia et al., 2005), which should prompt us to design figures with 
CIs carefully, and explain fully our CI-based interpretations.

The point is that, by using the new statistics in appropriate ways, you 
can be confident that you are doing the right thing and following best 
practice. You can cite evidence in support.

Scholarly Support

I’d like to close with some quotations. It’s easy to find more, for example, 
at tinyurl.com/nhstquotes. These can add rhetorical weight to our talks 
or lectures. More importantly, they remind us of the many distinguished 
scholars who have, over more than half a century, carefully explained the 
problems of NHST, the reasons why we should instead use estimation or 
other techniques, and the enhancements to research that improved sta-
tistical methods can offer. Curiously, it’s difficult to find statements that 
defend NHST and explain why it should be so widely used. The prospects 
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for statistical reform are now better than ever, and advancing reform is so 
important that it deserves our persistent efforts.

The traditional null-hypothesis significance-test method … is here 
vigorously excoriated for its inappropriateness. (Rozeboom, 1960, 
p. 428) 

One can hardly avoid polemics when butchering sacred cows. 
(Rozeboom, 1960, p. 424) 

I’m not making some nit-picking statistician’s correction. I am saying 
that the whole business [NHST] is so radically defective as to be sci-
entifically almost pointless. (Meehl, 1978, p. 823) 

It is remarkable that despite two decades of … attacks, the mystifying 
doctrine of null hypothesis testing is still today the Bible from which 
our future research generation is taught. (Gigerenzer & Murray, 1987, 
p. 27) 

It is time to go beyond this institutionalized illusion [NHST]. We must 
write new textbooks and change editorial practices. (Gigerenzer, 1993, 
p. 314) 

Perhaps p values are like mosquitoes. They have an evolutionary 
niche somewhere and no amount of scratching, swatting, or spraying 
will dislodge them. (Campbell, 1982, p. 698) 

It is difficult to estimate the handicap that widespread, incorrect, and 
intractable use of a primary data analytic method [NHST] has on a 
scientific discipline, but the deleterious effects are doubtless substan-
tial. (Tyron, 1998, p. 796) 

Given the problems of statistical induction, we must finally rely, as 
have the older sciences, on replication. (Cohen, 1994, p. 1002) 

Many observers have noted the failure of psychology as a cumulative 
science. Although many reasons can be advanced for this problem, 
perhaps the most important is the … dichotomous interpretation of 
significance levels, resulting in over reliance on p values as the main 
evidence contained in a study. (Rossi, 1997, p. 175) 

It is time for researchers to avail themselves of the full arsenal of 
quantitative and qualitative statistical tools.… The current practice of 
focusing exclusively on a dichotomous reject-nonreject decision strat-
egy of null hypothesis testing can actually impede scientific prog-
ress.… The focus of research should be on … what data tell us about 
the magnitude of effects, the practical significance of effects, and the 
steady accumulation of knowledge. (Kirk, 2003, p. 100) 
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For one last time, please reach for the coffee or chocolate and write 
down your take-home messages. I suggest writing a list for this chapter, 
and another for the whole book. Maybe sleep on those lists before turn-
ing ahead and looking at mine. Are you dreaming about the dances yet? 
For this chapter I’ll mention as hints the following: our four-step strat-
egy for estimation; ANOVA designs and RCTs; challenges to the estima-
tion approach, especially multiple testing and data exploration; tables of 
frequencies; goodness of fit; multivariate analysis; then strategies to sup-
port adoption of the new statistics in practice. For the whole book, write 
as many messages as you like, but I elected to write just six major ones, 
although each has a few aspects.

Exercises

	 15.1	 Find a simple RCT in your discipline. Type the data into the 
Figure page of ESCI chapters 14–15. Explore and discuss.

	 15.2	 For that RCT, find or invent reference labels and values for the 
ES and ES differences, and display in Figure. Discuss.

	 15.3	 If the RCT shown in Figure  15.2 were entered into a meta-
analysis, what ES would most likely appear in the forest plot?

	 15.4	 In one or more other statistics textbooks, look for advice about 
the Bonferroni correction, α inflation, multiple testing, and data 
exploration. Compare with this chapter. What’s your view?

	 15.5	 Find an example of an ANOVA. Consider an alternative analysis 
based on contrasts or comparisons of pairs of means. Discuss.

	 15.6	 Find an example or two of NHST analysis. Apply the four-step 
strategy. Discuss.

	 15.7	 Find a simple frequency table example. Use Diff proportions to 
analyze. Discuss.

	 15.8	 Try to find in your discipline the use of a CI picture, perhaps 
like Figures 15.5 or 15.6, to assess goodness of fit. Or find a case 
in which such a figure would be useful. Interpret.

	 15.9	 Find in your discipline an example of a multivariate analysis. 
Was an ES chosen and reported? Was it interpreted? Was a CI 
reported? Was it interpreted? Discuss.

	 15.10	Visit the “instructions to authors” websites of your favorite 
journals. Is there any advice about how to carry out or report 
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statistical inference? Any reference to the APA Publication 
Manual?

	 15.11	Try to find stories from your teachers, colleagues, or students 
about attempts they have made to publish articles using the 
new statistics. What lessons do you draw?

	 15.12	Revisit your take-home messages for this chapter. Improve the 
list if you can.

	 15.13	Do the same for your list for the whole book. Maybe sleep on 
this list one more time.

Take-Home Messages for Chapter 15

•	 Our four-step strategy for estimation is as follows: Choose the ESs 
most relevant for our research questions, calculate CIs on those 
ESs, make a figure, then interpret.

•	 For RCTs, the upper panel of Figure 15.2 displays ESs and CIs that 
support comparisons between the independent groups. Testing 
time is a repeated measure, so we need differences between 
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selected time points, with CIs, for each group—as in the lower 
panel. Take-home pictures: The figures in those two panels.

•	 Reference values for ESs may help when interpreting ESs and CIs. 
Consider displaying them in a figure, as in Figure 15.2.

•	 To analyze data from complex designs, first examine ESs and CIs 
for comparisons specified in advance, then explore to identify 
effects deserving further investigation. Contrast analysis may be 
superior to omnibus ANOVA.

•	 Exploration can give valuable insights, but beware the risk of cap-
italizing on chance. Seek converging evidence if possible.

•	 Examining the difference between two proportions, with its CI, 
can be a good way to analyze data in a frequency table, when the 
two proportions are independent.

•	 Consider using figures with CIs to assess the fit of a model to data, 
as in Figure 15.5.

•	 For multivariate analyses, apply the four-step strategy. Seek the 
latest advice about what ESs are most appropriate, and what soft-
ware is available to calculate CIs.

•	 Figures with CIs can be valuable, even for continuous data.

•	 Practice evidence-based statistics wherever possible.

•	 Strategies that may assist in the adoption of the new statistics 
include citing support from the literature, taking a gradual but 
firm approach, and drawing on support from others already 
using the new practices.

•	 Statistical reform, starting with the new statistics, is sufficiently 
important to deserve our support.

Take-Home Messages for the Whole Book

•	 Often, the main aim of research is to estimate one or more ESs. 
Therefore, formulate research questions in estimation terms. ESs 
can be as familiar as means or correlations, but choose ES mea-
sures most appropriate for the research questions.

•	 Whenever possible, report a CI with every ES estimate to indicate 
precision. Interpret both the ES and the CI. We discussed six ways 
to interpret CIs.
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•	 Results vary with replication, often to a surprising extent. People 
frequently underestimate sampling variability. The dance of the 
means and the dance of the CIs can be surprisingly wide. CIs give 
useful information about the extent of variation over replication.

•	 NHST has serious flaws and can be damaging to research prog-
ress. Its dichotomous decisions can give illusory certainty and 
hide the true extent of uncertainty that is expressed by CIs. The 
dance of the p values is very wide indeed.

•	 Meta-analysis is usually the best way to combine evidence over 
studies. CIs may be wide, but they give accurate information 
about uncertainty in data. Meta-analysis is often the best way to 
reduce uncertainty, increase the precision of ES estimates, and 
achieve scientific progress. Always consider results in the context 
of meta-analysis.

•	 Statistical reform deserves support. Consider undertaking statis-
tical cognition research. Adopt the new statistics as much as pos-
sible in your own work, and in any teaching or supervision you 
do. Encourage your peers also to adopt the new statistics.
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Glossary

This is not a complete glossary of statistical terms. It focuses on selected 
terms that are important in this book, and includes expressions of 
my invention.

Alternative clouds for r:  My name for different scatter plots that all have 
the same value of sample r, as illustrated by the See r page of 
ESCI chapters 14–15.

Alternative hypothesis (H1):  A statement about a population parameter 
that is alternative to the null hypothesis in NHST.

Assurance γ:  Probability, expressed as a percentage, that our obtained 
MOE is no larger than target MOE, when using precision for plan-
ning. For example, γ = 99.

Bars:  Short for error bars.
The Campbell Collaboration:  A worldwide collaboration that provides 

systematic reviews, online, in the fields of social welfare, crime 
and justice, and education.

Capture percentage (CP):  The percentage of replication means that, in 
the long run, fall within the initial CI.

Cat’s-eye picture:  My name for the two curves and shaded area between 
them, as in Figure 4.5, that depicts how plausibility varies across and 
beyond a CI.

Central limit theorem:  A theorem in statistics that states that the sam-
pling distribution of a variable that’s the sum of many inde-
pendent influences almost always has, approximately, a normal 
distribution.

Cliff effect:  A sharp drop in the degree of belief that an effect exists for 
the p value changing from just below .05 (or another significance 
level) to just above that level.

Clinical significance:  Clinical importance.
The Cochrane Collaboration:  A worldwide collaboration of healthcare 

professionals and policy makers that supports evidence-based 
practice in healthcare.

The Cochrane Library:  An online database of systematic reviews that 
supports evidence-based practice in healthcare.

Cohen’s d:  A standardized ES expressed in units of some appropriate SD. 
It can often be considered a kind of z score.

Confidence interval (CI):  An interval estimate calculated from sample 
data that indicates the precision of a point estimate.

Confidence level (C):  Same as level of confidence.
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Cumulative meta-analysis:  Sequence of meta-analyses, each including 
one additional study.

Dance of the confidence intervals:  My name for a sequence of CIs, 
from successive samples, falling down the screen in ESCI. See 
Figure 3.8.

Dance of the CP values:  My name for the sequence of capture percent-
ages, for successive CIs, as shown in Figure 5.4.

Dance of the differences:  My name for the sequence of differences 
between the two group means, for a succession of replications 
of a two-independent-groups experiment, as illustrated by the 
Simulate two page of ESCI chapters 5–6.

Dance of the means:  My name for a sequence of sample means falling 
down the screen in ESCI. See Figure 3.2.

Dance of the p values:  My name for the sequence of bouncing around p 
values, for successive experiments, as in Figure 5.8.

Dance of the r clouds:  My name for the sequence of different scatterplots, 
given by a succession of samples, as illustrated by the Sample r 
page of ESCI chapters 14–15.

Dance of the r values:  My name for the sequence of r values given by 
repeated sampling. See Figure 14.8.

Descriptive information:  Information about the data.
d heap:  My name for the empirical sampling distribution of d. In ESCI it’s 

a pile of pink triangles that represent d values from many sam-
ples. See Figures 11.3 and 11.4.

Dichotomous thinking:  Thinking that focuses on a choice between two 
alternatives, notably the NHST decision to reject or not reject a 
null hypothesis.

Effect:  Anything in which we might be interested.
Effect size (ES):  The amount of something that might be of interest. The 

size of an effect.
Effect size measure:  A measure used to express an ES.
Error bars (also bars):  A simple graphic that marks an interval around a 

mean or other point estimate in a figure.
Error of estimation:  Same as estimation error.
ES estimate (also sample ES):  ES calculated from data and used as an 

estimate of the population ES.
Estimation:  An approach to statistical inference that uses sample data to 

calculate point and interval estimates of population parameters.
Estimation error (also error of estimation):  Difference, for example 

(M – μ), between a point estimate calculated from sample data, 
and the population parameter it estimates.

Estimation language:  Language that focuses on ESs, and on “How 
much?” questions, rather than dichotomous “Is there an effect?” 
questions.
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Estimation thinking:  Thinking that focuses on the sizes of effects.
Evidence-based practice:  Practice—in medicine, statistics, or another 

profession—that is based on research evidence.
Fatness:  My term for the horizontal width of the cat’s-eye picture, as 

in Figure  4.5. Fatness is greatest at the point estimate, M, and 
decreases smoothly for values progressively farther from M.

Fatness ratio:  My name for the fatness at the point estimate, M, divided 
by the fatness at either limit of a CI.

File drawer effect:  Tendency for results that are not statistically signifi-
cant to remain unpublished, thus potentially biasing the avail-
ability of studies for meta-analysis.

Fisher’s r to z transformation:  A transformation used to analyze values 
of r, notably to calculate approximate CIs on r.

Fixed effect model:  Simplest model of meta-analysis, which assumes 
that each included study estimates a single fixed μ.

Floating difference axis:  My name for an axis in a figure that has its zero 
aligned with one sample mean so it can display the difference 
between two sample means. See Figures 6.2 and 6.7.

Forest plot:  CI picture that displays results from a number of studies, and 
a meta-analysis of those studies. See, for example, Figure 7.4.

Funnel plot:  A plot of study standard error (SE) against study ES, used to 
investigate possible publication bias in a meta-analysis.

Heterogeneity:  The studies in a meta-analysis show heterogeneity to the 
extent that ES variation between studies is larger than can reason-
ably be accounted for by sampling variability.

Heterogeneous:  The studies in a meta-analysis are heterogeneous if 
ES variation between studies is larger than can reasonably be 
accounted for by sampling variability.

