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Preface

 

In May 1975, a dozen or so ecologists, mostly marine, sat during three days in a (then)
dusty conference room on the first floor of a historical building of the 

 

Station marine
de Villefranche-sur-Mer

 

 (Université Paris 6, France), metres away from the
Mediterranean shore, to discuss developments concerning a new trend in the
ecological literature: the statistical analysis of multivariate ecological data. We, the
authors of this book, had been independently invited to participate in the seminar. On
the evening of the closing day of the meeting, sitting at the terrace of a restaurant, we
wrote on a paper place mat a list of subjects that was to become the table of contents of
the book that we published a few years later under the title 

 

Écologie numérique

 

 (first
edition, in French; Legendre & Legendre, 1979a and b).

During the 1970’s, community ecology, which had traditionally been a descriptive
science until then, slowly adopted the hypothesis testing approach. Testing hypotheses
required the analysis of numerical data. The theoretical foundations of community
ecology had been developed during the 1950’s and 1960’s (niche theory, succession,
biodiversity concepts, food webs, etc.) and statistically inclined researchers had
already suggested to analyse ecological data using multivariate methods (e.g. Odum,
1950; Goodall, 1954; Bray & Curtis, 1957; Margalef, 1958; Williams & Lambert,
1959; Dagnelie, 1960, 1965; Gower, 1966; Pielou, 1966, 1969). We felt, in 1975, that
the time was ripe to inventory the available numerical methods, compare them to the
array of ecological questions found in the literature, describe the correspondences
between questions and methods, provide a structure to interlink the various methods,
and identify methodological gaps in the edifice. This is what we did in the first editions
of this book, published in French in 1979, then in English under the title 

 

Numerical
ecology

 

 (Legendre & Legendre, 1983a), quickly followed by a second French edition
(Legendre & Legendre, 1984a and b).

Following the inventory and educational work described above, and with the help
of graduate students and research assistants, we got to work to develop new numerical
methods to answer emerging ecological questions and help fill gaps in existing
numerical methodologies. Similar movements towards development of numerical
methods took place in several laboratories throughout the world. In the late 1990’s, the
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time was ripe for a new synthesis of the field, and we worked on the second English
edition of the 

 

Numerical ecology

 

 textbook (Legendre & Legendre, 1998). A decade
later, the field of multivariate community ecology had developed so much that a new
synthesis had become necessary. We spent most of the past three years preparing the
2012 edition of 

 

Numerical ecology

 

. This edition includes numerous developments in
statistical computing made available in the R statistical language, and refers to many R
packages written for ecologists by researchers in several laboratories around the world.

During our teaching in universities at home and abroad, we have been repeating a
key message to graduate students: 

 

While it is important to learn about the methods
developed by previous generations of scientists, do not let yourself be silenced by their
aura. If you think you have a good idea, work on it, develop it, listen to criticisms, and
publish it, thus contributing to the advancement of the field. Do not let people tell you
that everything is known, or that you are too young or not good enough to contribute
to this field — or any other field of science.

 

The 

 

Numerical ecology

 

 book is written for practising scientists — graduate
students and professional researchers, in classical and molecular ecology,
oceanography and limnology, environmental sciences, soil science, agriculture,
environmental engineering, and related fields. For that reason, it is organized both as a
practical handbook and a reference textbook. Our goal is to describe and discuss the
numerical methods that are successfully used for analysing ecological data, using a
clear and comprehensive approach. These methods are derived from the fields of
mathematical physics, parametric and nonparametric statistics, information theory,
numerical taxonomy, archaeology, geography, psychometrics, sociometry,
econometrics, and others. Meaningful use of most of these methods requires that their
theoretical bases be mastered by users. For that reason, analyses reported in the
literature have at times been carried out with methods that were not fully adapted to the
question or the data under study, leading to conclusions that were sub-optimal with
respect to the quality of the field observations. When we were writing the first English
edition of 

 

Numerical ecology

 

, this warning mostly concerned multivariate versus
elementary statistics. Nowadays, most ecologists are capable of using multivariate
methods; the above remark now especially applies to the analysis of spatially or
temporally correlated data (see Section 1.1; Chapters 12 to 14) and the joint analysis of
several data tables (Chapter 11).

Computer packages provide easy access to the most sophisticated numerical
methods. Ecologists with inadequate background often find, however, that using high-
level packages leads them to dead ends. In order to efficiently use the available
numerical tools, it is essential to clearly understand the principles that underlay
numerical methods, and their limits. It is also important for ecologists to have
guidelines for interpreting the heaps of computer-generated results. We therefore
organized the present text as a comprehensive outline of methods for analysing
ecological data, and also as a practical handbook pointing to the most commonly-used
packages.
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Our experience with graduate teaching and consulting has made us aware of the
problems that ecologists may encounter when they first use advanced numerical
methods. Any earnest approach to such problems requires in-depth understanding of
the general principles and theoretical bases of the methods to be used. The approach
followed in this book uses standardized mathematical symbols, abundant illustration,
and appeal to intuition in some cases. Because the text has been used for many years
for graduate teaching and greatly improved along the process, we know that, with
reasonable effort, readers can get to the core of numerical ecology. In order to
efficiently use numerical methods, their aims and limits must be clearly understood, as
well as the conditions under which they should be employed. In addition, since most
methods are well described in the scientific literature and are available in computer
packages, we generally devote most of the text to the ecological interpretation of the
results; computation algorithms are described only when they may help readers to
understand methods. Methods described in the book are systematically illustrated with
numerical examples and/or applications drawn from the ecological literature, mostly in
English; references in languages other than English or French are generally of
historical nature.

The expression 

 

numerical ecology

 

 refers to the following approach. 

 

Mathematical
ecology

 

 covers the domain of mathematical applications to ecology. It may be divided
into 

 

theoretical ecology

 

 and 

 

quantitative ecology

 

. The latter, in turn, includes a number
of disciplines, among which 

 

modelling

 

, 

 

ecological statistics

 

, and 

 

numerical ecology

 

.

 

Numerical ecology

 

 is the field of quantitative ecology devoted to the numerical
analysis of ecological data sets. Community ecologists, who generally use multivariate
data, are the primary users of these methods. The purpose of numerical ecology is to
describe and interpret the structure of data sets by combining a variety of numerical
approaches. Numerical ecology differs from descriptive or inferential 

 

ecological
statistic

 

 in that it combines relevant multidimensional statistical methods with
heuristic techniques (e.g. cluster analysis) that do not have a firm statistical foundation.
In addition, it often incorporates into the analysis of multivariate data constraints that
represent ecological hypotheses, e.g. spatial or temporal contiguity, or relationships
between community structure and environmental variables. Numerical ecology also
differs from 

 

ecological modelling

 

, even though the extrapolation of ecological
structures is often used to 

 

forecast

 

 values in space or/and time (through multiple
regression or other similar approaches, which are collectively referred to as 

 

correlative
models

 

). When the purpose of a study is to 

 

predict

 

 the critical consequences of
alternative solutions, ecologists must use 

 

predictive ecological models

 

. The
development of such models, which predict effects on some variables caused by
changes in others, requires a deliberate causal structuring. This approach must be
based on ecological theory and include a validation procedure. Because the ecological
hypotheses that underlay causal models are often developed within the context of
studies that use numerical ecology, the two fields are often in close contact.

Ecologists have used quantitative approaches since the publication by Jaccard
(1900) of the first association coefficient. Floristics developed from that seed, and the
method was eventually applied to all fields of ecology, often achieving high levels of
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complexity. Following Spearman (1904) and Hotelling (1933), psychometricians and
social scientists developed non-parametric statistical methods and factor analysis and,
later, nonmetric multidimensional scaling (nMDS). During the same period,
anthropologists (e.g. Czekanowski, 1909, 1913) were interested in numerical
classification, and economists started to developed numerical indices (e.g. Gini, 1912).
The advent of computers made it possible to analyse large data sets, using
combinations of methods derived from various fields, supplemented with new
mathematical developments. The first synthesis was published by Sokal & Sneath
(1963), who established numerical taxonomy as a new discipline. 

Numerical ecology combines a large number of approaches, derived from many
disciplines, in a general methodology for analysing ecological data sets. Its chief
characteristic is the combined use of treatments drawn from different areas of
mathematics and statistics. Numerical ecology acknowledges the fact that many of the
existing numerical methods are complementary of one another, each one allowing the
exploration of a different aspect of the information underlying the data; it sets
principles for interpreting the results in an integrated way. 

The present book is organized in such a way as to encourage researchers who are
interested in a method to also consider other techniques. The integrated approach to
data analysis is favoured by numerous cross-references among chapters and the
presence of sections devoted to syntheses of subjects. The book synthesizes a large
amount of information from the literature, within a structured and prospective
framework, to help ecologists take maximum advantage of the existing methods.

This third English edition of Numerical ecology is deeply revised and largely
expanded compared to the second English edition (Legendre & Legendre, 1998). It
contains a new chapter dealing with multiscale analysis by spatial eigenfunctions
(Chapter 14). In addition, new sections have been added in several chapters and others
have been rewritten. These include the sections (numbers given in parentheses) on:
autocorrelation (1.1), singular value decomposition (2.11), species diversity through
space (6.5.3), the double-zero problem (7.2.2), transformations for community
composition data (7.7), multivariate regression trees (8.11), and matrix comparison
methods (10.5). Sections 11.1 on redundancy analysis and 11.4 on canonical
correlation analysis have been entirely rewritten, and a new Section 11.5 on co-inertia
and Procrustes analyses has been added. New sections, found at the end of most
chapters, list available computer programs, with special emphasis on R packages. 

The present work reflects the input of many colleagues, to whom we express here
our most sincere thanks. We first acknowledge the outstanding inputs of the late
Professor Serge Frontier (Université des Sciences et Techniques de Lille) and
Professor F. James Rohlf (State University of New York at Stony Brook) who critically
reviewed our manuscripts for the first French and English editions, respectively. Many
of their suggestions were incorporated into the texts that are at the origin of the present
edition. We are also grateful to the late Professor Ramón Margalef for his support, in
the form of an influential Preface to the two French and the first English editions. Over
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the years, we had fruitful discussions on various aspects of numerical methods with
many colleagues, whose names have sometimes been cited in the Forewords of
previous editions. 

During the preparation of this new edition, we benefited from the help of several
colleagues. First and foremost is Daniel Borcard; after 20 years of scientific
collaboration with one of us, he undertook to write a book, Numerical ecology with R
(Borcard et al., 2011), which is the companion to the present manual. That book shows
readers how to use the R language to carry out calculations for the methods described
in the present book. In addition, Daniel Borcard revised several chapters and sections
of this new edition, including Sections 1.1 and 10.5, Chapter 14, and all the Software
sections found at the end of the chapters. He also carried out the simulations for the
Dagnelie test of multivariate normality reported at the end of Section 4.6, and he
developed the method of selection of rare species to be used before correspondence
analysis (Box 9.2). Jari Oksanen developed an algorithm combining PCA/RDA/partial
RDA and gave us permission to reproduce it in Table 11.5. We are most grateful to
these two researchers for their major contributions to our book.

Other long-time collaborators and friends helped us by revising sections of the
book that were either new or had been rewritten and modernized. We are most thankful
to Marie-Josée Fortin who revised Section 1.1, François-Joseph Lapointe for
Section 8.13, Miquel De Cáceres for Subsection 8.9.3, Stéphane Dray and Pedro
Peres-Neto for Section 11.5, Patrick M. A. James for Subsection 12.5.4, and Helene H.
Wagner for Subsection 13.1.4. Cajo J. F. ter Braak and Jari Oksanen commented on
portions of Section 11.1. The new Chapter 14 received special attention: it was entirely
revised by Daniel Borcard and Pedro Peres-Neto, whereas other colleagues revised the
sections describing methods that they had contributed in developing: Stéphane Dray
for Section 14.1 and 14.2, F. Guillaume Blanchet for Section 14.3, Helene H. Wagner
for Section 14.4, Miquel De Cáceres for Subsection 14.5.1, and Guillaume Guénard
for Subsection 14.5.2. 

Graduate students in our home universities and those who participated in short
courses that we gave in several countries abroad have greatly contributed to the book
by raising interesting questions and pointing out weaknesses in previous versions of
the text. 

While writing this book, we benefited from competent and unselfish advice …
which we did not always follow. We thus assume full responsibility for any gaps in the
work and for all the opinions expressed therein. We shall therefore welcome with great
interest all suggestions or criticisms from readers.

PIERRE LEGENDRE, Université de Montréal
LOUIS LEGENDRE, Université Pierre et Marie Curie Paris 6 April 2012



 

Chapter

 

1

 

Complex ecological 
data sets

 

1.0 Numerical analysis of ecological data

 

The foundation of a general methodology for analysing ecological data may be derived
from the relationships that exist between the conditions surrounding ecological
observations and their outcomes. In the physical sciences for example, there often are
cause-to-effect relationships between the natural or experimental conditions and the
outcomes of observations or experiments. This is to say that, given a certain set of
conditions, the outcome may be exactly predicted. Such totally deterministic
relationships are only characteristic of extremely simple ecological situations.

Generally in ecology, a number of different outcomes may follow from a given set
of conditions because of the large number of influencing variables, of which many are
not readily available to the observer. The inherent genetic variability of biological
material is an important source of ecological variability. If the observations are
repeated many times under similar conditions, the relative frequencies of the possible
outcomes tend to stabilize at given values, called the 

 

probabilities 

 

of the outcomes.
Following Cramér (1946: 148), it is possible to state that “whenever we say that the
probability of an event with respect to an experiment [or an observation] is equal to P,
the concrete meaning of this assertion will thus simply be the following: in a long
series of repetitions of the experiment [or observation], it is practically certain that the
[relative] frequency of the event will be approximately equal to P.” This corresponds to
the frequency theory of probability — excluding the Bayesian and likelihood
approaches.

In the first paragraph, the outcomes were recurring at the individual level whereas
in the second, results were repeatable in terms of their probabilities. When each of
several possible outcomes occurs with a given characteristic probability, the set of
these probabilities is called a 

 

probability distribution. 

 

Assuming that the numerical
value of each outcome E

 

i

 

 is 

 

y

 

i

 

 with corresponding probability

 

 p

 

i

 

, a 

 

random variable

 

 (or

Probability

Probability
distribution

 



2 Complex ecological data sets

variate) y is defined as that quantity which takes on the value yi with probability pi at
each trial (Morrison, 1990). Figure 1.1 summarizes these basic ideas.

Of course, one can imagine other results to observations. For example, there may
be strategic relationships between surrounding conditions and resulting events. This is
the case when some action — or its expectation — triggers or modifies the reaction.
Such strategic-type relationships, which are the object of game theory, may possibly
explain ecological phenomena such as species succession or evolution (Margalef,
1968). Should this be the case, this type of relationship might become central to
ecological research. 

Another possible outcome is that observations bear some degree of
unpredictability. Such data may be studied within the framework of chaos theory,
which explains how deterministic processes can generate phenomena with a sensitive
dependence on initial conditions that ensures dynamical behaviour with short-term
predictability but long-term unpredictability (e.g. Ferriere et al., 1996). This is the
famous “butterfly effect”, whereby a butterfly flapping its wings somewhere on Earth
could alter weather patterns somewhere else at a later time. The signature of chaos has
been detected in a number of biological systems. For example, Beninca et al. (2008)
used the data on a bacteria-phytoplankton-zooplankton food web that had been
cultured for more than 2300 days under constant external conditions in a laboratory
mesocosm to show that species interactions in that food web generated chaos.
According to the authors, this result implies that the long-term prediction of species
abundances could be fundamentally impossible. For an overview of chaos theory,
interested readers can refer to Peitgen et al. (2004). 

Random
variable

Figure 1.1 Two types of recurrence of the observations.
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Methods of numerical analysis are determined by the four types of relationships
that may be encountered between surrounding conditions and the outcome of
observations (Table 1.1). The present text deals only with methods for analysing
random response variables, which is the type ecologists most frequently encounter.

The numerical analysis of ecological data makes use of mathematical tools
developed in many different disciplines. A formal presentation must rely on a unified
approach. For ecologists, the most suitable and natural language — as will be shown in
Chapter 2 — is that of matrix algebra. This approach is best adapted to the processing
of data by computers; it is also simple, and it efficiently carries information, with the
additional advantage of being familiar to many ecologists.

Other disciplines provide ecologists with powerful tools that are well adapted to
the complexity of ecological data. From mathematical physics comes dimensional
analysis (Chapter 3), which provides simple and elegant solutions to some difficult
ecological problems. Measuring the association among quantitative, semiquantitative
or qualitative variables is based on parametric and nonparametric statistical methods
and on information theory (Chapters 4, 5 and 6, respectively).

These approaches all contribute to the analysis of complex ecological data sets
(Fig. 1.2). Because such data usually come in the form of highly interrelated variables,
the capabilities of elementary statistical methods are generally exceeded. While
elementary methods are the subject of a number of excellent texts, the present manual
focuses on the more advanced methods, upon which ecologists must rely in order to
understand these interrelationships.

Table 1.1 Numerical analysis of ecological data.

Relationships between the natural conditions Methods for analysing
and the outcome of an observation and modelling the data

Deterministic: Only one possible result Deterministic models

Random: Many possible results, unpredictable individually Methods described in this
but with characteristic probabilities of occurrence book (Figure 1.2)

Strategic: Results depend on the respective Game theory
strategies of the organisms and of their environment

Chaotic: Many possible results with short-term Chaos theory
predictability and long-term unpredictability

Uncertain: Many possible, unpredictable results
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In ecological spreadsheets, data are typically organized in rows corresponding to
sampling sites or times, and columns representing the variables; these may describe
the biological communities (species presence, abundance, or biomass, for instance) or
the physical environment. Because many variables are needed to describe
communities and environment, ecological data matrices are, for the most part,
multidimensional (or multivariate). Multidimensional data, i.e. data consisting of
several variables, structure what is known in geometry as a hyperspace, which is a
space with many dimensions. One now classical example of ecological hyperspace is
the fundamental niche of Hutchinson (1957, 1965). According to Hutchinson, the
environmental variables that are critical for a species to exist may be thought of as
orthogonal axes, one for each factor, of a multidimensional space. On each axis, there
are limiting conditions within which the species can exist indefinitely; this concept is

Figure 1.2 Numerical analysis of complex ecological data sets.
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called upon in Subsection 7.2.2, which discusses unimodal species distributions and
their consequences on the choice of resemblance coefficients. In Hutchinson’s theory,
the set of these limiting conditions defines a hypervolume called the species’
fundamental niche. The spatial axes describe the geographical distribution of the
species. 

The quality of the analysis and subsequent interpretation of complex ecological
data sets depends, in particular, on the compatibility between data and numerical
methods. It is important to take into account the requirements of the numerical
techniques when planning a sampling programme, because it is obviously useless to
collect quantitative data that are inappropriate to the intended numerical analyses.
Experience shows that, too often, poorly planned collection of costly ecological data,
for “survey” purposes, generates large amounts of unusable data (Fig. 1.3). 

The search for ecological structures in multidimensional data sets is always based
on association matrices, of which a number of variants exist, each one leading to
slightly or widely different results (Chapter 7); even in so-called association-free
methods, like principal component or correspondence analysis, or K-means
partitioning, there is always an implicit resemblance measure hidden in the method.

Figure 1.3 Relationships among the various phases of an ecological research.
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6 Complex ecological data sets

Two main avenues are open for analysis: (1) ecological clustering using
agglomerative, divisive or partitioning algorithms (Chapter 8), and (2) ordination in a
space with a reduced number of dimensions, using principal component or
correspondence analysis, principal coordinate analysis, or nonmetric multidimensional
scaling (Chapter 9). The interpretation of ecological structures, derived from
clustering and/or ordination, may be conducted either directly or indirectly, as will be
seen in Chapters 10 and 11, depending on the nature of the problem and on the
additional information available.

Ecological data may be sampled along time or space in order to study temporal or
spatial processes driven by physics or biology (Chapters 12, 13 and 14). These data
may be univariate or multivariate. Time or space sampling requires intensive field
work. Time sampling can often be automated using equipment that allows the
automatic recording of ecological variables. For spatial surveys, the analysis of
satellite images, or of information collected by airborne or shipborne equipment,
provides important support to field work, and the geographic positions of the
observations can be determined using geographic positioning systems. In physical or
ecological applications, a process is a phenomenon or a set of phenomena organized
along time or through space. Mathematically speaking, such ecological data represent
one of the possible realizations of a random process, also called a stochastic process. 

Two major approaches may be used for inference about the population parameters
of such processes (Särndal, 1978; Koch & Gillings, 1983; de Gruijter & ter Braak,
1990; de Gruijter et al., 2006). In the design-based approach, one is interested only in
the sampled population and assumes that a fixed value of the variable exists at each
location in space, or point in time. A representative subset of the space or time units is
selected using an appropriate (randomized) sampling design (for 8 different meanings
of the expression “representative sampling”, see Kruskal & Mosteller, 1988). Design-
based (or randomization-based; Kempthorne, 1952) inference results from statistical
analyses whose only assumption is the random selection of observations; this requires
that the target population (i.e. that for which conclusions are sought) be the same as the
sampled population. The probabilistic interpretation of this type of inference
(e.g. confidence intervals of parameters) refers to repeated selection of observations
from the same finite population using the same sampling strategy. The classical
(Fisherian) methods for estimating the confidence intervals of parameters like the
mean, for variables observed over a given surface or time period, are fully applicable
in the design-based framework. 

In the model-based (or superpopulation) approach, the assumption is that the target
population is much larger than the sampled population. So, the value associated with
each location, or point in time, is not fixed but random, since the geographic surface
(or time period) available for sampling (i.e. the statistical population) is but one
representation of the superpopulation of such surfaces or time periods — all resulting
from the same generating process — about which conclusions are to be drawn. The
observed population is related to the superpopulation through a statistical model, e.g. a
variogram (Section 13.1). Under this model, even if the whole sampled population

Process

Design-
based

Model-based

Super-
population
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could be observed, uncertainty would still remain about the model parameters. So, the
confidence intervals of parameters estimated over a single surface or time period are
obviously too small to account for the among-surface variability, and some kind of
correction must be made when estimating these intervals. The type of variability of the
superpopulation of surfaces or time periods may be estimated by studying the spatial
or temporal correlation of the available data (i.e. over the statistical population). This
subject is discussed at some length in Section 1.1. Ecological survey data can often be
analysed under either model, depending on the emphasis of the study or the type of
conclusions one wishes to derive from them.

In some instances in time series analysis, the sampling design must meet the
requirements of the numerical method, because some methods are restricted to data
series that meet some specific conditions, such as equal spacing of observations.
Inadequate planning of the sampling may render the data series useless for numerical
treatment with these particular methods. There are several methods for analysing
ecological series (Chapter 12). Regression, moving averages, and the variate
difference method are designed for identifying and extracting general trends from time
series. Correlogram, periodogram, and spectral analysis identify rhythms
(characteristic periods) in series. Other methods can detect discontinuities in univariate
or multivariate series. Variation in a series may be correlated with variation in other
variables measured simultaneously. One may also develop forecasting models using
the Box & Jenkins approach.

Similarly, methods are available to meet various objectives when analysing spatial
data (Chapters 13 and 14). Structure functions such as variograms and correlograms,
as well as point pattern analysis, may be used to confirm the presence of a statistically
significant spatial structure and to describe its general features. A variety of
interpolation methods are used for mapping univariate data, whereas multivariate data
can be mapped using methods derived from ordination or cluster analysis. Models may
also be developed that include spatial structures among their explanatory variables; in
these models, spatial relationships among the study sites may be represented in a
variety of ways.

For ecologists, numerical analysis of data is not a goal in itself. However, a study
based on quantitative information must take data processing into account at all phases
of the work, from conception to conclusion, including the planning and execution of
sampling, the analysis of data proper, and the interpretation of results. Sampling,
including laboratory analyses, is generally the most tedious and expensive part of
ecological research, and it is therefore important that it be optimized in order to reduce
to a minimum the collection of useless information. Assuming appropriate sampling
and laboratory procedures, the conclusions to be drawn depend on the results of the
numerical analyses. It is, therefore, important to make sure in advance that sampling
and numerical techniques are compatible. It follows that numerical processing is at the
heart of ecological research; the quality of the results cannot exceed the quality of the
numerical analyses conducted on the data (Fig. 1.3).
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Of course, the quality of ecological research is not solely a function of the expertise
with which quantitative work is conducted. It depends to a large extent on creativity,
which calls upon imagination and intuition to formulate hypotheses and theories
(Legendre, 2004, 2008a). It is, however, advantageous for the researcher’s creative
abilities to be grounded into solid empirical work (i.e. work involving field data),
because little progress may result from continuously building upon untested
hypotheses.

Figure 1.3 shows that a correct interpretation of analyses requires that the sampling
phase be planned to answer a specific question or questions. Ecological sampling
programmes are designed in such a way as to capture the variation occurring along a
number of axe of interest: space, time, or other ecological indicator variables. The
purpose is to describe variation occurring along the given axis or axes, and to interpret
or model it. Contrary to experimentation, where sampling may be designed in such a
way that observations are independent of one another, ecological data are often
spatially or temporally correlated (Section 1.1).

While experimentation is often construed as the opposite of ecological surveys,
there are cases where field experiments are conducted at sampling sites, allowing one
to measure rates or other processes (“manipulative experiments” sensu Hurlbert, 1984;
Subsection 10.2.3). In aquatic ecology, for example, nutrient enrichment bioassays are
a widely used approach for testing hypotheses concerning nutrient limitation of
phytoplankton. In their review on the effects of enrichment, Hecky & Kilham (1988)
identified four types of bioassays, according to the level of organization of the test
system: cultured algae; natural algal assemblages isolated in microcosms or sometimes
larger enclosures; natural water-column communities enclosed in mesocosms; whole
systems. The authors discuss one major question raised by such experiments, which is
whether results from lower-level systems are applicable to higher levels, and
especially to natural situations. Processes estimated in experiments may be used as
independent variables in empirical models accounting for survey results, while “static”
survey data may be used as covariates to explain the variability observed among
blocks of experimental treatments. Spatial and time-series data analysis have become
an important part of the analysis of the results of ecological experiments.

1.1 Spatial structure, spatial dependence, spatial correlation

Students in elementary biostatistics courses are trained, implicitly if not explicitly, in
the belief that Nature follows the assumptions of classical statistics, one of them being
the independence of observations. However, field ecologists know from experience
that organisms are not randomly or uniformly distributed in the natural environment,
because processes such as growth, dispersal, reproduction, and mortality, which create
the observed distributions of organisms, generate spatial correlation in data, as detailed
below. The same applies to the physical variables that structure the environment.
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Following hierarchy theory (Simon, 1962; Allen & Starr, 1982; O’Neill et al., 1991),
we may look at the environment as primarily structured by broad-scale physical
processes — orogenic and geomorphological processes on land, currents and winds in
fluid environments — which, through energy inputs, create gradients in the physical
environment as well as patchy structures separated by discontinuities (interfaces).
These broad-scale structures lead to similar responses in biological systems, spatially
and temporally. Within these relatively homogeneous zones, finer-scaled contagious
biotic processes take place, causing the appearance of more spatial structuring through
reproduction and death, predator-prey interactions, food availability, parasitism, and so
on. This is not to say that biological processes are necessarily small-scaled and nested
within physical processes; indeed, biological processes may be broad-scaled (e.g. bird
and fish migrations) and physical processes may be fine-scaled (e.g. turbulence). The
theory only purports that stable complex systems are often hierarchical. The concept of
scale, as well as the expressions broad scale and fine scale, are discussed in
Section 13.0.

In ecosystems, spatial heterogeneity is therefore functional, meaning that
ecosystem functioning depends on it (Levin, 2000). It is not the result of some random,
noise-generating process. So, it is important to study this type of variability for its own
sake. One of the consequences is that ecosystems without spatial structuring would be
unlikely to function. Let us imagine the consequences of a non-spatially-structured
ecosystem: broad-scale homogeneity would cut down on diversity of habitats; feeders
would not be close to their food; mates would be located at random throughout the
landscape; soil conditions in the immediate surrounding of a plant would not be more
suitable for its seedlings than any other location; newborn animals would be spread
around instead of remaining in favourable environments; and so on. Unrealistic as this
view may seem, it is a basic assumption of many of the theories and models describing
the functioning of populations and communities. The view of a spatially structured
ecosystem requires a new paradigm for ecologists: spatial [and temporal] structuring is
a fundamental component of ecosystems (Levin, 1992; Legendre, 1993). Hence
ecological theories and models, including statistical models, must be revised to include
realistic assumptions about the spatial and temporal structuring of communities.

Spatial dependence, which is also called spatial correlation, is used here as the
general case; temporal correlation, also called serial correlation in time series analysis,
behaves essentially like its spatial counterpart but along a single sampling dimension.
The difference between the spatial and temporal cases is that causality is unidirectional
in time series, i.e. it proceeds from (t – 1) to t and not the opposite. Temporal
processes, which generate temporally correlated data, are studied in Chapter 12,
whereas spatial processes are the subject of Chapters 13 and 14. The following
discussion is partly inspired from the papers of Legendre & Fortin (1989), Legendre
(1993), and Dray et al. (2012).

Spatial structures in variables may be generated by different processes. These
processes produce relationships between values observed at neighbouring points in
space, hence the lack of independence of values of the observed variable (Box 1.1, first
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Independence Box 1.1

This word has several meanings. Five of them will be used in this book. Another
important meaning in statistics concerns independent random variables, which refer
to properties of the distributions and density functions of a group of variables; for a
formal definition, see Morrison (1990, p. 7).

Independent observations. — Observations drawn from the statistical population
in such a way that no observed value has any influence on any other. In the time-
honoured example of tossing a coin, observing a head does not influence the
probability of a head (or tail) coming out at the next toss. Spatially correlated data
violate this condition because their errors are correlated across observations.

Independent descriptors. — Descriptors (variables) that are not related to one
another are said to be independent. Related is taken here in some general sense
applicable to quantitative, semiquantitative as well as qualitative data (Table 1.2).

Linear independence. — Two descriptors are said to be linearly dependent if one
can be expressed as a linear transformation of the other, e.g. x1 = 3x2 or x1 = 2 – 5x2
(Subsection 1.5.1). Descriptors within a set are said to be linearly dependent if at
least one of them is a linear combination of the other descriptors in the set
(Section 2.7). Orthogonality (Section 2.5) is not the same as linear independence.
Two vectors may be linearly independent and not orthogonal, but two orthogonal
vectors are always linearly independent.

Independent variable(s) of a model. — In a regression model, the variable to be
modelled is called the dependent variable. The variables used to model it, usually
found on the right-hand side of the equation, are called the independent variables of
the model. In empirical models, one may talk about response (or target) and
explanatory variables for, respectively, the dependent and independent variables,
whereas, in a causal framework, the terms criterion and predictor variables may be
used. Some forms of canonical analysis (Chapter 11) allow the modelling of a
whole matrix of dependent (target or criterion) variables in a single regression-like
analysis.

Independent samples are opposed to related or paired samples. In related samples,
each observation in a sample is paired with one in the other sample(s), hence the
name paired comparisons for the tests of significance carried out on such data.
Authors also talk of independent versus matched pairs of data. Before-after
comparisons of the same elements also form related samples (matched pairs).
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definition of independence). In many instances, observations that are closer together
tend to display values that are more similar than observations that are further apart,
resulting in positive spatial dependence also called positive spatial correlation.
Repulsion phenomena (e.g. spatial distributions of territorial organisms that prevent
other organisms from occupying neighbouring territories) may produce the opposite
effect, with values of closer pairs of points being less similar than the values of pairs of
observations that are further apart (negative spatial correlation at short distances).
Closeness may be measured in a distance metric such as metres, or may be represented
by counts of graph edges traversed between observations on connection networks
(Subsection 13.3.1). A spatial structure may be present in data without it being caused
by true autocorrelation, which is defined below. Two models for spatial structure are
presented in Subsection 1.1.1; the first one (eq. 1.1 below) does not correspond to
autocorrelation sensu stricto whereas the second does (eq. 1.2).

Because it indicates lack of independence among the observations, spatial
correlation creates problems when attempting to use tests of statistical significance that
assume independence of the observations. This point is developed in Subsection 1.1.2.
Other types of dependencies (or, lack of independence) may be encountered in
biological data. For example, related samples, discussed in more detail in Section 5.2,
should not be analysed as if they were independent (Box 1.1, last definition of
independence); this would result in a loss of power for the statistical test.

Spatial correlation is a very general property of ecological variables and, indeed, of
most natural variables observed over geographic space (spatial correlation) or along
time series (temporal correlation). Spatial [or temporal] correlation may be described
by mathematical functions such as correlograms and variograms, called structure
functions, which are studied in Chapters 12 and 13. The two possible approaches
concerning statistical inference for spatially correlated data (i.e. the design- or
randomization-based approach, and the model-based or superpopulation approach)
were discussed in Section 1.0. 

1 — Origin of spatial structures

A spatial structure may appear in a variable y because y depends upon one or several
causal variables X that are spatially correlated (Model 1 below) or because the process
that has produced the values of y is spatial and has generated correlation among the
data points (Model 2 below); or some combination of these two processes. In both
cases, spatial correlation will be found when analysing the data (Chapters 12 and 13).
The spatially-structured causal variables X may be explicitly identified in the model,
or not; see Table 14.1. The two models, which are also described by Fortin & Dale
(2005) and Dray et al. (2012), are more precisely defined as follows.

• Model 1: induced spatial dependence — Spatial dependence may be induced by the
functional dependence of the response variables (e.g. species) on explanatory variables
(e.g. environmental) X that are themselves spatially correlated. We talk about induced
spatial dependence in that situation where y has acquired the spatial structure of X.

Spatial
correlation

Induced
spatial
dependence
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This phenomenon is a restatement, in the spatial context, of the classical
environmental control model (Whittaker, 1956; Bray and Curtis, 1957), which
ecologists call upon when they use regression to analyse the variation of a response
variable y by a table of environmental variables X. That model is the foundation of
niche theory (Hutchinson, 1957). On the one hand, if all important spatially-structured
explanatory variables are included in the analysis, the following model correctly
accounts for the spatial structure induced in y:

yj = f(Xj) + !j (1.1)

where yj is the value of the dependent variable y at site j and !j is an error term whose
value is independent from site to site. On the other hand, if the function is
misspecified, for example through the omission of key explanatory variables with
spatial patterning such as a broad-scale linear or polynomial trend, or through
inadequate functional representation, one may end up incorrectly interpreting the
spatial patterning of the residuals as autocorrelation, which is described in the next
paragraph.

• Model 2: spatial autocorrelation — Spatial dependence may appear in species
distributions as the result of “neutral processes” of population and community
dynamics (see for instance Hubbell, 2001, and Alonso et al., 2006). Neutral processes
include ecological drift (variation in species demography due to random reproduction
and survival of individuals due to competition, predator-prey interactions, etc.) and
random dispersal (migration in animals, propagule dispersion in plants). These
processes create spatial autocorrelation (sensu stricto) in response variables. The
value yj observed at site j on the geographic surface is assumed to be the overall mean
of the process (µy) in the study area plus a weighted sum of the centred values

 at surrounding sites i, plus an independent error term !j:

(1.2)

The yi’s are the values of y at other sites i located within the zone of spatial influence
of the process generating the autocorrelation (Fig. 1.4). The influence of neighbouring
sites may be given, for instance, by weights wi which are function of the distances
between sites i and j (eq. 13.20); other functions may be used. The total error term is

; it contains the autocorrelated component of variation
, which is noted SAj below. The model assumes spatial stationarity

(Subsection 13.1.1). Its equivalent in time series analysis is the autoregressive (AR)
response model (eq. 12.29) where each observation in the time series is modelled as a
function of preceding observations.

The term autocorrelation is sometimes loosely used to designate any type of spatial
dependence; in that case, one would refer to spatial dependence resulting from neutral
processes of population and community dynamics as “true autocorrelation”, “inherent
autocorrelation”, or “autogenic autocorrelation” (Fortin & Dale, 2005), or as the
“interaction model” (meaning: interaction among the sites) by Cliff & Ord (1981,

Autocorre-
lation

yi µy–( )

y j µy " wi yi µy–( ) ! j+ +=

" wi yi µy–( ) ! j+[ ]
" wi yi µy–( )[ ]
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p. 141). In statistics, spatial autocorrelation is the spatial dependence found in the error
component of a response variable y observed trough space after the effect of all
important spatially-structured explanatory variables X has been accounted for. 

The full model describing the value yj of a response variable y at site j is written as
follows:

yj = f(Xj) + uj with uj = SAj + !j

where y is modelled as a function of the explanatory (e.g. environmental) variables X,
and u is the spatially autocorrelated residual, which has two components: the spatial
autocorrelation (SAj) in the residual and a random error component (!j). 

For illustration, Fig. 1.5 describes the two processes that can be at the origin of a
spatial structure (i.e. Model 1, induced spatial dependence, and Model 2, spatial
autocorrelation) in a simplified system consisting of 4 ponds (large circles) connected
by a stream; a light current is flowing from left to right. Five cases of increasing
complexity are shown. In each case, circles in the upper row describe the values of an
environmental variable x whereas the lower row concerns a response variable y, for
example the abundances of a zooplankton species. 

• Case 1 represents the null situation: there are no relationships among the values of x
nor among those of y and no relationship between x and y. In a simulation program, the
values of y corresponding to this case could be simulated as yj = !j  where !j  is a
random normal deviate generated independently for each pond j.

• Case 2 is more interesting: it depicts functional dependence of the response variable
y on the explanatory variable x. This is the classical environmental control model
mentioned in the description of eq. 1.1 (Model 1). It can be implemented in
simulations by equation yj = #0 + #xxj + !j  where #0 is a constant and the functional
dependence of y on x is represented by a regression parameter #x. There is no spatial
dependence (spatial correlation) among the values of x nor among those of y here.

Figure 1.4 The value at site j may be modelled as
a weighted sum (with weights wi) of
the influences of other sites i located
within the zone of influence of the
process generating the autocorrelation
(large circle).

j

i2

i3

i4

i1
w1

w3

w2

w4
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• Case 3 describes the process producing spatial autocorrelation (SA) in the response
variable y. The arrows indicate that a random fraction of the zooplankton from pond
(j – 2) moves near the outflow stream and is transferred to pond (j – 1) (the small circle
inside the second large circle), and so on down the chain of ponds. There is no river-

Case 2:   y depends on x

xj–2 xj+1xjxj–1

wx = 0 wx = 0 wx = 0

yj–2 yj+1yjyj–1

wy = 0 wy = 0 wy = 0

# ###

Case 4:   Induced spatial dependence

yj–2 yj+1yjyj–1

wy = 0 wy = 0 wy = 0
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Case 5:   SA in x and y, y depends on x
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Case 1:   Null situation
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Case 3:   SA in y
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yj–1 yj

Water flow

Figure 1.5 Five cases illustrating the origin of spatial structures through different types of relationships
between an explanatory variable x and a response variable y observed across space. Of special
interest are case 3 (spatial autocorrelation (SA) in y, Model 2) and case 4 (induced spatial
dependence, Model 1). Modified from Fortin & Dale (2005, Chapter 5).
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like strong current moving water across the chain of ponds. As a result, zooplankton
abundances in neighbouring ponds are more similar than expected in case 1. This
similarity in the values of y due to proximity in space is called spatial autocorrelation.
In numerical simulations, this process can be simulated by generating a random
deviate in the first pond, y1 = !1, and propagating it down the chain of ponds with the
equation yj = wyyj–1 + !j . Equation 1.2 (Model 2) describes a similar process for sites
on a 2-dimensional map with bidirectional exchanges between sites. In case 3, there is
no autocorrelation in explanatory variable x and no functional dependence of y on x. 

• Case 4 describes induced spatial dependence. A spatial structure is observed in y
because that variable reflects the autocorrelated spatial structure of x through
functional dependence of y on x. Two equations are necessary to represent this process
in numerical simulations: the first describes the autocorrelation in x along the chain of
ponds: xj = wxxj–1 + $j, and the second describes the spatial dependence of y on x: yj =
#0 + #xxj + !j . A more general form for surfaces is eq. 1.1 (Model 1).

• Case 5 is the most complex as it combines the processes of cases 3 and 4. This is a
situation often encountered in nature. There is spatial autocorrelation (SA) in x and in
y, plus functional dependence of y on x. The equations describing this case in a
simulation program would be: xj = wxxj–1 + $j for the spatial autocorrelation (SA) in x
and yj = #0 + #xxj + wyyj–1 + !j for the spatial dependence and autocorrelation in y
(combination of Models 1 and 2). Methods described in Chapter 14 will show how to
disentangle the two processes, using the fact that they often correspond to different
spatial scales. More complex cases could be explored, e.g. the simultaneous
autoregressive (AR) model and the conditional AR model (Cliff & Ord, 1981,
Sections 6.2 and 6.3; Griffith, 1988, Chapter 4).

Figure 1.6 shows an example of simulated data corresponding to case 5. In the
upper half of the figure, an environmental variable x is constructed on a map (400-
point grid) as the sum of: a deterministic structure (here a unimodal distribution,
upper-left map), plus spatial autocorrelation (SA) in x, plus random error at each point
($j term in the first equation of case 5). The response variable y is constructed in the
lower half of the figure. The effect of x on y is obtained by transporting the x surface
(upper-right map), weighted by a regression coefficient #x = 0.3 causing a change in
the range of values in this example, to the lower-left corner where it becomes the first
element in the construction of y. To that map, we add spatial autocorrelation (SA) in y
and random error at each point (!j term in the second equation of case 5). The sum of
these three surfaces produces the response variable y in the lower-right map. In this
example, the x and y variables are sampled using a cross-shaped sampling design,
represented in grey on the surface, containing 39 sampling units; any other sampling
design appropriate to the study could have been used. 

When there is a significant spatial structure in the data (Chapters 13 and 14), a
hypothesis of induced spatial dependence (Model 1) can be examined by multiple
regression (Subsection 10.3.3) or canonical analysis (Sections 11.1 and 11.2).
Variation partitioning (Sections 10.3.5 and 11.1.11) and multiscale ordination (MSO,
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Section 14.4) can be used to determine whether or not the entire spatial structure
detectable in the response data can be explained by the environmental variables
(case 4) or if there remains an unexplained portion of spatial variation that would
support a hypothesis of spatial autocorrelation in y (case 5). 

A broad-scale spatial structure larger than the extent of the study area is called a
trend. When there is a trend in the data, methods of spatial analysis detect spatial
correlation due to the trend irrespective of the presence, or not, of finer-scaled sources
of spatial correlation. In order to study the finer-scaled spatial structures, the trend
must be removed from the data by an operation called detrending. One can then
proceed with the analysis of the multi-scale spatial structure, for instance by spatial
eigenfunction analysis (Sections 14.1 to 14.3). Linear detrending is done by regressing
the response data on the geographic coordinates of the study sites (Section 13.2.1).
Likewise, detrending must be done on time series before periodic or spectral analysis
(Section 12.2).

Figure 1.6 Construction of an explanatory (environmental) surface x and a response surface y in a
simulation study. Each square is a bubble map of the study area. Large empty bubbles represent
large negative values, and large filled bubbles, large positive values. The range of values in each
map is shown in brackets underneath. The sampling design, shown in grey, is a cross with 39
sampled points in this example. Modified from Legendre et al. (2002, Fig. 1).
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It is difficult to determine whether a given observed variable has been generated
under Model 1 (eq. 1.1) or Model 2 (eq. 1.2). That question is further discussed in
Subsection 13.1.2 in the case of gradients (“false gradients” and “true gradients”) and
in Chapter 14.

2 — Tests of significance in the presence of spatial correlation

Spatial correlation in a variable brings with it a statistical problem in the model-based
approach (Section 1.0): it impairs the ability to perform standard statistical tests of
hypotheses (Section 1.2). Let us consider an example of spatially autocorrelated data.
The observed values of an ecological variable of interest — the abundances of a
species for example — are most often influenced, at any given site, by the spatial
distribution of the variable at surrounding sites, because of contagious biotic processes
such as growth, dispersion, reproduction, and mortality. Make a first observation at site
A and a second one at site B located near A. Since the ecological process is understood
to some extent, one can assume that the data are spatially correlated. Using this
assumption, one can anticipate to some degree the value of the variable at site B before
the observation is made. Because the value at any one site is influenced by, and may be
at least partly forecasted from the values observed at neighbouring sites, these values
are not stochastically independent of one another. 

The influence of spatial correlation on statistical tests may be illustrated using the
correlation coefficient (Pearson r, Section 4.2). The problem lies in the fact that, when
the two variables under study are positively spatially correlated, the confidence
interval, estimated by the classical procedure around a Pearson correlation coefficient
(whose calculation assumes independent and identically distributed error terms for all
observations), is narrower than it is when calculated correctly, i.e. taking spatial
correlation into account. The consequence is that one would declare too often that
Pearson r coefficients are significantly different from zero (Fig. 1.7). 

Figure 1.7 Effect of positive spatial correlation on tests of correlation coefficients; * means that the
coefficient is (incorrectly) declared significantly different from zero in this example.
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An important point is that in correlation or regression analysis, spatial correlation
has a deleterious effect on tests of significance only when it is present in both
variables. Simulation studies have shown that when spatial correlation was present in
only one of the two variables, the test had a correct rate of type I error (Bivand, 1980;
Legendre et al., 2002). These simulations have also shown that deterministic spatial
structures present in both variables have the same effect as spatial autocorrelation. For
example, with a deterministic structure in one of the variables and spatial
autocorrelation in the other, tests of significance had inflated rates of type I error.

All the usual statistical tests, nonparametric and parametric, have the same
behaviour: in the presence of positive spatial correlation, the computed test statistics
are too often declared significant. Negative spatial correlation may produce the
opposite effect, for instance in analysis of variance (ANOVA).

The effects of spatial correlation on statistical tests may also be examined from the
point of view of the degrees of freedom. As explained in Box 1.2, in classical statistical
testing, one degree of freedom is counted for each independent observation, from
which the number of estimated parameters is subtracted. The problem with spatially
correlated data is their lack of independence or, in other words, the fact that new
observations do not each bring with them one full degree of freedom, because the
values of the variable at some sites give the observer some prior knowledge of the
values the variable will take at other sites. The consequence is that new observations
cannot be counted for one full degree of freedom. Since the size of the fraction they
bring with them is difficult to determine, it is not easy to know what the proper
reference distribution for the test should be. All that is known for certain is that
positive spatial correlation at short distance distorts statistical tests (references in the
next paragraph), and that this distortion is on the “liberal” side. This means that, when
positive spatial correlation is present in the small distance classes, the usual statistical
tests lead too often to the decision that Pearson or Spearman correlations, regression
coefficients, or differences among groups are significant, when in fact they may not be.

This problem has been well documented in correlation analysis (Bivand, 1980;
Cliff & Ord, 1981, §7.3.1; Clifford et al., 1989; Haining, 2003, Section 8.2.1;
Dutilleul, 1993a; Legendre et al., 2002), linear regression (Cliff & Ord, 1981, §7.3.2;
Chalmond, 1986; Griffith, 1988, Chapter 4; Haining, 1990, pp. 330-347), analysis of
variance (Crowder & Hand, 1990; Legendre et al., 1990, Legendre et al., 2004), and
tests of normality (Dutilleul & Legendre, 1992). The problem of estimating the
confidence interval of the mean when the sample data are spatially correlated has been
studied by Cliff & Ord (1975, 1981, §7.2) and Legendre & Dutilleul (1991). 

When the presence of spatial correlation has been demonstrated, one may wish to
remove the spatial dependency among observations; it would then be valid to compute
the usual statistical tests. This might be done, in theory, by removing observations until
spatial independence is attained; this solution is not recommended because it entails a
net loss of information that was often costly to obtain. Another solution is detrending
(Subsection 1.1.1) if the spatial structure is a broad-scale trend in the data; if spatial
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correlation is part of the process under study, however, this would amount to throwing
out the baby with the water of the bath. It is better to analyse the spatially correlated
data as such (Chapters 13 and 14), acknowledging the fact that spatial correlation in a
variable may result from various causal mechanisms (physical or biological, see
Subsection 1.1.1), acting simultaneously and additively. 

The alternative for testing statistical significance is to modify the statistical method
in order to take spatial correlation into account, as described in the following
paragraphs. When such a correction is available, this approach is to be preferred if one
assumes that spatial correlation is an intrinsic part of the ecological process to be
analysed or modelled.

Corrected tests rely on modified estimates of the variance of the statistic, and on
corrected estimates of the effective sample size and of the number of degrees of
freedom. Simulation studies have been used to demonstrate the validity of the
modified tests. In these studies, a large number of spatially correlated data sets are
generated under the null hypothesis (e.g. for testing the difference between two means,
pairs of observations are drawn at random from the same simulated, spatially

Degrees of freedom Box 1.2

Statistical tests of significance often call upon the concept of degrees of freedom. A
formal definition is the following: “The degrees of freedom of a model for expected
values of random variables is the excess of the number of variables [observations]
over the number of parameters in the model” (Kotz & Johnson, 1982).

In practical terms, the number of degrees of freedom associated with a statistic
is equal to the number of its independent components, i.e. the total number of
components used in the calculation minus the number of parameters one had to
estimate from the data before computing the statistic. For example, the number of
degrees of freedom associated with a variance is the number of observations minus
one (noted ' = n – 1): n components  are used in the calculation, but one
degree of freedom is lost because the mean of the statistical population ( ) is
estimated from the sample data; this is a prerequisite before estimating the variance. 

There is a different t-distribution for each number of degrees of freedom. The
same is true for the F and (2 families of distributions, for example. So, the number
of degrees of freedom determines which statistical distribution, in these families (t,
F, or (2), should be used as the reference for a given test of significance. Degrees of
freedom are discussed again in Chapter 6 with respect to the analysis of
contingency tables.

xi x–( )
x
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correlated statistical distribution, which corresponds to the null hypothesis of no
difference between population means) and tested using the modified procedure; this
experiment is repeated a large number of times to demonstrate that the modified testing
procedure leads to the nominal rate of rejection of H0, e.g. 0.05.

Cliff & Ord (1973) proposed a method for correcting the standard error of
parameter estimates for the simple linear regression in the presence of spatial
correlation. This method was extended to linear correlation, multiple regression, and t-
test by Cliff & Ord (1981, Chapter 7: approximate solution) and to the one-way
analysis of variance by Griffith (1978, 1987). Bartlett (1978) perfected a previously
proposed method of correction for the effect of spatial correlation due to an
autoregressive process in randomized field experiments, adjusting plot values by
covariance on neighbouring plots before the analysis of variance; see also the
discussion by Wilkinson et al. (1983) and the papers of Cullis & Gleeson (1991) and
Grondona & Cressie (1991). Cook & Pocock (1983) suggested another method for
correcting multiple regression parameter estimates by maximum likelihood, in the
presence of spatial correlation. Using a different approach, Legendre et al. (1990)
proposed a permutational method for the analysis of variance of spatially correlated
data, in the case where the classification criterion is a division of a territory into
nonoverlapping regions and one wants to test for differences among the means of these
regions. Numerical simulations showed that, using this permutation method, ANOVA
was insensitive to spatial correlation and effectively provided a test with a correct rate
of type I error. They illustrated the method with an ecological application.

Clifford et al. (1989) tested the significance of the correlation coefficient between
two spatial processes by estimating a modified number of degrees of freedom, using an
approximation of the variance of the correlation coefficient computed from the data.
Empirical results showed that their method worked fine for positive spatial correlation
in large samples. Dutilleul (1993a) generalized the procedure and proposed an exact
method to compute the variance of the sample covariance; the new method is valid for
any sample size. In a simulation study, Legendre et al. (2002) showed that Dutilleul’s
modified t-test for the correlation coefficient effectively corrects for any kind of spatial
correlation in the data: deterministic structures or spatial autocorrelation.

A general method to control for spatial correlation in tests of significance involving
univariate or multivariate data was proposed by Peres-Neto & Legendre (2010). It
involves partialling out the effect of spatial structures in partial regression (for
univariate response data y) or partial canonical analysis (for multivariate response data
Y). Spatial structures are represented in these analyses by spatial eigenfunctions. This
method is described in Subsection 14.5.3.

Other major contributions to this topic are found in the literature on time series
analysis, especially in the context of regression modelling. Important references are
Cochrane & Orcutt (1949), Box & Jenkins (1976), Beach & MacKinnon (1978),
Harvey & Phillips (1979), Chipman (1979), and Harvey (1981).



Spatial structure, spatial dependence, spatial correlation 21

When methods specifically designed to handle spatial correlation are not available,
it is sometimes possible to rely on permutation tests, where the significance is
determined by random reassignment of the observations (Section 1.2). For some
analytical situations, special permutational schemes have been developed that leave
spatial correlation invariant; examples are found in Besag & Clifford (1989), Legendre
et al. (1990) and ter Braak (1990, Section 8). The difficulty encountered in these
complex problems is to design a permutation procedure that preserves the spatial or
temporal correlation of the data.

The methods of clustering and ordination described in Chapters 8 and 9 to study
ecological structures do not rely on tests of statistical significance. So, they are not
affected by the presence of spatial correlation. The impact of spatial correlation on
numerical methods will be stressed wherever appropriate.

3 — Classical sampling and spatial structure

Random or systematic sampling designs have been advocated as a way of controlling
the dependence among observations (Cochran, 1977; Green, 1979; Scherrer, 1982).
This was then believed to be a necessary and sufficient safeguard against violations of
the independence of errors, which is a basic assumption of classical statistical tests. It
is adequate, of course, when one is trying to estimate the parameters of a well-
localized statistical population, for example the total number of trees in a forest plot. In
such a case, a random or systematic sample is suitable to obtain unbiased estimates of
the parameters since, a priori, each point has the same probability of being included in
the sample. Of course, the variance and, consequently, also the standard error of the
mean increase if the distribution is patchy, but their estimates remain unbiased. 

Even with random or systematic allocation of observations through space,
observations may retain some degree of spatial dependence if the average distance
between first neighbours is shorter than the zone of spatial influence of the underlying
ecological phenomenon. In the case of broad-scale spatial gradients, no point is far
enough to lie outside this zone of spatial influence. Correlograms and variograms
(Chapter 13), combined with maps, are used to assess the magnitude and shape of
spatial correlation present in data sets.

Classical books such as Cochran (1977) adequately describe the rules that should
govern sampling designs. Such books, however, only emphasize design-based
inference (Section 1.0) and do not discuss the influence of spatial correlation on
sampling designs. At the present time, most of the literature on this subject is from the
field of geostatistics, where important references are: David (1977, Ch. 13),
McBratney & Webster (1981), McBratney et al. (1981), Webster & Burgess (1984),
Borgman & Quimby (1988), and François-Bongarçon (1991). In ecology, see
Legendre et al. (2002).

Ecologists interested in designing field experiments should read the paper of
Dutilleul (1993b), who discusses how to accommodate an experiment to spatially
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heterogeneous conditions. Legendre et al. (2004) have also shown how one can
effectively control for the effect of spatial correlation by the design of the experiment,
and which experimental designs lead to tests of significance that have greater power.
The concept of spatial heterogeneity is discussed at some length in the multi-author
book edited by Kolasa & Pickett (1991), in the review paper of Dutilleul & Legendre
(1993), in the book of Dutilleul (2011), and in Section 13.0.

1.2 Statistical testing by permutation

The role of a statistical test is to decide whether some parameter of the reference
population may take a value assumed by hypothesis, given the fact that the
corresponding statistic, whose value is estimated from a sample of objects, may have a
somewhat different value. A statistic is any quantity that may be calculated from the
data and is of interest for the analysis (examples below); in tests of significance, a
statistic is called test statistic or test criterion. The assumed value of the statistic, in the
reference population, is given by the statistical null hypothesis (written H0), which
translates the biological null hypothesis into numerical terms; it often negates the
existence of the phenomenon that the scientist is hoping to evidence. The reasoning
behind statistical testing directly derives from the scientific method; it allows the
confrontation of experimental or observational findings to intellectual constructs that
are called hypotheses, with the explicit purpose of determining whether or not the data
support the null hypothesis (see below) at some predetermined confidence level.

Testing is the central step of inferential statistics. It allows one to generalize the
conclusions of statistical estimation to the reference population from which the
observations have been drawn and that they are supposed to represent. Within that
context, the problem of multiple testing is too often ignored (Box 1.3). Another
legitimate section of statistical analysis, called descriptive statistics, does not rely on
testing. The methods of clustering and ordination described in Chapters 8 and 9, for
example, are descriptive multidimensional statistical methods. The interpretation
methods described in Chapters 10 and 11 may be used in either descriptive or
inferential mode.

1 — Classical tests of significance

Consider, for example, a correlation coefficient (which is the statistic of interest in
correlation analysis) computed between two variables (Section 4.2). When inference to
the statistical population is sought, the null hypothesis is often that the value of the
correlation parameter (), rho) is zero in the statistical population; the null hypothesis
may also be that ) has some value other than zero, value provided by the ecological
hypothesis. To judge of the validity of the null hypothesis, the only information
available is an estimate of the correlation coefficient, r, obtained from a sample of
objects drawn from the statistical population. (Whether the observations adequately
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Multiple testing Box 1.3

When several tests of significance are carried out simultaneously, the probability of
a type I error becomes larger than the nominal value *. Consider for example a
correlation matrix among 5 variables: 10 tests are carried out simultaneously. For
randomly generated data, there is a probability p = 0.401 (computed from the
binomial distribution) of rejecting the null hypothesis at least once over 10 tests at
the nominal * = 0.05 level; this is called the familywise or experimentwise error
rate. So, when conducting multiple tests, one should perform a global test of
significance to determine whether there is any significant value at all in the set.

A general approach is the Bonferroni (1935) correction for k independent tests: replace
the significance level, say * = 0.05, by an adjusted level *' = */k, and compare the
probabilities pi to *'. This is equivalent to adjusting individual p-values pi to  = kpi and
comparing  to the unadjusted significance level *. In the Sidák (1967) correction, * is
replaced by an adjusted level *' = 1 – (1 – *)1/k; or one can compare individual corrected
values  = 1 – (1 – pi)k to the original * significance level. Although the Bonferroni and
Sidák methods are appropriate to test the null hypothesis for the whole set of simultaneous
hypotheses (i.e. reject H0 for the family of k hypotheses if the smallest unadjusted p-value in
the set is less than or equal to *'), these two methods are overly conservative and often lead to
rejecting too few individual hypotheses in the set k, resulting in tests with low power.

Several alternatives have been proposed in the literature; see Wright (1992) for a review.
For non-independent tests, Holm’s procedure (1979) is nearly as simple to carry out as the
Bonferroni adjustment and it is much more powerful, leading to rejecting the null hypothesis
more often. It is computed as follows. (1) Order the p-values from left to right so that
p1 + p2 + … + pi … + pk. (2) Compute adjusted probability values  = (k – i + 1)pi; adjusted
probabilities may be larger than 1. (3) Proceeding from left to right, if an adjusted p-value in
the ordered series is smaller than the one occurring at its left, make the smallest equal to the
largest one. (4) Compare each adjusted  to the unadjusted * significance level and make
the statistical decision. The procedure could be formulated in terms of successive corrections
to the * significance level, instead of adjustments to individual probabilities.

An even more powerful solution is that of Hochberg (1988), which has the desired
overall (“experimentwise”) error rate * only for independent tests, i.e. tests that do not share
part of their data (Wright, 1992). This procedure is identical to Holm’s except for step 3:
proceeding this time from right to left, if an adjusted p-value in the series is smaller than the
one at its left, make the largest equal to the smallest value. Because the adjusted p-values
form a nondecreasing series, both procedures present the properties (1) that a hypothesis in
the ordered series cannot be rejected unless all previous hypotheses in the series have also
been rejected and (2) that equal p-values receive equal adjusted p-values. Hochberg’s method
has the further characteristic that no adjusted p-value can be larger than the largest unadjusted
p-value or exceed 1. More complex and powerful procedures are described by Wright (1992).

Fisher’s combined probability test allows one to combine probabilities pi from k tests
computed on independent data sets (meta-analysis). The value –2" loge(pi) is distributed as
(2 with 2k degrees of freedom if H0 is true in all k tests (Fisher, 1954; Sokal & Rohlf, 1995).

p'i
p'i

p'i

p'i

p'i



24 Complex ecological data sets

represent the statistical population is another question, for which the readers are
referred to the literature on sampling design.) We know, of course, that a sample is
quite unlikely to produce a parameter estimate that is exactly equal to the value of the
parameter in the statistical population. A statistical test tries to answer the following
question: given a hypothesis stating, for example, that ) = 0 in the statistical
population and the fact that the estimated correlation is, say, r = 0.2, is it justified to
conclude that the difference between 0.2 and 0.0 is due to sampling variation?

The choice of the statistic to be tested depends on the problem at hand. For
instance, in order to find whether two samples may have been drawn from the same
statistical population or from populations with equal means, one would choose a
statistic measuring the difference between the two sample means ( ) or,
preferably, a pivotal form like the usual t-statistic used in such tests; a pivotal statistic
has a distribution under the null hypothesis that remains the same for any value of the
measured effect (here, ) because the difference of means statistic is divided by
its standard error. In the same way, the slope of a regression line is described by the
slope parameter of the linear regression equation, which is assumed, under the null
hypothesis, to be either zero or some other value suggested by ecological theory. The
test statistic describes the difference between the observed and hypothesized values of
the slope; the pivotal form of this difference is a t or F-statistic.

Another aspect of a statistical test is the alternative hypothesis (H1), which is also
imposed by the ecological problem at hand. H1 is the opposite of H0, but there may be
several statements that represent some opposite of H0. In correlation analysis for
instance, if one is satisfied to determine that the correlation coefficient in the reference
population ()) is significantly different from zero in either the positive or the negative
direction, meaning that some linear relationship exists between two variables, then a
two-tailed alternative hypothesis is stated about the value of the parameter in the
statistical population: ) & 0. On the contrary, if the ecological phenomenon underlying
the hypothesis imposes that a relationship, if present, should have a given sign, one
formulates a one-tailed hypothesis. For instance, studies on the effects of acid rain are
motivated by the general paradigm that acid rain, which lowers the pH, has a negative
effect on terrestrial and aquatic ecosystems. In a study of the correlation between pH
and diversity, one would formulate the following hypothesis H1: pH and diversity are
positively correlated (i.e. low pH is associated with low diversity; H1: ) > 0). Other
situations would call for a different alternative hypothesis, symbolized by H1: ) < 0.

The expressions one-tailed and two-tailed refer to the fact that, in a two-tailed test,
one would look in both tails of the reference statistical distribution for values as
extreme as, or more extreme than the observed value of the statistic (i.e. the one
computed from the actual data). In a correlation study for instance, where the reference
distribution (t) for the test statistic is symmetric about zero, the probability of the data
under the null hypothesis in a two-tailed test is given by the proportion of values in the
t-distribution that are, in absolute value, as large as, or larger than the absolute value of
the observed t-statistic. In a one-tailed test, one would look only in the tail
corresponding to the sign given by the alternative hypothesis. For instance, for a test in

x1 x2–
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the right-hand tail (,1: ) > 0), look for the proportion of values in the t-distribution
that are as large as or larger than the signed value of the observed t-statistic.

In standard statistical tests, the test statistic computed from the data is referred to
one of the usual statistical distributions printed in books or computed by some
appropriate computer software; the best-known are the z, t, F and (2 distributions.
This, however, can only be done if certain assumptions are met by the data, depending
on the test. The most commonly encountered are the assumptions of normality of the
variable(s) in the reference population, normality of the regression residuals,
homoscedasticity (Box 1.4), and independence of the observations (Box 1.1). Refer to
Siegel (1956, Chapter 2), Siegel & Castellan (1988, Chapter 2), or Snedecor &
Cochran (1967, Chapter 1), for concise yet clear classical exposés of the concepts
related to statistical testing.

2 — Permutation tests

The method of permutation, also called randomization, is a very general approach to
testing statistical hypotheses. Following Manly (1997), permutation and
randomization are considered synonymous in the present book, although permutation
may also be considered to be the technique by which the principle of randomization is
applied to data during permutation tests. Other points of view are found in the
literature. For instance, Edgington (1995) considers that a randomization test is a
permutation test based on randomization, by opposition to restricted permutations in a
loop for time series or by toroidal shift for grid data on a map. A different although
related meaning of randomization refers to the random assignment of replicates to
treatments in experimental designs. 

Permutation testing can be traced back to at least Fisher (1935, Chapter 3). Instead
of comparing the actual value of a test statistic to a standard statistical distribution, the
reference distribution is generated from the data themselves, as described below; other
randomization methods are mentioned at the end of the present section. Permutation
provides an efficient approach to testing when the data do not conform to the
distributional assumptions of the statistical method one wants to use (e.g. normality).
Permutation testing is applicable to very small samples, like nonparametric tests. It
does not, however, solve problems of independence of the observations, including
those caused by spatial correlation. Nor does the method solve distributional problems
that are linked to the hypothesis subjected to a test*. Permutation remains the method
of choice to test novel or other statistics whose distributions are poorly known.

*  For instance, when studying the differences among sample means (two groups: t-test; several
groups: F-test of ANOVA), the classical Behrens-Fisher problem (Robinson, 1982) reminds us
that two null hypotheses are tested simultaneously by these methods, i.e. equality of the means
and equality of the variances. Testing the t or F-statistics by permutations does not change the
dual aspect of the null hypothesis; in particular, it does not allow one to unambiguously test the
equality of the means without checking first the equality of the variances using another, more
specific test (two groups: F ratio; several groups: Bartlett’s test of equality of variances).

Randomi-
zation
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Furthermore, results of permutation tests are valid even with observations that are not
a random sample of some statistical population; this point is further discussed in
Subsection 1.2.4. Edgington (1995) and Manly (1997) have written excellent
introductory books about the method. A short account is given by Sokal & Rohlf
(1995) who use the expression “randomization test”. Permutation tests are used in
several chapters of the present book.

The speed of modern computers would allow users to perform any statistical test
using the permutation method. The chief advantage is that one does not have to worry
about the distributional assumptions of classical testing procedures; the disadvantage
is the extra computer time required to actually perform a large number of
permutations, each one being followed by recomputation of the test statistic.
Permutation tests are fairly easy to program and are increasingly available in computer
packages. As an example, let us consider the situation where the significance of a
correlation coefficient between two variables, x1 and x2, is to be tested.

Hypotheses 

• H0: The correlation between the variables in the reference population is zero () = 0).

• For a two-tailed test, H1: ) & 0. 

• Or for a one-tailed test, either H1: ) > 0, or H1: ) < 0, depending on the ecological
hypothesis.

Test statistic

• Compute the Pearson correlation coefficient r. Calculate the pivotal statistic
 (eq. 4.13; n is the number of observations) and use it as the

observed value of the test statistic in the remainder of the test. 

In this specific case, the permutation test results would be the same using either r or
t as the test statistic, because t is a monotonic function of r for any constant value of n;
r and t are “equivalent statistics for permutation tests”, sensu Edgington (1995). This is
not always the case. For example, when testing a partial regression coefficient in
multiple regression, the test should not be based on the distribution of permuted partial
regression coefficients because they are not monotonic to the corresponding partial t-
statistics. The partial t should be preferred because it is pivotal and, hence, it is
expected to produce correct type I error.

Considering a pair of equivalent test statistics, one could choose the statistic which
is the simplest to compute if calculation time would otherwise be longer in an
appreciable way. This is not the case in the present example: calculating t involves a
single extra line in the computer program compared to r. So the test is conducted using
the usual t-statistic.

t n 2– r 1 r2–[ ]=
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Distribution of the test statistic

The argument invoked to construct a null distribution for the statistic is that, if the null
hypothesis is true, all possible pairings of the two variables are equally likely to occur.
The pairing found in the observed data is just one of the possible, equally likely
pairings, so that the value of the test statistic for the unpermuted data should be typical,
i.e. located in the central part of the permutation distribution.

• It is always the null hypothesis that is subjected to testing. Under H0, the rows of x1
are exchangeable with one another if the rows of x2 are fixed, or conversely, and the
observed pairing of x1 and x2 values is due to chance alone; accordingly, any value of
x1 could have been paired with any value of x2.

• A realization of H0 is obtained by permuting at random the values of x1 while
holding the values of x2 fixed, or the opposite (which would produce, likewise, a
random pairing of values). Recompute the value of the correlation coefficient and the
associated t-statistic for the randomly paired vectors x1 and x2, obtaining a value t*.

• Repeat this operation a large number of times (say, 999 or 9999 times). The different
permutations produce a set of values t* obtained under H0. 

• Add to these the observed value of the t-statistic, computed for the unpermuted
vectors. Since H0 is being tested, this value is considered to be one of those that could
be obtained under H0 and, consequently, it should be added to the distribution of t
values (Hope, 1968; Edgington, 1995; Manly, 1997). Together, the unpermuted and
permuted values form an estimate of the sampling distribution of t under H0, which
will be used as the reference distribution in the next step.

Statistical decision

• As in any other statistical test, the decision is made by comparing the observed value
of the test statistic (t) to the reference distribution obtained under H0. If the observed
value of t is typical of the values obtained under the null hypothesis (which states that
there is no relationship between x1 and x2), H0 cannot be rejected; if it is unusual,
being too extreme to be considered a likely result under H0, H0 is rejected and the
alternative hypothesis is considered to be a more likely explanation of the data.

• Compute the associated p-value, which is the proportion of values in the reference
distribution that are as extreme as, or more extreme than the observed value of the test
statistic. The p-value is either computed from the reference distribution obtained by
permutations, or found in a table of the appropriate statistical distribution. The p-value
is a statement about the probability of obtaining a result as extreme as, or more
extreme than the one actually obtained from the sample data, assuming that H0 is true
for the reference population. Researchers often write in short that it is the probability
of the data under the null hypothesis. Fisher (1954) saw the p-value as a measure of the
strength of evidence against the null hypothesis; the smaller the p-value, the stronger
the evidence against H0.
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• Compare the p-value to a predetermined significance level *. Following the
Neyman-Pearson (or frequentist) approach (Neyman & Pearson, 1966), one rejects H0
if p + *, and does not reject it if p > *. Or one can use the Fisher approach: Fisher left
the interpretation of the p-value and the ensuing statistical decision to the researcher.

3 — Numerical example

Let us consider the following case of two variables observed over 10 objects:

These values were drawn at random from a positively correlated bivariate normal
distribution, as shown in Fig. 1.8a. Consequently, they would be suitable for
parametric testing. So, it is interesting to compare the results of a permutation test to
the usual parametric t-test of the correlation coefficient. The statistics and associated
probabilities for this pair of variables, for ' = (n – 2) = 8 degrees of freedom, are:

r = 0.70156, t = 2.78456, n = 10: 
prob (one-tailed) = 0.0119, prob (two-tailed) = 0.0238.

There are 10! = 3.6288 × 106 possible permutations of the 10 values of variable x1
(or x2). Here, 999 of these permutations were generated using a random permutation
algorithm; they represent a random sample of the 3.6288 × 106 possible permutations.
The computed values for the test statistic (t) between permuted x1 and fixed x2 have
the distribution shown in Fig. 1.8b; the observed value, t = 2.78456, has been added to
this distribution. The permutation results are summarized in the following table, where
|t| is the (absolute) observed value of the t-statistic (-t- = 2.78456) and t* is a value
obtained after permutation. The absolute value of the observed t is used in the
following table to make it a general example since there are cases where t is negative.

† This count corresponds to the observed t value that was added to the reference distribution. 

For a one-tailed test (in the right-hand tail in this case, since H1: ) > 0), one counts
how many values in the permutational distribution of the statistic are equal to, or larger
than, the observed value (t* . t; there are 1 + 17 = 18 such values in this case). This is
the only one-tailed hypothesis worth considering, because the objects are known in
this case to have been drawn from a positively correlated distribution. A one-tailed test
in the left-hand tail (H1: ) < 0) would be based on how many values in the
permutational distribution are equal to, or smaller than, the observed value (t* + t,
which are 8 + 0 + 974 +1 = 983 in the example). For a two-tailed test, one counts all
values that are as extreme as, or more extreme than the observed value in both tails of
the distribution (-t*- . -t-, which are 8 + 0 + 1 + 17 = 26 in the example). 

x1 –2.31 1.06 0.76 1.38 –0.26 1.29 –1.31 0.41 –0.67 –0.58
x2 –1.08 1.03 0.90 0.24 –0.24 0.76 –0.57 –0.05 –1.28 1.04

t* < –-t- t* = –-t- –-t-< t* <-t- t* = -t- t* > -t-
Statistic t 8 0 974 1† 17

Significance
level
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Probabilities associated with these distributions are computed as follows, for a one-
tailed and a two-tailed test (results using the r statistic would be the same):

One-tailed test [H0: ) = 0; H1: ) > 0]: 
prob (t* . 2.78456) = (1 + 17)/1000 = 0.018

Two-tailed test [H0: ) = 0; H1: ) & 0]: 
prob(-t*- . 2.78456) = (8 + 0 + 1 + 17)/1000 = 0.026

Note how similar the permutation results are to the results obtained from the classical
test, which referred to a table of the Student t-distribution. The observed difference is
partly due to the small number of pairs of points (n = 10) sampled at random from the
bivariate normal distribution, with the consequence that the data set does not quite
conform to the hypothesis of normality. It is also due, to a certain extent, to the use of
only 999 permutations, sampled at random among the 10! possible permutations.

4 — Remarks on permutation tests

In permutation tests, the reference distribution against which the statistic is tested is
obtained by randomly permuting the data under study, without reference to any
statistical population. The test is valid as long as the reference distribution has been
generated by a procedure related to a null hypothesis that makes sense for the problem
at hand, irrespective of whether or not the data set is representative of a larger
statistical population. This is the reason why the data do not have to be a random

Figure 1.8 (a) Scatter diagram of the 10 points of the numerical example with respect to variables x1 and x2.
(b) Frequency histogram of the (1 + 999) permutation results (t-statistics for correlation
coefficients). The observed value of t , |t | = 2.78456, is shown, as well as –|t | = –2.78456.
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sample from some larger statistical population. The only information the permutation
test provides is whether the pattern observed in the data is likely, or not, to have arisen
by chance. For this reason, one may think that permutation tests are not as “good” or
“interesting” as classical tests of significance because they might not allow one to infer
conclusions that apply to a statistical population. 

A more pragmatic view is that the conclusions of permutation tests may be
generalized to a reference population if the data set is a random sample of that
population. Otherwise, they allow one to draw conclusions only about the particular
data set, measuring to what extent the value of the statistic is “usual” or “unusual” with
respect to the null hypothesis implemented in the permutation procedure. Edgington
(1995) and Manly (1997) further argue that data sets are very often not drawn at
random from statistical populations, but simply consist of observations that happen to
be available for the study. The generalization of results, in classical as well as
permutation tests, depends on the degree to which the data were actually drawn at
random, or are equivalent to a sample drawn at random, from a reference population.

For small data sets, one can compute all possible permutations in a systematic way
and obtain the complete permutation distribution of the statistic; an exact or complete
permutation test is obtained. For large data sets, only a sample of all possible
permutations may be computed because there are too many. When designing a
sampled permutation test, it is important to make sure that one is using a uniform
random generation algorithm, capable of producing all possible permutations with
equal probabilities (Furnas, 1984). Computer programs use procedures that produce
random permutations of the data; these in turn call the ‘Random’ function of computer
languages. Such a procedure is described in Section 5.8 of Manly’s book (1997).
Random permutation functions are available in subroutine libraries and in R.

The case of the correlation coefficient has shown how the null hypothesis guided
the choice of an appropriate permutation procedure, capable of generating realizations
of this null hypothesis. A permutation test for the difference between the means of two
groups would involve random permutations of the objects between the two groups
instead of random permutations of one variable with respect to the other. The way of
permuting the data depends on the null hypothesis to be tested. 

Some tests may be reformulated in terms of some other tests. For example, the t-
test of equality of means is equivalent to a test of the correlation between the vector of
observed values and a vector assigning the observations to group 1 or 2. The same
value of t and probability (classical or permutational) are obtained using both methods.

Simple statistical tests such as those of correlation coefficients or differences
between group means may be carried out by permuting the original data, as in the
example above. Problems involving complex relationships among variables may
require permuting the residuals of some model instead of the raw data; model-based
permutation is discussed in Subsection 11.1.8. The effect of a nominal covariable may
be controlled for by restricted permutations, limited to the objects within the groups

Complete
permutation
test

Sampled
permutation
test

Restricted
permu-
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defined by the covariable. This method is discussed in detail by Manly (1997).
Applications are found in Brown & Maritz (1982; restrictions within replicated values
in a multiple regression) and in Sokal et al. (1987; Mantel test), for instance.

In sampled permutation tests, adding the observed value of the statistic to the
distribution has the effect that it becomes impossible for the test to produce no value
“as extreme as, or more extreme than the observed value”, as the standard expression
goes. This way of computing the probability is biased, but it has the merit of being
statistically valid (Edgington, 1995, Section 3.5). The precision of the probability
estimate is the inverse of the number of permutations performed; for instance, after
(999 + 1) permutations, the precision of the probability statement is 0.001.

The number of permutations one should perform is always a trade-off between
precision and computer time. The more permutations the better, since probability
estimates are subject to error due to sampling the population of possible permutations
(except in the rare cases of complete permutation tests), but it may be tiresome to wait
for the permutation results when studying large data sets. Jackson & Somers (1989)
recommend to compute 10000 to 100000 permutations in order to ensure the stability
of the probability estimates in Mantel tests (Subsection 10.5.1). The following
recommendation can be made. In exploratory analyses, 500 to 1000 permutations may
be sufficient as a first contact with the problem. If the computed probability is close to
the preselected significance level, run more permutations. In any case, use more
permutations (e.g. 10000) for final results submitted for publication. 

Interestingly, tables of critical values in nonparametric statistical tests for small
samples are based on permutations. The authors of these tables computed how many
cases can be found, in the complete permutation distribution, that are as extreme as, or
more extreme than the computed value of the statistic. Hence, probability statements
obtained from small-sample nonparametric tests are exact probabilities (Siegel, 1956).

Named after the city that hosts the famous casino in the principality of Monaco,
Monte Carlo methods use random numbers to study either real data sets or the
behaviour of statistical methods through simulations. Permutation tests are Monte
Carlo methods because they use random numbers to randomly permute data. Other
such methods are based on computer-intensive resampling. Among these are the
jackknife (Tukey, 1958; Sokal & Rohlf, 1995) and the bootstrap (Efron, 1979; Efron &
Tibshirani, 1993; Manly, 1997). In the latter methods, the values used in each iteration
to compute a statistic are a subsample of the original data. In the jackknife, each
subsample leaves out one of the original observations and sampling is done without
replacement. In the bootstrap, each subsample is obtained by resampling the original
sample with replacement; the justification is that resampling the original sample
approximates a resampling of the original population.

As an exercise, readers are invited to figure out how to perform a permutation test
for the difference between the means of two groups of objects on which a single
variable has been measured, using the t-statistic, and create a permutational t-test R

How many
permu-
tations?

Monte Carlo

Jackknife
Bootstrap
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function*. Other types of permutation tests are discussed in Sections 5.4, 7.3, 8.9, 10.2,
10.3, 10.5, 10.6, 11.1, 11.4, 11.5, 12.6, 13.1 and 13.3. 

1.3 Computer programs and packages

Processing complex ecological data sets almost always requires the use of computers,
as much for the amount of data to be processed as for the fact that the operations to be
performed are complex and often repetitious. 

Powerful statistical packages such as SAS/, SPSS/, Statistica/ and others are
commercially available for general statistical analysis. Many other programs are either
commercially or freely available on the Web pages of researchers or research
institutions; some of these programs will be mentioned in Software sections in the
following chapters.

This book will pay special attention to statistical functions available in the R
language, which was developed in 1990 by Ross Ihaca and Robert Gentleman at the
University of Auckland. R is a dialect of the S language. The S freeware was created in
1976 by John Chambers and colleagues at AT&T Bell Laboratories. R became
freeware in 1995 and an international project in 1997. Its source code is freely
available under the GNU General Public License. For most users, R is a powerful
environment to carry out statistical analyses. R is also a programming language that
allows scientists to easily write new functions. For computationally-intensive tasks, R
functions can call compiled code written in C, C++ and Fortran. 

The main features of the R language are described on the Web page
http://en.wikipedia.org/wiki/R_(programming_language). Other computer languages
such as S-PLUS/ (a commercial implementation of S) and  offer features
comparable to R; however, they are not free.

The use of R has grown tremendously among researchers during the past 15 years
and it has become a de facto standard for software development and computing in most
fields of science. The fact that it is free and multi-platform explains in part its success:
functions can be used in the same way on all major personal computer operating
systems (presently Microsoft Windows, Mac OS X, and Linux). R is also available for
a wide variety of Unix platforms. The other part of the explanation holds in the fact
that the R Development Core Team has encouraged contributions from the community
of users and methods developers, who have joined in the movement wholeheartedly.
As a result, thousands of R packages are now available on the Comprehensive R
Archive Network (CRAN) main site (http://cran.r-project.org/) and on mirror sites.

*  Readers can compare their solution to the R function t.perm() available on the Web page
http://numericalecology.com/rcode.

 MATLAB!
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Thousands more packages and individual functions are distributed by researchers on
their Web pages or are attached to scientific papers describing new numerical methods.
All functions found in R packages come with documentation files, called by the help()
function or by a question mark, and they are all presented in the same format.

There are many reference books published about the R language and its application
to various fields. A good starting point to learn about R is The R book of Crawley
(2007). The Venables & Ripley (2002) textbook is the acknowledge reference for
many functions found in the R and S languages. In several of the following chapters,
we will refer to the book Numerical ecology with R by Borcard et al. (2011), which
was written as a companion to the 1998 and the present editions of Numerical ecology.
The Borcard et al. (2011) book is of particular interest to readers who wish to
implement the methods described in this book using available R software. 

Here is an example of how R packages and functions will be referred to in this
book: package VEGAN, function rda(). The parentheses after function names contain
data file names and other parameters necessary to run functions.

Ecologists should bear in mind that easy computation has two pitfalls: the fact that
computations are done and results are produced does not ensure (1) that the data satisfy
the conditions required by the method, or (2) that the results produced by the computer
are interpreted correctly in ecological terms. This book provides colleagues with the
theoretical and practical information they need to avoid these pitfalls.

1.4 Ecological descriptors

Any ecological study, classical or numerical, is based on descriptors. In the present
text, the terms descriptor and variable will be used interchangeably. These refer to the
attributes, or characters (also called items in the social sciences, and profiles or
features in the field of pattern recognition) used to describe or compare the objects of
the study. The objects that ecologists compare are the sites, quadrats, observations,
sampling units, individual organisms, or subjects; these are defined a priori by the
sampling design, before making the observations (Section 2.1). Observation units are
often called “samples” by ecologists. The term sample is only used in its statistical
sense in this book; it refers to a set of observations resulting from a sampling action or
campaign. Objects may be called individuals or OTUs (Operational taxonomic units)
in numerical taxonomy, OGUs (Operational geographic units) in biogeography, cases,
patterns or items in the field of pattern recognition, etc. 

The descriptors, used to describe or qualify the objects, are the physical, chemical,
ecological, or biological characteristics of these objects that are of interest for the
study. In particular, biological species are descriptors of sites for ecologists; in
(numerical) taxonomy on the contrary, the species are the objects of the study, and the
sites where the species are observed or collected may be used by the taxonomist as

Descriptor
Variable

Object
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descriptors of the species. It all depends on the variable, defined a priori, that specifies
the objects of a study. In ecology, sites are compared using the species they contain,
there being no possibility of choosing the species, whereas taxonomists compare
populations or other taxonomic entities obtained from a number of different sites.

A descriptor is a law of correspondence established by the researcher to describe and
compare, on the same basis, all the objects of the study. This definition applies to all types of
descriptors discussed below (Table 1.2). The fundamental property of a descriptor, as
understood in the present book, is that it distributes the objects among non-overlapping states.
Each descriptor must, therefore, operate like a law that associates with each object in the group
under study one and only one element of a set of distinguishable states that belong to the
descriptor.

The states that constitute a descriptor must necessarily be mutually exclusive. In
other words, two different states of the same descriptor must not be applicable to the
same object. Descriptors, on the contrary, do not have to be independent of one another
(see Box 1.1: independent descriptors). In Chapter 6, it will be seen that the
information contained in one descriptor may partially or totally overlap with the
information in another descriptor. 

1 — Mathematical types of descriptors

The states that form a descriptor — i.e. the qualities observed or determined on the
objects — may be of a qualitative or quantitative nature, so that descriptors may be
classified into several types. In ecology, a descriptor may be biological (presence,
abundance, or biomass of different species), physical, chemical, geological,
geographical, temporal, climatic, etc. Table 1.2 presents a classification of descriptors
according to their mathematical types. That classification is independent of the
particular discipline to which the descriptors belong. The mathematical type of a
descriptor determines the type of numerical processing that can be applied to it. For
example, parametric correlations (Pearson’s r) may be calculated between quantitative
descriptors, while nonparametric correlations (such as Kendall’s 0) may be used on
ordered but not necessarily quantitative descriptors, as long as their relationship is
monotonic. To measure the dependence among descriptors that are not in monotonic
relationship, or among qualitative descriptors, requires the use of other methods based
on contingency tables (Chapter 6). Subsection 1.5.7 will show how descriptors of
different mathematical types can be made compatible, in order to use them together in
ecological studies.

Quantitative descriptors, which are the most usual type in ecology, are found at the bottom
of Table 1.2. They include all descriptors of abundance and other quantities that can be plotted
on a continuous axis of real numbers. They are called quantitative, or metric (Falconer, 1960),
because they measure changes in a phenomenon in such a way that the difference between 1 and
2, for example, is quantitatively the same as the difference between, say, 6 and 7. Such
descriptors may be further subdivided into relative-scale quantitative variables, where value
‘zero’ means the absence of the characteristic of interest, and interval-scale variables where the
‘zero’ is chosen arbitrarily. For the latter type, the fact that the ‘zero’ reference is chosen

Descriptor

Descriptor
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arbitrarily prevents comparisons of the type “this temperature (°C) is twice as high as that one”.
Species abundance data, or temperatures measured in Kelvin, are examples of the first type,
while temperature measured in degrees Celsius, dates, or geographic directions (of wind,
currents, etc.) in degrees, are examples of the second.

Continuous quantitative descriptors are usually processed as they are. If they are divided
into a small number of equidistant classes of abundance (further discussed below), the
discontinuous descriptors that are obtained may usually be processed as if they were continuous,
because the distortion due to grouping is negligible for the majority of distribution types (Sneath
& Sokal, 1973). Before the advent of computers, it was usual practice, in order to facilitate
calculations, to divide continuous descriptors into a small number of classes. This
transformation is still necessary when, due to low precision of the measurements, only a small
number of classes can be distinguished in practice, or when comparisons are sought between
quantitative and semiquantitative descriptors.

Meristic variables (the result of enumeration, or counting) theoretically should be
considered as discontinuous quantitative. In ecology, however, these descriptors are most often
counts of the number of specimens belonging to the various species, whose range of variation is
so large that they behave, for all practical purposes, as continuous variables. When they are
transformed (Sections 1.5 and 7.7), as is often the case, they become real numbers instead of
integers.

In order to speed up field observations or counts in the laboratory, it is often interesting for
ecologists to record observations in the form of semiquantitative descriptors. Usually, it is
possible to estimate environmental characteristics very rapidly by ascribing them a score using a
small number of ordered classes: score 1 < score 2 < score 3, etc. Ecologists may often proceed

Table 1.2 The different mathematical types of descriptors.

Descriptor types Ecological examples

Binary (two states, presence-absence) Species present or absent

Multi-state (many states)

Nonordered (qualitative, nominal, attributes) Geological group

Ordered

Semiquantitative (rank-ordered, ordinal) Importance or abundance scores

Quantitative (metric, measurement)

Discontinuous (meristic, discrete) Equidistant abundance classes

Continuous (metric) Temperature, length
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in this way without losing pertinent information, whereas precise counts would have
necessitated more considerable efforts than required by the ecological phenomenon under study.
For example, in studying the influence of the unevenness of the landscape on the fauna of a
given area, it may be enough to describe the relief using ordered classes such as flat, undulated,
rough, hilly and mountainous. In the same way, counting large numbers of organisms may be
done using abundance scores instead of precise numbers of individuals. Frontier (1973), for
example, established such a scoring scale to describe the variability of zooplankton. Another
score scale, also developed by Frontier (1969) for counting zooplankton, was used to estimate
biomass (Dévaux & Millerioux, 1976b) and diversity of phytoplankton (Dévaux & Millerioux,
1977) as well as to evaluate schools of cetaceans at sea (Frontier & Viale, 1977). Frontier &
Ibanez (1974) as well as Dévaux & Millerioux (1976a) have shown that this rapid technique is
as informative as classical enumeration for principal component analysis (Section 9.1). It must
be noted that nonparametric statistical tests of significance, which are used on such
semiquantitative descriptors, have a discriminatory power almost equal to that of their
parametric equivalent. Naturally occurring semiquantitative descriptors, which give ranks to the
objects under study, as well as quantitative descriptors divided into non-equidistant classes
(which is done either to facilitate data collection or to evidence holes in frequency distributions),
are included among the semiquantitative descriptors. Method 6.4 in Subsection 1.5.6 shows how
to normalize semiquantitative descriptors if they have to be used in methods of data analysis that
perform better in the presence of normality. Normalized semiquantitative descriptors should
only be interpreted in terms of the ordinal value that they really represent. In addition, methods
designed for quantitative data analysis may often be adapted to ranked data. This is the case, for
example, with principal component analysis (Lebart et al., 1979; Subsection 9.1.7) and linear
regression (Iman & Conover, 1979).

Qualitative descriptors often present a problem to ecologists, who are tempted to discard
them, or reduce them to a series of binary variables (Subsection 1.5.7). Let us forget the cases
where descriptors of this kind have been camouflaged as ordered variables by scientists who did
not quite know what to do with them …Various methods based on contingency tables
(Chapter 6) may be used to compare such descriptors with one another, or to ordered descriptors
divided into classes. Special resemblance coefficients (Chapter 7) allow these descriptors to be
used as a basis for clustering (Chapter 8) or ordination (Chapter 9). The first paragraph of
Chapter 6 gives examples of qualitative descriptors. An important class is formed by
classifications of objects, which may in turn become descriptors of these objects for subsequent
analyses, since the definition of a classification (Section 8.1) corresponds to the definition of a
descriptor given above.

Binary or presence-absence descriptors may be noted + or –, or 1 or 0. In ecology, the most
frequently used type of binary descriptors is the presence or absence of a species, when reliable
quantitative information is not available. It is only for historical reasons that they are considered
as a special class: programming the first computers was greatly facilitated by such descriptors
and, as a result, several methods have been developed for processing them. Sneath & Sokal
(1973) present various methods to recode variables into binary form; see also Subsection 1.5.7.
Binary descriptors encountered in ecology may be processed either as qualitative,
semiquantitative or quantitative variables. Even though the mean and variance parameters of
binary descriptors are difficult to interpret, such descriptors may be used with methods originally
designed for quantitative variables — in a principal component or correspondence analysis, for
instance, or as independent variables in regression or canonical analysis models. 
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When collecting ecological data, the level of precision with which descriptors are
recorded should be selected with consideration of the problem at hand. Quantitative
descriptors may often be recorded either in their original form or in semiquantitative or
qualitative form. The degree of precision should be chosen with respect to the
following factors: (1) What is the optimal degree of precision of the descriptor for
analysing this particular ecological phenomenon? (2) What type of mathematical
treatment will be used? This choice may determine the mathematical types of the
descriptors. (3) What additional cost in effort, time or money is required to raise the
level of precision? Would it not be more informative to obtain a larger number of less
precise data?

2 — Intensive, extensive, additive, and non-additive descriptors

There are other useful ways of looking at variables. Margalef (1974) classified
ecological variables as either intensive or extensive. These notions are derived from
thermodynamics (Glansdorff & Prigogine, 1971). A variable is said to be intensive if
its value is defined independently of the size of the sampling unit in which it is
measured. For example, water temperature is defined independently of the size of the
bucket of water in which a thermometer is placed: we do not say “12°C per litre” but
simply “12°C”. This does not mean that the measured value of temperature may not
vary from place to place in the bucket; it may indeed, unless water is well-mixed and
therefore homogeneous. Concentration of organisms (number per unit surface or
volume), productivity, and other rate variables (e.g. birth, death) are also intensive
because, in a homogeneous system, the same value is obtained whether the original
measurements are made over 1 m2 or over 100 m2. In contrast, an extensive variable is
one whose value, in a homogeneous system, changes proportionally (in linear
relationship) to the size of the sampling unit (which may consist in a line, a surface, or
a volume). It is formally defined as an integral over the sampling unit. Number of
individuals and biomass in a quadrat or volume, at a given point in time, are examples
of extensive variables. 

Extensive variables have the property that the values they take in two sampling
units can be added to provide a meaningful estimate of the value in the combined unit:
they are additive (next paragraph). Other variables do not have this property; either
they do not vary at all (e.g. temperature in a homogeneous bucket of water, which is an
intensive variable), or they vary in a nonlinear way with the size of the sampling unit.
For example, species richness in a sampling unit (surface or volume) cannot be
computed as the sum of the numbers of species found in two sub-units; that sum would
usually be larger than the number of species actually found in the combined unit
because some species are common to the two sub-units. Species diversity (Chapter 5)
also has this property. The relationship of such variables to scale is complex and
depends on the distribution patterns of the species and the size of the sampling units
(grain size of the measurements; Section 13.0).

Another, more statistical point of view concerns additivity. This notion is well-
known in geostatistics (Olea, 1991, p. 2; Journel & Huijbregths, 1978). A variable is
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said to be additive if its values can be added while retaining the same meaning as the
original variable. A good example is the number of individuals in a quadrat.
Concentrations, which are intensive variables, are additive if they are referred to the
same linear, surface or volume unit measure (e.g. individuals m–2; kg m–3) (Journel &
Huijbregths, 1978, p. 199); values may be added to compute a mean for example.

Extensive variables (e.g. number of individuals) are, by definition, additive; a sum
or a mean has the same meaning as the original data although, if the sampling units
differ in size, the values must be weighted by the sizes of the respective sampling units
for their mean to be meaningful. For intensive additive variables (e.g. temperature or
concentration), only the (weighted) mean has the same meaning as the original values.
Variables may be additive over either time or space (Walliser, 1977); numbers of
individuals in quadrats, for example, are additive over space, but not over time if the
time lag between observations is shorter than the generation time of the organisms (the
same individuals would be counted several times). 

Examples of non-additive variables are pH values, logarithms and ratios of random
variables, indices of various kinds, and directions of vectors (wind direction, aspect of
a slope, etc.). Values of non-additive variables must be transformed in some way
before (and if) they can be meaningfully combined. Logarithms of counts of
organisms, for instance, have to be back-transformed using antilogarithms before
values can be added. For ratios, the numerator and denominator must be added
separately, and the ratio recomputed from these sums. Other non-additive variables,
such as species richness and diversity, cannot be numerically combined; these indices
for combined sampling units must be recomputed from the combined raw data.

These notions are of prime importance when analysing spatial data (Chapters 13
and 14). To appreciate their practical usefulness, let us consider a study in which the
following variables have been measured at a site in a lake or in the ocean, at different
times: incident solar energy at water surface (W m–2), temperature (°C), pH, O2
concentration (g m–3), phytoplankton production (g C m–3 s–1), and concentration of
zooplankton (individuals m–3). All these variables are intensive; they all have complex
physical units, except temperature (simple unit) and pH (no unit). Assuming that some
form of random sampling has been conducted with constant-sized observation units,
how could estimates be obtained for the whole study area? This question may be
viewed from two different angles, i.e. one may be looking for a mean or for an integral
value over the study area. For additive variables (i.e. all except pH), values can be
computed that represent the mean over the study area. However, integrating over the
study area to obtain values for total incident solar energy, zooplankton, etc. is not that
simple, because it requires the variables to be extensive. No extensive variable can be
derived from temperature or pH. In the case of variables with complex physical units,
new variables may be derived with units that are appropriate for integration:

• Consider O2 concentration. Its physical dimensions (Section 3.1) are [ML–3], with
units g m–3. This indicates that the “mass” part (dimension [M], with unit g), which is
extensive, may be integrated over a volume, for example that of the surface mixed

Non-additive
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layer over the whole study area. Also, values from different depths in the mixed layer
may be vertically integrated, to provide areal concentrations (dimensions [ML–2], with
units g m–2). The same applies to the concentration of zooplankton. 

• Flux variables can be turned into variables that are additive over both space and time.
Phytoplankton production (dimensions [ML–3T–1], with units g C m–3 s–1) is a flux
variable since it is expressed per unit space and time. The extensive “mass” part may be
integrated over a volume or/and over time, e.g. the euphotic zone over the whole study
area or/and for the duration of the study. Values from different depths in the euphotic
zone may be vertically integrated, thus providing areal concentrations (dimensions
[ML–2T–1], with units g C m–2 s–1), which can then be integrated over time.

• Incident solar energy (W m–2) represents a more complex case. The “power” part (W)
can be integrated over space (m2) only. However, because W = J s–1 (Table 3.2), it is
possible to integrate the “energy” part (J) over both space and time. Since incident solar
energy is either in W m–2 or J m–2 s–1, the “power” part may be integrated over space
or, alternatively, the “energy” part may be integrated over both surface (m2) and time
(s). For example, one can compute solar energy over a given area during 24 h. 

1.5 Coding

Coding is a technique by which original data are transformed into other values, to be
used in the numerical analysis. All types of descriptors may be coded, but nonordered
descriptors must necessarily be coded before they may be analysed numerically. The
functions or laws of correspondence used for coding qualitative descriptors are
generally discontinuous; positive integers are usually associated with the various
states.

Consider the case where one needs to compute the dependence between a variable
with a high degree of precision and a less precisely recorded descriptor. Two
approaches are available. In the first approach, the precision of the more precise
descriptor is lowered, for example by dividing continuous descriptors into classes.
Computers can easily perform such transformations. Dependence is then computed
using a mathematical method adapted to the descriptor with the lowest level of
precision. In the second approach, the descriptor with the lower precision level will be
given a numerical scale adjusted to the more precise one. This operation is called
quantification (Cailliez & Pagès, 1976; Gifi, 1990); one method of quantification
through canonical correspondence analysis is described in Subsection 11.2.2. Other
transformations of variables, that adjust a descriptor to another, have been developed
in the regression framework discussed in Section 10.3.
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1 — Linear transformation

In a study where there are quantitative descriptors of different types (metres, litres,
mg L–1, …), it may be useful to put them all on the same scale in order to simplify the
mathematical forms of relationships. It may be difficult to find an ecological
interpretation for a relationship that includes a high level of artificial mathematical
complexity, where scale effects are intermingled with functional relationships. Such
changes of scale may be linear (of the first order), or of some higher order.

A linear change of scale of variable y is described by the transformation
 where y' is the value after transformation. Two different

transformations are actually included in this equation. The first one, translation,
consists in adding or subtracting a constant (  in the equation) to all data.
Graphically, this consists in sliding the scale beneath the data distribution. Translation
is often used to bring to zero the mean, the modal class, the weak point of a bimodal
distribution, or another point of interest in the distribution. The second transformation,
expansion, is a change of scale obtained by multiplying or dividing all observed values
by a constant (  in the equation). Graphically, this operation is equivalent to
contracting or expanding the scale beneath the distribution of a descriptor. 

Two variables that are linearly related can always be put on the same scale by a
combination of an expansion followed by a translation, or the opposite, the values of
parameters  and  being found by linear regression (model I or model II:
Chapter 10). For example (Fig. 1.9), if a linear regression analysis shows the equation
relating  to  to be  (where  represents the values estimated by
the regression equation for variable ), then transforming  into 
successfully puts variable  on the same scale as variable , since . If one

y' b0 b1y+=

b0

b1

b0 b1

Figure 1.9 The regression parameters (b0 and b1) found by regressing  on  (left panel) may be used
(right panel) to transform  into  such that  is now on the same scale as .
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wishes to transform  instead of , the regression equation should be computed the
other way around.

2 — Nonlinear transformations

The methods of multidimensional analysis described in this book are often based on
covariances or linear correlations. Using them requires that the relationships among
variables be made linear by an appropriate transformation. When two variables are not
linearly related, their relationship may be described by a second- or higher-degree
equation, or by other functional forms, depending on the situation. If the nonlinear
form of the equation is derived from ecological theory, as it is often the case in
population dynamics models, interpretation of the relationship poses no problem. If,
however, a nonlinear transformation is chosen empirically, for reasons of mathematical
elegance and without grounding in ecological theory, it may be difficult to find an
ecological meaning to it. 

The relationship between two variables may be determined with the help of a
scatter diagram of the objects in the plane formed by the variables. The principles of
analytical geometry may then be used to recognize the type of relationship (Fig. 1.10),
which in turn determines the most appropriate type of transformation. A relationship
frequently found in ecology is the exponential function, in which a variable 
increases in geometric progression with respect to , according to one of the
following equations:

 or  or  or else (1.3)

depending on the number of constants b that shift or amplify the function. Such
relationships can easily be linearized by using the logarithm of variable y2 (called 
below) instead of y2 itself. The above relationships then become:

, or ,

or , or (1.4)

where the b's are the logarithms of constants b in eq. 1.3.

If two variables display a logarithmic relationship of the form

(1.5)

where b is the base of the logarithm, their relationship can be made linear by applying
a log–1 transformation to :

(1.6)
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When a nonlinear form can be assumed from knowledge of the ecological process
involved, the corresponding equation can be used as the basis for a linearizing
transformation. For instance, the nonlinear equation

(1.7)

describes the exponential growth of a population, as observed in population
explosions. In this equation, the independent variable is time (t); N0 and Nt are the

Figure 1.10 The relationship between variables may often be recognized by plotting them one against the
other. In the upper panel, y2 varies as the natural logarithm of y1. In the lower panel, y2 is an
exponential function of y1. These curves (and corresponding equations) may take different
forms, depending on the modifying constants b, b0, b1 and b2 (eq. 1.3).
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population sizes at times 0 and t, respectively; r is the Malthus parameter describing
the intrinsic rate of increase of the population. This nonlinear equation indicates that Nt
should be transformed into its natural logarithm to make the relationship linear. After
this transformation, loge(Nt) is linearly related to t: loge(Nt) = loge(N0) + rt.

3 — Combining descriptors

Another transformation that is often used consists in combining different descriptors
by addition, subtraction, multiplication or division. In limnology, for example, the
ratio (surface O2/ bottom O2) is often used as a descriptor. So is the Pearsall ionic ratio,
all ions being in the same physical units:

(1.8)

Beware, however, of the spurious correlations that may appear when comparing a
ratio variable y/z to z, or two ratio variables y1/z and y2/z (Pearson 1897). Jackson &
Somers (1991a) illustrate the problem using simulated data and recommend that such
correlations be tested using permutation tests (Section 1.2) involving permutation of
the parent variables, followed by construction of the ratios from the permuted
variables and computation of the correlation coefficient under permutation.

One may want to take into account a factor of magnitude or size. For example,
when observation units are of different sizes, the number of specimens of each species
may be divided by the area or the volume of the unit (depending on whether the units
come from an area or a volume), or by some other measure of the sampling effort. One
must exert care when interpreting the results, however, since large observation units are
more representative of populations and have smaller variances than small ones.

4 — Ranging and standardization

Quantitative variables, used in ecology as environmental descriptors, are often
expressed in incompatible units such as metres, mg L–1, pH units, etc. In order to
compare such descriptors, or before using them together in a classification or
ordination procedure, they must be brought to some common scale. Among the
methods available, some only eliminate size differences while others reduce both the
size and variability to a common scale.

Translation, a method previously discussed, allows one to centre the data,
eliminating size differences due to the position of the zero on the various scales.
Centring is done by subtracting the mean of the observations  from each value :

(1.9)

y Na K+
Mg Ca+
----------------------=

Permutation
test

y( ) yi

y'i yi y–=
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For relative-scale variables (Subsection 1.4.1), dividing each  by the largest
observed value is a way, based on expansion, to bring all values in the range [0, 1]
(Cain & Harrison, 1958):

(1.10)

For interval-scale variables, whose range may include negative values, the absolute
value of the largest positive or negative value is used as divisor. The transformed
values are in the interval [–1, +1].

Other methods allow the simultaneous adjustment of the magnitude and the
variability of the descriptors. The method of ranging, proposed by Sneath & Sokal
(1973), reduces the values of a variable to the interval [0, 1] by first subtracting the
minimum observed for each variable and then dividing by the range:

(1.11)

For relative-scale variables (Subsection 1.4.1) for which ymin is always zero, ranging
can be achieved as well with eq. 1.10.

