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Preface

In May 1975, a dozen or so ecologists, mostly marine, sat during three days in a (then)
dusty conference room on the first floor of a historical building of the Station marine
de Villefranche-sur-Mer (Université Paris 6, France), metres away from the
Mediterranean shore, to discuss developments concerning a new trend in the
ecological literature: the statistical analysis of multivariate ecological data. We, the
authors of this book, had been independently invited to participate in the seminar. On
the evening of the closing day of the meeting, sitting at the terrace of a restaurant, we
wrote on a paper place mat a list of subjects that was to become the table of contents of
the book that we published a few years later under the title Ecologie numérique (first
edition, in French; Legendre & Legendre, 1979a and b).

During the 1970’s, community ecology, which had traditionally been a descriptive
science until then, slowly adopted the hypothesis testing approach. Testing hypotheses
required the analysis of numerical data. The theoretical foundations of community
ecology had been developed during the 1950’s and 1960’s (niche theory, succession,
biodiversity concepts, food webs, etc.) and statistically inclined researchers had
already suggested to analyse ecological data using multivariate methods (e.g. Odum,
1950; Goodall, 1954; Bray & Curtis, 1957; Margalef, 1958; Williams & Lambert,
1959; Dagnelie, 1960, 1965; Gower, 1966; Pielou, 1966, 1969). We felt, in 1975, that
the time was ripe to inventory the available numerical methods, compare them to the
array of ecological questions found in the literature, describe the correspondences
between questions and methods, provide a structure to interlink the various methods,
and identify methodological gaps in the edifice. This is what we did in the first editions
of this book, published in French in 1979, then in English under the title Numerical
ecology (Legendre & Legendre, 1983a), quickly followed by a second French edition
(Legendre & Legendre, 1984a and b).

Following the inventory and educational work described above, and with the help
of graduate students and research assistants, we got to work to develop new numerical
methods to answer emerging ecological questions and help fill gaps in existing
numerical methodologies. Similar movements towards development of numerical
methods took place in several laboratories throughout the world. In the late 1990’s, the
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time was ripe for a new synthesis of the field, and we worked on the second English
edition of the Numerical ecology textbook (Legendre & Legendre, 1998). A decade
later, the field of multivariate community ecology had developed so much that a new
synthesis had become necessary. We spent most of the past three years preparing the
2012 edition of Numerical ecology. This edition includes numerous developments in
statistical computing made available in the R statistical language, and refers to many R
packages written for ecologists by researchers in several laboratories around the world.

During our teaching in universities at home and abroad, we have been repeating a
key message to graduate students: While it is important to learn about the methods
developed by previous generations of scientists, do not let yourself be silenced by their
aura. If you think you have a good idea, work on it, develop it, listen to criticisms, and
publish it, thus contributing to the advancement of the field. Do not let people tell you
that everything is known, or that you are too young or not good enough to contribute
to this field — or any other field of science.

The Numerical ecology book is written for practising scientists — graduate
students and professional researchers, in classical and molecular ecology,
oceanography and limnology, environmental sciences, soil science, agriculture,
environmental engineering, and related fields. For that reason, it is organized both as a
practical handbook and a reference textbook. Our goal is to describe and discuss the
numerical methods that are successfully used for analysing ecological data, using a
clear and comprehensive approach. These methods are derived from the fields of
mathematical physics, parametric and nonparametric statistics, information theory,
numerical taxonomy, archaeology, geography, psychometrics, sociometry,
econometrics, and others. Meaningful use of most of these methods requires that their
theoretical bases be mastered by users. For that reason, analyses reported in the
literature have at times been carried out with methods that were not fully adapted to the
question or the data under study, leading to conclusions that were sub-optimal with
respect to the quality of the field observations. When we were writing the first English
edition of Numerical ecology, this warning mostly concerned multivariate versus
elementary statistics. Nowadays, most ecologists are capable of using multivariate
methods; the above remark now especially applies to the analysis of spatially or
temporally correlated data (see Section 1.1; Chapters 12 to 14) and the joint analysis of
several data tables (Chapter 11).

Computer packages provide easy access to the most sophisticated numerical
methods. Ecologists with inadequate background often find, however, that using high-
level packages leads them to dead ends. In order to efficiently use the available
numerical tools, it is essential to clearly understand the principles that underlay
numerical methods, and their limits. It is also important for ecologists to have
guidelines for interpreting the heaps of computer-generated results. We therefore
organized the present text as a comprehensive outline of methods for analysing
ecological data, and also as a practical handbook pointing to the most commonly-used
packages.
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Our experience with graduate teaching and consulting has made us aware of the
problems that ecologists may encounter when they first use advanced numerical
methods. Any earnest approach to such problems requires in-depth understanding of
the general principles and theoretical bases of the methods to be used. The approach
followed in this book uses standardized mathematical symbols, abundant illustration,
and appeal to intuition in some cases. Because the text has been used for many years
for graduate teaching and greatly improved along the process, we know that, with
reasonable effort, readers can get to the core of numerical ecology. In order to
efficiently use numerical methods, their aims and limits must be clearly understood, as
well as the conditions under which they should be employed. In addition, since most
methods are well described in the scientific literature and are available in computer
packages, we generally devote most of the text to the ecological interpretation of the
results; computation algorithms are described only when they may help readers to
understand methods. Methods described in the book are systematically illustrated with
numerical examples and/or applications drawn from the ecological literature, mostly in
English; references in languages other than English or French are generally of
historical nature.

The expression numerical ecology refers to the following approach. Mathematical
ecology covers the domain of mathematical applications to ecology. It may be divided
into theoretical ecology and quantitative ecology. The latter, in turn, includes a number
of disciplines, among which modelling, ecological statistics, and numerical ecology.
Numerical ecology is the field of quantitative ecology devoted to the numerical
analysis of ecological data sets. Community ecologists, who generally use multivariate
data, are the primary users of these methods. The purpose of numerical ecology is to
describe and interpret the structure of data sets by combining a variety of numerical
approaches. Numerical ecology differs from descriptive or inferential ecological
statistic in that it combines relevant multidimensional statistical methods with
heuristic techniques (e.g. cluster analysis) that do not have a firm statistical foundation.
In addition, it often incorporates into the analysis of multivariate data constraints that
represent ecological hypotheses, e.g. spatial or temporal contiguity, or relationships
between community structure and environmental variables. Numerical ecology also
differs from ecological modelling, even though the extrapolation of ecological
structures is often used to forecast values in space or/and time (through multiple
regression or other similar approaches, which are collectively referred to as correlative
models). When the purpose of a study is to predict the critical consequences of
alternative solutions, ecologists must use predictive ecological models. The
development of such models, which predict effects on some variables caused by
changes in others, requires a deliberate causal structuring. This approach must be
based on ecological theory and include a validation procedure. Because the ecological
hypotheses that underlay causal models are often developed within the context of
studies that use numerical ecology, the two fields are often in close contact.

Ecologists have used quantitative approaches since the publication by Jaccard
(1900) of the first association coefficient. Floristics developed from that seed, and the
method was eventually applied to all fields of ecology, often achieving high levels of
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complexity. Following Spearman (1904) and Hotelling (1933), psychometricians and
social scientists developed non-parametric statistical methods and factor analysis and,
later, nonmetric multidimensional scaling (nMDS). During the same period,
anthropologists (e.g. Czekanowski, 1909, 1913) were interested in numerical
classification, and economists started to developed numerical indices (e.g. Gini, 1912).
The advent of computers made it possible to analyse large data sets, using
combinations of methods derived from various fields, supplemented with new
mathematical developments. The first synthesis was published by Sokal & Sneath
(1963), who established numerical taxonomy as a new discipline.

Numerical ecology combines a large number of approaches, derived from many
disciplines, in a general methodology for analysing ecological data sets. Its chief
characteristic is the combined use of treatments drawn from different areas of
mathematics and statistics. Numerical ecology acknowledges the fact that many of the
existing numerical methods are complementary of one another, each one allowing the
exploration of a different aspect of the information underlying the data; it sets
principles for interpreting the results in an integrated way.

The present book is organized in such a way as to encourage researchers who are
interested in a method to also consider other techniques. The integrated approach to
data analysis is favoured by numerous cross-references among chapters and the
presence of sections devoted to syntheses of subjects. The book synthesizes a large
amount of information from the literature, within a structured and prospective
framework, to help ecologists take maximum advantage of the existing methods.

This third English edition of Numerical ecology is deeply revised and largely
expanded compared to the second English edition (Legendre & Legendre, 1998). It
contains a new chapter dealing with multiscale analysis by spatial eigenfunctions
(Chapter 14). In addition, new sections have been added in several chapters and others
have been rewritten. These include the sections (numbers given in parentheses) on:
autocorrelation (1.1), singular value decomposition (2.11), species diversity through
space (6.5.3), the double-zero problem (7.2.2), transformations for community
composition data (7.7), multivariate regression trees (8.11), and matrix comparison
methods (10.5). Sections 11.1 on redundancy analysis and 11.4 on canonical
correlation analysis have been entirely rewritten, and a new Section 11.5 on co-inertia
and Procrustes analyses has been added. New sections, found at the end of most
chapters, list available computer programs, with special emphasis on R packages.

The present work reflects the input of many colleagues, to whom we express here
our most sincere thanks. We first acknowledge the outstanding inputs of the late
Professor Serge Frontier (Université des Sciences et Techniques de Lille) and
Professor F. James Rohlf (State University of New York at Stony Brook) who critically
reviewed our manuscripts for the first French and English editions, respectively. Many
of their suggestions were incorporated into the texts that are at the origin of the present
edition. We are also grateful to the late Professor Ramén Margalef for his support, in
the form of an influential Preface to the two French and the first English editions. Over
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the years, we had fruitful discussions on various aspects of numerical methods with
many colleagues, whose names have sometimes been cited in the Forewords of
previous editions.

During the preparation of this new edition, we benefited from the help of several
colleagues. First and foremost is Daniel Borcard; after 20 years of scientific
collaboration with one of us, he undertook to write a book, Numerical ecology with R
(Borcard et al.,2011), which is the companion to the present manual. That book shows
readers how to use the R language to carry out calculations for the methods described
in the present book. In addition, Daniel Borcard revised several chapters and sections
of this new edition, including Sections 1.1 and 10.5, Chapter 14, and all the Software
sections found at the end of the chapters. He also carried out the simulations for the
Dagnelie test of multivariate normality reported at the end of Section 4.6, and he
developed the method of selection of rare species to be used before correspondence
analysis (Box 9.2). Jari Oksanen developed an algorithm combining PCA/RDA/partial
RDA and gave us permission to reproduce it in Table 11.5. We are most grateful to
these two researchers for their major contributions to our book.

Other long-time collaborators and friends helped us by revising sections of the
book that were either new or had been rewritten and modernized. We are most thankful
to Marie-Josée Fortin who revised Section 1.1, Frangois-Joseph Lapointe for
Section 8.13, Miquel De Céceres for Subsection 8.9.3, Stéphane Dray and Pedro
Peres-Neto for Section 11.5, Patrick M. A. James for Subsection 12.5.4, and Helene H.
Wagner for Subsection 13.1.4. Cajo J. F. ter Braak and Jari Oksanen commented on
portions of Section 11.1. The new Chapter 14 received special attention: it was entirely
revised by Daniel Borcard and Pedro Peres-Neto, whereas other colleagues revised the
sections describing methods that they had contributed in developing: Stéphane Dray
for Section 14.1 and 14.2, F. Guillaume Blanchet for Section 14.3, Helene H. Wagner
for Section 14.4, Miquel De Céceres for Subsection 14.5.1, and Guillaume Guénard
for Subsection 14.5.2.

Graduate students in our home universities and those who participated in short
courses that we gave in several countries abroad have greatly contributed to the book
by raising interesting questions and pointing out weaknesses in previous versions of
the text.

While writing this book, we benefited from competent and unselfish advice ...
which we did not always follow. We thus assume full responsibility for any gaps in the
work and for all the opinions expressed therein. We shall therefore welcome with great
interest all suggestions or criticisms from readers.

PIERRE LEGENDRE, Université de Montréal
Louis LEGENDRE, Université Pierre et Marie Curie Paris 6 April 2012



Chapter

Il Complex ecological
data sets

1.0 Numerical analysis of ecological data

Probability

Probability
distribution

The foundation of a general methodology for analysing ecological data may be derived
from the relationships that exist between the conditions surrounding ecological
observations and their outcomes. In the physical sciences for example, there often are
cause-to-effect relationships between the natural or experimental conditions and the
outcomes of observations or experiments. This is to say that, given a certain set of
conditions, the outcome may be exactly predicted. Such totally deterministic
relationships are only characteristic of extremely simple ecological situations.

Generally in ecology, a number of different outcomes may follow from a given set
of conditions because of the large number of influencing variables, of which many are
not readily available to the observer. The inherent genetic variability of biological
material is an important source of ecological variability. If the observations are
repeated many times under similar conditions, the relative frequencies of the possible
outcomes tend to stabilize at given values, called the probabilities of the outcomes.
Following Cramér (1946: 148), it is possible to state that “whenever we say that the
probability of an event with respect to an experiment [or an observation] is equal to P,
the concrete meaning of this assertion will thus simply be the following: in a long
series of repetitions of the experiment [or observation], it is practically certain that the
[relative] frequency of the event will be approximately equal to P.” This corresponds to
the frequency theory of probability — excluding the Bayesian and likelihood
approaches.

In the first paragraph, the outcomes were recurring at the individual level whereas
in the second, results were repeatable in terms of their probabilities. When each of
several possible outcomes occurs with a given characteristic probability, the set of
these probabilities is called a probability distribution. Assuming that the numerical
value of each outcome E,; is y; with corresponding probability p;, a random variable (or
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Figure 1.1 Two types of recurrence of the observations.
Random variate) y is defined as that quantity which takes on the value y; with probability p; at
variable each trial (Morrison, 1990). Figure 1.1 summarizes these basic ideas.

Of course, one can imagine other results to observations. For example, there may
be strategic relationships between surrounding conditions and resulting events. This is
the case when some action — or its expectation — triggers or modifies the reaction.
Such strategic-type relationships, which are the object of game theory, may possibly
explain ecological phenomena such as species succession or evolution (Margalef,
1968). Should this be the case, this type of relationship might become central to
ecological research.

Another possible outcome is that observations bear some degree of
unpredictability. Such data may be studied within the framework of chaos theory,
which explains how deterministic processes can generate phenomena with a sensitive
dependence on initial conditions that ensures dynamical behaviour with short-term
predictability but long-term unpredictability (e.g. Ferriere et al., 1996). This is the
famous “butterfly effect”, whereby a butterfly flapping its wings somewhere on Earth
could alter weather patterns somewhere else at a later time. The signature of chaos has
been detected in a number of biological systems. For example, Beninca et al. (2008)
used the data on a bacteria-phytoplankton-zooplankton food web that had been
cultured for more than 2300 days under constant external conditions in a laboratory
mesocosm to show that species interactions in that food web generated chaos.
According to the authors, this result implies that the long-term prediction of species
abundances could be fundamentally impossible. For an overview of chaos theory,
interested readers can refer to Peitgen ef al. (2004).
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Methods of numerical analysis are determined by the four types of relationships
that may be encountered between surrounding conditions and the outcome of
observations (Table 1.1). The present text deals only with methods for analysing
random response variables, which is the type ecologists most frequently encounter.

The numerical analysis of ecological data makes use of mathematical tools
developed in many different disciplines. A formal presentation must rely on a unified
approach. For ecologists, the most suitable and natural language — as will be shown in
Chapter 2 — is that of matrix algebra. This approach is best adapted to the processing
of data by computers; it is also simple, and it efficiently carries information, with the
additional advantage of being familiar to many ecologists.

Other disciplines provide ecologists with powerful tools that are well adapted to
the complexity of ecological data. From mathematical physics comes dimensional
analysis (Chapter 3), which provides simple and elegant solutions to some difficult
ecological problems. Measuring the association among quantitative, semiquantitative
or qualitative variables is based on parametric and nonparametric statistical methods
and on information theory (Chapters 4, 5 and 6, respectively).

These approaches all contribute to the analysis of complex ecological data sets
(Fig. 1.2). Because such data usually come in the form of highly interrelated variables,
the capabilities of elementary statistical methods are generally exceeded. While
elementary methods are the subject of a number of excellent texts, the present manual
focuses on the more advanced methods, upon which ecologists must rely in order to
understand these interrelationships.

Table 1.1

Numerical analysis of ecological data.

Relationships between the natural conditions Methods for analysing
and the outcome of an observation and modelling the data
Deterministic: Only one possible result Deterministic models
Random: Many possible results, unpredictable individually Methods described in this
but with characteristic probabilities of occurrence book (Figure 1.2)
Strategic: Results depend on the respective Game theory

strategies of the organisms and of their environment

Chaotic: Many possible results with short-term Chaos theory
predictability and long-term unpredictability

Uncertain: Many possible, unpredictable results
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Figure 1.2

Fundamental
niche

From From From parametric and nonparametric
mathematical algebra mathematical physics statistics, and information theory
Matrix Dimensional Association among variables
algebra (Chap. 2) analysis (Chap. 3) (Chaps. 4, 5 and 6)

! ! !

Complex ecological data sets

Ecological structures Spatio-temporal structures

Association coefficients Time series Spatial data
Chap. 7) (Chap. 12) (Chaps. 13 and 14)

Clustering Ordination
(Chap. 8) (Chap. 9)

Agglomeration, Principal component and
division, correspondence analysis,
partition metric/nonmetric scaling

Interpretation of
ecological structures (Chaps. 10 and 11)

Regression, path analysis,
canonical analysis

Numerical analysis of complex ecological data sets.

In ecological spreadsheets, data are typically organized in rows corresponding to
sampling sites or times, and columns representing the variables; these may describe
the biological communities (species presence, abundance, or biomass, for instance) or
the physical environment. Because many variables are needed to describe
communities and environment, ecological data matrices are, for the most part,
multidimensional (or multivariate). Multidimensional data, i.e.data consisting of
several variables, structure what is known in geometry as a hyperspace, which is a
space with many dimensions. One now classical example of ecological hyperspace is
the fundamental niche of Hutchinson (1957, 1965). According to Hutchinson, the
environmental variables that are critical for a species to exist may be thought of as
orthogonal axes, one for each factor, of a multidimensional space. On each axis, there
are limiting conditions within which the species can exist indefinitely; this concept is
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Figure 1.3 Relationships among the various phases of an ecological research.

called upon in Subsection 7.2.2, which discusses unimodal species distributions and
their consequences on the choice of resemblance coefficients. In Hutchinson’s theory,
the set of these limiting conditions defines a hypervolume called the species’
fundamental niche. The spatial axes describe the geographical distribution of the
species.

The quality of the analysis and subsequent interpretation of complex ecological
data sets depends, in particular, on the compatibility between data and numerical
methods. It is important to take into account the requirements of the numerical
techniques when planning a sampling programme, because it is obviously useless to
collect quantitative data that are inappropriate to the intended numerical analyses.
Experience shows that, too often, poorly planned collection of costly ecological data,
for “survey” purposes, generates large amounts of unusable data (Fig. 1.3).

The search for ecological structures in multidimensional data sets is always based
on association matrices, of which a number of variants exist, each one leading to
slightly or widely different results (Chapter 7); even in so-called association-free
methods, like principal component or correspondence analysis, or K-means
partitioning, there is always an implicit resemblance measure hidden in the method.
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Two main avenues are open for analysis: (1) ecological clustering using
agglomerative, divisive or partitioning algorithms (Chapter 8), and (2) ordination in a
space with a reduced number of dimensions, using principal component or
correspondence analysis, principal coordinate analysis, or nonmetric multidimensional
scaling (Chapter 9). The interpretation of ecological structures, derived from
clustering and/or ordination, may be conducted either directly or indirectly, as will be
seen in Chapters 10 and 11, depending on the nature of the problem and on the
additional information available.

Ecological data may be sampled along time or space in order to study temporal or
spatial processes driven by physics or biology (Chapters 12, 13 and 14). These data
may be univariate or multivariate. Time or space sampling requires intensive field
work. Time sampling can often be automated using equipment that allows the
automatic recording of ecological variables. For spatial surveys, the analysis of
satellite images, or of information collected by airborne or shipborne equipment,
provides important support to field work, and the geographic positions of the
observations can be determined using geographic positioning systems. In physical or
ecological applications, a process is a phenomenon or a set of phenomena organized
along time or through space. Mathematically speaking, such ecological data represent
one of the possible realizations of a random process, also called a stochastic process.

Two major approaches may be used for inference about the population parameters
of such processes (Siarndal, 1978; Koch & Gillings, 1983; de Gruijter & ter Braak,
1990; de Gruijter et al., 2006). In the design-based approach, one is interested only in
the sampled population and assumes that a fixed value of the variable exists at each
location in space, or point in time. A representative subset of the space or time units is
selected using an appropriate (randomized) sampling design (for 8 different meanings
of the expression “representative sampling”, see Kruskal & Mosteller, 1988). Design-
based (or randomization-based; Kempthorne, 1952) inference results from statistical
analyses whose only assumption is the random selection of observations; this requires
that the target population (i.e. that for which conclusions are sought) be the same as the
sampled population. The probabilistic interpretation of this type of inference
(e.g. confidence intervals of parameters) refers to repeated selection of observations
from the same finite population using the same sampling strategy. The classical
(Fisherian) methods for estimating the confidence intervals of parameters like the
mean, for variables observed over a given surface or time period, are fully applicable
in the design-based framework.

In the model-based (or superpopulation) approach, the assumption is that the target
population is much larger than the sampled population. So, the value associated with
each location, or point in time, is not fixed but random, since the geographic surface
(or time period) available for sampling (i.e.the statistical population) is but one
representation of the superpopulation of such surfaces or time periods — all resulting
from the same generating process — about which conclusions are to be drawn. The
observed population is related to the superpopulation through a statistical model, e.g. a
variogram (Section 13.1). Under this model, even if the whole sampled population
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could be observed, uncertainty would still remain about the model parameters. So, the
confidence intervals of parameters estimated over a single surface or time period are
obviously too small to account for the among-surface variability, and some kind of
correction must be made when estimating these intervals. The type of variability of the
superpopulation of surfaces or time periods may be estimated by studying the spatial
or temporal correlation of the available data (i.e. over the statistical population). This
subject is discussed at some length in Section 1.1. Ecological survey data can often be
analysed under either model, depending on the emphasis of the study or the type of
conclusions one wishes to derive from them.

In some instances in time series analysis, the sampling design must meet the
requirements of the numerical method, because some methods are restricted to data
series that meet some specific conditions, such as equal spacing of observations.
Inadequate planning of the sampling may render the data series useless for numerical
treatment with these particular methods. There are several methods for analysing
ecological series (Chapter 12). Regression, moving averages, and the variate
difference method are designed for identifying and extracting general trends from time
series. Correlogram, periodogram, and spectral analysis identify rhythms
(characteristic periods) in series. Other methods can detect discontinuities in univariate
or multivariate series. Variation in a series may be correlated with variation in other
variables measured simultaneously. One may also develop forecasting models using
the Box & Jenkins approach.

Similarly, methods are available to meet various objectives when analysing spatial
data (Chapters 13 and 14). Structure functions such as variograms and correlograms,
as well as point pattern analysis, may be used to confirm the presence of a statistically
significant spatial structure and to describe its general features. A variety of
interpolation methods are used for mapping univariate data, whereas multivariate data
can be mapped using methods derived from ordination or cluster analysis. Models may
also be developed that include spatial structures among their explanatory variables; in
these models, spatial relationships among the study sites may be represented in a
variety of ways.

For ecologists, numerical analysis of data is not a goal in itself. However, a study
based on quantitative information must take data processing into account at all phases
of the work, from conception to conclusion, including the planning and execution of
sampling, the analysis of data proper, and the interpretation of results. Sampling,
including laboratory analyses, is generally the most tedious and expensive part of
ecological research, and it is therefore important that it be optimized in order to reduce
to a minimum the collection of useless information. Assuming appropriate sampling
and laboratory procedures, the conclusions to be drawn depend on the results of the
numerical analyses. It is, therefore, important to make sure in advance that sampling
and numerical techniques are compatible. It follows that numerical processing is at the
heart of ecological research; the quality of the results cannot exceed the quality of the
numerical analyses conducted on the data (Fig. 1.3).
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Of course, the quality of ecological research is not solely a function of the expertise
with which quantitative work is conducted. It depends to a large extent on creativity,
which calls upon imagination and intuition to formulate hypotheses and theories
(Legendre, 2004, 2008a). It is, however, advantageous for the researcher’s creative
abilities to be grounded into solid empirical work (i.e. work involving field data),
because little progress may result from continuously building upon untested
hypotheses.

Figure 1.3 shows that a correct interpretation of analyses requires that the sampling
phase be planned to answer a specific question or questions. Ecological sampling
programmes are designed in such a way as to capture the variation occurring along a
number of axe of interest: space, time, or other ecological indicator variables. The
purpose is to describe variation occurring along the given axis or axes, and to interpret
or model it. Contrary to experimentation, where sampling may be designed in such a
way that observations are independent of one another, ecological data are often
spatially or temporally correlated (Section 1.1).

While experimentation is often construed as the opposite of ecological surveys,
there are cases where field experiments are conducted at sampling sites, allowing one
to measure rates or other processes (“manipulative experiments” sensu Hurlbert, 1984;
Subsection 10.2.3). In aquatic ecology, for example, nutrient enrichment bioassays are
a widely used approach for testing hypotheses concerning nutrient limitation of
phytoplankton. In their review on the effects of enrichment, Hecky & Kilham (1988)
identified four types of bioassays, according to the level of organization of the test
system: cultured algae; natural algal assemblages isolated in microcosms or sometimes
larger enclosures; natural water-column communities enclosed in mesocosms; whole
systems. The authors discuss one major question raised by such experiments, which is
whether results from lower-level systems are applicable to higher levels, and
especially to natural situations. Processes estimated in experiments may be used as
independent variables in empirical models accounting for survey results, while “static”
survey data may be used as covariates to explain the variability observed among
blocks of experimental treatments. Spatial and time-series data analysis have become
an important part of the analysis of the results of ecological experiments.

1.1 Spatial structure, spatial dependence, spatial correlation

Students in elementary biostatistics courses are trained, implicitly if not explicitly, in
the belief that Nature follows the assumptions of classical statistics, one of them being
the independence of observations. However, field ecologists know from experience
that organisms are not randomly or uniformly distributed in the natural environment,
because processes such as growth, dispersal, reproduction, and mortality, which create
the observed distributions of organisms, generate spatial correlation in data, as detailed
below. The same applies to the physical variables that structure the environment.
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Following hierarchy theory (Simon, 1962; Allen & Starr, 1982; O’Neill ef al., 1991),
we may look at the environment as primarily structured by broad-scale physical
processes — orogenic and geomorphological processes on land, currents and winds in
fluid environments — which, through energy inputs, create gradients in the physical
environment as well as patchy structures separated by discontinuities (interfaces).
These broad-scale structures lead to similar responses in biological systems, spatially
and temporally. Within these relatively homogeneous zones, finer-scaled contagious
biotic processes take place, causing the appearance of more spatial structuring through
reproduction and death, predator-prey interactions, food availability, parasitism, and so
on. This is not to say that biological processes are necessarily small-scaled and nested
within physical processes; indeed, biological processes may be broad-scaled (e.g. bird
and fish migrations) and physical processes may be fine-scaled (e.g. turbulence). The
theory only purports that stable complex systems are often hierarchical. The concept of
scale, as well as the expressions broad scale and fine scale, are discussed in
Section 13.0.

In ecosystems, spatial heterogeneity is therefore functional, meaning that
ecosystem functioning depends on it (Levin, 2000). It is not the result of some random,
noise-generating process. So, it is important to study this type of variability for its own
sake. One of the consequences is that ecosystems without spatial structuring would be
unlikely to function. Let us imagine the consequences of a non-spatially-structured
ecosystem: broad-scale homogeneity would cut down on diversity of habitats; feeders
would not be close to their food; mates would be located at random throughout the
landscape; soil conditions in the immediate surrounding of a plant would not be more
suitable for its seedlings than any other location; newborn animals would be spread
around instead of remaining in favourable environments; and so on. Unrealistic as this
view may seem, it is a basic assumption of many of the theories and models describing
the functioning of populations and communities. The view of a spatially structured
ecosystem requires a new paradigm for ecologists: spatial [and temporal] structuring is
a fundamental component of ecosystems (Levin, 1992; Legendre, 1993). Hence
ecological theories and models, including statistical models, must be revised to include
realistic assumptions about the spatial and temporal structuring of communities.

Spatial dependence, which is also called spatial correlation, is used here as the
general case; temporal correlation, also called serial correlation in time series analysis,
behaves essentially like its spatial counterpart but along a single sampling dimension.
The difference between the spatial and temporal cases is that causality is unidirectional
in time series, i.e.it proceeds from (r—1) to ¢ and not the opposite. Temporal
processes, which generate temporally correlated data, are studied in Chapter 12,
whereas spatial processes are the subject of Chapters 13 and 14. The following
discussion is partly inspired from the papers of Legendre & Fortin (1989), Legendre
(1993), and Dray et al. (2012).

Spatial structures in variables may be generated by different processes. These
processes produce relationships between values observed at neighbouring points in
space, hence the lack of independence of values of the observed variable (Box 1.1, first
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Independence Box 1.1

This word has several meanings. Five of them will be used in this book. Another
important meaning in statistics concerns independent random variables, which refer
to properties of the distributions and density functions of a group of variables; for a
formal definition, see Morrison (1990, p. 7).

Independent observations. — Observations drawn from the statistical population
in such a way that no observed value has any influence on any other. In the time-
honoured example of tossing a coin, observing a head does not influence the
probability of a head (or tail) coming out at the next toss. Spatially correlated data
violate this condition because their errors are correlated across observations.

Independent descriptors. — Descriptors (variables) that are not related to one
another are said to be independent. Related is taken here in some general sense
applicable to quantitative, semiquantitative as well as qualitative data (Table 1.2).

Linear independence. — Two descriptors are said to be linearly dependent if one
can be expressed as a linear transformation of the other, e.g. x; =3x, orx; =2 - 5x;
(Subsection 1.5.1). Descriptors within a set are said to be linearly dependent if at
least one of them is a linear combination of the other descriptors in the set
(Section 2.7). Orthogonality (Section 2.5) is not the same as linear independence.
Two vectors may be linearly independent and not orthogonal, but two orthogonal
vectors are always linearly independent.

Independent variable(s) of a model. — In a regression model, the variable to be
modelled is called the dependent variable. The variables used to model it, usually
found on the right-hand side of the equation, are called the independent variables of
the model. In empirical models, one may talk about response (or target) and
explanatory variables for, respectively, the dependent and independent variables,
whereas, in a causal framework, the terms criterion and predictor variables may be
used. Some forms of canonical analysis (Chapter 11) allow the modelling of a
whole matrix of dependent (target or criterion) variables in a single regression-like
analysis.

Independent samples are opposed to related or paired samples. In related samples,
each observation in a sample is paired with one in the other sample(s), hence the
name paired comparisons for the tests of significance carried out on such data.
Authors also talk of independent versus matched pairs of data. Before-after
comparisons of the same elements also form related samples (matched pairs).
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Spatial
correlation

Induced
spatial
dependence

definition of independence). In many instances, observations that are closer together
tend to display values that are more similar than observations that are further apart,
resulting in positive spatial dependence also called positive spatial correlation.
Repulsion phenomena (e.g. spatial distributions of territorial organisms that prevent
other organisms from occupying neighbouring territories) may produce the opposite
effect, with values of closer pairs of points being less similar than the values of pairs of
observations that are further apart (negative spatial correlation at short distances).
Closeness may be measured in a distance metric such as metres, or may be represented
by counts of graph edges traversed between observations on connection networks
(Subsection 13.3.1). A spatial structure may be present in data without it being caused
by true autocorrelation, which is defined below. Two models for spatial structure are
presented in Subsection 1.1.1; the first one (eq. 1.1 below) does not correspond to
autocorrelation sensu stricto whereas the second does (eq. 1.2).

Because it indicates lack of independence among the observations, spatial
correlation creates problems when attempting to use tests of statistical significance that
assume independence of the observations. This point is developed in Subsection 1.1.2.
Other types of dependencies (or, lack of independence) may be encountered in
biological data. For example, related samples, discussed in more detail in Section 5.2,
should not be analysed as if they were independent (Box 1.1, last definition of
independence); this would result in a loss of power for the statistical test.

Spatial correlation is a very general property of ecological variables and, indeed, of
most natural variables observed over geographic space (spatial correlation) or along
time series (temporal correlation). Spatial [or temporal] correlation may be described
by mathematical functions such as correlograms and variograms, called structure
functions, which are studied in Chapters 12 and 13. The two possible approaches
concerning statistical inference for spatially correlated data (i.e.the design- or
randomization-based approach, and the model-based or superpopulation approach)
were discussed in Section 1.0.

1 — Origin of spatial structures

A spatial structure may appear in a variable y because y depends upon one or several
causal variables X that are spatially correlated (Model 1 below) or because the process
that has produced the values of y is spatial and has generated correlation among the
data points (Model 2 below); or some combination of these two processes. In both
cases, spatial correlation will be found when analysing the data (Chapters 12 and 13).
The spatially-structured causal variables X may be explicitly identified in the model,
or not; see Table 14.1. The two models, which are also described by Fortin & Dale
(2005) and Dray et al. (2012), are more precisely defined as follows.

® Model 1: induced spatial dependence — Spatial dependence may be induced by the
functional dependence of the response variables (e.g. species) on explanatory variables
(e.g. environmental) X that are themselves spatially correlated. We talk about induced
spatial dependence in that situation where y has acquired the spatial structure of X.
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Autocorre-
lation

This phenomenon is a restatement, in the spatial context, of the -classical
environmental control model (Whittaker, 1956; Bray and Curtis, 1957), which
ecologists call upon when they use regression to analyse the variation of a response
variable y by a table of environmental variables X. That model is the foundation of
niche theory (Hutchinson, 1957). On the one hand, if all important spatially-structured
explanatory variables are included in the analysis, the following model correctly
accounts for the spatial structure induced in y:

Vi =fX) +¢; 1.1

where y; is the value of the dependent variable y at site j and ¢; is an error term whose
value is independent from site to site. On the other hand, if the function is
misspecified, for example through the omission of key explanatory variables with
spatial patterning such as a broad-scale linear or polynomial trend, or through
inadequate functional representation, one may end up incorrectly interpreting the
spatial patterning of the residuals as autocorrelation, which is described in the next
paragraph.

® Model 2: spatial autocorrelation — Spatial dependence may appear in species
distributions as the result of “neutral processes” of population and community
dynamics (see for instance Hubbell, 2001, and Alonso et al., 2006). Neutral processes
include ecological drift (variation in species demography due to random reproduction
and survival of individuals due to competition, predator-prey interactions, etc.) and
random dispersal (migration in animals, propagule dispersion in plants). These
processes create spatial autocorrelation (sensu stricto) in response variables. The
value y; observed at site j on the geographic surface is assumed to be the overall mean
of the process (u,) in the study area plus a weighted sum of the centred values
(y,- u.y) at surrounding sites i, plus an independent error term €;:

y, = w+Zwi(y—un) +e; (1.2)

The y;’s are the values of y at other sites i located within the zone of spatial influence
of the process generating the autocorrelation (Fig. 1.4). The influence of neighbouring
sites may be given, for instance, by weights w; which are function of the distances
between sites i and j (eq. 13.20); other functions may be used. The total error term is
[Zw;(y;—u,) +¢;]; it contains the autocorrelated component of variation
[Zw,(y,- uy)] , which is noted SA; below. The model assumes spatial stationarity
(Subsection 13.1.1). Its equivalent in time series analysis is the autoregressive (AR)
response model (eq. 12.29) where each observation in the time series is modelled as a
function of preceding observations.

The term autocorrelation is sometimes loosely used to designate any type of spatial
dependence; in that case, one would refer to spatial dependence resulting from neutral
processes of population and community dynamics as “true autocorrelation”, “inherent
autocorrelation”, or “autogenic autocorrelation” (Fortin & Dale, 2005), or as the

“interaction model” (meaning: interaction among the sites) by Cliff & Ord (1981,
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Figure 1.4

The value at site j may be modelled as
a weighted sum (with weights w;) of
the influences of other sites i located
within the zone of influence of the
process generating the autocorrelation
(large circle).

p- 141). In statistics, spatial autocorrelation is the spatial dependence found in the error
component of a response variable y observed trough space after the effect of all
important spatially-structured explanatory variables X has been accounted for.

The full model describing the value y; of a response variable y at site j is written as
follows:

Vi =fX)) +u; with ;= SA,; + ¢

where y is modelled as a function of the explanatory (e.g. environmental) variables X,
and u is the spatially autocorrelated residual, which has two components: the spatial
autocorrelation (SA) in the residual and a random error component (& )

For illustration, Fig. 1.5 describes the two processes that can be at the origin of a
spatial structure (i.e. Model 1, induced spatial dependence, and Model 2, spatial
autocorrelation) in a simplified system consisting of 4 ponds (large circles) connected
by a stream; a light current is flowing from left to right. Five cases of increasing
complexity are shown. In each case, circles in the upper row describe the values of an
environmental variable x whereas the lower row concerns a response variable y, for
example the abundances of a zooplankton species.

® Case 1 represents the null situation: there are no relationships among the values of x
nor among those of y and no relationship between x and y. In a simulation program, the
values of y corresponding to this case could be simulated as y; = €; where ¢; is a
random normal deviate generated independently for each pond j.

® Case 2 is more interesting: it depicts functional dependence of the response variable
y on the explanatory variable x. This is the classical environmental control model
mentioned in the description of eq.1.1 (Model 1). It can be implemented in
simulations by equation y; = By + Bx; + €; where B is a constant and the functional
dependence of y on x is represented by a regression parameter f3,. There is no spatial
dependence (spatial correlation) among the values of x nor among those of y here.
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Case 1: Null situation Case 2: y depends on x

GO Sy

Case3: SAiny Case 4: Induced spatial dependence
X; X

Water flow

Y

Figure 1.5 Five cases illustrating the origin of spatial structures through different types of relationships
between an explanatory variable x and a response variable y observed across space. Of special
interest are case 3 (spatial autocorrelation (SA) in y, Model 2) and case 4 (induced spatial
dependence, Model 1). Modified from Fortin & Dale (2005, Chapter 5).

® Case 3 describes the process producing spatial autocorrelation (SA) in the response
variable y. The arrows indicate that a random fraction of the zooplankton from pond
(j — 2) moves near the outflow stream and is transferred to pond (j — 1) (the small circle
inside the second large circle), and so on down the chain of ponds. There is no river-
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like strong current moving water across the chain of ponds. As a result, zooplankton
abundances in neighbouring ponds are more similar than expected in case 1. This
similarity in the values of y due to proximity in space is called spatial autocorrelation.
In numerical simulations, this process can be simulated by generating a random
deviate in the first pond, y; = €, and propagating it down the chain of ponds with the
equation y; = w,y; | + ¢;. Equation 1.2 (Model 2) describes a similar process for sites
on a 2-dimensional map with bidirectional exchanges between sites. In case 3, there is
no autocorrelation in explanatory variable x and no functional dependence of y on x.

® Case 4 describes induced spatial dependence. A spatial structure is observed in y
because that variable reflects the autocorrelated spatial structure of x through
functional dependence of y on x. Two equations are necessary to represent this process
in numerical simulations: the first describes the autocorrelation in x along the chain of
ponds: x; = wx; | + C;, and the second describes the spatial dependence of y on x: y; =
Bo + Byx; + €;. A more general form for surfaces is eq. 1.1 (Model 1).

® Case 5 is the most complex as it combines the processes of cases 3 and 4. This is a
situation often encountered in nature. There is spatial autocorrelation (SA) in X and in
¥, plus functional dependence of y on x. The equations describing this case in a
simulation program would be: x; = wx; | + C; for the spatial autocorrelation (SA) in x
and y; =g+ 5ij +wyy; | +¢; for the spatial dependence and autocorrelation in y
(combination of Models 1 and 2). Methods described in Chapter 14 will show how to
disentangle the two processes, using the fact that they often correspond to different
spatial scales. More complex cases could be explored, e.g. the simultaneous
autoregressive (AR) model and the conditional AR model (Cliff & Ord, 1981,
Sections 6.2 and 6.3; Griffith, 1988, Chapter 4).

Figure 1.6 shows an example of simulated data corresponding to case 5. In the
upper half of the figure, an environmental variable x is constructed on a map (400-
point grid) as the sum of: a deterministic structure (here a unimodal distribution,
upper-left map), plus spatial autocorrelation (SA) in X, plus random error at each point
(Cj term in the first equation of case 5). The response variable y is constructed in the
lower half of the figure. The effect of x on y is obtained by transporting the x surface
(upper-right map), weighted by a regression coefficient 3, = 0.3 causing a change in
the range of values in this example, to the lower-left corner where it becomes the first
element in the construction of y. To that map, we add spatial autocorrelation (SA) in 'y
and random error at each point (¢; term in the second equation of case 5). The sum of
these three surfaces produces the response variable y in the lower-right map. In this
example, the x and y variables are sampled using a cross-shaped sampling design,
represented in grey on the surface, containing 39 sampling units; any other sampling
design appropriate to the study could have been used.

When there is a significant spatial structure in the data (Chapters 13 and 14), a
hypothesis of induced spatial dependence (Model 1) can be examined by multiple
regression (Subsection 10.3.3) or canonical analysis (Sections 11.1 and 11.2).
Variation partitioning (Sections 10.3.5 and 11.1.11) and multiscale ordination (MSO,
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Construction of the environmental surface

Deterministic structure: SA in environmental variable Normal error N(0,1) Environmental surface

binormal patch [0, 9.39] [-2.15, 2.58] [-2.72, 2.58] [-4.46, 10.60]
Construction of the re surface

Environmental surface x 0.3 SA in response variable Normal error N(0,1) Response surface
[-1.34, 3.18] [~2.40, 3.19] [-3.07, 3.77] [-3.79, 5.60]
Figure 1.6 Construction of an explanatory (environmental) surface x and a response surface y in a

Trend

Detrending

simulation study. Each square is a bubble map of the study area. Large empty bubbles represent
large negative values, and large filled bubbles, large positive values. The range of values in each
map is shown in brackets underneath. The sampling design, shown in grey, is a cross with 39
sampled points in this example. Modified from Legendre et al. (2002, Fig. 1).

Section 14.4) can be used to determine whether or not the entire spatial structure
detectable in the response data can be explained by the environmental variables
(case 4) or if there remains an unexplained portion of spatial variation that would
support a hypothesis of spatial autocorrelation in y (case 5).

A broad-scale spatial structure larger than the extent of the study area is called a
trend. When there is a trend in the data, methods of spatial analysis detect spatial
correlation due to the trend irrespective of the presence, or not, of finer-scaled sources
of spatial correlation. In order to study the finer-scaled spatial structures, the trend
must be removed from the data by an operation called detrending. One can then
proceed with the analysis of the multi-scale spatial structure, for instance by spatial
eigenfunction analysis (Sections 14.1 to 14.3). Linear detrending is done by regressing
the response data on the geographic coordinates of the study sites (Section 13.2.1).
Likewise, detrending must be done on time series before periodic or spectral analysis
(Section 12.2).
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Figure 1.7

| r |

without correction: r = 0 *

]
-1 0 A +1
: Confidence interval corrected for
Confidence intervals = } : ;  spatial correlation: r is not
of a correlation | significantly different from zero
I
coefficient = : . Confidence interval computed
I

Effect of positive spatial correlation on tests of correlation coefficients; * means that the

coefficient is (incorrectly) declared significantly different from zero in this example.

It is difficult to determine whether a given observed variable has been generated
under Model 1 (eq. 1.1) or Model 2 (eq. 1.2). That question is further discussed in
Subsection 13.1.2 in the case of gradients (“false gradients” and “true gradients”) and
in Chapter 14.

2 — Tests of significance in the presence of spatial correlation

Spatial correlation in a variable brings with it a statistical problem in the model-based
approach (Section 1.0): it impairs the ability to perform standard statistical tests of
hypotheses (Section 1.2). Let us consider an example of spatially autocorrelated data.
The observed values of an ecological variable of interest — the abundances of a
species for example — are most often influenced, at any given site, by the spatial
distribution of the variable at surrounding sites, because of contagious biotic processes
such as growth, dispersion, reproduction, and mortality. Make a first observation at site
A and a second one at site B located near A. Since the ecological process is understood
to some extent, one can assume that the data are spatially correlated. Using this
assumption, one can anticipate to some degree the value of the variable at site B before
the observation is made. Because the value at any one site is influenced by, and may be
at least partly forecasted from the values observed at neighbouring sites, these values
are not stochastically independent of one another.

The influence of spatial correlation on statistical tests may be illustrated using the
correlation coefficient (Pearson r, Section 4.2). The problem lies in the fact that, when
the two variables under study are positively spatially correlated, the confidence
interval, estimated by the classical procedure around a Pearson correlation coefficient
(whose calculation assumes independent and identically distributed error terms for all
observations), is narrower than it is when calculated correctly, i.e.taking spatial
correlation into account. The consequence is that one would declare too often that
Pearson r coefficients are significantly different from zero (Fig. 1.7).
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An important point is that in correlation or regression analysis, spatial correlation
has a deleterious effect on tests of significance only when it is present in both
variables. Simulation studies have shown that when spatial correlation was present in
only one of the two variables, the test had a correct rate of type I error (Bivand, 1980;
Legendre et al., 2002). These simulations have also shown that deterministic spatial
structures present in both variables have the same effect as spatial autocorrelation. For
example, with a deterministic structure in one of the variables and spatial
autocorrelation in the other, tests of significance had inflated rates of type I error.

All the usual statistical tests, nonparametric and parametric, have the same
behaviour: in the presence of positive spatial correlation, the computed test statistics
are too often declared significant. Negative spatial correlation may produce the
opposite effect, for instance in analysis of variance (ANOVA).

The effects of spatial correlation on statistical tests may also be examined from the
point of view of the degrees of freedom. As explained in Box 1.2, in classical statistical
testing, one degree of freedom is counted for each independent observation, from
which the number of estimated parameters is subtracted. The problem with spatially
correlated data is their lack of independence or, in other words, the fact that new
observations do not each bring with them one full degree of freedom, because the
values of the variable at some sites give the observer some prior knowledge of the
values the variable will take at other sites. The consequence is that new observations
cannot be counted for one full degree of freedom. Since the size of the fraction they
bring with them is difficult to determine, it is not easy to know what the proper
reference distribution for the test should be. All that is known for certain is that
positive spatial correlation at short distance distorts statistical tests (references in the
next paragraph), and that this distortion is on the “liberal” side. This means that, when
positive spatial correlation is present in the small distance classes, the usual statistical
tests lead too often to the decision that Pearson or Spearman correlations, regression
coefficients, or differences among groups are significant, when in fact they may not be.

This problem has been well documented in correlation analysis (Bivand, 1980;
Cliff & Ord, 1981, §7.3.1; Clifford er al., 1989; Haining, 2003, Section 8.2.1;
Dutilleul, 1993a; Legendre et al., 2002), linear regression (Cliff & Ord, 1981, §7.3.2;
Chalmond, 1986; Griffith, 1988, Chapter 4; Haining, 1990, pp. 330-347), analysis of
variance (Crowder & Hand, 1990; Legendre et al., 1990, Legendre et al., 2004), and
tests of normality (Dutilleul & Legendre, 1992). The problem of estimating the
confidence interval of the mean when the sample data are spatially correlated has been
studied by Cliff & Ord (1975, 1981, §7.2) and Legendre & Dutilleul (1991).

When the presence of spatial correlation has been demonstrated, one may wish to
remove the spatial dependency among observations; it would then be valid to compute
the usual statistical tests. This might be done, in theory, by removing observations until
spatial independence is attained; this solution is not recommended because it entails a
net loss of information that was often costly to obtain. Another solution is detrending
(Subsection 1.1.1) if the spatial structure is a broad-scale trend in the data; if spatial
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Degrees of freedom Box 1.2

Statistical tests of significance often call upon the concept of degrees of freedom. A
formal definition is the following: “The degrees of freedom of a model for expected
values of random variables is the excess of the number of variables [observations]
over the number of parameters in the model” (Kotz & Johnson, 1982).

In practical terms, the number of degrees of freedom associated with a statistic
is equal to the number of its independent components, i.e. the total number of
components used in the calculation minus the number of parameters one had to
estimate from the data before computing the statistic. For example, the number of
degrees of freedom associated with a variance is the number of observations minus
one (noted v =n—1): n components (x,—X) are used in the calculation, but one
degree of freedom is lost because the mean of the statistical population (X) is
estimated from the sample data; this is a prerequisite before estimating the variance.

There is a different #-distribution for each number of degrees of freedom. The
same is true for the F and X2 families of distributions, for example. So, the number
of degrees of freedom determines which statistical distribution, in these families (7,
F,or Xz), should be used as the reference for a given test of significance. Degrees of
freedom are discussed again in Chapter 6 with respect to the analysis of
contingency tables.

correlation is part of the process under study, however, this would amount to throwing
out the baby with the water of the bath. It is better to analyse the spatially correlated
data as such (Chapters 13 and 14), acknowledging the fact that spatial correlation in a
variable may result from various causal mechanisms (physical or biological, see
Subsection 1.1.1), acting simultaneously and additively.

The alternative for testing statistical significance is to modify the statistical method
in order to take spatial correlation into account, as described in the following
paragraphs. When such a correction is available, this approach is to be preferred if one
assumes that spatial correlation is an intrinsic part of the ecological process to be
analysed or modelled.

Corrected tests rely on modified estimates of the variance of the statistic, and on
corrected estimates of the effective sample size and of the number of degrees of
freedom. Simulation studies have been used to demonstrate the validity of the
modified tests. In these studies, a large number of spatially correlated data sets are
generated under the null hypothesis (e.g. for testing the difference between two means,
pairs of observations are drawn at random from the same simulated, spatially
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correlated statistical distribution, which corresponds to the null hypothesis of no
difference between population means) and tested using the modified procedure; this
experiment is repeated a large number of times to demonstrate that the modified testing
procedure leads to the nominal rate of rejection of Hy, e.g. 0.05.

Cliff & Ord (1973) proposed a method for correcting the standard error of
parameter estimates for the simple linear regression in the presence of spatial
correlation. This method was extended to linear correlation, multiple regression, and #-
test by Cliff & Ord (1981, Chapter 7: approximate solution) and to the one-way
analysis of variance by Griffith (1978, 1987). Bartlett (1978) perfected a previously
proposed method of correction for the effect of spatial correlation due to an
autoregressive process in randomized field experiments, adjusting plot values by
covariance on neighbouring plots before the analysis of variance; see also the
discussion by Wilkinson et al. (1983) and the papers of Cullis & Gleeson (1991) and
Grondona & Cressie (1991). Cook & Pocock (1983) suggested another method for
correcting multiple regression parameter estimates by maximum likelihood, in the
presence of spatial correlation. Using a different approach, Legendre et al. (1990)
proposed a permutational method for the analysis of variance of spatially correlated
data, in the case where the classification criterion is a division of a territory into
nonoverlapping regions and one wants to test for differences among the means of these
regions. Numerical simulations showed that, using this permutation method, ANOVA
was insensitive to spatial correlation and effectively provided a test with a correct rate
of type I error. They illustrated the method with an ecological application.

Clifford et al. (1989) tested the significance of the correlation coefficient between
two spatial processes by estimating a modified number of degrees of freedom, using an
approximation of the variance of the correlation coefficient computed from the data.
Empirical results showed that their method worked fine for positive spatial correlation
in large samples. Dutilleul (1993a) generalized the procedure and proposed an exact
method to compute the variance of the sample covariance; the new method is valid for
any sample size. In a simulation study, Legendre et al. (2002) showed that Dutilleul’s
modified #-test for the correlation coefficient effectively corrects for any kind of spatial
correlation in the data: deterministic structures or spatial autocorrelation.

A general method to control for spatial correlation in tests of significance involving
univariate or multivariate data was proposed by Peres-Neto & Legendre (2010). It
involves partialling out the effect of spatial structures in partial regression (for
univariate response data y) or partial canonical analysis (for multivariate response data
Y). Spatial structures are represented in these analyses by spatial eigenfunctions. This
method is described in Subsection 14.5.3.

Other major contributions to this topic are found in the literature on time series
analysis, especially in the context of regression modelling. Important references are
Cochrane & Orcutt (1949), Box & Jenkins (1976), Beach & MacKinnon (1978),
Harvey & Phillips (1979), Chipman (1979), and Harvey (1981).
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When methods specifically designed to handle spatial correlation are not available,
it is sometimes possible to rely on permutation tests, where the significance is
determined by random reassignment of the observations (Section 1.2). For some
analytical situations, special permutational schemes have been developed that leave
spatial correlation invariant; examples are found in Besag & Clifford (1989), Legendre
et al. (1990) and ter Braak (1990, Section 8). The difficulty encountered in these
complex problems is to design a permutation procedure that preserves the spatial or
temporal correlation of the data.

The methods of clustering and ordination described in Chapters 8 and 9 to study
ecological structures do not rely on tests of statistical significance. So, they are not
affected by the presence of spatial correlation. The impact of spatial correlation on
numerical methods will be stressed wherever appropriate.

3 — Classical sampling and spatial structure

Random or systematic sampling designs have been advocated as a way of controlling
the dependence among observations (Cochran, 1977; Green, 1979; Scherrer, 1982).
This was then believed to be a necessary and sufficient safeguard against violations of
the independence of errors, which is a basic assumption of classical statistical tests. It
is adequate, of course, when one is trying to estimate the parameters of a well-
localized statistical population, for example the total number of trees in a forest plot. In
such a case, a random or systematic sample is suitable to obtain unbiased estimates of
the parameters since, a priori, each point has the same probability of being included in
the sample. Of course, the variance and, consequently, also the standard error of the
mean increase if the distribution is patchy, but their estimates remain unbiased.

Even with random or systematic allocation of observations through space,
observations may retain some degree of spatial dependence if the average distance
between first neighbours is shorter than the zone of spatial influence of the underlying
ecological phenomenon. In the case of broad-scale spatial gradients, no point is far
enough to lie outside this zone of spatial influence. Correlograms and variograms
(Chapter 13), combined with maps, are used to assess the magnitude and shape of
spatial correlation present in data sets.

Classical books such as Cochran (1977) adequately describe the rules that should
govern sampling designs. Such books, however, only emphasize design-based
inference (Section 1.0) and do not discuss the influence of spatial correlation on
sampling designs. At the present time, most of the literature on this subject is from the
field of geostatistics, where important references are: David (1977, Ch. 13),
McBratney & Webster (1981), McBratney et al. (1981), Webster & Burgess (1984),
Borgman & Quimby (1988), and Frangois-Bongarcon (1991). In ecology, see
Legendre et al. (2002).

Ecologists interested in designing field experiments should read the paper of
Dutilleul (1993b), who discusses how to accommodate an experiment to spatially
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heterogeneous conditions. Legendre et al. (2004) have also shown how one can
effectively control for the effect of spatial correlation by the design of the experiment,
and which experimental designs lead to tests of significance that have greater power.
The concept of spatial heterogeneity is discussed at some length in the multi-author
book edited by Kolasa & Pickett (1991), in the review paper of Dutilleul & Legendre
(1993), in the book of Dutilleul (2011), and in Section 13.0.

1.2 Statistical testing by permutation

Statistic

Null
hypothesis

The role of a statistical test is to decide whether some parameter of the reference
population may take a value assumed by hypothesis, given the fact that the
corresponding statistic, whose value is estimated from a sample of objects, may have a
somewhat different value. A statistic is any quantity that may be calculated from the
data and is of interest for the analysis (examples below); in tests of significance, a
statistic is called test statistic or test criterion. The assumed value of the statistic, in the
reference population, is given by the statistical null hypothesis (written Hy), which
translates the biological null hypothesis into numerical terms; it often negates the
existence of the phenomenon that the scientist is hoping to evidence. The reasoning
behind statistical testing directly derives from the scientific method; it allows the
confrontation of experimental or observational findings to intellectual constructs that
are called hypotheses, with the explicit purpose of determining whether or not the data
support the null hypothesis (see below) at some predetermined confidence level.

Testing is the central step of inferential statistics. It allows one to generalize the
conclusions of statistical estimation to the reference population from which the
observations have been drawn and that they are supposed to represent. Within that
context, the problem of multiple testing is too often ignored (Box 1.3). Another
legitimate section of statistical analysis, called descriptive statistics, does not rely on
testing. The methods of clustering and ordination described in Chapters 8 and 9, for
example, are descriptive multidimensional statistical methods. The interpretation
methods described in Chapters 10 and 11 may be used in either descriptive or
inferential mode.

1 — Classical tests of significance

Consider, for example, a correlation coefficient (which is the statistic of interest in
correlation analysis) computed between two variables (Section 4.2). When inference to
the statistical population is sought, the null hypothesis is often that the value of the
correlation parameter (p, rho) is zero in the statistical population; the null hypothesis
may also be that p has some value other than zero, value provided by the ecological
hypothesis. To judge of the validity of the null hypothesis, the only information
available is an estimate of the correlation coefficient, r, obtained from a sample of
objects drawn from the statistical population. (Whether the observations adequately
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Multiple testing Box 1.3

When several tests of significance are carried out simultaneously, the probability of
a type I error becomes larger than the nominal value a. Consider for example a
correlation matrix among 5 variables: 10 tests are carried out simultaneously. For
randomly generated data, there is a probability p=0.401 (computed from the
binomial distribution) of rejecting the null hypothesis at least once over 10 tests at
the nominal a =0.05 level; this is called the familywise or experimentwise error
rate. So, when conducting multiple tests, one should perform a global test of
significance to determine whether there is any significant value at all in the set.