Homogeneity of variance:  Assumption that population variance is the 
same for each of the two groups in the two-independent-groups 
design.

Homogeneous:  The studies in a meta-analysis are homogeneous if sam-
pling variability can reasonably account for ES variation between 
studies.

Idealized replication:  Repeat of an experiment that is identical to the ini-
tial experiment, except it uses a different random sample.

Illegitimate power:  My name for post hoc power.
Inferential information:  Information based on the data, but telling us 

about the population.
Informativeness:  My term for the ability of an experiment to give infor-

mation to answer research questions, or to give insight about the 
world.

Initial CI:  The CI given by an initial experiment.
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Interval estimate:  CI. A range of plausible values for a population 
parameter.

Inverse probability fallacy:  Incorrect belief that the p value is the prob-
ability the null hypothesis is true.

Law of large numbers:  A law of statistics that states that, when random 
samples are sufficiently large, they match the population closely.

“Law” of small numbers:  A widespread human misconception that even 
small samples match the population closely.

Legitimate power:  My name for power calculated for a target δ that’s cho-
sen as being of research interest. Contrast with post hoc power.

Level of confidence (C, also confidence level):  The 95 in “95% CI,” where 
95% CIs are those that, in the long run, will include the popula-
tion parameter for 95% of replications.

Limit:  Either end of a CI.
Lower limit (LL):  Lower end of a CI.
Margin of error (MOE):  The length of one arm of a CI.
Mean heap:  My name for the empirical sampling distribution of the sam-

ple mean. In ESCI it’s a pile of green dots that represent sample 
means. See Figure 3.4.

Measurement error:  Difference between an observed data value and 
what is, in some sense, the true underlying value.

Meta-analysis:  A set of techniques for the quantitative analysis of results 
from two or more studies on the same or similar issues.

Meta-analytic thinking:  Estimation thinking that considers any result in 
the context of past and potential future results on the same issue.

Meta-regression:  Moderator analysis that uses regression to seek to iden-
tify a continuous moderator.

Moderating variable (also moderator):  Variable that influences the ES 
being studied in a meta-analysis.

Moderator:  Same as moderating variable.
Moderator analysis:  Analysis within meta-analysis that seeks to identify 

moderator variables that can account for some of the ES variability 
between studies.

Natural frequencies:  A risk expressed in natural frequencies is stated as 
so many per hundred, or thousand, or other convenient number.

Noncentral t:  Sampling distribution of t that emerges when μ1 is true and 
σ is not known. See Chapter 10.

Null hypothesis (H0):  A statement about a population parameter, often 
H0: μ = 0, that is tested by NHST.

Null hypothesis significance testing (NHST):  An approach to statisti-
cal inference that uses a p value to either reject or not reject a null 
hypothesis.
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One-sided CI:  CI with one short arm and the other arm extending indefi-
nitely far.

One-sided p interval:  p interval with zero as its lower endpoint.
Original units:  Units, such as milliseconds, centimeters, or dollars, in 

which a data value or ES was first measured.
Paired design:  Experimental design comprising one group of N partici-

pants, each of whom supplies a pair of data values, one on each of 
two measures, for example, pretest and posttest.

Pearson’s correlation, r:  Measure of the linear component of the relation-
ship between two variables, usually X and Y.

p interval:  An 80% (unless a different percentage is stated) prediction 
interval for replication p.

Point estimate:  Single value estimate of a population parameter.
Population:  A set of values, usually assumed large or infinite, about 

which we wish to draw conclusions.
Population ES:  ES in the population, usually unknown and to be 

estimated.
Population parameters:  Values, for example, μ and σ, of aspects of a pop-

ulation. They are usually fixed but unknown.
Post hoc power (also illegitimate power):  Power calculated after com-

pleting the experiment, using as target δ the effect size d obtained 
in the experiment. It can easily mislead, so never use it.

Power:  Statistical power.
Power picture:  My name for a figure that illustrates power by showing 

the distributions of the test statistic, usually z or t, when H0 is true, 
and when H1 is true.

Practical significance:  Practical importance.
Precision:  Largest likely estimation error, measured by MOE.
Probability of superiority of E over C:  Probability that a randomly cho-

sen value from the E distribution is greater than a randomly 
chosen value from C.

Proportion (P):  Fraction of a number of discrete things that have a prop-
erty of interest. It lies between 0 and 1.

p value:  Probability of obtaining our observed results, or results that are 
more extreme, if the null hypothesis is true.

Random effects model:  Model for meta-analysis that assumes that dif-
ferent studies estimate somewhat different values of the popula-
tion parameter being investigated.

Randomized control trial (RCT):  Independent-groups experiment in 
which participants are randomized to receive either the active or 
the control treatment.
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Random sampling:  Sampling in which every data value in the popula-
tion has an equal chance of being sampled, and values are sam-
pled independently.

Reference values:  Values used to assist interpretation of an ES. Cohen, 
for example, suggested reference values for d. Use of any reference 
values is a matter for judgment.

Relative risk:  Risk ratio.
Replication experiment:  An idealized replication of an initial experiment.
Replication mean:  The mean of a replication experiment.
Replication p:  My name for the p value given by a replication experiment.
Research synthesis (also systematic review):  Review that integrates 

research evidence, usually by meta-analysis.
r heap:  My name for the empirical sampling distribution of r values. See 

Figure 14.8.
Risk:  Probability, usually of an unwanted event.
Risk ratio (also relative risk):  The ratio of two risks or probabilities.
Rubber ruler:  My name for a measuring stick that has its zero at μ0 and, 

for noncentral t, has sample standard error, s N/ , as its unit 
of measurement; see Figures 10.4 and 10.5. For Cohen’s d, it has 
sample standard deviation, s, as its unit of measurement; see 
Figures 11.3 and 11.4.

Rule of eye:  My name for a useful approximate guideline, especially for 
interpreting a figure.

Sample:  A set of N data values sampled from a population.
Sample ES (also ES estimate):  ES calculated from data and usually used 

as an estimate of the population ES.
Sample statistics:  Statistics, for example, M and s, that are calculated 

from sample data.
Sampling distribution (also theoretical sampling distribution):  The 

distribution of all possible values of a sample statistic.
Sampling variability:  Extent to which results vary over replication, or 

repeated sampling.
Scatterplot:  Picture of the relation between X and Y, in which each data 

pair is represented by a dot.
Significance:  Ambiguous term, best avoided.
Significance level:  A criterion p value, often .05, .01, or .001, against which 

an obtained p value is compared.
Slippery slope of nonsignificance:  My name for the fallacy that find-

ing a result to be not statistically significant is sufficient to justify 
interpreting it, perhaps in a later section of a report, as zero.

Slippery slope of significance:  My name for the fallacy that finding a 
result to be statistically significant is sufficient to justify interpret-
ing it, perhaps in a later section of a report, as important or large.



 

Glossary	 445

s pile:  My name for the empirical sampling distribution of sample SDs, or 
s values, as shown in Figures 10.3 and 11.3.

Standard error (SE):  SD of a sampling distribution.
Standard error bars (also SE bars):  Bars that extend from one SE below 

to one SE above the mean.
Standardized mean difference (SMD):  A term used in medicine for 

Cohen’s d for a difference.
Standardized units:  Units with some generality, such as number of SDs.
Standardizer:  The SD chosen as the unit of measurement for Cohen’s d.
Statistical cognition:  The empirical study of how people understand and 

misunderstand statistical concepts and presentations.
Statistical inference:  A method that uses sample data to draw conclusions 

about a population.
Statistical power (also power):  Probability of rejecting the null hypoth-

esis when the alternative hypothesis is true.
Statistical significance:  Rejection of the null hypothesis.
Systematic review (also research synthesis):  Review that integrates 

research evidence, usually by meta-analysis.
Target δ:  Value of δ, the population ES, used in a power calculation.
Target MOE:  Value of target precision specified for calculations of what 

N we need, when using precision for planning.
The new statistics:  Statistical techniques, including especially estima-

tion and meta-analysis, that usually provide a better basis for sta-
tistical inference than NHST.

Tragedy of the error bar:  My name for the unfortunate fact that error 
bars don’t automatically announce what they represent. We need 
to be told.

Two-independent-groups design:  Experimental design comprising two 
independent groups of participants, of sizes N1 and N2, possibly 
different.

Two-sided p interval:  p interval for which there is an equal chance (e.g., 
10% for an 80% p interval) that replication p falls below the inter-
val and above it.

Type I error:  Rejection of the null hypothesis when it’s true.
Type I error rate (α):  Probability of rejecting the null hypothesis when 

it’s true.
Type II error:  Nonrejection of the null hypothesis when it’s false.
Type II error rate (β):  Probability of not rejecting the null hypothesis 

when it’s false.
Unbiased:  An estimate of a parameter is unbiased if, on average, it equals 

the parameter. On average it neither underestimates nor overesti-
mates the parameter.
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Units-free:  A units-free ES is a number, such as a correlation, frequency, 
or proportion, that has no measurement units.

Upper limit (UL):  Upper end of a CI.
Weights:  Relative contributions of different studies in a meta-analysis.
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Chapter 1 Exercises  Introduction to ESCI, 
and Comparing Presentation Formats

1.4–1.7  If you enter at red 1 and 3 the values shown in the first Lucky–
Noluck presentation, in NHST format, you should see the three 
versions of the results and close matches with Figures 1.1 and 1.2. 
Compare with Figure 1.4. Note that the df values in the first pre-
sentation indicate that Lucky used two groups with N = 22, and 
Noluck two with N = 18.

1.8 and 1.9  Increase M(diff), decrease SD(diff), or increase N: In each 
case see p decrease. Each of those changes, with everything else 
held constant, suggests stronger evidence of an effect, and the 
lower p value reflects that.

1.11	 When the CI includes zero, p > .05; when it misses zero, p < .05. 
When the LL = 0, p = .05.

1.14	 Same answer as for 1.11.
1.15	 Meta-analysis combines evidence from the two studies. If the 

results of the two studies are not too different, the combined evi-
dence will be stronger than the evidence from either study alone, 
and so the meta-analysis CI will be shorter than each of the sepa-
rate CIs.

1.16	 If the evidence from the two studies conflicts, the meta-anal-
ysis CI will be long, reflecting the large amount of overall 
uncertainty.

1.17	 CIs: The shorter the better! Short beats long. Narrow beats wide. 
A narrow interval means a small amount of uncertainty, and 
that’s a good thing.
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Chapter 2 Exercises  NHST and Its Flaws, 
Questions in Science, and ESs

2.1	 I kept browsing Psychological Science, and I report a few further 
examples here. Many articles provide examples of poor NHST. 
Most occurrences of the word “significant” are ambiguous unless 
accompanied by an explanatory word, such as “statistically” or 
“practically” or “clinically,” or by a p value or other NHST infor-
mation. Both relative and exact p values are common, and it’s 
easy to find articles that include both.

2.3	 Acceptance of a null: “Participants in both conditions felt equally 
disgusted immediately after watching the film, as indicated by a 
nonsigificant effect.” The slippery slope of nonsignificance: In the 
Results section: “with no significant differences across groups … 
p > .11 …,” but in the Discussion: “All groups were equally accu-
rate in inhibiting the response.”

2.6 and 2.7  Most articles include at least one aim or hypothesis 
expressed in a dichotomous-thinking way. The conclusion of 
one article was that “viewers needed to see the scene for at least 
150 ms during each eye fixation.” That’s an estimation-thinking 
answer. However, the introduction did not ask the corresponding 
estimation question, but stated that “the amount of time viewers 
need … should … be in the range of 50 to 60 ms. We … tested 
this hypothesis.” That’s a dichotomous aim. All analysis was by 
NHST, and a figure showed ESs, with 95% CIs, but these were not 
used to interpret the results.

2.8	 Dichotomous: “Test of the hypothesis that people perceive fluently 
processed stimuli as safer than disfluently processed ones.” My 
estimation version: “To what extent do people perceive fluently 
processed stimuli as safer than disfluently processed ones?” 
Alternative estimation language: “Estimate the perceived safety 
of fluently and disfluently processed stimuli, then examine the 
difference between the two.”

2.9	 The prediction being tested was that there is a familiar-word 
preference for CAE [the name of one condition], but no such 
preference for JM [another condition]. Results: “This prediction 
was supported by t tests on the familiar-to-unfamiliar ratios …, 
which were significantly greater than 1.0 … for CAE … p < .019, 
but not for JM … p > .187….” A figure showed that the mean ratio 
was about 1.36 for CAE and 1.19 for JM. Discussion: “Recognition 
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of familiar words is restricted to [CAE, not JM].” In other words, 
one condition (JM) showed an effect of 1.19, which was not statis-
tically significant (p > .187; that probably means p = .187), whereas 
the other condition (CAE) showed an effect of 1.36, with p < .019 
(which probably means p = .019). This is a very similar pattern 
to Lucky–Noluck, and certainly does not permit the conclusion 
that the effect is “restricted to” CAE and not JM. We need to see 
a direct comparison of the two effects using NHST or some other 
approach, because the interest is to see whether they differ.

2.10	 Yes. Apply NHST to the difference between the two results: In 
the first presentation, examine the difference between the dif-
ferences. In other words, test the null hypothesis that the differ-
ence between the new and the current treatments is the same 
in the two studies. I reported that p = .55 for that compari-
son, but finding a small p would have given some justification 
for Inconsistent.