The most widely used method for making descriptors compatible is to standardize
the data (transformation into so-called “z-scores”). This method will be fully discussed
in Section 4.2, which deals with correlation. Principal components (Section 9.2) are
frequently computed using standardized data. Standardization is achieved by
subtracting the mean (translation) and dividing by the standard deviation ( ) of the
variable (expansion):

(1.12)

The position of each object on the transformed variable  is expressed in standard
deviation units; as a consequence, it refers to the group of objects from which  has
been estimated. The new variable  is called a standardized variable. Such a variable
has three interesting properties: its mean is zero ( ); its variance and hence its
standard deviation are 1 ( ); it is also a dimensionless variable (Chapter 3)
since the physical dimensions (metres, mg L-1, etc.) in the numerator and denominator
cancel out. Transformations 1.8, 1.10 and 1.11 also produce dimensionless variables.

Beware of the “default options” of computer programs that may implicitly or
explicitly suggest to standardize all variables before data analysis. Milligan & Cooper
(1988) report simulation results showing that, for clustering purposes, if a
transformation is needed, the ranging transformation (eqs. 1.10 and 1.11) gives results
that are in general better to those obtained using standardization (eq. 1.12).
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5 — Implicit transformation in association coefficients

When descriptors with different scales are used together to compare objects, the choice
of the association coefficient (Section 7.6) may partly determine the type of
transformation that must be applied to the descriptors. Some coefficients give equal
weights to all variables independently of their scales while others take into account the
magnitude of variation of each one. Since the amount of information (in the sense of
information theory; Chapter 6) in a quantitative descriptor increases as a function of its
variance, equalizing the variances before the association coefficient is computed is a
way to ensure that all descriptors have the same weight. It is for ecologists to decide
the kind of contribution they expect from each descriptor; again, beware of the
“default options” of computer programs.

Some association coefficients require that the data be expressed as integers.
Depending on the capabilities of the computer program and the degree of
discrimination required, ecologists may decide to use the closest integer value, or to
multiply first all values by 10 or 100, or else to apply some other simple transformation
to make the data compatible with the coefficient to be computed.

6 — Normalization

Another type of transformation, called normalizing transformation, is performed
on descriptors to make the frequency distributions of their data values look like the
normal curve of errors — or, at least, as unskewed as possible. Indeed, several of the
methods used in multivariate data analysis have been developed under the assumption
that the variables are normally distributed. Although most of these methods do not
actually require full normality (i.e. no skewness nor kurtosis), they may perform better
if the distributions of values are, at least, not skewed. Skewed distributions, as in
Fig. 1.11, are such that the variance of the distribution is controlled mostly by the few
points in the extreme right tail; so, variance-partitioning methods such as principal
component analysis (Chapter 9) or spectral analysis (Chapter 12) would bring out
components expressing the variation of these few data points first instead of the
variation of the bulk of data values. Normalizing transformations also have the
property of reducing the heteroscedasticity of descriptors (Box 1.4). The data analysis
phase of research should always start by looking at the distributions of values for the
different variables, i.e. computing basic distribution statistics (including skewness and
kurtosis, eqs. 4.41 and 4.42), drawing histograms of frequency distributions, and
testing for normality (described in Section 4.6). A normalizing transformation may
have to be found for each variable separately; in other cases, one is looking for the best
transformation that would normalize several variables.

• 6.1 — Ecologists often encounter distributions where a species is abundant in a few
observation units (quadrats, etc.), fairly abundant in more, present in even more, and
absent in many; this is in agreement with the concept of ecological niche briefly
explained in Section 1.0, if the sampling programme covers a large enough area or
environmental gradient. Distributions of this type are clearly not normal, being
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strongly skewed to the right (long tail in the higher values). Needless to say,
environmental variables may also have non-normal distributions. For instance, the
scales on which chemical variables are measured are conventions of chemistry which
have no relation whatsoever with the processes generating these values in nature. So,
any normalizing transformation is as good as the scale on which these data were
originally measured.

Skewed data are often transformed by taking logarithms (below) or square roots.
Square root is the least drastic transformation and is used to normalize data that have a
Poisson distribution, where the variance is equal to the mean, whereas the logarithmic
transformation is applicable to data that depart more widely from a normal distribution
(Fig. 1.11). Several intermediate transformations have been proposed between these
two extremes (Fig. 1.12): cubic root, log , log2 p, etc. The hyperbolic transformation is
useful for one particular type of data, which share the two extreme types at the same
time (when the standard deviation is proportional to the mean, with many observations
of a very small size which follow a Poisson distribution: Quenouille, 1950; Barnes,

Homoscedasticity Box 1.4

Homoscedasticity, also called homogeneity or equality of the variances,
technically means that the variances of the error terms are equal for all
observations. Its antonym is heteroscedasticity or heterogeneity of the variances.
Homoscedasticity may actually refer to different properties of the data. 

• For a single variable, homoscedasticity of the distribution means that, when the
statistical population is sampled repeatedly, the expected value of the variance
remains the same, whatever the value of the mean of the data sample. Data drawn
from a normal distribution possess this property whereas data drawn from a Poisson
distribution, for instance, do not, since the variance is equal to the mean in this type
of distribution.

• In regression analysis, homoscedasticity means that, for all values of the
independent variable, the variances of the corresponding values of the response
variable (called error variances or variances of the residuals) are the same. 

• In t-test, analysis of variance and discriminant analysis, homoscedasticity means
that variances are equal in all groups, for each variable.
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Figure 1.11 Numerical examples. Upper panel: Data that follow a Poisson distribution (left) can be
normalized by the square root transformation (right). For a given species, these frequencies may
represent the number of quadrats (ordinate) occupied by the number of specimens shown along
the abscissa. Lower panel: Data distribution (left) that can be normalized by a logarithmic
transformation (right).
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1952). The angular or arcsine transformation is appropriate for percentages and
proportions (Sokal & Rohlf, 1981, 1995):

(1.13)

In case of doubt, one may try several of these transformations and perform a test of
normality (Section 4.6), or compute the skewness of the transformed data, retaining
the transformation that produces the most desirable results. Alternatively, the Box-Cox
method (point 6.2, below) may be used to find the best normalizing transformation.

Figure 1.12 Numerical examples. Each histogram is labelled by the normalizing transformation to be used in that
case. The bottom rightmost histogram refers to a simplified version of the hyperbolic transformation.
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A logarithmic transformation is computed as follows:

(1.14)

The base of logarithm chosen has no influence on the normalising power, since
transformation from one base (c) to another (d) is a linear change of scale (expansion,
see Subsection 1.5.1: ). When the data to be transformed are
all strictly positive (all  > 0), it is not necessary to carry out a translation (  = 0 in
eq. 1.14). When the data contain fractional values between 0 and 1, one may multiply
all values by some appropriate constant in order to avoid negative transformed values:

. When the data to be transformed contain negative or null values, a
translation must be applied first, , since the logarithmic function is
defined over the set of positive real numbers only. One should choose for translation a
constant  that is of the same order of magnitude as the significant digits of the
variable to be transformed; for example,  = 0.01 for data between 0.00 and 0.09 (the
same purpose would have been achieved by selecting  = 1 and  = 100 for these
data). For species abundance data, this rule produces the classical transformation

.

• 6.2 — When there is no a priori reason for selecting one or the other of the above
transformations, the Box-Cox method allows one to empirically estimate the most
appropriate exponent of the following general transformation function:

 (for 1 & 0) (1.15)

and   (for 1 = 0)

As before,  is the transformed value of observation . In this transformation, the
value 1 is used that maximizes the following log likelihood function:

(1.16)

since it is this value that yields the best transformation to normality (Box & Cox, 1964;
Sokal & Rohlf, 1995). The value L that maximizes the likelihood function is found by
iterative search. In this equation,  is the variance of the transformed values .
When analysing several groups of observations at the same time (below),  is
estimated instead by the within-group, or residual variance computed in a one-way
ANOVA. The group size is n and ' is the number of degrees of freedom (' = n – 1 if the
computation is made for a single group). All  values must be strictly positive
numbers since logarithms are taken in the likelihood function L (eq. 1.16); all values
may easily be made strictly positive by translation, as discussed in Subsection 1.5.1. It
is interesting to note that, if 1 = 1, the function is a simple linear transformation; if
1 = 1/2, the function becomes the square root transformation; when 1 = 0, the
transformation is logarithmic; 1 = –1 yields the reciprocal transformation. 
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Readers are invited to take a value (say 150) and transform it, using eq. 1.15, with a
variety of values of 1 gradually tending toward 0 (say 1, 0.1, 0.01, 0.001, etc.).
Comparing the results to the logarithmic transformation will make it clear that the
natural logarithm is indeed the limit of eq. 1.15 when 1 tends towards 0.

Another log likelihood function L' is proposed by Sokal & Rohlf (1995) to achieve
homogeneity of the variances for several groups of observations of a given variable,
together with the normality of their distributions. This generalized Box-Cox
transformation may also be applied to the identification of the best normalizing
transformation for several species, for a given set of sampling sites.

• 6.3 — When the data distribution includes several groups, or when the same
transformation is to be applied to several quantitative and dimensionally homogeneous
descriptors (Chapter 3; for instance, a species abundance data table), Taylor’s (1961)
power law provides the basis for another general transformation that stabilizes the
variances and thus makes the data more likely to conform to the assumptions of
parametric analysis, including normality (Southwood, 1966; see also Downing, 1979
on this subject). This law relates the means and variances of the k groups through the
equation

(1.17)

from which constants a and b can be computed by nonlinear regression
(Subsection 10.3.6). When the latter is not available, an approximation of b may be
calculated by linear regression using the logarithmic form

log = log a + b log (1.18)

Having found the value of b, the variance stabilizing transformations

 (for b & 2) (1.19)

or (for b = 2)

are applied to the data. 

• 6.4 — The following method represents an omnibus normalizing procedure, which
is able to normalize most kinds of data. The procedure is easy to carry out in R or using
a standard statistical packages. The package must have a pseudo-random number
generator for random normal deviates, i.e. values drawn at random from a normal
distribution.

(1) Write the quantitative or semiquantitative descriptor to be normalized into a
vector or a column of a spreadsheet. Sort the vector in order of increasing values.
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(2) Create a new descriptor with the same number of values, using a pseudo-random
normal deviate generator (rnorm() is the function to use in R). Sort this new vector in
order of increasing values. (3) Bind the two vectors, or copy the sorted normal deviate
values besides the first sorted vector in the spreadsheet. Sort the bound vectors or the
spreadsheet back into the original order if necessary. (4) Use the normal deviates as a
monotonic proxy for the original descriptor. Figure 1.13 shows an example of this
transformation. (5) It may be useful in some cases to rescale the normalized data to the
approximate range of the original data through a linear transformation.

This procedure may be modified to handle ex aequo (tied) values (Section 5.3).
Tied values may either receive the same normal deviate value, or they may be sorted in
some random order and given neighbouring normal deviate values; one should select a
solution that makes sense considering the data at hand.

Data transformed in this way may be used in methods of data analysis that perform
better in the presence of normally distributed data. Several such methods will be
studied in Chapters 9 and 11. The main disadvantage is that a back-transformation is
difficult. If the study requires that values of the transformed descriptor be forecasted
by a model, the database itself will have to be used to find the original descriptor
values that are the closest to the forecasted normal deviate. An interpolation may have
to be made between observed data values.

Figure 1.13 The omnibus procedure is used here to normalize a set of 200 data values with tri-modal
distribution (left). A normal curve is fitted to the normalized data (right). The normalized data
could be rescaled to the approximate range of the original data through the linear transformation
yrescaled = 8 + (ynormalized × 16/5.5) where 16 is the approximate range of the raw data and 5.5
that of the normalized data; the constant 8 makes all rescaled values positive.
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7 — Dummy variable coding

Multistate qualitative descriptors may be binary-coded as dummy variables. This
coding is interesting because it allows the use of qualitative descriptors in procedures
such as multiple regression, discriminant analysis or canonical analysis, which have
been developed for quantitative variables and in which binary variables may also be
used. A multistate qualitative descriptor with s states can be decomposed into (s – 1)
dummy variables Vj, as shown by the following example of a four-state descriptor:

In this example, three dummy variables, e.g. V1 to V3, are sufficient to code for the
four states of the nominal descriptor, excluding V4. Had dummy variable V4 been
included (shaded column above), its information would have been totally linearly
dependent (Box 1.1 and Section 2.7) on the first three variables, meaning that it would
have been entirely predictable from the sum of the other three variables and the
intercept represented by a column vector of 1: V4 = 1intercept – (V1 + V2 + V3). This
shows that the first three dummy variables are sufficient to determine the four states of
the multistate qualitative descriptor. Actually, any one of the four dummy variables
may be eliminated to return to the condition of linear independence among the
remaining ones. Using the coding table above, the objects are coded by three dummy
variables instead of a single 4-state descriptor. An object with state 1, for instance,
would be recoded as [1 0 0], an object with state 2 as [0 1 0], and so on.

There are other methods to code for a qualitative variable or a factor of an
experiment. Helmert contrasts are now briefly described. Consider an experimental
factor with s levels. The first Helmert variable contrasts the first and second levels; the
second variable contrasts the third level to the first two; the third variable contrasts
level 4 to the first three; and so on. The coding rule for Helmert contrasts is illustrated
by the following examples:

2 groups: 3 groups: 4 groups: 5 groups: etc.
1 variable 2 variables 3 variables 4 variables

States Dummy variables
V1 V2 V3 V4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

  –1  
 +1 

             
  –1  –1
+1 –1
  0 +2

             

  –1  –1   –1  
+1 –1 –1
  0 +2 –1
  0   0 +3

             

  –1    –1    –1    –1  
+1   –1    –1    –1  
  0 +2   –1    –1  
  0   0 +3   –1  
  0   0   0 +4
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Contrasts can be constructed based on some quantitative variable of interest
associated with the objects, instead of the levels of a qualitative variable. Polynomial
contrasts are based on an orthogonal polynomial of the quantitative variable of
interest. The reference variable may be the position of the observations along a
transect or a time series, or along an ecological gradient of altitude, pH, humidity, and
so on. The contrasts are the successive monomials of the polynomial of the variable of
interest, centred and made orthogonal to the lower-degree monomials; the monomials
are then usually standardized to have a sum-of-squares of 1. Polynomial contrasts are
used as explanatory variables in analyses in the same way as Helmert contrasts.

Other forms of coding have been developed for special types of variables. In
phylogenetic analysis, the states of multistate characters are sometimes related by a
hypothesized transformation series, going from the single hypothesized ancestral state
to all the advanced states; such a series can be represented by a directed network where
the states are connected by arrows representing evolutionary progression. A
transformation series may be coded into binary variables using a method proposed by
Kluge & Farris (1969). 

This same method may be applied to code the spatial relationships among localities
in a geographic network. An example in freshwater ecology is a group of lakes
connected by a river network (Fig. 1.14). In this example, a pseudo-map containing
rivers and lakes is drawn to represent the network. A number is assigned to each river
segment (the river segments are the edges of the connected graph) while nodes
represent the furcation points. In Fig. 1.14, the coding is based on the river segments; it
could just as well be based on the nodes if one felt that the nodes were the important

River
network

Figure 1.14 Lakes interconnected by a river network (left) can be binary-coded as shown in the table to the
right. Numbers are assigned in an arbitrary order to the directional edges (arrows) of the
network. It is not useful to code the root of the network (arrow 0) in the matrix since all lakes
would be coded ‘1’ for that arrow. This example is revisited in Subsection 14.3.1.

Lake 6

Lake 5Lake 4

Lake 3 Lake 2

Lake 1

Arrow 1

Arrow 6Arrow 5

Arrow 7

Arrow 8

Arrow 4

Arrow 3Arrow 2

Arrow 0

          1   2   3   4   5   6   7   8

Lake 1    1   0   1   1   0   0   0   0
Lake 2    1   0   1   0   0   0   0   0
Lake 3    1   1   0   0   0   0   0   0
Lake 4    0   0   0   0   1   0   1   1
Lake 5    0   0   0   0   0   1   1   1
Lake 6    0   0   0   0   0   0   0   1

Arrows
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carriers of geographic information (as in Magnan et al., 1994). If the phenomenon to
be modelled is, for example, fish dispersal from downstream, the arrows can be drawn
going upstream, as in Fig. 1.14. In the lake-by-arrow matrix, a value ‘1’ is assigned to
each arrow found downstream from a lake, representing the fact that the corresponding
river segment may allow fish to travel from the root to that lake. All other arrows are
coded ‘0’ for that lake. The resulting matrix is a complete numerical coding of the
hydrographic network information: knowing the coding procedure, one can entirely
reconstruct the network topology from the matrix entries.

The coding method may be tailored to the ecological problem at hand. For a
dispersion phenomenon going downstream, arrows could point the other way around;
in that case, a lake would be coded ‘1’ in the table for arrows arriving in that lake from
upstream. The pattern of interconnections does not even need to be a tree-like
structure; it may form a more general type of directed network, but no cycle is allowed.
Coding the information allows the use of this type of geographical information in
different types of numerical models, like multiple regression (Chapter 10) or canonical
analysis (Chapter 11). In many of these methods, zeros and ones are interchangeable.
This coding method for directional spatial processes will be further developed in
Section 14.3 where it will serve as the basis for the Asymmetric Eigenvector Maps
(AEM) method of spatial analysis.

1.6 Missing data

Ecological data matrices are often plagued by missing data. The latter do not
necessarily result from negligence on the part of the field team; most often, they are
caused by the breakdown of measuring equipment during field surveys, weather events
that prevented sampling sites from being visited on a given date, lost or incorrectly
preserved specimens, improper sampling procedures, and so on.

Three families of solutions are available to cope with this problem for the analysis
of field survey data, if one can make the assumption that the missing values occur at
random in the data set. Most of the approaches mentioned below are discussed by
Little & Rubin (1987), who also proposed methods for estimating missing values in
controlled experiments (when the missing values are only found in the outcome
variable; their Chapter 2) as well as valid model-based likelihood estimation of
missing values for situations where the distribution of missing values does not meet
the randomness assumption stated above. 

Missing values may be represented in data matrices by numbers that do not
correspond to possible data values. Codes such as –1 or –9 are often used when the real
data in the table are all positive numbers, as it is the case with species abundance data;
otherwise, –99 or –999, or other such unambiguous codes, may be used. In
spreadsheets, missing values are often represented by bullets or ‘NA’ symbols.
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1 — Delete rows or columns

Delete any row or column of the data matrix (Section 2.1) containing missing values.
If a few rows contain most of the missing values, proceed by rowwise (also called
listwise) deletion; conversely, if most missing values are found in a few variables only,
proceed by columnwise deletion. This is the simplest, yet the most costly method, as it
throws away the valuable information present in the remainder of these rows or
columns.

2 — Accommodate algorithms to missing data

Accommodate the numerical method in such a way that the missing values are skipped
during calculations. For instance, when computing resemblance coefficients among
rows (Q-mode) or columns (R-mode) of the data matrix (Chapter 7), a simple method
is pairwise deletion of missing values. This means, for example, that when computing
a correlation coefficient between variables y1 and y2, if the value of the tenth object is
missing for y2, object x10 is skipped in the computation of this correlation value. When
it comes to comparing y1 and y3, if x10 has no missing data for these variables, it is
then kept in the calculation for this pair of variables. However, one must be aware that
covariance and correlation matrices computed in this way may be indefinite (i.e. they
may have negative eigenvalues; Table 2.2). 

3 — Estimate missing values

Estimate the missing values, a method called imputation by Little & Rubin (1987).
This is the best strategy when missing values are located all over the data matrix —
contrary to the situation where the missing values are found in a few rows or columns
only, in which case deletion of these rows or columns may be the strategy of choice.
The assumption one has to make when estimating missing values is that the missing
data are not grossly atypical compared to those present in the data set. Methods for
estimating missing data are interesting in cases where the numerical algorithm
required for analysing the data cannot accommodate missing values. Ecologists should
never imagine, however, that the estimated values are ecologically meaningful; as a
consequence, they should refrain from attempting to interpret these numbers in
ecological terms. Ecologists should also keep in mind that the estimation procedure
has not created the missing degrees of freedom that would have accompanied
observations carried out in nature or in the laboratory. 

Three groups of methods are available for replacing quantitative missing values.

• 3.1 — The easiest way, which is often used in computer programs, is to replace
missing values by the mean of the variable, estimated from the values present in the
data table. When doing so, one assumes that nothing is known about the data, outside
of the weak assumption mentioned above that the missing value comes from the same
population as the non-missing data. Although this solution produces covariance and
correlation matrices that are positive semidefinite (Section 2.10), the variances and
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covariances are systematically underestimated. One way around this problem is to
select missing value estimates at random from some distribution with appropriate
mean and variance. This is not recommended, however, when the relative positions of
the objects are of interest (principal component analysis; Section 9.1). A variant of the
same method is to use the median instead of the mean; it is more robust in the sense
that it does not assume the distribution of values to be unskewed. It is also applicable
to semiquantitative descriptors. For qualitative descriptors, use the most frequent state
instead of the mean or median.

• 3.2 — Estimate the missing values by regression. Multiple linear regression
(Section 10.3), with rowwise deletion of missing values, may be used when there are
only a few missing values to estimate. The dependent (response) variable of the
regression is the descriptor with missing value(s) while the independent (explanatory)
variables are the other descriptors in the data table. After the regression equation has
been computed from the objects without missing data, it can be used to estimate the
missing value(s). Using this procedure, one assumes the descriptor with missing values
to be linearly related to the other descriptors in the data table (unless some form of
nonparametric or nonlinear multiple regression is being used) and the data to be
approximately multivariate normal. This method also leads to underestimating the
variances and covariances, but less so than in 3.1. An alternative approach is to use a
regression program allowing for pairwise deletion of missing values in the estimation
of the regression coefficients, although, in that case, a maximum likelihood estimation
of the covariance matrix would be preferable (Little & Rubin, 1987, p. 152 et seq.).

If such a method cannot be used for estimating the covariance matrix and if the
missing values are scattered throughout the data table, an approximate solution may be
obtained as follows. Compute a series of simple linear regressions with pairwise
deletion of missing values, and estimate the missing value from each of these simple
regression equations in turn. The mean of these estimates is taken as the working
estimated value. The assumptions are basically the same as in the multiple regression
case (above). Other methods of imputation are available in specialized R packages; see
Section 1.7.

To estimate missing values in qualitative (nominal) descriptors, use logistic
regression (Section 10.3) instead of linear regression.

• 3.3 — Interpolate missing values in spatially correlated data. Positive spatial
correlation (Section 1.1) means that near points in time or space are similar. This
property allows the interpolation of missing or otherwise unknown values from the
values of near points in the series. With spatial data, interpolation is the first step of
any mapping procedure, and it may be done in a variety of ways (Subsection 13.2.2),
including the kriging method developed by geostatisticians. The simplest such method
is to assign to a missing data the value of its nearest neighbour. In time series,
interpolation of missing values may be performed using the same methods; see also
Shumway & Stoffer, 1982, and Mendelssohn & Cury, 1987, for a maximum likelihood
method for estimating missing data in a time series using a state-space model.
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Myers (1982, 1983, 1984) proposed a method, called co-kriging, that combines the
power of principal component analysis (Section 9.1) with that of kriging. It allows the
estimation of unknown values of a data series using both the values of the same
variable at neighbouring sites and the known values of other variables, correlated with
the first one, observed at the same or neighbouring points in space; the spatial inter-
relationships of these variables are measured by a cross-variogram. This method is
interesting for the estimation of missing data in broad-scale ecological surveys and to
compute values at unobserved sites on a geographic surface.

1.7 Software

The methods presented in this introductory chapter are implemented in the R language. 

1. Corrections for multiple testing (Box 1.1) can be done using the p.adjust() function
of the STATS package. 

2. Several R functions use permutation tests. They will be identified in later chapters
where permutation-based statistical methods are presented. For R functions that do not
rely on compiled code for intensive calculations, permutations are produced by the
sample() function of the STATS package. That function can also carry out resampling
with replacement (bootstrapping).

3. All standard statistical distributions, and many others, are available in the STATS
package. To find out about them, type in the R console: help.search("distribution",
package="stats"). Additional statistical distributions are available in other R packages.

4. Ranging and standardization (Subsection 1.5.4), as well as other transformations,
are available in the decostand() function of VEGAN. Variable standardization is also
available through the scale() function of STATS. The Box-Cox transformation
(Subsection 1.5.6) can be done using the boxcox.fit() function of the GEOR package. 

5. Helmert contrasts are available in the contr.helmert() function of the STATS
package; polynomial contrasts can be computed using the contr.poly() function of the
same package. Contrast matrices corresponding to actual data files are generated using
the model.matrix() function of the STATS package; this function calls contr.helmert()
or contr.poly() for calculation of the contrasts.

6. Imputation of missing values using a principal component analysis model is
available in function imputePCA() of MISSMDA. Function mice() of package MICE
carries out multivariate imputation by chained equations.
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2.0 Matrix algebra

 

Matrix language is the algebraic form best suited to the present book. The following
chapters will systematically use the flexible and synthetic formulation of 

 

matrix
algebra

 

, with which many ecologists are already acquainted.

There are many reasons why matrix algebra is especially well suited for ecology.
The format of computer files, including spreadsheets, in which ecological 

 

data sets

 

 are
now most often recorded, is a 

 

matrix

 

 format. The use of 

 

matrix

 

 

 

notation

 

 thus provides
an elegant and compact representation of ecological information and 

 

matrix algebra

 

allows operations on whole data sets to be performed. Last but not least,

 

multidimensional methods

 

, discussed in following chapters, are nearly impossible to
conceptualise and explain without resorting to matrix algebra.

Matrix algebra goes back more than one century: “After Sylvester had introduced
matrices [...], it is Cayley who created their algebra [in 1851]” (translated from
Bourbaki, 1960). Matrices are of great conceptual interest for theoretical formulations,
but it is only with the increased use of 

 

computers

 

 that matrix algebra became truly
popular with ecologists. The use of computers naturally enhances the use of matrix
notation. Most scientific programming languages are adapted to matrix logic. All
matrix operations described in this chapter can be carried out using advanced statistical
languages such as R, S-PLUS

 

!

 

 and M

 

ATLAB

 

!

 

.

Ecologists who are familiar with matrix algebra could read Sections 2.1 and 2.2
only, where the vocabulary and symbols used in the remainder of this book are defined.
Other sections of Chapter 2 may then be consulted whenever necessary.

The present chapter is only a 

 

summary

 

 of matrix algebra. Readers looking for more
complete presentations should consult Bronson (2011), where numerous exercises are
found. Graybill (2001) and Gentle (2007) provide numerous applications in general
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statistics. There are also a number of recent books, such as Vinod (2011), explaining
how to use matrix algebra in R. The older book of Green & Carroll (1976) stresses the
geometric interpretation of matrix operations commonly used in statistics.

2.1 The ecological data matrix

As explained in Section 1.4, ecological data are obtained as object-observations or
sampling units, which are described by a set of state values corresponding to as many
descriptors, or variables. Ecological data are generally recorded in a table where each
column j corresponds to a descriptor yj (species present in the sampling unit, physical
or chemical variable, etc.) and each object i (sampling site, sampling unit, locality,
observation) occupies one row. In each cell (i,j) of the table is found the state taken by
object i for descriptor j (Table 2.1). Objects will be denoted by a boldface, lower-case
letter x, with a subscript i varying form 1 to n, referring to object xi . Similarly,
descriptors will be denoted by a boldface, lower case letter y subscripted j, with j
taking values from 1 to p, referring to descriptor yj . When considering two sets of
descriptors, members of the second set will generally have subscripts k from 1 to m.

Descriptor
Object

Table 2.1 Ecological data matrix.

Descriptors

Objects yl y2 y3 … yj … yp

x1 y11 y12 y13 … y1j … y1p
x2 y21 y22 y23 … y2j … y2p

x3 y31 y32 y33 … y3j … 3p

. . . . . .

. . . . . .

. . . . . .

xi yil yi2 yi3 … yij … yip

. . . . . .

. . . . . .

. . . . . .

xn ynl yn2 yn3  … ynj … ynp
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Following the same logic, the different values in a data matrix will be denoted by a
doubly-subscripted y, the first subscript designating the object being described and the
second subscript the descriptor. For example, y83 is the value taken by object 8 for
descriptor 3.

As mentioned in Section 1.4, it is not always obvious which are the objects and
which are the descriptors. In ecology, for example, the different sampling sites
(objects) may be studied with respect to the species found therein. In contrast, when
studying the behaviour or taxonomy of organisms belonging to a given taxonomic
group, the objects are the organisms themselves, whereas one of the descriptors could
be the types of habitat found at different sampling sites. To unambiguously identify
objects and descriptors, one must decide which is the variable defined a priori (i.e. the
objects). When conducting field or laboratory observations, the variable defined a
priori is totally left to the researcher, who decides how many observations will be
included in the study. Thus, in the first example above, the researcher could choose the
number of sampling sites needed to study their species composition. What is observed,
then, are the descriptors, namely the different species present and possibly their
abundances. Another approach to the same problem would be to ask which of the two
sets of variables the researcher could theoretically increase to infinity; this identifies
the variable defined a priori, or the objects. In the first example, it is the number of
samples that could be increased at will — the samples are therefore the objects —
whereas the number of species is limited and depends strictly on the ecological
characteristics of the sampling sites. In the second example, the variable defined a
priori corresponds to the organisms themselves, and one of their descriptors could be
their different habitats (states). 

The distinction between objects and descriptors is not only theoretical. One may
analyse either the relationships among descriptors for the set of objects in the study
(R mode analysis), or the relationships among objects given the set of descriptors
(Q mode study). It will be shown that the mathematical techniques that are appropriate
for studying relationships among objects are not the same as those for descriptors. For
example, correlation coefficients can only be used for studying relationships among
descriptors, which are vectors of data observed on samples extracted from populations
with a theoretically infinite number of elements; vector lengths are actually limited by
the sampling effort. It would be incorrect to use a correlation coefficient to study the
relationship between two objects across the set of descriptors; other measures of
association are available for that purpose (Section 7.3). Similarly, when using the
methods of multidimensional analysis that will be described in this book, it is
important to know which are the descriptors and which are the objects, in order to
avoid methodological errors. The results of incorrectly conducted analyses — and
there are unfortunately many in the literature — are not necessarily wrong because, in
ecology, phenomena that are easily identified are usually sturdy enough to withstand
considerable distortion. What is a pity, however, is that the more subtle phenomena,
i.e. the very ones for which advanced numerical techniques are used, could very well
not emerge at all from a study based on inappropriate methodology.
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The table of ecological data described above is an array of numbers known as a
matrix. The branch of mathematics dealing with matrices is linear algebra.

Matrix Y is a rectangular, ordered array of numbers yij, set out in rows and columns
as in Table 2.1:

(2.1)

There are n rows and p columns. When the order of the matrix (also known as its
dimensions or format) must be stated, a matrix of order (n × p), which contains n × p
elements, is written Ynp. As above, any given element of Y is denoted yij, where
subscripts i and j identify the row and column, respectively (always in that
conventional order).

In linear algebra, ordinary numbers are called scalars, to distinguish them from
matrices.

The following notation will be used hereinafter: a matrix will be symbolised by a
capital letter in boldface, such as Y. The same matrix could also be represented by its
general element in italics and in brackets, such as [yij], or alternatively by an
enumeration of all its elements, also in italics and in brackets, as in eq. 2.1. Italics will
only be used for algebraic symbols, not for actual numbers. Occasionally, other
notations than brackets may be found in the literature, i.e. (yij), , , , or

.

Any subset of a matrix can be explicitly recognized. In the above matrix (eq. 2.1),
for example, the following submatrices could be considered:

a square matrix 

a row matrix , or a column matrix 

Y yij[ ]

y11 y12 . . . y1 p

y21 y22 . . . y2 p

.      .

.     .

.     .
yn1 yn2 . . . ynp

= =

Order

yi
j

( ) yij{ } yi
j

iyj" #

Square
matrix

y11 y12

y21 y22

y11 y12 . . . y1 p

y12

y22

.

.

.
yn2

Linear
algebra



Association matrices 63

Matrix notation simplifies the writing of data sets. It also corresponds to the way
computers work. Indeed, most programming languages are designed to input data as
matrices (arrays) and manipulate them either directly or through a simple system of
subscripts. This greatly simplifies programming the calculations. Accordingly,
computer packages generally input data as matrices. In addition, many of the statistical
models used in multidimensional analysis are based on linear algebra, as will be seen
later. So, it is convenient to approach them with data already set in matrix format.

2.2 Association matrices

Two important matrices may be derived from the ecological data matrix: the
association matrix among objects and the association matrix among descriptors. An
association matrix is denoted A, and its general element aij. Although Chapter 7 is
entirely devoted to association matrices, it is important to mention them here in order
to better understand the purpose of methods presented in the remainder of the present
chapter.

Using data from matrix Y (eq. 2.1), one may examine the relationship between the
first two objects x1 and x2. In order to do so, the first and second rows of matrix Y

     and     

are used to calculate a measure of association (similarity or distance: Chapter 7), to
assess the degree of resemblance between the two objects. This measure, which
quantifies the strength of the association between the two rows, is denoted a12. In the
same way, the association of x1 with x3, x4, …, xp, can be calculated, as can also be
calculated the association of x2 with all other objects, and so on for all pairs of objects.
The coefficients of association for all pairs of objects are then recorded in a table,
ordered in such a way that they could be retrieved for further calculations. This table is
the association matrix A among objects:

(2.2)

A most important characteristic of any association matrix is that it has a number of
rows equal to its number of columns, this number being equal here to the number of
objects n. The number of elements in the above square matrix is therefore n2.

y11 y12 . . . y1 p y21 y22 . . . y2 p

Ann

a11 a12 . . . a1n

a21 a22 . . . a2n

.     .

.     .

.     .
an1 an2 . . . ann

=
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Similarly, one may wish to examine the relationships among descriptors. For the
first two descriptors, y1 and y2, the first and second columns of matrix Y

 and  

are used to calculate a measure of dependence (Chapter 7) which assesses the degree
of association between the two descriptors. In the same way as for the objects, p × p
measures of association can be calculated among all pairs of descriptors and recorded
in the following association matrix:

(2.3)

Association matrices are most often (but not always, see Section 2.3) symmetric,
with elements in the upper right triangle being equal to those in the lower left triangle
(aij = aji). Elements aii on the diagonal measure the association of a row or a column of
matrix Y with itself. In the case of objects, the measure of association aii of an object
with itself usually takes a value of either 1 (similarity coefficients) or 0 (distance
coefficients). Concerning the association between descriptors (columns), the
correlation aii of a descriptor with itself is 1, whereas the (co)variance provides an
estimate aii of the variability among the values of descriptor i.

At this point of the discussion, it should thus be noted that the data, to which the
models of multidimensional analysis are applied, are not only matrix Ynp = [objects ×
descriptors] (eq. 2.1), but also the two association matrices Ann = [objects × objects]
(eq. 2.2) and App = [descriptors × descriptors] (eq. 2.3), as shown in Fig. 2.1.

2.3 Special matrices

Matrices with an equal number of rows and columns are called square matrices
(Section 2.1). These, as will be seen in Sections 2.6 et seq., are the only matrices for

y11

y21

.

.

.
yn1

y12

y22

.

.

.
yn2

App

a11 a12 . . . a1 p

a21 a22 . . . a2 p

.     .

.     .

.     .
ap1 ap2 . . . app

=
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which it is possible to compute a determinant, an inverse, and eigenvalues and
eigenvectors. As a corollary, these operations can be carried out on association
matrices, which are square matrices.

Some definitions pertaining to square matrices now follow. In matrix Bnn, of order
(n × n) (often called “square matrix of order n” or “matrix of order n”),

(2.4)

Figure 2.1 Data analysed in numerical ecology include matrix Ynp = [objects × descriptors] (eq. 2.1) as
well as the two association matrices Ann = [objects × objects] (eq. 2.2) and App = [descriptors ×
descriptors] (eq. 2.3). The Q and R modes of analysis are defined in Section 7.1.

Ynp

Descriptors

D
es

cr
ip

to
rs

Objects

O
bj

ec
ts Ann

for Q-mode analysis

App
for R-mode analysis

Bnn bij[ ]

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.     .
bn1 bn2 . . . bnn

= =
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the diagonal elements are those with identical subscripts for the rows and columns
(bii). They are located on the main diagonal (simply called the diagonal) which, by
convention, goes from the upper left to the lower right corners. The sum of the
diagonal elements is called the trace of the matrix.

A diagonal matrix is a square matrix where all non-diagonal elements are zero.
Thus,

is a diagonal matrix. Diagonal matrices that contain on their diagonal values coming
from a vector [xi] are noted D(x). Special examples used later in the book are the
diagonal matrix of standard deviations D($), the diagonal matrix of eigenvalues D(%i),
also noted &&&&, and the diagonal matrix of singular values D(wi) also noted W.

A diagonal matrix where all diagonal elements are equal to unity is called a unit
matrix or identity matrix. It is denoted D(1) or I:

(2.5)

This matrix plays the same role, in matrix algebra, as the number 1 in ordinary algebra,
i.e. it is the neutral element in multiplication (e.g. I B = B, or BI = B).

Similarly, a scalar matrix is a diagonal matrix of the form

All the diagonal elements are identical since a scalar matrix is the unit matrix
multiplied by a scalar (here, of value 7).

Trace

Diagonal
matrix

3 0 0
0 7 0
0 0 0

Identity
matrix

D 1( ) I

1 0 . . . 0
0 1 . . . 0
.     .
.     .
.     .
0 0 . . . 1

= =

Scalar
matrix

7 0 . . . 0
0 7 . . . 0
.     .
.     .
.     .
0 0 . . . 7

7I=
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A matrix, square or rectangular, whose elements are all zero is called a null matrix
or zero matrix. It is denoted 0 or [0].*

A square matrix with all elements above (or below) the diagonal being zero is
called a lower (or upper) triangular matrix. For example,

is an upper triangular matrix. These matrices are very important in matrix algebra
because their determinant (Section 2.6) is equal to the product of all terms on the main
diagonal (i.e. 24 in this example). Diagonal matrices are also triangular matrices.

The transpose of a matrix B with format (n × p) is denoted B' and is a new matrix
of format (p × n) in which . In other words, the rows of one matrix are the
columns of the other. Thus, the transpose of matrix

is matrix

Transposition is an important operation in linear algebra, and also in ecology where a
data matrix Y (eq. 2.1) may be transposed to study the relationships among descriptors
after the relationships among objects have been analysed (or conversely).

*  Although the concept of zero was known to Babylonian and Mayan astronomers, inclusion of
the zero in a decimal system of numeration finds its origin in India, in the eighth century A.D. at
least (Ifrah, 1981). The ten Western-world numerals are also derived from the symbols used by
ancient Indian mathematicians. The word zero comes from the Arabs, however. They used the
word sifr, meaning “empty”, to refer to a symbol designating nothingness. The term turned into
cipher, and came to denote not only zero, but all 10 numerals. Sifr is at the root of the
medieval latin zephirum, which became zefiro in Italian and was then abbreviated to zero. It is
also the root of the medieval latin cifra, which became chiffre in French where it designates any
of the 10 numerals.

Triangular
matrix

1 2 3
0 4 5
0 0 6

Transpose
b'ij b ji=

B

1 2 3
4 5 6
7 8 9

10 11 12

=

B'
1 4 7 10
2 5 8 11
3 6 9 12

=

Null
matrix
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A square matrix that is identical to its transpose is symmetric. This is the case when
corresponding terms bij and bji, on either side of the diagonal, are equal. For example,

is symmetric since B' = B. All symmetric matrices are square.

It was mentioned in Section 2.2 that association matrices are generally symmetric.
Non-symmetric (or asymmetric) matrices may be encountered, however. This happens,
for example, when each coefficient in the matrix measures the ecological influence of
an organism or a species on another, these influences being asymmetrical (e.g. A is a
predator of B, B is a prey of A). Asymmetric matrices are also found in behaviour
studies, serology, DNA pairing analysis, etc. 

Matrix algebra tells us that any non-symmetric matrix may be expressed as the sum
of two other matrices, one symmetric and one skew-symmetric, without loss of
information. Consider for instance the two numbers 1 and 3, found in opposite
positions (1,2) and (2,1) of the first matrix in the following numerical example:

The symmetric part is obtained by averaging these two numbers: (1 + 3)/2 = 2.0. The
skew-symmetric part is obtained by subtracting one from the other and dividing by 2:
(1 – 3)/2 = –1.0 and (3 – 1)/2 = +1.0 so that, in the skew-symmetric matrix,
corresponding elements on either side of the diagonal have the same absolute values
but opposite signs. When the symmetric and skew-symmetric components are added,
the result is the original matrix: 2 – 1 = 1 for the upper original number, and 2 + 1 = 3
for the lower one. Using letters instead of numbers, one can derive a simple algebraic
proof of the additivity of the symmetric and skew-symmetric components. The
symmetric component can be analysed using the methods applicable to symmetric
matrices (for instance, metric or non-metric scaling, Sections 9.3 and 9.4), while
analysis of the skew-symmetric component requires methods especially developed to
assess asymmetric relationships. Basic references are Coleman (1964) in the field of
sociometry and Digby & Kempton (1987, Ch. 6) in numerical ecology. An application
to biological evolution is found in Casgrain et al. (1996). Relevant biological or
ecological information may be found in the symmetric portion only and, in other
instances, in the skew-symmetric component only.

Symmetric
matrix

1 4 6
4 2 5
6 5 3

Non-
symmetric
matrix

Skew-
symmetric
matrix

1 1  2 2
3 1 0 1–
1 2 1 0
0 4– 3 1

1  2.0  1.5 1.0
2.0 1  1.0 2.5–
1.5 1.0 1  1.5
1.0 2.5– 1.5 1  

=

0  1.0– 0.5 1.0
1.0 0  1.0– 1.5
0.5– 1.0 0  1.5–
1.0– 1.5– 1.5 0  

+

            Non-symmetric      Symmetric (average) Skew-symmetric               
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2.4 Vectors and scaling

Another matrix of special interest is the column matrix, with format (n × 1), which is
also known as a vector. Some textbooks restrict the term “vector” to column matrices,
but the expression row vector (or simply vector, as used in some instances in
Chapter 4) may also designate row matrices, with format (1 × p). 

A (column) vector is noted as follows:

(2.6)

A vector graphically refers to a directed line segment. It also forms a mathematical
entity on which operations can be performed. More formally, a vector is defined as an
ordered n-tuple of real numbers, i.e. a set of n numbers with a specified order. The n
numbers are the coordinates of a point in a n-dimensional Euclidean space, which may
be seen as the end-point of a line segment starting at the origin.

For example, (column) vector [4 3]' is an ordered doublet (or 2-tuple) of two real
numbers (4, 3), which may be represented in a two-dimensional Euclidean space:

This same point (4, 3) may also be seen as the end-point of a line segment starting at
the origin:

Vector

b

b1

b2

.

.

.
bn

=

(4,3)

(4,3)
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These figures illustrate the two possible representations of a vector; they also stress the
ordered nature of vectors, since vector [3 4]' is different from vector [4 3]'.

Using the Pythagorean theorem, it is easy to calculate the length of any vector. For
example, the length of vector [4 3]' is that of the hypotenuse of a right triangle with
base 4 and height 3:

The length (or norm) of vector [4 3]' is therefore ; it is also the length
(norm) of vector [3 4]'. The norm of vector b is noted .

The comparison of different vectors, as to their directions, often requires an
operation called scaling. In the scaled vector, all elements are divided by the same
characteristic value. A special type of scaling is called normalization. In the
normalized vector, each element is divided by the length of the vector:

The importance of normalization lies in the fact that the length of a normalized vector
is equal to unity. Indeed, the length of vector [4/5  3/5]', calculated by means of the
Pythagorean formula, is .

The example of doublet (4, 3) may be generalized to any n-tuple (b1, b2, …, bn),
which specifies a vector in n-dimensional space. The length of the vector is

, so that the corresponding normalized vector is:

(3,4)

(4,3)

3

4

Length
Norm

42 32+ 5=
b

Scaling
Normali-
zation

normalization

 4 
 3 

4 5
3 5

'

Normalized
vector

4 5( ) 2 3 5( ) 2+ 1=

b1
2 b2

2
… bn

2+ + +
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 (2.7)

The length of any normalized vector, in n-dimensional space, is 1.

2.5 Matrix addition and multiplication

Recording the data in table form, as is usually the case in ecology, opens the possibility
of performing operations on these tables. The basic operations of matrix algebra
(algebra, from the Arabic “al-jabr” which means reduction, is the theory of addition
and multiplication) are very natural and familiar to ecologists.

Numerical example. Fish (3 species) were sampled at five sites in a lake, once a month
during the summer (northern hemisphere). In order to get a general idea of the differences
among sites, total numbers of fish caught at each site are calculated over the whole summer:

This operation is known as matrix addition. Note that only matrices of the same
order can be added together. This is why, in the first matrix, site 5 was included with
abundances of 0 to indicate that no fish had been caught there in July although site 5
had been sampled. Adding two matrices consists in a term-by-term addition. Matrix
addition is associative and commutative; its neutral element is the null matrix 0.

To study seasonal changes in fish productivity at each site, one possible approach would be
to add together the terms in each row of each monthly matrix. However, this makes sense only if
the selectivity of the fishing gear (say, a net) is comparable for the three species. Let us imagine
that the efficiency of the net was 50% for species 2 and 25% for species 3 of what it was for
species 1. In such a case, values in each row must be corrected before being added. Correction
factors would be as follows: 1 for species 1, 2 for species 2, and 4 for species 3. To obtain

b1 b1
2 b2

2
… bn

2+ + +

b2 b1
2 b2

2
… bn

2+ + +

.

.

.

bn b1
2 b2

2
… bn

2+ + +

1

b1
2 b2

2
… bn

2+ + +
---------------------------------------------

b1

b2

.

.

.
bn

=

Site 1
Site 2
Site 3
Site 4
Site 5

July

1 5  35
 14 2 0

0 31 67
96 110 78
0 0 0

sp1 sp2 sp3

August

 15  23 10
54 96 240
0 3 9

12 31 27
8 14 6

sp1 sp2 sp3

September

48  78 170
2 0 0
0 11 14

25 13 12
131 96 43

sp1 sp2 sp3

+ +

Whole summer

64 106 215
70 98 240
0 45 90

133 154 117
139 110 49

sp1 sp2 sp3

=
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estimates of total fish abundances, correction vector [1 2 4]' is first multiplied by each row of
each matrix, after which the resulting values are added. Thus, for the first site in July:

Site 1 Correction Total fish abundance  
July factors Site 1, July

This operation is known in linear algebra as a scalar product because this product of
two vectors produces a scalar.

In physics, there is another product of two vectors, called the external or vector
product, where the multiplication of two vectors results in a third one, which is
perpendicular to the plane formed by the first two. This product is not used in
multidimensional analysis. It is however important to know that, in the literature, the
expression “vector product” may be used for either that product or the scalar product
of linear algebra, and that the scalar product is also called “inner product” or “dot
product”. The vector product (of physics) is sometimes called “cross product”. This
last expression is also used in linear algebra, for example in “matrix of sum of squares
and cross products” (SSCP matrix), which refers to the product of a matrix with its
transpose.

In matrix algebra, and unless otherwise specified, multiplication follows a
convention that is illustrated by the scalar product above: in this product of a column
vector by a row vector, the row vector multiplies the column vector or, which is
equivalent, the column vector is multiplied by the row vector. This convention, which
should be kept in mind, will be followed in the remainder of the book.

The result of a scalar product is a number, which is equal to the sum of the products
of those elements with corresponding order numbers. The scalar product is designated
by a dot, or is written <a,b>, or else there is no sign between the two terms. For
example:

b'c = b' • c =  = b1c1 + b2c2 + … + bpcp = a scalar. (2.8)

The rules for computing scalar products are such that only vectors with the same
numbers of elements can be multiplied. 

1 5 35
1
2
4

1 1×( ) 5 2×( ) 35 4×( )+ + 1 10 140+ + 151= =

Scalar
product

b1 b2 . . . bp

c1

c2

.

.

.
cp
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In analytic geometry, it can be shown that the scalar product of two vectors obeys
the relationship:

b' • c = (length of b) × (length of c) × cos ( (2.9)

When the angle between two vectors is ( = 90°, then cos ( = 0 and the scalar product
b' • c = 0. As a consequence, two vectors whose scalar product is zero are orthogonal
(i.e. at right angle). This property will be used in Section 2.9 to compute eigenvectors.
A matrix whose (column) vectors are all orthogonal to one another is called
orthogonal. For any pair of vectors b and c with values centred on their respective
mean, cos ( = r(b, c) where r is the correlation coefficient (eq. 4.7).

Gram-Schmidt orthogonalization is a procedure to make a vector c orthogonal to a vector b
that has first been normalized (eq. 2.7); c may have been normalized or not. The procedure
consists of two steps: (1) compute the scalar product sp = b'c. (2) Make c orthogonal to b by
computing cortho = c – spb. Proof that cortho is orthogonal to b is obtained by showing that
b'cortho = 0: b'cortho = b'(c – spb) = b'c – spb'b. Since b'c = sp and b'b = 1 because b has been
normalized, one obtains sp – (sp × 1) = 0. In this book, in the iterative procedures for ordination
algorithms (Tables 9.5 and 9.8), Gram-Schmidt orthogonalization will be used in the step where
the vectors of new ordination object scores are made orthogonal to previously found vectors.

Numerical example. Returning to the above example, it is possible to multiply each row of
each monthly matrix with the correction vector (scalar product) in order to compare total
monthly fish abundances. This operation, which is the product of a vector by a matrix, is a
simple extension of the scalar product (eq. 2.8). The product of the July matrix B with the
correction vector c is written as follows:

 =  = 

The product of a vector by a matrix involves calculating, for each row of matrix B,
a scalar product with vector c. Such a product of a vector by a matrix is only possible if
the number of elements in the vector is the same as the number of columns in the
matrix. The result is no longer a scalar, but a column vector with dimension equal to
the number of rows in the matrix on the left. The general formula for this product is:

Bpq • cq = 

Orthogonal
vectors

1 5 35
14 2 0
0 31 67

96 110 78
0 0 0

1
2
4

1 1( )  + 5 2( )  + 35 4( )
14 1( )  + 2 2( )  + 0 4( )

0 1( )  + 31 2( )  + 67 4( )
96 1( )  + 110 2( )  + 78 4( )

0 1( )  + 0 2( )  + 0 4( )

151
18

330
628

0

b11 b12 . . . b1q

b21 b22 . . . b2q

.     .

.     .

.     .
bp1 bp2 . . . bpq

c1

c2

.

.

.
cq

b11c1 + b12c2 + . . . + b1qcq

b21c1 + b22c2 + . . . + b2qcq

.      .

.      .

.      .
bp1c1 + bp2c2 + . . . + bpqcq

=
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Using summation notation, this equation may be rewritten as:

Bpq • cq =  (2.10)

The product of two matrices is the logical extension of the product of a vector by a
matrix. Matrix C, to be multiplied by B, is simply considered as a set of column
vectors c1, c2, …; eq. 2.10 is repeated for each column. Following the same logic, the
resulting column vectors are juxtaposed to form the result matrix. Matrices to be
multiplied must be conformable, which means that the number of columns in the
matrix on the left must be the same as the number of rows in the matrix on the right.
For example, given

the product of B with each of the two columns of C is:

Bd =     and    Be =

so that the product matrix is:

BC = 

b1kck
k 1=

q

)
.
.
.

bpkck
k 1=

q

)

B

1 0 2
3 1 1
1 2 1
1– 3 2

= and
C

1 2
2 1
3 1–

=

C  d    e[ ]=

1 1( ) 0 2( ) 2 3( )+ +
3 1( ) 1 2( ) 1 3( )+ +
1 1( ) 2 2( ) 1 3( )+ +
1 1( )– 3 2( ) 2 3( )+ +

7
8
8

11

=

1 2( ) 0 1( ) 2 1–( )+ +
3 2( ) 1 1( ) 1 1–( )+ +
1 2( ) 2 1( ) 1 1–( )+ +
1 2( )– 3 1( ) 2 1–( )+ +

0
6
3
1–

=

7 0
8 6
8 3

11 1–
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Thus, the product of two conformable matrices B and C is a new matrix with the same
number of rows as B and the same number of columns as C. Element dij, in row i and
column j of the resulting matrix, is the scalar product of row i of B with column j of C.

The only way to master the mechanism of matrix products is to go through some
numerical examples. As an exercise, readers could apply the above method to two
cases which have not been discussed so far, i.e. the product (bc) of a row vector c by a
column vector b, which gives a matrix and not a scalar, and the product (bC) of a
matrix C by a row vector b, which results in a row vector. This exercise would help to
better understand the rule of conformability.

As supplementary exercises, readers could calculate numerical examples of the
eight following properties of matrix products, which will be used later in the book:

(1) Bpq Cqr Drs = Eps, of order (p × s).

(2) The existence of product BC does not imply that product CB exists, because
matrices are not necessarily conformable in the reverse order; however, C'C and CC'
always exist.

(3) BC is generally not equal to CB, i.e. matrix products are not commutative.

(4) B2 = B × B exists only if B is a square matrix.

(5) [AB]' = B'A' and, more generally, [ABCD…]' = …D'C'B'A'.

(6) The products XX' and X'X always give rise to symmetric matrices.

(7) In general, the product of two symmetric but different matrices A and B is not a
symmetric matrix.

(8) If B is an orthogonal matrix (i.e. a rectangular matrix whose column vectors are
orthogonal to one another), then B'B = D, where D is a diagonal matrix. All non-
diagonal terms are zero because of the property of orthogonality, while the diagonal
terms are the squares of the lengths of the column vectors. That B'B is diagonal does
not imply that BB' is also diagonal. BB' = B'B only when B is square and symmetric.

The Hadamard or elementwise product of two matrices of the same order (n × p) is
the cell-by-cell product of these two matrices. For example,

for A =  and B = , A*B = 

The Hadamard product may be noted by different operator signs, depending on the
author. The sign used in this book is *, as in the R language.

Hadamard
product

1 2
3 4
5 6

7 8
9 10
11 12

7 16
27 40
55 72
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The last type of product to be considered is that of a matrix or vector by a scalar. It
is carried out according to the usual algebraic rules of multiplication and factoring,
i.e. for matrix B = [bjk] or vector c = [cj], dB = [dbjk] and dc = [dcj]. For example:

The terms premultiplication and postmultiplication may be encountered in the
literature. Product BC corresponds to premultiplication of C by B, or to
postmultiplication of B by C. Unless otherwise specified, it is always premultiplication
which is implied and BC simply reads: B multiplies C, or C is multiplied by B.

2.6 Determinant

It is often necessary to transform a matrix into a new one, in such a way that the
information of the original matrix is preserved, while new properties that are essential
for subsequent calculations are acquired. Such new matrices, which are linearly
derived from the original matrix, will be studied in following sections under the names
inverse matrix, canonical form, etc.

The new matrix must have a minimum number of characteristics in common with
the matrix from which it is linearly derived. The connection between the two matrices
is a matrix function ƒ(B), whose properties are the following:

(1) The determinant function must be multilinear, which means that it should
respond linearly to any change taking place in the rows or columns of matrix B.

(2) Since the order of the rows and columns of a matrix is specified, the function
should be able to detect, through alternation of signs, any change in the positions of
rows or columns. As a corollary, if two columns (or rows) are identical, ƒ(B) = 0;
indeed, if two identical columns (or rows) are interchanged, ƒ(B) must change sign but
it must also remain identical, which is possible only if ƒ(B) = 0.

(3) Finally, there is a scalar associated with this function; it is called its norm or
value of the determinant function. For convenience, the norm is calibrated in such a
way that the value associated with the unit matrix I is l, i.e. ƒ(I) = 1.

It can be shown that the determinant, as defined below, is the only function that has
the above three properties, and that it only exists for square matrices. Therefore, it is
not possible to calculate a determinant for a rectangular matrix. The determinant of
matrix B is denoted det B, det(B), or, more often, +B+:

3 1 2
3 4

3 6
9 12

= and 5
6

2 10
12

=
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+B+ , 

The value of function +B+ is a scalar, i.e. a number.

What follows is the formal definition of the value of a determinant. The way to compute it in
practice is explained later. The value of a determinant is calculated as the sum of all possible
products containing one, and only one, element from each row and each column; these products
receive a sign according to a well-defined rule:

where indices j1, j2, …, jn, go through the n! permutations of the numbers 1, 2, …, n. The sign
depends on the number of inversions, in the permutation considered, relative to the sequence
1, 2, …, n: if the number of inversions is even, the sign is (+) and, if the number is odd, the sign
is (–).

The determinant of a matrix of order 2 is calculated as follows:

  (2.11)

In accordance with the formal definition above, the scalar so obtained is composed of
2! = 2 products, each product containing one, and only one, element from each row
and each column. 

The determinant of a matrix of order higher than 2 may be calculated using
different methods, among which is the expansion by minors. When looking for a
determinant of order 3, a determinant of order 3 – 1 = 2 may be obtained by crossing
out one row (i) and one column (j). This lower-order determinant is the minor
associated with bij:

(2.12)

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.     .
bn1 bn2 . . . bnn

B ± b1 j1
b2 j2

…bnjn
( ))=

B b11 b12

b21 b22

b11b22 b12b21–= =

Expansion
by minors

crossing out row 1 and column 2

b11 b12 b13

b21 b22 b23

b31 b32 b33

b21 b23

b31 b33

minor of b12

'
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The minor being here a determinant of order 2, its value is calculated using eq. 2.11.
When multiplied by (–1)i + j, the minor becomes a cofactor. Thus, the cofactor of
b12 is:

(2.13)

The expansion by minors of a determinant of order n is:

(2.14)

The expansion may involve the elements of any row or any column, the result being
always the same. Thus, going back to the determinant of the matrix on the left in
eq. 2.12, expansion by the elements of the first row gives:

(2.15)

Numerical example. Equation 2.15 is applied to a simple numerical example:

The amount of calculations required to expand a determinant increases very
quickly with increasing order n. This is because the minor of each cofactor must be
expanded, the latter producing new cofactors whose minors are in turn expanded, and
so forth until cofactors of order 2 are reached. Another, faster method is normally used
to calculate determinants by computer. Before describing this method, however, some
properties of determinants must be examined; in all cases, column may be substituted
for row.

Cofactor

cof b12 1–( )
1 2+ b21 b23

b31 b33

b21 b23

b31 b33

–= =

B bijcof bij
i 1=

n

)= for any column j

B bijcof bij
j 1=

n

)= for any row i

B b11cof b11 b12cof b12 b13cof b13+ +=

B b11 1–( )
1 1+  

b22 b23

b32 b33

b12 1–( )
1 2+  

b21 b23

b31 b33

b13 1–( )
1 3+  

b21 b22

b31 b32

+ +=

1  2 3
4 5 6
7 8 10

1 1–( )
1 1+  5 6

8 10
2 1–( )

1 2+  4 6
7 10

3 1–( )
1 3+  4 5

7 8
+ +=

1  2 3
4 5 6
7 8 10

1 5 10× 6 8×–( ) 2 4 10× 6 7×–( )– 3 4 8× 5 7×–( ) 3–=+=
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(1) The determinant of a matrix is equal to that of its transpose since a determinant
may be computed from either the rows or columns of the matrix: +A'+ = +A+.

(2) If two rows are interchanged, the sign of the determinant is reversed.

(3) If two rows are identical, the determinant is null (corollary of the second
property; see beginning of the present section).

(4) If a scalar is a factor of one row, it becomes a factor of the determinant (since it
appears once in each product).

(5) If a row is a multiple of another row, the determinant is null (corollary of
properties 4 and 3, i.e. factoring out the multiplier produces two identical rows).

(6) If all elements of a row are 0, the determinant is null (corollary of property 4).

(7) If a scalar c is a factor of all rows, it becomes a factor cn of the determinant
(corollary of property 4), i.e. +cB+ = cn+B+.

(8) If a multiple of a row is added to another row, the value of the determinant
remains unchanged.

(9) The determinant of a triangular matrix (and therefore also of a diagonal matrix)
is the product of its diagonal elements.

(10) The sum of the products of the elements of a row with the corresponding
cofactors of a different row is equal to zero.

(11) For two square matrices of order n, +A+•+B+ = +AB+.

Properties 8 and 9 can be used for rapid computer calculation of the value of a
determinant; the method is called pivotal condensation. The matrix is first reduced to
triangular form using property 8. This property allows the stepwise elimination of all
terms on one side of the diagonal through combinations of multiplications by a scalar,
and addition and subtraction of rows or columns. Pivotal condensation may be
performed in either the upper or the lower triangular parts of a square matrix. If the
lower triangular part is chosen, the upper left-hand diagonal element is used as the first
pivot to modify the other rows in such a way that their left-hand terms become zero.
The technique consists in calculating by how much the pivot must be multiplied to
cancel out the terms in the rows below it; when this value is found, property 8 is used
with this value as multiplier. When all terms under the diagonal element in the first
column are zero, the procedure is repeated with the other diagonal terms as pivots, to
cancel out the elements located under them in the same column. Working on the pivots
from left to right insures that when values have been changed to 0, they remain so.
When the whole lower triangular portion of the matrix is zero, property 9 is used to
compute the determinant which is then the product of the modified diagonal elements. 

Pivotal
condensation
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Numerical example. The same numerical example as above illustrates the method:

a: (row 2 – 4 × row 1) b: (row 3 – 7 × row 1) c: (row 3 – 2 × row 2)

The determinant is the product of the diagonal elements: 1 × (–3) × 1 = (–3).

2.7 Rank of a matrix

A square matrix contains n vectors (rows or columns), which may be linearly
independent or not (for the various meanings of “independence”, see Box 1.1). Two
vectors are linearly dependent when the elements of one are proportional to the
elements of the other. For example:

 are linearly dependent, since 

Similarly, a vector is linearly dependent on two others, which are themselves
linearly independent, when its elements are a linear combination of the elements of the
other two. For example:

 

illustrate a case where a vector is linearly dependent on two others, which are
themselves linearly independent, since

1  2 3
4 5 6
7 8 10

1 2 3
0 3– 6–
7 8 10

1 2 3
0 3– 6–
0 6– 11–

1 2 3
0 3– 6–
0 0 1

= = =

                 a             b               c   

4–
6–
8–

 and 
2
3
4

4–
6–
8–

2–
2
3
4

=

1–
3
4

, 
1–
0
1

 and 
1
2–
3–

2–( )
1–
3
4

1–
0
1

3
1
2–
3–

+=
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The rank of a square matrix is defined as the number of linearly independent row
vectors (or column vectors) in the matrix. For example:

(–2 × column 1) = column 2 + (3 × column 3)

or: row 1 = row 2 – row 3

rank = 2

(–2 × column 1) = (4 × column 2) = column 3

or: row 1 = row 2 = row 3

rank = 1

According to property 5 of determinants (Section 2.6), a matrix whose rank is lower
than its order has a determinant equal to zero. Finding the rank of a matrix may
therefore be based on the determinant of the lower-order submatrices it contains. The
rank of a square matrix is the order of the largest square submatrix with non-zero
determinant that it contains; this is also the maximum number of linearly independent
vectors found among the rows or the columns. 

The determinant can be used to diagnose the independence of the vectors forming a
matrix X. For a square matrix X (symmetric or not), all row and column vectors are
linearly independent if det(X) - 0. 

Linear independence of the vectors in a rectangular matrix X with more rows than
columns (n > p) can be determined from the covariance matrix S computed from X
(eq. 4.6): if det(S) - 0, all column vectors of X are linearly independent. This method
of diagnosis of the linear independence of the column vectors requires, however, a
matrix X with n > p; if n . p, det(S) = 0.

Numerical example 1. It is possible to determine the rank of a rectangular matrix.
Several square submatrices may be extracted from a rectangular matrix, by
eliminating rows or/and columns from the matrix. The rank of a rectangular matrix is
the highest rank of all the square submatrices that can be extracted from it. A first

Rank of
a square 
matrix

1– 1– 1
3 0 2–
4 1 3–

2–   1   4
2–   1   4
2–   1   4

1  2 3
4 5 6
7 8 10

3– 0, so that the rank- 3= =

1– 1– 1
3 0 2–
4 1 3–

0=
1– 1–
3 0

3=

rank 2=

Rank of a
rectangular
matrix
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example illustrates the case where the rank of a rectangular matrix is equal to the
number of rows:

Numerical example 2. In this example, the rank is lower than the number of rows:

In this case, the three rows are clearly linearly dependent: (2  × row 1) + (3 × row 2) =
row 3. Since it is possible to find a square matrix of order 2 that has a non-null
determinant, the rank of the rectangular matrix is 2.

In practice, singular value decomposition (SVD, Section 2.11) can be used to
determine the rank of a square or rectangular matrix: the rank is equal to the number of
singular values larger than zero. Numerical example 2 will be analysed again in
Application 1 of Section 2.11. For square symmetric matrices like covariance
matrices, the number of nonzero eigenvalues can also be used to determine the rank of
the matrix; see Section 2.10, Second property.

2.8 Matrix inversion

In algebra, division is expressed as either c ÷ b, or c/b, or c (1/b), or c b–1. In the last
two expressions, division as such is replaced by multiplication with a reciprocal or
inverse quantity. In matrix algebra, the division operation of C by B does not exist.
The equivalent operation is multiplication of C with the inverse or reciprocal of matrix
B. The inverse of matrix B is denoted B–1; the operation through which it is computed
is called the inversion of matrix B.

To serve its purpose, matrix B–1 must be unique and the relation BB–1 = B–1B = I
must be satisfied. It can be shown that only square matrices have unique inverses. It is
also only for square matrices that the relation BB–1 = B–1B is satisfied. Indeed, there
are rectangular matrices B for which several matrices C can be found, satisfying for
example CB = I but not BC = I. There are also rectangular matrices for which no

2  0  1  0 1– 2– 3
1 2 2 0 0 1 1–
0 1 2 3 1 1– 0

2  0  1
1 2 2
0 1 2

' 5= rank 3=

2 1 3  4
1– 6 3– 0
1 20 3– 8

2 1 3
1– 6 3–
1 20 3–

'
2 1  4
1– 6 0
1 20 8

2 3  4
1– 3– 0
1 3– 8

1 3  4
6 3– 0

20 3– 8
0= = = =

rank 3< 2  1
1– 6

' 13= rank 2=
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matrix C can be found such that CB = I, whereas an infinite number of matrices C may
exist that satisfy BC = I. For example:

Generalized inverses can be computed for rectangular matrices by singular value
decomposition (Section 2.11, Application 3). Note that several types of generalized
inverses, described in textbooks of advanced linear algebra, are not unique.

To calculate the inverse of a square matrix B, the adjugate or adjoint matrix of B is
first defined. In the matrix of cofactors of B, each element bij is replaced by its cofactor
(cof bij; see Section 2.6). The adjugate matrix of B is the transpose of the matrix of
cofactors:

(2.16)

In the case of second order matrices, cofactors are scalar values, e.g. cof b11 = b22,
cof b12 = –b21, etc.

The inverse of matrix B is the adjugate matrix of B divided by the determinant
+B+. The product of the matrix with its inverse gives the unit matrix:

(2.17)

B
1 1
1– 0
3 1–

=

 C 1 3 1
2 5 1

=   CB I= BC I-

C 4 15 4
7 25 6

= CB I= BC I-

Inverse of
a square 
matrix

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.     .
bn1 bn2 . . . bnn

matrix B

cof b11 cof b21 . . . cof bn1

cof b12 cof b22 . . . cof bn2

.     .

.     .

.     .
cof b1n cof b2n . . . cof bnn

adjugate matrix of B

'  

1
B------

cof b11 cof b21 . . . cof bn1

cof b12 cof b22 . . . cof bn2

.     .

.     .

.     .
cof b1n cof b2n . . . cof bnn

B 1–

 

b11 b12 . . . b1n

b21 b22 . . . b2n

.     .

.     .

.     .
bn1 bn2 . . . bnn

=  I

B     

/ 0 0 0 0 0 0 1 0 0 0 0 0 0 2 / 0 0 0 1 0 0 0 2
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All diagonal terms resulting from the multiplication B–1B (or BB–1) are of the form
, which is the expansion by minors of a determinant (not taking into

account, at this stage, the division of each element of the matrix by +B+). Each
diagonal element consequently has the value of the determinant +B+ (eq. 2.14). All
other elements of matrix B–1B are sums of the products of the elements of a row with
the corresponding cofactors of a different row. According to property 10 of
determinants (Section 2.6), each non-diagonal element is therefore null. It follows that:

(2.18)

An important point is that B–1 exists only if +B+ - 0. A square matrix with a null
determinant is called a singular matrix; it has no ordinary inverse (but see singular
value decomposition, Section 2.11). Matrices that can be inverted are called
nonsingular. 

Numerical example. The numerical example of Sections 2.6 and 2.7 is used again to
illustrate the calculations: 

The determinant is already known (Section 2.6); its value is –3. The matrix of cofactors is
computed, and its transpose (adjugate matrix) is divided by the determinant to give the inverse
matrix:

As for the determinant (Section 2.6), various methods exist for quickly inverting
matrices using computers; they are especially useful for matrices of higher ranks.
Description of these methods, which are available in computer packages, is beyond the
scope of the present book. A popular method is briefly explained here; it is somewhat
similar to the pivotal condensation presented above for determinants.

bijcof bij)

B 1– B 1
B------

B 0 . . . 0
0 B . . . 0
.     .
.      .
.     .
0 0 . . . B

1 0 . . . 0
0 1 . . . 0
.     .
.     .
.     .
0 0 . . . 1

= =  I=

Singular
matrix

1  2 3
4 5 6
7 8 10

 

2 2 3–
4 11– 6
3– 6 3–

matrix of cofactors

2 4 3–
2 11– 6
3– 6 3–

adjugate matrix

 1
3
---–

2 4 3–
2 11– 6
3– 6 3–

     inverse of matrix 
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Inversion of matrix B may be conducted using the method of Gauss-Jordan. To do so, matrix
B(n × n) is first augmented to the right with a same-size identity matrix I, thus creating a n × 2n
matrix. This is illustrated for n = 3:

If the augmented matrix is multiplied by matrix C(n × n), and if C = B–1, then the resulting matrix
(n × 2n) has an identity matrix in its first n columns and matrix C = B–1 in the last n columns.

This shows that, if matrix [B,I] is transformed into an equivalent matrix [I,C], then C = B–1.

The Gauss-Jordan transformation proceeds in two steps. 

• In the first step, the diagonal terms are used, one after the other and from left to right, as pivots
to make all the off-diagonal terms equal to zero. This is done in exactly the same way as for the
determinant: a factor is calculated to cancel out the target term, using the pivot, and property 8 of
the determinants is applied using this factor as multiplier. The difference with determinants is
that the whole row of the augmented matrix is modified, not only the part belonging to matrix B.
If an off-diagonal zero value is encountered, then of course it is left as is, no cancellation by a
multiple of the pivot being necessary or even possible. If a zero is found on the diagonal, this
pivot has to be left aside for the time being (in actual programs, rows and columns are
interchanged in a process called pivoting); this zero will be changed to a non-zero value during
the next cycle unless the matrix is singular. Pivoting makes programming of this method a bit
complex.

• Second step. When all the off-diagonal terms are zero, the diagonal terms of the former matrix
B are brought to 1. This is accomplished by dividing each row of the augmented matrix by the
value now present in the diagonal term of the former B (left) portion. If the changes introduced
during the first step have made one of the diagonal elements equal to zero, then of course no
division can bring it back to 1 and the matrix is singular (i.e. it cannot be inverted).

A Gauss-Jordan algorithm with pivoting is described in the book Numerical recipes (Press et al.,
2007). 

Gauss-
Jordan

b11 b12 b13 1 0 0

b21 b22 b23 0 1 0

b31 b32 b33 0 0 1

 C B 1–=[ ]   B         I    ,[ ]    I   C B 1–=,[ ]=

c11 c12 c13

c21 c22 c23

c31 c32 c33

b11 b12 b13 1 0 0

b21 b22 b23 0 1 0

b31 b32 b33 0 0 1

1 0 0 c11 c12 c13

0 1 0 c21 c22 c23

0 0 1 c31 c32 c33

=
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Numerical example. To illustrate the Gauss-Jordan method, the same square matrix as
above is first augmented, then transformed so that its left-hand portion becomes the identity
matrix:

The inverse of matrix B is the same as calculated above.

The inverse of a matrix has several interesting properties, including:

(1) B–1B = BB–1 = I .

(2) +B–1+ = 1 /+B+. 

(3) [B–1]–1 = B .

(4) [B']–1 = [B–1]' .

(5) If B and C are nonsingular square matrices, [BC]–1 = C–1B–1. 

(6) In the case of a symmetric matrix, since B' = B, then [B–1]' = B–1.

(7) An orthogonal matrix (Section 2.5) whose column vectors are normalized
(scaled to length 1: Section 2.4) is called orthonormal. A square orthonormal matrix B
has the property that B' = B–1. This may be shown as follows: on the one hand,
B–1B = I by definition of the inverse of a square matrix. On the other hand, property 8
of matrix products (Section 2.5) shows that B'B = D(1) when the column vectors in B
are normalized (which is the case for an orthonormal matrix); D(1) is a diagonal matrix
of 1’s, which is the identity matrix I (eq. 2.5). Given that B'B = B–1B = I, then

a( )  
1  2 3
4 5 6
7 8 10

1  2 3  1  0  0
4 5 6 0 1 0
7 8 10 0 0 1

'

b( )  
1 2 3 1  0  0
0 3– 6– 4– 1 0
0 6– 11– 7– 0 1

New row 2 row 2 4row 1–3

New row 3 row 3 7row 1–3

c( )  
3 0 3– 5– 2  0
0 3– 6– 4– 1 0
0 0 1 1 2– 1

New row 1 3row 1 2row 2+3

New row 3 row 3 2row 2–3

d( )  
3 0  0 2– 4– 3
0 3– 0 2 11– 6
0 0 1 1 2– 1

New row 1 row 1 3row 3+3

New row 2 row 2 6row 3+3

e( )  
1 0 0  2 3– 4 3– 1
0 1 0  2 3– 11 3 2 –
0 0 1   1 2– 1

New row 1 1 3( ) row 13
New row 2 1 3( )– row 23

New row 3 row 33

f( )  1
3
---–

2 4 3–
2 11– 6
3– 6 3–

           inverse of matrix B
                 

Orthonormal
matrix
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B' = B–1. Furthermore, combining the properties BB–1 = I (which is true for any
square matrix) and B' = B–1 shows that BB' = I. For example, the matrix of normalized
eigenvectors of a symmetric matrix, which is square and orthonormal (Section 2.9),
has these properties.

(8) The inverse of a diagonal matrix is a diagonal matrix whose elements are the
reciprocals of the original elements: [D(xi)]–1 = D(1/xi).

Inversion is used in many types of applications, as will be seen in the remainder of this book.
Classical examples of the role of inverse matrices are solving systems of linear equations and the
calculation of regression coefficients.

A system of linear equations can be represented in matrix form; for example:

which may be written Ab = c. To find the values of the unknowns b1, b2 and b3, vector b must be
isolated to the left, which necessitates an inversion of the square matrix A:

The inverse of A has been calculated above. Multiplication with vector c provides the solution
for the three unknowns:

Systems of linear equations are solved in that way in Subsections 13.2.2 and 13.3.3.

Linear regression analysis is reviewed in Section 10.3. Regression coefficients are easily
calculated for several models using matrix inversion; the approach is briefly discussed here. The
mathematical model for simple linear regression (model I, Subsection 10.3.1) is: 

 = b0 + b1x

System of
linear
equations

b1 + 2b2 + 3b3 = 2

4b1 + 5b2 + 6b3 = 2

7b1 + 8b2 + 10b3 = 3

1 2 3
4 5 6
7 8 10

b1

b2

b3

2
2
3

='

b1

b2

b3

1 2 3
4 5 6
7 8 10

1–
2
2
3

=

b1

b2

b3

1
3
---–

2 4  3–
2 11– 6
3– 6 3–

2
2
3

1
3
---–

3
0
3–

1–
0
1

= ==
b1 = 1–

b2 = 0

b3 = 1

Simple
linear
regression

ŷ
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The regression coefficients b0 and b1 are estimated from the observed data x and y. This is
equivalent to resolving the following system of equations:

Matrix X was augmented with a column of 1’s in order to estimate the intercept of the regression
equation, b0. Coefficients b are estimated by the method of least squares (Subsection 10.3.1),
which minimizes the sum of squares of the differences between observed values y and values 
calculated using the regression equation. In order to obtain a least-squares best fit, each member
(left and right) of matrix equation y = Xb is multiplied by the transpose of matrix X,
i.e. X'y = X'Xb. By doing so, the rectangular matrix X produces a square matrix X'X, which can
be inverted. The values of coefficients b0 and b1 forming vector b are computed directly, after
inverting the square matrix [X'X]: 

b = [X'X]–1 [X'y] (2.19)

Using the same approach, it is easy to compute coefficients b0, b1, …, bm of a multiple linear
regression (Subsection 10.3.3). In this type of regression, variable y is a linear function of
several (m) variables xj, so that one can write: 

 = b0 + b1x1 + … + bmxm

Vectors y and b and matrix X are defined as follows:

Again, matrix X was augmented with a column of 1’s in order to estimate the intercept of the
equation, b0. The least-squares solution is found by computing eq. 2.19. Readers can consult
Section 10.3 for computational and variable selection methods to be used in multiple linear
regression when the variables xj are strongly intercorrelated, as is often the case in ecology.

In polynomial regression (Subsection 10.3.4), several regression parameters b,
corresponding to powers of a single variable x, are fitted to the observed data. The general
regression model is: 

 = b0 + b1x + b2x2 + … + bkxk

y1 = b0 + b1x1

y2 = b0 + b1x2

.  .

.  .

.  .
yn = b0 + b1xn

y

y1

y2

.

.

.
yn

=' X

1 x1

1 x2

. .

. .

. .
1 xn

= b
b0

b1

=

Least
squares ŷ

Multiple
linear
regression

ŷ

y

y1

y2

.

.

.
yn

= X

1 x11 . . . x1m

1 x21 . . . x2m

.     .

.     .

.     .
1 xn1 . . . xnm

= b

b0

b1

.

.

.
bm

=

Polynomial
regression

ŷ
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The vector of parameters, b, is computed in the same way. Vectors y and b, and matrix X, are
defined as follows:

The least-squares solution is computed using eq. 2.19. Readers should consult Subsection 10.3.4
where practical considerations concerning the calculation of polynomial regression with
ecological data are discussed.

2.9 Eigenvalues and eigenvectors

There are other problems, in addition to those examined above, where the
determinant and the inverse of a matrix are used to provide simple and elegant
solutions. An important one in data analysis is the derivation of an orthogonal form
(i.e. a matrix whose vectors are at right angles; Sections 2.5 and 2.8) for a non-
orthogonal symmetric matrix. This will provide the algebraic basis for most of the
methods studied in Chapters 9 and 11. In ecology, data sets generally include a large
number of variables, which are associated to one another (e.g. linearly correlated;
Section 4.2). The basic idea underlying several methods of data analysis is to reduce
this large number of intercorrelated variables to a smaller number of composite, but
linearly independent (Box 1.1) variables, each explaining a different fraction of the
observed variation. One of the main goals of numerical data analysis is indeed to
generate a small number of variables, each explaining a large portion of the variation,
and to ascertain that these new variables explain different aspects of the phenomena
under study. The present section only deals with the mathematics of the computation of
eigenvalues and eigenvectors. Applications to the analysis of multidimensional
ecological data are discussed in Chapters 4, 9 and 11.

Mathematically, the problem may be formulated as follows. Given a square matrix
A, one wishes to find a diagonal matrix that is equivalent to A. To fix ideas, A is a
covariance matrix S in principal component analysis. Other types of square, symmetric

y

y1

y2

.

.

.
yn

= X

1 x1 x1
2 . . . x1

k

1 x2 x2
2 . . . x2

k

.      .

.      .

.      .

1 xn xn
2 . . . xn

k

= b

b0

b1

.

.

.
bk

=
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association matrices (Section 2.2) are used in numerical ecology, hence the use of the
symbol A:

In A, the terms above and below the diagonal characterize the degree of association of
either the objects, or the ecological variables, with one another (Fig. 2.1). In the new
matrix &&&& (capital lambda) being sought, all elements outside the diagonal are null:

(2.20)

This new matrix is called the matrix of eigenvalues*. It has the same trace and the same
determinant as A. The new variables (eigenvectors; see below) whose association is
described by this matrix &&&& are thus linearly independent of one another. The use of the
Greek letter % (lower-case lambda) to represent eigenvalues stems from the fact that
eigenvalues are actually Lagrangian multipliers %, as will be shown in Section 4.4.
Matrix &&&& is known as the canonical form of matrix A; for the exact meaning of
canonical in mathematics, see Section 11.0. 

1 — Computation

The eigenvalues and eigenvectors of matrix A are found from equation

Aui = %iui (2.21)

which allows one to compute the different eigenvalues %i and their associated
eigenvectors ui. First, the validity of eq. 2.21 must be demonstrated.

*  In the literature, the following expressions are synonymous:
eigenvalue eigenvector
characteristic root characteristic vector
latent root latent vector

Eigen is the German word for characteristic.

A

a11 a12 . . . a1n

a21 a22 . . . a2n

.     .

.     .

.     .
an1 an2 . . . ann

=

&&&&

%11 0 . . . 0
0 %22 . . . 0
.     .
.     .
.     .
0 0 . . . %nn

%1 0 . . . 0
0 %2 . . . 0
.     .
.     .
.     .
0 0 . . . %n

= =

Canonical
form
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To do so, one uses any pair h and i of eigenvalues and eigenvectors computed from matrix
A. Equation 2.21 becomes

Auh = %huh      and      Aui = %iui ,     respectively.

Multiplying these equations by row vectors u'i and u'h, respectively, gives:

    and      

It can be shown that, in the case of a symmetric matrix, the left-hand members of these two
equations are equal: ; this would not be true for an asymmetric matrix,
however. Using a (2 × 2) matrix A like the one of Numerical example 1 below, readers can
easily check that the equality holds only when a12 = a21, i.e. when A is symmetric. So, in the
case of a symmetric matrix, the right-hand members are also equal:

Since we are talking about two distinct values for %h and %i, the only possibility for the above
equality to be true is that the product of vectors uh and ui be 0 (i.e. ), which
is the condition of orthogonality for two vectors (Section 2.5). It is therefore concluded that
eq. 2.21

Aui = %iui

can be used to compute vectors ui that are orthogonal when matrix A is symmetric. In the case of
a non-symmetric matrix, eigenvectors can also be calculated, but they are not orthogonal.

If the scalars %i and their associated vectors ui exist, then eq. 2.21 can be
transformed as follows:

Aui – %iui = 0     (difference between two vectors)

and vector ui can be factorized:

(A – %iI)ui = 0 (2.22)

Because of the nature of the elements in eq. 2.22, it is necessary to introduce a unit
matrix I inside the parentheses, where one now finds a difference between two square
matrices. According to eq. 2.22, multiplication of the square matrix (A – %iI) with the
column vector ui must result in a null column vector (0).

Besides the trivial solution where ui is a null vector, eq. 2.22 has the following
solution:

+A – %iI+ = 0 (2.23)

u'iAuh %hu'iuh= u'hAui %iu'hui=

u'iAuh u'h Aui=

%hu'iuh %iu'hui=

u'i uh u'h ui 0= =
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That is, the determinant of the difference between matrices A and %iI must be equal to
0 for each %i. Resolving eq. 2.23 provides the eigenvalues %i associated with matrix A.
Equation 2.23 is known as the characteristic or determinantal equation.

Demonstration of eq. 2.23 goes as follows:

1) One solution to (A – %iI)ui = 0 is that ui is the null vector: u = [0]. This solution is trivial,
since it corresponds to the centroid of the scatter of data points. A non-trivial solution must thus
involve (A – %iI).

2) Solution (A – %iI) = [0] is not acceptable either, since it implies that A = %iI and thus that
A be a scalar matrix, which is generally not true.

3) The solution thus requires that %i and ui be such that the scalar product (A – %iI)ui is a
null vector. In other words, vector ui must be orthogonal to the space corresponding to A after
%iI has been subtracted from it; orthogonality of two vectors or matrices is obtained when their
scalar product is zero (Section 2.5). The solution +A – %iI+ = 0 (eq. 2.23) means that, for each
value %i, the rank of (A – %iI) is lower than its order, which makes the determinant equal to zero
(Section 2.7). Each %i is the variance corresponding to one dimension of matrix A (Section 4.4).
It is then easy to calculate the eigenvector ui  that is orthogonal to the space (A – %iI) of lower
dimension than A. That eigenvector is the solution to eq. 2.22, which specifies orthogonality of
ui with respect to (A – %iI).

For a matrix A of order n, the characteristic equation is a polynomial of degree n,
whose solutions are the eigenvalues %i. When these values are found, it is easy to use
eq. 2.22 to calculate the eigenvector ui corresponding to each eigenvalue %i. There are
therefore as many eigenvectors as there are eigenvalues.

There are methods that enable the quick and efficient calculation of eigenvalues and
eigenvectors by computer. Three of these are described in Subsection 9.1.9.

Ecologists, who are more concerned with shedding light on natural phenomena
than on mathematical entities, may find unduly technical this discussion of the
computation of eigenvalues and eigenvectors. The same subject will be considered
again in Section 4.4 in the context of the multidimensional normal distribution.
Mastering the bases of this algebraic operation is essential to understand the methods
based on eigenanalysis (Chapters 9 and 11), which are of prime importance to the
analysis of ecological data.

2 — Numerical examples

This subsection contains two examples of eigen-decomposition.

Numerical example 1. The characteristic equation of the symmetric matrix

Character-
istic equation

A  2  2 
 2  5 

=
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is (eq. 2.23)

therefore

and thus

The characteristic polynomial is found by expanding the determinant (Section 2.6):

(2 – %) (5 – %) – 4 = 0

which gives %2 – 7% + 6 = 0

from which it is easy to calculate the two values of % that satisfy the equation (Fig. 2.2a). The
two eigenvalues of A are:

%l = 6     and     %2 = 1

The sum of the eigenvalues is equal to the trace (i.e. the sum of the diagonal elements) of A.

The ordering of eigenvalues is arbitrary. It would have been equally correct to write that
%l = 1 and %2 = 6, but the convention is to sort the eigenvalues in decreasing order.

 2  2 
 2  5 

%  1  0 
 0  1 

– 0=

 2  2 
 2  5 

%  0
0  %

– 0=

2 %– 2
2 5 %–

0=

Figure 2.2 (a) The eigenvalues of Numerical example 1 are the values along the % axis where the function
%2 – 7% + 6 is zero. (b) Similarly for Numerical example 2, the eigenvalues are the values along
the % axis where the function %3 –3%2 – 4% is zero.

% axis
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Equation 2.22 is used to calculate the eigenvectors u1 and u2 corresponding to eigenvalues %1
and %2:

for %l = 6 for %2 = 1

which is equivalent to the following pairs of linear equations:

–4u11 + 2u21 = 0 1u12 + 2u22 = 0

2u11 – 1u21 = 0 2u12 + 4u22 = 0

These sets of linear equations are always indeterminate. The solution is given by
any point (vector) in the direction of the eigenvector being sought. To remove the
indetermination, an arbitrary value is assigned to one of the elements u, which
specifies a particular vector. For example, value u = 1 may be arbitrarily assigned to
the first element u in each set:

given that u11 = 1 u12 = 1

it follows that –4u11 + 2u21 = 0 1u12 + 2u22 = 0

become –4 + 2u21 = 0 1 + 2u22 = 0

so that u21 = 2 u22 = –1/2

Eigenvectors u1 and u2 are therefore:

and

Values other than 1 could have been arbitrarily assigned to u11 and u12 (or, for that matter, to any
other term in each vector). For example, the following vectors also satisfy the two pairs of linear
equations, since these eigenvectors differ only by a scalar multiplier:

 2  2 
 2  5 

6  1  0 
 0  1 

–
4 5
6 7
8 9 u11

u21

0=  2  2 
 2  5 

1  1  0 
 0  1 

–
4 5
6 7
8 9 u12

u22

0=

4– 2
2 1–

u11

u21

0= 1  2
2 4

u12

u22

0=

1
2

1
1 2–

2
4

or 3–
6–

2
1–

or 4–
2
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This is the reason why eigenvectors are generally standardized. One method is to
assign value 1 to the largest element of each vector, and adjust the other elements
accordingly. Another standardization method, used for instance in principal component
and principal coordinate analyses (Sections 9.1 and 9.3), is to make the length of each
eigenvector ui equal to the square root of its eigenvalue (eigenvector scaled to ).

The most common and practical method is to normalize eigenvectors, i.e. to make
their lengths equal to 1. Thus, a normalized eigenvector is in fact scaled to 1,
i.e. u'u = 1. As explained in Section 2.4, normalization is achieved by dividing each
element of a vector by the length of this vector, i.e. the square root of the sum of
squares of all elements in the vector. Like most other computer packages, the R
function eigen() outputs normalized eigenvectors.

In the numerical example, the two eigenvectors

and

are normalized to

and

Since the eigenvectors are both orthogonal and normalized, they are orthonormal (property 7 in
Section 2.8). 

Had the eigenvectors been multiplied by a negative scalar, their normalized forms would
now be the following:

and

These forms are strictly equivalent to those above.

Since matrix A is symmetric, its eigenvectors must be orthogonal. This is easily verified as
their product is equal to zero, which is the condition for two vectors to be orthogonal
(Section 2.5):

The normalized eigenvectors can be plotted in the original system of coordinates, i.e. the
Cartesian plane whose axes are the two original descriptors; the association between these

%i

1
2

2
1–

1 5

2 5

2 5

1– 5

1– 5

2– 5

2– 5

1 5

u'1u2 1 5 2 5= 2 5

1– 5
2 5 2 5– 0= =
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descriptors is given by matrix A. This plot (full arrows) shows that the angle between the
eigenvectors is indeed 90° (cos 90° = 0) and that their lengths are 1:

The dashed arrows illustrate the same eigenvectors with inverted signs. The eigenvectors with
dashed arrows are equivalent to those with full arrows.

Resolving the system of linear equations used to compute eigenvectors is greatly
facilitated by matrix inversion. Defining matrix Cnn = (A – %nI) allows eq. 2.22 to be
written in a simplified form: 

Cnnun = 0n (2.24)

Indices n designate here the dimensions of matrix C and vector u. Matrix Cnn contains
all the coefficients by which a given eigenvector un is multiplied. The system of
equations is indeterminate, which prevents the inversion of C and calculation of u. To
remove the indetermination, it is sufficient to determine any one element of vector u.
For example, one may arbitrarily decide that u1 = : (: - 0). Then,

1

1

( 1/   5 ,  2/   5 )

( 2/   5 ,  –1/   5 )

( –1/   5 ,  –2/   5 )

( –2/   5 ,  1/   5 )

c11 c12 . . . c1n

c21 c22 . . . c2n

.     .

.     .

.     .
cn1 cn2 . . . cnn

:
u2

.

.

.
un

0
0
.
.
.
0

=
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can be written

so that

After setting u1 = :, the first column of matrix C is transferred to the right. The last
n – 1 rows of C are then sufficient to define a completely determined system. The first
row is removed from C in order to obtain a square matrix of order n – 1, which can be
inverted. The determined system thus obtained is:

which can be written (2.25)

This system can be resolved by inversion of C, as in Section 2.8:

(2.26)

This method of computing the eigenvectors may not work, however, in the case of
multiple eigenvalues (see Third property in Section 2.10, below). The following
example provides an illustration of the computation through matrix inversion.

c11: + c12u2 + . . . + c1nun

c21: + c22u2 + . . . + c2nun

.     .

.     .

.     .
cn1: + cn2u2 + . . . + cnnun

0
0
.
.
.
0

=

c12u2 + . . . + c1nun

c22u2 + . . . + c2nun

.     .

.     .

.     .
cn2u2 + . . . + cnnun

:–

c11

c21

.

.

.
cn1

=

c22u2 + . . . + c2nun

.     .

.     .

.     .
cn2u2 + . . . + cnnun

:–

c21

.

.

.
cn1

=

C n 1–( ) n 1–( ) u n 1–( ) :–= c n 1–( )

u n 1–( ) :–= C n 1–( ) n 1–( )

1– c n 1–( )
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Numerical example 2. For the asymmetric matrix

 ,

the characteristic polynomial, computed from eq. 2.23, is %3 – 3%2 – 4% = 0, from which the
three eigenvalues 4, 0 and –1 can be calculated (Fig. 2.2b). The sum of the eigenvalues has to be
equal to the trace of A, which is 3.

The eigenvectors are computed by inserting each eigenvalue, in turn, into eq. 2.22. For
%1 = 4:

The above system is determined by setting u11 = 1. Using eq. 2.25 gives:

from which it follows (eq. 2.26) that

The inverse of matrix  is  so that

The two other eigenvectors are computed in the same fashion, from eigenvalues %2 = 0 and
%3 = –1. The resulting matrix of eigenvectors (columns) is:

A
 1  3 1 –
 0 1 2 
 1 4 1 

=

1 4–( ) 3 1–
0 1 4–( ) 2
1 4 1 4–( )

u11

u21

u31

0
0
0

=

1 4–( ) 2
4 1 4–( )

u21

u31

1– 0
1

=

u21

u31

1 4–( ) 2
4 1 4–( )

1–
0
1–

=

3– 2
4 3–

3– 2–
4– 3–

u21

u31

3– 2–
4– 3–

0
1–

2
3

==

U u1 u2 u3

1 1 1
2 2 7– 1 2–
3 1 7 1 2

= = or else
1 7 2
2 2– 1–
3 1 1
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which is normalized to

Readers can easily check that these eigenvectors, which were extracted from a non-symmetric
matrix, are indeed not orthogonal; none of the scalar products between pairs of columns is equal
to zero. The eigenanalysis of non-symmetric (or asymmetric) matrices will be encountered in
linear discriminant analysis and canonical correlation analysis, Sections 11.3 and 11.4.

2.10 Some properties of eigenvalues and eigenvectors

First property. — A simple rearrangement of eq. 2.21 shows that matrix U of the
eigenvectors is a transform matrix, allowing one to go from system A to system &&&&.
Indeed, the equation can be rewritten so as to include all eigenvalues and eigenvectors:

AU = U&&&& (2.27)

Numerical example. Equation 2.27 can be verified using Numerical example 2 of
Section 2.9:

The left and right-hand sides of the equation are identical:

On the left-hand side of the equation, matrix A is postmultiplied by matrix U of the
eigenvectors whereas, on the right-hand side, the matrix of eigenvalues &&&& is
premultiplied by U. It follows that U achieves a two-way transformation (rows,
columns), from the reference system A to the system &&&&. This transformation can go
both ways, as shown by the following equations which are both derived from eq. 2.27:

A = U&&&&U–1 and &&&& = U–1AU (2.28)

A simple formula may be derived from A = U&&&&U–1, which can be used to raise
matrix A to any power x:

Ax = (U&&&&U–1)U&&&&    … U–1(U&&&&U–1)

Ax = U&&&&(U–1U)&&&&    … (U–1U)&&&&U–1

U
0.27 0.95 0.82
0.53 0.27– 0.41–
0.80 0.14 0.41

=

1  3 1–
0 1 2
1 4 1

1 7 2
2 2– 1–
3 1 1

1 7 2
2 2– 1–
3 1 1

4  0 0
0 0 0
0 0 1–

=

4  0 2–
8 0 1

12 0 1–

4  0 2–
8 0 1

12 0 1–
=
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Ax = U&&&&xU–1, because U–1U = I

Raising a matrix to some high power is greatly facilitated by the fact that &&&&x is the
matrix of eigenvalues, which is diagonal. Indeed, a diagonal matrix can be raised to
any power x by raising each of its diagonal elements to power x. It follows that the last
equation can be rewritten as:

(2.29)

This may be verified using the above example. Note 1: this calculation cannot be done
if there are negative eigenvalues, as in non-symmetric matrices, and the exponent is
not an integer. The reason is that a fractional exponent of a negative number is
undefined. Note 2: if U is orthonormal, U–1 = U', so that  =

 (property of the inverse of an orthonormal matrix, Section 2.8). This
equality is true only if U has been normalized.

Second property. — It was shown in Section 2.7 that, when the rank (r) of matrix
Ann is smaller than its order (r < n), the determinant +A+ is 0. It was also shown that,
when it is necessary to know the rank of a matrix, as for instance in dimensional
analysis (Section 3.3), +A+ = 0 indicates that one must check the rank of A. Such a
test naturally follows from the calculation of eigenvalues. Indeed, for a square
symmetric matrix A, the determinant is equal to the product of its eigenvalues:

(2.30)

so that +A+ = 0 if one or several of the eigenvalues is 0. When the rank of a matrix is
smaller than its order (r < n), this matrix has (n – r) null eigenvalues. Thus,
eigenvalues can be used to determine the rank of a square symmetric matrix: the rank
is equal to the number of nonzero eigenvalues. In the case of a covariance or cross-
product matrix among variables, the number of nonzero eigenvalues (i.e. the rank of
A) is the number of linearly independent dimensions required to account for all the
variance (Chapter 9).

Third property. — It was implicitly assumed, up to this point, that the eigenvalues
were all different from one another. It may happen, however, that some (say, m)
eigenvalues are equal. These are known as multiple eigenvalues. In such a case, the
question is whether or not matrix Ann has n distinct eigenvectors. In other words, are
there m linearly independent eigenvectors which correspond to the same eigenvalue?
In principal component analysis (Section 9.1), a solution corresponding to that
situation is called circular.

Values %i are chosen in such a way that the determinant |A – %iI| is null (eq. 2.23):

|A – %iI| = 0

Ax U %i
x

[ ] U 1–=

Ax U %i
x

[ ] U 1–=
U %i

x
[ ] U'

A %i
i 1=

n

;=

Multiple
eigenvalues
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which means that the rank of (A – %iI) is smaller than n. In the case of multiple
eigenvalues, if there are m distinct eigenvectors corresponding to the m identical
eigenvalues %i, the determinant of (A – %iI) must be null for each of these eigenvalues,
but in a different way each time. When m = 1, the condition for +A – %iI+ = 0 is for its
rank to be r = n – 1. Similarly, in a case of multiplicity, the condition for +A – %iI+ to
be null m times, but distinctly, is for its rank to be r = n – m. Consequently, for n
distinct eigenvectors to exist, the rank of (A – %iI) must be r = n – m, and this for any
eigenvalue %i of multiplicity m.

Numerical example. Here is an example of a full-rank asymmetric matrix A that has two
equal eigenvalues corresponding to distinct eigenvectors. The full-rank condition is shown by
the fact that det(A) = –1, which differs from 0. The eigenvalues are %1 = %2 = 1 and %3 = –1:

The multiplicity, or number of multiple eigenvalues, is m = 2. The rank of (A – %iI) is r = 1
because all three columns of this matrix are identical. Thus, for %1 = %2 = 1, n – m = 3 – 2 = 1,
which shows that r = n – m in this example. It follows that there exist two distinct eigenvectors
u1 and u2. They can indeed be calculated:

for %1 = 1, , for %2 = 1, , whereas for %3 = –1, 

Eigenvectors u1 and u2 both correspond to the multiple eigenvalue % = 1. Any linear
combination of such eigenvectors is also an eigenvector of A corresponding to %. For example:

It can easily be verified that the above two eigenvectors, or any other linear combination of u1
and u2, are eigenvectors of A corresponding to % = 1. Of course, the new eigenvectors are not
linearly independent of u1 and u2, so that there are still only two distinct eigenvectors
corresponding to the multiple eigenvalue % = 1.

Numerical example. Here is an example of a full-rank asymmetric matrix A that has two
indistinguishable eigenvectors. The full-rank condition is shown by the fact that det(A) = 3,
which differs from 0. The eigenvalues are %1 = 3 and %2 = %3 = 1:

A
1– 2– 2–
1 2 1
1– 1– 0

= so that, for %1 %2 1,= = A 1I–( )
2– 2– 2–
1 1 1
1– 1– 1–

=

u1

1
0
1–

= u2

1
1–
0

= u3

2
1–
1

=

u1 u2–
0
1
1–

= u1 2u2+
3
2–
1–

=

A
2 1– 1
3 3 2–
4 1 0

= so that, for %2 %3 1,= = A 1I–( )
1 1– 1
3 2 2–
4 1 1–

=
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The multiplicity, or number of multiple eigenvalues, is m = 2. The rank of (A – %iI) is r = 2
because any two of the three rows (or columns) of this matrix are independent of each other.
Thus, for %2 = %3 = 1, n – m = 3 – 2 = 1, which shows that r - n – m in this example. The
conclusion is that there do not exist two independent eigenvectors associated with the
eigenvalue of multiplicity m = 2. The eigenvectors are the following:

for %1 = 3,    whereas for %2 = %3 = 1,   

In the case of a square symmetric matrix, it is always possible to calculate m
orthogonal eigenvectors corresponding to multiple eigenvalues, when present. This is
not necessarily true for non-symmetric matrices, where the number of eigenvectors
may be smaller than m. Therefore, whatever their multiplicity, eigenvalues of most
matrices of interest to ecologists, including association matrices (Section 2.2), have
distinct eigenvectors associated with them. In any case, it is unlikely that eigenvalues
of matrices computed from field data be exactly equal (i.e. multiple).

Fourth property. — A property of square symmetric matrices may be used to
predict the nature of their eigenvalues (Table 2.2). A symmetric matrix A may be
combined with any vector t - 0, in a matrix expression of the form t'At which is

u1

2
1
3

= u1 u2

0
1
1

= =

Table 2.2 Types of symmetric matrices and corresponding characteristics of their eigenvalues.

Symmetric matrix Eigenvalues

All elements of matrix A are real All eigenvalues are real (i.e. non-imaginary)
(i.e. non-imaginary)

Matrix A is positive definite All eigenvalues are positive

Matrix Ann is positive semidefinite There are r positive and (n – r) null
and of rank r eigenvalues

Matrix Ann is negative semidefinite There are r negative and (n – r) null
and of rank r eigenvalues

Matrix Ann is indefinite and of rank r There are r non-null (positive and negative)
and (n – r) null eigenvalues

Matrix A is diagonal The diagonal elements are the eigenvalues
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known as a quadratic form. This expression results in a scalar whose value leads to the
following definitions:

• if t'At is always positive, matrix A is positive definite;

• if t'At can be either positive or null, matrix A is positive semidefinite;

• if t'At can be either negative or null, matrix A is negative semidefinite;

• if t'At can be either negative, null or positive, matrix A is indefinite.

2.11 Singular value decomposition

Another useful method of matrix decomposition is singular value decomposition
(SVD). The approximation theorem of Schmidt (1907), later rediscovered by Eckart &
Young (1936), showed that any rectangular matrix Y can be decomposed as follows:

Y(n×p) = V(n×k) W(diagonal, k×k) U'(k×p) (2.31)

where both U and V are orthonormal matrices (i.e. matrices containing column vectors
that are normalized and orthogonal to one another; Section 2.8). W is a diagonal
matrix D(wi), of order k = min(n, p), containing the singular values; the illustration
hereunder assumes that n > p so that k = p. The notation D(wi) for the diagonal matrix
of singular values will be used in the remainder of this section. The early history of
singular value decomposition has been recounted by Stewart (1993). The following
illustration shows the shapes of these matrices:

Demonstrating eq. 2.31 is beyond the scope of this book. The diagonal values wi in
D(wi) are non-negative; they are the singular values of Y. SVD functions are found in
advanced statistical languages such as R, S-PLUS! and MATLAB!. The notation used
in different manuals and computer software may, however, differ from the one used
here. That is the case of the R language, where function svd() is said to decomposes Y
into UD(wi)V', instead of the notation VD(wi)U' used here to insure consistency
between the results of eigenanalysis and SVD in Subsection 9.1.9. 

Quadratic 
form

Singular 
value

=Y(n×p) U'(p×p)V(n×p)

w
1

0 0 … 0

0 w
2

0 … 0

0 0 w
3 … 0

… … … … …
0 0 0 … w

p
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Application 1: Rank of a rectangular matrix. — The rank of a rectangular
matrix is equal to the number of singular values larger than 0. As an illustration,
consider the matrix in Numerical example 2 of Section 2.7:

In this example, (n = 3) < (p = 4), hence k = n = 3, and the dimensions of matrices in
eq. 2.31 are V(3×3), W(3×3) and U'(3×4). Singular value decomposition of that matrix
produces two singular values larger than zero and one null singular value. SVD of the
transposed matrix produces the same singular values. Y is thus of rank 2. After
elimination of the third (null) singular value and the corresponding vector in both V
and U', the singular value decomposition of Y gives:

Application 2: Decomposition of a cross-product matrix. — A covariance
matrix is a type of cross-product matrix (Chapter 4). Consider the covariance matrix S
of the data used to illustrate principal component analysis in Section 9.1. It is
decomposed as follows by SVD:

S = V D(wi) U'

The singular values of S, found on the diagonal of D(wi), are equal to the eigenvalues.
This is true for any square symmetric matrix. Matrices V and U contain vectors
identical to the eigenvectors obtained by eigenanalysis; eigenvectors may vary in their
signs depending on the program or the computer platform. Negative eigenvalues,
which may be found in principal coordinate analysis of symmetric distance matrices
(PCoA, Section 9.3), will come out as singular values with positive signs. Example: 

matrix

has the singular values [9.6235, 6.2348, 0.0000] and the following set of eigenvalues:
[9.6235, 0.0000, –6.2348]. The singular value 6.2348 with a positive sign corresponds
to the negative eigenvalue –6.2348. 