A general approach is the Bonferroni (1935) correction for k independent tests: replace
the significance level, say a = 0.05, by an adjusted level o' = o/k, and compare the
probabilities p; to o'. This is equivalent to adjusting individual p-values p; to p} = kp; and
comparing p; to the unadjusted significance level a. In the Siddk (1967) correction, o is
replaced by an adjusted level o' =1-(1 - oc)l/k; or one can compare individual corrected
values p, =1-(1 - pl-)k to the original a significance level. Although the Bonferroni and
Siddk methods are appropriate to test the null hypothesis for the whole set of simultaneous
hypotheses (i.e. reject Hy for the family of k hypotheses if the smallest unadjusted p-value in
the set is less than or equal to a.'), these two methods are overly conservative and often lead to
rejecting too few individual hypotheses in the set k, resulting in tests with low power.

Several alternatives have been proposed in the literature; see Wright (1992) for a review.
For non-independent tests, Holm’s procedure (1979) is nearly as simple to carry out as the
Bonferroni adjustment and it is much more powerful, leading to rejecting the null hypothesis
more often. It is computed as follows. (1) Order the p-values from left to right so that
p1<pys<...=p;... <P (2) Compute adjusted probability values p; = (k—i+ 1)p;; adjusted
probabilities may be larger than 1. (3) Proceeding from left to right, if an adjusted p-value in
the ordered series is smaller than the one occurring at its left, make the smallest equal to the
largest one. (4) Compare each adjusted p) to the unadjusted a significance level and make
the statistical decision. The procedure could be formulated in terms of successive corrections
to the o significance level, instead of adjustments to individual probabilities.

An even more powerful solution is that of Hochberg (1988), which has the desired
overall (“experimentwise”) error rate o only for independent tests, i.e. tests that do not share
part of their data (Wright, 1992). This procedure is identical to Holm’s except for step 3:
proceeding this time from right to left, if an adjusted p-value in the series is smaller than the
one at its left, make the largest equal to the smallest value. Because the adjusted p-values
form a nondecreasing series, both procedures present the properties (1) that a hypothesis in
the ordered series cannot be rejected unless all previous hypotheses in the series have also
been rejected and (2) that equal p-values receive equal adjusted p-values. Hochberg’s method
has the further characteristic that no adjusted p-value can be larger than the largest unadjusted
p-value or exceed 1. More complex and powerful procedures are described by Wright (1992).

Fisher’s combined probability test allows one to combine probabilities p; from k tests
computed on independent data sets (meta-analysis). The value —2X log, (p;) is distributed as
X2 with 2k degrees of freedom if Hy is true in all k tests (Fisher, 1954; Sokal & Rohlf, 1995).
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represent the statistical population is another question, for which the readers are
referred to the literature on sampling design.) We know, of course, that a sample is
quite unlikely to produce a parameter estimate that is exactly equal to the value of the
parameter in the statistical population. A statistical test tries to answer the following
question: given a hypothesis stating, for example, that p=0 in the statistical
population and the fact that the estimated correlation is, say, r = 0.2, is it justified to
conclude that the difference between 0.2 and 0.0 is due to sampling variation?

The choice of the statistic to be tested depends on the problem at hand. For
instance, in order to find whether two samples may have been drawn from the same
statistical population or from populations with equal means, one would choose a
statistic measuring the difference between the two sample means (¥, -X,) or,
preferably, a pivotal form like the usual #-statistic used in such tests; a pivotal statistic
has a distribution under the null hypothesis that remains the same for any value of the
measured effect (here, X, — X,) because the difference of means statistic is divided by
its standard error. In the same way, the slope of a regression line is described by the
slope parameter of the linear regression equation, which is assumed, under the null
hypothesis, to be either zero or some other value suggested by ecological theory. The
test statistic describes the difference between the observed and hypothesized values of
the slope; the pivotal form of this difference is a ¢ or F-statistic.

Another aspect of a statistical test is the alternative hypothesis (H;), which is also
imposed by the ecological problem at hand. H; is the opposite of H), but there may be
several statements that represent some opposite of Hj. In correlation analysis for
instance, if one is satisfied to determine that the correlation coefficient in the reference
population (p) is significantly different from zero in either the positive or the negative
direction, meaning that some linear relationship exists between two variables, then a
two-tailed alternative hypothesis is stated about the value of the parameter in the
statistical population: p = 0. On the contrary, if the ecological phenomenon underlying
the hypothesis imposes that a relationship, if present, should have a given sign, one
formulates a one-tailed hypothesis. For instance, studies on the effects of acid rain are
motivated by the general paradigm that acid rain, which lowers the pH, has a negative
effect on terrestrial and aquatic ecosystems. In a study of the correlation between pH
and diversity, one would formulate the following hypothesis Hy: pH and diversity are
positively correlated (i.e. low pH is associated with low diversity; H;: p > 0). Other
situations would call for a different alternative hypothesis, symbolized by H;: p <0.

The expressions one-tailed and two-tailed refer to the fact that, in a two-tailed test,
one would look in both tails of the reference statistical distribution for values as
extreme as, or more extreme than the observed value of the statistic (i.e.the one
computed from the actual data). In a correlation study for instance, where the reference
distribution () for the test statistic is symmetric about zero, the probability of the data
under the null hypothesis in a two-tailed test is given by the proportion of values in the
t-distribution that are, in absolute value, as large as, or larger than the absolute value of
the observed t-statistic. In a one-tailed test, one would look only in the tail
corresponding to the sign given by the alternative hypothesis. For instance, for a test in
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the right-hand tail (H;: p > 0), look for the proportion of values in the ¢-distribution
that are as large as or larger than the signed value of the observed #-statistic.

In standard statistical tests, the test statistic computed from the data is referred to
one of the usual statistical distributions printed in books or computed by some
appropriate computer software; the best-known are the z, ¢, F' and x2 distributions.
This, however, can only be done if certain assumptions are met by the data, depending
on the test. The most commonly encountered are the assumptions of normality of the
variable(s) in the reference population, normality of the regression residuals,
homoscedasticity (Box 1.4), and independence of the observations (Box 1.1). Refer to
Siegel (1956, Chapter 2), Siegel & Castellan (1988, Chapter 2), or Snedecor &
Cochran (1967, Chapter 1), for concise yet clear classical exposés of the concepts
related to statistical testing.

2 — Permutation tests

The method of permutation, also called randomization, is a very general approach to
testing statistical hypotheses. Following Manly (1997), permutation and
randomization are considered synonymous in the present book, although permutation
may also be considered to be the technique by which the principle of randomization is
applied to data during permutation tests. Other points of view are found in the
literature. For instance, Edgington (1995) considers that a randomization test is a
permutation test based on randomization, by opposition to restricted permutations in a
loop for time series or by toroidal shift for grid data on a map. A different although
related meaning of randomization refers to the random assignment of replicates to
treatments in experimental designs.

Permutation testing can be traced back to at least Fisher (1935, Chapter 3). Instead
of comparing the actual value of a test statistic to a standard statistical distribution, the
reference distribution is generated from the data themselves, as described below; other
randomization methods are mentioned at the end of the present section. Permutation
provides an efficient approach to testing when the data do not conform to the
distributional assumptions of the statistical method one wants to use (e.g. normality).
Permutation testing is applicable to very small samples, like nonparametric tests. It
does not, however, solve problems of independence of the observations, including
those caused by spatial correlation. Nor does the method solve distributional problems
that are linked to the hypothesis subjected to a test . Permutation remains the method
of choice to test novel or other statistics whose distributions are poorly known.

* For instance, when studying the differences among sample means (two groups: #-test; several

groups: F-test of ANOVA), the classical Behrens-Fisher problem (Robinson, 1982) reminds us
that two null hypotheses are tested simultaneously by these methods, i.e. equality of the means
and equality of the variances. Testing the ¢ or F-statistics by permutations does not change the
dual aspect of the null hypothesis; in particular, it does not allow one to unambiguously test the
equality of the means without checking first the equality of the variances using another, more
specific test (two groups: F ratio; several groups: Bartlett’s test of equality of variances).
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Furthermore, results of permutation tests are valid even with observations that are not
a random sample of some statistical population; this point is further discussed in
Subsection 1.2.4. Edgington (1995) and Manly (1997) have written excellent
introductory books about the method. A short account is given by Sokal & Rohlf
(1995) who use the expression “randomization test”. Permutation tests are used in
several chapters of the present book.

The speed of modern computers would allow users to perform any statistical test
using the permutation method. The chief advantage is that one does not have to worry
about the distributional assumptions of classical testing procedures; the disadvantage
is the extra computer time required to actually perform a large number of
permutations, each one being followed by recomputation of the test statistic.
Permutation tests are fairly easy to program and are increasingly available in computer
packages. As an example, let us consider the situation where the significance of a
correlation coefficient between two variables, X; and X,, is to be tested.

Hypotheses
® Hj: The correlation between the variables in the reference population is zero (p = 0).
® For a two-tailed test, Hy: p = 0.

® Or for a one-tailed test, either Hy: p >0, or H;: p <0, depending on the ecological
hypothesis.

Test statistic

® Compute the son correlation coefficient r. Calculate the pivotal statistic
t = Jn=2[r/N1-r"] (eq.4.13; n is the number of observations) and use it as the
observed value of the test statistic in the remainder of the test.

In this specific case, the permutation test results would be the same using either r or
t as the test statistic, because ¢ is a monotonic function of r for any constant value of #;
r and ¢ are “equivalent statistics for permutation tests”, sensu Edgington (1995). This is
not always the case. For example, when testing a partial regression coefficient in
multiple regression, the test should not be based on the distribution of permuted partial
regression coefficients because they are not monotonic to the corresponding partial #-
statistics. The partial ¢ should be preferred because it is pivotal and, hence, it is
expected to produce correct type I error.

Considering a pair of equivalent test statistics, one could choose the statistic which
is the simplest to compute if calculation time would otherwise be longer in an
appreciable way. This is not the case in the present example: calculating ¢ involves a
single extra line in the computer program compared to 7. So the test is conducted using
the usual 7-statistic.
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Distribution of the test statistic

The argument invoked to construct a null distribution for the statistic is that, if the null
hypothesis is true, all possible pairings of the two variables are equally likely to occur.
The pairing found in the observed data is just one of the possible, equally likely
pairings, so that the value of the test statistic for the unpermuted data should be typical,
i.e. located in the central part of the permutation distribution.

® It is always the null hypothesis that is subjected to testing. Under Hy, the rows of x;
are exchangeable with one another if the rows of x, are fixed, or conversely, and the
observed pairing of X; and x, values is due to chance alone; accordingly, any value of
x; could have been paired with any value of x,.

® A realization of H is obtained by permuting at random the values of x; while
holding the values of x, fixed, or the opposite (which would produce, likewise, a
random pairing of values). Recompute the value of the correlation coefficient and the
associated #-statistic for the randomly paired vectors X and X,, obtaining a value #*.

® Repeat this operation a large number of times (say, 999 or 9999 times). The different
permutations produce a set of values #* obtained under Hy,.

® Add to these the observed value of the t-statistic, computed for the unpermuted
vectors. Since Hy is being tested, this value is considered to be one of those that could
be obtained under H( and, consequently, it should be added to the distribution of ¢
values (Hope, 1968; Edgington, 1995; Manly, 1997). Together, the unpermuted and
permuted values form an estimate of the sampling distribution of # under Hy,, which
will be used as the reference distribution in the next step.

Statistical decision

® As in any other statistical test, the decision is made by comparing the observed value
of the test statistic (¢) to the reference distribution obtained under Hy,. If the observed
value of 7 is typical of the values obtained under the null hypothesis (which states that
there is no relationship between x; and X,), Hj cannot be rejected; if it is unusual,
being too extreme to be considered a likely result under Hy, H is rejected and the
alternative hypothesis is considered to be a more likely explanation of the data.

® Compute the associated p-value, which is the proportion of values in the reference
distribution that are as extreme as, or more extreme than the observed value of the test
statistic. The p-value is either computed from the reference distribution obtained by
permutations, or found in a table of the appropriate statistical distribution. The p-value
is a statement about the probability of obtaining a result as extreme as, or more
extreme than the one actually obtained from the sample data, assuming that H, is true
for the reference population. Researchers often write in short that it is the probability
of the data under the null hypothesis. Fisher (1954) saw the p-value as a measure of the
strength of evidence against the null hypothesis; the smaller the p-value, the stronger
the evidence against Hy.
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Significance ® Compare the p-value to a predetermined significance level a. Following the

level

Neyman-Pearson (or frequentist) approach (Neyman & Pearson, 1966), one rejects Hy,
if p = a, and does not reject it if p > a.. Or one can use the Fisher approach: Fisher left
the interpretation of the p-value and the ensuing statistical decision to the researcher.

3 — Numerical example

Let us consider the following case of two variables observed over 10 objects:

x; |-231| 106 | 076 | 138 | 026 | 129 |-131| 041 |-0.67 | -0.58
X, |-108| 1.03 | 090 | 024 |-024| 0.76 | -057 | -0.05|-1.28 | 1.04

These values were drawn at random from a positively correlated bivariate normal
distribution, as shown in Fig.1.8a. Consequently, they would be suitable for
parametric testing. So, it is interesting to compare the results of a permutation test to
the usual parametric #-test of the correlation coefficient. The statistics and associated
probabilities for this pair of variables, for v = (n — 2) = 8 degrees of freedom, are:

r=0.70156,1t=2.78456,n = 10:
prob (one-tailed) = 0.0119, prob (two-tailed) = 0.0238.

There are 10! = 3.6288 x 10° possible permutations of the 10 values of variable x;
(or x,). Here, 999 of these permutations were generated using a random permutation
algorithm; they represent a random sample of the 3.6288 x 100 possible permutations.
The computed values for the test statistic (#) between permuted x; and fixed x, have
the distribution shown in Fig. 1.8b; the observed value, 1 = 2.78456, has been added to
this distribution. The permutation results are summarized in the following table, where
l¢l is the (absolute) observed value of the #-statistic (|| =2.78456) and #* is a value
obtained after permutation. The absolute value of the observed ¢ is used in the
following table to make it a general example since there are cases where 7 is negative.

<=t | ==t | —|t]<e<]|t] | =]t > | 1]
Statistic t 8 0 974 1" 17

¥ This count corresponds to the observed ¢ value that was added to the reference distribution.

For a one-tailed test (in the right-hand tail in this case, since H;: p > 0), one counts
how many values in the permutational distribution of the statistic are equal to, or larger
than, the observed value (#* = ¢; there are 1 + 17 = 18 such values in this case). This is
the only one-tailed hypothesis worth considering, because the objects are known in
this case to have been drawn from a positively correlated distribution. A one-tailed test
in the left-hand tail (H;: p<0) would be based on how many values in the
permutational distribution are equal to, or smaller than, the observed value (* <7,
which are 8 + 0 + 974 +1 = 983 in the example). For a two-tailed test, one counts all
values that are as extreme as, or more extreme than the observed value in both tails of
the distribution ( | r* | > | t| , which are 8 + 0 + 1 + 17 = 26 in the example).
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Figure 1.8 (a) Scatter diagram of the 10 points of the numerical example with respect to variables x; and x,.

(b) Frequency histogram of the (1 +999) permutation results (z-statistics for correlation
coefficients). The observed value of z, || = 2.78456, is shown, as well as —I¢l = -2.78456.

Probabilities associated with these distributions are computed as follows, for a one-
tailed and a two-tailed test (results using the r statistic would be the same):

One-tailed test [Hy: p =0; Hy: p > 0]:
prob (¥ = 2.78456) = (1 + 17)/1000 = 0.018

Two-tailed test [Hy: p =0; Hy: p = 0]:
prob(| % | =2.78456) = (8 + 0 + 1 + 17)/1000 = 0.026

Note how similar the permutation results are to the results obtained from the classical
test, which referred to a table of the Student #-distribution. The observed difference is
partly due to the small number of pairs of points (n = 10) sampled at random from the
bivariate normal distribution, with the consequence that the data set does not quite
conform to the hypothesis of normality. It is also due, to a certain extent, to the use of
only 999 permutations, sampled at random among the 10! possible permutations.

4 — Remarks on permutation tests

In permutation tests, the reference distribution against which the statistic is tested is
obtained by randomly permuting the data under study, without reference to any
statistical population. The test is valid as long as the reference distribution has been
generated by a procedure related to a null hypothesis that makes sense for the problem
at hand, irrespective of whether or not the data set is representative of a larger
statistical population. This is the reason why the data do not have to be a random
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sample from some larger statistical population. The only information the permutation
test provides is whether the pattern observed in the data is likely, or not, to have arisen
by chance. For this reason, one may think that permutation tests are not as “good” or
“interesting” as classical tests of significance because they might not allow one to infer
conclusions that apply to a statistical population.

A more pragmatic view is that the conclusions of permutation tests may be
generalized to a reference population if the data set is a random sample of that
population. Otherwise, they allow one to draw conclusions only about the particular
data set, measuring to what extent the value of the statistic is “usual” or “unusual” with
respect to the null hypothesis implemented in the permutation procedure. Edgington
(1995) and Manly (1997) further argue that data sets are very often not drawn at
random from statistical populations, but simply consist of observations that happen to
be available for the study. The generalization of results, in classical as well as
permutation tests, depends on the degree to which the data were actually drawn at
random, or are equivalent to a sample drawn at random, from a reference population.

For small data sets, one can compute all possible permutations in a systematic way
and obtain the complete permutation distribution of the statistic; an exact or complete
permutation test is obtained. For large data sets, only a sample of all possible
permutations may be computed because there are too many. When designing a
sampled permutation test, it is important to make sure that one is using a uniform
random generation algorithm, capable of producing all possible permutations with
equal probabilities (Furnas, 1984). Computer programs use procedures that produce
random permutations of the data; these in turn call the ‘Random’ function of computer
languages. Such a procedure is described in Section 5.8 of Manly’s book (1997).
Random permutation functions are available in subroutine libraries and in R.

The case of the correlation coefficient has shown how the null hypothesis guided
the choice of an appropriate permutation procedure, capable of generating realizations
of this null hypothesis. A permutation test for the difference between the means of two
groups would involve random permutations of the objects between the two groups
instead of random permutations of one variable with respect to the other. The way of
permuting the data depends on the null hypothesis to be tested.

Some tests may be reformulated in terms of some other tests. For example, the #-
test of equality of means is equivalent to a test of the correlation between the vector of
observed values and a vector assigning the observations to group 1 or 2. The same
value of ¢ and probability (classical or permutational) are obtained using both methods.

Simple statistical tests such as those of correlation coefficients or differences
between group means may be carried out by permuting the original data, as in the
example above. Problems involving complex relationships among variables may
require permuting the residuals of some model instead of the raw data; model-based
permutation is discussed in Subsection 11.1.8. The effect of a nominal covariable may
be controlled for by restricted permutations, limited to the objects within the groups
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defined by the covariable. This method is discussed in detail by Manly (1997).
Applications are found in Brown & Maritz (1982; restrictions within replicated values
in a multiple regression) and in Sokal ef al. (1987; Mantel test), for instance.

In sampled permutation tests, adding the observed value of the statistic to the
distribution has the effect that it becomes impossible for the test to produce no value
“as extreme as, or more extreme than the observed value”, as the standard expression
goes. This way of computing the probability is biased, but it has the merit of being
statistically valid (Edgington, 1995, Section 3.5). The precision of the probability
estimate is the inverse of the number of permutations performed; for instance, after
(999 + 1) permutations, the precision of the probability statement is 0.001.

The number of permutations one should perform is always a trade-off between
precision and computer time. The more permutations the better, since probability
estimates are subject to error due to sampling the population of possible permutations
(except in the rare cases of complete permutation tests), but it may be tiresome to wait
for the permutation results when studying large data sets. Jackson & Somers (1989)
recommend to compute 10000 to 100000 permutations in order to ensure the stability
of the probability estimates in Mantel tests (Subsection 10.5.1). The following
recommendation can be made. In exploratory analyses, 500 to 1000 permutations may
be sufficient as a first contact with the problem. If the computed probability is close to
the preselected significance level, run more permutations. In any case, use more
permutations (e.g. 10000) for final results submitted for publication.

Interestingly, tables of critical values in nonparametric statistical tests for small
samples are based on permutations. The authors of these tables computed how many
cases can be found, in the complete permutation distribution, that are as extreme as, or
more extreme than the computed value of the statistic. Hence, probability statements
obtained from small-sample nonparametric tests are exact probabilities (Siegel, 1956).

Named after the city that hosts the famous casino in the principality of Monaco,
Monte Carlo methods use random numbers to study either real data sets or the
behaviour of statistical methods through simulations. Permutation tests are Monte
Carlo methods because they use random numbers to randomly permute data. Other
such methods are based on computer-intensive resampling. Among these are the
jackknife (Tukey, 1958; Sokal & Rohlf, 1995) and the bootstrap (Efron, 1979; Efron &
Tibshirani, 1993; Manly, 1997). In the latter methods, the values used in each iteration
to compute a statistic are a subsample of the original data. In the jackknife, each
subsample leaves out one of the original observations and sampling is done without
replacement. In the bootstrap, each subsample is obtained by resampling the original
sample with replacement; the justification is that resampling the original sample
approximates a resampling of the original population.

As an exercise, readers are invited to figure out how to perform a permutation test
for the difference between the means of two groups of objects on which a single
variable has been measured, using the #-statistic, and create a permutational #-test R
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function”. Other types of permutation tests are discussed in Sections 5.4,7.3,8.9,10.2,
10.3,10.5,10.6,11.1,11.4,11.5,12.6,13.1 and 13.3.

1.3 Computer programs and packages

Processing complex ecological data sets almost always requires the use of computers,
as much for the amount of data to be processed as for the fact that the operations to be
performed are complex and often repetitious.

Powerful statistical packages such as SAS®, SPSS®, Statistica® and others are
commercially available for general statistical analysis. Many other programs are either
commercially or freely available on the Web pages of researchers or research
institutions; some of these programs will be mentioned in Software sections in the
following chapters.

This book will pay special attention to statistical functions available in the R
language, which was developed in 1990 by Ross Thaca and Robert Gentleman at the
University of Auckland. R is a dialect of the S language. The S freeware was created in
1976 by John Chambers and colleagues at AT&T Bell Laboratories. R became
freeware in 1995 and an international project in 1997. Its source code is freely
available under the GNU General Public License. For most users, R is a powerful
environment to carry out statistical analyses. R is also a programming language that
allows scientists to easily write new functions. For computationally-intensive tasks, R
functions can call compiled code written in C, C++ and Fortran.

The main features of the R language are described on the Web page
http://en.wikipedia.org/wiki/R_(programming_language). Other computer languages
such as S-PLUS® (a commercial implementation of S) and MaTLAB® offer features
comparable to R; however, they are not free.

The use of R has grown tremendously among researchers during the past 15 years
and it has become a de facto standard for software development and computing in most
fields of science. The fact that it is free and multi-platform explains in part its success:
functions can be used in the same way on all major personal computer operating
systems (presently Microsoft Windows, Mac OS X, and Linux). R is also available for
a wide variety of Unix platforms. The other part of the explanation holds in the fact
that the R Development Core Team has encouraged contributions from the community
of users and methods developers, who have joined in the movement wholeheartedly.
As a result, thousands of R packages are now available on the Comprehensive R
Archive Network (CRAN) main site (http://cran.r-project.org/) and on mirror sites.

* Readers can compare their solution to the R function t.perm() available on the Web page
http://numericalecology.com/rcode.
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Thousands more packages and individual functions are distributed by researchers on
their Web pages or are attached to scientific papers describing new numerical methods.
All functions found in R packages come with documentation files, called by the help()
function or by a question mark, and they are all presented in the same format.

There are many reference books published about the R language and its application
to various fields. A good starting point to learn about R is The R book of Crawley
(2007). The Venables & Ripley (2002) textbook is the acknowledge reference for
many functions found in the R and S languages. In several of the following chapters,
we will refer to the book Numerical ecology with R by Borcard et al. (2011), which
was written as a companion to the 1998 and the present editions of Numerical ecology.
The Borcard et al. (2011) book is of particular interest to readers who wish to
implement the methods described in this book using available R software.

Here is an example of how R packages and functions will be referred to in this
book: package VEGAN, function rda(). The parentheses after function names contain
data file names and other parameters necessary to run functions.

Ecologists should bear in mind that easy computation has two pitfalls: the fact that
computations are done and results are produced does not ensure (1) that the data satisfy
the conditions required by the method, or (2) that the results produced by the computer
are interpreted correctly in ecological terms. This book provides colleagues with the
theoretical and practical information they need to avoid these pitfalls.

1.4 Ecological descriptors

Descriptor
Variable

Object

Any ecological study, classical or numerical, is based on descriptors. In the present
text, the terms descriptor and variable will be used interchangeably. These refer to the
attributes, or characters (also called items in the social sciences, and profiles or
features in the field of pattern recognition) used to describe or compare the objects of
the study. The objects that ecologists compare are the sites, quadrats, observations,
sampling units, individual organisms, or subjects; these are defined a priori by the
sampling design, before making the observations (Section 2.1). Observation units are
often called “samples” by ecologists. The term sample is only used in its statistical
sense in this book; it refers to a set of observations resulting from a sampling action or
campaign. Objects may be called individuals or OTUs (Operational taxonomic units)
in numerical taxonomy, OGUs (Operational geographic units) in biogeography, cases,
patterns or items in the field of pattern recognition, etc.

The descriptors, used to describe or qualify the objects, are the physical, chemical,
ecological, or biological characteristics of these objects that are of interest for the
study. In particular, biological species are descriptors of sites for ecologists; in
(numerical) taxonomy on the contrary, the species are the objects of the study, and the
sites where the species are observed or collected may be used by the taxonomist as
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Descriptor

Descriptor
state

Relative scale
Interval scale

descriptors of the species. It all depends on the variable, defined a priori, that specifies
the objects of a study. In ecology, sites are compared using the species they contain,
there being no possibility of choosing the species, whereas taxonomists compare
populations or other taxonomic entities obtained from a number of different sites.

A descriptor is a law of correspondence established by the researcher to describe and
compare, on the same basis, all the objects of the study. This definition applies to all types of
descriptors discussed below (Table 1.2). The fundamental property of a descriptor, as
understood in the present book, is that it distributes the objects among non-overlapping states.
Each descriptor must, therefore, operate like a law that associates with each object in the group
under study one and only one element of a set of distinguishable states that belong to the
descriptor.

The states that constitute a descriptor must necessarily be mutually exclusive. In
other words, two different states of the same descriptor must not be applicable to the
same object. Descriptors, on the contrary, do not have to be independent of one another
(see Box 1.1: independent descriptors). In Chapter 6, it will be seen that the
information contained in one descriptor may partially or totally overlap with the
information in another descriptor.

1 — Mathematical types of descriptors

The states that form a descriptor — i.e. the qualities observed or determined on the
objects — may be of a qualitative or quantitative nature, so that descriptors may be
classified into several types. In ecology, a descriptor may be biological (presence,
abundance, or biomass of different species), physical, chemical, geological,
geographical, temporal, climatic, etc. Table 1.2 presents a classification of descriptors
according to their mathematical types. That classification is independent of the
particular discipline to which the descriptors belong. The mathematical type of a
descriptor determines the type of numerical processing that can be applied to it. For
example, parametric correlations (Pearson’s r) may be calculated between quantitative
descriptors, while nonparametric correlations (such as Kendall’s t) may be used on
ordered but not necessarily quantitative descriptors, as long as their relationship is
monotonic. To measure the dependence among descriptors that are not in monotonic
relationship, or among qualitative descriptors, requires the use of other methods based
on contingency tables (Chapter 6). Subsection 1.5.7 will show how descriptors of
different mathematical types can be made compatible, in order to use them together in
ecological studies.

Quantitative descriptors, which are the most usual type in ecology, are found at the bottom
of Table 1.2. They include all descriptors of abundance and other quantities that can be plotted
on a continuous axis of real numbers. They are called quantitative, or metric (Falconer, 1960),
because they measure changes in a phenomenon in such a way that the difference between 1 and
2, for example, is quantitatively the same as the difference between, say, 6 and 7. Such
descriptors may be further subdivided into relative-scale quantitative variables, where value
‘zero’ means the absence of the characteristic of interest, and interval-scale variables where the
‘zero’ is chosen arbitrarily. For the latter type, the fact that the ‘zero’ reference is chosen
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Table 1.2

The different mathematical types of descriptors.

Descriptor types Ecological examples

Binary (two states, presence-absence) Species present or absent

Multi-state (many states)

Nonordered (qualitative, nominal, attributes) Geological group
Ordered
Semiquantitative (rank-ordered, ordinal) Importance or abundance scores

Quantitative (metric, measurement)
Discontinuous (meristic, discrete) Equidistant abundance classes

Continuous (metric) Temperature, length

arbitrarily prevents comparisons of the type “this temperature (°C) is twice as high as that one”.
Species abundance data, or temperatures measured in Kelvin, are examples of the first type,
while temperature measured in degrees Celsius, dates, or geographic directions (of wind,
currents, etc.) in degrees, are examples of the second.

Continuous quantitative descriptors are usually processed as they are. If they are divided
into a small number of equidistant classes of abundance (further discussed below), the
discontinuous descriptors that are obtained may usually be processed as if they were continuous,
because the distortion due to grouping is negligible for the majority of distribution types (Sneath
& Sokal, 1973). Before the advent of computers, it was usual practice, in order to facilitate
calculations, to divide continuous descriptors into a small number of classes. This
transformation is still necessary when, due to low precision of the measurements, only a small
number of classes can be distinguished in practice, or when comparisons are sought between
quantitative and semiquantitative descriptors.

Meristic variables (the result of enumeration, or counting) theoretically should be
considered as discontinuous quantitative. In ecology, however, these descriptors are most often
counts of the number of specimens belonging to the various species, whose range of variation is
so large that they behave, for all practical purposes, as continuous variables. When they are
transformed (Sections 1.5 and 7.7), as is often the case, they become real numbers instead of
integers.

In order to speed up field observations or counts in the laboratory, it is often interesting for
ecologists to record observations in the form of semiquantitative descriptors. Usually, it is
possible to estimate environmental characteristics very rapidly by ascribing them a score using a
small number of ordered classes: score 1 < score 2 < score 3, etc. Ecologists may often proceed
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in this way without losing pertinent information, whereas precise counts would have
necessitated more considerable efforts than required by the ecological phenomenon under study.
For example, in studying the influence of the unevenness of the landscape on the fauna of a
given area, it may be enough to describe the relief using ordered classes such as flat, undulated,
rough, hilly and mountainous. In the same way, counting large numbers of organisms may be
done using abundance scores instead of precise numbers of individuals. Frontier (1973), for
example, established such a scoring scale to describe the variability of zooplankton. Another
score scale, also developed by Frontier (1969) for counting zooplankton, was used to estimate
biomass (Dévaux & Millerioux, 1976b) and diversity of phytoplankton (Dévaux & Millerioux,
1977) as well as to evaluate schools of cetaceans at sea (Frontier & Viale, 1977). Frontier &
Ibanez (1974) as well as Dévaux & Millerioux (1976a) have shown that this rapid technique is
as informative as classical enumeration for principal component analysis (Section 9.1). It must
be noted that nonparametric statistical tests of significance, which are used on such
semiquantitative descriptors, have a discriminatory power almost equal to that of their
parametric equivalent. Naturally occurring semiquantitative descriptors, which give ranks to the
objects under study, as well as quantitative descriptors divided into non-equidistant classes
(which is done either to facilitate data collection or to evidence holes in frequency distributions),
are included among the semiquantitative descriptors. Method 6.4 in Subsection 1.5.6 shows how
to normalize semiquantitative descriptors if they have to be used in methods of data analysis that
perform better in the presence of normality. Normalized semiquantitative descriptors should
only be interpreted in terms of the ordinal value that they really represent. In addition, methods
designed for quantitative data analysis may often be adapted to ranked data. This is the case, for
example, with principal component analysis (Lebart et al., 1979; Subsection 9.1.7) and linear
regression (Iman & Conover, 1979).

Qualitative descriptors often present a problem to ecologists, who are tempted to discard
them, or reduce them to a series of binary variables (Subsection 1.5.7). Let us forget the cases
where descriptors of this kind have been camouflaged as ordered variables by scientists who did
not quite know what to do with them ...Various methods based on contingency tables
(Chapter 6) may be used to compare such descriptors with one another, or to ordered descriptors
divided into classes. Special resemblance coefficients (Chapter 7) allow these descriptors to be
used as a basis for clustering (Chapter 8) or ordination (Chapter 9). The first paragraph of
Chapter 6 gives examples of qualitative descriptors. An important class is formed by
classifications of objects, which may in turn become descriptors of these objects for subsequent
analyses, since the definition of a classification (Section 8.1) corresponds to the definition of a
descriptor given above.

Binary or presence-absence descriptors may be noted + or —, or 1 or 0. In ecology, the most
frequently used type of binary descriptors is the presence or absence of a species, when reliable
quantitative information is not available. It is only for historical reasons that they are considered
as a special class: programming the first computers was greatly facilitated by such descriptors
and, as a result, several methods have been developed for processing them. Sneath & Sokal
(1973) present various methods to recode variables into binary form; see also Subsection 1.5.7.
Binary descriptors encountered in ecology may be processed either as qualitative,
semiquantitative or quantitative variables. Even though the mean and variance parameters of
binary descriptors are difficult to interpret, such descriptors may be used with methods originally
designed for quantitative variables — in a principal component or correspondence analysis, for
instance, or as independent variables in regression or canonical analysis models.
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Intensive

Extensive

Additive

When collecting ecological data, the level of precision with which descriptors are
recorded should be selected with consideration of the problem at hand. Quantitative
descriptors may often be recorded either in their original form or in semiquantitative or
qualitative form. The degree of precision should be chosen with respect to the
following factors: (1) What is the optimal degree of precision of the descriptor for
analysing this particular ecological phenomenon? (2) What type of mathematical
treatment will be used? This choice may determine the mathematical types of the
descriptors. (3) What additional cost in effort, time or money is required to raise the
level of precision? Would it not be more informative to obtain a larger number of less
precise data?

2 — Intensive, extensive, additive, and non-additive descriptors

There are other useful ways of looking at variables. Margalef (1974) classified
ecological variables as either intensive or extensive. These notions are derived from
thermodynamics (Glansdorff & Prigogine, 1971). A variable is said to be intensive if
its value is defined independently of the size of the sampling unit in which it is
measured. For example, water temperature is defined independently of the size of the
bucket of water in which a thermometer is placed: we do not say “12°C per litre” but
simply “12°C”. This does not mean that the measured value of temperature may not
vary from place to place in the bucket; it may indeed, unless water is well-mixed and
therefore homogeneous. Concentration of organisms (number per unit surface or
volume), productivity, and other rate variables (e.g. birth, death) are also intensive
because, in a homogeneous system, the same value is obtained whether the original
measurements are made over 1 m? or over 100 m2. In contrast, an extensive variable is
one whose value, in a homogeneous system, changes proportionally (in linear
relationship) to the size of the sampling unit (which may consist in a line, a surface, or
a volume). It is formally defined as an integral over the sampling unit. Number of
individuals and biomass in a quadrat or volume, at a given point in time, are examples
of extensive variables.

Extensive variables have the property that the values they take in two sampling
units can be added to provide a meaningful estimate of the value in the combined unit:
they are additive (next paragraph). Other variables do not have this property; either
they do not vary at all (e.g. temperature in a homogeneous bucket of water, which is an
intensive variable), or they vary in a nonlinear way with the size of the sampling unit.
For example, species richness in a sampling unit (surface or volume) cannot be
computed as the sum of the numbers of species found in two sub-units; that sum would
usually be larger than the number of species actually found in the combined unit
because some species are common to the two sub-units. Species diversity (Chapter 5)
also has this property. The relationship of such variables to scale is complex and
depends on the distribution patterns of the species and the size of the sampling units
(grain size of the measurements; Section 13.0).

Another, more statistical point of view concerns additivity. This notion is well-
known in geostatistics (Olea, 1991, p. 2; Journel & Huijbregths, 1978). A variable is
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Non-additive

said to be additive if its values can be added while retaining the same meaning as the
original variable. A good example is the number of individuals in a quadrat.
Concentrations, which are intensive variables, are additive if they are referred to the
same linear, surface or volume unit measure (e.g. individuals m2; kg m’3) (Journel &
Huijbregths, 1978, p. 199); values may be added to compute a mean for example.

Extensive variables (e.g. number of individuals) are, by definition, additive; a sum
or a mean has the same meaning as the original data although, if the sampling units
differ in size, the values must be weighted by the sizes of the respective sampling units
for their mean to be meaningful. For intensive additive variables (e.g. temperature or
concentration), only the (weighted) mean has the same meaning as the original values.
Variables may be additive over either time or space (Walliser, 1977); numbers of
individuals in quadrats, for example, are additive over space, but not over time if the
time lag between observations is shorter than the generation time of the organisms (the
same individuals would be counted several times).

Examples of non-additive variables are pH values, logarithms and ratios of random
variables, indices of various kinds, and directions of vectors (wind direction, aspect of
a slope, etc.). Values of non-additive variables must be transformed in some way
before (and if) they can be meaningfully combined. Logarithms of counts of
organisms, for instance, have to be back-transformed using antilogarithms before
values can be added. For ratios, the numerator and denominator must be added
separately, and the ratio recomputed from these sums. Other non-additive variables,
such as species richness and diversity, cannot be numerically combined; these indices
for combined sampling units must be recomputed from the combined raw data.

These notions are of prime importance when analysing spatial data (Chapters 13
and 14). To appreciate their practical usefulness, let us consider a study in which the
following variables have been measured at a site in a lake or in the ocean, at different
times: incident solar energy at water surface (W m™2), temperature (°C), pH, O,
concentration (g m™), phytoplankton production (g C m~> s71), and concentration of
zooplankton (individuals m™). All these variables are intensive; they all have complex
physical units, except temperature (simple unit) and pH (no unit). Assuming that some
form of random sampling has been conducted with constant-sized observation units,
how could estimates be obtained for the whole study area? This question may be
viewed from two different angles, i.e. one may be looking for a mean or for an integral
value over the study area. For additive variables (i.e. all except pH), values can be
computed that represent the mean over the study area. However, integrating over the
study area to obtain values for total incident solar energy, zooplankton, etc. is not that
simple, because it requires the variables to be extensive. No extensive variable can be
derived from temperature or pH. In the case of variables with complex physical units,
new variables may be derived with units that are appropriate for integration:

® Consider O, concentration. Its physical dimensions (Section 3.1) are [ML_3], with
units g m~>. This indicates that the “mass” part (dimension [M], with unit g), which is
extensive, may be integrated over a volume, for example that of the surface mixed
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layer over the whole study area. Also, values from different depths in the mixed layer
may be vertically integrated, to provide areal concentrations (dimensions [ML2], with
units g m~2). The same applies to the concentration of zooplankton.

® Flux variables can be turned into variables that are additive over both space and time.
Phytoplankton production (dimensions [ML™T!], with units gCm™>s") is a flux
variable since it is expressed per unit space and time. The extensive “mass” part may be
integrated over a volume or/and over time, e.g. the euphotic zone over the whole study
area or/and for the duration of the study. Values from different depths in the euphotic
zone may be vertically integrated, thus providing areal concentrations (dimensions
[ML_2T_1], with units g C m 2 s_l), which can then be integrated over time.

® Incident solar energy (W m?) represents a more complex case. The “power” part (W)
can be integrated over space (mz) only. However, because W =] g1 (Table 3.2), it is
possible to integrate the “energy” part (J) over both space and time. Since incident solar
energy is either in W m2orJm2s!, the “power” part may be integrated over space
or, alternatively, the “energy” part may be integrated over both surface (m?) and time
(s). For example, one can compute solar energy over a given area during 24 h.

1.5 Coding

Coding is a technique by which original data are transformed into other values, to be
used in the numerical analysis. All types of descriptors may be coded, but nonordered
descriptors must necessarily be coded before they may be analysed numerically. The
functions or laws of correspondence used for coding qualitative descriptors are
generally discontinuous; positive integers are usually associated with the various
states.

Consider the case where one needs to compute the dependence between a variable
with a high degree of precision and a less precisely recorded descriptor. Two
approaches are available. In the first approach, the precision of the more precise
descriptor is lowered, for example by dividing continuous descriptors into classes.
Computers can easily perform such transformations. Dependence is then computed
using a mathematical method adapted to the descriptor with the lowest level of
precision. In the second approach, the descriptor with the lower precision level will be
given a numerical scale adjusted to the more precise one. This operation is called
quantification (Cailliez & Pages, 1976; Gifi, 1990); one method of quantification
through canonical correspondence analysis is described in Subsection 11.2.2. Other
transformations of variables, that adjust a descriptor to another, have been developed
in the regression framework discussed in Section 10.3.
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Figure 1.9 The regression parameters (by and b;) found by regressing y, on y, (left panel) may be used

(right panel) to transform y, into y| such that y| is now on the same scale as y, .

1 — Linear transformation

In a study where there are quantitative descriptors of different types (metres, litres,
mg L), may be useful to put them all on the same scale in order to simplify the
mathematical forms of relationships. It may be difficult to find an ecological
interpretation for a relationship that includes a high level of artificial mathematical
complexity, where scale effects are intermingled with functional relationships. Such
changes of scale may be linear (of the first order), or of some higher order.

A linear change of scale of variable y is described by the transformation
y' = by+b,y where y is the value after transformation. Two different
transformations are actually included in this equation. The first one, translation,
consists in adding or subtracting a constant (b, in the equation) to all data.
Graphically, this consists in sliding the scale beneath the data distribution. Translation
is often used to bring to zero the mean, the modal class, the weak point of a bimodal
distribution, or another point of interest in the distribution. The second transformation,
expansion, is a change of scale obtained by multiplying or dividing all observed values
by a constant (b, in the equation). Graphically, this operation is equivalent to
contracting or expanding the scale beneath the distribution of a descriptor.

Two variables that are linearly related can always be put on the same scale by a
combination of an expansion followed by a translation, or the opposite, the values of
parameters b, and b, being found by linear regression (modell or model II:
Chapter 10). For example (Fig. 1.9), if a linear regression analysis shows the equation
relating y, to y, to be y, = b,+b,y, (where y, represents the values estimated by
the regression equation for variable y,), then transforming y, into y| = b,+b,y,
successfully puts variable y, on the same scale as variable y, , since ¥, = y', . If one
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wishes to transform y, instead of y, , the regression equation should be computed the
other way around.

2 — Nonlinear transformations

The methods of multidimensional analysis described in this book are often based on
covariances or linear correlations. Using them requires that the relationships among
variables be made linear by an appropriate transformation. When two variables are not
linearly related, their relationship may be described by a second- or higher-degree
equation, or by other functional forms, depending on the situation. If the nonlinear
form of the equation is derived from ecological theory, as it is often the case in
population dynamics models, interpretation of the relationship poses no problem. If,
however, a nonlinear transformation is chosen empirically, for reasons of mathematical
elegance and without grounding in ecological theory, it may be difficult to find an
ecological meaning to it.

The relationship between two variables may be determined with the help of a
scatter diagram of the objects in the plane formed by the variables. The principles of
analytical geometry may then be used to recognize the type of relationship (Fig. 1.10),
which in turn determines the most appropriate type of transformation. A relationship
frequently found in ecology is the exponential function, in which a variable y,
increases in geometric progression with respect to y,, according to one of the
following equations:

Oy Oy (v +by) (byyy)
y, = b . ory, = b()bl\1 ory, = b0b1)1+ * orelse v, = byb, o 1.3)

depending on the number of constants b that shift or amplify the function. Such

relationships can easily be linearized by using the logarithm of variable y, (called y)
below) instead of y, itself. The above relationships then become:

Yy = log(y,) = by, ory, =by+by,,
ory, =by+b (y +b,) ,ory, =b,+b b,y 14
where the b's are the logarithms of constants b in eq. 1.3.
If two variables display a logarithmic relationship of the form

y, = log, (y)) (1.5)

where b is the base of the logarithm, their relationship can be made linear by applying
a log_1 transformation to y, :

(v2)
Yo =b"" =y, (1.6)
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The relationship between variables may often be recognized by plotting them one against the
other. In the upper panel, y, varies as the natural logarithm of y,. In the lower panel, y, is an
exponential function of y;. These curves (and corresponding equations) may take different
forms, depending on the modifying constants b, by, by and b, (eq. 1.3).

When a nonlinear form can be assumed from knowledge of the ecological process
involved, the corresponding equation can be used as the basis for a linearizing
transformation. For instance, the nonlinear equation

N, = Nye" (1.7)
describes the exponential growth of a population, as observed in population
explosions. In this equation, the independent variable is time (f); Ny and N, are the
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population sizes at times 0 and ¢, respectively; r is the Malthus parameter describing
the intrinsic rate of increase of the population. This nonlinear equation indicates that N,
should be transformed into its natural logarithm to make the relationship linear. After
this transformation, log, (&V,) is linearly related to #: log,(N,) = log,(Ny) + rt.

3 — Combining descriptors

Another transformation that is often used consists in combining different descriptors
by addition, subtraction, multiplication or division. In limnology, for example, the
ratio (surface O,/ bottom O,) is often used as a descriptor. So is the Pearsall ionic ratio,
all ions being in the same physical units:

Na+K
Y = Mg+ Ca 9
Beware, however, of the spurious correlations that may appear when comparing a
ratio variable y/z to z, or two ratio variables y;/z and y,/z (Pearson 1897). Jackson &
Somers (1991a) illustrate the problem using simulated data and recommend that such
correlations be tested using permutation tests (Section 1.2) involving permutation of
the parent variables, followed by construction of the ratios from the permuted
variables and computation of the correlation coefficient under permutation.

One may want to take into account a factor of magnitude or size. For example,
when observation units are of different sizes, the number of specimens of each species
may be divided by the area or the volume of the unit (depending on whether the units
come from an area or a volume), or by some other measure of the sampling effort. One
must exert care when interpreting the results, however, since large observation units are
more representative of populations and have smaller variances than small ones.

4 — Ranging and standardization

Quantitative variables, used in ecology as environmental descriptors, are often
expressed in incompatible units such as metres, mg L, pH units, etc. In order to
compare such descriptors, or before using them together in a classification or
ordination procedure, they must be brought to some common scale. Among the
methods available, some only eliminate size differences while others reduce both the
size and variability to a common scale.

Translation, a method previously discussed, allows one to centre the data,
eliminating size differences due to the position of the zero on the various scales.
Centring is done by subtracting the mean of the observations (y) from each value y,:

i ==y (1.9)
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For relative-scale variables (Subsection 1.4.1), dividing each y, by the largest
observed value is a way, based on expansion, to bring all values in the range [0, 1]
(Cain & Harrison, 1958):

y‘l = yi/ymax (1'10)

For interval-scale variables, whose range may include negative values, the absolute
value of the largest positive or negative value is used as divisor. The transformed
values are in the interval [-1, +1].

Other methods allow the simultaneous adjustment of the magnitude and the
variability of the descriptors. The method of ranging, proposed by Sneath & Sokal
(1973), reduces the values of a variable to the interval [0, 1] by first subtracting the
minimum observed for each variable and then dividing by the range:

f yi_ymin
y, = i omin (1.11)

Ymax ™ Ymin

For relative-scale variables (Subsection 1.4.1) for which y,,;, is always zero, ranging
can be achieved as well with eq. 1.10.

The most widely used method for making descriptors compatible is to standardize
the data (transformation into so-called “z-scores’). This method will be fully discussed
in Section 4.2, which deals with correlation. Principal components (Section 9.2) are
frequently computed using standardized data. Standardization is achieved by
subtracting the mean (translation) and dividing by the standard deviation (sy) of the
variable (expansion):

z, = (1.12)

The position of each object on the transformed variable z, is expressed in standard
deviation units; as a consequence, it refers to the group of objects from which s, has
been estimated. The new variable z; is called a standardized variable. Such a variable
has three interesting properties: its mean is zero (Z = 0); its variance and hence its
standard deviation are 1 (s, = s, = 1); itis also a dimensionless variable (Chapter 3)
since the physical dimensions (metres, mg L', etc.) in the numerator and denominator
cancel out. Transformations 1.8, 1.10 and 1.11 also produce dimensionless variables.

Beware of the “default options” of computer programs that may implicitly or
explicitly suggest to standardize all variables before data analysis. Milligan & Cooper
(1988) report simulation results showing that, for clustering purposes, if a
transformation is needed, the ranging transformation (eqs. 1.10 and 1.11) gives results
that are in general better to those obtained using standardization (eq. 1.12).



Coding 45

5 — Implicit transformation in association coefficients

When descriptors with different scales are used together to compare objects, the choice
of the association coefficient (Section 7.6) may partly determine the type of
transformation that must be applied to the descriptors. Some coefficients give equal
weights to all variables independently of their scales while others take into account the
magnitude of variation of each one. Since the amount of information (in the sense of
information theory; Chapter 6) in a quantitative descriptor increases as a function of its
variance, equalizing the variances before the association coefficient is computed is a
way to ensure that all descriptors have the same weight. It is for ecologists to decide
the kind of contribution they expect from each descriptor; again, beware of the
“default options” of computer programs.

Some association coefficients require that the data be expressed as integers.
Depending on the capabilities of the computer program and the degree of
discrimination required, ecologists may decide to use the closest integer value, or to
multiply first all values by 10 or 100, or else to apply some other simple transformation
to make the data compatible with the coefficient to be computed.

6 — Normalization

Another type of transformation, called normalizing transformation, is performed
on descriptors to make the frequency distributions of their data values look like the
normal curve of errors — or, at least, as unskewed as possible. Indeed, several of the
methods used in multivariate data analysis have been developed under the assumption
that the variables are normally distributed. Although most of these methods do not
actually require full normality (i.e. no skewness nor kurtosis), they may perform better
if the distributions of values are, at least, not skewed. Skewed distributions, as in
Fig. 1.11, are such that the variance of the distribution is controlled mostly by the few
points in the extreme right tail; so, variance-partitioning methods such as principal
component analysis (Chapter 9) or spectral analysis (Chapter 12) would bring out
components expressing the variation of these few data points first instead of the
variation of the bulk of data values. Normalizing transformations also have the
property of reducing the heteroscedasticity of descriptors (Box 1.4). The data analysis
phase of research should always start by looking at the distributions of values for the
different variables, i.e. computing basic distribution statistics (including skewness and
kurtosis, eqs.4.41 and 4.42), drawing histograms of frequency distributions, and
testing for normality (described in Section 4.6). A normalizing transformation may
have to be found for each variable separately; in other cases, one is looking for the best
transformation that would normalize several variables.

® 6.1 — Ecologists often encounter distributions where a species is abundant in a few
observation units (quadrats, etc.), fairly abundant in more, present in even more, and
absent in many; this is in agreement with the concept of ecological niche briefly
explained in Section 1.0, if the sampling programme covers a large enough area or
environmental gradient. Distributions of this type are clearly not normal, being
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Homoscedasticity Box 1.4

Homoscedasticity, also called homogeneity or equality of the variances,
technically means that the variances of the error terms are equal for all
observations. Its antonym is heteroscedasticity or heterogeneity of the variances.
Homoscedasticity may actually refer to different properties of the data.

® For a single variable, homoscedasticity of the distribution means that, when the
statistical population is sampled repeatedly, the expected value of the variance
remains the same, whatever the value of the mean of the data sample. Data drawn
from a normal distribution possess this property whereas data drawn from a Poisson
distribution, for instance, do not, since the variance is equal to the mean in this type
of distribution.

® In regression analysis, homoscedasticity means that, for all values of the
independent variable, the variances of the corresponding values of the response
variable (called error variances or variances of the residuals) are the same.

® [n t-test, analysis of variance and discriminant analysis, homoscedasticity means
that variances are equal in all groups, for each variable.

strongly skewed to the right (long tail in the higher values). Needless to say,
environmental variables may also have non-normal distributions. For instance, the
scales on which chemical variables are measured are conventions of chemistry which
have no relation whatsoever with the processes generating these values in nature. So,
any normalizing transformation is as good as the scale on which these data were
originally measured.

Skewed data are often transformed by taking logarithms (below) or square roots.
Square root is the least drastic transformation and is used to normalize data that have a
Poisson distribution, where the variance is equal to the mean, whereas the logarithmic
transformation is applicable to data that depart more widely from a normal distribution
(Fig. 1.11). Several intermediate transformations have been proposed between these
two extremes (Fig. 1.12): cubic root, logz, log?, etc. The hyperbolic transformation is
useful for one particular type of data, which share the two extreme types at the same
time (when the standard deviation is proportional to the mean, with many observations
of a very small size which follow a Poisson distribution: Quenouille, 1950; Barnes,
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Figure 1.11
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Numerical examples. Upper panel: Data that follow a Poisson distribution (left) can be
normalized by the square root transformation (right). For a given species, these frequencies may
represent the number of quadrats (ordinate) occupied by the number of specimens shown along
the abscissa. Lower panel: Data distribution (left) that can be normalized by a logarithmic

transformation (right).
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Figure 1.12  Numerical examples. Each histogram is labelled by the normalizing transformation to be used in that

case. The bottom rightmost histogram refers to a simplified version of the hyperbolic transformation.

1952). The angular or arcsine transformation is appropriate for percentages and
proportions (Sokal & Rohlf, 1981, 1995):

y; = arcsin, [y, (1.13)
In case of doubt, one may try several of these transformations and perform a test of
normality (Section 4.6), or compute the skewness of the transformed data, retaining
the transformation that produces the most desirable results. Alternatively, the Box-Cox
method (point 6.2, below) may be used to find the best normalizing transformation.
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Logarithmic
transfor-
mation

Box-Cox
method

A logarithmic transformation is computed as follows:

Y, = log (by+b,y,) (1.14)

The base of logarithm chosen has no influence on the normalising power, since
transformation from one base (c) to another (d) is a linear change of scale (expansion,
see Subsection 1.5.1: log,y, = log_y,/log d). When the data to be transformed are
all strictly positive (all y;, > 0), it is not necessary to carry out a translation (b, =0 in
eq. 1.14). When the data contain fractional values between 0 and 1, one may multiply
all values by some appropriate constant in order to avoid negative transformed values:
y; = log (b,y,) . When the data to be transformed contain negative or null values, a
translation must be applied first, y; = log (b, +y,) , since the logarithmic function is
defined over the set of positive real numbers only. One should choose for translation a
constant b, that is of the same order of magnitude as the significant digits of the
variable to be transformed; for example, b, = 0.01 for data between 0.00 and 0.09 (the
same purpose would have been achieved by selecting b, =1 and b, =100 for these
data). For species abundance data, this rule produces the classical transformation

y; =log(y,+1).

® 6.2 — When there is no a priori reason for selecting one or the other of the above
transformations, the Box-Cox method allows one to empirically estimate the most
appropriate exponent of the following general transformation function:

yo= (v -1)/y (for y = 0) (1.15)

1

and y: = log,(y;) (fory=0)

As before, y; is the transformed value of observation y, . In this transformation, the
value y is used that maximizes the following log likelihood function:

L = —(v/2)log,(s;) + (v~ 1) (v/n) Eloge(yi) (1.16)

since it is this value that yields the best transformation to normality (Box & Cox, 1964;
Sokal & Rohlf, 1995). The value L that maximizes the likelihood function is found by
iterative search. In this equation, s, is the variance of the transformed values y; .
When analysing several groups of observations at the same time (below), Sy is
estimated instead by the within-group, or residual variance computed in a one-way
ANOVA. The group size is n and v is the number of degrees of freedom (v =n — 1 if the
computation is made for a single group). All y, values must be strictly positive
numbers since logarithms are taken in the likelihood function L (eq. 1.16); all values
may easily be made strictly positive by translation, as discussed in Subsection 1.5.1. It
is interesting to note that, if y = 1, the function is a simple linear transformation; if
y=1/2, the function becomes the square root transformation; when y=0, the
transformation is logarithmic; y = —1 yields the reciprocal transformation.
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Taylor’s
power law

Omnibus
procedure

Readers are invited to take a value (say 150) and transform it, using eq. 1.15, with a
variety of values of y gradually tending toward O (say 1, 0.1, 0.01, 0.001, etc.).
Comparing the results to the logarithmic transformation will make it clear that the
natural logarithm is indeed the limit of eq. 1.15 when y tends towards 0.

Another log likelihood function L' is proposed by Sokal & Rohlf (1995) to achieve
homogeneity of the variances for several groups of observations of a given variable,
together with the normality of their distributions. This generalized Box-Cox
transformation may also be applied to the identification of the best normalizing
transformation for several species, for a given set of sampling sites.

® 6.3 — When the data distribution includes several groups, or when the same
transformation is to be applied to several quantitative and dimensionally homogeneous
descriptors (Chapter 3; for instance, a species abundance data table), Taylor’s (1961)
power law provides the basis for another general transformation that stabilizes the
variances and thus makes the data more likely to conform to the assumptions of
parametric analysis, including normality (Southwood, 1966; see also Downing, 1979
on this subject). This law relates the means and variances of the k groups through the
equation

s, = a(y,) 1.17)

from which constants @ and b can be computed by nonlinear regression
(Subsection 10.3.6). When the latter is not available, an approximation of b may be
calculated by linear regression using the logarithmic form

log 5, =log a +b log 3, (1.18)

Having found the value of b, the variance stabilizing transformations

Y=y, (for b = 2) (1.19)
or y; = log,(y) (forb=2)
are applied to the data.

® 6.4 — The following method represents an omnibus normalizing procedure, which
is able to normalize most kinds of data. The procedure is easy to carry out in R or using
a standard statistical packages. The package must have a pseudo-random number
generator for random normal deviates, i.e. values drawn at random from a normal
distribution.