2.12	 Mean age was 19.6 years. Modal income was $40,000 to $49,999. 
Percentage: “capturing 52.7% of the variance.” Effect size (d) for 
gender typicality (column heading in a table). Difference from the 
predicted value was 0.06. Proportion of fear identification was .36. 
With an ANOVA: ηp

2 = .032 (that’s partial eta-squared). Number of 
females satisfied with their current roommates was 11 (that’s a 
frequency). In a regression: b = –27.1, β = –.22. Correlation, r = .47. 
Odds ratio was 1.70. Discriminability, d′ = 0.88. Relative probabil-
ity = .64. Don’t worry if some of those are unfamiliar—they are 
just examples and you no doubt found different examples. The 
important thing is that they are all quantities that tell us about an 
effect of interest.

2.13	 I found this difficult. One example was an 11% increase in the 
risk of a cardiovascular event referred to as “notable”; another 
was correlations of .38 and .44 referred to as “strong.” I gave up 
without finding any example of ES interpretation that seemed to 
me a full discussion of the implications of the size of the effect.

Chapter 3 Exercises  Confidence Intervals

3.2	 Experiment with different ways to use the slider—click and drag 
the thumbnail (the little rectangle you can move), click either side 
of the thumbnail, click and hold an end arrow, or click repeatedly 
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on an end arrow. Different versions of Excel respond a little dif-
ferently, so find what works best for you.

3.9 and 3.10  M values will bounce around µ, as the dance of the means 
illustrates, and s values bounce around σ. We could imagine a 
dance of the s values—a dance of sample SD values—to illustrate 
how s varies from sample to sample.

3.12	 Larger N means smaller sample-to-sample variation and thus a 
more sober dance of the means. Smaller N, more drunken—the 
dance is wider.

3.13	 Larger σ gives more variation and thus a wider or more drunken 
dance; smaller σ gives a narrower or less drunken dance.

3.14	 In general, changes to σ influence sample-to-sample variation 
quite markedly, whereas changes to N may seem to make only 
moderate changes to that variation. Later we’ll see that it’s N  
that does the work.

3.15	 Larger N gives a narrower mean heap, and that’s good because 
the M values are generally close to µ. Achieving large N is often 
a basic research design goal. I always ask my beginning classes, 
“What do you want for Christmas?” They know that the response 
I’m expecting is, “Big N!”

3.19	 Curve SE is the theoretically expected value calculated for your 
chosen N and σ, so it remains constant unless you change N or 
σ. Compare with Mean heap SE, which is the SD of the M values 
obtained in the current set of samples, so it’s bound to change as 
you take further samples. At the start of a new set it can bounce 
around a lot, then it settles down to be quite close to the theoreti-
cally expected value. Run the simulation for an hour or more and 
it will be very close to Curve SE.

3.22	 It’s bad news for researchers that sample size has its influence 
via N  because taking a sample four times as large may be four 
times the expense and effort, but it only divides the SE by two.

3.24	 Use the formula SE = σ/ N  to calculate SE.
3.25	 Use the formula SE = σ/ N  to calculate SE = 20 30/  = 3.65. Set 

the values of N and σ in ESCI and Curve SE should take this 
value. The sampling distribution of the mean is normal, with 
mean 50 and SD of 3.65.

3.28	 A graph of estimated SD of the mean heap, or SE recorded from 
ESCI, when plotted against N should illustrate the 1/ N  rela-
tionship. N needs to increase by a factor of 4 if we want a halving 
of the SE.
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3.29	 The heavier green vertical MOE lines appear very close to the 
SE lines that mark 2SE from the mean. That makes sense because 
of the rule of thumb that states that 95% of the values in any nor-
mal distribution fall within 1.96SD of the mean.

3.30	 In the long run, 95% between the lines and 2.5% in either tail.
3.32	 For (i) use 2SE to obtain 6.67, and for (ii) use 1.96SE to obtain 6.53. 

An interval that in the long run will include 95% of sample means 
is µ ± MOE. For (ii) this is the interval [43.47, 56.53].

3.34	 Larger N or smaller σ gives smaller MOE. In any case we expect 
about 5% of green dots to fall outside the MOE lines, about equal 
numbers in the left and right tails.

3.35	 You wish to estimate the mean HEAT score for students in your 
country, and you also want to know the precision of that estimate.

3.36 and 3.38  Again, 5%, about equally often to the left and the right.
3.40	 CIs are red if they don’t include µ, meaning M falls farther than 

MOE away from µ.
3.41	 Each sample has its own value of s, and so the calculated CI will 

differ for each. When you click, some intervals get a bit longer, 
some a bit shorter. Occasionally, an interval changes color because 
it changes from including to not including µ, or vice versa.

3.42 and 3.43  When we assume that σ is not known, for small N the 
variation in s from sample to sample will be greater than for 
larger N, and so CI length will vary more from sample to sample. 
With small N, there will be more change when you click Assume 
σ known on and off. Small N will typically give a worse, less 
precise estimate of σ. (Just as it does for µ. Small N overall tends 
to be worse.) Try N = 5, or even 3 or 2. As usual, large N is best. 
Very small samples, especially those with N < 10, have values of s 
that bounce around a great deal, so their CI lengths also bounce 
around a great deal. Such small samples often give a very poor 
indication of the extent of uncertainty: If N is very small, we can’t 
put great trust in CI length. What do you want for Christmas? 
Large N!

3.44	 For df = 19 the critical t.95 is 2.093. MOE is 8.19, and the CI is [36.01, 
52.39]. The ESCI page Normal z t, described in Appendix B, illus-
trates that the t distribution is very similar in shape to the normal 
distribution, for large df, i.e., large N. For small and very small N, 
the t distribution departs from the normal distribution, with the 
tails getting fatter and the critical value t.95(df) getting progres-
sively greater than 1.96 as N decreases.
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3.47	 Larger C, for example, 99 rather than 95, means that we wish to be 
more confident of capturing µ, so we’d better throw out a larger 
net. MOE needs to be larger so that more of the mean heap is 
within the MOE lines. MOE is calculated using a larger critical 
value of z or t, corresponding to .99 rather than .95. Larger C gives 
wider CIs.

3.48 and 3.49  Change C and a different percentage of CIs will include 
µ, so some will need to change color. In every case, (100 – C)% of 
CIs will, in the long run, be red. In this ESCI simulation you can 
vary C up to 99.9 and down to 0.

3.50	 The percent capturing typically bounces around a lot near the 
start of a run, then settles down. It then continues to vary, but 
slowly gets less variable, and closer and closer to C%. After 
many thousands of samples have been taken, it will be very 
close to C%.

3.51	 The varying CI lengths may suggest more variation in the per-
cent capturing, but the pattern is just the same as for σ known 
and constant CI lengths.

3.52 and 3.53  Again, perhaps surprisingly, the pattern is the same 
whatever the values of N and C. Play around with extreme values 
and see what happens.

3.54	 Whenever you see a CI based on data, first remind yourself that 
our statistical model assumes the existence of an underlying 
population, although unfortunately you can’t simply click to dis-
play it. Second, visualize a dance of the CIs, incorporating both a 
dance of the means and variation in CI widths. The reported CI 
is just one from that infinite dance, and we can be C% confident 
that CI captures the population parameter. But it might be red!

Chapter 4 Exercises  CIs, Error Bars and p Values—
and Randomness

4.1	 Unfortunately, such events happen. If you judge from the fig-
ure that the mean and 95% CI are approximately 40, [9, 71], you 
might say:

•	 Interpretation 1: “95% of such intervals, from repeats of the 
experiment, will include µ.”

•	 Interpretation 2: “We’re 95% confident that interval includes µ.”
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•	 Interpretation 2: “9 to 71 is a range of plausible values for µ.”
•	 Interpretation 2: “9 is a likely lower bound and 71 a likely 

upper bound for µ.”
•	 Interpretation 3: “31 is the margin of error and the maximum 

likely error of estimation of µ.”
•	 Interpretation 4: “We’re about 50% confident that the interval 

30 to 50 contains µ (that’s about the middle third of the 95% CI, 
and thus approximately the 50% CI), and values outside that 
interval are progressively less plausible for µ.”

4.2	 Unfortunately, I’ve seen that happen, too. In your mind’s eye, 
double the length of the interval and interpret as in 4.1.

4.3	 For a 95% CI, I used the benchmarks to eyeball p a little more than 
.01, and for SE bars, p = .25. The accurate values are .011 and .20.

4.4	 The answers to 4.1 could remain the same, but for 4.2 the SE bars 
would need to be multiplied by more than 2—in fact by about 
2.8—to get the 95% CI. For 4.3 the p values for both the 95% CI and 
the SE bars are likely to be different. The accurate values are .023 
and .27.

4.5	 For df = 29, then df = 4, I clicked for t, Heights and Two tails, then 
used the large slider to set t = 0. I noted the height at the center 
of the curve. I moved the large slider until the two tails area was 
.05 and again noted the height. The ratio of those two heights is 
what we want. For df = 29, the fatness ratio is .3955/.0524 = 7.55, 
and for df = 4 it is .375/.0256 = 14.6. For µ known the ratio is 6.83, 
and so the ratio for N = 30 is similar, but as usual things are quite 
different for the very small N = 4. Note that I’m not recommend-
ing such accurate calculations for routine use, because that may 
tempt overemphasis of small variations in plausibility.

4.6	 The key is to make general statements about plausibility being 
greatest around M and gradually declining at progressive dis-
tances from M, while always keeping in mind that our interval 
might miss µ and thus be shown in red by ESCI.

4.7	 Click near red 2 to display the p value, and perhaps the p scale. 
Use the big slider to adjust the 95% CI until p = .20, then note the 
relation between the CI limit and µ0. In fact, result d in Figure 4.12 
illustrates p = .20, so the benchmark could be one third of MOE 
back from the limit.

4.8	 Use the benchmarks to estimate values. The accurate p values are 
as follows, in order from a to e: .02, .08, .005, .20, and .70.

4.9	 Again, use the benchmarks. Figure 4.13 is the accurate picture, in 
order from the left.
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4.10	 Use the benchmarks to eyeball in each case what the 95% CI 
would be, and then use them again to estimate p. For b, p = .14, 
and for d, p = .09.

4.11	 Most likely you can only find a one-tailed test. Try to calculate or 
estimate the corresponding one-sided CI. Would the one- or two-
sided CI be more useful in the situation?

Chapter 5 Exercises  Replication and CIs, 
Replication and p Values

5.1	 In Figure 5.1, the CIs for Experiments 4, 5, 9, 16 (just!), 22, and 24 
do not capture the following mean. So 18/24 = 75% do. In the 
long run, expect 83.4% of CIs to include the mean that follows, 
because this is the average capture percentage for 95% CIs and 
also the prediction percentage for such CIs. (If you’re concerned 
that successive captures in such a sequence are not independent, 
consider just every second experiment. Then capture is certainly 
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Means and 95% CIs for the three results in Exercise 4.9.
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independent and the long-run answers are the same.) There is 
more about this approach in Cumming and Fidler (2009).

5.2	 I made a few brief mentions of possibilities in the chapter. 
Consider how people think about p values and how they respond 
to them, including their emotional reactions.

5.3	 Use the CIs and replication page of ESCI chapters 5–6. Run a 
simulation of 1,000 or more samples with N = 40 and σ assumed 
not known, and see that the CP values around 95% are less widely 
spread and do not extend so far toward 100%. Repeat for N = 200 
and both of those tendencies are stronger.

5.4	 A 99% CI is a 93.15% prediction interval, and a 90% CI a 75.52% 
prediction interval. SE bars give a 52.05% prediction interval, 
meaning that there’s about a coin-toss chance that a replication 
will give a mean within the initial SE bars and about the same 
chance that it will fall outside those bars. These answers assume 
that σ is known or N is large, but the answers are similar for σ 
unknown and smaller N.

5.5	 For small N, and especially for very small N such as N less than 
around 10, CI width varies greatly from sample to sample, as 
noted in Chapter 3. Therefore, when N is very small, CI width is 
much less informative about the amount of bouncing around of 
replication means.

5.6	 If, for example, two-tailed p = .01 is reported, you could suggest 
that it makes sense to consider one-tailed replication p. The p 
interval is (0, .083), which implies that a replication has an 80% 
chance of giving one-tailed p in that interval and a 20% chance 
of giving p > .083. That’s the one-sided p interval. The two-sided 
interval is (.000006, .22).

5.7	 You might decide to focus on one-tailed replication p, and to 
include in your table both one-sided and two-sided p intervals. 
You might choose two-tailed pobt values of .001, .01, .02, .05, .1, .2, 
.4, and .6. That would be Table 1 in Cumming (2008). For pobt = 
.001, for example, the p intervals are (0, .018) and (.0000002, .070).

5.8	 You could speak of the interval [44.2, 64.4] as having a .83 chance 
of including the mean if the experiment were repeated. For two-
tailed p = .072, the one-sided p interval for one-tailed replication 
p is (0, .27), meaning that there’s a .80 chance of p falling in that 
interval if the experiment were repeated. The two intervals have 
similar prediction percentages, but the CI is probably much more 
informative and practically useful.

5.9	 The Dance p video includes brief demonstrations, which you 
could expand and adapt.
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5.10	 You may find that, once you know to focus on points that are 
very close together, you can easily identify the random square, 
even with a small minimum spacing in the nonrandom square. 
Try also to look at overall patterns, and get a feel for how random 
patterns tend to appear.

5.11	 The law of small numbers might encourage a gambler to believe 
that short runs of events should match the long-term probabili-
ties, in which case a black would be more likely after a run of 
red, for example. That’s the gambler’s fallacy. In addition, seeing 
clumping in randomness could emphasize local departures from 
long-term expectations and thus exacerbate the effect of the gam-
bler’s fallacy.