Y
2 1 3  4
1– 6 3– 0
1 20 3– 8

=

Y
0.08682–   0.84068
0.26247– 0.53689–
0.96103–   0.07069

22.650 0
0 6.081

0.03851– 0.92195– 0.15055 0.35477–
  0.37642 0.15902– 0.64476   0.64600

=

8.2 1.6
1.6 5.8

0.8944– 0.4472–
0.4472–   0.8944

9 0
0 5

0.8944– 0.4472–
0.4472–   0.8944

=

1 2 3
2 3 4
3 4 5
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Application 3: Generalized matrix inversion. — SVD offers a way of inverting
matrices that are singular (Section 2.8) or numerically very close to being singular.
SVD may either give users a clear diagnostic of the problem, or solve it. Singularity
may be encountered in regression for example: if the matrix of explanatory variables X
is not of full rank, the cross-product matrix A = [X'X] is singular and it cannot be
inverted with the methods described in Section 2.8, although inversion is necessary to
solve eq. 2.19.

Inversion of A = [X'X] by SVD involves the following steps. First, A is
decomposed using eq. 2.31:

A = V D (wi)U'

Since A is symmetric, V, D(wi), and U are all square matrices of the same size as A.
Using property 5 of matrix inverses (above), the inverse of A is easy to compute:

A–1 = [V D(wi)U']–1 = [U']–1[D(wi)]–1[V]–1

Because U and V are orthonormal, their inverses are equal to their transposes
(property 7 of inverses), whereas the inverse of a diagonal matrix is a diagonal matrix
whose elements are the reciprocals of the original elements (property 8). Hence:

A–1 = UD(1/wi)V' (2.32)

It may happen that one or more of the wi’s are zero, so that their reciprocals are
infinite; A is then a singular matrix. This is what happens in the regression case when
X is not of full rank. It may also happen that one or more of the wi’s are numerically so
small that their values cannot be properly computed because of the machine’s
precision in floating-point calculation; in that case, A is said to be ill-conditioned.
When A is singular, the columns of U corresponding to the zero elements in D(wi)
form an orthonormal basis* for the space where the system of equations has no
solution, whereas the columns of V corresponding to the non-zero elements in D(wi)
are an orthonormal basis for the space where the system has a solution. When A is
singular or ill-conditioned, it is still possible to find its inverse, either exactly or
approximately, and use it to compute a regression model. Here is an example:

y =  X = 

*  A set of k linearly independent vectors form a basis for a k-dimensional vector space. Any
vector in that space can be uniquely written as a linear combination of the base vectors.

Singular
matrix

Ill-
conditioned
matrix

1.25
1.13
1.60
2.08
2.10

1 1 1 5
1 2 2 2
1 3 3 4
1 4 4 3
1 5 5 1
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The first column of X contains 1’s to estimate the intercept. Columns 2 and 3 are
identical, so X is not of full rank. Equation 2.31 produces a decomposition of
A = [X'X] that has 3 (not 4) singular values larger than 0. A generalized inverse is
obtained by computing eq. 2.32 after removing the last column from U and V and the
last row and column from D(wi):

A–1 = UD(1/wi)V'

= 

= 

Using the generalized inverse A–1, the regression coefficients can now be computed
(eq. 2.19):

b = [X'X]–1X'y = A–1X'y = 

The first value in vector b is the intercept. Now remove column 2 from X and compute
a multiple linear regression equation. The regression coefficients are: 

The regression coefficient for the second column of X, 0.35078, has been split in two
equal coefficients of 0.17539 in the SVD solution when the two identical variables
were kept in the analysis.

Similar problems may be encountered when solving sets of simultaneous linear
equations represented by matrix equation Ab = c (Section 2.8). In this book, SVD will
also be used in algorithms for principal component analysis (Subsection 9.1.9) and
correspondence analysis (Subsection 9.2.1). 

0.17891–   0.07546   0.98097
0.59259– 0.37762– 0.07903–
0.59259– 0.37762– 0.07903–
0.51544–   0.84209 0.15878–

0.00678 0 0
0 0.04492 0
0 0 6.44243

0.17891– 0.59259– 0.59259– 0.51544–
  0.07546 0.37762– 0.37762–   0.84209
  0.98097 0.07903– 0.07903– 0.15878–

  6.20000 0.50000– 0.50000– 1.00000–
0.50000–   0.04902   0.04902   0.06863
0.50000–   0.04902   0.04902   0.06863
1.00000–   0.06863   0.06863   0.19608

b0
b1
b2
b3

0.21200
0.17539
0.17539
0.12255

=

b0
b1
b2

0.21200
0.35078
0.12255

=
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2.12 Software

Functions for all matrix operations described in this chapter are available in the R
language. Standard matrix operations are available in the BASE package while more
specialized operations are found in the MATRIX package. 

Among the functions found in BASE are det() to compute a determinant, solve() for
matrix inversion or solving a system of linear equations, eigen() for eigenvalue
decomposition, and svd() for singular value decomposition. Other useful
decompositions used in later chapters but not discussed in Chapter 2 are the QR
decomposition (function qr() of BASE) and Cholesky factorization (functions chol() of
BASE and MATRIX). Package MASS offers function ginv() for general inversion. 

Functions implementing matrix algebra are also available in S-PLUS!, MATLAB!

and SAS!.
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Dimensional 
analysis in ecology

 

3.0 Dimensional analysis

 

Dimensional analysis is generally not part of the curriculum of ecologists, so that
relatively few are conversant with this simple but remarkably powerful tool. Yet,
applications of dimensional analysis are found in the ecological literature, where
results clearly demonstrate the advantage of using this mathematical approach.

“Dimensional analysis treats the 

 

general forms of equations

 

 that describe natural
phenomena” (Langhaar, 1951). The basic principles of this discipline were established
by physicists (Fourier, 1822; Maxwell, 1871) and later applied by engineers to the very
important area of small-scale modelling. Readers interested in the fundamentals and
engineering applications of dimensional analysis should refer, for example, to
Langhaar (1951), from which are taken several of the topics developed in the present
chapter. Other useful references are Ipsen (1960), Huntley (1967), and Schneider
(1994).

The use of dimensional analysis in ecology rests on the fact that a growing number
of areas in ecological science use 

 

equations

 

; for example, populations dynamics and
ecological modelling. The study of equations is the very basis of dimensional analysis.
This powerful approach can easily be used by ecologists, given the facts that it can be
reduced to

 

 a

 

 

 

single theorem 

 

(the 

 

!

 

 theorem) and that many of its applications
(Sections 3.1 and 3.2) only require a knowledge of elementary mathematics.

Dimensional analysis can resolve complex ecological problems in a simple and
elegant manner. Readers should therefore not be surprised that ecological applications
in the present chapter are of a rather high level, since the advantage of dimensional
analysis lies precisely in its ability to handle complex problems. It follows that
dimensional analysis is mainly useful in those cases where it would be difficult to
resolve the ecological problem by conventional approaches.
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3.1 Dimensions

All fields of science, including ecology, rest on a number of abstract entities such as
the mass, length, time, temperature, speed, acceleration, radioactivity, concentration,
energy or volume. These entities, which can be measured, are called quantities.
Designing a system of units requires to: (1) arbitrarily choose a small number of
fundamental quantities, on which a coherent and practical system can be constructed,
and (2) arbitrarily assign, to each of these quantities, base units chosen as references
for comparing measurements.

Various systems of units have been developed in the past, e.g. the British system
and several versions of the metric system. The latter include the CGS metric system
used by scientists (based on the centimetre, the gram and the second), the MKS (force)
metric system used by engineers (based on the metre, the kilogram and the second,
where the kilogram is the unit of force), and the MKS (mass) metric system (where the
kilogram is the unit of mass). Since 1960, there is an internationally accepted version
of the metric system, called the International System of Units (SI, from the French
name Système international d’unités; see Plate 3.1, p. 142). The SI is based on seven
quantities, to which are associated seven base units (Table 3.1; the mole was added to
the SI in 1971 only). In addition to these seven base units, the SI recognizes two

International
System
of Units

Table 3.1 Base units of the International System of Units (Sl).

Fundamental quantity Quantity symbol* Dimension symbol Base unit Unit symbol

mass m [M] kilogram kg

length l [L] metre† m

time t [T] second s

electric current I [I] ampere A

thermodynamic temperature T ‡ ["] kelvin‡ K

amount of substance n [N] mole mol

luminous intensity Iv [J] candela cd

* Quantity symbols are not part of the SI, and they are not unique.
† Spelled meter in the United States of America.
‡ In ecology, temperature is generally measured on the Celsius scale, where the unit is the

degree Celsius (°C); the quantity symbol for temperatures expressed in °C is usually t. Note
that the absolute temperature unit is the kelvin, not degree kelvin.
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supplementary units, the radian (rad) and the steradian (sr), which measure planar and
solid angles, respectively. All other units, called derived units, are combinations of the
base and supplementary units. Some frequently used derived units have special names,
e.g. volt, lux, joule, newton, ohm. It must be noted that: (1) unit names are written with
small letters only, the sole exception being the degree Celsius; (2) unit symbols are
written with small letters only, except the symbols of derived units that are surnames,
whose first letter is a capital (e.g. Pa for pascal), and the litre (see Table 3.2, footnote).
Unit symbols are not abbreviations, hence they are never followed by a dot.

Table 3.2 shows that derived units are not only simple products of the fundamental
units, but that they are often powers and combinations of powers of these units.
Maxwell (1871) used symbols such as [M], [L], [T], and ["] to represent the quantities
mass, length, time and temperature (Table 3.1). The dimensions of the various
quantities are products of powers of the symbols of fundamental quantities. Thus, the
dimension of an area is [L2], of a volume [L3], of a speed [LT–1], and of an
acceleration [LT–2]. Table 3.2 gives the exponents of the dimensional form of the most
frequently encountered quantities.

Since the various quantities are products of powers, going from one quantity to
another is done simply by adding (or subtracting) exponents of the dimensions. For
example, one calculates the dimensions of heat conductivity W(mK)–1 by subtracting,
from the dimension exponents of power W, the sum of the dimension exponents of
length m and of temperature K:

[M1L2T–3] / ([Ll] × ["1]) = [M1L(2 – 1)T–3"–(1)] = [M1L1T–3"–1]

The first three fundamental quantities (Table 3.1), mass [M], length [L], and time
[T], are enough to describe any Newtonian mechanical system. Ecologists may
require, in addition, temperature ["], amount of substance [N], and luminous intensity
[J]. Research in electromagnetism calls for electric current [I] and, in quantum
mechanics, one uses the quantum state of the system [#].

Four types of entities are recognized:

(1) dimensional variables, e.g. most of the quantities listed in Table 3.2;

(2) dimensional constants, for instance: the speed of light in vacuum [LT–1],
c = 2.998 × 108 m s–1; the acceleration due to Earth’s gravity at sea level [LT–2],
g = 9.807 m s–2; the number of elementary entities in a mole NA = 6.022 × 1023 mol–1,
where NA is the Avogadro number (note that the nature of the elementary entities in a
mole must always be specified, e.g. mol C, mol photons);

(3) dimensionless variables, such as angles, relative density (Table 3.2), or
dimensionless products which will be studied in following sections;

(4) dimensionless constants, e.g. $, e, 2, 7; it must be noted that exponents are, by
definition, dimensionless constants.

Dimension
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Table 3.2 Dimensions, units, and names of quantities. Units follow the standards of the International
System of Units (SI).

Quantity [M] [L] [T] [I] ["] [N] [J] Units Name*

mass 1 0 0 0 0 0 0 kg kilogram
length 0 1 0 0 0 0 0 m metre
time 0 0 1 0 0 0 0 s second
electric current 0 0 0 1 0 0 0 A ampere
temperature 0 0 0 0 1 0 0 K kelvin
amount of substance 0 0 0 0 0 1 0 mol mole
luminous intensity 0 0 0 0 0 0 1 cd candela

absorbed dose 0 2 –2 0 0 0 0 J kg–1 = Gy gray
acceleration (angular) 0 0 –2 0 0 0 0 rad s–2

acceleration (linear) 0 1 –2 0 0 0 0 m s–2

activity of radioactive source 0 0 –1 0 0 0 0 s–1 = Bq becquerel
angle (planar) 0 0 0 0 0 0 0 rad radian
angle (solid) 0 0 0 0 0 0 0 sr steradian
angular momentum 1 2 –1 0 0 0 0 kg m2 s–1

angular velocity 0 0 –1 0 0 0 0 rad s–1

area 0 2 0 0 0 0 0 m2

compressibility –1 1 2 0 0 0 0 Pa–1

concentration (molarity) 0 –3 0 0 0 1 0 mol m–3

current density 0 –2 0 1 0 0 0 A m–2

density (mass density) 1 –3 0 0 0 0 0 kg m–3

electric capacitance –1 –2 4 2 0 0 0 C V–1 = F farad
electric charge 0 0 1 1 0 0 0 A s = C coulomb
electric conductance –1 –2 3 2 0 0 0 %–1 = S siemens
electric field strength 1 1 –3 –1 0 0 0 V m–1

electric resistance 1 2 –3 –2 0 0 0 V A–1 = % ohm
electric potential 1 2 –3 –1 0 0 0 W A–1 = V volt
energy 1 2 –2 0 0 0 0 N m = J joule

force 1 1 –2 0 0 0 0 kg m s–2 = N newton
frequency 0 0 –1 0 0 0 0 s–1 = Hz hertz

heat capacity 1 2 –2 0 –1 0 0 J K–1

heat conductivity 1 1 –3 0 –1 0 0 W(m K)–1

heat flux density 1 0 –3 0 0 0 0 W m–2

illuminance 0 –2 0 0 0 0 1 lm m–2 = lx lux
inductance 1 2 –2 –2 0 0 0 Wb A–1 = H henry

light exposure 0 –2 1 0 0 0 1 lx s
luminance 0 –2 0 0 0 0 1 cd m–2

luminous flux 0 0 0 0 0 0 1 cd sr = lm lumen
magnetic field strength 0 –1 0 1 0 0 0 A m–1

magnetic flux 1 2 –2 –1 0 0 0 V s = Wb weber
magnetic flux density 1 0 –2 –1 0 0 0 Wb m–2 = T tesla
magnetic induction 1 0 –2 –1 0 0 0 Wb m–2 = T tesla

* Only base units and special names of derived units are listed.
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Table 3.2 Dimensions, units, and names of quantities (continued).

Quantity [M] [L] [T] [I] ["] [N] [J] Units Name

magnetic permeability 1 1 –2 –2 0 0 0 % s m–1

mass flow rate 1 0 –1 0 0 0 0 kg s–1

molality –1 0 0 0 0 1 0 mol kg–1

molarity 0 –3 0 0 0 1 0 mol m–3

molar internal energy 1 2 –2 0 0 –1 0 J mol–1

molar mass 1 0 0 0 0 –1 0 kg mol–1

molar volume 0 3 0 0 0 –1 0 m3 mol–1

moment of force 1 2 –2 0 0 0 0 N m
moment of inertia 1 2 0 0 0 0 0 kg m2

momentum 1 1 –1 0 0 0 0 kg m s–1

period 0 0 1 0 0 0 0 s
permittivity –1 –3 4 2 0 0 0 F m–1

power 1 2 –3 0 0 0 0 J s–1 = W watt
pressure 1 –1 –2 0 0 0 0 N m–2 = Pa pascal

quantity of light 0 0 1 0 0 0 1 lm s
radiant intensity 1 2 –3 0 0 0 0 W sr–1

relative density 0 0 0 0 0 0 0 (no unit)
rotational frequency 0 0 –1 0 0 0 0 s–1

second moment of area 0 4 0 0 0 0 0 m4

specific heat capacity 0 2 –2 0 –1 0 0 J(kg K)–1

specific latent heat 0 2 –2 0 0 0 0 J kg–1

specific volume –1 3 0 0 0 0 0 m3 kg–1

speed 0 1 –1 0 0 0 0 m s–1

stress 1 –1 –2 0 0 0 0 N m–2 = Pa pascal
surface tension 1 0 –2 0 0 0 0 N m–1

torque 1 2 –2 0 0 0 0 N m
viscosity (dynamic) 1 –1 –1 0 0 0 0 Pa s
viscosity (kinetic) 0 2 –1 0 0 0 0 m2 s–1

volume † 0 3 0 0 0 0 0 m3

volume flow rate 0 3 –1 0 0 0 0 m3 s–1

wavelength 0 1 0 0 0 0 0 m
wave number 0 –1 0 0 0 0 0 m–1

work 1 2 –2 0 0 0 0 N m = J joule

† The litre (spelt liter in the United States of America) is the capacity (vs. cubic) unit of volume.
Its symbol (letter l) may be confused with digit one (1) in printed texts so that it was decided
in 1979 that capital L could be used as well; 1 m3 = 1000 L.
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The very concept of dimension leads to immediate applications in physics and
ecology. In physics, for example, one can easily demonstrate that the first derivative of
distance with respect to time is a speed:

dimensions of  :    = [LT–1], i.e. speed.

Similarly, it can be shown that the second derivative is an acceleration:

dimensions of  =  :    = [LT–2], i.e. acceleration.

Note that italics are used for quantity symbols such as length (l), mass (m), time (t),
area (A), and so on. This distinguishes them from unit symbols (roman type; Tables 3.1
and 3.2), and dimension symbols (roman capitals in brackets; Table 3.1).

Ecological application  3.1

Platt (1969) studied the efficiency of primary (phytoplankton) production in the aquatic
environment. Primary production is generally determined at different depths in the water
column, so that it is difficult to compare values observed under different conditions. The solution
to this problem consists in finding a method to standardize the values, for example by
transforming field estimates of primary production into values of energy efficiency. Such a
transformation would eliminate the effect on production of solar irradiance at different locations
and different depths. Primary production at a given depth P(z) may be expressed in J m–3 s–1

[ML–1 T–3], while irradiance at the same depth E(z) is in J m–2 s–1 [MT–3] (energy units).

The dimension of the ratio P(z)/E(z), which defines the energy efficiency of primary
production, is thus [L–1]. Another property determined in the water column, which also has
dimension [L–1], is the attenuation of diffuse light as a function of depth. The coefficient of
diffuse light attenuation (&) is defined as:

E(z2) = E(z1) e–&(z2 – z1)

where E(z2) and E(z1) are irradiances at depths z2 and z1, respectively. Given the fact that an
exponent is, by definition, dimensionless, the dimension of & must be [L–1] since that of depth z
is [L].

Based on the dimensional similarity between efficiency and attenuation, and considering the
physical aspects of light attenuation in the water column, Platt partitioned the attenuation
coefficient (&) into physical (kp) and biological (kb) components, i.e. & = kp + kb. The biological
attenuation coefficient kp may be used to estimate the attenuation of light caused by
photosynthetic processes. In the same paper and in further publications by Platt & Subba Rao
(1970) and Legendre (1971), it was shown that there exists a correlation in the marine
environment between kb and the concentration of chlorophyll a. The above papers used the
calorie as unit of energy but, according to the SI standard, this unit should no longer be used.
Coherency requires here that primary production be expressed in J m–3 s–1 and irradiance in
J m–2 s–1 (or W m–2).
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This example illustrates how a simple reflection, based on dimensions, led to an
interesting development in the field of ecology.

It is therefore useful to think in terms of dimensions when dealing with ecological
equations that contain physical quantities. Even if this habit is worth cultivating, it
would not however, in and of itself, justify an entire chapter in the present book. So, let
us move forward in the study of dimensional analysis.

3.2 Fundamental principles and the Pi theorem

It was shown in the previous section that going from one quantity to another is
generally done by multiplying or dividing quantities characterized by different
dimensions. In contrast, additions and subtractions can only be performed on quantities
having the same dimensions — hence the fundamental principle of dimensional
homogeneity. Any equation of the general form

a + b + c + … = g + h + … 

is dimensionally homogeneous if and only if all quantities a, b, c, … g, h, … have the
same dimensions. This property applies to all equations of a theoretical nature, but it
does not necessarily apply to those derived empirically. Readers must be aware that
dimensional analysis only deals with dimensionally homogeneous equations. In
animal ecology, for example, the basic equation for energy budgets is:

(3.1)

where W is the mass of an animal, R its food ration, and T its metabolic expenditure
rate (oxygen consumption). This equation, which describes growth dW/dt as a function
of ration R and metabolic rate T, is dimensionally homogeneous. The rate of oxygen
consumption T is expressed as mass per unit time, its dimensions thus being [MT–1],
as those of food ration R. The dimensions of dW/dt are also clearly [MT–1]. This same
equation will be used in Ecological applications 3.2e and 3.3b, together with other
ecological equations — all of which are dimensionally homogeneous.

In dimensional analysis, the correct identification of quantities to be included in a
given equation is much more important than the exact form of the equation.
Researchers using dimensional analysis must therefore have prior knowledge of the
phenomenon under study, in order to identify the pertinent dimensional variables and
constants. On the one hand, missing key quantities could lead to incomplete or
incorrect results, or even to a deadlock. On the other hand, including unnecessary
terms could overburden the solution needlessly. Hence, dimensional analysis cannot be
conducted without first considering the ecological bases of the problem. A simple
example, taken from hydrodynamics, will illustrate the dimensional method.

Dimensional
homogeneity

dW dt R T–=
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The question considered here relates to the work of many ecologists in aquatic
environments, i.e. estimating the drag experienced by an object immersed in a current.
Ecologists who moor current meters or other probes must consider the drag, lest the
equipment might be carried away. To simplify the problem, one assumes that the
immersed object is a smooth sphere and that the velocity of the current V is constant.
The drag force F is then a function of: the velocity (V), the diameter of the sphere (D),
the density of water (+), and its dynamic viscosity (,). The simplest equation relating
these five quantities is:

F = ƒ(V, D, +, ,) (3.2)

At first sight, nothing specifies the nature of the dependency of F on V, D, +, and ,,
except that such a dependency exists. Dimensional analysis allows one to find the form
of the equation that relates F to the variables identified as governing the drag.

A number of variables are regularly encountered in hydrodynamics problems,
i.e. F, V, L, +, ,, to which one must also add g, the acceleration due to gravity. Some of
these variables may be combined to form dimensionless products. Specialists of
hydrodynamics have given names to some often-used dimensionless products:

Reynolds number: (3.3)

Newton number: (3.4)

Froude number:  (3.5)

Each of the above products is clearly dimensionless. It should also be noted that each
product of this set is independent of the others, since each contains one exclusive
variable, i.e. , for Re, F for Ne, and g for Fr. Finally, any other dimensionless product
of these same variables would inevitably be a product of powers of dimensionless
products from the above set. The three dimensionless products thus form a complete
set of dimensionless products for variables F, V, L, +, , and g. It would obviously be
possible to form other complete sets of dimensionless products using these same
variables, by combining them differently.

The first important concept to remember is that of dimensionless product. This
concept leads to the sole theorem of dimensional analysis, the ! theorem, which is
also known as the Buckingham theorem.

Given the fundamental principle of dimensional homogeneity (see above), it
follows that any equation that combines dimensionless products is dimensionally

Dimension-
less product

Re VL+
,

----------- LT 1–[ ] L[ ] ML 3–[ ]
ML 1– T 1–[ ]

--------------------------------------------------- ML 1– T 1–[ ]
ML 1– T 1–[ ]

-----------------------------= = 1[ ]= =

Ne F
+L2V2---------------- MLT 2–[ ]

ML 3–[ ] L2[ ] L2T 2–[ ]
-------------------------------------------------------- MLT 2–[ ]

MLT 2–[ ]
------------------------= = 1[ ]= =

Fr V2

Lg
------ L2T 2–[ ]

L[ ] T 2–[ ]
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homogeneous. Thus, a sufficient condition for an equation to be dimensionally
homogeneous is that it could be reduced to an equation combining dimensionless
products. Indeed, any equation that can be reduced to an equation made of
dimensionless products is dimensionally homogeneous. Buckingham (1914) did show
that this condition is not only sufficient but also necessary. This leads to the ! (Pi)
theorem (the capital Greek letter ! is the mathematical symbol for product):

If an equation is dimensionally homogeneous, it can be reduced to a relationship
among the members of a complete set of dimensionless products.

This theorem alone summarizes the whole theory of dimensional analysis.

The power of the ! theorem is illustrated by the solution of the drag problem,
introduced above. Equation 3.2 is, by definition, dimensionally homogeneous:

F = ƒ(V, D, +, ,)

It may be rewritten as:

 ƒ(F, V, D, +, ,) = 0 (3.6)

The complete set of dimensionless products of the five variables F, V, D, +, ,
contains two products, i.e. the Reynolds (Re) and Newton (Ne) numbers (D being a
length, it is a quantity of type L). Hence, eq. 3.6 may be rewritten as a relation between
the members of this complete set of dimensionless products (! theorem):

Ne = ƒ(Re)

  = ƒ(Re) (3.7)

In this equation, the function ƒ is, for the time being, unknown, except that it depends
on the sole dimensionless variable Re.

The projected area (A) of a sphere is:

A = $ (D/2)2 = (1/4) $ D2, so that D2 = 4A/$

which allows one to rewrite eq. 3.7 as:

  = ƒ(Re)

 ƒ(Re)

! theorem

F
+V2D2-----------------

F

+V24A
$

-------
-----------------

F
+V2A
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In hydrodynamics, the term (8/$)ƒ(Re) is called the drag coefficient and is represented
by Cx, so that the drag exerted on a sphere is:

F = (1/2) Cx+V2A, where Cx = (8/$)ƒ(Re) (3.8)

Since Cx is a function of the sole dimensionless coefficient Re, the problem is
resolved by determining, in the laboratory, the experimental curve of Cx as a function
of Re. This curve will be valid for any density (+) or dynamic viscosity (,) of any fluid
under consideration (the same curve can thus be used for water, air, etc.) and for
objects of any size, or any flow speed. The curve may thus be determined by
researchers under the most suitable conditions, i.e. choosing fluids and flow speeds
that are most convenient for laboratory work. As a matter of fact, this curve is already
known (Fig. 3.1).

Two important properties follow from the above example.

(1) First, data to build a dimensionless graph should be obtained under the most
convenient conditions. For example, determining Cx for a sphere of diameter 3.48 m
immersed in air at 14.4°C with a velocity of 15.24 m s–1 would be difficult and costly.
In contrast, it would be much easier, in most laboratories, to determine Cx by using a
sphere of diameter 0.61 m in water at 14.4°C with a speed of 5.79 m s–1. In both cases,
Re is the same so that the measured value of Cx is the same. This first property is the
basis for model testing in engineering (Section 3.4), the sphere in air being here the
prototype and that in water, the model.

(2) The dimensionless graph of Fig. 3.1 contains much more information than a set
of charts depicting the function of the 4 variables. In a chart (Fig. 3.2), a function of

Figure 3.1 Drag coefficient on smooth spheres. Adapted from Eisner (1931).
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two variables is represented by a family of curves, one curve being required for each
value of the second variable. A function of three variables would be represented by a
set of sets of charts. Hence, for four variables and assuming that there were only five
values measured per variable, a total of 625 experimental points would be required,
i.e. five sets of five charts each. With 25 times fewer experimental points, one can
easily obtain a dimensionless graph (e.g. Fig. 3.1) which is both more exact and much
more convenient.

The above physical example illustrated the great simplicity and remarkable power
of dimensional analysis. Let us now examine examples from ecology.

Ecological application  3.2a

This first example belongs to the disciplines of ecology and physiology, since it concerns the
dimensions of animals and their muscular dynamics. Hill (1950) compared different cetaceans,
as a set of similar animals which differ in size. All these cetaceans (porpoises, dolphins, and
whales), with a 5000-fold mass range, travel at high speed (ca. 7.5 m s–1) which they can
maintain for a long time. Table 3.3 compares the two extreme cases of the common dolphin
(Delphinus delphis) and the blue whale (Balaenoptera musculus).

Figure 3.2 Chart representing a function of two variables. One curve is required for each value of the
second variable (z1, z2, z3, …)
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Since these two animals can maintain a cruising speed of ca. 7.5 m s–1 for long periods, one
may assume that they are then in a physiological steady state. The question is: how is it possible
for two species with such different sizes to cruise at the same speed?

To answer this question, one must first consider the drag (F) on a streamlined body moving
in a fluid. The equation is similar to eq. 3.8, except that the drag coefficient Cx is replaced here
by the friction coefficient Cf:

F = 0.5 Cf +V2A

where + is the density of the fluid, V the velocity of the body, and A its total surface area. For
laminar flow, Cf - 1.33 Re–1/2 whereas, for turbulent flow, Cf - 0.455 (log10 Re)–2.58, Re being
the Reynolds number. Low values of Re correspond to laminar flow, where resistance to motion
is relatively weak, whereas high values of Re are associated with turbulent flow, which creates
stronger resistance to motion. Normally, for a streamlined body, the flow is laminar over the
front portion only and is turbulent towards the back.

The power developed by the muscles of moving cetaceans is calculated in three steps.

• Calculation of Re, for the animal under study:

Re - 7 × 105 (s m–2) VL, in sea water at 5°C
• Calculation of drag (F):

F = 0.5 Cf +V2A

Cf being computed from Re, using the equation for either laminar or turbulent flow.

• Calculation of power (P) developed during motion:

P = FV
For the purpose of the calculation, consider (1) a dolphin with a length of 2 m, weighing 80 kg,
whose surface area is 1.75 m2 and (2) a whale 25 m long, with a mass of 100 t and surface area
of 250 m2.

Table 3.3 Body characteristics of two cetaceans.

Common dolphin Blue whale

Maximum length (m) 2.4 30

Maximum mass (103 kg) 0.14 150

Mass/length3 0.01 0.006

Area/length2 0.45 0.40
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(1) The value of Re for a dolphin moving at 7.5 m s–1 is of the order of 107, which seems to
indicate highly turbulent flow. In the case of laminar flow, 

Cf = 1.33 × (107)–1/2 = 4.2 × 10–4 

and, for turbulent flow, 

Cf = 0.455 (log10l07)–2.58 = 3 × 10–3 

The drag (F) corresponding to these two flow regimes is:

F (laminar) = 0.5 (4.2 × 10–4) (1028 kg m–3) (7.5 m s–1)2 (1.75 m2) = 22 N

F (turbulent) = 0.5 (3 × 10–3) (1028 kg m–3) (7.5 m s–1)2 (1.75 m2) = 155 N
The power (P = F × 7.5 m s–1) that a dolphin should develop, if its motion resulted in perfectly
laminar flow, would be 165 W and, for turbulent flow, 1165 W. Since the size of a dolphin is of
the same order as that of a man, it is reasonable to assume that the power it can develop under
normal conditions is not higher than that of an athlete, i.e. a maximum power of 260 W. It
follows that the flow must be laminar for the 9/10 front portion of the dolphin’s body, with the
rear 1/10 being perhaps turbulent. This conclusion is consistent with observations made in
nature on dolphins. It is assumed that the absence of turbulence along the front part of the
dolphin’s body comes from the fact that the animal only uses its rear section for propulsion.

(2) The blue whale also swims at 7.5 m s–1, its Re being ca. 12.5 × 107 which corresponds to
a turbulent flow regime. A laminar flow would lead to a value 

Cf = 1.33 × (12.5 x 107)–1/2 = 1.2 × 10–4 

and a turbulent flow to 

Cf = 0.455 (log1012.5 × 107)–2.58 = 2.1 x 10–3 

The corresponding drag (F) would be:

F (laminar) = 0.5 (1.2 × 10–4) (1028 kg m–3) (7.5 m s–1)2 (250 m2) = 745 N

F (turbulent) = 0.5 (2.1 × 10–3) (1028 kg m–3) (7.5 m s–1)2 (250 m2) = 13 kN.
The power a whale should develop, if its motion at 7.5 m s–1 was accompanied by laminar flow,
would be 5.6 kW and, in the case of turbulent flow, 100 kW. The maximum power developed by
a 80 kg dolphin was estimated to be 260 W so that, if the maximum power of an animal was
proportional to its mass, a 105 kg whale should be able to develop 325 kW. One should,
however, take into account the fact that the available energy depends on blood flow. Since
cardiac rate is proportional to (mass)–0.27, the heart of a whale beats at a rate
(100/0.08)–0.27 - 1/7 that of a dolphin. The maximum power of a whale is thus ca. 1/7 of
325 kW, i.e. 46.5 kW. This leads to the conclusion that laminar flow takes place along the 2/3
front portion of the animal and that only the 1/3 rear part can sustain turbulent flow.

Ecological application  3.2b

A second study, taken from the same paper as the previous application (Hill, 1950), deals with
land animals. It has been observed that several terrestrial mammals run more or less at the same
speed and jump approximately the same height, even if their sizes are very different. Table 3.4
gives some approximate maximal values. The question is to explain the similarities observed
between the performances of animals with such different sizes.
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One of the explanations proposed by the author involves a relatively simple dimensional
argument. The strength of tissues in the bodies of animals cannot be exceeded, during athletic
performances, without great risk. For two differently sized animals, consider a pair of systems
with lengths l1 and l2, respectively, carrying out similar movements within times t1 and t2,
respectively. The stress at any point in these systems has dimensions [ML–1T–2], which
corresponds to the product of density [ML–3] with the square of speed [L2T–2].

Assuming that the densities of systems are the same for the two species
(i.e. , which is reasonable, since the densities of bones, muscles, etc. are similar
for all mammals), the stresses at corresponding points of the systems are in the ratio

 : . If the two systems operate at speeds such that the stresses are the same at
corresponding points, it follows that  = . In other words, the speed is the same at
corresponding points of the two systems. It is therefore the strength of their tissues which would
explain why athletic animals of very different sizes have the same upper limits for running
speeds and jumping heights.

It is interesting to note that, over the years, the topic of maximal running speed of terrestrial
mammals has been the subject of many papers, which considered at least four competing
theories. These include the theory of geometric similarity, briefly explained in this example, and
theories that predict an increase of maximum running speed with body mass. These are
summarized in the introduction of a paper by Garland (1983), where maximum running speeds
for 106 species of terrestrial mammals are analysed. The study led to several interesting
conclusions, including that, even if maximal running speed is mass-independent within some
mammalian orders, this is not the case when species from different orders are put together; there
is then a tendency for running speed to increase with mass, up to an optimal mass of ca. 120 kg.
This is quite paradoxical since, when considering mammals in general, limb bone proportions do
scale consistently with geometric similarity. The author refers to Günther’s (1975, p. 672)
conclusion that “no single similarity criterion can provide a satisfactory quantitative explanation
for every single function of an organism that can be submitted to dimensional analysis”.

Table 3.4 Performances (maximal values) of five mammals.

Running speed (m s–1) Height of jump (m)

Man 12 2

Horse 20 2

Greyhound (25 kg) 18 —

Hare 20 1.5

Deer 15 2.5

m1l1
3– m2l2

3–=

l1
2t1

2–( ) l2
2t2

2–( )˙
l1t1

1–( ) l2t2
1–( )
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Ecological application  3.2c

An example from aquatic ecology (Platt & Subba Rao, 1973) illustrates the use of dimensionless
graphs. The dependence of phytoplankton growth on a given nutrient is often described by
means of the Michaelis-Menten equation, borrowed from enzymology. In this equation, the
growth rate (µ), with dimension [T–1], is a function of the maximum specific growth rate (µm),
the concentration (S) of the nutrient, and the concentration (Ks) of nutrient at which the growth
rate µ = 1/2 µm:

where B is the concentration of phytoplankton biomass. This equation is that of a rectangular
hyperbola, where Ks determines how fast the asymptote µm is approached. When Ks is high, µ
approaches the asymptote µm slowly, which indicates a weak dependence of µ on S in the
unsaturated part of the curve (Fig. 3.3).

In order to compare the effects of two different variables on phytoplankton growth, the
authors defined a new entity S* = S/Ks. Since this entity is dimensionless, the abscissa of the

µ
1
B
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dB µmS

Ks S+
---------------= =

T 1–[ ]
1[ ]

ML 3–[ ]
--------------------- ML 3–[ ]

T[ ]
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ML 3–[ ] ML 3–[ ]+
-------------------------------------------------= =

Figure 3.3 Illustration of the Michaelis-Menten equation, showing the role of parameter Ks. In the curve
with higher Ks, µ approaches the asymptote µm more slowly than in the other curve.
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graph µ(S*) as a function of S* is dimensionless; µ(S*) stands for the specific growth rate,
normalized to S*. The Michaelis-Menten equation is thus rewritten as:

Hence, the strength of the dependence of µ on S* is:

Using this expression, it is possible to determine the relative strength of the dependence of µ on
two different variables (i and j):

 =  =

Under conditions that do not limit phytoplankton growth, the maximum specific growth rate is
the same for the two variables, i.e. µi

m = µj
m. In such a case, the dependence of µ on the two

variables becomes:

This dimensionless approach makes it possible to compare the effects of different variables
on phytoplankton growth, regardless of the dimensions of these variables. Using the above
equation, one could assess, for example, the relative importance of irradiance (µmol photons
m–2s–1, also denoted µEinstein m–2s–1) [NL–2T–1] and of a nutrient [ML–3] for phytoplankton
growth.

The method described here is actually of general interest in ecology, since it shows
how to approach a problem involving several variables with no common measure. In
all cases, it is recommended to transform the dimensional variables into dimensionless
ones. The most obvious transformation, proposed by Platt & Subba Rao (1973),
consists in dividing each variable by a characteristic value, which has the same
dimensions as the variable itself. In the case of the Michaelis-Menten equation, the
characteristic value is Ks, which has the same dimensions as S. This elegant and
efficient approach is also used in parametric statistics, where variables are transformed
through division by their standard deviations. For this and other transformations, see
Section 1.5. The approach which consists in dividing an ecologically interesting
variable by another variable with the same dimensions, so as to create a dimensionless
variable, is known as “scaling” (e.g. in Schneider, 1994). Scaling analysis has been
used, for example, in coral reef studies (Hatcher and Firth, 1985; Hatcher et al., 1987)
and by Murray & Jumars (2002) to model steady-state diffusive uptake of nutrients by
a spherical attached bacterium (study summarized by Legendre, 2004: 81-83).

The following example illustrates some basic characteristics of dimensional
analysis. It also stresses a major weakness of the method, of which ecologists should
be aware. 
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Ecological application  3.2d

The study discussed here (Kierstead & Slobodkin, 1953) did not use dimensional analysis, but it
provides material to which the method may usefully be applied. The authors did develop their
theory for phytoplankton, but it is general enough to be used with several other types of
organisms. Given a water mass containing a growing population, which loses individuals
(e.g. phytoplankton cells) by diffusion and regenerates itself by multiplication, the problem is to
define the minimum size of the water mass below which the growth of the population is no
longer possible.

The problem is simplified by assuming that: (1) the diffusion (D) of organisms remains
constant within the water mass, but is very large outside where the population cannot maintain
itself, and (2) the water mass is one-dimensional (long and narrow), so that the concentration (c)
of organisms is a function of the position (x) along the axis of the water mass. The equation
describing the growth of the population is thus:

 = 

where K is the growth rate. On the right-hand side of the equation, the first term accounts for
diffusion, while the second represents linear growth. A complicated algebraic solution led the
authors to define a critical length (Lc) for the water mass, under which the population would
decrease and above which it could increase:

It must be noted that this equation is analogous to that of the critical mass in a nuclear reactor.
Associated with this critical length is a characteristic time (t) of the process, after which the
critical length Lc becomes operative:

The above results are those given in the paper of Kierstead and Slobodkin. The same
problem is now approached by means of dimensional analysis, which will allow one to compare
the dimensional solution of Platt (1981) to the algebraic solution of Kierstead and Slobodkin. In
order to approach the question from a dimensional point of view, the dimensions of variables in
the problem must first be specified:

x: [L] K: [T–1]

t: [T] D: [L2T–1]

The only dimensions that are not immediately evident are those of D, but these can easily be
found using the principle of dimensional homogeneity of theoretical equations.

The equation of Kierstead & Slobodkin involves three variables (c, t, x) and two constants
(D, K). According to the general method developed in the previous ecological application, the
variables are first transformed to dimensionless forms, through division by suitable
characteristic values. Dimensionless variables C, T and X are defined using characteristic
values ,  and :

C = c/ T = t/ X = x/

hence c = C t = T x = X

t1
1c D

x2

2

1
1 c Kc+

Lc $ D K=

t Lc
2 8$2D( )=

c* t* x*

c* t* x*

c* t* x*
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Substitution of these values in the equation gives:

 = 

The next step is to make all terms in the equation dimensionless, by multiplying each one by 
and dividing it by D, after eliminating from all terms the common constant :

 = 

The resulting equation thus contains three dimensionless variables (C, T and X) and two
dimensionless products (in brackets).

Since the dimensions of the two products are [1], these may be transformed to isolate the
characteristic values  and :

since  = [1], it follows that [ ] = 

since   = [1], it follows that  =  and thus [ ] = 

Using these relationships, the following proportionalities are obtained:

 and 

Dimensional analysis thus easily led to the same results as those obtained by Kierstead and
Slobodkin (1953), reported above, except for the constant factors $ and 8$2. This same example
will be reconsidered in the next section (Ecological application 3.3a), where the two
dimensionless products will be calculated directly.

The above example illustrates the fact that dimensional analysis cannot generate
dimensionless constants, which is a limit of the method that must be kept in mind.
Thus, in order to take advantage of the power of dimensional analysis, one must give
up some precision. It is obvious that such a simple method as dimensional analysis
cannot produce the same detailed results as complex algebraic developments. As
mentioned above (Section 3.0), dimensional analysis deals with general forms of
equations. Yet, starting from simple concepts, one can progress quite far into complex
problems, but the final solution is only partial. As noted by Langhaar (1951): “The
generality of the method is both its strength and its weakness. With little effort, a
partial solution to nearly any problem is obtained. On the other hand, a complete
solution is not obtained.”

Ecological application  3.2e

It often happens that ecologists must synthesize published data on a given subject, either as a
starting point for new research, or to resolve a problem using existing knowledge, or else as a
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basis for a new theoretical perspective. This is nowadays more necessary than ever, because of
the explosion of ecological information. However, such syntheses are confronted to a real
difficulty, which is the fact that available data are often very diversified, and must thus be unified
before being used. Paloheimo & Dickie (1965) met this problem when they synthesized the
mass of information available in the literature on the growth of fish as a function of food intake.
As in the previous application, the authors did not themselves use dimensional analysis in their
work. The dimensional solution discussed here is modified from Platt (1981).

The metabolism of fish may be described using the following relationship:

 

where T is the rate of oxygen consumption, & specifies the level of metabolic expenditure per
unit time, W is the mass of the fish, and 3 specifies the rate of change of metabolism with body
mass. Growth is expressed as a function of food ration (R), by means of the following equation:

which shows that growth efficiency decreases by a constant fraction e–b for each unit increase in
the amount of food consumed per unit time. The value of R at maximum growth is determined,
as usual, by setting the partial derivative equal to 0:

Growth is thus maximum when bR = 1.

The basic equation for the energy budget (eq. 3.1) is:

so that

Replacing, in this last equation, dW/dt by its expression in the second equation, above, and
isolating R, one obtains:

Then, replacing T by its expression in the first equation leads to:

which is a general equation for energy budgets. This equation may be used to calculate, for any
fish of mass W, the ration R required to maintain a given metabolic level. Furthermore, with an
increase in ration, the term [1 – e–(a + bR)] tends towards 1, which indicates that the metabolism
then approaches R. In other words, growth decreases at high values of R.

Values for coefficient b and food intake found in the literature are quite variable. It was
shown above that the product bR determines growth. Paloheimo & Dickie therefore suggested to
standardize the relationship between growth and ration in terms of bR.
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Since growth is maximum when bR = 1, the ration can be brought to a common measure by
expressing it in units of 1/b. On this new scale, the ration (r) is defined as:

r = bR
When growth is maximum, bR = 1, so that R = 1/b. Replacing, in the general equation for the
energy budget, R by 1/b (and bR by 1) yields:

so that

from which it is concluded that the mass should be expressed in units of (1/&b)1/3 in order to
bring data from the literature to a common measure. On this new scale, the mass (w) is defined
as:

w = (&b)1/3 W

so that

Using the scaled ration (r) and mass (w), the general equation for energy budgets may be
rewritten as: 

and finally

In this last equation, the use of r and w brings to a common measure the highly variable values
of R and W, which are available in the literature for different species or for different groups
within a given fish species.

These same results could have been obtained much more easily using dimensional analysis.
As with all problems of the kind, it is essential, first of all, to identify the dimensions of variables
involved in the problem. The first two equations are used to identify the dimensions of all
variables in the study:

T = &W3 

[MT–1] = [M(1–3)T–1] [M3]

 = 

 = 
The dimensions of &, which were not immediately obvious, are determined using the principle
of dimensional homogeneity (i.e. same dimensions on the two sides of the equation). The
dimensions of a and b are also found by applying the principle of dimensional homogeneity,
taking into account the fact that an exponent is by definition dimensionless.

&W3 1 b 1 e a 1+( )––[ ]=

W 1 e a 1+( )––
&b

-----------------------------
1 3

=

w3

b
------ &W3 T= =

w3

b
------ r

b
--- 1 e a r+( )––[ ]=

w3 r 1 e a r+( )––[ ]=

td
dW R e a bR+( )–[ ]

MT 1–[ ] MT 1–[ ] 1[ ] 1[ ] M 1– T[ ] MT 1–[ ]+
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The problem is then to define characteristic values (or, more appropriately, scale factors) so
as to obtain dimensionless ration (r), mass (w), and time (4). Obviously, these scale factors must
contain the two dimensional parameters of the above equations, & and b.

Because the product bR is dimensionless, the scale factor r for ration is:

r = bR
The cases of w and 4 require the calculation of unknown exponents. These are easily found by
dimensional analysis. In order to do so, unknown exponents y and z are assigned to & and b, and
these unknowns are solved using the principle of dimensional homogeneity:

Calculation of w:

[w] = [1] = [&]y [b]z [W]

[W]–1 = [&]y [b]z

[M–1T0] = [M(1–3) T–1]y [M–1T]z = [My(1–3)–z T–y +z]

so that y(1 – 3) – z = –1 

and –y + z = 0

hence y = 1/3 = z

Consequently, the scale factor w for the mass is: 
w = (&b)l/3W

Calculation of 4:

[4] = [1] = [&]y [b]z [t]

[t]–1 = [&]y [b]z

[M0T–1] = [My(1–3)–z T–y +z]

so that y(1 – 3) – z = 0

and –y + z = –1

hence y = 1/3 and z = 1/3 – 1

It follows that the scale factor 4 for time is:

4 = &1/3 b(1/3 – 1)t

4 = [(&b)l/3/b]t

These scale factors can be used to compare highly diversified data. Ration is then expressed
in units of (1/b), mass in units of (&b)–1/3, and time in units of b/(&b)–1/3. With this approach, it is
possible to conduct generalized studies on the food intake and growth of fish as a function of
time.

Other applications of dimensionless products in ecology are found, for example, in
Tranter & Smith (1968), Rubenstein & Koehl (1977), and Okubo (1987). The first
application analyses the performance of plankton nets, the second explores the
mechanisms of filter feeding by aquatic organisms, and the third examines various
aspects of biofluid mechanics, including a general relationship between the Reynolds
number (Re) and the sizes and swimming speeds of aquatic organisms from bacteria to
whales. Platt (1981) provides other examples of application of dimensional analysis in
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the field of biological oceanography. Legendre (2004, pp. 87-91) explains how the
dimensional approach provided the main guideline to derive operational equations
from a conceptual model on the fate of biogenic carbon in oceans. These equations
were used by Beaugrand et al. (2010) to compute the effects of long-term changes in
copepod biodiversity on carbon flows in the extratropical North Atlantic Ocean.

Ecological applications 3.2d and 3.2e showed that dimensional analysis may be a
powerful tool in ecology. They do, however, leave potential users somewhat uncertain
as to how personally apply this approach to new problems. The next section outlines a
general method for solving problems of dimensional analysis, which will lead to more
straightforward use of the method. It will be shown that it is not even necessary to
know the basic equations pertaining to a problem, provided that all the pertinent
variables are identified. The above last two examples will then be reconsidered as
applications of the systematic calculation of dimensionless products.

3.3 The complete set of dimensionless products

As shown in the previous section, the resolution of problems using dimensional
analysis involves two distinct steps: (1) the identification of variables pertinent to the
phenomenon under study — these are derived from fundamental principles, for
example of ecological nature — and (2) the computation of a complete set of
dimensionless products. When the number of variables involved is small, complete
sets of dimensionless products can be formed quite easily, as seen above. However, as
the number of variables increases, this soon becomes unwieldy, so that one must
proceed to a systematic calculation of the complete set of dimensionless products.

The physical example of the drag on smooth spheres (Section 3.2) will first be used
to illustrate the principles of the calculation. The problem involved five variables (F, V,
L, +, and ,; see eq. 3.2), whose dimensions are written here in a dimensional matrix:

F , + L V

(3.9)

It must be kept in mind that the numbers in matrix 3.9 (i.e. dimensions) are
exponents. The dimensionless products being sought are products of powers of
variables in the matrix (columns). In each product, the exponents given to the variables
must be such that the result is dimensionless.

M
L
T

1 1 1   0 0
1 1– 3– 1 1
2– 1– 0 0 1–
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In other words, the systematic calculation of dimensionless products consists in
finding exponents x1, x2, x3, x4 and x5 for variables F, ,, +, L, and V, such that a product
!, of the general form

be dimensionless. Taking into account the respective dimensions of the five variables,
the general dimensions of ! are:

The exponents of dimensions [M], [L], and [T] carry exactly the same information as
the dimensional matrix (eq. 3.9). These exponents could therefore have been written
directly, using matrix notation:

(3.10)

where the dimensional matrix is on the left-hand side.

Since the products ! are dimensionless, the exponent of each dimension [M], [L],
and [T], respectively, must be zero. In follows that: 

xl + x2 + x3 = 0

x1 – x2 – 3x3 + x4 + x5 = 0

–2xl – x2 – x5 = 0

or, in matrix notation:

 = 0 (3.11)

! Fx1,x2+x3Lx4V x5=

! MLT 2–[ ] x1 ML 1– T 1–[ ] x2 ML 3–[ ] x3 L[ ] x4 LT 1–[ ] x5=

! M x1 x2 x3+ +( ) L x1 x2– 3x3– x4 x5+ +( ) T 2– x1 x2– x5–( )[ ]=

1 1 1   0 0
1 1– 3– 1 1
2– 1– 0 0 1–

x1

x2

x3

x4

x5

1 1 1   0 0
1 1– 3– 1 1
2– 1– 0 0 1–

x1

x2

x3

x4

x5
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Calculation of dimensionless products ! is thus achieved by simultaneously
solving three equations. However, the above system of equations is indeterminate,
since there are only three equations for five unknowns. Arbitrary values must thus be
assigned to two of the unknowns, for example x1 and x2. The general solution is then
given in terms of x1 and x2. The steps are as follows:

(1) Matrix equation 3.11 is rewritten so as to isolate x1 and x2 together with the
associated first two columns of the matrix. This operation simply involves transferring
all terms in x3, x4 and x5 to the right-hand side of the equation:

= – (3.12)

Note that there is now a negative sign in front of the matrix on the right-hand side.
Matrix eq. 3.12 is identical to the algebraic form:

x1 + x2 = –x3

x1 – x2 = 3x3 – x4 – x5

–2x1 – x 2 = x5

(2) One then solves for the unknowns x3, x4 and x5, using the general method of
matrix inversion (Section 2.8):

(3.13)

1 1
1 1–
2– 1–

x1

x2

1   0 0
3– 1 1
0 0 1–

x3

x4

x5

1   0 0
3– 1 1
0 0 1–

1–

–
1 1
1 1–
2– 1–

x1

x2

x3

x4

x5

=

1   0 0
3 1 1
0 0 1–

–
1 1
1 1–
2– 1–

x1

x2

x3

x4

x5

=

1– 1–
2– 1–
2– 1–

x1

x2

x3

x4

x5

=
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(3) The simplest approach consists in successively assigning the value 1 to each
unknown while setting the other equal to 0, i.e. (1) x1 = 1 and x2 = 0 and (2) x1 = 0 and
x2 = 1. It follows that the first two columns of the solution matrix are a unit matrix:

F , + L V
x1 x2 x3 x4 x5

(3.14)

The dimensionless products of the complete set are therefore (as in Section 3.2):

 , the Newton number (Ne; eq. 3.4)

 , the inverse of the Reynolds number (1/Re; eq. 3.3)

This example clearly shows that the systematic calculation of dimensionless
products rests solely on recognizing the variables involved in the problem under
consideration, without necessarily knowing the corresponding equations. The above
solution, which was developed using a simple example, can be applied to all problems
of dimensional analysis, since it has the following characteristics:

(1) Because the left-hand part of the solution matrix is an identity matrix (I), the
dimensionless products ! are independent of one another. Indeed, given I, each
product contains one variable which is not included in any other product, i.e. the first
variable is only in !1, the second is only in !2, and so on.

(2) When partitioning the dimensional matrix, one must isolate on the right-hand
side a matrix that can be inverted, i.e. a matrix whose determinant is non-zero.

(3) The rank (r) of the dimensional matrix is the order of the largest non-zero
determinant it contains (Section 2.7). Therefore, it is always possible to isolate, on the
right-hand side, a matrix of order r whose determinant is non-zero. The order r may
however be lower than the number of rows in the dimensional matrix, as seen later.

(4) The number of dimensionless products in the complete set is equal to the
number of variables isolated on the left-hand side of the dimensional matrix. It follows
from item (3) that the number of dimensionless products is equal to the total number of
variables minus the rank of the dimensional matrix. In the preceding example, the
number of dimensionless products in the complete set was equal to the number of
variables (5) minus the rank of the dimensional matrix (3), i.e. 5 – 3 = 2 dimensionless
products.

(5) When the last r columns of a dimensional matrix of order r do not lead to a non-
zero determinant, the columns of the matrix must be rearranged so as to obtain a non-
zero determinant.

!1

!2

1   0 1– 2– 2–
0 1 1– 1– 1–

!1
F

+L2V2----------------=

!2
,

+LV
-----------=
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Numerical example 1. An example will help understand the consequences of the above five
characteristics on the general method for the systematic calculation of the complete set of
dimensionless products. The dimensional matrix is as follows:

V1 V2 V3 V4 V5 V6 V7 

The rank (r) of this matrix is 3 (numerical example in Section 2.7), so that the number of
dimensionless products of the complete set is equal to 7 – 3 = 4. However, the determinant of
the r = 3 last columns is zero:

 = 0

Calculating the complete set of dimensionless products thus requires a reorganization of the
dimensional matrix by rearranging, for example, the columns as follows:

V1 V5 V7 V4 V2 V6 V3 

The solution then follows from the general method described above:

M
L
T

2   0   1   0 1– 2– 3
1 2 2 0 0 1 1–
0 1 2 3 1 1– 0

1– 2– 3
0 1 1–
1 1– 0

M
L
T

2 1– 3   0   0 2– 1
1 0 1– 0 2 1   2
0 1 0 3 1 1– 2

x2

x6

x3

0 2–   1
2 1 2
1 1– 2

1–

–
2 1– 3   0
1 0 1– 0
0 1 0 3

x1

x5

x7

x4

=

x2

x6

x3

4 3 5–
2– 1– 2
3– 2– 4

–
2 1– 3   0
1 0 1– 0
0 1 0 3

x1

x5

x7

x4

=

x2

x6

x3

11– 9 9– 15
5 4– 5 6–
8 7– 7 12–

x1

x5

x7

x4

=
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V1 V5 V7 V4 V2 V6 V3 

Numerical example 2. This example illustrates the case of a dimensional matrix whose
rank is less than its number of rows. This matrix has already been considered in Section 2.7:

V1 V2 V3 V4  

It was shown (Section 2.7) that the rank of this matrix is r = 2, so that it is not possible to find a
combination of three columns that could be inverted. Any 3 × 3 submatrix would be singular
(Section 2.8).

The solution consists in making the number of rows equal to the rank. This is done by
eliminating any one row of the dimensional matrix, since the matrix has only two independent
rows (Section 2.7). The number of dimensionless products in the complete set is thus equal to
4 – 2 = 2.

V1 V2 V3 V4  

It is possible to eliminate fractional exponents by multiplying each row of the solution matrix by
its lowest common denominator:

Identical results would have been obtained if any other row of the dimensional matrix had been
eliminated instead of row 3, since each of the three rows is a linear combination of the other two.
This can easily be checked as exercise.

There now remains to discuss how to choose the ordering of variables in a
dimensional matrix. This order determines the complete set of dimensionless products
obtained from the calculation. The rules are as follows:

(1) The dependent variable is, of necessity, in the first column of the dimensional
matrix, since it must be present in only one ! (the first dimensionless product is thus

!1

!2

!3

!4

1    0    0    0 11– 5 8
0 1 0 0 9 4– 7–
0 0 1 0 9– 5 7
0 0 0 1 15 6– 12–

M
L
T

2 1 3   4
1– 6 3– 0
1 20 3– 8

M
L

2   1 3   4
1– 6 3– 0

!1

!2

 1  0 1 3– 1 4–
 0  1  2 7 4–

!1

!2

12   0 4– 3–
0 4 8 7–
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called the dependent dimensionless variable). As a consequence, this first variable can
be expressed as a function of all the others, which is the goal here. For example, in
eq. 3.9, the drag F is in the first column of the dimensional matrix since it is clearly the
dependent variable.

(2) The other variables are then arranged in decreasing order, based on their
potential for experimental variation. Indeed, a maximum amount of information will
result from experimentation if those variables with a wide range of experimental
variability occur in a single !.

(3) The initial ordering of variables must obviously be changed when the last r
columns of the dimensional matrix have a zero determinant. However, one must then
still comply as well as possible with the first two rules.

Two ecological applications, already discussed in Section 3.2, will now be treated
using the systematic calculation of complete sets of dimensionless products.

Ecological application  3.3a

The first example reconsiders Ecological application 3.2d, devoted to the model of Kierstead &
Slobodkin (1953). This model provided equations for the critical size of a growing
phytoplankton patch and the characteristic time after which this critical size becomes operative.

The dimensional matrix of variables involved in the problem includes: length x, time t,
diffusion of cells D, and growth rate k. The dependent variables being x and t, they are in the first
two columns of the dimensional matrix:

x t D k  

The rank of the dimensional matrix being 2, the number of dimensionless products is 4 – 2 = 2.
These two products are found using the general method for calculating the complete set:

x t D k x t D k 

!1 =  and !2 = 

These two dimensionless products describe, as in Ecological application 3.2d, the critical length
x and the characteristic time t as:

 and 

L
T

1   0 2 0
0 1 1– 1–

2 0
1– 1–

1–
 1  0
 0  0

– 1– 2  0
1 2  1

=

!1

!2

 1  0 1 2– 1 2
0 1 0 1

2   0 1–   1
0 1 0 1

=

kx2 D tk

x D k2 t 1 k x2 D2 2
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Ecological application  3.3b

A second example provides an easy solution to the problem that confronted Paloheimo & Dickie
(1965) concerning the synthesis of data on the growth of fish with respect to food intake. The
question was discussed at length in Ecological application 3.2e, which led to three scale factors,
for food ration, mass, and time. These scale factors were used by the authors to compare
heterogeneous data from the ecological literature.

The solution is found directly, here, using the dimensional matrix of the six variables
involved in the problem: time t, mass W, food ration R, rate of oxygen consumption T, rate of
metabolic expenditure &, and coefficient b. The variables to be isolated being t, W, and R, they
are in the first three columns of the dimensional matrix:

t W R T & b 

Since the rank of the dimensional matrix is r = 2, the number of dimensionless products is
6 – 2 = 4. The four products are calculated by the method of the complete set:

t W R T & b 

!1 = t&1/3b(1/3–1) = [(&b)1/3/b]t

!2 = W&1/3b1/3 = (&b)1/3W

!3 = Rb = bR

!4 = Tb = bT

The first three dimensionless products define the three scale factors already found in Ecological
application 3.2e, i.e. II1 for time, II2 for mass, and II3 for ration. II4 defines a scale factor for
oxygen consumption.

Direct calculations of complete sets of dimensionless products thus led to the same
results as obtained before, but operations here were more straightforward than in
Section 3.2.

It should not be necessary, after these examples, to dwell on the advantage of
systematically calculating the complete set of dimensionless products. In addition to
providing a rapid and elegant solution to problems of dimensional analysis, the above
matrix method sets researchers on the right track when tackling a problem to be
investigated using the dimensional tool. The success of a dimensional study depends

M
T

 0  1 1 1 1 3–( ) 1–
1 0 1– 1– 1    – 1

1 3–( ) 1–
1    – 1

–
1–

0   1 1 1
1 0 1– 1–

1 3 1 3  0  0
1 3( ) 1–[ ] 1 3  1  1

=

!1

!2

!3

!4

 1  0  0  0  1 3 1 3( ) 1–
 0  1  0  0  1 3 1 3
 0  0  1  0  0 1
 0  0  0  1  0 1
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on: (1) adequate knowledge of the problem under study, so that all the pertinent
variables are considered; and (2) clear ideas about which variables are functions of the
others. It should be noted, as explained above, that the systematic calculation of the
complete set of dimensionless products does not require prior knowledge of the
fundamental equations. These, however, may be necessary to derive the dimensions of
some complex variables. Dimensional analysis may be a powerful tool, provided that
the ecological bases of the problem under consideration are thoroughly understood and
that the objectives of the research are clearly stated.

3.4 Scale factors and models

Given the increased awareness in society for environmental problems, major
engineering projects cannot be undertaken, in most countries, before their
environmental impacts have been assessed. As a consequence, an increasing number of
ecologists now work within multidisciplinary teams of consultants. At the planning
stage, a powerful tool available to engineers, although very costly, is the small-scale
model. Tests performed with such models help choose the most appropriate
engineering solution. Actually, ecologists may encounter two types of model,
i.e. mathematical and physical. Mathematical models 

Physical models are small-scale replica of the natural environment, to
which changes can be made that reproduce those planned for the real situation. Tests
with physical models (e.g. in wind tunnels or hydraulic flumes) are generally more
costly to perform than mathematical simulations, so that the latter are becoming
increasingly more popular than the former. Physical models are often based on
dimensional analysis, so that it is this type of model that is considered here. It should
be noted that physical models may originate from the empirical approach of engineers,
which is distinct from the dimensional approach. 

In order to communicate with engineers conducting tests on small-scale models,
ecologists must have some basic understanding of the principles governing model
testing. In some cases, ecologists may even play a role in the study, when it is possible
to integrate in the model variables of ecological significance (e.g. in a model of a
harbour or estuary, such variables as salinity, sediment transport, etc.). Since small-
scale models are based in part on dimensional analysis, their basic theory is thus
relatively easy to understand. The actual testing, however, requires the specific
knowledge and experience of model engineers. In addition to their possible
involvement in applications of modelling to environmental impact studies, ecologists
may at times use small-scale models to resolve problems of their own (e.g. studying
the interactions between benthic organisms and sediment in a hydraulic flume). These
various aspects are introduced here very briefly.

In the vocabulary of physical modelling, the full-size system is called prototype
and the small-size replica is called model. A model may be geometrically similar to the

Physical
model

Prototype

are defined at the beginning of
Section 10.3. 
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prototype, or it may be distorted. In the case of geometric similarity, all parts of the
model have the same shapes as the corresponding parts of the prototype. In certain
cases, geometric similarity would lead to errors, so that one must use a distorted
model. In such models, one or several scales may be distorted. For example, a
geometrically similar model of an estuary could result in some excessively small water
depths. With such depths, the flow in the model could become subject to surface
tension, which would clearly be incorrect with respect to the real flow. In the model,
the depth must therefore be relatively greater than in nature, hence a distorted model.

The physical example of the drag on smooth spheres, already discussed in
Sections 3.2 and 3.3, is now used to introduce the basic principles of scaling and
small-scale modelling. Equation 3.7 describes the drag (F) acting on a smooth sphere
of diameter D, immersed in a stream with velocity V of a fluid with density + and
dynamic viscosity ,:

F = +V2D2ƒ(Re) (3.7)

F = +V2D2ƒ

In order to experimentally determine the drag, under convenient laboratory
conditions (e.g. wind tunnel or hydraulic flume), it may be appropriate to use a
geometrically similar model of the sphere. Quantities pertaining to the model are
assigned prime indices. If the curve of the drag coefficient for smooth spheres was not
known (Fig. 3.1), the estimation of F in the laboratory would require that the value of
the unknown function f be the same for both the model and the prototype. In order to do
so, the test engineer should make sure that the Reynolds numbers for the two systems
are equal:

Re = Re

(3.15)

A scale factor is defined as the ratio of the size of the model to that of the
prototype. Scale factors are therefore dimensionless numbers. The scale factors (K)
corresponding to eq. 3.15 are:

KV = V /V KD = D /D K+ = + /+ K, = , /,

These scales are used to rewrite eq. 3.15 as:

KVKDK+ = K, (3.16)

Geometric
similarity

VD+
,

------------' (
) *

5

VD+
,

------------ V5D5+5
,5

-----------------=

Scale factor

5 5 5 5
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Because Re = Re , the scale factor of the unknown function f is equal to unity:

Kƒ(Re) = 1 (3.17)

The ratio between the drag measured for the model and the real drag on the prototype
is computed by combining eq. 3.7 with the above scale factors:

Because of eq. 3.17, it follows that:

(3.18)

Equation 3.16 is used to find the value of KF:

KV KD K+ = K, (3.16)

is squared

from which

and, given eq. 3.18 (3.19)

Equation 3.19 leads to the following practical conclusions, for determining the
drag on smooth spheres in the laboratory:

(1) If the model is tested using the same fluid as for the prototype, the drag
measured during the test is the same as for the prototype. This follows from the fact
that, if K, = 1 and K+ = 1 (same fluid), KF is equal to unity (eq. 3.19), hence F  = F.

(2) If testing is conducted using the same fluid as for the prototype, conservation of
Re requires that the velocity for the model be greater than for the prototype (i.e. the
model is smaller than the prototype). This follows from the fact that, when K,  = 1 and
K+ = 1 (same fluid), KVKD = 1 (eq. 3.16); consequently any decrease in KD must be
compensated by a proportional increase in KV .

(3) When it is more convenient to use different fluids, testing may be conducted
while conserving Re. It has already been shown (Section 3.2) that, for example, going
from a large-size prototype, in air, to a model 6 times smaller, in water, allows a
reduction of the flow speed during the test by a factor of 3. The drag measured for the
model would not, however, be necessarily the same as that of the prototype, since that
force varies as a function of the ratio between the squares of the dynamic viscosities

5

KF K+KV
2 KD

2 Kƒ Re( )=

KF K+KV
2 KD

2=

KV
2 KD

2 K+
2 K,

2=

KV
2 KD

2 K+ K,
2 K+=

KF K,
2 K+=

5
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( ) and the densities (K+) of the two fluids (eq. 3.19). Knowing this ratio (KF), it is
easy to derive the drag for the model (F) from that measured during the test (F ) since:

F = F /KF

In more complex cases, it is sometimes necessary to simultaneously conserve two
or more dimensionless products that are incompatible. In such a situation, where a
choice must be made between contradictory constraints, it rests on the test engineer to
justify discrepancies in similarity and to apply theoretical corrections to compensate
for them. Hence modelling, although derived from scientific concepts, becomes an art
based on the experience of the researcher.

A general concept of similarity follows from the previous discussion. In a
Cartesian space, the model and the prototype are described by coordinates (x  y  z )
and (x y z), respectively. Correspondence between the two systems is established by
means of scale factors (K), which define homologous times as well as homologous
points in the three dimensions of space:

t  = Ktt     x  = Kxx      y  = Kyy      z  = Kzz

The time scale factor (Kt) would be used, for example, in the case of a flow where 6 t
and 6t are the time intervals during which two homologous particles go through
homologous parts of their respective trajectories. It would then be defined as

Kt = 6 t/6t 

Geometric similarity is defined as: Kx = Ky = Kz = KL. In distorted models, a single
length scale is usually modified, so that Kx = Ky 7 Kz. The ratio Kz/Kx is the distortion
factor. It would be possible, using this same approach, to define characteristics of
kinematic similarity, for similar motions, and of dynamic similarity, for systems
subjected to homologous forces.

There are several types of similarity in addition to the geometric, dynamic and
kinematic similarities. These include the hydrodynamic, transport, and thermal
similarities. Readers interested in applications of dimensional analysis to the theory of
biological similarity may refer to the review of Günther (1975), where the various
types of physical similarity are briefly described.

K,
2

5

5

Similarity
5 5 5

5 5 5 5

5

5
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Plate 3.1 The metre is the basis of the metric system, which was established during the French Revolution
and became the Système International d’Unités (SI, International System of Units) in 1960. The
metre was originally set as 10–7 of a quarter of the Earth meridional perimeter. In order to define
the metre precisely, French astronomers Delambre and Méchain measured the meridian between
Dunkerque and Barcelona between 1792 and 1799. The story of their work can be found in
Guedj (1999, 2001). Copies of the standard metre engraved in marble were displayed at 16
locations in Paris to make the new measurement unit known and used by the people. The picture
shows the last of these marble metres that is still at the site where it was originally placed, under
the arcades of 36 rue de Vaugirard in Paris, across the street from the Palais du Luxembourg
(seat of the French Senate), where it can be seen nowadays. Photo P. Legendre, 2002.
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4.0 Multidimensional statistics

 

Basic statistics are now part of the training of most ecologists. However, statistical
techniques based on simple distributions such as the unidimensional normal
distribution are not really appropriate for analysing complex ecological data sets.
Nevertheless, researchers sometimes perform series of simple analyses on the various
descriptors in their data set, expecting to obtain results that are pertinent to the problem
under study. This type of approach is incorrect because it does not take into account
the covariances among descriptors; see also Box 1.3 where the statistical problem
created by multiple testing is explained. In addition, such an approach only extracts
minimum information from data that have often been collected at great cost and it
usually generates a mass of results from which it may be difficult to draw synthetic
conclusions. Finally, in studies involving species assemblages, it is usually more
interesting to describe the variability of the structure of the assemblage as a whole
(i.e. 

 

mensurative

 

 variation observed through space or time, or 

 

manipulative

 

 variation
resulting from experimental manipulation; Hurlbert, 1984) than to analyse each
species independently.

Fortunately, methods derived from 

 

multidimensional statistics

 

, which are used
throughout this book

 

, 

 

are designed for analysing complex data sets. These methods
take into account the co-varying nature of ecological data and can evidence the
structures that underlie the data. The present chapter discusses the basic theory and
characteristics of multidimensional data analysis. Mathematics are kept to a minimum,
so that readers can easily reach a high level of understanding. Many approaches of
practical interest are discussed, including several types of linear correlation with their
statistical tests. It must be noted that this chapter is limited to linear statistics.

A number of excellent textbooks deal with detailed aspects of multidimensional
statistics, for example Mardia 

 

et al.

 

 (1979), Muirhead (1982), Anderson (2003), and
Hair 

 

et al.

 

 (2010). There are also several titles on specialized topics such as linear
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models, linear regression, and time series analysis. None of these books specifically
deals with ecological data, however.

Several authors use the term multivariate as an abbreviation for multidimensional
variate (the latter term meaning random variable; Section 1.0). As an adjective,
multivariate is interchangeable with multidimensional.

4.1 Multidimensional variables and dispersion matrix

As stated in Section 1.0, the present textbook deals with the analysis of random
variables. Ecological data matrices have n rows and p columns (Section 2.1). Each
row is a vector (Section 2.4) which is, statistically speaking, one realization of a
p-dimensional random variable. When, for example, p species are observed at n
sampling sites, the species are the p dimensions of a random variable “species” and
each site provides one realization of this p-dimensional random variable.

To illustrate this concept, four sampling units with two species (Table 4.1) are
plotted in a two-dimensional Euclidean space (Fig. 4.1). Vector “site 1” is the doublet
(5,1). It is plotted in the same two-dimensional space as the three other vectors “site i”.
Each row of the data matrix is a two-dimensional vector, which is one realization of
the (bivariate) random variable “species”. The random variable “species” is said to be
two-dimensional because the sampling units (objects) contain two species
(descriptors), the two dimensions being species 1 and 2, respectively. The species
descriptors of this example are the axes of the attribute space, or A-space (Fig. 7.2).

Multidi-
mensional
Multivariate

Table 4.1 Numerical example of two species observed at four sampling sites. Figure 4.1 shows that each
row of the data matrix may be construed as a vector, as defined in Section 2.4.

Sampling sites Species (descriptors)
(objects) 1 2 (p = 2)

1 5 1

2 3 2

3 8 3

4 6 4

(n = 4)
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As the number of descriptors (e.g. species) increases, the number of dimensions of
the random variable “species” similarly increases, so that more axes are necessary to
construct the space in which the objects are plotted. Thus, the p descriptors make up a
p-dimensional random variable and the n vectors of observations (objects) are as many
realizations of the p-dimensional vector “descriptors”. The present chapter does not
deal with samples of observations, which result from field or laboratory work (for a
brief discussion on sampling, see Section 1.0). It focuses instead on populations,
which are investigated by means of samples.

Before approaching the multidimensional normal distribution, it is necessary to
define a p-dimensional random variable “descriptors”:

Y = [y1, y2, …yj, …yp] (4.1)

Each element yj of the multidimensional variable Y is a one-dimensional random
variable. Every descriptor yj is observed in each of the n vectors “object”, each
sampling unit i providing a realization of the p-dimensional random variable.

In ecology, the structure of dependence among descriptors is, in many instances,
the matter being investigated. Researchers who study multidimensional data using
univariate statistics assume that the p unidimensional yj variables in Y are linearly
independent of one another (third meaning of independence in Box 1.1). This is the
reason why univariate statistical methods are inappropriate with most ecological data
and why methods that take into account the dependence among descriptors must be
used to analyse multidimensional data sets. Only these methods will generate proper
results when there is dependence among descriptors; it is never acceptable to replace a
multidimensional analysis by a series of unidimensional treatments.

Figure 4.1 Four realizations (sampling sites from Table 4.1) of the two-dimensional random variable
“species” are plotted in a two-dimensional Euclidean space.
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The usual tests of significance require, however, “that successive sample
observation vectors from the multidimensional population have been drawn in such a
way that they can be construed as realizations of independent random vectors”
(Morrison, 1990, p. 80). Subsection 1.1.1 has shown that this assumption of
independence among observations is most often not realistic in ecology. Lack of
independence among the observations (data rows) does not really matter when
statistical models are used for descriptive purposes only, as it is often the case in the
present book. For statistical testing, however, corrected tests of significance have to be
used when the observations are spatially or temporally correlated (Subsection 1.1.2).

To sum up: (1) the p descriptors in ecological data matrices are the p dimensions of
a random variable “descriptors”; (2) in general, the p descriptors are not linearly
independent of one another; methods of multidimensional analysis are designed to
bring out the structure of linear dependence among descriptors; (3) each of the n
sampling units is a realization of the p-dimensional vector “descriptors”; (4) the usual
tests of significance assume that the n sampling units are realizations of independent
random vectors. The latter condition is generally not met in ecology, with
consequences that were discussed in the previous paragraph and in Subsection 1.1.1.
For the various meanings of the term independence in statistics, see Box 1.1.

Greek and roman letters are used here and in the remainder of the book (Table 4.2).
The properties of a population (called parameters) are denoted by greek letters. Their
estimates (called statistics), computed from samples, are symbolized by the
corresponding roman letters. These conventions are complemented by those pertaining
to matrix notation (Section 2.1).

The dependence among quantitative variables yj brings up the concept of
covariance. Covariance is the extension, to two descriptors, of the concept of variance.
The variance is a measure of the dispersion of a random variable yj around its mean; it
is denoted . Covariance measures the joint dispersion of two random variables yj

Parameter
Statistic

Table 4.2 Symbols used to identify (population) parameters and (sample) statistics.

Parameter Statistic
Matrix or vector Elements Matrix or vector Elements

Covariance !!!! (sigma) "jk (sigma) S sjk

Correlation #### (rho) $jk (rho) R rjk

Mean µµµµ (mu) µj (mu)

The symbols for covariance matrix !!!! and summation % should not be confused.

y y j

" j
2
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and yk around their means; it is denoted "jk . The dispersion matrix of Y, called matrix
!!!!    (sigma), contains the variances and covariances of the p descriptors (Fig. 4.2):

!!!! = (4.2)

Matrix !!!! is an association matrix [descriptors × descriptors] (Section 2.2). The
elements "jk of matrix !!!! are the covariances between all pairs of the p random
variables. The matrix is symmetric because the covariance of yj and yk is identical to
that of yk and yj . Each diagonal element of !!!!    is the covariance of a descriptor yj with
itself, which is the variance of yj, so that .

The estimate of the variance of yj, denoted , is computed on the centred variable
. Variable yj is centred by subtracting the mean  from each of the n

Dispersion
matrix

Figure 4.2 Structure of ecological data. Given their nature, ecological descriptors are, in most cases,
linearly dependent on one another (Box 1.1). 
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observations yij . As a result, the mean of the centred variable is zero. The unbiased
estimator of the population variance  is computed using the well-known formula:

var(yj) = (4.3)

where the sum of squares of the centred data, for descriptor j, is divided by the number
of objects minus one (n – 1). The summation is over the n observations of descriptor j.
The variance of yj is expressed in the squared physical dimension of yj . In the same
way, the estimate (sjk) of the covariance ("jk) of yj and yk is computed on the centred
variables  and , using the formula of a “bivariate variance”. The
covariance sjk is calculated as:

cov(yj,yk) = (4.4)

When k = j, eq. 4.4 is identical to eq. 4.3. The positive square root of the variance is
called the standard deviation ("j); it has the same dimension as yj. Its estimate sj is:

(4.5)

The coefficient of variation is a dimensionless measure of variation. CV is used to
compare the variation of variables expressed in different physical units. It is obtained
by dividing the standard deviation sj by the mean  of variable j:

CVj = sj /

Since the standard deviation and the mean of a variable have the same physical units,
CVj is dimensionless. CVj is only defined for quantitative variables that have non-zero
means and it does not make sense for interval-scale variables (Subsection 1.4.1), for
which the value of the mean is arbitrary. The coefficient of variation may be rescaled to
percentages by multiplying its value by 100. For small n, an estimate with reduced bias
is obtained by multiplying CV by (1 + 1/(4n)).

Contrary to the variance, which is always positive, the covariance may take
positive or negative values. To understand the meaning of the covariance, imagine that
the object points are plotted in a scatter diagram where the axes are descriptors yj
and yk . The data are centred by drawing new axes, whose origin is at the centroid

 of the cloud of points (centred plots of that kind with positive and negative
correlations are shown in Fig. 4.7). A positive covariance (e.g. Fig. 4.7, right) means
that most of the points are in quadrants I and III of the centred plot, where the centred
values  and  have the same signs. This corresponds to a positive
relationship between the two descriptors. The converse is true for a negative
covariance (e.g. Fig. 4.7, left), for which most of the points are in quadrants II and IV

s j
2

s j
2 1

n 1–
------------ yij y j–( ) 2

i 1=

n
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yij y j–( ) yik yk–( )

s jk
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of the centred plot. When the covariance is null (e.g. Fig. 4.8, left) or small, the points
are equally distributed among the four quadrants of the centred plot.

The covariance or dispersion matrix* S can be computed directly by multiplying the matrix
of centred data  with its transpose :

cov(Y) = S =  (4.6)

This elegant and rapid procedure shows once again the advantage of matrix algebra in numerical
ecology, where the data sets are generally large.

Numerical example. Four species (p = 4) were observed at five stations (n = 5). The
estimated population parameters, for the species, are the means ( ), the variances ( ), and the
covariances (sjk). The original and centred data are shown in Table 4.3. Because sjk = skj, the
dispersion matrix is symmetric. The mean of each centred variable is zero.

In this numerical example, the covariance between species 2 and the other three species is
zero. This does not necessarily mean that species 2 is independent of the other three, but simply
that the joint linear dispersion of species 2 with any one of the other three is zero. This example
will be revisited in Section 4.2.

*  Some authors call  a dispersion matrix and S a covariance matrix. For these
authors, a covariance matrix is then a dispersion matrix divided by (n – 1).
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The square root of the determinant of the dispersion matrix  is known as the
generalized variance. It is also equal to the square root of the product of the
eigenvalues of S.

Any dispersion matrix S is positive semidefinite (Table 2.2). Indeed, the quadratic
form of S (p × p) with any real and non-null vector t (of size p) is:

 

This expression can be expanded using eq. 4.6:

 = 

 =  = a scalar

This scalar is the variance of the variable resulting from the product Yt. Since a
variance, which is a sum of squared values, can only be positive or null, it follows that:

 & 0

so that S is positive semidefinite. This means that S cannot have negative eigenvalues. 

Table 4.3 Numerical example. Calculation of centred data and covariances.

Sites Original data Centred data

Means

n – 1 = 4

1
2
3
4
5

Y

1 5 2 6
2 2 1 8
3 1 3 4
4 2 5 0
5 5 4 2

= y y–[ ]  

2– 2 1–  2 
1– 1– 2–  4 
0 2– 0  0 
1 1– 2 4 –
2 2 1 2 –

=

y' 3 3 3 4= y y–[ ] '   0   0   0   0 =

S 1
n 1–
------------ y y–[ ] ' y y–[ ]

  2.5 0   2 4–
  0 3.5   0   0
  2 0   2.5 5–

4– 0 5– 10

= =

S 1 2

t'St

t'St t' 1
n 1–
------------ y y–[ ] ' y y–[ ] t

t'St 1
n 1–
------------ y y–[ ] t[ ] ' y y–[ ] t[ ]

t'St
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This important property can be derived by computing the quadratic form of the
dispersion matrix S using eq. 2.28 (right), '''' = U–1AU. Because S is symmetric, its
eigenvectors found in matrix U are orthogonal. Since they are also normalized, U is an
orthonormal matrix, hence U–1 =  (property #7 of inverses, Section 2.8), and
eq. 2.28 (right) can be written:

In the quadratic form, vector t is replaced by each successive eigenvector uj in turn,
i.e. each column of matrix U. For each vector uj, the development above shows that

Since , this demonstrates that all eigenvalues (j of S are positive or null.
This property of dispersion matrices is fundamental in numerical ecology: it allows
one to partition the variance of a matrix Y among real (i.e. non-imaginary) principal
axes (Sections 4.4 and 9.1).

Another property of the dispersion matrix is that the sum of all values in S is equal
to the variance of a synthetic variable y computed as the sum by rows (objects) of all
descriptors in Y. For example, if Y contains species abundance data, the sum by rows
(sites) of all species abundances is a new variable y corresponding to the total number
of individuals at the sites, which can in some cases be interpreted as the total yield or
the support capacity of the sites. If Y consists of species presence-absence data, y is the
species richness of the sites. The variance of the synthetic variable y can be obtained
by summing all values in S instead of computing y and then its variance. This property
will be used in Subsection 13.1.4.

Ideally, matrix S (of order p) should be estimated from a number of observations n
larger than the number of descriptors p. When n ) p, the rank of matrix S is n – 1 and,
consequently, only n – 1 of its rows or columns are independent of one another, so that
p – (n – 1) null eigenvalues are produced. The only practical consequence of n ) p is
thus the presence of null eigenvalues in the principal component solution
(Section 9.1). The first few eigenvalues of S, which are generally those of interest,
have positive eigenvalues.

4.2 Correlation matrix

The previous section has shown that the covariance provides information on the
orientation of the cloud of data points in the space defined by the descriptors. That
statistic, however, does not provide any information on the intensity of the relationship
between variables yj and yk . Indeed, the covariance may increase or decrease without
changing the relationship between yj and yk . For example, in Fig. 4.3, the two clouds
of points correspond to different covariance values (factor two in size, and thus in

U'

U'SU ''''=

u'jSu j 0&

u'jSu j ( j=
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covariance), but the relationship between the variables is identical (same shape). Since
the covariance depends on the dispersion of the points around the mean of each
variable (i.e. their variances), determining the intensity of the relationship between
variables requires to control for the variances.

The covariance measures the joint dispersion of two random variables around the
bivariate mean. The correlation is defined as a measure of the dependence between
two random variables yj and yk . As explained in Section 1.5, it often happens that
matrices of ecological data contain descriptors with scales that are not commensurate,
e.g. when some species have larger biomass than others by orders of magnitude, or
when the descriptors have different physical dimensions (Chapter 3). Calculating
covariances on such variables obviously does not make sense, except if the descriptors
are first reduced to a common scale. The standardization procedure consists in centring
all descriptors on a zero mean and reducing them to unit standard deviation (eq. 1.12).
By using standardized descriptors, it is possible to calculate meaningful covariances
because the new variables have the same scale (i.e. unit standard deviation) and are
dimensionless (see Chapter 3).

The covariance of two standardized descriptors is called the coefficient of linear
correlation (Pearson r). This statistic has been proposed by the statistician Karl
Pearson and is named after him. Given two standardized descriptors (eq. 1.12)

calculating their covariance (eq. 4.4) gives

Figure 4.3 Several observations (objects), with
descriptors yj and yk, were made under
two different sets of conditions (A and
B). The two ellipses delineate clouds of
point-objects corresponding to A and
B, respectively. The covariance of yj
and yk is twice as large for B as it is for
A (larger ellipse), but the correlation
between the two descriptors is the same
in these two cases (i.e. the ellipses have
the same shape).
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, the coefficient of linear correlation between yj and yk .

The developed formula is:

cor(yj,yk) = (4.7)

As in the case of dispersion (Section 4.1), it is possible to construct the correlation
matrix of Y, i.e. the #### (rho) matrix, whose elements are the coefficients of linear
correlation $jk:

#### = (4.8)

The correlation matrix is the dispersion matrix of the standardized variables. This
concept will play a fundamental role in principal component analysis (Section 9.1). It
should be noted that the diagonal elements of #### are all equal to 1. This is because the
comparison of any descriptor with itself is a case of complete dependence, which leads
to a correlation $ = 1. When yj and yk are independent of each other, $j = 0. However,
a correlation equal to zero does not necessarily imply that yj and yk are independent of
each other, as shown by the following numerical example. A correlation $jk = –1 is
indicative of a complete, but inverse dependence of the two variables. 
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Numerical example. Using the values in Table 4.3, matrix R can easily be computed.
According to eq. 4.7, each element rjk combines the covariance sjk with the variances sj and sk:

Matrix R is symmetric, as was matrix S. The correlation r = –1 between species 3 and 4 means
that these species are fully, but inversely, dependent (Fig. 4.4a). Correlations r = 0.8 and –0.8 are
interpreted as indications of strong dependence between species 1 and 3 (direct) and species 1
and 4 (inverse), respectively. The zero correlation between species 2 and the other three species
must be interpreted with caution. Figure 4.4d clearly shows that species 1 and 2 are completely
dependent on each other since they are related by equation y2 = 1 + (3 – y1)2; the zero
correlation is, in this case, a consequence of the linear model underlying statistic r. Therefore,
only the correlations that are significantly different from zero should be considered, since a null
correlation has no unique interpretation.

R

1   0  0.8 0.8–
0   1  0 0 

0.8   0  1 1 –
0.8–   0  1 – 1 

=

Figure 4.4 Numerical example. Relationships between species (a) 3 and 4, (b) 2 and 4, (c) 2 and 3, and
(d) 2 and 1.
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Since the correlation matrix is the dispersion matrix of standardized variables, it is
possible, as in the case of matrix S (eq. 4.6), to compute R directly by multiplying the
matrix of standardized data with its transpose:

cor(Y) = (4.9)

Table 4.4 shows how to calculate correlations rjk of the example as in Table 4.3, using
this time the standardized data. The mean of each standardized variable is zero and its
standard deviation is equal to unity. The dispersion matrix of Z is identical to the
correlation matrix of Y, which was calculated above using the covariances and
variances.

R 1
n 1–
------------ y y–( ) sy ' y y–( ) sy

1
n 1–
------------Z'Z= =

Table 4.4 Numerical example. Calculation of standardized data and correlations.

Sites Original data Standardized data

Means

n – 1 = 4

1
2
3
4
5

Y

1 5 2 6
2 2 1 8
3 1 3 4
4 2 5 0
5 5 4 2

= Z

1.27– 1.07 0.63– 0.63
0.63– 0.53– 1.27– 1.27
   0  1.07– 0  0  
0.63 0.53– 1.27 1.27–
1.27 1.07 0.63 0.63–

=

y' 3 3 3 4= z'     0         0         0         0   =

R y( ) S z( )
1

n 1–
------------Z'Z

1   0  0.8 0.8–
0   1  0 0 

0.8   0  1 1 –
0.8–   0  1 – 1 

= = =
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Matrices !!!! and #### are related to each other by the diagonal matrix of standard
deviations of Y. This new matrix, which was specifically designed here to relate !!!! and
####, is symbolized by D(") and its inverse by D(")–1:

    and    

Using these two matrices, one can write:

#### =     !!!!     =  !!!!    (4.10)

where D("2) is the matrix of the diagonal elements of !!!! . It follows from eq. 4.10 that:

!!!! = D(") ####    D(") (4.11)

The theory underlying tests of significance is summarized in Section 1.2. In the
case of r, inference about the statistical population is in most instances through the null
hypothesis H0: $ = 0. H0 may also state that $ has some other value than zero, which
would be derived from ecological hypotheses. The general formula for testing
correlation coefficients is given in Section 4.5 (eq. 4.39). The Pearson correlation
coefficient rjk involves two descriptors yj and yk (hence m = 2 when testing a
coefficient of simple linear correlation using eq. 4.39), so that 01 = 2 – 1 = 1 and
02 = n – 2 = 0. The general formula then becomes:

(4.12)

where 0 = n – 2. Statistic F is tested against F1[1,0]. Since the square root of a statistic
 is a statistic  when 01 = 1, r may also be tested using:

(4.13)

The t-statistic is tested against the value t1[0]. In other words, H0 is tested by
comparing the F (or t) statistic to the value found in a table of critical values of F (or t).
Equations 4.12 and 4.13 produce identical tests. The number of degrees of freedom is
0 = (n – 2) because calculating a correlation coefficient requires prior estimation of
two parameters, i.e. the means of the two populations (eq. 4.7). H0 is rejected when the
probability corresponding to F (or t) is smaller than or equal to a predetermined level
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of significance (1 for a two-tailed test, and 1/2 for a one-tailed test; the difference
between the two types of tests is explained in Section 1.2). In principle, this test
requires that the sample of observations be drawn from a population having a bivariate
normal distribution (Section 4.3). Testing for normality and multinormality is
discussed in Section 4.6, and normalizing transformations in Section 1.5. When the
data do not satisfy the condition of normality, t can be tested by permutation, as
explained in Section 1.2.

It is also possible to test the independence of all variables in a data matrix by
considering the set of all correlation coefficients found in matrix R. The null
hypothesis here is that the p(p – 1)/2 coefficients are all equal to zero, H0: R = I (unit
matrix). According to Bartlett (1954), the determinant of R, , can be transformed
into a X2 (chi-square) test statistic:

X2 = –[n – (2p + 5)/6] loge (4.14)

where loge  is the natural logarithm of the determinant of R. This statistic is
approximately distributed as 22 with 0 = p(p – 1)/2 degrees of freedom. When the
probability associated with X2 is significantly low, the null hypothesis of complete
independence of the p descriptors is rejected. In principle, this test requires the
observations to be drawn from a population with a multivariate normal distribution
(Section 4.3). If the null hypothesis of independence of all variables is rejected, the
p(p – 1)/2 correlation coefficients in matrix R may be tested individually. Box 1.3
describes how to correct individual p-values in situations of multiple testing.

Other correlation coefficients are described in Sections 4.5 and 5.3. When the
coefficient of linear correlation must be distinguished from other coefficients, it is
referred to as Pearson r. Elsewhere, r is called the coefficient of linear correlation or
correlation coefficient. Table 4.5 summarizes the main properties of this coefficient.

4.3 Multinormal distribution

In general, the mathematics of the normal distribution is of little concern to ecologists
using unidimensional statistical methods. In the best case, data are normalized
(Section 1.5) before being subjected to tests that are based on parametric hypotheses.
It must be remembered that all parametric tests require the data to follow a specific
distribution, most often the normal distribution. When the data do not obey this
condition, the results of parametric tests may be invalid. 

There also exist nonparametric tests (Chapter 5), in which no reference is made to
any theoretical distribution of the population, hence no use of parameters. That is also
the case with permutation tests based on the usual parametric statistics, e.g. the
Pearson correlation coefficient r (Subsection 1.2.2). Another advantage of
nonparametric and permutational tests is that they remain valid for samples of very

Test of in-
dependence
of variables

R

R

R
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small sizes, which are often encountered in ecological research. These tests are of great
interest to ecologists. Researchers may nevertheless attempt to normalize their data to
have access to the powerful toolbox of parametric statistics or because some of the
methods of multivariate analysis, e.g. principal component analysis (Section 9.1),
perform better when the response data distributions are not strongly asymmetric.

Multidimensional statistics require careful examination of the main characteristics
of the multinormal (or multivariate normal) distribution. Several of the methods
described in the present chapter, and also in Chapters 9, 10 and 11, are founded on
principles derived from the multinormal distribution. This is true even in cases where
no test of significance is performed, which is often the case in numerical ecology
(i.e. descriptive versus inferential statistics, Sections 1.2).

The logic of an approach centred on the multinormal distribution is based upon a
theorem which is undoubtedly one of the most important of statistics. According to the
central limit theorem, when a random variable results from several independent and
additive effects, of which none has a dominant variance, then this variable tends
towards a normal distribution even if the effects are not themselves normally
distributed. Since ecological variables, and species abundances in particular, are often
influenced by several independent random factors, the above theorem explains why the
normal distribution is frequently invoked to describe ecological phenomena. This
justifies a careful examination of the properties of the multinormal distribution before
studying the methods for analysing multidimensional quantitative data.

Table 4.5 Main properties of the coefficient of linear correlation. Some of these properties are discussed in
a later sections. 

Properties Sections

1. The coefficient of linear correlation measures the intensity of the linear 
relationship between two random variables. 4.2

2. The coefficient of linear correlation between two variables can be calculated
using their respective variances and their covariance. 4.2

3. The correlation matrix is the dispersion matrix of standardized variables. 4.2

4. The square of the coefficient of linear correlation is the coefficient of 
 determination. It measures how much of the variance of each variable is
 explained by the other. 10.3

5. The coefficient of linear correlation is a parameter of a multinormal distribution. 4.3

6. The absolute value of the coefficient of linear correlation is the geometric 
mean of the coefficients of linear regression of each variable on the other. 10.3
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The probability density of a normal random variable y is:

ƒ(y) = (4.15)

(Laplace-Gauss equation) where exp […] reads “e to the power […]”, e being the
Napierian base (e = 2.71828…). Calculation of ƒ(y), for a given value y, only requires
µ and ". The mean (µ) and standard deviation (") of the theoretical population
completely determine the shape of the probability distribution. This is why they are
called the parameters of the normal distribution. The curve is symmetric on both sides
of µ and its exact shape depends on " (Fig. 4.5).

The value " determines the positions of the inflexion points along the normal
curve. These points are located on both sides of µ, at a distance ", whereas µ positions
the curve on the abscissa. In Fig. 4.5, the surface under each of the two curves is
identical for the same number of " units on either side of µ. The height of the curve is
the probability density corresponding to the y value; for a continuous function such as
that of the normal distribution, the probability of finding a value between y = a and y =
b (a < b) is given by the surface under the curve between a and b. For example, the
probability of finding a value between µ – 1.96" and µ + 1.96" is 0.95.

In view of examining the properties of the multinormal distribution, it is
convenient to first consider the joint probability density of p independent
unidimensional normal variables. For each of these p variables yj, the probability
density is given by eq. 4.15, with mean µj and standard deviation "j:

ƒ(yj) = (4.16)
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A basic law of probabilities states that the joint probability density of several
independent variables is the product of their individual densities. It follows that the
joint probability density for p independent variables is:

ƒ(y1, y2, …,yp) = ƒ(y1) × ƒ(y2) × … × ƒ(yp)

ƒ(y1, y2, …,yp) = (4.17)

Using the conventions of Table 4.2, one defines the following matrices:

y = 

!!!! = (4.18)

µµµµ = 

where y = [y1 y2 ... yp] is the p-dimensional vector of coordinates of a point for which
the probability density, i.e. the height (ordinate) of the p-dimensional normal curve, is
sought; µµµµ is the vector of means, and !!!! is the dispersion matrix among the p
independent variables. The determinant of !!!!    is the generalized variance of the
multivariate distribution. The determinant of a diagonal matrix being equal to the
product of the diagonal elements (Section 2.6), it follows that:

4!!!!41/2 = ("1 "2 …"p)

From definitions (4.18), and for a single row vector [y – µ] of p-dimensional centred
data, one can write:

[y – µ] !!!!–1 [y – µ]' = 

which is a scalar. Do not confuse, here, the summation symbol with dispersion
matrix !!!!. Using these relationships, eq. 4.17 is rewritten as:

ƒ(y) =  exp {–(1/2) [y – µ] !!!!–1 [y – µ]'} (4.19)

The above equations are for the joint probability density of p independent
unidimensional normal variables yj . It is easy to go from there to the multinormal
distribution, where y is a p-dimensional random variable whose p dimensions are not
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independent. In order to do so, one simply replaces the above matrix    !!!! by a dispersion
matrix containing variances and non-zero covariances, i.e. (eq. 4.2):

!!!! = 

Using this dispersion matrix !!!!, eq. 4.19 now describes the probability density ƒ(y) for
a p-dimensional multinormal distribution.

Given eq. 4.11, eq. 4.19 for point y may be rewritten as:

ƒ(y) =  exp {–(1/2) [y – µ] D(")–1 ####–1    D(")–1 [y – µ]'} (4.20)

Replacing, in eq. 4.20, vector y from the p-dimensional matrix Y by vector z from the
p-dimensional standardized matrix Z (eq. 1.12) gives:

ƒ(z) =  exp {–(1/2) z ####–1 z'} (4.21)

because [y – µ] D(")–1 = z and, for a standardized variable z, D(") = I.

Equation 4.21 stresses a fundamental point, which was already clear in eq. 4.20:
the correlations $ are parameters of the multinormal distribution, together with the
means µ and standard deviations ". This property of $ is shown in Table 4.5.

Three sets of parameters are therefore necessary to specify a multidimensional
normal distribution, i.e. the vector of means µµµµ, the diagonal matrix of standard
deviations D("), and the correlation matrix ####. In the unidimensional normal
distribution (eq. 4.15), µ and " were the only parameters because there is no
correlation $ for a single variable.

It is not possible to represent, in a plane, more than three dimensions. Thus, for the
purpose of illustration, only the simplest case of multinormal distribution will be
considered, i.e. the bivariate normal distribution, where:

µµµµ =  D(") = #### = 
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Since 4D(")4 = "1"2 and 4####4 = (1 – $2) in this case, eq. 4.20 becomes:

ƒ(y1,y2) =  exp{–(1/2) [y – µ] D(1/") (1 – $2)–1     D(1/") [y – µ]'}

= 

Figure 4.6 shows bivariate normal distributions with their typical “bell” shapes.
The two examples illustrate the roles of "1 and "2. Further examination of the
multinormal mathematics is required to specify the role of $.

Coming back to the probability density of the multidimensional distribution and
neglecting the constant –1/2, the remainder of the exponent in eq. 4.19 is:

[y – µ] !!!!–1 [y – µ]'

When it is made equal to a positive constant (1), this algebraic form specifies the
equation of any of the points [y – µ] on a p-dimensional ellipse:

[y – µ] !!!!–1 [y – µ]' = 1 (4.22)
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A family of such multidimensional ellipses may be generated by varying the constant
1. All these ellipses have the multidimensional point µµµµ as their common centre.

It is easy to understand the meaning of eq. 4.22 by examining the two-dimensional
case. Without loss of generality, it is convenient to use the standardized variable (z1,z2)
instead of (y1,y2). In that case, the family of ellipses (i.e. two-dimensional ellipsoids) is
centred on the origin    µµµµ = [0 0]. For each point with coordinates [z1 z2], the exponent of
the standardized bivariate normal density is (from expression on the previous page):

This exponent specifies, in two-dimensional space, the equation of a family of ellipses:

 = 1

Figure 4.7 illustrates the role played by $ in determining the general shape of the
family of ellipses. As $ approaches zero, the ellipses tend to become circular. In
contrast, as $ approaches +1 or –1, the ellipses tend to elongate. The sign of $
determines the orientation of the ellipses relative to the axes.
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Figure 4.7 Concentration ellipses of a standardized bivariate normal distribution. Role of the correlation $.
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Actually, when $ = 0 (Fig. 4.8, left), the equation for the family of ellipses
becomes:

or , which is the equation of a circle.

In contrast, when $ = ±1, the equation becomes:

hence ,

which is the equation of a straight line with a positive or negative slope of 1
(±45° angle).

Such a family of ellipses, called concentration ellipses, is comparable to a series of
contour lines on the two-dimensional normal distribution (Fig. 4.6). Increasing the
value of 1 corresponds to moving down along the sides of the distribution. The
concentration ellipses pass through points of equal probabilities around the bivariate
normal distribution. The role of $ then becomes clear: when $ = 0, the “bell” of
probability densities is perfectly circular (in overhead view); as $ increases in absolute

Figure 4.8 Concentration ellipses of a standardized bivariate normal distribution. Extreme values of the
correlation $.
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value, the “bell” of the probability densities flattens out, until it becomes
unidimensional when $ = ±1. Indeed, when there is a perfect correlation between two
dimensions (i.e. $ = ±1), a single dimension, at an angle of 45° with respect to the two
original variables, is sufficient to specify the joint distribution of probability densities.

When the number of dimensions is p = 3, the family of concentration ellipses
becomes a family of concentration ellipsoids and, when p > 3, a family of
hyperellipsoids. The meaning of these ellipsoids and hyperellipsoids is the same as in
the two-dimensional case although it is not possible to draw them on a sheet of paper.

4.4 Principal axes

Various aspects of the multinormal distribution have been examined in the previous
section. One of these, namely the concentration ellipses (Fig. 4.7), is the gateway to a
topic of great importance for ecologists. In the present section, a method will be
developed for determining the principal axes of the concentration hyperellipsoids; for
simplicity, the term ellipsoid will be used in the following discussion. The first
principal axis is the line that passes through the dimension of greatest variance of the
ellipsoid. The next principal axes go through the next dimensions of greatest variance,
smaller and smaller, of the p-dimensional ellipsoid. Hence, p consecutive principal
axes are determined. These principal axes will be used, in Section 9.1, as the basis for
principal component analysis.

In the two-dimensional case, the first principal axis corresponds to the major axis
of the concentration ellipse and the second principal axis to the minor axis. These two
axes are perpendicular to each other. Similarly in the p-dimensional case, there are p
consecutive axes, which are all perpendicular to one another in the hyperspace.

The first principal axis goes through the p-dimensional centre µµµµ = [µ1 µ2 … µp] of the
ellipsoid, and it crosses the surface of the ellipsoid at a point designated here by
y = [y1 y2 … yp]. The values of µµµµ and y specify a vector in the p-dimensional space
(Section 2.4). The length of the axis, from µµµµ to the surface of the ellipsoid, is calculated using
Pythagoras’ formula:

[(y1 – µ1)2 + (y2 – µ2)2 + … + (yp – µp)2]1/2 = ([y – µ][y – µ]')1/2 

Actually, this is only half the length of the axis, which extends equally on both sides of    µµµµ. The
coordinates of the first principal axis must be chosen in such a way as to maximize the length of
the axis. This can be achieved by maximizing the square of the half-length:

[y – µ][y – µ]'
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Calculating coordinates corresponding to the axis with the greatest length is subjected to the
constraint that the end point y be on the surface of the ellipsoid. This constraint is made explicit
using eq. 4.22, which specifies the ellipsoid:

[y – µ] !!!!–1 [y – µ]' = 1

[y – µ] !!!!–1 [y – µ]' – 1 = 0

Lagrangian multipliers are used to compute the maximum and minimum values of a
function of several variables when the relationships among the variables are known. In the
present case, the above two equations, which describe the square of the half-length of the first
principal axis and the constraint, are combined into a single function:

ƒ(y) =[y – µ][y – µ]' – ( {[y – µ] !!!!–1 [y – µ]' – 1}

Scalar ( is called a Lagrangian multiplier*. The values that maximize this function are found by
the usual method of setting the equation's partial derivative equal to 0:

ƒ(y) = 0

[y – µ][y – µ]' – ( {[y – µ] !!!!–1 [y – µ]' – 1} = 0

It is important to remember here that y is a p-dimensional vector (y1, y2, …,yp), which means
that the above equation is successively derived with respect to y1, y2, … and yp. Therefore,
derivation with respect to y represents in fact calculating a series of p partial derivatives (<yj).
The results of the derivation may be rewritten as a (column) vector with p elements:

2 [y – µ] –2 ( !!!!–1 [y – µ] = 0

One may factor out [y – µ] and eliminate the constant 2:

(I – ( !!!!–1) [y – µ] = 0

Multiplying both sides of the equation by !!!! gives:

(!!!! – (I) [y – µ] = 0 (4.23)

The general equation defining eigenvectors (eq. 2.22) is (A – (I) u = 0. Replacing, in that
equation, A by    !!!! and u by [y – µ] produces eq. 4.23. This leads to the conclusion that the vector
of coordinates that specifies the first principal axis is one of the eigenvectors [y – µ] of matrix !!!!.