(1) Write the quantitative or semiquantitative descriptor to be normalized into a
vector or a column of a spreadsheet. Sort the vector in order of increasing values.
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Figure 1.13
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The omnibus procedure is used here to normalize a set of 200 data values with tri-modal
distribution (left). A normal curve is fitted to the normalized data (right). The normalized data
could be rescaled to the approximate range of the original data through the linear transformation
Yrescaled = 8 + (normalized X 16/5.5) where 16 is the approximate range of the raw data and 5.5
that of the normalized data; the constant 8 makes all rescaled values positive.

(2) Create a new descriptor with the same number of values, using a pseudo-random
normal deviate generator (rnormy() is the function to use in R). Sort this new vector in
order of increasing values. (3) Bind the two vectors, or copy the sorted normal deviate
values besides the first sorted vector in the spreadsheet. Sort the bound vectors or the
spreadsheet back into the original order if necessary. (4) Use the normal deviates as a
monotonic proxy for the original descriptor. Figure 1.13 shows an example of this
transformation. (5) It may be useful in some cases to rescale the normalized data to the
approximate range of the original data through a linear transformation.

This procedure may be modified to handle ex aequo (tied) values (Section 5.3).
Tied values may either receive the same normal deviate value, or they may be sorted in
some random order and given neighbouring normal deviate values; one should select a
solution that makes sense considering the data at hand.

Data transformed in this way may be used in methods of data analysis that perform
better in the presence of normally distributed data. Several such methods will be
studied in Chapters 9 and 11. The main disadvantage is that a back-transformation is
difficult. If the study requires that values of the transformed descriptor be forecasted
by a model, the database itself will have to be used to find the original descriptor
values that are the closest to the forecasted normal deviate. An interpolation may have
to be made between observed data values.
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7 — Dummy variable coding

Multistate qualitative descriptors may be binary-coded as dummy variables. This
coding is interesting because it allows the use of qualitative descriptors in procedures
such as multiple regression, discriminant analysis or canonical analysis, which have
been developed for quantitative variables and in which binary variables may also be
used. A multistate qualitative descriptor with s states can be decomposed into (s — 1)
dummy variables V/, as shown by the following example of a four-state descriptor:

States Dummy variables
Vv, vV, V3 V4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

In this example, three dummy variables, e.g. V| to V3, are sufficient to code for the
four states of the nominal descriptor, excluding V,. Had dummy variable V, been
included (shaded column above), its information would have been totally linearly
dependent (Box 1.1 and Section 2.7) on the first three variables, meaning that it would
have been entirely predictable from the sum of the other three variables and the
intercept represented by a column vector of 1: Vy = Ligeercepr — (Vi + Vo + V3). This
shows that the first three dummy variables are sufficient to determine the four states of
the multistate qualitative descriptor. Actually, any one of the four dummy variables
may be eliminated to return to the condition of linear independence among the
remaining ones. Using the coding table above, the objects are coded by three dummy
variables instead of a single 4-state descriptor. An object with state 1, for instance,
would be recoded as [1 0 0], an object with state 2 as [0 1 0], and so on.

There are other methods to code for a qualitative variable or a factor of an
experiment. Helmert contrasts are now briefly described. Consider an experimental
factor with s levels. The first Helmert variable contrasts the first and second levels; the
second variable contrasts the third level to the first two; the third variable contrasts
level 4 to the first three; and so on. The coding rule for Helmert contrasts is illustrated
by the following examples:

2 groups: 3 groups: 4 groups: 5 groups: etc.
1 variable 2 variables 3 variables 4 variables
-1 -1 -1 -1
-1 -1 -1
-1 -1 +1 -1 -1 -1
-1 +1 -1 -1
+1 -1 0o +2 -1 -1
+1 0 +2 -1
0 +2 0 0 +3 -1
0 0 +3

0 0 0 +4
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Figure 1.14
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Lakes interconnected by a river network (left) can be binary-coded as shown in the table to the
right. Numbers are assigned in an arbitrary order to the directional edges (arrows) of the
network. It is not useful to code the root of the network (arrow 0) in the matrix since all lakes
would be coded ‘1’ for that arrow. This example is revisited in Subsection 14.3.1.

Contrasts can be constructed based on some quantitative variable of interest
associated with the objects, instead of the levels of a qualitative variable. Polynomial
contrasts are based on an orthogonal polynomial of the quantitative variable of
interest. The reference variable may be the position of the observations along a
transect or a time series, or along an ecological gradient of altitude, pH, humidity, and
so on. The contrasts are the successive monomials of the polynomial of the variable of
interest, centred and made orthogonal to the lower-degree monomials; the monomials
are then usually standardized to have a sum-of-squares of 1. Polynomial contrasts are
used as explanatory variables in analyses in the same way as Helmert contrasts.

Other forms of coding have been developed for special types of variables. In
phylogenetic analysis, the states of multistate characters are sometimes related by a
hypothesized transformation series, going from the single hypothesized ancestral state
to all the advanced states; such a series can be represented by a directed network where
the states are connected by arrows representing evolutionary progression. A
transformation series may be coded into binary variables using a method proposed by
Kluge & Farris (1969).

This same method may be applied to code the spatial relationships among localities
in a geographic network. An example in freshwater ecology is a group of lakes
connected by a river network (Fig. 1.14). In this example, a pseudo-map containing
rivers and lakes is drawn to represent the network. A number is assigned to each river
segment (the river segments are the edges of the connected graph) while nodes
represent the furcation points. In Fig. 1.14, the coding is based on the river segments; it
could just as well be based on the nodes if one felt that the nodes were the important
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carriers of geographic information (as in Magnan et al., 1994). If the phenomenon to
be modelled is, for example, fish dispersal from downstream, the arrows can be drawn
going upstream, as in Fig. 1.14. In the lake-by-arrow matrix, a value ‘1’ is assigned to
each arrow found downstream from a lake, representing the fact that the corresponding
river segment may allow fish to travel from the root to that lake. All other arrows are
coded ‘0’ for that lake. The resulting matrix is a complete numerical coding of the
hydrographic network information: knowing the coding procedure, one can entirely
reconstruct the network topology from the matrix entries.

The coding method may be tailored to the ecological problem at hand. For a
dispersion phenomenon going downstream, arrows could point the other way around;
in that case, a lake would be coded ‘1’ in the table for arrows arriving in that lake from
upstream. The pattern of interconnections does not even need to be a tree-like
structure; it may form a more general type of directed network, but no cycle is allowed.
Coding the information allows the use of this type of geographical information in
different types of numerical models, like multiple regression (Chapter 10) or canonical
analysis (Chapter 11). In many of these methods, zeros and ones are interchangeable.
This coding method for directional spatial processes will be further developed in
Section 14.3 where it will serve as the basis for the Asymmetric Eigenvector Maps
(AEM) method of spatial analysis.

1.6 Missing data

Ecological data matrices are often plagued by missing data. The latter do not
necessarily result from negligence on the part of the field team; most often, they are
caused by the breakdown of measuring equipment during field surveys, weather events
that prevented sampling sites from being visited on a given date, lost or incorrectly
preserved specimens, improper sampling procedures, and so on.

Three families of solutions are available to cope with this problem for the analysis
of field survey data, if one can make the assumption that the missing values occur at
random in the data set. Most of the approaches mentioned below are discussed by
Little & Rubin (1987), who also proposed methods for estimating missing values in
controlled experiments (when the missing values are only found in the outcome
variable; their Chapter 2) as well as valid model-based likelihood estimation of
missing values for situations where the distribution of missing values does not meet
the randomness assumption stated above.

Missing values may be represented in data matrices by numbers that do not
correspond to possible data values. Codes such as —1 or -9 are often used when the real
data in the table are all positive numbers, as it is the case with species abundance data;
otherwise, —99 or -999, or other such unambiguous codes, may be used. In
spreadsheets, missing values are often represented by bullets or ‘NA’ symbols.
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1 — Delete rows or columns

Delete any row or column of the data matrix (Section 2.1) containing missing values.
If a few rows contain most of the missing values, proceed by rowwise (also called
listwise) deletion; conversely, if most missing values are found in a few variables only,
proceed by columnwise deletion. This is the simplest, yet the most costly method, as it
throws away the valuable information present in the remainder of these rows or
columns.

2 — Accommodate algorithms to missing data

Accommodate the numerical method in such a way that the missing values are skipped
during calculations. For instance, when computing resemblance coefficients among
rows (Q-mode) or columns (R-mode) of the data matrix (Chapter 7), a simple method
is pairwise deletion of missing values. This means, for example, that when computing
a correlation coefficient between variables y; and y,, if the value of the tenth object is
missing for y,, object X is skipped in the computation of this correlation value. When
it comes to comparing y; and ys, if Xy has no missing data for these variables, it is
then kept in the calculation for this pair of variables. However, one must be aware that
covariance and correlation matrices computed in this way may be indefinite (i.e. they
may have negative eigenvalues; Table 2.2).

3 — Estimate missing values

Estimate the missing values, a method called imputation by Little & Rubin (1987).
This is the best strategy when missing values are located all over the data matrix —
contrary to the situation where the missing values are found in a few rows or columns
only, in which case deletion of these rows or columns may be the strategy of choice.
The assumption one has to make when estimating missing values is that the missing
data are not grossly atypical compared to those present in the data set. Methods for
estimating missing data are interesting in cases where the numerical algorithm
required for analysing the data cannot accommodate missing values. Ecologists should
never imagine, however, that the estimated values are ecologically meaningful; as a
consequence, they should refrain from attempting to interpret these numbers in
ecological terms. Ecologists should also keep in mind that the estimation procedure
has not created the missing degrees of freedom that would have accompanied
observations carried out in nature or in the laboratory.

Three groups of methods are available for replacing quantitative missing values.

® 3.1 — The easiest way, which is often used in computer programs, is to replace
missing values by the mean of the variable, estimated from the values present in the
data table. When doing so, one assumes that nothing is known about the data, outside
of the weak assumption mentioned above that the missing value comes from the same
population as the non-missing data. Although this solution produces covariance and
correlation matrices that are positive semidefinite (Section 2.10), the variances and
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covariances are systematically underestimated. One way around this problem is to
select missing value estimates at random from some distribution with appropriate
mean and variance. This is not recommended, however, when the relative positions of
the objects are of interest (principal component analysis; Section 9.1). A variant of the
same method is to use the median instead of the mean; it is more robust in the sense
that it does not assume the distribution of values to be unskewed. It is also applicable
to semiquantitative descriptors. For qualitative descriptors, use the most frequent state
instead of the mean or median.

® 32 — Estimate the missing values by regression. Multiple linear regression
(Section 10.3), with rowwise deletion of missing values, may be used when there are
only a few missing values to estimate. The dependent (response) variable of the
regression is the descriptor with missing value(s) while the independent (explanatory)
variables are the other descriptors in the data table. After the regression equation has
been computed from the objects without missing data, it can be used to estimate the
missing value(s). Using this procedure, one assumes the descriptor with missing values
to be linearly related to the other descriptors in the data table (unless some form of
nonparametric or nonlinear multiple regression is being used) and the data to be
approximately multivariate normal. This method also leads to underestimating the
variances and covariances, but less so than in 3.1. An alternative approach is to use a
regression program allowing for pairwise deletion of missing values in the estimation
of the regression coefficients, although, in that case, a maximum likelihood estimation
of the covariance matrix would be preferable (Little & Rubin, 1987, p. 152 et seq.).

If such a method cannot be used for estimating the covariance matrix and if the
missing values are scattered throughout the data table, an approximate solution may be
obtained as follows. Compute a series of simple linear regressions with pairwise
deletion of missing values, and estimate the missing value from each of these simple
regression equations in turn. The mean of these estimates is taken as the working
estimated value. The assumptions are basically the same as in the multiple regression
case (above). Other methods of imputation are available in specialized R packages; see
Section 1.7.

To estimate missing values in qualitative (nominal) descriptors, use logistic
regression (Section 10.3) instead of linear regression.

® 33 — Interpolate missing values in spatially correlated data. Positive spatial
correlation (Section 1.1) means that near points in time or space are similar. This
property allows the interpolation of missing or otherwise unknown values from the
values of near points in the series. With spatial data, interpolation is the first step of
any mapping procedure, and it may be done in a variety of ways (Subsection 13.2.2),
including the kriging method developed by geostatisticians. The simplest such method
is to assign to a missing data the value of its nearest neighbour. In time series,
interpolation of missing values may be performed using the same methods; see also
Shumway & Stoffer, 1982, and Mendelssohn & Cury, 1987, for a maximum likelihood
method for estimating missing data in a time series using a state-space model.
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Myers (1982, 1983, 1984) proposed a method, called co-kriging, that combines the
power of principal component analysis (Section 9.1) with that of kriging. It allows the
estimation of unknown values of a data series using both the values of the same
variable at neighbouring sites and the known values of other variables, correlated with
the first one, observed at the same or neighbouring points in space; the spatial inter-
relationships of these variables are measured by a cross-variogram. This method is
interesting for the estimation of missing data in broad-scale ecological surveys and to
compute values at unobserved sites on a geographic surface.

1.7 Software

The methods presented in this introductory chapter are implemented in the R language.

1. Corrections for multiple testing (Box 1.1) can be done using the p.adjust() function
of the STATS package.

2. Several R functions use permutation tests. They will be identified in later chapters
where permutation-based statistical methods are presented. For R functions that do not
rely on compiled code for intensive calculations, permutations are produced by the
sample() function of the STATS package. That function can also carry out resampling
with replacement (bootstrapping).

3. All standard statistical distributions, and many others, are available in the STATS
package. To find out about them, type in the R console: help.search("distribution",
package="stats"). Additional statistical distributions are available in other R packages.

4.Ranging and standardization (Subsection 1.5.4), as well as other transformations,
are available in the decostand() function of VEGAN. Variable standardization is also
available through the scale() function of STATS. The Box-Cox transformation
(Subsection 1.5.6) can be done using the boxcox.fit() function of the GEOR package.

5. Helmert contrasts are available in the contr.helmert() function of the STATS
package; polynomial contrasts can be computed using the contr.poly() function of the
same package. Contrast matrices corresponding to actual data files are generated using
the model.matrix() function of the STATS package; this function calls contr.helmert()
or contr.poly() for calculation of the contrasts.

6. Imputation of missing values using a principal component analysis model is
available in function imputePCA() of MISSMDA. Function mice() of package MICE
carries out multivariate imputation by chained equations.



Chapter

2 Matrix algebra:
a summary

2.0 Matrix algebra

Matrix language is the algebraic form best suited to the present book. The following
chapters will systematically use the flexible and synthetic formulation of matrix
algebra, with which many ecologists are already acquainted.

There are many reasons why matrix algebra is especially well suited for ecology.
The format of computer files, including spreadsheets, in which ecological data sets are
now most often recorded, is a matrix format. The use of matrix notation thus provides
an elegant and compact representation of ecological information and matrix algebra
allows operations on whole data sets to be performed. Last but not least,
multidimensional methods, discussed in following chapters, are nearly impossible to
conceptualise and explain without resorting to matrix algebra.

Matrix algebra goes back more than one century: “After Sylvester had introduced
matrices [...], it is Cayley who created their algebra [in 1851]” (translated from
Bourbaki, 1960). Matrices are of great conceptual interest for theoretical formulations,
but it is only with the increased use of computers that matrix algebra became truly
popular with ecologists. The use of computers naturally enhances the use of matrix
notation. Most scientific programming languages are adapted to matrix logic. All
matrix operations described in this chapter can be carried out using advanced statistical

languages such as R, S-PLUS® and MATLAB®.

Ecologists who are familiar with matrix algebra could read Sections 2.1 and 2.2
only, where the vocabulary and symbols used in the remainder of this book are defined.
Other sections of Chapter 2 may then be consulted whenever necessary.

The present chapter is only a summary of matrix algebra. Readers looking for more
complete presentations should consult Bronson (2011), where numerous exercises are
found. Graybill (2001) and Gentle (2007) provide numerous applications in general
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Table 2.1

Ecological data matrix.

Descriptors
Objects A A Y3 Y .. Yp
X1 Y1 Y12 Y13 Yij Yip
X2 Y21 Y22 Y23 Y2j Yap
X3 y31 Y32 Y33 e V3 e 3
X; Yil Yi2 Vi3 Vij vee Yip
Xn ynl ynz yn3 eee yn/ s ynp

statistics. There are also a number of recent books, such as Vinod (2011), explaining
how to use matrix algebra in R. The older book of Green & Carroll (1976) stresses the
geometric interpretation of matrix operations commonly used in statistics.

2.1 The ecological data matrix

Descriptor
Object

As explained in Section 1.4, ecological data are obtained as object-observations or
sampling units, which are described by a set of state values corresponding to as many
descriptors, or variables. Ecological data are generally recorded in a table where each
column j corresponds to a descriptor y; (species present in the sampling unit, physical
or chemical variable, etc.) and each object i (sampling site, sampling unit, locality,
observation) occupies one row. In each cell (i,j) of the table is found the state taken by
object i for descriptor j (Table 2.1). Objects will be denoted by a boldface, lower-case
letter x, with a subscript i varying form 1 to n, referring to object x;. Similarly,
descriptors will be denoted by a boldface, lower case letter y subscripted j, with j
taking values from 1 to p, referring to descriptor y;. When considering two sets of
descriptors, members of the second set will generally have subscripts k from 1 to m.
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Following the same logic, the different values in a data matrix will be denoted by a
doubly-subscripted y, the first subscript designating the object being described and the
second subscript the descriptor. For example, yg3 is the value taken by object 8 for
descriptor 3.

As mentioned in Section 1.4, it is not always obvious which are the objects and
which are the descriptors. In ecology, for example, the different sampling sites
(objects) may be studied with respect to the species found therein. In contrast, when
studying the behaviour or taxonomy of organisms belonging to a given taxonomic
group, the objects are the organisms themselves, whereas one of the descriptors could
be the types of habitat found at different sampling sites. To unambiguously identify
objects and descriptors, one must decide which is the variable defined a priori (i.e. the
objects). When conducting field or laboratory observations, the variable defined a
priori is totally left to the researcher, who decides how many observations will be
included in the study. Thus, in the first example above, the researcher could choose the
number of sampling sites needed to study their species composition. What is observed,
then, are the descriptors, namely the different species present and possibly their
abundances. Another approach to the same problem would be to ask which of the two
sets of variables the researcher could theoretically increase to infinity; this identifies
the variable defined a priori, or the objects. In the first example, it is the number of
samples that could be increased at will — the samples are therefore the objects —
whereas the number of species is limited and depends strictly on the ecological
characteristics of the sampling sites. In the second example, the variable defined a
priori corresponds to the organisms themselves, and one of their descriptors could be
their different habitats (states).

The distinction between objects and descriptors is not only theoretical. One may
analyse either the relationships among descriptors for the set of objects in the study
(R mode analysis), or the relationships among objects given the set of descriptors
(Q mode study). It will be shown that the mathematical techniques that are appropriate
for studying relationships among objects are not the same as those for descriptors. For
example, correlation coefficients can only be used for studying relationships among
descriptors, which are vectors of data observed on samples extracted from populations
with a theoretically infinite number of elements; vector lengths are actually limited by
the sampling effort. It would be incorrect to use a correlation coefficient to study the
relationship between two objects across the set of descriptors; other measures of
association are available for that purpose (Section 7.3). Similarly, when using the
methods of multidimensional analysis that will be described in this book, it is
important to know which are the descriptors and which are the objects, in order to
avoid methodological errors. The results of incorrectly conducted analyses — and
there are unfortunately many in the literature — are not necessarily wrong because, in
ecology, phenomena that are easily identified are usually sturdy enough to withstand
considerable distortion. What is a pity, however, is that the more subtle phenomena,
i.e. the very ones for which advanced numerical techniques are used, could very well
not emerge at all from a study based on inappropriate methodology.
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Linear

algebra

Order

Square
matrix

The table of ecological data described above is an array of numbers known as a
matrix. The branch of mathematics dealing with matrices is linear algebra.

Matrix Y is a rectangular, ordered array of numbers y;;, set out in rows and columns
as in Table 2.1:

Yiudie .. Vi
Yoau VY oo Y2y

Y = [y,‘j] =17 : 2.n

.

Yn1 Y2 o o o Ynp

There are n rows and p columns. When the order of the matrix (also known as its
dimensions or format) must be stated, a matrix of order (n x p), which contains n x p
elements, is written Y,,,. As above, any given element of Y is denoted y;;, where
subscripts i and j identify the row and column, respectively (always in that
conventional order).

In linear algebra, ordinary numbers are called scalars, to distinguish them from
matrices.

The following notation will be used hereinafter: a matrix will be symbolised by a
capital letter in boldface, such as Y. The same matrix could also be represented by its
general element in italics and in brackets, such as[y;l, or alternatively by an
enumeration of all its elements, also in italics and in brackets, as in eq. 2.1. Italics will
only be used for algebraic symbols, not for actual numbers. Occasionally, other
notations than brackets may be found in the literature, i.e. (v;), ( ylj. ), { yl.j} , , or

vi
(ivj) -

Any subset of a matrix can be explicitly recognized. In the above matrix (eq. 2.1),
for example, the following submatrices could be considered:

MTIRAT)
Yo Va2

a square matrix

Y12
Yn

a row matrix [y” Vip o oo ylp} , or a column matrix

¥yn 2;
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Matrix notation simplifies the writing of data sets. It also corresponds to the way
computers work. Indeed, most programming languages are designed to input data as
matrices (arrays) and manipulate them either directly or through a simple system of
subscripts. This greatly simplifies programming the calculations. Accordingly,
computer packages generally input data as matrices. In addition, many of the statistical
models used in multidimensional analysis are based on linear algebra, as will be seen
later. So, it is convenient to approach them with data already set in matrix format.

2.2 Association matrices

Two important matrices may be derived from the ecological data matrix: the
association matrix among objects and the association matrix among descriptors. An
association matrix is denoted A, and its general element g;;. Although Chapter 7 is
entirely devoted to association matrices, it is important to mention them here in order
to better understand the purpose of methods presented in the remainder of the present
chapter.

Using data from matrix Y (eq. 2.1), one may examine the relationship between the
first two objects x; and X,. In order to do so, the first and second rows of matrix Y

[y“ ylZ"'ylp} and [yn y22"'y2p}

are used to calculate a measure of association (similarity or distance: Chapter 7), to
assess the degree of resemblance between the two objects. This measure, which
quantifies the strength of the association between the two rows, is denoted a;,. In the
same way, the association of x; with X3, X4, ..., Xp, can be calculated, as can also be
calculated the association of x, with all other objects, and so on for all pairs of objects.
The coefficients of association for all pairs of objects are then recorded in a table,
ordered in such a way that they could be retrieved for further calculations. This table is
the association matrix A among objects:

A Ay oo Ay,

Ay Ayy o e ey,

A =1|- . 2.2)

nn

.

nn

flnl a,p e da

A most important characteristic of any association matrix is that it has a number of
rows equal to its number of columns, this number being equal here to the number of
objects n. The number of elements in the above square matrix is therefore n?.
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Similarly, one may wish to examine the relationships among descriptors. For the
first two descriptors, y; and y,, the first and second columns of matrix Y

Y11 Y12
Va1 Y2
and
¥yn1¥ ¥yn2¥

are used to calculate a measure of dependence (Chapter 7) which assesses the degree
of association between the two descriptors. In the same way as for the objects, p x p
measures of association can be calculated among all pairs of descriptors and recorded
in the following association matrix:

Ay Ay oo alp
Ay Ayy e ee a2p

A,=1" : 2.3)

@y @y v v ay)

Association matrices are most often (but not always, see Section 2.3) symmetric,
with elements in the upper right triangle being equal to those in the lower left triangle
(a;; = a;)). Elements a;; on the diagonal measure the association of a row or a column of
matrix Y with itself. In the case of objects, the measure of association a;; of an object
with itself usually takes a value of either 1 (similarity coefficients) or O (distance
coefficients). Concerning the association between descriptors (columns), the
correlation a;; of a descriptor with itself is 1, whereas the (co)variance provides an
estimate a;; of the variability among the values of descriptor i.

At this point of the discussion, it should thus be noted that the data, to which the
models of multidimensional analysis are applied, are not only matrix Y,,, = [objects x
descriptors] (eq. 2.1), but also the two association matrices A, = [objects x objects]
(eq.2.2) and A, = [descriptors x descriptors] (eq. 2.3), as shown in Fig. 2.1.

2.3 Special matrices

Matrices with an equal number of rows and columns are called square matrices
(Section 2.1). These, as will be seen in Sections 2.6 et seq., are the only matrices for
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Figure 2.1
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Data analysed in numerical ecology include matrix Y,,, = [objects x descriptors] (eq. 2.1) as
well as the two association matrices A,,, = [objects x objects] (eq. 2.2) and A, = [descriptors x
descriptors] (eq. 2.3). The Q and R modes of analysis are defined in Section 7.1.

which it is possible to compute a determinant, an inverse, and eigenvalues and
eigenvectors. As a corollary, these operations can be carried out on association
matrices, which are square matrices.

Some definitions pertaining to square matrices now follow. In matrix B,,,, of order
(n x n) (often called “square matrix of order n” or “matrix of order n”),

bll blZ ¢t bln

by by by,
B, =[b]=]" . 2.4)
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the diagonal elements are those with identical subscripts for the rows and columns
(b;;). They are located on the main diagonal (simply called the diagonal) which, by
convention, goes from the upper left to the lower right corners. The sum of the
Trace diagonal elements is called the trace of the matrix.
Diagonal A diagonal matrix is a square matrix where all non-diagonal elements are zero.
matrix Thus,
300
070
000
is a diagonal matrix. Diagonal matrices that contain on their diagonal values coming
from a vector [x;] are noted D(x). Special examples used later in the book are the
diagonal matrix of standard deviations D (0), the diagonal matrix of eigenvalues D (),
also noted A, and the diagonal matrix of singular values D (w;) also noted W.
Identity A diagonal matrix where all diagonal elements are equal to unity is called a unit
matrix matrix or identity matrix. It is denoted D (1) or I:
10...0]
01...0
D(1) =I=|" : 2.5)
00...1
This matrix plays the same role, in matrix algebra, as the number 1 in ordinary algebra,
i.e. it is the neutral element in multiplication (e.g. IB =B, or Bl = B).
Scalar Similarly, a scalar matrix is a diagonal matrix of the form
matrix

70...0
07...0

=71

00...7

All the diagonal elements are identical since a scalar matrix is the unit matrix
multiplied by a scalar (here, of value 7).
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Null
matrix

Triangular
matrix

Transpose

A matrix, square or rectangular, whose elements are all zero is called a null matrix
or zero matrix. It is denoted 0 or [0].”

A square matrix with all elements above (or below) the diagonal being zero is
called a lower (or upper) triangular matrix. For example,

123
045
006

is an upper triangular matrix. These matrices are very important in matrix algebra
because their determinant (Section 2.6) is equal to the product of all terms on the main
diagonal (i.e. 24 in this example). Diagonal matrices are also triangular matrices.

The transpose of a matrix B with format (n x p) is denoted B' and is a new matrix
of format (p x n) in which b;'j = bji . In other words, the rows of one matrix are the
columns of the other. Thus, the transpose of matrix

1 2 3
B.|456
7 8 9
10 11 12
1S matrix
14710
B'=125811
36912

Transposition is an important operation in linear algebra, and also in ecology where a
data matrix Y (eq. 2.1) may be transposed to study the relationships among descriptors
after the relationships among objects have been analysed (or conversely).

* Although the concept of zero was known to Babylonian and Mayan astronomers, inclusion of

the zero in a decimal system of numeration finds its origin in India, in the eighth century A.D. at
least (Ifrah, 1981). The ten Western-world numerals are also derived from the symbols used by
ancient Indian mathematicians. The word zero comes from the Arabs, however. They used the
word sifr, meaning “empty”, to refer to a symbol designating nothingness. The term turned into
cipher, and came to denote not only zero, but all 10 numerals. Sifr is at the root of the
medieval latin zephirum, which became zefiro in Italian and was then abbreviated to zero. It is
also the root of the medieval latin cifra, which became chiffre in French where it designates any
of the 10 numerals.
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Symmetric
matrix

Non-
symmetric
matrix

Skew-
symmetric
matrix

A square matrix that is identical to its transpose is symmetric. This is the case when

corresponding terms b;; and bj;, on either side of the diagonal, are equal. For example,

146
425
653

is symmetric since B' = B. All symmetric matrices are square.

It was mentioned in Section 2.2 that association matrices are generally symmetric.
Non-symmetric (or asymmetric) matrices may be encountered, however. This happens,
for example, when each coefficient in the matrix measures the ecological influence of
an organism or a species on another, these influences being asymmetrical (e.g. A is a
predator of B, B is a prey of A). Asymmetric matrices are also found in behaviour
studies, serology, DNA pairing analysis, etc.

Matrix algebra tells us that any non-symmetric matrix may be expressed as the sum
of two other matrices, one symmetric and one skew-symmetric, without loss of
information. Consider for instance the two numbers 1 and 3, found in opposite
positions (1,2) and (2,1) of the first matrix in the following numerical example:

112 2 1 2015 10 0 -10 05 10
310-1_120 1 10-25_,110 0 -10 I5
1 210 15 10 1 15 -05 10 0 -15
0-4 3 1 10-25 15 1 -10-15 15 0

Non-symmetric ~ Symmetric (average) Skew-symmetric

The symmetric part is obtained by averaging these two numbers: (1 + 3)/2=2.0. The
skew-symmetric part is obtained by subtracting one from the other and dividing by 2:
(1-3)2= -10 and (3-1)/2=+1.0 so that, in the skew-symmetric matrix,
corresponding elements on either side of the diagonal have the same absolute values
but opposite signs. When the symmetric and skew-symmetric components are added,
the result is the original matrix: 2 — 1 = 1 for the upper original number, and 2 + 1 =3
for the lower one. Using letters instead of numbers, one can derive a simple algebraic
proof of the additivity of the symmetric and skew-symmetric components. The
symmetric component can be analysed using the methods applicable to symmetric
matrices (for instance, metric or non-metric scaling, Sections 9.3 and 9.4), while
analysis of the skew-symmetric component requires methods especially developed to
assess asymmetric relationships. Basic references are Coleman (1964) in the field of
sociometry and Digby & Kempton (1987, Ch. 6) in numerical ecology. An application
to biological evolution is found in Casgrain et al. (1996). Relevant biological or
ecological information may be found in the symmetric portion only and, in other
instances, in the skew-symmetric component only.
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2.4 Vectors and scaling

Vector

Another matrix of special interest is the column matrix, with format (n x 1), which is
also known as a vector. Some textbooks restrict the term “vector” to column matrices,
but the expression row vector (or simply vector, as used in some instances in
Chapter 4) may also designate row matrices, with format (1 x p).

A (column) vector is noted as follows:

b=1|" (2.6)

bn

A vector graphically refers to a directed line segment. It also forms a mathematical
entity on which operations can be performed. More formally, a vector is defined as an
ordered n-tuple of real numbers, i.e. a set of n numbers with a specified order. The n
numbers are the coordinates of a point in a n-dimensional Euclidean space, which may
be seen as the end-point of a line segment starting at the origin.

For example, (column) vector [4 3]' is an ordered doublet (or 2-tuple) of two real

numbers (4, 3), which may be represented in a two-dimensional Euclidean space:

*(43)

This same point (4, 3) may also be seen as the end-point of a line segment starting at
the origin:

“43)
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These figures illustrate the two possible representations of a vector; they also stress the
ordered nature of vectors, since vector [3 4]' is different from vector [4 3]'.

Using the Pythagorean theorem, it is easy to calculate the length of any vector. For
example, the length of vector [4 3]' is that of the hypotenuse of a right triangle with

base 4 and height 3:
3
-« 4i—>
Length The length (or norm) of vector [4 3]' is therefore 42+ 32 = 5 it is also the length
Norm (norm) of vector [3 4]'. The norm of vector b is noted ||b .

The comparison of different vectors, as to their directions, often requires an

Scaling operation called scaling. In the scaled vector, all elements are divided by the same
Normali- characteristic value. A special type of scaling is called normalization. In the
zation normalized vector, each element is divided by the length of the vector:

normalization

N

Normalized The importance of normalization lies in the fact that the length of a normalized vector
vector is equal to unity. Indeed, the length of vector [4/5 3/5]', calculated by means of the
Pythagorean formula, is /(4/5)2+ (3/5)2 = 1.

The example of doublet (4, 3) may be generalized to any n-tuple (by, bs, ..., b,),

which specifies a vector in n-dimensional space. The length of the vector is
[[2 2 2 . . .
b, +b,+ ... + b, ,so that the corresponding normalized vector is:
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2 2 2 ro
b,/ b +b5+...+b, b,
b,/ bl + b+ ...+ b b,

. - ! : 27

/bf+b§+ +bi
b
b,/ b +bs+ ... +b -

The length of any normalized vector, in n-dimensional space, is 1.

=

2.5 Matrix addition and multiplication

Recording the data in table form, as is usually the case in ecology, opens the possibility
of performing operations on these tables. The basic operations of matrix algebra
(algebra, from the Arabic “al-jabr” which means reduction, is the theory of addition
and multiplication) are very natural and familiar to ecologists.

Numerical example. Fish (3 species) were sampled at five sites in a lake, once a month
during the summer (northern hemisphere). In order to get a general idea of the differences
among sites, total numbers of fish caught at each site are calculated over the whole summer:

July August September Whole summer
Sitel | 1 5 35 15 23 10 48 78 170 64 106 215
Site2 |14 2 0 54 96 240 2 0 0 70 98 240
Site3 | 0 31 67|t 0 3 9|*| 0 11 14| = 0 45 90

Site4 | 96 110 78 12 31 27 25 13 12 133 154 117
Site5 [ 0 0 O 8 14 6 131 96 43 139 110 49

spl sp2 sp3  spl sp2 sp3 spl sp2 sp3 spl sp2 sp3

This operation is known as matrix addition. Note that only matrices of the same
order can be added together. This is why, in the first matrix, site 5 was included with
abundances of 0 to indicate that no fish had been caught there in July although site 5
had been sampled. Adding two matrices consists in a term-by-term addition. Matrix
addition is associative and commutative; its neutral element is the null matrix 0.

To study seasonal changes in fish productivity at each site, one possible approach would be
to add together the terms in each row of each monthly matrix. However, this makes sense only if
the selectivity of the fishing gear (say, a net) is comparable for the three species. Let us imagine
that the efficiency of the net was 50% for species 2 and 25% for species 3 of what it was for
species 1. In such a case, values in each row must be corrected before being added. Correction
factors would be as follows: 1 for species 1, 2 for species 2, and 4 for species 3. To obtain
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Scalar
product

estimates of total fish abundances, correction vector [1 2 4]' is first multiplied by each row of
each matrix, after which the resulting values are added. Thus, for the first site in July:

Site 1 Correction Total fish abundance
July factors Site 1, July

1
[1535] 2 (1x1)+ (5x2) + (35%x4) = 1+10+140 = 151

4

This operation is known in linear algebra as a scalar product because this product of
two vectors produces a scalar.

In physics, there is another product of two vectors, called the external or vector
product, where the multiplication of two vectors results in a third one, which is
perpendicular to the plane formed by the first two. This product is not used in
multidimensional analysis. It is however important to know that, in the literature, the
expression “vector product” may be used for either that product or the scalar product
of linear algebra, and that the scalar product is also called “inner product” or “dot
product”. The vector product (of physics) is sometimes called “cross product”. This
last expression is also used in linear algebra, for example in “matrix of sum of squares
and cross products” (SSCP matrix), which refers to the product of a matrix with its
transpose.

In matrix algebra, and unless otherwise specified, multiplication follows a
convention that is illustrated by the scalar product above: in this product of a column
vector by a row vector, the row vector multiplies the column vector or, which is
equivalent, the column vector is multiplied by the row vector. This convention, which
should be kept in mind, will be followed in the remainder of the book.

The result of a scalar product is a number, which is equal to the sum of the products
of those elements with corresponding order numbers. The scalar product is designated
by a dot, or is written <a,b>, or else there is no sign between the two terms. For
example:

bc=b'ec= [bl by ... bp} | =bicy+byey+ ... +bpcp=ascalar. 2.8)

[p]

The rules for computing scalar products are such that only vectors with the same
numbers of elements can be multiplied.
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Orthogonal
vectors

In analytic geometry, it can be shown that the scalar product of two vectors obeys
the relationship:

b' * ¢ = (Iength of b) x (length of ¢) x cos 6 29

When the angle between two vectors is 6 = 90°, then cos 8 = 0 and the scalar product
b' e ¢ =0. As a consequence, two vectors whose scalar product is zero are orthogonal
(i.e. at right angle). This property will be used in Section 2.9 to compute eigenvectors.
A matrix whose (column) vectors are all orthogonal to one another is called
orthogonal. For any pair of vectors b and ¢ with values centred on their respective
mean, cos 0 = r(b, ¢) where r is the correlation coefficient (eq. 4.7).

Gram-Schmidt orthogonalization is a procedure to make a vector ¢ orthogonal to a vector b
that has first been normalized (eq.2.7); ¢ may have been normalized or not. The procedure
consists of two steps: (1) compute the scalar product sp = b'c. (2) Make ¢ orthogonal to b by
computing €y, = ¢ — spb. Proof that ¢4, is orthogonal to b is obtained by showing that
b'Crho = 0: b'Corno = b'(c — spb) = b'c — spb'b. Since b'c = sp and b'b = 1 because b has been
normalized, one obtains sp — (sp x 1) = 0. In this book, in the iterative procedures for ordination
algorithms (Tables 9.5 and 9.8), Gram-Schmidt orthogonalization will be used in the step where
the vectors of new ordination object scores are made orthogonal to previously found vectors.

Numerical example. Returning to the above example, it is possible to multiply each row of
each monthly matrix with the correction vector (scalar product) in order to compare total
monthly fish abundances. This operation, which is the product of a vector by a matrix, is a
simple extension of the scalar product (eq.2.8). The product of the July matrix B with the
correction vector ¢ is written as follows:

1 535 1(1) + 5(2) +35(4) 151
14 2 ol|1] |14+ 2(2)+ 0(4) 18
0 3167[[2] =| 0(1) + 31(2) +67(4)| =330
96 110 78| 4|  [96(1) + 110(2) + 78 (4) 628
0 00 0(1) + 0(2)+ 0(4) 0

The product of a vector by a matrix involves calculating, for each row of matrix B,
a scalar product with vector c. Such a product of a vector by a matrix is only possible if
the number of elements in the vector is the same as the number of columns in the
matrix. The result is no longer a scalar, but a column vector with dimension equal to
the number of rows in the matrix on the left. The general formula for this product is:

b, b, ...blq c bicy+ bpo,+ o0+ blch

b,, by, ---bzq c, byci+ byoy+ oo+ b2ch
Bygocq= =

¥bpl bp2 N bpr kA ¥bp]c] + bp2c2 + + bpqc%
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Using summation notation, this equation may be rewritten as:

o _
Eblkck

k=1

B, *c, = (2.10)

q
S b
k=1

The product of two matrices is the logical extension of the product of a vector by a
matrix. Matrix C, to be multiplied by B, is simply considered as a set of column
vectors ¢y, €y, ...; eq. 2.10 is repeated for each column. Following the same logic, the
resulting column vectors are juxtaposed to form the result matrix. Matrices to be
multiplied must be conformable, which means that the number of columns in the
matrix on the left must be the same as the number of rows in the matrix on the right.
For example, given

102 12

C =
B 311 and 2 1
121 31
-132 C=1[d e

the product of B with each of the two columns of C is:

1(1) +0(2) +2(3) 7 1(2) +0(1) +2(=1) 0
Bd=| 312 +1(3)| _ | 8] .4 Bec| 32 +1()+1(-1)| _ |6
1(1) +2(2) +1(3) 8 1(2) +2(1) +1(=1) 3
~1(1) +3(2) +2(3) 11 ~1(2) +3(1) +2(=1) -1

so that the product matrix is:

BC=

— 00 00
W AN O

|
—_
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Hadamard
product

Thus, the product of two conformable matrices B and C is a new matrix with the same
number of rows as B and the same number of columns as C. Element dl-j, in row i and
column j of the resulting matrix, is the scalar product of row i of B with column j of C.

The only way to master the mechanism of matrix products is to go through some
numerical examples. As an exercise, readers could apply the above method to two
cases which have not been discussed so far, i.e. the product (be) of a row vector ¢ by a
column vector b, which gives a matrix and not a scalar, and the product (bC) of a
matrix C by a row vector b, which results in a row vector. This exercise would help to
better understand the rule of conformability.

As supplementary exercises, readers could calculate numerical examples of the
eight following properties of matrix products, which will be used later in the book:

(1) B, Cy D,y = Ep, of order (p x ).

(2) The existence of product BC does not imply that product CB exists, because
matrices are not necessarily conformable in the reverse order; however, C'C and CC'
always exist.

(3) BC is generally not equal to CB, i.e. matrix products are not commutative.
(4) B> = B x B exists only if B is a square matrix.

(5) [AB]' = B'A' and, more generally, [ABCD...]'=...D'C'B'A'".

(6) The products XX' and X'X always give rise to symmetric matrices.

(7) In general, the product of two symmetric but different matrices A and B is not a
symmetric matrix.

(8) If B is an orthogonal matrix (i.e. a rectangular matrix whose column vectors are
orthogonal to one another), then B'B =D, where D is a diagonal matrix. All non-
diagonal terms are zero because of the property of orthogonality, while the diagonal
terms are the squares of the lengths of the column vectors. That B'B is diagonal does
not imply that BB' is also diagonal. BB' = B'B only when B is square and symmetric.

The Hadamard or elementwise product of two matrices of the same order (n x p) is
the cell-by-cell product of these two matrices. For example,

12 7 8 7 16
forA=|3 4| andB= |9 10|, A*B = (27 40
56 11 12 55172

The Hadamard product may be noted by different operator signs, depending on the
author. The sign used in this book is *, as in the R language.
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The last type of product to be considered is that of a matrix or vector by a scalar. It
is carried out according to the usual algebraic rules of multiplication and factoring,
i.e. for matrix B = [bjk] or vector ¢ = [Cj], dB = [dbjk] and dc = [dcj]. For example:

Ld-be = -l

The terms premultiplication and postmultiplication may be encountered in the
literature. Product BC corresponds to premultiplication of C by B, or to
postmultiplication of B by C. Unless otherwise specified, it is always premultiplication
which is implied and BC simply reads: B multiplies C, or C is multiplied by B.

2.6 Determinant

It is often necessary to transform a matrix into a new one, in such a way that the
information of the original matrix is preserved, while new properties that are essential
for subsequent calculations are acquired. Such new matrices, which are linearly
derived from the original matrix, will be studied in following sections under the names
inverse matrix, canonical form, etc.

The new matrix must have a minimum number of characteristics in common with
the matrix from which it is linearly derived. The connection between the two matrices
is a matrix function f(B), whose properties are the following:

(1) The determinant function must be multilinear, which means that it should
respond linearly to any change taking place in the rows or columns of matrix B.

(2) Since the order of the rows and columns of a matrix is specified, the function
should be able to detect, through alternation of signs, any change in the positions of
rows or columns. As a corollary, if two columns (or rows) are identical, f(B) =0;
indeed, if two identical columns (or rows) are interchanged, f(B) must change sign but
it must also remain identical, which is possible only if f(B) = 0.

(3) Finally, there is a scalar associated with this function; it is called its norm or
value of the determinant function. For convenience, the norm is calibrated in such a
way that the value associated with the unit matrix Lis I, i.e. f(I) = 1.

It can be shown that the determinant, as defined below, is the only function that has
the above three properties, and that it only exists for square matrices. Therefore, it is
not possible to calculate a determinant for a rectangular matrix. The determinant of
matrix B is denoted det B, det(B), or, more often, |B | :
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Expansion
by minors

by, by, ...b,

by by o .. by,

bnl n2 **° bnn

b

The value of function | B | is a scalar, i.e. a number.

What follows is the formal definition of the value of a determinant. The way to compute it in
practice is explained later. The value of a determinant is calculated as the sum of all possible
products containing one, and only one, element from each row and each column; these products
receive a sign according to a well-defined rule:

Bl = S (b, by, .-b,,)

where indices j{, j, ..., j,, go through the n! permutations of the numbers 1, 2, ..., n. The sign
depends on the number of inversions, in the permutation considered, relative to the sequence
1,2, ..., n: if the number of inversions is even, the sign is (+) and, if the number is odd, the sign

is (-).

The determinant of a matrix of order 2 is calculated as follows:

by, b
Bl = | 72| = b, by, —b,by, @.11)
21 722

In accordance with the formal definition above, the scalar so obtained is composed of
2! =2 products, each product containing one, and only one, element from each row
and each column.

The determinant of a matrix of order higher than 2 may be calculated using
different methods, among which is the expansion by minors. When looking for a
determinant of order 3, a determinant of order 3 — 1 =2 may be obtained by crossing
out one row (i) and one column (j). This lower-order determinant is the minor
associated with b;;:

crossing out row 1 and column 2

12 713 b21 b23

by, by, b
(2.12)

b21 b22 b23 - b31 b33

by, by b

33 minor ()fb12
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Cofactor

The minor being here a determinant of order 2, its value is calculated using eq. 2.11.
When multiplied by (1)’ */, the minor becomes a cofactor. Thus, the cofactor of

b12 is:

b, b b, b
cof b, = (_1)1+2 21 P23 | _ _| P21 P23
b3y by by b33

The expansion by minors of a determinant of order # is:

n
B| = E bl.jcof bij for any column j

i=1

B| = Ebl.jcofbij for any row i
j=1

(2.13)

(2.14)

The expansion may involve the elements of any row or any column, the result being
always the same. Thus, going back to the determinant of the matrix on the left in

eq. 2.12, expansion by the elements of the first row gives:

IB| = b,,cof by, +b,,cof by, + b scof by

1| by b23 2| by b23

+b, (=)'

1
Bl = b, (-1) "
b32 33 b31 33

+b5(-1)

2.15)

143 | by by,
by, by,

Numerical example. Equation 2.15 is applied to a simple numerical example:

+3(-n'*?

45
78

b2 3 1+1|5 6 1+2| 4 6

45 6|=1(D 5 10 +2(-1) 7 10

7 810

12 3

45 6| =1(5x10-6%x8)-2(4x10-6x7) +3(4x8-5x7)= -3
7 810

The amount of calculations required to expand a determinant increases very
quickly with increasing order n. This is because the minor of each cofactor must be
expanded, the latter producing new cofactors whose minors are in turn expanded, and
so forth until cofactors of order 2 are reached. Another, faster method is normally used
to calculate determinants by computer. Before describing this method, however, some
properties of determinants must be examined; in all cases, column may be substituted

for row.
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Pivotal
condensation

(1) The determinant of a matrix is equal to that of its transpose since a determinant
may be computed from either the rows or columns of the matrix: |A'| = |A].

(2) If two rows are interchanged, the sign of the determinant is reversed.

(3) If two rows are identical, the determinant is null (corollary of the second
property; see beginning of the present section).

(4) If a scalar is a factor of one row, it becomes a factor of the determinant (since it
appears once in each product).

(5) If a row is a multiple of another row, the determinant is null (corollary of
properties 4 and 3, i.e. factoring out the multiplier produces two identical rows).

(6) If all elements of a row are 0, the determinant is null (corollary of property 4).

(7) If a scalar c is a factor of all rows, it becomes a factor ¢" of the determinant
(corollary of property 4),i.e. |¢B| =c"|B]|.

(8) If a multiple of a row is added to another row, the value of the determinant
remains unchanged.

(9) The determinant of a triangular matrix (and therefore also of a diagonal matrix)
is the product of its diagonal elements.

(10) The sum of the products of the elements of a row with the corresponding
cofactors of a different row is equal to zero.

(11) For two square matrices of order n, |A|+|B| = |AB|.

Properties 8 and 9 can be used for rapid computer calculation of the value of a
determinant; the method is called pivotal condensation. The matrix is first reduced to
triangular form using property 8. This property allows the stepwise elimination of all
terms on one side of the diagonal through combinations of multiplications by a scalar,
and addition and subtraction of rows or columns. Pivotal condensation may be
performed in either the upper or the lower triangular parts of a square matrix. If the
lower triangular part is chosen, the upper left-hand diagonal element is used as the first
pivot to modify the other rows in such a way that their left-hand terms become zero.
The technique consists in calculating by how much the pivot must be multiplied to
cancel out the terms in the rows below it; when this value is found, property 8 is used
with this value as multiplier. When all terms under the diagonal element in the first
column are zero, the procedure is repeated with the other diagonal terms as pivots, to
cancel out the elements located under them in the same column. Working on the pivots
from left to right insures that when values have been changed to 0, they remain so.
When the whole lower triangular portion of the matrix is zero, property 9 is used to
compute the determinant which is then the product of the modified diagonal elements.
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Numerical example. The same numerical example as above illustrates the method:

123 1 23 1 2 3 1 23
456/~/0-3-6/=]0-3 6/=|0-3-6
7 810 7 810 0-6-11 00 1
a b c
a: (row 2 -4 xrow 1) b: (row 3 -7 x row 1) c: (row 3 -2 x row 2)

The determinant is the product of the diagonal elements: 1 x (-3) x 1 = (-3).

2.7 Rank of a matrix

A square matrix contains n vectors (rows or columns), which may be linearly
independent or not (for the various meanings of “independence”, see Box 1.1). Two
vectors are linearly dependent when the elements of one are proportional to the

elements of the other. For example:

-4 2 -4 2
_6| and | 3| are linearly dependent, since |_g| = -2|3
-8 4 -8 4

Similarly, a vector is linearly dependent on two others, which are themselves
linearly independent, when its elements are a linear combination of the elements of the

other two. For example:

-1| |-1 1
3|>| o] and |2
4 [ 1 -3

illustrate a case where a vector is linearly dependent on two others, which are

themselves linearly independent, since
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Rank of
a square
matrix

Rank of a
rectangular
matrix

The rank of a square matrix is defined as the number of linearly independent row
vectors (or column vectors) in the matrix. For example:

*—l 11 (=2 x column 1) = column 2 + (3 x column 3)
3 0-2 or:tow 1 =row 2 —row 3

|4 1-3 rank =2

*_2 1 4 (=2 x column 1) = (4 x column 2) = column 3

2 1 4 or:row 1 =row 2 =row 3

-2 1 4 rank =1

According to property 5 of determinants (Section 2.6), a matrix whose rank is lower
than its order has a determinant equal to zero. Finding the rank of a matrix may
therefore be based on the determinant of the lower-order submatrices it contains. The
rank of a square matrix is the order of the largest square submatrix with non-zero
determinant that it contains; this is also the maximum number of linearly independent
vectors found among the rows or the columns.

12 3
4 5 6| = —-3=0,so0 that the rank = 3
7 810
-1-1 1 -1 -1 -3
30-2(=0 30
4 1-3 rank = 2

The determinant can be used to diagnose the independence of the vectors forming a
matrix X. For a square matrix X (symmetric or not), all row and column vectors are
linearly independent if det(X) = 0.

Linear independence of the vectors in a rectangular matrix X with more rows than
columns (n > p) can be determined from the covariance matrix S computed from X
(eq. 4.6): if det(S) = 0, all column vectors of X are linearly independent. This method
of diagnosis of the linear independence of the column vectors requires, however, a
matrix X with n> p; if n < p, det(S) = 0.

Numerical example 1. It is possible to determine the rank of a rectangular matrix.
Several square submatrices may be extracted from a rectangular matrix, by
eliminating rows or/and columns from the matrix. The rank of a rectangular matrix is
the highest rank of all the square submatrices that can be extracted from it. A first
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example illustrates the case where the rank of a rectangular matrix is equal to the
number of rows:

2010-1-2 3 201
12200 1-1|~|122]|=5 rank =
0123 1-10 01 2

Numerical example 2. In this example, the rank is lower than the number of rows:

21 3 4 21 3 2 1 4 2 34 1 3 4

1 630[7|-163=|-160[=|-130/=|6230[=0

120-3 8 120 -3 120 8 1-3 8 20 -3 8
2123 rank = 2

rank <3 —

-1 6

In this case, the three rows are clearly linearly dependent: (2 x row 1) + (3 x row 2) =
row 3. Since it is possible to find a square matrix of order 2 that has a non-null
determinant, the rank of the rectangular matrix is 2.

In practice, singular value decomposition (SVD, Section 2.11) can be used to
determine the rank of a square or rectangular matrix: the rank is equal to the number of
singular values larger than zero. Numerical example 2 will be analysed again in
Application 1 of Section2.11. For square symmetric matrices like covariance
matrices, the number of nonzero eigenvalues can also be used to determine the rank of
the matrix; see Section 2.10, Second property.

2.8 Matrix inversion

In algebra, division is expressed as either ¢ + b, or ¢/b, or ¢ (1/b), or ¢ b7, In the last
two expressions, division as such is replaced by multiplication with a reciprocal or
inverse quantity. In matrix algebra, the division operation of C by B does not exist.
The equivalent operation is multiplication of C with the inverse or reciprocal of matrix
B. The inverse of matrix B is denoted B~'; the operation through which it is computed
is called the inversion of matrix B.

To serve its purpose, matrix B! must be unique and the relation BB ' =B 'B=1I
must be satisfied. It can be shown that only square matrices have unique inverses. It is
also only for square matrices that the relation BB~ = B'B is satisfied. Indeed, there
are rectangular matrices B for which several matrices C can be found, satisfying for
example CB =1 but not BC =1. There are also rectangular matrices for which no
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matrix C can be found such that CB = I, whereas an infinite number of matrices C may
exist that satisfy BC = I. For example:

c=[131 CB =1 BC =1
L1 251
B=1_10
31 c=|4154 CB =1 BC =1
7256

Generalized inverses can be computed for rectangular matrices by singular value
decomposition (Section 2.11, Application 3). Note that several types of generalized
inverses, described in textbooks of advanced linear algebra, are not unique.

Inverse of To calculate the inverse of a square matrix B, the adjugate or adjoint matrix of B is
a square first defined. In the matrix of cofactors of B, each element b;; is replaced by its cofactor
matrix (cof byj; see Section 2.6). The adjugate matrix of B is the transpose of the matrix of
cofactors:

by, by ...by, cof by, cof b, ...cof b,

by by .. by, cof by, cof by, ...cof b,
— . . (2.16)

b, b,...b, cof b, cof b,, ...cof b,k

matrix B adjugate matrix of B

In the case of second order matrices, cofactors are scalar values, e.g.cof byy = by,
cof b12 = —b21 , etc.

The inverse of matrix B is the adjugate matrix of B divided by the determinant
| B | . The product of the matrix with its inverse gives the unit matrix:

cof by, cof by, .. .cof b, | [b, by, ... b, ]
cof by, cof by, ...cof b, by, by ... by,

I

1 =1

[B| 2.17)
cof b, cof b,, ...cofb,,k b, b,...b,

-1

B B
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Singular
matrix

All diagonal terms resulting from the multiplication B~'B (or BB™!) are of the form
Ebi].cof b;;, which is the expansion by minors of a determinant (not taking into
account, at this stage, the division of each element of the matrix by |B|). Each
diagonal element consequently has the value of the determinant |B| (eq.2.14). All

other elements of matrix B~'B are sums of the products of the elements of a row with
the corresponding cofactors of a different row. According to property 10 of
determinants (Section 2.6), each non-diagonal element is therefore null. It follows that:

Bl 0 ...0|] [10...0
0o Bl...0| [01...0

B'B=|- iy | =1 (2.18)

10 0 ...|B|]] [00...1

An important point is that B! exists only if |B| = 0. A square matrix with a null
determinant is called a singular matrix; it has no ordinary inverse (but see singular
value decomposition, Section 2.11). Matrices that can be inverted are called
nonsingular.

Numerical example. The numerical example of Sections 2.6 and 2.7 is used again to
illustrate the calculations:

~N B~ =
A W

2
5
8 10

The determinant is already known (Section 2.6); its value is —3. The matrix of cofactors is
computed, and its transpose (adjugate matrix) is divided by the determinant to give the inverse
matrix:

2 2-3 2 4-3 | 2 4-3

4-11 6 2-11 6 3| 2-11 6

-3 6-3 -3 6-3 -3 6-3
matrix of cofactors adjugate matrix inverse of matrix

As for the determinant (Section 2.6), various methods exist for quickly inverting
matrices using computers; they are especially useful for matrices of higher ranks.
Description of these methods, which are available in computer packages, is beyond the
scope of the present book. A popular method is briefly explained here; it is somewhat
similar to the pivotal condensation presented above for determinants.
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Gauss-
Jordan

Inversion of matrix B may be conducted using the method of Gauss-Jordan. To do so, matrix
B, « y is first augmented to the right with a same-size identity matrix I, thus creating a n x 2n
matrix. This is illustrated for n = 3:

by,b,b5;100
by by, b3 010
by bsyy b33 001

If the augmented matrix is multiplied by matrix C, 4 ), and if C = B!, then the resulting matrix
(n x 2n) has an identity matrix in its first n columns and matrix C = B! in the last n columns.

-1 -1
[C=B][B , I ]J=[1,C=B]]
€1y €1p C3|| L1y bip b3 100 100 ¢y ey
Cop Cop Cp3] | Loy by Dyz 0 101 = 10 1.0 ¢y ¢y €p5
€31 C3p C33)| D3y b3y b330 01 001 ¢35 ¢35 €35

This shows that, if matrix [B,I] is transformed into an equivalent matrix [I,C], then C = Bl
The Gauss-Jordan transformation proceeds in two steps.

* In the first step, the diagonal terms are used, one after the other and from left to right, as pivots
to make all the off-diagonal terms equal to zero. This is done in exactly the same way as for the
determinant: a factor is calculated to cancel out the target term, using the pivot, and property 8 of
the determinants is applied using this factor as multiplier. The difference with determinants is
that the whole row of the augmented matrix is modified, not only the part belonging to matrix B.
If an off-diagonal zero value is encountered, then of course it is left as is, no cancellation by a
multiple of the pivot being necessary or even possible. If a zero is found on the diagonal, this
pivot has to be left aside for the time being (in actual programs, rows and columns are
interchanged in a process called pivoting); this zero will be changed to a non-zero value during
the next cycle unless the matrix is singular. Pivoting makes programming of this method a bit
complex.