Chapter 6 Exercises  Two Designs for Comparing A and B

6.1	 Robinson (1999) reported p = .02, which seems about right to me.
6.2	 In Figure 4.5 and CI function the intervals with various values of 

C all refer to the same data, so the curves of the cat’s-eye pictures 
are the same for every CI. The proportion shaded and the length 
of the intervals vary only because C varies. In contrast, Compare 
A B displays two CIs with the same value of C—they are both 
95% CIs—and they differ in length only when they represent dif-
ferent sets of data, for example, when you set sA and sB to be differ-
ent. The cat’s-eye picture is fatter for the shorter 95% CI, reflecting 
the greater concentration of plausibility for that interval, and its 
greater precision. In other words, any 95% CI spans 95% of the 
area of its cat’s-eye picture, and so if the interval is shorter the 
cat’s-eye shaded area must also be shortened and thus be fatter.

6.3	 My approximate calculations give p = .02 for random and p = .30 
for not random. For the random condition, the two MOEs differ 
by a factor of about 2, and all four group sizes are 9 or 10, so both 
comparisons are close to the robustness limits of the rule of eye.

6.4	 You may need to investigate how to change from the default set-
tings of the software.

6.5	 When I wanted an ESCI figure to be able to display means slightly 
offset, I built the figure as an Excel scatterplot, so I could specify 
both X and Y for every point. I hope ESCI can do the job for you, 
for common situations at least.

6.6	 Double check that the means are for independent groups.
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6.7	 We need the difference in bearing between the north and 240° 
fields for each bird, then the mean of those differences with its 
CI. The researchers did not report the values, but included a fig-
ure from which I estimate 230°, [190, 270] for the control and 265°, 
[235, 295] for the treatment group. Both CIs include 240°, which 
was the change in magnetic field orientation, so both groups 
on average did well. CI widths for the change were not notably 
shorter than the CIs for orientation in the separate fields, suggest-
ing only a small correlation between the two measures.

6.8	 When r = 1 the measures are perfectly correlated, all the paired 
differences are the same, and the CI on the mean difference has 
zero length. When r = –1, the A and B measures are maximally 
different and so the length of the CI on the difference takes its 
maximum value, which happens to be twice the length of the 
CIs on MA or MB. When r = 0, the CIs on the difference are very 
similar for the two designs, which makes sense because indepen-
dence implies zero correlation. If N is very large, the CIs on the 
difference are virtually identical. Therefore, even a small positive 
correlation improves the sensitivity of the paired design over that 
of the two-independent-groups design.

6.9	 You could suggest one figure for the separate means and another 
for the difference with its CI. The world awaits ingenious 
solutions.

6.10	 This convention is worth using and encouraging, but it’s easy 
to find figures with independent means joined by lines, and 
repeated measures that aren’t. So it’s still necessary to make clear 
in the labels or caption the status of each independent variable. 
My two captions probably do a reasonable job of that. It would be 
very interesting to know how widely that convention is used in 
various disciplines, and whether any discipline has developed 
some other way of indicating reliably the status of independent 
variables in a figure.

Chapter 7 Exercises  Meta-Analysis and Forest Plots

7.1	 All the results are from independent groups, so it’s justifiable to 
consider meta-analysis. Kay et al. (2010) predicted that the top left 
mean would be larger than the other three, and so one of their 
analyses was a comparison of that mean with the average of the 
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other three, giving p = .03. My eyeballing suggestion is an infor-
mal way to carry out that comparison.

7.2	 If the results are independent, you can make a judgment about 
the conceptual sense of combining them—are the questions 
being asked sufficiently similar? If you decide that meta-analysis 
is appropriate, the result is likely to be valuable.

7.4	 You may have found that almost impossible. Textbooks rarely 
discuss replication or present more than one data set or example 
for any issue. Meta-analytic thinking has yet to sweep the world, 
but it should.

7.5	 Note that MOEs for the cumulative results are reported in 
Original 7 below red 14 to the far right. Add a second study and 
MOE decreases by 29%. Add a third and the decrease is 18% of 
the MOE after two. Add fourth, fifth, sixth, and seventh stud-
ies and the successive MOE decreases are 14%, 11%, 9%, and 7%, 
with each percentage referring to the MOE of the just-preceding 
meta-analysis result. The final result with seven studies has MOE 
reduced by 62% from the MOE of a single study.

7.6	 I set up identical individual experiments each with p = .10. 
Combining two gives p = .02, as I reported earlier. Combining 
three gives p = .004, so this is the answer to Question 7.4. Combine 
more and p is even smaller.

7.7	 I tried studies each with p = .20. Combine two and p = .07, then 
three gives .026, four .010, five .004, six .002, and seven .001. This 
demonstration relies on the studies all having identical results—
which never happens on planet Earth. Even so, we can expect p 
values to decrease markedly when studies giving similar results 
are combined, but the detail of p, and how it changes, depends on 
where the different CIs lie in relation to µ0.

7.8	 If two results are estimating the same effect, it could make con-
ceptual sense to meta-analyze, but a correlation between the two 
decreases the total amount of information the two together give 
us about the effect. Therefore, we’d expect the CI on the meta-ana-
lytic combination to be longer than if the two were independent. 
Independent results give 29% shortening; correlated results give 
less shortening. The higher the correlation, the less shortening 
we’d expect of the combined CI compared with the CI of either 
individual study. Note that this relation is exactly the reverse 
of our conclusion when we considered in Chapter 6 the paired 
design and focused on the difference between the means of two 
correlated results, rather than the meta-analytic combination 
of correlated results. If that’s cryptic, don’t worry; just note that 
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meta-analysis is usually most appropriate and most effective 
when applied to independent results.

Chapter 8 Exercises  Fixed Effect and Random Effects Models

8.1 and 8.2  I did this for two sets of 10 samples, all with N = 10. When 
I entered the first set into Original 31 as the results of 10 stud-
ies, I obtained T = 4.36, [0, 8.27], Q = 15.5, p = .08, and I2 = 42.0%. I 
therefore happened to get a moderate amount of heterogeneity, the 
two models gave slightly different values for M, and the random 
effects analysis gave a CI on M that was about 38% longer than the 
CI from the fixed effect model. My second set gave T = 0, [0, 4.95], 
Q = 6.34, p = .71, and I2 = 0%. Therefore, the two models gave the 
same final CI. The results I obtained for my two sets of studies are 
both reasonable, and the sort of values we’d expect for a set of stud-
ies for which the fixed effect model is true—as it is when we use 
CIjumping with the same µ to generate the result of each study. 
Yes, it would be quicker and easier if MAjumping existed, but I 
hope you get the idea.

8.3 and 8.5  If you did find results you judged suitable for meta-
analysis, first consider the studies and the questions they address. 
Are they so similar that they’re close to being replications of a 
single study? If so, the fixed effect model may be conceptually 
appropriate. In practice that’s unlikely, and so the random effects 
model is the better choice. In any case, consider the various statis-
tics that describe the amount of heterogeneity, and compare the 
results given by the two models.

8.4	 The question is, which quantities change substantially with k, the 
number of studies being combined, and why? There’s no variation 
in M = 5.5, for any k and either model. The CI on M gets shorter 
as k increases, as we’d expect, and in each case is roughly one 
third longer for the random effects than the fixed effect model. 
I expected the width of the CI for T to decrease markedly and 
it did, from [0, 3.75] to [.72, 2.9]. (I’ll quote values first for k = 10 
then for k = 30.) That signals that we’re estimating τ less precisely 
when we have 10 rather than 30 studies. Similarly, the p value for 
Q decreased from .06 to .01. The value of Q changed considerably, 
from 16.5 to 49.5, but that increase mainly reflects the increase in k 
rather than an increase in heterogeneity. It’s the comparison of Q 
and df that indicates the amount of heterogeneity, whereas T and 
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I2 are measures that reflect heterogeneity without strong depen-
dence on k. Whatever the k, the value of T is an estimate of τ, and 
the value of I2 is an estimate of the percentage of total variability 
attributable to true variability in the µi. Both changed little with k.

8.6	 You could do this first for a set of invented studies that are close to 
straight replications. You’d expect little or no difference between 
the results of the two meta-analysis models. Beware, however, the 
difficulty people usually have in generating numbers with about 
the same amount of variability we’d expect in random numbers. 
Recall the glowworms and penguins of Chapter 5. You may find 
that your Q value is much smaller than your df, suggesting that 
there’s considerably less bouncing around than we’d expect. For a 
second set, you could deliberately introduce large heterogeneity, 
perhaps by thinking of some studies being of experts and oth-
ers of novices, so you’d have several studies with small means 
and several with rather larger means. A random effects model 
would certainly be needed. We’d hope later to identify expertise 
as a moderator.

8.7	 It would be interesting to know how meta-analytic practices 
vary across disciplines, and how they’ve changed in recent 
years. That’s another barely researched area. My guess is that 
in most disciplines there are mentions of fixed effect and ran-
dom effects models, and of heterogeneity and Q. These may, 
unfortunately, be accompanied by a hypothesis test of whether 
homogeneity can be rejected. There are also, however, quite 
different approaches to meta-analysis, for example, some that 
rely on Bayesian models.

Chapter 9 Exercises  Larger-Scale Meta-Analysis

9.1	 Not all steps can be identified in every meta-analysis report. 
Customs vary over disciplines. I think of the steps so broadly that 
they can include almost anything.

9.2	 ESCI displays studies in red and blue in the forest plot, but such 
representation of a moderator is rare. Does it help build your 
intuitions about dichotomous moderators?

9.3	 To be included in a subgroups analysis, a study must have a group 
label below red 2. Often in practice a study can’t be assigned to 
either group, so has no group label. When subgroups analysis 
is on at red 5, ESCI grays out such a study and omits it from the 
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overall analysis displayed as the white diamond. See the popout 
at red 4. But such a study is included in the overall analysis when 
subgroups analysis is off at red 5.

9.4	 Prefer the diamond, which is a fine picture of a 95% CI. I don’t 
know of other ways to picture the results of a moderator analysis, 
but I’d like to hear of any you find.

9.5	 We are conducting a moderator analysis, so we have considerable 
heterogeneity, and the fixed effect model is inappropriate. The 
two random effects options probably give very similar results, 
with group CIs probably more similar for the pooled option.

9.6	 It is probably useful to show weightings by varying dot size, 
as in Figure 9.4. I would like to hear of any other good ways to 
picture meta-regression.

9.7	 A possibility, besides those mentioned in the text, is to seek one 
or a small number of variables underlying a battery of scores 
by using, for example, factor analysis, and then applying meta-
analysis to the main factor(s).

9.8	 Examine the correlation between how the two plots appear until 
you can examine a forest plot and see the corresponding funnel 
plot in your mind’s eye.

9.9	 A well-known approach is to calculate the fail-safe N, which is the 
number of missing studies that, if added to our meta-analysis, 
would reduce the overall ES to a size we judge not of practical 
importance. Assume that the added studies average zero ES. If 
the fail-safe N is very large, any publication bias is probably not 
invalidating our result.

9.10	 The predictable structure is a great feature of Cochrane reports. 
For me, the forest plots are great, but it would be good to picture 
moderator information as well. Any ideas?

9.11	 Campbell is at an earlier stage of development; the reports don’t 
even have summary and plain language statements in a standard 
format. More pictures would often help.

Chapter 10 Exercises  Noncentral t

10.1	 Larger sample size means larger df and that noncentral t has less 
skew; µ1 closer to µ0 means smaller noncentrality parameter ∆ 
and, again, that noncentral t has less skew. Smaller ∆ also shifts 
the curve closer to µ0.
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10.2	 Noncentral t becomes closer to symmetric as df increases, but 
only slowly, and even more slowly for larger ∆.

10.3	 For those values of ∆ and df, the probability that noncentral t is 
less than 4.08 is .44, the value ESCI reports as the Left noncentral 
t probability below red 5. Use the slider to move the cursor until 
the Right tail probability is .05, and see that t = 9.18. Note that you 
can use the sliders at red 4 to change the range displayed on the 
horizontal axis.

10.4	 When df = 30, noncentral t is still distinctly skewed, unless ∆ is 
very small. Noncentral t approaches the normal distribution as df 
increases, but only very slowly, and even more slowly for large ∆.

10.5	 Assume that σ is not known. Whether H0 or H1 is assumed true, 
if s > σ, the triangle marking t in the lower panel will be closer to 
zero than the dot marking M is to µ0 in the middle panel. Note 
that I said closer to µ0, not µ1.

10.6	 The s pile is only markedly skewed for quite small N. As N 
increases, the s pile approaches the normal distribution in shape. 
The SD of the s pile decreases as N increases, but even for N = 30 
and larger, the s pile still has noticeable width, meaning that the 
sample SD still varies noticeably from sample to sample.

10.7	 Assume that H0 is true so we’re sampling from the population 
with mean µ0. When s < σ the rubber ruler is squashed in, the 
lines down to the bottom axis slant out, and t values are far-
ther from zero. In other words, samples with s < σ tend to give 
t values in the tails of the central t distribution. The s pile shows 
that s < σ is more common than s > σ. Therefore, there are many 
t values in the tails, meaning that the central t has fat tails. Very 
small N accentuates all those tendencies, so the tails of central t 
are especially fat for very small df.

10.9	 Such a function may give you the probability that noncentral t 
is less than some chosen t value, for chosen values of df and ∆. 
As the answer to Exercise 10.3 illustrated, the Noncentral t page 
allows you to calculate such probabilities. Set df and ∆ near red 1, 
click near red 5 to show the probabilities, use the slider to set the 
desired t, then read the probability below the label Left.