*  After Joseph-Louis Lagrange (1736-1813), mathematician and astronomer.
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In order to find out which of the p eigenvectors of !!!! is the vector of coordinates of the first
principal axis, go back to the equation resulting from the partial derivation (above) and transfer
the second term to the right, after eliminating the constant 2:

[y – µ] = ( !!!!–1 [y – µ]

The two sides are then premultiplied by [y – µ]':

[y – µ]' [y – µ] = ( [y – µ]' !!!!–1 [y – µ]

Since [y – µ]' !!!!–1 [y – µ] = 1 (eq. 4.22), it follows that:

[y – µ]' [y – µ] = (1

Considering the first eigenvalue (1, the term on the left-hand side of the equation is the
square of the half-length of the first principal axis (see above). Thus, for a given value 1, the
length of the first principal axis is maximized by taking the largest possible value for ( or, in
other words, the largest eigenvalue, (1, of matrix !!!!. The vector of coordinates of the first
principal axis is therefore the eigenvector corresponding to the largest eigenvalue of !!!!.

Numerical example. The above equations are illustrated using the bivariate data matrix
from Section 9.1 (principal component analysis). The sample covariance matrix is:

S = 

There are two eigenvalues, (1 = 9 and (2 = 5, computed using eq. 2.23. To normalize the
eigenvectors (written as column vectors), put [y – µ]' [y – µ] = (1 = 1 for each of them; in other
words, 11 = 1/9 and 12 = 1/5. The normalized eigenvectors were called y1 and y2 until now in
this section; they will be denoted uj from now on, as in Sections 2.9 and 2.10. They form matrix
U = [u1, u2]:

y1 = u1 =  and y2 = u2 = 

These eigenvectors are of length 1 since they have been normalized. They determine the
directions of the major and minor axes of the bivariate distribution. The matrix of eigenvectors
U must be multiplied by the diagonal matrix containing the square roots of the eigenvalues
(U''''1/2, eq. 9.10) to provide a new matrix whose columns give the coordinates where the two
principal axes cross an ellipsoid with size 1 = 1. This example is further developed in Chapter 9.

To find the vectors of coordinates specifying the p successive principal axes,

• rank the p eigenvalues of matrix !!!! in decreasing order:

(1 > (2 > … > (p & 0

Note that the eigenvalues of a matrix    !!!! are all positive (end of Section 4.1); 

Eigenvalue

8.2 1.6
1.6 5.8

0.8944
0.4472

0.4472–
0.8944
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• associate the p eigenvectors to their corresponding eigenvalues. The orientation of
the p successive principal axes is given by the eigenvectors, which are associated with
the p eigenvalues ranked in decreasing order. The eigenvectors of a covariance matrix
!!!! are orthogonal to one another because !!!! is symmetric (Section 2.9). In the case of
multiplicity (Section 2.10, Third property), the orthogonal axes may be rotated to an
infinity of “principal” directions, i.e. two equal (’s result in a circle and several
determine a hypersphere (multidimensional sphere) where no orientation prevails.

The next step consists in calculating a new p-dimensional set of variables, forming
matrix V, that position the dispersion ellipses with respect to the principal axes instead
of the original Cartesian system. V is related to the original data matrix Y (eq. 4.1)
through the following transformation:

V = [y – µ] U (4.24)

where each of the p columns in matrix U is the normalized eigenvector uk
corresponding to the k-th principal axis. Because vectors uk are both orthogonal and
normalized, matrix U is said to be orthonormal (Section 2.8). This transformation
results in shifting the origin of the system of axes to the p-dimensional point µµµµ
followed by a rigid rotation of the translated axes into the principal axes (Fig. 4.9),
which form matrix V.

The dispersion matrix of V is:

!!!!V =  [y – µ]' [y – µ] U = U'!!!!U

where !!!! is the dispersion matrix of the original matrix Y. So, the variance of the k-th
dimension vk (i.e. the k-th principal axis) is:

s2(vk) = !!!!uk

Since, by definition, !!!!uk = (kuk (eq. 2.21) and uk = 1, it follows that:

s2(vk) = !!!!uk = (kuk = (k uk = (k (1) = (k (4.25)

with (k & 0 in all cases since !!!! is positive semi-definite. The covariance of any two
vectors of matrix V is zero because the product of two orthogonal vectors uk and uh is
zero (Section 2.5):

s(vk,vh) = !!!!uh = (huh = (h uh = (k (0) = 0 (4.26)

The last two points are of utmost importance, since they are the basis for using the
principal axes (and thus principal component analysis; Section 9.1) in ecology: (1) the
variance of a principal axis is equal to the eigenvalue associated with that axis

1
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(eq. 4.25) and (2) the p dimensions of the transformed variable are linearly
independent since their covariances are zero (eq. 4.26).

A last point concerns the meaning of the p elements ujk of the normalized
eigenvectors uk . The values of these elements determine the rotation of the system of
axes, so that they correspond to angles. Figure 4.10 illustrates, for the two-dimensional
case, how the elements of the eigenvectors are related to the rotation angles. Using the

Figure 4.9 Result of the transformation V = [y – µ] U (eq. 4.24).
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trigonometric functions for right-angled triangles, the angular relationships in
Fig. 4.10 may be rewritten as cosines:

cos 111 = length u11 / length of vector (u11, u21) = u11

cos 121 = length u21 / length of vector (u11, u21) = u21

cos 112 = length u12 / length of vector (u12, u22) = u12

cos 122 = length u22 / length of vector (u12, u22) = u22

because the lengths of the normalized vectors (u11, u21) and (u12, u22) are 1
(Section 2.4). Eigenvector uk determines the direction of the k-th main axis; it follows
from the above trigonometric relationships that elements ujk of the normalized
eigenvectors are direction cosines. Each direction cosine specifies the angle between
an original Cartesian axis j and a principal axis k.

(u12,u22)

u22 u21

u12 u11

(u11,u21)

111

121122

112

Figure 4.10 Geometrical meaning of the principal axes.

Direction
cosine
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The two-dimensional case, illustrated in Figs. 4.9 and 4.10, is the simplest to compute. The
standardized dispersion matrix is of the general form:

#### = 

When $ is positive, the eigenvalues of    #### are (1 = (1 + $) and (2 = (1 – $). The normalized
eigenvectors are:

Therefore, the first principal axis goes through the point ( , ), so that it cuts the first
and third quadrants at a 45° angle. Its direction cosines are cos 111 =  and
cos 112 = , which indeed specify 45° angles with respect to the two axes of the first
quadrant. The second principal axis goes through ( , ), so that it cuts the second
and fourth quadrants at 45°. Its direction cosines are cos 121 =  and cos 122 = ,
which determine 45°angles with respect to the two axes of the second quadrant.

When $ is negative, the eigenvalues of    #### are (1 = (1 – $) and (2 = (1 + $). Consequently the
first principal axis goes through ( , ) in the second quadrant, while the second
principal axis with coordinates ( , ) cuts the first quadrant. A value $ = 0 entails a
case of multiplicity since (1 = (2 = 1. This results in an infinite number of “principal” axes,
i.e. any two perpendicular diameters would fit the circular concentration ellipse (Fig. 4.8, left).

These concepts, so far quite abstract, will find direct applications to ecology in
Section 9.1, where principal component analysis is described.

4.5 Multiple and partial correlations

Section 4.2 considered, in a multidimensional context, the correlation of pairs of
variables, which represent two dimensions of a p-dimensional random variable.
However, the multidimensional nature of ecological data allows other approaches to
correlation analysis. These statistics are examined in the present section and compared
graphically in Box 4.1

The following developments will require that the p-dimensional correlation matrix
R be partitioned into four submatrices. Indices assigned to the submatrices follow the
general convention on matrix indices (Section 2.1):

(4.27)

1 $
$ 1

u1
1 2

1 2
= u2

1– 2

1 2
=

1 2 1 2
1 2

1 2
1– 2 1 2

1– 2 1 2

1– 2 1 2
1 2 1 2

R
R11 R12

R21 R22

=
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Variation partitioning Box 4.1

Variation partitioning, which is described in detail in Subsection 10.3.5, provides a
general framework to illustrate the similarities and differences between the
coefficient of multiple determination and the partial and semipartial correlation
coefficients, as well as the corresponding F-statistics. 

Three variables only, y1, y2, and y3, are considered in this example. In the following
Venn diagram, the rectangle represents the total sum of squares of variable y1:

In the multiple regression of y1 on y2 and y3,  (this is an
application of eq. 10.15), the coefficient of multiple determination, which is the
square of the coefficient of multiple correlation, is:

with 

The partial correlation of y1 with y2 while controlling for the effect of y3 is:

with 

The semipartial correlation of y1 with y2 in the presence of y3 is:

with 

The coefficients of partial and semipartial correlation receive the same sign as the
corresponding coefficient of partial regression. 

The test of a partial regression coefficient, b2 or b3, is the same (i.e. it has the same
F-statistic) as the test of the corresponding partial correlation coefficient, r12.3 or
r13.2. The F-statistic is always the ratio of two independent portions of the variation
of y1, each one divided by its degrees of freedom; see eqs. 4.39 and 4.40.

[a] [b] [c]

Unexplained variation
(residual variation) = [d]

Variation
explained by  y2

Variation in
variable y1

=
Variation

explained by  y3

y1̂ b0 b2y2 b3y3+ +=

R1.23
2 a b c+ +[ ]

a b c d+ + +[ ]
-------------------------------------= F a b c+ +[ ] 2

d[ ] n 3–( )
-----------------------------------=

r12.3
a[ ]

a d+[ ]
------------------= F a[ ] 1

d[ ] n 3–( )
--------------------------------=

r1(2.3)
a[ ]

a+b+c+d[ ]
----------------------------= F a[ ] 1

d[ ] n 3–( )
--------------------------------=
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There are two possible approaches to linear correlation involving several variables
or several dimensions of a multidimensional variable. The first one, which is called
multiple (linear) correlation, measures the intensity of the relationship between a
response variable and a linear combination of several explanatory variables. The
second approach, called partial (linear) correlation, measures the intensity of the
linear relationship between two variables, while taking into account their relationships
with other variables.

1 — Multiple linear correlation

Multiple correlation applies to cases where there is one response variable and several
explanatory variables. This situation is further studied in Section 10.3, within the
context of multiple regression. The coefficient of multiple determination (R2;
eq. 10.20) measures the fraction of the variance of yk that is explained by a linear
combination of yl, y2, …, yj, … and yp:

(4.28)

where p is here the number of explanatory variables.The concept is illustrated in
Box 4.1. In eq. 4.28, coefficients b are the coefficients of the multiple regression
(Subsection 10.3.3) of yk on the explanatory variables. A coefficient  = 0.73,
for example, means that the linear relationships of variables yl, y2, …, yj, … and yp
with yk explain 73% of the variation of yk around its mean. The multiple correlation
coefficient (R) is the square root of the coefficient of multiple determination:

(4.29)

To calculate R2 using matrix algebra, a correlation matrix R is written for variables
yk and {yl, y2, …, yj, …, yp}, with yk in the first position. Partitioning this matrix
following eq. 4.27 to compute a multiple correlation coefficient gives:

(4.30)

Rk .12…j…p
2

b1s1k b2s2k … b js jk … bpspk+ + + + +
sk

2----------------------------------------------------------------------------------------------=

Rk .12…j…p
2

Rk .12…j…p Rk .12…j…p
2=

R

   1   rk1 rk2 . . . rkp

r1k 1 r12 . . . r1 p

r2k r21 1 . . . r2 p

. . . . . . .

. . . . . . .

. . . . . . .
rpk rp1 rp2 . . . 1

1 r12

r21 R22

= =
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where  is a vector containing the correlation coefficients rk1, rk2, …, rkp.
Using r12, r21 and R22 as defined in eq. 4.30, R2 is calculated as:

(4.31)

Equation 4.31 is expanded using eq. 2.17:

(4.32)

As an exercise, it is easy to check that

 [adjugate matrix of R22] r21

The coefficient of multiple correlation is calculated from eqs. 4.31 or 4.32:

 =      or      = (4.33)

A third way of calculating R2 is described in eq. 4.38, near the end of Subsection 4.5.2
on partial correlation. 

When two or more variables in matrix R22 are perfectly correlated (i.e. r = 1 or
r = –1), the rank of R22 is smaller than its order (Section 2.7), hence |R22| = 0.
Calculation of R thus requires the elimination of redundant variables from matrix R.

Numerical example. A simple example, with three variables (y1, y2 and y3), illustrates the
above equations. Matrix R is:

r12 r'21=

R2 r12R22
1– r21 r'21R22

1– r21= =

R2 r'21R22
1– r21 r'21

1
R22
-----------

cof r11( ) cof r21( ) . . . cof rp1( )

cof r12( ) cof r22( ) . . . cof rp2( )

. . . . . .

. . . . . .

. . . . . .
cof r1 p( ) cof r2 p( ) . . . cof rpp( )

r21= =

R2 1
R22
----------- R22 R–( ) 1 R

R22
-----------–= =

R22 R– r'21=

Multiple
correlation

Rk .12…j…p r'21R22
1– r21 Rk .12…j…p 1 R

R22
-----------–

R
1 0.4 0.8

0.4 1 0.5
0.8 0.5 1

=
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The coefficient of multiple determination  is first calculated using eq. 4.31:

Equation 4.32 leads to an identical result:

The linear combination of variables y2 and y3 explains 64% of the variance of y1. The multiple
correlation coefficient is R1.23 = 0.8.

2 — Partial correlation

The second approach to correlation, in the multidimensional context, applies to
situations where the relationship between two variables is influenced by their
relationships with other variables. Two coefficients are described in Box 4.1: the
partial and semipartial correlation coefficients.

The partial correlation coefficient is related to partial multiple regression
(Subsection 10.3.5). It measures what the correlation between yj and yk would be if
other variables y1, y2, … and yp, hypothesized to influence both yj and yk, were held
constant at their means. The partial correlation between variables yj and yk, when
controlling for their relationships with y1, y2, … and yp, is written rjk.12… p.

In order to calculate the partial correlation coefficients, the set of variables is
divided into two subsets. The first subset contains the variables between which the
partial correlation is to be computed while controlling for the influence of the variables

R1.23
2

R1.23
2 0.4 0.8

1 0.5
0.5 1

1–
0.4
0.8

=

R1.23
2 0.4 0.8

1.33 0.67–
0.67– 1.33

0.4
0.8

=

R1.23
2 0.64=

R1.23
2 1

1 0.4 0.8
0.4 1 0.5
0.8 0.5 1

1 0.5
0.5 1

-----------------------------------–=

R1.23
2 1 0.27

0.75
----------– 0.64= =
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in the second subset. The second subset thus contains the variables whose influence is
to be taken into account. Matrix R is partitioned as follows (eq. 4.27):

R11 (of order 2 × 2 for partial correlations) and R22 contain the correlations among
variables in the first and the second subsets, respectively, whereas R12 and R21 both
contain the correlations between variables of the two subsets; . 

The number of variables in the second subset determines the order of the partial
correlation coefficient. This order is the number of variables whose effects are
eliminated from the correlation between yj and yk . For example r12.345 (third-order
partial correlation coefficient) means that the correlation between variables y1 and y2 is
calculated while controlling for the linear effects of y3, y4, and y5.

The computation consists in subtracting from R11 (correlation matrix among the
variables in the first subset) a second matrix containing the coefficients of multiple
determination of the variables in the second subset on those in the first subset. These
coefficients measure the fraction of the variance and covariance of the variables in the
first subset that is explained by linear combinations of the variables in the second
subset. They are computed by replacing in eq. 4.31 vector r21 by submatrix R2l:

Subtracting this expression from R11 gives the matrix of conditional correlations:

Matrix of conditional correlations = (4.34)

It can be shown that the maximum likelihood estimate (Rl.2) of the partial correlation
matrix ####l.2 is:

(4.35)

where D(r1.2) is the matrix of diagonal elements of the matrix of conditional
correlation (eq. 4.34).

The calculation is illustrated for the three-dimensional case, in which there is a
single controlled variable y3:

R
R11 R12

R21 R22

=

R12 R'21=

R12R22
1– R21 R'21R22

1– R21=

R11 R12R22
1– R21–

R1.2 D r1.2( ) 1 2– R11 R12R22
1– R21–( ) D r1.2( ) 1 2–=

R
1 r12 r13

r21 1 r23

r31 r32 1

=
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This development will provide the algebraic formula for the partial correlation
coefficients of order 1. Coefficients pertaining to variables of the first subset (y1 and
y2) are in the first two rows and columns. Using eq. 4.35 gives:

The previous matrix equation provides the formula for the first-order partial
correlation coefficient:

(4.36)

The general formula, for coefficients of order p, is:

(4.37)

When there are four variables, it is possible to calculate 12 first-order and 6 second-
order partial correlation coefficients. Computing a second-order coefficient
necessitates the calculation of 3 first-order coefficients. For example:

It is thus possible, as the number of variables increases, to calculate higher-order
coefficients. Computing a coefficient of a given order requires the calculation of three

R12R22
1– R21

r13

r23
1

1–
r31 r32

r13
2 r13r23

r13r23 r23
2

= =

R11 R12R22
1– R21–

1 r12

r21 1
r13

2 r13r23

r13r23 r23
2

–
1 r13

2–( ) r12 r13r23–( )

r12 r13r23–( ) 1 r23
2–( )

= =

R1.2
1 1 r13

2– 0

0 1 1 r23
2–

1 r13
2–( ) r12 r13r23–( )

r12 r13r23–( ) 1 r23
2–( )

1 1 r13
2– 0

0 1 1 r23
2–

=

R1.2

1
r12 r13r23–

1 r13
2– 1 r23

2–
----------------------------------------

r12 r13r23–

1 r13
2– 1 r23

2–
---------------------------------------- 1

1 r12.3

r12.3 1
= =

r12.3
r12 r13r23–

1 r13
2– 1 r23

2–
----------------------------------------=

r jk .1…p
r jk .1… p 1–( ) r jp .1… p 1–( ) rkp .1… p 1–( )–

1 r jp .1… p 1–( )
2– 1 rkp .1… p 1–( )

2–
--------------------------------------------------------------------------------------------=

r12.34
r12.3 r14.3r24.3–

1 r14.3
2– 1 r24.3

2–
----------------------------------------------- r12.43

r12.4 r13.4r23.4–

1 r13.4
2– 1 r23.4

2–
-----------------------------------------------= = =
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coefficients of the previous order, each of these requiring the calculation of coefficients
of the previous order, and so on depending on the number of variables involved. Such
a cascade of calculations is advantageously replaced by the direct matrix approach of
eq. 4.35.

Numerical example. Partial correlations are calculated on the simple example already used
for multiple correlation. Matrix R is:

Two subsets are formed, the first one containing descriptors y1 and y2 (between which the partial
correlation is computed) and the second one y3 (whose influence on r12 is controlled for).
Computations follow eqs. 4.34 and 4.35:

eq. 4.34 Matrix of conditional correlations = 

= 

eq. 4.35

Thus, the partial correlation r12.3 = 0; this was unexpected given that r12 = 0.4. In other words,
fraction [a] displayed in Box 4.1 is 0. The conclusion is that, when their (linear) relationships
with y3 are taken into account, descriptors y1 and y2 are (linearly) independent. Similar
calculations for the other two pairs of descriptors give: r13.2 = 0.76 and r23.1 = 0.33. The
interpretation of these correlation coefficients will be further discussed in Subsection 4.5.4.

There is a relationship between the coefficients of multiple and partial correlation.
The equation linking the two types of coefficients can be easily derived; in the multiple
correlation equation, p is the number of variables other than yk :

when p = 1, the fraction of the variance of yk not explained by y1 is the complement
of the coefficient of determination ( ); this expression is
sometimes called the coefficient of nondetermination;

when p = 2, the fraction of the variance of yk not explained by y2, while controlling
for the linear influence of y1, is ( ), so that the fraction of the
variance of yk not explained by y1 and y2 is . 

R
1 0.4 0.8

0.4 1 0.5
0.8 0.5 1

=

1 0.4
0.4 1

0.8
0.5

1
1–

0.8 0.5–

1 0.4
0.4 1

0.64 0.40
0.40 0.25

– 0.36 0
0 0.75

=

R1.2
1.67 0

0 1.15
0.36 0

0 0.75
1.67 0

0 1.15
1 0
0 1

= =

Nondeter-
mination

1 rk1
2–

1 rk2.1
2–

1 rk1
2–( ) 1 rk2.1

2–( )
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This leads to a general expression for the fraction of the variance of yk that is not
explained by y1, y2, …, yj, … and yp:

The fraction of the variance of yk that is explained by y1, y2, …, yj, … and yp, i.e. the
coefficient of multiple determination (square of the multiple correlation), is thus:

(4.38)

Numerical example. The same example as above is used to illustrate the calculation of the
multiple correlation coefficient, using eq. 4.38:

which is identical to the result obtained in Subsection 4.5.1 using eqs. 4.31 and 4.32.

Like the partial correlation, the semipartial correlation coefficient measures the
correlation between yj and yk while controlling for the linear effect of other variables
y1, y2, … and yp. The difference is in the denominator, which is the total variation in
the response variable, i.e. the quantity [a+b+c+d] in Box 4.1. The formula for the first-
order semipartial correlation coefficient is:

The value of r1(2.3) is 0 for the numerical example because [a] = 0. The semipartial
correlation can also be calculated as the square root of the difference between two
multiple determination coefficients:

Because the latter equation does not specify the sign of the semipartial correlation
coefficient, the previous equation must be used to obtain that sign, which is the same as
the sign of the partial regression coefficient. In the Venn diagram of Box 4.1,  is
the union of the two ellipses or the quantity [a+b+c], whereas  is the right-hand
ellipse or the quantity [b+c], each of these quantities being divided by the total
variation (total sum of squares) in the response variable, [a+b+c+d]. Hence  is
([a+b+c]–[b+c])/[a+b+c+d], or [a]/[a+b+c+d]. The semipartial correlation coefficient
is especially useful in variation partitioning (Subsection 10.3.5) because it expresses
all fractions of variation with respect to the same common denominator, which is the
total sum of squares in the response variable [a+b+c+d].

1 rk1
2–( ) 1 rk2.1

2–( ) … 1 rkj .12…
2–( ) … 1 rkp .12…j… p 1–( )

2–( )

Multiple de-
termination

Rk .12…p
2 1 1 rk1

2–( ) 1 rk2.1
2–( ) … 1 rkp .12…p 1–

2–( )[ ]–=

R1.23
2 1 1 r12

2–( ) 1 r13.2
2–( )[ ]–=

R1.23
2 1 1 0.4( ) 2–[ ] 1 0.76( ) 2–[ ]– 0.64= =

r1(2.3)
r12 r13r23–

1 r23
2–

---------------------------=

r1(2.3) R1.23
2 R1.3

2–=

R1.23
2

R1.3
2

R1 2.3( )
2
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Tables 4.6 and 4.7 summarize the main conclusions relative to the coefficients of
multiple and partial correlation, respectively.

3 — Tests of statistical significance

In correlation analysis, the null hypothesis H0 is usually that the correlation coefficient
is equal to zero (i.e. independence of the descriptors). One can also test the hypothesis
that $ has some particular value other than zero. The general formula for testing
correlation coefficients (for H0: $ = 0) is:

(4.39)

with 01 = m and 02 = n – m – 1, where m is the number of variables correlated to j.
This F-statistic is compared to the critical value . In the case of the simple
correlation coefficient, where m = 1 (there is a single variable correlated to j), eq. 4.39
becomes eq. 4.12. 

Table 4.6 Main properties of the multiple (linear) correlation coefficient. 

Properties Sections

1. The multiple correlation coefficient measures the intensity of the relationship
between a response variable and a linear combination of several explanatory 
variables. 4.5

2. The square of the multiple correlation coefficient, called coefficient of 
multiple determination, measures the fraction of the variance of the response
variable that is explained by a linear combination of the explanatory variables. 4.5

3. The coefficient of multiple determination is the extension, to the multidimensional
case, of the coefficient of determination between two variables. 4.5 and 10.3

4. The multiple correlation coefficient can be computed from the matrix of 
correlations among explanatory variables and the vector of correlations
between the explanatory and response variables. 4.5

5. The multiple correlation coefficient can be computed from the determinant of
 the matrix of correlations among the explanatory variables and that of the matrix

of correlations among all variables involved. 4.5

6. The multiple correlation coefficient can be computed from the product of a 
series of complements of coefficients of partial determination. 4.5

F
r jk

2 01

1 r jk
2–( ) 02

--------------------------------=

F1 01 02,[ ]
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In regression analysis, the null hypothesis is that the coefficient of multiple
determination (R2) is zero. To test the coefficient of multiple determination R2 and the
multiple correlation coefficient R, the F-statistic is:

(4.40)

with 01 = m and 02 = n – m – 1, where m is the number of explanatory variables; m =
p – 1 in the notation of eq. 4.40.

Partial correlation coefficients are tested in the same way as coefficients of simple
correlation (eq. 4.12 for the F-test and eq. 4.13 for the t-test, where 0 = n – 2), except
that one additional degree of freedom is lost for each successive order of the
coefficient, or each covariable in the model. For example, the number of degrees of
freedom for rjk.123 (third-order partial correlation coefficient) is 0 = (n – 2) – 3 = n – 5.

Table 4.7 Main properties of the partial (linear) correlation coefficient. One of these properties is discussed
in a later chapter.

Properties Sections

1. The partial and semipartial correlation coefficients measure the intensity of the
linear relationship between two random variables while taking into account 
their relationships with other variables. 4.5

2. The difference between the partial and semipartial correlation coefficients is in 
the denominator, which excludes the variation of the controlled variables in 
the partial correlation but not in the semipartial correlation. 4.5

3. The partial correlation coefficient can be computed from the submatrix of 
correlations among the variables in partial relationship (first subset), the 
submatrix of variables that influence the first subset, and the submatrix of 
correlations between the two subsets of variables. 4.5

4. The partial and semipartial correlation coefficients can be computed from the 
coefficients of simple correlation between all pairs of variables involved. 4.5

5. The square of the partial correlation coefficient (coefficient of partial 
determination; name seldom used) measures the fraction of the total variance 
of each variable that is mutually explained by the other, the influence 
of some other variables being taken into account. 10.3

F
R1.2…p

2 01

1 R1.2…p
2–( ) 02

------------------------------------------=
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This is the same as counting 0 = n – m – 1, where m is the number of variables in the
model besides j. For partial correlations, eqs. 4.12 and 4.13 become respectively:

 (4.12) and   (4.13)

The number of covariables will be called q in Subsections 10.3.5 and 11.1.7 which
describe, respectively, the tests of significance in partial regression and partial
canonical analysis. Semipartial correlation coefficients are tested using the same F-
statistic as for partial correlations, as shown in Box 4.1. As usual (Sections 1.2 and
4.2), H0 is tested either by comparing the computed statistic (F or t) to a critical value
found in a table for a predetermined significance level 1, or by computing the
probability associated with the computed statistic. 

4 — Causal modelling using correlations

In the ecological literature, correlation coefficients are often interpreted in terms of
causal relationships among descriptors. That should never be done when the only
information available is that provided by the correlation coefficients themselves. 

In statistics, “causality” refers to the hypothesis that changes occurring in one
variable cause changes in another variable; causality resides in the hypotheses only.
Within the framework of a given sampling design (i.e. spatial, temporal, or
experimental) where variation is controlled, data are said to support the causality
hypothesis if a significant portion of the variation in b is explained by changes taking
place in a. If the relationship is assumed to be linear, a significant linear correlation
coefficient is interpreted as supporting the hypothesis of linear causation.

Let us consider the simple case of three linearly related variables y1, y2, and y3. In
the following paragraphs, these variables will be noted a, b, and c for simplicity. A
simple form of causal modelling is obtained by looking at the simple and partial
correlation coefficients between these variables, following the pioneering work of De
Neufville & Stafford (1971). One basic condition must be fulfilled for such a model to
encompass the three variables; it is that at least two of the simple correlations be
significantly different from zero. Under the assumption of linear relationships among
variables, these two coefficients provide statistical support for two “causal arrows”. 

There are four elementary models describing the possible interactions among three
variables (Fig. 4.11), each with possible permutations of a, b and c, for a total of 18
distinguishable models. These four elementary causal models show how difficult it is
to interpret correlation matrices, especially when several ecological descriptors are
interacting in complex ways. Partial correlations may be used to elucidate the
relationships among descriptors. However, the choice of a causal model always
requires hypotheses, or else the input of external ecological information. When it is
possible, from a priori information or ecological hypotheses, to specify the causal

F 0
r jk .1…p

2

1 r jk .1…p
2–

-------------------------= t 0
r jk .1…p

1 r jk .1…p
2–

------------------------------=

Causality

Causal
model
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ordering among descriptors, path analysis (Section 10.4) may be used to assess the
correspondence between the data (i.e. correlations) and causal models. Note again that
a causal model may never be derived from a correlation matrix, whereas a causal
model is required to interpret a correlation matrix in terms of causality.

In Fig. 4.11, model 1 describes a causal chain, with six possible permutations of a,
b and c, and model 2 is the double effect model with three distinguishable
permutations: each of the three variables may be at the origin of the two arrows.
Model 3 is the double cause model, with three distinguishable permutations. Model 4
describes a triangular relationship with six possible permutations; it may be seen as a
combination of models 1 and 2 or 1 and 3. The direct and indirect effects implied in

Model 1

Model 4Model 3

Model 2

a

b

c

Expectations
of the model

Expectations
of the model

Expectations
of the model

Expectations
of the model

b

a c

a c

b

a c

b

rab signif.= 0
rac not signif
rbc signif.= 0
rab.c signif.= 0
rac.b signif.= 0
rbc.a signif.= 0
|rab.c| & |rab|
|rbc.a| & |rbc|

rab signif.= 0*
rac signif.= 0
rbc signif.= 0*
rab.c signif.= 0
rac.b signif.= 0
rbc.a signif.= 0

Figure 4.11 Predictions of the four possible models of causal relationships involving three variables, in
terms of the expected values for the simple and partial linear correlation coefficients.
‘rab signif.= 0’ means that, under the model, the correlation must be significantly different from
zero. ‘rab not signif.’ means that the correlation is not necessarily significantly different from
zero at the pre-selected significance level. * Model 4 holds even if one, but only one, of these
two simple correlation coefficients is not significant. Adapted from Legendre (1993).

rab signif.= 0
rac signif.= 0
rbc signif.= 0
rab.c signif.= 0
rac.b not signif
rbc.a signif.= 0
|rab.c| ) |rab|
|rbc.a| ) |rbc|
rab × rbc > rac
|rab| & |rac|
|rbc| & |rac|

rab signif.= 0
rac signif.= 0
rbc signif.= 0
rab.c signif.= 0
rac.b not signif
rbc.a signif.= 0.
|rab.c| ) |rab|
|rbc.a| ) |rbc|
rab × rbc > rac
|rab| & |rac|
|rbc| & |rac|
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model 4 may be further analysed using path analysis (Section 10.4), which requires
precise hypotheses about arrow directions. 

In Fig. 4.11, the predictions of the four models were obtained by numerical
simulations. Examining model 1 in some detail illustrates how the “expectations of the
model” can also be derived analytically.

• Significance of the simple correlations. Obviously, rab and rbc must be significantly
different from zero for the model to hold. The model can accommodate rac being
significant or not, although the value of rac should always be different from zero since
rac = rabrbc .

• Significance of the partial correlations. The condition rac = rabrbc implies that
rac – rabrbc = 0 or, in other words (eq. 4.36), rac.b = 0. For the model to hold, partial
correlations rab.c and rbc.a must be significantly different from 0. Indeed, rab.c being
equal to zero would mean that rab = racrbc, which would imply that c is in the centre of
the sequence; this is not the case in the model as specified, where b is in the centre. The
same reasoning explains the relationship rbc.a = 0.

• Comparison of simple correlation values. Since correlation coefficients are smaller
than or equal to 1 in absolute value, the relationship rac = rabrbc implies that
|rab| & |rac| and |rbc| & |rac| .

• Comparison of partial correlation values. Consider the partial correlation formula for
rab.c (eq. 4.36). Is it true that |rab.c| ) |rab| ? The relationship rac = rabrbc allows one to
replace rac by rabrbc in that equation. After a few lines of algebra, the following
inequality

leads to the relationship r2
bc (1 – r2

ab) & 0, which is true in all cases because rbc = 0
and |rab| ) 1. This also shows that rab.c = rab only when rab = 1. The same method can
be used to demonstrate that |rbc.a| ) |rbc| .

The model predictions in Fig. 4.11 show that it is not possible to distinguish
between models 1 and 2 from the correlation coefficients alone: these two models
differ only in their hypotheses (arrow directions). Their key common characteristic is
the non-significance of the partial correlation rac.b. Model 3 is distinct in the fact that
rac is not significant and that the partial correlations are, in absolute values, larger than
or equal to the corresponding simple correlations, whereas they are smaller in
models 1 and 2. For model 4, some of the predictions depend on the signs of the effects
depicted by the arrows; for example, the three partial correlations may be larger or
smaller, in absolute values, than the simple correlations. Model 4 may apply even if
one, but only one, of the two simple correlations, rab or rbc, is not significant. When n

rab.c
rab 1 rbc

2–[ ]

1 rab
2 rbc

2–[ ] 1 rbc
2–[ ]

--------------------------------------------------------- rab)=
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is small, the tests may not have enough power to evidence the significance of the
relationships and, as a consequence, evidence may be lacking to support a model.

Numerical example. The simple example already used for multiple and partial correlations
illustrates here the problem inherent to all correlation matrices, i.e. that it is never possible to
interpret correlations per se in terms of causal relationships. In the following matrix, the upper
triangle contains the coefficients of simple correlation whereas the lower triangle contains the
partial correlation coefficients:

It may have seemed that descriptors y1 and y2 were correlated (r12 = 0.4), but the first-order
partial correlation coefficient r12.3 = 0 shows that this is not the case. The predictions of
models 1 and 2 in Fig. 4.11, with a = y1, b = y3 and c = y2, are in agreement with these results. In
the absence of external information or ecological hypotheses, there is no way of determining
which pattern of causal relationships, model 1 or model 2, actually fits this correlation matrix.

Ecological application  4.5

Bach et al. (1992) analysed a 28-month long time series (weekly sampling, n = 122) of eel
catches (Anguilla anguilla) in the Thau marine lagoon in southern France. Fixed gears called
‘capêchades’, composed of three funnel nets (6-mm mesh) and an enclosure, were used near the
shore in less than 1.5 m of water. In the deeper parts of the lagoon, other types of gears were
used: heavier assemblages of funnel nets with larger mesh sizes, called ‘brandines’, ‘triangles’
and ‘gangui’, as well as longlines. Various hypotheses were stated by the authors and tested
using partial correlation analysis and path analysis. These concerned the influence of
environmental variables, including air temperature as a proxy for seasons, on the behaviour of
fish and fishermen, and their effects on landings. Coefficients of linear correlation reported in the
paper are used here to study the relationships among air temperature, fishing effort, and
landings, for the catches by ‘capêchade’ (Fig 4.12). The analysis in the paper was more
complex; it also considered the effects of wind and lunar phases. Linearity of the relationships
was checked. The correlation coefficients are consistent with a type-4 model stating that both
effort and temperature affect the landings (temperature increases eel metabolism and thus their
activity and catchability) and that the effort, represented by the number of active ‘capêchade’
fishermen, is affected by seasonality (lower effort at high temperature, ‘capêchades’ being not
much used from August to October). Interesting is the non-significant simple linear correlation
between temperature and catches. The partial correlations indicate that this simple correlation
corresponds to two effects of temperature on catches that are both significant but of opposite
signs: a positive partial correlation of temperature on catches and a negative one of temperature
on effort. In the paper of Bach et al., partial correlation analysis was used as a first screen to
eliminate variables that clearly did not influence catches. Path analysis (Section 10.4) was then
used to study the direct and indirect effects of the potentially explanatory variables on catches.

Partial correlations do not provide the same information as path analysis
(Section 10.4). On the one hand, partial correlations, like partial regression coefficients
(Subsection 10.3.3), indicate whether a given variable has some unique (linear)

1 0.4 0.8
0 1 0.5

0.76 0.33 1
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relationship with some other variable, after the linear effects of all the other variables
in the model have been taken into account. In path analysis on the other hand, one is
mostly interested in partitioning the relationship between predictor (explanatory,
independent) and criterion (response, dependent) variables into direct and indirect
components.

The above discussion was based on linear correlation coefficients. Advantages of
the linear model include ease of computation and simplicity of interpretation.
However, environmental processes are not necessarily linear. This is why linearity
must be checked, not only assumed, before embarking in this type of computation.
When the variables are not linearly related, two choices are open: either proceed with
non-linear statistics (nonparametric simple and partial correlation coefficients, in
particular, are available and may be used in this type of calculation), or linearize the
relationships that seem promising. Monotonic relationships, identified in scatter
diagrams, can often be linearized by applying the transformations of Section 1.5 to one
or both variables. There is no ‘cheating’ involved in doing that; either a monotonic
relationship exists, and linearizing transformations allow one to apply linear statistics
to the data; or there is no monotonic relationship, and no amount of transformation will
ever create one.

Simple causal modelling, as presented in this subsection, may be used in two
different types of circumstances. A first, common application is exploratory analysis,
which is performed when ‘weak’ ecological hypotheses only can be formulated. What
this means is the following: in many studies, a large number of causal hypotheses may

Figure 4.12 Left: simple and partial correlations among temperature, fishing effort, and eel catches using the
‘capêchade’ fishing gear, from Bach et al. (1992). Right: causal model supported by the data.
The signs of the partial correlation coefficients are shown along the arrows. *: 0.05 & p > 0.01;
***: p ) 0.001; N.S.: non-significant correlation at significance level 1 = 0.05.

                                  Eel                 Fishing               Air
                               catches               effort           temperature

Eel                             ----            r = 0.730***     r = 0.096
catches                                                                     (N.S.)

Fishing                   partial r  =            ----           r = –0.180*
effort                       0.763***

Air                          partial r  =        partial r  =            ----
temperature             0.338***        –0.368***
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temperature

Fishing
effort

+

+

–



Tests of normality and multinormality 187

be formulated a priori, some being contradictory, because the processes at work in
ecosystems are too numerous for ecologists to decide which ones are dominant under
given circumstances. So, insofar as each of the models derived from ecological theory
can be translated into hypothesized correlation coefficients, partial correlation analysis
may be used to clear away those hypotheses that are not consistent with the data and to
keep only those that look promising for further analysis. Considering three variables,
for instance, one may look at the set of simple and partial correlation coefficients and
decide which of the four models of Fig. 4.11 are not consistent with the data.
Alternatively, when the ecosystem is better understood, one may wish to test a single
set of hypotheses (i.e. a single model), to the exclusion of all others. With three
variables, this would mean testing only one of the models of Fig. 4.11, to the exclusion
of all others, and deciding whether the data are consistent, or not, with that model.

Several correlation coefficients are tested in each panel of Fig. 4.11. Three
simultaneous tests are performed for the simple correlation coefficients and three for
the partial correlation coefficients. In order to determine whether such results could
have been obtained by chance alone, some kind of global test of significance, or
correction, must be performed (eq. 4.14; Box 1.3).

The simple form of modelling described here may be extended beyond the frame of
linear modelling, as long as formulas exist for computing partial relationships.
Examples are the partial nonparametric correlation coefficient (partial Kendall ?,
eq. 5.9) and the partial Mantel statistic (Subsection 10.5.2).

4.6 Tests of normality and multinormality

Testing the normality of empirical distributions is an important concern for ecologists
who want to use linear models for analysing their data. Tests of normality are carried
out in two types of circumstances. On the one hand, many tests of statistical
significance, including those described in the present chapter, require the empirical
data to be drawn from normally distributed populations. On the other hand, the linear
methods of multivariate data analysis discussed in Chapters 9, 10, and 11 do
summarize data in more informative ways if their underlying distributions are
multinormal — or at least are not markedly skewed, as discussed below. Estimating
the skewness and testing the normality of empirical variables is thus an important
initial step in the analysis of a data set. Variables that are not normally distributed may
be subjected to normalizing transformations (Section 1.5). The historical development
of the tests of normality has been reviewed by D’Agostino (1982) and by Dutilleul &
Legendre (1992).

The problem may first be approached by plotting frequency histograms of
empirical variables. Looking at these plots immediately identifies distributions that
have several modes, for instance, or are obviously too skewed or too ‘flat’ or ‘peaked’
to have possibly been drawn from normally distributed populations.
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Next, for unimodal distributions, one may examine the skewness and kurtosis
parameters. The first centred moment of a distribution is m1 = 0 and the second is the
variance, m2 =  (unbiased estimator: eq. 4.3). The unbiased estimator of the third
centred moment is:

 

Skewness  is a measure of asymmetry. It is estimated as the third moment of the
distribution divided by the cube of the standard deviation:

(4.41)

Skewness is 0 for a symmetric distribution like the normal distribution. Positive
skewness corresponds to a frequency distribution with a longer tail to the right than to
the left, whereas a distribution with a longer tail to the left shows negative skewness.
The unbiased estimator of the fourth moment of a distribution is:

Kurtosis ( ) is a measure of flatness or peakedness of a distribution. It is estimated as
the fourth moment divided by the standard deviation to the power 4:

(4.42)

The kurtosis of a normal distribution is = 0. Distributions flatter than the normal
distribution (‘platycurtic’) have negative values for whereas distributions that have
more observations around the mean than the normal distribution have positive values
for , indicating that they are ‘leptokurtic’ which means more ‘peaked’. The value of

 for a uniform (flat, rectangular) distribution is –1.2.

Although tests of significance have been developed for skewness and kurtosis, they
are not used any longer because more powerful tests of normality are now available.
For the same reason, testing the goodness-of-fit of an empirical frequency distribution
to a normal distribution with same mean and variance (as in Fig 4.13a) using a chi-
square test is no longer in fashion because it is not very sensitive to departures from
normality (Stephens, 1974; D’Agostino, 1982), even though it may still be presented
in some texts of biological statistics as an acceptable procedure. The main problem is
that it does not take into account the ordering of classes of the two frequency
distributions that are being compared. This explains why the main statistical packages
do not use it, but propose instead one or the other (or both) procedure described below.
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Figure 4.13 Numerical example with n = 100. (a) Frequency distribution and fitted theoretical normal
curve, (b) relative cumulative frequencies and Kolmogorov-Smirnov test of goodness-of-fit,
showing that the maximum deviation D = 0.032 is too small in this case to reject the
hypothesis of normality.

Critical values of the
Kolmogorov-Smirnov test

20% 5%

Expected frequencies
Observed frequencies

y - 2s y - 1s y y + 1s y + 2s

100%

75%

50%

25%

0%

b

a

D+

D–



190 Multidimensional quantitative data

One of the widely used tests of normality is the Kolmogorov-Smirnov test of
goodness-of-fit. In Fig. 4.13b, the same data as in Fig. 4.13a are plotted as a
cumulative frequency distribution. The cumulative theoretical normal distribution is
also plotted on the same graph; it can easily be obtained from a published table, or by
requesting in a statistical package the normal probability values corresponding to the
relative cumulative frequencies (function pnorm() in R). One looks for the largest
deviation D between the cumulative empirical relative frequency distribution and the
cumulative theoretical normal distribution. If D is larger than or equal to the critical
value in the table, for a given number of observations n and significance level 1, the
hypothesis of normality is rejected. 

The Kolmogorov-Smirnov (K-S) test of goodness-of-fit is especially interesting for
small sample sizes because it does not require to lump the data into classes. When they
are divided into classes, the empirical data are discontinuous and their cumulative
distribution is a step-function, whereas the theoretical normal distribution to which
they are compared is a continuous function. D is then formally defined as the
maximum of D– and D+, where D– is the maximum difference computed just before a
data value and D+ is the maximum difference computed at the data value (i.e. at the
top of each step of the cumulative empirical step-function). A detailed numerical
example of the procedure is presented by Sokal & Rohlf (1995).

Standard Kolmogorov-Smirnov tables for the comparison of two samples, where
the distribution functions are completely specified (i.e. the mean and standard
deviation are stated by hypothesis), are not appropriate for testing the normality of
empirical data since the mean and standard deviation of the reference normal
distribution must then be estimated from the observed data; critical values given in
these tables are systematically too large, and thus lead too often to not rejecting the
null hypothesis of normality. Corrected critical values for testing whether a set of
observations is drawn from a normal population, that are valid for stated probabilities
of type I error, have been computed by Lilliefors (1967) and, with additional
corrections based on larger Monte Carlo simulations, by Stephens (1974). The same
paper by Stephens evaluates other statistics to perform tests of normality, such as
Cramér-von Mises W2 and Anderson-Darling A2 which, like D, are based on the
empirical cumulative distribution function (only the statistics differ); it proposes
corrections where needed for the situation where the mean and variance of the
reference normal distribution are unknown and are thus estimated from the data.

The second widely used test of normality is due to Shapiro & Wilk (1965). It is
based on an older graphical technique that will be described first. This technique,
called normal probability plotting, was developed as an informal way of assessing
deviations from normality. The objective is to plot the data in such a way that, if they
come from a normally distributed population, they will fall along a straight line.
Deviations from a straight line may be used as indication of the type of non-normality.
In these plots, the values along the abscissa are either the observed or the standardized
data (in which case the values are transformed to standard deviation units), while the
ordinate is the percent cumulative frequency value of each point plotted on a normal

K-S test

Normal
probability
plot
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probability scale. Sokal & Rohlf (1995) give computation details. Figure 4.14 shows
the same data as in Fig 4.13a, which are divided into classes, plotted on normal
probability paper. The same type of plot could also be produced for the raw data, not
grouped into classes. For each point, the upper limit of a class is used as the abscissa,
while the ordinate is the percent cumulative frequency (or the cumulative percentage)
of that class. Perfectly normal data would fall on a straight line passing through the
point ( , 50%). A straight line is fitted trough the points, using reference points based
on the mean and variance of the empirical data (see the legend of Fig. 4.14); deviations
from that line indicate non-normality. Alternatively, a straight line may be fitted
through the points, either by eye or by regression; the mean of the distribution may be
estimated as the abscissa value that has an ordinate value of 50% on that line.
D’Agostino (1982) gives examples illustrating how deviations from linearity in such
plots indicate the degree and type of non-normality of the data.

Shapiro & Wilk (1965) proposed to quantify the information in normal probability
plots using a statistic called ‘analysis of variance W’, which they defined as the F-ratio
of the estimated variance obtained from the weighted least-squares of the slope of the
straight line (numerator) to the variance of the sample data (denominator). The statistic
is used to assess the goodness of the linear fit:

(4.43)

where the xi are the ordered observations (x1 ) x2 ) … ) xn) and coefficients wi are
optimal weights for a population assumed to be normally distributed. Statistic W may
be viewed as the square of the correlation coefficient (i.e. the coefficient of
determination) between the abscissa and ordinate of the normal probability plot
described above. Large values of W indicate normality (points lying along a straight
line give r2 close to 1), whereas small values indicate lack of normality. Shapiro &
Wilk did provide critical values of W for sample sizes up to 50. D’Agostino (1971,
1972) and Royston (1982a, b, c) proposed modifications to the W formula (better
estimates of the weights wi), which extend its application to much larger sample sizes.
Extensive simulation studies have shown that W is a sensitive omnibus test statistic,
meaning that it has good power properties over a wide range of non-normal
distribution types and sample sizes.

The Shapiro-Wilk test is available in the shapiro.test() function of the R STATS
package. Five other functions are available in the NORTEST package to carry out tests
of normality, including function lillie.test() for the Lilliefors (1967) K-S test using
Stephens’ (1974) corrections. Which of these tests is best? Reviewing the studies on
the power of tests of normality published during the previous 25 years, D’Agostino
(1982) concluded that the best omnibus tests are the Shapiro-Wilk W-test and a
modification by Stephens (1974) of the Anderson-Darling A2-test mentioned above
(ad.test() function in NORTEST). In a Monte Carlo study involving autocorrelated data
(Section 1.1), however, Dutilleul & Legendre (1992) showed (1) that, for moderate
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Figure 4.14 The cumulative percentages of data in Fig. 4.13a are plotted here on normal probability paper
(probit transformation) as a function of the upper limits of classes. Cumulative percentiles are
indicated on the right-hand side of the graph. The last data value cannot be plotted on this graph
because its cumulated percentage value is 100. The diagonal line represents the theoretical
cumulative normal distribution with same mean and variance as the data. This line is positioned
on the graph using reference values of the cumulative normal distribution, for example 0.13% at

 and 99.87% at , and it passes through the point ( , 50%). This graph contains
exactly the same information as Fig. 4.13b; the difference lies in the scale of the ordinate.
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sample sizes, both the D-test and the W-test were too liberal (in an asymmetric way)
for high positive ($ > 0.4) and very high negative ($ < –0.8) values of autocorrelation
along time series and for high positive values of spatial autocorrelation ($ > 0.2), and
(2) that, overall, the Kolmogorov-Smirnov D-test was more robust against
autocorrelation than the Shapiro-Wilk W-test, whatever the sign of the first-order
autocorrelation.

As stated at the beginning of this section, ecologists must absolutely check the
normality of data only when they are planning to use parametric statistical tests that
assume normality of the distributions; permutation tests (Section 1.2) can be used with
non-normal data. Most methods presented in this book, including clustering and
ordination techniques, do not require statistical testing and hence may be applied to
non-normal data. With many of these methods, however, ecological structures emerge
more clearly when the data do not present strong asymmetry; this is the case, for
example, with principal component analysis. Since normal data are not skewed
(coefficient 13 = 0), testing the normality of data is also testing for asymmetry;
normalizing transformations, applied to data with unimodal distributions, reduce or
eliminate asymmetry. So, with multidimensional data, it is recommended to check at
least the skewness of the variables one by one.

Some tests of significance require that the data be multinormal (Section 4.3).
Normality of the p individual variables can easily be tested as described above. In a
multivariate situation, however, showing that each variable does not significantly
depart from normality does not demonstrate that the multivariate data set is
multinormal although, in many instances, this is the best that researchers can do. 

Dagnelie (1975) proposed an elegant way of testing the multivariate normality of a
set of multivariate observations. The method is based on the Mahalanobis generalized
distance (D5; Section 7.4, eq. 7.38) described in Chapter 7. Generalized distances are
computed, in the multidimensional space, between each object and the
multidimensional mean of all objects. The distance between object xi and the mean
point  is computed as:

(4.44)

where  is the vector corresponding to object xi in the matrix of centred data
and S is the multivariate dispersion matrix (Section 4.1). For standardized variables

, eq. 4.44 becomes:

(4.45)

where R is the correlation matrix. Dagnelie’s approach is that, for multinormal data,
the generalized distances should be normally distributed. He suggested to do a visual
examination of the cumulative frequency distribution as in Fig. 4.14. Actually, the
generalized distances can be subjected to a Shapiro-Wilk test of normality, whose
conclusions are applied to the multinormality of the original multivariate data. 
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The Dagnelie test of multivariate normality based on the Shapiro-Wilk test of
normality of Mahalanobis generalized distances is invalid for univariate data (type I
error rate too high). Numerical simulations by D. Borcard (personal communication)
showed that the test had correct levels of type I error for values of n between 3p and
7.5p, where p is the number of variables in the data table (simulations with 1 ) p ) 50).
Outside that range of n values, the results were too liberal, meaning that the test
rejected too often the null hypothesis of normality. For p = 2, the simulations showed
the test to be valid for 6 ) n ) 11. If H0 is not rejected in a situation where the test is too
liberal, the result is trustworthy.

4.7 Software

Functions for all operations described in this chapter are available in the R language. 

1. Covariance matrices are computed using functions var() and cov() of the STATS
package; correlation matrices are computed by cor(). The F-test comparing two
variances is carried out by var.test() and correlation coefficients are tested using
cor.test() in STATS. 

2. Eigenanalysis is computed by eigen() in STATS. 

3. Partial correlations are computed by function partial.cor() of the RCMDR package. 

4. Tests of normality are computed using shapiro.test() in STATS, lillie.test() in
NORTEST, and ad.test() in NORTEST. Function qqnorm() of STATS produces normal
quantile-quantile plots like Fig. 4.14.

5. Function pnorm() in STATS computes p-values for the normal distribution, pf() for
the F-distribution, pt() for the Student t-distribution, pchisq() for the chi-square
distribution, and so on for other statistical distributions. 

Commercial statistical packages, as well as S-PLUS@ and  , also provide
functions for these calculations.
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5.0 Nonparametric statistics

 

Statistical testing often refers to the concepts of 

 

parameter

 

 and 

 

reference population

 

,
as explained in Section 1.2. Section 4.3 showed that the mean, standard deviation and
correlation are 

 

parameters

 

 of the multinormal distribution, so that this statistical
distribution and others play a key role in testing 

 

quantitative

 

 data. When the data are

 

semiquantitative

 

, however, it does not make sense to compute statistics such as the
mean or the standard deviation. In that case, hypothesis testing must be conducted with

 

nonparametric statistics

 

. This expression cover all statistical methods developed for
analysing either 

 

semiquantitative

 

 (rank statistics; Section 5.2) or 

 

qualitative

 

(Chapter 6) data.

Nonparametric tests are 

 

distribution-free

 

, i.e. they do not assume that the samples
were drawn from a population with a specified distribution (e.g. multinormal).
Because of that, nonparametric statistics are useful not only when descriptors are
semiquantitative, but also when quantitative descriptors do not conform to the
multinormal distribution and researchers do not wish, or succeed, to normalize them.
Many of the nonparametric tests for semiquantitative data are called 

 

ranking tests

 

because they are based on ranked observations instead of quantitative values. Another
advantage of nonparametric statistics is computational simplicity. Last but not least,
nonparametric tests may be used with small samples, a situation that frequently occurs
with ecological data; permutation tests based upon parametric statistics (Section 1.2)
share this last advantage of nonparametric tests. For semiquantitative data, the
nonparametric statistics corresponding to the 

 

mean

 

 and 

 

variance

 

 (Section 4.1) are the

 

median

 

 and 

 

range

 

, respectively.
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Ranking tests should be used in the following situations:

• One or several descriptors among those to be compared are semiquantitative.

• The purpose of the study is not to evidence linear, but monotonic relationships
between quantitative descriptors. In a bivariate monotonic relationship, one of the two
descriptors keeps increasing or decreasing as the other increases (Fig. 5.1); the
increase (or decrease) is not necessarily linear nor smoothly curvilinear.

Ranking tests or permutation tests (Section 1.2) can be used in the following cases:

• One or several quantitative descriptors are not normally distributed (tests of
normality and multinormality are described in Section 4.6) and researchers do not wish
to normalize them or do not succeed in doing so. Normalizing transformations are
described in Subsection 1.5.6.

• The number of observations is small.

The present chapter first summarizes the methods available in the nonparametric
approach, with reference to the corresponding parametric methods (Section 5.1). Tests
for differences among groups using quantitative, semiquantitative or qualitative
descriptors are compared in Section 5.2. Rank correlation coefficients are presented in
Section 5.3. Section 5.4 is devoted to the Kendall coefficient of concordance, which is
a generalization of the Spearman correlation coefficient to several descriptors. Most
statistical computer packages, including R, offer nonparametric testing procedures.

Monotonic

Figure 5.1 Three types of monotonic relationships between two descriptors: (a) linear (increasing and
decreasing); (b) logistic (increasing monotonic); (c) atypical (decreasing monotonic).
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5.1 Quantitative, semiquantitative, and qualitative multivariates

As discussed in Section 1.4, ecological descriptors may be of different levels of
precision (Table 1.2). Ecologists generally observe several descriptors on the same
objects, so that multidimensional ecological variates may be either quantitative,
semiquantitative, or qualitative, or mixed, i.e. consisting of descriptors with different
precision levels. For many years, quantitative ecology has been based almost
exclusively on quantitative descriptors and on parametric tests, even though there exist
a large number of methods that can efficiently analyse semiquantitative or qualitative
multivariates as well as multivariates of mixed precision levels. These methods have
become increasingly popular in ecology, not only because non-quantitative descriptors
often provide unique information, but also because parametric statistics cannot be
tested for significance when quantitative data do not conform to a number of
conditions, including normality. This section briefly reviews numerical methods for
analysing multivariates with various levels of precision.

Table 5.1 summarizes and compares methods described elsewhere in the present
book. In the same row are found corresponding methods, listed under four column
headings. The applicability of methods increases from left to right. Methods in the first
(left-hand) column are restricted to quantitative multivariates, which must also, in
most cases, be linearly related or/and multinormally distributed. Methods in the second
column have been developed for semiquantitative descriptors exhibiting monotonic
relationships. These methods may also be used (a) with quantitative descriptors, in
particular when they do not follow the conditions underlying methods in the first
column, and (b) for the combined analysis of quantitative and semiquantitative
descriptors. Methods in the third column were developed for the numerical analysis of
qualitative descriptors. They may also be used for analysing quantitative or
semiquantitative descriptors exhibiting nonmonotonic relationships, after dividing
these continuous descriptors into classes. Methods for qualitative descriptors thus
represent a first type of techniques for multivariates of mixed precision, since they can
be used for analysing together quantitative, semiquantitative, and qualitative
descriptors, after the former have been divided into classes. An alternative is to recode
multiclass qualitative descriptors into dummy variables (Subsection 1.5.7) and use
parametric methods (first column of Table 5.1) on the resulting assemblage of
quantitative and binary descriptors; this approach is often used in regression and
canonical analyses (Chapters 10 and 11).

The methods listed in the right-hand column can be used for analysing data tables
containing mixtures of quantitative, semiquantitative and qualitative descriptors. Of
special interest are the distance-based methods (dbRDA, PCoA, nMDS, clustering),
which can be applied after computing an association coefficient for mixed-level data.
These methods are very general, since they may replace equivalent methods in the
other three columns; the cost is sometimes greater mathematical and/or computational
complexity.
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Table 5.1 Methods for analysing multidimensional ecological data sets, classified here according to the
levels of precision of descriptors (columns). For methods concerning data series, see Table 12.2.
The Subject index at the end of the book shows where each method is described.

Quantitative Semiquantitative Qualitative Descriptors of
descriptors descriptors descriptors mixed precision

Difference between two samples:
Hotelling T2 --- Log-linear models ---
RDA, tbRDA, dbRDA dbRDA tbRDA, dbRDA dbRDA
CCA CCA

Difference among several samples:
MANOVA --- Log-linear models ---
RDA, tbRDA, dbRDA db-RDA tbRDA, db-RDA db-RDA
CCA CCA

Scatter diagram Rank diagram Multiway contingency Quantitative-rank
table diagram

Association coefficients R:
Covariance --- Information, X2 ---
Pearson r Spearman r Contingency ---

Kendall !
Partial r Partial !
Multiple R Kendall W

Species diversity:
Diversity measures Diversity measures Number of species ---

Association coeff. Q Association coeff. Q Association coeff. Q Association coeff. Q
Clustering Clustering Clustering Clustering
Ordination:

PCA, tbPCA, CA tbPCA, CA
PCoA PCoA PCoA PCoA
nMDS nMDS nMDS nMDS

Regression Regression Correspondence Regression
simple linear (I and II) nonparametric logistic
multiple linear dummy
polynomial
partial linear
nonlinear, logistic
smoothing (splines, LOWESS)
multivariate; see also canonical a.

Path analysis --- Log-linear models
Logit modelsCanonical analysis:

RDA, tbRDA, dbRDA dbRDA tbRDA, dbRDA db-RDA
CCA CCA
CCorA, CoIA  tbCCorA, tbCoIA
LDA --- Discrete discriminant a.

Log-linear models
Logistic regression
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There are many types of methods for multidimensional analysis (rows of
Table 5.1). One interesting aspect of the table is that there is always at least one, and
often several methods for descriptors with low precision levels. Thus, ecologists
should not hesitate to collect information in semiquantitative or qualitative form since
there exist numerical methods for processing descriptors with all levels of precision.
However, it is always important to consider, at the stage of the sampling design
(Fig. 1.3), how the data will be analysed, so as to avoid problems at the later stage of
analysis. These problems may include the lack of human resources to efficiently use
advanced numerical methods. Researchers could use the period devoted to sampling to
improve their knowledge of methods and become familiar with computer programs
and functions. 

Coming back to Table 5.1, it is possible to compare groups of objects, described by
quantitative multivariate data, using multidimensional analysis of variance (MANOVA).
When there are only two groups, another approach is Hotelling’s T2 (Section 7.4). In
the case of qualitative multivariate data, the comparison may be done by adjusting log-
linear models (Section 6.3) to a multiway contingency table; the relationship between
contingency table analysis and analysis of variance is explained in Section 6.0.
Multivariate analysis of variance of species presence-absence or abundance tables may
be carried out using either transformation-based redundancy analysis (tbRDA) or
distance-based redundancy analysis (db-RDA) (Subsections 11.1.5 and 11.1.10), or
else canonical correspondence analysis (CCA, Section 11.2).

The simplest approach to investigate the relationships among descriptors
considered two at a time (Fig. 5.2) is to plot the data as a scatter diagram, whose
semiquantitative and qualitative equivalent are the rank-rank diagram and the
contingency table, respectively. Quantitative-rank diagrams may be used to compare a
quantitative to a semiquantitative descriptor (Legendre & Legendre, 1982). 

Two families of methods follow from these diagrams, for either measuring the
dependence among descriptors, or forecasting one or several descriptors using other
ones. The R-mode coefficients of dependence, described in Chapter 4 for quantitative
descriptors, in Chapter 5 for semiquantitative descriptors, and in Chapter 6 for
qualitative descriptors, measure the dependence between descriptors. These
coefficients are summarized in Subsection 7.5.1. It is interesting to note that measures
of information and X2 (chi-square) calculated on contingency tables (Chapter 6) are
the equivalent, for qualitative descriptors, of the covariance computed between
quantitative descriptors. Methods in the second family belong to regression analysis
(Section 10.3), which has nonparametric forms (e.g. the monotone regression method
used in Section 9.4), and whose qualitative equivalent is the analysis of
correspondence in contingency tables (Section 6.4).

Various measures of species diversity are reviewed in Section 6.5. They are usually
computed on quantitative species counts, but Dévaux & Millerioux (1977) have shown
that this may be done just as well on semiquantitative counts. When there are no
counts, the number of species present may be used to assess diversity; this is indeed
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the first diversity index to have been described in the ecological literature (Patrick,
1949; Subsection 6.5.1). 

There are Q-mode association coefficients (Sections 7.3 and 7.4) adapted to
descriptors of all levels of precision (see Tables 7.4 and 7.5). Some of the similarity
coefficients (Chapter 7: S15, S16) are yet another way of combining quantitative and
qualitative descriptors in multivariate data analysis. Concerning clustering algorithms
(Chapter 8), most of them are indifferent to the precision of descriptors, since
clustering is in general conducted on an association matrix, most often of type Q.

Among the ordination methods in reduced space, principal component analysis
(PCA, Section 9.1) is the main method to use with quantitative descriptors, although it
can also be applied to semiquantitative data (Subsection 9.1.7). Species abundance or
presence-absence data, as well as other types of frequency data, can be analysed by
correspondence analysis (CA, Section 9.2) or by transformation-based PCA (tbPCA).
Principal coordinate analysis (PCoA, Section 9.3) and nonmetric multidimensional
scaling (nMDS, Section 9.4) are indifferent to the precision of descriptors since they
are computed on an association matrix (generally Q-type). 

Figure 5.2 Comparison of two descriptors. (a) Scatter diagram (quantitative descriptors on both axes).
(b) Quantitative-rank diagram (quantitative descriptor on the abscissa, ranked classes of a
semiquantitative descriptor on the ordinate). (c) Rank-rank diagram (ranked classes of
semiquantitative descriptors on both axes). (d) Two-way contingency table (nonordered classes
of qualitative descriptors on both axes). From Legendre & Legendre (1982). 
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For the interpretation of ecological structures, regression, which was briefly
discussed a few paragraphs above, is the chief technique when the dependent variable
is a single quantitative variable. Logistic regression is used when the response is
presence-absence data. Various forms of canonical analysis are available to interpret
the structure of quantitative data using one or several tables of explanatory variables:
redundancy analysis (RDA, Section 11.1), canonical correspondence analysis (CCA,
Section 11.2), linear discriminant analysis (LDA, Section 11.3), canonical correlation
analysis (CCorA, Section 11.4), and co-inertia analysis (CoIA, Section 11.5).
Canonical correspondence analysis, as well as tbRDA, allow the interpretation of the
structure of species abundance or presence-absence data using explanatory variables.
For non-quantitative data, distance-based RDA (dbRDA) can be used after computing
a distance matrix using an appropriate distance function. There are also methods
equivalent to discriminant and path analyses for qualitative descriptors. 

Table 5.1 shows that ecological data can efficiently be analysed irrespective of their
levels of precision. Researchers should use ecological criteria, such as allowable effort
in the field and biological meaningfulness of the decimal places to be recorded, to
decide about the level of precision of their data. The strictly numerical aspects should
play a secondary role in that decision. 

5.2 One-dimensional nonparametric statistics

The present book is devoted to numerical methods for analysing sets of
multidimensional ecological data. Methods for one-dimensional variables are not
discussed in depth since they are the subject of many excellent textbooks.
Nonparametric tests for one-dimensional descriptors are explained, among others, in
the books of Siegel (1956), Hájek (1969), Siegel & Castellan (1988), and Sokal &
Rohlf (1995). Because ecologists are often not fully conversant with these tests, the
correspondence between approaches for quantitative, semiquantitative, and qualitative
descriptors is not always clearly understood. This is why the one-dimensional methods
to carry out tests of differences among groups of objects are summarized in Table 5.2.

Methods in the table are divided in two main families: those for independent
samples, which are the most generally applicable, and those for related samples.
Related samples are often called matched or paired samples (Box 1.1). With such
samples of observations, the analysis may focus either on the differences between the
matched observation units, or on the differences among the classes of another factor
while controlling for the differences between the matched observations. Matching may
be achieved, for example, by repeating observations at the same sampling sites at
different times, or by making observations at points representing corresponding
conditions, e.g. in several lakes with sampling units taken from the same depths in the
water columns. Sampling units observed before and after a treatment also form
matched pairs. When related samples are analysed using the methods for independent

Independent
samples
Related
samples
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samples, the matching information is not taken into account and this results in a less
powerful statistical test. Within each of the two families, methods in Table 5.2 are
classified according to the number of groups (k) that are compared.

Univariate comparison of two independent samples (k = 2), when the data are
quantitative, is generally done by using the Student t-statistic to test the hypothesis
(H0) of equality of the group means (i.e. that the two groups of objects were drawn
from the same statistical population, or perhaps from populations with equal means,
assuming equal standard deviations). When the data are semiquantitative, computing
means and standard deviations would not make sense, so that the approach must be
nonparametric. The Mann-Whitney U-statistic first combines and ranks all objects in a
single series and then tests the hypothesis (H0) that the ranked observations come from
the same statistical population or from populations that have the same median. The
median test, which is not as powerful as the previous one (except in cases when there
are ties), is used for testing the hypothesis (H0) that the two groups of objects have
similar medians. Other nonparametric tests consider not only the positions of the two

Table 5.2 Methods to carry out tests of differences among groups of objects (one-dimensional data) are
classified here according to the levels of precision of the descriptors (columns). Most of these
methods are not discussed elsewhere in the present book. Table modified from Siegel (1956) and
Legendre & Legendre (1982).

Number of Quantitative Semiquantitative Qualitative
groups (k) descriptors* descriptors descriptors

Independent samples:
k = 2 Student t (unpaired) Mann-Whitney U-test X2 (2 × no. states)

Median test Fisher’s exact
Kolmogorov-Smirnov test probability test
etc. Logistic regression

k "2 (one-way) One-way ANOVA Kruskal-Wallis’ H X2 (k × no. states)
and F-test Extension of the median test Discriminant a.

Related samples:
k = 2 Student t (paired) Sign test McNemar test 

Wilcoxon signed-ranks test (binary descriptors)
k "2 (two-way) Two-way ANOVA Friedman’s two-way Cochran Q

and F-tests ANOVA by ranks (binary descriptors)
k "2 (multiway) Multiway ANOVA --- ---

and F-tests

* When quantitative data do not meet the distributional assumptions underlying parametric tests,
they must be analysed using ranking tests (for semiquantitative descriptors). Another way would
be to test the parametric statistics by permutation (Section 1.2).
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groups along the abscissa but also the differences in dispersion and shape
(e.g. skewness) of their distributions. The best-known is the Kolmogorov-Smirnov
test; this is not the same test as the one described in Section 4.6 for comparing an
empirical to a theoretical distribution. The Kolmogorov-Smirnov method discussed
here allows one to test the hypothesis (H0) that the largest difference between the
cumulative distributions of the two groups is so small that they may come from the
same or identical populations. Finally, when the data are qualitative, the significance
of differences between two groups of objects may be tested using a X2-statistic
calculated on a two-way contingency table. Section 6.2 describes contingency table
analysis for the comparison of two descriptors. In the present case, the contingency
table has two rows (i.e. two groups of objects) and as many columns as there are states
in the quantitative descriptor. The hypothesis tested (H0) is that the frequency
distributions in the two rows are similar; this is the same as stating the more usual
hypothesis of independence between rows and columns of the contingency table
(Section 6.0). When the descriptor is binary (e.g. presence or absence) and the number
of observations in the two groups is small, it is possible to test the hypothesis (H0) that
the two groups exhibit similar proportions for the two states, using Fisher’s powerful
exact probability test. Logistic regression (Subsection 10.3.7) may also be used in this
context; in the regression, the two groups are represented by a binary response variable
while the qualitative explanatory descriptors are recoded as a series of dummy
variables, coded as shown in Subsection 1.5.7.

The standard parametric technique for testing that the means of several independent
samples (k " 2) are equal, when the data are quantitative, is one-way analysis of
variance (ANOVA). It is a k-group generalization of the Student t-test. In one-way
ANOVA, the overall variance is partitioned between two orthogonal (i.e. linearly
independent; see Box 1.1) components, the first one reflecting differences among the k
groups and the second one accounting for the variability among objects within the
groups. The hypothesis (H0) of equal means is rejected (F-test) when the among-group
variability is significantly larger than the within-group component. For
semiquantitative data, the Kruskal-Wallis’ H-test (also called Kruskal-Wallis’ one-way
ANOVA by ranks) first ranks all objects from the k groups into a single series, and then
tests (H0) that the sums of ranks calculated for the various groups are so similar that
the objects are likely to have been drawn from the same or identical populations. When
applied to quantitative data that are meeting all the assumptions of parametric ANOVA,
Kruskal-Wallis’ H is almost as powerful as the F-test. Another possibility is to extend
to k " 2 groups the median test, described in the previous paragraph for k = 2. The
latter is less powerful than Kruskal-Wallis’ H because it uses less of the information in
the data. As in the above case where k = 2, qualitative data can be analysed using a
contingency table, but this time with k " 2 rows. 

To model multistate qualitative response data, multinomial logistic regression is
available in R (see Section 5.5) as well as in procedure CATMOD of SAS. Discriminant
analysis could be used in the same spirit. See the discussion on discriminant analysis
versus logistic regression in Section 11.6 (point 2).

Multinomial
logistic
regression
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Comparing two related samples (k = 2) is usually done, for quantitative data, by
testing (H0) that the mean of the differences between matched pairs of observations is
null (Student t-test; the differences are assumed to be normally and independently
distributed). When the data are semiquantitative, one can use the sign test, which first
codes pairs of observations (yi, yk) as either (+) when yi > yk or (–) when yi < yk, and
then tests the hypothesis (H0) that the numbers of pairs with each sign are equal; an
equivalent formulation is that the proportion of pairs with either sign is equal to 0.5.
This test uses information about the direction of the differences between pairs. When
the relative magnitude of the differences between pairs is also known, it becomes
possible to use the more powerful Wilcoxon matched-pairs signed-ranks test.
Differences between pairs are first ranked according to their magnitude (absolute
values), after which the sign of the difference is affixed to each rank. The null
hypothesis of the test (H0) is that the sum of the ranks having a (+) sign is equal to that
of the ranks with a (–) sign. The McNemar test provides a means of comparing paired
samples of binary data. For example, using binary observations (e.g. presence or
absence) made at the same sites, before and after some event, one could test (H0) that
no overall change has occurred. 

When there are several related samples (k " 2) and the data are quantitative, the
parametric approach for testing (H0) that the means of the k groups are equal is two-
way analysis of variance, with or without replication. One classification criterion of the
two-way ANOVA accounts for the variability among the k groups (as in one-way
ANOVA above, for k " 2 independent samples) and the other for that among the related
samples. Consider, as example, 16 sites (i.e. k groups) that have been sampled at 5
depths in the water column (or at 5 different times, or using 5 different methods, etc.).
The nonparametric equivalent, for semiquantitative data, is Friedman’s two-way
analysis of variance by ranks without replication, which is based on a two-way table
like Table 5.7. In the two-way table, the k groups (e.g. 16 sites) are in rows and the
corresponding samples (e.g. 5 depths) are in columns. Values within each column are
ranked separately, and the Friedman X2-statistic (eq. 5.15) is used to test (H0) that the
rank totals of the various rows (e.g. 16 sites) are equal. For binary data, the Cochran Q
test is an extension to k " 2 groups of the McNemar test, described above for k = 2.

Finally, when there are several samples (k " 2), related across several
classification criteria (e.g. 16 sites all sampled at 8 different times, using each time 5
different methods), multiway ANOVA is the standard parametric method for testing the
null hypothesis (H0) that the means of the k groups are equal (F-test). In that case,
there are no obvious equivalent approaches for semiquantitative or qualitative data.

How to analyse multivariate data representing related samples is described in
Subsection 11.1.10, point 3.
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5.3 Rank correlations

Textbooks of nonparametric statistics propose a few methods only for the analysis of
bi- or multivariate semiquantitative data. Section 5.1 has shown that there actually
exist many numerical approaches for analysing multidimensional data, corresponding
to all levels of precision (Table 5.1). These methods, which include most of those
described in this book, belong to nonparametric statistics in a general sense, because
they do not focus on the parameters of the data distributions. Within the specific realm
of ranking tests, however, the statistical techniques available for multidimensional
semiquantitative data are two rank correlation coefficients (Spearman r and Kendall
!), which both quantify the relationship between two descriptors, and the coefficient of
concordance (Kendall W), which assesses the relationship among several descriptors.
The two correlation coefficients are described in the present section and coefficient W
in Section 5.4. 

1 — Spearman r

The Spearman r coefficient, also called # (rho), is based on the idea that two
descriptors y1 and y2 carry the same information if the object with the largest rank on
y1 also has the highest rank on y2, and so on for all other objects. Two descriptors are
said to be in perfect correlation when the ranks of all objects are the same on both
descriptors, as in the numerical example shown in Table 5.3. If, however, object x1
which has rank 5 on y1 had rank 2 on y2, it would be natural to use the difference
between these ranks, d1 = (y11 – y12) = (5 – 2) = 3, as a measure of the difference
between the rankings given to this object by the two descriptors. For the whole set of
objects, differences di are squared before summing them, to prevent differences with
opposite signs from cancelling each other out.

Spearman
corr. coeff.

Table 5.3 Numerical example. Perfect rank correlation between descriptors y1 and y2.

Objects Ranks of objects on the two descriptors
(observation units) y1 y2

x1 5 5
x2 1 1
x3 4 4
x4 2 2
x5 3 3
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The expression for the Spearman r correlation coefficient may be derived from the general
formula of correlation coefficients (Kendall, 1948):

(5.1)

For quantitative data, this equation is used to compute the Pearson linear correlation coefficient
(eq. 4.7).

For ranked data, the average ranks  and  are equal, so that  =
(yij – yik). One can write the difference between the ranks of object i on the two descriptors as
di =  = , which leads to:

Isolating the right-hand sum gives:

Using this result, eq. 5.1 is rewritten as:

(5.2)

The sum of ranks for each descriptor, which is the sum of the first n integers, is equal to

 and the sum of their squares is . Since

the sum of deviations from the mean rank is

one can write:

r jk

yij y j–( ) yik yk–( )
i 1=

n

$

yij y j–( )
2

i 1=

n

$ yik yk–( )
2

i 1=

n

$

------------------------------------------------------------------------------=

y j yk yij y j–( ) yik yk–( )–

yij yik–( ) yij y j–( ) yik yk–( )–

di
2

i 1=

n

$ yij y j–( )
2

i 1=

n

$ yik yk–( )
2

i 1=

n

$+= 2 yij y j–( ) yik yk–( )
i 1=

n

$–

yij y j–( ) yik yk–( )
i 1=

n

$ 1
2
--- yij y j–( )

2

i 1=

n

$ yik yk–( )
2

i 1=

n

$ di
2

i 1=

n

$–+=

r jk

1
2
--- yij y j–( )

2

i 1=

n

$ yik yk–( )
2

i 1=

n

$ di
2

i 1=

n

$–+

yij y j–( )
2

i 1=

n

$ yik yk–( )
2

i 1=

n

$

----------------------------------------------------------------------------------------------------------------=

yij
i 1=

n

$ n n 1+( ) 2= yij
2

i 1=

n

$ n n 1+( ) 2n 1+( ) 6=

yij y j–( )
2

i 1=

n

$ yij
2

i 1=

n

$ 1
n
--- yij

i 1=

n

$% &
' (
) * 2

–=

yij y j–( )
2

i 1=

n

$ n n 1+( ) 2n 1+( )
6

--------------------------------------------- 1
n
--- n2 n 1+( )

2

4
--------------------------- n3 n–

12
--------------=–=



Rank correlations 207

It follows that, when using ranks, the numerator of eq. 5.2 becomes:

while its denominator reduces to:

The final formula is obtained by replacing the above two expressions in eq. 5.2.
This development shows that, when using ranks, eq. 5.1 simplifies to the following
formula for Spearman r:

(5.3)

Alternatively, the Spearman rank correlation coefficient can be obtained in two steps:
(1) replace all observations by ranks (columnwise) and (2) compute the Pearson
correlation coefficient (eq. 4.7, formula identical to eq. 5.1) between the ranked
variables. The result is the same as obtained from eq. 5.3.

The Spearman r coefficient varies between +1 and –1, just like the Pearson r.
Descriptors that are perfectly matched, in terms of ranks, exhibit values r = +1 (direct
relationship) or r = –1 (inverse relationship), whereas r = 0 indicates the absence of a
monotonic relationship between the two descriptors. (Relationships that are not
monotonic, e.g. Fig. 4.4d, can be quantified using polynomial or nonlinear regression,
or else contingency coefficients; see Section 6.2 and Subsection 10.3.4.)

Numerical example. A small example (ranked data, Table 5.4) illustrates the equivalence
between eq. 5.1 computed on ranks and eq. 5.3. Using eq. 5.1 gives:

The same result is obtained from eq. 5.3:

Two or more objects may have the same rank on a given descriptor. This is often
the case with descriptors used in ecology, which may have a small number of states or
ordered classes. Such observations are said to be tied. Each of them is assigned the
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average of the ranks that would have been assigned had no ties occurred. If the
proportion of tied observations is large, correction factors must be introduced into the
sums of squared deviations of eq. 5.2, which become:

and

where trj and trk are the numbers of observations in descriptors yj and yk that are tied at
ranks r, these values being summed over the q sets of tied observations in descriptor j
and the s sets in descriptor k.

Significance of the Spearman coefficient is usually tested against the null
hypothesis H0: r = 0. When n " 10, the test statistic is the same as for Pearson r
(eq. 4.13):

(5.4)

H0 is tested by comparing statistic t to the value found in a table of critical values of t
with + = n – 2 degrees of freedom. H0 is rejected when the probability corresponding
to t is smaller than or equal to a predetermined level of significance (,, for a two-tailed
test). The rules for one-tailed and two-tailed tests are the same as for the Pearson r
(Section 4.2). When n < 10, which is not often the case in ecology, one must refer to a

Table 5.4 Numerical example. Ranks of four objects on two descriptors, y1 and y2.

Objects Ranks of objects on the two descriptors
(observation units) y1 y2

x1 3 3
x2 4 1
x3 2 4
x4 1 2
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special table of critical values of the Spearman rank correlation coefficient, found in
textbooks of nonparametric statistics.

2 — Kendall !!!!

Kendall ! (tau) is another rank correlation coefficient, which can be used for the
same types of descriptors as Spearman r. One major advantage of ! over Spearman r is
that the former can be generalized to a partial correlation coefficient (below), which is
not the case for the latter. While Spearman r was based on the differences between the
ranks of objects on the two descriptors being compared, Kendall ! refers to a
somewhat different concept, which is best explained using an example.

Numerical example. Kendall ! is calculated on the example of Table 5.4, already used for
computing Spearman r. In Table 5.5, the order of the objects was rearranged so as to obtain
increasing ranks on one of the two descriptors (here y1). The table is used to determine the
degree of dependence between the two descriptors. Since the ranks are now in increasing order
on y1, it is sufficient to determine how many pairs of ranks are also in increasing order on y2 to
obtain a measure of the association between the two descriptors. Considering the object in first
rank (i.e. x4), at the top of the right-hand column, the first pair of ranks (2 and 4, belonging to
objects x4 and x3) is in increasing order; a score of +1 is assigned to it. The same goes for the
second pair (2 and 3, belonging to objects x4 and x1). The third pair of ranks (2 and 1, belonging
to objects x4 and x2) is in decreasing order, however, so that it earns a negative score –1. The
same operation is repeated for every object in successive ranks along y1, i.e. for the object in
second rank (x3): first pair of ranks (4 and 3, belonging to objects x3 and x1), etc. The sum S of
scores assigned to each of the n(n – 1)/2 different pairs of ranks is then computed. 

Kendall's rank correlation coefficient is defined as follows:

(5.5)

Kendall
corr. coeff.

Table 5.5 Numerical example. The order of the four objects (rows) of Table 5.4 has been rearranged in
such a way that the ranks on y1 are now in increasing order

Objects Ranks of objects on the two descriptors
(observation units) y1 y2

x4 1 2
x3 2 4
x1 3 3
x2 4 1

!a
S

n n 1–( ) 2
----------------------------- 2S

n n 1–( )
----------------------= =
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where S stands for “sum of scores”. Kendall !a is thus the sum of scores for pairs in
increasing and decreasing order divided by the total number of pairs (n(n – 1)/2). For
the example of Tables 5.4 and 5.5, !a is:

Clearly, in the case of perfect agreement between two descriptors, all pairs receive a
positive score, so that S = n(n – 1)/2 and thus !a = +1. When there is complete
disagreement, S = –n(n – 1)/2 and thus !a = –1. When the descriptors are totally
unrelated, the positive and negative scores cancel out, so that S as well as !a are 0 or
near 0.

Equation 5.5 cannot be used for computing ! when there are tied observations. This
is often the case with ecological semiquantitative descriptors, which may have a small
number of states. The Kendall rank correlation is then computed on a contingency
table crossing two semiquantitative descriptors.

Table 5.6 is a contingency (or frequency) table crossing two ordered descriptors. For
example, descriptor a could represent the relative abundances of arthropods in soil enumerated
on a semiquantitative scale (e.g. absent, present, abundant, and very abundant), while descriptor
b could be the concentration of organic matter in the soil, divided into 4 classes. For simplicity,
descriptors are called a and b here, as in Chapter 6. The states of a vary from 1 to r (number of
rows) while the states of b go from 1 to c (number of columns).

To compute ! with tied observations, S is calculated as the difference between the
numbers of positive (P) and negative (Q) scores, S = P – Q. P is the sum of all

!a
2 1 1 1 1– 1– 1––+( )

4 3×
---------------------------------------------------------- 2 2–( )

12
---------------- 0.33–= = =

Table 5.6 Numerical example. Contingency table giving the distribution of 80 objects among the states of
two semiquantitative descriptors, a and b. Numbers in the table are frequencies (f).

b1 b2 b3 b4 tj

a1 20 10 10 0 40
a2 0 10 0 10 20
a3 0 0 10 0 10
a4 0 0 0 10 10

tk 20 20 20 20 80
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frequencies f in the contingency table, each one multiplied by the sum of all
frequencies located lower and on its right:

Likewise, Q is the sum of all frequencies f in the table, each one multiplied by the sum
of all frequencies lower and on its left:

Numerical example. For the data in Table 5.6:

P = (20 × 40) + (10 × 30) + (10 × 20) + (10 × 20) + (10 × 10) = 1600
Q = (10 × 10) + (10 × 10) = 200
S = P – Q = 1600 – 200 = 1400

Using this value S, there are two approaches for calculating !, depending on the
numbers of states in the two descriptors. When a and b have the same numbers of
states (r = c), !b is computed using a formula that includes the total number of pairs
n(n – 1)/2, as in the case of !a (eq. 5.5). The difference with eq. 5.5 is that !b includes
corrections for the number of pairs L1 tied in a and the number of pairs L2 tied in b,
where

 in which tj is the marginal total for row j

 in which tk is the marginal total for column k.

The formula for !b is:

(5.6)

When there are no tied observations, L1 = L2 = 0 and eq. 5.6 is identical to eq. 5.5.

Numerical example. For the data in Table 5.6:
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Without correction for ties, the calculated value (eq. 5.5) would have been 

!a = (2 × 1400) / (80 × 79) = 0.44

The second approach for calculating ! with tied observations is used when a and b
do not have the same number of states (r - c). The formula for !c uses the minimum
number of states in either a or b, min(r, c):

(5.7)

The significance of Kendall ! is tested against the null hypothesis H0: r = 0
(i.e. independence of the two descriptors). Kendall (1948) has shown that the
distribution of ! approximates the normal distribution with mean = 0 and standard
deviation . Hence a z-test statistic can be obtained by
transforming ! into a standard normal variate z using the formula:

(5.8)

With this statistic, H0 can be tested using a table of z (or t.). Since z tables are one-
tailed, the z-statistic of eq. 5.8 may be used directly for one-tailed tests by comparing it
to the value z, read in the table. For two-tailed tests, the statistic is compared to the
value z,/2 from the z-table. When n is large, the second term of eq. 5.8 (correction for
small n) becomes small: for n = 30, its value is 0.0178, and it is 0.0084 for n = 50.

Spearman r provides a better approximation of Pearson r when the data are almost
quantitative and there are but a few tied observations, whereas Kendall ! does better
when there are many ties. Computing both Spearman r and Kendall !a on the same
numerical example, above, produced different numerical values (i.e. r = –0.40 versus
!a = –0.33). This is because the two coefficients have different underlying scales, so
that their numerical values cannot be directly compared. However, given their different
sampling distributions, they both reject H0 at the same level of significance. If applied
to quantitative data that are meeting all the requirements of Pearson r, both Spearman r
and Kendall ! have power nearly as high (about 91%; Hotelling & Pabst, 1936) as their
parametric equivalent. In all other cases, they are more powerful than Pearson r. This
refers to the notion of power of statistical tests: a test is more powerful than another if
it is more likely to detect small deviations from H0 (i.e. smaller type II error), for
constant type I error.
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The chief advantage of Kendall ! over Spearman r, as already mentioned, is that it
can be generalized to a partial correlation coefficient, which cannot be done with
Spearman (Siegel, 1956: 214). The formula for a partial ! is:

(5.9)

This formula is algebraically the same as that of first-order partial Pearson r (eq. 4.36)
although, according to Kendall (1948: 103), this would be merely coincidental because
the two formulae are derived using entirely different approaches. The three !
coefficients on the right-hand side of eq. 5.9 may themselves be partial !’s, thus
allowing one to control for more than one descriptor (i.e. high order partial correlation
coefficients). Siegel & Castellan (1988) give tables for testing the significance of the
Kendall partial correlation coefficient.

Rank correlation coefficients should not be computed in the Q mode, i.e. for
comparing objects instead of descriptors; see Box 7.1, Chapter 7.

5.4 Coefficient of concordance

The rank correlation coefficients described in the previous section measure the
correlation between two descriptors for n objects. Kendall’s coefficient of concordance
W (Kendall & Babington Smith, 1939) measures the agreement among several (p)
quantitative or semiquantitative variables over a set of n objects. In community
ecology, the p variables may be species whose abundances are used to assess habitat
quality at n study sites. In taxonomy, they may be p characters measured over n
different species, biological populations, or individuals. In the social sciences, the
variables are often p “judges” assessing n different subjects or situations.

There is a close relationship between Friedman’s two-way analysis of variance
without replication by ranks (Section 5.2) and Kendall’s coefficient of concordance.
Indeed, they both address hypotheses concerning the same data table and use the same
statistic for testing. They only differ in the formulation of their respective null
hypothesis. Consider Table 5.7, which contains illustrative data. In Friedman’s test, the
null hypothesis is that there is no real difference among the n = 6 objects because they
pertain to the same statistical population. Under H0, they should have received random
ranks along the p = 3 variables, so that their sums of ranks should be approximately
equal. Kendall’s test focuses on the relationships among the p = 3 variables. If the null
hypothesis of Friedman’s test is true, this means that the variables have produced
rankings of the objects that are independent of one another. This is the null hypothesis
of Kendall’s test of W.

!12.3
!12 !13!23–

1 !13
2– 1 !23

2–
-----------------------------------------=

Kendall
coeff. of
concordance

Friedman’s
two-way
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1 — Computing Kendall W

The Kendall W coefficient is an estimate of the variance of the row sums of ranks Ri
divided by the maximum possible value the variance can take; this occurs when all
variables are in total agreement. Hence 0 / W / 1, the value 1 representing perfect
concordance. There are two ways of computing the Kendall W coefficient (i.e. either
form of eq. 5.11); they lead to the same result. The computation proceeds in two steps.

Firstly, S or S' is computed from the row-marginal sums of ranks Ri received by the
objects:

or (5.10)

where S is a sum of squared deviations statistic over the row sums of ranks Ri and  is
the mean of the Ri values. SSR designates the Sum of Squared Ri values.

Secondly, the Kendall W coefficient is obtained using either of the following
formulas:

or (5.11)

where n is the number of objects and p the number of variables. To derive these
formulas, one has to know that the sum of all ranks in the data table is pn(n + 1)/2 and

Table 5.7 Numerical example. Ranks of six objects on three descriptors, y1, y2, and y3.

Objects Ranks of objects on the three descriptors Row sums
(observation units) y1 y2 y3 Ri

x1 1 1 6 8
x2 6 5 3 14
x3 3 6 2 11
x4 2 4 5 11
x5 5 2 4 11
x6 4 3 1 8
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that the sum of squares of all ranks is p2n(n + 1)(2n + 1)/6. T is a correction factor for
tied ranks (Siegel, 1956; Siegel & Castellan, 1988; Zar, 1999): 

(5.12)

in which tk is the number of tied ranks in each (k) of g groups of ties. The sum is
computed over all groups of ties found in all p variables of the data table. T = 0 when
there are no tied values.

There is a close relationship between the Spearman rS correlation coefficient and
the Kendall W coefficient: W can be directly calculated from the mean ( ) of the
pairwise Spearman correlations rS using the following relationship (Siegel and
Castellan, 1988; Zar, 1999):

(5.13)

where p is the number of variables among which the pairwise Spearman correlations
are computed. Equation 5.13 is strictly true for untied observations only; for tied
observations, ties are handled in a bivariate way in each Spearman rS coefficient
whereas in Kendall W the correction for ties is computed over all variables (eq. 5.12).
For two variables only, W is simply a linear transformation of rS: W = (rS + 1)/2. In
that case, a permutation test of W for two variables is the exact equivalent of a
permutation test of rS for the same variables.

The relationship described by eq. 5.13 clearly shows that W will consider p
variables to be concordant only if their Spearman correlations are positive. Two
variables that give perfectly opposite ranks to a set of objects have a Spearman
correlation of –1, hence W = 0 for these two variables (eq. 5.13); this is the lower
bound of the coefficient of concordance. For two variables only, rS = 0 gives W = 0.5;
for a group of p uncorrelated variables, W = 1/p. So coefficient W applies well to
rankings given by a panel of “judges” called in to assess overall performance in sports,
quality of wines, or food in restaurants, to rankings obtained from criteria used in
quality tests of appliances or services by consumer organizations, or to the study of
species associations in multi-species communities. It does not apply to variables used
in multivariate analysis where negative as well as positive relationships are
informative. Zar (1999), for example, used wing length, tail length and bill length of
birds to illustrate the use of the coefficient of concordance. These data are appropriate
for W because they are all related to the same common property, the size of the birds.

Numerical example. The calculation of Kendall’s coefficient of concordance is illustrated
using the numerical example of Table 5.7. The data could be semiquantitative rank scores, or
quantitative descriptors coded into ranks. It is important to note that the n = 6 objects are ranked
on each descriptor (column) separately. The last column gives, for each object i, the sum Ri of its
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ranks on the p = 3 descriptors. The sum of squared deviations from the mean, 
(eq. 5.10 left), is equal to 25.5 for this example. The W-statistic is calculated with eq. 5.11 (left):

There are no tied ranks in this example. The F and X2 (chi-square) statistics are computed as
follows (eqs. 5.14 and 5.15, next subsection):

The p-value associated with the F-statistic, found using the F-distribution, is 0.825. The
permutational p-value after 999 random permutations within the variables is 0.835. The
hypothesis (H0) that the row sums Ri of Table 5.7 are equal cannot be rejected. The conclusion is
that the 3 descriptors differ in the way they rank the 6 objects.

2 — Testing the significance of W

The recommended method for testing the significance of W is to compute the
following F-statistic:

(5.14)

which is asymptotically distributed like F with +1 = n – 1 – (2/p) and +2 = +1(p – 1)
degrees of freedom (Kendall & Babington Smith, 1939). Numerical simulations
showed that this F-statistic had correct levels of type I error for any value of n and p
(Legendre, 2010). It is unfortunate that this statistic has been overlooked by authors of
recent textbooks on nonparametric statistics who recommend testing the significance
of W with Friedman’s (1937) X2-statistic, which is obtained from W as follows:

X2 = p(n – 1)W (5.15)

This X2 (chi-square) statistic is asymptotically distributed like 02 with + = (n – 1)
degrees of freedom. Kendall & Babington Smith (1939) considered this test of W to be
satisfactory for moderately large values of p and n only, not for small p. This was
confirmed by simulations reported by Legendre (2005), who recommended not to use
the theoretical 02-distribution to test X2 when p < 20. The X2-statistic can, however, be
tested by permutation.

Permutation tests can be used with all combinations of values of p and n
(Legendre, 2005). For the global test of significance, the rank values in all variables
are permuted at random, independently over each variable, because the null hypothesis
is the independence of the rankings produced by the p variables. The alternative
hypothesis (H1) is that at least one of the variables is concordant with one or more of
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the other variables; so when H0 is rejected, one cannot conclude that all variables are
concordant with one another, but only that at least one variable is concordant with one
or more of the others. Actually, for permutation testing, the four statistics SSR
(eq. 5.10), W (eq. 5.11), F (eq. 5.14), and X2 (eq. 5.15) are monotonic to one another
since n, p and T are constant within a given permutation test; they are thus equivalent
statistics for testing since they produce the same permutational probabilities. The test
is one-tailed because it only recognizes positive associations between the ranked
variables.

Many of the problems subjected to Kendall’s concordance analysis involve fewer
than 20 variables: the parametric 02-test should be avoided in these cases. The F-test
(eq. 5.14) and the permutation test can be safely used with all values of p and n.

3 — Contributions of individual variables to Kendall’s 
concordance

The contribution of individual variables (e.g. the p species) to the W-statistic can be
assessed by a permutation test proposed by Legendre (2005). The null hypothesis is
the monotonic independence of the variable subjected to the test with respect to all
other variables in the group under study. The alternative hypothesis is that this variable
is positively correlated with one or several other variables in the set under study (one-
tailed test). The statistic W can be used directly in a posteriori permutation tests;
alternatively, one can use two other statistics described in Legendre (2005) that are
equivalent to W for a posteriori tests. Contrary to the global test, only the variable
under test (e.g. one of the p species) is permuted here. If that variable has values that
are monotonically independent of the other variables, permuting its values at random
should have little influence on the W-statistic. If on the contrary it is concordant with
one or several other variables, permuting its values at random should break the
concordance and induce a noticeable decrease of W.

Concordance analysis is applied to the identification of species associations in
Subsection 8.9.2, where an ecological application (mite data) is presented. Another
example (fish associations) is found in Section 4.10.2 of Borcard et al. (2011). 

Concordance analysis is also useful in phylogenetic analysis: prior to phylogenetic
reconstruction, the degree of congruence among distance matrices (CADM)
corresponding to different types of data or different genes can be tested using a test of
significance proposed by Legendre & Lapointe (2004). The distance matrices under
comparison are strung out like the descriptors in Table 5.7. The coefficient of
concordance (W, eq. 5.11) is computed, then tested using the same permutation
procedure as in the Mantel test (Subsection 10.5.1). The CADM test is actually a
generalization of the Mantel test of correspondence between two distance matrices to
any number of distance matrices. It can be used to compare distance matrices
computed from evolutionary data (genetic congruence), the topologies of phylogenetic
trees derived from these data (topological congruence), or the full phylogenetic trees
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including topologies and branch lengths (phylogenetic congruence) (Campbell et al.,
2011). Applications of this method are found in Campbell et al. (2009, 2011).

5.5 Software

All major commercial statistical packages allow the calculation of rank correlation
coefficients, as well a choice of the methods listed in Table 5.2. In the R language,

1. Methods listed in Table 5.2 are available in the following functions of the STATS
package: t.test() (t-test for independent and related samples), aov() (different forms of
ANOVA), wilcox.test() (Mann-Whitney and Wilcoxon tests), kruskal.test() (Kruskal-
Wallis test), friedman.test() (Friedman test), chisq.test() (chi-square test), fisher.test()
(Fisher exact probability test), and mcnemar.test() (McNemar test). chisq.test() and
fisher.test() offer permutation tests among their options. Rank correlation coefficients
are available as options in function cor() of the STATS package, which can also be used
to compute correlation matrices among several descriptors. 

2. Logistic regression can be computed using the glm() function of the STATS package.
Multinomial logistic regression is computed by function mlogit() of the MLOGIT
package.

3. The global coefficient of concordance and a posteriori tests are available in
functions kendall.global() and kendall.post() of VEGAN. Congruence among distance
matrices is available in functions CADM.global() and CADM.post() of APE. 
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6.0 General principles

 

Ecologists often use variables that are neither quantitative nor ordered (Table 1.2).
Variables of this type may be of physical or biological nature. Examples of qualitative
physical descriptors are the colour, locality, geological substrate, or nature of surface
deposits. Qualitative biological descriptors include the captured or observed species,
where the different states of the nonordered descriptor are the different possible
species. Likewise, the presence or absence of a species cannot, in most cases, be
analysed as a quantitative variable; it must be treated as a semiquantitative or
qualitative descriptor. A third group of qualitative descriptors includes the results of
classifications — for example, the biological associations to which the zooplankton of
various lakes belong, or the chemical groups describing soil cores. Such
classifications, obtained or not by clustering (Chapter 8), define qualitative descriptors
and, as such, they are amenable to numerical interpretation (see Chapter 10). 

The present chapter discusses the analysis of 

 

qualitative

 

 descriptors; methods
appropriate for bivariate and multivariate analysis are presented. Because information
theory is an intuitively appealing way of introducing these methods of analysis,
Section 6.1 shows how to measure the amount of information in a qualitative
descriptor. This paradigm is then used in the following sections.

The comparison of qualitative descriptors is based on 

 

contingency tables

 

. In order
to compare two qualitative descriptors, the objects are first allocated to the cells of a
two-way contingency table whose rows and columns respectively correspond to the
two descriptors. In such a table, the number of rows is equal to the number of states of
the first descriptor and the number of columns to that of the second descriptor. Any cell
in the table, at the intersection of a row and a column, corresponds to one state of each
descriptor. The number of objects with these two states is recorded in the cell, hence
the values in contingency tables are 

 

frequencies

 

. The analysis of 

 

two-way contingency
tables 

 

is described in Section 6.2. When there are more than two descriptors, 

 

multiway

Contingency
table
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(or 

 

multidimensional

 

)

 

 contingency tables 

 

are constructed as extensions of two-way
tables. Their analysis is discussed in Section 6.3. Finally, Section 6.4 analyses the

 

correspondence

 

 between descriptors in a contingency table.

Contingency table analysis is the qualitative equivalent of both 

 

correlation analysis

 

and 

 

analysis of variance

 

; in the particular case of a two-way contingency table, the
analysis is the equivalent of a one-way A

 

NOVA

 

. It involves the computation of 

 

X

 

2

 

 (chi-
square) statistics or related measures, instead of correlation or 

 

F

 

-statistics. Two types
of null hypotheses (H

 

0

 

) may be tested. The first one is the independence of the two
descriptors, which is the usual null hypothesis in correlation analysis (H

 

0

 

: the
correlation coefficient 

 

! 

 

= 0 in the statistical population). The second type of
hypothesis is similar to that of the analysis of variance. In a two-way contingency
table, one of the descriptors (called “first descriptor” in the next sentence) corresponds
to the classification criterion of the analysis of variance, and the other descriptor
(called “second descriptor”) corresponds to the dependent variable. The analysis
compares, among the states of the first descriptor, the distribution of frequencies
among the states of the second descriptors. The null hypothesis says that the frequency
distributions are the same, i.e. that the observations form a homogeneous group. For
example, if the groups (classification criterion) form the columns whereas the
dependent variable is in the rows, H

 

0

 

 states that the frequency distributions of the row
frequencies are the same in all columns. These two types of hypotheses require the
calculation of the same expected values and the same test statistics. The examples in
the present chapter will be formulated as correlation hypotheses. In multiway tables,
the hypotheses tested are often quite complex because they take into account
interactions among the descriptors (Section 6.3).

Considering species data, the names of the various species observed at a sampling
site are the states of a qualitative multi-state descriptor. Section 6.5 will discuss 

 

species
diversity

 

 as a measure of dispersion of this qualitative descriptor.

The mathematics used throughout this chapter are quite simple and require no prior
knowledge other than the intuitive notion of probability. Readers interested in
applications only may skip Section 6.1 and come back to it when necessary. To
simplify the notation, the following conventions are followed throughout the chapter.
When a single descriptor is considered, this descriptor is called 

 

a

 

 and its states have
subscripts 

 

i

 

 going from 1 to 

 

q

 

, as in Fig. 1.1. In two-way contingency tables, the
descriptors are called 

 

a

 

 and 

 

b

 

. The states of 

 

a

 

 are denoted 

 

a

 

i

 

 with subscripts 

 

i

 

 varying
from 1 to 

 

r

 

 (number of rows), while the states of 

 

b

 

 are denoted 

 

b

 

j

 

 with subscripts 

 

j

 

varying from 1 to 

 

c

 

 (number of columns).

 

6.1 Information and entropy

 

Chapters 1 and 2 have shown that the ecological information available about the
objects under study is usually (or may be reformulated as) a set of biological and/or

Correlation
hypothesis

ANOVA
hypothesis



 

Information and entropy 221

 

environmental characteristics, which correspond to as many descriptors. Searching for
groups of descriptors that behave similarly across the set of objects, or that may be
used to forecast one from the other(s) (R analysis, Section 7.1), requires measuring the

 

amount of information 

 

that these descriptors have in common. In the simplest case of
two descriptors 

 

a

 

 and 

 

b

 

 (called 

 

y

 

1

 

 and 

 

y

 

2

 

 in previous chapters), one must assess how
much 

 

information

 

 is provided by the distribution of the objects among the states of 

 

a

 

,
that could be used to forecast their distribution among the states of 

 

b

 

. This approach is
central to the analysis of relationships among ecological phenomena.

In 1968, Ludwig von Bertalanffy wrote, in his 

 

General System Theory

 

 (p. 32):
“Thus, there exist models, principles, and laws that apply to generalized systems or
their subclasses, irrespective of their particular kind, the nature of their component
elements, and the relations or ‘forces’ between them”. This is the case with
information, which can be viewed and measured in the same manner for all systems.
Some authors, including Pielou (1975), think that the concepts derived from
information theory are, in ecology, a model and not a homology. Notwithstanding this
opinion, the following sections will discuss how to measure information for biological
descriptors in terms of information to be acquired, because such a presentation
provides a better understanding of the nature of information in ecological systems.