* Second step. When all the off-diagonal terms are zero, the diagonal terms of the former matrix
B are brought to 1. This is accomplished by dividing each row of the augmented matrix by the
value now present in the diagonal term of the former B (left) portion. If the changes introduced
during the first step have made one of the diagonal elements equal to zero, then of course no
division can bring it back to 1 and the matrix is singular (i.e. it cannot be inverted).

A Gauss-Jordan algorithm with pivoting is described in the book Numerical recipes (Press et al.,
2007).



86 Matrix algebra: a summary

Numerical example. To illustrate the Gauss-Jordan method, the same square matrix as
above is first augmented, then transformed so that its left-hand portion becomes the identity

matrix:
123 (1231100
(@ |45 6145 6)010
7 8 10| 7 810!0 0 1
] r ] ]
1 2 31100 3 0-31-5 20 30012 43
(6) |0 -3 —6,-4 1 0 () lo-3-61-4 10 (d) |0-3 0} 2-116
0-6-11'-7 0 1 0 0 1'1-21 001'1 21
New row 2 <— row 2 —4row 1 New row 1 <= 3row 1 + 2row 2 New row 1 <= row 1 + 3row 3
New row 3 <— row 3 — 7row 1 New row 3 <= row 3 — 2row 2 New row 2 <— row 2 + 6row 3
]
100:1-2/3-4/3 1 2 43
. 1
(@) Jo10,-2/311/3 2 () =3 2-11 6
001! 1 -2 1 -3 6-3
New row 1 <= (1/3) row 1 inverse of matrix B

New row 2 <= —(1/3) row 2
New row 3 <— row 3

The inverse of matrix B is the same as calculated above.
The inverse of a matrix has several interesting properties, including:
(H)B'B=BB!=1.
@) |B' =1/|B].
3[BT =B.
@ BT =[B].
(5) If B and C are nonsingular square matrices, [BC]™' = C"'B .
(6) In the case of a symmetric matrix, since B'= B, then [B~']' = B~.

Orthonormal (7) An orthogonal matrix (Section 2.5) whose column vectors are normalized
matrix (scaled to length 1: Section 2.4) is called orthonormal. A square orthonormal matrix B
has the property that B' = B~!. This may be shown as follows: on the one hand,
B 'B=1 by definition of the inverse of a square matrix. On the other hand, property 8
of matrix products (Section 2.5) shows that B'B = D(1) when the column vectors in B
are normalized (which is the case for an orthonormal matrix); D(1) is a diagonal matrix
of 1’s, which is the identity matrix I (eq.2.5). Given that BB = BB = I, then
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System of
linear
equations

Simple
linear
regression

B'=B~!. Furthermore, combining the properties BB~! = I (which is true for any
square matrix) and B' = B! shows that BB' = I. For example, the matrix of normalized
eigenvectors of a symmetric matrix, which is square and orthonormal (Section 2.9),
has these properties.

(8) The inverse of a diagonal matrix is a diagonal matrix whose elements are the
reciprocals of the original elements: [D (x,-)]_1 =D(1/x)).

Inversion is used in many types of applications, as will be seen in the remainder of this book.
Classical examples of the role of inverse matrices are solving systems of linear equations and the
calculation of regression coefficients.

A system of linear equations can be represented in matrix form; for example:

by +2by+ 3by=2 12 3 b, >
4b + 5by,+ 6by,=2 =145 6||b,| = |2
Tb, + 8b, + 10by = 3 7810 by 3

which may be written Ab = c. To find the values of the unknowns b, b, and b3, vector b must be
isolated to the left, which necessitates an inversion of the square matrix A:

-1
1 12 3 2

b
byl =145 6| |2
b 7810 |3

The inverse of A has been calculated above. Multiplication with vector ¢ provides the solution
for the three unknowns:

b, 2 4 23]z 3l |- by =-1
b| = -1 =1l = b= 0
ol =3 2-11 6||2]=-3] 0 =] 0 y =

by 3 6 233 -3 1 b= 1

Systems of linear equations are solved in that way in Subsections 13.2.2 and 13.3.3.
Linear regression analysis is reviewed in Section 10.3. Regression coefficients are easily
calculated for several models using matrix inversion; the approach is briefly discussed here. The

mathematical model for simple linear regression (model I, Subsection 10.3.1) is:

5) =bo+b1X
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Least
squares

Multiple
linear
regression

Polynomial
regression

The regression coefficients by and b; are estimated from the observed data x and y. This is
equivalent to resolving the following system of equations:

Y, =by+ bx B 1 x,
Yo =by+ bx, Yy I x,
bO
—Sy=|- X = - b =
b,
y,=by+bx, BA ¥1 Xl

Matrix X was augmented with a column of 1’s in order to estimate the intercept of the regression
equation, by. Coefficients b are estimated by the method of least squares (Subsection 10.3.1),
which minimizes the sum of squares of the differences between observed values y and values ¥
calculated using the regression equation. In order to obtain a least-squares best fit, each member
(left and right) of matrix equation y =Xb is multiplied by the transpose of matrix X,
i.e. X'y = X'Xb. By doing so, the rectangular matrix X produces a square matrix X'X, which can
be inverted. The values of coefficients by and b, forming vector b are computed directly, after
inverting the square matrix [X'X]:

b = [XX]"' [Xy] (2.19)

Using the same approach, it is easy to compute coefficients by, by, ..., b,, of a multiple linear

regression (Subsection 10.3.3). In this type of regression, variable y is a linear function of
several (m) variables Xj, SO that one can write:

57 =b0+b1x1 + ... +bmxm

Vectors y and b and matrix X are defined as follows:

Y Loy eeexy, b,

Yy Loxy ooy, b,
y = X = b =

kA ¥1 Xt e v Xy ¥bm¥

Again, matrix X was augmented with a column of 1°s in order to estimate the intercept of the
equation, by. The least-squares solution is found by computing eq.2.19. Readers can consult
Section 10.3 for computational and variable selection methods to be used in multiple linear
regression when the variables x; are strongly intercorrelated, as is often the case in ecology.

In polynomial regression (Subsection 10.3.4), several regression parameters b,
corresponding to powers of a single variable x, are fitted to the observed data. The general

regression model is:

$ =bg+byx+byx? + ... + bk
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The vector of parameters, b, is computed in the same way. Vectors y and b, and matrix X, are
defined as follows:

_ . 2 X I
3 Xy X ee e X, b,
Yy 1x2x§...x§ b]

y = X = b =
b
;y"; lxnxi...x]:l L 4]

The least-squares solution is computed using eq. 2.19. Readers should consult Subsection 10.3 .4
where practical considerations concerning the calculation of polynomial regression with
ecological data are discussed.

2.9 Eigenvalues and eigenvectors

There are other problems, in addition to those examined above, where the
determinant and the inverse of a matrix are used to provide simple and elegant
solutions. An important one in data analysis is the derivation of an orthogonal form
(i.e.a matrix whose vectors are at right angles; Sections 2.5 and 2.8) for a non-
orthogonal symmetric matrix. This will provide the algebraic basis for most of the
methods studied in Chapters 9 and 11. In ecology, data sets generally include a large
number of variables, which are associated to one another (e.g. linearly correlated;
Section 4.2). The basic idea underlying several methods of data analysis is to reduce
this large number of intercorrelated variables to a smaller number of composite, but
linearly independent (Box 1.1) variables, each explaining a different fraction of the
observed variation. One of the main goals of numerical data analysis is indeed to
generate a small number of variables, each explaining a large portion of the variation,
and to ascertain that these new variables explain different aspects of the phenomena
under study. The present section only deals with the mathematics of the computation of
eigenvalues and eigenvectors. Applications to the analysis of multidimensional
ecological data are discussed in Chapters 4,9 and 11.

Mathematically, the problem may be formulated as follows. Given a square matrix
A, one wishes to find a diagonal matrix that is equivalent to A. To fix ideas, A is a
covariance matrix S in principal component analysis. Other types of square, symmetric
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Canonical
form

association matrices (Section 2.2) are used in numerical ecology, hence the use of the
symbol A:

A Ay« ap,

Ay Ay » - -Gy,

anl an2 t e ann

In A, the terms above and below the diagonal characterize the degree of association of
either the objects, or the ecological variables, with one another (Fig. 2.1). In the new
matrix A (capital lambda) being sought, all elements outside the diagonal are null:

%, 0...0
0hy...0

(2.20)

0 0 ...A 0 0...A

nn nj

This new matrix is called the matrix of eigenvalues*. It has the same trace and the same
determinant as A. The new variables (eigenvectors; see below) whose association is
described by this matrix A are thus linearly independent of one another. The use of the
Greek letter A (lower-case lambda) to represent eigenvalues stems from the fact that
eigenvalues are actually Lagrangian multipliers A, as will be shown in Section 4.4.
Matrix A is known as the canonical form of matrix A; for the exact meaning of
canonical in mathematics, see Section 11.0.

1 — Computation
The eigenvalues and eigenvectors of matrix A are found from equation
Aui = )\iu,- (2.21)

which allows one to compute the different eigenvalues A; and their associated
eigenvectors u;. First, the validity of eq. 2.21 must be demonstrated.

" In the literature, the following expressions are synonymous:

eigenvalue
characteristic root
latent root
Eigen is the German word for characteristic.

eigenvector
characteristic vector
latent vector
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To do so, one uses any pair & and i of eigenvalues and eigenvectors computed from matrix
A. Equation 2.21 becomes

Au,=Mu;, and Auw;=Nu;, respectively.
Multiplying these equations by row vectors u'; and u';,, respectively, gives:
uAu, = Muwu, and u,Au; = ANwu,
It can be shown that, in the case of a symmetric matrix, the left-hand members of these two
equations are equal: w;Au, = u, Au,; this would not be true for an asymmetric matrix,
however. Using a (2 x 2) matrix A like the one of Numerical example 1 below, readers can

easily check that the equality holds only when a;, = a5, i.. when A is symmetric. So, in the
case of a symmetric matrix, the right-hand members are also equal:

Muu, = Awu,
Since we are talking about two distinct values for A;, and A;, the only possibility for the above
equality to be true is that the product of vectors uy, and w; be 0 (i.e. wju, = wyu, = 0), which
is the condition of orthogonality for two vectors (Section 2.5). It is therefore concluded that
eq.2.21
Aui = )\.iui

can be used to compute vectors u, that are orthogonal when matrix A is symmetric. In the case of
a non-symmetric matrix, eigenvectors can also be calculated, but they are not orthogonal.

If the scalars A; and their associated vectors w; exist, then eq.2.21 can be
transformed as follows:

Au;—hu;=0 (difference between two vectors)
and vector u; can be factorized:
(A-ADu;=0 (2.22)

Because of the nature of the elements in eq. 2.22, it is necessary to introduce a unit
matrix I inside the parentheses, where one now finds a difference between two square
matrices. According to eq. 2.22, multiplication of the square matrix (A — A;I) with the
column vector u; must result in a null column vector (0).

Besides the trivial solution where u; is a null vector, eq. 2.22 has the following
solution:

|A-21] =0 (2.23)
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Character-
istic equation

That is, the determinant of the difference between matrices A and A;I must be equal to
0 for each A;. Resolving eq. 2.23 provides the eigenvalues A; associated with matrix A.
Equation 2.23 is known as the characteristic or determinantal equation.

Demonstration of eq. 2.23 goes as follows:

1) One solution to (A — A,I)u; = 0 is that u; is the null vector: u = [0]. This solution is trivial,
since it corresponds to the centroid of the scatter of data points. A non-trivial solution must thus
involve (A — AD).

2) Solution (A — A1) = [0] is not acceptable either, since it implies that A = A,I and thus that
A be a scalar matrix, which is generally not true.

3) The solution thus requires that A; and u; be such that the scalar product (A — ADu; is a
null vector. In other words, vector u; must be orthogonal to the space corresponding to A after
A1 has been subtracted from it; orthogonality of two vectors or matrices is obtained when their
scalar product is zero (Section 2.5). The solution |A - 7»,-1| =0 (eq. 2.23) means that, for each
value A;, the rank of (A — A,I) is lower than its order, which makes the determinant equal to zero
(Section 2.7). Each A, is the variance corresponding to one dimension of matrix A (Section 4 .4).
It is then easy to calculate the eigenvector u; that is orthogonal to the space (A — AI) of lower
dimension than A. That eigenvector is the solution to eq. 2.22, which specifies orthogonality of
u; with respect to (A — A1).

For a matrix A of order n, the characteristic equation is a polynomial of degree n,
whose solutions are the eigenvalues A;. When these values are found, it is easy to use
eq. 2.22 to calculate the eigenvector u; corresponding to each eigenvalue A;. There are
therefore as many eigenvectors as there are eigenvalues.

There are methods that enable the quick and efficient calculation of eigenvalues and
eigenvectors by computer. Three of these are described in Subsection 9.1.9.

Ecologists, who are more concerned with shedding light on natural phenomena
than on mathematical entities, may find unduly technical this discussion of the
computation of eigenvalues and eigenvectors. The same subject will be considered
again in Section 4.4 in the context of the multidimensional normal distribution.
Mastering the bases of this algebraic operation is essential to understand the methods
based on eigenanalysis (Chapters 9 and 11), which are of prime importance to the
analysis of ecological data.

2 — Numerical examples
This subsection contains two examples of eigen-decomposition.

Numerical example 1. The characteristic equation of the symmetric matrix

s
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Figure 2.2 (a) The eigenvalues of Numerical example 1 are the values along the A axis where the function

A2 =7\ + 6 is zero. (b) Similarly for Numerical example 2, the eigenvalues are the values along
the A axis where the function A> —3A% — 4\ is zero.

is (eq. 2.23) 221 51 0]-0
25 01
therefore 22/_20 0
25 0 A
and thus 2-h 2 =0
2 5-A\

The characteristic polynomial is found by expanding the determinant (Section 2.6):
2-MNGE-NM-4=0
which gives M-Th+6=0

from which it is easy to calculate the two values of A that satisfy the equation (Fig. 2.2a). The
two eigenvalues of A are:

M=6 and A=1
The sum of the eigenvalues is equal to the trace (i.e. the sum of the diagonal elements) of A.

The ordering of eigenvalues is arbitrary. It would have been equally correct to write that
M=1 and A,=6, but the convention is to sort the eigenvalues in decreasing order.
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Equation 2.22 is used to calculate the eigenvectors u; and u, corresponding to eigenvalues A,
and Ay:

for Ay =6 forh,=1
uz 2}_6{10*)%1 —o ({2 2}_{1 OD “l _ o
25 [0 1)) |uy 25 L0 1)) |uy
{_4 2} “l _ o {1 2} ol _ o
2 -1 iy | 2 4] |u,,

which is equivalent to the following pairs of linear equations:
—4uyy +2uy; =0 luyy + 21y =0
2M11—1M21=0 2“]2+4u22=0

These sets of linear equations are always indeterminate. The solution is given by
any point (vector) in the direction of the eigenvector being sought. To remove the
indetermination, an arbitrary value is assigned to one of the elements u, which
specifies a particular vector. For example, value u = 1 may be arbitrarily assigned to
the first element u in each set:

given that up =1 up=1

it follows that —4u ;| + 2uy; =0 lujp +2uy =0
become -4 +2uy; =0 14+ 2uy;,=0
so that Uy =2 Uy =—1/2

Eigenvectors u; and u, are therefore:

] SR A

Values other than 1 could have been arbitrarily assigned to u;; and u;, (or, for that matter, to any

other term in each vector). For example, the following vectors also satisfy the two pairs of linear
equations, since these eigenvectors differ only by a scalar multiplier:

HEEAP
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This is the reason why eigenvectors are generally standardized. One method is to
assign value 1 to the largest element of each vector, and adjust the other elements
accordingly. Another standardization method, used for instance in principal component
and principal coordinate analyses (Sections 9.1 and 9.3), is to make the length of each
eigenvector u; equal to the square root of its eigenvalue (eigenvector scaled to JXZ ).

The most common and practical method is to normalize eigenvectors, i.e. to make
their lengths equal to 1. Thus, a normalized eigenvector is in fact scaled to 1,
ie.u'w=1. As explained in Section 2.4, normalization is achieved by dividing each
element of a vector by the length of this vector, i.e. the square root of the sum of
squares of all elements in the vector. Like most other computer packages, the R
function eigen() outputs normalized eigenvectors.

In the numerical example, the two eigenvectors

] K

Z I
2/.5 ~1/./5

are normalized to

Since the eigenvectors are both orthogonal and normalized, they are orthonormal (property 7 in
Section 2.8).

Had the eigenvectors been multiplied by a negative scalar, their normalized forms would
now be the following:

S
-2/.5 /.45

These forms are strictly equivalent to those above.

Since matrix A is symmetric, its eigenvectors must be orthogonal. This is easily verified as
their product is equal to zero, which is the condition for two vectors to be orthogonal
(Section 2.5):

_— 2/.3] _ _
wu, = 1/./52/./3) Sl 22/5-2/5=0
-1/.5

The normalized eigenvectors can be plotted in the original system of coordinates, i.e.the
Cartesian plane whose axes are the two original descriptors; the association between these
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descriptors is given by matrix A. This plot (full arrows) shows that the angle between the
eigenvectors is indeed 90° (cos 90° = 0) and that their lengths are 1:

' (w3, avs)

(25, 1IV3)
AN

~N
~N

/
/

(25, -1V5)

(=I5, 22iW'5)

The dashed arrows illustrate the same eigenvectors with inverted signs. The eigenvectors with
dashed arrows are equivalent to those with full arrows.

Resolving the system of linear equations used to compute eigenvectors is greatly
facilitated by matrix inversion. Defining matrix C,,,, = (A — A,I) allows eq. 2.22 to be
written in a simplified form:

Cu,=0, 2.24)

Indices n designate here the dimensions of matrix C and vector u. Matrix C,,,, contains
all the coefficients by which a given eigenvector u, is multiplied. The system of
equations is indeterminate, which prevents the inversion of C and calculation of u. To
remove the indetermination, it is sufficient to determine any one element of vector u.
For example, one may arbitrarily decide that #; = o (o = 0). Then,

Cli CrpoeCpy| O 0
Cyy Cop o v s Cyy, u, 0
Cot €z v v v Cp| [ ) 0]
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can be written

ClO + Cplty + o oo 0y 1, 0
CriO+ Cplly + o oo + 0y U, 0
C Ot Cpplly + e v 00, 0]

so that
Cpply + oo+ Cp 1, ch
Cpplly + oo o+ Cy U, Cy
. . = —Q

Cplly + oo ot €l €

After setting u; = a., the first column of matrix C is transferred to the right. The last
n— 1 rows of C are then sufficient to define a completely determined system. The first
row is removed from C in order to obtain a square matrix of order n — 1, which can be
inverted. The determined system thus obtained is:

Coplly + oo o+ Cy U, Cyy
. = -a
Coplly + o oot €t Co
which can be written C(n_ D -1y = —OC, 1 (2.25)

This system can be resolved by inversion of C, as in Section 2.8:

-1

(n-1) (n-1)C(n-1) (2.26)

u, = -aC
This method of computing the eigenvectors may not work, however, in the case of
multiple eigenvalues (see Third property in Section 2.10, below). The following
example provides an illustration of the computation through matrix inversion.



Matrix algebra: a summary

Numerical example 2. For the asymmetric matrix

-1

1
A=|p 21 -
14 1

A=W

the characteristic polynomial, computed from eq. 2.23, is A3 =302 — 4\ = 0, from which the
three eigenvalues 4,0 and —1 can be calculated (Fig. 2.2b). The sum of the eigenvalues has to be
equal to the trace of A, which is 3.

The eigenvectors are computed by inserting each eigenvalue, in turn, into eq.2.22. For
)\.1 =4:

(1-4) 3 -1 " o
0 (1-4) 2 |luy[=|o
1 4 (1-4)]|uy,| o

The above system is determined by setting u;; = 1. Using eq. 2.25 gives:

(1-4) 2 Uy =110
4 (1-4) ] uy, 1

from which it follows (eq. 2.26) that

uy| _[a-ay 2 1o
s, 4 (1-4)] |1

The inverse of matrix -3 2 is -3-2 so that
4 -3 —4 -3

| _ {—3 —2} { 0} _ H

Us -4 -3] |-1 3
The two other eigenvectors are computed in the same fashion, from eigenvalues A, =0 and
A3 =—1. The resulting matrix of eigenvectors (columns) is:

111 17 2
U = [ul u, ug} =12-2/7-1/2 or else 2-2-1
3 1/7 1/2 311
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027 095 082
which is normalized to U = (053 -027 —041

080 0.14 041

Readers can easily check that these eigenvectors, which were extracted from a non-symmetric
matrix, are indeed not orthogonal; none of the scalar products between pairs of columns is equal
to zero. The eigenanalysis of non-symmetric (or asymmetric) matrices will be encountered in
linear discriminant analysis and canonical correlation analysis, Sections 11.3 and 11.4.

2.10 Some properties of eigenvalues and eigenvectors

First property. — A simple rearrangement of eq. 2.21 shows that matrix U of the
eigenvectors is a transform matrix, allowing one to go from system A to system A.
Indeed, the equation can be rewritten so as to include all eigenvalues and eigenvectors:

AU=UA (2.27)
Numerical example. Equation2.27 can be verified using Numerical example 2 of
Section 2.9:
1 3-1|(1 7 2 1 7 2[(1400
01 2/|2-2-1| =|2-2-1|]|10 0 O
14 13 1 1 3 1 1[0 0-1
The left and right-hand sides of the equation are identical:
4 0-2 4 0-2
80 1| =]|80 1
12 0 -1 12 0 -1

On the left-hand side of the equation, matrix A is postmultiplied by matrix U of the
eigenvectors whereas, on the right-hand side, the matrix of eigenvalues A is
premultiplied by U. It follows that U achieves a two-way transformation (rows,
columns), from the reference system A to the system A. This transformation can go
both ways, as shown by the following equations which are both derived from eq. 2.27:

A=UAU"! and A=U'AU (2.28)

A simple formula may be derived from A = UAU™!, which can be used to raise
matrix A to any power x:

A* = (UAU HUA ... U\ uAu™)
A*=UAUTOA ... U'u)AU™!
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Multiple
eigenvalues

A* = UA*U!, because U'U =1

Raising a matrix to some high power is greatly facilitated by the fact that A* is the
matrix of eigenvalues, which is diagonal. Indeed, a diagonal matrix can be raised to
any power x by raising each of its diagonal elements to power x. It follows that the last
equation can be rewritten as:

A" = U[A]U (2.29)

This may be verified using the above example. Note 1: this calculation cannot be done
if there are negative eigenvalues, as in non-symmetric matrices, and the exponent is
not an integer. The reason is that a fractional exponent of a negative number is
undefined. Note 2: if U is orthonormal, U™l = U', so that A" = U[)»f] v =
U[)\f] U' (property of the inverse of an orthonormal matrix, Section 2.8). This
equality is true only if U has been normalized.

Second property. — It was shown in Section 2.7 that, when the rank (r) of matrix
A,,, is smaller than its order (r < n), the determinant | A | is 0. It was also shown that,
when it is necessary to know the rank of a matrix, as for instance in dimensional
analysis (Section 3.3), |A | =0 indicates that one must check the rank of A. Such a
test naturally follows from the calculation of eigenvalues. Indeed, for a square
symmetric matrix A, the determinant is equal to the product of its eigenvalues:

Al = Hxi (2.30)

i=1

so that | A | =0 if one or several of the eigenvalues is 0. When the rank of a matrix is
smaller than its order (r<mn), this matrix has (n—r) null eigenvalues. Thus,
eigenvalues can be used to determine the rank of a square symmetric matrix: the rank
is equal to the number of nonzero eigenvalues. In the case of a covariance or cross-
product matrix among variables, the number of nonzero eigenvalues (i.e. the rank of
A) is the number of linearly independent dimensions required to account for all the
variance (Chapter 9).

Third property. — It was implicitly assumed, up to this point, that the eigenvalues
were all different from one another. It may happen, however, that some (say, m)
eigenvalues are equal. These are known as multiple eigenvalues. In such a case, the
question is whether or not matrix A, has n distinct eigenvectors. In other words, are
there m linearly independent eigenvectors which correspond to the same eigenvalue?
In principal component analysis (Section 9.1), a solution corresponding to that
situation is called circular.

Values A; are chosen in such a way that the determinant |A — A1l is null (eq. 2.23):

IA-21=0



Some properties of eigenvalues and eigenvectors 101

which means that the rank of (A—AJI) is smaller than n. In the case of multiple
eigenvalues, if there are m distinct eigenvectors corresponding to the m identical
eigenvalues A;, the determinant of (A — A;I) must be null for each of these eigenvalues,
but in a different way each time. When m = 1, the condition for |A - AI| =0 is for its
rank to be r = n — 1. Similarly, in a case of multiplicity, the condition for |A—-NI| to
be null m times, but distinctly, is for its rank to be r =n —m. Consequently, for n
distinct eigenvectors to exist, the rank of (A —A;X) must be r = n —m, and this for any
eigenvalue A; of multiplicity m.

Numerical example. Here is an example of a full-rank asymmetric matrix A that has two
equal eigenvalues corresponding to distinct eigenvectors. The full-rank condition is shown by
the fact that det(A) = —1, which differs from 0. The eigenvalues are A; =A, =1 and Ay = —1:

-1-2-2 )
A=11121 sothat,for?»l=7\,2=1, (A-1) = | | 1|
-1-1 0 1.1 -1

The multiplicity, or number of multiple eigenvalues, is m = 2. The rank of (A—-AI) is r=1
because all three columns of this matrix are identical. Thus, for Ay =Ny =1, n—-m=3-2=1,
which shows that r = n — m in this example. It follows that there exist two distinct eigenvectors
u; and u,. They can indeed be calculated:

1 1 2
forhj=1,u, = | g, forh=1,u, = |_1|, whereasforiz=-1,u; = |_
-1 0 1

Eigenvectors u; and u, both correspond to the multiple eigenvalue A=1. Any linear
combination of such eigenvectors is also an eigenvector of A corresponding to A. For example:

0 3
u-u, = | 1 u, +2u, = | o
-1 -1

It can easily be verified that the above two eigenvectors, or any other linear combination of u;
and u,, are eigenvectors of A corresponding to A = 1. Of course, the new eigenvectors are not
linearly independent of u; and u,, so that there are still only two distinct eigenvectors
corresponding to the multiple eigenvalue A = 1.

Numerical example. Here is an example of a full-rank asymmetric matrix A that has two
indistinguishable eigenvectors. The full-rank condition is shown by the fact that det(A) = 3,
which differs from 0. The eigenvalues are Ay =3 and A, = A3 =1:

1 1 1 -1 1
3.2 sothat,folrk2 = }»3 =1, (A-1I) = |3 2 2
10

4 1-1
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Table 2.2

Types of symmetric matrices and corresponding characteristics of their eigenvalues.

Symmetric matrix Eigenvalues

All elements of matrix A are real All eigenvalues are real (i.e. non-imaginary)
(i.e. non-imaginary)

Matrix A is positive definite All eigenvalues are positive

Matrix A,,, is positive semidefinite There are r positive and (n — r) null

and of rank r eigenvalues

Matrix A,,, is negative semidefinite There are r negative and (n — r) null

and of rank r eigenvalues

Matrix A,,, is indefinite and of rank r There are r non-null (positive and negative)

and (n — r) null eigenvalues

Matrix A is diagonal The diagonal elements are the eigenvalues

The multiplicity, or number of multiple eigenvalues, is m = 2. The rank of (A—-AI) is r=2
because any two of the three rows (or columns) of this matrix are independent of each other.
Thus, for Ay=A3=1, n—m=3-2=1, which shows that r = n—m in this example. The
conclusion is that there do not exist two independent eigenvectors associated with the
eigenvalue of multiplicity m = 2. The eigenvectors are the following:

2 0
forh;=3, u, = |1 whereas forAy=A3=1, u, =u, = |1
3 1

In the case of a square symmetric matrix, it is always possible to calculate m
orthogonal eigenvectors corresponding to multiple eigenvalues, when present. This is
not necessarily true for non-symmetric matrices, where the number of eigenvectors
may be smaller than m. Therefore, whatever their multiplicity, eigenvalues of most
matrices of interest to ecologists, including association matrices (Section 2.2), have
distinct eigenvectors associated with them. In any case, it is unlikely that eigenvalues
of matrices computed from field data be exactly equal (i.e. multiple).

Fourth property. — A property of square symmetric matrices may be used to
predict the nature of their eigenvalues (Table 2.2). A symmetric matrix A may be
combined with any vector t =0, in a matrix expression of the form t'At which is



Singular value decomposition 103

Quadratic
form

known as a quadratic form. This expression results in a scalar whose value leads to the
following definitions:

® if t'At is always positive, matrix A is positive definite;
® if t'At can be either positive or null, matrix A is positive semidefinite;
® if t'At can be either negative or null, matrix A is negative semidefinite;

® if t'At can be either negative, null or positive, matrix A is indefinite.

2.11 Singular value decomposition

Singular
value

Another useful method of matrix decomposition is singular value decomposition
(SVD). The approximation theorem of Schmidt (1907), later rediscovered by Eckart &
Young (1936), showed that any rectangular matrix Y can be decomposed as follows:

Y (nxp) = V(nxk) W(diagonal, kxk) U'(kxp) (2.31)

where both U and V are orthonormal matrices (i.e. matrices containing column vectors
that are normalized and orthogonal to one another; Section 2.8). W is a diagonal
matrix D(w;), of order k = min(n, p), containing the singular values; the illustration
hereunder assumes that n > p so that k = p. The notation D (w;) for the diagonal matrix
of singular values will be used in the remainder of this section. The early history of
singular value decomposition has been recounted by Stewart (1993). The following
illustration shows the shapes of these matrices:

Ow 0 . 0
Yinp) = Vap) 00w 0 U
0 0 0 w

Demonstrating eq. 2.31 is beyond the scope of this book. The diagonal values w; in
D(w;) are non-negative; they are the singular values of Y. SVD functions are found in
advanced statistical languages such as R, S-PLUS® and MATLAB®. The notation used
in different manuals and computer software may, however, differ from the one used
here. That is the case of the R language, where function svd() is said to decomposes Y
into UD(w;) V', instead of the notation VD (w,)U' used here to insure consistency
between the results of eigenanalysis and SVD in Subsection 9.1.9.
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Application 1: Rank of a rectangular matrix. — The rank of a rectangular
matrix is equal to the number of singular values larger than 0. As an illustration,
consider the matrix in Numerical example 2 of Section 2.7:

21 3 4
Y=|_1630
120-3 8

In this example, (n = 3) < (p = 4), hence k = n = 3, and the dimensions of matrices in
eq.2.31 are V(3x3), W(3x3) and U'(3x4). Singular value decomposition of that matrix
produces two singular values larger than zero and one null singular value. SVD of the
transposed matrix produces the same singular values. Y is thus of rank 2. After
elimination of the third (null) singular value and the corresponding vector in both V
and U', the singular value decomposition of Y gives:

Y = |-0.26247 —0.53689

—0.08682 0.84068 {2
-0.96103 0.07069

2,650 0 |[-0.03851 —0.92195 0.15055 —0.35477
0 6.081|| 0.37642 —-0.15902 0.64476 0.64600

Application 2: Decomposition of a cross-product matrix. — A covariance
matrix is a type of cross-product matrix (Chapter 4). Consider the covariance matrix S
of the data used to illustrate principal component analysis in Section 9.1. It is
decomposed as follows by SVD:

S = v D(w,) U

82 1.6| _ |-0.8944 —0.4472|19 0
1658 —0.4472 0.8944] |0 5

—0.8944 -0.4472
—0.4472 0.8944

The singular values of S, found on the diagonal of D (w,), are equal to the eigenvalues.
This is true for any square symmetric matrix. Matrices V and U contain vectors
identical to the eigenvectors obtained by eigenanalysis; eigenvectors may vary in their
signs depending on the program or the computer platform. Negative eigenvalues,
which may be found in principal coordinate analysis of symmetric distance matrices
(PCoA, Section 9.3), will come out as singular values with positive signs. Example:

123
matrix 234

345

has the singular values [9.6235, 6.2348, 0.0000] and the following set of eigenvalues:
[9.6235,0.0000, —6.2348]. The singular value 6.2348 with a positive sign corresponds
to the negative eigenvalue —6.2348.
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Singular
matrix

111-
conditioned
matrix

Application 3: Generalized matrix inversion. — SVD offers a way of inverting
matrices that are singular (Section 2.8) or numerically very close to being singular.
SVD may either give users a clear diagnostic of the problem, or solve it. Singularity
may be encountered in regression for example: if the matrix of explanatory variables X
is not of full rank, the cross-product matrix A = [X'X] is singular and it cannot be
inverted with the methods described in Section 2.8, although inversion is necessary to
solve eq. 2.19.

Inversion of A = [X'X] by SVD involves the following steps. First, A is
decomposed using eq. 2.31:

A=V D w)U

Since A is symmetric, V, D(w;), and U are all square matrices of the same size as A.
Using property 5 of matrix inverses (above), the inverse of A is easy to compute:

A = [VDw)UT! = [UT [Dwy V]!

Because U and V are orthonormal, their inverses are equal to their transposes
(property 7 of inverses), whereas the inverse of a diagonal matrix is a diagonal matrix
whose elements are the reciprocals of the original elements (property 8). Hence:

A~ =UDU/W) V' (2.32)

It may happen that one or more of the w;’s are zero, so that their reciprocals are
infinite; A is then a singular matrix. This is what happens in the regression case when
X is not of full rank. It may also happen that one or more of the w;’s are numerically so
small that their values cannot be properly computed because of the machine’s
precision in floating-point calculation; in that case, A is said to be ill-conditioned.
When A is singular, the columns of U corresponding to the zero elements in D(w;)
form an orthonormal basis” for the space where the system of equations has no
solution, whereas the columns of V corresponding to the non-zero elements in D(w;)
are an orthonormal basis for the space where the system has a solution. When A is
singular or ill-conditioned, it is still possible to find its inverse, either exactly or
approximately, and use it to compute a regression model. Here is an example:

1.25 1115
1.13 1222
Y= 160 X=11334
2.08 1443
2.10 1551

* A set of k linearly independent vectors form a basis for a k-dimensional vector space. Any

vector in that space can be uniquely written as a linear combination of the base vectors.
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The first column of X contains 1’s to estimate the intercept. Columns 2 and 3 are
identical, so X is not of full rank. Equation 2.31 produces a decomposition of
A = [X'X] that has 3 (not 4) singular values larger than 0. A generalized inverse is
obtained by computing eq. 2.32 after removing the last column from U and V and the
last row and column from D (w)):

A~ =UDU/MW) V'

-0.17891 0.07546 0.98097

0.00678 0 0 |[-0.17891 —0.59259 —0.59259 —0.51544
~0.59259 -0.37762 ~0.07903 0 004492 0 0.07546 —0.37762 037762 0.84209
~0.59259 —0.37762 —0. : : e e )

0.59259 ~0.37762 ~0.07903 0 0  6.44243|| 0.98097 —0.07903 —0.07903 —0.15878

—0.51544 0.84209 —0.15878

6.20000 —0.50000 —0.50000 —1.00000

_ |—0.50000 0.04902 0.04902 0.06863
—0.50000 0.04902 0.04902 0.06863
—1.00000 0.06863 0.06863 0.19608

Using the generalized inverse A7l the regression coefficients can now be computed
(eq.2.19):

by| 021200
b
b=[XX"'Xy=A"'Xy=[!] = 0.17539
b, 0.17539
by 0.12255

The first value in vector b is the intercept. Now remove column 2 from X and compute
a multiple linear regression equation. The regression coefficients are:

b, 0.21200
by = 1035078
b, 0.12255

The regression coefficient for the second column of X, 0.35078, has been split in two
equal coefficients of 0.17539 in the SVD solution when the two identical variables
were kept in the analysis.

Similar problems may be encountered when solving sets of simultaneous linear
equations represented by matrix equation Ab = ¢ (Section 2.8). In this book, SVD will
also be used in algorithms for principal component analysis (Subsection 9.1.9) and
correspondence analysis (Subsection 9.2.1).
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2.12 Software

Functions for all matrix operations described in this chapter are available in the R
language. Standard matrix operations are available in the BASE package while more
specialized operations are found in the MATRIX package.

Among the functions found in BASE are det() to compute a determinant, solve() for
matrix inversion or solving a system of linear equations, eigen() for eigenvalue
decomposition, and svd() for singular value decomposition. Other useful
decompositions used in later chapters but not discussed in Chapter 2 are the QR
decomposition (function gr() of BASE) and Cholesky factorization (functions chol() of
BASE and MATRIX). Package MASS offers function ginv() for general inversion.

Functions implementing matrix algebra are also available in S-PLUS®, MATLAB®

and SAS®.



Chapter

3  Dimensional
analysis in ecology

3.0 Dimensional analysis

Dimensional analysis is generally not part of the curriculum of ecologists, so that
relatively few are conversant with this simple but remarkably powerful tool. Yet,
applications of dimensional analysis are found in the ecological literature, where
results clearly demonstrate the advantage of using this mathematical approach.

“Dimensional analysis treats the general forms of equations that describe natural
phenomena” (Langhaar, 1951). The basic principles of this discipline were established
by physicists (Fourier, 1822; Maxwell, 1871) and later applied by engineers to the very
important area of small-scale modelling. Readers interested in the fundamentals and
engineering applications of dimensional analysis should refer, for example, to
Langhaar (1951), from which are taken several of the topics developed in the present
chapter. Other useful references are Ipsen (1960), Huntley (1967), and Schneider
(1994).

The use of dimensional analysis in ecology rests on the fact that a growing number
of areas in ecological science use equations; for example, populations dynamics and
ecological modelling. The study of equations is the very basis of dimensional analysis.
This powerful approach can easily be used by ecologists, given the facts that it can be
reduced to a single theorem (the II theorem) and that many of its applications
(Sections 3.1 and 3.2) only require a knowledge of elementary mathematics.

Dimensional analysis can resolve complex ecological problems in a simple and
elegant manner. Readers should therefore not be surprised that ecological applications
in the present chapter are of a rather high level, since the advantage of dimensional
analysis lies precisely in its ability to handle complex problems. It follows that
dimensional analysis is mainly useful in those cases where it would be difficult to
resolve the ecological problem by conventional approaches.
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3.1 Dimensions

International
System
of Units

All fields of science, including ecology, rest on a number of abstract entities such as
the mass, length, time, temperature, speed, acceleration, radioactivity, concentration,
energy or volume. These entities, which can be measured, are called quantities.
Designing a system of units requires to: (1) arbitrarily choose a small number of
fundamental quantities, on which a coherent and practical system can be constructed,
and (2) arbitrarily assign, to each of these quantities, base units chosen as references
for comparing measurements.

Various systems of units have been developed in the past, e.g. the British system
and several versions of the metric system. The latter include the CGS metric system
used by scientists (based on the centimetre, the gram and the second), the MKS (force)
metric system used by engineers (based on the metre, the kilogram and the second,
where the kilogram is the unit of force), and the MKS (mass) metric system (where the
kilogram is the unit of mass). Since 1960, there is an internationally accepted version
of the metric system, called the International System of Units (SI, from the French
name Systéme international d’unités; see Plate 3.1, p. 142). The SI is based on seven
quantities, to which are associated seven base units (Table 3.1; the mole was added to
the SI in 1971 only). In addition to these seven base units, the SI recognizes two

Table 3.1

Base units of the International System of Units (SI).

Fundamental quantity ~Quantity symbola< Dimension symbol Base unit  Unit symbol

mass m M] kilogram kg
length l [L] metre’ m
time t [T] second S
electric current 1 1 ampere
thermodynamic temperature T ¥ [6] kelvin®

amount of substance n [N] mole mol
luminous intensity I, [J] candela cd

: Quantity symbols are not part of the SI, and they are not unique.
T Spelled meter in the United States of America.

fIn ecology, temperature is generally measured on the Celsius scale, where the unit is the
degree Celsius (°C); the quantity symbol for temperatures expressed in °C is usually 7. Note
that the absolute temperature unit is the kelvin, not degree kelvin.



Dimensions 111

Dimension

supplementary units, the radian (rad) and the steradian (sr), which measure planar and
solid angles, respectively. All other units, called derived units, are combinations of the
base and supplementary units. Some frequently used derived units have special names,
e.g. volt, lux, joule, newton, ohm. It must be noted that: (1) unit names are written with
small letters only, the sole exception being the degree Celsius; (2) unit symbols are
written with small letters only, except the symbols of derived units that are surnames,
whose first letter is a capital (e.g. Pa for pascal), and the litre (see Table 3.2, footnote).
Unit symbols are not abbreviations, hence they are never followed by a dot.

Table 3.2 shows that derived units are not only simple products of the fundamental
units, but that they are often powers and combinations of powers of these units.
Maxwell (1871) used symbols such as [M], [L], [T], and [0] to represent the quantities
mass, length, time and temperature (Table 3.1). The dimensions of the various
quantities are products of powers of the symbols of fundamental quantities. Thus, the
dimension of an area is [L2], of a volume [L3], of a speed [LT 1], and of an
acceleration [LT_2]. Table 3.2 gives the exponents of the dimensional form of the most
frequently encountered quantities.

Since the various quantities are products of powers, going from one quantity to
another is done simply by adding (or subtracting) exponents of the dimensions. For
example, one calculates the dimensions of heat conductivity W (mK)™! by subtracting,
from the dimension exponents of power W, the sum of the dimension exponents of
length m and of temperature K:

IM'L2T3]/ ([L] % [8']) = IM'L@~ D13~ = (M'LIT 397!

The first three fundamental quantities (Table 3.1), mass [M], length [L], and time
[T], are enough to describe any Newtonian mechanical system. Ecologists may
require, in addition, temperature [0], amount of substance [N], and luminous intensity
[J]. Research in electromagnetism calls for electric current [I] and, in quantum
mechanics, one uses the quantum state of the system [W].

Four types of entities are recognized:
(1) dimensional variables, e.g. most of the quantities listed in Table 3.2;

(2) dimensional constants, for instance: the speed of light in vacuum [LT‘l],
¢=2998 x 108 ms™!; the acceleration due to Earth’s gravity at sea level (LT 2],
£=9.807m s72; the number of elementary entities in a mole Ny = 6.022 x 102 mol ™!,
where N, is the Avogadro number (note that the nature of the elementary entities in a
mole must always be specified, e.g. mol C, mol photons);

(3) dimensionless variables, such as angles, relative density (Table 3.2), or
dimensionless products which will be studied in following sections;

(4) dimensionless constants, e.g. m, e, 2, 7; it must be noted that exponents are, by
definition, dimensionless constants.
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Table 3.2 Dimensions, units, and names of quantities. Units follow the standards of the International
System of Units (SI).

Quantity [M] [L] [T] [1] [6][N] [J] Units Name”
mass 1 0 0 0 0 0 O kg kilogram
length 01 0 0 0 0 O m metre
time 0 0 1 0 0 0 O S second
electric current 0 0 O 1 0 0 O A ampere
temperature 0 0 O 01 0 O K kelvin
amount of substance 0 0 O 0 0 1 0 mol mole
luminous intensity 0 0 O 0 0 0 1 cd candela
absorbed dose 0 2 -2 0 0 0 O J kg‘1 =Gy gray
acceleration (angular) 0 0 -2 0 0 0 O rad s

acceleration (linear) 0 1 =2 0 0 0 O ms™

activity of radioactive source 0 0 -1 0 0 0 O sl = Bq becquerel
angle (planar) 0 0 O 0 0 0 O rad radian
angle (solid) 0 0 O 0 0 0 O Sr steradian
angular momentum 1 2 -1 0 0 0 O kg m?s~!

angular velocity 0 0 -1 0 0 0 O rad s~

area 020 0000 m?

compressibility -1 1 2 00 0 0 pa”!

concentration (molarity) 0-3 0 0 0 1 O mol m™>

current density 0-2 0 1 0 0 O Am™

density (mass density) 1-3 0 0 0 0 O kg m

electric capacitance -1 -2 4 2 0 0 O cv!l=F farad
electric charge 0 0 1 1 0 0 O As=C coulomb
electric conductance -1 -2 3 2 0 0 O Q= siemens
electric field strength 1 13 -1 0 0 O Vm!

electric resistance 1 23 -2 0 0 0 vAal=@ ohm
electric potential 1 23 -1 0 0 O wAl=v volt
energy 1 22 0 0 0 O Nm=]J joule
force 1 12 0 0 0 O kglm s2=N newton
frequency 0 0 -1 0 0 0 O s =Hz hertz
heat capacity 1 22 0-1 0 O IK!

heat conductivity 1 1-3 0-1 0 0 W(mK)™!

heat flux density 1 0-3 00 0 0 Wm?

illuminance 0-2 0 0 0 0 1 Imm2=1x lux
inductance 1 2 -2 -2 0 0 O WbA™'=H henry
light exposure 0-2 1 0 0 0 1 Ixs

luminance 0-2 0 00 0 1 cd m™?

luminous flux 0 0 O 0 0 0 1 cd sr=1Im lumen
magnetic field strength 0-1 0 1 0 0 O Am~

magnetic flux 1 2 -2 -1 0 0 O Vs=Wb weber
magnetic flux density 1 0 -2 -1 0 0 O Wbm2=T tesla
magnetic induction 1 0 -2 -1 0 0 O Wbm?2=T tesla

* Only base units and special names of derived units are listed.
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Table 3.2 Dimensions, units, and names of quantities (continued).

Quantity [M] [L] [T] [1] [6]1[N] [J] Units Name

magnetic permeability 1 12 -2 0 0 O Qsm!

mass flow rate 1 0 -1 0 0 0 O kg s

molality -1 0 0 0 010 mol kg™

molarity 0-3 0 0 0 1 0 mol m’

molar internal energy 1 2 -2 0 0-1 0 I mol™!

molar mass 1 0 0 0 0-1 0 kg;mol’1

molar volume 0 3 0 0 0-1 0 m? mol™!

moment of force 1 22 0 0 0 O N m

moment of inertia 1 2 0 0 0 0 O kg m?

momentum 11 -1 00 00 kgms™!

period 0 0 1 0 0 0 O S

permittivity -1 -3 4 2 0 0 0 Fm!

power 1 2 -3 00 00 Jst=w watt

pressure 1 -1 -2 0 0 0 O Nm2=Pa pascal

quantity of light 0 0 1 0 0 0 1 Ims

radiant intensity 1 2 -3 00 00 W st

relative density 0 0 O 0 0 0 O (no unit)

rotational frequency 0 0 -1 0 0 0 O s

second moment of area 0 4 0 0 0 0 O 4

specific heat capacity 0 2 -2 0-1 0 O J(kg K) !

specific latent heat 0 2 -2 0 0 0 O J kg’]

specific volume -1 3 0 0 0 0 O m’ k1g_l

speed 0 1 -1 0 0 0 O ms~

stress 1 -1 -2 0 0 0 O Nm2=Pa pascal

surface tension 1 0 -2 0 0 0 O Nm!

torque 1 22 0 0 0 O N m

viscosity (dynamic) 1 -1 -1 0 0 0 O Pas

viscosity (kinetic) 0 2 -1 00 00 m>s~!

volume " 0 3 0 0 00O m>

volume flow rate 0 3 -1 0 0 0 O ms~!

wavelength 01 0 0 0 0 O m

wave number 0-1 0 0 0 0 O m!

work 1 22 0 0 0 O Nm=]J joule

T The litre (spelt liter in the United States of America) is the capacity (vs. cubic) unit of volume.
Its symbol (letter 1) may be confused with digit one (1) in printed texts so that it was decided
in 1979 that capital L could be used as well; 1 m3=1000 L.
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The very concept of dimension leads to immediate applications in physics and
ecology. In physics, for example, one can easily demonstrate that the first derivative of
distance with respect to time is a speed:

. . d . L] _ ety s
dimensions ofa. [T} =[LT '], i.e. speed.

Similarly, it can be shown that the second derivative is an acceleration:

2
dimensions of &L = 4 (ﬂ) : [L
de/ = LTT

i d@ } =[LT 2], i.e. acceleration.

Note that italics are used for quantity symbols such as length (/), mass (m), time (),
area (A), and so on. This distinguishes them from unit symbols (roman type; Tables 3.1
and 3.2), and dimension symbols (roman capitals in brackets; Table 3.1).

Ecological application 3.1

Platt (1969) studied the efficiency of primary (phytoplankton) production in the aquatic
environment. Primary production is generally determined at different depths in the water
column, so that it is difficult to compare values observed under different conditions. The solution
to this problem consists in finding a method to standardize the values, for example by
transforming field estimates of primary production into values of energy efficiency. Such a
transformation would eliminate the effect on production of solar irradiance at different locations
and different depths. Primary production at a given depth P(z) may be expressed in J m3 !
[ML’1 T’3], while irradiance at the same depth E(z) is in J m2s! [MTS] (energy units).

The dimension of the ratio P(z)/E(z), which defines the energy efficiency of primary
production, is thus [L™']. Another property determined in the water column, which also has
dimension [L’l], is the attenuation of diffuse light as a function of depth. The coefficient of
diffuse light attenuation (o) is defined as:

E(z) = E(z)) e “%2 =%

where E(z,) and E(z) are irradiances at depths z, and z;, respectively. Given the fact that an
exponent is, by definition, dimensionless, the dimension of o must be [L™'] since that of depth z
is [L].

Based on the dimensional similarity between efficiency and attenuation, and considering the
physical aspects of light attenuation in the water column, Platt partitioned the attenuation
coefficient (o) into physical (k) and biological (k) components, i.e. o = k,, + k. The biological
attenuation coefficient k, may be used to estimate the attenuation of light caused by
photosynthetic processes. In the same paper and in further publications by Platt & Subba Rao
(1970) and Legendre (1971), it was shown that there exists a correlation in the marine
environment between k;, and the concentration of chlorophyll a. The above papers used the
calorie as unit of energy but, according to the SI standard, this unit should no longer be used.
Coherency requires here that primary production be expressed in J m> s~ and irradiance in
Jm2s7! (or W m_2).
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This example illustrates how a simple reflection, based on dimensions, led to an
interesting development in the field of ecology.

It is therefore useful to think in terms of dimensions when dealing with ecological
equations that contain physical quantities. Even if this habit is worth cultivating, it
would not however, in and of itself, justify an entire chapter in the present book. So, let
us move forward in the study of dimensional analysis.

3.2 Fundamental principles and the Pi theorem

Dimensional
homogeneity

It was shown in the previous section that going from one quantity to another is
generally done by multiplying or dividing quantities characterized by different
dimensions. In contrast, additions and subtractions can only be performed on quantities
having the same dimensions — hence the fundamental principle of dimensional
homogeneity. Any equation of the general form

a+b+c+...=g+h+...

is dimensionally homogeneous if and only if all quantities a, b, c, ... g, h, ... have the
same dimensions. This property applies to all equations of a theoretical nature, but it
does not necessarily apply to those derived empirically. Readers must be aware that
dimensional analysis only deals with dimensionally homogeneous equations. In
animal ecology, for example, the basic equation for energy budgets is:

dW/dt = R-T 3.1)

where W is the mass of an animal, R its food ration, and T its metabolic expenditure
rate (oxygen consumption). This equation, which describes growth dW/dt as a function
of ration R and metabolic rate 7, is dimensionally homogeneous. The rate of oxygen
consumption 7 is expressed as mass per unit time, its dimensions thus being MT '],
as those of food ration R. The dimensions of dW/dt are also clearly [MT‘I]. This same
equation will be used in Ecological applications 3.2e and 3.3b, together with other
ecological equations — all of which are dimensionally homogeneous.

In dimensional analysis, the correct identification of quantities to be included in a
given equation is much more important than the exact form of the equation.
Researchers using dimensional analysis must therefore have prior knowledge of the
phenomenon under study, in order to identify the pertinent dimensional variables and
constants. On the one hand, missing key quantities could lead to incomplete or
incorrect results, or even to a deadlock. On the other hand, including unnecessary
terms could overburden the solution needlessly. Hence, dimensional analysis cannot be
conducted without first considering the ecological bases of the problem. A simple
example, taken from hydrodynamics, will illustrate the dimensional method.
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Dimension-
less product

The question considered here relates to the work of many ecologists in aquatic
environments, i.e. estimating the drag experienced by an object immersed in a current.
Ecologists who moor current meters or other probes must consider the drag, lest the
equipment might be carried away. To simplify the problem, one assumes that the
immersed object is a smooth sphere and that the velocity of the current V is constant.
The drag force F is then a function of: the velocity (V), the diameter of the sphere (D),
the density of water (p), and its dynamic viscosity (). The simplest equation relating
these five quantities is:

F=fV.D,p,n) (3.2

At first sight, nothing specifies the nature of the dependency of F on V, D, p, and 7,
except that such a dependency exists. Dimensional analysis allows one to find the form
of the equation that relates F to the variables identified as governing the drag.

A number of variables are regularly encountered in hydrodynamics problems,
ie. F,V,L,p,m,to which one must also add g, the acceleration due to gravity. Some of
these variables may be combined to form dimensionless products. Specialists of
hydrodynamics have given names to some often-used dimensionless products:

oo _ VIp_ [LTJ[L] [ML2] _ [MLIT-] _
Reynolds number: Re = T = MLTT] = ML [1] @33
) )
Newton number: Ne = F [MLT™] _ [MLTZ] _ [1] (34

pL2V2  [ML-][L?] [L2T2] [MLT2] _

V2 L2T-2 L2T-2
Froude number: Fr = Iz = [[L] [T‘g] = %LZT—Z} = [1] 3.5)

Each of the above products is clearly dimensionless. It should also be noted that each
product of this set is independent of the others, since each contains one exclusive
variable, i.e. 1 for Re, F for Ne, and g for Fr. Finally, any other dimensionless product
of these same variables would inevitably be a product of powers of dimensionless
products from the above set. The three dimensionless products thus form a complete
set of dimensionless products for variables F, V, L, p, n and g. It would obviously be
possible to form other complete sets of dimensionless products using these same
variables, by combining them differently.

The first important concept to remember is that of dimensionless product. This
concept leads to the sole theorem of dimensional analysis, the IT theorem, which is
also known as the Buckingham theorem.

Given the fundamental principle of dimensional homogeneity (see above), it
follows that any equation that combines dimensionless products is dimensionally
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I1 theorem

homogeneous. Thus, a sufficient condition for an equation to be dimensionally
homogeneous is that it could be reduced to an equation combining dimensionless
products. Indeed, any equation that can be reduced to an equation made of
dimensionless products is dimensionally homogeneous. Buckingham (1914) did show
that this condition is not only sufficient but also necessary. This leads to the IT (Pi)
theorem (the capital Greek letter IT is the mathematical symbol for product):

If an equation is dimensionally homogeneous, it can be reduced to a relationship
among the members of a complete set of dimensionless products.

This theorem alone summarizes the whole theory of dimensional analysis.

The power of the IT theorem is illustrated by the solution of the drag problem,
introduced above. Equation 3.2 is, by definition, dimensionally homogeneous:

F=f(V.D,p,n)

It may be rewritten as:

f(F,V,D,p,m)=0 3.6)

The complete set of dimensionless products of the five variables F, V, D, p, n
contains two products, i.e. the Reynolds (Re) and Newton (Ne) numbers (D being a
length, it is a quantity of type L). Hence, eq. 3.6 may be rewritten as a relation between
the members of this complete set of dimensionless products (I theorem):

Ne = f(Re)
T v§D2 = f(Re) (3.7)

In this equation, the function f is, for the time being, unknown, except that it depends
on the sole dimensionless variable Re.

The projected area (A) of a sphere is:

A=m(D/2)> = (1/4) n D?, so that D> = 4A/n

which allows one to rewrite eq. 3.7 as:
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Figure 3.1

Chart

Log;o Re

Drag coefficient on smooth spheres. Adapted from Eisner (1931).

In hydrodynamics, the term (8/m) f (Re) is called the drag coefficient and is represented
by C, so that the drag exerted on a sphere is:

F=(1/2) C,pV2A, where C, = (8/m) f(Re) (3.8)

Since C, is a function of the sole dimensionless coefficient Re, the problem is
resolved by determining, in the laboratory, the experimental curve of C, as a function
of Re. This curve will be valid for any density (p) or dynamic viscosity (1) of any fluid
under consideration (the same curve can thus be used for water, air, etc.) and for
objects of any size, or any flow speed. The curve may thus be determined by
researchers under the most suitable conditions, i.e. choosing fluids and flow speeds
that are most convenient for laboratory work. As a matter of fact, this curve is already
known (Fig. 3.1).

Two important properties follow from the above example.

(1) First, data to build a dimensionless graph should be obtained under the most
convenient conditions. For example, determining C, for a sphere of diameter 3.48 m
immersed in air at 14.4°C with a velocity of 15.24 m s~! would be difficult and costly.
In contrast, it would be much easier, in most laboratories, to determine C, by using a
sphere of diameter 0.61 m in water at 14.4°C with a speed of 5.79 m s~!. In both cases,
Re is the same so that the measured value of C, is the same. This first property is the
basis for model testing in engineering (Section 3.4), the sphere in air being here the
prototype and that in water, the model.

(2) The dimensionless graph of Fig. 3.1 contains much more information than a set
of charts depicting the function of the 4 variables. In a chart (Fig. 3.2), a function of
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Figure 3.2

fo.2

\

Chart representing a function of two variables. One curve is required for each value of the
second variable (z;, 25,23, ...)

two variables is represented by a family of curves, one curve being required for each
value of the second variable. A function of three variables would be represented by a
set of sets of charts. Hence, for four variables and assuming that there were only five
values measured per variable, a total of 625 experimental points would be required,
i.e. five sets of five charts each. With 25 times fewer experimental points, one can
easily obtain a dimensionless graph (e.g. Fig. 3.1) which is both more exact and much
more convenient.