10.10	 With σ assumed known, consider the green curve in the sec-
ond panel for H0 assumed true. The vertical red lines that mark 
the rejection region are positioned so the tail areas of that curve 
beyond the red lines are each α/2. Change α to check this. You can 
also note the critical value of z that’s shown near red 8. That value 
marks where the red lines are positioned on the rubber ruler. If 
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a sample gives M that falls in the rejection region—to the left of 
the left red line, or to the right of the right red line—we reject 
H0. That’s what we do whether the sample giving M came from 
the null or from the alternative population. Take further samples 
and the rejection region doesn’t change. Now for the second, 
more interesting, part of the story: With σ assumed not known, 
the rejection region is defined by a critical value of t on the rub-
ber ruler. The critical value is shown near red 8, and for α = .05 
and df = 5, it is t = 2.57. Because we don’t know σ, the rejection 
region is calculated using s from our sample and the rubber ruler 
reflects that s. Take further samples and see the rejection region 
change as the rubber ruler stretches and squashes. The red lines 
are always positioned at plus-and-minus the critical t value on 
the ruler. Note that the rejection region is centered on µ0 whether 
we’re sampling from the null or alternative population. Take lots 
of samples from the null population and expect about α of them 
to give rejection of the null, which is a Type I error; take lots of 
samples from the alternative population and the proportion of 
samples that give rejection of the null is the statistical power.

Chapter 11 Exercises  Cohen’s d

11.1	 For δ = 0.2, just 57.9% of E lies above the mean of C. For δ = 0.5 and 
0.8, the percentages are, respectively, 69.1% and 78.8%, assuming 
in each case that the SDs are the same for E and C. My example 
context is the meta-analysis by Glass (1976) that found d = 0.68 for 
the average improvement after psychotherapy. This implies that 
75% of treated people score higher than the mean of untreated, 
and one-quarter of treated people would score lower than the 
mean of untreated. If the two SDs are equal, it also implies that 
the average treated person scores higher than 75% of untreated 
people. The probability of superiority is .685.

11.2	 Using the SD of C as the standardizer, as d picture does, if the SD 
of E increases, d remains unchanged, but a smaller proportion 
of the area under the E curve lies above the mean of C. When 
I doubled the SD of E for d = 0.68, the percentage of E exceed-
ing the mean of C decreased from 75.2% to 63.3%. The best stan-
dardizer for d is a matter for judgment, but where a treatment is 
expected to change the SD markedly, it may be best to regard C 
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as the reference and use the SD of C as the standardizer. The SD 
of E needs to be considered before interpreting a d value in terms 
of percentages. The value of d may not tell the full story.

11.3	 There are other test instruments developed in psychology or edu-
cation that are scaled to have a stated mean and SD in a large and 
carefully selected reference population. I would like to hear of 
examples from other disciplines.

11.4	 Considering the Experimental group by itself, and therefore 
using sE as the standardizer, d = (47.60 – 40)/12.46 = 0.61, where 
μ0 = 40 is our reference mean for measuring d. Considering 
both groups, sp probably gives the best estimate of population 
SD, so would be a good choice of standardizer for the difference 
between Experimental and the comparison value of 40. This gives 
d = (47.60 – 40)/11.48 = 0.66. If the treatment is expected to change 
the SD markedly, we could choose to use Control as a reference, 
and thus use sC as the standardizer to obtain d = (47.60 – 40)/10.41 
= 0.73. Yes, choice of standardizer can make a big difference to d.

11.5	 My experience is that t values are very often reported, but d 
values rarely. I hope d is reported more often in the future, but 
meanwhile I’ve frequently found it useful to use these beautifully 
simple formulas to calculate d, given only t and N (or t and N1 
and N2). Make sure you identify the experimental design, and 
then choose the formula appropriate to that design. For paired 
or any other repeated measure design it’s often hard to calculate 
d, because any t value reported is almost certainly based on an 
SD (e.g., sdiff) that’s inappropriate as the standardizer for d, and 
the SD we need is often not reported. Knowing d can help inter-
pretation, especially if the original measure is not widely used 
or understood.

11.6	 It’s straightforward to use Data two to find CIs in original units, 
and to see a nice figure. Click at red 9 for the second figure. Click 
at red 7 to indicate whether or not you are prepared to assume 
homogeneity of variance. If you are, then you can scroll right 
and click at red 11 to reveal d and dunb and the CI on d. I’m often 
prepared to assume homogeneity of variance, unless there are 
strong reasons against it. I usually prefer to report and interpret 
dunb and the CI on d.

11.7	 If you know a little about Excel, here’s another way to explore the 
ideas of this exercise. Go to Simulate paired, scroll right, and click 
at red 13 to reveal the panel reporting d. Remove protection—see 
Appendix A for help. Just to the right of the cell reporting the 
value of d, type in a simple formula: = ES/sdiff. To get ES, click 
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on the cell below red 10 that reports the value of ES, and for sdiff 
click on the cell just above that shows the value of sdiff. (Be sure to 
click on the cells reporting the numerical values, not the cells with 
the labels “ES” and “sdiff”.) Now when you click at red 1 for another 
experiment you should see the value of d, calculated using sav as 
the standardizer, and just beside it should be d calculated using 
sdiff. Compare the two values, and note the correlation reported 
below red 9. Take further experiments. The higher the correlation 
in a particular data set, the greater the difference between the two 
values of d. Use a small N to get large variation in correlation from 
experiment to experiment. If we regard the d based on sav as what 
we want, the d based on sdiff is usually an overestimate and, when 
the correlation is high, a very considerable overestimate.

11.8	 The adjustment factor is referred to as J, so Equation (11.13) 
becomes dunb = J × d. Equation (11.13) states a good approxima-
tion for J. Figure 11.7 is my plot of the accurate value of J against 
df. Values of J are stated for df = 2, 3, 4, 5, 10, 20, 30, 40, and 50. 
Equation (11.13) gives approximate J = .571 for df = 2, and approxi-
mate J = .842 for df = 5. Those values are only a little different 
from the accurate values in Figure 11.7. For values of df more than 
about 8 the values given by Equation (11.13) are the same as the 
accurate values, to three decimal places. The figure suggests that 
it’s worth using dunb rather than d. Only when df is large, say 40 or 
50 or more, does the adjustment have very little effect.
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Figure 11.7
Accurate values of J plotted against df, where J is the adjustment factor needed to calculate 
dunb, using the formula dunb = J × d. Values of J are shown for selected df.
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11.9	 I don’t know of other terminology, beyond what I’ve mentioned 
in this chapter. Disciplines other than psychology may use other 
terms or symbols, and I’d like news of any that you know of. I also 
don’t know of any use of dunb in other disciplines, even though I 
expect it might often be the standardized ES of choice. Please let 
me know of any examples you find.

11.11	 The sampling distribution of s2 is the chi-square distribution 
with df = (N – 1), multiplied by a constant, which is σ2/(N – 1). 
This distribution is positively skewed, has a mean of σ2, and, 
for df > 2, is a smooth curve with a hump maximum somewhat 
below the mean of σ2. The sampling distribution of s is the chi 
distribution, which is also positively skewed and, for df > 2, a 
smooth curve with a hump maximum a little below the mean, 
which is very close to σ. Observe the shape of the s pile after 
taking 300 samples; try this for various values of N. Skew is 
more pronounced for small N.

11.13	 For the Control group in Table 11.1 we found d = 0.21, using sC as 
the standardizer. Type this d and N = 10 into the d single group 
page as the values for Study 1. Click the button at red 4 to calcu-
late CIs, and find that the 95% CI for that d is [–0.42, 0.83]. This CI 
is wide, as we’d expect with such a small N.

11.14	 We found that d = 0.47. Enter this and the sample sizes into d two 
groups and find that the 95% CI is [–0.43, 1.35]. The CI for d page 
also gives this result. Again, a wide CI.

11.15	 The only way to find these CIs with ESCI is to enter all the data 
values into Data paired, which gives d = 0.34, [0.10, 0.58]. The 
design is sensitive and gives a relatively precise estimate of 
the effect, as indicated by the relatively narrow CI.

11.16	 We’ll see in Chapter 14 some further ES measures often used in 
meta-analyses, sometimes after transformation from various origi-
nal units measures used in different studies. One is Pearson’s cor-
relation r.

11.17	 First I decided that the three studies were sufficiently comparable 
to combine because they all used the same team-building game 
as the intervention, a two-independent-groups design, and a 
variety of employees as participants. I decided also that the three 
different measures of on-the-job cooperation were sufficiently 
similar. I entered the data into a spreadsheet and used Equation 
(6.1) to calculate the pooled within-group SD to be sp = 6.67, 24.98, 
and 37.49 for the three studies, respectively. I then used Equation 
(11.4) to calculate d, with sp as the standardizer, and obtained d = 
0.750, –0.280, and 0.773. I entered those d values and the NC and 
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NE values into the d two groups page of ESCI Meta-Analysis. 
I clicked to select dunb as the ES to be meta-analyzed, to give an 
unbiased estimate of the population ES. Figure 11.8 shows part of 
the screen giving the result of the meta-analysis. The overall ES 
for a random effects model is dunb = 0.47, [–0.13, 1.06]. The CI on the 
overall d is very similar. I noted that the fixed effect model gave 
quite similar results, but with a shorter CI; I could see no reason 
to prefer the fixed effect model. With only three small studies 
and considerable variation in what the different studies found, 
it’s not surprising that the final CI is so wide and that the statis-
tics Q, I2, and Τ suggest that there may be considerable heteroge-
neity between the studies, although we can’t be sure. I conclude 
that the three studies gave differing outcomes and together can 
only estimate that the effect of the game may well be positive but 
could be anywhere between negligible and quite large.

Chapter 12 Exercises  Power

12.1	 Assume that σ = 1.2 is known, so target δ = 0.5/1.2 = 0.42. Enter 
that δ, N = 100, and α = .01 into the Power picture page of ESCI 
chapters 10–13. Click near red 1 to select z as the test statistic, 
because we are assuming that σ is known. Power is reported as 
.95. Nice! Change any value to see how power changes. It would 
be good to retain α = .01, but you could set a smaller target δ, 
although dropping it a little to 0.3 decreases power drastically, 
to .66.

Figure 11.8
A part screen image from d two groups for the meta-analysis of the data of Exercise 11.17.
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12.2	 Again assume that σ = 1.2 is known, so target δ = 0.3/1.2 = 0.25. 
You could use either Simulate two or Power two. I entered 
population values at red 7 in Simulate two that gave δ = 0.25. 
Using N1 = N2 = 100 and α = .01, and z as the test statistic, gives 
power = .21. Terrible! Changing α to .05 increases power, but only 
to .42. We’ll either have to live with a larger target δ, or plan to 
use samples even larger than 100. To calculate power for such 
larger samples, use the bottom panel in Power two, at red 6.

12.3	 Again assume that σ = 1.2 is known, so target δ = 0.2/1.2 = 0.17, 
which is ambitious. In the Power paired page of ESCI chapters 
10–13, I set δ = 0.2, and α = .05. I set ρ = .72 to be at the conserva-
tive end of the range mentioned, and chose z as the test statistic. I 
moved the N cursor and read off power. For N = 100, power = .76, 
which is barely acceptable. If ρ = .80, in the middle of the range, 
power = .88, which is better. We may need to choose a larger tar-
get δ, or plan to test more than 100 participants.

12.4	 Note carefully whether your other textbook uses normal distri-
butions and z for all power calculations, or uses noncentral t cal-
culations at least for small samples. There may be power curves 
or tables of values of N that are based on accurate calculations for 
small samples, even if no mention is made of noncentral t. Note 
that approximations are often used when power is calculated, so 
there may be small disagreements between different books, and 
between other textbooks and the values ESCI calculates. Such 
small differences rarely matter in practice.

12.5	 The Power two page of ESCI chapters 10–13 makes it easy to 
compare two-independent-groups experiments with targets of 
δ = 0.2 and δ = 0.6. The comparison emphasizes yet again how 
sensitive power is to target δ. With target δ = 0.2, even N = 100 
gives power of only .29, with α = .05. With target δ = 0.6, again 
with α = .05, power is .8 for N = 45.

12.6	 The area under the H1 curve corresponding to the left rejection 
tail is so small that it’s invisible in those two figures. A value of 
t that lands in that area is less than –2.26 and gives p < .05, so we 
reject H0. To calculate power we assume that H1 is true, and so 
we’re sampling from the H1 curve. Such a t is a result extremely 
far into the left tail of the H1 curve: The result departs sufficiently 
from H0 to justify rejection, but it’s in the direction opposite to the 
true population effect. It’s therefore extremely unlikely to occur. 
We’re using two-tailed α, and so that tiny left tail under the H1 
curve must be included in the power calculation, but its area is 
so small that often in practice we can ignore it. You may wish to 
consider power for one-tailed α and thus a rejection region in just 
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one tail of the H0 curve, but I don’t discuss that in this book, and 
ESCI doesn’t include that case either.

12.7	 You could focus on values that are typical for experiments in 
your discipline. For example, what α is most commonly used? 
Can you estimate, even roughly, what δ values correspond to the 
effects typically reported in your discipline? Using t, the answers 
to the three questions are as follows: power = .82, N = 95, and a 
little less than δ = 0.5, respectively.

12.8	 I remember just two cases, both being two-independent-groups 
experiments with α = .05. Then I estimate power for any other 
situation by guessing how different the situation is from those 
two cases. I remember N = 32 for power = .5 and δ = 0.5. (That’s 
using t. When using z, power = .52 and we have the experiment 
I used in Chapter 5 to demonstrate the dance of the means. As 
I reported then, such an experiment has disappointingly lower 
power, but is typical of those reported in a number of research 
fields.) I also remember that N = 64 for power = .8 and δ = 0.5.

12.9	 If you are not sure whether a value reported for power is post hoc 
power, try changing the data slightly (make a few of the data val-
ues larger or smaller, but don’t change N) and running the analy-
sis again. If the value reported for power changes, most likely it’s 
post hoc power.