The approach consists in measuring the amount of information contained in each
descriptor and, further, the amount of information that two (or several) descriptors
have in common. If, for example, two descriptors share 100% of their information,
then they obviously carry the same information. Since descriptors are constructed so as
to partition the objects under study into a number of states, two descriptors have 100%
of their information in common when they partition a set of objects in exactly the same
way, i.e. into equal and corresponding sets of states. When descriptors are qualitative,
this correspondence does not need to follow any ordering of the states of the two
descriptors. For ordered descriptors, the ordering of the correspondence between states
is important and the techniques for analysing the information in common belong to
correlation analysis (Chapters 4 and 5).

The mathematical theory of information is based on the concept of 

 

entropy

 

. Its
mathematical formulation was developed by Shannon (Bell Laboratories) who
proposed, in 1948, the well-known equation

 

*

 

:

 

(6.1)

 

*  

 

This equation is sometimes referred to as the Shannon-Weaver or the Shannon-Wiener
equation. Norbert Wiener had developed elements of probability theory that were used by
Claude E. Shannon in his 1948 paper. In 1963, Warren Weaver co-authored with Shannon a book
where Shannon’s 1948 article was reprinted. 

Entropy
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where 

 

H

 

 is a measure of the uncertainty or choice associated with a frequency
distribution (vector) 

 

p

 

; p

 

i

 

 is the probability that an observation belongs to state 

 

i

 

 of the
descriptor (Fig. 1.1). In practice, p

 

i

 

 is the proportion (or relative frequency, on a 0-1
scale) of observations in state 

 

i

 

. Shannon recognized that his equation was similar to
the equation of entropy, published in 1898 by physicist Boltzmann as a quantitative
formulation of the second law of thermodynamics, which concerns the degree of
disorganization in closed physical systems. He thus concluded that 

 

H

 

 corresponds to
the entropy of information systems.

The entropy of information theory is actually the 

 

negative entropy

 

 of physicists. In
thermodynamics, an increase in entropy corresponds to an 

 

increase in disorder

 

, which
is accompanied by a 

 

decrease of information

 

. Strictly speaking, information is
negative entropy and it is only for convenience that it is simply called entropy. 

 

In
information theory, entropy and information are taken as synonymous.

 

Numerical example.

 

 In order to facilitate the understanding of the presentation up to
Section 6.4, a small numerical example will be used in which 120 objects are described by two
descriptors (

 

a

 

 and 

 

b

 

) with 4 states each. The question is to determine to what extent one
descriptor can be used to forecast the other. The data in the numerical example could result from
the survey of 120 sites of an estuary, or the trees observed in 120 vegetation quadrats. Descriptor

 

a

 

 could be the dominant species at each sampling site, assuming there are 4 possible species, and
descriptor 

 

b

 

, some environmental variable with 4 states. The following discussion is valid for
any type of qualitative descriptor as well as for ordered descriptors divided into classes.

Assume that the 120 observations are distributed as 60, 30, 15 and 15 among the 4 states of
descriptor 

 

a

 

 and that there are 30 observations in each of the 4 states of descriptor 

 

b

 

. The
frequencies in the combined states of the descriptors (i.e. the table cells) are shown in Table 6.1.

Negative
entropy

Information

Table 6.1 Contingency table (numerical example). Distribution of 120 objects on descriptors a and b.

b1 b2 b3 b4

30 30 30 30

a1 = 60 30 10 15 5

a2 = 30 0 20 0 10

a3 = 15 0 0 0 15

a4 = 15 0 0 15 0
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For each descriptor, the probability of a state is estimated by the relative frequency with
which the state is found in the set of observations. Thus, the probability distributions associated
with descriptors 

 

a

 

 and 

 

b

 

 

 

are:

 

a

 

1

 

: 60 p(

 

a1) = 1/2 b1: 30 p(b1) = 1/4
a2: 30 p(a2) = 1/4 b2: 30 p(b2) = 1/4
a3: 15 p(a3) = 1/8 b3: 30 p(b3) = 1/4
a4: 15 p(a4) = 1/8 b4: 30 p(b4) = 1/4

____ ____

120 120

The relative frequency of a given state is the probability of observing that state when taking an
object at random.

Within the framework of information theory, the entropy of a probability
distribution is measured, not in kilograms, metres per second, or other such units, but
in terms of decisions. The measurement of entropy must reflect how difficult it is to
find, among the objects under study, one that has a given state of the descriptor. An
approximate measure of entropy is the average minimum number of binary questions
that are required for assigning each object to its correct state. Hence, the amount of
information gained by asking binary questions, and answering them after observing
the objects, is equal to the degree of disorder or uncertainty initially displayed by the
frequency distribution. Given that context, the terms entropy and information are used
synonymously. A few numerical examples will help understand this measure.

1. When all the objects exhibit the same state for a descriptor, everything is known a priori
about the distribution of observations among the different states of the descriptor. There is a
single state in this case; hence, the number of binary questions required to assign a state to an
object is zero (H = 0), which is the minimum value of entropy.

2. The simplest case of a descriptor with non-null entropy is when there are two states
among which the objects are distributed equally:

In order to assign a state to any given object, a single binary question is necessary, of the type
“Does this object belong to state 1?” If it does, state 1 is assigned to the object; if it does not, the
object belongs to state 2. The entropy associated with the descriptor is thus H = 1.

Set of observations

State  1
p ( a1 )  = 1/2

State  2
p ( a2 )  = 1/2

Binary question

Binary
question
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3. Applying the above approach to a descriptor with four states among which the objects are
distributed equally, one gets an entropy H = 2 since exactly two binary questions are required to
assign a state to each object:

This would be the case of descriptor b in the numerical example of Table 6.1.

4. For an eight-state descriptor with the objects equally distributed among the states, the
binary questions are as follows:

The total entropy of the descriptor is thus:

[3 questions × 8 (1/8 of the objects)] = 3

and, in general, the entropy H associated with a descriptor in which the objects are equally
distributed among states is equal to the base 2 logarithm (if the questions are binary) of the
number of states:

log2 1 = 0 log2 8 = 3
log2 2 = 1 log2 16 = 4
log2 4 = 2 etc.

Hence the general formula in that case is H = log2(number of states).

Measuring the entropy from the number of binary questions is strictly equal to the
logarithmic measure only when the number of states is an integer power of 2, or when
the number of observations in the various states is such that binary questions divide
them into equal groups (see the numerical example, below). In all other cases, the
number of binary questions required is slightly larger than log2(number of states),

State  2
p ( a2 ) = 1/4

State  1
p ( a1 ) = 1/4

State  3
p ( a3 ) = 1/4

State  4
p ( a4 ) = 1/4

Set of observations
First binary question

Second
binary question

Set of observations
First binary question

Second
binary question

State  6
p ( a6 ) = 1/8

State  5
p ( a5 ) = 1/8

State  3
p ( a3 ) = 1/8

State  2
p ( a2 ) = 1/8

State  4
p ( a4 ) = 1/8

State  8
p ( a8 ) = 1/8

State  7
p ( a7 ) = 1/8

State  1
p ( a1 ) = 1/8

Third
binary question
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because binary questions are then a little less efficient than in the previous case
(Table 6.2). Binary questions have been used in the above discussion only to provide
readers with a better understanding of entropy, the true measure being the logarithmic
one. One may refer to Shannon (1948), or a textbook on information theory, for a more
formal discussion of the measure of entropy.

The following example illustrates the relationship between probability and
information. If an ecologist states that water in the Loch Ness is fresh, this is trivial
since the probability of the event is 1 (information content null). If, however, he/she
announces that she/he has captured a specimen of the famous monster, this statement
contains much information because of its low probability (the dynamic aspects of Loch

Table 6.2 The average minimum number of binary questions required to remove the uncertainty about the
position of an object in the state-vector is equal to log2(number of states) when the number of
states is an integer power of 2 (in boldface) and the objects are equally distributed among the
states. In all other cases, the number of binary questions is slightly larger than the entropy H =
log2(number of states). For example, for a three-state descriptor with equal frequencies, the
minimum number of binary questions is (2 questions × 2/3 of the objects) + (1 question × 1/3 of
the objects) = 1.66666 binary questions.

Number of states log2(number of states) Average minimum number
of binary questions

1 0.00000 0.00000
2 1.00000 1.00000
3 1.58496 1.66666
4 2.00000 2.00000
5 2.32193 2.40000
6 2.58496 2.66666
7 2.80735 2.85714
8 3.00000 3.00000
9 3.16993 3.22222
10 3.32193 3.40000
11 3.45943 3.54545
12 3.58496 3.66666
13 3.70044 3.76154
14 3.80735 3.85714
15 3.90689 3.93333
16 4.00000 4.00000
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Ness Monster populations have been discussed by Sheldon & Kerr, 1972, Scheider &
Wallis, 1973, and Rigler, 1982; see also Lehn, 1979, and Lehn & Schroeder, 1981, for
a physical explanation of the Loch Ness and other aquatic monsters). Thus,
information theory deals with a specific technical definition of information, which may
not correspond to the intuitive concept. A nontechnical example is that a book should
contain the same amount of information before and after one has read it. From the
information theory point of view, however, after one has read the book once, there is
no information to be gained the next time he/she reads it — unless she/he has forgotten
part of it after the first reading.

It should be clear, at this point of the discussion, that the entropy of a descriptor depends,
among other characteristics, on the number of its states among which the entropy is partitioned.
In the case of the above four-state descriptor, for example, 1/4 of the entropy of the descriptor is
attributed to each state, i.e. [1/4 log2 4], which is equal to [1/4 log2(1/4)-1]. The total entropy of
the descriptor is thus:

 = log2 4 = 2

The same holds for the example of the eight-state descriptor. The entropy of each state is
[1/8 log2 8] = [1/8 log2(1/8)-1], so that the total entropy of the descriptor is

 = log2 8 = 3

5. Descriptor a in the numerical example (Table 6.1) illustrates the case of a descriptor for
which the objects are not equally distributed among states. The probability distribution is [1/2,
1/4, 1/8, 1/8], which corresponds to the following scheme of optimal binary questions:

When the objects are not distributed evenly among the states, the amount of information one has
a priori is higher than in the case of an even distribution, so that the information to be acquired
by actual observation of the objects (i.e. the entropy) decreases. It follows that the entropy of the
above descriptor should be H < 2, which is the maximum entropy for a four-state descriptor.
Using binary questions, it is more economical to isolate half of the objects with the first
question, then half of the remaining objects with the second question, and use a third question
for the last two groups of 1/8 of the objects (see above). Since half of the objects require one
question, 1/4 require 2, and the two groups of 1/8 require 3, the total entropy of this descriptor is:

H(a) = (1/2 × 1) + (1/4 × 2) + (1/8 × 3) + (1/8 × 3) = 1.75

H 1 4( ) log2 1 4( ) 1–

4 states
"=

H 1 8( ) log2 1 8( ) 1–

8 states
"=

State  1
p ( a1 ) = 1/2

Set of observations

State  2
p ( a2 ) = 1/4

State  3
p ( a3 ) = 1/8

State  4
p ( a4 ) = 1/8

First binary question

Second binary question

Third binary question
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As in the previous examples, this is equal to:

H(a) = 1/2 1og2 2 + 1/4 1og2 4 + 1/8 1og2 8 + 1/8 1og2 8

H(a) = 1/2 1og2 (1/2)–1 + 1/4 1og2 (1/4)–1 + 1/8 1og2 (1/8)–1 + 1/8 1og2 (1/8)–1

Following the law of exponents for logarithms, exponent –1 is eliminated by writing the
equation as:

This is Shannon’s formula for entropy (eq. 6.1). When the base for the logarithms is 2, the model
is that of binary questions and the unit of entropy is the bit (contraction of binary digit) or
hartley (Pinty & Gaultier, 1971). The model may be reformulated using questions with 10
answers, in which case the base of the logarithms is 10 and the unit is the decit. For natural
logarithms, the unit is the nat (Pielou, 1975). These units are dimensionless, as are angles for
example (Chapter 3). 

Equation 6.1 may be applied to human communications, to calculate the
information content of strings of symbols. For example, in a system of numbers with
base n, there are nN possible numbers containing N digits (in a base-10 system, there
are 102 = 100 numbers containing 2 digits, i.e. the numbers 00 to 99). It follows that
the information content of a number with N digits is:

H = log2 nN = N log2 n

The information per symbol (digit) is thus:

H/N = log2 n (6.2)

In the case of a binary (base 2) number, the information per symbol is log2 2 = 1 bit;
for a decimal (base 10) number, it is log2 10 = 3.32 bits. A decimal digit contains 3.32
bits of information so that, consequently, a binary representation requires on average
3.32 times more digits than a decimal representation of the same number.

For an alphabet possessing 27 symbols (26 letters and the blank space), the
information per symbol is log2 27 = 4.76 bits, assuming that all symbols have the same
frequency. In languages such as English and French, each letter has a frequency of its
own, so that the information per symbol is less than 4.76 bits. The information per
letter is 4.03 bits in English and 3.95 bits in French. Hence, the translation from French
to English should entail shorter text, which is generally the case.

Each language is characterized by a number of properties, such as the frequencies
of letters, groups of letters, etc. These statistical properties, together with a defined
syntax, determine a particular structure. For a given alphabet, the specific constraints

H a( ) p i( )  log2 p i( )[ ] 1–

all states
"=

H a( ) p i( ) log2p i( )
all states
"–=

Bit
Hartley
Decit
Nat

Communi-
cation

Alphabet

English
French
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of a language limit the number of messages that can actually be formulated. Thus, the
number of lexical elements with 4, 5 or 6 letters is much smaller than the theoretical
possible number (Table 6.3). This difference arises from the fact that every language
contains a certain amount of information that is inherently embodied in its structure,
which is termed redundancy. Without redundancy, it would be impossible to detect
errors slipping into communications, since any possible group of symbols would have
meaning.

In a language with n different symbols, each having a characteristic frequency
(N1, N2 … Nn), the total number of possible messages (P) made up of N symbols is
equal to the number of combinations:

P = N! / (N1! N2! … Nn!)

The information content of a message with N symbols is:

H = log2 P = log 2[N! / (N1! N2! … Nn!)]

Hence, the information per symbol is:

H/N = 1/N log 2[N! / (N1! N2! … Nn!)] (6.3)

which is the formula of Brillouin (1956). It will be used later (Section 6.5) to calculate
the species diversity of a sample, considered to be representing a “message”.

6.2 Two-way contingency tables

In order to compare two qualitative descriptors, the objects are allocated to the cells of
a table with two criteria, i.e. the rows and columns. Each cell of the two-way
contingency table (e.g. Tables 6.1 and 6.4) contains the number of observations

Table 6.3 Redundancy in the French language. Number of lexical elements with 4 to 6 letters (from
Bourbeau et al., 1984).

Number of letters Possible number of Actual number of lexical
lexical elements elements in French

4 264 # 457 000 3 558

5 265 # 12 000 000 11 351

6 266 # 300 000 000 24 800



Two-way contingency tables 229

described by that pair of states of the qualitative descriptors. Numbers in the cells of a
contingency table are absolute frequencies, i.e. not relative frequencies. The number of
cells in the table is equal to the product of the number of states in the two descriptors.
The first question relative to a contingency table concerns the relationship between the
two descriptors: given the bivariate distribution of observations in the table, are the
two descriptors related to each other, or not? This question is answered by calculating
the expected frequency E for each cell of the table, according to a null hypothesis H0,
and performing a chi-square (X2) test of the null hypothesis.

The simplest null hypothesis is the independence of the two descriptors. Eij is the
number of observations that is expected in each cell (i, j) under H0. Under this null
hypothesis, Eij is computed as the product of the marginal totals (i.e. the product of the
sum of row i with the sum of column j), divided by n which is the total number of
observations in the table:

Eij = [(row sum)i × (column sum)j] / n (6.4)

This equation generates expected frequencies whose relative distribution across the
states of descriptor a, within each state of descriptor b, is the same as the distribution
of all observed data across the states of a, and conversely (Table 6.4). The null
hypothesis is tested using a X2-statistic that compares the observed (Oij) to the
expected frequencies (Eij).

Table 6.4 Contingency table giving the observed (from Table 6.1) and expected (in parentheses)
frequencies in each cell; n = 120. The observed frequencies that exceed the corresponding
expected frequencies are in boldface. Wilks’ chi-square statistic:  = 150.7 ($ = 9, p < 0.001).

b1 b2 b3 b4

30 30 30 30

a1 = 60 30 (15) 10 (15) 15 (15) 5 (15)

a2 = 30 0 (7.5) 20 (7.5) 0 (7.5) 10 (7.5)

a3 = 15 0 (3.75) 0 (3.75) 0 (3.75) 15 (3.75)

a4 = 15 0 (3.75) 0 (3.75) 15 (3.75) 0 (3.75)

XW
2

Null
hypothesis

Expected
frequency
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In basic statistics textbooks, the significance of relationships in two-way
contingency tables is often tested using the Pearson chi-square statistic (Pearson,
1900):

(6.5)

where (O – E) measures the contingency of each cell. Instead of , one can compute
Wilks’ likelihood ratio (1935), also known as the G or 2I-statistic (Sokal & Rohlf,
1995) or G2 (Bishop et al., 1975; Dixon, 1981):

(6.6)

where loge is the natural logarithm. For null frequencies,  = 0.

For a contingency table with r rows and c columns, the number of degrees of
freedom used to determine the probability (p-value) of the data under H0 is:

$ = (r – 1)(c – 1) (6.7)

When the p-value is smaller than or equal to a predetermined significance level,
e.g. % = 0.05, the null hypothesis (H0) of independence of the descriptors is rejected.

When the number of observations (n) is large (i.e. larger than ten times the number
of cells, rc, in the table), the asymptotic distributions of  and  are both &2. In
other words, the two statistics are equivalent when H0 is true. There is however a
problem when the number of observations is small, i.e. less than five times the number
of cells. Small numbers of observations often lead to several null observed values (Oij)
in the contingency table, with correspondingly very low expected frequencies (Eij).
According to Cochran (1954) and Siegel (1956), when there is at least one value of Eij

 1, or when 20% or more of the expected values Eij  are smaller than 5, some

% = 0.05, the computed statistic is 2

Concerning the choice of  or , there is no difference when the number of
observations n is large (see the previous paragraph). When n is small, Larntz (1978) is
of the opinion that  is better than . Sokal & Rohlf (1995) still recommend using

 but suggest to correct it as proposed by Williams (1976a) to obtain a better
approximation of &2. This correction consists in dividing  by a correction factor
qmin. The correction factor, which is based on $ (eq. 6.7), is computed as:

qmin = 1 + [(r2 – 1)(c2 – 1)/6$n] (6.8)
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smaller than
states (rows or columns) must be grouped to increase the expected frequencies, provided
that there is a logical basis to do so. It now appears that only the first part of this empirical
rule should be kept. Indeed Fienberg (1980,
that, for

p.172) cites results of simulations indicating
 distributed like &  if H  is true, as long as0

all Eij values are larger than 1.
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When n is large relative to the number of cells in the contingency table, it is not
necessary to apply a correction to  since qmin # 1 in that case. William’s correction
is especially interesting when one must use , as in the study of multiway
contingency tables; the general formula for qmin is given in Subsection 6.3. Several
computer programs allow users to compute both  and . 

Another correction, available in some computer programs, consists in adding a
small value (e.g. 0.5) to each observed value Oij in the contingency table when some
of the Oij’s are small. As indicated by Dixon (1981) and Sokal & Rohlf (1995), the
effect of this correction is to lower the X2-statistic, which makes the test more
conservative. H0 may then be rejected in a proportion of cases smaller than % when the
null hypothesis is true.

Another measure of interest to ecologists, which is related to the Wilks statistic (see
below), refers to the concept of entropy (or information) discussed above. In the
numerical example with four rows and columns (Tables 6.1 and 6.4), if the
correspondence between the states of descriptors a and b was perfect (i.e. descriptors
completely dependent of each other), the contingency table would only have four non-
zero cells — one in each row and each column. These non-zero cells could be
anywhere in the table, not necessarily on the diagonal, because the states of the two
descriptors are not ordered. It would then be possible, using a, to perfectly predict the
distribution of observations among the states of b, and vice versa. In other words,
given one state of the first descriptor, one would immediately know the state of the
other descriptor. Thus, there would be no uncertainty (or entropy) concerning the
distribution of the objects on b after observing a, hence the entropy remaining in b
after observing a would be null, i.e. H(b|a) = 0. On the contrary, if the descriptors were
completely independent of each other, the distribution of observations in each row of
descriptor a would be in the same proportions as their overall distribution in b (found
at top of Tables 6.1 and 6.4); the same would be true for the columns. H(b|a) = H(b)
would indicate that all the entropy contained in the distribution of b remains after
observing a.

The two conditional entropies H(a|b) and H(b|a), as well as the entropy shared by
the two descriptors, can be computed using the total information in the contingency
table, H(a,b), and the information of each descriptor, H(a) and H(b), already
computed in Section 6.1. H(a,b) is computed on all observed frequencies in the
contingency table using Shannon’s formula (eq. 6.1):

(6.9)

where p(i,j) is the observed frequency in each cell (i,j) of the contingency table,
divided by the total number of observations n. For the example (Tables 6.1 or 6.4):

H(a,b) = – {1/4 log2 (1/4) + 1/6 log2 (1/6) + 3 [1/8 log2 (1/8)] + 2 [1/12 log2 (1/12)]
 + 1/24 log2 (1/24)} = 2.84
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The values of 

 

H
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) = A + B

 

 =

 

 1.75 and 

 

H

 

(

 

b

 

) = B + C = 2.00, represented by circles in
the Venn diagram of Fig. 6.1, have been computed in Section 6.1. 

 

H

 

(

 

a

 

,

 

b

 

) = 2.84 is the
total information in the union of the two descriptors, represented by A + B + C. The
information (B) shared by the two descriptors is computed as follows: 

B = (A + B) + (B + C) – (A + B + C)
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(6.10)

 

B = 1.75 + 2.00 – 2.84 = 0.91 

With more decimals, B = 0.90564; this value is used in the example that follows
eq. 6.14. The information exclusive to each descriptor, A

 

 

 

and C, is computed by
subtraction as follows:

A = (A + B + C) – (B + C)
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2.84 – 2.00 = 0.84 

and C = (A + B + C) – (A + B)
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(6.12)

 

C = 2.84 – 1.75 = 1.09

There is a relationship between the reciprocal information B and Wilks 
statistic. It can be shown that B = (1/
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) when B is in bits.
Using these relationships, it is possible to calculate the probability associated with B
after transforming B into a Wilks -statistic (eq. 6.6):

  = 2nB     when B is in nats (6.13)

Figure 6.1 Venn diagram partitioning the information of two qualitative descriptors, denoted a and b. B is
the information the two descriptors have in common.
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or  = 2nB loge 2 = nB loge 4 = 1.38629 nB     when B is in bits. (6.14)

For the numerical example,  = 2nB loge 2 = 2 × 120 × 0.90564 × 0.69315 = 150.66
before Williams’ correction.

Using the measures of information A, B and C, various reciprocal information
coefficients can be computed. The similarity of descriptors a and b can be calculated as
the amount of information that the two descriptors have in common, divided by the
total information of the system:

S(a,b) = B / (A + B + C) (6.15)

S(a,b) = 0.91 / 2.84 = 0.32, for the numerical example.

If the following steps of the analysis (clustering and ordination, Chapters 8 and 9)
require that the measure of association between a and b be a metric, one may use the
corresponding distance, defined as the sum of the information that the two descriptors
possess independently, divided by the total information:

D(a,b) = (A + C) / (A + B + C) (6.16)

For the numerical example, D(a,b) = (0.84 + 1.09) / 2.84 = 0.68. As indicated by the
structure of the formulas, S(a,b) + D(a,b) = 1.

The distance measure in eq. 6.16 is Rajski’s metric (1961). This author also
proposed another measure of similarity among descriptors, the coherence coefficient,
which is used to assess the stochastic independence of two random variables:

(6.17)

Another version of this coefficient,

S  = B / (A + 2B + C) (6.18)

is available in some computer programs under the name symmetric uncertainty
coefficient. Two asymmetric uncertainty coefficients have also been proposed. They are
used, for example, to compare the explanatory power of a given descriptor with respect
to several other descriptors: B / (A + B) controls for the total amount of information in
b, whereas B / (B + C) controls for the total information in a.

The construction of an association matrix, containing any of the symmetric
coefficients described above, requires calculating p(p – 1)/2 contingency tables; this
matrix is symmetric and its diagonal is S = 1 or D = 0. Qualitative (nonordered)
descriptors can thus be used to compute quantitative association coefficients, which
makes possible the numerical analysis of multivariate qualitative data sets.
Furthermore, since quantitative or semiquantitative descriptors can be recoded into
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discrete states, it is possible, using uncertainty coefficients, to compute association
matrices among descriptors of mixed types.

It is only through B, which can be transformed into a -statistic, that a
probability can be associated to the uncertainty coefficients. For coefficient S above
(eq. 6.15), short of computing a p-value, one can state in general terms that two
descriptors are very closely related when S(a,b) > 0.5; they are well associated when
0.5 > S > 0.3; and some association exists when S < 0.3 without coming too close to 0
(Hawksworth et al., 1968).

The probability associated with a X2-statistic, calculated on a contingency table,
assesses the hypothesis that the relationship between the two descriptors is random.
Biological associations, for example, could be defined on the basis of relationships
found to be non-random between pairs of species — the relationship being defined by
reference to a pre-selected probability level (e.g. % = 0.05 or 0.01) associated with the
X2 measuring the contingency between two species (Subsection 7.5.2). The value of X2

may itself be used as a measure of the strength of the relationship between species.
This is also the case for the reciprocal information measures defined above. With the
same purpose in mind, it is possible to use one of the following contingency
coefficients, which are merely transformations of a X2-statistic on a scale from 0 to 1
(Kendall & Buckland, 1960; Morice, 1968):

Pearson contingency coefficient, (6.19)

Tschuproff contingency coefficient, (6.20)

where n is the number of observations. These contingency coefficients are not
frequently used in ecology, however. They can only be used for comparing
contingency tables of the same sizes.

Contingency tables are the main approach available to ecologists for the numerical
analysis of relationships among qualitative descriptors, or else between qualitative
descriptors and ordered variables divided into classes. Contingency tables are also
convenient for analysing nonmonotonic relationships among ordered descriptors (a
relationship is monotonic when there is a constant evolution of a descriptor with
respect to the other; see Fig. 5.1). Reciprocal information and X2 coefficients are
sensitive enough that they could be used even with ordered variables, when
relationships among a large number of descriptors are analysed by computer. One must
simply make sure that the ordered data are divided into a sufficiently large number of
classes to avoid clumping together observations that one would want to keep distinct in
the results. If a first analysis indicates that redefining the boundaries of the classes
could improve the interpretation of the phenomenon under study (the classes used to
recode quantitative variables do not need to have the same width), ecologists should
not hesitate to repeat the analysis using the recoded data. This procedure is not
circular; it corresponds to a progressive discovery of the structure of the information.
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It is also possible to use the association coefficients described above to interpret the
classifications resulting from a first analysis of the data (Chapter 8). A classification
may be compared to the descriptors from which it originates, in order to determine
which descriptors are mostly responsible for it; or else, it may be compared to a new
series of descriptors that could potentially explain it. One can also use contingency
tables to compare several classifications of the same objects, obtained through
different methods. Subsection 10.2.1 describes these higher-level analyses.

Ecological application  6.2

Legendre et al. (1978) analysed data from a winter aerial survey of land fauna, using
contingency tables. They compared the presence or absence of tracks of different bird and
mammal species to a series of 11 environmental descriptors. Five of these descriptors were
qualitative, i.e. bioclimatic region, plant association, nature of the dominant and sub-dominant
surface materials, and category of aquatic ecosystem. The others were semiquantitative,
i.e. height of the trees, drainage, topography, thickness of the surface materials, abundance of
streams and wetlands. The analysis identified the descriptors that determined or limited the
presence of the 10 species that had been observed with sufficient frequency to permit their
analysis. This allowed the authors to describe the niches of these species.

6.3 Multiway contingency tables

When there are more than two descriptors, one might consider the possibility of
analysing the data set using a series of two-way contingency tables, in which each pair
of descriptors would be treated separately. Such an approach, however, would not take
into account possible interactions among several descriptors and might thus miss part
of the potential offered by the multidimensional structure of the data. This could lead
to incorrect, or at least incomplete conclusions. Information on the analysis of
multiway contingency tables can be found in Kullback (1959), Plackett (1974), Bishop
et al. (1975), Upton (1978), Gokhale & Kullback (1978), Fienberg (1980), Sokal &
Rohlf (1995), Agresti (2002), and Kroonenberg (2008).

The most usual approach for analysing multiway contingency tables is to adjust to
the data a log-linear model, where the natural logarithm (loge) of the expected
frequency E for each cell of the table is estimated as a sum of main effects and
interactions. For example, in the case of two-way contingency tables (Section 6.2), the
expected frequencies could have been computed using the following equation:

loge E = [.] + [A] + [B] + [AB] (6.21)

Symbols in brackets are the effects. [A] and [B] are the main effects of descriptors a
and b, respectively, and [AB] is the effect resulting from the interaction between a and
b. [.] is the mean of the logarithms of the expected frequencies. In a two-way table,

Log-linear
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the hypothesis tested is that of independence between the two descriptors,
i.e. H0: [AB] = 0. The log-linear model corresponding to this hypothesis is thus:

loge E = [.] + [A] + [B] (6.22)

since [AB] = 0. The expected frequencies E computed using eq. 6.22 are exactly the
same as those computed in Section 6.2 (eq. 6.4). Hence for two-way tables, one
usually computes the expected frequencies with eq. 6.4. For multiway tables, the
expected frequencies are generated with an iterative proportional fitting algorithm. The
advantage of log-linear models is obvious when analysing contingency tables with
more than two dimensions (or criteria).

For a contingency table with three descriptors (a, b, and c), the log-linear model
containing all possible effects is:

loge E = [.] + [A] + [B] + [C] + [AB] + [AC] + [BC] + [ABC]

Such a model is referred to as the saturated model. In practice, the effect resulting
from the interaction among all descriptors is never included in any log-linear model,
i.e. here [ABC]. This is because the expected frequencies for the saturated model are
always equal to the observed frequencies (E = O), so that this model is useless. The
general log-linear model for a three-way table is thus:

loge E = [.] + [A] + [B] + [C] + [AB] + [AC] + [BC] (6.23)

where H0: [ABC] = 0. In other words, the logarithm of the expected frequency for
each cell of the contingency table is computed here by adding, to the mean of the
logarithms of the expected frequencies, one effect due to each of the three descriptors
and one effect resulting from each of their two-way interactions.

Different log-linear models may be formulated by setting some of the effects equal
to zero. Normally, one only considers hierarchical models, i.e. models in which the
presence of a higher-order effect implies that all the corresponding lower effects are
also included; the order of an effect is the number of symbols in the bracket. For
example, in a hierarchical model, to include [BC] implies that both [B] and [C] are
also included. For a three-way contingency table, there are eight possible hierarchical
models, corresponding to as many different hypotheses (Table 6.5). Models in the
table all include the three main effects. Each hypothesis corresponds to different types
of interaction among the three variables. In practice, one uses a program available in a
computer package (for R functions, see Section 6.6), with which it is easy to estimate
the expected frequencies for any hierarchical model of interest to the user.

The number of degrees of freedom ($) depends on the interactions that are included
in the model. For the general hierarchical model of eq. 6.23,

$ = rst–[1 + (r – 1)+(s – 1)+(t – 1)+(r – 1)(s – 1)+(r – 1)(t – 1)+(s – 1)(t – 1)] (6.24)

Saturated
model
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where r, s and t are the numbers of states of descriptors a, b and c, respectively. If there
were only two descriptors, a and b, the log-linear model would not include the
interaction [AB], so that eq. 6.24 would become:

$ = rs – [1 + (r – 1) + (s – 1)] = (r – 1)(s – 1)

which is identical to eq. 6.7. In Table 6.5, model 4, for example, does not include the
interaction [BC], so that:

$ = rst – [1 + (r – 1) + (s – 1) + (t – 1) + (r – 1)(s – 1) + (r – 1)(t – 1)]

Programs in computer packages calculate the number of degrees of freedom
corresponding to each model.

It is possible to test the goodness of fit of a given model to the observed data by
using one of the X2 statistics already described for two-way tables,  or 
(eqs. 6.5 and 6.6). The null hypothesis (H0) tested is that the effects excluded from the
model are null. Rejecting H0, however, does not allow one to accept the alternative
hypothesis that all the effects included in the model are not null. The only conclusion
to be drawn from rejecting H0 is that at least some of the effects in the model are not
null. When the p-value associated with a model is larger than the significance level %,
the conclusion is that the model fits the data well.

Table 6.5 Possible log-linear models for a three-way contingency table. Hypotheses and corresponding
models. All models include the three main effects [A], [B] and [C].

Hypotheses (H0) Log-linear models

1.[ABC] = 0 logeE = [.]+[A]+[B]+[C]+[AB]+[AC]+[BC]

2.[ABC] = 0, [AB] = 0 logeE = [.]+[A]+[B]+[C]+[AC]+[BC]

3.[ABC] = 0, [AC] = 0 logeE = [.]+[A]+[B]+[C]+[AB]+[BC]

4.[ABC] = 0, [BC] = 0 logeE = [.]+[A]+[B]+[C]+[AB]+[AC]

5.[ABC] = 0, [AB] = 0, [AC] = 0 logeE = [.]+[A]+[B]+[C]+[BC]

6.[ABC] = 0, [AB] = 0, [BC] = 0 logeE = [.]+[A]+[B]+[C]+[AC]

7.[ABC] = 0, [AC] = 0, [BC] = 0 logeE = [.]+[A]+[B]+[C]+[AB]

8.[ABC] = 0, [AB] = 0, [AC] = 0, [BC] = 0 logeE = [.]+[A]+[B]+[C]
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As in the case of two-way contingency tables (eq. 6.8), it is recommended to divide
 by a correction factor, qmin (Williams, 1976a), when the number of observations n

is small, i.e. less than 4 or 5 times the number of cells in the table. For the general
hierarchical model (eqs. 6.23 and 6.24):

qmin = 1 + (1/6$n) [r2s2t2 – 1 – (r2 – 1) – (s2 – 1) – (t2 – 1)
– (r2 – 1)(s2 – 1) – (r2 – 1)(t2 – 1) – (s2 – 1)(t2 – 1)] (6.25)

In the case of two descriptors, eq. 6.25 becomes:

qmin = 1 + (1/6$n) [r2s2 – 1 – (r2 – 1) – (s2 – 1)]

qmin = 1 + (1/6$n) [(r2 – 1)(s2 – 1)

which is identical to eq. 6.8. For model 4 in Table 6.5, used above as example:

qmin = 1 + (1/6$n) [r2s2t2 – 1 – (r2 – 1) – (s2 – 1) – (t2 – 1)
– (r2 – 1)(s2 – 1) – (r2 – 1)(t2 – 1)]

This correction cannot be applied, as such, to contingency tables containing null
expected frequencies (see below). The other possible correction, which consists in
adding to each cell of the table a small value, e.g. 0.5, has the same effect here as in
two-way contingency tables (see Section 6.2).

Ecological application  6.3a

Legendre (1987a) analysed biological oceanographic data obtained at 157 sites in Baie des
Chaleurs (Gulf of St. Lawrence, eastern Canada). The data set (observations made at 5-m depth)
included measurements of temperature, salinity, nutrients (phosphate and nitrate), and
chlorophyll a (estimated from the in vivo fluorescence of water pumped on board the ship). As it
often happens in ecology, the numerical analysis was hampered by three practical problems.
(1) The measured concentrations of nutrients were often near or below the detection limit, with
the result that many of them exhibited large experimental errors (since the 1980s, the detection
limits of some nutrients have been lowered by a factor 100 or 1000). (2) Relationships between
variables were often nonmonotonic, i.e. they did not continuously increase or decrease but
reached a maximum (or a minimum) after which they decreased (or increased). (3) Most of the
variables were intercorrelated, so that no straightforward interpretation of phytoplankton
(i.e. chlorophyll a) concentrations was possible in terms of environmental variables. Since
multiway contingency table analysis can handle these three types of problems, it was decided to
partition the (ordered) variables into discrete classes and analyse the transformed data using
hierarchical log-linear models.

The initial model in Table 6.6 (line 1) only included the interaction among the three
environmental variables, with no effect of these on chl a. This model did not fit the data well.
Adding the interaction between chlorophyll a (chl a) and the temperature-salinity (TS)
characteristics significantly improved the fit (i.e. there was a significant difference between
models; line 2). The resulting model could be accepted (line 3), but adding the interaction
between chl a and phosphate further improved the fit (significant difference, line 4) and the
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resulting model fitted the data well (line 5). Final addition of the interaction between chl a and
nitrate did not improve the fit (difference not significant, line 6). The most parsimonious model
(line 5) thus showed a dependence of chl a concentrations on the TS characteristics and
phosphate. The choice of the initial model in Table 6.6 is explained in Ecological
application 6.3b.

There are 8 hierarchical models associated with a three-way contingency table, 113
with a four-way table, and so forth, so that the choice of a single model, among all
those possible, rapidly becomes a major problem. In fact, it often happens that several
models fit the data well. Also, in many instances, the fit to the data could be improved
by adding supplementary terms (i.e. effects) to the model. However, this improved fit
would result in a more complex ecological interpretation because of the added
interaction(s) among descriptors. It follows that the choice of a model generally
involves a compromise between goodness of fit and simplicity of interpretation, as
suggested by the principle of parsimony (Subsection 10.3.3). Finally, even when it is
possible to test the fit of all possible models to the data, this way of proceeding
involves multiple testing and the p-values require correction (Box 1.3). 

Table 6.6 Multiway contingency table analysis of oceanographic data recoded into discrete classes
(Legendre, 1987a). Using a hierarchy of log-linear models, the concentrations of chlorophyll a
(symbol in this table: C, 4 classes) are analysed as a function of the temperature-salinity (TS)
characteristics of the water masses (symbol in this table: T, 3 classes) and the concentrations of
phosphate (P; 2 classes) and nitrate (N; 2 classes). When a higher-order effect is present, all the
corresponding lower-order effects are included in the model.

Effects in the model Interpretation $ 

[NTP], [C] Chl a is independent of the environmental variables 30 121 *

Difference Adding [CT] to the model significantly improves the fit 9 89 *

[NTP], [CT] Chl a depends on the TS characteristics 21 32

Difference Adding [CP] to the model significantly improves the fit 3 13 *

[NTP], [CT], [CP] Chl a depends on the TS characteristics and on phosphate 18 19

Difference Adding [CN] does not significantly improve the fit 7 5

[NTP], [CT], [CP], [CN] The most parsimonious model does not include a 11 14
dependence of chl a on nitrate

* p / 0.05; bold  values correspond to models with p > 0.05 of fitting the data
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To select a model, there are several methods that are both statistically acceptable
and ecologically parsimonious. In practice, because no method is totally satisfactory,
one could simply use, with care, those included in the available computer package.

1. A first method consists in partitioning the  statistics associated with a
hierarchy of log-linear models. The hierarchy contains a series of models, which are
made progressively simpler (or more complex) by removing (or adding) one effect at a
time. It can be shown that the difference between the  statistics of two successive
models in the hierarchy is itself a -statistic, which can therefore be tested. The
corresponding number of degrees of freedom is the difference between those of the
two models. This is the approach used in Ecological application 6.3a (see Table 6.6).
The main problem with this method is that one may find different “most parsimonious”
models depending on the hierarchy chosen a priori. Partitioning X2 statistics is
possible only with , not .

2. A second family of approaches lies in the stepwise forward selection or
backward elimination of terms in the model. As always with stepwise methods (see
Subsection 10.3.3), (a) it may happen that forward selection lead to models quite
different from those resulting from backward elimination, and (b) the tests of
significance must be interpreted with caution because the computed statistics are not
independent. Stepwise methods thus only provide guidance, which may be used for
limiting the number of models to be considered. It often happens that models other
than those identified by the stepwise approach are found to be more parsimonious and
interesting, and to fit the data just as well (Fienberg, 1980: 80).

3. Other methods simultaneously consider all possible effects. An example of effect
screening (Brown, 1976) is given in Dixon (1981). The approach is useful for reducing
the number of models to be subsequently treated, for example, by the method of
hierarchical partitioning of  statistics (see method 1 above).

When analysing multiway contingency tables, ecologists must be aware of a
number of possible practical problems, which may sometimes have significant impact
on the results. These potential problems concern the cells with zero expected
frequencies, the limits imposed by the sampling design, the simultaneous analysis of
descriptors with mixed levels of precision (i.e. qualitative, semiquantitative, and
quantitative), and the use of contingency tables for the purpose of explanation or
forecasting.

1. Multiway contingency tables, in ecology, often include cells with expected
frequencies E = 0. There are two types of zero expected frequencies, i.e. those
resulting from sampling and those that are of structural nature. 

Sampling zeros are caused by random variation, combined with small sample size
relative to the number of cells in the multiway contingency table. Such zeros would
normally disappear if the size of the sample was increased. The presence of cells with
null observations (O = 0) may result, when calculating specific models, in some
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expected frequencies E = 0. This is accompanied by a reduction in the number of
degrees of freedom. For example, according to eq. 6.24, the number of degrees of
freedom for the initial model in Table 6.6 (line 1) should be $ = 33, since this model
includes four main effects [C], [N], [P], and [T] and interactions [NP], [NT], [PT], and
[NPT]; however, the presence of cells with null observations (O = 0) led to cells with
E = 0, which reduced the number of degrees of freedom to $ = 30. Rules to calculate
the reduction in the number of degrees of freedom are given in Bishop et al. (1975: 116
et seq.) and Dixon (1981: 666). In practice, computer programs generally take into
account the presence of zero expected frequencies when computing the number of
degrees of freedom for multiway tables. The problem does not occur with two-way
contingency tables because cells with E = 0 are only possible, in the two-way
configuration, if all the observations in the corresponding row or column are null, in
which case the corresponding state is automatically removed from the table.

Structural zeros correspond to combinations of states that cannot occur a priori or
by design. For example, in a study where two of the descriptors are sex (female, male)
and sexual maturity (immature, mature, gravid), the expected frequency of the cell
“gravid male” would a priori be E = 0. Another example would be combinations of
states that have not been sampled, either by design or involuntarily (e.g. lack of time,
or inadequate planning). Several computer programs allow users to specify the cells
that contain structural zeros, before computing the expected frequencies.

2. In principle, the methods described here for multiway contingency tables can
only be applied to data resulting from simple random sampling or stratified sampling
designs. Fienberg (1980: 32) gives some references in which methods are described
for analysing qualitative descriptors within the context of nested sampling or a
combination of stratified and nested sampling designs. Sampling designs are described
in Cochran (1977), Green (1979), and Thompson (1992), for example.

3. Analysing together descriptors with mixed levels of precision (e.g. a mixture of
qualitative, semiquantitative, and quantitative descriptors) may be done using
multiway contingency tables. In order to do so, continuous descriptors must first be
partitioned into a small number of classes. Unfortunately, there exists no general
approach to do so. When there is no specific reason for setting the class limits, it has
been suggested, for example, to partition continuous descriptors into classes of equal
width, or containing an equal number of observations. Alternatively, Cox (1957)
describes a method that may be used for partitioning a normally distributed descriptor
into a predetermined number of classes (2 to 6). For the specific case discussed in the
next paragraph, where there is one response variable and several explanatory variables,
Legendre & Legendre (1983b) describe a method for partitioning the ordered
explanatory variables into classes in such a way as to maximize the relationships to the
response variable. It is important to be aware that, when analysing the contingency
table, different ways of partitioning continuous descriptors may sometimes lead to
different conclusions. In practice, the number of classes of each descriptor should be as
small as possible, in order to minimize the problems discussed above concerning the
calculation of  (see eqs. 6.8 ad 6.25 for correction factor qmin) and the presence of
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sampling zeros. Another point is that contingency table analysis considers the different
states of any descriptor to be nonordered. When some of the descriptors are in fact
ordered (i.e. originally semiquantitative or quantitative), the information pertaining to
the ordering of states may be used when adjusting log-linear models (see for example
Fienberg, 1980: 61 et seq.).

4. There is an analogy between log-linear models and analysis of variance since
the two approaches use the concepts of effects and interactions. This analogy is
superficial, however, since analysis of variance aims at assessing the effects of
explanatory factors on a single response variable, whereas log-linear models have been
developed to describe structural relationships among several descriptors corresponding
to the dimensions of the table.

5. It is possible to use contingency table analysis for interpreting a response
variable in terms of several interacting explanatory variables. In such a case, the
following basic rules must be followed. (1) Any log-linear model fitted to the data
must include by design the term for the highest-order interaction among all
explanatory variables. In this way, all possible interactions among the explanatory
variables are included in the model, because of its hierarchical nature. (2) When
interpreting the model, one should not discuss the interactions among the explanatory
variables. They are incorporated in the model for the reason given above, but no test of
significance is performed on them. In any case, one is only interested in the
interactions between the explanatory and response variables. An example follows.

Ecological application  6.3b

The example already discussed in application 6.3a (Legendre, 1987a) aimed at interpreting the
horizontal distribution of phytoplankton in Baie des Chaleurs (Gulf of St. Lawrence, eastern
Canada) in terms of selected environmental variables. In such a case, where a single response
variable is interpreted as a function of several potentially explanatory variables, all models
considered must include by design the highest-order interaction among the explanatory
variables. Thus, all models in Table 6.6 included the interaction [NPT]. The simplest model in
the hierarchy (line 1 in Table 6.6) only contained [NPT] and [C] as effects. In this simplest
model, there was no interaction between chlorophyll and any of the three environmental
variables, i.e. the model did not include [CN], [CP] or [CT]. When interpreting the model
selected as best fitting the data, the author did not discuss the interaction among the explanatory
variables because the presence of [NPT] prevented a proper analysis of this interaction.
Table 6.6 then led to the interpretation that the horizontal distribution of phytoplankton
depended on the TS characteristics of water masses and phosphate concentration.

When the qualitative response variable is binary, one may use the logistic linear
(or logit) model instead of the log-linear model. Fitting such a model to data is also
called logistic regression (Subsection 10.3.7). In logistic regression, the explanatory
descriptors do not have to be divided into classes; they may be discrete or continuous.
This type of regression is available in various computer packages and in R
(Section 10.7). Some programs allow the response variable to be multi-state. Efficient
use of logistic regression requires that all the explanatory descriptors be potentially
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related to the response variable. This method can replace discriminant analysis in cases
discussed in Subsection 10.3.7 and Section 11.6.

Examples of successful use of multiway contingency tables in ecology include
Fienberg (1970) and Schoener (1970) for the habitat of lizards, Jenkins (1975) for the
selection of trees by beavers, Legendre & Legendre (1983b) for marine benthos,
Fréchet (1990) for cod fishery, Schoener & Adler (1991) for spatial distributions of
lizards and birds, Fedriani et al. (2001) for responses of coyote populations to
anthropogenic food, Fingerut et al. (2003) for transmission of a marine parasite by
swimming larvae, and Gorelick & Bertram (2010) for computation of diversity
indices.

6.4 Contingency tables: correspondence

Once it has been established that two or more qualitative descriptors in a contingency
table are not independent (Sections 6.2 and 6.3), it is often of interest to identify the
cells of the table that account for the existing relationship between descriptors. These
cells, which show how the descriptors are related, define the correspondence between
the rows and columns of the contingency table. By comparison with parametric and
nonparametric statistics (Chapters 4 and 5), the measures of contingency described in
Sections 6.2 and 6.3 are, for qualitative descriptors, analogous to the correlation
between ordered descriptors, whereas correspondence would be analogous to
regression (Section 10.3) because it can be used to forecast the state of one descriptor
using another descriptor. Correspondence analysis (Section 9.2) is another method that
allows, among other objectives, the identification of the relationships between the rows
and columns of a contingency table. This can be achieved directly through the
approach described in the present section.

In a contingency table where the descriptors are not independent (i.e. the null
hypothesis of independence has been rejected), the cells of interest to ecologists are
those in which the observed frequencies (Oij) are very different from the
corresponding expected frequencies (Eij). Each of these cells corresponds to a given
state for each descriptor in the contingency table. The fact that Oij 0 Eij is indicative of
a stronger interaction, between the states in question, than expected under the null
hypothesis which in invoked to compute E. For example, hypothesis H0 in Table 6.4 is
that of independence of descriptors a and b. This hypothesis having been rejected
(p < 0.001), one may identify in the contingency table the observed frequencies Oij
that are much higher or lower than the corresponding expected frequencies Eij. Values
Oij > Eij (in bold-face type in Table 6.4) give a preliminary indication of the
associations between states of a and b. These values may be located anywhere in the
table since contingency table analysis does not take into account the ordering of states. 

When the test of the global X2-statistic (eq. 6.5 or 6.6) supports the hypothesis of a
significant relationship between the two descriptors, one can identify the cells that
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strongly contribute to the correspondence by testing the significance of the difference
between Oij and Eij in each cell of the contingency table. Ecologists may be interested
in any difference, whatever its sign, or only in the cases where Oij is significantly
higher than Eij (preference) or significantly lower (avoidance, exclusion).

Bishop et al. (1975: 136 et seq.) describe three statistics for measuring the
difference between O and E. They can be used for two-way or multiway contingency
tables. The three statistics are the components of , the components of , and the
Freeman-Tukey deviates:

component of : (6.26)

component of : 2 O loge(O/E) (6.27)

Freeman-Tukey deviate: (6.28)

These statistics are available in various computer packages. A critical value has been
proposed by Bishop et al. (1975) for testing the significance of statistics 6.26 and 6.28:

Eij is said to be significantly different from Oij when the absolute value of the statistic,
for cell (i, j), is larger than the critical value. According to Sokal & Rohlf (1995),
however, the above critical value often results in a type I error much greater than the
nominal % level. These authors use instead the following approximate criterion to test
Freeman-Tukey deviates:

(6.29)

When the (absolute) value of the Freeman-Tukey deviate is larger than or equal to the
criterion, one concludes that Eij 0 Oij at significance level % for that cell. Authors often
recommend to only test the cells where 5 / Eij / (n – 5). Neu et al. (1974)
recommended to apply a Bonferroni or Holm correction (Box 1.3) to significance level
% in order to account for multiple testing. An example of this method, with Bonferroni
correction for the number of tested cells, is presented in Table 6.7.

Alternatively, Haberman (1973) proposed a test of the components of 
(eq. 6.26), which are also called standardized residuals and are represented by the
symbol eij. The standard error of eij is the square root of the maximum likelihood
estimate of its asymptotic variance:
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where n is the total number of observations in the contingency table. Dividing eij by
 produces an adjusted residual statistic Zij:

(6.30)

which is distributed like a standard normal deviate. That test is also described by
Everitt (1977). When |Zij| is larger than or equal to the critical value z[1 – (% / 2 no. tests)]
read from a table of standard normal deviates (z-table), one concludes that Oij is
significantly different from Eij at significance level %. Division by the number of
simultaneous tests is the Bonferroni correction (Box 1.3). Statistics higher than the
critical value z are in bold-face type in Table 6.8. The conclusions drawn from
Tables 6.7 and 6.8 may not be identical.

Comparing Table 6.4 to Tables 6.7 and 6.8 shows that considering only the cells
where Oij > Eij may lead to conclusions which, without necessarily being incorrect, are
subject to some risk of error. Tables 6.7 and 6.8 show, for instance, that dominant
species a1 is significantly over-represented in environmental condition b1 and under-
represented in b4, suggesting that b1 is favourable whereas b4 is adverse to the species.

Table 6.7 Test of Freeman-Tukey deviates (eq. 6.28) in individual cells of a contingency table. The
observed and expected values are taken from Table 6.4. Only 8 of the 16 deviates are tested
because the others, identified by an asterisk, had expected values smaller than 5 and could
therefore not be tested. Absolute values larger than or equal to the criterion (eq. 6.29) with
Bonferroni correction for 8 simultaneous tests, [9  / 8]1/2 = [9 × 7.48 / 8]1/2 = 2.90,
are in bold. These values identify the cells in which the number of observations (Oij)
significantly (p < 0.05) differs (higher or lower as shown by the sign) from the corresponding
expected frequencies (Eij). The overall null hypothesis (H0: complete independence of
descriptors a and b) had been rejected first (Table 6.4), before testing the significance of the
observed values in individual cells of the table.

b1 b2 b3 b4

a1 3.23 –1.33 0.06 –3.12

a2 –4.57 3.49 –4.57 0.91

a3 –3.00 * –3.00 * –3.00 * 3.87 *

a4 –3.00 * –3.00 * 3.87 * –3.00 *

* No test because Eij < 5 (Table 6.4).
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Ecological application  6.4

Legendre et al. (1982) explored the relationship between the abundance of phytoplankton and
vertical stability of the water column in a coastal embayment of Hudson Bay (Canadian Arctic).
Surface waters are influenced by the plume of the nearby Great Whale River. There were
intermittent phytoplankton blooms from mid-July through mid-September. In order to
investigate the general relationship between phytoplankton concentrations (chlorophyll a) and
the physical conditions, chl a and salinity data from 0 and 5 m depths were allocated to a
contingency table (Table 6.9). The null hypothesis of independence being rejected, the
correspondence between the two descriptors rests in four cells. (1) At high salinities (> 22),
there is a significantly small number of high chl a observations and (2) a significantly high
number of low chl a values. At intermediate salinities (18-22), (3) high chl a observations are
significantly numerous, whereas (4) low chl a observations are significantly infrequent. At low
salinities (< 18), the numbers observed are not significantly different from the frequencies
expected under the null hypothesis of independence.

Table 6.9 shows that, on the one hand, high chl a concentrations were positively associated
with intermediate salinities, whereas they were much reduced in waters of high salinity. On the
other hand, low chl a concentrations were characteristically infrequent in waters of intermediate
salinities and frequent at high salinities. The overall interpretation of these results, which also
took into account estimates of the vertical stability of the water column (Richardson number),
was as follows: (1) strong vertical mixing led to high salinities at the surface; this mixing
favoured nutrient replenishment, but dispersed phytoplankton biomass over the water column;
(2) low salinity conditions were not especially favourable nor adverse to phytoplankton,

Table 6.8 Test of standardized residuals using the Z-statistic (eq. 6.30). Only 8 of the 16 deviates are tested
because the others, identified by an asterisk, had expected values smaller than 5 and could
therefore not be tested. The observed and expected values are taken from Table 6.4. Absolute
values of Z larger than or equal to the critical value z[1 – (0.05 / 2×8)] = z0.9969 = 2.73 are in
boldface; the correction is for 8 simultaneous tests. The bold values identify cells in which the
number of observations (Oij) significantly (p < 0.05) differs (higher or lower, as shown by the
sign) from the corresponding expected frequency (Eij). 

b1 b2 b3 b4

a1 6.32 –2.11 0.00 –4.22

a2 –3.65 6.09 –3.65 1.22

a3 –2.39 * –2.39 * –2.39 * 7.17 *

a4 –2.39 * –2.39 * 7.17 * –2.39 *

* No test because Eij < 5 (Table 6.4).
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i.e. stratification was favourable, but dilution by water from the nearby river was adverse;
(3) intermediate salinities were associated with intermittent conditions of stability; under such
conditions, both the high nutrient concentrations and the stability of the water column were
favourable to phytoplankton growth and accumulation. Intermittent summer blooms thus
occurred upon stabilization of the water column, as a combined result of wind relaxation and
fortnightly tides. 

6.5 Species diversity

Biodiversity is a most important synthetic concept for ecology. It can be studied at all
levels of organization of Life, from genes to ecosystems. Loreau (2010) gives a clear
account of the importance of biodiversity science for both fundamental and applied
ecology. He addresses, among other topics, the present crisis of diversity on Earth and
the possibility of a sixth mass extinction, the socio-economic values of diversity within
the context of ecological services, various frontiers of diversity science, the
(controversial) linking of diversity science and policy, and finally, the need to build a
new relationship between Humanity and Nature. The author also provides a well
organised summary of different measures of diversity (see his Chapter 2). In the study
of ecological communities, species diversity indices, discussed in the present section,

Table 6.9 Contingency table: chlorophyll a concentrations as a function of salinity in the surface waters of
Manitounuk Sound (Hudson Bay, Canadian Arctic). In each cell: observed (Oij) and expected
(Eij, in parentheses) frequencies, and adjusted residual (Z, eq. 6.30) to test the hypothesis that
Oij = Eij (% = 0.05) with correction for 5 simultaneous tests. Statistics in bold are larger than
z[1 – 0.05 / 2×5] = 2.58, indicating that Oij 0 Eij. Total no. observations n = 207.  = 33.47 with
Williams correction ($ = 2, p < 0.001); hence the hypothesis of independence between chl a and
salinity is rejected. 

Chlorophyll a Salinity
(mg m–3) 6-18 18-22 22-26

2 22 7
1.5-6.1 (3.29) (8.09) (19.62)

(high values) –0.82 * 6.17 –5.10

20 32 124
0-1.5 (18.71) (45.91) (111.38)

(low values) 0.82 –6.17 5.10

* Statistic not tested because Eij < 5.

XW
2
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are synthetic biotic indices that capture multidimensional information relative to the
species composition of an assemblage or a community.

Diversity is often called “biodiversity” nowadays. The addition of prefix “bio”
before “diversity” has not changed the original concept or the way diversity is
measured in ecology. Interested readers could look at the discussion of “diversity”
versus “biodiversity” in Longhurst (2007, pp. 23-24).

The distribution of a quantitative variable is characterized by its dispersion around
its mean, as shown in Sections 4.1 and 4.3. The parametric and nonparametric
measures of dispersion are the variance (eq. 4.3) and the range, respectively. These
two measures do not apply to qualitative variables, for which the number of states (q)
may be used as a simple measure of dispersion. However, this measure does not take
advantage of the frequency distribution of observations among the states, which is
known in many instances. When the relative frequencies of the states are available,
eq. 6.1 may be used to measure the dispersion of the qualitative variable:

where pi is the relative frequency or proportion (on a 0-1 scale) of observations in state
(species) i. Species with frequency 0 disappear from the calculation because

. This formula can be rewritten as:

where n is the total number of organisms and ni is the number of organisms belonging
to species i. The latter equation is similar to the formula used to calculate the variance
of n objects divided into q classes:

where fi is the frequency of the i-th class. In ecology, H is widely used to measure the
diversity of a species assemblage; it is generally computed for each sampling site
separately (alpha diversity; see Subsection 6.5.3). In species diversity studies, the
qualitative descriptor is the list of the q species present and each state of that descriptor
corresponds to a species name. Both the number of species q and entropy H belong to
the same family of generalized entropies (eq. 6.31, below).

In assemblages of biological species, there are generally several species
represented by a single or a few individuals, and a few species that are very abundant.
The few abundant species often account for many more individuals than all the rare
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species together. Figure 6.2 shows, in order of decreasing frequencies, the abundances
of fish species caught in the Barents Sea, the Indian Ocean, and the Red Sea. The three
water bodies clearly differ in both the number of species caught and the shape of their
abundance distributions. Diversity indices must be applicable to any type of species
assemblage regardless of the shape of the abundance distribution. One parameter of
the distribution is clearly the number of species; another is the shape of the
distribution. An alternative approach to describing a species frequency distribution
with these two parameters is to combine them in a single index, e.g. the entropy
measure H. Species diversity may thus be defined as a measure of species composition,
in terms of both the number of species and their relative abundances. 

It is generally not useful to measure species diversity of a whole community
(e.g. primary, secondary, and tertiary producers and decomposers), because of the
different roles played by various species in an ecosystem. It is better (Hurlbert, 1971;
Pielou, 1975) to restrict the study of species diversity (and of the underlying
theoretical phenomena, e.g. competition, succession) to a single taxocene. A taxocene
is a set of species belonging to a given supraspecific taxon that make up a natural
ecological community or, in other words, that represent a taxonomic segment of a
community or association (Chodorowski, 1959; Hurlbert, 1971; Whittaker, 1972). The
supraspecific taxon must be such that its member species are about the same size, have
similar life histories, and compete over both ecological and evolutionary time for a
finite amount of similar resources (Deevey, 1969). A taxocene occupies a limited

Figure 6.2 Fish catches (abundances) in (a) the Barents Sea, (b) the Indian Ocean, and (c) the Red Sea.
Along the abscissa, species are arranged in order of decreasing frequencies. The histogram
ordinates are logarithmic. Adapted from Margalef (1974).

10 000

1 000

100

10

10 000

1 000

100

10

100 000

10 000

1 000

100

(c)(b)(a)

Species
diversity

Taxocene



250 Multidimensional qualitative data

segment in space and in the environment. For these reasons, the following information
about the reference population should accompany any measure of diversity: (1) the
spatial boundaries of the region or volume within which the population is found and a
description of the sampling method; (2) the temporal limits within which the
observations have been made; (3) the taxocene under study (Hurlbert, 1971; Pielou,
1975).

Sampling sites may harbour species that differ much in size or role in the
environment. This may occur, for example, when all plants in quadrats (ligneous and
herbaceous) are counted, or when species at different developmental stages are
collected (e.g. counting saplings as equivalent to adult trees). Comparisons of diversity
indices with production or environmental variables may be easier in such cases if
species diversity is computed, not from numbers of individuals, but instead from
measures of biomass (Wilhm, 1968) or dry mass, productivity (Dickman, 1968),
fecundity, or any other appropriate measure of energy transfer.

Species diversity indices may be used to compare successive observations from the
same community (time series: O mode, Fig. 7.1) or sampling sites from different areas
(Q mode). Coefficients in Chapter 7 compare objects by combining paired information
available for each species. In contrast, diversity indices pool the multispecies
information into a single value for each sampling unit, before comparing them.

Over the years, several formulae have been proposed in the ecological literature for
measuring species diversity. The present section only describes the main indices that
are found in the modern literature. Species diversity has been the subject of detailed
discussions. Early reviews were presented in the milestone books of Pielou (1969,
1975) and Margalef (1974) and in the review paper of Peet (1974). A recent account
linking species diversity to ecological theory is found in Loreau (2010).

1 — Diversity

Hill (1973a) and Pielou (1975) noted that the three diversity indices mostly used by
ecologists are specific cases of the generalized entropy formula of Rényi (1961):

(6.31)

where a is the order of the entropy measure (a = 0, 1, 2, …), q is the number of species,
and pi is the relative frequency or proportion of species i. This formula gives an
indeterminate result for a = 1. One can show, however, that the limit of this equation
when a tends towards 1 from below (i.e. from 0 to 1) or from above (i.e. from 2 to 1) is
the Shannon entropy formula, eqs. 6.1 and 6.34a.
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Hill (1973a) prefers the corresponding diversity numbers: 

 (6.32)

The first three Rényi entropies Ha (of orders a = 0 to 2) and the corresponding Hill
diversity numbers Na are:

(a) (b) (6.33)

(a) (b) (6.34)

(a) (b) (6.35)

Hill (1973a) noted that increasing the order a diminishes the relative weights of rare
species in the resulting index: when a = 0, the data are transformed to presence-
absence form where rare and abundant species have the same importance. In a review
of the topic, Peet (1974) proposed other ways of creating families of diversity indices.
Let us examine the first three orders of eq. 6.31 in more detail.

1. Entropy of order a = 0. — The number of species q (eq. 6.33b) is the index of
diversity most often used in ecology. It goes back to Patrick (1949):

Diversity = q (6.36)

It is more affected by the presence of rare species than higher-order indices. The
number of species can also be seen as a component of other diversity indices (e.g. J,
eq. 6.45 in Subsection 6.5.2).

As the size of the sampling units increases, additional rare species appear. This is a
problem with all diversity indices and it is at its worst in eq. 6.36. It is incorrect to
compare the diversities of sampling units that have different sizes because diversity
measures are not additive (Subsection 1.4.2). This point has been empirically shown
by He et al. (1996). The problem can be resolved by calculating the numbers of species
that sampling units would contain if they all had the same size. This can be done using
Sanders’ (1968) rarefaction method, whose formula was corrected by Hurlbert (1971).
In this method, a constant number of organisms is used to make the sampling units
comparable, instead of the physical size of sampling unit in m2 or litre. The formula
computes the expected number of species q' in a standardized sampling unit of n'
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organisms, for example 1000 organisms, from a nonstandard sampling unit containing
q species, a total of n organisms, and ni organisms belonging to each species i:

(6.37)

where n' / (n – n1), n1 being the number of individuals in the most abundant species
(y1), and the terms in parentheses are combinations. For example:

2. Entropy of order a = 1. — Margalef (1958) proposed to use Shannon’s entropy
H (eqs. 6.1 and 6.34a) as an index of species diversity:

The properties of H as a measure of diversity are the following:

• H = 0 (minimum value), when the sampling unit contains a single species.
H increases with the number of species.

• For a given number of species, H is maximum when the organisms are equally
distributed among the q species: H = logq. For a given number of species, H is lower
when there is stronger dominance in the sampling unit by one or a few species
(e.g. Figs. 6.1a and b). The actual value of H depends on the base of logarithms (2, e,
10, or other). This base must always be reported since it sets the scale for the H values.

• Like the variance, diversity can be partitioned into different components. In
particular, the calculation of diversity can take into account not only the proportions of
the different species but also those of genera, families, etc. When diversity is
partitioned into a component for genera and a component for species within genera,
two adaptive levels can be explored among the environmental descriptors, and
diversity H can be partitioned using eqs. 6.10-6.12. The total diversity, H = A + B + C,
which is calculated using the proportions of species without taking into account those
of genera, is equal to the diversity with respect to genera, H(G) = A + B, plus that of
species within genera, H(S | G) = C. The latter is calculated as the sum of the
diversities H within genera, weighted by the proportions of individuals in the genera.
The formula is:

H = H(G) + H(S | G) (6.38)
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This same calculation may be extended to other systematic categories. Considering,
for example, the categories family (F), genus (G), and species (S), diversity can be
partitioned into the following hierarchical components:

H = H(F) + H(G | F) + H(S | G,F) (6.39)

Using this approach, Lloyd et al. (1968) measured hierarchical components of
diversity for communities of reptiles and amphibians in Borneo.

Most diversity indices share the first two properties above, but only the indices
derived from eq. 6.31 have the third one (Daget, 1980). The probabilistic interpretation
of H refers to the uncertainty about the identity of an organism chosen at random in a
sampling unit. The uncertainty is small when the sampling unit is dominated by a few
species or when the number of species is small. These two situations correspond to
low H values. 

In principle, H should only be used when a sample is drawn from a theoretically
infinite population, or at least a population large enough that sampling does not modify
it in a noticeable way. In cases of samples drawn from small populations, or samples
whose representativeness is unknown, it is theoretically better, according to Pielou
(1966), to use Brillouin’s formula (1956), proposed by Margalef (1958) for computing
diversity H. This formula was introduced in Section 6.1 to calculate the information
per symbol in a message (eq. 6.3):

H = (1/n) log[n! / (n1! n2! … ni! … nq!)]

where ni is the number of individuals in species i and n is the total number of
individuals in the collection. Brillouin’s H corresponds to sampling without
replacement (and is thus more exact) whereas Shannon’s H applies to sampling with
replacement. In practice, H computed with either formula is the same to several
decimal places, unless samples are so small that they should not be used to estimate
species diversity in any case. Species diversity cannot, however, be computed on
measures of biomass or energy transfer using Brillouin’s formula.

3. Entropy of order a = 2. — Simpson (1949) proposed an index of species
diversity based on the probability that two interacting individuals of a population
belong to the same species. This index is frequently used in ecology. When randomly
drawing, without replacement, two organisms from a sampling unit containing q
species and n individuals, the probability that the first organism belong to species i is
ni/n and that the second also belong to species i is (ni – l)/(n – 1). The combined
probability of the two events is the product of their separate probabilities. Simpson’s
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concentration index (1) is the probability that two randomly chosen organisms belong
to the same species, i.e. the sum of the combined probabilities for the different species:

When n is large, ni is almost equal to (ni – 1), so that the above equation becomes:

(6.40)

which corresponds to the summation in eq. 6.35a. This index may be computed from
numbers of individuals, or from measures of biomass or energy transfer. The higher is
the probability that two organisms be conspecific, the smaller is the diversity of the
sampling unit. For this reason, Greenberg (1956) proposed to measure species
diversity as:

Diversity = 1 – 1 (6.41)

which is also the probability of interspecific encounter (Hurlbert, 1971). Pielou (1969)
showed that this index is an unbiased estimator of the diversity of the population from
which the sample has been drawn. This index is also known in ecology as the Gini
coefficient, because it was originally proposed by economist Corrado Gini (1912) as an
index of “mutability” or diversity. In the same 1912 paper, Gini also defined an index
of inequality, which is widely used in economics under the name of … Gini coefficient.
Hence the Gini coefficient of ecologists is not the same as that of economists.

Because eq. 6.41 is more sensitive than H to changes in the abundances of the few
very abundant species, Hill (1973a) recommended to use instead:

Diversity = 1–1 (6.42)

which is diversity number N2 of eq. 6.35b. Hill (1973a) also showed that this index is
linearly related to exp H (eq. 6.34b). 

Margalef & Gutiérrez (1983) proposed the following expression, which combines
eqs. 6.41 and 6.42:

Diversity = (6.43)

Note that each pair (i, j), for i 0 j, is counted twice in the expression 2pipj . This
diversity formula is the ratio of the probability that two individuals taken at random
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belong to different species, to the probability that they pertain to the same species. It is
the maximum number of interspecific interactions normalized by the maximum
number of intraspecific interactions.

Biodiversity indices that integrate phylogenetic information have been proposed by
Helmus et al. (2007).

Functional diversity refers to the diversity of ecological processes that maintain
interactions among the components of an ecosystem. It is estimated through the
diversity of species traits and functions in a study area. Several functional diversity
indices have been proposed by Rao (1982), Petchey & Gaston (2002), Botta-Dukát
(2005), Villéger et al. (2008), Laliberté & Legendre (2010), and others. In practice,
these indices are computed from species functional traits (quantitative or qualitative
variables) weighted by species abundances.

2 — Evenness, equitability

Several authors, for example Margalef (1974), prefer to directly interpret species
diversity as a function of physical, geographical, biological, or temporal variables,
whereas others consider that species diversity consists of two components, which
should be interpreted separately. These two components are the number of species and
the evenness of their frequency distribution. Although the concept of evenness had
been introduced by Margalef (1958), it was formally proposed by Lloyd & Ghelardi
(1964) for characterizing the shape of distributions such as those in Fig. 6.2, where the
component “number of species” corresponds to the length of the abscissa. In the
literature “evenness” and “equitability” are synonyms terms (Lloyd & Ghelardi, 1964;
see also the review of Peet, 1974). Several indices of evenness have been proposed.

1. The simplest approach to evenness consists in comparing the measured diversity
to the corresponding maximum value. When using H (eqs. 6.1 and 6.34a), diversity
takes its maximum value when all species are equally represented. In such a case,

(6.44)

where q is the number of species. Evenness (J) is computed as (Pielou, 1966):

(6.45)

which is a ratio, whose value is independent of the base of logarithms used for the
calculation. Using the terms defined by Hill (1973a, eqs. 6.31-6.35), Daget (1980)
rewrote eq. 6.45 as the ratio of entropies of orders 1 (eq. 6.34a) and 0 (eq. 6.33a):

J = H1 / H0 (6.46)
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Equations 6.44 and 6.45 show that diversity H combines the number of species (q)
and the evenness of their distribution (J):

(6.47)

2. Hurlbert (1971) proposed an evenness index based on the minimum and
maximum values of diversity. Diversity is minimum when one species is represented
by (n – q + 1) organisms and the (q – 1) others by a single organism. According to
Hurlbert, the following indices are independent of q:

(6.48)

(6.49)

Equation 6.48 was proposed by Patten (1962) as a measure of redundancy (see
Section 6.1). The two indices can be computed for any diversity index D.

3. Instead of dividing the observed diversity by its maximum value, Lloyd &
Ghelardi (1964) proposed to use a model based on the broken stick distribution
(Barton & David, 1956; MacArthur, 1957). To generate this distribution, a set of
individuals is taken as equivalent to a stick of unit length which is broken randomly
into a number of pieces (i.e. in the present case, the number of species q). The divisor
in the evenness formula is the diversity computed from the lengths of the pieces of the
randomly broken stick. The expected lengths (E) of the pieces of the broken stick
(species) yi are given, in decreasing order, by the successive terms of the following
series (Pielou, 1975), corresponding to the successive values i = 1, 2, …, q, for a given
number of species q:

(6.50)

For example, for q = 3 species, eq. 6.50 gives the following lengths for species i = 1
to 3: 0.6111, 0.2778, and 0.1111, respectively (R function: Section 6.6). Diversity of
this series is computed using the formula for H (eq. 6.1 or 6.34a):

(6.51)

The evenness index of Lloyd & Ghelardi (1964), which they called equitability, is
similar to eq. 6.45, with M being used instead of Hmax:

J = H / M (6.52)
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In the same paper, Lloyd & Ghelardi proposed another evenness index:

J = q' / q (6.53)

where q is the observed number of species and q' is the number of species for which
the broken stick model predicts the observed diversity H, i.e. H(q) = M(q'). Values
computed with eq. 6.52 or 6.53 are usually, but not always, smaller than one. Indeed, it
happens that biological populations are more diversified than predicted by the broken
stick model.

4. Troussellier & Legendre (1981) described an index of functional evenness, for
studying bacterial assemblages. In such assemblages, the species level is often poorly
defined. The index bypasses the step of species identification, using instead as data the
set of binary biochemical (and other) descriptors that characterize the microbial
isolates. The authors showed that their index has the usual properties of an evenness
measure. Functional evenness J of a bacterial sampling unit is defined as:

(6.54)

where I and Imax are measures of information, c is the number of binary descriptors
used, and pi is the proportion of positive responses to test i.

Evenness indices 6.44, 6.47, 6.51, and 6.52 all suffer from the problem that they
depend on field estimation of the number of species in the population; in other words,
q is not a fixed and known value but a random variable. Because the true value of q is
not known and cannot be estimated from the data, there is no formula for computing a
standard error (and, thus, a confidence interval) for these estimates of J. This point has
been stressed by Pielou (1975) for eq. 6.45. This is not the case with eq. 6.54, where
the denominator of J is a constant (Imax = c log 0.5 where c is the number of binary
descriptors used in the calculation). Several methods may be used for computing the
confidence interval of J (e.g. the jackknife, briefly described at the end of
Subsection 1.2.4). Legendre et al. (1984b) provided examples where the computation
of confidence intervals for J, measured during biodegradation experiments, showed
that significant changes had taken place, at some point in time, in the structure of the
bacterial assemblages involved in the biodegradation processes.

In varying environments, the ecological interpretation of the two components of
diversity (eq. 6.47) could be carried out, for example, along the lines proposed by
Legendre (1973). (1) The number of species may be a function of the stability of the
environment. Indeed, a more stable environment entails a higher degree of
organization and complexity of the food web (Margalef, 1958), so that such an
environment contains more niches and, thus, more species. The number of species is
proportional to the number of niches since, by definition, the realized niche of a
species is the set of environmental conditions that this species does not share with any
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other sympatric species (Hutchinson, 1957, 1965). This approach has the advantage of
linking species diversity to environmental diversity. (2) The evenness of species
distribution may be inversely related to the overall biological activity in the studied
environment; the lower the evenness, the higher the biological activity
(e.g. production, life cycles, energy flows among trophic levels). On a seasonal basis,
another factor may contribute to lower the evenness. In an environment where
interspecific competition is low (high evenness), seasonal reduction of resources or
deterioration of weather conditions could induce stronger competition and thus favour
some species over others, which would decrease the evenness. The same is often
observed in cases of pollution.

3— Species diversity through space

A most interesting property of species diversity is its organization through space. This
phenomenon, which is now well known to community ecologists, was first discussed
by Whittaker in two seminal papers (1960, 1972) where he described the alpha, beta
and gamma diversity levels. The development of multiscale spatial analysis of
communities (Chapter 14) is grounded in Whittaker’s concept of beta diversity.

Alpha (%) diversity is the diversity in species composition at individual sites i
(e.g. plots, quadrats; %i in Fig. 6.3). The indices used for alpha diversity estimate, in
different ways, the variance in the species identity of individuals observed at a given
site. A monoculture, for example, has the lowest possible alpha diversity because there
is no variance in species identity among the individuals. Alpha diversity is measured
by one of Rényi’s entropy indices H0 (eq. 6.33a), H1 (eq. 6.34a) or H2 (eq. 6.35a), by
Hill’s diversity numbers N0 (richness, eq. 6.33b), N1 (eq. 6.34b) or N2 (eq. 6.35b), or
by some other indices such as Fisher’s % logarithmic series parameter (Fisher et al.,
1943). The most commonly used indices are N0, H1 and N2, mentioned in Fig. 6.3.

Gamma (5) diversity is the diversity of the whole region of interest in a study (5 in
Fig. 6.3). It is usually measured by pooling the observations from a group of sampling
units (which form a sample in the statistical sense), i.e. a large number of sites from the
area of interest, except in cases where the community composition of an entire area is
known, e.g. the CTFS permanent forest plots*. Gamma diversity is measured using the
same indices as alpha diversity. 

Beta (6) diversity is of different nature: it is conceptually the variation in species
composition among sites in the geographic area of interest (Legendre et al., 2005,
Anderson et al., 2006; 6 in Fig. 6.3). Its value will vary with the extent of the area, the
physical size of the sampling units and the sampling interval in the area under study,
which form three aspects of the study scale (Section 13.0). Studies of beta diversity
can actually focus on two aspects of community structure (Anderson et al., 2011). The

*   A map of the Center for Tropical Forest Science (CTFS) forest plots, and details about each
plot, are available on the Web page http://www.ctfs.si.edu/.
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first one is turnover, or the change in community composition between adjacent
sampling units, explored by sampling along a spatial, temporal, or environmental
gradient. The second is a non-directional approach to the study of community variation
through space [or time]; it does not refer to any specific gradient but centres on the
variation in community composition among the study units. The present section
focuses on the second approach, as it links the concept of beta diversity with the
analysis of the variation of community data matrices performed by the methods
described in the following chapters.

If the variation in community composition is random and accompanied by biotic
processes (e.g. reproduction) that generate spatial autocorrelation in the species data
due to their limited dispersal (Subsection 1.1.1, model 2; Fig. 1.5, case 3), a gradient in
species composition may appear (called a “false gradient” in Subsection 13.1.2) if the
sampling area is small compared to the dispersal distance. Beta diversity can then be
interpreted in terms of the rate of change, or turnover, in species composition along
that gradient. Ecologists often refer to this turnover to explain beta diversity. The

Figure 6.3 Species diversity indices are computed from the community composition data (matrix Y). Alpha
(%) diversity indices are computed for individual sites (rows) i. Gamma diversity (5) is
computed from the vector of column sums of the data matrix using the same indices as for alpha
diversity. Beta (6) diversity is of a different nature: it is the variation in community composition
among sites. It cannot be computed with the usual entropy of diversity number indices.
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community spatial structure is often more complex than a single gradient, however: if
differentiation among sites is due to environmental factors, which may combine
gradient-like and patchy geographic distributions, beta diversity should be analysed
with respect to the hypothesized forcing environmental variables (Subsection 1.1.1,
model 1; Fig. 1.5, case 4). In ecosystems, beta diversity may be caused concurrently
by varying proportions of these two processes (i.e. induced spatial dependence and
true autocorrelation due to biotic processes: Fig. 1.5, case 5). Chapter 14 will show
how these two types of hypotheses about the processes that generate beta diversity can
be disentangled.

Whittaker (1960, 1972) showed that beta diversity could be estimated using either
presence-absence or quantitative species data. Ecologists use both types of measures to
study beta diversity, although some researchers only refer to presence-absence data
when they talk about the rate of species replacement, or turnover, along an ecological
gradient. In the ordination literature, however, ecologists most often use species
abundance data to study turnover rates by reference to the appearance and
disappearance of species with unimodal distributions along gradients. 

A first method, proposed by Whittaker (1960, 1972), for obtaining a global
measure of beta diversity from species presence-absence data, is to compute the ratio
of two diversity indices: 6 = , where S is the number of species in a composite
community composition vector representing the area of interest, and  is the mean
number of species observed at the sites that were used to compute S. This is a
multiplicative approach, where S represents gamma diversity. The ratio  indicates
how many more species are present in the whole region than at an average site, and
uses that value as the measure of beta diversity. Other beta diversity indices have been
reviewed by Koleff et al. (2003), Magurran (2004), Tuomisto (2010) and Anderson et
al. (2011).

An alternative, additive approach had been present in the literature since
MacArthur et al. (1966), Levins (1968) and Allan (1975). It was revived by Lande
(1996) and has been widely used since then (Veech et al., 2002). In that approach,
DT = Damong –  where DT is the total (gamma) diversity. This approach can be
applied to species richness N0 (eq. 6.33b), Shannon information H1 (eqs. 6.1 and
6.34a), or Simpson diversity D = (1 – 1) (eq. 6.41); see Lande (1996) for details.
Because diversities are variances, one recognizes an analysis of variance approach in
that equation. 

Whittaker (1960, 1972) suggested that beta diversity could also be estimated from
distance matrices computed among sites. This approach is based on the fact that a
distance between two sites, computed from community composition data, provides a
measure of the variation, or beta diversity between these sites. Distance matrices
computed using appropriate indices (Chapter 7) thus assess the pairwise beta diversity
among all pairs of sites. To obtain an overall index of beta diversity over a group of
sites, Whittaker (1972) suggested to use the mean (not the variance) of the distances
among sites: “the mean CC [i.e. the distance coefficient that is the complement of

S %
%

S %

Dwithin
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Jaccard’s coefficient of community, D = 1 – S7 in Table 7.2] for samples of a set
compared with one another [...] is one expression [of] their relative dissimilarity, or
beta differentiation” (Whittaker, 1972: 233). Whittaker derived his concept from the
index of biotal dispersity suggested fifteen years before by Koch (1957). Whittaker
thus acknowledged the fact that dissimilarities (i.e. distances, Chapter 7) are
themselves measures of the differentiation between sites.

Box 6.1 shows that the total variation of a data matrix Y, e.g. the one shown in
Fig. 6.3, can be computed either from Y itself or from a distance matrix D derived
from Y. This equality is pertinent here as it shows the equivalence of Whittaker’s
overall measure of beta diversity computed from a distance matrix, D, and beta
diversity defined as the variation in species composition among sites, which can be
measured by the total variation in matrix Y, SS(Y). Indeed, SS(Y) can be computed
from matrix D using eq. 6.56. For distance matrices that are not Euclidean but whose
square root is Euclidean, one may use eq. 6.58. The distance functions that Whittaker
(1972) was citing, i.e. 1 – S7 (Jaccard), 1 – S8 (Sørensen), D9 (Whittaker), and D14
(percentage difference), pertain to that group. Box 6.1 shows that eq. 6.58 is a logical
choice for the computation of SS(Y) for such distance functions. 

To sum up, beta diversity can be estimated as the total variation in Y using two
different equations: by computing eq. 6.55 from the raw data table Y, or computing
eq. 6.56 on distances that have the Euclidean property, e.g. the Euclidean, chord, chi-
square and Hellinger distances. Equation 6.58 is an alternative reasonable choice for
distances whose square root is Euclidean, e.g. the (1 – Jaccard), (1 – Sørensen),
Whittaker, and percentage difference distances.

An interesting observation is that for the chord and Hellinger distances, the
maximum possible value of total variance Var(Y), computed by applying eq. 6.56
followed by eq. 6.57, is 1. The maximum values are obtained when all sites in table Y
have entirely different species compositions. Similarly for community composition
data transformed using the chord or Hellinger transformations (Section 7.7), the
maximum possible value of Var(Y), computed using eq. 6.55 followed by eq. 6.57,
is 1. Hence, using these transformations or distances, the estimates of beta diversity
provided by Var(Y) are easily comparable since they fall in the range 0 to 1.

Total
variation
of Y
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SS(Y), Var(Y) Box 6.1

The total variation in a data matrix Y with n rows and p columns can be computed
in two ways, which produce the same result.

• First method — Centre each column of Y on its mean using eq. 1.9 to obtain
matrix Ycent = [ ], then compute the sum of these centred values squared:

SS(Y) =  = (6.55)

This is the total variation, or total sum of squares, of matrix Y. It is noted SS(Y), or
 in eq. 8.5. 

• Second method — Compute a Euclidean distance matrix D = [Dih] among the n
rows of Y using distance function D1 (eq. 7.32, Chapter 7). Then, calculate

SS(Y) = (6.56)

using the n(n – 1)/2 distances from the upper [or lower] triangular portion of D.
SS(Y) computed in this way is called  in eq. 8.6. The equivalence of these two
ways of computing SS(Y) (Fig. 8.18) is demonstrated in Appendix 1 of Legendre &
Fortin (2010). 

The total variance in Y can be calculated from SS(Y) computed either way: 

Var(Y) = SS(Y)/(n – 1) (6.57)

Besides eq. 6.56, there are three other ways of computing SS(Y) from D:

• SS(Y) is the trace of the Gower-centred distance matrix 71 derived from D
(eqs. 9.40 and 9.41, Chapter 9).

• SS(Y) is the sum of the eigenvalues of 71, i.e. the eigenvalues of the principal
coordinate analysis (PCoA) of D.

• SS(Y) is the total sum of squares of the principal coordinates of D (e.g. Table 9.9).
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Box 6.1 (continued)

Equation 6.56 can be applied to any distance matrix D, Euclidean or not.

• Euclidean distances — For distances that have the Euclidean property (Tables 7.2 and 7.3),
the rectangular matrix Y' obtained by principal coordinate analysis of D contains real
numbers only. The distances among the rows of Y' computed using the Euclidean distance
function D1 (eq. 7.32) are equal to the distances in D (Subsection 9.3.3). Thus the total sum
of squares in Y' computed with eq. 6.55 is equal to SS(Y) computed by applying eq. 6.56
to D. 

Four of the Euclidean distance functions recommended for community composition data
in Table 7.4 — the chord distance D3 (eq. 7.35), the distance between species profiles D18
(eq. 7.53), the chi-square distance D16, (eq. 7.55) and the Hellinger distance D17 (eq. 7.56)
— have an additional property: eq. 6.55 computed from community composition data
transformed using the chord (eq. 7.67), profile (eq. 7.68), chi-square (eq. 7.70) or Hellinger
transformations (eq. 7.69) produces values of SS(Y) identical to those computed using
eq.  6.56 with the chord, species profiles, chi-square and Hellinger distance matrices.

• Non-Euclidean distances — Examples of distance functions described in Chapter 7 that do
not have the Euclidean property in their basic form are the Jaccard distance (1 – S7), the
Sørensen distance (1 – S8), the percentage difference distance (D14 = 1 – S17; D14 is called
the Bray-Curtis distance in some computer packages), and the Whittaker distance (D9); they
may produce negative eigenvalues in principal coordinate analysis (PCoA, Section 9.3). For
these distances, one can still compute eq. 6.56, but the corresponding matrix Y' of principal
coordinates contains both real and complex (imaginary) axes (Subsection 9.3.4).
Equation 6.55 can still be computed for Y' (McArdle & Anderson, 2001) with the result that
SS(Y') is equal to the total sum of squares computed from D using eq. 6.56. 

Ecologists may not be comfortable, however, in considering a matrix Y' that contains
complex axes as a fair representation of community composition data. Luckily, there is
another way: matrix D' = [ ], which contains the square roots of the distances, is
Euclidean for these (and some other) distance functions, as shown in Tables 7.2 and 7.3.
Hence, SS(Y) computed by applying eq. 6.56 to D' is equal to the total variation (eq. 6.55) of
the rectangular data matrix Y" obtained by principal coordinate analysis (PCoA) of D', and
this time Y" only contains real axes. So, for these non-Euclidean distance functions, because
Dih is equal to , an appropriate formula for computing SS(Y) for the original matrix
D = [Dih] is: 

SS(Y) = (6.58)
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6.6 Software

Two-way and multiway contingency table analysis are available in most commercial
statistical software. The R language also offers functions implementing the methods
described in this chapter. 

1. In R, the standard function to conduct the Pearson chi-square test on a contingency
table crossing two qualitative variables is chisq.test() of STATS; parametric and
permutation tests are available in that function. Package SURVEY contains several
functions to construct contingency tables and perform chi-square tests of association
for survey data. Using cross-classifying factors, functions table() and ftable() of BASE
construct two-way or multi-way contingency tables crossing factor levels. Function
table.cont() in ADE4 plots contingency table data into a graph.

Function mantelhaen.test() of STATS performs a Cochran-Mantel-Haenszel chi-
square test of interaction between two factors in three-way contingency tables. Also in
STATS, function loglin() fits log-linear models to multidimensional contingency
tables*. 

2. R functions for studying diversity are found in packages BIODIVERSITYR, VEGAN
and PICANTE. Rarefaction curves are computed by VEGAN’s function rarefy(). In a
phylogenetic context, specaccum.psr() in PICANTE computes a rarefaction curve for
phylogenetic species richness.

Function dbFD() of package FD computes seven functional diversity indices.
Among these, Rao’s (1982) quadratic entropy is also computed by functions divc() of
ADE4 and raoD() of PICANTE. The broken-stick distribution is computed by function
bstick() in VEGAN.

*  A tutorial is available at the Web address http://ww2.coastal.edu/kingw/statistics/R-
tutorials/loglin.html.
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7.0 The basis for clustering and ordination

 

For almost a century, ecologists have collected quantitative observations to determine
the resemblance between either the objects under study (sites) or the variables
describing them (species or other descriptors). Objects and descriptors are defined in
Section 1.4. Measuring the association (Section 2.2) between objects (Q mode) or
descriptors (R mode) is the first, and sometimes the only step in the numerical analysis
of ecological data. The various modes of analysis are discussed in Section 7.1. It may
indeed happen that examining the association matrix suffices to elucidate the structure
and thus answer the question at the origin of the investigation.

The present chapter provides a review of the main measures of association
available to ecologists. Section 7.2 introduces the three types of association
coefficients; the measures pertaining to each type — similarity, distance, and
dependence — are described in Sections 7.3 to 7.5, respectively. In order to help
ecologists choose from among this plurality of coefficients, Section 7.6 summarizes
criteria for choosing a coefficient; the criteria are presented in the form of
identification keys. Ecologists who do not wish to study the theory that underlies the
measures of association may directly go to Section 7.6 after making themselves
familiar with the terminology (Sections 7.1 and 7.2). When necessary, they may then
refer to the paragraphs of Sections 7.3 to 7.5 describing the measures of interest.

In the next chapters, measures of resemblance between objects or descriptors will
be used to cluster the objects or descriptors (Chapter 8) or to produce ordination
diagrams in spaces of reduced dimensionality (Chapter 9). The clustering of objects
(or descriptors) is an operation by which the set of objects (or descriptors) is
partitioned in two or more subsets (clusters), using pre-established rules of
agglomeration or division. Ordination in reduced space is an operation by which the
objects (or descriptors) are represented in a space that contains fewer dimensions that
in the original data set; the positions of the objects or descriptors with respect to one
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another may also be used to cluster them. Both operations are often carried out on
association matrices, which are computed as described in the following sections.

 

7.1 Q and R analyses

 

As noted by Cattell (1952), the ecological data matrix may be studied from two main
viewpoints. One may wish to look at relationships among either the objects or the
descriptors. The important point here is that these modes of analysis are based on
different measures of association. The different types of coefficients are described in
Section 7.2. Measuring the dependence between descriptors is done using coefficients
like Pearson’s 

 

r

 

 correlation coefficient (eq. 4.7, Section 4.2), so that studying the data
matrix based on such coefficients is called 

 

R analysis

 

. By opposition, studying the data
matrix to uncover relationships among objects is called 

 

Q analysis

 

 (Fig. 2.1).

Cattell (1966) had also observed that the 

 

data box

 

 (objects 

 

× 

 

descriptors 

 

×

 

 time
instances; Fig. 7.1) may be looked at from other viewpoints than simply Q and R. He
defined six modes of analysis:

O: among time instances, based on all observed descriptors (a single object);
P: among descriptors, based on all observed times (a single object);
Q: among objects, based on all observed descriptors (a single instance);
R: among descriptors, based on all observed objects (a single instance);
S: among objects, based on all observed times (a single descriptor);
T: among time instances, based on all observed objects (a single descriptor).

In the present chapter, the discussion of association coefficients will deal with the two
basic modes only, i.e. Q measures (computed among objects) and R measures
(computed among descriptors).

O-mode studies are conducted using Q measures; see, for example, Section 12.6.
Similarly, P-mode studies are generally carried out with the usual R-type coefficients.
When the data set forms a time series, however, P studies are based on special R-type
coefficients that are discussed in Chapter 12: cross-covariance, cross-correlation, co-
spectrum, coherence. 

S- and T-mode studies mostly belong to autecology, i.e. studies involving a single
species. S-mode comparisons among objects use the same coefficients as in P-mode
analysis. Studying the relationship between “descriptor 

 

y

 

 observed at site 

 

x

 

1

 

” and “the
same descriptor 

 

y

 

 observed at site 

 

x

 

2

 

” is analogous to the comparison of two
descriptors along a time axis.

In T-mode studies, a variable is observed across several objects (sites, etc.) and
different instances through time. Statistical tests of hypothesis for related samples are
often applicable to these problems; see Table 5.2. In other cases, the two time instances

R mode
Q mode
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to be compared are considered to define two descriptors, as in the S mode, so that
normal R-type measures may be used. Environmental impact studies form an
important category of T-mode problems; ecologists should look at the literature on
BACI designs when planning such studies (Before/After – Control/Impact: Green,
1979; Bernstein & Zalinski, 1983; Stewart-Oaten 

 

et al.

 

, 1986; Underwood, 1991,
1992, 1994).

It is not always obvious whether an analysis belongs to the Q or R mode. As a
further complication, in the literature, authors define the mode based either on the
association matrix or on the purpose of the analysis. Principal component analysis
(Section 9.1), for instance, is based on a dispersion matrix among descriptors
(R mode?), but it may be used for ordination of either the objects (Q mode?) or the
descriptors (R mode?). In order to prevent confusion, in the present book, any study
starting with the computation of an 

 

association matrix among objects

 

 is called a

 

Q analysis

 

 whereas studies starting with the computation of an 

 

association matrix
among descriptors

 

 are referred to as 

 

R analyses

 

. In Chapter 9 for example, it is

Figure 7.1 The three-dimensional data box (objects × descriptors × times). Adapted from Cattell (1966).
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possible to obtain an ordination of objects in low-dimension space using either the R
method of principal component analysis (Section 9.1) or the Q method of principal
coordinate analysis (Section 9.3). Interestingly, these two analyses lead to the same
ordination of the objects when the principal coordinate analysis is computed from a
Euclidean distance matrix (coefficient 

 

D

 

1

 

, Section 7.4), although the results of Q and R
analyses are not always reducible to each other.

The number of dimensions that can be represented on paper is limited to two or
eventually three. Hence, one generally imagines distances among objects (Fig. 7.2) as
embedded in a 2- or 3-dimensional space. Section 7.4 will show that such models can
be extended to any number of dimensions. The descriptor, or 

 

attribute space

 

, is called
A-space. Distances and similarities computed in the present chapter will be based, in
most instances, on measurements made in high-dimensional space. 

The A-space is called 

 

metric

 

 because the reference axes are quantitative, metric
descriptors (Table 1.2). It is also called 

 

Euclidean

 

 because Euclide’s geometry holds in
that space. The qualifier 

 

metric

 

 will be used in different contexts in this book: metric
variable (Table 1.2), metric space (here), metric properties of distances (beginning of
Section 7.4), metric distances (Subsection 7.4.1); see also Plate 3.1, p. 142. Likewise,

 

Euclidean

 

 will refer either to Euclidean space (here), to 

 

the

 

 Euclidean distance 

 

D

 

1

 

(Subsection 7.4.1), to the property of distances that can be embedded in Euclidean
space (Tables 7.2 and 7.3), or to a property of ordination methods and plots (beginning
of Section 9.3).

Figure 7.2 Scatter plot representation of five objects in an A-space with two descriptors. In this graph, the
thickness of the lines that join the objects is proportional to their degree of resemblance with
regard to the two descriptors, i.e. their proximity in the space.
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In addition to the methods described in the present and following chapters, there
exist approaches allowing the analysis of the whole data box instead of subsets, as was
the case in the six modes described above. Examples are found in Williams &
Stephenson (1973), Williams 

 

et al.

 

 (1982), Cailliez & Pagès (1976), Marcotorchino &
Michaud (1979), Kroonenberg (1983: three-way principal component analysis

 

*

 

),
Carlier & Kroonenberg (1996: three-way correspondence analysis) and 

 

Kroonenberg
(2008)

 

.

 

7.2 Association coefficients

 

The most usual approach to assess the resemblance among objects or descriptors is to
first condense all (or the relevant part of) the information available in the ecological
data matrix (Section 2.1) into a square matrix of association among the objects or
descriptors (Section 2.2). In most instances, the association matrix is 

 

symmetric

 

. Non-
symmetric matrices can be decomposed into symmetric and skew-symmetric
components, as described in Section 2.3; the components may then be analysed
separately. Non-symmetric matrices can also be subjected to a special type of
clustering called 

 

seriation

 

 (Section 8.10). In Chapters 8 and 9, objects or descriptors
will be clustered or represented in reduced space after analysing an association matrix.
It follows that 

 

the structure resulting from a numerical analysis is that of the
association matrix; the results of the analysis do not necessarily reflect all the
information originally contained in the ecological data matrix.

 

 This stresses the
importance of choosing an appropriate measure of association. This choice determines
the issue of the analysis. Hence, it must take into account the following considerations:

 

• 

 

The nature of the study (i.e. the initial question and the hypothesis) determines the
kind of ecological structure to be evidenced through an association matrix, and
consequently the type of measure of resemblance to be used.

 

• 

 

The various measures available have different mathematical constraints. The
methods of analysis to which the association matrix will be subjected (clustering,
ordination) may require measures of resemblance with specific mathematical
properties.

 

• 

 

One must also consider the computational aspect, and thus preferably choose a
measure available in a computer package or R function (Section 7.8), or one that can
easily be programmed.

 

*  

 

Program 3WayPack (Kroonenberg & De Roo, 2010) for three-way principal component
analysis and other three-way analyses is available from Pieter M. Kroonenberg, Leiden Institute
of Education and Child Studies, Leiden University, Wassenaarseweg 52, NL-2333 AK Leiden,
The Netherlands. Other three-mode software is described on the Web page: http://three-
mode.leidenuniv.nl/. An overview of these methods can be found in Kroonenberg (2008).
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Ecologists are, in principle, free to define and use any measure of association
suitable for the ecological question under study; mathematics impose few constraints
to this choice. This is why so many association coefficients are found in the literature.
Some of them are of wide applicability whereas others have been developed to meet
specific needs. Several coefficients have been rediscovered by successive authors and
may be known under various names. Reviews of some coefficients can be found in
Cole (1949, 1957), Goodman & Kruskal (1954, 1959, 1963), Dagnelie (1960), Sokal
& Sneath (1963), Williams & Dale (1965), Cheetham & Hazel (1969), Sneath & Sokal
(1973), Clifford & Stephenson (1975), Orlóci (1978), Daget (1976), Blanc 

 

et al.

 

(1976), Prentice (1980), Gower (1985), and Gower & Legendre (1986).

 

1 — Similarity, distance, and dependence coefficients

 

In the following sections, 

 

association

 

 will be used as a general term to describe any
measure or coefficient used to quantify the resemblance or difference between objects
or descriptors, as proposed by Orlóci (1975). With 

 

dependence

 

 coefficients, used in the
R mode, zero corresponds to no association. In Q-mode studies, 

 

similarity

 

 coefficients
between objects will be distinguished from 

 

distance

 

 (or 

 

dissimilarity

 

) coefficients.
Similarities are 

 

maximum

 

 (

 

S

 

 = 1) when the two objects are identical and 

 

minimum

 

when the two objects are completely different; distances follow the opposite rule.
Figure 7.2 shows the difference between the two types of measures: the length of the
line between two objects is a measure of their distance, whereas its thickness, which
decreases as the two objects get further apart, is proportional to their similarity. If
needed, a similarity can be transformed into a distance, for example by computing its
one-complement. For a similarity (

 

S

 

) measure, which takes values between 0 and 1,
the corresponding distance (

 

D

 

) may be computed as:

 

D

 

 = 1 –

 

 S

 

,    ,     or     

We will see in Tables 7.2 and 7.3 and in Subsection 9.3.4 that the choice of a
transformation instead of another may have consequences for the result of ordination
analysis. Distances, which in several cases are not bound by a pre-determined upper
value, can be normalized using eqs. 1.10 or 1.11:

     or     

where 

 

D

 

norm

 

 is the distance normalized in the interval [0, 1]; 

 

D

 

max

 

 and 

 

D

 

min

 

 are the
maximum and minimum values taken by the distance coefficient, respectively.
Normalized distances can be used to compute similarities by reversing the
transformations given above: 

,     ,     or     

The following three sections describe the coefficients that are most useful with
ecological data. Criteria to be used as guidelines for choosing a coefficient are

Dependence
Similarity
Distance

D 1 S–= D 1 S2–=

Dnorm
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------------= Dnorm
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Dmax Dmin–
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discussed in Section 7.6. Section 7.7 describes transformations for community
composition data; each of these transformations is the first step in the calculation of an
asymmetrical distance function described in Section 7.4. Computer programs and R
functions are reviewed in Section 7.8.

 

2 — The double-zero problem

 

Niche theory (Hutchinson, 1957) states that species have ecological “preferences”,
meaning that they have evolved genetic adaptations to specific environmental
conditions, including other species. Species are mostly found at locations where they
encounter appropriate living conditions. The theory also predicts that species have
unimodal distributions along environmental variables (Whittaker, 1967), like the
Gaussian curves in Fig. 4.5: a species is found in greater abundance in some intervals
along the gradients of major environmental variables or along composite axes*. The
position of the mode of a species distribution along an environmental variable can be
interpreted as the optimum value for the species along that variable. Along an
environmental gradient, a species becomes rare and ultimately absent as one departs
from its optimal conditions.

As a consequence, community composition data sampled across a range of
environmental conditions typically contain many zero values. This phenomenon is
discussed in most texts of community and numerical ecology, in particular in
Whittaker (1967), ter Braak (1987c) and ter Braak & Prentice (1988). 

Comparison of sites is often based upon species abundance data. Species are
important indicators of the apportioning of environmental resources among them. The
division of resources should be reflected in the relative productivities of the species
(Whittaker, 1972). The productivity of different species is not easily measured,
however, and ecologists most often rely on other values of species importance such as
number of individuals, biomass, coverage (for plants or corals) or basal area (for
plants).

If a species is present at two sites, this is an indication of similarity between these
sites since they both present conditions that are favourable or at least tolerable for the
species. Likewise, the presence of a species at site 1 and not at site 2 is taken as an
indication of difference in ecological conditions, notwithstanding sampling error†.
However, if a species is absent from two sites, it may be because these sites have
environmental conditions that are outside the niche of the species, and these conditions

*  Composite environmental axes can be computed by ordination (Chapter 9), for instance as the
principal components (PCA, Section 9.1) of a matrix of environmental variables.
†  For a variety of reasons, species may not be observed at sites where they are present. Species
may be inconspicuous, camouflaged, or hidden. With fungi for example, the carpophores of a
species may not appear above ground at the time of a survey although the mycelium is present in
the soil. When sampling is done “blindly”, e.g. in a lake or the ocean with a plankton or fish net,
many species may escape capture either randomly of by active avoidance of the sampling gear.

Unimodal
distribution
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may be similar or very different at the two sites. Hence most ecologists do not consider
that the absence of a species from two sites provides univocal or useful information. It
is also understood, of course, that besides unimodal distributions and niche optimality,
several reasons may explain the local absence of a species: the niche of the species
may be present in one (or both) of two sites but be occupied by substitute species;
absence may also be the result of the species dispersion, random local extinction,
historical events, or other processes that cause stochastic variation.

The proportion of zeros in community composition data generally increases with
the variability in environmental conditions among the sampling sites. If sampling has
been conducted along one or several environmental axes, the species present are likely
to differ at least partly from site to site. Including double zeros in the comparison
between sites would result in high values of similarity for the many pairs of sites
holding only a few species, these pairs presenting many double zeros; this would not
provide a correct ecological assessment of the situation. 

Because double zeros are not informative, their interpretation generates the double-
zero problem: is the value of an association coefficient affected by inclusion of double
zeros in its calculation? When choosing an association coefficient, ecologists must pay
attention to the interpretation of double zeros: except in very limited cases
(e.g. controlled experiments involving very few species and with small uncontrolled
ecological variation), it is preferable to draw no ecological conclusion from the
simultaneous absence of a species at two sites. In numerical terms, this means to skip
double zeros when computing similarity or distance coefficients using species
presence-absence or abundance data. Coefficients of this type are called asymmetrical
because they treat double absences in a different way than double presences. 