The above physical example illustrated the great simplicity and remarkable power
of dimensional analysis. Let us now examine examples from ecology.

Ecological application 3.2a

This first example belongs to the disciplines of ecology and physiology, since it concerns the
dimensions of animals and their muscular dynamics. Hill (1950) compared different cetaceans,
as a set of similar animals which differ in size. All these cetaceans (porpoises, dolphins, and
whales), with a 5000-fold mass range, travel at high speed (ca.7.5 ms~!) which they can
maintain for a long time. Table 3.3 compares the two extreme cases of the common dolphin
(Delphinus delphis) and the blue whale (Balaenoptera musculus).
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Table 3.3

Body characteristics of two cetaceans.

Common dolphin Blue whale
Maximum length (m) 24 30
Maximum mass (103 kg) 0.14 150
Mass/length’ 0.01 0.006
Area/length? 045 0.40

Since these two animals can maintain a cruising speed of ca. 7.5 m s7! for long periods, one
may assume that they are then in a physiological steady state. The question is: how is it possible
for two species with such different sizes to cruise at the same speed?

To answer this question, one must first consider the drag (F) on a streamlined body moving
in a fluid. The equation is similar to eq. 3.8, except that the drag coefficient C, is replaced here
by the friction coefficient Cg:

F=05CpV?A

where p is the density of the fluid, V the velocity of the body, and A its fotal surface area. For
laminar flow, Cy= 1.33 Re™''% whereas, for turbulent flow, C;= 0.455 (logjg Re)>%, Re being
the Reynolds number. Low values of Re correspond to laminar flow, where resistance to motion
is relatively weak, whereas high values of Re are associated with turbulent flow, which creates
stronger resistance to motion. Normally, for a streamlined body, the flow is laminar over the
front portion only and is turbulent towards the back.

The power developed by the muscles of moving cetaceans is calculated in three steps.
* Calculation of Re, for the animal under study:
Re~7x10° (s m‘z) VL, in sea water at 5°C
* Calculation of drag (F):
F=05CpV?A
Cybeing computed from Re, using the equation for either laminar or turbulent flow.
* Calculation of power (P) developed during motion:
P=FV

For the purpose of the calculation, consider (1) a dolphin with a length of 2 m, weighing 80 kg,
whose surface area is 1.75 m? and (2) a whale 25 m long, with a mass of 100 t and surface area
of 250 m?.
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(1) The value of Re for a dolphin moving at 7.5 m s7!is of the order of 107, which seems to
indicate highly turbulent flow. In the case of laminar flow,

Cr=133x(10"y"2=42x 10
and, for turbulent flow,
Cr= 0455 (loggl0") 28 =3 x 107
The drag (F) corresponding to these two flow regimes is:
F (laminar) =0.5 (4.2 x 107 (1028 kgm™) (7.5 ms > (1.75m?) =22 N

F (turbulent) = 0.5 (3 x 107) (1028 kg m™) (7.5 ms )2 (1.75 m?») = 155 N

The power (P = F x 7.5 m s71) that a dolphin should develop, if its motion resulted in perfectly
laminar flow, would be 165 W and, for turbulent flow, 1165 W. Since the size of a dolphin is of
the same order as that of a man, it is reasonable to assume that the power it can develop under
normal conditions is not higher than that of an athlete, i.e. a maximum power of 260 W. It
follows that the flow must be laminar for the 9/10 front portion of the dolphin’s body, with the
rear 1/10 being perhaps turbulent. This conclusion is consistent with observations made in
nature on dolphins. It is assumed that the absence of turbulence along the front part of the
dolphin’s body comes from the fact that the animal only uses its rear section for propulsion.

(2) The blue whale also swims at 7.5 m s~ its Re being ca. 12.5 x 107 which corresponds to
a turbulent flow regime. A laminar flow would lead to a value

Cr=133x(125x 102 =12x 107

and a turbulent flow to

Cy=0455 (logyo12.5 x 101 2% =21 x 1073
The corresponding drag (F) would be:

F (laminar) = 0.5 (1.2 x 107™) (1028 kg m~>) (7.5 m s™1)? (250 m?) = 745 N

F (turbulent) = 0.5 (2.1 x 1073) (1028 kg m™) (7.5 m s~ )% (250 m?) = 13 kN.

The power a whale should develop, if its motion at 7.5 m 57! was accompanied by laminar flow,

would be 5.6 kW and, in the case of turbulent flow, 100 kW. The maximum power developed by
a 80 kg dolphin was estimated to be 260 W so that, if the maximum power of an animal was
proportional to its mass, a 10° kg whale should be able to develop 325 kW. One should,
however, take into account the fact that the available energy depends on blood flow. Since
cardiac rate is proportional to (mass) 0?7, the heart of a whale beats at a rate
(100/0.08Y%-%7 = 1/7 that of a dolphin. The maximum power of a whale is thus ca.1/7 of
325 kW, i.e. 46.5 kW. This leads to the conclusion that laminar flow takes place along the 2/3
front portion of the animal and that only the 1/3 rear part can sustain turbulent flow.

Ecological application 3.2b

A second study, taken from the same paper as the previous application (Hill, 1950), deals with
land animals. It has been observed that several terrestrial mammals run more or less at the same
speed and jump approximately the same height, even if their sizes are very different. Table 3.4
gives some approximate maximal values. The question is to explain the similarities observed
between the performances of animals with such different sizes.
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Table 3.4

Performances (maximal values) of five mammals.

Running speed (m sh Height of jump (m)
Man 12 2
Horse 20 2
Greyhound (25 kg) 18 —
Hare 20 1.5
Deer 15 25

One of the explanations proposed by the author involves a relatively simple dimensional
argument. The strength of tissues in the bodies of animals cannot be exceeded, during athletic
performances, without great risk. For two differently sized animals, consider a pair of systems
with lengths /; and [, respectively, carrying out similar movements within times #; and t,,
respectively. The stress at any point in these systems has dimensions [ML™'T2], which
corresponds to the product of density [ML™3] with the square of speed [L’T 2.

Assuming that the densities of systems are the same for the two species
(i.e. mllf3 = mzlg3 , which is reasonable, since the densities of bones, muscles, etc. are similar
for all mammals), the stresses at corresponding points of the systems are in the ratio
(1217%) = (1215%) .1If the two systems operate at speeds such that the stresses are the same at
corresponding points, it follows that (!, tl‘l) = (12151) . In other words, the speed is the same at
corresponding points of the two systems. It is therefore the strength of their tissues which would
explain why athletic animals of very different sizes have the same upper limits for running
speeds and jumping heights.

It is interesting to note that, over the years, the topic of maximal running speed of terrestrial
mammals has been the subject of many papers, which considered at least four competing
theories. These include the theory of geometric similarity, briefly explained in this example, and
theories that predict an increase of maximum running speed with body mass. These are
summarized in the introduction of a paper by Garland (1983), where maximum running speeds
for 106 species of terrestrial mammals are analysed. The study led to several interesting
conclusions, including that, even if maximal running speed is mass-independent within some
mammalian orders, this is not the case when species from different orders are put together; there
is then a tendency for running speed to increase with mass, up to an optimal mass of ca. 120 kg.
This is quite paradoxical since, when considering mammals in general, limb bone proportions do
scale consistently with geometric similarity. The author refers to Giinther’s (1975, p.672)
conclusion that “no single similarity criterion can provide a satisfactory quantitative explanation
for every single function of an organism that can be submitted to dimensional analysis”.
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Figure 3.3 Illustration of the Michaelis-Menten equation, showing the role of parameter K. In the curve
with higher K, u approaches the asymptote w,,, more slowly than in the other curve.

Ecological application 3.2¢

An example from aquatic ecology (Platt & Subba Rao, 1973) illustrates the use of dimensionless
graphs. The dependence of phytoplankton growth on a given nutrient is often described by
means of the Michaelis-Menten equation, borrowed from enzymology. In this equation, the
growth rate (u), with dimension [T’l], is a function of the maximum specific growth rate (w,,),
the concentration (S) of the nutrient, and the concentration (K,) of nutrient at which the growth
rate uw = 1/2 u,,;

_1dB _ WS
“=Ba T K +S
[T-1] = (1] [ML7] _  [T'][ML-]
[ML-3] [T] [ML-3] + [ML-3]

where B is the concentration of phytoplankton biomass. This equation is that of a rectangular
hyperbola, where K determines how fast the asymptote u,, is approached. When Kj is high, n
approaches the asymptote w,, slowly, which indicates a weak dependence of wu on § in the
unsaturated part of the curve (Fig. 3.3).

In order to compare the effects of two different variables on phytoplankton growth, the
authors defined a new entity Sx = S/K;. Since this entity is dimensionless, the abscissa of the
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Character-
istic value

graph u(Sx) as a function of Sx is dimensionless; w(Sx) stands for the specific growth rate,
normalized to Sx. The Michaelis-Menten equation is thus rewritten as:

W, S

u(s,) = m

Hence, the strength of the dependence of u on Sx is:

du(S.) _d MmS* _ w,
ds, ~dS.\1+S,) ~ (1+5,)2

Using this expression, it is possible to determine the relative strength of the dependence of u on
two different variables (i and j):

dw(Si)/dSi  wi [(1+5))2
E@.)) = { }

dw(s1)/dsi w,,| (1+50)2

Under conditions that do not limit phytoplankton growth, the maximum specific growth rate is
the same for the two variables, i.e. u',, = w,,. In such a case, the dependence of w on the two
variables becomes:

EG) = (1+S8)2/(1+8L)2

This dimensionless approach makes it possible to compare the effects of different variables
on phytoplankton growth, regardless of the dimensions of these variables. Using the above
equation, one could assess, for example, the relative importance of irradiance (umol photons
m2 s7L, also denoted uEinstein m2 s‘l) [NL‘QT‘l] and of a nutrient [ML_3] for phytoplankton
growth.

The method described here is actually of general interest in ecology, since it shows
how to approach a problem involving several variables with no common measure. In
all cases, it is recommended to transform the dimensional variables into dimensionless
ones. The most obvious transformation, proposed by Platt & Subba Rao (1973),
consists in dividing each variable by a characteristic value, which has the same
dimensions as the variable itself. In the case of the Michaelis-Menten equation, the
characteristic value is K, which has the same dimensions as S. This elegant and
efficient approach is also used in parametric statistics, where variables are transformed
through division by their standard deviations. For this and other transformations, see
Section 1.5. The approach which consists in dividing an ecologically interesting
variable by another variable with the same dimensions, so as to create a dimensionless
variable, is known as “scaling” (e.g.in Schneider, 1994). Scaling analysis has been
used, for example, in coral reef studies (Hatcher and Firth, 1985; Hatcher et al., 1987)
and by Murray & Jumars (2002) to model steady-state diffusive uptake of nutrients by
a spherical attached bacterium (study summarized by Legendre, 2004: 81-83).

The following example illustrates some basic characteristics of dimensional
analysis. It also stresses a major weakness of the method, of which ecologists should
be aware.
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Ecological application 3.2d

The study discussed here (Kierstead & Slobodkin, 1953) did not use dimensional analysis, but it
provides material to which the method may usefully be applied. The authors did develop their
theory for phytoplankton, but it is general enough to be used with several other types of
organisms. Given a water mass containing a growing population, which loses individuals
(e.g. phytoplankton cells) by diffusion and regenerates itself by multiplication, the problem is to
define the minimum size of the water mass below which the growth of the population is no
longer possible.

The problem is simplified by assuming that: (1) the diffusion (D) of organisms remains
constant within the water mass, but is very large outside where the population cannot maintain
itself, and (2) the water mass is one-dimensional (long and narrow), so that the concentration (c)
of organisms is a function of the position (x) along the axis of the water mass. The equation
describing the growth of the population is thus:

2
dc Jdc
— =D—+K
Y ax2+ c

where K is the growth rate. On the right-hand side of the equation, the first term accounts for
diffusion, while the second represents linear growth. A complicated algebraic solution led the
authors to define a critical length (L,) for the water mass, under which the population would
decrease and above which it could increase:

L, = nJD/K

It must be noted that this equation is analogous to that of the critical mass in a nuclear reactor.
Associated with this critical length is a characteristic time (t) of the process, after which the
critical length L. becomes operative:

t = L2/ (82D)

The above results are those given in the paper of Kierstead and Slobodkin. The same
problem is now approached by means of dimensional analysis, which will allow one to compare
the dimensional solution of Platt (1981) to the algebraic solution of Kierstead and Slobodkin. In
order to approach the question from a dimensional point of view, the dimensions of variables in
the problem must first be specified:

x [L] K: [T

r [T] D: LT
The only dimensions that are not immediately evident are those of D, but these can easily be
found using the principle of dimensional homogeneity of theoretical equations.

The equation of Kierstead & Slobodkin involves three variables (c, ¢, x) and two constants
(D, K). According to the general method developed in the previous ecological application, the
variables are first transformed to dimensionless forms, through division by suitable
characteristic values. Dimensionless variables C, T and X are defined using characteristic
values c, , t, and x, :

C=c/c, T=t/t, X=x/x,

hence c=Cc, t=Tt, x=Xx,
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Substitution of these values in the equation gives:

¢, 0C c,.92C
— =D——+Kc,C
t*aT xfaXz “

The next step is to make all terms in the equation dimensionless, by multiplying each one by x2
and dividing it by D, after eliminating from all terms the common constant c, :

2
¥ lac _a'c {Kﬂc
— = +
Dt |aT ~ 3x2 D
The resulting equation thus contains three dimensionless variables (C, T and X) and two
dimensionless products (in brackets).

Since the dimensions of the two products are [1], these may be transformed to isolate the
characteristic values x, and t, :

*

Xf x%
since {Dt } =[1], it follows that [z, ] = {5}

i {sz}—l'tfll that [x2] = [2] and th - [P
since - = [1], it follows that [xz] _[f} an us[x*]—[g}

Using these relationships, the following proportionalities are obtained:

x. < J/D/K and t, < x2/D

Dimensional analysis thus easily led to the same results as those obtained by Kierstead and
Slobodkin (1953), reported above, except for the constant factors ; and 87%. This same example
will be reconsidered in the next section (Ecological application 3.3a), where the two
dimensionless products will be calculated directly.

The above example illustrates the fact that dimensional analysis cannot generate
dimensionless constants, which is a limit of the method that must be kept in mind.
Thus, in order to take advantage of the power of dimensional analysis, one must give
up some precision. It is obvious that such a simple method as dimensional analysis
cannot produce the same detailed results as complex algebraic developments. As
mentioned above (Section 3.0), dimensional analysis deals with general forms of
equations. Yet, starting from simple concepts, one can progress quite far into complex
problems, but the final solution is only partial. As noted by Langhaar (1951): “The
generality of the method is both its strength and its weakness. With little effort, a
partial solution to nearly any problem is obtained. On the other hand, a complete
solution is not obtained.”

Ecological application 3.2e

It often happens that ecologists must synthesize published data on a given subject, either as a
starting point for new research, or to resolve a problem using existing knowledge, or else as a
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basis for a new theoretical perspective. This is nowadays more necessary than ever, because of
the explosion of ecological information. However, such syntheses are confronted to a real
difficulty, which is the fact that available data are often very diversified, and must thus be unified
before being used. Paloheimo & Dickie (1965) met this problem when they synthesized the
mass of information available in the literature on the growth of fish as a function of food intake.
As in the previous application, the authors did not themselves use dimensional analysis in their
work. The dimensional solution discussed here is modified from Platt (1981).

The metabolism of fish may be described using the following relationship:

T = aW'

where T is the rate of oxygen consumption, o specifies the level of metabolic expenditure per
unit time, W is the mass of the fish, and y specifies the rate of change of metabolism with body
mass. Growth is expressed as a function of food ration (R), by means of the following equation:

dw

C — RTe(a+bR)
T [e ]
which shows that growth efficiency decreases by a constant fraction ¢ for each unit increase in
the amount of food consumed per unit time. The value of R at maximum growth is determined,
as usual, by setting the partial derivative equal to O:

d (dW) _ —(a+bR) —
Ra ) = (1-bR)e =0

Growth is thus maximum when bR = 1.

The basic equation for the energy budget (eq. 3.1) is:

aw
Y = R-
dt
so that T = R_iW
dt

Replacing, in this last equation, dW/dt by its expression in the second equation, above, and
isolating R, one obtains:

T = R[1-e¢(atbn]

Then, replacing T by its expression in the first equation leads to:

aWY¥ = R[1-e (a+bn)]

which is a general equation for energy budgets. This equation may be used to calculate, for any
fish of mass W, the ration R required to maintain a given metabolic level. Furthermore, with an
increase in ration, the term [1 — elat bR)] tends towards 1, which indicates that the metabolism
then approaches R. In other words, growth decreases at high values of R.

Values for coefficient b and food intake found in the literature are quite variable. It was
shown above that the product bR determines growth. Paloheimo & Dickie therefore suggested to
standardize the relationship between growth and ration in terms of bR.



128

Dimensional analysis in ecology

Since growth is maximum when bR = 1, the ration can be brought to a common measure by
expressing it in units of 1/b. On this new scale, the ration () is defined as:

r=bR

When growth is maximum, bR = 1, so that R = 1/b. Replacing, in the general equation for the
energy budget, R by 1/b (and bR by 1) yields:

aW' = 1/b[l—e(a+1)]

o (a+ D)1/
so that W = [L—-EWJ
ab

from which it is concluded that the mass should be expressed in units of (l/ocb)l/ " in order to
bring data from the literature to a common measure. On this new scale, the mass (w) is defined
as:

w= (b)) W
wY
so that b =aWl =T

Using the scaled ration (r) and mass (w), the general equation for energy budgets may be
rewritten as:

wY r

= - _,—(a+r)

b b[l e 1
and finally wY = r[l—e‘(“+’)]

In this last equation, the use of r and w brings to a common measure the highly variable values
of R and W, which are available in the literature for different species or for different groups
within a given fish species.

These same results could have been obtained much more easily using dimensional analysis.
As with all problems of the kind, it is essential, first of all, to identify the dimensions of variables
involved in the problem. The first two equations are used to identify the dimensions of all
variables in the study:

T = oW
MT!] = (MUDT1 (MY
%W =R [ef(a+bR)]

[MT"] — [MT’I] [1] [1]+ [M-IT] [MT]

The dimensions of a, which were not immediately obvious, are determined using the principle
of dimensional homogeneity (i.e. same dimensions on the two sides of the equation). The
dimensions of a and b are also found by applying the principle of dimensional homogeneity,
taking into account the fact that an exponent is by definition dimensionless.
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The problem is then to define characteristic values (or, more appropriately, scale factors) so
as to obtain dimensionless ration (r), mass (w), and time (t). Obviously, these scale factors must
contain the two dimensional parameters of the above equations, o and b.

Because the product bR is dimensionless, the scale factor r for ration is:
r=bR

The cases of w and T require the calculation of unknown exponents. These are easily found by
dimensional analysis. In order to do so, unknown exponents y and z are assigned to o and b, and
these unknowns are solved using the principle of dimensional homogeneity:

Calculation of w:
[w]=[1]=[a] [b]* [W]
(W™ = [ [b)°
[M_ITO] = [M(l—Y) TP M TR = [M}’(I—Y)—z T+

so that y1-y)—z=-1
and —y+2z=0
hence y=1ly=z

Consequently, the scale factor w for the mass is:
w = (ab)'w
Calculation of
[t] = [1]1=[a] [bF [1]
(17" = [al [bF
[MOT_I] — [MY(I—Y)—Z T+

so that y1-v)-z=0
and —“y+z=-1
hence y=1/yandz=1/y-1

It follows that the scale factor T for time is:
o= oM pn =1y
© = [(ab)/b]t
These scale factors can be used to compare highly diversified data. Ration is then expressed
in units of (1/b), mass in units of (ocb)’” ¥, and time in units of b/(otb)’l/ V. With this approach, it is

possible to conduct generalized studies on the food intake and growth of fish as a function of
time.

Other applications of dimensionless products in ecology are found, for example, in
Tranter & Smith (1968), Rubenstein & Koehl (1977), and Okubo (1987). The first
application analyses the performance of plankton nets, the second explores the
mechanisms of filter feeding by aquatic organisms, and the third examines various
aspects of biofluid mechanics, including a general relationship between the Reynolds
number (Re) and the sizes and swimming speeds of aquatic organisms from bacteria to
whales. Platt (1981) provides other examples of application of dimensional analysis in
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the field of biological oceanography. Legendre (2004, pp. 87-91) explains how the
dimensional approach provided the main guideline to derive operational equations
from a conceptual model on the fate of biogenic carbon in oceans. These equations
were used by Beaugrand et al. (2010) to compute the effects of long-term changes in
copepod biodiversity on carbon flows in the extratropical North Atlantic Ocean.

Ecological applications 3.2d and 3.2e showed that dimensional analysis may be a
powerful tool in ecology. They do, however, leave potential users somewhat uncertain
as to how personally apply this approach to new problems. The next section outlines a
general method for solving problems of dimensional analysis, which will lead to more
straightforward use of the method. It will be shown that it is not even necessary to
know the basic equations pertaining to a problem, provided that all the pertinent
variables are identified. The above last two examples will then be reconsidered as
applications of the systematic calculation of dimensionless products.

3.3 The complete set of dimensionless products

As shown in the previous section, the resolution of problems using dimensional
analysis involves two distinct steps: (1) the identification of variables pertinent to the
phenomenon under study — these are derived from fundamental principles, for
example of ecological nature — and (2) the computation of a complete set of
dimensionless products. When the number of variables involved is small, complete
sets of dimensionless products can be formed quite easily, as seen above. However, as
the number of variables increases, this soon becomes unwieldy, so that one must
proceed to a systematic calculation of the complete set of dimensionless products.

The physical example of the drag on smooth spheres (Section 3.2) will first be used
to illustrate the principles of the calculation. The problem involved five variables (F, V,
L, p, and m; see eq. 3.2), whose dimensions are written here in a dimensional matrix:

FnoplLYV

M|[1 1100
L|1-1-3 11 3.9
T|-2-1 0 0-1

It must be kept in mind that the numbers in matrix 3.9 (i.e. dimensions) are
exponents. The dimensionless products being sought are products of powers of
variables in the matrix (columns). In each product, the exponents given to the variables
must be such that the result is dimensionless.
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In other words, the systematic calculation of dimensionless products consists in
finding exponents x;, x,, X3, X4 and x5 for variables F,n, p, L, and V, such that a product
I1, of the general form

II = Fxln-"Zp-"3Lx4Vx5
be dimensionless. Taking into account the respective dimensions of the five variables,
the general dimensions of IT are:
I = [MLT-2]" [ML-!T-']*"2[ML-3]"[L]™[LT-']"
I = [M () +x, +x3) L()cl —x,—3x; +x4+x5)T(—2xl —xz—xs)]

The exponents of dimensions [M], [L], and [T] carry exactly the same information as
the dimensional matrix (eq. 3.9). These exponents could therefore have been written

directly, using matrix notation:

111 0 off%
1-1-3 1 1||x (3.10)

-2-1 0 0-1f|x,

where the dimensional matrix is on the left-hand side.

Since the products IT are dimensionless, the exponent of each dimension [M], [L],
and [T], respectively, must be zero. In follows that:

)C]+)C2+X3=O
xl—x2—3x3 +)C4+)C5:0
—2)61—X2—X5=0

or, in matrix notation:

1 1 1 0 0%
1-1-3 1 1||x] =0 3.11)

-2-1 0 0-1f|x,
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Calculation of dimensionless products IT is thus achieved by simultaneously
solving three equations. However, the above system of equations is indeterminate,
since there are only three equations for five unknowns. Arbitrary values must thus be
assigned to two of the unknowns, for example x; and x,. The general solution is then
given in terms of x; and x,. The steps are as follows:

(1) Matrix equation 3.11 is rewritten so as to isolate x; and x, together with the
associated first two columns of the matrix. This operation simply involves transferring
all terms in x3, x4 and x5 to the right-hand side of the equation:

1 1 X 1 0 0f|*s
L=l Y =--3 1 1|x, (3.12)
)
-2 -1 0 0-1 xs

Note that there is now a negative sign in front of the matrix on the right-hand side.
Matrix eq. 3.12 is identical to the algebraic form:

X]+ Xy =—X3
X] =Xy =3x3—X4— X5
—ZXI—X2=X5

2) One then solves for the unknowns x3, x4 and xs, using the general method of
3 X4 5 g g
matrix inversion (Section 2.8):

-1

1 00 1 1 X3
Xy

-l=3 1 1 | 141 = |x,

0 0-1 |-2-1 x5

X3
-3 1 1| 11 x' = |x,
0 0-1|[-2-1]L72 XS

-1 1], X3
24| =, (3.13)

-2 -1 x5

10011[x
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(3) The simplest approach consists in successively assigning the value 1 to each
unknown while setting the other equal to 0,i.e. (1) x; = 1 and x, =0 and (2) x; =0 and
X, = 1.1t follows that the first two columns of the solution matrix are a unit matrix:

FnplLYV

X1 Xp X3 X4 X5

I |1 0-1-2- (3.14)
I, [0 1-1-1-1

The dimensionless products of the complete set are therefore (as in Section 3.2):

F
I, = pL—2V2 ,the Newton number (Ne; eq. 3.4)
I, = p%\/ , the inverse of the Reynolds number (1/Re; eq. 3.3)

This example clearly shows that the systematic calculation of dimensionless
products rests solely on recognizing the variables involved in the problem under
consideration, without necessarily knowing the corresponding equations. The above
solution, which was developed using a simple example, can be applied to all problems
of dimensional analysis, since it has the following characteristics:

(1) Because the left-hand part of the solution matrix is an identity matrix (I), the
dimensionless products II are independent of one another. Indeed, given I, each
product contains one variable which is not included in any other product, i.e. the first
variable is only in I1;, the second is only in II,, and so on.

(2) When partitioning the dimensional matrix, one must isolate on the right-hand
side a matrix that can be inverted, i.e. a matrix whose determinant is non-zero.

(3) The rank (r) of the dimensional matrix is the order of the largest non-zero
determinant it contains (Section 2.7). Therefore, it is always possible to isolate, on the
right-hand side, a matrix of order » whose determinant is non-zero. The order r may
however be lower than the number of rows in the dimensional matrix, as seen later.

(4) The number of dimensionless products in the complete set is equal to the
number of variables isolated on the left-hand side of the dimensional matrix. It follows
from item (3) that the number of dimensionless products is equal to the fotal number of
variables minus the rank of the dimensional matrix. In the preceding example, the
number of dimensionless products in the complete set was equal to the number of
variables (5) minus the rank of the dimensional matrix (3),i.e. 5 — 3 = 2 dimensionless
products.

(5) When the last r columns of a dimensional matrix of order r do not lead to a non-
zero determinant, the columns of the matrix must be rearranged so as to obtain a non-
zero determinant.
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Numerical example 1. An example will help understand the consequences of the above five
characteristics on the general method for the systematic calculation of the complete set of
dimensionless products. The dimensional matrix is as follows:

Vi Vy V3 Vy Vs Vg Vs

M|2 01 0-1-2 3
Lij1 22 00 1-1
T[0O 1 2 3 1-10

The rank (r) of this matrix is 3 (numerical example in Section 2.7), so that the number of
dimensionless products of the complete set is equal to 7 — 3 = 4. However, the determinant of
the r = 3 last columns is zero:

12 3
0 1-1| =0
1-1 0

Calculating the complete set of dimensionless products thus requires a reorganization of the
dimensional matrix by rearranging, for example, the columns as follows:

M|[2-1 3 0 0-2 1
Lij1 0-1 0 2 1 2
T[0O1 0 3 1-1 2

The solution then follows from the general method described above:

-1
2 0-2 1| |2-1 3 off,
Yo =2 120 |1 0-1 0]
Xy 1-1 2/ [0 10 3|7
Xy
X
2 4 3-5|2-1 3 0|,
5
Xo| =-|-2-1 2[|1 0-1 ©
X7
Xy -3-2 4/l0 1 0 3
X4
X
X
2 11 9-9 15 xg
X/ =| 5-4 5 -6
X7
Xy 8§ -7 7-12
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Vi Vs Vy Vi Vy Ve Vg

Wh 00 o0-115 3
Mlo 1 0 0 94 7
o o1 0 -95 7
m 0 0 0 1 15-6-12

Numerical example 2. This example illustrates the case of a dimensional matrix whose
rank is less than its number of rows. This matrix has already been considered in Section 2.7:

Vi Vy VsV
M|2 1 3 4
L|-1 6-3 0
T|120-3 8

It was shown (Section 2.7) that the rank of this matrix is r = 2, so that it is not possible to find a
combination of three columns that could be inverted. Any 3 x 3 submatrix would be singular
(Section 2.8).

The solution consists in making the number of rows equal to the rank. This is done by
eliminating any one row of the dimensional matrix, since the matrix has only two independent
rows (Section 2.7). The number of dimensionless products in the complete set is thus equal to
4-2=2.

Vi Vo V3 Vy

M2 1 3 4
L|-1 6-3 0

o1 0-1/3-1/4
m, |01 2 -7/4

It is possible to eliminate fractional exponents by multiplying each row of the solution matrix by
its lowest common denominator:

O 112 0-4-3
I, 0 4 87

Identical results would have been obtained if any other row of the dimensional matrix had been
eliminated instead of row 3, since each of the three rows is a linear combination of the other two.
This can easily be checked as exercise.

There now remains to discuss how to choose the ordering of variables in a
dimensional matrix. This order determines the complete set of dimensionless products
obtained from the calculation. The rules are as follows:

(1) The dependent variable is, of necessity, in the first column of the dimensional
matrix, since it must be present in only one IT (the first dimensionless product is thus
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called the dependent dimensionless variable). As a consequence, this first variable can
be expressed as a function of all the others, which is the goal here. For example, in
eq. 3.9, the drag F is in the first column of the dimensional matrix since it is clearly the
dependent variable.

(2) The other variables are then arranged in decreasing order, based on their
potential for experimental variation. Indeed, a maximum amount of information will
result from experimentation if those variables with a wide range of experimental
variability occur in a single IT.

(3) The initial ordering of variables must obviously be changed when the last r
columns of the dimensional matrix have a zero determinant. However, one must then
still comply as well as possible with the first two rules.

Two ecological applications, already discussed in Section 3.2, will now be treated
using the systematic calculation of complete sets of dimensionless products.

Ecological application 3.3a

The first example reconsiders Ecological application 3.2d, devoted to the model of Kierstead &
Slobodkin (1953). This model provided equations for the critical size of a growing
phytoplankton patch and the characteristic time after which this critical size becomes operative.

The dimensional matrix of variables involved in the problem includes: length x, time t,
diffusion of cells D, and growth rate k. The dependent variables being x and ¢, they are in the first
two columns of the dimensional matrix:

x t D k

Li1 020

TO0 1-1-1
The rank of the dimensional matrix being 2, the number of dimensionless products is 4 — 2 = 2.
These two products are found using the general method for calculating the complete set:

LIeg-Te

x t D k x t D k
il o-1/2172) _ |2 0-1 1
miot o 1 (0101

I, = kx’/D and I, = tk

These two dimensionless products describe, as in Ecological application 3.2d, the critical length
x and the characteristic time t as:

xo JD/k and t « 1/k « x2/D
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Ecological application 3.3b

A second example provides an easy solution to the problem that confronted Paloheimo & Dickie
(1965) concerning the synthesis of data on the growth of fish with respect to food intake. The
question was discussed at length in Ecological application 3.2e, which led to three scale factors,
for food ration, mass, and time. These scale factors were used by the authors to compare
heterogeneous data from the ecological literature.

The solution is found directly, here, using the dimensional matrix of the six variables
involved in the problem: time t, mass W, food ration R, rate of oxygen consumption T, rate of
metabolic expenditure o., and coefficient b. The variables to be isolated being 7, W, and R, they
are in the first three columns of the dimensional matrix:

t WRT o b

M[OT1 1 1 (1-y) -1
T|10-1-1 -1 1

Since the rank of the dimensional matrix is » = 2, the number of dimensionless products is
6 — 2 = 4. The four products are calculated by the method of the complete set:

_(1—y)—1_10 11| 1/ 1/y 0 0
-1 1 [1 0-1-1 [(1/y)-1] 1/y 11

t WR T o b

T 000 1y (1) -1
io1oo0 1/y 1/
I, 0010 0 1
m 0001 o 1

1, =t = [(ab) /bt
I, = Wa "' = (ab)'Y'w
I3 =Rb =bR
I, =7b =bT
The first three dimensionless products define the three scale factors already found in Ecological

application 3.2e, i.e. II; for time, I, for mass, and 1I3 for ration. 11 defines a scale factor for
oxygen consumption.

Direct calculations of complete sets of dimensionless products thus led to the same
results as obtained before, but operations here were more straightforward than in
Section 3.2.

It should not be necessary, after these examples, to dwell on the advantage of
systematically calculating the complete set of dimensionless products. In addition to
providing a rapid and elegant solution to problems of dimensional analysis, the above
matrix method sets researchers on the right track when tackling a problem to be
investigated using the dimensional tool. The success of a dimensional study depends
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on: (1) adequate knowledge of the problem under study, so that all the pertinent
variables are considered; and (2) clear ideas about which variables are functions of the
others. It should be noted, as explained above, that the systematic calculation of the
complete set of dimensionless products does not require prior knowledge of the
fundamental equations. These, however, may be necessary to derive the dimensions of
some complex variables. Dimensional analysis may be a powerful tool, provided that
the ecological bases of the problem under consideration are thoroughly understood and
that the objectives of the research are clearly stated.

3.4 Scale factors and models

Physical
model

Prototype

Given the increased awareness in society for environmental problems, major
engineering projects cannot be undertaken, in most countries, before their
environmental impacts have been assessed. As a consequence, an increasing number of
ecologists now work within multidisciplinary teams of consultants. At the planning
stage, a powerful tool available to engineers, although very costly, is the small-scale
model. Tests performed with such models help choose the most appropriate
engineering solution. Actually, ecologists may encounter two types of model,
i.e. mathematical and physical. Mathematical models are defined at the beginning of
Section 10.3. Physical models are small-scale replica of the natural environment, to
which changes can be made that reproduce those planned for the real situation. Tests
with physical models (e.g.in wind tunnels or hydraulic flumes) are generally more
costly to perform than mathematical simulations, so that the latter are becoming
increasingly more popular than the former. Physical models are often based on
dimensional analysis, so that it is this type of model that is considered here. It should
be noted that physical models may originate from the empirical approach of engineers,
which is distinct from the dimensional approach.

In order to communicate with engineers conducting tests on small-scale models,
ecologists must have some basic understanding of the principles governing model
testing. In some cases, ecologists may even play a role in the study, when it is possible
to integrate in the model variables of ecological significance (e.g.in a model of a
harbour or estuary, such variables as salinity, sediment transport, etc.). Since small-
scale models are based in part on dimensional analysis, their basic theory is thus
relatively easy to understand. The actual testing, however, requires the specific
knowledge and experience of model engineers. In addition to their possible
involvement in applications of modelling to environmental impact studies, ecologists
may at times use small-scale models to resolve problems of their own (e.g. studying
the interactions between benthic organisms and sediment in a hydraulic flume). These
various aspects are introduced here very briefly.

In the vocabulary of physical modelling, the full-size system is called prototype
and the small-size replica is called model. A model may be geometrically similar to the
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Geometric
similarity

Scale factor

prototype, or it may be distorted. In the case of geometric similarity, all parts of the
model have the same shapes as the corresponding parts of the prototype. In certain
cases, geometric similarity would lead to errors, so that one must use a distorted
model. In such models, one or several scales may be distorted. For example, a
geometrically similar model of an estuary could result in some excessively small water
depths. With such depths, the flow in the model could become subject to surface
tension, which would clearly be incorrect with respect to the real flow. In the model,
the depth must therefore be relatively greater than in nature, hence a distorted model.

The physical example of the drag on smooth spheres, already discussed in
Sections 3.2 and 3.3, is now used to introduce the basic principles of scaling and
small-scale modelling. Equation 3.7 describes the drag (F) acting on a smooth sphere
of diameter D, immersed in a stream with velocity V of a fluid with density p and
dynamic viscosity 1:

F=pV’D’f(Re) 3.7
_2n2e(VDpP
F=pVD7 ( T)

In order to experimentally determine the drag, under convenient laboratory
conditions (e.g. wind tunnel or hydraulic flume), it may be appropriate to use a
geometrically similar model of the sphere. Quantities pertaining to the model are
assigned prime indices. If the curve of the drag coefficient for smooth spheres was not
known (Fig. 3.1), the estimation of F in the laboratory would require that the value of
the unknown function f be the same for both the model and the prototype. In order to do
so, the test engineer should make sure that the Reynolds numbers for the two systems
are equal:

Re = Re'
VDp = M (3.15)
n n’'

A scale factor is defined as the ratio of the size of the model to that of the
prototype. Scale factors are therefore dimensionless numbers. The scale factors (K)
corresponding to eq. 3.15 are:

KV=V//V KD=D,/D Kp=p//p an’y‘l//’r‘l

These scales are used to rewrite eq. 3.15 as:

KyKpK, =K, (3.16)
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Because Re = Re' , the scale factor of the unknown function f is equal to unity:
Kf(Re) =1 (3.17)

The ratio between the drag measured for the model and the real drag on the prototype
is computed by combining eq. 3.7 with the above scale factors:

K, = KPK‘Z,K%)K)C(RL))

Because of eq. 3.17, it follows that:

K. = KPK%,KL% (3.18)
Equation 3.16 is used to find the value of K-

KyKpKy=K, (3.16)
is squared KyKpK; = K}
from which K‘Z,K%)Kp = K%/Kp
and, given eq. 3.18 K, = K}/K, 3.19)

Equation 3.19 leads to the following practical conclusions, for determining the
drag on smooth spheres in the laboratory:

(1) If the model is tested using the same fluid as for the prototype, the drag
measured during the test is the same as for the prototype. This follows from the fact
that, if K, =1 and K,= 1 (same fluid), K is equal to unity (eq. 3.19), hence F' = F.

(2) If testing is conducted using the same fluid as for the prototype, conservation of
Re requires that the velocity for the model be greater than for the prototype (i.e. the
model is smaller than the prototype). This follows from the fact that, when K,, =1 and
K, =1 (same fluid), KyKp =1 (eq. 3.10); consequently any decrease in Kp must be
compensated by a proportional increase in Ky, .

(3) When it is more convenient to use different fluids, testing may be conducted
while conserving Re. It has already been shown (Section 3.2) that, for example, going
from a large-size prototype, in air, to a model 6 times smaller, in water, allows a
reduction of the flow speed during the test by a factor of 3. The drag measured for the
model would not, however, be necessarily the same as that of the prototype, since that
force varies as a function of the ratio between the squares of the dynamic viscosities
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Similarity

(K%) and the densities (Kp) of the two fluids (eq. 3.19). Knowing this ratio (Kf), it is
easy to derive the drag for the model (F) from that measured during the test (F") since:

F=F/Kp

In more complex cases, it is sometimes necessary to simultaneously conserve two
or more dimensionless products that are incompatible. In such a situation, where a
choice must be made between contradictory constraints, it rests on the test engineer to
justify discrepancies in similarity and to apply theoretical corrections to compensate
for them. Hence modelling, although derived from scientific concepts, becomes an art
based on the experience of the researcher.

A general concept of similarity follows from the previous discussion. In a
Cartesian space, the model and the prototype are described by coordinates (x' y' z")
and (x y 7), respectively. Correspondence between the two systems is established by
means of scale factors (K), which define homologous times as well as homologous
points in the three dimensions of space:

t' =Kt x' =Kx y' =Ky 7 =Kz
The time scale factor (K,) would be used, for example, in the case of a flow where A’
and A, are the time intervals during which two homologous particles go through
homologous parts of their respective trajectories. It would then be defined as

K,=A' /A,

Geometric similarity is defined as: K, = K\, = K, = K;. In distorted models, a single
length scale is usually modified, so that K, = K| = K. The ratio K,/K, is the distortion
factor. It would be possible, using this same approach, to define characteristics of
kinematic similarity, for similar motions, and of dynamic similarity, for systems
subjected to homologous forces.

There are several types of similarity in addition to the geometric, dynamic and
kinematic similarities. These include the hydrodynamic, transport, and thermal
similarities. Readers interested in applications of dimensional analysis to the theory of
biological similarity may refer to the review of Giinther (1975), where the various
types of physical similarity are briefly described.
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Plate 3.1

The metre is the basis of the metric system, which was established during the French Revolution
and became the Systéme International d’Unités (SI, International System of Units) in 1960. The
metre was originally set as 107 of a quarter of the Earth meridional perimeter. In order to define
the metre precisely, French astronomers Delambre and Méchain measured the meridian between
Dunkerque and Barcelona between 1792 and 1799. The story of their work can be found in
Gued;j (1999, 2001). Copies of the standard metre engraved in marble were displayed at 16
locations in Paris to make the new measurement unit known and used by the people. The picture
shows the last of these marble metres that is still at the site where it was originally placed, under
the arcades of 36 rue de Vaugirard in Paris, across the street from the Palais du Luxembourg
(seat of the French Senate), where it can be seen nowadays. Photo P. Legendre, 2002.



Chapter

4  Multidimensional
quantitative data

4.0 Multidimensional statistics

Basic statistics are now part of the training of most ecologists. However, statistical
techniques based on simple distributions such as the unidimensional normal
distribution are not really appropriate for analysing complex ecological data sets.
Nevertheless, researchers sometimes perform series of simple analyses on the various
descriptors in their data set, expecting to obtain results that are pertinent to the problem
under study. This type of approach is incorrect because it does not take into account
the covariances among descriptors; see also Box 1.3 where the statistical problem
created by multiple testing is explained. In addition, such an approach only extracts
minimum information from data that have often been collected at great cost and it
usually generates a mass of results from which it may be difficult to draw synthetic
conclusions. Finally, in studies involving species assemblages, it is usually more
interesting to describe the variability of the structure of the assemblage as a whole
(i.e. mensurative variation observed through space or time, or manipulative variation
resulting from experimental manipulation; Hurlbert, 1984) than to analyse each
species independently.

Fortunately, methods derived from multidimensional statistics, which are used
throughout this book, are designed for analysing complex data sets. These methods
take into account the co-varying nature of ecological data and can evidence the
structures that underlie the data. The present chapter discusses the basic theory and
characteristics of multidimensional data analysis. Mathematics are kept to a minimum,
so that readers can easily reach a high level of understanding. Many approaches of
practical interest are discussed, including several types of linear correlation with their
statistical tests. It must be noted that this chapter is limited to linear statistics.

A number of excellent textbooks deal with detailed aspects of multidimensional
statistics, for example Mardia et al. (1979), Muirhead (1982), Anderson (2003), and
Hair ez al. (2010). There are also several titles on specialized topics such as linear
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Table 4.1 Numerical example of two species observed at four sampling sites. Figure 4.1 shows that each
row of the data matrix may be construed as a vector, as defined in Section 2.4.
Sampling sites Species (descriptors)
(objects) 1 2 r=2)
1 5 1
2 3 2
3 8 3
4 6 4
(n=4)
models, linear regression, and time series analysis. None of these books specifically
deals with ecological data, however.
Multidi- Several authors use the term multivariate as an abbreviation for multidimensional
mensional  variate (the latter term meaning random variable; Section 1.0). As an adjective,

Multivariate multivariate is interchangeable with multidimensional.

4.1 Multidimensional variables and dispersion matrix

As stated in Section 1.0, the present textbook deals with the analysis of random
variables. Ecological data matrices have n rows and p columns (Section 2.1). Each
row is a vector (Section 2.4) which is, statistically speaking, one realization of a
p-dimensional random variable. When, for example, p species are observed at n
sampling sites, the species are the p dimensions of a random variable “species” and
each site provides one realization of this p-dimensional random variable.

To illustrate this concept, four sampling units with two species (Table 4.1) are
plotted in a two-dimensional Euclidean space (Fig. 4.1). Vector “site 1” is the doublet
(5,1). It is plotted in the same two-dimensional space as the three other vectors “site i”.
Each row of the data matrix is a two-dimensional vector, which is one realization of
the (bivariate) random variable “species”. The random variable “species” is said to be
two-dimensional because the sampling units (objects) contain two species
(descriptors), the two dimensions being species 1 and 2, respectively. The species
descriptors of this example are the axes of the attribute space, or A-space (Fig. 7.2).
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Figure 4.1
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Four realizations (sampling sites from Table 4.1) of the two-dimensional random variable
“species” are plotted in a two-dimensional Euclidean space.

As the number of descriptors (e.g. species) increases, the number of dimensions of
the random variable “species” similarly increases, so that more axes are necessary to
construct the space in which the objects are plotted. Thus, the p descriptors make up a
p-dimensional random variable and the n vectors of observations (objects) are as many
realizations of the p-dimensional vector “descriptors”. The present chapter does not
deal with samples of observations, which result from field or laboratory work (for a
brief discussion on sampling, see Section 1.0). It focuses instead on populations,
which are investigated by means of samples.

Before approaching the multidimensional normal distribution, it is necessary to
define a p-dimensional random variable “descriptors”:

Y =[y;, 2, Y ...yp] 4.1

Each element y; of the multidimensional variable Y is a one-dimensional random
variable. Every descriptor y; is observed in each of the n vectors “object”, each
sampling unit i providing a realization of the p-dimensional random variable.

In ecology, the structure of dependence among descriptors is, in many instances,
the matter being investigated. Researchers who study multidimensional data using
univariate statistics assume that the p unidimensional y; variables in Y are linearly
independent of one another (third meaning of independence in Box 1.1). This is the
reason why univariate statistical methods are inappropriate with most ecological data
and why methods that take into account the dependence among descriptors must be
used to analyse multidimensional data sets. Only these methods will generate proper
results when there is dependence among descriptors; it is never acceptable to replace a
multidimensional analysis by a series of unidimensional treatments.
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Table 4.2

Parameter
Statistic

Symbols used to identify (population) parameters and (sample) statistics.

Parameter Statistic
Matrix or vector Elements Matrix or vector Elements
Covariance 2 (sigma) Oji (sigma) S Sik
Correlation P (tho) Pj (tho) R Tik
Mean n  (mu) w; (mu) )7 yj

The symbols for covariance matrix Z and summation E should not be confused.

The usual tests of significance require, however, “that successive sample
observation vectors from the multidimensional population have been drawn in such a
way that they can be construed as realizations of independent random vectors”
(Morrison, 1990, p. 80). Subsection 1.1.1 has shown that this assumption of
independence among observations is most often not realistic in ecology. Lack of
independence among the observations (data rows) does not really matter when
statistical models are used for descriptive purposes only, as it is often the case in the
present book. For statistical testing, however, corrected tests of significance have to be
used when the observations are spatially or temporally correlated (Subsection 1.1.2).

To sum up: (1) the p descriptors in ecological data matrices are the p dimensions of
a random variable “descriptors”; (2) in general, the p descriptors are not linearly
independent of one another; methods of multidimensional analysis are designed to
bring out the structure of linear dependence among descriptors; (3) each of the n
sampling units is a realization of the p-dimensional vector “descriptors”; (4) the usual
tests of significance assume that the n sampling units are realizations of independent
random vectors. The latter condition is generally not met in ecology, with
consequences that were discussed in the previous paragraph and in Subsection 1.1.1.
For the various meanings of the term independence in statistics, see Box 1.1.

Greek and roman letters are used here and in the remainder of the book (Table 4.2).
The properties of a population (called parameters) are denoted by greek letters. Their
estimates (called statistics), computed from samples, are symbolized by the
corresponding roman letters. These conventions are complemented by those pertaining
to matrix notation (Section 2.1).

The dependence among quantitative variables y; brings up the concept of
covariance. Covariance is the extension, to two descriptors, of the concept of variance.
The variance is a measure of the dispersion of a random variable y; around its mean; it
is denoted 0}2 . Covariance measures the joint dispersion of two random variables y;
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Figure 4.2 Structure of ecological data. Given their nature, ecological descriptors are, in most cases,

linearly dependent on one another (Box 1.1).

Dispersion  and y; around their means; it is denoted 0j;.. The dispersion matrix of Y, called matrix

matrix 3 (sigma), contains the variances and covariances of the p descriptors (Fig. 4.2):
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Matrix X is an association matrix [descriptors x descriptors] (Section 2.2). The
elements oy of matrix 2 are the covariances between all pairs of the p random
variables. The matrix is symmetric because the covariance of y; and y; is identical to
that of y; and y;. Each diagonal element of Z is the covariance of a descriptor y; with

itself, which is the variance of y;j> 8O that o i

Variance The estimate of the variance of yj» denoted sJ2 is computed on the centred variable

(y;;—

) Variable y; is centred by subtracting the mean Y, from each of the n
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Covariance

Standard
deviation

Coefficient
of variation

observations Yij- As a result, the mean of the centred variable is zero. The unbiased
estimator of the population variance sjz. is computed using the well-known formula:

var(y) = 57 = == 3 (3;-7) 43

i=1

where the sum of squares of the centred data, for descriptor j, is divided by the number
of objects minus one (n — 1). The summation is over the n observations of descriptor j.
The variance of y; is expressed in the squared physical dimension of y;. In the same
way, the estimate | (sjk) of the covariance (ij) of y; and y; is computed on the centred
variables (y; Tl j) and (y; —y,) , using the formula of a “bivariate variance”. The
covariance sy is calculated as:

n

5 S Gy i) (44)

n-1
i=1

cov(y;yp) = Sy =

When k = j, eq. 4.4 is identical to eq. 4.3. The positive square root of the variance is
called the standard deviation (0)); it has the same dimension as y;- Its estimate 8 is:

s;= s 4.5)

The coefficient of variation is a dimensionless measure of variation. CV is used to
compare the variation of variables expressed in different physical units. It is obtained
by dividing the standard deviation s; by the mean X; of variable j:

C‘/]=S]/5Cj

Since the standard deviation and the mean of a variable have the same physical units,
CV; is dimensionless. CV; is only defined for quantitative variables that have non-zero
means and it does not make sense for interval-scale variables (Subsection 1.4.1), for
which the value of the mean is arbitrary. The coefficient of variation may be rescaled to
percentages by multiplying its value by 100. For small n, an estimate with reduced bias
is obtained by multiplying CV by (1 + 1/(4n)).

Contrary to the variance, which is always positive, the covariance may take
positive or negative values. To understand the meaning of the covariance, imagine that
the object points are plotted in a scatter diagram where the axes are descriptors y;
and y;. The data are centred by drawing new axes, whose origin is at the centroid
()Tj, y,) of the cloud of points (centred plots of that kind with positive and negative
correlations are shown in Fig. 4.7). A positive covariance (e.g. Fig. 4.7, right) means
that most of the points are in quadrants I and III of the centred plot, where the centred
values ( Yij— yJ.) and (y,,—y,) have the same signs. This corresponds to a positive
relationship between the two descriptors. The converse is true for a negative
covariance (e.g. Fig. 4.7, left), for which most of the points are in quadrants I and IV



Multidimensional variables and dispersion matrix 149

of the centred plot. When the covariance is null (e.g. Fig. 4.8, left) or small, the points
are equally distributed among the four quadrants of the centred plot.

The covariance or dispersion matrix” S can be computed directly by multiplying the matrix
of centred data [y—y] with its transpose [y—y]':

cov(¥) =8 = — [y-3]'[y-] 46
(y”—)T]) (yzl_yi]) e (ynl_)T]) (yll_yi]) ()’]2_)72) e (ylp_)Tp)
p=92) 0= +ov W=D || 0 =2) =) + v (3,,-,)
1
S = n-1
(01,9 02y=3) oo e O =Y ) [ G =3) Gpa=2) + v (0,,9))
E (yil_i)2 2 (yil_)Tl) (yiz_)a) e E (yil_i) (y,‘p—yip)
i=1 i=1 i=1
E (yiz_yiz) (yi]_yi]) E (yiz_)z)z o .. E (yig_yiz) (yip_.)Tp)
S = 1 li=1 i=1 i=1
T on-1
E (yip_yip) (yi]_}T]) E (y,'p_)Tp) (yiz_yiz) o .. E (yip_yip)2
=1 i=1 i=1 J

This elegant and rapid procedure shows once again the advantage of matrix algebra in numerical
ecology, where the data sets are generally large.

Numerical example. Four species (p =4) were observed at five stations (n=15). The
estimated population parameters, for the species, are the means ( y.), the variances (s2), and the
covariances (s;). The original and centred data are shown in Table 4.3. Because s = sy, the
dispersion matrix is symmetric. The mean of each centred variable is zero.

In this numerical example, the covariance between species 2 and the other three species is
zero. This does not necessarily mean that species 2 is independent of the other three, but simply
that the joint linear dispersion of species 2 with any one of the other three is zero. This example
will be revisited in Section 4.2.

* Some authors call [y—y]'[y—y] a dispersion matrix and S a covariance matrix. For these
authors, a covariance matrix is then a dispersion matrix divided by (n — 1).
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Table 4.3 Numerical example. Calculation of centred data and covariances.

Sites Original data Centred data
1 1526 -2 2-1 2
2 2218 _ -1-1-2 4
3 Y=13134 [y=y1 =102 0 0
4 4250 1-1 2-4
5 5542 2 2 12
Means Y =1[3334 [y-31"=[0 0 0 0]
250 2 -4

1 51 5 .

n-1=4 S=-—b-)I'ly-yl = 035 00
n- 2 0 25-5
-4 0 -5 10

The square root of the determinant of the dispersion matrix [S|1/2 is known as the
generalized variance. It is also equal to the square root of the product of the
eigenvalues of S.

Any dispersion matrix S is positive semidefinite (Table 2.2). Indeed, the quadratic
form of S (p x p) with any real and non-null vector t (of size p) is:

t'St
This expression can be expanded using eq. 4.6:

e o Lo
St =t——[y-y]'[y-y]t

€St = —— [ [y~ 3]t]'[ [y~ ]¢] =ascalar

This scalar is the variance of the variable resulting from the product Yt. Since a
variance, which is a sum of squared values, can only be positive or null, it follows that:

t'St =0

so that S is positive semidefinite. This means that S cannot have negative eigenvalues.
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This important property can be derived by computing the quadratic form of the
dispersion matrix S using eq.2.28 (right), A= U~'AU. Because S is symmetric, its
eigenvectors found in matrix U are orthogonal. Since they are also normalized, U is an
orthonormal matrix, hence vl=u (property #7 of inverses, Section 2.8), and
eq. 2.28 (right) can be written:

USU = A

In the quadratic form, vector t is replaced by each successive eigenvector u; in turn,
i.e. each column of matrix U. For each vector u , the development above shows that

ufiSu‘]. =0

Since u"jSuj = 7‘_,‘ , this demonstrates that all eigenvalues \; of S are positive or null.
This property of dispersion matrices is fundamental in numerical ecology: it allows
one to partition the variance of a matrix Y among real (i.e. non-imaginary) principal
axes (Sections 4.4 and 9.1).

Another property of the dispersion matrix is that the sum of all values in S is equal
to the variance of a synthetic variable y computed as the sum by rows (objects) of all
descriptors in Y. For example, if Y contains species abundance data, the sum by rows
(sites) of all species abundances is a new variable y corresponding to the total number
of individuals at the sites, which can in some cases be interpreted as the total yield or
the support capacity of the sites. If Y consists of species presence-absence data, y is the
species richness of the sites. The variance of the synthetic variable y can be obtained
by summing all values in S instead of computing y and then its variance. This property
will be used in Subsection 13.1.4.

Ideally, matrix S (of order p) should be estimated from a number of observations n
larger than the number of descriptors p. When n < p, the rank of matrix S is n— 1 and,
consequently, only n — 1 of its rows or columns are independent of one another, so that
p — (n—1) null eigenvalues are produced. The only practical consequence of n < p is
thus the presence of null eigenvalues in the principal component solution
(Section 9.1). The first few eigenvalues of S, which are generally those of interest,
have positive eigenvalues.

4.2 Correlation matrix

The previous section has shown that the covariance provides information on the
orientation of the cloud of data points in the space defined by the descriptors. That
statistic, however, does not provide any information on the intensity of the relationship
between variables Y and yy. Indeed, the covariance may increase or decrease without
changing the relationship between y; and y;. For example, in Fig. 4.3, the two clouds
of points correspond to different covariance values (factor two in size, and thus in
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Figure 4.3

Linear
correlation

Several observations (objects), with Yi
descriptors y; and y;, were made under
two different sets of conditions (A and
B). The two ellipses delineate clouds of
point-objects corresponding to A and
B, respectively. The covariance of y;
and y, is twice as large for B as it is for
A (larger ellipse), but the correlation
between the two descriptors is the same
in these two cases (i.e. the ellipses have
the same shape).
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covariance), but the relationship between the variables is identical (same shape). Since
the covariance depends on the dispersion of the points around the mean of each
variable (i.e. their variances), determining the intensity of the relationship between
variables requires to control for the variances.

The covariance measures the joint dispersion of two random variables around the
bivariate mean. The correlation is defined as a measure of the dependence between
two random variables y; and y;. As explained in Section 1.5, it often happens that
matrices of ecological data contain descriptors with scales that are not commensurate,
e.g. when some species have larger biomass than others by orders of magnitude, or
when the descriptors have different physical dimensions (Chapter 3). Calculating
covariances on such variables obviously does not make sense, except if the descriptors
are first reduced to a common scale. The standardization procedure consists in centring
all descriptors on a zero mean and reducing them to unit standard deviation (eq. 1.12).
By using standardized descriptors, it is possible to calculate meaningful covariances
because the new variables have the same scale (i.e. unit standard deviation) and are
dimensionless (see Chapter 3).