12.10	 It’s good practice with any software to learn how to get beyond 
the defaults. Good defaults can be helpful, but you must not let 
the defaults make your statistical decisions. Explore any tutorials 
offered by your software and the help system. These can often be 
surprisingly useful, perhaps after you have overcome an initial 
reluctance to try them.

12.11	 G*Power 3 comes with extensive help materials. For simple things 
you can probably just explore. After installing and opening 
G*Power, in the drop box labeled “Test family” choose “t tests.” 
In the box labeled “Statistical test” choose “Means: difference 
between two independent means,” and in the “Type of power 
analysis” box read all the options. Note that “post hoc power” is, 
unfortunately, given a very broad meaning: It refers to the calcu-
lation of power, given α, N, and any type of population ES. If you 
use d resulting from an experiment for that ES you would get what 
I call post hoc power, but if you use target δ you would get what I 
call legitimate power, which is no doubt what you want. Explore 
and enjoy. You should be able to verify that, with ES = 0.5, N = 32 
in each group, and two-tailed α = .05, then power = .504, in agree-
ment with ESCI using t as the test statistic. Note that G*Power 
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also displays the power picture, including a noncentral t distri-
bution. Click on the button at the bottom labeled “X-Y plot for a 
range of values” and explore what curves G*Power can generate.

12.12 and 12.13  Examine any places where NHST is discussed or 
reported. Look especially at any cases where p values are large 
and results that are not statistically significant are discussed. If 
you can, find a report of a power calculation. Is it done well? Does 
it make clear the target δ used in the calculation?

12.14	 I guessed that, because post hoc power is somewhat linked to p 
values, its amount of variation may remain quite large, even for 
large N. I described in Box 11.1 how I modified pages in ESCI to 
run simulations to check various calculations. For this exercise, I 
modified Simulate two to keep track of the post hoc power val-
ues calculated for a large number of simulated experiments. ESCI 
reported the mean and SD of those values. I recorded the SD of 
post hoc power values for long runs of experiments, for a wide 
range of N, δ, and α values. I concluded that the amount of varia-
tion in post hoc power—the amount of bouncing around with 
replication—is quite similar for a wide range of experiments, 
even with large N. It seems to be quite similar at least for N up to 
100, and at least for power anywhere in the range .3 to .8. That’s 
one more reason to avoid post hoc power: It doesn’t become bet-
ter behaved even at large sample sizes.

12.15	 Improving the experimental design, for example, by using 
matching or a repeated measure, typically increases both power 
and informativeness, as does increasing N. Meta-analysis almost 
certainly increases both power and informativeness. Increasing 
α increases power but not informativeness. Increasing target δ 
increases power markedly, but arguably only increases informa-
tiveness if you also make the experimental manipulation larger 
or more effective. Other strategies to refine the experimental pro-
cedure or improve measurement can reduce overall error, and 
thus increase both power and informativeness. I’ll discuss those 
further in the next chapter.

Chapter 13 Exercises  Precision for Planning

13.1	 Going way back to Chapter 1 and Lucky–Noluck we could dis-
cuss Figure 1.1 in terms of the precision of the two studies being 
quite low in the context of a difference of only about 1.5 between 
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the two means. In other words, the CI arm lengths are large rela-
tive to that difference. There are numerous other places where 
we could reword the discussion or describe a figure with CIs, 
simply by focusing on arm length. I recommend making a habit, 
whenever inspecting CIs—whether given as numbers or as error 
bars in a figure—to note the arm length and think about what its 
value means as a measure of precision, the maximum likely error 
of estimation of the effect under investigation.

13.2	 I’ve just scanned the indexes of a dozen statistics textbooks on my 
shelves without finding a single mention of precision. Some are 
very well recognized texts. Lockhart (1998), however, is a text that 
takes CIs seriously and also discusses precision. His definition 
is the same as mine, and he considers some of the issues raised 
in this chapter. If you find in your text any presentation or use 
of precision that you think is interesting, please let me know. I 
would be especially interested to hear of good alternative ways 
to explain the analyses of precision and assurance, and to picture 
the way N varies with f and other characteristics of an experiment.

13.3	 My informal discussions suggest that the “±” often refers to a 
judgment of the finest measurement that can be made by the 
instrument being used. There’s also a well-developed theory of 
measurement error, used in physics at least, that describes how 
error compounds when a number of measurements are combined 
in various ways. I suspect that there’s interesting scope to inves-
tigate how that theory relates to our uses of CIs and precision.

13.4	 Consider the dance of the CIs, as in the lower half of Figure 3.8, 
which shows CIs based on s whose lengths bounce around because 
s varies over samples. Focus just on one arm of each CI and we 
have a dance of the precision values. Use larger N and the s pile is 
narrower and the precision values don’t vary so much over repli-
cation. Yes, with larger N they are all generally much shorter, but 
the proportional variation is also reduced. Use the CIjumping 
page of ESCI chapters 1–4 to explore these ideas.

13.5	 Target MOE is f = 0.2/1.2 = 0.17. The figure in the Precision one 
page of ESCI chapters 10–13 doesn’t give N for that f, so type in 
0.2 and 1.2 as Target MOE and Population σ, respectively, near 
red 5. Set C = 95 near red 1 and γ = 90 near red 2 then see that 
N = 139 using z, 141 using t (in this case f is our expected MOE), 
and 161 with 90% assurance.

13.6	 Enter 0.1 for target MOE and 1.2 for population σ in the panel 
near red 5 in Precision two. Set C = 95 and γ = 99, then see that 
N = 1107 using z, 1108 using t (in this case f is our expected MOE), 
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and 1184 with 99% assurance. Yes, they are very large sample 
sizes, but requiring high assurance makes only a relatively mod-
est increase in N.

13.7	 Let’s again aim for MOE of f = 0.1 scale units. In Precision paired 
let C = 95 and γ = 99, and choose ρ = .72, the lower end of the 
range. Then Precision paired tells us that N = 310 using z, 313 
using t (in this case f is our expected MOE), and 368 with 99% 
assurance. Using ρ = .89, at the high end of the range, the N values 
are dramatically reduced: 122, 125, and 159, respectively.

13.8	 We’ll use the Cohen’s d panel of Precision two. I set C = 95 and γ = 
99. Let’s choose δ = 0.6 as the planning ES. I tried target MOEav = 
0.2, but was told “No” by ESCI. I tried 0.25 with the same result. 
With MOEav = 0.3, I found that N = 90 would suffice, and N = 96 
with 99% assurance. The popout comments explain that for the 
two-independent-groups design, using d, ESCI can only handle 
values of N up to about 100. (The accuracy of the noncentral t 
calculations impose this limit.) Considering the second planned 
experiment, I changed the planning ES to δ = 0.2, and found N val-
ues of 86 for Calculate N and 89 for N for γ—only a little smaller 
than before, but once again illustrating that achieving very high 
assurance in some cases does not require a much larger N.

13.9	 You could focus on designs and values that are typical for experi-
ments you encounter in your discipline. Can you estimate, even 
roughly, what values of f are common in your discipline? I con-
fess that I find this quite a challenge, but I feel most comfortable 
thinking of Cohen’s d, even though only a small proportion of 
reported studies use it. Cohen’s d provides a common measure-
ment context within which I can think about results from differ-
ent fields of research. So I’d focus my game on intuitions about 
d and N.

13.10	 The rough rules of thumb I remember (I’m assuming 95% CIs in 
all cases):

•	 z or t doesn’t make much difference, provided that N is not 
too small.

•	 For the paired design, the value of ρ makes an immense dif-
ference, especially when it’s greater than around .7.

•	 You might as well do an assurance analysis, with γ = 99, but it 
may also be worth noting what expected MOE the resulting 
N gives.

•	 For the two-independent-groups design, f = 0.28 needs N 
around 100, and f = 0.5 needs N around 30.
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•	 Think in terms of d whenever appropriate. Using d and a sin-
gle group, when planning ES = 0.5 and target MOEav = 0.2, N is 
a bit more than 100 (actually 109), and 123 for 99% assurance. 
Same, but for target MOEav = 0.3, N is around 50 (actually 49), 
and 59 for 99% assurance.

13.11	 Please let me know of any good statistical software you find that 
carries out analyses of precision and assurance, especially if it has 
good graphics and is very easy to use by researchers in general.

13.12	 I suspect that may be hard to do. As I say, if you find any interest-
ing explanations of precision, or good examples of it being used, 
please let me know.

13.13	 Again, please let me know of any interesting examples you find.
13.14	 Consult any research design books you have handy. Consider 

changing the experimental manipulation so that you are likely 
to be investigating a larger effect—often an especially potent way 
to improve the chance of success. For example, give 8 weeks of 
the new reading program, not 4 weeks. Make your experimen-
tal procedures more uniform and more carefully controlled, to 
reduce error variation. Give participants sufficient training so 
they are all operating at a similar level of understanding of the 
task—their performance is likely to be more similar. Consider 
simplifying your experimental design and reducing the number 
of independent variables or the number of levels of those inde-
pendent variables so, for a given total amount of experimental 
effort, the remaining comparisons are likely to give more precise 
estimates. Use precision for planning when it can assist, but don’t 
let it dominate your thinking.

Chapter 14 Exercises  Correlations, Proportions, 
and Further Effect Size Measures

14.1	 Every time you click New data set you get a new sample with 
your chosen r, and the scatterplot varies considerably in appear-
ance. You see alternative clouds for r. Try N = 10 and N = 300 (the 
maximum). You may feel that the variation is greater at small and 
medium N.

14.2	 I find that the cross lines are usually helpful for any r or N, and 
especially for small N, although they are not infallible. For exam-
ple, they don’t help us see that the middle cloud in Figure 14.4 
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(r = .5) illustrates a higher correlation than the cloud on the right 
(r = .3), because the upper-left plus lower-right count of dots is 
actually higher for the middle cloud. When eyeballing a scatter
plot, try not to be overly influenced by a couple of extreme 
points, although when N is small such outlying points have a big 
influence on the calculated r.

14.3	 The other book no doubt has much more about how to calculate 
r and, most likely, the close relation with regression. It may not 
have so much about the extent of sampling variability. If it omits 
CIs, that’s unfortunate.

14.4	 Just about any statistics software will calculate r for a set of data. 
(Even ESCI does this: See the Data paired page of ESCI chap-
ters 5–6. Correlation is reported below red 7.) Any exercise that 
requires interpretation of a correlation, or comparison of inde-
pendent correlations, can benefit from the CIs ESCI provides. 
Any exercise that asks for NHST can probably be answered more 
informatively with CIs.

14.5	 Use CIs and figures whenever they help. Practice thinking in 
terms of CIs.

14.6	 Watch what’s revealed as you click the Step button several times, 
and try to build a story.

14.7	 If you use correlations as reliability or validity measures, you 
may regard .9 as large and .7 as low. Or Cohen’s benchmarks 
may seem about right, at least sometimes. You should tailor what 
you remember to your situation. You can use r to z to verify that 
r = .1 needs N = 385 for the 95% CI to touch zero. Similarly, r = .3 
needs N = 43 and r = .5 needs N = 16. As usual, the ES makes an 
enormous difference in how easy it is to achieve statistical sig-
nificance. For r = .5, N = 57 gives a CI whose MOEav is .2, so the 
CI is roughly .5 ± .2, ignoring asymmetry. For r = .8, N = 17 gives 
MOEav = .2.

14.8	 I expect the width of the dance to halve, approximately, when N 
is multiplied by 4, keeping ρ the same. For fixed N, the width of 
the dance increases for ρ closer to zero.

14.9	 Alternative clouds for r all have the same value of r, whereas the 
dance of the r clouds refers to the scatterplots for the sequence of 
different r values in the dance of the r values.

14.10	 Sample r reports near red 4 the numbers of captures of ρ by the 
lower and the upper arms of the CIs; these numbers are usually 
a little different. Most important, however, is the overall capture 
percentage of 95% CIs. My tests find that’s about 91% when N = 
10. For N at least 30, and for virtually any value of ρ, it’s usually 
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between about 94% and 95%, and almost always between 94% 
and 95.5%, as I mentioned earlier. The approximation is therefore 
good, unless N is very small.

14.11	 It would be approximately normal in shape, and thus close to 
symmetric.

14.12	 The rule is a bit conservative: When overlap is .5, p is usually a 
little less than .05.

14.13	 Set C as you choose; adjust r1, r2, N1, and N2 until the LL of the 
CI on the difference is zero; then check how close the p value 
is to (1 – C/100). If C = 90, for example, the p value should 
be close to .10. My tests suggest close agreement between the 
two approximate methods.

14.14	 If NHST is used with r, try using a CI instead and look for 
improved interpretation.

14.15	 The CIs on the difference should be the same.
14.16	 For proportions, ESCI provides only those two pages in 

ESCI Effect sizes. To check the overlap rule, note overlap in 
Proportions, then use the CI on the difference of the same two 
proportions that’s displayed in Diff proportions to eyeball the 
p value.

14.18	 “Risk” may not appear, but watch for “probability,” “chance,” 
“percentages,” and “odds.”

14.19	 Once alerted to the problem, I suspect that you’ll often notice 
media reports of risk, and that they are often not easy to under-
stand accurately.

14.20	 Odds ratio (OR) is one other ES often used in medicine and 
other disciplines.

14.21	 You may need to dig deep beyond the default settings, or even 
learn how to write a script or program. Even then, CIs on differ-
ences may be hard to calculate. If you can calculate CIs on differ-
ences, try to find what approximate method the software uses. 
Compare the results with the CIs given by ESCI.

Chapter 15 Exercises  More Complex Designs 
and The New Statistics in Practice

15.1	 You may have to choose just one of the several measures reported, 
and perhaps simplify the design. Estimate realistic CIs if you 
have to. Is the figure illuminating?
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15.2	 You may have to invent such values, perhaps using hints in the 
researchers’ discussion of their results. I hope such reference 
labels and values become much more widely used.