In similarity coefficients (S), the handling of double zeros is clear in coefficient
formulas (Section 7.3). Similarity coefficients all have a minimum value of 0 and a
maximum value of 1. In symmetrical similarity coefficients, state zero for two objects
is treated in exactly the same way as any other pair of values. This would be the correct
way to handle double zeros in the case, for example, where two lakes are found to have
0 mgL–1 of dissolved oxygen in the hypolimnion in winter because this observation
provides valuable information concerning their physical and chemical similarity and
their capacity to support species. Coefficient S15, for instance, would consider a double
zero as an indication of resemblance between the lakes and include this information in
the overall assessment of their similarity.

In distance coefficients (D, Section 7.4), however, one has to examine if the value
computed for pairs of sites depends primarily on which species are present at each site
(asymmetrical coefficients), or strictly on the numerical differences between species
abundances (symmetrical coefficients). Symmetrical coefficients like the Euclidean
distance (D1) will be shown to lead to incorrect conclusions from an ecologist’s
viewpoint (see Fig. 7.8). The asymmetrical distance coefficients all have a fixed upper
bound, which is either 1 or  in most cases.

Double-zero
problem

Asym-
metrical
coefficient

Symmetrical
coefficient

2
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Because ordination methods implicitly (PCA, CA, Sections 9.1 and 9.2) or
explicitly (PCoA, Section 9.3) use a distance function as their metric to position
objects with respect to one another in ordination space, it is important to make sure
that the chosen distance coefficient is meaningful for the objects under study,
especially when dealing with community composition data. By choosing an
appropriate distance measure, an ecologist tries to appropriately model the
relationships among the sites for the data at hand. The choice of a similarity or distance
measure (Section 7.6) is an ecological, not a statistical decision.

7.3 Q mode: similarity coefficients

Similarities form a large group of coefficients in the literature. The similarity
coefficients in the present section measure the association between objects. Similarities
take values in the interval [0, 1], 1 being the similarity of two identical objects and of
an object with itself. In contrast to most distance coefficients, similarity coefficients
are never metric (definition at the beginning of Section 7.4) since it is always possible
to find two objects, A and B, that are more similar than the sum of their similarities
with another, more distant, object C. It follows that similarities cannot be used directly
to position objects in a metric space (ordination; Chapter 9); they must be converted
into distances using one of the transformations of Subsection 7.2.1. Which
transformation to use is discussed at the beginning of Section 7.4 and in Tables 7.2 and
7.3. For clustering (Chapter 8), however, algorithms can be easily adapted to conduct
the analysis on either a distance or a similarity matrix.

Similarity coefficients were first developed for binary descriptors, representing
presence-absence data or answers to yes-no questions. They were later generalized to
multi-state descriptors when computers made that possible. Another major dichotomy
among similarity coefficients concerns how they deal with double-zeros or negative
matches. This dichotomy was discussed in Subsection 7.2.2.

The remainder of this section distinguishes between binary and quantitative
similarity coefficients and, for each type, those that use double-zeros or exclude them
from the assessment of resemblance. Tables 7.4 and 7.5 summarize the use of the
various similarity and distance coefficients in ecology.

1 — Symmetrical binary coefficients

In the simplest cases, the similarity between two sites is based on presence-absence
data. Binary descriptors may describe the presence or absence of environmental
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conditions (here) or species (next subsection). Observations may be summarized in a
2 × 2 frequency table:

where a is the number of descriptors for which the two objects are coded 1, d is the
number of descriptors coding the two objects 0, whereas b and c are the numbers of
descriptors for which the two objects are coded differently; and p is the total number of
descriptors. An obvious way of computing the similarity between two objects is to
count the number of descriptors that code the objects in the same way and divide this
by the total number of descriptors:

(7.1)

Coefficient S1
* is called the simple matching coefficient (Sokal & Michener, 1958).

When using this coefficient, one assumes that there is no difference between double-0
and double-1. This is the case, for instance, when any one of the two states of each
descriptor could be coded 0 or 1 indifferently. A variant of this measure is the
coefficient of Rogers & Tanimoto (1960) in which differences are given more weight
than resemblances:

(7.2)

Sokal & Sneath (1963) proposed four other measures that include double-zeros.
They have their counterparts in coefficients that exclude double-zeros, in the next
subsection:

(7.3)

counts resemblances as being twice as important as differences;

*  The numbers of the coefficients found in the first edition of this book (Écologie numérique,
Masson, Paris, 1979) were not changed in subsequent editions because these numbers had
rapidly been adopted by ecologists and used as coefficient identifiers in computer programs.
Coefficients added since the 1983 edition have received sequential numbers.
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(7.4)

compares the resemblances to the differences, in a measure that goes from 0 to infinity;

(7.5)

compares the resemblances to the marginal totals;

(7.6)

is the product of the geometric means of the terms relative to a and d, respectively, in
coefficient S5.

Among the above coefficients, S1 to S3 are of more general interest for ecologists,
but the others may occasionally prove useful to adequately handle special descriptors.
Three additional measures are available in the NTSYSPC package (Section 7.8,
footnote): the Hamann coefficient:

(7.7)

the Yule coefficient:

(7.8)

and Pearson's ! (phi):

(7.9)

where the numerator is the value of the determinant of the 2 × 2 frequency table. " is
actually the square root of the X2 (chi-square) statistic computed from 2 × 2 tables
divided by n (eq. 7.61). In ecology, coefficients of this type are mostly used in R-mode
analyses. These last indices are described in detail in Sokal & Sneath (1963). 

2 — Asymmetrical binary coefficients

Coefficients that parallel those above can be used to compare sites based on species
presence-absence data, where the comparison must exclude double-zeros. The best-
known measure is Jaccard’s (1900, 1901, 1908) coefficient of community. It is often
referred to simply as Jaccard’s coefficient:

(7.10)
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in which all terms have equal weights. The Sørensen coefficient* (1948) gives double
weight to double presences:

(7.11)

because (see above) one may consider that the presence of a species is more
informative than its absence at one site. Absence of a species at one site may be due to
various factors, as discussed in Subsection 7.2.2; it does not necessarily reflect
differences in the environment. Double-presence, on the contrary, is a strong indication
of resemblance. S8 is the binary form of the Steinhaus similarity S17, meaning that its
value is equal to S17 applied to binary data. Before Sørensen, Dice (1945) had used S8
under the name coincidence index in an R-mode study of species associations; this
question is further discussed in Section 7.5.

The distance version of this coefficient, , is a semimetric, as shown
in the example that follows eq. 7.57. A consequence is that principal coordinate
analysis (Section 9.3) of a S8 or D13 resemblance matrix is likely to produce negative
eigenvalues. Solutions to this problem are discussed in Subsection 9.3.4. The easiest
solution is to base the principal coordinate analysis on square-root-transformed
distances  instead of  (Table 7.2).

Another variant of S7 gives triple weight to double presences:

(7.12)

The asymmetrical counterpart to the coefficient of Rogers & Tanimoto (S2 in the
previous subsection) was suggested by Sokal & Sneath (1963). This coefficient gives
double weight to differences in the denominator:

(7.13)

Coefficients S9, S8, S7 and S10 form a series Sw with weights w = {1/3, 1/2, 1, 2}
respectively; w is the weight of (b + c) in the formulas, considering that a receives a
weight of 1. Gower & Legendre (1986) have shown that the coefficients in this series
are monotonically related, meaning that they produce the same results when used in
order-invariant methods like single, complete and proportional-link linkage clustering
(Section 8.5) or nonmetric multidimensional scaling (Section 9.4), which rely on the

*  Some authors refer to this coefficient as having been first described by Czekanowski (1913).
The Czekanowski (1913) paper, written in Polish, is about body part measurements and
anthropology; it deals with quantitative measurement variables only. The index developed in
that paper with the a, b, c symbols has nothing to do with the binary indices (Jaccard, Sørensen)
described in the present section.
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ordinal and not the absolute values of the similarities. Among the symmetrical binary
coefficients, S3, S1 and S2 form a similar series with weights w = {0.5, 1, 2}.

Russell & Rao (1940) suggested a measure that compares the number of double
presences, in the numerator, to the total number of species found at all sites, including
species that are absent (d) from the pair of sites considered:

(7.14)

Kulczynski (1928) proposed a coefficient opposing double-presences to the sum of
disagreements (presence in one site and absence in the other):

(7.15)

Among their coefficients for presence-absence data, Sokal & Sneath (1963)
mention the binary version of Kulczynski’s coefficient S18 for quantitative data:

(7.16)

where double-presences are compared to the marginal totals (a + b) and (a + c).

Ochiai (1957) used, as measure of similarity, the geometric mean of the ratios of a
to the number of species in each site, i.e. the marginal totals (a + b) and (a + c):

(7.17)

Note the relationship to the X2 (chi-square) statistic, where the expected value of the
cell containing the value a is E(a) = (a + b)(a + c)/n. Coefficient S14 is the same as S6
with the portion that concerns double-zeros (d) excluded. S14 is the binary form of both
the chord (D3) and Hellinger (D17) distances (Section 7.4): when applied to binary
data, these two distance coefficients produce values equal to .

Faith (1983) suggested the following coefficient for community composition data,
in which disagreements b and c (presence in one site and absence in the other) are
given a weight opposite to that of double presences a. The value of S26 is not invariant
but decreases with an increasing number of double-zeros:

(7.18)
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3 — Symmetrical quantitative coefficients

Ecological descriptors often have more than two states. Researchers have sometimes
extended the binary coefficients described in Subsection 7.3.1 to accommodate
nonordered multi-state descriptors. For example, the simple matching coefficient can
be used as follows with multi-state qualitative descriptors: 

(7.19)

where the numerator contains the number of descriptors for which the two objects are
in the same state. For example, if a pair of objects was described by the following 10
multi-state qualitative descriptors: 

the value of S1 computed for these data would be: 

S1 (x1, x2) = 4 agreements/10 descriptors = 0.4

It is possible to extend in the same way the use of all binary coefficients to multi-state
descriptors. However, coefficients of this type often result in a loss of valuable
information, especially in the case of ordered descriptors for which two objects can be
compared on the basis of the amount of difference between states.

Gower (1971a) proposed a general coefficient of similarity that can combine
different types of descriptors and process each one according to its own mathematical
type. Although the description of this coefficient may seem a bit complex, it can be
easily translated into a short computer program. The coefficient initially takes the
following form (see also the final form, eq. 7.21):

The similarity between two objects is the average, over the p descriptors, of the
similarities calculated for all descriptors. For each descriptor j, the partial similarity
value s12j between objects x1 and x2 is computed as follows:

• For binary descriptors, sj = 1 (agreement) or 0 (disagreement). Gower proposed two
forms for this coefficient. The form used here is symmetrical, giving sj = 1 to double-
zeros. The other form, used in Gower’s asymmetrical coefficient S19
(Subsection 7.3.4), gives sj = 0 to double-zeros.

Descriptors
Object x1 9 3 7 3 4 9 5 4 1 6
Object x2 2 3 2 1 2 9 3 2 1 6

Agreements 0 + 1 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 4

S1 x1 x2,( ) agreements
p

------------------------------=

S15 x1 x2,( )
1
p
--- s12 j

j 1=

p

#=

Partial
similarity
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• Qualitative descriptors are treated following the simple matching rule stated above:
sj = 1 when there is agreement and sj = 0 when there is disagreement. Double-zeros are
treated as in the symmetrical form of the previous paragraph.

• Semiquantitative descriptors can be handled in various ways in the computation of
S15. In function gowdis() of the R package FD, three options are available for handling
semiquantitative variables, which are called ordered factors in R.

1. With the “classic” option, eq. 7.20 (below) is used as if the values were quantitative.

2. With the “metric” option, the values are ranked across the set of objects under study. Tied
values are replaced by their average ranks. Consider an example where the objects under study
are a subset of a larger data base in which a semiquantitative variable has ten ordered states, but
the subset only contains three of the ten states. With this option, the states are recoded as ranks 1,
2 and 3 (or by the average values of the tied ranks) before they are used in eq. 7.20. Function
daisy() of package CLUSTER also recodes semiquantitative variables in that way before
computing the Gower distance.

3. With the “podani” option, the states and tied ranks are recoded as in the “metric” option.
Equation 7.20 (below) is modified to take tied ranks into account, as proposed by Podani (1999).
The modified eq. 7.20 is shown in the documentation file of the gowdis() function.

With these options, one should make sure that distances between adjacent states are comparable
in magnitude. For example, for a semiquantitative descriptor coded from 1 to 3,  of
eq. 7.20 makes sense only if the difference between states 1 and 2 can be thought of as similar to
the difference between states 2 and 3. If there is too much difference, values  are not
comparable and the semiquantitative descriptor should be converted into an unordered factor.

• Quantitative descriptors (real numbers) are treated in an interesting way. For each
descriptor, one first computes the difference between the states of the two objects

, as in the case of distance coefficients belonging to the Minkowski metric
group (Section 7.4). This value is then divided by the largest difference (Rj) found for
this descriptor across all sites in the study — or if one prefers, in a reference
population*. Since this ratio is actually a normalized distance, it is subtracted from 1 to
transform it into a similarity:

(7.20)

The Gower coefficient may be programmed to include an additional element of
flexibility: no comparison is computed for descriptors where information is missing for
one or the other object. This is obtained by a value wj, called a Kronecker's delta,
describing the presence or absence of information: wj = 0 when the information about

*  In most applications, the largest difference Rj is calculated for the data table under study. In
epidemiological studies, for example, one may proceed to the analysis of a subset of a much
larger database. To ensure consistency of the results in all the partial studies, it is recommended
to calculate the largest differences (the “range” statistic of databases) observed throughout the
whole database for each descriptor j and use these as values Rj when computing S15 or S19.

y1 j y2 j–
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yj is missing for one or the other object, or both; wj = 1 when information is present for
the two objects. The final form of the Gower coefficient is the following:

(7.21)

Coefficient S15 produces similarity values between 0 and 1 (maximum similarity).

One last touch of complexity, which was not suggested in Gower’s paper but is
added here, provides weighting to the various descriptors. Instead of 0 or 1, one can
assign to wj a value between 0 and 1 corresponding to the weight one wishes each
descriptor to have in the analysis. Descriptors with weights close to 0 contribute little
to the final similarity value whereas descriptors with higher weights (closer to 1)
contribute more. Giving a weight of 0 to a descriptor is equivalent to removing it from
the analysis. A missing value automatically changes the weight wj to 0.

The following numerical example illustrates the computation of coefficient S15. In
the example, two sites are described by eight quantitative environmental descriptors.
Values Rj (the range of values among all objects, for each descriptor yj) given in the
table have been calculated for the whole database prior to computing coefficient S15.
Weights w12j are only used in this example to eliminate descriptors with missing
values (Kronecker delta function):

thus S15 (x1, x2) = 4.63/7 = 0.66.

Another general coefficient of similarity was proposed by Estabrook & Rogers
(1966). The similarity between two objects is, as in S15, the sum of the partial
similarities by descriptors, divided by the number of descriptors for which there is
information for the two objects. In their original publication, the authors used state 0 to

Descriptors j Sum

Object x1 2 2 – 2 2 4 2 6
Object x2 1 3 3 1 2 2 2 5

w12j 1 1 0 1 1 1 1 1 = 7
Rj 1 4 2 4 1 3 2 5

|y1j – y2j| 1 1 – 1 0 2 0 1
|y1j – y2j|/Rj 1 0.25 – 0.25 0 0.67 0 0.20

w12js12j 0 0.75 0 0.75 1 0.33 1 0.80 = 4.63

S15 x1 x2,( )

w12 js12 j
j 1=

p

#

w12 j
j 1=

p

#
-----------------------------=
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identify missing values, but any other convention is acceptable, like NA in R. The
general equation of this coefficient is the same as for Gower’s coefficient (eq. 7.21):

(7.22)

As in S15, the wj parameters may be used as weights (between 0 and 1) instead of only
playing the roles of Kronecker deltas. The coefficient of Estabrook & Rogers differs
from S15 in the computation of the partial similarities sj .

In the paper of Estabrook & Rogers (1966), the state values were positive integers
and the descriptors were either ordered or unordered. The partial similarity between
two objects for a given descriptor j is computed using a monotonically decreasing
function of partial similarity. Among all possible functions of this type, the authors
empirically chose the following function of two numbers, d and k:

(7.23)

where d is the distance between the states of the two objects x1 and x2 for descriptor j,
i.e. the same value as  in eq. 7.20; k is a parameter, determined a priori by
the user for each descriptor, that describes how far non-null partial similarities are
permitted to go. Parameter k is equal to the largest difference d for which the partial
similarity s12j (for descriptor j) is allowed to be larger than 0. Values k for the various
descriptors may be quite different from one another. For example, for a descriptor
coded from 1 to 4, one might decide to use k = 1 for this descriptor; for another
descriptor with code values from 1 to 50, k = 10 could be used. For qualitative
descriptors, k is set to 0.

In order to fully understand the partial similarity function s12j (eq. 7.23), readers
are invited to compute s12j by hand in the following numerical example. Values k, are
provided for each descriptor in the table: 

Descriptors j S16 (x1, x2)
Object x1 2 1 3 4 2 1
Object x2 2 2 4 3 2 3

kj 1 0 1 2 1 1
$ $ $ $ $ $

s12j = ƒ (d12j, kj) 1.0 + 0 + 0.4 + 0.5 + 1.0 + 0 = 2.9 / 6 = 0.483
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Values taken by the partial similarity function for the first values of k are shown in
Table 7.1. If k = 0 for all descriptors, S16 is identical to the simple-matching coefficient
for multistate descriptors (eq. 7.19).

These same values of function ƒ(d, k) are shown in Fig. 7.3a, which illustrates how
the function decreases with increasing d. It is easy to see that function ƒ(d, k), which
was originally defined by Estabrook & Rogers for discontinuous descriptors (coded
only with integers: 0, 1, 2, 3, …), can actually be used with real-number descriptors
since the function only requires that d and k be differences, i.e. natural numbers.
Figure 7.3a also raises the question: could ƒ(d, k) take negative values? To accomplish
that, Legendre & Chodorowski (1977) proposed to simply leave out the second line of
eq. 7.23 stating that ƒ(d, k) = 0 when d > k. This is shown in Fig. 7.3b, where the
function decreases over the interval [0, &), taking negative values when d > (k + 1);
differences are subtracted from resemblances in this form of the coefficient. This
contributes to further separate dissimilar objects when the similarity matrix is
subjected to clustering (Chapter 8).

The major interest of S16 over all other coefficients is the possibility to use
predefined partial similarity matrices for environmental descriptors. Estabrook &
Rogers (1966) proposed this alternative for situations where function ƒ(d, k) does not
adequately describe the relationships between objects for some descriptor j. The
approach consists in providing the computer program with a “do-it yourself” matrix
that describes the partial similarities between all states of descriptor j. This partial
similarity matrix replaces in eq. 7.22 the values s12j = ƒ(d12j, k) computed by eq. 7.23

Table 7.1 Values of the partial similarity function ƒ(d, k) in coefficients S16 and S20, for the most usual
values of k (adapted from Legendre & Rogers, 1972: 594).

k d

0 1 2 3 4 5 6 7

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 1 0.40 0.00 0.00 0.00 0.00 0.00 0.00

2 1 0.50 0.20 0.00 0.00 0.00 0.00 0.00

3 1 0.55 0.29 0.12 0.00 0.00 0.00 0.00

4 1 0.57 0.33 0 18 0.08 000 0.00 0.00

5 1 0.59 0.36 0.22 0.13 0.05 0.00 0.00

Partial
similarity
matrix
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for descriptor j; the partial similarity of the other descriptors is computed with eq. 7.23.
Partial similarity matrices may be constructed for any or all descriptors if needed.

Ecological application  7.3a

In a study of terrestrial fauna, Legendre et al. (1978) used the following partial similarity matrix
(matrix unpublished) for the descriptor “category of aquatic ecosystem”, which was one of the
descriptors of the ecosystems where tracks of animal had been recorded in the snow blanket:

1 2 3 4 5 6 7 8 9
1. <5% water 1.0
2. 5-15% water 0.4 1.0
3. >15% water, lakes < 250 ha 0.0 0.4 1.0
4. >15% water, lakes 250-500 ha 0.0 0.3 0.8 1.0
5. >15% water, lakes 500-1000 ha 0.0 0.2 0.7 0.8 1.0
6. >15% water, lakes 1000-2500 ha 0.0 0.2 0.6 0.7 0.8 1.0
7. >15% water, lakes > 2500 ha 0.0 0.2 0.5 0.6 0.7 0.8 1.0
8. >5% rivers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
9. Bordering large rivers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0

Figure 7.3 Coefficients S16 and S20: change in ƒ(d, k) as a function of d, for six values of k, (a) under the
condition ƒ(d, k) = 0 when d > k; (b) without this condition. Adapted from Legendre &
Chodorowski (1977).
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The upper triangle of the matrix is not given; it is symmetric to the lower one. The diagonal may
also be left out because the partial similarity of a state with itself must be 1. It is shown here to
indicate that the matrix contains similarities, not distances. The matrix means that a site from an
area with less than 5% of its surface covered by water is given a partial similarity sj = 0.4 with
another site from an area with 5 to 15% of its surface covered by water. State 1 has partial
similarity with state 2 only; lake systems only have partial similarities with other lake systems,
the similarity decreasing as the difference in lake areas increases; and rivers only have partial
similarities when compared to other rivers. Partial similarity matrices are especially useful with
descriptors that are nonordered, or only partly ordered as is the case here. 

Partial similarity matrices represent a powerful way of using unordered or partly
ordered descriptors in multivariate data analyses. They are useful in the following
cases:

• When, from the user’s point of view, function ƒ(d, k) (eq. 7.23) does not adequately
describe the partial similarity relationships.

• When the descriptor states are not fully ordered. For example, in a study on ponds,
the various states of descriptor “water temperature” may be followed by state “dry
pond”, which is quite different from a lack of information.

• If some states are on a scale different from that of the other states. For example, 0-
10, 10-20, 20-30, 30-40, and then 50-100, 100-1000, and >1000.

• With nonordered or only partly ordered descriptors (including “circular variables”
such as directions of the compass card or hours of the day), if one considers that pairs
of sites coded into different states are partly similar, as in Ecological application 7.3a.

4 — Asymmetrical quantitative coefficients

Subsection 7.3.3 started with an extension of coefficient S1 to multi-state descriptors.
In the same way, the binary coefficients described in Subsection 7.3.2 could be
extended to accommodate multi-state species abundance data. For example, Jaccard’s
coefficient would become:

where the ‘agreement’ quantity in the numerator is the number of species with the
exact same abundance at the two sites. This form would obviously cause the loss of
part of the information carried by species abundance data. 

The classic indices of compositional similarity described in Subsection 7.3.2 are
highly sensitive to sample size, especially for assemblages containing many rare
species. Chao et al. (2005) developed new forms of the Jaccard (S7) and Sørensen (S8)
indices, applicable to quantitative community composition data, that estimate and take
into account the number of unseen shared species. A full description of these indices,

S7 x1 x2,( ) agreements
p double-zeros–
----------------------------------------=
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based on a probabilistic derivation, is found in the Chao et al. (2005) paper. Function
vegdist() of the VEGAN library (with method = "chao") produces distances
corresponding to the modified abundance-based Jaccard similarity index (D = 1 – S).
Numerical simulations reported in the Chao et al. (2005) paper show that the new
estimators of the Jaccard and Sørensen indices are considerably less biased than the
corresponding classic indices (S7, S8) when a substantial proportion of the species are
missing from the sample data.

Other measures are available for species abundance data. They are divided in two
categories: the coefficients that can be used with either raw or normalized data and the
measures whose application should be limited to normalized data. 

• As discussed in Subsection 1.5.6 and Section 7.7, the distribution of abundances of a species
across an ecological gradient may be strongly skewed. Normalization of species abundances
often calls for square root, double square root, or logarithmic transformations. Another way to
obtain approximately normal data is to use a scale of relative abundances with boundaries
forming a geometric progression, for example a scale from 0 (absent) to 7 (very abundant). The
Anderson et al. (2006) transformation (eq. 7.66) is an example of such a recoding method.

• Abundances thus normalized reflect the role of each species in the ecosystem better than the
raw abundance data, since a species represented by 100 individuals at a site does not have a role
10 times as important in the ecological equilibrium as another species represented by 10
individuals, everything else being equal. The former is perhaps twice as important as the latter;
this is the ratio obtained after applying a base-10 logarithmic transformation, and assuming that
numbers 100 and 10 at the site are representative of true relative abundances in the population. 

Some coefficients lessen the effect of the largest differences and may therefore be used
with raw species abundances, whereas others compare the different abundance values
in a more linear way and are thus better adapted to normalized data.

In the group of coefficients to be used with raw species abundances, the best-
known is a coefficient attributed to the Polish mathematician H. Steinhaus by Motyka
(1947) and Motyka et al. (1950). This measure has been rediscovered a number of
times; its one-complement is known as the percentage difference, Odum, or Bray-
Curtis coefficient (eq. 7.58; see note there). It is sometimes incorrectly attributed to
anthropologist Czekanowski (1909 and 1913; Czekanowski’s mean character
difference coefficient is described in Subsection 7.4.1, eq. 7.45). The Steinhaus
coefficient compares two sites (x1, x2) in terms of the minimum abundance of each
species:

(7.24)

where W is the sum of the minimum abundances of the various species, this minimum
being defined as the abundance at the site where the species is the rarest. A and B are
the sums of the abundances of all species at each of the two sites or, in other words, the

S17 x1 x2,( ) W
A B+( ) 2

---------------------------- 2W
A B+( )

---------------------= =
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total number of specimens observed or captured at each site, respectively. Consider the
following numerical example: 

This measure is closely related to the Sørensen coefficient (S8): if presence-absence
data are used instead of species counts, S17 becomes S8 (eq. 7.11).

The distance version of this coefficient, , is a semimetric, as shown
in the example that follows eq. 7.58. A consequence is that principal coordinate
analysis of a D14 resemblance matrix is likely to produce negative values. Solutions to
this problem are discussed in Subsection 9.3.4. The easiest solution is to base the
principal coordinate analysis on square-root-transformed distances 
instead of  (Table 7.2).

The Kulczynski coefficient (1928) also belongs to the group of measures that are
appropriate for raw abundance data. The sum of minima is first compared to the grand
total at each site; then the two values are averaged:

(7.25)

For presence-absence data, S18 becomes S13 (eq. 7.16). For the numerical example
above, coefficient S18 is computed as follows:

Coefficients S17 and S18 always produce values between 0 and 1, although
Kulczynski (1928) multiplied the final value by 100 to obtain a percentage.
Kulczynski’s approach, which consists in computing the average of two comparisons,
seems more arbitrary than Steinhaus’ method, in which the sum of minima is
compared to the mean of the two site sums. In practice, values of these two coefficients
are almost monotonic.

The following coefficients belong to the group adapted to “normalized” abundance
data, meaning here unskewed or not strongly skewed frequency distributions. These
coefficients parallel S15 and S16 of the previous subsection. Concerning coefficient S19,
Gower (1971a) had initially proposed that his general coefficient S15 should exclude

Species abundances A B W
Site x1 7 3 0 5 0 1 16
Site x2 2 4 7 6 0 3 22
Minimum 2 3 0 5 0 1 11

S17 x1 x2,( ) 2 11×
16 22+
------------------ 0.579= =

D14 1 S17–=

D 1 S17–=
D 1 S17–=

S18 x1 x2,( )
1
2
--- W

A
----- W

B
-----+' (

) *=

S18 x1 x2,( )
1
2
--- 11

16
------ 11

22
------+' (

) * 0.594= =
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double-zeros from the comparison (Subsection 7.3.3); this makes it well-suited for
quantitative species abundance data. Since the differences between states are
computed as  and are thus linearly related to the measurement scale, this
coefficient should be used with previously normalized data. The general form is:

 , where (7.26)

• , as in S15,

• and w12j = 0 when y1j = y2j = absence of the species, i.e. (y1j + y2j) = 0; 

• while w12j = 1 in all other cases.

For binary (presence-absence) species data, S19 is equivalent to the Jaccard coefficient
S7. The weights wj could be made to vary between 0 and 1, either to reflect the
biomasses or biovolumes of the different species, or to compensate for selective effects
of the sampling gear. 

Legendre & Chodorowski (1977) proposed an asymmetrical coefficient of
similarity that parallels S16. This measure uses a slightly modified version of the partial
similarity function ƒ(d, k) (eq. 7.23), or else an imposed matrix of partial similarities
as in Ecological application 7.3a. Since S20 processes all differences d in the same
way, irrespective of whether they correspond to high or low values in the scale of
abundances, it is better to use this measure with normalized abundance data. The only
difference between S16 and S20 is in the way in which double-zeros are handled. The
general form of the coefficient is the sum of the partial similarity values over all
species, divided by the total number of species in the combined two sites:

 , where (7.27)

when d % k (I)
• 

when d > k (II)
when yj1 or yj2 = 0 (i.e. yj1 × yj2 = 0) (III)

When comparing the presence of a species at a site with its absence at the other site, a
similarity of 0 is imposed in point III to acknowledge a strong ecological difference.

y1 j y2 j–

S19 x1 x2,( )
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p

#
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• or else sl2j = ƒ(ylj, y2j) is given by a partial similarity matrix, as in Ecological
application 7.3a, in which sl2j = 0 when y1j or y2j = 0,

• and w12j = 0 when y1j or y2j = absence of information, or 
when y1j = y2j = absence of the species, i.e. (y1j + y2j) = 0,

• while w12j = 1 in all other cases. Else, w12j may receive a value between 0 and 1, as
explained above for S19.

In summary, the properties of coefficient S20 are the following:
• when dj > kj, the partial similarity between sites is s12j = 0 for species j (see ƒ(d, k), part II);

• when dj = 0, then s12j = 1 (see ƒ(d, k), part I), except when y1j = 0 or y2j = 0 (see ƒ(d, k),
part III);

• ƒ(d, k) decreases with increasing d, for a given k;

• ƒ(d, k) increases with increasing k, for a given d;

• when y1j = 0 or y2j = 0, the partial similarity between sites is s12j = 0 for species j, even if d12j
is not larger than kj (see ƒ(d, k), part III);

• when kj = 0 for all species j, S20 is the same as the Jaccard coefficient (S7) for multi-state
descriptors.

The above properties correspond to the opinion that ecologists may have on the problem of
partial similarities between normalized (or at least not strongly skewed) species abundances.
Depending on the scale chosen (0 to 5 or 0 to 50, for example), function ƒ(d, k) can be used to
contrast to various degrees the differences between species abundances, by increasing or
decreasing kj, for each species j if necessary. An example of clustering using this measure of
similarity is presented in Ecological application 8.2.

The last quantitative coefficient that excludes double-zeros is called the
/2 similarity. It is the complement of the /2 metric (D15; Section 7.4):

S21 (x1, x2) = 1 – D15 (x1, x2) (7.28)

The discussion of how species that are absent from two sites are excluded from the
calculation of this coefficient is deferred to the presentation of D15.

5 — Probabilistic coefficients

Probabilistic measures form a special category. These coefficients are based on
statistical estimation of the significance of the relationship between objects.

Goodall’s probabilistic coefficient (1964, 1966a) takes into account the frequency
distribution of the various states of each descriptor in the whole set of objects. Indeed,
it is less likely for two sites to both contain the same rare species than a more frequent
species. In this sense, when estimating the similarity between sites, agreement for a
rare species should be given more importance than for a frequent species. Goodall’s
probabilistic index, which had been originally developed for taxonomy, seems
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especially meaningful for ecological classifications, because abundances of species in
different sites are stochastic functions (Sneath & Sokal, 1973: 141). Orlóci (1978)
suggested to use it for clustering sites (Q mode). The index has also been used in the R
mode, for clustering species and identifying associations (Subsection 7.5.2).

The probabilistic coefficient of Goodall is based on the probabilities of the various
states of each descriptor. The resulting measure of similarity is itself a probability,
namely the complement of the probability that the resemblance between two sites is
due to chance. 

The probabilistic index, as formulated by Goodall (1966a), is a general taxonomic
measure in which binary and quantitative descriptors can be used together. The
coefficient as presented here follows the modifications of Orlóci (1978) and is limited
to the clustering of sites based on species abundances. It also takes into account the
remarks made at the beginning of Subsection 7.2.2 concerning double-zeros. The
resulting measure is therefore a simplification of Goodall’s original coefficient,
oriented towards the clustering of sites. The computational steps are as follows:

(a) A partial similarity measure sj is first calculated for all pairs of sites and for
each species j. Because there are n sites, the number of partial similarities sj to
compute, for each species, is n(n – 1)/2. If the species abundances have been
normalized, one may choose either the partial similarity measure

 from Gower’s S19 coefficient or function s12j from
coefficient S20, which were both described above. In all cases, double-zeros must be
excluded. This is done by multiplying the partial similarities sj by Kronecker delta
w12j, whose value is 0 upon occurrence of a double-zero. For raw species abundance
data, Steinhaus’ similarity S17, computed for a single species at a time, may be used as
the partial similarity measure. The chord and Hellinger distances, D3 and D17, could
also be used. The outcome of this first step is a partial similarity matrix, containing as
many rows as there are species in the ecological data matrix (p) and n(n – 1)/2
columns, i.e. one column for each pair of sites; see the numerical example below.

(b) In a second table of the same size, for each species j and each of the n(n – 1)/2
pairs of sites, one computes the proportion of partial similarity values belonging to
species j that are larger than or equal to the partial similarity of the pair of sites being
considered; the sj value under consideration is itself included in the calculation of the
proportion. The larger the proportion, the less similar are the two sites with regard to
the given species.

(c) The above proportions or probabilities are combined into a site × site similarity
matrix, using Fisher’s method, i.e. by computing the product 0 of the probabilities
relative to the various species. Since none of the probabilities is equal to 0, there is no
problem in combining these values, but one must assume that the probabilities of the
different species are independent vectors. If there are correlations among species, one
may use, instead of the original descriptors of species abundance (Orlóci, 1978: 62), a

s12 j 1 y1 j y2 j– R j[ ]–=
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matrix of component scores from a correspondence or principal coordinate analysis of
the original species abundance data (Sections 9.2 and 9.3).

(d) There are two ways to define Goodall’s similarity index. In the first approach,
the products 0 are put in increasing order. Following this, the similarity between two
sites is calculated as the proportion of products that are larger than or equal to the
product for the pair of sites considered:

(7.29)

(e) In the second approach, the /2 value corresponding to each product is
computed, under the hypothesis of independence of the products:

This /2-statistic has 2p degrees of freedom (p is the number of species). The similarity
index is the complement of the probability associated with this /2, i.e. the complement
of the probability that a /2 value taken at random exceeds the observed /2 value:

(7.30)

It should be clear to the reader that the value of Goodall’s index for a given pair of
sites may vary depending on the sites included in the computation, since it is based on
the rank of the partial similarity for that pair of sites among all pairs. This makes
Goodall’s measure different from the other coefficients discussed so far.

The following numerical example illustrates the computation of Goodall’s index. In this
example, five ponds are characterized by the abundances of eight zooplankton species. Data are
on a scale of relative abundances, from 0 to 5 (data from Legendre & Chodorowski, 1977).

Species
Ponds

Range Rj212 214 233 431 432
1 3 3 0 0 0 3
2 0 0 2 2 0 2
3 0 2 3 0 2 3
4 0 0 4 3 3 4
5 4 4 0 0 0 4
6 0 2 0 3 3 3
7 0 0 0 1 2 2
8 3 3 0 0 0 3

S22 x1 x2,( )

d
pairs
#

n n 1–( ) 2
----------------------------- where 
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(a) Gower’s matrix of partial similarities has 8 rows and n(n – 1)/2 = 10 columns which
correspond to the 10 pairs of ponds:

(b) In the next table, one computes, for each pair of sites and each row (species), the
proportion of partial similarity values in the row that are larger than or equal to the partial
similarity of the pair of sites being considered. The value under consideration is itself included
in the proportion. For example, for the pair of ponds (214, 233), the third species has a similarity
of 0.67. In the third row, there are 3 values out of 10 that are larger than or equal to 0.67. Thus
the ratio associated with the pair (214, 233) in the table is 0.3.

Species
Pairs of ponds

212 212 212 212 214 214 214 233 233 431
214 233 431 432 233 431 432 431 432 432

1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0
3 0.33 0 0 0.33 0.67 0.33 1 0 0.67 0.33
4 0 0 0.25 0.25 0 0.25 0.25 0.75 0.75 1
5 1 0 0 0 0 0 0 0 0 0
6 0.33 0 0 0 0.33 0.67 0.67 0 0 1
7 0 0 0.50 0 0 0.50 0 0.50 0 0.50
8 1 0 0 0 0 0 0 0 0 0

Species
Pairs of ponds

212 212 212 212 214 214 214 233 233 431
214 233 431 432 233 431 432 431 432 432

1 0.1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 0.1 1 1
3 0.7 1 1 0.7 0.3 0.7 0.1 1 0.3 0.7
4 1 1 0.7 0.7 1 0.7 0.7 0.3 0.3 0.1
5 0.1 1 1 1 1 1 1 1 1 1
6 0.5 1 1 1 0.5 0.3 0.3 1 1 0.1
7 1 1 0.4 1 1 0.4 1 0.4 1 0.4
8 0.1 1 1 1 1 1 1 1 1 1
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(c) The next table is a site × site symmetric matrix, in which are recorded the products of the
terms in each column of the previous table: 

(d) The first method for computing the similarity consists in entering, in a site × site matrix,
the proportions of the above products that are larger than or equal to the product corresponding
to each pair of sites. For example, the product corresponding to pair (212, 431) is 0.28. In the
table, there are 3 values out of 10 that are larger than or equal to 0.28, hence the similarity S22
(212, 431) = 0.3 (eq. 7.29). 

(e) If the chosen similarity measure is the complement of the probability associated with /2

(eq. 7.30), the following table is obtained. For example, to determine the similarity for pair
(212, 431), the first step is to compute /2 (212, 431) = –2 loge(0.28) = 2.5459, where 0.28 is the
product associated with that pair in the table at step (d). The value of /2 (212, 431) is 2.5459 and
the number of degrees of freedom is 2p = 16, so that the corresponding probability is 0.9994.
The similarity is the complement of this probability: S23 (212, 431) = 1 – 0.99994 = 0.00006.

Even though the values in the last two tables are very different, the differences are only in
term of scale; measures S22 computed with eq. 7.29 and S23 computed with eq. 7.30 are
monotonic to each other. 

Ponds
Ponds

212 214 233 431 432
212 –
214 0.00035 –
233 1.00000 0.15000 –
431 0.28000 0.05880 0.01200 –
432 0.49000 0.02100 0.09000 0.00280 –

Ponds
Ponds

212 214 233 431 432
212 –
214 1.0 –
233 0.1 0.4 –
431 0.3 0.6 0.8 –
432 0.2 0.7 0.5 0.9 –

Ponds
Ponds

212 214 233 431 432
212 –
214 0.54110 –
233 0.00000 0.00079 –
431 0.00006 0.00869 0.08037 –
432 0.00000 0.04340 0.00340 0.23942 –
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A probabilistic similarity coefficient among sites has been proposed by
palaeontologists Raup & Crick (1979) for species presence-absence data; this is the
type of data usually favoured in palaeoecology. Consider the number of species in
common to sites h and i; this is statistic ahi of the binary coefficients of Section 7.3.
The null hypothesis of the test is H0: there is no association between sites h and i. Two
variants of that null hypothesis are described in steps 2a and 2b below.

The association between sites, measured by ahi , is tested using permutations, and
the p-value is used as a distance coefficient. There are two ways of testing the
significance of statistic ahi depending on the precise null hypothesis one wants to use.

1. Compute the value of the number of species in common, ahi, for each pair of sites h
and i. This is the reference value of the statistic used in step 3. Then go to permutation
method 2a or 2b.

2a. The first method, which is actually a simulation rather than a permutation method,
implements the null hypothesis (H0) that each site has received a random subset of
species from the species pool, which is either the regional pool or the set of species
found in a whole sediment core, while preserving the original species richness at each
site. Raup & Crick (1979) called this formulation of H0 the random sprinkling
hypothesis. Calculate the relative frequency of each species in the whole data matrix Y,
which represents the regional or whole-core species pool. These values will be used as
species weights during permutations. Consider site x1, with species richness s1. To
construct a vector  under permutation, draw s1 species at random from the regional
species pool as follows, taking the computed species weights into account.

• Imagine a stick of length 1 that represents the sum of the weights of all species in
the regional pool. For example, species 1 may be very abundant in the region and
occupy the first 10% of the stick. Species 2, which is rare, may occupy the next
0.2% of the stick. And so on.

• Draw a number at random from a uniform distribution in the [0, 1] interval. Find
the species whose range includes that value on the stick. This is the first species
selected in vector . 

• Remove that species from the stick and rescale the remaining species so that they
fully occupy the [0, 1] interval. Draw a new random number from the uniform
distribution in the [0, 1] interval. The position of that number along the stick
identifies the second species in vector . 

• Repeat the species selection process until s1 species have been selected at random
from the regional species pool. That completes the construction of vector .

Repeat the random species selection process for each site, creating site vectors ,
, …,  under permutation. Compute the number of species in common, , for

each pair of site vectors under permutation.

Permutation
test

Random
sprinkling
hypothesis

x*1

x*1

x*1

x*1

x*2
x*3 x*n a*hi
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2b. The second permutation method implements the null hypothesis (H0) that each
species is distributed at random among the sites. A permutation under this hypothesis
is obtained by permuting at random each vector of species occurrences (i.e. each
column of Y) independently of the other species vectors. The number of occurrences
of each species in the data set is preserved during permutations, but not the original
species richness at each site (which is a measure of alpha diversity, Subsection 6.5.3).
Compute the number of species in common, , for each pair of sites under
permutation. This variant of the permutation method for the ahi-statistic was described
in McCoy et al. (1986). 

3. Repeat step 2 (a or b) a large number of times, e.g. 999 or 9999 times, to obtain the
null distribution of . Add the reference value ahi to the distribution, i.e. the Hope
(1968) correction, which is used here to agree with the description of permutation tests
in Subsection 1.2.2.

4. For each pair of sites, compare ahi to the reference distribution (obtained at step 3)
and calculate the probability p(ahi) that  (one-tailed test), using the procedure
described in Subsection 1.2.2.

The Raup-Crick coefficient is available in distance form in function raupcrick() of
VEGAN. The p-values can be computed in several ways, including method 2a above.

Numerical simulations conducted while writing this chapter to check the type I
error of the two variants of the Raup-Crick test described above showed that
permutation method 2a produced tests that had extremely low levels of type I error,
especially when the species had unequal probabilities of occurrence in the species
pool. This resulted in a great loss of power when testing the association between sites,
to the point that it made the test useless for the analysis of real data because it very
seldom recognized significant site associations. Permutation method 2b produced tests
that still had low levels of type I error, but not as low as with method 2a, also resulting
in a test that had low power to detect significant associations of pairs of sites. As a
result, the Raup-Crick test does not seem useful as a test of significance of the
similarity of pairs of sites. Ecologists may, however, use the similarity or distance
coefficients obtained from that test as they use any other resemblance coefficient
among sites, i.e. as the basis for clustering or ordination, without giving them a strict
significance test interpretation.

When the test is conducted in the upper tail of the distribution of  (step 3), the
probability p(ahi) is expected to be near 0 for sites h and i showing high association,
i.e. with more species in common than expected under the null hypothesis. A value
near 0.5 indicates that the data support the null hypothesis. One could also test in the
lower tail of the distribution, looking for pairs of sites that are significantly dissimilar.
The probability would then be calculated as follows: p(  % ahi). Significantly
dissimilar sites would suggest that some process may have influenced the selection of
species, so that fewer species are common to the two sites than expected under the null
hypothesis. Taking this approach one step further, Chase et al. (2011) rescaled the p-

a*hi

a*hi

a*hi ahi1

a*hi

a*hi
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value in the interval [–1, 1] by subtracting 0.5 and multiplying the result by 2. This
modified index indicates whether local communities are more dissimilar
(approaching 1), as dissimilar (approaching 0), or less dissimilar (approaching –1)
than expected by chance, providing some indication of the possible underlying
mechanisms of community assembly.

The probability computed in the upper tail of the distribution of  behaves like a
distance (Section 7.4) since p-values are small for similar sites. If necessary, the p-
value can be turned into a probabilistic similarity measure of association between sites
x1 and x2 as follows:

S27 (x1, x2) = 1 – p(a12) (7.31)

Vellend (2004) and Vellend et al. (2007) provided a new description of the Raup &
Crick (1979) permutation method (paragraph 2a above) and used the coefficient to
analyse forest plant communities. 

7.4 Q mode: distance coefficients

Distance coefficients are functions that take their maximum values for two objects that
are entirely different, and value 0 for two objects that are identical over all descriptors.
Distances, like similarities, (Section 7.3), are used to measure the association between
objects. Distance coefficients may be subdivided in three groups. The first group
consists of metrics which share the following four properties:

1. minimum 0: if a = b, then D(a, b) = 0;

2. positiveness: if a 2 b, then D(a, b) > 0;

3. symmetry: D(a, b) = D(b, a);

4. triangle inequality: D(a, b) + D(b, c) 1 D(a, c). The sum of two sides of a triangle
drawn in Euclidean space is necessarily equal to or larger than the third side.

Some authors prefer to restrict the use of distance to those coefficients that satisfy
the four metric properties and use dissimilarity as the general term for all coefficients,
i.e. metric, semimetric and nonmetric; see the following paragraphs. 

The second group of distances are the semimetrics (or pseudometrics). These
coefficients do not obey the triangle inequality, which is a theorem in Euclidean
geometry. These measures cannot directly be used to order points in a metric or
Euclidean space because, for three points (a, b and c), the sum of the distances from a
to b and from b to c may be smaller than the distance between a and c. Numerical
examples are given in Subsection 7.4.2. 

a*hi

Metric
properties
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The third group of distances consists of nonmetrics. These coefficients may take
negative values, thus violating the property of positiveness of metrics. Only two such
coefficients are described in this book: S4 and S12.

All similarity coefficient from Section 7.3 can be transformed into distances, as
mentioned in Section 7.2. The metric and Euclidean properties of distance coefficients
resulting from the transformations D = (1 – S) and  are shown in
Table 7.2. These properties determine how to use them in principal coordinate analysis
(PCoA, Section 9.3). Stating that a distance coefficient is not metric or Euclidean
actually means that the coefficient is, sometimes or often, not metric or Euclidean; it
does not mean that the coefficient is never metric or Euclidean. A coefficient is likely to
be metric or Euclidean when the binary form of the coefficient, whose code name
given in the table, is known by the proof of a theorem to be metric or Euclidean, and

D 1 S–=

Table 7.2 Some properties of distance coefficients calculated from the similarity coefficients presented in
Section 7.3. These properties (from Gower & Legendre, 1986), which will be used in
Section 9.3, strictly apply when there are no missing data.

Similarity coefficient D = 1 – S D = 1 – S
metric, etc. Euclidean metric Euclidean

 (simple matching; eq. 7.1) metric No Yes Yes

 (Rogers & Tanimoto; eq. 7.2) metric No Yes Yes

 (eq. 7.3) semimetric No Yes No

 (eq. 7.4) nonmetric No No No

 (eq. 7.5) semimetric No No No

 (eq. 7.6) semimetric No Yes Yes

 (Jaccard; eq. 7.10) metric No Yes Yes

 (Sørensen; eq. 7.11) semimetric No Yes Yes

 (eq. 7.12) semimetric No No No

 (eq. 7.13) metric No Yes Yes

 (Russell & Rao; eq. 7.14) metric No Yes Yes

 (Kulczynski; eq. 7.15) nonmetric No No No

D 1 S–= D 1 S–=
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------------------------------=
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test runs using quantitative data have never turned up cases to the contrary. A
coefficient is said to be Euclidean if the distances are fully embeddable in Euclidean
space; principal coordinate analysis (Section 9.3) of such a distance matrix does not
produce negative eigenvalues. 

For ordered descriptors, distance functions are described in Subsection 7.4.1, in
addition to those derived from similarity coefficients, found in Table 7.2. The metric
and Euclidean properties of these distance coefficients are shown in Table 7.3. How to
use the various distance coefficients is summarized in Tables 7.4 and 7.5.

Table 7.2 Continued.

Similarity coefficient D = 1 – S D = 1 – S
metric, etc. Euclidean metric Euclidean

 (eq. 7.16) semimetric No No No

 (Ochiai; eq. 7.17) semimetric No Yes Yes

 (Gower; eq. 7.21) metric No Yes Likely* (S1)

 (Estabrook & Rogers; eq. 7.22) metric No Yes Likely* (S1)

 (Steinhaus; eq. 7.24) semimetric No Likely* (S8) Likely* (S8)

 (Kulczynski; eq. 7.25) semimetric No No* (S13) No* (S13)

 (Gower; eq. 7.26) metric No Yes Likely

 (Legendre & Chodorowski; 7.27) metric No Yes Likely* (S7)

 (eq. 7.28) metric Yes Yes Yes

 (Goodall; eq. 7.29) semimetric No – –

S23 = 1 – p(/2)  (Goodall; eq. 7.30) semimetric No – –

   (Faith, 1983; eq. 7.18) metric No Yes Yes

* These results follow from the properties of the corresponding binary coefficients (coefficient numbers given),
when continuous variables are replaced by binary variables.
– Property unknown for this coefficient.
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Table 7.3 Some properties of the distance coefficients described in Section 7.4.

Distance coefficient D D
metric, etc. Euclidean metric Euclidean

D1 (Euclidean distance; eq. 7.32) metric Yes Yes Yes

D2 (average distance; eq. 7.34) metric Yes Yes Yes

D3 (chord distance; eqs. 7.35, 7.36) metric Yes Yes Yes

D4 (geodesic metric; eq. 7.37) metric No Yes Yes

D5 (Mahalanobis generalized distance; eq. 7.38) metric Yes Yes Yes

D6 (Minkowski metric; eq. 7.43) metric * – –

D7 (Manhattan metric; eq. 7.44) metric No Yes Yes

D8 (mean character difference; eq. 7.45) metric No Yes Yes

D9 (index of association; eqs. 7.47, 7.48) metric No Yes Yes

D10 (Canberra metric; eq. 7.49) metric No Yes Yes

D11 (coefficient of divergence; eq. 7.51) metric Yes Yes Yes

D12 (coefficient of racial likeness; eq. 7.52) nonmetric No No No

D13 (nonmetric coefficient; eq. 7.57) semimetric No Yes Yes

D14 (percentage difference; eq. 7.58) semimetric No Yes Yes

D15 (/2 metric; eq. 7.54) metric Yes Yes Yes

D16 (/2 distance; eq. 7.55) metric Yes Yes Yes

D17 (Hellinger distance; eq. 7.56 metric Yes Yes Yes

D18 (distance between species profiles; eq. 7.53) metric Yes Yes Yes

D19 (modified mean character difference; eq. 7.46) semimetric No No No

* The result depends on the exponent r.
– Not tested for all exponents r.

D D
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1 — Metric distances

Metric distances have been developed for quantitative descriptors, but they have
occasionally been used with semiquantitative descriptors. Some of these measures (D1,
D2, D5 to D8, D12) should not be used, in general, with species abundances, as will be
seen in the paradox described below, which results from the handling of double-zeros
in the same way as any other value of the descriptors. Coefficients D3, D4, D9 to D11
and D15 to D19 are, on the contrary, well adapted to species abundance data.

The most common metric measure is the Euclidean distance. It is computed using
Pythagoras’ formula from site-points positioned in a p-dimensional space called a
metric or Euclidean space:

(7.32)

When there are only two descriptors, this expression becomes the measure of the
hypotenuse of a right-angled triangle (Fig. 7.4; Section 2.4):

The square of D1 may also be used for clustering purpose. One should notice, however,
that  is a semimetric, which makes it less appropriate than D1 for ordination:

(7.33)
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Figure 7.4 Computation of the Euclidean distance (D1) between objects x1 and x2 in 2-dimensional space.
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The Euclidean distance does not have an upper limit, its value increasing
indefinitely with the number of descriptors. The value also depends on the scale of
each descriptor: changing the scale of some or all descriptors changes the values of D1
in a non-monotonic way. The latter problem may be avoided by using standardized
variables (eq. 1.12) instead of the original data, or by restricting the use of D1 and
other distances of the same type (D2, D6, D7 and D8) to dimensionally homogeneous
data matrices (Chapter 3).

The Euclidean distance may lead to the following paradox when it is used as a
measure of resemblance among sites based on species abundances: sites without any
species in common may be at smaller distance than other sites sharing species. This
would be incorrect from an ecologist’s point of view. This paradox is illustrated by a
numerical example also used in Fig. 7.8 (data modified from Orlóci (1978: 46):

From these data, the following distances are calculated among the sites:

The Euclidean distance between sites x2 and x3, which have no species in common, is
smaller than the distance between x1 and x2 which share species y2 and y3. From an
ecologist’s point of view, this is an incorrect assessment of the relationships among
sites. For environmental descriptors on the contrary, double zeros may well be a valid
basis for comparing sites. D1 should therefore not be used for comparing sites based on
species abundance data. The main difficulty in ecology concerning the Euclidean
distance arises from the fact that frequently used ordination methods, i.e. principal
component and redundancy analyses, order objects in the multidimensional space of
descriptors using D1. The ensuing problems are discussed in Sections 7.7 and 9.1.

Various modifications of D1 have been proposed. First, the effect of the number of
descriptors may be tempered by computing an average distance:

(7.34)

Sites
Species

y1 y2 y3

x1 0 4 8
x2 0 1 1
x3 1 0 0

Sites
Sites

x1 x2 x3

x1 0 7.6158 9.0000
x2 7.6158 0 1.7321
x3 9.0000 1.7321 0

Species
abundance
paradox
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While it is difficult to show that D1 is sensitive to double zeros because D1 has no
upper bound, that demonstration is easy for D2: because of the division by p, D2 has a
maximum value of 1 for presence-absence data. Consider the following example: 

With the first 8 columns of the data table (p = 8),  = 5/8 = 0.625 (D2 = 0.79057),
whereas with all 12 columns (p = 12),  = 5/12 = 0.41667 (D2 = 0.64550). Adding
double zeros has reduced the distance value; this effect would also be demonstrated with
abundance data. D2 is then a symmetrical coefficient in the sense of Subsections 7.2.2
and 7.3.1. This conclusion also applies to D1.

Orlóci (1967b) proposed to use the chord distance to analyse community
composition data. That distance, which is also widely used in genetics (Cavalli-Sforza
& Edwards, 1967), has a maximum value of  for sites with no species in common
and a minimum of 0 when two sites share the same species in the same proportions of
the site vector lengths, without it being necessary for these species to be represented by
the same numbers of individuals at the two sites. This measure is the Euclidean
distance computed after scaling the site vectors to length 1 (normalization of a vector,
eq. 2.7). After normalization, the Euclidean distance computed between two objects
(sites) is equivalent to the length of a chord joining two points within a segment of a
sphere or hypersphere of radius 1. If there are only two species involved, the
normalization places the sites on the circumference of a 90° sector of a circle with
radius 1 (Fig. 7.5). The chord distance may also be computed directly from non-
normalized data through the following formulas:

 = (7.35)

The right-hand formula is a modified form of the Euclidean distance formula. The
inner part of the left-hand form is the cosine of the angle (3) between the two site
vectors (eq. 2.9). So the chord distance formula can be written:

(7.36)

The chord distance is maximum when the species found at two sites are completely
different. In such a case, the normalized site vectors are at 90° from each other on the
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circumference of a 90° sector of a circle (when there are only two species), or on the
surface of a segment of a hypersphere (for p species), and the distance between the two
sites is . This measure solves the problem caused by sites having different total
abundances of species as well as the paradox explained above for D1. Indeed, with D3,
the distances between pairs of sites for the numerical example are:

The chord distance is an Euclidean metric since it is computed with the Euclidean
distance formula (eq. 7.35 right). Adding any number of double zeros to a pair of sites
does not change the value of D3, which is thus an asymmetrical coefficient in the sense
of Subsections 7.2.2 and 7.3.4. Since double zeros do not influence the chord distance,
it can be used to compare sites described by species abundances. 

A transformation of the previous measure, known as the geodesic metric, measures
the length of the arc at the surface of the hypersphere of unit radius (Fig. 7.5):

(7.37)

In the numerical example, pairs of sites (x1, x3) and (x2, x3), with no species in
common, are at an angle of 90°, whereas sites (x1, x2), which share two of the three
species, are separated by a smaller angle (18.4°).

Sites
Sites

x1 x2 x3

x1 0  0.3204 1.4142
x2 0.3204 0 1.4142
x3 1.4142 1.4142 0

Figure 7.5 Computation of the chord distance D3 and geodesic metric D4 between sites x1 and x2.
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Mahalanobis (1936) developed a generalized distance that takes into account the
covariances among descriptors; it produces identical results for variables that are
standardized or not. This measure computes the distance between two points in a space
whose axes are not necessarily orthogonal, in order to take into account the
correlations among descriptors. The formula for the Mahalanobis generalized distance
between two objects x1 and x2 from a data table X is the following:

(7.38)

In this equation,  is the row vector (length = p) of the absolute value differences
between two objects over the p variables and V is the covariance matrix over all
objects in the group (matrix X). The Mahalanobis generalized distance is the square
root of . The principal component analysis framework (Section 9.1) will
provide a geometric interpretation of Mahalanobis distances among objects (eq. 9.14).
The Mahalanobis distance is also the distance preserved among group means in a
canonical space of linear discriminant functions (Section 11.3).

The Mahalanobis distance is also used for comparing groups of objects, w1 and w2,
containing n1 and n2 objects respectively, that are described by the same p variables.
The square of the generalized distance is given by the following formula in that case:

(7.39)

In this equation,  is the row vector (length = p) of the absolute value differences
between the means of the p variables in the two groups of objects. V is the pooled
within-group dispersion matrix of the two groups of objects, estimated from the
matrices of sums of squares and cross products among descriptors centred within each
of the two groups, then added up term by term and divided by (n1 + n2 – 2), as in
discriminant analysis (Table 11.8) and in multivariate analysis of variance:

(7.40)

S1 and S2 are the dispersion matrices (eq. 4.6) of the two groups, so that V takes into
account the within-group covariances among descriptors. This formula can also be
used to calculate the distance between a single object and a group.

If one wishes to test D5 for significance, the within-group dispersion matrices must
be homogeneous (homoscedasticity, Box 1.4). Homoscedasticity of matrices S1 and S2
can be tested using Kullback’s test (eq. 11.41) or through the multivariate
generalization of Levene’s test of homogeneity of variances proposed by Anderson
(2006); the latter is available in function betadisper() of VEGAN. The test of
significance also assumes multinormality of the within-group distributions
(Sections 4.3 and 4.6) although the generalized distance tolerates some degree of
deviation from this condition. 
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To perform the test of significance, the generalized distance is transformed into
Hotelling’s T2 (1931) statistic, using the following equation:

(7.41)

The F-statistic is computed as follows: 

(7.42)

with p and [n1 + n2 – (p + 1)] degrees of freedom. Statistic T2 is a generalization of
Student’s t-statistic to the multidimensional case. It allows one to test the hypothesis
that two groups originate from populations with similar centroids. The final
generalization to several groups, called Wilks 6 (lambda), is discussed in Section 11.3
(eq. 11.42).

The Euclidean distance D1 is the second degree (r = 2) of the Minkowski metric:

(7.43)

Forms of this metric with r > 2 are seldom used in ecology because powers higher than
2 give too much importance to the largest differences . For the exact
opposite reason, exponent r = 1 is used in many instances. The basic form,

(7.44)

is known as the Manhattan metric, taxicab metric, or city-block metric. This refers to
the fact that, for two descriptors, the distance between two objects is the distance on
the abscissa (descriptor y1) plus the distance on the ordinate (descriptor y2), like the
distance travelled by a taxicab around blocks in a city with an orthogonal plan like
Manhattan. This metric presents the same problem for double-zeros as in the
Euclidean distance and thus leads to the same paradox. 

The mean character difference (“durchschnittliche Differenz”, in German),
proposed by anthropologist Czekanowski (1909),

(7.45)

has the advantage over D7 of not increasing with the number of descriptors p. Distance
D8 is metric, since it is the Manhattan metric divided by p which is constant for a given
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data matrix, but it is not Euclidean.  is, however, metric and Euclidean. When
applied to presence-absence data, D8 becomes the one-complement of the simple
matching coefficient (1 – S1).

Equation 7.45 can be used with species abundances if one modifies it to exclude
double-zeros from the calculations. This is done by replacing p by pp, which is the
number of pairs of values in site vectors x1 and x2 that are not double zeros:

(7.46)

For abundance data, this modified mean character difference coefficient has no fixed
upper limit. Neither D19 nor  are metric or Euclidean, which limits their use as
the basis for principal coordinate ordination (Section 9.3). When applied to species
presence-absence data, eq. 7.46 becomes the one-complement of the Jaccard
coefficient (1 – S7), which is metric but not Euclidean, whereas  is both metric
and Euclidean (Table 7.2).

Before computing D19, species abundance data must be transformed to reduce their
distribution skewness. In that respect, Anderson et al. (2006) redescribed distance D19
as a modified form of the asymmetrical Gower coefficient (S19). They applied it to
abundance data transformed following eq. 7.66 and called this combination the
modified Gower dissimilarity.

Whittaker’s index of association (1952) is well adapted to species abundance data,
because each species is first transformed into a fraction of the total number of
individuals at the site before the subtraction. Empty data rows (e.g. sites), where no
species were found, must be excluded from the calculation. The complement of this
index is the following distance, which can be seen as a Manhattan-type (D7) version of
the distance between species profiles D18:

(7.47)

where y1+ is the sum of values in row x1 and y2+ is the sum of values in row x2. The
difference is zero for a species when its relative abundances are identical at the two
sites. An equivalent formula is to compute, over all species, the sum of the smallest
relative abundances at the two sites:

(7.48)

D9 takes values between 0 and 1. The metric and Euclidean properties of D9 were
checked over several community composition data tables: D9 seems to always be

D8

D19 x1 x2,( )
1
pp
------ y1 j y2 j–

j 1=

p

#=

D19

1 S7–

D9 x1 x2,( )
1
2
---

y1 j
y1+
-------

y2 j
y2+
-------–

j 1=

p

#=

D9 x1 x2,( ) 1 min 
y1 j
y1+
-------, 

y2 j
y2+
-------' (

) *

j 1=

p

#–=



306 Ecological resemblance

metric, but it is not Euclidean.  seems, however, to always be metric and
Euclidean. 

The Australians Lance & Williams (1967a) developed several variants of the
Manhattan metric, including their Canberra metric (Lance & Williams, 1966c):

(7.49)

which must exclude double-zeros in order to avoid indetermination. This measure has
no fixed upper limit. It can be shown that in D10, a given difference between abundant
species contributes less to the distance than the same difference between rarer species
(Section 7.6). D10 is a non-Euclidean metric whereas  is both metric and
Euclidean.

The Canberra metric is implemented in the vegdist() function of the VEGAN
package with division of D10 by pp, which is the number of pairs of values that are not
double zeros in the computation of a given D10 value. A metric coefficient taking
values between 0 and 1 is thus obtained. Like D10, D10/pp is a non-Euclidean metric,
which becomes Euclidean when taking its square root. As an ecological similarity
measure, Stephenson et al. (1972) and Moreau & Legendre (1979) used the one-
complement of the Canberra metric with division by pp: 

(7.50)

Clark’s (1952) coefficient of divergence is a modification of Dl0 that uses the
Euclidean distance formula:

(7.51)

D11 is a metric and Euclidean coefficient with a maximum value of 1. Because, in D11,
the difference for each descriptor is first expressed as a fraction, before squaring the
values and summing them, this coefficient is appropriate for species abundance data.
Double-zeros must be excluded from the computation to avoid indetermination. This
coefficient was first described for multivariate taxonomic analysis, where division was
by the number of characters (p) included in the calculation. For community
composition analysis, division must be by pp, the number of non double-zero species
included in the calculation, as in eq. 7.50. 

Another coefficient related to D11 was developed by Pearson (1926) for
anthropological studies under the name coefficient of racial likeness. Using this
coefficient, it is possible to measure a distance between groups of objects, as with the
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Mahalanobis generalized distance D5, but without taking into account the within-
group covariances among descriptors. The formula is:

(7.52)

for two groups of objects w1 and w2 containing respectively n1 and n2 objects;  is
the mean of descriptor j in group i and  is the corresponding variance. Equation 7.52
can produce negative distances when the square-root portion of the equation is smaller
than 2/p, so the coefficient is not a metric in that particular case. 

Other metrics are available to calculate the distance among sites using species
abundances or other types of frequency data; no negative value is allowed in the data.
The first of these coefficients is the distance between species profiles. It is the
Euclidean distance (D1) computed between relative frequencies (e.g. species relative
abundances computed by rows) in a frequency table. In the following example,

yi+ is the sum of the frequencies in row i. After transformation of the data into relative
frequencies, the distance between pairs of rows of the right-hand matrix is computed
using the Euclidean distance formula D1 (eq. 7.32). The equation of the distance
between species profiles is then:

(7.53)

With this equation, the most abundant species contribute predominantly to the sum of
squares. This coefficient is asymmetrical, meaning that it is insensitive to double-
zeros; the upper limit of D18 is  for sites that have no species in common.

The /2 metric D15 is a weighted form of the distance between species profiles D18.
In the calculation of the sum of squares, each squared difference between relative
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frequencies of a pair of rows is weighted by the inverse of the frequency of its
column j, y+j , computed across the whole table, as shown in the following example: 

The /2 metric is computed using the following equation:

(7.54)

Thus D15, as well as the chi-square distance (D16, next distance), give higher weights
to the rare than to the common species in the calculation of the distance. This distance
is recommended when the rare species are considered to be good indicators of special
ecological conditions. 

For the numerical example, computation of D15 between the first two sites (rows)
gives:

The fourth species, which is absent from the first two sites, cancels itself out. This is
how the /2 metric excludes double-zeros from the calculation. 

The upper limit of D15 is . This value is only obtained when there is a single
species presence (with an abundance of 1) in the sites producing this value and each
species has a total abundance of 1 in the data table; there may be, or not, multiple
species with abundances of 1 at other sites than those producing values of D15 = .
In all other situations, the distances among sites are smaller than . To avoid
indetermination, absent species (with total abundances of 0) must be eliminated from
the data table before the coefficient is computed. D15 is asymmetrical since it has an
upper limit and its value is not affected by double-zeros.

The /2 metric D15 can be calculated either among the rows or among the columns
of a frequency table. If it is computed among the rows (Q-mode analysis), the relative
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frequencies yij/yi+ are computed across the values of each object (e.g. site). If it is
computed among columns (R-mode analysis), the relative frequencies yij/y+j are
computed across the values of each column (e.g. species), interchanging rows for
columns in eq. 7.54. For example, D15 was used by Roux & Reyssac (1975) to
calculate distances among sites described by species abundances.

A related measure is called the /2 distance (Lebart & Fénelon, 1971). It differs
from the /2 metric in that the terms of the sum of squares are divided by the relative
frequency of each column in the overall table instead of its absolute frequency. In other
words, it is identical to the /2 metric multiplied by  where y++ is the sum of all
frequencies in the data table:

(7.55)

Since D16 is simply D15 multiplied by a constant, it shares the property of asymmetry
of D15. The maximum value of D16 is . The /2 distance is the distance
preserved in correspondence analysis (Section 9.2). More generally, it is used to
compute the association between the rows or columns of a frequency table. 

The data used above to illustrate the paradox obtained when the Euclidean distance
was computed over species abundances are used again here to contrast D16 with D1.

Computing D16 between rows (sites) 1 and 3 gives:

The distances between all pairs of sites are:
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Comparison with results obtained for D1 (after eq. 7.33) shows that the problem
caused with D1 by the presence of double-zeros does not exist here. Distance D16 can
therefore be used directly with sites described by species abundances, contrary to D1.

Another coefficient related to the distance between species profiles (D18) is the
Hellinger distance, described by Rao (1995). The formula of the Hellinger distance is:

(7.56)

Some of its properties are discussed near the end of Section 7.6. Like D3 and D18, this
distance is asymmetrical (i.e. it is insensitive to double-zeros), and its upper limit is

. The Hellinger distance is actually the chord distance D3 computed on square-
root-transformed frequencies (e.g. species abundances). It is highly recommended for
clustering or ordination of species abundance data (Prentice, 1980*; Rao, 1995). Rao
(1995) recommended this measure as the basis for a new ordination method; one can
obtain the same ordination by computing D17 among the objects and carrying out
principal coordinate analysis (PCoA, Section 9.3) of the resulting distance matrix.
When applied to presence-absence data, the chord (D3) and Hellinger (D17) distances
are both related to the Ochiai similarity (S14) as follows:

2 — Semimetrics

Some distance measures do not follow the fourth property of metrics, i.e. the triangle
inequality theorem described at the beginning of the present section. As a
consequence, they do not allow a proper ordination of sites in a full Euclidean space.
They may, however, be used for ordination by principal coordinate analysis after
correction for negative eigenvalues (Subsection 9.3.4) or by nonmetric
multidimensional scaling (Section 9.4). These measures are called semimetrics or
pseudometrics. Some semimetrics derived from similarities are identified in Table 7.2.
Other such measures are presented here.

The distance corresponding to Sørensen’s coefficient S8 was described by Watson
et al. (1966) under the name nonmetric coefficient:

(7.57)

*  Prentice (1980) called D17 the “chord distance”. He gave D3 the name “cosine theta distance”.
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a, b and c were defined at the beginning of Subsection 7.3.1. The following numerical
example shows that D13 does not obey the triangle inequality theorem:

Distances between the three pairs of sites are:

Hence 0.25 + 0.43 < 1.00, which violates the triangle inequality theorem.

Among the measures for species abundance data, the coefficients of Steinhaus S17
and Kulczynski S18 are semimetrics when transformed into distances (Table 7.2). In
particular, D14 = 1 – S17 was first described by Odum (1950) in distance form, who
called it the percentage difference. It was also used by Bray & Curtis (1957) in a study
of Wisconsin upland forest vegetation*. The percentage difference formula is:

(7.58)

*  It is unclear why some computer packages refer to D14 as the Bray-Curtis distance. The main
objective of the Bray & Curtis (1957) paper was to describe a new ordination method, which is
known as the Bray-Curtis ordination. The authors never pretended that they were proposing a
new S or D coefficient. They used the similarity form of the D14 coefficient (S17, eq. 7.24) in
their paper (p. 329), transforming it into a distance (p. 332) before computing their new
ordination method. Bray & Curtis referred to Motyka et al. (1950) for the origin of this
similarity coefficient, which is also described by Motyka (1947) who stated that the formula of
coefficient S17 had first been proposed by Professor H. Steinhaus. In their study, Bray & Curtis
(1957) made a very restricted application of the Steinhaus coefficient: because they analysed
relative tree abundances at sampling sites, the quantities A and B were both equal to a constant
and the similarity between stands was thus equal to W in their study.
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The value of D14 does not change when double zeros are added to a pair of sites,
because the values of A, B and W remain unchanged. Hence this coefficient is
asymmetrical in the sense of Subsection 7.2.2. For species relative abundances

, where yi+ is the row sum, D14 = D9 where D9 is Whittaker’s index of
association; D14 is also equal to D7/2 where D7 is the Manhattan distance. D9 and D7
are both metric but not Euclidean, but  and  are Euclidean. For binary data,
D14 is equal to D13 or (1 – S8), which is neither metric nor Euclidean, but  is
Euclidean. 

Contrary to the Canberra metric D10, differences between abundant species
contribute the same to D14 as differences between rare species. This may be seen as a
desirable property, for instance when using normalized species abundance data. Bloom
(1981) compared the Canberra metric, the percentage difference and other indices to a
theoretical standard. For these data, he showed that only D14 (or S17) accurately
reflected the true resemblance along its entire 0 to 1 scale, whereas D10, for example,
underestimated the resemblance over much of its 0 to 1 range.

The following numerical example, from Orlóci (1978: 59), shows that D14 does not
obey the triangle inequality theorem and is thus not a metric distance:

The distances between the three pairs of sites are:

hence 0.059 + 0.533 < 0.600, which violates the triangle inequality theorem.
Coefficient D14 is thus not a metric distance. Table 7.3 shows that D14, which is equal
to (1 – S17), is also not Euclidean. The consequence is that ordination of sites by
principal coordinate analysis (PCoA, Section 9.3) based upon D14 is likely to produce
negative eigenvalues and complex axes. The way to obtain a distance matrix that is
both metric and Euclidean before PCoA is to take the square root of D14 (Table 7.3).

Quadrats
Species

y1 y2 y3 y4 y5

x1 2 5 2 5 3
x2 3 5 2 4 3
x3 9 1 1 1 1
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7.5 R mode: coefficients of dependence

The main purpose of R-mode analysis is to investigate the relationships among
descriptors; dependence (R-mode) matrices may also be used, in some cases, as the
computational basis for the ordination of objects, e.g. in principal component or linear
discriminant analyses (Sections 9.1 and 11.3). Following the classification of
descriptors in Table 1.2, dependence coefficients will be described for quantitative,
semiquantitative, and qualitative descriptors. This will be followed by special
measures to assess the dependence between species, to be used for the identification of
biological associations (Section 8.9).

Most dependence coefficients are amenable to statistical testing. For such
coefficients, it is thus possible to associate a matrix of probabilities with the
dependence matrix, if required by subsequent analyses. While it is not always
legitimate to apply statistical tests of significance, it is never incorrect to compute a
dependence coefficient among variables. For example, there is no objection to
computing a Pearson correlation coefficient for any pair of metric variables, but these
same variables must be normally distributed (Sections 4.2 and 4.3) and the sites must
be independent realizations (Sections 1.1 and 1.2) to legitimately test the significance
of the coefficient using the standard parametric test; a permutation test (Section 1.2)
can, however, be used with non-normal data. A test of significance only allows one to
reject, or not, a specific null hypothesis concerning the value of the statistic (here, the
coefficient of dependence), whereas the coefficient itself measures the intensity of the
relationship between descriptors. Table 7.6 summarizes the use of R-mode coefficients
with ecological variables.

1 — Descriptors other than species abundances

Measures of resemblance in the present subsection, which summarizes the coefficients
described in Chapters 4, 5 and 6, are used for comparing physical, chemical,
geological, and other environmental variables. Measures adapted for species presence-
absence and abundance data are described in the next subsection.

The resemblance between quantitative descriptors can be computed using
parametric measures of dependence, i.e. measures based on parameters of the
frequency distributions of the descriptors. These measures are the covariance and the
Pearson correlation coefficient; they were described in Chapter 4. They are only
adapted to descriptors whose relationships are linear.

The covariance sjk between descriptors j and k is computed from centred variables
 and  (eq. 4.4). The range of values of the covariance has no a

priori upper or lower limits. The variances and covariances among a group of
descriptors form their dispersion matrix S (eq. 4.6).

yij y j–( ) yik yk–( )
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The Pearson correlation coefficient rjk is the covariance of standardized descriptors
j and k (eqs. 1.12 and 4.7). Coefficients of correlations computed among a group of
descriptors form a correlation matrix R (eq. 4.8). Correlation coefficients range in
values between –1 and +1. The significance of individual coefficients is tested using
eq. 4.13, the null hypothesis being generally H0: r = 0, whereas eq. 4.14 is used to test
the hypothesis of complete independence among all descriptors. Pearson correlation
coefficients should not be computed in Q mode (Box 7.1).

The resemblance between semiquantitative descriptors and, more generally
between any pair of ordered descriptors whose relationship is monotonic may be
determined using nonparametric measures of dependence (Chapter 5). Since
quantitative descriptors are ordered, nonparametric coefficients may be used to
measure their dependence, as long as they are monotonically related.

Two nonparametric correlation coefficients have been described in Section 5.3:
Spearman’s r and Kendall’s 8 (tau). In Spearman’s r (eq. 5.3), quantitative values are
replaced by ranks before computing Pearson’s r formula. Kendall’s 8 (eqs. 5.5 to 5.7)
measures the resemblance in a way that is quite different from Pearson’s r. Values of
Spearman’s r and Kendall’s 8 range between –1 and +1. The significance of individual
coefficients (the null hypothesis being generally H0: r = 0) is tested using eq. 5.4
(Spearman’s r) or 5.8 (Kendall’s 8).

As with Pearson’s r above, rank correlation coefficients should not be used in the Q
mode. Indeed, even if quantitative descriptors are standardized, the same problem
arises as with Pearson’s r, i.e. the Q measure for a pair of objects is a function of all
objects in the data set. In addition, in most biological sampling units, several species
are represented by small numbers of individuals. Because these small numbers are
subject to large stochastic variation, the ranks of the corresponding species are
uncertain in the reference ecosystem. As a consequence, rank correlations between
sites would be subject to important random variation because their values would be
based on large numbers of uncertain ranks. This is equivalent to giving preponderant
weight to the many poorly sampled species.

The importance of qualitative descriptors in ecological research is discussed in
Section 6.0. The measurement of resemblance between pairs of such descriptors is
based on two-way contingency tables (Section 6.2), whose analysis is generally
conducted using X2 (chi-square) statistics. Contingency table analysis is also the major
approach available for measuring the dependence between quantitative or
semiquantitative ordered descriptors that are not monotonically related. The minimum
value of X2 is zero, but it has no a priori upper limit. Its formulae (eqs. 6.5 and 6.6)
and test of significance are explained in Section 6.2. If all qualitative descriptors have
the same number of states, X2 values can be transformed into contingency coefficients
(eqs. 6.19 and 6.20), whose values are in the range [0, 1].

Two-way contingency tables may also be analysed using coefficients derived from
information theory. In that case, the amounts of information (B) shared by two
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Q-mode correlation Box 7.1

Can one compute Pearson correlation coefficients among rows, i.e. in Q mode?
There are at least six objections to that.
• Because the same physical dimensions are present in the numerator and denominator of
Pearson’s r computed in the R mode (eq. 4.7), the resulting coefficient has no physical
dimension, i.e. it is dimensionless (Chapter 3). On the contrary, correlations computed
between objects (Q mode) have complex and non-interpretable physical dimensions when
the descriptors are not dimensionally homogeneous. Furthermore, in Q mode, the row means

 do not make sense for variables that have different physical dimensions so that the
differences  in eq. 4.7 cannot be computed.

• Physical descriptors are often expressed in arbitrary units (e.g. mm, cm, m, or km are all
equally correct length measures). In R mode, the value of r remains unchanged after any
arbitrary linear change of units, whereas in Q mode the same operation can dramatically
change the values of correlations computed between objects, in unpredictable fashion.

• In order to avoid the two previous problems, it has been suggested to standardize the
descriptors (eq. 1.12) before computing correlations in the Q mode. Consider two objects x1
and x2: their similarity should be independent of the other objects in the study; removing
objects from the data set should not change the value of their similarity. Any change in object
composition of the data set would, however, change the standardized variables, and so it
would affect the value of the correlation computed between x1 and x2. Hence, standardization
does not solve the problems because the resulting correlation between two objects would be a
function of the values of all the other objects in the data set.

• In the R mode, the central limit theorem (Section 4.3) predicts that, as the number of objects
increases, the means, variances, and covariances (or correlations) converge towards their
values in the statistical population. Computing these same parameters in the Q mode is likely
to have the opposite effect since the addition of new descriptors to the estimation of these
parameters is likely to change their values in major and non-trivial ways.

• If correlation coefficients could be used as a general measure of resemblance in Q mode,
they should be applicable to the simple case of the description of the proximities among sites,
computed from their geographic coordinates X and Y on a map; the correlations obtained
from this calculation should reflect in some way the distances among the sites. This is not the
case: correlation coefficients computed among sites from their geographic coordinates are all
+1 or –1. As an exercise, readers are encouraged to compute an example of their own.

• Correlation coefficients can be tested by the method of permutations, as shown in
Subsection 1.2.3. In the R mode, permuting the values of a variable within a column makes
physical sense: under H0, each value could be found at any one site. In the Q mode, however,
permuting values within a row of the data matrix does not make sense because, in the real
world, these values could not belong to different variables. As an illustration, it would not
make sense to move a salinity of 35 psu to the pH column.

Conclusion: coefficients designed for R-mode analysis should not be used in the
Q mode. Sections 7.3 and 7.4 describe several Q-mode coefficients whose
properties and dimensions are known or easy to determine.

yi
yij yi–( )
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descriptors j and k and exclusive to each one (A and C) are first computed. These
quantities may be combined into similarity measures, such as S(j, k) = B/(A + B + C)
(eq. 6.15; see also eqs. 6.17 and 6.18), or into distance coefficients such as
D(j, k) = (A + C)/(A + B + C) (eq. 6.16). The analysis of multiway contingency tables
(Section 6.3) is based on the Wilks X2-statistic (eq. 6.6).

A qualitative descriptor (including a classification; Chapter 8) can be compared to
a quantitative descriptor using the F-statistic of one-way analysis of variance (one-
way ANOVA; Table 5.2 and text). The classification criterion for this ANOVA is the
qualitative descriptor. As long as the assumptions underlying analysis of variance are
met (i.e. normality of within-group distributions and homoscedasticity, Box 1.4), the
significance of the relationship between the descriptors can be tested using the
F–distribution. If the quantitative descriptor does not obey the within-group normality
assumption, a permutation test of F can be used. If the comparison is between a
qualitative and a semiquantitative descriptor, nonparametric one-way analysis of
variance (Kruskal-Wallis H-test; Table 5.2) can be used.

2 — Species abundances: biological associations

The search for species associations is one of the classical problems of community
ecology. How to conduct that search using clustering methods is discussed in
Section 8.9. The present subsection focuses on the dependence coefficients that are
appropriate for the study of species interrelationships. Measures that can be used for
presence-absence data are discussed first, followed by measures for quantitative data.

1. Species presence-absence data. — There are several approaches in the literature
for measuring the association between species based on presence-absence data.
Indeed, biological associations may be defined on the basis of the co-occurrence of
species, instead of the co-fluctuations in abundances in the quantitative approaches
described below. Indeed, the definition of association may refer to the sole concept of
co-occurrence, as suggested by Fager (1957) who pointed out that associations must
group species that are almost always part of one another’s biological environment. The
reason is that quantitative data may not accurately reflect the proportions of the various
species in the environment, because of problems with sampling, preservation,
identification or counting, or simply because the concept of individuality is not clear
(e.g. plants multiplying through rhizomes; colonial algae or animals), or because the
comparison of numbers of individuals does not make ecological sense (e.g. the baobab
and the surrounding herbaceous plants). The spatio-temporal aggregration of
organisms may also obscure the true quantitative relationships among species, as in the
case of plankton patches or reindeer herds. It follows that associations are often
defined on the sole basis of the presence or absence of species.
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There are many approaches in the literature for measuring the association between
species on the basis of presence and absence data. These coefficients are based on the
following 2 × 2 contingency table:

where a and d are the numbers of sites where both species are present and absent,
respectively, whereas b and c are the numbers of sites where only one of the two
species is present; n is the total number of sites. The measures of association between
species always exclude the number of double absences, d. 

Among the many binary coefficients that exclude double-zeros (Subsection 7.3.2),
some have been used for assessing association between species. Jaccard’s coefficient of
community (eq. 7.10) has been used by Reyssac & Roux (1972) in the R mode:

The corresponding distance has been used by Thorrington-Smith (1971) for the same
purpose:

(7.59)

The Sørensen coefficient (eq. 7.11)

was originally defined under the name coincidence index for studying species
associations (Dice, 1945). The Ochiai coefficient (S14) can also be used in R mode for
analysing species presence-absence data.

When used in the R mode, the Sørensen (S8) coefficient can be tested for
significance using random permutations of the observations in one of the species
vectors (for the test of association of two species only) or in all species vectors (for
simultaneous tests of association among all species). The basic co-occurrence statistic
is a, the number of sites where both species are present. For statistic a computed in R
mode, a test using permutation method 2b (permutation of one or both columns),
described for the Raup & Crick coefficient (eq. 7.31), is equivalent to a permutation
test of the Sørensen statistic since the denominator of S8, (a + b) + (a + c) = 2a + b + c,
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is invariant under permutation of the values in the columns, and a permutation test of a
produces the same permutational probability as a test of 2a.

Ecological application  7.5

Clua et al. (2010) studied the ecology and residence patterns of a group of photo-identified adult
sicklefin lemon sharks, Negaprion acutidens, at a shark-feeding site monitored by divers during
44 months. An objective of the study was to delineate groups of sharks that were present
together and formed recognizable behavioural groups. From the observation data (presence-
absence of 29 sharks during 949 dives), the authors computed co-occurrence statistics a among
all pairs of sharks and tested their significance using permutation method 2b described for the
Raup & Crick coefficient (S27). The p-values of 0.0001, obtained after 9999 random
permutations, had a corrected experimentwise p-value of 0.0406 after Holm correction for
multiple testing (406 simultaneous tests; Box 1.3). The 52 edges corresponding to these p-value
smaller than 0.05 were drawn on a principal coordinate ordination diagram (PCoA, Section 9.3).
Five behavioural groups of sharks were recognized on the plot.

An elaborate coefficient was proposed by Fager & McGowan (1963):

(7.60)

Coefficient S24 replaced a probabilistic coefficient proposed earlier by Fager (1957).
The first part of coefficient S24 is the same as the Ochiai coefficient S14, i.e. the
geometric mean of the proportions of co-occurrence for each of the two species; the
second part is a correction for small sample size.

Krylov (1968) proposed to use the probability associated with the X2 (chi-square)
statistic of the above 2 × 2 contingency table to test the null hypothesis that two
species are distributed independently of each other among the sites. Rejecting H0 gives
support to the alternative hypothesis of association between the two species. In the
case of a 2 × 2 contingency table, and using Yate’s correction factor for small samples,
the X2-formula is:

(7.61)

The number of degrees of freedom for the test of significance is 9 = (no. rows – 1) ×
(no. columns – 1) = 1 (eq. 6.7). The X2-statistic could also be tested by permutation
(Section 1.2). Given that associations should be based on positive relationships
between species (negative relationships reflecting competition), Krylov proposed to
set S(y1, y2) = 0 when the expected value of co-occurrence, E = (a + b)(a + c)/n , is
larger than or equal to the observed frequency (E 1 a). Following the test, two species
are considered associated if the probability (p) computed for their X2-statistic is
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smaller than a pre-established significance level, for example : = 0.05. The similarity
measure between species is the complement of that probability:

S25(y1, y2) = 1 – p(X2), with 9 = 1, when E(a) = (a + b)(a + c) / n < a

S25(y1, y2) = 0 when E(a) = (a + b)(a + c) / n 1 a (7.62)

The p-value itself can be used as a distance. When the number of sites n is smaller than
20 or a, b, c or d are smaller than 5, Fisher’s exact probability formula should be used
to compute the p-value instead of a test of X2. The formula can be found in most
textbooks of statistics.

The same formula can be derived from Pearson’s ! (phi) (eq. 7.9), given that
X2 = n!2. Pearson’s ! is also called the point correlation coefficient because it is the
general correlation coefficient (eq. 5.1) computed from presence-absence data.

2. Species abundance data. — For quantitative species abundance or biomass data,
parametric or nonparametric correlation coefficients (Pearson r and Spearman r) can
be used to assess the relationships among species (Greig-Smith, 1983; O’Connor &
Aarssen, 1987; Myster & Pickett, 1992). When looking for species associations,
Legendre (2005) suggested to transform the species abundances through one of the
transformations described in Section 7.7 to control for differences in total abundance
(or total biomass for biomass data) among sites before computing the correlations
among species, in order to linearize the relationships (for Pearson r) or make them
more monotonic (for Spearman r). 

If the correlations must be transformed into distances before hierarchical clustering
or ordination, use the transformations D = (1 – r) or  that were used to
transform S into D in Subsection 7.2.1: two species that are identically distributed
across the sites have a correlation r = 1, hence D = 0, which would be the appropriate
distance measure in that case. For negative correlations, if any, these transformations
produce distances larger than 1, which would cause no problem in clustering or
ordination. To induce the clustering or ordination methods to put together species that
are either positively or negatively correlated, use D = (1 – r2)0.5 to transform
correlations into distances.

The chi-square metric (D15) and the chi-square distance (D16) are appropriate in
both the Q and R modes. Both distances can be computed among species before
clustering. The D16 matrix is obtained by transposing the data matrix so that species
are now the rows; then, apply the chi-square distance transformation (eq. 7.70) and
compute the Euclidean distance (D1) on the transformed data.

Whittaker (1972) proposed a coefficient called SC (species correlation),
constructed like his index of association (distance D9). Despite its name, this
coefficient has no relationship with the Pearson and Spearman correlation formulas.
Each abundance value yij is first transformed into a relative abundance (eq. 7.68) by
dividing it by the corresponding row sum yi+, then the coefficient is computed using

D 1 r–=
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the transformed data. As in coefficient D9 (eqs. 7.47 and 7.48), there are two algebraic
forms for the computation of SC between species (columns) y1 and y2:

(7.63)

where y1+ is the sum of values in row xi=1 and y2+ is the sum of values in row xi=2.
SC takes values between 0 and 1. Before clustering, SC can be transformed into a
distance coefficient by computing 

 = (1 – SC) (7.64)

Goodall’s probabilistic coefficient (S22 or S23, eqs. 7.29 and 7.30) can also be
applied to species abundances in the R mode. An example is found in Legendre
(1973). This probabilistic coefficient allows one to set an objective limit to species
associations; indeed, one may then use a probabilistic definition of an association, such
as: “all species that are related at a probability level (1 – p) 1 0.95 are members of the
association”. Goodall’s coefficient has the following meaning in R mode: given p
species and n sites, the similarity of a pair of species is defined as the complement
(1 – p) of the probability that any pair of species chosen at random would be as similar
as, or more similar than the two species under consideration. Goodall’s similarity
coefficient is computed as in Subsection 7.3.5, with species interchanged with sites. In
step (a), if the species data have been normalized (for example using the
transformation y' = log(y + 1) in eq. 7.65, or eq. 7.66), the partial similarity of Gower’s
coefficient S19 (eq. 7.26)

may be used to describe the similarity between species y1 and y2 at site i. Ri is the
range of variation of the normalized species abundances at site i; Ri scales the
differences between species for each site.

7.6 Choice of a coefficient

Criteria for choosing a coefficient are summarized in Tables 7.4 to 7.6. In these tables,
the coefficients are identified by the names and numbers used in Sections 7.3 to 7.5.
The three tables distinguish between coefficients appropriate for species (or frequency)
descriptors, and those for other types of descriptors.

Levels 4 and 6 of Table 7.4 require some explanation. Coefficients differentiated in
these levels are classified with respect to two criteria, i.e. (a) standardization (or not) of
each object-vector prior to the comparison and (b) relative importance given by the
coefficient to the abundant or rare species. This defines various types of coefficients.
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Type 1 coefficients. Consider two objects, each represented by a vector of species
abundances, to be compared using a Q-mode measure. With type 1 coefficients, if
there is a given difference between sites for some abundant species and the same
difference for a rare species, the two species contribute equally to the similarity or
distance between sites. A small numerical example illustrates this property for the
percentage difference (D14), which is the complement of Steinhaus’ similarity (S17):

Using eq. 7.58 shows that each of the three species contributes 10/290 to the total
distance between the two sites. With some coefficients (D3, D4, D9, D17, D18), the
standardization of the site-vectors, which is automatically done prior to the
computation of the coefficient, may make the result unclear as to the importance given
to each species. With these coefficients, the property of “equal contribution” is found
only when the two site-vectors are equally important, the importance being measured
in different ways depending on the coefficient (see the footnote of Table 7.4).

Type 2a coefficients. — With coefficients of this type, a difference between values
for an abundant species contributes less to the distance (and, thus, more to the
similarity) than the same difference for a rare species. The Canberra metric (D10)
belongs to this type. For the above numerical example, calculation of D10 (eq. 7.49)
shows that species y1, which is the most abundant, contributes 10/190 to the distance,
y2 contributes 10/70, whereas the contribution of y3, which is the rarest species, is the
largest of the three (10/30). The total distance is D10 = 0.529. The coefficient of
divergence (D11; eq. 7.51) also belongs to this type.

Type 2b coefficients. — Coefficients of this type behave similarly to the previous
ones, except that the importance of each species is calculated with respect to the whole
data set instead of the two site-vectors that are compared. The /2 metric (D15) is
representative of this. In eq. 7.54 and accompanying example, the squared difference
between conditional probabilities, for a given species, is divided by y+j which is the
total number of individuals belonging to this species at all sites. If this number is large,
it reduces the contribution of the species to the total distance between two rows (sites)
more than would happen in the case of a rarer species. Gower’s coefficient (S19;
eq 7.26) has the same behaviour (unless special weights w12j are used for some
species), since the importance of each species is determined from its range of variation
over all sites. The coefficient of Legendre & Chodorowski (S20; eq 7.27) also belongs
to this type when parameter k in the partial similarity function s12j for each species is
made proportional to its range of variation over all sites.

Legendre et al. (1985) suggested that it is more informative to compare dominant
or well-represented species than rare taxa, because the latter are generally not well

Species: y1 y2 y3

Site x1 100 40 20
Site x2 90 30 10

10 10 10
190 70 30

y1 j y2 j–
y1 j y2 j+( )
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sampled. This provides an approach for choosing a coefficient. In immature
communities, most of the species are represented by small numbers of individuals, so
that only a few species are well sampled, whereas, in mature communities, several
species exhibit intermediate or high abundances. When calculating similarities
between species from immature communities, a reasonable approach may thus be to
give more weight to the few well-sampled species (type 2 coefficients) whereas, for
sites from mature communities, type 1 coefficients may be more appropriate.

Another way of choosing a resemblance coefficient is to construct an artificial data
set representing contrasting situations that the similarity or distance measure should be
able to differentiate. Computing several candidate coefficients for the test data will
indicate which coefficient is the most appropriate for data of that type. In that spirit,
Hajdu (1981) constructed series of test cases, called ordered comparison case series
(OCCAS), corresponding to linear changes in the abundances of two species along
different types of simulated environmental gradients. The results are distances between
sites, computed using different coefficients, for linearly changing species composition. 

To illustrate the method, consider one of Hajdu’s OCCAS with two species. For these species,
site 1 had frequencies y11 = 100 and y12 = 0; site 2 had frequency y21 = 50 whereas y22 varied
from 10 to 120. Figure 7.6 shows the results for three coefficients: (1 – S15) has a completely
linear behaviour across the values of y22, D14 is not quite linear, and D17 is strongly curvilinear.

An ideal coefficient should change linearly when plotted against a series of test
cases corresponding to a linear change in species composition, as simulated in OCCAS
runs. Hajdu (1981) proposed a measure of non-linearity, defined as the standard
deviation of the changes in values of distance between adjacent test cases along the
series. A good distance coefficient should also change substantially along the series

OCCAS

Figure 7.6 Results of an ordered comparison case series (OCCAS) where species y22 abundance varies from
10 to 120 by steps of 10. The values taken by coefficients (1 – S15), D14, and D17 are shown.
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and reach its maximum value when the difference in species composition is maximum.
Resolution was defined as the mean change occurring in distances between adjacent
test cases along the series. High linearity is desirable in ordination methods whereas
high resolution is desirable in cluster analysis. The ratio of non-linearity over
resolution defines a coefficient of variation that should be small for a “good” overall
resemblance coefficient. 

Resolutions are only comparable among coefficients that are bounded in the interval [0, 1] or
[0, ]; as a consequence, this measure should not be used to compare coefficients, such as D1,
D2, and D10, which do not have an upper bound. Non-linearity near 0 is always a good property,
but, again, higher values are only comparable for coefficients that are bounded. Coefficients of
variation are comparable because the scale of variation of each specific coefficient is taken into
account in the calculation.

Gower & Legendre (1986) used Hajdu’s OCCAS to study the behaviour of several
similarity and distance coefficients and to make recommendations about their use.
They studied 15 coefficients for binary data (all of which are described in the present
chapter) and 10 coefficients for quantitative data (5 of them are described here).
Among the binary coefficients, S12 (eq. 7.15) and the coefficient of Yule (eq. 7.8) were
strongly non-linear and should be avoided; all the other coefficients in that study (S1,
S2, S3, S5, S6, S7, S8, S10, S13, S14, as well as eqs. 7.7 and 7.9) behaved well. 

The coefficients for quantitative data included in that study were S15,
, D2, D10 and D11. Coefficients D2 and S15, which are adapted to

physical descriptors (Table 7.5), behaved well. D2 is a standardized form of the
Euclidean distance D1; they both have the same behaviour. 

All coefficients adapted to species abundance data (Table 7.4) that were included in
the study (D10, D11, D14) behaved well and are recommended. Coefficients S15 and
D10 had perfect linearity in all specific OCCAS runs; they are thus the best of their
kinds for principal coordinate analysis (PCoA, Section 9.3), which is a metric
ordination method based on distances.

A later analysis of coefficient  showed that its non-
linearity was very similar to that of ; the resolution of  was
slightly lower than that of D14. Both forms are thus equally suitable for ordination
whereas D14 may be marginally preferable for clustering purposes. The square root
transformation of D14, used in the latter part of Numerical example 1 (continued) in
Subsection 9.3.5, offers a simple way to avoid negative eigenvalues in principal
coordinate ordination. 

Another comparative analysis involving the chi-square metric and related forms
(D15, D16, D17 and D18) showed that the best of this group for metric ordination
(PCoA) is the Hellinger distance (D17), which has the lowest coefficient of variation
(best compromise between linearity and resolution), despite the fact that it is strongly
non-linear. Other properties of resemblance coefficients have been investigated by
Bloom (1981), Wolda (1981) and Hubálek (1982).

Resolution

2

D14 1 S17–=

D D14 1 S17–= =
D14 1 S17–= D14
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Table 7.4 Choice of an association measure among objects (Q mode), to be used with species descriptors
(asymmetrical coefficients). For explanation of levels 4 and 6, see the accompanying text.

1) Descriptors: presence-absence or ordered classes on a scale of relative 
abundances (no partial similarities computed between classes) see 2
2) Metric coefficients: coefficient of community (S7) and variants (S10, S11) 
2) Semimetric coefficients: variants of the coef. community (S8, S9, S13, S14) 
2) Nonmetric coefficient: Kulczynski (S12) (non-linear: not recommended) 
2) Probabilistic coefficient: S27

1) Descriptors: quantitative or semiquantitative (states defined in such a way that 
partial similarities can be computed between them) see 3
3) Coefficients for raw or normalized abundance data see 4

4) No standardization by object; the same difference for either
abundant or rare species, contributes equally to the similarity 
between sites: coefficients of Steinhaus (S17) and Kulczynski (S18),
percentage difference (D14), 

4) Standardization by object-vector; if objects are of equal importance*, 
same contributions for abundant or rare species to the similarity 
or distance between sites: chord distance (D3), geodesic metric (D4), 
index of association (D9), Hellinger dist. (D17), dist. between profiles (D18)

4) Standardization by object-vector*; differences for abundant species
(in the whole data set) contribute more than differences between 
rare species to the similarity (less to the distance) between sites: 
/2 similarity (S21), /2 metric (D15), /2 distance (D16) 

3) Limited to normalized abundances (species distributions not strongly skewed). 
[Normalization of species abundance data: Sections 1.5.6 and 7.7] see 5
5) Coefficients without associated probability levels see 6

6) Differences for abundant species (for two sites under consideration) 
contribute more than differences between rare species to the similarity 
(less to the distance) between sites: Canberra metric (D10), coefficient of
divergence (D11). Both have low resolution: not recommended for clustering

6) Differences for abundant species (in the whole data set) contribute
more than differences between rare species to the similarity (less 
to the distance) between sites: asymmetrical Gower 
coefficient (S19), coefficient of Legendre & Chodorowski (S20)

6) Differences for abundant and rare species contribute the same to 
the distance between sites: modified mean character difference 
or modified Gower dissimilarity (D19) 

5) Probabilistic coefficient: Goodall coefficient (S23)

* D3 and D4: importance quantified relative to the length of the row vector 

D9, D15 to D18: importance relative to the sum of individuals in the row vector 

D14

yij
2

i
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Table 7.5 Choice of an association measure among objects (Q mode), to be used with chemical, geological
physical, etc. descriptors (symmetrical coefficients, using double-zeros).

1) Association measured between individual objects
2) Descriptors: presence-absence or multistate (no partial similarities 

computed between states) see 3
3) Metric coefficients: simple matching (S1) and derived coefficients (S2, S6)
3) Semimetric coefficients: S3, S5 

3) Nonmetric coefficient: S4

2) Descriptors: multistate (states defined in such a way that partial similarities 
can be computed between them) see 4
4) Descriptors: quantitative and dimensionally homogeneous see 5

5) Differences enhanced by squaring: Euclidean distance (D1) and 
average distance (D2) 

5) Differences mitigated: Manhattan metric (D7), mean character 
difference (D8)

4) Descriptors: not dimensionally homogeneous; weights (equal or not, 
according to values wj used) given to each descriptor in the 
computation of association measures see 6
6) Descriptors are qualitative (no partial similarities computed between 

states) and quantitative (partial similarities based on the range of
variation of each descriptor): symmetrical Gower coefficient (S15)

6) Descriptors are qualitative (possibility of using matrices of partial 
similarities between states) and semiquantitative or quantitative 
(partial similarity function for each descriptor): coefficient of 
Estabrook & Rogers (S16)

1) Association measured between groups of objects
7) Removing the effect of correlations among descriptors: Mahalanobis 

generalized distance (D5)
7) Not removing the effect of correlations among descriptors: coefficient

of racial likeness (D12)

see 2
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Table 7.6 Choice of a dependence measure among descriptors (R mode). 

1) Descriptors: species abundances
2) Descriptors: presence-absence see 3

3) Coefficients without associated probability levels: S7, S8, S14, S24 
3) Probabilistic coefficient: S25 

2) Descriptors: multistate
4) Data are raw abundances: /2 similarity (S21), /2 metric (D15), see 4

/2 distance (D16), Whittaker’s SC (D20)
4) Data are abundances in linear or monotonic relationships see 5

5) Coefficients without associated probabilities: covariance, Pearson r, 
Spearman r, Pearson or Spearman correlations among chord-transformed
or Hellinger-transformed data

5) Probabilistic coefficients: probabilities associated to Pearson r or
Spearman r, Goodall coefficient (S23)

1) Descriptors: chemical, geological, physical, etc. see 6
6) Coefficients without associated probability levels see 7

7) Descriptors are quantitative and linearly related: covariance, Pearson r

7) Descriptors are ordered and monotonically related: Spearman r, Kendall 8
7) Descriptors are qualitative or ordered but not monotonically related: /2,

reciprocal information coefficient, symmetric uncertainty coefficient

6) Probabilistic coefficients see 8
8) Descriptors are quantitative and linearly related: probabilities

associated to Pearson r

8) Descriptors are ordered and monotonically related: probabilities
associated to Spearman r or Kendall 8

8) Descriptors are qualitative or ordered but not monotonically related:
 probabilities associated to /2

see 2
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7.7 Transformations for community composition data

In communities sampled over fairly homogeneous environmental conditions, e.g. short
environmental gradients, the species composition data contain few zeros, and
symmetric association coefficients, including the Euclidean distance D1, can be used
for clustering or ordination. Frequency histograms of individual species may, however,
display asymmetric distributions because species tend to have exponential growth
when conditions are favourable. This well-known fact has been embedded in the
theory of species-abundance models; see He & Legendre (1996, 2002) for a synthetic
view of these models. To reduce the asymmetry of the species distributions, a species
abundance variable y may be transformed to y' by taking the square root or the fourth
root (equivalent to taking the square root twice), or by using a log transformation:

y' = y0.5       or       y' = y0.25       or       y' = log(y + c) (7.65)

where y is the species abundance and c is a constant. Usually, c = 1 in species
abundance log transformations; in this way, an abundance y = 0 is transformed into
y' = log(0 + 1) = 0 for any logarithmic base. These transformations represent the series
of exponents  = 0.5, 0.25 and 0 of the Box-Cox transformation (eq. 1.15). 

Another interesting transformation that reduces the asymmetry of heavily skewed
abundance data is the one proposed by Anderson et al. (2006). The abundance data yij
are transformed as follows to a logarithmic scale that makes allowance for zeros: 

 = log10(yij) + 1 when yij > 0 (7.66)

or  when yij = 0.

Hence, for yij = {0, 1, 10, 100, 1000}, the transformed values  are {0, 1, 2, 3, 4}.
Note that this is not the log(yij + 1) transformation. This transformation is available in
the decostand() function of VEGAN (method = "log") where users can choose the base
of the logarithm. Changing the base of logarithms in eq. 7.65 (right) produces a linear
change among the  values, so it does not induce any change in the relationships
among the transformed values. With eq. 7.66 on the contrary, the transformations
produced by different bases of logarithms are not perfectly linearly related.

Community composition data sampled over variable environmental conditions,
e.g. along long environmental gradients, typically contain many zero values because
species are known to generally have unimodal distributions along environmental
gradients (ter Braak & Prentice, 1988) and to be absent from sites far from their
optimal living conditions. The proportion of zeros is greater when the environmental
conditions are more variable across the sampling sites. For association coefficients,
this situation generates the double-zero problem that was discussed in Subsection 7.2.2
and leads to the selection of an asymmetrical similarity or distance coefficient for
clustering or ordination. 