The covariance of two standardized descriptors is called the coefficient of linear
correlation (Pearson r). This statistic has been proposed by the statistician Karl
Pearson and is named after him. Given two standardized descriptors (eq. 1.12)

Yii— Y, Yik =Y
= and 2y = Zik Tk
J K ! s

J k

calculating their covariance (eq. 4.4) gives

I X -
s(zjz;) = mz (zij—o) (z;,—0) because 2, =2=0
i=1
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_ 1 c yij_;j yik_;k
S(Zj’zk)_n—IE( 5 )( Sk )

=1
5(z;2,) = <s1Sk> IE (vi;— yj) (Vi =)
=1

1 . . .
$(z;2) = < F) Sik = T the coefficient of linear correlation between y; and yy.
J7k

The developed formula is:

E ij = Vj Yik yk)

;%0 ik - 4.7)
cor(y;,yp)=r, = —-— = = .
YjYk Jk S35

E (=) E Y=y’

i=1 i=1
Correlation As in the case of dispersion (Section 4.1), it is possible to construct the correlation
matrix matrix of Y, i.e.the P (tho) matrix, whose elements are the coefficients of linear

correlation pj:

1 Pia+ Py

P= - o eee e 4.8)

[Pp1 Pp2 =+ 14

The correlation matrix is the dispersion matrix of the standardized variables. This
concept will play a fundamental role in principal component analysis (Section 9.1). It
should be noted that the diagonal elements of P are all equal to 1. This is because the
comparison of any descriptor with itself is a case of complete dependence, which leads
to a correlation p = 1. When y; and y; are independent of each other, p; = 0. However,
a correlation equal to zero does not necessarily imply that y; and y; are independent of

each other, as shown by the following numerical example. A correlation py =1 is
indicative of a complete, but inverse dependence of the two variables.
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Figure 4.4
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Numerical example. Relationships between species (a) 3 and 4, (b) 2 and 4, (¢) 2 and 3, and
(d)2and 1.

Numerical example. Using the values in Table 4.3, matrix R can easily be computed.
According to eq. 4.7, each element rj; combines the covariance s;; with the variances s; and s;:

1 0 08-08
R=| 01 0 0
08 0 1 -1
08 0 -1 1

Matrix R is symmetric, as was matrix S. The correlation r = —1 between species 3 and 4 means
that these species are fully, but inversely, dependent (Fig. 4.4a). Correlations » = 0.8 and 0.8 are
interpreted as indications of strong dependence between species 1 and 3 (direct) and species 1
and 4 (inverse), respectively. The zero correlation between species 2 and the other three species
must be interpreted with caution. Figure 4.4d clearly shows that species 1 and 2 are completely
dependent on each other since they are related by equation y, = 1+ (3 — yl)z; the zero
correlation is, in this case, a consequence of the /inear model underlying statistic r. Therefore,
only the correlations that are significantly different from zero should be considered, since a null
correlation has no unique interpretation.
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Table 4.4 Numerical example. Calculation of standardized data and correlations.
Sites Original data Standardized data

1 1526 -127 107 -0.63 0.63

2 2218 -0.63 -0.53 -1.27 1.27

3 Y=13134 Z=1 0 -107 0 0
4 4250 0.63 -0.53 127 -1.27

5 5542 127 107 0.63 -0.63
Means Y =[3334 Zz=[ 0 o o0 0]
1 0 08-08

1

n-1=4 R(y) =8(2) = —zz=| O 1 0 0
n-1 08 0 1 -1

-08 0 -1 1

Since the correlation matrix is the dispersion matrix of standardized variables, it is
possible, as in the case of matrix S (eq. 4.6), to compute R directly by multiplying the
matrix of standardized data with its transpose:

%[(y—&)/sj'[(y_;)/sj = 177 4.9)

cor(Y)=R =

Table 4.4 shows how to calculate correlations rj; of the example as in Table 4.3, using
this time the standardized data. The mean of each standardized variable is zero and its
standard deviation is equal to unity. The dispersion matrix of Z is identical to the
correlation matrix of Y, which was calculated above using the covariances and
variances.



156 Multidimensional quantitative data

Matrices 2 and P are related to each other by the diagonal matrix of standard
deviations of Y. This new matrix, which was specifically designed here to relate Z and
P, is symbolized by D(0) and its inverse by D(o)’lz

G, 0 ...0 /6, 0 ... 0
00,...0 0 1/0,... 0

D(o) = | = and D (o) ! =

0 ....0 0 . ...1/0

L 2l L

Using these two matrices, one can write:

-1/

P—D ) 2 2 1 4
=D (o)) XD(0) =D(o) X2D(o) (4.10)

where D(0?) is the matrix of the diagonal elements of 2. It follows from eq. 4.10 that:

2 =D(o) PD(0o) 4.11)
Significance The theory underlying tests of significance is summarized in Section 1.2. In the
of r case of r, inference about the statistical population is in most instances through the null

hypothesis Hy: p = 0. Hy may also state that p has some other value than zero, which
would be derived from ecological hypotheses. The general formula for testing
correlation coefficients is given in Section 4.5 (eq.4.39). The Pearson correlation
coefficient r involves two descriptors y; and y; (hence m=2 when testing a
coefficient of simple linear correlation using eq.4.39), so that vi=2-1=1 and
v, =n—2 =v.The general formula then becomes:

2 2
rjk/l B I

- (L=r3) /v B L-rg

4.12)

where v =n - 2. Statistic F'is tested against Fj; . Since the square root of a statistic
F[Vl v, 182 statistic 7, _ v)] when v| = 1, r may also be tested using:

fo Ty 4.13)

N1=T

The z-statistic is tested against the value 7. In other words, Hy is tested by
comparing the F (or ¢) statistic to the value found in a table of critical values of F (or 7).
Equations 4.12 and 4.13 produce identical tests. The number of degrees of freedom is
v =(n—-2) because calculating a correlation coefficient requires prior estimation of
two parameters, i.e. the means of the two populations (eq. 4.7). Hy is rejected when the
probability corresponding to F (or f) is smaller than or equal to a predetermined level
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Test of in-
dependence
of variables

of significance (o for a two-tailed test, and /2 for a one-tailed test; the difference
between the two types of tests is explained in Section 1.2). In principle, this test
requires that the sample of observations be drawn from a population having a bivariate
normal distribution (Section 4.3). Testing for normality and multinormality is
discussed in Section 4.6, and normalizing transformations in Section 1.5. When the
data do not satisfy the condition of normality, ¢ can be tested by permutation, as
explained in Section 1.2.

It is also possible to test the independence of all variables in a data matrix by
considering the set of all correlation coefficients found in matrix R. The null
hypothesis here is that the p(p — 1)/2 coefficients are all equal to zero, Hy: R =T (unit
matrix). According to Bartlett (1954), the determinant of R, |R|, can be transformed
into a X> (chi-square) test statistic:

X2 =—[n—(2p +5)/6] log, |R| (4.14)

where log, [R| is the natural logarithm of the determinant of R. This statistic is
approximately distributed as X2 with v=p(p — 1)/2 degrees of freedom. When the
probability associated with X% is significantly low, the null hypothesis of complete
independence of the p descriptors is rejected. In principle, this test requires the
observations to be drawn from a population with a multivariate normal distribution
(Section 4.3). If the null hypothesis of independence of all variables is rejected, the
p(p —1)/2 correlation coefficients in matrix R may be tested individually. Box 1.3
describes how to correct individual p-values in situations of multiple testing.

Other correlation coefficients are described in Sections 4.5 and 5.3. When the
coefficient of linear correlation must be distinguished from other coefficients, it is
referred to as Pearson r. Elsewhere, r is called the coefficient of linear correlation or
correlation coefficient. Table 4.5 summarizes the main properties of this coefficient.

4.3 Multinormal distribution

In general, the mathematics of the normal distribution is of little concern to ecologists
using unidimensional statistical methods. In the best case, data are normalized
(Section 1.5) before being subjected to tests that are based on parametric hypotheses.
It must be remembered that all parametric tests require the data to follow a specific
distribution, most often the normal distribution. When the data do not obey this
condition, the results of parametric tests may be invalid.

There also exist nonparametric tests (Chapter 5), in which no reference is made to
any theoretical distribution of the population, hence no use of parameters. That is also
the case with permutation tests based on the usual parametric statistics, e.g.the
Pearson correlation coefficient r (Subsection 1.2.2). Another advantage of
nonparametric and permutational tests is that they remain valid for samples of very
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Table 4.5

Main properties of the coefficient of linear correlation. Some of these properties are discussed in
a later sections.

Properties Sections

1. The coefficient of linear correlation measures the intensity of the linear
relationship between two random variables. 42

2. The coefficient of linear correlation between two variables can be calculated
using their respective variances and their covariance. 42

3. The correlation matrix is the dispersion matrix of standardized variables. 42
4. The square of the coefficient of linear correlation is the coefficient of

determination. It measures how much of the variance of each variable is

explained by the other. 10.3

5. The coefficient of linear correlation is a parameter of a multinormal distribution. 4.3

6. The absolute value of the coefficient of linear correlation is the geometric
mean of the coefficients of linear regression of each variable on the other. 103

small sizes, which are often encountered in ecological research. These tests are of great
interest to ecologists. Researchers may nevertheless attempt to normalize their data to
have access to the powerful toolbox of parametric statistics or because some of the
methods of multivariate analysis, e.g. principal component analysis (Section 9.1),
perform better when the response data distributions are not strongly asymmetric.

Multidimensional statistics require careful examination of the main characteristics
of the multinormal (or multivariate normal) distribution. Several of the methods
described in the present chapter, and also in Chapters 9, 10 and 11, are founded on
principles derived from the multinormal distribution. This is true even in cases where
no test of significance is performed, which is often the case in numerical ecology
(i.e. descriptive versus inferential statistics, Sections 1.2).

The logic of an approach centred on the multinormal distribution is based upon a
theorem which is undoubtedly one of the most important of statistics. According to the
central limit theorem, when a random variable results from several independent and
additive effects, of which none has a dominant variance, then this variable tends
towards a normal distribution even if the effects are not themselves normally
distributed. Since ecological variables, and species abundances in particular, are often
influenced by several independent random factors, the above theorem explains why the
normal distribution is frequently invoked to describe ecological phenomena. This
justifies a careful examination of the properties of the multinormal distribution before
studying the methods for analysing multidimensional quantitative data.
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Figure 4.5

Normal

Role of the standard deviation o in the normal distribution function. The abscissa is variable y.

The probability density of a normal random variable y is:

o= el 3258

(Laplace-Gauss equation) where exp [...] reads “e to the power [...]”, e being the
Napierian base (e = 2.71828...). Calculation of f(y), for a given value y, only requires
w and o. The mean (u) and standard deviation (o) of the theoretical population
completely determine the shape of the probability distribution. This is why they are
called the parameters of the normal distribution. The curve is symmetric on both sides
of u and its exact shape depends on o (Fig. 4.5).

«

The value o determines the positions of the inflexion points along the normal
curve. These points are located on both sides of u, at a distance o, whereas u positions
the curve on the abscissa. In Fig. 4.5, the surface under each of the two curves is
identical for the same number of o units on either side of w. The height of the curve is
the probability density corresponding to the y value; for a continuous function such as
that of the normal distribution, the probability of finding a value between y =a and y =
b (a < D) is given by the surface under the curve between a and b. For example, the
probability of finding a value between w — 1.960 and w + 1.960 is 0.95.

In view of examining the properties of the multinormal distribution, it is
convenient to first consider the joint probability density of p independent
unidimensional normal variables. For each of these p variables y;, the probability

density is given by eq. 4.15, with mean y; and standard deviation o;:

_ 1 1(Y;—up?
10)= Fg o {_ 3 JT,]> } (4.16)
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Generalized
variance

Multi-
normal

A basic law of probabilities states that the joint probability density of several
independent variables is the product of their individual densities. It follows that the
joint probability density for p independent variables is:

FG1 920 - 9) = FOD) X F(72) X .. x f(3)

P 2
1 I (Vi Wy
FO1 Y20y = exp {— EE (——fa-j——’) } (4.17)

72
(2m) P 0,0,...0, “

Using the conventions of Table 4.2, one defines the following matrices:

620 ...0
Y=[y1y2...yp} 0o02...0
S| ¢« ¢ e 4.18)

w= [ul uz...up}

100 ... 0%4
where y = [y; y; ... y,] is the p-dimensional vector of coordinates of a point for which
the probability density, i.e. the height (ordinate) of the p-dimensional normal curve, is
sought; w is the vector of means, and Z is the dispersion matrix among the p
independent variables. The determinant of 2 is the generalized variance of the
multivariate distribution. The determinant of a diagonal matrix being equal to the
product of the diagonal elements (Section 2.6), it follows that:

|2| 1/2=(01 0)...0p)

From definitions (4.18), and for a single row vector [y — u] of p-dimensional centred
data, one can write:

p

y-wl = [y-ul'= E (y—’_ “’)2
O,

=1

which is a scalar. Do not confuse, here, the summation symbol E: with dispersion

matrix 2. Using these relationships, eq. 4.17 is rewritten as:

fy) = m exp {~(1/2) [y-p] =" [y-u]} 4.19)

The above equations are for the joint probability density of p independent
unidimensional normal variables y;. It is easy to go from there to the multinormal
distribution, where y is a p-dimensional random variable whose p dimensions are not
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Bivariate
normal

independent. In order to do so, one simply replaces the above matrix Z by a dispersion
matrix containing variances and non-zero covariances, i.e. (eq. 4.2):

0y Oj3 ++- 0y,

0y, Oy ++ -0y,

10,1 Opp ++ -0,

Using this dispersion matrix Z, eq. 4.19 now describes the probability density f(y) for
a p-dimensional multinormal distribution.

Given eq. 4.11, eq. 4.19 for point y may be rewritten as:

1
(2m) »/2|D (o) |[P[!/2

fy) = exp {<(1/2) [y -u] D(@) ' P! Do) [y - u]} 4.20)

Replacing, in eq. 4.20, vector y from the p-dimensional matrix Y by vector z from the
p-dimensional standardized matrix Z (eq. 1.12) gives:

f(z) = exp {~(12)zP 'z} 4.21)

1
(2m) 72|P|172
because [y — u] D(0)~! = z and, for a standardized variable z, D(c) = L.

Equation 4.21 stresses a fundamental point, which was already clear in eq. 4.20:
the correlations p are parameters of the multinormal distribution, together with the
means W and standard deviations o. This property of p is shown in Table 4.5.

Three sets of parameters are therefore necessary to specify a multidimensional
normal distribution, i.e.the vector of means w, the diagonal matrix of standard
deviations D(0), and the correlation matrix P. In the unidimensional normal
distribution (eq.4.15), u and o were the only parameters because there is no
correlation p for a single variable.

It is not possible to represent, in a plane, more than three dimensions. Thus, for the
purpose of illustration, only the simplest case of multinormal distribution will be
considered, i.e. the bivariate normal distribution, where:

p=|lP
p1

n= [ul Mz} D(0) = {0‘ 0]

0 o,
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Figure 4.6

Roles of o and o, in the bivariate normal distribution.

Since |D(G) | = 0,0, and | P| =(- p2) in this case, eq. 4.20 becomes:

fo1y0) = exp{~(1/2) [y - u] D(1/0) (1 - p*)~! {1 ‘1" D(1/0) [y-u]'}

1
210,0,4/1 - p? -p

S R
210,0,4/1—p2 2(1-p?) o o 0 o,

Figure 4.6 shows bivariate normal distributions with their typical “bell” shapes.
The two examples illustrate the roles of o; and o©,. Further examination of the
multinormal mathematics is required to specify the role of p.

Coming back to the probability density of the multidimensional distribution and
neglecting the constant —1/2, the remainder of the exponent in eq. 4.19 is:

[y-ul =" [y-ul

When it is made equal to a positive constant (o), this algebraic form specifies the
equation of any of the points [y — u] on a p-dimensional ellipse:

h-uwlZ'[y-ul'=a 4.22)
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Figure 4.7

%)
p =-0.745 p=0.333

Concentration ellipses of a standardized bivariate normal distribution. Role of the correlation p.

A family of such multidimensional ellipses may be generated by varying the constant
a. All these ellipses have the multidimensional point p as their common centre.

It is easy to understand the meaning of eq. 4.22 by examining the two-dimensional
case. Without loss of generality, it is convenient to use the standardized variable (z{,2,)
instead of (y;,y,). In that case, the family of ellipses (i.e. two-dimensional ellipsoids) is
centred on the origin p = [0 0]. For each point with coordinates [z; z,], the exponent of
the standardized bivariate normal density is (from expression on the previous page):

s[27 - 2pz,2, + 23]

l-p

This exponent specifies, in two-dimensional space, the equation of a family of ellipses:

5[2f-2pzi2,+ 23] =«
I-p

2 -2p7,2,+23 = a(l1-p)

Figure 4.7 illustrates the role played by p in determining the general shape of the
family of ellipses. As p approaches zero, the ellipses tend to become circular. In
contrast, as p approaches +1 or —1, the ellipses tend to elongate. The sign of p
determines the orientation of the ellipses relative to the axes.
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Figure 4.8 Concentration ellipses of a standardized bivariate normal distribution. Extreme values of the

correlation p.

Actually, when p = 0 (Fig.4.8, left), the equation for the family of ellipses
becomes:

22-[2x0x%xz,2,] +23 = a(1-0)
or z?+2z2 = o, which is the equation of a circle.
In contrast, when p = +1, the equation becomes:
27— [2x (21) xz;2,] +23 = a[l - (x1)?]
2t F272,+23 =0
hence [z, ¥ 22]2 =0,sothat z; ¥ z, = 0, and thus z, = =z, ,

which is the equation of a straight line with a positive or negative slope of 1
(+45° angle).

Such a family of ellipses, called concentration ellipses, is comparable to a series of
contour lines on the two-dimensional normal distribution (Fig. 4.6). Increasing the
value of a corresponds to moving down along the sides of the distribution. The
concentration ellipses pass through points of equal probabilities around the bivariate
normal distribution. The role of p then becomes clear: when p =0, the “bell” of
probability densities is perfectly circular (in overhead view); as p increases in absolute
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value, the “bell” of the probability densities flattens out, until it becomes
unidimensional when p = +1. Indeed, when there is a perfect correlation between two
dimensions (i.e. p = 1), a single dimension, at an angle of 45° with respect to the two
original variables, is sufficient to specify the joint distribution of probability densities.

When the number of dimensions is p =3, the family of concentration ellipses
becomes a family of concentration ellipsoids and, when p>3, a family of
hyperellipsoids. The meaning of these ellipsoids and hyperellipsoids is the same as in
the two-dimensional case although it is not possible to draw them on a sheet of paper.

4.4 Principal axes

Various aspects of the multinormal distribution have been examined in the previous
section. One of these, namely the concentration ellipses (Fig. 4.7), is the gateway to a
topic of great importance for ecologists. In the present section, a method will be
developed for determining the principal axes of the concentration hyperellipsoids; for
simplicity, the term ellipsoid will be used in the following discussion. The first
principal axis is the line that passes through the dimension of greatest variance of the
ellipsoid. The next principal axes go through the next dimensions of greatest variance,
smaller and smaller, of the p-dimensional ellipsoid. Hence, p consecutive principal
axes are determined. These principal axes will be used, in Section 9.1, as the basis for
principal component analysis.

In the two-dimensional case, the first principal axis corresponds to the major axis
of the concentration ellipse and the second principal axis to the minor axis. These two
axes are perpendicular to each other. Similarly in the p-dimensional case, there are p
consecutive axes, which are all perpendicular to one another in the hyperspace.

The first principal axis goes through the p-dimensional centre w=[uu, ... u,| of the
ellipsoid, and it crosses the surface of the ellipsoid at a point designated here by
y=Dbiy ... yp]. The values of p and y specify a vector in the p-dimensional space
(Section 2.4). The length of the axis, from p to the surface of the ellipsoid, is calculated using
Pythagoras’ formula:

(01— w)? + 02— w2 + oo+ (3 — w12 = ([y — iy — ul)'?

Actually, this is only half the length of the axis, which extends equally on both sides of u. The
coordinates of the first principal axis must be chosen in such a way as to maximize the length of
the axis. This can be achieved by maximizing the square of the half-length:

[y —ully —ul'
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Principal
axis

Lagrangian
multiplier

Calculating coordinates corresponding to the axis with the greatest length is subjected to the
constraint that the end point y be on the surface of the ellipsoid. This constraint is made explicit
using eq. 4.22, which specifies the ellipsoid:

b-wZ! [y-ul'=a
b-wZ! [y-ul'-a=0

Lagrangian multipliers are used to compute the maximum and minimum values of a
function of several variables when the relationships among the variables are known. In the
present case, the above two equations, which describe the square of the half-length of the first
principal axis and the constraint, are combined into a single function:

fo =l -wlly—uwl' -2 {ly-ul =" [y-ul' -a}

Scalar A is called a Lagrangian multiplier*. The values that maximize this function are found by
the usual method of setting the equation's partial derivative equal to O:

d
ﬁf(y)=0

p L9 _ Do
E[y—u][y—u] —kafy{[y—u]E "y-ul'-a}=0

It is important to remember here that y is a p-dimensional vector (yy, y,, -...y,), which means
that the above equation is successively derived with respect to y;, y,, ... and Vp- Therefore,
derivation with respect to y represents in fact calculating a series of p partial derivatives (dy;).
The results of the derivation may be rewritten as a (column) vector with p elements:

2y-u] 222" [y-ul=0
One may factor out [y — u] and eliminate the constant 2:
A-AZH[y-ul=0
Multiplying both sides of the equation by Z gives:
CE-ND[y-u=0 4.23)
The general equation defining eigenvectors (eq.2.22) is (A—AI) u=0. Replacing, in that

equation, A by Z and u by [y — u] produces eq. 4.23. This leads to the conclusion that the vector
of coordinates that specifies the first principal axis is one of the eigenvectors [y — u] of matrix Z.

* After Joseph-Louis Lagrange (1736-1813), mathematician and astronomer.
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Eigenvalue

In order to find out which of the p eigenvectors of X is the vector of coordinates of the first
principal axis, go back to the equation resulting from the partial derivation (above) and transfer
the second term to the right, after eliminating the constant 2:

-ul=rZ" [y-u]

The two sides are then premultiplied by [y — u]":

b-wl'y-wl=Aly-ul'Z" [y-u]
Since [y —u]' = [y — ul = o (eq. 4.22), it follows that:

b-ul'ly-u]l=2ra

Considering the first eigenvalue A, the term on the left-hand side of the equation is the
square of the half-length of the first principal axis (see above). Thus, for a given value a, the
length of the first principal axis is maximized by taking the largest possible value for A or, in
other words, the largest eigenvalue, \|, of matrix Z. The vector of coordinates of the first
principal axis is therefore the eigenvector corresponding to the largest eigenvalue of 2.

Numerical example. The above equations are illustrated using the bivariate data matrix
from Section 9.1 (principal component analysis). The sample covariance matrix is:

s= (8216

1658
There are two eigenvalues, A = 9 and A, = 5, computed using eq.2.23. To normalize the
eigenvectors (written as column vectors), put [y — u]' [y — u] = Aa = 1 for each of them; in other
words, oy = 1/9 and a, = 1/5. The normalized eigenvectors were called y; and y, until now in

this section; they will be denoted u; from now on, as in Sections 2.9 and 2.10. They form matrix
U=[u,ul:

0.8944 -0.4472
yi=u = and y, =u, =
0.4472 0.8944

These eigenvectors are of length 1 since they have been normalized. They determine the

directions of the major and minor axes of the bivariate distribution. The matrix of eigenvectors

U must be multiplied by the diagonal matrix containing the square roots of the eigenvalues

(UA'2, eq.9.10) to provide a new matrix whose columns give the coordinates where the two

principal axes cross an ellipsoid with size o = 1. This example is further developed in Chapter 9.
To find the vectors of coordinates specifying the p successive principal axes,

e rank the p eigenvalues of matrix 2 in decreasing order:

M>hy>...>h,20

Note that the eigenvalues of a matrix Z are all positive (end of Section 4.1);
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* associate the p eigenvectors to their corresponding eigenvalues. The orientation of
the p successive principal axes is given by the eigenvectors, which are associated with
the p eigenvalues ranked in decreasing order. The eigenvectors of a covariance matrix
2 are orthogonal to one another because 2 is symmetric (Section 2.9). In the case of
multiplicity (Section 2.10, Third property), the orthogonal axes may be rotated to an
infinity of “principal” directions, i.e.two equal A’s result in a circle and several
determine a hypersphere (multidimensional sphere) where no orientation prevails.

The next step consists in calculating a new p-dimensional set of variables, forming
matrix V, that position the dispersion ellipses with respect to the principal axes instead
of the original Cartesian system. V is related to the original data matrix Y (eq. 4.1)
through the following transformation:

V=[y-ulU 4.24)

where each of the p columns in matrix U is the normalized eigenvector uy
corresponding to the k-th principal axis. Because vectors u, are both orthogonal and
normalized, matrix U is said to be orthonormal (Section 2.8). This transformation
results in shifting the origin of the system of axes to the p-dimensional point p
followed by a rigid rotation of the translated axes into the principal axes (Fig.4.9),
which form matrix V.

The dispersion matrix of V is:

1 ! _________1________ ! _ ! _ S & (]

where 2 is the dispersion matrix of the original matrix Y. So, the variance of the k-th
dimension v;, (i.e. the k-th principal axis) is:

S(v) = u, Zuy
Since, by definition, Zu; = Auy (eq. 2.21) and uj u;, = 1, it follows that:
s2(vp) = ), Dup = wl M= M ul u = (1) = Ny (4.25)
with A, = 0 in all cases since 2 is positive semi-definite. The covariance of any two
vectors of matrix V is zero because the product of two orthogonal vectors u; and uy, is
zero (Section 2.5):
S(Vk,Vh) = ll'k Euh = ll'k )\'huh = )\'h ll'k u, = >\‘k (0) =0 (4.26)
The last two points are of utmost importance, since they are the basis for using the

principal axes (and thus principal component analysis; Section 9.1) in ecology: (1) the
variance of a principal axis is equal to the eigenvalue associated with that axis
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Original system: concentration ellipses Translation of the origin

Rotation of the translated axes
into principal axes

Figure 4.9 Result of the transformation V = [y — u] U (eq. 4.24).

(eq.4.25) and (2) the p dimensions of the transformed variable are linearly
independent since their covariances are zero (eq. 4.26).

A last point concerns the meaning of the p elements u; of the normalized
eigenvectors uy. The values of these elements determine the rotation of the system of
axes, so that they correspond to angles. Figure 4.10 illustrates, for the two-dimensional
case, how the elements of the eigenvectors are related to the rotation angles. Using the
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Figure 410  Geometrical meaning of the principal axes.

trigonometric functions for right-angled triangles, the angular relationships in
Fig. 4.10 may be rewritten as cosines:

cos ap; = length uy; / length of vector (11, uy1) = uyy
cos 01 = length uy; / length of vector (uyy, uy1) = Uy
cos oy, = length uy, / length of vector (i1, Uyy) = 5

oS Olyy = length uy, / length of vector (i, uyy) = uyy

because the lengths of the normalized vectors (u, up;) and (uqp, uy) are 1
(Section 2.4). Eigenvector u;, determines the direction of the k-th main axis; it follows
from the above trigonometric relationships that elements uj of the normalized

eigenvectors are direction cosines. Each direction cosine specifies the angle between
an original Cartesian axis j and a principal axis k.

Direction
cosine
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The two-dimensional case, illustrated in Figs. 4.9 and 4.10, is the simplest to compute. The
standardized dispersion matrix is of the general form:

b

When p is positive, the eigenvalues of P are A; = (1 + p) and A, = (1 — p). The normalized

eigenvectors are:
u, = 1/.42 u, = -1/.42
172 1/.2

Therefore, the first principal axis goes through the point (1/ M2, 1/42), s0 that it cuts the first
and third quadrants at a 45° angle. Its direction cosines are cosoy; = 1/42 and
cosap,=1/ A2, which indeed specify 45° angles with respect to the two axes of the first
quadrant. The second principal axis goes through (—1/./2, 1/./2), so that it cuts the second
and fourth quadrants at 45°. Its direction cosines are cos 0y = —1/4/2 and cos ay, = 1/.4/2,
which determine 45°angles with respect to the two axes of the second quadrant.

When p is negative, the eigenvalues of P are A = (1 — p) and A, = (1 + p). Consequently the
first principal axis goes through (—1/./2, 1/.4/2) in the second quadrant, while the second
principal axis with coordinates (1/./2, 1/4/2) cuts the first quadrant. A value p = 0 entails a
case of multiplicity since A; =\, = 1. This results in an infinite number of “principal” axes,
i.e. any two perpendicular diameters would fit the circular concentration ellipse (Fig. 4.8, left).

These concepts, so far quite abstract, will find direct applications to ecology in
Section 9.1, where principal component analysis is described.

4.5 Multiple and partial correlations

Section 4.2 considered, in a multidimensional context, the correlation of pairs of
variables, which represent two dimensions of a p-dimensional random variable.
However, the multidimensional nature of ecological data allows other approaches to
correlation analysis. These statistics are examined in the present section and compared
graphically in Box 4.1

The following developments will require that the p-dimensional correlation matrix
R be partitioned into four submatrices. Indices assigned to the submatrices follow the
general convention on matrix indices (Section 2.1):

Rll R12
RZl R22

R = 4.27)
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Variation partitioning Box 4.1

Variation partitioning, which is described in detail in Subsection 10.3.5, provides a
general framework to illustrate the similarities and differences between the
coefficient of multiple determination and the partial and semipartial correlation
coefficients, as well as the corresponding F-statistics.

Three variables only, y, y,, and y3, are considered in this example. In the following
Venn diagram, the rectangle represents the total sum of squares of variable y;:

. Variation Variation
Variation in explained by y, explained by y;,

variabley, ~

Unexplained variation
(residual variation) = [d]

In the multiple regression of y; on y, and yj3, yA1 = b, +b,y, + byy, (this is an
application of eq. 10.15), the coefficient of multiple determination, which is the
square of the coefficient of multiple correlation, is:

2 [a+b+c]

R}, = with F = [a+b+c]l/2

[a+b+c+d] [d]/(n-3)

The partial correlation of y; with y, while controlling for the effect of yj is:

_ [a] . _ [a]/1
"2 = T d] R IV TS

The semipartial correlation of y; with y, in the presence of yj is:

_ [a] : _ [al/1
103 =\ Tavbrord] with  F = 57—

The coefficients of partial and semipartial correlation receive the same sign as the
corresponding coefficient of partial regression.

The test of a partial regression coefficient, b, or b3, is the same (i.e. it has the same
F-statistic) as the test of the corresponding partial correlation coefficient, ry, 3 or
r132- The F-statistic is always the ratio of two independent portions of the variation
of y;, each one divided by its degrees of freedom; see eqs. 4.39 and 4.40.
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There are two possible approaches to linear correlation involving several variables
or several dimensions of a multidimensional variable. The first one, which is called
multiple (linear) correlation, measures the intensity of the relationship between a
response variable and a linear combination of several explanatory variables. The
second approach, called partial (linear) correlation, measures the intensity of the
linear relationship between two variables, while taking into account their relationships
with other variables.

1 — Multiple linear correlation

Multiple correlation applies to cases where there is one response variable and several
explanatory variables. This situation is further studied in Section 10.3, within the
context of multiple regression. The coefficient of multiple determination (R?;
eq. 10.20) measures the fraction of the variance of y; that is explained by a linear
combination of y;, y,, ..., Yjs oo and Yy

_bysyrbysy kb 44D s
2

Sk

R2

k12.j.p = 4.28)

where p is here the number of explanatory variables.The concept is illustrated in
Box 4.1. In eq. 4.28, coefficients b are the coefficients of the multiple regression
(Subsection 10.3.3) of y; on the explanatory variables. A coefficient R ,, .  =0.73,
for example, means that the linear relationships of variables yy,y5, ..., y;, ... and y,
with y; explain 73% of the variation of y, around its mean. The multiple correlation
coefficient (R) is the square root of the coefficient of multiple determination:

Rip jp= R, 4.29)

To calculate R? using matrix algebra, a correlation matrix R is written for variables
yi and {y;,¥2, .., Yj ees yp}, with y; in the first position. Partitioning this matrix
following eq. 4.27 to compute a multiple correlation coefficient gives:

L7y Teg oo s T
rul 1 Fip « oo Ty
Foplty 1 <. -7y, I r,
R = = 4.30)
r) Ry,
7ok | Tt Tpo v o e 1#
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Multiple
correlation

where r, = r, is a vector containing the correlatlon coefficients ryy, 14, ..., Tp-
Using r;,, Ip; and R,, as defined in eq. 4.30, R? is calculated as:

R = r,Ryjry, = ryRyjry, (4.31)
Equation 4.31 is expanded using eq. 2.17:

kcof(r“) cof (ry) ... cof(rpl)

cof (r,) cof(r,,) ... cof(rpz)

1
2 _ 4 R-I
R* =1y Ryr,, =

=r r
21 ‘Rzz‘ 21
¥cof(r1p) cof(rzp) ce cof(rpp)g
R
R = (R - [R) = 1-1RL 432)
22
Ry,| Ry
As an exercise, it is easy to check that
IR,,| - R| = r}, [adjugate matrix of Ry,] 1y
The coefficient of multiple correlation is calculated from eqs. 4.31 or 4.32:
T R|
Riva jp= Jry Ry, or Riva jp= 1‘@ (4.33)

A third way of calculating R? is described in eq. 4.38, near the end of Subsection 4.5.2
on partial correlation.

When two or more variables in matrix Ry, are perfectly correlated (i.e.r =1 or
r=-1), the rank of Ry, is smaller than its order (Section2.7), hence IRyl =0
Calculation of R thus requires the elimination of redundant variables from matrix R.

Numerical example. A simple example, with three variables (y;, y, and y3), illustrates the
above equations. Matrix R is:

1 0408
R=104 105
0805 1
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The coefficient of multiple determination R%.23 is first calculated using eq. 4.31:

e

R, = [o40g]| '33 067} |0:
123 [ } -0.67 133[]08

2 -
R%,, = 0.64

R}y = [04 048] L)l. S Oj

Equation 4.32 leads to an identical result:

1 0408
04 1 05
’ 0805 1
Rix =
1 05
05 1
0.27
2 _
R}y = 1-5=% =064

The linear combination of variables y, and y; explains 64% of the variance of y. The multiple
correlation coefficient is Ry 53 =0.8.

2 — Partial correlation

The second approach to correlation, in the multidimensional context, applies to
situations where the relationship between two variables is influenced by their
relationships with other variables. Two coefficients are described in Box 4.1: the
partial and semipartial correlation coefficients.

The partial correlation coefficient is related to partial multiple regression
(Subsection 10.3.5). It measures what the correlation between y; and y; would be if
other variables Y Y2, oo and y,, f.lypothesize.d to influence bqth yj and yj, were held
constant at their means. The partial correlation between variables y; and y;, when
controlling for their relationships with y, y5, ... and y,, is written rj 1.

In order to calculate the partial correlation coefficients, the set of variables is
divided into two subsets. The first subset contains the variables between which the
partial correlation is to be computed while controlling for the influence of the variables
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in the second subset. The second subset thus contains the variables whose influence is
to be taken into account. Matrix R is partitioned as follows (eq. 4.27):

Rll I{12
R2l R22

R =

Ry (of order 2 x 2 for partial correlations) and R,, contain the correlations among
variables in the first and the second subsets, respectively, whereas R, and R,; both
contain the correlations between variables of the two subsets; R, = R}, .

The number of variables in the second subset determines the order of the partial
correlation coefficient. This order is the number of variables whose effects are
eliminated from the correlation between y; and y;. For example ry; 345 (third-order
partial correlation coefficient) means that the correlation between variables y; and y, is
calculated while controlling for the linear effects of y3, y4, and ys5.

The computation consists in subtracting from R (correlation matrix among the
variables in the first subset) a second matrix containing the coefficients of multiple
determination of the variables in the second subset on those in the first subset. These
coefficients measure the fraction of the variance and covariance of the variables in the
first subset that is explained by linear combinations of the variables in the second
subset. They are computed by replacing in eq. 4.31 vector r,; by submatrix Ry,:

-1 — -1
R,R%LR; = Ry RHR,,
Subtracting this expression from Ry gives the matrix of conditional correlations:
Matrix of conditional correlations = R, — R12R521R2 1 4.34)

It can be shown that the maximum likelihood estimate (R ,) of the partial correlation
matrix Py 5 is:

Ry, = D(r;,)"2(R;; -R,RHR, ) D (7} ,) 772 (4.35)

where D(r;,) is the matrix of diagonal elements of the matrix of conditional
correlation (eq. 4.34).

The calculation is illustrated for the three-dimensional case, in which there is a
single controlled variable y3:

Loryry,
R = Fap 11y

BRE
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This development will provide the algebraic formula for the partial correlation
coefficients of order 1. Coefficients pertaining to variables of the first subset (y; and
y,) are in the first two rows and columns. Using eq. 4.35 gives:

2
"3 [Tl _ | T3 T3
1 [731 73

1 _
R,RLR,, = 5
T3 T'i373 T3

_ Lor, Ity Tisfas (1=rf)  (rp=rirys)
R, -R,RIRy, = - ‘2 = 2
a1 i3t T3 (rip=riry;)  (1-rg)
_ 1/ 1—r123 0 (1-r%) (1, —713723) | |1/ 1—r123 0
0 1/ JT=rZ|| (rpa=713723) (1-r3) 0 1/ J1-r3
1 2= 13723
R.. = A,l—r%“/l—ré 1o
12 = =
1o =T13723 1 oy 1

NI =ris =175

The previous matrix equation provides the formula for the first-order partial
correlation coefficient:

2= 13723 (4.36)

r = —
123
/ 2 2
1-rf J1-13

The general formula, for coefficients of order p, is:

- = Tkt p=) T pt (=) hp 1 (0o 1) 437)
AR A/l—r2 A/l—r2
jp-l...(p-1) kp.l...(p-1)

When there are four variables, it is possible to calculate 12 first-order and 6 second-
order partial correlation coefficients. Computing a second-order coefficient
necessitates the calculation of 3 first-order coefficients. For example:

T123 7 143"243 1247 1347234

r = = r =
1234 1243
: 2 2 2 2
=Ty =135 N =rizadl =134

It is thus possible, as the number of variables increases, to calculate higher-order
coefficients. Computing a coefficient of a given order requires the calculation of three
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Nondeter-
mination

coefficients of the previous order, each of these requiring the calculation of coefficients
of the previous order, and so on depending on the number of variables involved. Such
a cascade of calculations is advantageously replaced by the direct matrix approach of
eq.4.35.

Numerical example. Partial correlations are calculated on the simple example already used
for multiple correlation. Matrix R is:

1 0408
R=104 105
0805 1

Two subsets are formed, the first one containing descriptors y; and y, (between which the partial
correlation is computed) and the second one y; (whose influence on r, is controlled for).
Computations follow eqgs. 4.34 and 4.35:

eq.4.34 Matrix of conditional correlations = | 1 94| _|0- mfl [0.8 0.5]
04 1 0.5

_| 1 04|_lo64040 _ 036 0
04 1] 040025 0 075

1.67 0 ||036 0 |[1.67 O | _ |10

0 1.15/[ 0 0.75]| 0 1.15 01
Thus, the partial correlation r|, 3 = 0; this was unexpected given that r{, = 0.4. In other words,
fraction [a] displayed in Box 4.1 is 0. The conclusion is that, when their (linear) relationships
with y; are taken into account, descriptors y; and y, are (linearly) independent. Similar

calculations for the other two pairs of descriptors give: ryj3,=0.76 and r,3; =0.33. The
interpretation of these correlation coefficients will be further discussed in Subsection 4.5 4.

eq.4.35 R

12

There is a relationship between the coefficients of multiple and partial correlation.
The equation linking the two types of coefficients can be easily derived; in the multiple
correlation equation, p is the number of variables other than yy :

when p =1, the fraction of the variance of y; not explained by y; is the complement
of the coefficient of determination (1 — r,%l ); this expression is
sometimes called the coefficient of nondetermination;

when p =2, the fraction of the variance of y, not explained by y,, while controlling
for the linear influence of yy, is (1 —rZ, ), so that the fraction of the
variance of y; not explained by y; and y,is (1-r2,) (1-r2,,) .
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Multiple de-
termination

This leads to a general expression for the fraction of the variance of y, that is not
explained by y,¥7, .., Yjs oo and Yy

(I=rz) (L=rf ) .. (1_r1%j.12“.)"‘(1 rlzplz ..... (p—l))

The fraction of the variance of y; that is explained by y{, y», ..., Yjs .- and Yps i.e. the
coefficient of multiple determination (square of the multiple correlation), is thus:

Rl%.l2...p = 1-[(1=rg) (1=rF ). (l_r/%p.12.‘.p—l)] (4.38)

Numerical example. The same example as above is used to illustrate the calculation of the
multiple correlation coefficient, using eq. 4.38:

R123 =1- [(l_rlzz) (1_7%3.2):|

R%,, = 1-[1-(04)2][1-(076)2] = 0.64

which is identical to the result obtained in Subsection 4.5.1 using eqs. 4.31 and 4.32.

Like the partial correlation, the semipartial correlation coefficient measures the
correlation between y; and y; while controlling for the linear effect of other variables
Y1, Y2, ... and y,. The difference is in the denominator, which is the total variation in
the response variable, i.e. the quantity [a+b+c+d] in Box 4.1. The formula for the first-
order semipartial correlation coefficient is:

The value of ry(; 3) is O for the numerical example because [a] = 0. The semipartial
correlation can also be calculated as the square root of the difference between two
multiple determination coefficients:

2 2
"es = NRix—Ri;

Because the latter equation does not specify the sign of the semipartial correlation
coefficient, the previous equation must be used to obtain that sign, which is the same as
the sign of the partial regression coefficient. In the Venn dlagram of Box 4.1, R1 3 18
the union of the two ellipses or the quantity [a+b+c], whereas R1 5 is the right-hand
ellipse or the quantity [b+c], each of these quantities being divided by the total
variation (total sum of squares) in the response variable, [a+b+c+d]. Hence R1 (23) 18
([a+b+c]—[b+c])/[a+b+c+d], or [a]/[a+b+c+d]. The semipartial correlation coefficient
is especially useful in variation partitioning (Subsection 10.3.5) because it expresses
all fractions of variation with respect to the same common denominator, which is the
total sum of squares in the response variable [a+b+c+d].
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Table 4.6

Main properties of the multiple (linear) correlation coefficient.

Properties Sections

1. The multiple correlation coefficient measures the intensity of the relationship
between a response variable and a linear combination of several explanatory
variables. 45

2. The square of the multiple correlation coefficient, called coefficient of
multiple determination, measures the fraction of the variance of the response
variable that is explained by a linear combination of the explanatory variables. 45

3. The coefficient of multiple determination is the extension, to the multidimensional
case, of the coefficient of determination between two variables. 45and 103

4. The multiple correlation coefficient can be computed from the matrix of
correlations among explanatory variables and the vector of correlations
between the explanatory and response variables. 4.5

5. The multiple correlation coefficient can be computed from the determinant of
the matrix of correlations among the explanatory variables and that of the matrix
of correlations among all variables involved. 4.5

6. The multiple correlation coefficient can be computed from the product of a
series of complements of coefficients of partial determination. 4.5

Tables 4.6 and 4.7 summarize the main conclusions relative to the coefficients of
multiple and partial correlation, respectively.

3 — Tests of statistical significance

In correlation analysis, the null hypothesis Hy is usually that the correlation coefficient
is equal to zero (i.e. independence of the descriptors). One can also test the hypothesis
that p has some particular value other than zero. The general formula for testing
correlation coefficients (for Hy: p = 0) is:

rR/ Vv
= ——— 4.39)
(1-r : AVAS
with vi{ =m and v, =n—m— 1, where m is the number of variables correlated to j.
This F-statistic is compared to the critical value F' alv,v,] ° In the case of the simple
correlation coefficient, where m = 1 (there is a single variable correlated to j), eq. 4.39
becomes eq. 4.12.
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Table 4.7

Main properties of the partial (linear) correlation coefficient. One of these properties is discussed
in a later chapter.

Properties Sections

1. The partial and semipartial correlation coefficients measure the intensity of the
linear relationship between two random variables while taking into account
their relationships with other variables. 45

2. The difference between the partial and semipartial correlation coefficients is in
the denominator, which excludes the variation of the controlled variables in
the partial correlation but not in the semipartial correlation. 45

3. The partial correlation coefficient can be computed from the submatrix of
correlations among the variables in partial relationship (first subset), the
submatrix of variables that influence the first subset, and the submatrix of
correlations between the two subsets of variables. 45

4. The partial and semipartial correlation coefficients can be computed from the
coefficients of simple correlation between all pairs of variables involved. 45

5. The square of the partial correlation coefficient (coefficient of partial
determination; name seldom used) measures the fraction of the total variance
of each variable that is mutually explained by the other, the influence
of some other variables being taken into account. 10.3

In regression analysis, the null hypothesis is that the coefficient of multiple
determination (R?) is zero. To test the coefficient of multiple determination R? and the
multiple correlation coefficient R, the F-statistic is:

2
Ri, V4

F=—— —
(1 _R12.2...p)/v2

(4.40)

with vi{ =m and v, =n—m — 1, where m is the number of explanatory variables; m =
p — 1 in the notation of eq. 4.40.

Fartial correlation coefficients are tested in the same way as coefficients of simple
correlation (eq. 4.12 for the F-test and eq. 4.13 for the #-test, where v = n —2), except
that one additional degree of freedom is lost for each successive order of the
coefficient, or each covariable in the model. For example, the number of degrees of
freedom for Tik123 (third-order partial correlation coefficient) isv=(n—-2)-3=n-35.
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Causality

Causal
model

This is the same as counting v =n —m — 1, where m is the number of variables in the
model besides j. For partial correlations, eqs. 4.12 and 4.13 become respectively:

r2 r,
F=v—l @412)  and 1= =Ll (413)

2
1-r. _ 2
jkd..p N1 Tika..p

The number of covariables will be called g in Subsections 10.3.5 and 11.1.7 which
describe, respectively, the tests of significance in partial regression and partial
canonical analysis. Semipartial correlation coefficients are tested using the same F-
statistic as for partial correlations, as shown in Box 4.1. As usual (Sections 1.2 and
42), Hy is tested either by comparing the computed statistic (¥ or #) to a critical value
found in a table for a predetermined significance level o, or by computing the
probability associated with the computed statistic.

4 — Causal modelling using correlations

In the ecological literature, correlation coefficients are often interpreted in terms of
causal relationships among descriptors. That should never be done when the only
information available is that provided by the correlation coefficients themselves.

In statistics, “causality” refers to the hypothesis that changes occurring in one
variable cause changes in another variable; causality resides in the hypotheses only.
Within the framework of a given sampling design (i.e.spatial, temporal, or
experimental) where variation is controlled, data are said to support the causality
hypothesis if a significant portion of the variation in b is explained by changes taking
place in a. If the relationship is assumed to be linear, a significant linear correlation
coefficient is interpreted as supporting the hypothesis of linear causation.

Let us consider the simple case of three linearly related variables y, y,, and y3. In
the following paragraphs, these variables will be noted a, b, and ¢ for simplicity. A
simple form of causal modelling is obtained by looking at the simple and partial
correlation coefficients between these variables, following the pioneering work of De
Neufville & Stafford (1971). One basic condition must be fulfilled for such a model to
encompass the three variables; it is that at least two of the simple correlations be
significantly different from zero. Under the assumption of linear relationships among
variables, these two coefficients provide statistical support for two “causal arrows”.

There are four elementary models describing the possible interactions among three
variables (Fig. 4.11), each with possible permutations of a, b and ¢, for a total of 18
distinguishable models. These four elementary causal models show how difficult it is
to interpret correlation matrices, especially when several ecological descriptors are
interacting in complex ways. Partial correlations may be used to elucidate the
relationships among descriptors. However, the choice of a causal model always
requires hypotheses, or else the input of external ecological information. When it is
possible, from a priori information or ecological hypotheses, to specify the causal
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Figure 4.11

Expectations Expectations
Model 1 of tI;le model Model 2 of tI;le model
rap signif.= 0 Tap Signif.= 0
a Iae signif.= 0 e signif.= 0
Ipe Signif.= 0 pe Signif.= 0
¢ Tab.c Signif.= 0 b Tab.c Signif.= 0
b Tac.p DOt signif % \ Tacp DOt signif
be.a Signif.= 0. Tpe.a Signif.=0
¢ Fap ol < Irap a ¢ Vrapl < 17|
I [Mpe.al = el [Mpeal = rpel
Tab X "he = Tac Tab X The = Tac
[Fapl = Il [7ap! = Irgel
lrpel = Iyl [rpel = Iyl
Expectations Expectations
Model 3 of tI;le model Model 4 of tl;le model
Tap Signif.= 0 Tap Signif.= 0%
T'a¢ DOt signif Tae signif.= 0
e Signif.= 0 pe Signif.= 0*
a C Tab.c Signif.= 0 a—>»C Fab.c Signif.= 0
\ ¢ Fac Signif.= 0 \ ¢ Fac Signif. 0
Tbe.a Signif.= 0 The.a Signif.= 0
b Irab_cl = Irabl b
Irbc.al = Irbcl

Predictions of the four possible models of causal relationships involving three variables, in
terms of the expected values for the simple and partial linear correlation coefficients.
‘rap signif.= 0’ means that, under the model, the correlation must be significantly different from
zero. ‘ryp not signif.” means that the correlation is not necessarily significantly different from
zero at the pre-selected significance level. * Model 4 holds even if one, but only one, of these
two simple correlation coefficients is not significant. Adapted from Legendre (1993).

ordering among descriptors, path analysis (Section 10.4) may be used to assess the
correspondence between the data (i.e. correlations) and causal models. Note again that
a causal model may never be derived from a correlation matrix, whereas a causal
model is required to interpret a correlation matrix in terms of causality.

In Fig. 4.11, model 1 describes a causal chain, with six possible permutations of a,
b and ¢, and model 2 is the double effect model with three distinguishable
permutations: each of the three variables may be at the origin of the two arrows.
Model 3 is the double cause model, with three distinguishable permutations. Model 4
describes a triangular relationship with six possible permutations; it may be seen as a
combination of models 1 and 2 or 1 and 3. The direct and indirect effects implied in
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model 4 may be further analysed using path analysis (Section 10.4), which requires
precise hypotheses about arrow directions.

In Fig.4.11, the predictions of the four models were obtained by numerical
simulations. Examining model 1 in some detail illustrates how the “expectations of the
model” can also be derived analytically.

* Significance of the simple correlations. Obviously, r,;, and ry,. must be significantly
different from zero for the model to hold. The model can accommodate r,, being
significant or not, although the value of r,. should always be different from zero since

Tac = ablbe -

» Significance of the partial correlations. The condition rue = raprpe implies that
Tac — Tab'be = 0 or, in other words (eq. 4.36), r,., = 0. For the model to hold, partial
correlations rpy . and 1, must be significantly different from 0. Indeed, ry, . being
equal to zero would mean that r,}) = 7,07, Which would imply that ¢ is in the centre of
the sequence; this is not the case in the model as specified, where b is in the centre. The
same reasoning explains the relationship rpe 5 = 0.

* Comparison of simple correlation values. Since correlation coefficients are smaller
than or equal to 1 in absolute value, the relationship r,.=rap, implies that
[7apl = [rael and lrpel = 17l

* Comparison of partial correlation values. Consider the partial correlation formula for
Tab.c (€q.4.36).Is it true that lryy, (| < lrypl ? The relationship rye = raprp allows one to
replace rpe by raprpe in that equation. After a few lines of algebra, the following
inequality

2
o = Ll
ab.c| — = |" ab!
JO = -

leads to the relationship ”2bc (1- rzab) =0, which is true in all cases because ry,, = 0
and lryy| = 1. This also shows that r,y, o = 75y, only when ry, = 1. The same method can
be used to demonstrate that lry | < Iyl .

The model predictions in Fig.4.11 show that it is not possible to distinguish
between models 1 and 2 from the correlation coefficients alone: these two models
differ only in their hypotheses (arrow directions). Their key common characteristic is
the non-significance of the partial correlation r,. . Model 3 is distinct in the fact that
T'ac 18 not significant and that the partial correlations are, in absolute values, larger than
or equal to the corresponding simple correlations, whereas they are smaller in
models 1 and 2. For model 4, some of the predictions depend on the signs of the effects
depicted by the arrows; for example, the three partial correlations may be larger or
smaller, in absolute values, than the simple correlations. Model 4 may apply even if
one, but only one, of the two simple correlations, r,}, or ., is not significant. When n
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is small, the tests may not have enough power to evidence the significance of the
relationships and, as a consequence, evidence may be lacking to support a model.

Numerical example. The simple example already used for multiple and partial correlations
illustrates here the problem inherent to all correlation matrices, i.e. that it is never possible to
interpret correlations per se in terms of causal relationships. In the following matrix, the upper
triangle contains the coefficients of simple correlation whereas the lower triangle contains the
partial correlation coefficients:

1 04 08
0 1 05
0.76 033 1

It may have seemed that descriptors y; and y, were correlated (rj, = 0.4), but the first-order
partial correlation coefficient ry, 3 =0 shows that this is not the case. The predictions of
models 1 and 2 in Fig. 4.11, witha =y, b =y; and ¢ = y,, are in agreement with these results. In
the absence of external information or ecological hypotheses, there is no way of determining
which pattern of causal relationships, model 1 or model 2, actually fits this correlation matrix.

Ecological application 4.5

Bach et al. (1992) analysed a 28-month long time series (weekly sampling, n = 122) of eel
catches (Anguilla anguilla) in the Thau marine lagoon in southern France. Fixed gears called
‘capéchades’, composed of three funnel nets (6-mm mesh) and an enclosure, were used near the
shore in less than 1.5 m of water. In the deeper parts of the lagoon, other types of gears were
used: heavier assemblages of funnel nets with larger mesh sizes, called ‘brandines’, ‘triangles’
and ‘gangui’, as well as longlines. Various hypotheses were stated by the authors and tested
using partial correlation analysis and path analysis. These concerned the influence of
environmental variables, including air temperature as a proxy for seasons, on the behaviour of
fish and fishermen, and their effects on landings. Coefficients of linear correlation reported in the
paper are used here to study the relationships among air temperature, fishing effort, and
landings, for the catches by ‘capéchade’ (Fig 4.12). The analysis in the paper was more
complex; it also considered the effects of wind and lunar phases. Linearity of the relationships
was checked. The correlation coefficients are consistent with a type-4 model stating that both
effort and temperature affect the landings (temperature increases eel metabolism and thus their
activity and catchability) and that the effort, represented by the number of active ‘capéchade’
fishermen, is affected by seasonality (lower effort at high temperature, ‘capéchades’ being not
much used from August to October). Interesting is the non-significant simple linear correlation
between temperature and catches. The partial correlations indicate that this simple correlation
corresponds to two effects of temperature on catches that are both significant but of opposite
signs: a positive partial correlation of temperature on catches and a negative one of temperature
on effort. In the paper of Bach et al., partial correlation analysis was used as a first screen to
eliminate variables that clearly did not influence catches. Path analysis (Section 10.4) was then
used to study the direct and indirect effects of the potentially explanatory variables on catches.

Partial correlations do not provide the same information as path analysis
(Section 10.4). On the one hand, partial correlations, like partial regression coefficients
(Subsection 10.3.3), indicate whether a given variable has some unique (linear)
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Eel Fishing Air Air
catches effort temperature temperature
Eel e r=0.730%** r=0.096
catches (N.S)
Fishing +
- . effort
Fishing partial r = -—-- r=-0.180*
effort 0.763%%%*
+ Y
Air partial r = partial r = -—-- Eel
temperature 0.338%*%%* —0.368%** catches
Figure 4.12  Left: simple and partial correlations among temperature, fishing effort, and eel catches using the

‘capéchade’ fishing gear, from Bach et al. (1992). Right: causal model supported by the data.
The signs of the partial correlation coefficients are shown along the arrows. *: 0.05 =z p > 0.01;
*#%: p =0.001; N.S.: non-significant correlation at significance level a = 0.05.

relationship with some other variable, after the linear effects of all the other variables
in the model have been taken into account. In path analysis on the other hand, one is
mostly interested in partitioning the relationship between predictor (explanatory,
independent) and criterion (response, dependent) variables into direct and indirect
components.

The above discussion was based on linear correlation coefficients. Advantages of
the linear model include ease of computation and simplicity of interpretation.
However, environmental processes are not necessarily linear. This is why linearity
must be checked, not only assumed, before embarking in this type of computation.
When the variables are not linearly related, two choices are open: either proceed with
non-linear statistics (nonparametric simple and partial correlation coefficients, in
particular, are available and may be used in this type of calculation), or linearize the
relationships that seem promising. Monotonic relationships, identified in scatter
diagrams, can often be linearized by applying the transformations of Section 1.5 to one
or both variables. There is no ‘cheating’ involved in doing that; either a monotonic
relationship exists, and linearizing transformations allow one to apply linear statistics
to the data; or there is no monotonic relationship, and no amount of transformation will
ever create one.

Simple causal modelling, as presented in this subsection, may be used in two
different types of circumstances. A first, common application is exploratory analysis,
which is performed when ‘weak’ ecological hypotheses only can be formulated. What
this means is the following: in many studies, a large number of causal hypotheses may
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be formulated a priori, some being contradictory, because the processes at work in
ecosystems are too numerous for ecologists to decide which ones are dominant under
given circumstances. So, insofar as each of the models derived from ecological theory
can be translated into hypothesized correlation coefficients, partial correlation analysis
may be used to clear away those hypotheses that are not consistent with the data and to
keep only those that look promising for further analysis. Considering three variables,
for instance, one may look at the set of simple and partial correlation coefficients and
decide which of the four models of Fig.4.11 are not consistent with the data.
Alternatively, when the ecosystem is better understood, one may wish to test a single
set of hypotheses (i.e.a single model), to the exclusion of all others. With three
variables, this would mean testing only one of the models of Fig. 4.11, to the exclusion
of all others, and deciding whether the data are consistent, or not, with that model.