15.3	 There are a number of possibilities, depending on the ques-
tions being addressed by the meta-analysis. The ES that most 
directly assesses the effect of the therapy could be the differ-
ence between the two differences in the lower panel, which 
would measure the advantage of treatment over control. A CI 
would have to be calculated.

15.4	 Different research fields and subfields have different customs. If 
exploration is mentioned, look for advice about the status of the 
effects it uncovers.

15.5	 Some disciplines hardly ever use ANOVA; others use it heav-
ily. Often contrasts are better, as Rosenthal and Rosnow (1985), 
among others, have argued.

15.6	 Finding a suitable ES and calculating the CI may each pose a 
problem, unfortunately.

15.7	 Check that the proportions are independent. Proportions can 
often do a better job than χ2.

15.8	 Linear regression is another area in which CI pictures can help 
assess goodness of fit. In any case, consider carefully whether 
each independent variable varies between or within groups, and 
make sure to display appropriate CIs to guide interpretation.

15.9	 Customs vary, but ESs and CIs are rarely both reported and inter-
preted. Alas.

15.10	 Advice, if any, may only say how to report statistics, but the exam-
ples chosen may be revealing. Any mention of the Publication 
Manual may be general, or only for referencing style.

15.11	 The most common lesson is that dogged persistence eventually 
succeeds. Usually.
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Appendix A  Loading and Using ESCI

ESCI (“ESS-key”) is Exploratory Software for Confidence Intervals. ESCI runs 
under Microsoft Excel, and a licensed copy of Excel is required to run 
ESCI. ESCI for Windows runs under Excel 2010, 2007, or 2003. ESCI for 
Macintosh runs under Excel 2011.

All ESCI modules that accompany this book are available from www.
thenewstatistics.com and may be downloaded freely for noncommer-
cial use. Make sure you save any ESCI module on your own local hard 
disk before you open and run it. See the document ESCI Readme at 
the website for the latest information about versions of Excel that are 
supported, and details for using the various different versions. (At the 
website there is also news about any errors that have been discovered 
in the book or software.) My custom is that every file name includes 
the date of last modification, so, for example, ESCI chapters 1–4 Jul 8 
2011 is the version of July 8, 2011. You can thus easily check that you are 
using the latest version. At the Intro page of any module, scroll down 
to see the license conditions for ESCI.

Note the tabs at the bottom of the Excel display area. These take you 
to the different pages in an ESCI module.

For Windows: Excel 2010, 2007, and 2003

ESCI runs under any of these versions of Excel. Excel 2010 and 2007 run 
more slowly than Excel 2003. In some cases the figure displayed in ESCI 
responds more immediately to manipulation of the sliders and spinners (see 
below) in Excel 2003 than in later versions. If you still have Excel 2003, pre-
serve it carefully.

For Macintosh: Excel 2011

ESCI runs under Excel 2011, but not under Excel 2008 because that version 
of Excel cannot run VBA macros (see below), which are used by ESCI for 
many purposes.

www.thenewstatistics.com
www.thenewstatistics.com
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Loading and Running ESCI

ESCI modules are regular Excel workbooks and should open immediately 
in Excel.

Macros

Many ESCI pages use small programs called “VBA macros” to carry 
out operations triggered by your clicking a button or carrying out some 
other action. Therefore, those operations will not work unless macros are 
enabled. The procedure to enable macros is different for different versions 
of Excel. See ESCI Readme for advice.

Popout Comments

Make sure that popout comments are visible when you hover the mouse 
near any little red triangle. If you can’t see them, consult ESCI Readme 
for advice.

Screen Resolution and Display Size

ESCI is designed so the display conveniently fits the screen for screen res-
olution of about 1280 × 800 or 1024 × 768. It may help to use full-screen dis-
play: ESCI Readme has details of how to do this in the various versions of 
Excel, and news of any changes relating to screen size or resolution.

You may choose to change your screen resolution: See ESCI Readme 
for details of how to change screen resolution in the various versions of 
Excel and for various operating systems. However, if you change screen 
resolution, some aspects of the display may not appear so neat, for exam-
ple, the neat stacking of means in the mean heap. Alternatively, on any 
page you can adjust the zoom by changing it from the usual 100%, but, if 
zoom is changed too far from 100%, labels and values may not fit so well 
in their cells.

Protection

Pages are protected to reduce the chance of making inadvertent changes, 
but protection can be removed—no password is needed. See ESCI Readme 
for details on how to remove protection in the various versions of Excel. 
Take care, and be sure not to save the workbook or, if you wish to save, 
give it a different name.
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On-Screen Controls

In many ESCI pages, sliders—which look like small scrollbars—and spin-
ners—small controls with up and down arrows—can change what’s 
displayed in the figures. Experiment with different ways to use these con-
trols. Click and hold, or click repeatedly. With a slider you can click and 
drag the thumbnail (the little rectangle you can move), click either side of 
the thumbnail, click and hold an end arrow, or click repeatedly on an end 
arrow. Different versions of Excel respond a little differently, so find what 
works best for you.

Using Figures Outside Excel

An ESCI figure can be transferred to a Word document. Click on the fig-
ure, very close to its edge, to select it: Depending on the version of Excel 
you may see a highlighted border or little black square handles. Copy, then 
go to the Word document and paste. Paste Special/Picture (Enhanced 
metafile) works well. (Text like Paste Special refers to text or a label or 
a menu entry on the Excel screen.) Allowing copy and paste of figures 
requires that figures are not protected. Therefore, they can be accidentally 
changed. If that happens, try Undo. Otherwise, close ESCI—don’t Save—
then reload ESCI.

An alternative, which I used to make the figures in this book that show 
part of an ESCI screen, is to use (in Windows) the PRNT SCRN (or PRINT 
SCREEN) key to transfer an image of the whole screen to the clipboard. 
Paste this into a Paint program, use the rectangle select tool to select an 
area of the image, then copy and paste this into your Word document. 
Paste Special/Picture (Windows metafile) works well.

Editing of Figures

Figures can be changed as desired using any Excel editing facilities: 
Change axis labels, change scaling on an axis, change chart format, etc. 
It’s usually best to edit a figure as you wish, before copying it from ESCI 
to your Word document.

To deselect a figure, after edit or copy, press the Esc key once or twice. 
Alternatively, in some versions of Excel, you can simply click elsewhere in 
the display area.

Number Formats

In most cases ESCI reports numbers to an appropriate number of decimal 
places. A p value, for example, may be reported as .000, meaning it’s zero 
when rounded to three decimal places. That would accord with the APA 
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Publication Manual (2010), which advises that exact values for p should not 
be reported if less than .001.

In some cases ESCI uses a general format for numbers to accommodate 
a very wide range of possible values. In such cases, extremely small or 
large values may be reported in scientific format: 0.0000045 may appear 
as 4.5E-06, meaning 4.5 × 10–6. Similarly, 26,800,000 may appear as 2.7E+07, 
meaning 2.7 × 107.

Sound

The Dance p page of ESCI chapters 5–6 uses five small sound files. These 
are grouped for download together with ESCI chapters 5–6. Make sure 
those five files are in the same folder with the ESCI module itself, to make 
them accessible to ESCI. If you don’t hear sound when a p value is taken, 
check that Sound is clicked on, near red 5 of the Dance p page; that the 
sound files are in the same folder as ESCI; and, of course, that your speak-
ers are on and volume is sufficient.

ESCI Formulas and Calculations

Most formulas and arrays of data are visible if you scroll right or down, 
so, if you like, you can see how ESCI does its work. Some formulas need to 
be placed behind the figures. Similarly, you can examine the VBA code if 
you wish. In some cases, formulas need to be placed in hidden columns to 
the left of the display area but you can unhide these columns if you wish. 
Similarly, on a few pages formulas are placed in hidden rows at the top of 
the display.

Strategy for Getting Started With a New ESCI Page

•	 Scan the display, read the labels, and hover the mouse over any 
little red triangle to see a popout comment.

•	 A new page may look confusing, but one way to start is to follow 
the bold red numbers 1, 2, … , in sequence, reading the popouts 
as you go. Note that when, in the ESCI exercises, I say something 
like “click near red 4,” I may be referring to clicking anywhere in 
the colored area that has red 4 in the top left.

•	 Experiment. See what happens when you click buttons, spin-
ners, radio buttons, checkboxes, or sliders. You won’t break any-
thing, usually you can retreat, and if all else fails you can exit 
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from Excel (don’t Save) and start again. Discuss what you see 
with a peer.

•	 Discover how ESCI works, yes, but keep your thinking on the 
statistical ideas—they are the most interesting things, and what 
really matters.

•	 As you play around, keep thinking about how you could use ESCI 
to explain the statistical ideas to someone else. Then have a go at 
doing that.

•	 In Chapter 1, just before the start of the first ESCI exercises, see the 
further hints about using ESCI for statistical learning.
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Appendix B  ESCI for the Normal and 
t Distributions, and Values of z and t

The Normal z t page of ESCI chapters 1–4 allows you to investigate the 
shape of the t distribution for various values of df, and compare it with the 
normal (z) distribution. You can also display tail areas and read off prob-
abilities for a selected value of z or t. Conversely, you can find the critical 
value of z or t for a chosen tail area.

You may choose simply to play around to find out what’s possible. 
Appendix A makes some suggestions. In addition, here are some things 
you could try:

•	 Near red 1, click t (and z). Near red 4, click No tails. Clear all 
checkboxes, then use the spinner near red 1 to change df and 
watch as the t distribution changes shape. Only for very small df 
does it depart far from the normal distribution, shown for com-
parison in gray.

•	 However, the tail areas of t and the normal (z) do differ consider-
ably, even for N not very small. For the normal, z.95 is the familiar 
1.96, where z.95 is the two-tailed critical value of z. You can find 
this value by clicking near red 1 to select z, clicking near red 4 to 
select Two tails, then again to turn on Areas, then moving the 
large slider below the figure until the amount labeled in the figure 
as two tails is .0500, or alternatively the central area is .9500. Click 
near red 1 to select t, set df = 29, again adjust the large slider so 
that two tails is .0500, and then you can see that t.95(29) = 2.045 is 
shown near red 2. This is the two-tailed critical value for t when N 
= 30. You might then find that t.95(9) = 2.262. Traditionally, N = 30 
has often been taken as the smallest sample size at which t and z 
are practically the same, but the two critical values, 1.96 and 2.045, 
differ by more than 4%. Therefore, it is not very accurate to use z 
when N = 30 and σ is not known.

•	 Look below the big slider to see more accurate values than those 
that are displayed in the figure. If, for example, you want to find 
t.95(4), you might notice that the slider set on either 2.776 or 2.777 
gives the central area marked as .95. Which is correct? Look below 
the slider and see that 2.7764451 is the accurate critical value for a 
two-tail probability of .0500000.
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Appendix C  Guide to the 
ESCI Modules and Pages

There are two parts to this Appendix. The first lists the ESCI modules, and 
then for each module the pages are listed with a brief description of what 
each offers. The second is intended to help you find the most appropriate 
ESCI page if you wish to analyze your own data.

The ESCI Modules and Their Pages

The ESCI modules are

ESCI chapters 1–4

ESCI chapters 5–6

ESCI Meta-Analysis

ESCI chapters 10–13

ESCI chapters 14–15

ESCI Effect sizes

ESCI chapters 1–4

The pages within this module are as named in bold below. I use the same 
format for the pages of the other modules, which follow.

Intro—Introductory page. Overview. License information.
Two studies—Chapter 1. The Lucky–Noluck example. Explore three 

presentations (NHST, CI, and meta-analysis) of two studies, one 
statistically significant and the other not.

CIjumping—Chapter 3. See the population, samples, and CIs. 
Explore sampling, and the mean heap, dance of the means, and 
dance of the CIs.

Normal z t—Appendix B and Chapter 3. See the normal and t distri-
butions. Find tail areas, heights, and critical values of z and t.
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CI function—Chapter 4. See a dynamic graph of level of confidence, C, 
and the p value, against the two limits of a CI. See cat’s-eye pictures.

CI and p—Chapter 4. See how two-tailed p varies as a 95% CI falls in 
different positions relative to a null hypothesized value, µ0.

ESCI chapters 5–6

Intro—Introductory page. Overview. License information.
CIs and replication—Chapter 5. Take an initial sample; see what per-

centage of replication means it would capture. See the distribu-
tion of capture percentages.

p intervals—Chapter 5. Calculate 80% p intervals for a chosen value 
of two-tailed pobt.

Dance p—Chapter 5. See how the p value varies with replication. 
Visit the p value casino. See the distribution of p values. Enjoy the 
dance of the p values.

Random—Chapter 5. Compare a square filled with a random scatter 
of points, and a square filled with points that are random, but 
with a minimum spacing between points. Build intuitions about 
randomness, and the amount of clumping in randomness.

Compare A B—Chapter 6. See figures for the two-independent-groups 
design, and for the repeated measure or paired design. Display the 
difference between the means, with its 95% CI, on a floating differ-
ence axis. For the two-independent-groups design, explore overlap 
and p values. Explore comparisons between the two designs.

Data two—Chapter 6. Display your own data, for the two-independent-
groups design. Display means and CIs. Display also the difference 
between the means and its CI on a floating difference axis. Calculate 
the CI on the difference either with or without the assumption of 
homogeneity of variance. Calculate for your own data the means, 
CIs, and other statistics, including d and dunb, and the CI for δ.

Simulate two—Chapter 6. For the two-independent-groups design, 
see how the figure showing means and CIs varies over replica-
tion. See how CI overlap varies over replication. See d and dunb, 
and the CI for δ. See statistical power.