;

y'ij
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An alternative method of computation for the asymmetrical distance coefficients
D3, D15, D16, D17 and D18 was proposed by Legendre & Gallagher (2001). The
method consists of a transformation of the community composition data followed by
the calculation of Euclidean distances (D1) among sites. These two steps produce the
distance function corresponding to the name of the transformation (Fig. 7.7). Data
subjected to one of these transformations can also be used directly as input into linear
methods of analysis that carry out computations in Euclidean space, such as K-means
partitioning, PCA, and RDA (Sections 8.8, 9.1, 11.1). This approach is called
transformation-based PCA (tb-PCA), transformation-based RDA (tb-RDA), and
transformation-based K-means partitioning (tb-K-means).

1 — Transformation formulas

The following transformations, found in the vertical rectangle in the centre of Fig. 7.8,
can be used to obtain the distance coefficients found on their left. The effect of these
transformations is to remove the differences in total abundance (for abundance data) or
total biomass (for biomass data) from the data, keeping the variations in relative
species composition among sites. The chord and Hellinger transformations described
below have been in use in community ecology and palaeoecology for a long time
(e.g. Noy-Meir et al., 1975; Prentice, 1980). Legendre & Gallagher (2001) showed

Figure 7.7 (a) Calculation of a distance matrix either directly from the raw data (left diagonal arrow) or
through a two-step approach in which the raw data are transformed (horizontal arrow) before
computation of the distance matrix (right diagonal arrow). The example shown here uses the
Hellinger transformation to obtain the Hellinger distance matrix (D17). The same approach can
be used to obtain the chord (D3), species profile (D18), chi-square metric (D15) and chi-square
distance (D16) matrices, as summarized in Fig. 7.8. (b) The transformed species data can also be
used as input (dashed arrow) into linear methods of analysis, in particular PCA, RDA, and K-
means partitioning. Modified from Legendre & Gallagher (2001).
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Figure 7.8 Species abundance paradox data, modified from Orlóci (1978). The paradox is that the
Euclidean distance between sites 2 and 3, which have no species in common, is smaller than that
between sites 1 and 2 which share species 2 and 3. This results in an incorrect assessment of the
ecological relationships among sites. With the other coefficients in this figure, which are
asymmetrical, the distance between sites 2 and 3 is larger than that between sites 1 and 2, and
the distance between sites 1 and 3 is the same as between sites 2 and 3, or very nearly so.
Distance matrix D15 (not shown) is equal to D16/  = D16/ .y++ 15
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that these transformations were the first step towards the calculation of one of the
asymmetrical distances that are appropriate for Q-mode analysis of community data.
Only five of the coefficients discussed in this chapter can be computed by the two-step
procedure described in Fig. 7.7, i.e. D3, D15, D16, D17 and D18.

1) Chord transformation. — The species abundances from each object (sampling
unit) are transformed into a vector of length 1 using the following equation:

(7.67)

where yij is the abundance of species j in object i. This equation, called the “chord
transformation” in Legendre & Gallagher (2001), is available in the program CANOCO
(Centring and standardisation for “samples”: Standardise by norm) and in the
decostand() function of VEGAN (method = "normalize"). If one computes the
Euclidean distance (D1) between two rows of the transformed data table, the resulting
value is identical to the chord distance (D3, eq. 7.35) computed between the rows of
the original (untransformed) species abundance data table; this is how the chord
distance can be computed through the two-step calculation shown in Fig. 7.7a. As a
consequence, after a chord transformation, the community composition data are
suitable for PCA or RDA, as well as other methods of analysis that preserve the
Euclidean distance among the objects (Fig. 7.7b).

2) Species profile transformation. — The data can be transformed into profiles of
relative species abundances through the following equation:

(7.68)

This is a method of data standardisation that is often used prior to analysis, especially
when the sampling units are not all of the same size. Data transformed in that way are
called compositional data. In community ecology, the species assemblage is
considered to represent a response of the community to environmental, historical, or
other types of forcing; the variation of any single species has no clear interpretation.
Compositional data are used because ecologists feel that the vectors of relative
proportions of species can lead to meaningful interpretations. Relative abundances can
be transformed into percentages by multiplying the values  by 100. Computing
Euclidean distances among rows of a data table transformed in this way produces
distances among species profiles (D18, eq. 7.53). The transformation to relative
abundance profiles is available in the decostand() function of VEGAN
(method = "total"). Statistical criteria investigated by Legendre and Gallagher (2001)
show that this is not the best transformation and that the Hellinger transformation (next
paragraph) is often preferable. 
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Abundance data transformed into profiles by eq. 7.68 have the following property:
centring the data by columns to means of 0 automatically centres the rows to means of
0. Make sure that the raw abundance data contain no row that sums to 0, though.

3) Hellinger transformation. — A modification of the species profile
transformation produces the Hellinger transformation:

(7.69)

Computing Euclidean distances among objects of a data table transformed in this way
produces a matrix of Hellinger distances among sites (D17, eq. 7.56; Fig. 7.7). The
Hellinger distance has good statistical properties as assessed by the criteria of R2 and
monotonicity used by Legendre and Gallagher (2001) in their comparison of
transformation methods. The Hellinger transformation is available in the decostand()
function of VEGAN (method = "hellinger").

4) Chi-square distance transformation. — A more complex modification of the
species profile transformation is the chi-square distance transformation:

(7.70)

where yij is a species presence or abundance value, yi+ is the sum of values over row
(object) i, y+j is the sum of values over column (species) j, and y++ is the sum of values
over the whole data table. Euclidean distances computed among the rows of the
transformed data table  are equal to chi-square distances (D16, eq. 7.55) among
the rows of the original, untransformed data table. The chi-square distance
transformation is available in the decostand() function of VEGAN
(method = "chi.square").

The chi-square distance transformation equation reduces the value of an abundant
species more than that of a rare species. Hence this transformation is interesting when
one wants to give more weight to rare species; this is the case when the rare species are
considered to be good indicators of special ecological conditions. 

5) Chi-square metric transformation. — The chi-square metric (D15) only differs
from the chi-square distance (D16) by the constant  found in eq. 7.70. It can be
obtained by the simplified transformation:

(7.71)

followed by calculation of the Euclidean distance. Data transformed using eq. 7.71 are
smaller than the same data transformed using eq. 7.70 by a constant factor of .
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Before applying the transformations described in the previous paragraphs, any of
the standardizations investigated by Noy-Meir et al. (1975), Prentice (1980), and Faith
et al. (1987) may be used if the study justifies it. These include species adjusted to
equal maximum abundances or equal standard deviations, sites standardised to equal
totals, or both. In particular, one may apply a square root or log transformation to the
species abundances in order to reduce the asymmetry of the species distributions.

The chord and Hellinger transformations appear to be the best for general use.
Legendre & Gallagher (2001) showed that the values of the corresponding distances
are monotonically increasing across a simulated ecological gradient and are maximally
related (R2) to the spatial distances along the geographic gradient. Other asymmetrical
distances, like D14, that are useful for the analysis of community composition data
cannot be obtained through the two-step process of a transformation followed by
calculation of the Euclidean distance illustrated in Fig. 7.7. The chord and Hellinger
transformations are closely related: chord-transformed abundance data are equal to
squared abundance data that are then Hellinger-transformed. 

The five transformations described above can be applied to presence-absence data.
In that situation, the chord and Hellinger transformations produce identical results, and

the corresponding distances, D3 and D17, are both equal to 

where  is the Ochiai similarity coefficient for binary data (S14).

Correspondence analysis, which preserves the chi-square distance, has long been used
with species presence-absence data; hence the chi-square transformation can also be
applied to this type of data.

2 — Numerical example

The modified Orlóci paradox data set was used in Subsection 7.4.1 to shows that the
Euclidean distance function may produce misleading results when applied to
assemblage composition data. Asymmetrical similarity and distance functions, which
were specifically designed for the analysis of community composition data, do not
have this drawback. Figure 7.8 (right-hand side) shows, for five distance functions, the
distance matrices obtained for these data. From a community ecologist viewpoint, the
identity of the species present at two sites is more important for assessment of the
differences among these sites than their abundances. Following that conception, sites 1
and 2, which share two species, are more similar to each other than either of them is to
site 3, which harbours a single species not found at sites 1 and 2.

Instead of that, Euclidean distances (D1) show that sites 1 and 2 (D = 7.6158) are
more dissimilar than sites 2 and 3 (D = 1.7321). This assessment would be considered
incorrect by most community ecologists although the calculations are mathematically
correct. In contrast, the four other distance matrices in Fig. 7.8 indicate that the two
less dissimilar sites are 1 and 2, an answer that would be considered a correct

2 1 a
a b+( ) a c+( )

------------------------------------------–

a
a b+( ) a c+( )

------------------------------------------
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assessment of community similarity by most ecologists. Observe also that the chord
and Hellinger distances produce a value of  = 1.4142 between sites that have no
species in common; this is the maximum value attainable by these distance functions,
as noted in Subsection 7.4.1.

Figure 7.9 presents principal coordinate ordination plots (PCoA, Section 9.3)
computed from the distance matrices in Fig. 7.8, plus a PCoA plot of the percentage
difference matrix (D14) computed for the same data. In the Euclidean distance
ordination (Fig. 7.9a), sites 2 and 3 are the closest among the three sites, which may be
seen as incorrect for the data under consideration. In all five other ordination plots
(Fig. 9b-f), sites 1 and 2 are the closest. The plots also display the interesting property
that the different asymmetrical distance functions deal with the differences among
sites differently: sites 1 and 2 are the closest to each other in Fig. 7.9e and the farthest
in Fig. 7.9f (percentage difference). The distance between sites 1 and 2 would be even
larger if PCoA had been computed from square-rooted D14 values, which is
recommended before PCoA to make percentage difference matrices Euclidean.

2

Figure 7.9 Principal coordinate ordination plots (PCoA, Section 9.3) of the distance matrices computed in
Fig. 7.8: (a) D1, (b) D3, (c) D18, (d) D17, (e) D16, and (f) a PCoA plot of the percentage
difference (Steinhaus/Odum/Bray-Curtis) distance matrix (D14) computed for the same data. 
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3 — Beals smoothing

Beals smoothing is a multivariate transformation designed for species
presence/absence community data containing noise and/or many zeros. This
transformation replaces the observed presence/absence values of a species by
predicted probabilities of occurrence, on the basis of the co-occurrences of that species
with the other species in the data set (Beals, 1984; McCune, 1994). The transformed
values can be used as input in multivariate analyses. De Cáceres & Legendre (2008)
studied the statistical and ecological bases underlying the Beals smoothing function
and explored the factors that may affect the reliability of the transformed values using
simulated data. They showed that Beals predictions are only reliable for target species
that are closely related to the overall ecological structure displayed by the data set.
They developed a statistical test to determine when the observed presence/absence
values can be replaced with Beals smoothing predictions.

7.8 Software

Only the largest general-purpose commercial statistical packages, such as SAS, SPSS,
SYSTAT, JMP, and STATISTICA, offer clustering among their methods for data analysis
(Section 8.15), and functions to compute some resemblance coefficients. The smaller
commercial packages offer no such facilities. Among the Q-mode coefficients found in
the larger packages, one always finds the Euclidean distance. The squared Euclidean,
Manhattan, Chebychev* and Minkowski distances may also be found, as well as the
simple matching coefficient for multistate nominal data (eq. 7.19). For R-mode
analyses, one finds Pearson’s r in most packages, or related measures such as the
cosine of the angle between variables, dot product, or covariance. Nonparametric
correlation coefficients, as well as chi-square, uncertainty and contingency coefficients
may also be found. In addition, for Q-mode analysis, SYSTAT offers several binary
coefficients and some coefficients for quantitative data (Bray-Curtis, Kulczynski).

Packages written for ecological or taxonomic analysis emphasize resemblance
coefficients and clustering methods. They are: NTSYSPC†, developed by F. J. Rohlf,
originally for numerical taxonomy studies; CLUSTAN‡, developed by D. Wishart;

*  In R, the Chebychev distance, , is computed by
function dist() with method = "maximum". DChebychev is a metric. This distance function does
not seem to have been used in community ecology. It is described here because it is found in
computer packages and in an R function, hence readers may wonder what its equation is.
†  NTSYSPC is available from Exter Software Inc., 47 Route 25A, Suite 2, Setauket, New York
11733-2870, USA; http://www.exetersoftware.com.
‡  The CLUSTAN package may be ordered from CLUSTAN Limited, 16 Kingsburgh Road,
Edinburgh EH12 6DZ, Scotland. See also the Web page http://www.clustan.com/.

DChebychev x1 x2,( ) max j x1 j x2 j–=
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PATN*, developed by L. Belbin; PC-ORD† written under the direction of B. McCune;
and SYN-TAX 2000** written by J. Podani. In the R language,

1. The most inclusive functions to compute distances are: dist() in STATS, vegdist() in
VEGAN, dist.binary() in ADE4, and daisy() in CLUSTER. In addition, gowdis() in FD
offers a complete set of options to compute the Gower distance (1 – S15). Function
mahalanobis() in STATS computes Mahalanobis distances between the objects in a
data table and a vector, which can be the multivariate mean vector of the same data
table. Function raupcrick() in VEGAN computes the Raup-Crick distance (1 – S27).
Function is.euclid() of ADE4 checks the Euclidean nature of distance matrices; see
Tables 7.2 and 7.3.

2. In the R mode, package STATS offers functions var() and cov() to compute
covariance matrices and cor() to compute correlation matrices. cor.test() is used to test
the significance of correlation coefficients. The Pearson, Spearman, and Kendall
correlation coefficients are available as options in both cor() and cor.test(). chisq.test()
of STATS provides chi-square tests of significance. pf() of STATS computes the
parametric p-value associated with F-statistics. 

3. Transformations for community composition data described in Section 7.7 are
available in the VEGAN function decostand(). Multivariate homogeneity of variances is
tested by VEGAN’s function betadisper(). Beals smoothing is available in the VEGAN
function beals(). The test of significance to determine when species presence/absence
values can be replaced with Beals smoothing predictions is conducted by function
BSS.test()‡.

*  PATN is available from Blatant Fabrications Pty Ltd, Carlton, Tasmania, Australia. Technical
information is available on the Web page http://www.patn.com.au, or from Lee Belbin at
<lee@blatantfabrications.com>.
†  Availability: see Section 11.7 (footnote).
‡  

http://sites.google.com/site/miqueldecaceres/.
R code and documentation file available with the Beals smoothing function on the Web page 
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Cluster analysis

 

8.0 A search for discontinuities

 

Humans have always tried to classify the animate and inanimate objects that surround
them. Classifying objects into collective categories is a prerequisite to naming them. It
requires the recognition of discontinuous subsets in an environment that is sometimes
discrete, but most often continuous.

To cluster is to recognize that objects are sufficiently similar to be put in the same
group and to also identify distinctions or separations between groups of objects.
Measures of resemblance between objects (Q mode) or descriptors (R mode) have
been discussed in Chapter 7. The present chapter considers the different criteria that
may be used to decide whether objects are similar enough to be allocated to the same
group when several groups have been defined, and shows that different clustering
strategies correspond to different definitions of a what a cluster is. The chapter also
examines special clustering approaches that are used to identify species associations.

Few ecological theories predict the existence of discontinuities in nature.
Evolutionary theory tells taxonomists that discontinuities exist between species, which
are the basic units of evolution, as a result of reproductive barriers; taxonomists use
classification methods to reveal these discontinuities. For the opposite reason,
taxonomists are not surprised to find continuous differentiation at the sub-species
level. In contrast, the world that ecologists try to understand is most often a continuum.
In numerical ecology, methods used to identify clusters must therefore be more
contrasting than in numerical taxonomy. 

Given a sufficiently large group of objects, ecological clustering methods should be
able to recognize clusters of similar objects while ignoring the few intermediates that
often persist between clusters. Indeed, one cannot expect to find discontinuities when
clustering sampling sites unless the physical environment is itself discontinuous, or
unless sampling occurred at opposite ends of a gradient, instead of within the gradient
(Whittaker, 1962: 88). Similarly, when looking for associations of species, small
groups of densely associated species are usually found, with the other species
gravitating around one or more of the association nuclei. 
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The result of clustering ecological objects sampled from a continuum is often
called a 

 

typology 

 

(i.e. a system of types). In such a case, the purpose of clustering is to
identify various 

 

object types

 

, which may be used to describe the structure of the
continuum; it is thus immaterial to wonder whether these clusters are “natural” or
unique.

For readers with no practical experience in clustering, Section 8.2 provides a
detailed account of single linkage clustering, which is simple to understand and is used
to introduce the principles of clustering. The review of other methods includes a
survey of the main dichotomies among existing methods (Section 8.4), followed by a
discussion of the most widely available methods of interest to ecologists (Sections 8.5,
8.7 and 8.8). Theoretical aspects are examined in Sections 8.3 and 8.6. Section 8.9
discusses clustering algorithms useful in identifying biological associations and
indicator species analysis, whereas Section 8.10 gives an overview of seriation, a
method useful in particular to cluster non-symmetric resemblance matrices.
Section 8.11 describes multivariate regression tree analysis (MRT), a method that
involves two data sets, i.e. response and explanatory, whose output is a tree. A review
of clustering statistics, methods of cluster validation, and graphical representations,
completes the chapter (Sections 8.12 to 8.14). The relationships between clustering
and other steps of data analysis are depicted in Fig. 10.3.

Despite the wide applicability of clustering methods, one should remember that no
single family of methods can answer all questions raised in numerical ecology. Before
engaging in clustering, one should be able to justify why one believes that
discontinuities exist in the data or explain why one has a practical need to divide a
continuous set of objects into groups.

 

8.1 Definitions

 

Clustering

 

 is an operation of multidimensional analysis that consists in partitioning a
collection of objects or descriptors. Most of the methods described in this chapter can
be used to cluster descriptors instead of objects. The presentation in the chapter
focuses on objects for simplicity, except in Section 8.9 where methods especially
designed to cluster species into associations are described. Explanatory variables can
also be clustered to identify groups of collinear variables. A 

 

partition

 

 is a division of a
set (collection) into subsets, such that each object belongs to one and only one subset
for that partition (Legendre & Rogers, 1972). The classification of objects that results
may include a single partition, or several hierarchically nested partitions of the objects
(or descriptors), depending on the clustering model that has been selected (Table 8.1). 

The clustering methods described in this chapter belong to the class of 

 

hard

 

 or

 

crisp

 

 clustering, where the groups are mutually exclusive and each object belongs to a
single group of a partition. In 

 

fuzzy clustering

 

 on the contrary (Bezdek, 1987), an
object may simultaneously belong, to different degrees, to two or more groups of a

Typology

Clustering
Partition
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partition. In the study of species associations for example (Section 8.9), this approach
is interesting because a species may be partly related to two or more associations.
Methods of fuzzy clustering are not described in detail in this chapter but R software to
compute them is mentioned in Section 8.15.

A partition resulting from a hard clustering method has the same definition as a
descriptor (Section 1.4). Each object is characterized by a state (its cluster) of the
classification and it belongs to only one of the clusters. This property is useful for the
interpretation of classifications (Chapter 10) since any partition may be considered as a
qualitative descriptor and compared as such to any other descriptor. A clustering of
objects defined in this way imposes a discontinuous structure onto the data set, even if
the objects have originally been sampled from a continuum. This structure results from
the grouping into subsets of objects that are recognized as sufficiently similar given the
variables considered. One can then look for characteristics that differentiate the
clusters from one another. 

Clustering has been part of ecological tradition for a long time. It goes back to the
Polish ecologist Kulczynski (1928) who needed to cluster ecological observations; he
developed a method quite remote from the modern clustering algorithms. The
technique, called seriation, consisted in permuting the rows and columns of an
association matrix in such a way as to get the largest values near the diagonal. The
method is still used in phytosociology, anthropology, the social sciences, and other
fields. Analytical solutions to the seriation problem are mentioned in Section 8.10.

Most methods of clustering (this chapter) and ordination (Chapter 9) proceed from
association matrices (Chapter 7). Distinguishing between clustering and ordination

Table 8.1 Example of hierarchically nested partitions of a set of objects (e.g. sampling sites). The first
partition divides the objects according to the environment where they were found. The second
partition, hierarchically nested within the first, describes clusters of sites in each environment.

Partition 1 Partition 2 Sampling sites

Cluster 1 7, 12

Observations in environment A Cluster 2 3, 5, 11

Cluster 3 1, 2, 6

Cluster 4 4, 9
Observations in environment B

Cluster 5 8, 10, 13, 14
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methods is somewhat recent. While ordination in reduced space goes back to
Spearman (factor analysis: 1904), most modern clustering methods have only been
developed since the era of second-generation computers. The first programmed
method was developed by Sokal & Michener (1958) for biological purposes

 

*

 

. Before
that, one simply plotted the objects in a scatter diagram with respect to a few variables
or principal axes; clusters were then delineated manually (Fig. 8.1) following a method
that, today, would be called centroid (Section 8.5) and based upon the Euclidean
distances among points. This empirical clustering method still remains a valid
approach when the number of variables is small and the structure to be delineated is
not obscured by the presence of intermediate objects between the clusters. 

Clustering is a family of methods undergoing rapid development. In their report on
the literature they reviewed, Blashfield & Aldenderfer (1978) mentioned that they
found 25 papers in 1964 that contained references to the basic texts on clustering; then
they found 136 papers in 1970, 294 in 1973, and 501 in 1976. The number has been
growing ever since. Nowadays, hundreds of mathematicians and researchers from
various application fields are collaborating within national or multinational

 

Classification Societies

 

 throughout the world, under the umbrella of the 

 

International
Federation of Classification Societies

 

 founded in 1985.

 

*  

 

Historical note provided by Prof. F. James Rohlf: “Actually, Sokal & Michener (1958) did not
use a computer for their very large study. They used an electromechanical accounting machine
to compute the raw sums and sums of products. The coefficients of correlation and the cluster
analysis itself were computed by hand with the use of mechanical desk calculators. Sneath did
use a computer in his first study.”

Figure 8.1 Empirically delineating clusters of objects in a scatter diagram is easy when there are no
intermediate objects between the groups.

Descriptor 2

Descriptor 1
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The commonly-used clustering methods are based on easy-to-understand
mathematical constructs: arithmetic, geometric, graph-theoretic, or simple statistical
models (minimizing within-group variance), leading to rather simple calculations on
the dissimilarity or similarity values. It must be understood that most clustering
methods are heuristic; they create groups by reference to some concept of what a group
embedded in some space should be like, without reference, in most case, to the
processes occurring in the application field — ecology in the present book. They have
been developed by numerical taxonomists and numerical ecologists, later joined by
other researchers in the physical sciences, economics and humanities. In several
methods, clusters are delineated on the basis of statements such as: “

 

x

 

1

 

 is closer to 

 

x

 

2

 

than it is to 

 

x

 

3

 

”, whereas other methods rest on probabilistic models of the type:
“Chances are higher that 

 

x

 

1

 

 and 

 

x

 

2

 

 pertain to the same group than 

 

x

 

1

 

 and 

 

x

 

3

 

”. In all
cases, clustering models make it possible to link the points without requiring prior
positioning in a graph (i.e. a metric space), which would be impractical in more than
three dimensions. These models allow a graphical representation of other interesting
relationships among the objects of the data set than their positions in a reference space
of variables, for example the dendrogram of their hierarchical relationships.
Chapter 10 will show how it is possible to combine clustering and ordination,
computed with different methods, to obtain a more complete picture of the data
structure.

The choice of a clustering method is as critical as the choice of an association
measure. It is important to fully understand the properties of clustering methods in
order to correctly interpret the ecological structure they bring out. Most of all, the
methods to be used depend upon the type of clustering sought. Williams 

 

et al. 

 

(1971)
recognized two major categories of methods. In a 

 

descriptive clustering

 

,
misclassifying objects is to be avoided, even at the expense of creating single-object
clusters. In a 

 

synoptic clustering

 

,

 

 

 

all objects are forced into one of the main clusters;
the objective is to construct a general conceptual model that encompasses a reality
wider than the data under study. Both approaches have their usefulness.

When two or more clustering models seem appropriate to a problem, one should
apply them all to the data and compare the results. Clusters that repeatedly come out of
analyses that use appropriate methods are the robust solutions to the clustering
problem. Differences among results must be interpreted in the light of the known
properties of the clustering models, which are explained in the following sections.

 

8.2 The basic model: single linkage clustering

 

For natural scientists, a simple-to-understand clustering method (or 

 

model

 

)

 

 

 

is 

 

single
linkage

 

 (or 

 

nearest neighbour

 

) clustering (Sneath, 1957). Its logic seems natural, so
that it is used to introduce readers to the principles of clustering. Its name, 

 

single
linkage

 

,

 

 

 

distinguishes it from other clustering models, called complete or intermediate

Descriptive,
synoptic
clustering
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linkage, detailed in Section 8.5. The algorithm for single linkage clustering is
sequential, agglomerative and hierarchical, following the nomenclature of Section 8.4.
Its starting point is any association matrix (distance or similarity) among the objects to
be clustered. One assumes that the association measure has been carefully chosen,
following the recommendations of Section 7.6. In the examples that follow, a distance
matrix 

 

D

 

 will be used as the starting point for clustering because this is the standard in
the clustering functions of the R language.

The method proceeds in two steps: 

 

• 

 

First, the association matrix is rewritten in order of increasing distances or
decreasing similarities, heading the list with the two closest objects (smallest distance)
of the association matrix, followed by the second most similar pair, and proceeding
until all the measures comprised in the association matrix have been listed. 

 

• 

 

Second, the clusters are formed hierarchically, starting with the two closest objects,
and then letting the objects combine into groups, and the groups aggregate to one
another, as the distance increases. The following example illustrates this method.

 

Ecological application  8.2

 

Five ponds characterized by 38 zooplankton species were studied by Legendre & Chodorowski
(1977). The data were counts, recorded on a relative abundance scale from 0 = absent to 5 =
very abundant. These ponds have been used as example for the computation of Goodall’s
coefficient (

 

S

 

23

 

, Chapter 7; only eight zooplankton species were used in that example). These
five ponds, with others (see Ecological application 10.1), were subjected to single linkage
clustering after computing similarity coefficient 

 

S

 

20

 

 with parameter 

 

k

 

 = 2. The symmetric
similarity matrix, transformed into distances using the equation 

 

D

 

 = 1 – 

 

S

 

, is represented by its
lower triangle. The diagonal is trivial because it contains distances of 0 by construct. 

Ponds
Ponds

212 214 233 431 432
212 —
214 0.400 —
233 1.000 0.929 —
431 1.000 0.937 0.700 —
432 1.000 0.786 0.800 0.500 —
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The first clustering step consists in rewriting the distance values in increasing order: 

As the distance levels increases, pairs of objects are formed. These pairs are called “links”; they
serve to link the objects or groups into a chain, as discussed below. 

Connected subgraphs are one of the many possible graphical representations of cluster
formation (Fig. 8.2a). As the distance increases, clusters are formed, following the list of links in
the table of ordered distances above. Only the distance levels at which clusters are modified by
addition of objects are represented in the figure. The first link is formed between ponds 212 and
214 at 

 

D

 

 = 0.4, then between 431 and 432 at 

 

D

 

 = 0.5. Pond 233 joins this second cluster nucleus
at 

 

D

 

 = 0.7. Finally these two clusters merge at 

 

D

 

 = 0.786 due to a link formed between ponds
214 and 432. The clustering may stop at this point since, according to the single linkage rule
(below), all ponds now belong to the same cluster. If the distance criterion is allowed to relax
down to 

 

D

 

 = 1 (Fig. 8.2a), links form between members of the cluster up to a point where all
ponds are linked to one another. That part of the clustering is of no interest in single linkage
clustering, but these links will be of interest in the other forms of linkage clustering below. 

A dendrogram (Fig. 8.2b) is a commonly-used representation of hierarchical clustering
results. Dendrograms only display the clustering topology and object labels, not the links
between objects. Dendrograms are made of branches (“edges”) that meet at “nodes” which are
drawn at the distance values where fusions of branches takes place. For graphical convenience,
vertical lines are used in Fig. 8.2b to connect branches at the distance levels of the nodes; the
lengths of these lines are of no consequence. Branches could be connected directly to nodes. The
branches furcating from a node may be switched (“swivelled”) without affecting the information
contained in a dendrogram.

The clustering results were interpreted by Legendre & Chodorowski (1977) with respect to
the conditions prevailing in the ponds. In their larger study summarized in Ecological
application 10.1, all non-permanent ponds (including 212 and 214) formed a cluster while the
permanent ponds (including 233, 431 and 432) formed a distinct group (Fig. 10.2).

 

From this example, it should be clear that the rule for assigning an object to a
cluster, in single linkage clustering, requires that the object be no more distant than the
considered 

 

D

 

 level from 

 

at least one object already member of the cluster. 

 

In complete
linkage hierarchical clustering (Subsection 8.5.2), the assignment rule differs and
requires the object to be no more distant than the given level from 

 

all 

 

the objects

 

D

 

 = 1 – 

 

S

 

20

 

Pairs formed
0.400 212-214
0.500 431-432
0.700 233-431
0.786 214-432
0.800 233-432
0.929 214-233
0.937 214-431
1.000 212-233
1.000 212-431
1.000 212-432

Link

Dendrogram

Edge
Node

Single
linkage rule
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already members of the cluster. The chaining rule used in single linkage clustering
may be stated as follows: at each partition level, two objects must be allocated to the
same subset if their dissimilarity (distance) is less than or equal to that of the
partitioning level considered. The same rule can be formulated in terms of similarities:
two objects must be allocated to the same subset if their similarity is equal to or higher
than that of the partitioning level considered.

 

Estabrook (1966) discussed single linkage clustering using the language of graph theory.
The exercise has didactic value. A cluster is defined through the following steps:

a) For any pair of objects 

 

x

 

1

 

 and 

 

x

 

2

 

, a 

 

link

 

 is defined between them by a relation 

 

G

 

c

 

:

 

x

 

1

 

 

 

G

 

c

 

 

 

x

 

2

 

 if and only if 

 

D
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x
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, 

 

x

 

2
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or equally, if 
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1

 

, 

 

x

 

2

 

) 

 

"

 

 (1 – 

 

c

 

)

Figure 8.2 Illustrations of single linkage agglomerative clustering for the ponds in the example.
(a) Connected subgraphs: groups of objects are formed as the distance level is relaxed from left
to right. The levels where clusters are modified by addition of objects are represented; they are
ordered along the distance scale (D). New links between ponds are represented by heavy lines;
thin lines are used for links formed at previous (lower) distance levels. (b) Dendrogram
representing the result of single linkage clustering.
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assuming distances between 0 and 1. Index c in the clustering relation Gc is the distance level
considered. At a distance level of 0.45, for instance, ponds 212 and 214 of the example are in
relation G0.45 since D(212, 214) ! 0.45. This definition of a link has the properties of symmetry
(x1 Gc x2 if and only if x2 Gc x1) and reflexivity (xi Gc xi is always true since D(xi, xi) = 0). A
group of links for a set of objects, such as defined by relation Gc, is called an undirected graph.

b) The chaining that characterizes single linkage clustering may be described by a Gc-chain. A
Gc-chain is said to extend from x1 to x2 if there exist other points x3, x4, …, xi in the collection
of objects under study, such that x1 Gc x3 and x3 Gc x4 and … and xi Gc x2. For instance, at
similarity level c = 0.786 of the example, there exists a G0.786-chain from pond 212 to pond 233
since there are intermediate ponds such that 212 G0.786 214 and 214 G0.786 432 and
432 G0.786 431 and 431 G0.786 233. The number of links in a Gc-chain defines the
connectedness of a cluster (Subsection 8.12.1).

c) There only remains to delineate the clusters resulting from single linkage chaining. For that
purpose, an equivalence relation Rc (“member of the same cluster”) is defined as follows:

x1 Rc x2 if and only if there exists a Gc-chain from x1 to x2 at distance level c.

In other words, x1 and x2 are assigned to the same cluster at distance level c if there exists a
chain of links joining x1 to x2. Thus, at level D = 0.786 in the example, ponds 212 and 233 are
assigned to the same cluster (212 R0.786 233) because there exists a G0.786-chain from 212 to
233. The relationship “member of the same cluster” has the following properties: (1) it is
reflexive (xi Rc xi) because Gc is reflexive; (2) the Gc-chains may be reversed because Gc is
symmetric; as a consequence, x1 Rc x2 implies that x2 Rc x1; and (3) it is transitive because, by
Gc-chaining, x1 Rc x2 and x2 Rc x3 implies that x1 Rc x3. Each cluster thus defined is a connected
subgraph, which means that the objects of a cluster are all connected in their subgraph; in the
graph of all the objects, distinct clusters (subgraphs) have no links attaching them to one another.

Single linkage clustering provides an accurate picture of the relationships between
pairs of objects, but its propensity to chaining is often not desirable in ecological
analysis. This is because the presence of an object midway between two compact
clusters, or a few intermediate objects connecting two clusters, are enough to turn them
into a single cluster. Of course, clusters do not chain unless intermediates are present;
so, the occurrence of chaining provides information about the data. To describe this
phenomenon, Lance & Williams (1967c) wrote that this method “contracts the
reference space”. Picture the objects as laying in descriptor space (A-space, Fig. 7.2):
the presence of a cluster increases the probability of inclusion, by chaining, of
neighbouring objects into the cluster. This is as if the distances between objects were
smaller in that region of the space; see also Fig. 8.24a.

Section 10.1 will show how to take advantage of the interesting properties of single
linkage clustering by combining it with ordination results, while avoiding the undue
influence of chaining on the clustering structure.

The set of edges that first connect objects to clusters or small graphs into larger
graphs, in single linkage clustering, form a graph called minimum spanning tree (MST,
Gower & Ross, 1969). For Ecological application 8.2, the first four edges represented
by heavy links in the left-hand part of Fig. 8.2a, down to D = 0.786, form the MST.

Undirected
graph

Chain
Chaining

Connected
subgraph

Minimum
spanning
tree
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That tree has been described a number of times in the literature and has received
several names: dendrites (Lukaszewicz, 1951), network (Prim, 1957), Prim network
(Cavalli-Sforza & Edwards, 1967), shortest spanning tree or minimum-length tree
(Sneath & Sokal, 1973). MSTs are very useful when analysing clusters drawn in an
ordination space (Section 10.1). If the MST is drawn on a scatter diagram of the
objects, one can obtain a non-hierarchical clustering of the objects by removing the
single largest or the few largest distance links. Such graphs are illustrated in Figs. 10.1
and 10.2. A MST is also used to calculate the truncation distance in the computation of
spatial eigenfunctions in Chapter 14. Section 8.15 shows how to compute a MST in R. 

A related concept is the chain of primary connections (Legendre, 1976): this is the
set of links that first connect objects to groups, or groups to one another, in any type of
hierarchical clustering. For single linkage clustering, that chain is identical to the MST,
but it may differ for other methods if the clustering topology they produce is different.
How to compute it is described at the end of Subsection 8.5.4 for the UPGMA case.

8.3 Cophenetic matrix and ultrametric property

Any classification or partition can be fully described by a cophenetic matrix. This
matrix is used for comparing different classifications of the same objects.

1 — Cophenetic matrix

The cophenetic distance (or similarity) of two objects x1 and x2 is defined as the
distance (or similarity) level at which objects x1 and x2 become members of the same
cluster during the course of clustering (Jain & Dubes, 1988), as depicted by connected
subgraphs or by a dendrogram (e.g. Fig. 8.2a, b). Any dendrogram can be uniquely
represented by a matrix in which the distance (or similarity) for a pair of objects is
their cophenetic distance (or similarity). Consider the single linkage clustering
dendrogram of Fig. 8.2b. The clustering levels, read directly on the dendrogram, lead
to the following distance (D) and similarity (S, where S = 1 – D) matrices:

These matrices are called cophenetic matrices (Sokal & Rohlf, 1962; Jain & Dubes,
1988). The ordering of objects in the cophenetic matrix is irrelevant; any order that
suits the researcher is acceptable. The same applies to dendrograms; the order of the

D 212 214 233 431 432 S 212 214 233 431 432
212 — (upper triangle 

symmetric to lower)
212 — (upper triangle 

symmetric to lower)214 0.400 — 214 0.600 —
233 0.786 0.786 — 233 0.214 0.214 —
431 0.786 0.786 0.700 — 431 0.214 0.214 0.300 —
432 0.786 0.786 0.700 0.500 — 432 0.214 0.214 0.300 0.500 —

Chain of
primary
connections

Cophenetic
distance

Cophenetic
matrix
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objects may be changed at will, provided that the dendrogram is redrawn to
accommodate the new ordering.

For a partition of the data set (as in the K-means method, below), the resulting
groups of objects are not related through a dendrogram. A cophenetic matrix may
nevertheless be computed. Consider the groups (212, 214) and (233, 431, 432)
obtained by cutting the dendrogram of Fig. 8.2b at distance level D = 0.75, ignoring
the hierarchical structure of the two clusters. The cophenetic matrices would be:

2 — Ultrametric property

If there are no reversals in the clustering (Fig. 8.16), a classification has the following
ultrametric property:

D(x1, x2) ! max[D(x1, x3), D(x2, x3)] (8.1)

for every triplet of objects (x1, x2, x3) in the study. The cophenetic matrix is then called
ultrametric. Cophenetic distances also possess the four metric properties of
Section 7.4. The ultrametric property may be expressed in terms of similarities:

S(x1, x2) " min[S(x1, x3), S(x2, x3)] (8.2)

As an exercise, readers can verify that the five properties apply to all doublets and
triplets of distances in the cophenetic D matrix shown above.

8.4 The panoply of methods

Clustering algorithms have been developed using a wide range of conceptual models
and for studying a variety of problems. Sneath & Sokal (1973) proposed a
classification of clustering procedures. Its main dichotomies are briefly described.

1 — Sequential versus simultaneous algorithms

Most clustering algorithms are sequential in the sense that they proceed by applying a
recurrent sequence of operations to the objects. The agglomerative single linkage

D 212 214 233 431 432 S 212 214 233 431 432
212 — (upper triangle 

symmetric to lower)
212 — (upper triangle 

symmetric to lower)214 0 — 214 1 —
233 1 1 — 233 0 0 —
431 1 1 0 — 431 0 0 1 —
432 1 1 0 0 — 432 0 0 1 1 —
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clustering of Section 8.2 is an example of a sequential method: the search for the
equivalence relation Rc is repeated at all distance levels in the association matrix, up to
the point where all objects are in the same cluster. In simultaneous algorithms, which
are less frequent, the solution is obtained in a single step. Ordination techniques
(Chapter 9), which may be used for delineating clusters, are of the latter type. This is
also the case of the direct complete linkage clustering method presented in
Subsection 8.9.1. The K-means (Section 8.8) and other non-hierarchical partitioning
methods may be computed using sequential algorithms, although these methods are
neither agglomerative nor divisive (next paragraph).

2 — Agglomeration versus division

Among the sequential algorithms, agglomerative procedures begin with the
discontinuous partition of all objects, i.e. the objects are considered as being separate
from one another. They are successively grouped into larger and larger clusters until a
single, all-encompassing cluster is obtained. If the continuous partition of all objects is
used instead as the starting point of the procedure (i.e. a single group containing all
objects), divisive algorithms subdivide the group into sub-clusters, and so on until the
discontinuous partition is reached. In either case, it is left to users to decide which of
the intermediate partitions is to be retained, given the problem under study.
Agglomerative algorithms are the most developed for two reasons. First, they are
easier to program. Second, in clustering by division, the erroneous allocation of an
object to a cluster at the beginning of the procedure cannot be corrected afterwards
(Gower, 1967) unless a complex procedure is embedded in the algorithm to do so.

3 — Monothetic versus polythetic methods

Divisive clustering methods may be monothetic or polythetic. Monothetic models use
a single descriptor at each step as the basis for partitioning, whereas polythetic models
use several descriptors which, in most cases, are combined into an association matrix
(Chapter 7) prior to clustering. Divisive monothetic methods proceed by choosing, for
each partitioning level, the descriptor considered to be the best for that level; objects
are then partitioned following the state to which they belong with respect to that
descriptor. For example, the most appropriate descriptor at each partitioning level
could be the one that best represents the information contained in all other descriptors,
after measuring the reciprocal information between descriptors (Subsection 8.7.1).
When a single partition of the objects is sought, monothetic methods produce the
clustering in a single step.

4 — Hierarchical versus non-hierarchical methods

In hierarchical methods, the members of inferior-ranking clusters become members of
larger, higher-ranking clusters. Most of the time, hierarchical methods produce non-
overlapping clusters, but this is not a necessity according to the definition of
“hierarchy” in the dictionary or the usage recognized by Sneath & Sokal (1973).
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Single linkage clustering of Section 8.2 and the methods of Sections 8.5 and 8.7 are
hierarchical. 

Non-hierarchical methods are very useful in ecology. They produce a single
partition that optimizes within-group homogeneity, instead of a hierarchical series of
partitions optimizing the hierarchical attribution of objects to clusters. Lance &
Williams (1967d) restrict the term “clustering” to the non-hierarchical methods and
call the hierarchical methods “classification”. Non-hierarchical methods include K-
means partitioning, the ordination techniques (Chapter 9) used as clustering methods,
the creation of clusters by removing edges from a graph (which may be a minimum
spanning tree), the methods of matrix seriation of Section 8.10, and the algorithm
described in Subsection 8.9.1 for the clustering of species into biological associations.
These methods should be used in cases where the aim is to obtain a direct
representation of the relationships among objects instead of a summary of their
hierarchy. Hierarchical methods are easier to compute and more often available in
statistical packages than non-hierarchical procedures.

Most hierarchical methods use a resemblance matrix as their starting point. This
prevents their use with very large data sets because the resemblance matrix, with its
n(n – 1)/2 values, may become extremely large. Algorithms have been developed for
hierarchical agglomeration of very large numbers of objects after computing only a
small fraction of the distances (e.g. Jambu & Lebeaux, 1983; Rohlf, 1978, 1982a).

5 — Constrained clustering methods

In constrained clustering, external information about the sampling design is used by
the clustering algorithm, in addition to the distance relationships among objects. Two
forms of constrained clustering are described in this book: time-constrained
(Section 12.6) and space-constrained clustering (Subsection 13.3.2).

6 — Probabilistic versus non-probabilistic methods

Probabilistic methods include a clustering model by Clifford & Goodall (1967),
designed to be used in conjunction with Goodall’s probabilistic index (S23, Chapter 7),
in which clusters are formed in such a way that the within-group association matrices
have a given probability of being homogeneous. That method is described in the
previous edition of this book (Legendre & Legendre, 1998, Subsection 8.9.2). This
category also includes the parametric and nonparametric methods for estimating
density functions in multivariate space.

Sneath & Sokal (1973) describe other dichotomies for clustering methods, which
are of lesser interest to ecologists. These are: global or local criteria, direct or iterative
solutions, equal or unequal weights, and adaptive or non-adaptive clustering.
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8.5 Hierarchical agglomerative clustering

Most methods of hierarchical agglomeration can be computed as special cases of a
general model which is discussed in Subsection 8.5.9.

1 — Single linkage agglomerative clustering

In single linkage agglomeration (Section 8.2), two clusters fuse when the two objects
closest to each other (one in each cluster) reach the distance level of the considered
partition (Fig. 8.2). As a consequence of chaining, results of single linkage clustering
are sensitive to noise in the data (Milligan, 1996), because noise changes the distance
values and may thus modify the order in which objects cluster. The origin of single
linkage clustering is found in a collective work by mathematicians Florek,
Lukaszewicz, Perkal, Steinhaus, and Zubrzycki, published by Lukaszewicz in 1951.

2 — Complete linkage agglomerative clustering

Opposite to the single linkage approach is complete linkage agglomeration, also called
furthest neighbour sorting. In this method, first proposed by Sørensen (1948), the
fusion of two clusters depends on the most distant pair of objects instead of the closest.
Thus, an object joins a cluster only when it is linked (relationship Gc, Section 8.2) to
all the objects already members of that cluster. In the same way, two clusters can fuse
only when all objects of the first are linked to all objects of the second, and vice versa.

Coming back to the ponds of Ecological application 8.2, the steps of complete
linkage clustering (Fig. 8.3) can be followed on the subgraphs shown in Fig. 8.2a.
Examine the connected subgraphs and locate the D levels where completely connected
groups of 2, 3, 4, and 5 objects are found. The pair (212, 214) is formed at D = 0.4 and
the pair (431, 432) at D = 0.5. The next clustering step must wait until D = 0.8 since it
is only then that pond 233 is finally linked (relationship Gc) to both ponds 431 and

Complete
linkage rule

Figure 8.3 Complete linkage clustering of the ponds of Ecological application 8.2.
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432. Although there is a group of four completely linked ponds at D = 0.937, these
ponds do not form a cluster in the agglomerative framework because pond 214 is
already linked to pond 212, hence the two clusters (212, 214) and (233, 431, 432)
cannot fuse at that level. It is only at D = 1 that ponds 212 and 214 are linked to all the
ponds of cluster (233, 431, 432) and the five ponds form a single cluster.

In the complete linkage strategy, as a cluster grows, it becomes more and more
difficult for new objects to join to it because the new objects should bear links with all
the objects already in the cluster before being incorporated. For that reason, the growth
of a cluster seems to move it away from the other objects or clusters in the analysis.
According to Lance & Williams (1967c), this is equivalent to dilating the reference
space in the neighbourhood of that cluster; see also Fig. 8.24c and related text. This
effect is opposite to what was found in single linkage clustering, which contracted the
reference space. In reference space A (Fig. 7.2), complete linkage produces maximally
linked and rather spherical clusters, whereas single linkage may produce elongated
clusters with loose chaining. Complete linkage clustering is often desirable in ecology,
when one wishes to delineate clusters with clear discontinuities.

The intermediate (next subsection) and complete linkage clustering models have
one drawback when compared to single linkage. In all cases where two incompatible
candidates present themselves at the same time to be included in a cluster, algorithms
use a preestablished and often arbitrary rule, called a “right-hand rule”, to choose one
and exclude the other. This problem does not exist in single linkage. An example is
when two objects or two clusters could be included in a third cluster, while these two
objects or clusters have not completed the linkage with each other. For this problem,
Sørensen (1948) recommended the following: (1) choose the fusion leading to the
largest cluster; (2) if equality persists, choose the fusion that most reduces the number
of clusters; (3) as a last criterion, choose the fusion that minimizes the average distance
within the cluster.

3 — Intermediate linkage clustering

Between the chaining of single linkage and the extreme space dilation of complete
linkage, the most interesting solution in ecology may be a type of linkage clustering
that approximately conserves the metric properties of reference space A; see also
Fig. 8.24b. If the interest only lies in the clusters shown in the dendrogram, and not in
the actual links between clusters shown by the subgraphs, the average clustering
methods of Subsections 8.5.4 to 8.5.7 below could be useful since they also conserve
the metric properties of the reference space.

In intermediate linkage clustering, the fusion criterion of an object or a cluster with
another cluster is considered satisfied when a given proportion of the total possible
number of links is reached. For example, if the criterion of connectedness (Co) is 0.5,
two clusters are only required to share 50% of the possible links in order to fuse; in
other words, the fusion is authorized when £/n1n2 " Co where £ is the actual number of
between-group links at sorting level L, while n1 and n2 are the numbers of objects in

Connected-
ness
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the two clusters, respectively. This criterion has been called proportional link linkage
by Sneath (1966). Figure 8.4 gives the results of proportional link linkage clustering
with Co = 50% for the pond example.

Sneath (1966) described three other ways of defining intermediate linkage
clustering criteria: (1) by integer link linkage, which specifies the number of links
required for the fusion of two groups (fusion when £ is larger than or equal to a fixed
integer, or else when £ = n1n2); (2) by their absolute resemblance, based on the sum of
similarity links between the members of two clusters (the sum of the realized between-
group similarities, #Sl2, must reach a given threshold before fusion occurs); or (3) by
their relative resemblance, where the sum of similarity links between the two clusters,
#Sl2, is divided by the number of between-group similarities, n1n2 (fusion occurs at
level L when the ratio #Sl2/n1n2 is greater than cL, where c is an arbitrary constant).
When c equals 1, the method is called average linkage clustering. Similarities, not
distances, must be used for criteria 2 and 3. These strategies are not combinatorial in
the sense of Subsection 8.5.9.

4 — Unweighted arithmetic average clustering (UPGMA)

There are four methods of average clustering that conserve the metric properties of
reference space A. These four methods were called “average linkage clustering” by
Sneath & Sokal (1973), although they do not tally the links between clusters. As a
consequence they are not object-linkage methods in the sense of the previous three
subsections. They rely instead on the calculation of average distances among objects
or the centroids of clusters. The four methods have nothing to do with Sneath’s (1966)
“average linkage clustering” described in the previous paragraph, so that we prefer
calling them “average clustering”. These methods (Table 8.2) result from the
combinations of two dichotomies: (1) arithmetic average versus centroid clustering
and (2) weighting versus non-weighting.

Proportional
link linkage

Figure 8.4 Intermediate linkage clustering, using the proportional link linkage criterion (Co = 50%), for the
ponds of Ecological application 8.2.
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The first method in Table 8.2 is the unweighted arithmetic average clustering
(Rohlf, 1963), also called “UPGMA” (“Unweighted Pair-Group Method using
Arithmetic averages”) by Sneath & Sokal (1973) or “group-average sorting” by Lance
& Williams (1966a and 1967c). It is also called “average linkage” by SAS, SYSTAT
and some other statistical packages, thus adding to the confusion pointed out in the
previous paragraph. This is method = "average" in function hclust() of R. The lowest
distance (or highest similarity) identifies the next cluster to be formed. Following this
event, the method computes the arithmetic average of the distances between a
candidate object and each of the cluster members or, in the case of a previously formed
cluster, between all members of the two clusters. All objects receive equal weights in
the computation. The distance matrix is updated and reduced in size at each clustering
step. Clustering proceeds by agglomeration as the distance criterion increases, just as it
does in single linkage clustering.

For the ponds of Section 8.2, UPGMA clustering proceeds as shown in Table 8.3
and Fig. 8.5. At step 1, the lowest distance value in the matrix is D(212, 214) = 0.400;
hence the two objects fuse at level 0.400. As a consequence of this fusion, the distance
values of these two objects with each of the remaining objects in the study must be
averaged (values in the inner boxes in the table, step 1); this results in a reduction of
the size of the distance matrix. Considering the reduced matrix (step 2), the smallest
distance value is D = 0.500; it indicates that objects 431 and 432 fuse at level 0.500.
The fused distance values are obtained by averaging the boxed values in the step 2
panel; this produces a new reduced distance matrix for the next step. In step 3, the
lowest distance is 0.750; it leads to the fusion of the already-formed group (431, 432)
with object 233 at level 0.750. In the example, this last fusion is the difficult point to
understand. Before averaging the values, each one must be multiplied by the number
of objects in the corresponding group. There is one object in group (233) and two in
group (431, 432), so that the fused distance value is calculated as [(0.9645 × 1) +
(0.93075 × 2)]/3 = 0.942. This is equivalent to averaging the six boxed distances in the
top panel (larger box) with equal weights; the result would also be 0.942. So, this
method is “unweighted” in the sense that it gives equal weights to the original

Table 8.2 Average clustering methods discussed in Subsections 8.5.4 to 8.5.7.

Arithmetic average Centroid clustering

Equal weights 4. Unweighted arithmetic 6. Unweighted centroid
average clustering (UPGMA) clustering (UPGMC)

Unequal weights 5. Weighted arithmetic 7. Weighted centroid 
average clustering (WPGMA) clustering (WPGMC)
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Table 8.3 Unweighted arithmetic average clustering (UPGMA) of the pond data. At each step, the lowest
distance value is identified (italicized boldface value) and the two corresponding objects or
groups are fused by averaging their distances as described in the text (boxes).

Objects 212 214 233 431 432

Figure 8.5 Unweighted arithmetic average clustering (UPGMA) of the ponds from Ecological
application 8.2. This type of clustering only produces a dendrogram. It cannot be represented by
connected subgraphs since it is not a linkage clustering as found in Figs. 8.2 to 8.4.

212 — Step 1

214 0.400 —

233 1.000 0.929 —

431 1.000 0.937 0.700 —

432 1.000 0.786 0.800 0.500 —

212-214 — Step 2

233 0.9645 —

431 0.9685 0.700 —

432 0.8930 0.800 0.500 —

212-214 — Step 3

233 0.9645 —

431-432 0.93075 0.750 —

212-214 — Step 4

233-431-432 0.942 —

Distance 0.4 0.5 0.6 0.7 0.8 0.9 1.0

212
214
233
431
432

0.942
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distances. To achieve this at step 3, one has to use weights that are equal to the number
of objects in the groups. At step 4, there is a single remaining distance value; it is used
to perform the last fusion at level 0.942. In the dendrogram, fusions are drawn at the
identified distance levels.

Because it gives equal weights to the original distances, the UPGMA method
assumes that the objects in each group form a representative sample of the
corresponding larger groups of objects in the reference population under study. For
that reason, UPGMA clustering should only be used in connection with simple random
or systematic sampling designs if the results are to be extrapolated to a larger reference
population.

Unlike the linkage clustering methods, information about the relationships between
pairs of objects is lost in methods based on progressive reduction of the distance
matrix, since only the relationships among groups are considered. This information
can be extracted from the original distance matrix by making a list containing, for each
fusion level, the lowest distance found between objects of the two groups. For the
pond example, the chain of primary connections corresponding to the dendrogram
would be made of the following links: (212, 214) for the first fusion level, (431, 432)
for the second level, (233, 431) for the third level, and (214, 432) for the last level
(Table 8.3). The topology obtained by UPGMA clustering may differ from that of
single linkage. If this had been the case here, the chain of primary connections would
have been different from that of single linkage clustering.

5 — Weighted arithmetic average clustering (WPGMA)

It often occurs in ecology that groups of objects, representing different regions of a
territory, are of unequal sizes. Eliminating objects to equalize the clusters would mean
discarding valuable information. However, the presence of a large group of objects,
which are more similar a priori because of their common origin, may distort the
UPGMA results when a fusion occurs with a smaller group of objects. Sokal &
Michener (1958) proposed a solution to this problem, called weighted arithmetic
average clustering (“WPGMA” in Sneath & Sokal, 1973: “Weighted Pair-Group
Method using Arithmetic averages”; method = "mcquitty" in function hclust() of R).
This solution consists in giving equal weights, when computing fusion distances, to
the two branches of the dendrogram that are about to fuse. This is equivalent, when
computing a fusion distance, to giving different weights to the original distances,
i.e. down-weighting the distances of the largest group. Hence the name of the method.

Table 8.4 and Fig. 8.6 describe the WPGMA clustering sequence for the pond data.
In this example, the only difference with UPGMA is the last fusion value. It is
computed here by averaging the two distances from the previous step:
(0.9645 + 0.93075)/2 = 0.947625. Weighted arithmetic average clustering increases
the separation of the two main clusters, compared to UPGMA. This gives sharper
contrast to the classification.
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Table 8.4 Weighted arithmetic average clustering (WPGMA) of the pond data. At each step, the lowest
distance value is identified (italicized boldface value) and the two corresponding objects or
groups are fused by averaging their distances (boxes).

Objects 212 214 233 431 432

Figure 8.6 Weighted arithmetic average clustering (WPGMA) of the ponds from Ecological
application 8.2. This type of clustering only produces a dendrogram. It cannot be represented by
connected subgraphs since it is not a linkage clustering as found in Figs. 8.2 to 8.4.

212 — Step 1

214 0.400 —

233 1.000 0.929 —

431 1.000 0.937 0.700 —

432 1.000 0.786 0.800 0.500 —

212-214 — Step 2

233 0.9645 —

431 0.9685 0.700 —

432 0.8930 0.800 0.500 —

212-214 — Step 3

233 0.9645 —

431-432 0.93075 0.750 —

212-214 — Step 4

233-431-432 0.9476 —

Distance 0.4 0.5 0.6 0.7 0.8 0.9 1.0

212
214
233
431
432

0.9476
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6 — Unweighted centroid clustering (UPGMC)

The centroid of a cluster of objects can be imagined as the type-object of the cluster,
whether that object actually exists or is only a mathematical construct. In A-space
(Fig. 7.2), the coordinates of the centroid of a cluster are computed by averaging the
coordinates of the objects in the cluster. 

Unweighted centroid clustering (Lance & Williams, 1967c; “UPGMC” in Sneath
& Sokal, 1973: “Unweighted Pair-Group Centroid Method”) is based on a simple
geometric approach. This is method = "centroid" in function hclust() of R. Along a
decreasing scale of distances, UPGMC proceeds to the fusion of objects or clusters
presenting the lowest distance, as in the previous methods. At each step, the members
of a cluster are replaced by their common centroid (i.e. “mean point”). The centroid is
considered to represent a new object for the remainder of the clustering procedure; in
the next step, one looks again for the pair of objects with the lowest distances, on
which the fusion procedure is repeated.

Gower (1967) proposed the following formula for centroid clustering, where the
distance of the centroid (hi) of objects or clusters h and i to a third object or cluster g is
computed from the distances D(h, g), D(i, g), and D(h, i):

(8.3)

were the w’s are weights given to the clusters. To simplify the symbolism, letters g, h,
and i designate three objects considered in the course of clustering; they may also
represent centroids of clusters obtained during previous clustering steps. 

Gower’s formula insures that the centroid hi of objects (or clusters) h and i is
geometrically located on the line between h and i. In classical centroid clustering, the
numbers of objects nh and ni in clusters h and i are taken as values for the weights wh
and wi; these weights are 1 at the start of the clustering because there is then a single
object per cluster. If initial weights are attached to individual objects, they may be used
instead of 1’s in eq. 8.3.

Centroid clustering may lead to reversals (Section 8.6). Some authors feel
uncomfortable about reversals since they violate the ultrametric property (eq. 8.1);
such violations make dendrograms more difficult to draw. A reversal is found with the
pond example (Table 8.5, Fig. 8.7): the fusion distance found at step 4 is lower than
that of step 3. The last fusion distance (step 4) is calculated as follows:

As indicated above, UPGMC clustering is geometrically interpreted as the fusion
of objects into cluster centroids. Figure 8.8 presents the four clustering steps depicted
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Table 8.5 Unweighted centroid clustering (UPGMC) of the pond data. At each step, the lowest distance
value is identified (italicized boldface value) and the two corresponding objects or groups are
fused using eq. 8.3.

Objects 212 214 233 431 432

Figure 8.7 Unweighted centroid clustering (UPGMC) of the ponds from Ecological application 8.2. This
type of clustering only produces a dendrogram. The reversal in the structure of the dendrogram
is explained in Section 8.6.

212 — Step 1

214 0.400 —

233 1.000 0.929 —

431 1.000 0.937 0.700 —

432 1.000 0.786 0.800 0.500 —

212-214 — Step 2

233 0.8645 —

431 0.8685 0.700 —

432 0.9730 0.800 0.500 —

212-214 — Step 3

233 0.8645 —

431-432 0.70575 0.625 —

212-214 — Step 4

233-431-432 0.6198 —

Distance 0.4 0.5 0.6 0.7 0.8 0.9 1.0

212
214
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432

0.6198
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by the dendrogram, drawn in an A-space (Fig. 7.2) reduced to two dimensions through
principal coordinate analysis (Section 9.3) to facilitate representation. At the end of
each step, a new cluster is formed and its centroid is represented at the centre of mass
of the cluster members; examine especially steps 3 and 4.

Unweighted centroid clustering may be used with any measure of distance, but
Gower’s formula (eq. 8.3) only retains its geometric properties for distances that are
Euclidean (Table 7.2). Note also that in this clustering procedure, the links between
clusters do not depend upon identifiable pairs of objects; this was also the case with
clustering methods 4 and 5 above. Thus, if the chain of primary connections is needed,
its links be identified by the method described at the end of Subsection 8.5.4.

The assumptions of this model with respect to representativeness of the
observations are the same as in UPGMA since equal weights are given to all objects
during clustering. So, UPGMC should only be used in connection with simple random
or systematic sampling designs if the results are to be extrapolated to a larger reference
population. When the branching pattern of the dendrogram displays asymmetry (many

Figure 8.8 The four UPGMC clustering steps of Fig. 8.7 are drawn in A-space. Objects are represented by
open symbols and centroids by dark symbols; object identifiers are shown in the first panel only.
Separate clusters are represented by different symbols. The first two principal coordinates,
represented here, account for 87% of the variation of the objects in the full A-space.
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more objects in one branch than in the other), this can be attributed to the structure of
the reference population if the sampling design was random.

7 — Weighted centroid clustering (WPGMC)

Weighted centroid clustering was proposed by Gower (1967). This is method =
"median" in function hclust() of R. It plays the same role with respect to UPGMC as
WPGMA (method 5) plays with respect to UPGMA (method 4). When many
observations of a given type have been included in the set to be clustered, next to other
types that were not as well-sampled (sampling design other than simple random or
systematic), the positions of the centroids may be biased towards the over-represented
types, which in turn could distort the clustering. In weighted centroid clustering, which
Sneath & Sokal (1973) called “WPGMC” (“Weighted Pair-Group Centroid Method”),
this problem is corrected by giving equal weights to two clusters on the verge of
fusing, independently of the number of objects in each cluster. To achieve this, eq. 8.3
is replaced by the following formula (Gower, 1967):

(8.4)

The five ponds of Ecological application 8.2 are clustered as described in Table 8.6
and Fig. 8.9. The last fusion distance (step 4), for example, is calculated as follows:

This value is the level at which the last fusion takes place. Note that no reversal
appears in this result, although WPGMC can produce reversals like UPGMC
clustering.

As indicated above, WPGMC clustering is geometrically interpreted as the fusion
of objects into cluster centroids. Figure 8.10 presents the four clustering steps depicted
by the dendrogram, in A-space (Fig. 7.2) reduced to two dimensions through principal
coordinate analysis (Section 9.3) to facilitate representation. At the end of each step, a
new cluster is formed and its centroid is represented at the geometric centre of the last
line drawn; examine especially steps 3 and 4 and compare to Fig. 8.8.

8 — Ward’s minimum variance method

Ward’s (1963) minimum variance method is related to the centroid methods
(Subsections 8.5.6 and 8.5.7 above) in that it also leads to a geometric representation
in which cluster centroids play a key role. To form clusters, the method minimizes an
objective function which is, in this case, the same “squared error” criterion as that used
in multivariate analysis of variance.
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Table 8.6 Weighted centroid clustering (WPGMC) of the pond data. At each step, the lowest distance
value is identified (italicized boldface value) and the two corresponding objects or groups are
fused using eq. 8.4.

Objects 212 214 233 431 432

Figure 8.9 Weighted centroid clustering (WPGMC) of the ponds from Ecological application 8.2. This type
of clustering only produces a dendrogram.

212 — Step 1

214 0.400 —

233 1.000 0.929 —

431 1.000 0.937 0.700 —

432 1.000 0.786 0.800 0.500 —

212-214 — Step 2

233 0.8645 —

431 0.8685 0.700 —

432 0.7930 0.800 0.500 —

212-214 — Step 3

233 0.8645 —

431-432 0.70575 0.625 —

212-214 — Step 4

233-431-432 0.6289 —

Distance 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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At the beginning of the procedure, each objects is in a cluster of its own, so that the
distance of an object to its cluster’s centroid is 0; hence, the sum of all these distances
is also 0. As clusters form, the centroids move away from actual object coordinates and
the sums of the squared distances from the objects to the centroids increase. At each
clustering step, Ward’s method finds the pair of objects or clusters whose fusion
increases as little as possible the sum, over all groups formed so far, of the squared
distances between objects and cluster centroids; that sum is the total within-group
sum-of-squares. The distance of object xi to centroid m of its cluster is computed using
the squared Euclidean distance formula (eq. 7.33) over the various descriptors yj
(j = 1 … p):

Figure 8.10 The four WPGMC clustering steps of Fig. 8.9 are drawn in A-space. Objects are represented by
open symbols and centroids by dark symbols; object identifiers are shown in the first panel only.
Distinct clusters are represented by different symbols. The first two principal coordinates,
represented here, account for 87% of the variation of the objects in the full A-space. 
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The centroid m of a cluster was defined at the beginning of Subsection 8.5.6. The sum
of the squared distances of all objects in cluster k to their common centroid, which is
called “error” in ANOVA (hence the symbol ), is the sum of the squared Euclidean
distances between the members of the cluster and its centroid:

Error in cluster k: (8.5)

where  is the value of descriptor yj for an object i member of group (k) and 
is the mean value of descriptor j over all members of group k.  is used as a measure
of the tightness of a cluster. If all data points in a cluster have the same coordinates in
multidimensional space, or there is a single point in a cluster, the within-cluster
variation is 0. Alternatively, the within-cluster sums of squared errors  can be
computed as the mean of the squared distances among cluster members:

Error in cluster k: (8.6)

where the  are the squared distances among objects in cluster k (Table 8.7) and nk
is the number of objects in that cluster. Equations 8.5 and 8.6 have already been shown
in Box 6.1 (eqs. 6.55 and 6.56); they both allow the calculation of the squared error
statistic. The equivalence of these two equations is stated in a theorem whose
demonstration is found in Kendall & Stuart (1963, parag. 2.22) for the univariate case
and in Legendre & Fortin (2010, Appendix 1) for the multivariate case. Numerical
examples illustrating the calculation of eqs. 8.5 and 8.6 are given at the end of
Section 8.8 on K-means partitioning.

The sum of squared errors , over all K clusters corresponding to a given
partition, is the criterion to be minimized at each clustering step:

Total error, K clusters: (8.7)

At each clustering step, two objects or clusters h and i are merged into a new
cluster hi, as in previous sections. Since changes occurred only in groups h, i, and hi,
the change in the overall sum of squared errors, , can be computed from the
changes that occurred in these groups only:

Change in total error: (8.8)
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Table 8.7 Ward’s minimum variance clustering of the pond data. Step 1 of the table contains squared
distances computed as D2 from the distance values in the upper panels of Tables 8.3 to 8.6. At
each step, the lowest squared distance is identified (italicized boldface value) and the two
corresponding objects or groups are fused using eq. 8.10.

Objects 212 214 233 431 432

Figure 8.11 Ward’s minimum variance clustering of the ponds from Ecological application 8.2. The scale of
this dendrogram is here the squared distances computed in Table 8.7.

212 — Step 1

214 0.16000 —

233 1.00000 0.86304 —

431 1.00000 0.87797 0.49000 —

432 1.00000 0.61780 0.64000 0.25000 —

212-214 — Step 2

233 1.18869 —

431 1.19865 0.49000 —

432 1.02520 0.64000 0.25000 —

212-214 — Step 3

233 1.18869 —

431-432 1.54288 0.67000 —

212-214 — Step 4

233-431-432 1.6795 —

Distance2
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It can be shown that this change depends only on the distance between the centroids of
clusters h and i and on their numbers of objects nh and ni:

Change in total error: (8.9)

So, one way of identifying the next fusion would be to compute the  statistic for
all possible pairs and select the pair that generates the smallest value for the next
fusion. An easier way is to use the following updating formula to compute the fusion
distances between the new cluster hi and all other objects or clusters g in the
agglomeration table (Table 8.7):

(8.10)

Wishart (1969) and Kaufman & Rousseeuw (1990) demonstrated mathematically that
the smallest distance computed using this updating formula corresponds to the fusions
that obeys Ward’s (1963) criterion at each clustering step. Note that squared distances
are used instead of distances in eq. 8.10 and in Table 8.7. This algorithm is called
Ward.D2. Table 8.8 shows the clustering steps for the example data.

$Ehi
2 nhni

nh ni+
---------------- m j

h( ) m j
i( )–[ ]

2

j 1=

p

#=

$Ehi
2

D2 hi, g( )
nh ng+

nh ni ng+ +
-----------------------------D2 h, g( )

ni ng+
nh ni ng+ +
-----------------------------D2 i, g( )

ng
nh ni ng+ +
-----------------------------D2 h, i( )–+=

Table 8.8 Clustering steps in Ward’s minimum variance clustering for the pond data. The objects are
renamed 1 to 5 for shortness. K is the number of clusters, represented by underscored groups of
objects. The total sum of squares (SSTotal) of the 5 objects is 1.37976 (eq. 8.6). SSWithin is also
computed using eq. 8.6; SSAmong = SSTotal – SSWithin. Between clustering levels,  is
computed using eq. 8.8 or by difference between the successive values of SSWithin or SSAmong.

 was computed in Table 8.7; Dmin is the square root of . 

K Objects SSWithin SSAmong Dmin

5 1   2   3   4   5 0 1.37976
0.08000 0.16000 0.40000

4 1   2   3   4   5 0.08000 1.29976
0.12500 0.25000 0.50000

3 1   2   3   4   5 0.20500 1.17476
0.33500 0.67000 0.81854

2 1   2   3   4   5 0.54000 0.83976
0.83976 1.67952 1.29596

1 1   2   3   4   5 1.37976 0
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An alternative formula found in some manuals, e.g. Jain & Dubes (1988), uses
distances D instead of D2 in eq. 8.10. This formula is implemented in some programs
and functions; it will be called the Ward.D algorithm*. One can show that the resulting
updating formula produces cluster fusions that do not necessarily minimize the change
in total error (eq. 8.8), so the clustering does not follow Ward’s rule.

Ward clustering is a hierarchical agglomerative method; it proceeds sequentially by
binary group fusions. Each fusion, going from (k+1) to k groups, satisfies Ward’s
criterion. This hierarchical method does not guarantee, however, that globally, all
partitions into k = {(n–1), (n–2), ..., 4, 3, 2} groups satisfy that criterion. One should
use K-means partitioning (Section 8.8) to obtain a partition into a specified number of
groups (K) that minimizes the sum of residual sums-of-squares.

Dendrograms for Ward’s clustering may be represented along a variety of scales
although these dendrograms all represent the same clustering topology.

• In Fig. 8.11, the dendrogram is drawn using the scale of squared distances computed
in Table 8.7. 

• One can compute the square roots of the fusion distances of Table 8.7 and draw the
dendrogram accordingly. This solution, illustrated in Fig. 8.12a, is often used in
computer programs and functions, including agnes() of CLUSTER in R; it removes the
distortions created by squaring the distances. It is especially suitable when one wants
to compare the fusion distances of Ward’s clustering to the original distances, either
graphically (Shepard-like diagrams, Fig. 8.24) or numerically (cophenetic
correlations, Subsection 8.12.2).

• The sum of squared errors  (eq. 8.7) is used in some computer programs as the
dendrogram scale. This statistic is also called the total error sum of squares (TESS) by
Everitt (1980) and other authors. This solution is illustrated in Fig. 8.12b.

• The SAS package recommends two scales for Ward’s clustering. The first one is the
proportion of variance (R2) accounted for by the clusters at any given partition level. It
is computed as the total sum of squares (i.e. the sum of squared distances from the
centroid of all objects) minus the within-cluster squared errors  of eq. 8.7 for the
given partition, divided by the total sum of squares. R2 decreases as clusters grow.
When all the objects are lumped in a single cluster, the resulting one-cluster partition
does not explain any of the objects’ variation so that R2 = 0. The second scale
recommended by SAS is called the semipartial R2. It is computed as the between-

*  In R, function hclust() of package STATS with method = "ward" implements the Ward.D
algorithm (at least up to version 2.12.1), whereas function agnes() of package CLUSTER with
method = "ward" implements the Ward.D2 algorithm. hclust() can be made to produce results
corresponding to the Ward.D2 algorithm by using squared distances in the input matrix. To
obtain the Ward.D2 dendrogram with correct scale, one has to modify the $height element of the
output list to make it contain the square roots of the height values before calling plot().

EK
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TESS
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2
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cluster sum of squares divided by the (corrected) total sum of squares. This statistic
increases as the clusters grow.

Because the Ward method minimizes the sum of within-group sums of squares
(squared error criterion), the clusters tend to be hyperspherical, i.e. spherical in
multidimensional A-space, and to contain roughly equal numbers of objects if the
observations are evenly distributed through A-space. The same applies to the centroid
methods of the previous subsections. This may be seen as either an advantage or a
problem, depending on the researcher’s conceptual model of a cluster.

9 — General agglomerative clustering model

Lance & Williams (1966a, 1967c) proposed a general model that encompasses all the
agglomerative clustering methods presented up to now, except intermediate linkage
(Subsection 8.5.3). The general model offers the advantage of being translatable into a
single, simple computer program, so that it is used in most statistical packages that
offer agglomerative clustering, including R. The general model allows one to select an
agglomerative clustering model by choosing the values of four parameters called %h,
%i, &, and ' that determine the clustering strategy. This model only outputs the

Figure 8.12 Ward’s minimum variance clustering of the ponds from Ecological application 8.2. The scale of
dendrogram (a) is the square root of the squared distances computed in Table 8.7; that scale can
be compared to the original distances. In dendrogram (b), it is the  (or TESS) statistic.EK
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branching pattern of the clustering tree (the dendrogram), as it was the case for the
methods described in Subsections 8.5.4 to 8.5.8. For the linkage clustering strategies
(Subsections 8.5.1 to 8.5.3), the list of primary links responsible for cluster formation
can be obtained afterwards by comparing the dendrogram to the distance matrix.

The model of Lance & Williams is limited to combinatorial clustering methods,
i.e. those for which the distance D(hi, g) between an external cluster g and a cluster hi,
resulting from the prior fusion of clusters h and i, is a function of the three distances
D(h, g), D(i, g), and D(h, i) and also, eventually, of the numbers nh, ni, and ng of
objects in clusters h, i, and g, respectively (Fig. 8.13). Individual objects are
considered to be single-member clusters. Since the distance of cluster hi to an external
cluster g can be computed from the above six values, h and i can be condensed into a
single row and a single column in the updated distance matrix; following that, the
clustering proceeds as in the tables of the previous subsections. Since the new
distances at each step can be computed by combining those from the previous step, it is
not necessary for a computer program to retain the original distance matrix or data set.
Non-combinatorial methods do not have this property. For distances, the general
model for combinatorial methods is the following:

(8.11)

When using similarities, the combinatorial equation is:

(8.12)

Combina-
torial 
method

Figure 8.13 In combinatorial clustering methods, the distance between a cluster hi, resulting from the fusion
of two previously formed clusters h and i, and an external cluster g is a function of the three
distances between (h and i), (h and g), and (i and g), and of the number of objects in h, i, and g.
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Clustering proceeds in the same way for all combinatorial agglomerative methods.
As the distances increases, a new cluster is obtained by the fusion of the two closest
objects or groups, after which the algorithm proceeds to the fusion of the two
corresponding rows and columns in the distance (or similarity) matrix using eq. 8.11 or
8.12. The matrix is thus reduced by one row and one column at each step. Table 8.9
gives the values of the four parameters for the most commonly used combinatorial
agglomerative clustering strategies. Values of the parameters for some other clustering
strategies are given by Gordon (1996a).

In the case of equality between two mutually exclusive pairs, the decision may be
made on an arbitrary basis (the so-called “right-hand rule” used in most computer
programs) or based upon ecological criteria as, for example, Sørensen’s criteria
reported at the end of Subsection 8.5.2, or those described in Subsection 8.9.1.

In several strategies, %h + %i + & = 1, so that the term (1 – %h – %i – &) becomes
zero and disappears from eq. 8.12. One can show how the values chosen for the four

Table 8.9 Values of parameters %h, %i, &, and ' in Lance and Williams’ general model for combinatorial
agglomerative clustering. Modified from Sneath & Sokal (1973) and Jain & Dubes (1988).

Clustering method %h %i & ' Effect on space A

Single linkage 1/2 1/2 0 –1/2 Contracting*

Complete linkage 1/2 1/2 0 1/2 Dilating*

UPGMA 0 0 Conserving*

WPGMA 1/2 1/2 0 0 Conserving

UPGMC 0 Conserving

WPGMC 1/2 1/2 –1/4 0 Conserving

Ward’s 0 Conserving

Contracting if & ) 1
Flexible –1 ! & < 1 0 Conserving if & ) –.25

Dilating if & ) –1

* Terms used by Sneath & Sokal (1973).
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parameters make the general equation correspond to each specific clustering method.
For single linkage clustering, for instance, the general equation becomes:

The last term (absolute value) corrects the largest of the two distances D(h, g) and
D(i, g), making it equal to the smallest one. Hence, D(hi, g) = min[D(h, g), D(i, g)].
In other words, the distance between a newly-formed cluster hi and some other cluster
g becomes equal to the smallest of the distance values previously computed between
the two original clusters (h and i) and g.

Intermediate linkage clustering is not a combinatorial strategy. All along the
clustering procedure, it is necessary to refer to the original association matrix in order
to calculate the connectedness of pairs of clusters. This is why it cannot be obtained
using the Lance & Williams general agglomerative clustering model.

10 — Flexible clustering

Lance & Williams (l966a, 1967c) proposed to vary parameter & (eq. 8.11 or 8.12)
between –1 and +1 to obtain a series of intermediate solutions between single linkage
chaining and the space dilation of complete linkage. The method is called beta-flexible
clustering by some authors. Lance & Williams (ibid.) have shown that, if the other
parameters are constrained a follows:

%h = %i = (1 – &)/2 and ' = 0

the resulting clustering is always ultrametric (no reversals; Section 8.6).

When & is close to 1, strong chaining is obtained. As & decreases and becomes
negative, space dilation increases. The space properties are conserved for small
negative values of & near –0.25. Figure 8.14 shows the effect of varying & in the
clustering of 20 objects. Like weighted centroid clustering, flexible clustering is
compatible with all association measures except correlation coefficients.

Ecological application  8.5

Pinel-Alloul et al. (1990) studied phytoplankton in 54 lakes of Québec to determine the effects
of acidification, physical and chemical characteristics, and lake morphology on species
assemblages. Phytoplankton was enumerated into five main taxonomic categories
(microflagellates, chlorophytes, cyanophytes, chrysophytes, and pyrrophytes). The data were
normalized using the generalized form of the Box-Cox method that finds the best normalizing
transformation for all species (Subsection 1.5.6). A Gower (S19) similarity matrix, computed
among lakes, was subjected to flexible clustering with parameter & = –0.25. Six clusters were
found, which were roughly distributed along a NE-SW geographic axis and corresponded to
increasing concentrations of total phytoplankton, chlorophytes, cyanophytes, and
microflagellates. Explanation of the phytoplankton-based lake typology was sought by
comparing it to the environmental variables (Subsection 10.2.1).
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Figure 8.14 Flexible clustering of 20 objects for six values of &. The measure of association is the squared
Euclidean distance . Adapted from Lance & Williams (1967c: 376).D1

2

& = –0.50 & = –1.00

& = + 0.98 & = + 0.50

& = –0.25& = 0
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11 — Information analysis

Information analysis is a Q-mode clustering method developed for ecological purposes
by Williams et al. (1966) and Lance & Williams (1966b). It does not go through the
usual steps of distance calculation followed by clustering. It is a direct method of
clustering based on information measures.

Shannon’s formula (eq. 6.1) can be used to measure the diversity or information in
a frequency or probability distribution:

Information analysis is a type of unweighted centroid clustering, adapted to species
presence-absence data. At each step, the two objects or clusters causing the smallest
gain in within-group diversity (or information) are fused. As a consequence, the
clusters are as homogeneous as possible in terms of species composition. 

The method could be applied to species abundance data divided into a small
number of classes but, in practice, it is mostly used with presence-absence data. The
information measure described below is not applicable to raw abundance data because
the number of different states would then vary from one species to another, which
would give them different weights in the overall measure. 

To illustrate the method, the pond zooplankton counts used in Chapter 7 to
illustrate the calculation of coefficient S23 (eq. 7.30) are transformed here into
presence-absence data:

Total information in this group of ponds is computed using an information measure
derived from the following reasoning (Lance & Williams, 1966b). The entropy of each
species presence-absence descriptor j is calculated on the basis of the probabilities of
presence pj and absence (1 – pj) of species j, which are written in the right-hand part of

Species j
Ponds

pj (1 – pj)212 214 233 431 432
1 1 1 0 0 0 0.4 0.6
2 0 0 1 1 0 0.4 0.6
3 0 1 1 0 1 0.6 0.4
4 0 0 1 1 1 0.6 0.4
5 1 1 0 0 0 0.4 0.6
6 0 1 0 1 1 0.6 0.4
7 0 0 0 1 1 0.4 0.6
8 1 1 0 0 0 0.4 0.6

Entropy

H p j  p jlog
j 1=

p

#–=
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the table. The probability of presence is estimated as the number of ponds where
species j is present, divided by the total number of ponds in the cluster under
consideration (here, the group of five ponds). The probability of absence is estimated
likewise, using the number of ponds where species j is absent. The entropy of species j
is therefore:

H(j) = –[pj log pj + (1 – pj) log(1 – pj)]      for 0 < pj < 1 (8.13)

The base of the logarithms is indifferent, as long as the same base is used throughout
the calculations. Natural logarithms are used throughout the present example. For the
first species, H(1) would be:

H(1) = –[0.4 loge(0.4) + 0.6 loge(0.6)] = 0.673

The information of the conditional probability table can be calculated by summing
the entropies per species, considering that all species have the same weight. Since the
measure of total information in the group must also take into account the number of
objects in the cluster, it is defined as follows:

    for 0 < pj < 1 (8.14)

where p is the number of species represented in the group of n objects (ponds). For null
probabilities,  = 0. For the group of 5 ponds above,

I = –5 [8 (–0.673)] = 26.920

If I is to be expressed as a function of the number aj of ponds with species j present,
instead of a function of probabilities pj = aj/n, it can be shown that the following
formula is equivalent to eq. 8.14:

(8.15)

I is zero when all ponds in a group contain the exact same set of species. Like entropy
H, I has no upper limit; its maximum value depends on the number of species present
in the study.

At each clustering step, three series of values are computed: (a) the total
information I in each group, which is 0 at the beginning of the process since each
object (pond) then forms a distinct cluster; (b) the value of I for all possible
combinations of groups taken two at a time; and (c) the increase of information $I
resulting from each possible fusion. As recommended by Sneath & Sokal (1973), all
these values can be written in a matrix, initially of dimension n × n which decreases as
clustering proceeds. For the example data, values (a) of information in each group are
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placed on the diagonal, values (b) of I in the lower triangle, and values (c) of $I in the
upper triangle, in italics.

The value $I for two groups is found by subtracting the two corresponding values I, on
the diagonal, from the value I of their combination in the lower triangle. Values on the
diagonal are 0 in this first calculation matrix, so that values in the upper triangle are the
same as in the lower triangle, but this will not be the case in subsequent matrices. 

The first fusion is identified by the lowest $I value found in the upper triangle. This
value is 2.773 for pairs (212, 214) and (431, 432), which therefore fuse. A new matrix
of I values is computed:

This time, the $I values in the upper triangle differ from the I’s in the lower triangle
since there are now I values different from 0 on the diagonal. The $I corresponding to
group (212, 214, 431, 432), for example, is computed as: 21.134 – 2.773 – 2.773
= 15.588. The lowest value of $I is for the group (233, 431, 432), which therefore
fuses at this step at information level I = 7.638. 

For the last clustering step, the only I value to calculate in the lower triangle is for
the cluster containing the five ponds. This value, computed above after eq. 8.14, is
26.920. $I is then 26.920 – 2.773 – 7.638 = 16.509.

Ponds
Ponds

212 214 233 431 432
212 0 2.773 8.318 9.704 9.704

214 2.773 0 8.318 9.704 6.931

233 8.318 8.318 0 4.159 4.159

431 9.704 9.704 4.159 0 2.773

432 9.704 6.931 4.159 2.773 0

Groups
Groups

212
214

233 431
432

212-214 2.773 10.594 15.588

233 13.367 0 4.865

431-432 21.134 7.638 2.773

Groups
Groups

212
214

233
431-432

212-214 2.773 16.509

233-431-432 26.920 7.638
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The last fusion occurs at I = 26.920; computing $I is not necessary in this case. The
values of I can be used as the scale for a dendrogram summarizing the clustering steps
(Fig. 8.15). The same topology is obtained as in Figs. 8.3 to 8.11.

According to Williams et al. (1966), information analysis minimizes chaining and
quickly delineates the main clusters, at least with ecological data. Field (1969) pointed
out, however, that information analysis bases the similarity between objects on double
absences as well as double presences. This method may therefore not be appropriate
when a gradient has been sampled and the data matrix contains many zeros; see
Subsections 7.2.2 and 9.2.5 for discussions of this problem.

The inverse of $I is known as the efficiency coefficient (Lance & Williams, 1966b).
An analogue to the efficiency coefficient can be computed for dendrograms obtained
using other agglomerative clustering procedures. In that case, the efficiency coefficient
is still computed as 1/$I, where $I represents the amount by which the information in
the classification is reduced due to the fusion of groups. The reduction is computed as
the entropy in the classification before a fusion level minus the entropy after that
fusion. In Fig. 8.2b for instance, the partition at D = 0.60 contains three groups of 2, 2,
and 1 objects respectively; using natural logarithms, Shannon’s formula (eq. 6.1) gives
H = 1.05492. The next partition, at D = 0.75, contains two groups with 2 and 3 objects;
Shannon’s formula gives H = 0.67301. The difference is $ = 0.38191, hence the
efficiency coefficient is 1/$I = 2.61843 for fusion level D = 0.7 of the dendrogram.

When 1/$I is high, the procedure clusters objects that are mostly alike. The
efficiency coefficient does not monotonically decrease as the clustering proceeds. With
real data, it may decrease, reach a minimum, and increase again. If 1/$I is plotted as a
function of the successive fusion levels, the minima in the graph indicate the most
informative partitions. If one wants to select a single cutting level in a dendrogram,
this graph may help in deciding which partition should be selected. In Fig. 8.2b for
example, one would choose the value 1/$I = 1.48586, which corresponds to the last
fusion level (D = 0.786), as the most informative partition. The efficiency coefficient is
not a rigorous decision criterion, however, since no test of significance is performed.

Figure 8.15 Clustering of the ponds from Ecological application 8.2, using information analysis.

Information 5 10 15 20 25

212
214
233
431
432

Efficiency
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8.6 Reversals

Reversals may occasionally occur in the clustering structure when using UPGMC or
WPGMC (Subsections 8.5.6 and 8.5.7), or with some unusual combinations of
parameters in the general agglomerative model of Lance & Williams
(Subsection 8.5.9). As an example, a reversal was produced in Fig. 8.7. Two types of
situations lead to reversals:

• When x1 and x2 cluster first, because they represent the closest pair, although the
distance from x3 to the centroid c12 is smaller than the distance from x1 to x2
(Fig. 8.16a).

• When D(x1, x2) = D(x1, x3) = D(x2, x3). In such a situation, most computer
programs use an arbitrary rule (“right-hand rule”) and first cluster two of the three
objects. A reversal appears when the third object is added to the cluster.

When this happens, the cophenetic matrix (Subsection 8.3.1) violates the
ultrametric property (Subsection 8.3.2) and the dendrogram is more difficult to draw
than in the no-reversal cases (Fig. 8.16b). However, departures from ultrametricity are
never large in practice. For this reason, a reversal may be interpreted as nearly
equivalent to a trichotomy in the hierarchical structure (Fig. 8.16c). They may also
indicate true trichotomies, as discussed above; this can be checked by examination of
the distance matrix.

Figure 8.16 A reversal may occur in situations such as (a), where x1 and x2 cluster first because they
represent the closest pair, although the distance from x3 to the centroid c12 is smaller than the
distance from x1 to x2. (b) The result is usually depicted by a non-ultrametric dendrogram with
reversal. (c) The reversal may also be interpreted as a trichotomy.
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A clustering method is said to be monotonic (i.e. without reversals) if 

D(x1 ( x2, x3) " D(x1, x2)

or S(x1 ( x2, x3) ! S(x1, x2)

Assuming that %h > 0 and %i > 0 (Table 8.9), necessary and sufficient conditions for a
clustering method to be monotonic in all situations are the following:

%h + %i + & " 1

and ' " –min (%h, %i)

(Milligan, 1979; Jain & Dubes, 1988). Some authors use the term classification only
for hierarchies without reversals or for non-overlapping partitions of the objects
(Table 8.1, Section 8.8).

8.7 Hierarchical divisive clustering

Contrary to the agglomerative methods of Section 8.5, hierarchical divisive techniques
use the whole set of objects as the starting point. They divide it into two or several
subgroups, after which they consider each subgroup and divide it again, until the
criterion chosen to end the divisive procedure is met (Lance & Williams, 1967b).

In practice, hierarchical divisive clustering can only be achieved in the monothetic
case or when working in an ordination space. In monothetic divisive methods, the
objects are divided, at each step of the procedure, according to the states of a single
descriptor. This descriptor is chosen because it best represents the whole set of
descriptors (next subsection). Polythetic algorithms have been developed, but it will be
seen that they are not satisfactory. 

An alternative is to use a partitioning method (Section 8.8) for several numbers of
groups from K = 2 and up and assemble the results into a graph. There is no guarantee,
however, that the groups will be nested and form a hierarchy, unless the biological or
ecological processes that have generated the data are themselves hierarchical.

1 — Monothetic methods

The clustering methods that use only one descriptor at a time are less than ideal, even
when the descriptor is chosen after considering all the others. In ecology, the best-
known monothetic method is Williams & Lambert’s (1959) association analysis,
originally described for species presence-absence data. Association analysis may
actually be applied to any binary data table, not only species. The problem is to
identify, at each step of the procedure, which descriptor is the most strongly associated

Association
analysis
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with all the others. First, X2 (chi-square) statistics are computed for 2 × 2 contingency
tables comparing all pairs of descriptors in turn. X2 is computed using the usual
formula:

X2 = n (ad - bc)2/[(a + b) (c + d) (a + c) (b + d)]

The formula may include Yates’ correction for small sample sizes, as in similarity
coefficient S25. The X2 values relative to each descriptor k are summed up:

   for   j + k (8.16)

The largest sum identifies the descriptor that is the most closely related to all the
others. The first partition is made along the states of that descriptor; a first cluster is
made of the objects coded 0 for the descriptor and a second cluster for the objects
coded 1. The descriptor is eliminated from the study and the procedure is repeated,
separately for each cluster. Division stops when the desired number of clusters is
attained or when the sum of X2 values no longer reaches a previously set threshold.

This method has been adapted by Lance & Williams (1968) to the information
statistic I of Subsection 8.5.11. Lance & Williams (1965) also suggested using the
point correlation coefficient  (eq. 7.9) instead of X2. This may prevent
aberrant or unique objects in the study from determining the first partitions. This is
analogous to the problem encountered with the higher powers of Minkowski’s metric
(D6), which could give too much weight to the largest differences; this problem was
less severe when using power 1, which is the Manhattan metric (D7). One then looks
for the descriptor that maximizes the sum  (j + k; see eq. 8.16). Gower (1967)
suggested to use, for division, the species that has the largest R2 with all the other
species (eq. 10.20), instead of the one with the largest sum of simple correlations. He
also suggested to use the largest variance inflation factor (VIF) as criterion, instead of
the largest R2, because VIF is monotonically related to R2 (eq. 10.17). VIF can be
computed by a single matrix operation for all species (sentence that follows eq. 10.17).

The principles of association analysis may be applied to descriptors with multiple
states (semiquantitative or qualitative), by computing X2 statistics between descriptors
using the usual X2 formulas (eqs. 6.5 and 6.6). Raw species abundance data should not
be analysed in this way, however, because the large number of different abundance
values makes the contingency tables meaningless. 

Legendre & Rogers (1972) proposed a monothetic divisive method similar to
association analysis, in which the choice of the descriptor best representing all the
others is made with the help of an information statistic computed on contingency
tables. For each descriptor k, two quantities developed by Christanson (in Brill et al.,
1972) are computed: SUMRAT (k) and SAMRAT (k) (“sum of ratios”). SUMRAT (k) is the
sum of the fractions representing the amount of information that k has in common with

X jk
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#

, X2 n=

-, jk



Hierarchical divisive clustering 379

each descriptor j (j + k), divided by the amount of information in j. In SAMRAT (k), the
divisor is the amount of information in k instead of j. Using the symbolism of
Section 6.2:

SUMRAT (k) =    for   j + k (8.17)

SAMRAT (k) =    for   j + k (8.18)

which can be recognized as sums of asymmetric uncertainty coefficients, - B/(B + C)
and - B/(A + B), respectively (Section 6.2). SUMRAT (k) and SAMRAT (k) both have
the property of being high when k has much information in common with the other
descriptors in the study. The descriptor that best represents the divisive power of all
descriptors is expected to have the highest SUMRAT and SAMRAT values. However,
SUMRAT (k) and SAMRAT (k) are also influenced by the number of states in k, which
may unduly inflate H(k), thus causing SUMRAT (k) to increase and SAMRAT (k) to
decrease. This factor must be taken into account if there is conflict between the
indications provided by SUMRAT and SAMRAT as to the descriptor that best represents
the whole set. This peculiarity of the method requires the user’s intervention at each
division step, in the present state of development of the equations. 

Since the information measures on which SUMRAT and SAMRAT are based are at
the same exponent level as X2 (Section 6.2), one could compute instead:

SUMRAT (k) =    for   j + k (8.19)

SAMRAT (k) =    for   j + k (8.20)

thus minimizing the effect of single objects on the first partitions, as indicated above.

Williams & Lambert (1961) have suggested using association analysis in the R
mode for identifying species associations. This approach does not seem, however, to
be based on an acceptable operational concept of association (see Section 8.9).

2 — Polythetic methods

There is no satisfactory algorithm for the hierarchical division of objects based on the
entire set of descriptors. 

The method of Edwards & Cavalli-Sforza (1965) tries all possible divisions of the
set of objects into two clusters, looking for the division that maximizes the distance
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between the centroids. Using sums of squared distances to centroids, one first
computes SS, which is the sum of squares of the Euclidean distances of all objects to
the centroid of the whole set of objects, divided by the number of objects n; this value
is the total sum of squares of a single classification analysis of variance (eqs. 6.56 and
8.6). Then, for each possible partition of the objects into two groups h and i, the sums
of squares of the distances to the centroids are computed within each cluster, using
eq. 8.6, to obtain SS(h) and SS(i), respectively. The distance between the two clusters
is therefore SS – SS(h) – SS(i). This is the quantity to be maximized for the first
partition. Then each cluster is considered in turn and the operation is repeated to obtain
subsequent divisions. Like K-means partitioning of Section 8.8, this method can only
be applied to quantitative data because it is based on Euclidean distances. 

This method may seem attractive but, apart from the theoretical objections that he
raised about it, Gower (1967) noted that investigating all possible partitions to find the
best one is a NP–hard computational problem (footnote in Section 8.8). He calculated
that, before obtaining the first partition of a cluster of 41 objects, 54000 years of
computing time would be required using a computer with an access time of 5
microseconds, to try all (240 – 1) possible partitions of 41 objects into two groups.
5 microseconds was the typical access time of computers in 1967. The problem
remains with modern computers, even though they have much smaller access times (in
the realm of nanoseconds at the beginning of the years 2010). The heuristic algorithms
used to solve the K-means problem (Section 8.8) could, however, be applied here
instead of the complete search through all possible solutions.

The dissimilarity analysis of Macnaughton-Smith et al. (1964) first looks for the
object that is the most different from all the others and removes it from the initial
cluster. One by one, the most different objects are removed. Two groups are defined:
the objects removed and the remaining ones, between which a distance is calculated.
Objects are removed up to the point where the distance between clusters can no longer
be increased. Each of the two clusters thus formed is subdivided again, using the same
procedure. The first partition of a cluster of n objects requires at most 3n2/4 operations
instead of the (2n–1 – 1) operations required by the previous method. Other authors
have developed special measures of distance to be used in dissimilarity analysis, such
as Hall’s (1965) singularity index and Goodall’s (1966b) deviant index. Although
attractive, dissimilarity analysis may produce strange results when many small clusters
are present in the data, in addition to major clusters of objects. 

A major disadvantage of all hierarchical divisive methods is that a division of the
objects in two major clusters may also split the members of some minor cluster, which
cannot be fused again unless special procedures are included in the algorithm for that
purpose (Williams & Dale, 1965).

3 — Division in ordination space

Computer-efficient polythetic hierarchical divisive clustering can be obtained by
partitioning the objects according to the axes of an ordination space. Using principal

Dissimilarity
analysis
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component analysis (PCA, Section 9.1), the set of objects may be partitioned in two
groups: those that have positive values along the first PCA axis and those that have
negative values. The PCA analysis is repeated for each of the groups so obtained and a
new partition of each group is performed. The process is repeated until the desired
level of resolution is obtained (Williams, 1976b).

Following a similar suggestion by Piazza & Cavalli-Sforza (1975), Lefkovitch
(1976) developed a hierarchical classification method for very large numbers of
objects, based on principal coordinate analysis (PCoA, Section 9.3). The dendrogram
is constructed from the successive principal coordinate axes, the signs of the objects on
the coordinate axes indicating their membership in one of the two groups formed at
each branching step. The objects are partitioned in two groups according to their signs
along the first PCoA axis; each group is then divided according to the positions of the
objects along the second axis; and so on. This differs from the method used with PCA
above, where the analysis is repeated for each group before a new division takes place.
To calculate the principal coordinates of a large number of objects, Lefkovitch
proposed to first measure the similarity among objects by an equation which, like the
covariance or correlation, is equivalent to the product of a matrix with its transpose. He
described such a measure, applicable if necessary to combinations of binary,
semiquantitative, and quantitative descriptors. The association matrix among objects is
obtained by the matrix product YY' (order n × n). In situations where there are many
more objects than descriptors, computation of the eigenvalues and eigenvectors of the
association matrix among descriptors, Y'Y, represents an important saving of
computer time because Y'Y (order p × p) is much smaller than YY' (order n × n). After
Rao (1964) and Gower (1966), Lefkovitch showed that the principal coordinates V of
the association matrix among objects can then be found, using the relation V = YU
where U is the matrix of the principal coordinates among descriptors. The principal
coordinates thus calculated allow one to position the objects, numerous as they may
be, in the reduced space. Principal coordinates can be used for the binary hierarchical
divisive classification procedure that was Lefkovitch’s goal.

A divisive algorithm of the same type is used in TWINSPAN (next subsection). It is
based upon an ordination obtained by correspondence analysis instead of PCA or
PCoA.

4 — TWINSPAN

Two Way INdicator SPecies ANalysis (TWINSPAN*) (Hill, 1979a) is fundamentally a
method for hierarchical divisive classification of communities, based on progressive
refinement of a single ordination axis obtained by correspondence analysis (CA) or

*  Available as part of the package PC-ORD (distribution: footnote in Section 11.7). TWINSPAN is
also available from Micro-computer Power: <http://www.microcomputerpower.com>. The
TWINSPAN source code in FORTRAN and an executable version for Windows are available on Jari
Oksanen’s page <http://cc.oulu.fi/~jarioksa/softhelp/ceprog.html>. An executable program for
Windows, WINTWINS, is available on the page http://www.canodraw.com/wintwins.htm.
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detrended correspondence analysis (DCA) (Section 9.2) of a (sites × species) data
matrix. Hill (1979a) also called the method a dichotomized ordination analysis. 

An attractive feature of the output is a two-way table where the sites (columns) are
sorted according to the splits of the hierarchical classification. The species (rows) are
also sorted so as to form blocks corresponding to the groups of sites of the
classification. A dendrogram representing the classification of the sites can easily be
drawn, if required, from the TWINSPAN output table. In addition, the method computes
an indicator values index (I) for the species for every split of the hierarchical
classification of the sites.

To model the concept of differential species (i.e. species with clear ecological
preferences), which is qualitative, TWINSPAN creates pseudospecies. Each species is
recoded into a set of dummy variables (pseudospecies) corresponding to relative
abundance levels; these classes are cumulative. If, for example, the pseudospecies
cutting levels are 1%, 11%, 26%, 51% and 76%, a relative abundance of 18% at a site
will fill the first and second dummy pseudospecies vectors with “1” (= presence).
Cutting levels are arbitrarily decided by users. A (sites × pseudospecies) data table is
thus created.

The TWINSPAN procedure is rather complex. A detailed description is given by Kent
& Coker (1992). It may be summarized as follows.

1. After ordination by CA or DCA of the original (sites × species) data table, the
objects are divided in two groups according to their signs along the first ordination
axis. This is called the primary ordination. 

2. TWINSPAN then computes an indicator values index (I) for the species, for every split
of the hierarchical classification of the sites. According to Kent & Coker (1992), the
index is computed as follows using the pseudospecies data:

where  and  are respectively the number of sites on the arbitrarily chosen positive
and negative sides of the split, whereas  and  are the number of sites on the
positive and negative sides, respectively, that contain pseudospecies j. A
pseudospecies present in every site on the positive side and in none of the sites on the
negative side obtains Ij = 1, and –1 if it is found in every site on the negative side and
in none on the positive side. A pseudospecies that occurs in all sites on both sides of
the split obtains Ij = 0. In TWINSPAN, the indicator value describes the preference of a
pseudospecies for one or the other side of the partition. The pseudospecies with the
highest indicator absolute value is counted as the best indicator for that species. Then,
only one pseudospecies of a single species is declared an indicator of a split, and that is
the pseudospecies that has the highest absolute value of I.  is the measure of
fidelity to a group used in the INDVAL method described in Subsection 8.9.3.
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3. Further steps lead to a refined ordination of the objects. After taking care of
misclassifications, borderline cases, and other problems, a final division of the sites is
obtained. Then, each subset is divided into smaller subsets by repeating the procedure.
This goes on until groups become very small. Typically, groups of 4 objects or less are
not partitioned further.

Problems with TWINSPAN are the following: (1) To identify species groups or
compute indicator values, one cannot introduce some other classification of the sites in
the program; only the classification produced by TWINSPAN, which is based on
correspondence analysis (CA, Section 9.2) or detrended correspondence analysis
(DCA, Subsection 9.2.5), can be used to delineate species groups. (2) The
pseudospecies concept is based on species relative abundances. The relative
abundance of a species depends on the absolute abundances of the other species
present at a site. Such relative frequencies may be highly biased, in particular, when
sampling mobile organisms: all species are not sampled with the same efficiency
because of differences in behaviour. So, the coding of species abundances into
pseudospecies may be highly unstable. 

TWINSPAN has also been criticized by Belbin and McDonald (1993) on two
grounds: (1) The method assumes the existence of a strong gradient dominating the
data structure, so that it may fail to identify secondary gradients or other types of
structures in data sets. (2) The cutting points along the dominant axis for the whole
group, and then for subgroups, are always chosen to be the centroid of the group to be
split instead of a point where a large gap occurs in the data. This problem has been
alleviated by a modification to the method proposed by Rolecek et al. (2009).

An alternative method to obtain a reordered species-by-sites table is seriation
(Section 8.10). In R (Section 8.15), a plot (“heat map”) can be produced using
functions hmap() of package SERIATION or heatmap() of STATS.

8.8 Partitioning by K-means

Partitioning consists in finding a single partition of a set of objects (Table 8.1). Jain &
Dubes (1988) stated the problem in the following terms: given n objects in a
p–dimensional space, determine a partition of the objects into K groups, or clusters,
such that the objects within each cluster are more similar to one another than to objects
in the other clusters. The number of groups, K, is determined by the user. This problem
was first stated in statistical terms by Fisher (1958) who proposed solutions for a single
variable (with or without contiguity constraint; see Sections 12.6 and 13.3). K-means
partitioning is available in several R functions; see Section 8.15.

The difficulty is to define what ‘more similar’ means. Several criteria have been
suggested; they can be divided into global and local criteria. A global criterion would
be, for instance, to represent each cluster by a type-object (on a priori grounds, or
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using the centroids obtained by agglomerative clustering, Subsections 8.5.6 and 8.5.7)
without consideration for local densities of objects and assign each object to the
nearest type-object. A type object representing a cluster is called a medoid (Kaufman
& Rousseeuw, 1990). A local criterion uses the local structure of the data to delineate
clusters; groups are formed by identifying high-density regions in the data represented
in A-space (Fig. 7.2). The K-means method, described in the next paragraphs, is the
most commonly used of the latter type. K-means belongs to a larger class of methods
called K-centroid cluster analysis, which is briefly described in Section 8.15.

In K-means, the objective function that the partition should minimize is the same as
in Ward’s agglomerative clustering method (Subsection 8.5.8): the total error sum of
squares ( , or TESS). The major problem encountered by the algorithms is that the
solution on which the computation eventually converges depends to some extent on
the initial positions of the centroids. This problem does not exist in Ward’s method,
which proceeds iteratively by hierarchical agglomeration. However, even though
Ward’s algorithm guarantees that the increase in sum of squared errors ( , eq. 8.8)
is minimized at each step of the agglomeration (so that any order of entry of the
objects should lead to the same solution, except in cases of equal distances where a
“right-hand” programming rule may prevail), there is no guarantee that any given
Ward’s partition is optimal in terms of the  criterion — surprising at this may seem.
This same problem occurs with all stepwise statistical methods.