Several correlation coefficients are tested in each panel of Fig.4.11. Three
simultaneous tests are performed for the simple correlation coefficients and three for
the partial correlation coefficients. In order to determine whether such results could
have been obtained by chance alone, some kind of global test of significance, or
correction, must be performed (eq. 4.14; Box 1.3).

The simple form of modelling described here may be extended beyond the frame of
linear modelling, as long as formulas exist for computing partial relationships.
Examples are the partial nonparametric correlation coefficient (partial Kendall <,
eq. 5.9) and the partial Mantel statistic (Subsection 10.5.2).

4.6 Tests of normality and multinormality

Testing the normality of empirical distributions is an important concern for ecologists
who want to use linear models for analysing their data. Tests of normality are carried
out in two types of circumstances. On the one hand, many tests of statistical
significance, including those described in the present chapter, require the empirical
data to be drawn from normally distributed populations. On the other hand, the linear
methods of multivariate data analysis discussed in Chapters 9, 10, and 11 do
summarize data in more informative ways if their underlying distributions are
multinormal — or at least are not markedly skewed, as discussed below. Estimating
the skewness and testing the normality of empirical variables is thus an important
initial step in the analysis of a data set. Variables that are not normally distributed may
be subjected to normalizing transformations (Section 1.5). The historical development
of the tests of normality has been reviewed by D’ Agostino (1982) and by Dutilleul &
Legendre (1992).

The problem may first be approached by plotting frequency histograms of
empirical variables. Looking at these plots immediately identifies distributions that
have several modes, for instance, or are obviously too skewed or too ‘flat’ or ‘peaked’
to have possibly been drawn from normally distributed populations.
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Skewness

Kurtosis

Next, for unimodal distributions, one may examine the skewness and kurtosis
parameters. The 2ﬁrSt centred moment of a distribution is m; = 0 and the second is the
variance, m, = s, (unbiased estimator: eq. 4.3). The unbiased estimator of the third
centred moment is:

n Y (x,-%)°
(n-1) (n-2)

m3=

Skewness (a;) is a measure of asymmetry. It is estimated as the third moment of the
distribution divided by the cube of the standard deviation:

3
Oy = my/s, 4.41)

Skewness is 0 for a symmetric distribution like the normal distribution. Positive
skewness corresponds to a frequency distribution with a longer tail to the right than to
the left, whereas a distribution with a longer tail to the left shows negative skewness.
The unbiased estimator of the fourth moment of a distribution is:

nn+ DS (-0 3010 (S (-0
(n-1) (n-2) (n-3)

m, =

Kurtosis (o, ) is a measure of flatness or peakedness of a distribution. It is estimated as
the fourth moment divided by the standard deviation to the power 4:

o, = m/s, (4.42)

The kurtosis of a normal distribution is o, = 0. Distributions flatter than the normal
distribution (‘platycurtic’) have negative values for o, whereas distributions that have
more observations around the mean than the normal distribution have positive values
for a, , indicating that they are ‘leptokurtic’ which means more ‘peaked’. The value of
o, for a uniform (flat, rectangular) distribution is —1.2.

Although tests of significance have been developed for skewness and kurtosis, they
are not used any longer because more powerful tests of normality are now available.
For the same reason, testing the goodness-of-fit of an empirical frequency distribution
to a normal distribution with same mean and variance (as in Fig 4.13a) using a chi-
square test is no longer in fashion because it is not very sensitive to departures from
normality (Stephens, 1974; D’ Agostino, 1982), even though it may still be presented
in some texts of biological statistics as an acceptable procedure. The main problem is
that it does not take into account the ordering of classes of the two frequency
distributions that are being compared. This explains why the main statistical packages
do not use it, but propose instead one or the other (or both) procedure described below.
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Figure 4.13  Numerical example with n = 100. (a) Frequency distribution and fitted theoretical normal
curve, (b) relative cumulative frequencies and Kolmogorov-Smirnov test of goodness-of-fit,
showing that the maximum deviation D =0.032 is too small in this case to reject the
hypothesis of normality.
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K-S test
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One of the widely used tests of normality is the Kolmogorov-Smirnov test of
goodness-of-fit. In Fig.4.13b, the same data as in Fig.4.13a are plotted as a
cumulative frequency distribution. The cumulative theoretical normal distribution is
also plotted on the same graph; it can easily be obtained from a published table, or by
requesting in a statistical package the normal probability values corresponding to the
relative cumulative frequencies (function prorm() in R). One looks for the largest
deviation D between the cumulative empirical relative frequency distribution and the
cumulative theoretical normal distribution. If D is larger than or equal to the critical
value in the table, for a given number of observations n and significance level o, the
hypothesis of normality is rejected.

The Kolmogorov-Smirnov (K-S) test of goodness-of-fit is especially interesting for
small sample sizes because it does not require to lump the data into classes. When they
are divided into classes, the empirical data are discontinuous and their cumulative
distribution is a step-function, whereas the theoretical normal distribution to which
they are compared is a continuous function. D is then formally defined as the
maximum of D~ and D*, where D™ is the maximum difference computed just before a
data value and D* is the maximum difference computed at the data value (i.e. at the
top of each step of the cumulative empirical step-function). A detailed numerical
example of the procedure is presented by Sokal & Rohlf (1995).

Standard Kolmogorov-Smirnov tables for the comparison of two samples, where
the distribution functions are completely specified (i.e.the mean and standard
deviation are stated by hypothesis), are not appropriate for testing the normality of
empirical data since the mean and standard deviation of the reference normal
distribution must then be estimated from the observed data; critical values given in
these tables are systematically too large, and thus lead too often to not rejecting the
null hypothesis of normality. Corrected critical values for testing whether a set of
observations is drawn from a normal population, that are valid for stated probabilities
of type I error, have been computed by Lilliefors (1967) and, with additional
corrections based on larger Monte Carlo simulations, by Stephens (1974). The same
paper by Stephens evaluates other statistics to perform tests of normality, such as
Cramér-von Mises W2 and Anderson-Darling A2 which, like D, are based on the
empirical cumulative distribution function (only the statistics differ); it proposes
corrections where needed for the situation where the mean and variance of the
reference normal distribution are unknown and are thus estimated from the data.

The second widely used test of normality is due to Shapiro & Wilk (1965). It is
based on an older graphical technique that will be described first. This technique,
called normal probability plotting, was developed as an informal way of assessing
deviations from normality. The objective is to plot the data in such a way that, if they
come from a normally distributed population, they will fall along a straight line.
Deviations from a straight line may be used as indication of the type of non-normality.
In these plots, the values along the abscissa are either the observed or the standardized
data (in which case the values are transformed to standard deviation units), while the
ordinate is the percent cumulative frequency value of each point plotted on a normal
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probability scale. Sokal & Rohlf (1995) give computation details. Figure 4.14 shows
the same data as in Fig 4.13a, which are divided into classes, plotted on normal
probability paper. The same type of plot could also be produced for the raw data, not
grouped into classes. For each point, the upper limit of a class is used as the abscissa,
while the ordinate is the percent cumulative frequency (or the cumulative percentage)
of that class. Perfectly normal data would fall on a straight line passing through the
point (¥, 50%). A straight line is fitted trough the points, using reference points based
on the mean and variance of the empirical data (see the legend of Fig. 4.14); deviations
from that line indicate non-normality. Alternatively, a straight line may be fitted
through the points, either by eye or by regression; the mean of the distribution may be
estimated as the abscissa value that has an ordinate value of 50% on that line.
D’Agostino (1982) gives examples illustrating how deviations from linearity in such
plots indicate the degree and type of non-normality of the data.

Shapiro & Wilk (1965) proposed to quantify the information in normal probability
plots using a statistic called ‘analysis of variance W’, which they defined as the F-ratio
of the estimated variance obtained from the weighted least-squares of the slope of the
straight line (numerator) to the variance of the sample data (denominator). The statistic
is used to assess the goodness of the linear fit:

W = (iwm)z/i (x,-%)° (4.43)

i=1 i=1

where the x; are the ordered observations (x; =x, = ... =x,) and coefficients w; are
optimal weights for a population assumed to be normally distributed. Statistic W may
be viewed as the square of the correlation coefficient (i.e.the coefficient of
determination) between the abscissa and ordinate of the normal probability plot
described above. Large values of W indicate normality (points lying along a straight
line give r? close to 1), whereas small values indicate lack of normality. Shapiro &
Wilk did provide critical values of W for sample sizes up to 50. D’Agostino (1971,
1972) and Royston (1982a,b,c) proposed modifications to the W formula (better
estimates of the weights w;), which extend its application to much larger sample sizes.
Extensive simulation studies have shown that W is a sensitive omnibus test statistic,
meaning that it has good power properties over a wide range of non-normal
distribution types and sample sizes.

The Shapiro-Wilk test is available in the shapiro.test() function of the R STATS
package. Five other functions are available in the NORTEST package to carry out tests
of normality, including function lillie.test() for the Lilliefors (1967) K-S test using
Stephens’ (1974) corrections. Which of these tests is best? Reviewing the studies on
the power of tests of normality published during the previous 25 years, D’ Agostino
(1982) concluded that the best omnibus tests are the Shapiro-Wilk W-test and a
modification by Stephens (1974) of the Anderson-Darling AZ-test mentioned above
(ad.test() function in NORTEST). In a Monte Carlo study involving autocorrelated data
(Section 1.1), however, Dutilleul & Legendre (1992) showed (1) that, for moderate
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Figure 4.14
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The cumulative percentages of data in Fig. 4.13a are plotted here on normal probability paper
(probit transformation) as a function of the upper limits of classes. Cumulative percentiles are
indicated on the right-hand side of the graph. The last data value cannot be plotted on this graph
because its cumulated percentage value is 100. The diagonal line represents the theoretical
cumulative normal distribution with same mean and variance as the data. This line is positioned
on the graph using reference values of the cumulative normal distribution, for example 0.13% at
y—3s and 99.87% at y + 3s, and it passes through the point (y, 50%). This graph contains
exactly the same information as Fig. 4.13b; the difference lies in the scale of the ordinate.
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sample sizes, both the D-test and the W-test were too liberal (in an asymmetric way)
for high positive (p > 0.4) and very high negative (p < —-0.8) values of autocorrelation
along time series and for high positive values of spatial autocorrelation (p >0.2), and
(2) that, overall, the Kolmogorov-Smirnov D-test was more robust against
autocorrelation than the Shapiro-Wilk W-test, whatever the sign of the first-order
autocorrelation.

As stated at the beginning of this section, ecologists must absolutely check the
normality of data only when they are planning to use parametric statistical tests that
assume normality of the distributions; permutation tests (Section 1.2) can be used with
non-normal data. Most methods presented in this book, including clustering and
ordination techniques, do not require statistical testing and hence may be applied to
non-normal data. With many of these methods, however, ecological structures emerge
more clearly when the data do not present strong asymmetry; this is the case, for
example, with principal component analysis. Since normal data are not skewed
(coefficient a3 =0), testing the normality of data is also testing for asymmetry;
normalizing transformations, applied to data with unimodal distributions, reduce or
eliminate asymmetry. So, with multidimensional data, it is recommended to check at
least the skewness of the variables one by one.

Some tests of significance require that the data be multinormal (Section 4.3).
Normality of the p individual variables can easily be tested as described above. In a
multivariate situation, however, showing that each variable does not significantly
depart from normality does not demonstrate that the multivariate data set is
multinormal although, in many instances, this is the best that researchers can do.

Dagnelie (1975) proposed an elegant way of testing the multivariate normality of a
set of multivariate observations. The method is based on the Mahalanobis generalized
distance (Ds; Section 7.4, eq. 7.38) described in Chapter 7. Generalized distances are
computed, in the multidimensional space, between each object and the
multidimensional mean of all objects. The distance between object x; and the mean
point X is computed as:

D(x,%) = J[y-51,8"[y-51! d.44)

where [y—y], is the vector corresponding to object x; in the matrix of centred data
and S is the multivariate dispersion matrix (Section 4.1). For standardized variables
z; = (y;=¥,)/s;.eq. 4.44 becomes:

D(x,%) = JzR 'z (4.45)
where R is the correlation matrix. Dagnelie’s approach is that, for multinormal data,
the generalized distances should be normally distributed. He suggested to do a visual
examination of the cumulative frequency distribution as in Fig. 4.14. Actually, the
generalized distances can be subjected to a Shapiro-Wilk test of normality, whose
conclusions are applied to the multinormality of the original multivariate data.
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The Dagnelie test of multivariate normality based on the Shapiro-Wilk test of
normality of Mahalanobis generalized distances is invalid for univariate data (type I
error rate too high). Numerical simulations by D. Borcard (personal communication)
showed that the test had correct levels of type I error for values of n between 3p and
7.5p, where p is the number of variables in the data table (simulations with 1 < p < 50).
Outside that range of n values, the results were too liberal, meaning that the test
rejected too often the null hypothesis of normality. For p = 2, the simulations showed
the test to be valid for 6 = n < 11. If Hy is not rejected in a situation where the test is too
liberal, the result is trustworthy.

4.7 Software

Functions for all operations described in this chapter are available in the R language.

1. Covariance matrices are computed using functions var() and cov() of the STATS
package; correlation matrices are computed by cor(). The F-test comparing two
variances is carried out by var.fest() and correlation coefficients are tested using
cor.test() in STATS.

2. Eigenanalysis is computed by eigen() in STATS.
3. Partial correlations are computed by function partial.cor() of the RCMDR package.

4.Tests of normality are computed using shapiro.test() in STATS, lillie.test() in
NORTEST, and ad.test() in NORTEST. Function gqnorm() of STATS produces normal
quantile-quantile plots like Fig. 4.14.

5. Function pnorm() in STATS computes p-values for the normal distribution, pf{) for
the F-distribution, pf() for the Student r-distribution, pchisq() for the chi-square
distribution, and so on for other statistical distributions.

Commercial statistical packages, as well as S-PLUS® and MATLAB®, also provide
functions for these calculations.
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5.0 Nonparametric statistics

Statistical testing often refers to the concepts of parameter and reference population,
as explained in Section 1.2. Section 4.3 showed that the mean, standard deviation and
correlation are parameters of the multinormal distribution, so that this statistical
distribution and others play a key role in testing quantitative data. When the data are
semiquantitative, however, it does not make sense to compute statistics such as the
mean or the standard deviation. In that case, hypothesis testing must be conducted with
nonparametric statistics. This expression cover all statistical methods developed for
analysing either semiquantitative (rank statistics; Section 5.2) or qualitative
(Chapter 6) data.

Nonparametric tests are distribution-free, i.e. they do not assume that the samples
were drawn from a population with a specified distribution (e.g. multinormal).
Because of that, nonparametric statistics are useful not only when descriptors are
semiquantitative, but also when quantitative descriptors do not conform to the
multinormal distribution and researchers do not wish, or succeed, to normalize them.
Many of the nonparametric tests for semiquantitative data are called ranking tests
because they are based on ranked observations instead of quantitative values. Another
advantage of nonparametric statistics is computational simplicity. Last but not least,
nonparametric tests may be used with small samples, a situation that frequently occurs
with ecological data; permutation tests based upon parametric statistics (Section 1.2)
share this last advantage of nonparametric tests. For semiquantitative data, the
nonparametric statistics corresponding to the mean and variance (Section 4.1) are the
median and range, respectively.
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Figure 5.1

Monotonic

- L L

Y1 Y1 Y1

Three types of monotonic relationships between two descriptors: (a) linear (increasing and
decreasing); (b) logistic (increasing monotonic); (c) atypical (decreasing monotonic).

Ranking tests should be used in the following situations:
® One or several descriptors among those to be compared are semiquantitative.

® The purpose of the study is not to evidence linear, but monotonic relationships
between quantitative descriptors. In a bivariate monotonic relationship, one of the two
descriptors keeps increasing or decreasing as the other increases (Fig.5.1); the
increase (or decrease) is not necessarily linear nor smoothly curvilinear.

Ranking tests or permutation tests (Section 1.2) can be used in the following cases:

® One or several quantitative descriptors are not normally distributed (tests of
normality and multinormality are described in Section 4.6) and researchers do not wish
to normalize them or do not succeed in doing so. Normalizing transformations are
described in Subsection 1.5.6.

® The number of observations is small.

The present chapter first summarizes the methods available in the nonparametric
approach, with reference to the corresponding parametric methods (Section 5.1). Tests
for differences among groups using quantitative, semiquantitative or qualitative
descriptors are compared in Section 5.2. Rank correlation coefficients are presented in
Section 5.3. Section 5.4 is devoted to the Kendall coefficient of concordance, which is
a generalization of the Spearman correlation coefficient to several descriptors. Most
statistical computer packages, including R, offer nonparametric testing procedures.
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5.1 Quantitative, semiquantitative, and qualitative multivariates

As discussed in Section 1.4, ecological descriptors may be of different levels of
precision (Table 1.2). Ecologists generally observe several descriptors on the same
objects, so that multidimensional ecological variates may be either quantitative,
semiquantitative, or qualitative, or mixed, i.e. consisting of descriptors with different
precision levels. For many years, quantitative ecology has been based almost
exclusively on quantitative descriptors and on parametric tests, even though there exist
a large number of methods that can efficiently analyse semiquantitative or qualitative
multivariates as well as multivariates of mixed precision levels. These methods have
become increasingly popular in ecology, not only because non-quantitative descriptors
often provide unique information, but also because parametric statistics cannot be
tested for significance when quantitative data do not conform to a number of
conditions, including normality. This section briefly reviews numerical methods for
analysing multivariates with various levels of precision.

Table 5.1 summarizes and compares methods described elsewhere in the present
book. In the same row are found corresponding methods, listed under four column
headings. The applicability of methods increases from left to right. Methods in the first
(left-hand) column are restricted to guantitative multivariates, which must also, in
most cases, be linearly related or/and multinormally distributed. Methods in the second
column have been developed for semiquantitative descriptors exhibiting monotonic
relationships. These methods may also be used (a) with quantitative descriptors, in
particular when they do not follow the conditions underlying methods in the first
column, and (b) for the combined analysis of quantitative and semiquantitative
descriptors. Methods in the third column were developed for the numerical analysis of
qualitative descriptors. They may also be used for analysing quantitative or
semiquantitative descriptors exhibiting nonmonotonic relationships, after dividing
these continuous descriptors into classes. Methods for qualitative descriptors thus
represent a first type of techniques for multivariates of mixed precision, since they can
be used for analysing together quantitative, semiquantitative, and qualitative
descriptors, after the former have been divided into classes. An alternative is to recode
multiclass qualitative descriptors into dummy variables (Subsection 1.5.7) and use
parametric methods (first column of Table 5.1) on the resulting assemblage of
quantitative and binary descriptors; this approach is often used in regression and
canonical analyses (Chapters 10 and 11).

The methods listed in the right-hand column can be used for analysing data tables
containing mixtures of quantitative, semiquantitative and qualitative descriptors. Of
special interest are the distance-based methods (dbRDA, PCoA, nMDS, clustering),
which can be applied after computing an association coefficient for mixed-level data.
These methods are very general, since they may replace equivalent methods in the
other three columns; the cost is sometimes greater mathematical and/or computational
complexity.
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Table 5.1

Methods for analysing multidimensional ecological data sets, classified here according to the
levels of precision of descriptors (columns). For methods concerning data series, see Table 12.2.
The Subject index at the end of the book shows where each method is described.

Quantitative Semiquantitative Qualitative Descriptors of
descriptors descriptors descriptors mixed precision

Difference between two samples:

Hotelling T 2 --- Log-linear models -
RDA, tbRDA, dbRDA dbRD tbRDA, dbRDA dbRDA
CCA CCA

Difference among several samples:

MANOVA - Log-linear models -

RDA, tbRDA, dbRDA db-RD tbRDA, db-RDA db-RDA

CCA CCA
Scatter diagram Rank diagram Multiway contingency Quantitative-rank

table diagram
Association coefficients R:
Covariance -—- Information, X2 -—-
Pearson r Spearman r Contingency -
Kendall ©

Partial r Partial ©

Multiple R Kendall W
Species diversity:

Diversity measures Diversity measures ~ Number of species -
Association coeff. Q Association coeff. Q  Association coeff. Q  Association coeff. Q
Clustering Clustering Clustering Clustering
Ordination:

PCA, tbPCA, CA tbPCA, CA

PCoA PCoA PCoA PCoA

nMDS nMDS nMDS nMDS
Regression Regression Correspondence Regression

simple linear (I and II) nonparametric logistic
multiple linear dummy
polynomial

partial linear

nonlinear, logistic

smoothing (splines, LOWESS)
multivariate; see also canonical a.

Path analysis - Log-linear models
Canonical analysis: Logit models
RDA, tbRDA, dbRDA dbRDA tbRDA, dbRDA db-RDA
CCA CCA
CCorA, ColA tbCCorA, tbColA
LDA - Discrete discriminant a.

Log-linear models
Logistic regression
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There are many types of methods for multidimensional analysis (rows of
Table 5.1). One interesting aspect of the table is that there is always at least one, and
often several methods for descriptors with low precision levels. Thus, ecologists
should not hesitate to collect information in semiquantitative or qualitative form since
there exist numerical methods for processing descriptors with all levels of precision.
However, it is always important to consider, at the stage of the sampling design
(Fig. 1.3), how the data will be analysed, so as to avoid problems at the later stage of
analysis. These problems may include the lack of human resources to efficiently use
advanced numerical methods. Researchers could use the period devoted to sampling to
improve their knowledge of methods and become familiar with computer programs
and functions.

Coming back to Table 5.1, it is possible to compare groups of objects, described by
quantitative multivariate data, using multidimensional analysis of variance (MANOVA).
When there are only two groups, another approach is Hotelling’s T? (Section 7.4). In
the case of qualitative multivariate data, the comparison may be done by adjusting log-
linear models (Section 6.3) to a multiway contingency table; the relationship between
contingency table analysis and analysis of variance is explained in Section 6.0.
Multivariate analysis of variance of species presence-absence or abundance tables may
be carried out using either transformation-based redundancy analysis (tbRDA) or
distance-based redundancy analysis (db-RDA) (Subsections 11.1.5 and 11.1.10), or
else canonical correspondence analysis (CCA, Section 11.2).

The simplest approach to investigate the relationships among descriptors
considered two at a time (Fig.5.2) is to plot the data as a scatter diagram, whose
semiquantitative and qualitative equivalent are the rank-rank diagram and the
contingency table, respectively. Quantitative-rank diagrams may be used to compare a
quantitative to a semiquantitative descriptor (Legendre & Legendre, 1982).

Two families of methods follow from these diagrams, for either measuring the
dependence among descriptors, or forecasting one or several descriptors using other
ones. The R-mode coefficients of dependence, described in Chapter 4 for quantitative
descriptors, in Chapter 5 for semiquantitative descriptors, and in Chapter 6 for
qualitative descriptors, measure the dependence between descriptors. These
coefficients are summarized in Subsection 7.5.1. It is interesting to note that measures
of information and X? (chi-square) calculated on contingency tables (Chapter 6) are
the equivalent, for qualitative descriptors, of the covariance computed between
quantitative descriptors. Methods in the second family belong to regression analysis
(Section 10.3), which has nonparametric forms (e.g. the monotone regression method
used in Section9.4), and whose qualitative equivalent is the analysis of
correspondence in contingency tables (Section 6.4).

Various measures of species diversity are reviewed in Section 6.5. They are usually
computed on quantitative species counts, but Dévaux & Millerioux (1977) have shown
that this may be done just as well on semiquantitative counts. When there are no
counts, the number of species present may be used to assess diversity; this is indeed



200

Multidimensional semiquantitative data

Figure 5.2

A
....... 5 | 30 | 15
(b) 10 | 20 | 55
0| 5 | 14 25 | 10 | 10
(a) j 3 | 7| (d)

(c)

Comparison of two descriptors. (a) Scatter diagram (quantitative descriptors on both axes).
(b) Quantitative-rank diagram (quantitative descriptor on the abscissa, ranked classes of a
semiquantitative descriptor on the ordinate). (c) Rank-rank diagram (ranked classes of
semiquantitative descriptors on both axes). (d) Two-way contingency table (nonordered classes
of qualitative descriptors on both axes). From Legendre & Legendre (1982).

the first diversity index to have been described in the ecological literature (Patrick,
1949; Subsection 6.5.1).

There are Q-mode association coefficients (Sections 7.3 and 7.4) adapted to
descriptors of all levels of precision (see Tables 7.4 and 7.5). Some of the similarity
coefficients (Chapter 7: S5, S1¢) are yet another way of combining quantitative and
qualitative descriptors in multivariate data analysis. Concerning clustering algorithms
(Chapter 8), most of them are indifferent to the precision of descriptors, since
clustering is in general conducted on an association matrix, most often of type Q.

Among the ordination methods in reduced space, principal component analysis
(PCA, Section 9.1) is the main method to use with quantitative descriptors, although it
can also be applied to semiquantitative data (Subsection 9.1.7). Species abundance or
presence-absence data, as well as other types of frequency data, can be analysed by
correspondence analysis (CA, Section 9.2) or by transformation-based PCA (tbPCA).
Principal coordinate analysis (PCoA, Section 9.3) and nonmetric multidimensional
scaling (nMDS, Section 9.4) are indifferent to the precision of descriptors since they
are computed on an association matrix (generally Q-type).
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For the interpretation of ecological structures, regression, which was briefly
discussed a few paragraphs above, is the chief technique when the dependent variable
is a single quantitative variable. Logistic regression is used when the response is
presence-absence data. Various forms of canonical analysis are available to interpret
the structure of quantitative data using one or several tables of explanatory variables:
redundancy analysis (RDA, Section 11.1), canonical correspondence analysis (CCA,
Section 11.2), linear discriminant analysis (LDA, Section 11.3), canonical correlation
analysis (CCorA, Section 11.4), and co-inertia analysis (ColA, Section 11.5).
Canonical correspondence analysis, as well as tbRDA, allow the interpretation of the
structure of species abundance or presence-absence data using explanatory variables.
For non-quantitative data, distance-based RDA (dbRDA) can be used after computing
a distance matrix using an appropriate distance function. There are also methods
equivalent to discriminant and path analyses for qualitative descriptors.

Table 5.1 shows that ecological data can efficiently be analysed irrespective of their
levels of precision. Researchers should use ecological criteria, such as allowable effort
in the field and biological meaningfulness of the decimal places to be recorded, to
decide about the level of precision of their data. The strictly numerical aspects should
play a secondary role in that decision.

5.2 One-dimensional nonparametric statistics

Independent
samples
Related
samples

The present book is devoted to numerical methods for analysing sets of
multidimensional ecological data. Methods for one-dimensional variables are not
discussed in depth since they are the subject of many excellent textbooks.
Nonparametric tests for one-dimensional descriptors are explained, among others, in
the books of Siegel (1956), Hijek (1969), Siegel & Castellan (1988), and Sokal &
Rohlf (1995). Because ecologists are often not fully conversant with these tests, the
correspondence between approaches for quantitative, semiquantitative, and qualitative
descriptors is not always clearly understood. This is why the one-dimensional methods
to carry out tests of differences among groups of objects are summarized in Table 5.2.

Methods in the table are divided in two main families: those for independent
samples, which are the most generally applicable, and those for related samples.
Related samples are often called matched or paired samples (Box 1.1). With such
samples of observations, the analysis may focus either on the differences between the
matched observation units, or on the differences among the classes of another factor
while controlling for the differences between the matched observations. Matching may
be achieved, for example, by repeating observations at the same sampling sites at
different times, or by making observations at points representing corresponding
conditions, e.g. in several lakes with sampling units taken from the same depths in the
water columns. Sampling units observed before and after a treatment also form
matched pairs. When related samples are analysed using the methods for independent
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Table 5.2

Methods to carry out tests of differences among groups of objects (one-dimensional data) are
classified here according to the levels of precision of the descriptors (columns). Most of these
methods are not discussed elsewhere in the present book. Table modified from Siegel (1956) and
Legendre & Legendre (1982).

Number of Quantitative Semiquantitative Qualitative
groups (k) descriptors* descriptors descriptors

Independent samples:

k=2 Student ¢ (unpaired)  Mann-Whitney U-test X2 (2 x no. states)
Median test Fisher’s exact
Kolmogorov-Smirnov test probability test
etc. Logistic regression
k =2 (one-way)  One-way ANOVA Kruskal-Wallis’ H X2 (k x no. states)
and F-test Extension of the median test Discriminant a.
Related samples:
k=2 Student ¢ (paired) Sign test McNemar test
Wilcoxon signed-ranks test (binary descriptors)
k =2 (two-way)  Two-way ANOVA Friedman’s two-way Cochran Q
and F-tests ANOVA by ranks (binary descriptors)
k =2 (multiway)  Multiway ANOVA --- ---
and F-tests

* When quantitative data do not meet the distributional assumptions underlying parametric tests,
they must be analysed using ranking tests (for semiquantitative descriptors). Another way would
be to test the parametric statistics by permutation (Section 1.2).

samples, the matching information is not taken into account and this results in a less
powerful statistical test. Within each of the two families, methods in Table 5.2 are
classified according to the number of groups (k) that are compared.

Univariate comparison of two independent samples (k=72), when the data are
quantitative, is generally done by using the Student z-statistic to test the hypothesis
(Hp) of equality of the group means (i.e. that the two groups of objects were drawn
from the same statistical population, or perhaps from populations with equal means,
assuming equal standard deviations). When the data are semiquantitative, computing
means and standard deviations would not make sense, so that the approach must be
nonparametric. The Mann-Whitney U-statistic first combines and ranks all objects in a
single series and then tests the hypothesis (Hy) that the ranked observations come from
the same statistical population or from populations that have the same median. The
median test, which is not as powerful as the previous one (except in cases when there
are ties), is used for testing the hypothesis (Hg) that the two groups of objects have
similar medians. Other nonparametric tests consider not only the positions of the two
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Multinomial
logistic
regression

groups along the abscissa but also the differences in dispersion and shape
(e.g. skewness) of their distributions. The best-known is the Kolmogorov-Smirnov
test; this is not the same test as the one described in Section 4.6 for comparing an
empirical to a theoretical distribution. The Kolmogorov-Smirnov method discussed
here allows one to test the hypothesis (Hg) that the largest difference between the
cumulative distributions of the two groups is so small that they may come from the
same or identical populations. Finally, when the data are qualitative, the significance
of differences between two groups of objects may be tested using a X?-statistic
calculated on a two-way contingency table. Section 6.2 describes contingency table
analysis for the comparison of two descriptors. In the present case, the contingency
table has two rows (i.e. two groups of objects) and as many columns as there are states
in the quantitative descriptor. The hypothesis tested (Hp) is that the frequency
distributions in the two rows are similar; this is the same as stating the more usual
hypothesis of independence between rows and columns of the contingency table
(Section 6.0). When the descriptor is binary (e.g. presence or absence) and the number
of observations in the two groups is small, it is possible to test the hypothesis (Hy) that
the two groups exhibit similar proportions for the two states, using Fisher’s powerful
exact probability test. Logistic regression (Subsection 10.3.7) may also be used in this
context; in the regression, the two groups are represented by a binary response variable
while the qualitative explanatory descriptors are recoded as a series of dummy
variables, coded as shown in Subsection 1.5.7.

The standard parametric technique for testing that the means of several independent
samples (k= 2) are equal, when the data are quantitative, is one-way analysis of
variance (ANOVA). It is a k-group generalization of the Student r-test. In one-way
ANOVA, the overall variance is partitioned between two orthogonal (i.e.linearly
independent; see Box 1.1) components, the first one reflecting differences among the &
groups and the second one accounting for the variability among objects within the
groups. The hypothesis (Hy) of equal means is rejected (F-test) when the among-group
variability is significantly larger than the within-group component. For
semiquantitative data, the Kruskal-Wallis’ H-test (also called Kruskal-Wallis’ one-way
ANOVA by ranks) first ranks all objects from the k groups into a single series, and then
tests (Hy) that the sums of ranks calculated for the various groups are so similar that
the objects are likely to have been drawn from the same or identical populations. When
applied to quantitative data that are meeting all the assumptions of parametric ANOVA,
Kruskal-Wallis’ H is almost as powerful as the F-test. Another possibility is to extend
to k=2 groups the median test, described in the previous paragraph for k=2. The
latter is less powerful than Kruskal-Wallis’ H because it uses less of the information in
the data. As in the above case where k = 2, qualitative data can be analysed using a
contingency table, but this time with k = 2 rows.

To model multistate qualitative response data, multinomial logistic regression is
available in R (see Section 5.5) as well as in procedure CATMOD of SAS. Discriminant
analysis could be used in the same spirit. See the discussion on discriminant analysis
versus logistic regression in Section 11.6 (point 2).
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Comparing two related samples (k =2) is usually done, for quantitative data, by
testing (Hy) that the mean of the differences between matched pairs of observations is
null (Student -test; the differences are assumed to be normally and independently
distributed). When the data are semiquantitative, one can use the sign test, which first
codes pairs of observations (y;, y;) as either (+) when y; > y; or (-) when y; <y, and
then tests the hypothesis (Hg) that the numbers of pairs with each sign are equal; an
equivalent formulation is that the proportion of pairs with either sign is equal to 0.5.
This test uses information about the direction of the differences between pairs. When
the relative magnitude of the differences between pairs is also known, it becomes
possible to use the more powerful Wilcoxon matched-pairs signed-ranks test.
Differences between pairs are first ranked according to their magnitude (absolute
values), after which the sign of the difference is affixed to each rank. The null
hypothesis of the test (H) is that the sum of the ranks having a (+) sign is equal to that
of the ranks with a (-) sign. The McNemar test provides a means of comparing paired
samples of binary data. For example, using binary observations (e.g. presence or
absence) made at the same sites, before and after some event, one could test (Hg) that
no overall change has occurred.

When there are several related samples (k = 2) and the data are quantitative, the
parametric approach for testing (H) that the means of the k groups are equal is two-
way analysis of variance, with or without replication. One classification criterion of the
two-way ANOVA accounts for the variability among the k groups (as in one-way
ANOVA above, for k = 2 independent samples) and the other for that among the related
samples. Consider, as example, 16 sites (i.e. k groups) that have been sampled at 5
depths in the water column (or at 5 different times, or using 5 different methods, etc.).
The nonparametric equivalent, for semiquantitative data, is Friedman’s two-way
analysis of variance by ranks without replication, which is based on a two-way table
like Table 5.7. In the two-way table, the k groups (e.g. 16 sites) are in rows and the
corresponding samples (e.g. 5 depths) are in columns. Values within each column are
ranked separately, and the Friedman X2-statistic (eq.5.15) is used to test (Hy) that the
rank totals of the various rows (e.g. 16 sites) are equal. For binary data, the Cochran Q
test is an extension to k = 2 groups of the McNemar test, described above for k = 2.

Finally, when there are several samples (k=2), related across several
classification criteria (e.g. 16 sites all sampled at 8 different times, using each time 5
different methods), multiway ANOVA is the standard parametric method for testing the
null hypothesis (H) that the means of the k groups are equal (F-test). In that case,
there are no obvious equivalent approaches for semiquantitative or qualitative data.

How to analyse multivariate data representing related samples is described in
Subsection 11.1.10, point 3.
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Table 5.3

Numerical example. Perfect rank correlation between descriptors y; and y,.

Objects Ranks of objects on the two descriptors
(observation units) Y1 Y2
X 5 5
X) 1 1
X3 4 4
Xy 2 2
X5 3 3

5.3 Rank correlations

Spearman
corr. coeff.

Textbooks of nonparametric statistics propose a few methods only for the analysis of
bi- or multivariate semiquantitative data. Section 5.1 has shown that there actually
exist many numerical approaches for analysing multidimensional data, corresponding
to all levels of precision (Table 5.1). These methods, which include most of those
described in this book, belong to nonparametric statistics in a general sense, because
they do not focus on the parameters of the data distributions. Within the specific realm
of ranking tests, however, the statistical techniques available for multidimensional
semiquantitative data are two rank correlation coefficients (Spearman r and Kendall
1), which both quantify the relationship between two descriptors, and the coefficient of
concordance (Kendall W), which assesses the relationship among several descriptors.
The two correlation coefficients are described in the present section and coefficient W
in Section 5 4.

1 — Spearman r

The Spearman r coefficient, also called p (rho), is based on the idea that two
descriptors y; and y, carry the same information if the object with the largest rank on
y; also has the highest rank on y,, and so on for all other objects. Two descriptors are
said to be in perfect correlation when the ranks of all objects are the same on both
descriptors, as in the numerical example shown in Table 5.3. If, however, object x;
which has rank 5 on y; had rank 2 on y,, it would be natural to use the difference
between these ranks, d; = (y;; —y12) =(5-2) =3, as a measure of the difference
between the rankings given to this object by the two descriptors. For the whole set of
objects, differences d; are squared before summing them, to prevent differences with
opposite signs from cancelling each other out.
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The expression for the Spearman r correlation coefficient may be derived from the general
formula of correlation coefficients (Kendall, 1948):

2 (yij_yj) (yik—i’k)
ro o= i=1 5.1

Jk n n
/\/2 (yij_yj)z 2 (yik—i’k)z

=1 i=1

For quantitative data, this equation is used to compute the Pearson linear correlation coefficient
(eq.4.7).

For ranked data, the average ranks y, and y, are equal, so that (yij - yj) - (Ve -y Q) =
(yij —Yi)- One can write the difference between the ranks of object i on the two descriptors as
d;= (yl.j_yl_k) = (yl.j—yj) - (¥;;,—¥,) » which leads to:

n n

Ed?: E (yij_yj)2+ E (yik_yk)z_zz (yij_yj) (yik_yk)
i i i=1 i=1

i=1 i=
Isolating the right-hand sum gives:

n

E (yij_yj) (yik_yk) = %{E (y,‘j_yj')z"' E (yik_yk)z_ Edlz}
i=1 i=1 i

i=1 i=1

Using this result, eq. 5.1 is rewritten as:

%{E (yij_yj)2+ E (y,‘k_yk)z_ 2 dlz}

i=1 i=1 i=1
r.

jk n n
/\/2 (yij_y]‘)z E (yik_yk)z

i=1 i=1

5.2)

The sum of ranks for each descriptor, which is the sum of the first n integers, is equal to
n n

Eyif = n(n+1) /2 and the sum of their squares is 2 yi2j =n(n+1)(2n+1) /6. Since

i=1 i=1
the sum of deviations from the mean rank is

one can write:

6 n
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It follows that, when using ranks, the numerator of eq. 5.2 becomes:

)

n 3 3 n
{E(ylj y) +E Vik yk Ed} =1{” —n+n];n_'2d}

i=1 i=1 i=1

while its denominator reduces to:

JE (v;=7) E Gp-30° J(" 7”)('131;") = ni;"

=1 i=1

The final formula is obtained by replacing the above two expressions in eq. 5.2.
This development shows that, when using ranks, eq. 5.1 simplifies to the following
formula for Spearman r:

N =

3 n
n — 2
{ > Ed} 624
r, = - Zlom = 1o n b (53)

n —-n n —-n
12

Alternatively, the Spearman rank correlation coefficient can be obtained in two steps:
(1) replace all observations by ranks (columnwise) and (2) compute the Pearson
correlation coefficient (eq.4.7, formula identical to eq.5.1) between the ranked
variables. The result is the same as obtained from eq. 5.3.

The Spearman r coefficient varies between +1 and -1, just like the Pearson r.
Descriptors that are perfectly matched, in terms of ranks, exhibit values r = +1 (direct
relationship) or r = —1 (inverse relationship), whereas r = 0 indicates the absence of a
monotonic relationship between the two descriptors. (Relationships that are not
monotonic, e.g. Fig. 4.4d, can be quantified using polynomial or nonlinear regression,
or else contingency coefficients; see Section 6.2 and Subsection 10.3.4.)

Numerical example. A small example (ranked data, Table 5.4) illustrates the equivalence
between eq. 5.1 computed on ranks and eq. 5.3. Using eq. 5.1 gives:

-2 -2
= =—==-04
TSk S
The same result is obtained from eq. 5.3:
6x 14 84
rp=1-= 1—6—0—1—1.4=—04

Two or more objects may have the same rank on a given descriptor. This is often
the case with descriptors used in ecology, which may have a small number of states or
ordered classes. Such observations are said to be tied. Each of them is assigned the
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Table 54

Numerical example. Ranks of four objects on two descriptors, y; and y,.

Objects Ranks of objects on the two descriptors
(observation units) Y1 Y2
X 3 3
X) 4 1
X3 2 4
Xy 1 2

average of the ranks that would have been assigned had no ties occurred. If the
proportion of tied observations is large, correction factors must be introduced into the
sums of squared deviations of eq. 5.2, which become:

n q
E (yij_yj)z = l—li{("ﬁ_n) - E (tij_trj)}
r=1

i=1

and

3 30 = %{(rﬁ—n) -3 <rfk—z,k)}

i=1 r=1

where 7,; and 7,4 are the numbers of observations in descriptors y; and y that are tied at
ranks r, these values being summed over the ¢ sets of tied observations in descriptor j
and the s sets in descriptor k.

Significance of the Spearman coefficient is usually tested against the null
hypothesis Hy: r=0. When 7 = 10, the test statistic is the same as for Pearson r
(eq. 4.13):

f = ki (5.4)

=3

Hy is tested by comparing statistic ¢ to the value found in a table of critical values of ¢
with v =n — 2 degrees of freedom. H, is rejected when the probability corresponding
to ¢ is smaller than or equal to a predetermined level of significance (o, for a two-tailed
test). The rules for one-tailed and two-tailed tests are the same as for the Pearson r
(Section 4.2). When n < 10, which is not often the case in ecology, one must refer to a
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Table 5.5

Kendall
corr. coeff.

Numerical example. The order of the four objects (rows) of Table 5.4 has been rearranged in
such a way that the ranks on y are now in increasing order

Objects Ranks of objects on the two descriptors
(observation units) Y1 \Z)
X4 1 2
X3 2 4
X; 3 3
Xy 4 1

special table of critical values of the Spearman rank correlation coefficient, found in
textbooks of nonparametric statistics.

2 — Kendall T©

Kendall T (tau) is another rank correlation coefficient, which can be used for the
same types of descriptors as Spearman r. One major advantage of T over Spearman r is
that the former can be generalized to a partial correlation coefficient (below), which is
not the case for the latter. While Spearman r was based on the differences between the
ranks of objects on the two descriptors being compared, Kendall t refers to a
somewhat different concept, which is best explained using an example.

Numerical example. Kendall t is calculated on the example of Table 5.4, already used for
computing Spearman r. In Table 5.5, the order of the objects was rearranged so as to obtain
increasing ranks on one of the two descriptors (here y;). The table is used to determine the
degree of dependence between the two descriptors. Since the ranks are now in increasing order
on yy, it is sufficient to determine how many pairs of ranks are also in increasing order on y, to
obtain a measure of the association between the two descriptors. Considering the object in first
rank (i.e. X4), at the top of the right-hand column, the first pair of ranks (2 and 4, belonging to
objects x4 and X3) is in increasing order; a score of +1 is assigned to it. The same goes for the
second pair (2 and 3, belonging to objects x4 and X, ). The third pair of ranks (2 and 1, belonging
to objects x4 and X,) is in decreasing order, however, so that it earns a negative score —1. The
same operation is repeated for every object in successive ranks along yq, i.e. for the object in
second rank (X3): first pair of ranks (4 and 3, belonging to objects X3 and x,), etc. The sum S of
scores assigned to each of the n(n — 1)/2 different pairs of ranks is then computed.

Kendall's rank correlation coefficient is defined as follows:

_ S 28
1:“_n(n—l)/Z_n(n—l) (5:5)
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Table 5.6

Numerical example. Contingency table giving the distribution of 80 objects among the states of
two semiquantitative descriptors, a and b. Numbers in the table are frequencies (f).

b, by by b, ]
ay 20 10 10 0 40
a 0 10 0 10 20
ay 0 0 10 0 10
ay 0 0 0 10 10
f 20 20 20 20 80

where § stands for “sum of scores”. Kendall T, is thus the sum of scores for pairs in
increasing and decreasing order divided by the total number of pairs (n(n — 1)/2). For
the example of Tables 54 and 5.5, T, is:

_2(+l-1-1-1-1) _2(=2) _

. 3 033

Clearly, in the case of perfect agreement between two descriptors, all pairs receive a
positive score, so that S=n(n—1)/2 and thus t,=+1. When there is complete
disagreement, S=-n(n—1)/2 and thus t,=-1. When the descriptors are totally
unrelated, the positive and negative scores cancel out, so that S as well as t, are O or
near 0.

Equation 5.5 cannot be used for computing T when there are tied observations. This
is often the case with ecological semiquantitative descriptors, which may have a small
number of states. The Kendall rank correlation is then computed on a contingency
table crossing two semiquantitative descriptors.

Table 5.6 is a contingency (or frequency) table crossing two ordered descriptors. For
example, descriptor a could represent the relative abundances of arthropods in soil enumerated
on a semiquantitative scale (e.g. absent, present, abundant, and very abundant), while descriptor
b could be the concentration of organic matter in the soil, divided into 4 classes. For simplicity,
descriptors are called a and b here, as in Chapter 6. The states of a vary from 1 to r (number of
rows) while the states of b go from 1 to ¢ (number of columns).

To compute T with tied observations, S is calculated as the difference between the
numbers of positive (P) and negative (Q) scores, S=P— Q. P is the sum of all
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frequencies f in the contingency table, each one multiplied by the sum of all
frequencies located lower and on its right:

=333 3
j=1k=1 I=j+1 m=k+1

Likewise, Q is the sum of all frequencies f'in the table, each one multiplied by the sum
of all frequencies lower and on its left:

o333 50

j=1 k=1 I=j+1 m=1
Numerical example. For the data in Table 5.6:

P = (20 x 40) + (10 x 30) + (10 x 20) + (10 x 20) + (10 x 10) = 1600
0= (10 x 10) + (10 x 10) = 200
§=P-Q=1600 - 200 = 1400

Using this value S, there are two approaches for calculating T, depending on the
numbers of states in the two descriptors. When a and b have the same numbers of
states (r = ¢), T, is computed using a formula that includes the total number of pairs
n(n—1)/2, as in the case of T, (eq. 5.5). The difference with eq. 5.5 is that t;, includes
corrections for the number of pairs L; tied in a and the number of pairs L, tied in b,
where

L, = E % t (tj —1) in which #; is the marginal total for row j

j=1

L,

E % t, (t,—1) in which #; is the marginal total for column .
k=1

The formula for T, is:

S
L 1 ! 1
in(n— ) —L, in(n— )—-L,

T, = (5.6)

When there are no tied observations, L; = L, =0 and eq. 5.6 is identical to eq. 5.5.
Numerical example. For the data in Table 5.6:

_40x39 20x19 10x9 10x9

L12+2+2+2=1060
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Power

_20x19 20x19  20x19 20x19 _
L2_2+2+2+2_760

v, = 1400 =062

J% (80 x 79) — 1060& (80 x 79) — 760

Without correction for ties, the calculated value (eq. 5.5) would have been
T, = (2 x 1400) / (80 x 79) = 0.44

The second approach for calculating T with tied observations is used when a and b
do not have the same number of states (r = ¢). The formula for T, uses the minimum
number of states in either a or b, min(r, ¢):

=S
¢ 1n2(min—1>
2

3.7

min

The significance of Kendall t is tested against the null hypothesis Hy: r=0
(i.e. independence of the two descriptors). Kendall (1948) has shown that the
distribution of T approximates the normal distribution with mean w_=0 and standard
deviation /2 (2n+5) (9n(n—1)) . Hence a z-test statistic can be obtained by
transforming T into a standard normal variate z using the formula:

9n ( n—l) 18
[ A/2(2n+5) A/n(n—l) (2n+5) (58)

With this statistic, Hy can be tested using a table of z (or #5). Since z tables are one-
tailed, the z-statistic of eq. 5.8 may be used directly for one-tailed tests by comparing it
to the value z, read in the table. For two-tailed tests, the statistic is compared to the
value z,,, from the z-table. When 7 is large, the second term of eq. 5.8 (correction for
small n) becomes small: for n = 30, its value is 0.0178, and it is 0.0084 for n = 50.

Spearman r provides a better approximation of Pearson » when the data are almost
quantitative and there are but a few tied observations, whereas Kendall T does better
when there are many ties. Computing both Spearman r and Kendall T, on the same
numerical example, above, produced different numerical values (i.e. r = —0.40 versus
T, =-0.33). This is because the two coefficients have different underlying scales, so
that their numerical values cannot be directly compared. However, given their different
sampling distributions, they both reject Hy at the same level of significance. If applied
to quantitative data that are meeting all the requirements of Pearson r, both Spearman r
and Kendall T have power nearly as high (about 91%; Hotelling & Pabst, 1936) as their
parametric equivalent. In all other cases, they are more powerful than Pearson r. This
refers to the notion of power of statistical tests: a test is more powerful than another if
it is more likely to detect small deviations from Hy (i.e. smaller type II error), for
constant type I error.
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The chief advantage of Kendall T over Spearman r, as already mentioned, is that it
can be generalized to a partial correlation coefficient, which cannot be done with
Spearman (Siegel, 1956: 214). The formula for a partial T is:

I T~ T13Ty3 (5.9)
23~ T .
[1—72, /1 -3,

This formula is algebraically the same as that of first-order partial Pearson r (eq. 4.36)
although, according to Kendall (1948: 103), this would be merely coincidental because
the two formulae are derived using entirely different approaches. The three T
coefficients on the right-hand side of eq.5.9 may themselves be partial t’s, thus
allowing one to control for more than one descriptor (i.e. high order partial correlation
coefficients). Siegel & Castellan (1988) give tables for testing the significance of the
Kendall partial correlation coefficient.

Rank correlation coefficients should not be computed in the Q mode, i.e. for
comparing objects instead of descriptors; see Box 7.1, Chapter 7.

5.4 Coefficient of concordance

Kendall
coeff. of
concordance

Friedman’s
two-way
ANOVA

The rank correlation coefficients described in the previous section measure the
correlation between two descriptors for n objects. Kendall’s coefficient of concordance
W (Kendall & Babington Smith, 1939) measures the agreement among several (p)
quantitative or semiquantitative variables over a set of n objects. In community
ecology, the p variables may be species whose abundances are used to assess habitat
quality at n study sites. In taxonomy, they may be p characters measured over n
different species, biological populations, or individuals. In the social sciences, the
variables are often p “judges” assessing n different subjects or situations.

There is a close relationship between Friedman’s two-way analysis of variance
without replication by ranks (Section 5.2) and Kendall’s coefficient of concordance.
Indeed, they both address hypotheses concerning the same data table and use the same
statistic for testing. They only differ in the formulation of their respective null
hypothesis. Consider Table 5.7, which contains illustrative data. In Friedman’s test, the
null hypothesis is that there is no real difference among the n = 6 objects because they
pertain to the same statistical population. Under Hy, they should have received random
ranks along the p = 3 variables, so that their sums of ranks should be approximately
equal. Kendall’s test focuses on the relationships among the p = 3 variables. If the null
hypothesis of Friedman’s test is true, this means that the variables have produced
rankings of the objects that are independent of one another. This is the null hypothesis
of Kendall’s test of W.
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Table 5.7

Numerical example. Ranks of six objects on three descriptors, y;, ¥, and ys3.

Objects Ranks of objects on the three descriptors Row sums
(observation units) Y1 Y2 Y3 R;
X 1 1 6 8
X, 6 5 3 14
X3 3 6 2 11
Xy 2 4 5 11
X5 5 2 4 11
X¢ 4 3 1 8

1 — Computing Kendall W

The Kendall W coefficient is an estimate of the variance of the row sums of ranks R;
divided by the maximum possible value the variance can take; this occurs when all
variables are in total agreement. Hence 0 < W= 1, the value 1 representing perfect
concordance. There are two ways of computing the Kendall W coefficient (i.e. either
form of eq. 5.11); they lead to the same result. The computation proceeds in two steps.

Firstly, S or §' is computed from the row-marginal sums of ranks R; received by the
objects:

n
-2 2
s= N (R-R) or S =SSR=\R, (5.10)
2 2

where S is a sum of squared deviations statistic over the row sums of ranks R; and R is
the mean of the R; values. SSR designates the Sum of Squared R; values.

Secondly, the Kendall W coefficient is obtained using either of the following
formulas:

. 2 2
W= 128 or W= 128-3pn(n+1)

2 3 2 3
p (n—n) -pT p (n —n) -pT

(5.11)

where n is the number of objects and p the number of variables. To derive these
formulas, one has to know that the sum of all ranks in the data table is pn(n + 1)/2 and
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that the sum of squares of all ranks is p2n(n + 1)(2n + 1)/6. T is a correction factor for
tied ranks (Siegel, 1956; Siegel & Castellan, 1988; Zar, 1999):

8
r=3y (-1, (5.12)
k=1

in which #; is the number of tied ranks in each (k) of g groups of ties. The sum is
computed over all groups of ties found in all p variables of the data table. 7= 0 when
there are no tied values.

There is a close relationship between the Spearman rg correlation coefficient and
the Kendall W coefficient: W can be directly calculated from the mean (7¢) of the
pairwise Spearman correlations rg using the following relationship (Siegel and
Castellan, 1988; Zar, 1999):

_ (p—1Dig+1
p

W (5.13)

where p is the number of variables among which the pairwise Spearman correlations
are computed. Equation 5.13 is strictly true for untied observations only; for tied
observations, ties are handled in a bivariate way in each Spearman rg coefficient
whereas in Kendall W the correction for ties is computed over all variables (eq. 5.12).
For two variables only, W is simply a linear transformation of r¢: W= (r¢+ 1)/2. In
that case, a permutation test of W for two variables is the exact equivalent of a
permutation test of rg for the same variables.

The relationship described by eq.5.13 clearly shows that W will consider p
variables to be concordant only if their Spearman correlations are positive. Two
variables that give perfectly opposite ranks to a set of objects have a Spearman
correlation of —1, hence W = 0 for these two variables (eq. 5.13); this is the lower
bound of the coefficient of concordance. For two variables only, rg =0 gives W=0.5;
for a group of p uncorrelated variables, W = 1/p. So coefficient W applies well to
rankings given by a panel of “judges” called in to assess overall performance in sports,
quality of wines, or food in restaurants, to rankings obtained from criteria used in
quality tests of appliances or services by consumer organizations, or to the study of
species associations in multi-species communities. It does not apply to variables used
in multivariate analysis where negative as well as positive relationships are
informative. Zar (1999), for example, used wing length, tail length and bill length of
birds to illustrate the use of the coefficient of concordance. These data are appropriate
for W because they are all related to the same common property, the size of the birds.

Numerical example. The calculation of Kendall’s coefficient of concordance is illustrated
using the numerical example of Table 5.7. The data could be semiquantitative rank scores, or
quantitative descriptors coded into ranks. It is important to note that the n = 6 objects are ranked
on each descriptor (column) separately. The last column gives, for each object i, the sum R; of its
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Permutation
test

ranks on the p =3 descriptors. The sum of squared deviations from the mean, (R, - R)z
(eq. 5.10 left), is equal to 25.5 for this example. The W-statistic is calculated with eq. 5.11 (left):

W o 12x255

= X299 _ 16l
52166 - 1619

There are no tied ranks in this example. The F' and X? (chi-square) statistics are computed as
follows (eqs. 5.14 and 5.15, next subsection):

(3-1) x0.1619

F =
(1-0.1619)

= 0.386

X = 3x (6-1) x0.1619

The p-value associated with the F-statistic, found using the F-distribution, is 0.825. The
permutational p-value after 999 random permutations within the variables is 0.835. The
hypothesis (H) that the row sums R; of Table 5.7 are equal cannot be rejected. The conclusion is
that the 3 descriptors differ in the way they rank the 6 objects.

2 — Testing the significance of W

The recommended method for testing the significance of W is to compute the
following F-statistic:

_(-nHWw

F = oW (5.149)
which is asymptotically distributed like F' with vi =n—-1-(2/p) and v, =v,;(p—1)
degrees of freedom (Kendall & Babington Smith, 1939). Numerical simulations
showed that this F-statistic had correct levels of type I error for any value of n and p
(Legendre, 2010). It is unfortunate that this statistic has been overlooked by authors of
recent textbooks on nonparametric statistics who recommend testing the significance
of W with Friedman’s (1937) XZ-statistic, which is obtained from W as follows:

X>=pin-1HW (5.15)

This X? (chi-square) statistic is asymptotically distributed like X2 with v=(n-1)
degrees of freedom. Kendall & Babington Smith (1939) considered this test of W to be
satisfactory for moderately large values of p and n only, not for small p. This was
confirmed by simulations reported by Legendre (2005), who recommended not to use
the theoretical Xz-distribution to test X2 when p <20.The X2-statistic can, however, be
tested by permutation.

Permutation tests can be used with all combinations of values of p and n
(Legendre, 2005). For the global test of significance, the rank values in all variables
are permuted at random, independently over each variable, because the null hypothesis
is the independence of the rankings produced by the p variables. The alternative
hypothesis (H;) is that at least one of the variables is concordant with one or more of
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the other variables; so when Hy, is rejected, one cannot conclude that all variables are
concordant with one another, but only that at least one variable is concordant with one
or more of the others. Actually, for permutation testing, the four statistics SSR
(eq.5.10), W(eq.5.11), F (eq.5.14), and X2 (eq. 5.15) are monotonic to one another
since n, p and T are constant within a given permutation test; they are thus equivalent
statistics for testing since they produce the same permutational probabilities. The test
is one-tailed because it only recognizes positive associations between the ranked
variables.