Data paired—Chapter 6. Display your own data, for the paired 
design. Display the mean difference and its CI on a floating differ-
ence axis. Calculate for your own data the means, CIs, and other 
statistics, including d and dunb, and the CI for δ.

Simulate paired—Chapter 6. For the paired design, see how the fig-
ure varies over replication. See how the pattern of variation over 
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replication changes as the correlation between the two measures 
changes. See d and dunb, and the CI for δ. See statistical power.

ESCI Meta-Analysis

Intro—Introductory page. Overview. License information.

Original 7—Chapter 7. Meta-analysis of means, in original units for 
up to seven studies.

Original 31—Chapter 7. Meta-analysis of means, in original units for 
up to 31 studies.

Original two groups—Chapter 7. Meta-analysis of the difference 
between two independent means, in original units, for up to 
30 studies.

Standard 7—Chapter 7. Meta-analysis of means in original units, or 
d with σ known, for up to seven studies.

Standard 31—Chapter 7. Meta-analysis of means in original units, or 
d with σ known, for up to 31 studies.

d single group—Chapter 11. Meta-analysis of Cohen’s d for the 
single-group design for up to 30 studies.

d two groups—Chapter 11. Meta-analysis of Cohen’s d for the two-
independent-groups design for up to 30 studies.

Subgroups—Chapter 9. Meta-analysis of means in original units, for 
up to 30 studies, plus analysis of two subgroups. See a funnel plot.

ESCI chapters 10–13

Intro—Introductory page. Overview. License information.

Sampling—Chapter 10. Take samples from the H0 or H1 populations. 
See the sampling distributions of means, z, and t. See the s pile—
the sampling distribution of sample SDs. See normal distribu-
tions, central t distributions, and noncentral t distributions.

Noncentral t—Chapter 10. Explore noncentral t distributions, and 
compare with central t. Find areas under the noncentral t curve.

d picture—Chapter 11. See how two distributions relate for a chosen 
value of d or δ.

d heap—Chapter 11. Take samples, see the sampling distributions of 
sample means and SDs. See the s pile, the rubber ruler, and the 
noncentral t sampling distribution of d.

CI for d—Chapter 11. Enter a chosen value of d for the two-
independent-groups design; see the iterative process required 
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to use noncentral t to find the CI on d. See also dunb, which is an 
unbiased estimate of δ.

Power picture—Chapter 12. Explore the basic power picture, and cal-
culate power for the single-group design.

Power two—Chapter 12. See power curves for the two-independent-
groups design, and calculate values of power.

Power paired—Chapter 12. See power curves for the paired design, 
and calculate values of power.

Precision one—Chapter 13. See precision curves for the single-group 
design, and carry out precision and assurance calculations for 
means and Cohen’s d.

Precision two—Chapter 13. See precision curves for the two-
independent-groups design, and carry out precision and assur-
ance calculations for means and Cohen’s d.

Precision paired—Chapter 13. See precision curves for the paired 
design, and carry out precision and assurance calculations for 
means, and precision calculations for Cohen’s d.

ESCI chapters 14–15

Intro—Introductory page. Overview. License information.
See r—Chapter 14. Select any target value of Pearson’s r and see scat-

terplots having this degree of correlation.
r to z—Chapter 14. See a single r with a CI. Investigate Fisher’s r to z 

transformation, and its use to place a CI on r.
Sample r—Chapter 14. Take a sequence of samples, see the dance of 

the correlations. See r values, with their CIs, and the sampling 
distribution of r values.

Two correlations—Chapter 14. See a figure showing any two r val-
ues, with their CIs, and the overlap of these CIs.

Figure—Chapter 15. Enter data for up to four data series, each with 
up to four time points, and see a figure of the means (or other ESs) 
and CIs. See a second figure showing differences, with CIs.

ESCI Effect sizes

Intro—Introductory page. Overview. License information.
Correlations—Chapter 14. Enter values and see a CI figure for 

Pearson’s r correlations.
Diff correlations—Chapter 14. Enter values and see a CI figure for 

the difference between two independent Pearson’s r correlations.
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Proportions—Chapter 14. Enter values and see a CI figure for 
proportions.

Diff proportions—Chapter 14. Enter values and see a CI figure for 
the difference between two independent proportions.

Means—Chapter 14. Enter values and see a CI figure for means, for 
the single-group design, for any dependent variable with interval 
scaling.

Paired means—Chapter 14. Enter values and see a CI figure for mean 
differences, for paired data (i.e., a repeated measure).

2 ind means same variance—Chapter 14. Enter values and see a CI 
figure for differences between means, two-independent-groups 
design, variances assumed equal.

2 ind means general—Chapter 14. Enter values and see a CI figure 
for differences between means, two-independent-groups design, 
variances not assumed equal.

Known CI limits—Chapter 14. Enter values and see a CI figure when 
the point estimate and lower and upper CI limits are known.

ESCI for Analyzing Your Own Data

To use ESCI to analyze your own data, first choose the subsection in the 
following that’s appropriate for your dependent variable. This may be

•	 A variable, X, in original units,
•	 Cohen’s d,
•	 Pearson’s correlation r, or
•	 A proportion.

Then, if necessary, choose the paragraph that’s most appropriate. 
Alternatively, one of the following subsections may be most appropriate:

•	 Meta-analysis,
•	 Statistical power, or
•	 Precision for planning.

These notes describe the ESCI pages that are specifically designed to 
carry out calculations on your data. Other pages can calculate CIs and 
provide a figure for a restricted range of values—for example, the Two 
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studies page of ESCI chapters 1–4, and the Compare A B page of ESCI 
chapters 5–6.

In addition, ESCI includes more specialized calculation pages, includ-
ing the Normal z t page of ESCI chapters 1–4, which provides tail areas 
of the normal and t distributions, and critical values of z and t (see also 
Appendix B); and the p intervals page of ESCI chapters 5–6, which calcu-
lates p intervals. The Known CI limits page of ESCI Effect sizes provides 
a figure when you enter any type of point ESs and the limits of the CIs on 
those ESs.

Original Units Variable, X

Single-Group Design, Full Data

At the Data two page of ESCI chapters 5–6, enter your data as Group 1 
near red 1. At red 3, click Group 1 and unclick Group 2. The page calcu-
lates summary statistics and the CI on the mean, and provides a figure.

Single-Group Design, Summary Data

At the Means page of ESCI Effect sizes, enter M, N, and either SD or SE, 
and see the CI and a figure.

Two-Independent-Groups Design, Full Data

At the Data two page of ESCI chapters 5–6, enter your data near red 1. 
The page calculates summary statistics, CIs on the means, and the differ-
ence and its CI. It also provides two figures.

Two-Independent-Groups Design, Summary Data

The 2 ind means same variance and 2 ind means general pages of ESCI 
Effect sizes calculate CIs and provide a figure. The second of those 
pages uses the Welch–Satterthwaite approximation so the assumption of 
homogeneity of variance is not required. At either page, enter the means 
and sample sizes, and some further information: SDs, SEs, a t value, or 
a p value.

Paired Design, Full Data

At the Data paired page of ESCI chapters 5–6, enter your data near red 1. 
The page calculates summary statistics, CIs on the two measures, the dif-
ferences, and the mean difference and its CI. It also provides a figure with 
a floating difference axis.
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Paired Design, Summary Data

At the Paired means page of ESCI Effect sizes, enter either two means or 
the difference between two means, N, and either the SD or SE of the dif-
ferences, or a t value, or a p value. See the CI and a figure.

Cohen’s d

To appreciate what your d implies for overlap of two population normal 
distributions, see the d picture page of ESCI chapters 10–13.

Single-Group Design, Summary Data

At the d single group page of ESCI Meta-Analysis, enter your d and N, 
and see dunb and the CI for δ. (ESCI does not provide a page for calculating 
d from full data for the single-group design.)

Two-Independent-Groups Design, Full Data

At the Data two page of ESCI chapters 5–6, enter your data near red 1. 
Scroll right, click at red 11, and see near red 12 the value of dunb and the 
CI for δ.

Two-Independent-Groups Design, Summary Data

Starting with your d, N1, and N2, use the d two groups page of ESCI Meta-
Analysis, or the CI for d page of ESCI chapters 10–13, to calculate dunb 
and the CI for δ.

Paired Design, Full Data

At the Data paired page of ESCI chapters 5–6, enter your data near red 1. 
Scroll right, click at red 9, and see near red 10 the value of dunb and the CI 
for δ. (ESCI does not provide a page for calculating d from summary data 
for the paired design.)

Pearson’s correlation r

To see an example scatterplot for your r, use the See r page of ESCI chap-
ters 14–15. (ESCI does not provide a page that displays the scatterplot of 
your paired data set.) ESCI does not have a page primarily intended to 
calculate r for a paired data set, but you can enter your data into the Data 
paired page of ESCI chapters 5–6 and see the value of r reported near 
red 7.
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To calculate and display the CI on r, use the r to z page of ESCI chapters 
14–15, or the Correlations page of ESCI Effect sizes. For the difference 
between two r values, use the Two correlations page of ESCI chapters 
14–15, or the Diff correlations page of ESCI Effect sizes.

Proportions

To calculate and display the CI on a proportion, use the Proportions page 
of ESCI Effect sizes. For the difference between two proportions, use the 
Diff proportions page of ESCI Effect sizes.

Meta-Analysis

Different pages of ESCI Meta-Analysis accept summary data for each 
study expressed in original units, or as Cohen’s d. At a particular page, the 
same information is required for each study. For further details, see 
the description above of the pages of ESCI Meta-Analysis.

Statistical Power

Post hoc power is calculated using the d obtained in an experiment as 
target δ. I explain in Chapter 12 why that can be misleading and should 
not be used.

Single-Group Design

To calculate power for your chosen N, α, target δ, and test statistic z or t, 
use the Power picture page of ESCI chapters 10–13.

Two-Independent-Groups Design

To calculate power for your chosen N1, N2, α, target δ, and test statistic z 
or t, use the Simulate two page of ESCI chapters 5–6: Scroll right, click at 
red 11 and 12, and see power at red 13. For N1= N2, you can use the Power 
two page of ESCI chapters 10–13, or consult Table 12.1.

Paired Design

To calculate power for your chosen N, α, correlation ρ, target δ, and 
test statistic z or t, use the Simulate paired page of ESCI chapters 5–6: 
Scroll right, click at red 13 and 14, and see power at red 15. You can 
also use the Power paired page of ESCI chapters 10–13, or consult 
Table 12.2.
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Precision for Planning

For any design, the ES may be expressed in original units or as Cohen’s 
d. Using original units, the test statistic may be either z or t. ESCI chap-
ters 10–13 provides three pages for precision for planning: For the single-
group design use the Precision one page, for the two-independent-groups 
design use the Precision two page, and for the paired design use the 
Precision paired page.
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182–183, 186, 209–210
Type I error, 22, 24, 335, 421, 445
Type I error rate (α), 22–25, 109, 

421–423, 445
power, 138, 322–326, 330–342, 345

Type II error, 24, 335, 421, 445
Type II error rate (β), 22, 445

U

Units-free, see Effect size, units-free
Upper limit (UL), 76–77, 79–82, 112–113, 

446

V

Validity, 390–391
Variance, proportion of (η2), 421, 428
Variance, proportion of (ω2), 39, 421, 

426–427
Variance, proportion of (R2), 39, 428

W

Weights, see Meta-analysis, weights
Welch-Satterthwaite approximation, 

165–166

Z

z score, 41, 266–267, 275, 286, 359



 



 

Additional Comments about Understanding The New Statistics: Effect 
Sizes, Confidence Intervals, and Meta-Analysis by Geoff Cumming

“Cumming will be the ‘breakthrough’ text that finally shows how to analyze and 
interpret data for many common statistical designs without having to rely on 
significance testing. … Its strengths are considerable. It takes a practical, ‘hands 
on’ approach … provides plenty of exercises … and a very useful computer pro-
gram to implement the new way of thinking. … The material … should be easy 
even for undergraduates to appreciate. This is an unusual characteristic for a 
statistics text.” 

—Joseph Rossi, University of Rhode Island, USA

“Currently, a paradigm shift from the flawed null hypothesis testing model to 
an effect size and confidence interval approach is taking place. Unfortunately, 
students taking lower level courses have not been exposed. This book repairs that 
omission. A very timely and important book!” 

—Wayne F. Velicer, University of Rhode Island, USA

“This is as clear a presentation of new approaches for evaluating hypotheses and 
presenting statistical evidence as one could want. Cumming brings researchers 
into the new age of statistical discourse.” 

—Patrick E. Shrout, New York University, USA

“The writing style is breezy and informal. … It is a unique book … and it meets 
an important need. The quality of scholarship is excellent; the author is probably 
the top world expert on this subject. … The [accompanying] software … allows 
people to ‘run their own studies’ and see … just how unstable research findings 
are across studies when sample size are in the typical small range.” 

—Frank Schmidt, University of Iowa, USA

“I would recommend the Cumming book to students who want to be on the 
‘cutting edge’ of how to write-up statistics. … Strengths include the author’s 
passion and long history of research into the most effective methods of teach-
ing statistics. … The quality of the scholarship is excellent. … I would definitely 
purchase the book … and recommend it to colleagues.“

—Alan Reifman, Texas Tech University, USA

“There is a real need for a statistics book that makes the ‘new statistics’ under-
standable and can be used as a teaching framework for undergraduates, or gradu-
ate students.” 

—Dennis Doverspike, University of Akron, USA

“[This book will pave] the way for others to demonstrate further the potency of 
effect sizes and confidence intervals for both univariate and multivariate inferen-
tial procedures.“ 

—Lisa Harlow, University of Rhode Island, USA
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