Many of the problems subjected to Kendall’s concordance analysis involve fewer
than 20 variables: the parametric x>-test should be avoided in these cases. The F-test
(eq. 5.14) and the permutation test can be safely used with all values of p and n.

3 — Contributions of individual variables to Kendall’s
concordance

The contribution of individual variables (e.g. the p species) to the W-statistic can be
assessed by a permutation test proposed by Legendre (2005). The null hypothesis is
the monotonic independence of the variable subjected to the test with respect to all
other variables in the group under study. The alternative hypothesis is that this variable
is positively correlated with one or several other variables in the set under study (one-
tailed test). The statistic W can be used directly in a posteriori permutation tests;
alternatively, one can use two other statistics described in Legendre (2005) that are
equivalent to W for a posteriori tests. Contrary to the global test, only the variable
under test (e.g. one of the p species) is permuted here. If that variable has values that
are monotonically independent of the other variables, permuting its values at random
should have little influence on the W-statistic. If on the contrary it is concordant with
one or several other variables, permuting its values at random should break the
concordance and induce a noticeable decrease of W.

Concordance analysis is applied to the identification of species associations in
Subsection 8.9.2, where an ecological application (mite data) is presented. Another
example (fish associations) is found in Section 4.10.2 of Borcard et al. (2011).

Concordance analysis is also useful in phylogenetic analysis: prior to phylogenetic
reconstruction, the degree of congruence among distance matrices (CADM)
corresponding to different types of data or different genes can be tested using a test of
significance proposed by Legendre & Lapointe (2004). The distance matrices under
comparison are strung out like the descriptors in Table 5.7. The coefficient of
concordance (W, eq.5.11) is computed, then tested using the same permutation
procedure as in the Mantel test (Subsection 10.5.1). The CADM test is actually a
generalization of the Mantel test of correspondence between two distance matrices to
any number of distance matrices. It can be used to compare distance matrices
computed from evolutionary data (genetic congruence), the topologies of phylogenetic
trees derived from these data (topological congruence), or the full phylogenetic trees
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including topologies and branch lengths (phylogenetic congruence) (Campbell e al.,
2011). Applications of this method are found in Campbell et al. (2009, 2011).

5.5 Software

All major commercial statistical packages allow the calculation of rank correlation
coefficients, as well a choice of the methods listed in Table 5.2. In the R language,

1. Methods listed in Table 5.2 are available in the following functions of the STATS
package: t.test() (t-test for independent and related samples), aov() (different forms of
ANOVA), wilcox.test() (Mann-Whitney and Wilcoxon tests), kruskal.test() (Kruskal-
Wallis test), friedman.test() (Friedman test), chisq.test() (chi-square test), fisher.test()
(Fisher exact probability test), and mcnemar.test() (McNemar test). chisq.test() and
fisher.test() offer permutation tests among their options. Rank correlation coefficients
are available as options in function cor() of the STATS package, which can also be used
to compute correlation matrices among several descriptors.

2. Logistic regression can be computed using the glm() function of the STATS package.
Multinomial logistic regression is computed by function mlogit() of the MLOGIT
package.

3.The global coefficient of concordance and a posteriori tests are available in
functions kendall.global() and kendall.post() of VEGAN. Congruence among distance
matrices is available in functions CADM.global() and CADM .post() of APE.
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6 Multidimensional

qualitative data

6.0 General principles

Contingency
table

Ecologists often use variables that are neither quantitative nor ordered (Table 1.2).
Variables of this type may be of physical or biological nature. Examples of qualitative
physical descriptors are the colour, locality, geological substrate, or nature of surface
deposits. Qualitative biological descriptors include the captured or observed species,
where the different states of the nonordered descriptor are the different possible
species. Likewise, the presence or absence of a species cannot, in most cases, be
analysed as a quantitative variable; it must be treated as a semiquantitative or
qualitative descriptor. A third group of qualitative descriptors includes the results of
classifications — for example, the biological associations to which the zooplankton of
various lakes belong, or the chemical groups describing soil cores. Such
classifications, obtained or not by clustering (Chapter 8), define qualitative descriptors
and, as such, they are amenable to numerical interpretation (see Chapter 10).

The present chapter discusses the analysis of qualitative descriptors; methods
appropriate for bivariate and multivariate analysis are presented. Because information
theory is an intuitively appealing way of introducing these methods of analysis,
Section 6.1 shows how to measure the amount of information in a qualitative
descriptor. This paradigm is then used in the following sections.

The comparison of qualitative descriptors is based on contingency tables. In order
to compare two qualitative descriptors, the objects are first allocated to the cells of a
two-way contingency table whose rows and columns respectively correspond to the
two descriptors. In such a table, the number of rows is equal to the number of states of
the first descriptor and the number of columns to that of the second descriptor. Any cell
in the table, at the intersection of a row and a column, corresponds to one state of each
descriptor. The number of objects with these two states is recorded in the cell, hence
the values in contingency tables are frequencies. The analysis of two-way contingency
tables is described in Section 6.2. When there are more than two descriptors, multiway
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Correlation
hypothesis

ANOVA
hypothesis

(or multidimensional) contingency tables are constructed as extensions of two-way
tables. Their analysis is discussed in Section 6.3. Finally, Section 6.4 analyses the
correspondence between descriptors in a contingency table.

Contingency table analysis is the qualitative equivalent of both correlation analysis
and analysis of variance; in the particular case of a two-way contingency table, the
analysis is the equivalent of a one-way ANOVA. It involves the computation of X? (chi-
square) statistics or related measures, instead of correlation or F-statistics. Two types
of null hypotheses (Hp) may be tested. The first one is the independence of the two
descriptors, which is the usual null hypothesis in correlation analysis (Hy: the
correlation coefficient p=0 in the statistical population). The second type of
hypothesis is similar to that of the analysis of variance. In a two-way contingency
table, one of the descriptors (called “first descriptor” in the next sentence) corresponds
to the classification criterion of the analysis of variance, and the other descriptor
(called “second descriptor”) corresponds to the dependent variable. The analysis
compares, among the states of the first descriptor, the distribution of frequencies
among the states of the second descriptors. The null hypothesis says that the frequency
distributions are the same, i.e. that the observations form a homogeneous group. For
example, if the groups (classification criterion) form the columns whereas the
dependent variable is in the rows, H, states that the frequency distributions of the row
frequencies are the same in all columns. These two types of hypotheses require the
calculation of the same expected values and the same test statistics. The examples in
the present chapter will be formulated as correlation hypotheses. In multiway tables,
the hypotheses tested are often quite complex because they take into account
interactions among the descriptors (Section 6.3).

Considering species data, the names of the various species observed at a sampling
site are the states of a qualitative multi-state descriptor. Section 6.5 will discuss species
diversity as a measure of dispersion of this qualitative descriptor.

The mathematics used throughout this chapter are quite simple and require no prior
knowledge other than the intuitive notion of probability. Readers interested in
applications only may skip Section 6.1 and come back to it when necessary. To
simplify the notation, the following conventions are followed throughout the chapter.
When a single descriptor is considered, this descriptor is called a and its states have
subscripts i going from 1 to g, as in Fig. 1.1. In two-way contingency tables, the
descriptors are called a and b. The states of a are denoted a; with subscripts i varying
from 1 to r (number of rows), while the states of b are denoted b; with subscripts j
varying from 1 to ¢ (number of columns).

6.1 Information and entropy

Chapters 1 and 2 have shown that the ecological information available about the
objects under study is usually (or may be reformulated as) a set of biological and/or
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Entropy

environmental characteristics, which correspond to as many descriptors. Searching for
groups of descriptors that behave similarly across the set of objects, or that may be
used to forecast one from the other(s) (R analysis, Section 7.1), requires measuring the
amount of information that these descriptors have in common. In the simplest case of
two descriptors a and b (called y; and y, in previous chapters), one must assess how
much information is provided by the distribution of the objects among the states of a,
that could be used to forecast their distribution among the states of b. This approach is
central to the analysis of relationships among ecological phenomena.

In 1968, Ludwig von Bertalanffy wrote, in his General System Theory (p.32):
“Thus, there exist models, principles, and laws that apply to generalized systems or
their subclasses, irrespective of their particular kind, the nature of their component
elements, and the relations or ‘forces’ between them”. This is the case with
information, which can be viewed and measured in the same manner for all systems.
Some authors, including Pielou (1975), think that the concepts derived from
information theory are, in ecology, a model and not a homology. Notwithstanding this
opinion, the following sections will discuss how to measure information for biological
descriptors in terms of information to be acquired, because such a presentation
provides a better understanding of the nature of information in ecological systems.

The approach consists in measuring the amount of information contained in each
descriptor and, further, the amount of information that two (or several) descriptors
have in common. If, for example, two descriptors share 100% of their information,
then they obviously carry the same information. Since descriptors are constructed so as
to partition the objects under study into a number of states, two descriptors have 100%
of their information in common when they partition a set of objects in exactly the same
way, i.e. into equal and corresponding sets of states. When descriptors are qualitative,
this correspondence does not need to follow any ordering of the states of the two
descriptors. For ordered descriptors, the ordering of the correspondence between states
is important and the techniques for analysing the information in common belong to
correlation analysis (Chapters 4 and 5).

The mathematical theory of information is based on the concept of entropy. Its
mathematical formulation was developed by Shannon (Bell Laboratories) who
proposed, in 1948, the well-known equation*:

q
H = -E p, log p. (6.1)

i=1

* This equation is sometimes referred to as the Shannon-Weaver or the Shannon-Wiener

equation. Norbert Wiener had developed elements of probability theory that were used by
Claude E. Shannon in his 1948 paper. In 1963, Warren Weaver co-authored with Shannon a book
where Shannon’s 1948 article was reprinted.
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Table 6.1

Negative
entropy

Information

Contingency table (numerical example). Distribution of 120 objects on descriptors a and b.

b, by by by

30 30 30 30
a, =60 30 10 15 5
ay =30 0 20 0 10
a3 =15 0 0 0 15
ay=15 0 0 15 0

where H is a measure of the uncertainty or choice associated with a frequency
distribution (vector) p; p; is the probability that an observation belongs to state i of the
descriptor (Fig. 1.1). In practice, p; is the proportion (or relative frequency, on a 0-1
scale) of observations in state i. Shannon recognized that his equation was similar to
the equation of entropy, published in 1898 by physicist Boltzmann as a quantitative
formulation of the second law of thermodynamics, which concerns the degree of
disorganization in closed physical systems. He thus concluded that H corresponds to
the entropy of information systems.

The entropy of information theory is actually the negative entropy of physicists. In
thermodynamics, an increase in entropy corresponds to an increase in disorder, which
is accompanied by a decrease of information. Strictly speaking, information is
negative entropy and it is only for convenience that it is simply called entropy. In
information theory, entropy and information are taken as synonymous.

Numerical example. In order to facilitate the understanding of the presentation up to
Section 6.4, a small numerical example will be used in which 120 objects are described by two
descriptors (a and b) with 4 states each. The question is to determine to what extent one
descriptor can be used to forecast the other. The data in the numerical example could result from
the survey of 120 sites of an estuary, or the trees observed in 120 vegetation quadrats. Descriptor
a could be the dominant species at each sampling site, assuming there are 4 possible species, and
descriptor b, some environmental variable with 4 states. The following discussion is valid for
any type of qualitative descriptor as well as for ordered descriptors divided into classes.

Assume that the 120 observations are distributed as 60, 30, 15 and 15 among the 4 states of
descriptor a and that there are 30 observations in each of the 4 states of descriptor b. The
frequencies in the combined states of the descriptors (i.e. the table cells) are shown in Table 6.1.
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Binary
question

For each descriptor, the probability of a state is estimated by the relative frequency with
which the state is found in the set of observations. Thus, the probability distributions associated
with descriptors a and b are:

a;: 60p(ay)=1/2 by: 30p(by)=1/4

ay: 30p(ay) =1/4 by 30p(by) = 1/4

as: 15p(a3)=1/8 b35 3Op(b3)=]/4

ag: 15plagy =178 by 30p(by) =1/4
120 120

The relative frequency of a given state is the probability of observing that state when taking an
object at random.

Within the framework of information theory, the entropy of a probability
distribution is measured, not in kilograms, metres per second, or other such units, but
in terms of decisions. The measurement of entropy must reflect how difficult it is to
find, among the objects under study, one that has a given state of the descriptor. An
approximate measure of entropy is the average minimum number of binary questions
that are required for assigning each object to its correct state. Hence, the amount of
information gained by asking binary questions, and answering them after observing
the objects, is equal to the degree of disorder or uncertainty initially displayed by the
frequency distribution. Given that context, the terms entropy and information are used
synonymously. A few numerical examples will help understand this measure.

1. When all the objects exhibit the same state for a descriptor, everything is known a priori
about the distribution of observations among the different states of the descriptor. There is a
single state in this case; hence, the number of binary questions required to assign a state to an
object is zero (H = 0), which is the minimum value of entropy.

2.The simplest case of a descriptor with non-null entropy is when there are two states
among which the objects are distributed equally:

Set of observations
4— Binary question
State 1 State 2
p(a;) =12 p(ay) =112

In order to assign a state to any given object, a single binary question is necessary, of the type
“Does this object belong to state 1?” If it does, state 1 is assigned to the object; if it does not, the
object belongs to state 2. The entropy associated with the descriptor is thus H = 1.
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3. Applying the above approach to a descriptor with four states among which the objects are
distributed equally, one gets an entropy H = 2 since exactly two binary questions are required to
assign a state to each object:

Set of observations

«— First binary question

Second

4 binary question

State 1 State 2 State 3 State 4
p(a;)=1/4 p(ay)=1/4 p(az)=1/4 p(ay)=1/4

This would be the case of descriptor b in the numerical example of Table 6.1.

4. For an eight-state descriptor with the objects equally distributed among the states, the
binary questions are as follows:

| Set of observations |

4—First binary question

Second

/ binary question\

Third

/ binary question\

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8
p(a)=18| |p(a)=1/8] |p(a;)=1/8 |p(ay)=1/8| |p(as)=1/8| |p(a)=1/8| |p(a;)=1/8] |p(as)=1/8

The total entropy of the descriptor is thus:

[3 questions x 8 (1/8 of the objects)] =3

and, in general, the entropy H associated with a descriptor in which the objects are equally
distributed among states is equal to the base 2 logarithm (if the questions are binary) of the
number of states:

log, 1=0 log, 8 =3
log,2=1 log, 16 =4
log, 4=2 etc.

Hence the general formula in that case is H = log, (number of states).

Measuring the entropy from the number of binary questions is strictly equal to the
logarithmic measure only when the number of states is an integer power of 2, or when
the number of observations in the various states is such that binary questions divide
them into equal groups (see the numerical example, below). In all other cases, the
number of binary questions required is slightly larger than log,(number of states),
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Table 6.2

The average minimum number of binary questions required to remove the uncertainty about the
position of an object in the state-vector is equal to log, (number of states) when the number of
states is an integer power of 2 (in boldface) and the objects are equally distributed among the
states. In all other cases, the number of binary questions is slightly larger than the entropy H =
log, (number of states). For example, for a three-state descriptor with equal frequencies, the
minimum number of binary questions is (2 questions x 2/3 of the objects) + (1 question x 1/3 of
the objects) = 1.66666 binary questions.

Number of states log, (number of states) Average minimum number
of binary questions

1 0.00000 0.00000
2 1.00000 1.00000
3 1.58496 1.66666
4 2.00000 2.00000
5 2.32193 2.40000
6 2.58496 2.66666
7 2.80735 285714
8 3.00000 3.00000
9 3.16993 322222
10 3.32193 3.40000
11 3.45943 3.54545
12 3.58496 3.66666
13 3.70044 3.76154
14 3.80735 3.85714
15 3.90689 3.93333
16 4.00000 4.00000

because binary questions are then a little less efficient than in the previous case
(Table 6.2). Binary questions have been used in the above discussion only to provide
readers with a better understanding of entropy, the true measure being the logarithmic
one. One may refer to Shannon (1948), or a textbook on information theory, for a more
formal discussion of the measure of entropy.

The following example illustrates the relationship between probability and
information. If an ecologist states that water in the Loch Ness is fresh, this is trivial
since the probability of the event is 1 (information content null). If, however, he/she
announces that she/he has captured a specimen of the famous monster, this statement
contains much information because of its low probability (the dynamic aspects of Loch
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Ness Monster populations have been discussed by Sheldon & Kerr, 1972, Scheider &
Wallis, 1973, and Rigler, 1982; see also Lehn, 1979, and Lehn & Schroeder, 1981, for
a physical explanation of the Loch Ness and other aquatic monsters). Thus,
information theory deals with a specific technical definition of information, which may
not correspond to the intuitive concept. A nontechnical example is that a book should
contain the same amount of information before and after one has read it. From the
information theory point of view, however, after one has read the book once, there is
no information to be gained the next time he/she reads it — unless she/he has forgotten
part of it after the first reading.

It should be clear, at this point of the discussion, that the entropy of a descriptor depends,
among other characteristics, on the number of its states among which the entropy is partitioned.
In the case of the above four-state descriptor, for example, 1/4 of the entropy of the descriptor is
attributed to each state, i.e. [1/4 log, 4], which is equal to [1/4 log2(1/4)'l]. The total entropy of
the descriptor is thus:

H = 2 (1/4)1og, (1/4)~" =logy 4=2

4 states

The same holds for the example of the eight-state descriptor. The entropy of each state is
[1/8 log, 8] =[1/8 10g2(1/8)'1], so that the total entropy of the descriptor is

H = (1/8)log, (1/8)~! =log, 8 =3
D g, 2

8 states

5. Descriptor a in the numerical example (Table 6.1) illustrates the case of a descriptor for
which the objects are not equally distributed among states. The probability distribution is [1/2,
1/4, 1/8, 1/8], which corresponds to the following scheme of optimal binary questions:

Set of observations

First binary question
Second binary question

Third binary question

State 1 State 2 State 3 State 4
p(a;)=12 p(ay)=1/4 p(az)=1/8 p(a;)=1/8

When the objects are not distributed evenly among the states, the amount of information one has
a priori is higher than in the case of an even distribution, so that the information to be acquired
by actual observation of the objects (i.e. the entropy) decreases. It follows that the entropy of the
above descriptor should be H < 2, which is the maximum entropy for a four-state descriptor.
Using binary questions, it is more economical to isolate half of the objects with the first
question, then half of the remaining objects with the second question, and use a third question
for the last two groups of 1/8 of the objects (see above). Since half of the objects require one
question, 1/4 require 2, and the two groups of 1/8 require 3, the total entropy of this descriptor is:

H(@) = (12x 1)+ (1/4x2)+(1/8x3)+(1/8 x3) = 1.75
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Bit
Hartley
Decit
Nat

Communi-
cation

Alphabet

English
French

As in the previous examples, this is equal to:

H(a) = 1/2 1og, 2 + 1/4 1og, 4 + 1/8 1og, 8 + 1/8 log, 8

H(a) = 1/2 1og, (1/2)™! + 1/4 1og, (1/4)™" + 1/8 1og, (1/8)~! + 1/8 1og, (1/8)7!

H(a) = Y p(i) log,[p(i)]™!

all states

Following the law of exponents for logarithms, exponent —1 is eliminated by writing the
equation as:

H(a) = - Y p(i)log,p (i)

all states

This is Shannon’s formula for entropy (eq. 6.1). When the base for the logarithms is 2, the model
is that of binary questions and the unit of entropy is the bit (contraction of binary digit) or
hartley (Pinty & Gaultier, 1971). The model may be reformulated using questions with 10
answers, in which case the base of the logarithms is 10 and the unit is the decit. For natural
logarithms, the unit is the nat (Pielou, 1975). These units are dimensionless, as are angles for
example (Chapter 3).

Equation 6.1 may be applied to human communications, to calculate the
information content of strings of symbols. For example, in a system of numbers with
base 7, there are n’V possible numbers containing N digits (in a base-10 system, there
are 102 = 100 numbers containing 2 digits, i.e. the numbers 00 to 99). It follows that
the information content of a number with N digits is:

H=log, nN = Nlogy n
The information per symbol (digit) is thus:
HIN =logy n (6.2)

In the case of a binary (base 2) number, the information per symbol is log, 2 = 1 bit;
for a decimal (base 10) number, it is log, 10 = 3.32 bits. A decimal digit contains 3.32
bits of information so that, consequently, a binary representation requires on average
3.32 times more digits than a decimal representation of the same number.

For an alphabet possessing 27 symbols (26 letters and the blank space), the
information per symbol is log, 27 = 4.76 bits, assuming that all symbols have the same
frequency. In languages such as English and French, each letter has a frequency of its
own, so that the information per symbol is less than 4.76 bits. The information per
letter is 4.03 bits in English and 3.95 bits in French. Hence, the translation from French
to English should entail shorter text, which is generally the case.

Each language is characterized by a number of properties, such as the frequencies
of letters, groups of letters, etc. These statistical properties, together with a defined
syntax, determine a particular structure. For a given alphabet, the specific constraints
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Table 6.3

Redundancy in the French language. Number of lexical elements with 4 to 6 letters (from
Bourbeau et al., 1984).

Number of letters Possible number of Actual number of lexical
lexical elements elements in French
4 26% ~ 457 000 3558
5 26>~ 12000 000 11351
6 26° ~ 300 000 000 24 800

of a language limit the number of messages that can actually be formulated. Thus, the
number of lexical elements with 4, 5 or 6 letters is much smaller than the theoretical
possible number (Table 6.3). This difference arises from the fact that every language
contains a certain amount of information that is inherently embodied in its structure,
which is termed redundancy. Without redundancy, it would be impossible to detect
errors slipping into communications, since any possible group of symbols would have
meaning.

In a language with n different symbols, each having a characteristic frequency
(N, Ny ... N,), the total number of possible messages (P) made up of N symbols is
equal to the number of combinations:

P=N!/(N{!Ny! ... N,})
The information content of a message with N symbols is:
H=1logy, P=1log,[N!/(N{! N,! ... N,J)]
Hence, the information per symbol is:
H/N =1/Nlog,[N!/(N{! N,! ... N,D] 6.3)

which is the formula of Brillouin (1956). It will be used later (Section 6.5) to calculate
the species diversity of a sample, considered to be representing a “message”.

6.2 Two-way contingency tables

In order to compare two qualitative descriptors, the objects are allocated to the cells of
a table with two criteria, i.e.the rows and columns. Each cell of the two-way
contingency table (e.g.Tables 6.1 and 6.4) contains the number of observations
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Table 6.4

Null
hypothesis

Expected
frequency

Contingency table giving the observed (from Table 6.1) and expected (in parentheses)
frequencies in each cell; n=120. The observed frequencies that exceed the corresponding
expected frequencies are in boldface. Wilks’ chi-square statistic: Xy, =150.7 (v=9,p <0.001).

by by by by

30 30 30 30
a; =60 30 (15) 10 (15) 15 (15) 5 (15)
a, =30 0 (7.5 20 (7.5) 0 (7.5 10 (7.5)
az=15 0 (3.75) 0 (3.75) 0 (3.75) 15 (3.75)
ag=15 0 (3.75) 0 (375) 15 (375) 0 (3.75)

described by that pair of states of the qualitative descriptors. Numbers in the cells of a
contingency table are absolute frequencies, i.e. not relative frequencies. The number of
cells in the table is equal to the product of the number of states in the two descriptors.
The first question relative to a contingency table concerns the relationship between the
two descriptors: given the bivariate distribution of observations in the table, are the
two descriptors related to each other, or not? This question is answered by calculating
the expected frequency E for each cell of the table, according to a null hypothesis Hy,
and performing a chi-square (X?) test of the null hypothesis.

The simplest null hypothesis is the independence of the two descriptors. Ej; is the
number of observations that is expected in each cell (i, j) under Hy. Under this null
hypothesis, Ej; is computed as the product of the marginal totals (i.e. the product of the
sum of row i with the sum of column j), divided by n which is the total number of
observations in the table:

Eij = [(row sum); x (column sum)j] /'n 6.4)

This equation generates expected frequencies whose relative distribution across the
states of descriptor a, within each state of descriptor b, is the same as the distribution
of all observed data across the states of a, and conversely (Table 6.4). The null
hypothesis is tested using a X?-statistic that compares the observed (O;) to the
expected frequencies (Ej). '
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Pearson
chi-square

Wilks
chi-square

Degrees of
freedom

Williams’
correction

In basic statistics textbooks, the significance of relationships in two-way
contingency tables is often tested using the Pearson chi-square statistic (Pearson,
1900):

2 (O-E)?
X: = ~—~ 7 6.5
’ a]Zells E ( )

where (O — E) measures the contingency of each cell. Instead of X 12, , one can compute
Wilks’ likelihood ratio (1935), also known as the G or 2/[-statistic (Sokal & Rohlf,
1995) or G? (Bishop et al., 1975; Dixon, 1981):

X =2 2 0 log,( %) 6.6)
all'cells

where log, is the natural logarithm. For null frequencies, lim [O log,(O/E)] =0.
0-0

For a contingency table with » rows and ¢ columns, the number of degrees of
freedom used to determine the probability (p-value) of the data under Hy is:

v=(r-1)(c-1) 6.7)

When the p-value is smaller than or equal to a predetermined significance level,
e.g. a =0.05, the null hypothesis (Hg) of independence of the descriptors is rejected.

When the number of observations (n) is large (i.e. larger than ten tlmes the number
of cells, rc, in the table), the asymptotic distributions of X and XW are both X In
other words, the two statistics are equivalent when Hy is true There is however a
problem when the number of observations is small, i.e. less than five times the number
of cells. Small numbers of observations often lead to several null observed values (O;;)
in the contingency table, with correspondingly very low expected frequencies (Ej)).
According to Cochran (1954) and Siegel (1956), when there is at least one value of E,:]-
smaller than 1, or when 20% or more of the expected values E ;j are smaller than 5, some
states (rows or columns) must be grouped to increase the expected frequencies, provided
that there is a logical basis to do so. It now appears that only the first part of this empirical
rule should be kept. Indeed Fienberg (1980, p.172) cites results of simulations indicating
that, for o = 0.05, the computed statistic is distributed like X2 if Hy is true, as long as
all E;; values are larger than 1.

Concerning the choice of X2 or Xév , there is no difference when the number of
observations n is large (see the prev1ous paragraph). When # is small, Larntz (1978) is
of the opinion that X, is better than X . Sokal & Rohlf (1995) still recommend using
X but suggest to correct it as proposed by Williams (1976a) to obtain a better
approx1mat10n of X This correction consists in dividing X\, by a correction factor
qmin- The correction factor, which is based on v (eq. 6.7), is computed as:

Gmin = 1 + [ = 1)(c® = 1)/6vn] (6.8)



Two-way contingency tables 231

When # is large relative to the number of cells in the contingency table, it is not
necessary to apply a correction to X w since gpin = 1 in that case. William’s correction
is especially interesting when one must use Xy, , as in the study of multiway
contingency tables; the general formula for g,,;, is given 1n Subsection 6.3. Several
computer programs allow users to compute both X, 2 and X

Another correction, available in some computer programs, consists in adding a
small value (e.g. 0.5) to each observed value Oj; in the contingency table when some
of the O;j’s are small. As indicated by Dixon (1981) and Sokal & Rohlf (1995), the
effect of this correction is to lower the X’-statistic, which makes the test more
conservative. Hy may then be rejected in a proportion of cases smaller than a when the
null hypothesis is true.

Another measure of interest to ecologists, which is related to the Wilks statistic (see
below), refers to the concept of entropy (or information) discussed above. In the
numerical example with four rows and columns (Tables 6.1 and 6.4), if the
correspondence between the states of descriptors a and b was perfect (i.e. descriptors
completely dependent of each other), the contingency table would only have four non-
zero cells — one in each row and each column. These non-zero cells could be
anywhere in the table, not necessarily on the diagonal, because the states of the two
descriptors are not ordered. It would then be possible, using a, to perfectly predict the
distribution of observations among the states of b, and vice versa. In other words,
given one state of the first descriptor, one would immediately know the state of the
other descriptor. Thus, there would be no uncertainty (or entropy) concerning the
distribution of the objects on b after observing a, hence the entropy remaining in b
after observing a would be null, i.e. H(bla) = 0. On the contrary, if the descriptors were
completely independent of each other, the distribution of observations in each row of
descriptor a would be in the same proportions as their overall distribution in b (found
at top of Tables 6.1 and 6.4); the same would be true for the columns. H(bla) = H(b)
would indicate that all the entropy contained in the distribution of b remains after
observing a.

The two conditional entropies H(alb) and H(bla), as well as the entropy shared by
the two descriptors, can be computed using the total information in the contingency
table, H(a,b), and the information of each descriptor, H(a) and H(b), already
computed in Section 6.1. H(a,b) is computed on all observed frequencies in the
contingency table using Shannon’s formula (eq. 6.1):

H(ab) = — p (ij) log p (iy) (6.9)
stateZofa sta;)fb

where p(i,j) is the observed frequency in each cell (ij) of the contingency table,
divided by the total number of observations n. For the example (Tables 6.1 or 6.4):

H(ab) =- {1/4 log, (1/4) + 1/6 log, (1/6) + 3 [1/8 log, (1/8)] + 2 [1/12 log, (1/12)]
+1/24 log, (1/24)} =2.84
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Figure 6.1

Information A B Information
ina —>  \0.84\ 091 < inb

Venn diagram partitioning the information of two qualitative descriptors, denoted a and b. B is
the information the two descriptors have in common.

The values of H(a) = A + B = 1.75 and H(b) = B + C =2.00, represented by circles in
the Venn diagram of Fig. 6.1, have been computed in Section 6.1. H(a,b) = 2.84 is the
total information in the union of the two descriptors, represented by A + B + C. The
information (B) shared by the two descriptors is computed as follows:

B=(A+B)+(B+C)-(A+B+C)
B =H(a) + H(b) - H(ab) (6.10)
B=1.75+2.00-284=091

With more decimals, B = 0.90564; this value is used in the example that follows
eq. 6.14. The information exclusive to each descriptor, A and C, is computed by
subtraction as follows:

A=(A+B+C)-(B+0)
A = H(alb) = H(a,b) - H(b) (6.11)
A=2.84-200=0.84
and C=(A+B+C)-(A+B)
C =H(bla) = H(ab) — H(a) (6.12)
C=284-175=1.09

There is a relationship between the reciprocal information B and Wilks Xév
statistic. It can be shown that B =(1/n) 3 O log,(O/E) when B is computed with
natural logarithms (log,), or else B log, 2 = (1/n) 3 O log,(O/E) when B is in bits.
Using these relationships, it is possible to calculate the probability associated with B
after transforming B into a Wilks X%V -statistic (eq. 6.6):

Xév =2nB  when B is in nats (6.13)
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or Xév =2nBlog,2=nBlog,4=1.38629 nB  when B is in bits. (6.14)

For the numerical example, X\ZN =2nBlog,2 =2 x 120 x 0.90564 x 0.69315 = 150.66
before Williams’ correction.

Using the measures of information A, B and C, various reciprocal information
coefficients can be computed. The similarity of descriptors a and b can be calculated as
the amount of information that the two descriptors have in common, divided by the
total information of the system:

S@ab)=B/(A+B+0C) (6.15)
S(a,b) =0.91/2.84 =0.32, for the numerical example.

If the following steps of the analysis (clustering and ordination, Chapters 8 and 9)
require that the measure of association between a and b be a metric, one may use the
corresponding distance, defined as the sum of the information that the two descriptors
possess independently, divided by the total information:

D(ab)=(A+C)/(A+B+C) (6.16)

For the numerical example, D(a,b) = (0.84 + 1.09) / 2.84 = 0.68. As indicated by the
structure of the formulas, S(a,b) + D(a,b) = 1.

The distance measure in eq.6.16 is Rajski’s metric (1961). This author also
proposed another measure of similarity among descriptors, the coherence coefficient,
which is used to assess the stochastic independence of two random variables:

s = J1-D? 6.17)

Another version of this coefficient,

S"=B/(A+2B+C) (6.18)

is available in some computer programs under the name symmetric uncertainty
coefficient. Two asymmetric uncertainty coefficients have also been proposed. They are
used, for example, to compare the explanatory power of a given descriptor with respect
to several other descriptors: B / (A + B) controls for the total amount of information in
b, whereas B / (B + C) controls for the total information in a.

The construction of an association matrix, containing any of the symmetric
coefficients described above, requires calculating p(p — 1)/2 contingency tables; this
matrix is symmetric and its diagonal is S=1 or D =0. Qualitative (nonordered)
descriptors can thus be used to compute quantitative association coefficients, which
makes possible the numerical analysis of multivariate qualitative data sets.
Furthermore, since quantitative or semiquantitative descriptors can be recoded into
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Contingency
coefficient

discrete states, it is possible, using uncertainty coefficients, to compute association
matrices among descriptors of mixed types.

It is only through B, which can be transformed into a Xév -statistic, that a
probability can be associated to the uncertainty coefficients. For coefficient S above
(eq. 6.15), short of computing a p-value, one can state in general terms that two
descriptors are very closely related when S(a,b) > 0.5; they are well associated when
0.5 > § > 0.3; and some association exists when S < 0.3 without coming too close to 0
(Hawksworth et al., 1968).

The probability associated with a X?-statistic, calculated on a contingency table,
assesses the hypothesis that the relationship between the two descriptors is random.
Biological associations, for example, could be defined on the basis of relationships
found to be non-random between pairs of species — the relationship being defined by
reference to a pre-selected probability level (e.g. oo = 0.05 or 0.01) associated with the
X? measuring the contingency between two species (Subsection 7.5.2). The value of X?
may itself be used as a measure of the strength of the relationship between species.
This is also the case for the reciprocal information measures defined above. With the
same purpose in mind, it is possible to use one of the following contingency
coefficients, which are merely transformations of a X?-statistic on a scale from 0 to 1
(Kendall & Buckland, 1960; Morice, 1968):

Pearson contingency coefficient,C = X2/ (n + X?) (6.19)

Tschuproff contingency coefficient, T = sz/ (n./degrees of freedom) (6.20)

where n is the number of observations. These contingency coefficients are not
frequently used in ecology, however. They can only be used for comparing
contingency tables of the same sizes.

Contingency tables are the main approach available to ecologists for the numerical
analysis of relationships among qualitative descriptors, or else between qualitative
descriptors and ordered variables divided into classes. Contingency tables are also
convenient for analysing nonmonotonic relationships among ordered descriptors (a
relationship is monotonic when there is a constant evolution of a descriptor with
respect to the other; see Fig.5.1). Reciprocal information and X? coefficients are
sensitive enough that they could be used even with ordered variables, when
relationships among a large number of descriptors are analysed by computer. One must
simply make sure that the ordered data are divided into a sufficiently large number of
classes to avoid clumping together observations that one would want to keep distinct in
the results. If a first analysis indicates that redefining the boundaries of the classes
could improve the interpretation of the phenomenon under study (the classes used to
recode quantitative variables do not need to have the same width), ecologists should
not hesitate to repeat the analysis using the recoded data. This procedure is not
circular; it corresponds to a progressive discovery of the structure of the information.
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It is also possible to use the association coefficients described above to interpret the
classifications resulting from a first analysis of the data (Chapter 8). A classification
may be compared to the descriptors from which it originates, in order to determine
which descriptors are mostly responsible for it; or else, it may be compared to a new
series of descriptors that could potentially explain it. One can also use contingency
tables to compare several classifications of the same objects, obtained through
different methods. Subsection 10.2.1 describes these higher-level analyses.

Ecological application 6.2

Legendre et al. (1978) analysed data from a winter aerial survey of land fauna, using
contingency tables. They compared the presence or absence of tracks of different bird and
mammal species to a series of 11 environmental descriptors. Five of these descriptors were
qualitative, i.e. bioclimatic region, plant association, nature of the dominant and sub-dominant
surface materials, and category of aquatic ecosystem. The others were semiquantitative,
i.e. height of the trees, drainage, topography, thickness of the surface materials, abundance of
streams and wetlands. The analysis identified the descriptors that determined or limited the
presence of the 10 species that had been observed with sufficient frequency to permit their
analysis. This allowed the authors to describe the niches of these species.

6.3 Multiway contingency tables

Log-linear
model

When there are more than two descriptors, one might consider the possibility of
analysing the data set using a series of two-way contingency tables, in which each pair
of descriptors would be treated separately. Such an approach, however, would not take
into account possible interactions among several descriptors and might thus miss part
of the potential offered by the multidimensional structure of the data. This could lead
to incorrect, or at least incomplete conclusions. Information on the analysis of
multiway contingency tables can be found in Kullback (1959), Plackett (1974), Bishop
et al. (1975), Upton (1978), Gokhale & Kullback (1978), Fienberg (1980), Sokal &
Rohlf (1995), Agresti (2002), and Kroonenberg (2008).

The most usual approach for analysing multiway contingency tables is to adjust to
the data a log-linear model, where the natural logarithm (log,) of the expected
frequency E for each cell of the table is estimated as a sum of main effects and
interactions. For example, in the case of two-way contingency tables (Section 6.2), the
expected frequencies could have been computed using the following equation:

log, E =[6] + [A] + [B] + [AB] (6.21)

Symbols in brackets are the effects. [A] and [B] are the main effects of descriptors a
and b, respectively, and [AB] is the effect resulting from the interaction between a and
b. [0] is the mean of the logarithms of the expected frequencies. In a two-way table,
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Saturated
model

Hierarchical
model

the hypothesis tested is that of independence between the two descriptors,
i.e. Hy: [AB] = 0. The log-linear model corresponding to this hypothesis is thus:

log, E=[0] + [A] + [B] (6.22)

since [AB] = 0. The expected frequencies E computed using eq. 6.22 are exactly the
same as those computed in Section 6.2 (eq.6.4). Hence for two-way tables, one
usually computes the expected frequencies with eq. 6.4. For multiway tables, the
expected frequencies are generated with an iterative proportional fitting algorithm. The
advantage of log-linear models is obvious when analysing contingency tables with
more than two dimensions (or criteria).

For a contingency table with three descriptors (a, b, and c¢), the log-linear model
containing all possible effects is:

log, E =[0] + [A] + [B] + [C] + [AB] + [AC] + [BC] + [ABC]

Such a model is referred to as the saturated model. In practice, the effect resulting
from the interaction among all descriptors is never included in any log-linear model,
i.e. here [ABC]. This is because the expected frequencies for the saturated model are
always equal to the observed frequencies (E = O), so that this model is useless. The
general log-linear model for a three-way table is thus:

log, E =[0] + [A] + [B] + [C] + [AB] + [AC] + [BC] (6.23)

where Hy: [ABC] =0. In other words, the logarithm of the expected frequency for
each cell of the contingency table is computed here by adding, to the mean of the
logarithms of the expected frequencies, one effect due to each of the three descriptors
and one effect resulting from each of their two-way interactions.

Different log-linear models may be formulated by setting some of the effects equal
to zero. Normally, one only considers hierarchical models, i.e. models in which the
presence of a higher-order effect implies that all the corresponding lower effects are
also included; the order of an effect is the number of symbols in the bracket. For
example, in a hierarchical model, to include [BC] implies that both [B] and [C] are
also included. For a three-way contingency table, there are eight possible hierarchical
models, corresponding to as many different hypotheses (Table 6.5). Models in the
table all include the three main effects. Each hypothesis corresponds to different types
of interaction among the three variables. In practice, one uses a program available in a
computer package (for R functions, see Section 6.6), with which it is easy to estimate
the expected frequencies for any hierarchical model of interest to the user.

The number of degrees of freedom (v) depends on the interactions that are included
in the model. For the general hierarchical model of eq. 6.23,

v=rst—[1+F—D+E-D+E - D+ - D - D+ —DE - D+(s— 1) - 1)] (6.24)



Multiway contingency tables 237

Table 6.5

Possible log-linear models for a three-way contingency table. Hypotheses and corresponding
models. All models include the three main effects [A], [B] and [C].

Hypotheses (H) Log-linear models

1.[ABC] =0 l0og,E = [0]+[A]+[B]+[C]+[AB]+[AC]+[BC]
2.[ABC] =0, [AB] =0 log,E = [0]+[A]+[B]+[C]+[AC]+[BC]
3.[ABC] =0, [AC] =0 l0g,E = [6]+[A]+[B]+[C]+[AB]+[BC]
4[ABC] =0, [BC] =0 10g,E = [0]+[A]+[B]+[C]+[AB]+[AC]
5.[ABC] =0,[AB] =0,[AC] =0 log,E = [0]+[A]+[B]+[C]+[BC]

6.[ABC] =0, [AB] =0, [BC] =0 log,E = [0]+[A]+[B]+[C]+[AC]

7.[ABC] =0, [AC] =0, [BC] =0 log,E = [0]+[A]+[B]+[C]+[AB]

8.[ABC] =0, [AB] =0, [AC] =0,[BC] =0 log,E = [0]+[A]+[B]+[C]

where 7, s and ¢ are the numbers of states of descriptors a, b and ¢, respectively. If there
were only two descriptors, a and b, the log-linear model would not include the
interaction [AB], so that eq. 6.24 would become:

v=rs—[1+(r-D+G-1]=F-D(E-1)

which is identical to eq. 6.7. In Table 6.5, model 4, for example, does not include the
interaction [BC], so that:

v=rst—[1+F-D+GE-D+@E-1D+@T-DE-1)+F-DE-1)]

Programs in computer packages calculate the number of degrees of freedom
corresponding to each model.

It is possible to test the goodness of fit of a given model to the observed data by
using one of the X? statistics already described for two-way tables, X, or Xy,
(egs. 6.5 and 6.6). The null hypothesis (H) tested is that the effects excluded from the
model are null. Rejecting H, however, does not allow one to accept the alternative
hypothesis that all the effects included in the model are not null. The only conclusion
to be drawn from rejecting Hy) is that at least some of the effects in the model are not
null. When the p-value associated with a model is larger than the significance level o,
the conclusion is that the model fits the data well.
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Williams’
correction

As in the case of two-way contingency tables (eq. 6.8), it is recommended to divide
X by a correction factor, g,,;, (Williams, 1976a), when the number of observations n
is small, i.e.less than 4 or 5 times the number of cells in the table. For the general
hierarchical model (eqs. 6.23 and 6.24):

qmm—1+(l/6vn) SO SR Y (o ) R L D WY (S
N (e [ (r - 1)(;2 ~D-(*-DE-D] (625

In the case of two descriptors, eq. 6.25 becomes:
Gmin = 1 +(1/6vn) [F2s* =1 =1) - (s> = 1)]
Gmin = 1 + (1/6vn) [(F* = (s> = 1)
which is identical to eq. 6.8. For model 4 in Table 6.5, used above as example:

Gmin =1+ 1/6vn) [P -1 - 1) = (s> =)= (- 1)
—(r2—1><s2—1)—<r - (- 1)

This correction cannot be applied, as such, to contingency tables containing null
expected frequencies (see below). The other possible correction, which consists in
adding to each cell of the table a small value, e.g. 0.5, has the same effect here as in
two-way contingency tables (see Section 6.2).

Ecological application 6.3a

Legendre (1987a) analysed biological oceanographic data obtained at 157 sites in Baie des
Chaleurs (Gulf of St. Lawrence, eastern Canada). The data set (observations made at 5-m depth)
included measurements of temperature, salinity, nutrients (phosphate and nitrate), and
chlorophyll a (estimated from the in vivo fluorescence of water pumped on board the ship). As it
often happens in ecology, the numerical analysis was hampered by three practical problems.
(1) The measured concentrations of nutrients were often near or below the detection limit, with
the result that many of them exhibited large experimental errors (since the 1980s, the detection
limits of some nutrients have been lowered by a factor 100 or 1000). (2) Relationships between
variables were often nonmonotonic, i.e. they did not continuously increase or decrease but
reached a maximum (or a minimum) after which they decreased (or increased). (3) Most of the
variables were intercorrelated, so that no straightforward interpretation of phytoplankton
(i.e. chlorophyll @) concentrations was possible in terms of environmental variables. Since
multiway contingency table analysis can handle these three types of problems, it was decided to
partition the (ordered) variables into discrete classes and analyse the transformed data using
hierarchical log-linear models.

The initial model in Table 6.6 (line 1) only included the interaction among the three
environmental variables, with no effect of these on chl a. This model did not fit the data well.
Adding the interaction between chlorophyll a (chla) and the temperature-salinity (TS)
characteristics significantly improved the fit (i.e. there was a significant difference between
models; line 2). The resulting model could be accepted (line 3), but adding the interaction
between chl a and phosphate further improved the fit (significant difference, line 4) and the
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Table 6.6

Multiway contingency table analysis of oceanographic data recoded into discrete classes
(Legendre, 1987a). Using a hierarchy of log-linear models, the concentrations of chlorophyll a
(symbol in this table: C, 4 classes) are analysed as a function of the temperature-salinity (TS)
characteristics of the water masses (symbol in this table: T, 3 classes) and the concentrations of
phosphate (P; 2 classes) and nitrate (N; 2 classes). When a higher-order effect is present, all the
corresponding lower-order effects are included in the model.

2

Effects in the model Interpretation v Xy
[NTP], [C] Chl a is independent of the environmental variables 30 121 *
Difference Adding [CT] to the model significantly improves the fit 9 89%*
[NTP], [CT] Chl a depends on the TS characteristics 21 32
Difference Adding [CP] to the model significantly improves the fit 3 13 %
[NTP], [CT], [CP] Chl a depends on the TS characteristics and on phosphate 18 19
Difference Adding [CN] does not significantly improve the fit 7 5
[NTP], [CT], [CP], [CN] The most parsimonious model does not include a 11 14

dependence of chl a on nitrate

*p =0.05; bold Xév values correspond to models with p > 0.05 of fitting the data

resulting model fitted the data well (line 5). Final addition of the interaction between chl a and
nitrate did not improve the fit (difference not significant, line 6). The most parsimonious model
(line 5) thus showed a dependence of chla concentrations on the TS characteristics and
phosphate. The choice of the initial model in Table 6.6 is explained in Ecological
application 6.3b.

There are 8 hierarchical models associated with a three-way contingency table, 113
with a four-way table, and so forth, so that the choice of a single model, among all
those possible, rapidly becomes a major problem. In fact, it often happens that several
models fit the data well. Also, in many instances, the fit to the data could be improved
by adding supplementary terms (i.e. effects) to the model. However, this improved fit
would result in a more complex ecological interpretation because of the added
interaction(s) among descriptors. It follows that the choice of a model generally
involves a compromise between goodness of fit and simplicity of interpretation, as
suggested by the principle of parsimony (Subsection 10.3.3). Finally, even when it is
possible to test the fit of all possible models to the data, this way of proceeding
involves multiple testing and the p-values require correction (Box 1.3).
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Partitioning
the Xy,
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Effect
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Cells with
E=0

To select a model, there are several methods that are both statistically acceptable
and ecologically parsimonious. In practice, because no method is totally satisfactory,
one could simply use, with care, those included in the available computer package.

1. A first method consists in partitioning the Xév statistics associated with a
hierarchy of log-linear models. The hierarchy contains a series of models, which are
made progressively simpler (or more complex) by removing (or adding) one effect at a
time. It can be shown that the dlfference between the Xy, statistics of two successive
models in the hierarchy is itself a X -statistic, which can therefore be tested. The
corresponding number of degrees of freedom is the difference between those of the
two models. This is the approach used in Ecological application 6.3a (see Table 6.6).
The main problem with this method is that one may find different “most parsimonious”
models depending on the hlerarchy chosen a priori. Partitioning X? statistics is
possible only with XW , not X

2.A second family of approaches lies in the stepwise forward selection or
backward elimination of terms in the model. As always with stepwise methods (see
Subsection 10.3.3), (a) it may happen that forward selection lead to models quite
different from those resulting from backward elimination, and (b) the tests of
significance must be interpreted with caution because the computed statistics are not
independent. Stepwise methods thus only provide guidance, which may be used for
limiting the number of models to be considered. It often happens that models other
than those identified by the stepwise approach are found to be more parsimonious and
interesting, and to fit the data just as well (Fienberg, 1980: 80).

3. Other methods simultaneously consider all possible effects. An example of effect
screening (Brown, 1976) is given in Dixon (1981). The approach is useful for reducing
the number of models to be subsequently treated, for example, by the method of
hierarchical partitioning of Xy, statistics (see method 1 above).

When analysing multiway contingency tables, ecologists must be aware of a
number of possible practical problems, which may sometimes have significant impact
on the results. These potential problems concern the cells with zero expected
frequencies, the limits imposed by the sampling design, the simultaneous analysis of
descriptors with mixed levels of precision (i.e. qualitative, semiquantitative, and
quantitative), and the use of contingency tables for the purpose of explanation or
forecasting.

1. Multiway contingency tables, in ecology, often include cells with expected
frequencies E=0. There are two types of zero expected frequencies, i.e.those
resulting from sampling and those that are of structural nature.

Sampling zeros are caused by random variation, combined with small sample size
relative to the number of cells in the multiway contingency table. Such zeros would
normally disappear if the size of the sample was increased. The presence of cells with
null observations (O =0) may result, when calculating specific models, in some
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Mixed
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expected frequencies E =0. This is accompanied by a reduction in the number of
degrees of freedom. For example, according to eq. 6.24, the number of degrees of
freedom for the initial model in Table 6.6 (line 1) should be v = 33, since this model
includes four main effects [C], [N], [P], and [T] and interactions [NP], [NT], [PT], and
[NPT]; however, the presence of cells with null observations (O = 0) led to cells with
E =0, which reduced the number of degrees of freedom to v = 30. Rules to calculate
the reduction in the number of degrees of freedom are given in Bishop ez al. (1975: 116
et seq.) and Dixon (1981: 666). In practice, computer programs generally take into
account the presence of zero expected frequencies when computing the number of
degrees of freedom for multiway tables. The problem does not occur with two-way
contingency tables because cells with E=0 are only possible, in the two-way
configuration, if all the observations in the corresponding row or column are null, in
which case the corresponding state is automatically removed from the table.

Structural zeros correspond to combinations of states that cannot occur a priori or
by design. For example, in a study where two of the descriptors are sex (female, male)
and sexual maturity (immature, mature, gravid), the expected frequency of the cell
“gravid male” would a priori be E =0. Another example would be combinations of
states that have not been sampled, either by design or involuntarily (e.g. lack of time,
or inadequate planning). Several computer programs allow users to specify the cells
that contain structural zeros, before computing the expected frequencies.

2. In principle, the methods described here for multiway contingency tables can
only be applied to data resulting from simple random sampling or stratified sampling
designs. Fienberg (1980: 32) gives some references in which methods are described
for analysing qualitative descriptors within the context of nested sampling or a
combination of stratified and nested sampling designs. Sampling designs are described
in Cochran (1977), Green (1979), and Thompson (1992), for example.

3. Analysing together descriptors with mixed levels of precision (e.g. a mixture of
qualitative, semiquantitative, and quantitative descriptors) may be done using
multiway contingency tables. In order to do so, continuous descriptors must first be
partitioned into a small number of classes. Unfortunately, there exists no general
approach to do so. When there is no specific reason for setting the class limits, it has
been suggested, for example, to partition continuous descriptors into classes of equal
width, or containing an equal number of observations. Alternatively, Cox (1957)
describes a method that may be used for partitioning a normally distributed descriptor
into a predetermined number of classes (2 to 6). For the specific case discussed in the
next paragraph, where there is one response variable and several explanatory variables,
Legendre & Legendre (1983b) describe a method for partitioning the ordered
explanatory variables into classes in such a way as to maximize the relationships to the
response variable. It is important to be aware that, when analysing the contingency
table, different ways of partitioning continuous descriptors may sometimes lead to
different conclusions. In practice, the number of classes of each descriptor should be as
small as possible, in order to minimize the problems discussed above concerning the
calculation of X 3v (see eqs. 6.8 ad 6.25 for correction factor g,,;,) and the presence of
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sampling zeros. Another point is that contingency table analysis considers the different
states of any descriptor to be nonordered. When some of the descriptors are in fact
ordered (i.e. originally semiquantitative or quantitative), the information pertaining to
the ordering of states may be used when adjusting log-linear models (see for example
Fienberg, 1980: 61 ef seq.).

4. There is an analogy between log-linear models and analysis of variance since
the two approaches use the concepts of effects and interactions. This analogy is
superficial, however, since analysis of variance aims at assessing the effects of
explanatory factors on a single response variable, whereas log-linear models have been
developed to describe structural relationships among several descriptors corresponding
to the dimensions of the table.

5.1t is possible to use contingency table analysis for interpreting a response
variable in terms of several interacting explanatory variables. In such a case, the
following basic rules must be followed. (1) Any log-linear model fitted to the data
must include by design the term for the highest-order interaction among all
explanatory variables. In this way, all possible interactions among the explanatory
variables are included in the model, because of its hierarchical nature. (2) When
interpreting the model, one should not discuss the interactions among the explanatory
variables. They are incorporated in the model for the reason given above, but no test of
significance is performed on them. In any case, one is only interested in the
interactions between the explanatory and response variables. An example follows.

Ecological application 6.3b

Logistic
regression

The example already discussed in application 6.3a (Legendre, 1987a) aimed at interpreting the
horizontal distribution of phytoplankton in Baie des Chaleurs (Gulf of St. Lawrence, eastern
Canada) in terms of selected environmental variables. In such a case, where a single response
variable is interpreted as a function of several potentially explanatory variables, all models
considered must include by design the highest-order interaction among the explanatory
variables. Thus, all models in Table 6.6 included the interaction [NPT]. The simplest model in
the hierarchy (line 1 in Table 6.6) only contained [NPT] and [C] as effects. In this simplest
model, there was no interaction between chlorophyll and any of the three environmental
variables, i.e. the model did not include [CN], [CP] or [CT]. When interpreting the model
selected as best fitting the data, the author did not discuss the interaction among the explanatory
variables because the presence of [NPT] prevented a proper analysis of this interaction.
Table 6.6 then led to the interpretation that the horizontal distribution of phytoplankton
depended on the TS characteristics of water masses and phosphate concentration.

When the qualitative response variable is binary, one may use the logistic linear
(or logit) model instead of the log-linear model. Fitting such a model to data is also
called logistic regression (Subsection 10.3.7). In logistic regression, the explanatory
descriptors do not have to be divided into classes; they may be discrete or continuous.
This type of regression is available in various computer packages and in R
(Section 10.7). Some programs allow the response variable to be multi-state. Efficient
use of logistic regression requires that all the explanatory descriptors be potentially
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related to the response variable. This method can replace discriminant analysis in cases
discussed in Subsection 10.3.7 and Section 11.6.

Examples of successful use of multiway contingency tables in ecology include
Fienberg (1970) and Schoener (1970) for the habitat of lizards, Jenkins (1975) for the
selection of trees by beavers, Legendre & Legendre (1983b) for marine benthos,
Fréchet (1990) for cod fishery, Schoener & Adler (1991) for spatial distributions of
lizards and birds, Fedriani er al. (2001) for responses of coyote populations to
anthropogenic food, Fingerut et al. (2003) for transmission of a marine parasite by
swimming larvae, and Gorelick & Bertram (2010) for computation of diversity
indices.

6.4 Contingency tables: correspondence

Once it has been established that two or more qualitative descriptors in a contingency
table are not independent (Sections 6.2 and 6.3), it is often of interest to identify the
cells of the table that account for the existing relationship between descriptors. These
cells, which show how the descriptors are related, define the correspondence between
the rows and columns of the contingency table. By comparison with parametric and
nonparametric statistics (Chapters 4 and 5), the measures of contingency described in
Sections 6.2 and 6.3 are, for qualitative descriptors, analogous to the correlation
between ordered descriptors, whereas correspondence would be analogous to
regression (Section 10.3) because it can be used to forecast the state of one descriptor
using another descriptor. Correspondence analysis (Section 9.2) is another method that
allows, among other objectives, the identification of the relationships between the rows
and columns of a contingency table. This can be achieved directly through the
approach described in the present section.

In a contingency table where the descriptors are not independent (i.e.the null
hypothesis of independence has been rejected), the cells of interest to ecologists are
those in which the observed frequencies (O;) are very different from the
corresponding expected frequencies (Ej;). Each of these cells corresponds to a given
state for each descriptor in the contingency table. The fact that O;; = Ej; is indicative of
a stronger interaction, between the states in question, than expected under the null
hypothesis which in invoked to compute E. For example, hypothesis Hy in Table 6.4 is
that of independence of descriptors a and b. This hypothesis having been rejected
(p <0.001), one may identify in the contingency table the observed frequencies O;;
that are much higher or lower than the corresponding expected frequencies Ej;. Values
0;;>Ej; (in bold-face type in Table 6.4) give a preliminary indication of the
associations between states of a and b. These values may be located anywhere in the
table since contingency table analysis does not take into account the ordering of states.

When the test of the global X?-statistic (eq. 6.5 or 6.6) supports the hypothesis of a
significant relationship between the two descriptors, one can identify the cells that
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strongly contribute to the correspondence by testing the significance of the difference
between O; and E;; in each cell of the contingency table. Ecologists may be interested
in any dlfference whatever its sign, or only in the cases where O;; is significantly
higher than Ej; (preference) or significantly lower (avoidance, exclusion).

Bishop et al. (1975: 136 et seq.) describe three statistics for measuring the
difference between O and E. They can be used for two way or multiway contingency
tables. The three statistics are the components of XP , the components of Xy, , and the
Freeman-Tukey deviates:

component of X?, - (O-E)/JE (6.26)
component of Xévz 2 O log,(O/E) (6.27)
Freeman-Tukey deviate: JO+ . JO+1 - JAE+1 (6.28)

These statistics are available in various computer packages. A critical value has been
proposed by Bishop et al. (1975) for testing the significance of statistics 6.26 and 6.28:

fo% o1/ (no.cells)

Ej; is said to be significantly different from O;; when 