The problem of the final solution depending on the initial positions of the centroids
is known as the “local minimum” problem in algorithms. The concept is illustrated in
Fig. 8.17, by reference to a solution space. It may be explained as follows. Solutions to
the K-means problem are the different ways to partition n objects into, say, K = 4
groups. If a single object is moved from one group to another, the corresponding two
solutions will have slightly different values for the criterion to be minimized ( ).
Imagine that all possible solutions form a “space of solutions”. The different solutions
can be plotted as a graph with the  criterion as the ordinate. It is not essential to
accurately describe the abscissa to understand the concept; it would actually be a
multidimensional space. A K-means algorithm starts at some position in that space, the
initial position being assigned by the user (see below). It then tries to navigate the
space to find the solution that minimizes the objective criterion ( ). The space of
solutions is not smooth, however. It may contain local minima from which the
algorithm may be unable to escape. When this happens, the algorithm has not found
the overall minimum and the partition is not optimal in terms of the objective criterion.

Several approaches may be used to help a K-means algorithm converge towards the
overall minimum of the objective criterion . They involve either selecting specific
objects as “group seeds” at the beginning of the run, or attributing the objects to the K
groups in some special way. Here are some commonly-used approaches:

• Provide an initial configuration corresponding to an (ecological) hypothesis. The
idea is to start the algorithm in a position in the solution space that is, hopefully, close
to the final solution sought. This ideal situation is seldom encountered in real studies.
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• Provide an initial configuration corresponding to the result of a hierarchical
clustering, obtained from a space-conserving method (Table 8.9). One simply chooses
the partition into K groups found on the dendrogram and lists the objects pertaining to
each group. The K-means algorithm will then be asked to rearrange the group
membership and look for a better overall solution (lower  statistic).

• If the program allows it, select as “group seed”, for each of the K groups to be
delineated, some object located near the centroid of that group. For very large
problems, Lance & Williams (1967d) suggested to use as starting point the result of a
hierarchical clustering of a random subset of the objects, using as “group seeds” either
the centroids of K clusters, or objects located near these centroids.

• Attribute the objects at random to the various groups. All K-means computer
programs offer this option. Find a solution and note the  value. It is possible that
the solution found corresponds to a local minimum of . So, repeat the whole
procedure a number of times (for example, 100 times), starting every time from a
different random configuration. Retain the solution that minimizes the  statistic.
One is more confident that this solution corresponds to the overall minimum when the
corresponding value of  is found several times across the runs.

Figure 8.17 K-means algorithms search the space of solutions, trying to find the overall minimum (arrow) of
the objective criterion to be minimized, while avoiding local minima (troughs).
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Several algorithms have been proposed to solve the K–means problem, which is
but one of a family of problems known in computer sciences as the NP–complete or
NP–hard problems*. In all these problems, the only way to be sure that the optimal
solution has been found would be to try all possible solutions in turn. This is
impossible, of course, for real-size problems, even with modern-day computers, as
explained in Subsection 8.7.2. Classical references to K-means algorithms are
Anderberg (1973), Hartigan (1975), Späth (1975, 1980), Everitt (1980), Jain & Dubes
(1988) and Kaufman & Rousseeuw (1990). Milligan & Cooper (1987) reviewed the
most commonly used algorithms and compared them for structure recovery, using
artificial data sets. One of the best algorithms available is the following; it frequently
converges to the solution representing the overall minimum for the  statistic. It is a
very simple alternating least-squares algorithm, which iterates between two steps:

• Compute cluster centroids and use them as new cluster seeds.

• Assign each object to the nearest seed.

At the start of the program, K observations are selected as “group seeds”. Each
iteration reduces the sum of squared errors , if possible. Since only a finite number
of partitions are possible, the algorithm eventually reaches a partition from which no
improvement is possible; iterations stop when  can no longer be improved. The
FASTCLUS procedure of the SAS package, mentioned here because it can handle very
large numbers of objects, uses this algorithm. Options of the program can help deal
with outliers if this is a concern. The SAS manual (SAS Institute, 2011) provides more
information on the algorithm and the available options.

K-means partitioning was originally proposed in a pioneering paper by MacQueen
(1967) who gave the method its name: K-means. Lance & Williams made it popular by
recommending it in their review paper (1967d). In the MacQueen paper, group
centroids are recomputed after each addition of an object; this is also an option in SAS.
MacQueen’s algorithm contains procedures for the fusion of clusters, if centroids
become very close, and for creating new clusters if an object is very distant from
existing centroids.

K-means partitioning may be computed from either a table of raw data or a distance
matrix, because the total error sum of squares  (eq. 8.7) is equal to the sum of
squares of the distances from the points to their respective centroids (eq. 8.5;
Fig. 8.18a) and to the sum (over groups) of the mean squared within-group distances†

(eq. 8.6; Fig. 8.18b). It is especially advantageous to compute it on raw data when the
number of objects is large because, in such a situation, the distance matrix may

*  NP stands for Non-deterministic Polynomial. In theory, these problems can be solved in
polynomial time (i.e. some polynomial function of the number of objects) on a (theoretical) non-
deterministic computer. NP-hard problems are probably not solvable by efficient algorithms.
†  As shown in eq. 8.6, the mean squared distance within group k is computed as the sum of the
squared within-group distances divided by the number of objects nk in the group.
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become very cumbersome or even impossible to store and search. In contrast, when
using a table of original data, one only needs to compute the distance of each object to
each group centroid, rather than to all other objects. 

The disadvantage of using a table of raw data is that the only distance function
among points, available during K-means partitioning, is the Euclidean distance (D1,
Chapter 7) in A-space. This is not suitable for species counts and other types of
frequency data (Fig. 7.8). Two solutions are possible when the Euclidean distance is
unsuitable: (1) one may transform the species data using one of the transformations
described in Section 7.7 and use the transformed data in the K-means analysis; or
(2) one may first compute a suitable distance matrix among objects (see Tables 7.4 and
7.5), decompose the distance matrix into eigenvectors by principal coordinate analysis
(PCoA, Section 9.3), and run K-means partitioning using the table of eigenvectors
(principal coordinates). 

Following are two numerical examples that illustrate the behaviour of the 
criterion computed using eqs. 8.5 and 8.6.

Numerical example 1. For simplicity, consider a single variable. The best partition of the
following five objects (dark squares) in two clusters (boldface horizontal lines) is obviously to
put objects with values 1, 2 and 3 in one group, and objects with values 6 and 8 in the other:

Figure 8.18 The total error sum of squares (TESS, , eq. 8.7)) is equal (a) to the sum of squares of the
distances from the points to their respective centroids (eq. 8.5). (b) It is also equal to the sum
(over groups) of the mean squared within-group distances (eq. 8.6).
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This example is meant to illustrate that the  criterion can be computed from either raw data
(eq. 8.5) or distances among objects (eq. 8.6). Using raw data (left-hand column, below), the
group centroids are at positions 2 and 7 respectively; deviations from the centroids are
calculated for each object, squared, and added within each cluster. Distances among objects
(right-hand column, below) are easy to calculate from the object positions along the axis; the
numbers of objects (nk), used in the denominators, are 3 for cluster 1 and 2 for cluster 2.

 = (12 + 02 + (–1)2) = 2  = (22 + 12 + 12)/3 = 2

 = (12 + (–1)2) = 2  = 22/2 = 2
_____ _____

= 4 = 4

Numerical example 2. Considering a single variable again, this example examines the
effect on the  statistic of changing the cluster membership. There are six objects and they are
to be partitioned into K = 2 clusters. The optimal solution is that represented by the boldface
horizontal lines:

Calculations are as above. Using raw data (left-hand column, below), the group centroids are at
positions 1.5 and 8 respectively; deviations from the centroids are calculated for each object,
squared, and added within each cluster. Distances among objects (right-hand column, below) are
easy to calculate from the object positions along the axis; the numbers of objects (nk), used in the
denominators, are 2 for cluster 1 and 4 for cluster 2.

 = (0.52 + (–0.5)2) = 0.5  = 12/2 = 0.5

 = (22 + 12 + (–1)2 + (–2)2) = 10.0  = (12 + 32 + 42 +22 + 32 + 12)/4 = 10.0
_____ _____

= 10.5 = 10.5

Consider now a sub-optimal solution where the clusters would contain the objects located at
positions (1, 2, 6, 7) and (9, 10), respectively. The centroids are now at positions 4 and 9.5
respectively. Results are the following:

 = (32 + 22 + (–2)2 + (–3)2) = 26.0  = (12 + 52 + 62 + 42 + 52 + 11)/4 = 26.0

 = (0.52 + (–0.5)2) = 0.5  = 12/2 = 0.5
_____ _____

= 26.5 = 26.5

This example shows that the  criterion quickly increases when the cluster membership
departs from the optimum.
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In some studies, the number of clusters K to be delineated is determined by the
ecological problem, but this it is not often the case. The problem of determining the
most appropriate number of clusters has been extensively discussed in the literature.
Over 30 different indices, called “stopping rules”, have been proposed to do so.
Milligan & Cooper (1985) compared them through an extensive series of simulations
using artificial data sets with known numbers of clusters; the results of that study are
also reported in Milligan (1996). Some of these rules recover the correct number of
clusters in most instances, but others are appallingly inefficient. The best of the criteria
investigated in that paper is the Calinski-Harabasz index (C-H, Calinski & Harabasz,
1974), which is the multivariate F-statistic (eq. 11.7) of a RDA in which m = (K – 1)
dummy variables are used to represent a partition into K groups. When the groups
identified by a clustering method are well separated in A-space, the F-statistic becomes
large. This statistic cannot be tested for significance, however, because the groups are
derived from the same data that would be used for testing. 

SAS has implemented two among the best rules studied by Milligan: the Calinski-
Harabasz F-statistic (called pseudo-F in SAS manuals) and the cubic clustering
criterion. Fourteen stopping indices are available in function clustIndex() of package
CCLUST in R. Cross-validation, used in multivariate regression tree analysis (MRT,
Section 8.11) to decide about the size of trees, can also be used to determine the
optimal number of clusters found in a series of K-means analyses involving different
numbers of groups. However, none of these indices correctly identifies the correct
solution when a single cluster is present in the data. 

8.9 Species clustering: biological associations

Most of the methods discussed in the previous sections may be applied to clustering
descriptors as well as objects. When searching for species associations, however, it is
important to cluster species using methods that model as precisely as possible a clearly
formulated concept of association. The present section (1) attempts to define an
operational concept of association and (2) shows how to identify species associations
in that framework.

Several concepts of species association have been developed since the nineteenth
century; Whittaker (1962) wrote a remarkable review about them. These concepts are
not always operational, however. In other words, they cannot always be translated into
a series of well-defined analytical steps that would lead to the same result if they were
applied by two independent researchers, using the same data. In general, the concept of
association refers to a group of species that are “significantly” found together, without
this implying necessarily any positive interaction among them. An association, in the
statistical sense, is a recurrent group of co-occurring (presence-absence data) or
correlated (abundance data) species (Legendre & Legendre, 1978). Associations of
taxa belonging to categories other than species may also be defined.

C-H index

Species
association
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Several procedures have been proposed for the identification of species
associations. Quantitative algorithms have progressively replaced the empirical
methods, as they have in other areas of science. All these methods, whether simple or
elaborate, have two goals: first, identify the species that occur together and, second,
minimize the likelihood that the co-occurrences so identified be fortuitous. The search
for valid associations obviously implies that the sampling be random and planned in
accordance with the source of variability under study (i.e. geographical, temporal,
experimental), which defines the framework within which the groups of species, found
repeatedly along the sampling axes, are called associations; one then speaks of
association of species over geographic space, or in time, etc. The criterion is the
recurrence of a group of species along the study axes.

Species distributions may be correlated through space or time because they have
common (or opposite) environmental requirements, or as the result of biotic
interactions. These two families of processes produce identifiable spatial or temporal
patterns, as described in Subsection 1.1.1. For the first type, positive associations occur
when species have the same ecological requirements, and negative associations when
their requirements differ. The second type refers to biotic interactions among species,
which include predator-prey relationships, competition, and mutualism; it can also
lead to positive or negative associations among species. These processes provide
grounding theory and hypotheses for the search of species associations, which is one
of the classical problems of community ecology (Roxburgh & Chesson, 1998). 

Correlation analysis in one form or another, for presence-absence or abundance
data, has proven useful to identify species associations (Greig-Smith, 1983; O’Connor
& Aarssen, 1987; Myster & Pickett, 1992; Roxburgh & Chesson, 1998). Interspecific
associations are recognized when two or more species co-occur (for presence-absence
data) either more or less frequently than expected by chance, or when their quantitative
variation is correlated. One cannot, however, distinguish between the hypotheses of
environmental control and biotic interactions from the results of an association
analysis alone (Rejmánek & Leps, 1996). Finer analyses using multiscale correlation
methods, e.g. multiscale codependence analysis (Subsection 14.5.2), may help decide
between competing hypotheses about to the causes of species associations.

Under the hypothesis of environmental control, when associations have been
found, one can concentrate on finding the ecological requirements common to most or
all species of an association instead of having to describe the biology and habitat of
each species individually. In an inverse approach, species associations may be used to
predict environmental characteristics or as indicators of environmental quality
(Legendre, 2005). Associations may be better predictors of environmental quality than
individual species because they are less subject to sampling error. In certain cases,
trophic groups or size classes may also be used for the same purpose.

As mentioned at the beginning of this section, a simple and operational statistical
definition is that a species association is a recurrent group of co-occurring or
correlated species. Using this definition, one can select clustering methods that are
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appropriate to delineate species associations. Appropriate measures of resemblance in
R mode were described in Chapter 7 (Table 7.6). A great variety of clustering methods
have been used for the identification of associations, although the choice of a given
method often appears to have been based on the availability of a program on the local
computer instead of a good understanding of the properties and limitations of the
various techniques. An alternative to standard clustering techniques was proposed by
Lambshead & Paterson (1986) who used numerical cladistic methods to delineate
species associations. Among the ordination methods, principal component and
correspondence analyses may not produce clearly identifiable clusters of species
except in the most simple cases (e.g. Fig. 8.20), even though these analyses may be
very useful to investigate other multivariate ecological problems (Chapter 9). 

After selecting the most appropriate coefficient of dependence for the data at hand
(Table 7.6), one must next make a choice among the usual hierarchical clustering
methods discussed in the previous sections of this chapter, including TWINSPAN
(Subsection 8.7.4). Partitioning by K-means (Section 8.8) should also be considered
after transformation of the species data (Section 7.7). In addition, there are two
specialized methods to delineate species associations described in Subsections 8.9.1
and 8.9.2 below. When the analysis aims at identifying hierarchically-related
associations, hierarchical clustering methods are appropriate. When one simply looks
for species associations without implying that they should form a hierarchy,
partitioning methods are in order. Hierarchical clustering may also be used in that case
but one must decide, using a dendrogram or another graphical representation, which
level of partition in the hierarchy best corresponds to the associations to be identified.
One must take into account the level of detail required and the limits of significance or
interpretability of the species clusters found. In any case, space-conserving or space-
dilating methods should be preferred to single linkage, especially when one is trying to
delimit groups of species from data sampled along an ecological continuum. 

The search for species associations is based on the often untested assumption that
species have non-random patterns of association, these associations being due to
environmental control or biotic interactions. Jackson et al. (1992) discussed several
null models that may be used to test the non-randomness of species co-occurrence
across sites.

Ecological application  8.9a

Thorrington-Smith (1971) identified 237 species of phytoplankton in water samples from the
West Indian Ocean. 136 of the species were clustered into associations by single linkage
hierarchical clustering of a Jaccard (S7) association matrix among species. The largest of the 11
associations contained 50 species; its distribution mostly corresponded to the equatorial
subsurface water. This association was dominant at all sites and was considered typical of the
endemic flora of the West Indian Ocean. Other phytoplankton associations represented seasonal
or regional differences, or characterized currents or nutrient-rich regions. Since phytoplankton
associations did not lose their identities even when they were mixed, the study of associations in
zones of water mixing seemed a good way of tracing back the origins of water masses.
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1 — Non-hierarchical complete linkage clustering

Fager’s (1957) non-hierarchical complete linkage clustering is a specialized
partitioning method designed for discovering species associations. It is well-adapted to
probabilistic measures of dependence among species and other measures of
dependence for which a critical or significance level can be set. This method differs
from hierarchical complete linkage clustering in that one looks for clusters formed at a
stated threshold of similarity without taking into account the hierarchical cluster
structure that may exist at other similarity levels. For probabilistic similarity
coefficients, e.g. S25 (eq. 7.62), the threshold is usually the significance level % = 0.05
or % = 0.01, which corresponds to S " 0.95 or S " 0.99. With the non-probabilistic
similarity coefficient S24 (eq. 7.60), Fager & McGowan (1963) used S " 0.5 as the
clustering threshold. 

Computer programs that make the method operational have been written, but it is
also possible to implement it without a special program. If a similarity coefficient was
used to compute the resemblance among the species, select a threshold similarity level
and draw a graph (as in Fig. 8.2a) of the species with link edges corresponding to all
values of S " (threshold). Then, delineate the species associations on the graph as the
groups meeting the complete-linkage criterion, i.e. the groups in which all objects are
linked to all others at the stated similarity level (Subsection 8.5.2). In case of conflicts,
use the following decision rules.

1. Complete-linkage clusters of species, obtained by this method, must be independent
of one another, i.e. they must have no species in common. Between two possible
species partitions, form first the clusters containing as many species as possible. For
instance, if a cluster of 8 species has two species in common with another cluster of 5
species, create clusters of 8 and 3 species instead of clusters of 6 and 5 species. Krylov
(1968) adds that no association should be recognized that contains fewer than three
species.

If non-independent clusters remain (i.e. clusters with objects in common), consider
rules 2 and 3, in that order.

2. Between several non-independent clusters containing the same number of species,
choose the partition that maximizes the size of the resulting independent clusters. For
example, if there are three clusters of 5 species each where clusters 1 and 2 have one
species in common and clusters 2 and 3 also have one species in common, select
clusters 1 and 3 with five species each, leaving 3 species into cluster 2. One thus
creates three clusters with membership 5, 3, and 5, instead of three clusters with
membership 4, 5, and 4.

3a. If the above two criteria do not solve the problem, between two or more non-
independent clusters having about the same number of species, select the one found at
the largest number of sites (Fager, 1957). One has to go back to the original data
matrix in order to use this criterion.

Fager and
Krylov rules
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3b. Krylov (1968) suggested replacing this last criterion with the following one:
among alternative species, the species to include in a cluster is the one that has the
least affinity with all the other species that are not members of that cluster, i.e. the
species that belongs to the cluster more exclusively. This criterion may be decided
from the graph of link edges among the species.

This form of non-hierarchical complete linkage clustering led Fager (1957), Fager
& McGowan (1963), and Krylov (1968) to identify meaningful and reproducible
plankton associations. Venrick (1971) explains an interesting additional step of Fager’s
computer program; this step answers an important problem of species association
studies. After having recognized independent clusters of completely linked species, the
program associates the remaining species, by single linkage clustering, to one or
several of the main clusters. These satellite species do not have to be associated with
all members of an association. They may also be satellites of several associations. This
reflects adequately the organizational complexity of biological communities.

This last point shows that overlapping clustering methods could be applied to the
problem of delineating species associations. The mathematical bases of these methods
have been established by Jardine & Sibson (1968, 1971) and Day (1977). 

Ecological application  8.9b

Fager’s non-hierarchical complete linkage clustering was used by Legendre & Beauvais (1978)
to identify fish associations in 378 catches from 299 lakes of northwestern Québec. Their
computer program provided the list of all possible complete linkage clusters formed at a user-
selected similarity level. Species associations were determined using the criteria listed above.
The similarity between species was established by means of the probabilistic measure S25
(Subsection 7.5.2), based on presence-absence data.

At similarity level S25 " 0.989, the program identified 25 non-independent species clusters,
involving 26 of the 29 species in the study. Each subgroup of at least three species could
eventually become an association since the clustering method was complete linkage. Many of
these clusters overlapped. The application of Fager’s decision rules (with rule 3b of Krylov) led
to the identification of five fish associations, each one completely formed at the similarity level
indicated to the right. Stars indicate the internal strength of the associations (*** all links
" 0.999, ** all links " 0.99, * all links " 0.95).

1) Lake whitefish Coregonus clupeaformis S25  " 0.999 ***
Longnose sucker Catostomus catostomus
Lake trout Salvelinus namaycush
Round whitefish Prosopium cylindraceum
Lake chub Couesius plumbeus

2) Northern pike Esox lucius S25  " 0.995 **
White sucker Catostomus commersoni
Walleye Stizostedion vitreum
Shallowwater cisco Coregonus artedii
Yellow perch Perca fluviatilis
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3) Brook trout Salvelinus fontinalis S25  " 0.991 **
Ninespine stickleback Pungitius pungitius
Mottled sculpin Cottus bairdi
Threespine stickleback Gasterosteus aculeatus
Slimy sculpin Cottus cognatus

Figure 8.19 Fish associations drawn on a two-dimensional principal coordinate ordination of the species.
Axes I (abscissa) and II (ordinate) explain together 55% of the variability among species. Full
lines link species that are members of associations identified by non-hierarchical complete
linkage clustering at S " 0.989. Dashed lines attach satellite species to the most closely related
species that is a member of an association. The five associations are identified by circled
numbers. Redrawn from Legendre & Beauvais (1978). 
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4) Nipigon cisco Coregonus nipigon S25  " 0.991 **
Lake sturgeon Acipenser fulvescens
Goldeye Hiodon alosoides
Mooneye Hiodon tergisus
Sauger Stizostedion canadense

5) Trout-perch Percopsis omiscomaycus S25  " 0.989 *
Spottail shiner Notropis hudsonius
Emerald shiner Notropis atherinoides

The six remaining species were attached as satellites, by single linkage chaining, to the
association containing the closest species. Figure 8.19 shows the species associations drawn on
a two-dimensional principal coordinate ordination (Section 9.3) of the species. Three of these
associations can be interpreted ecologically. Association 1 was characteristic of the cold, clear,
low-conductivity lakes of the Laurentide Shield. Association 2 characterized lakes with warmer
and more turbid waters, found in the lowlands. Association 4 contained species that were all at
the northern limit of their distributions; they were found in the southern part of the study area. 

2 — Concordance analysis

Concordance analysis, which is based upon Kendall’s coefficient of concordance
(Section 5.4), is useful to delineate groups of species that form statistically significant
associations. Described by Legendre (2005), the method proceeds in three steps.

1. Perform a correlation analysis to identify groups of positively correlated species. The most
widely used method is to compute Ward’s agglomerative clustering (Subsection 8.5.8) of a
matrix of correlations among the species. In detail: 

1.1. Transform the species abundances using one of the transformations described in
Section 7.7. Several transformations may be tried in turn and the results compared. 

1.2. Compute a Pearson or Spearman correlation matrix R = [rhi] among the species. This is
done to make the clustering results compatible with concordance analysis, which is based on
correlations. Turn matrix R into a distance matrix by computing D = [1 – rhi]. 

1.3. Carry out Ward’s hierarchical clustering of that matrix. 

1.4. Cut the dendrogram in two groups and retrieve the vector of species membership. 

1.5. After steps 2 and 3 below, one may have to come back and try divisions of the species into
3, 4, 5, ... groups. 

In simple cases, a principal component analysis (PCA, Section 9.1) of the standardized
transformed species abundance data may be sufficient to delineate species groups on which steps
2 and 3 can be carried out. Because the transformed species data are standardized by columns,
the PCA will be computed on the correlation matrix, making the results compatible with
concordance analysis, which is based on correlations.

2. Compute global tests of significance of the concordance within the two (or more) groups
(Subsection 5.4.2) using the matrix of transformed species abundances (e.g. after Hellinger
transformation). Groups that are not globally significant must be refined (step 1.5) or abandoned.
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3. Compute a posteriori tests of the contribution of individual species to the concordance of
their group (Subsection 5.4.3). If the mean of the Spearman correlations of a species with all the
other species of its group is negative, this indicates that this species clearly does not belong to
the group, hence that group is too inclusive. Go back to step 1.5 and cut the dendrogram more
finely. Groups can be refined (i.e. cut into smaller groups) separately from other groups,
independently of the levels along the dendrogram.

Use corrections for multiple testing (Box 1.3) at all steps of this analysis. R functions to carry
out these tests are described in Section 8.15.

This method should only be applied to species abundance data because Kendall’s
concordance analysis is meaningless for presence-absence data. Other methods should
be developed to deal with presence-absence data. The Kendall concordance approach
is useful in environmental studies where researchers are interested in identifying
groups of concordant species that are indicators of some property of the environment.
In some applications, significantly concordant species can be combined into
environmental quality indices (Siegel, 1956), in particular in situations of pollution or
contamination, and used to produce indicator maps.

Ecological application  8.9c

Legendre (2005) used the Kendall coefficient of concordance (W) to identify species
associations in a multi-species community of oribatid mites (35 species, 70 soil cores*; Borcard
& Legendre, 1994). The mite data were subjected to the Hellinger transformation (eq. 7.69) at
the beginning of the analysis. Ward’s agglomerative clustering (Subsection 8.5.8) and K-means
partitioning (Section 8.8) both suggested the presence of two groups of mites, one including 24
species and the other 11 (Fig. 8.20). Kendall coefficients of concordance computed over each
group separately indicated that both groups had significant concordance. A posteriori tests
showed that 20 species of the first group and 8 of the second group significantly contributed to
the concordance of their group, at the 5% significance level and after Holm correction for
multiple testing (Box 1.3). The abundances of the species that were significant members of a
group were summed over each group and the sums were plotted on maps of the study area.
These indices were related to environmental variables by multiple regression (Section 10.3),
which produced highly significant environmental models. 

The PCA ordination diagram (Section 9.1) shown in Fig. 8.20 was computed after
standardizing the Hellinger-transformed species vectors (eq. 1.12); the two mite associations
identified by clustering followed by concordance analysis are represented by symbols on the
plot. An alternative graphical presentation of the clustering results would be a heat map
(Section 8.10) with dendrograms added to the sides; R functions to produce heat maps are listed
in Section 8.15. When environmental descriptors are available, computing an RDA
(Section 11.1) instead of a PCA will produce a plot providing an interpretation of the differences
among the groups of species. Another example (fish associations) is presented in Section 4.10.2
of Borcard et al. (2011).

*  The mite data are available on the Web page of the Borcard et al. (2011) book,
http://numericalecology.com/NEwR.
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3 — Indicator species

The identification of indicator (or characteristic) species is a traditional question in
ecology and biogeography. Field studies describing sites or habitats usually mention
one or several species that characterize each habitat. For many years, the most widely
used statistical method for identifying indicator species was TWINSPAN (Hill, 1979a;
Subsection 8.7.4). There is clearly a need for the identification of characteristic or
indicator species in the fields of monitoring, conservation, and management, as
discussed below. Because indicator species add ecological meaning to groups of sites
discovered by clustering, they provide criteria to compare typologies derived from
data analysis, to identify where to stop dividing clusters into subsets, and to point out
the main levels in a hierarchical classification of sites. Indicator species differ from
species associations in that they are indicative of particular groups of sites. Good
indicator species should be found mostly in a single group of a typology and be present

Figure 8.20 Principal component ordination diagram showing the species vectors projected in the space
formed by PCA axes 1 (28.8% of the variation) and 2 (9.2%). Mite group 1 resulting from the
preliminary Ward clustering is represented by squares and group 2 by circles. Solid symbols:
species that are significant members of their respective associations. Modified from Legendre
(2005, Fig. 4).
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at most of the sites belonging to that group. This duality is of ecological interest; yet it
is seldom exploited in indicator species studies.

Dufrêne & Legendre (1997) proposed an alternative to TWINSPAN in the search for
indicator species and species assemblages characterizing groups of sites. Like
TWINSPAN, their method is asymmetric, meaning that species are analysed on the basis
of a prior partition of the sites. The first original characteristic of the method is that it
derives indicator species from any hierarchical or non-hierarchical classification of the
objects (sampling sites), contrary to TWINSPAN where indicator species can only be
derived for classifications obtained by splitting sites along correspondence analysis
(CA) or detrended correspondence analysis (DCA) axes (Subsection 8.7.4). The
second original characteristic lies in the way the indicator value of a species is
measured for a group of sites. The indicator value index (INDVAL) is based only on
within-species abundance and occurrence comparisons; its value is not affected by the
abundances of other species. The significance of the indicator value of each species is
assessed by a randomization procedure (Section 1.2).*

The indicator value (INDVAL) index is defined as follows. For each species j in each
cluster of sites k, one computes the product of two values, Akj and Bkj. Akj is a measure
of specificity based on abundance values whereas Bkj is a measure of fidelity computed
from presence data:

Akj = Nindividualskj / Nindividuals+k

Bkj = Nsiteskj / Nsitesk+

INDVALkj = Akj Bkj (8.21)

• In the formula for specificity (Akj), Nindividualskj is the mean abundance of species j
across the sites pertaining to cluster k and Nindividuals+k is the sum of the mean
abundances of species j within the various clusters. The mean number of individuals in
each cluster is used, instead of summing the individuals across all sites of a cluster,
because this removes any effect of variations in the number of sites belonging to the
various clusters. Differences in abundance among sites of a cluster are not taken into
account in the calculation. Akj is maximum when species j is present in cluster k only. 

• In the formula for fidelity (Bkj), Nsiteskj is the number of sites in cluster k where
species j is present and Nsitesk+ is the total number of sites in that cluster. Bkj is
maximum when species j is present at all sites of cluster k. 

• Quantities A and B must be combined by multiplication because they represent
independent information (i.e. specificity and fidelity) about the distribution of
species j. 

*  How to compute INDVAL in R is described in Section 8.15. The INDVAL index is also available
in package PC-ORD; distribution: see footnote in Section 11.7.

Specificity

Fidelity
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In De Cáceres & Legendre (2009), specificity is called positive predictive value and
fidelity is called sensitivity.

The indicator value of species j for a partition of sites is the largest value of
INDVALkj observed over all clusters k of that partition:

INDVALj = max[INDVALkj] (8.22)

The index is maximum (its value is 1) when the individuals of species j are observed at
all sites belonging to a single cluster. A random permutation procedure of the sites
among the site groups is used to test the significance of INDVALj (Section 1.2). A
correction for multiple testing (Box 1.3) is in order before reporting the results since
multiple tests (i.e. for p species) are conducted. The index can be computed for any
given partition of sites, or for all levels of a hierarchical classification of sites. 

Numerical example. Table 8.10 describes the example given by Dufrêne & Legendre
(1997) to illustrate the computation of the INDVAL index, slightly modified. The data represent
three species observed at 25 sites, which are divided into 5 groups. To facilitate comparisons, the
sums of the mean group abundances are 20 for all three species. For species 1, INDVALk1 has the
highest value (0.30) for group k = 3, so INDVAL1 = 0.30. Following similar reasoning, INDVAL2 =
0.40 and INDVAL3 = 0.90. The permutational p-values computed by functions indval() of
LABDSV or multipatt() of INDICSPECIES in R are significant in all three cases.

De Cáceres & Legendre (2009) described several other statistics that can be used to
measure the indicator value of species. They are divided into correlation indices,
which are used for determining the ecological preferences of species among a set of
alternative site groups or site group combinations, and indicator value indices,
including INDVAL, which are used for assessing the predictive values of species as
indicators of the conditions prevailing in site groups, e.g. for field determination of
community types or ecological monitoring. Each of these categories of indices comes
in different types: there are indices for presence-absence and for quantitative species
data; there are also non-equalized indices that give equal weights to individual sites
and group-equalized indices that give equal weights to all groups whatever the number
of sites they contain. For studies involving several groups of sites, De Cáceres et al.
(2010) showed how to improve the interpretation of indicator value analysis by
computing the statistics for all possible combinations of site groups. An application of
that method is found in Moretti et al. (2010).

De Cáceres et al. (2010) present a detailed discussion of the limitations of indicator
value analysis. In particular, they point out that more indicator species will be found
than expected by chance when the classification of sites has been obtained from the
same species composition data that are used for INDVAL analysis. In that case, p-values
must be interpreted with caution: they are not the result of a genuine test of
significance, where the classification of sites has to be independent of the species data
used in the test.

Indicator
value
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Podani & Csányi (2010) proposed variants of the INDVAL index. Instead of using
specificity and fidelity alone, they proposed to define the indicator value of a species as
the product of two among three quantities: specificity Akj (that they renamed
concentration), specificity (new equation, with allowance for positive or negative
species preferences), and fidelity Bkj. They provided formulas based on either
presence-absence or abundance data for each of these three quantities.

Table 8.10 Numerical example: abundance of three species at 25 sites divided into 5 groups. Modified from
Dufrêne & Legendre (1997). Top panel: data. Bottom panel: calculation of the specificity (Akj),
fidelity (Bkj) and INDVALkj index for each species (j) in each group of sites (k). The maximum
value of INDVALkj for each species is in bold.

Groups Group 1 Group 2 Group 3 Group 4 Group 5

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Species 1 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 3 3 3 3 3 2 2 2 2 2

Species 2 8 8 8 8 8 4 4 4 4 4 6 6 6 6 6 4 4 2 0 0 0 0 0 0 0

Species 3 18 18 18 18 18 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Group 1 Group 2 Group 3 Group 4 Group 5

Species 1
Ak1 4/20 = 0.20 5/20 = 0.25 6/20 = 0.30 3/20 = 0.15 2/20 = 0.10
Bk1 5/5 = 1 5/5 = 1 5/5 = 1 5/5 = 1 5/5 = 1

INDVALk1 0.20 0.25 0.30 0.15 0.10

Species 2
Ak2 8/20 = 0.40 4/20 = 0.20 6/20 = 0.30 2/20 = 0.10 0/20 = 0.00
Bk2 5/5 = 1 5/5 = 1 5/5 = 1 3/5 = 0.6 0/5 = 0

INDVALk2 0.40 0.20 0.30 0.06 0.00

Species 3
Ak3 18/20 = 0.90 2/20 = 0.10 0/20 = 0.00 0/20 = 0.00 0/20 = 0.00
Bk3 5/5 = 1 5/5 = 1 0/5 = 0 0/5 = 0 0/5 = 0

INDVALk3 0.90 0.10 0.00 0.00 0.00
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McGeoch & Chown (1998) found the indicator value method important to
conservation biology because it is conceptually straightforward and allows researchers
to identify bioindicators for any combination of habitat types or areas of interest,
e.g. existing conservation areas, or groups of sites based on the outcome of a
classification procedure. In addition, it may be used to identify bioindicators for groups
of sites classified using the target taxa, as in Ecological application 8.9d, or using non-
target taxa, e.g. insect bioindicators of plant community classifications. 

Because each INDVAL index is calculated independently of other species in the
assemblage, comparisons of indicator values can be made between taxonomically
unrelated taxa, taxa in different functional groups, or those in different communities.
Comparisons across taxa are robust to differences in abundance that may or may not be
due to differences in detectability or visibility, or to sampling methods. The method is
also robust to differences in the numbers of sites between site groups, to differences in
abundance among sites within a particular group, and to differences in the absolute
abundances of very different taxa that may exhibit similar trends.

When a group of sites for which indicator species are sought corresponds to a
delimited geographic area, superposition of the distribution maps for the indicator
species of that group should help delineate the core conservation areas for these
species, even when little other biological information is available. McGeoch & Chown
(1998) also consider the indicator measure of a species absence to be of value. The
species absence IndVal provides a method for improving the objectivity with which
species transient to an assemblage can be identified. Species with high values for this
absence index may also be of ecological interest as indicators of peculiar ecological
conditions where the species is seldom or never present. 

Taxa proposed as bioindicators in the literature are often merely the favourite taxa
of their proponents; ornithologists prefer birds, lepidopterists butterflies, and
coleopterists beetles. According to McGeoch & Chown (1998), IndVal provides an
objective method for addressing this problem by enabling the assessment of the
relative merits of different taxa as bioindicators for a given study area. The species that
do emerge from this procedure as the most useful indicators for a group of sites should
prove useful in practical conservation for monitoring site change and disturbance. Two
groups of species collected at the same sites can be compared by co-inertia analysis
(CoIA, Section 11.5, see Ecological application 11.5) and several groups by multiple
factor analysis (MFA, Section 11.5).

Ecological application  8.9d

In order to illustrate the indicator value method, Dufrêne & Legendre (1997) used a large data
set of Carabid beetle distributions in open habitats of Belgium (189 species collected in pitfall
traps, for a total of 39984 specimens). The data represented 123 year-catch cycles at 69
locations; a year-catch cycle cumulates catches at a site during a full year; 54 sites were studied
during two years and 15 sites were sampled during a single year. The typology of sites was
computed by distance-based K-means partitioning computed as follows: first, a distance matrix
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(percentage difference D14, eq. 7.58) was computed from the log-transformed species
abundance data; this distance matrix was subjected to principal coordinate analysis (PCoA,
Section 9.3); all principal coordinates were then used as input data into K-means partitioning.
Although the clusters produced by K-means had not been forced to be hierarchically nested, they
showed a strong hierarchical structure for K = 2 to 10 groups. This allowed the authors to
represent the relationships among partitions as a dendrogram. The K = 10 level corresponded to
the main types of habitat, recognized a priori, where sampling had been conducted.

Indicator values were computed for each species and partitioning level. Some species were
found to be stenotopic (narrow niches) while others were eurytopic (species with wide niches,
present in a variety of habitats). Others characterized intermediate levels of the hierarchy. The
best indicator species (INDVAL > 0.25) were assembled into a two-way indicator table; this
tabular representation displayed the hierarchical relationships among species.

Results of the indicator value method were compared to TWINSPAN. Note that the partitions
of sites used in the two methods were not the same; the TWINSPAN typology was obtained by
partitioning correspondence analysis ordination axes (Subsection 8.7.4). TWINSPAN identified,
as indicators, pseudospecies pertaining to very low cut-off levels. These species were not
particularly useful for prediction because they were simply known to be present at all sites of a
group. Several species identified by TWINSPAN as indicators also received a high indicator value
from the INDVAL procedure, for the same or a closely related habitat class. The INDVAL method
identified several other indicator species, with rather high indicator values, that also contributed
to the specificity of the groups of sites but had been missed by TWINSPAN. So, the INDVAL
method appeared to be more sensitive than TWINSPAN to the fidelity and specificity of species.

Here are some more examples of the many applications of indicator species
analysis found in the literature. Borcard (1996) and Borcard & Vaucher-von Ballmoos
(1997) present applications of the indicator value method to the identification of the
Oribatid mite species that characterize well-defined zones in a peat bog of the Swiss
Jura. The indicator values of beetle species characterizing different types of forests
have been studied by Barbalat & Borcard (1997). Tuomisto et al. (2003) used
constrained clustering (Subsection 12.6.4) to group 86 sampling units, each 500 m
long, forming a 43-km long transect in the Amazonian rain forest into spatial clusters,
on the basis of satellite image pixel values. They also surveyed in the field the ferns
and Melastomaceae observed in the 86 sampling units. Then they used the INDVAL
method to determine the species that were good indicators of the spatial clusters. 

Legendre et al. (2009) used multivariate regression tree analysis (MRT,
Section 8.11) to identify habitat types that were similar in topographic conditions and
in species composition in a Chinese permanent forest plot divided in 20 × 20 m
quadrats; then they used the IndVal method to identify the nine, among 159 tree
species, that were statistically significant indicators of the five main habitat types. De
Cáceres et al. (2010) carried out indicator species analysis of the vegetation of the
Barro Colorado Island (BCI) permanent forest plot in Panama, also divided in 20 × 20
m quadrats, grouped into seven habitat types identified in a previous paper. Among
307 tree species, they identified 44 indicator species of individual habitats and 64 for
habitat combinations. In the first of these papers, the species used for IndVal analysis
had been used to obtain the classification of the sites, so that the p-values had to be
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interpreted with caution. In the second paper, the classification of the sites was
independent of the species analysed for indicator value.

8.10 Seriation

Before clustering methods were developed, the structure of an ecological resemblance
matrix was often studied by matrix rearrangement (Orlóci, 1978). In this approach, the
order of the objects is modified in such a way as to concentrate the lowest distances (or
the highest similarities) near the main diagonal of the resemblance matrix. This is a
special case of an approach called seriation in archaeology, where the rows and
columns of a rectangular matrix of (artefacts × descriptors) are rearranged in such a
way as to bring the highest values near the main diagonal, in order to evidence the
temporal seriation of the artefacts; see Kendall (1988) for a review. This technique was
developed by anthropologists Petrie (1899) and Czekanowski (1909) and was first
applied to ecological data by Kulczynski (1928). An interesting aspect of seriation for
ecologists, nowadays, lies in the fact that the technique can be applied to the special
case of similarity or distance matrices that are not symmetric, as explained below.

The statistical theory of seriation is now well developed. Papers and syntheses are
found mostly in the archaeological literature, e.g. Renfrew & Bahn (2008). Hahsler et
al. (2008) describe different seriation methods that can be used to visualize (objects ×
descriptors) or distance (D) matrices, reordered or not according to clustering results,
and cite the relevant literature. These methods can only be used with small data sets.
That paper is also an introduction to the R package SERIATION (Section 8.15).

A rearranged resemblance matrix can be represented by a trellis diagram, called a
heat map in recent software, which is a shaded or colour-coded matrix. Figure 8.21a
gives an example where half of the matrix is represented by shades of gray
corresponding to distance values, and Fig. 8.21c shows a heat map of the same
distance matrix computed by an R function. Heat maps provide an interesting
representation of a raw data or distance matrix, before or after clustering, when the
number of objects is small, e.g. 30 or less. In R (Section 8.15), heat maps without or
with dendrograms can be produced by functions heatmap() of package STATS and
hmap() of SERIATION. Function coldiss() (Section 8.15) plots side by side an original
and reordered D matrix without dendrogram. Examples are given in Borcard et al.
(2011, Subsections 3.3.2 and 4.7.3.7).

Seriation works best when there is a single gradient in the data. For symmetric
matrices, the order of the objects in any agglomerative clustering dendrogram can be
used as the seriation order. A minimum spanning tree (Section 8.2) computed for the D
matrix (Fig. 8.21b) provides details about the structure and shows if the single-
gradient assumption holds for at least part of the objects ordered in a trellis diagram. At
the end of the seriation procedure (Fig. 8.21a), the lowest distances, which are now
found close to the diagonal, indicate the first important clusters of objects. The first

Trellis
diagram
Heat map
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axis of an ordination diagram (Chapter 9) provides another optimal order of objects,
which can be used in a trellis diagram. 

Seriation is an interesting approach for the analysis of non-symmetric distance
matrices. Non-symmetric matrices, in which D(x1, x2) + D(x2, x1), are rare in ecology.
They may, however, be encountered in cases where the resemblance is a direct
measure of the influence of an organism on another, or in behavioural studies where
the attraction of an organism for another can be used as a similarity measure. They are
also common in taxonomic and phylogenetic analysis (e.g. serological data, DNA
pairing data). 

An analytical solution to seriation that can be applied to non-symmetric as well as
symmetric matrices was proposed by Beum & Brundage (1950). The algorithm starts
with a similarity matrix (S) among objects, provided in any order. The diagonal values
are excluded from the calculation, so that the “similarities” in the matrix can be any
quantitative indications of preference, not necessarily with a maximum value of 1. In
each column j, the products of the elements sij by the inverse order numbers of the
rows are summed and divided by the sum of the elements in column j. These average
weights are used to determine the new order of the rows and columns, from which the
procedure starts over again until convergence is reached. The algorithm may at times
end up alternating between two equally optimal final solutions. An R function is
available to carry out the Beum-Brundage seriation procedure; see Section 8.15.

Besides seriation, non-symmetric matrices can be decomposed into symmetric and
skew-symmetric components, as described in Subsection 2.3, before analysis by
clustering and/or ordination methods. 

Ecological application  8.10a

Kulczynski (1928) studied the phytosociology of a region in the Carpathian Mountains,
southeastern Poland. He recognized 37 plant associations, listed the species found in each, and
computed a similarity matrix among them. Part of that similarity matrix, turned into a D matrix,
is reproduced in Fig. 8.21a. The order of the associations shown in the figure is the one that
Kulczynski found when he performed seriation by hand. He interpreted that order as
representing a series from association 22 (Varietum pinetosum czorsztynense) to association 13
(Seslerietum variae normale). The blocs of higher (darker) values near the diagonal allow one to
recognize two main groups: associations (22, 21) and (11, 15, 14, 17, 18). Association 13 and 16
seem less related with the others. A minimum spanning tree computed for the same D matrix
(Fig. 8.21b) provides more detail about the structure of the data. The corresponding heat map is
shown in Fig. 8.21c. The dendrogram shown along both axes was obtained by complete linkage
clustering of matrix D. Note: seriation produces a clear one-dimensional ordination when there
is a single gradient in the data, which is not the case here.

Ecological application  8.10b

Wieser (1960) studied the meiofauna (small benthic metazoans) at three sites (6 or 7 cores per
site) in Buzzards Bay, Massachusetts, USA. After representing the resemblance among cores as

Non-
symmetric
matrix
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Figure 8.21 (a) Distance matrix (lower half) and trellis diagram (upper half) for part of Kulczynski’s (1928)
plant associations of the Carpathian Mountains. Numbers in italics, in the margins, identify the
associations. In the trellis diagram, the distances are represented by shadings, as indicated
underneath the matrix. (b) Minimum spanning tree computed for the same D matrix with
function spantree() of the VEGAN R package. The edges of the tree correspond to the
underscored distance values in (a). (c) Heat map of the distance matrix with dendrograms shown
along both axes. The picture produced by function heatmap() was in colour.
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a similarity matrix (using Whittaker’s index of association, 1 – D9) and a trellis diagram, he
found that although the three sites differed in species composition, the two sandy sites were
more similar to each other than they resembled the third site where the sediment contained high
concentrations of fine deposits. 

The classical study reported in Ecological application 8.10b encouraged other
applications of trellis diagrams in benthic ecology. Among these is Sanders’ (1960)
representation of an ecological time series, also from Buzzards Bay, using a trellis
diagram. Inspired by these applications to benthic ecology, Guille (1970) and Soyer
(1970) used the method of trellis diagrams to delineate benthic communities
(macrofauna and harpacticoid copepods, respectively) along the French Catalonian
coast of the Mediterranean Sea near Banyuls-sur-Mer.

Wieser’s (1960) study offers an opportunity to come back to the warning of
Section 8.0, that not all problems of data analysis belong to the clustering approach.
Nowadays, one would not have to seriate or cluster the sites before comparing the
species to the sediment data. One would directly compare the species abundance to the
sediment data, or to a factor representing the three study sites, using canonical analysis
(Chapter 11).

8.11 Multivariate regression trees (MRT)

Univariate classification tree analysis (CT) refers to situations where a qualitative
response variable is to be predicted by a decision tree (defined below), whereas in
regression tree analysis (RT) the response variable is quantitative. Classification and
regression tree analysis (CART, Breiman et al., 1984) combines these two procedures.
A decision tree is a forecasting or predictive tree-like diagram resulting from recursive
partitioning of the response data, with indication of the influence of the explanatory
variables at each split; examples are given below. These univariate forms of analysis
are not discussed further in the present chapter. 

Proposed by De’ath in 2002 and Larsen & Speckman in 2004, multivariate
regression tree analysis (MRT) is an extension of CART to multivariate response data.
The method could have been presented in Chapter 11 devoted to canonical analysis
since, like RDA and CCA, it involves a response and an explanatory data set. It is
presented here instead because its output is a tree.

Figure 8.22a shows a simple example with a multivariate response data set Y on
the left and a matrix of explanatory variables on the right. There are three explanatory
variables in X; x1 and x2 are quantitative in this example and x3 is qualitative (three
levels or states: A, B and C). For the first split, the analysis will search for the best
partition of Y in two groups, constrained by each variable x in turn. 
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• For variable x1, imagine that the rows of the two data sets, Y and X, are ordered by
increasing x1 values, as in Fig. 8.22a (the actual programming may differ from the
description that follows). The program tries in turn all possible cut-points of variable
x1. For each cut-point between successive but different values of x1, imagine a line
drawn across Y (dashed line in Fig. 8.22a); it divides Y in two groups. SSgr=1 is the
sum of within-group sums-of squares (also called squared error) for the top group
(gr=1), computed using eq. 8.5, and SSgr=2 is the sum of within-group sums-of squares
for the bottom group (gr=2). So the total within-group sum-of-squares, or total error,
for that split of the objects is E2 = SSgr=1 + SSgr=2 (eq. 8.7). Because of the equivalence
of eqs. 8.5 and 8.6 for the computation of squared error, one can compute MRT from a
raw data file Y or from a distance matrix D computed from Y.

Figure 8.22 Schematic description of MRT analysis. (a) Data: Y is the response data set. There are three
explanatory variables in X: x1 and x2 are quantitative in this example and x3 is qualitative (three
factor levels or qualitative states). The dashed horizontal line indicates a cut-point along the
values of x1. The line is extended across Y, which is thus divided into two groups.
(b) Multivariate regression tree computed by function mvpart() of the MVPART package; there
were 3 species in Y (not shown) in this analysis. Variable x1 controls the first split (the split
occurs at the position of the dashed line in panel a); variable x3 controls the second split (objects
with level 1 on the left, those with levels 2 and 3 on the right); variable x1 is used again for the
third split. The number of objects in each group is shown underneath each leaf (terminal group)
of the tree, together with a histogram showing the relative abundances of the three species in Y.
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• The function tries in turn all possible cut-points along x1, making no cut between
identical (tied) values, and computes E2

x1. It notes the position of the cut where E2 is
minimum for variable x1 and the value of E2

x1 at that point.

• The process is repeated for variable x2: the rows of the two data matrices are
reordered in such a way that the values of x2 are in increasing order, all possible cut-
points between non-identical values are tried in turn, and the cut that produces the
smallest value of E2

x2 is noted.

• The third variable in Fig. 8.22a is a qualitative variable or ANOVA factor. All
possible combinations of factor levels are tried in turn. In this example, only three
solutions need to be studied: the group defined by state A versus the other objects, the
group defined by state B, and finally the group defined by state C. The combination
that produces the smallest value of E2

x3 is noted. (In the example, the second split
separated the rows with level B from those with levels A and C.)

• All values of E2
x (three in this illustration) are compared: min(E2

x1), min(E2
x2), and

min(E2
x3). The smallest of these values is used to draw the first split of the regression

tree (Fig. 8.22b, top), which is the first split of data set Y. 

• Each branch of the tree is then analysed separately (a branch is a group formed by a
split). The search for a meaningful split is first carried out for the left branch of the
tree. All explanatory variables in X are tried in turn and the variable that produces the
split with the smallest value of E2

x is used for the next split of the left-hand side of the
tree. Similarly, the search is carried out for the objects in the right branch of the tree
and the variable of X that produces the split with the smallest value of E2

x is used for
the next split of the right-hand side of the tree. Any variable may be used for several
splits. Figure 8.22b shows a tree that was produced for a data set Y with 3 species (data
not shown).

The process could go on until the tree is fully resolved and individual objects form
the terminal groups (leaves of the tree). Users, however, are usually not interested in
the fully resolved tree, but instead in a tree that has informative partitions. That shorter
tree is found by pruning the tree, an operation that consists in removing the smallest
branches. The optimal size of the tree is decided by a resampling analysis called cross-
validation. In that analysis, the data are randomly divided into a number of
approximately equal-sized test groups, e.g. 10% of the objects. Each test group is left
aside in turn while the tree is reconstructed using the remaining objects, e.g. 90%.
Then, distances are computed from each object of the test group to the multivariate
centroids of the groups forming the leaves (terminal groups of objects) of the tree. The
objects of the test group are attributed to the closest leaf of the reconstructed tree. 

The objects in the test group are attributed to the closest leaf of a tree with 2
groups, 3 groups, etc., considering the distances of the objects to the centroids of the
groups. An overall relative error statistic (cross-validation relative error, CVRE) is

Leaf
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computed as follows for each partition size using all n objects (that is done by using
the predictions made for the members of all test groups in the formula):

(8.23)

where  is the value of variable j for object i belonging to test group k,  is the
value of that same variable at the centroid of the leaf that is closest to object i, whereas
the denominator is the overall sum of squares of the Y data. CVRE is then the ratio of
the variation unexplained by the tree to the total variation in Y. CVRE varies from zero
for a perfect set of predictors chosen for the splits of a tree, to close to one for poor
predictors; its value can actually exceed 1. 

Cross-validation is repeated a number of times, e.g. 100 times, for successive and
independent divisions of the objects into random test groups. Then, for each partition
size (number of groups), the mean and standard error of all CVRE estimates is
computed. The cross-validation procedure is described in more details by Borcard et
al. (2011, Section 4.11) and Ouellette et al. (2012).

Should one retain a tree with a single split (2 groups), 2 splits (3 groups), or more
splits? CVRE is used to indicate the optimal size of the tree. One can select the tree that
has the smallest CVRE value; alternatively, and following Breiman et al. (1984), one
may prefer a more parsimonious solution (i.e. a tree with fewer splits) whose CVRE
value is within one standard error of the smallest CVRE value. In any case, CVRE is
simply a criterion that helps researchers select the optimal tree; in the end, one can opt
for a tree with fewer or more leaves (groups) than proposed by the CVRE criterion.

MRT belongs to the family of Euclidean methods because it is based on sums of
squared deviations from means, just like ANOVA and K-means partitioning. The
appropriateness of MRT analysis for the analysis of species data tables containing
many zeros may be enhanced by transforming them following Section 7.7; this could
improve the interpretability and usefulness of the trees as explanatory models of
community response data.

Cascade multivariate regression tree analysis (CascadeMRT) is an extension of
MRT developed by Ouellette et al. (2012). Users can assess their explanatory
hypotheses in a hierarchical (nested) manner, carrying out MRT analyses using
explanatory data matrices in the order corresponding to the hierarchy of their
hypotheses. The nested hypotheses may, for example, correspond to processes
operating at different spatial or temporal scales. An R package implementing cascade
MRT is described in Section 8.15.
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Ecological application  8.11

De’ath (2002) reanalysed the hunting spider data of Aart & Smeenk-Enserink (1975), using the
spider and environmental data transformed and recoded by ter Braak (1986, Table 3); ter Braak
had used these data to illustrate canonical correspondence analysis in his seminal paper. The
recoded data are available in a data file of package MVPART (De’ath, 2011): 28 sites, 12 species
and 6 environmental variables (water, sand, moss, light reflection, twigs, and herbs, transformed
into classes from 0 to 9). Following De’ath (2002), the species data were transformed by
dividing each abundance value by its column mean, then by the row mean recomputed on the
resulting file. The size of the tree was selected by cross-validation: the minimum value of the
cross-validation error (CVRE = 0.483) was used to decide on the size of the tree (4 groups,
Fig. 8.23). The R2 of that tree (1 – relative error) was 0.788. The first split separated a group of 8
sites that had more twigs (" 8) than the other sites; that group had higher abundances of species
2 and 7 than the other sites. The second split isolated a group of 6 sites found on dryer ground

Figure 8.23 Multivariate regression tree for the hunting spider data analysed by De’ath (2002). The relative
abundances of the 12 species are shown in histograms positioned at the tips of the branches, with
the species in the same order as in the Y input file; the species names are shown in the upper-left
portion of the plot as they appear in the Y data file. The squares in the species list and bars in the
histograms have colours in the R-produced mvpart() plot. Under each histogram, n is the
number of sites in the leaf (group); the value before n is the sum of squared errors for the group
(eq. 8.5).
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(water < 2.5); it had higher abundances of the last two species. The last split separated two
groups (n = 6 and 8 respectively) according to soil humidity (water < 5.5 versus " 5.5); the left-
hand group is dominated by species 9, while the right hand group is the only one to show
substantial abundances of species 1, 4, 5 and 6. De’ath (2002) confirmed the predictive values of
these spider species to the groups by indicator value analysis (Subsection 8.9.3). An identical
partition of the sites into four groups was obtained by applying MRT to the chi-square
transformed spider data (eq. 7.70).

8.12 Clustering statistics

This section is devoted to clustering statistics. These include connectedness and
isolation, and the correlation between a cophenetic matrix and the original distance
matrix.

1 — Connectedness and isolation

The connectedness within clusters and their degree of isolation can be quantified using
clustering statistics. Some of these measures are described here.

The basic statistic of a cluster k is its number of objects, nk. In linkage clustering, a
measure of link density of a cluster in A-space is obtained by comparing the number of
objects to the number of links among them. Link density increases with the degree of
connectedness of a cluster. Connectedness can be measured as follows (Estabrook,
1966):

(8.24)

where the maximum possible number of links is nk(nk – 1)/2, with nk being the number
of objects in cluster k. This measure of connectedness varies between 0 and 1. Day
(1977) proposed other related measures. One of them is the cohesion index, which
considers only the links that exceed the minimum number of links necessary for the
cluster to be connected. If this minimum number is called m, the cohesion index can be
written as follows:

(8.25)

For single linkage clustering, the minimum number of links necessary for nk objects to
be connected is nk – 1, so that the cohesion index becomes:

(8.26)
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which is Estabrook’s (1966) normalized connectedness index. Other possible measures
of cluster density are the maximum distance or minimum similarity within a cluster,
and the mean distance or similarity (Estabrook, 1966).

The degree of isolation of clusters in metric A-space (Fig. 7.2) can be measured as
the distance between the two closest objects in different clusters. It may also be
measured as the mean distance between all objects in one cluster and all objects in
another, or else the ratio of the distance between the two closest objects to the distance
between the centroids of the two clusters. These measures are ways of quantifying the
distances between clusters; a clustering or ordination of clusters can be computed
using these distances. In the context of linkage clustering without reference to a metric
A-space, Wirth et al. (1966) used as measure of isolation the difference between the
similarity at which a cluster is formed and the similarity at which it fuses with another
cluster.

2 — Cophenetic correlation and related measures

Pearson’s correlation coefficient, computed between the values in a cophenetic matrix
(Subsection 8.3.1) and those in the original resemblance matrix (excluding the values
on the diagonal), is called the cophenetic correlation (Sokal & Rohlf, 1962), matrix
correlation (Sneath & Sokal, 1973) or standardized Mantel (1967) statistic
(Subsection 10.5.1). It measures the extent to which the clustering result corresponds
to the original resemblance matrix. When the clustering perfectly corresponds to the
coefficients in the original matrix, the cophenetic correlation is 1. In R, the cophenetic
distance matrix corresponding to a hierarchical clustering is computed by function
cophenetic() of the STATS package. Following that, the cophenetic correlation between
the original and cophenetic distance matrices can be computed using cor().

Besides the cophenetic correlation, which compares the original distances [or
similarities] to those in a cophenetic matrix, matrix correlations are useful in the
following situations: 

• To compare any pair of resemblance matrices, such as the original distance matrix D
of Ecological application 8.2, and a matrix of distances among the objects in a space of
reduced dimension obtained from D by principal coordinate analysis (Section 9.3).

• To compare two distance [or similarity] matrices obtained by computing different
resemblance measures on the same data.

• To compare the results of two clustering methods applied to a resemblance matrix.

• To compare different clustering levels in a dendrogram. The ultrametric matrix
representing a given clustering level only contains zeros and ones in that case, as
shown in Subsection 8.3.1.

Isolation
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Correlations take values between –1 and +1. The cophenetic correlation is expected
to be positive if the original distances are compared to cophenetic distances (or
similarities to similarities) and negative if distances are compared to similarities. The
higher the absolute value of the cophenetic correlation, the better the correspondence
between the two matrices that are compared. Ecologists might prefer to use a non-
parametric correlation coefficient (Kendall’s . or Spearman’s r) instead of Pearson’s r,
if the interest lies more in the geometric structure of the dendrogram than the actual
lengths of its branches. 

A cophenetic correlation cannot be tested for significance because the cophenetic
matrix is not independent of the original distance or similarity matrix; one comes from
the other through the clustering algorithm. In order to test the significance of a
cophenetic correlation, one would have to pretend that, under H0, the two matrices
may be independent of each other, i.e. that the clustering algorithm is likely to have a
null efficiency. On the contrary, the relationship between two hierarchical
classifications of different data sets about the same objects, e.g. community
composition and environmental, measured by matrix correlation or some other
measure of consensus (Rohlf, 1974, 1982b), can be tested for significance
(Section 10.2, Fig. 10.4).

Other coefficients have been proposed to measure the goodness-of-fit between
matrices. For instance, Gower’s (1983) distance is the sum of the squared differences
between values in the original distance matrix and the cophenetic distance matrix:

(8.27)

This measure, also called stress 1 (Kendall, 1938), takes values in the interval [0, /); it
is used in standardized form as a measure of goodness-of-fit in nonmetric
multidimensional scaling (eq. 9.49). Small values indicate high fit. Like the cophenetic
correlation, this measure only has relative value when comparing clustering results
obtained from the same original distance matrix. Several other such functions are
listed by Rohlf (1974). 

Other measures have been proposed for comparing different partitions of the same
objects. Consider in turn all pairs of objects and determine, for each one, whether the
two objects are placed in the same group, or not, by the partition. One can construct a
2 × 2 contingency table, similar to the one shown at the beginning of Subsection 7.3.1,
comparing the pair assignments made by two partitions. The simple matching
coefficient (eq. 7.1), computed on this contingency table, is called the Rand index
(1971). Hubert & Arabie (1985) suggested a modified form that corrects the Rand
index as follows: if the relationship between two partitions is comparable to that of
partitions picked at random, the corrected Rand index returns a value near 0. The
modified Rand index is widely used for comparing partitions.

Gower
distance DGower original Dij cophenetic Dij–( )

2

i j,
#=

Modified
Rand
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A Shepard diagram is a scatter plot comparing distances in a space of reduced
dimension, obtained by ordination methods, to distances in the original association
matrix (Fig. 9.1). This type of diagram has been proposed by Shepard (1962) in the
paper where he first described nonmetric multidimensional scaling (Section 9.4).
Shepard-like diagrams can be constructed to compare the distances (or similarities) of
the cophenetic matrix (Section 8.3) to the distances (or similarities) of the original
resemblance matrix (Fig. 8.24). Such a plot may help choose between parametric and
nonparametric cophenetic correlation coefficients: if the relationship between the
original and cophenetic distances is curvilinear in the Shepard-like diagram, as it is the
case in Figs. 24a and c, a nonparametric correlation coefficient should be used. 

Figure 8.24 also helps in understanding the space-contraction effect of single
linkage clustering, where the cophenetic distances are always smaller than or equal to
the original distances; the space-conservation effect of intermediate linkage clustering
with connectedness values around Co = 0.5; and the space-dilation effect of complete
linkage clustering, in which cophenetic distances can never be smaller than the
original distances. There are (n – 1) clustering levels in a dendrogram. This limits to
(n – 1) the number of different values that can be found in a cophenetic matrix and,
hence, along the ordinate of a Shepard-like diagram. This is why points form
horizontal bands in Fig. 8.24. 

Shepard-like
diagram

Figure 8.24 Shepard-like diagrams comparing cophenetic distances to the original distances for 21 objects
analysed using three clustering methods: (a) single linkage (Co = 0, cophenetic r = 0.64,
. = 0.45), (b) proportional link linkage (Co = 0.5, cophenetic r = 0.75, . = 0.58), and
(c) complete linkage (Co = 1, cophenetic r = 0.68, . = 0.51). Co is the connectedness of the
linkage clustering method (Subsection 8.5.3). There are 210 points (i.e. 210 distance pairs) in
each graph. The diagonal lines are visual references.
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Following are three measures of goodness-of-fit between the single linkage
clustering results and the original distance matrix, for the pond example of Ecological
application 8.2:

Pearson r cophenetic correlation = 0.9409
Kendall .b cophenetic correlation = 0.7736
Gower distance (DGower) = 0.1906 

8.13 Cluster validation

Users of clustering methods may wonder whether the result of a clustering program
run is valid or not, i.e. whether the clusters are “real”, or simply artefacts of the
clustering algorithm. Indeed, clustering algorithms may produce misleading results.
except in simple situations where the clusters are well separated. On the one hand,
most hierarchical clustering (or partitioning) algorithms will give rise to a hierarchy
(or a partition), whether the objects are, or not, hierarchically interrelated (or
pertaining to distinct clusters). On the other hand, different clustering algorithms may
produce markedly different results because clustering methods impose different
models onto the data, as shown in the present chapter: compare the dendrograms of
Figs. 8.2, 8.7, 8.9, 8.11 and 8.15. Finally, different clustering methods are variously
sensitive to noise (error) in the data. A simulation study comparing several clustering
and partitioning methods under different levels of noise can be found in Milligan
(1980); see also the review paper of Milligan (1996).

It is important to validate the results of cluster analyses. One has to show that a
clustering structure departs from what may be expected from unstructured data.
Unfortunately, most of the validation methods summarized below are not presently
available in standard clustering packages or in R functions. Readers are referred to
Chapter 4 of Jain & Dubes (1988) for details, and to the review papers of Perruchet
(1983a, b), Bock (1989, 1996), Gordon (1994, 1996a, 1996b) and Milligan (1996).
Lapointe (1998) reviewed the validation methods used in phylogenetic studies. 

Validation may be carried out in nonstatistical or statistical ways. Statistical ways
involve tests of hypotheses, whereas nonstatistical assessment accepts weaker
evidence for the presence of clusters. Commonly-used nonstatistical methods are: 

• Plot the clusters onto an ordination diagram and look for separation of the clusters
(Section 10.1). This method is often used to assess the degree of refinement of
hierarchical clustering results that one should consider for interpretation.

• Compare the results of several clustering algorithms, either informally (using visual
examination, identify the partition levels that are found in most or all trees being
compared), or formally (calculate consensus indices or construct a compromise
“consensus” tree: below).
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Different issues can be considered in cluster validation:

• The most general hypothesis is that of complete absence of classification structure in
the data. In principle, such tests should be carried out before cluster analysis is
attempted. Several methods have been proposed to assess the positions of the objects
distributed in multidimensional space (random position hypothesis) and test for either
uniform or unimodal distributions (i.e. greater density of objects near the centre of the
distribution); see Gordon (1996a, 1996b). There are also tests that are carried out on
graphs linking the objects, and others that involve only the object labels.

• Other methods are available to test (1) for the presence of a hierarchical structure in
the data, (2) for partitions (are there distinct clusters in the data? how many clusters?),
or (3) for the validity of individual clusters.

For any one of these hypotheses, validation may be carried out at different
conceptual levels. 

1. Internal validation using Y. — Internal validation methods allow the assessment of
the consistency of a clustering topology. Internal validation consists in using the
original data (i.e. matrix Y containing the data originally used for clustering) to assess
the clustering results. One approach is to resample the original data set. One repeatedly
draws subsets of objects at random, using sampling with or without replacement, to
verify that the original clusters of objects are found by the clustering method for the
different subsets. Nemec & Brinkhurst (1988) present an ecological application of this
method to species abundance data. Another approach is to randomize the original data
set, or generate random simulated data with similar distribution parameters, and
compute the classification a large number of times to obtain a null distribution for
some clustering statistic of interest, which can be tested using the null distribution; one
may use one of the statistics discussed in Subsection 8.12.2, or the U statistic of
Gordon (1994) described at the end of Subsection 10.5.3. The test of cluster fusion in
chronological clustering (Subsection 12.6.5) is an example of an internal validation
criterion. Using simulations, Milligan (1981) compared 30 internal validation criteria
that may be used in this type of study. One must not, however, use a standard
hypothesis testing procedure such as ANOVA or MANOVA on the variables used to
determine the clusters. This approach would be incorrect because the alternative
hypothesis of the test would be constructed to fit the group structure since it would be
computed from the same data that would now be used for testing the null hypothesis.
As a consequence, such a test would almost necessarily (subject to type II error) result
in significant differences among the groups. To illustrate this point, one can generate
multivariate data at random using the uniform distribution and carry out clustering: a
MANOVA comparing the clusters to the original data would produce a significant result
in most cases even though the data are random and thus have no structure.

2. External validation comparing Y to X. — External validation methods involve the
comparison of two different data tables. The clustering results derived from data
matrix Y, e.g. species, are compared to a matrix of explanatory variables,
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e.g. environmental, which is called X in the contexts of regression (Chapter 10) and
canonical analysis (Chapter 11). Comparisons can be made at different levels. One
may compare a partition of the objects based on Y to matrix X using linear
discriminant analysis (Table 10.1; Section 11.3). Else, the whole hierarchical tree
structure may be coded using binary variables (Baum, 1992; Ragan, 1992), in the same
way as nested factors in ANOVA; this matrix is then compared to the explanatory
matrix X using RDA or CCA (Sections 11.1 and 11.2). A third way is to compare the
cophenetic matrix (Section 8.3) that represents the hierarchical tree structure to a
distance or similarity matrix computed from matrix X, using a Mantel test
(Subsection 10.5.1; Hubert & Baker, 1977). Contrary to the cophenetic correlations
considered in Subsection 8.12.2, testing is legitimate here because matrix X is
independent of the data matrix Y used to construct the classification, but note that the
Mantel test has low power compared to the other methods mentioned above.

3. External validation comparing two or several matrices Y, same variables. —
Confirmation of the presence of a clustering structure in the data can be obtained by
repeating the cluster analysis using different sets of objects (data matrices Y1, Y2, etc.,
all with the same descriptors) and comparing the results. Consider the situation where
replicate data are available. If, for example, lakes can be selected at random from
different geographic regions, one can conduct independent cluster analyses of the
regions using one lake per region, different lakes being used in the separate runs,
followed by a comparison of the resulting partitions or dendrograms representing the
classifications of regions. Methods are available for comparing independently-
obtained dendrograms representing the same objects (Fig. 10.4 and references in
Section 10.2). A second approach is to take the classification of regions obtained from
the first set of lakes (matrix Y1) as a model to be validated, using discriminant analysis,
by comparing it to a second, independent set of lakes (matrix Y2) representing the
same regions. 

A third approach is replication analysis, where external validation is carried out for
data that are not replicate observations of the same objects. One finds a classification
using matrix Y1, determines group centroids, and assigns the data points in Y2 to the
nearest centroid (McIntyre & Blashfield, 1980). Then, the data in Y2 are clustered
without considering the result from Y1. The independently obtained classification of
Y2 is compared to the first one using some appropriate measure of consensus (point 4
below). 

In studies where data are costly to obtain, this approach is, in most cases, not
appealing to researchers who are more interested in using all the available information
in a single cluster analysis, instead of dividing the data set into two or several analyses.
This approach is only feasible when the objects are numerous.

4. External validation comparing two or several matrices Y, same objects. — Several
groups of descriptors may be available about the same objects, and one may wish to
conduct separate cluster analyses on them. An example would be sites where data are
available about several groups of arthropods (e.g. matrices Y1 = acarians, Y2 = insects,
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and Y3 = spiders), besides physical or other variables of the environment which would
form a matrix X of explanatory variables. Classifications may be obtained
independently for each matrix Y. Measures of resemblance between trees, called
consensus indices (Rohlf, 1982b), may be calculated. The cophenetic correlation
coefficient of the previous subsection can be used as a consensus index; other indices
are available, that only take the classification topologies into account. Alternatively,
one may compute a compromise tree, called a consensus tree, which represents the
areas of agreement among trees. Several criteria have been proposed for constructing
consensus trees: majority rule, strict consensus, average consensus, etc. (Leclerc &
Cucumel, 1987). Tests of significance are available for comparing independently-
obtained dendrograms that describe relationships among the same objects (Fig. 10.4
and references in Section 10.2). 

Cluster validation has progressed in important ways during the last decade, with
new methods and packages being made available. Summarizing these developments,
Rendón et al. (2011) described and compared a large number of internal and external
cluster validation indexes. Because cluster validity indices (CVI) are numerous and no
single CVI always outperforms the others, Kryszczuk & Hurley (2010) proposed
composite validation indices combining different approaches. Brock et al. (2008)
wrote the R package CLVALID for cluster validation; see Section 8.15.

8.14 Cluster representation and choice of a method

This section summarizes the most usual graphical representations of clustering results.
More complete reviews of the subject are found in Sneath & Sokal (1973) and
Chambers & Kleiner (1982).

Hierarchical clustering results are represented, in most cases, as dendrograms,
e.g. Fig. 8.2b. They can also be represented as plots of connected subgraphs,
e.g. Fig. 8.2a; the construction of these informative graphs, which would be difficult to
draw by computer, was explained in Section 8.2. The branches of dendrograms may
point upwards, downwards or sideways; the horizontal representation is an easier way
of plotting a dendrogram that contains a large number of objects and fitting it into a
page. Dendrograms are graduated in distances or similarities; the branching pattern
indicates the distance or similarity of bifurcating branches. Usually, the names of the
objects (or descriptors when descriptors are clustered), or their code numbers, are
written at the tips of the branches. The ordinate (on horizontal dendrograms) has no
specified ordering, except in TWINSPAN. Bifurcating branches are not fixed; they may
be swivelled as required by the presentation of results without altering the nature of the
ultrametric information in the dendrogram.

Dendrograms clearly illustrate the clusters formed at each partition level, but in
linkage clustering they do not allow the identification of the exact links among objects
that generate cluster fusions. With some clustering methods, this information is not

Dendrogram



Cluster representation and choice of a method 419

directly available and must be found a posteriori when needed; how to compute the
chain of primary connections was described at the end of Subsection 8.5.4 for the
UPGMA clustering case. In synoptic clustering, which only aims at recognizing major
clusters of objects, connecting links are not required.

Series of connected subgraphs, as drawn in Fig. 8.2a, may be used to represent all
the information of the distance or similarity matrix. Complex information may be
represented by different types of lines; colours may also be used. When they become
numerous, objects can be placed at the rim of a circle; distance links are drawn as lines
between them. In each subgraph, the relative positions of the objects are of little
importance. They are merely arranged in such a way as to simplify the paths of the
links connecting them. The objects may have been positioned beforehand in a two-
dimensional ordination space, which may be obtained by principal coordinate analysis
or nonmetric scaling of the association matrix (Sections 9.3 and 9.4). Figures of
connected subgraphs, informative as they may be, are quite time consuming to draw
and difficult to publish.

Some programs still use “skyline plots” (Ward, 1963; Wirth et al., 1966), which
may also be called “trees” or “icicle plots”. These plots may be imagined as negative
pictures of dendrograms. They contain the same information as dendrograms, but they
are rather odd to read and interpret. In Fig. 8.25a for instance (UPGMA clustering of
the pond data, see Fig. 8.5), the object names are sitting on the lines between columns
of X’s; the ordinate of the plot is a scale of distances or similarities. Since the value
D = 0 is at the bottom of the graph, this is where the hierarchical agglomeration
begins. The first clustering step is materialized by the first horizontal row of X’s, at
distance D = 0.4, which joins objects 212 and 214. It is drawn like the lintel of a door.
The surface above the lintel of X’s is filled with X’s; these are without meaning. The
next clustering step is at distance D = 0.5; it consists in a row of X’s joining ponds 431
and 432. The third clustering step is more interesting. Note how a new lintel of X’s, at
D = 0.75, goes from pond 233, and right across the column of X’s already joining
ponds 431 and 432. The final clustering step is at D = 0.942. This new lintel crosses
the last remaining gap, uniting the two columns of X’s corresponding to the two
already-formed clusters.

A skyline plot can be directly transformed into a dendrogram (Fig. 8.25b, c).
Working from the bottom to the top, proceed as follows:

• Identify lintels and draw lines across the column of X’s. The lintel lines should not
extend beyond the row of X’s.

• When all the horizontal lintel lines have been drawn, draw vertical lines from
individual objects up to the first lintel encountered, and from the centre of a lower
lintel up to the one above. Erase the overhanging part of the upper lintel. Repeat the
operation for the next lintel up.

Connected
subgraphs

Skyline plot
Tree
Icicle plot
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• Erase the X’s. The result is a standard dendrogram (Fig. 8.25c). It is identical to the
dendrogram representing the same clustering results in Fig. 8.5, but it is drawn here
vertically instead of horizontally, and pond 233 is swivelled to the right instead of
being between ponds 214 and 431.

Heat maps (see Section 8.15) can be used to represent D matrices graphically,
before or after clustering, e.g. Fig. 8.21. Dendrograms can be represented along the
axes of heat maps as in Fig. 8.21c.

Section 10.1 shows how to superimpose clustering results onto an ordination of the
same objects. This often helps evidence the structure when ecological objects form a
continuum. When it comes to representing the results of a partition, the objects are
represented in an ordination space and symbols can be used to represent the groups;
else, envelopes can be drawn around points corresponding to the groups. 

Table 8.11 summarizes, in a comparative way, the various clustering methods
discussed in the present chapter. Some advantages and disadvantages of each method
are pointed out. 

Figure 8.25 A skyline plot (a) can be transformed into a dendrogram (c) by going through the drawing steps
described in (b). Vertical scale: distances. The skyline plot was computed using SAS.
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Table 8.11 Synoptic summary of the clustering methods presented in Chapter 8.

Method Pros & cons Use in ecology

Hierarchical agglomeration:
linkage clustering

Single linkage

Complete linkage
(see also: species associations)

Intermediate linkage

Hierarchical agglomeration:
average clustering

Unweighted arithmetic average
(UPGMA)

Weighted arithmetic average
(WPGMA)

Unweighted centroid
(UPGMC)

Weighted centroid
(WPGMC)

Ward’s method

Hierarchical agglomeration:
flexible clustering

Hierarchical agglomeration:
information analysis

Pairwise relationships among the 
objects are known.

Computation simple; 
contraction of space (chaining); 
combinatorial method.

Dense nuclei of objects; space 
expansion; many objects cluster at 
high distance; arbitrary rules to 
resolve conflicts; combinatorial 
method.

Preservation of reference space A;
non-combinatorial: not included in 
Lance & Williams’ general model.

Preservation of reference space A;
pairwise relationships between 
objects are lost; combinatorial 
method.

Fusion of clusters when the 
distance reaches the mean inter-
cluster distance value.

As UPGMA, with adjustment for 
group sizes.

Fusion of clusters with closest 
centroids; may produce reversals.

As UPGMC, with adjustment for 
group sizes; may produce 
reversals.

Minimizes the within-group sum 
of squares.

Allows contraction, conservation, 
or dilation of space A; pairwise 
relationships between objects are 
lost; combinatorial method.

Minimal chaining; only for 
Q-mode clustering based upon 
presence-absence of species.

Good complement to ordination.

To increase the contrast among 
clusters.

Preferable to the above two 
methods if only one clustering 
method is to be used.

For a collection of objects 
obtained by simple random or 
systematic sampling.

Preferable to the previous method 
in all other sampling situations.

For simple random or systematic 
samples of objects.

Preferable to the previous method 
in all other sampling situations.

When looking for hyperspherical 
clusters in space A.

All combinatorial methods, 
including this one, are 
implemented using the simple 
Lance & Williams algorithm.

Ecological use is unclear: 
distances reflect double absences 
as well as double presences.
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Table 8.13 Continued. 

Method Pros & cons Use in ecology

Hierarchical division

Monothetic

Polythetic

Division in ordination space

TWINSPAN

K-means partitioning

Species associations

Non-hierarchical
complete linkage

Concordance analysis

Multivariate regression tree

Seriation

Indicator species
TWINSPAN

Indicator value index

Danger of incorrect separation of 
members of minor clusters near 
the beginning of clustering.
Division of the objects following 
the states of the “best” descriptor 
at each step of the procedure.
For small number of objects only.

Binary division along each axis of 
ordination space; no search is 
done for high concentrations of 
objects in space A.
Dichotomized ordination analysis;
ecological justification of several 
steps unclear.
Minimizes within-group sum of 
squares; different rules may 
suggest different optimal numbers 
of clusters.
Non-hierarchical methods; 
clustering at a pre-selected level of 
similarity or probability.

Species associated by complete 
linkage (no overlap); satellite 
species joined by single linkage 
(possible overlap).
Find groups of species that form 
statistically significant 
associations.

A multivariate response table is 
constrained by a table of explan. 
variables, producing a tree.

One-dimensional ordination 
along the main diagonal of a 
distance matrix.

Only for classifications of sites 
obtained by splitting CA axes;
justification of some steps unclear.
For any hierarchical or non-
hierarchical classification of sites;
IndVal for a species is not affected 
by the other species in the study.

Useful to split data into large 
clusters, inside which clustering 
depends on different phenomena.
Computation impossible for 
sizable data sets.
Efficient algorithms for large data 
sets, when a coarse division of the 
objects is sought.

Produces an ordered two-way 
table classifying sites and species.

Produces a partition of the objects 
into K groups, K being determined 
by the user.

Concept of association based on 
co-occurring or correlated species.

Straightforward concept; no easily 
available software.

Clear, easy to apply method; R 
functions available.

Two-matrix method related to 
canonical analysis.

Useful to analyse non-symmetric 
association matrices.

Gives indicator values for the 
pseudospecies.

Gives indicator values for the 
species under study; the IndVal 
index is tested by permutation.
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8.15 Software

Several, but not all statistical packages offer clustering capabilities: SAS, SPSS,
SYSTAT, JMP, STATISTICA, and NTSYSPC offer clustering among their methods for
data analysis. All packages with clustering procedures offer at least a Lance &
Williams algorithm capable of carrying out the clustering methods listed in Table 8.9.
Many also have a K-means partitioning algorithm. Few offer proportional-link linkage
or additional forms of clustering. Some methods are available in specialized packages
only: clustering with constraints of temporal (Section 12.6) or spatial contiguity
(Section 13.3); fuzzy clustering (algorithms described e.g. in Bezdek, 1987); or
clustering by neural network algorithms (algorithms described e.g. in Fausett, 1994). 

Functions in the R language are available to carry out all analyses described in this
chapter.

1. Several R functions are devoted to clustering. Hierarchical clustering is computed
using hclust() in STATS and agnes() in CLUSTER using the Lance & Williams general
agglomerative algorithm. Functions for constrained hierarchical clustering are listed in
Sections 12.8 and 13.6. A cophenetic distance matrix corresponding to a hierarchical
clustering is computed by function cophenetic() of STATS.

Minimum spanning trees can be computed by several functions including mstree()
in ADE4, mst() in APE, mstree() in SPDEP and spantree() in VEGAN. Function
cophenetic() in STATS computes the cophenetic matrix corresponding to a hierarchical
clustering. Function clustIndex() of CCLUST computes stopping indices for clustering.

2. K-means partitioning is available in functions kmeans() of STATS, cclust() of
CCLUST, kkmeans() of KERNLAB, KMeans() of RCMDR and cascadeKM() of VEGAN;
the latter function automatically repeats K-means partitioning using a range of values
of K. 

3. Seriation is obtained by function seriate() of package SERIATION, which offers
several calculation methods. Heat maps in colour can be obtained using function
heatmap() of STATS, or by function hmap() of SERIATION, which calls heatmap() to
produce the plot. Heat maps are also produced by function coldiss() available on the
Web page of the Borcard et al. (2011) book, http://numericalecology.com/NEwR. With
coldiss(), a D matrix is represented by an unordered and a reordered colour heat maps,
the new ordering being the result of single linkage chaining. Function seriation()*

carries out the Beum-Brundage seriation procedure for non-symmetric or symmetric
matrices.

4. Multivariate regression tree analysis is available in mvpart() of package MVPART.
Package MVPARTWRAP contains additional functions for multivariate regression tree

*  Available on the Web page http://numericalecology.com/rcode.

Heat map
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analysis, including CascadeMRT() that carries out two MRT analyses in sequence,
using explanatory matrices in the order specified by the researcher.

5. Other clustering methods have been described in the statistical literature. For
instance, K-means partitioning is a member of a larger class of methods called K-
centroids, where the Euclidean distance is replaced by other distances; for example,
using the Manhattan distance instead of the Euclidean produces K-medians clustering.
Package FLEXCLUST offers different types of clustering, including function kcca() that
computes various types of K-centroid cluster analysis (K-means, K-medians and
others). For distances other than the Euclidean, the K-centroid approach is also called
partitioning around medoids (Kaufman & Rousseeuw, 1990); it is implemented in
function pam() of the CLUSTER package. An example of partitioning around medoids is
presented in Subsection 4.8.2 of the Borcard et al. (2011) book.

6. Fuzzy partitioning is available in functions fanny() of package CLUSTER and
cmeans() of package E1071. An example of analysis in Q mode is presented in
Subsection 4.12.1 of Borcard et al. (2011). Function vegclust() of package VEGCLUST
offers three forms of fuzzy partitioning (fuzzy c-means, probabilistic c-means, and
noise clustering) in addition to hard K-means.

7. Concordance analysis to search for species associations is available in functions
kendall.global() and kendall.post() of the VEGAN package.

8. Indicator value indices (INDVAL, EQ. 8.21) can be computed by functions strassoc()
and multipatt() of INDICSPECIES and function indval() of LABDSV. The functions in
INDICSPECIES offer a choice of several different indicator statistics described in De
Cáceres & Legendre (2009).

9. Function clValid() of the CLVALID package computes validation measures for
clustering results, including internal validation and stability measures, plus biological
measures for genetic data. The package is described in Brock et al. (2008). Function
randIndex() computes the Rand and modified Rand indices quantifying the agreement
of two partitions. 
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Ordination in 
reduced space

 

9.0 Projecting data sets in a few dimensions

 

Ordination (from the Latin 

 

ordinatio

 

, the action of setting in order) is the arrangement
of units in some order. Gower (1984) points out that the term 

 

ordination

 

, widely used
in multivariate statistics, actually comes from ecology where it refers to the
representation of objects (sites, stations, relevés, etc.) as points along one or several
reference axes. In 1954, vegetation ecologist David Goodall was the first to apply
factor analysis in community ecology. Goodall proposed the term “ordination” to
designate this type of analysis, a term now widely used in community ecology
textbooks and publications. Ordination consists in plotting object-points along an axis
representing an ordered relationship, or forming a scatter diagram with two or more
axes. The ordered relationships are usually quantitative, but it would suffice for them
to be of the type “larger than”, “equal to” or “smaller than” (semiquantitative relations)
to serve as the basis for ordinations, as it is the case in nMDS (Section 9.4). 

In ecology, several descriptors are usually observed for each object under study. In
most instances, ecologists are interested in characterizing the main trends of variation
of the objects with respect to all descriptors, not only a few of them. Looking at scatter
plots of the objects with respect to all possible pairs of descriptors is a tedious
approach, which generally does not shed much light on the problem at hand. In
contrast, the multivariate approach consists in representing the scatter of objects in a
multidimensional diagram, with as many axes as there are descriptors in the study. It is
not possible to draw such a diagram on paper with more than two or eventually three
dimensions, however, even though it is a perfectly valid mathematical construct. For
the purpose of analysis, ecologists therefore project the multidimensional scatter
diagram onto bivariate graphs whose axes are known to be of particular interest.

 

 

 

The
axes of these graphs are chosen to represent a large fraction of the variability of the
multidimensional data matrix, in a space with reduced (i.e. lower) dimensionality
relative to the original data set. Methods for 

 

ordination in reduced space 

 

also allow

Ordination
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one to derive quantitative information on the quality of the projections, and study the
relationships among descriptors as well as among objects.

Ordination in reduced space is often referred to as 

 

factor 

 

(or 

 

inertia

 

)

 

 analysis

 

 since
it is based on the extraction of the eigenvectors or 

 

factors 

 

of the association matrix.
Factor analysis 

 

sensu stricto

 

 is mainly used in the social sciences; it aims at
representing the covariance structure of the descriptors in terms of a hypothetical
causal model. It is not discussed further in this book.

The domains of application of the techniques discussed in the present chapter are
summarized in Table 9.1. Section 9.1 is devoted to principal component analysis
(PCA), a powerful technique for ordination in reduced space which is, however,
limited to quantitative descriptors. Because it preserves Euclidean distances, PCA
results are sensitive to the presence of double-zeros. Section 9.2 discusses
correspondence analysis (CA), an ordination method useful to analyse species
presence/absence or abundance data. Sections 9.3 and 9.4 are devoted to principal
coordinate analysis (metric scaling, PCoA) and nonmetric multidimensional scaling
(nMDS), respectively. Both methods project, in reduced space, distance matrices
among objects computed prior to ordination, based on user-chosen distance measures
(Chapter 7); in some of these measures, the descriptors may be of any mathematical
type. PCA, CA and PCoA are eigenvector-based methods, not nMDS. The
presentation of various forms of canonical analysis, which are also eigenvector-based,
is deferred to Chapter 11.

Table 9.1 Domains of application of the ordination methods presented in this chapter.

Method Distance preserved Variables

Principal component analysis Euclidean distance Quantitative data, linear relation-
(PCA) ships (beware of double-zeros)

Correspondence analysis (CA) !2 distance Non-negative, dimensionally
homogeneous quantitative or 
binary data; species frequencies
or presence/absence data

Principal coordinate analysis Any distance measure Quantitative, semiquantitative,
(PCoA), metric (multidimensional) qualitative, or mixed
scaling, classical scaling

Nonmetric multidimensional Any distance measure Quantitative, semiquantitative,
scaling (nMDS) qualitative, or mixed
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It often happens that the structure of the objects under study is not continuous. In
such a case, an ordination in reduced space, or a scatter diagram produced using two
important variables, may be sufficient to evidence the group structure of the objects.
Ordination methods may thus sometimes be used to delineate clusters of objects
(Fig. 8.1, Subsection 8.7.3). Ordinations can also be used as complements to cluster
analyses. The reason is that clustering investigates pairwise distances among objects,
looking for fine relationships, whereas ordination in reduced space considers the
variability of the whole association matrix and thus brings out general gradients.
Different methods for superimposing the results of clustering onto ordinations of the
same objects are described in Section 10.1. 

Ecologists generally use ordination methods to study the relative positions of
objects in reduced space. An important aspect to consider is the representativeness of
the representation in reduced space, which usually has 

 

d

 

 = 2

 

 

 

or 3 dimensions. To what
extent does the reduced space preserve the distance relationships among objects? To
answer this, one can compute the distances between all pairs of objects, both in the
multidimensional space of the original 

 

p

 

 descriptors and in the reduced 

 

d

 

-dimensional
space. The resulting values are plotted in a scatter diagram such as Fig. 9.1. When the
projection in reduced space accounts for a high fraction of the variance, the distances
between projections of the objects in reduced space are quite similar to the original
distances in multidimensional space (case

 

 

 

a). When the projection is less efficient, the
distances between objects in reduced space are much smaller than in the original
space. Two situations may then occur. When the objects are at 

 

proportionally

 

 similar
distances in the two spaces (case b), the projection is still useful even if it accounts for
a small fraction of the variance. When, however, the relative object positions are not
the same in the two spaces (case c), the projection is useless. Ecologists often
disregard the interpretation of ordinations when the reduced space does not account for
a high fraction of the variance. This is not entirely justified, since a projection in
reduced space may be informative even if that space only accounts for a small fraction
of the variance (case b). 

The scatter diagram of Fig. 9.1, which is often referred to as a Shepard diagram
(Shepard, 1962; diagrams in Shepard’s paper had their axes transposed relative to
Fig. 9.1), may be used to estimate the representativeness of ordinations obtained using
any reduced-space ordination method. In principal component analysis (Section 9.1),
the distances among objects, in both the multidimensional space of original descriptors
and the reduced space, are calculated using Euclidean distances (

 

D

 

1

 

, eq. 7.32). The 

 

F

 

matrix of principal components (eq. 9.4 below) gives the coordinates of the objects in
the reduced space. In principal coordinate analysis (Section 9.3) and nonmetric
multidimensional scaling (Section 9.4), Euclidean distances among the objects in
reduced space are compared to distances 

 

D

 

hi

 

 found in matrix 

 

D

 

 used as the basis for
computing the ordination. In correspondence analysis (Section 9.2), it is the 

 

!

 

2

 

distance (

 

D

 

16

 

, eq. 7.55) among objects that is used on the abscissa of the Shepard
diagram. Shepard-like diagrams can also be constructed for cluster analysis
(Fig. 8.24).

Reduced
space

Shepard
diagram



 

428 Ordination in reduced space

 

The following sections discuss the ordination methods most useful to ecologists.
The sections are written to be easily understood by ecologists, so that they may not
entirely fulfil the expectations of statisticians. Many programs are available to carry
out ordination analysis; several of them are described by Michael Palmer

 

*

 

. R functions
are listed in Section 9.5. For detailed discussions on the theory or computing methods,
one can refer to ter Braak (1987c) and Legendre & Birks (2012). Important references
about correspondence analysis are Benzécri and coll. (1973), Hill (1974), Greenacre
(1983), and ter Braak (1987c). Gower (1984, 1987) reviewed the ordination methods
described in this chapter, plus a number of other techniques developed by
psychometricians. Some of these are progressively finding their way into numerical
ecology. They include methods of metric scaling other than principal coordinate
analysis, multidimensional unfolding, orthogonal Procrustes analysis
(Subsection 11.5.2) and its generalized form, scaling methods for several distance
matrices, and a method for ordination of non-symmetric matrices.

 

*  

 

Web page: http://ordination.okstate.edu/.

Figure 9.1 Shepard diagram. Three situations encountered when comparing distances among objects, in the
p-dimensional space of the p original descriptors (abscissa) versus the d-dimensional reduced
space (ordinate). The figure only shows the contours of the scatters of points. (a) The projection
in reduced space accounts for a high fraction of the variance; the relative positions of objects in
the d-dimensional reduced space are similar to those in the p-dimensional space. (b) The
projection accounts for a small fraction of the variance, but the relative positions of the objects
are similar in the two spaces. (c) Same as (b), but the relative positions of the objects differ in
the two spaces. Adapted from Rohlf (1972). Compare to Fig. 8.24.
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9.1 Principal component analysis (PCA)

 

In this book, principal component analysis

 

*

 

 is defined as the eigenanalysis of the
dispersion matrix 

 

S

 

 = (

 

n

 

 – 1)

 

–1

 

Y

 

c

 

'

 

Y

 

c

 

, where 

 

Y

 

c

 

 is matrix 

 

Y

 

 column-centred. In other
books, it may be defined as the eigenanalysis of 

 

Y

 

c

 

'

 

Y

 

c

 

 without division by (

 

n

 

 – 1).
How to compute the principal axes (Box 9.1) of 

 

S

 

 was explained in Section 4.4. In a
nutshell, in a multinormal distribution, the first principal axis is the line that goes
through the greatest dimension of the concentration ellipsoid describing the
distribution. The following principal axes (orthogonal to one another and successively
shorter) go through the following greatest dimensions of the 

 

p

 

-dimensional ellipsoid.
A maximum of 

 

p 

 

principal axes can be derived from a data matrix containing 

 

p

 

variables (Fig. 4.9). The principal axes of a dispersion matrix 

 

S

 

 are found by solving 

(

 

S

 

 – 

 

"

 

k

 

I

 

) 

 

u

 

k

 

 = 

 

0 (9.1)

 

(eq. 4.23) whose characteristic equation
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k
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#

 

 = 0

 

(9.2)

 

*  

 

Because the pronunciation of “principal” and “principle” is similar in English, the erroneous
name “

 

Principle

 

 component analysis” is sometimes found in the literature, even recent.

Ordination vocabulary* Box 9.1

Major axis. Axis in the direction of maximum variance of a scatter of points.

First principal axis (of the concentration ellipsoid in a multinormal distribution;
Fig. 4.9). Line passing through the greatest dimension of the ellipsoid; major axis of
the ellipsoid.

Principal components. New variates (variates = random variables) specified by the
axes of a rigid rotation of the original system of coordinates, and corresponding to
the successive directions of maximum variance of the scatter of points. The
principal components give the positions of the objects in the new system of
coordinates.

Principal-component axes (also called principal axes or component axes). System
of axes resulting from the rotation described above.

*Adapted from Morrison (1990, pp. 87 and 323-325).
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is used to compute the 

 

eigenvalues 

 

"

 

k

 

. The eigenvectors 

 

u

 

k

 

 associated with the
eigenvalues 

 

"

 

k

 

 are found by putting the different values 

 

"

 

k

 

 in turn into eq. 9.1. These
eigenvectors are the 

 

principal axes

 

 of dispersion matrix S (Section 4.4). The
eigenvectors are normalized (i.e. scaled to unit length, Section 2.4) before computing
the principal components, which give the coordinates of the objects on the successive
principal axes. Principal component analysis (PCA) was originally described by
Pearson (1901) although it is more often attributed to Hotelling (1933) who proposed it
independently. The method and several of its implications for data analysis are
presented in the seminal paper of Rao (1964). PCA possesses the following properties,
which make it a powerful tool for the analysis of ecological data:

1) Since any dispersion matrix S is symmetric, its principal axes uk are orthogonal
to one another. In other words, they correspond to linearly independent directions in
the concentration ellipsoid of the distribution of objects (Section 2.9).

2) The eigenvalues "k of a dispersion matrix S are all positive or null because S is
positive semidefinite (Section 4.1, Table 2.2). PCA does not produce negative
eigenvalues. The eigenvalues represent the amounts of variance of the data along the
successive principal axes (Section 4.4).

3) Because of the first two properties, principal component analysis can often
summarize, in a few dimensions, most of the variability of a dispersion matrix of a
large number of descriptors. It also provides a measure of the amount of variance
explained by these few independent principal axes.

The present section shows how to compute the relationships among objects and
among descriptors, as well as the relationships between the principal axes and the
original descriptors. A simple numerical example is developed, involving five objects
and two quantitative descriptors:

Y =      After centring on the column means, Yc = 

where Yc is the matrix of column-centred data. In practice, principal component
analysis is never used for two descriptors only; in such a case, the objects can simply
be represented in a two-dimensional scatter diagram (Fig. 9.2a). A two-dimensional
example is used here for simplicity, in order to show that the main result of principal
component analysis is to rotate the axes, using the centroid of the objects as pivot.
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1 — Computing the eigenvectors of a dispersion matrix
The dispersion matrix (eq. 4.6) of the descriptors in the above example is:

Figure 9.2 Numerical example of principal component analysis. (a) Five objects are plotted with respect to
descriptors y1 and y2. (b) After centring the data, the objects are now plotted with respect to

 and , represented by dashed axes. (c) The objects are plotted with
reference to principal axes I and II, which are centred with respect to the scatter of points.
(d) The two systems of axes (b and c) can be superimposed after a rotation of 26°34'.
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The corresponding characteristic equation (eq. 2.23) is:

It has two eigenvalues, "1 = 9 and "2 = 5. The total variance (sum of diagonal values)
in the matrix of eigenvalues is the same as in S, but it is partitioned in a different way:
the sum of the variances in S, (8.2 + 5.8 = 14), is equal to the sum of the eigenvalues,
(9 + 5 = 14). "1 = 9 accounts for 64.3% of the variance and "2 makes up for the
difference (35.7%). There are as many eigenvalues as there are descriptors. The
successive eigenvalues account for progressively smaller fractions of the variance.
Introducing, in turn, the "k’s in matrix equation 9.1:

(S – "kI) uk = 0

provides the eigenvectors associated with the eigenvalues. Once these vectors have
been normalized (i.e. scaled to unit length, u'u = 1) they become the columns of
matrix U:

U = 

If a different sign had been arbitrarily assigned to one of the terms of matrix U during
calculation of the eigenvectors, a mirror image would have been produced for
Figs. 9.2c. That image would have been as good at representing the data as Fig. 9.2c. 

It is easy to check the orthogonality of the two eigenvectors: their cross-product
 = (0.8944 × (–0.4472)) + (0.4472 × 0.8944) = 0. Moreover, Section 4.4 has

shown that the elements of U are direction cosines of the angles between the original
descriptors and the principal axes. Using this property, one finds that the system of
principal axes specifies a rotation of (arc cos 0.8944) = 26°34' of the system of
reference defined by the original descriptors. Hence, Figure 9.2 shows that principal
component analysis has performed a rotation of the system of axes (descriptors)
without changing the positions of the objects with respect to one another.

2 — Computing and representing the principal components

The elements of the eigenvectors are also weights, or loadings of the original
descriptors, in the linear combination of descriptors from which the principal
components are computed. The principal components give the positions of the objects
with respect to the new system of principal axes. Thus the position of an object xi on
the first principal axis is given by the following function, or linear combination:

(9.3)

S "kI– 8.2 1.6
1.6 5.8

"k 0
0 "k

– 0= =

0.8944 0.4472–
0.4472   0.8944

Ortho-
gonality u'1u2

Loading

Principal
component

f i1 yi1 y1–( ) u11 … yip yp–( ) up1+ + y y–[ ] iu1= =



Principal component analysis (PCA) 433

The values  are the coordinates of object xi on the various centred descriptors
j and the values uj1 are the loadings of the descriptors on the first eigenvector. The
positions of all objects with respect to the system of principal axes is given by matrix F
of the transformed variables. It is also called the matrix of principal components:

(9.4)

where U is the matrix of eigenvectors and Yc is the matrix of centred observations. The
system of principal axes is centred with respect to the scatter of point-objects. This
would not be the case if U had been multiplied by Y instead of the centred matrix Yc,
as in some special forms of principal component analysis (non-centred PCA). For the
numerical example, the principal components are computed as follows:

F = 

The variance of the two columns of F are "1 = 9 and "2 = 5 respectively. Since the two
columns of the matrix of component scores are the coordinates of the five objects with
respect to the principal axes, they can be used to plot the objects with respect to
principal axes I and II (Fig. 9.2c). It is easy to verify (Fig. 9.2d) that, in this two-
descriptor example, the objects are positioned by the principal components in the same
way as in the original system of descriptor-axes. Principal component analysis has
simply rotated the axes by 26° 34' in such a way that the new axes correspond to the
two main components of variability. When there are more than two descriptors, as it is
usually the case in ecology, principal component analysis still only performs a rotation
of the system of descriptor-axes, but now in multidimensional space. In that case,
principal components I and II define the plane allowing the representation of the
largest amount of variance. The objects are projected on that plane in such a way as to
preserve, as much as possible, the relative Euclidean distances they have in the
multidimensional space of the original descriptors.

The relative positions of the objects in the rotated p-dimensional space of principal
components are the same as in the p-dimensional space of the original descriptors
(Fig. 9.2d). This means that the Euclidean distances among objects (D1, eq. 7.32) have
been preserved through the rotation of axes. This important property of principal
component analysis is noted in Table 9.1. The quality of the representation in a
reduced Euclidean space with m dimensions only (m $ p) may be assessed using the
following ratio: 

(9.5)
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This ratio is the equivalent of a coefficient of determination (R2, eq. 10.20) in
regression analysis. The denominator of eq. 9.5 is actually equal to the trace of matrix
S (sum of the diagonal elements). Thus, with the current numerical example, a
representation of the objects, along the first principal component only, would account
for a proportion 9/(9+5) = 0.643 of the total variance in the data matrix. This value is
identical to that given in Subsection 9.1.1 for the fraction of the variance of Y that is
accounted for by "1.

When the observations have been made along a temporal or spatial axis, or on a
geographic surface (i.e. a map giving the coordinates of the sampling sites), one may
plot the principal component values along the sampling axis, or on the geographic
map. Figure 9.15 shows an example of such a map for the first ordination axis of a
detrended correspondence analysis. The same approach can be used with the results of
a principal component analysis, or any other ordination method.

3 — Contributions of the descriptors

Principal component analysis provides the information needed to understand the role
of the original descriptors in the formation of the principal components. It may also be
used to show the relationships among the original descriptors. The role of the
descriptors in principal component analysis is now examined under various aspects.

1. The matrix of eigenvectors U. — In Subsection 9.1.1, the relationships among
the normalized eigenvectors, which are the columns of matrix U, were studied using
an expression of the form U'U. For the numerical example:

U'U = 

The diagonal terms of U'U result from the scalar product of the eigenvectors with
themselves. These values are the (length)2 of the eigenvectors, here equal to unity
because the eigenvectors were scaled to 1. The nondiagonal terms, resulting from the
multiplication of two different eigenvectors, are equal to zero because the eigenvectors
are orthogonal. This result would be the same for any matrix U of normalized
eigenvectors computed from a symmetric matrix. Matrix U is a square orthonormal
matrix (Section 4.4); several properties of such matrices are described in Section 2.8. 

In the same way, the relationships among descriptors, which correspond to the
rows of matrix U, can be studied through the product UU'. The diagonal and non-
diagonal terms of UU' have the same meaning as in U'U, except that they now concern
the relationships among descriptors. This is PCA scaling 1, which is explained in more
details in Subsection 9.1.4. The relationships among the rows of a square orthonormal
matrix are the same as among the columns (Section 2.8, property 7), so that:

UU' = I (9.6)

  0.8944 0.4472
0.4472– 0.8944
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The descriptors are therefore of unit lengths in the multidimensional space and they lie
at 90° of one another (orthogonality).

Principal component analysis is simply a rotation, in the multidimensional space,
of the original system of axes (Figs. 9.2 and 9.3a, for a two-dimensional space). It
therefore follows that, after the analysis (rotation), the original descriptor-axes are still
at 90° of one another. Furthermore, normalizing the eigenvectors simultaneously
normalizes the descriptor-axes (the lengths of the row and column vectors are given
outside the matrix):

(9.7)

There is a second approach to the study of the relationships among descriptors. It
consists in scaling the eigenvectors in such a way that the cosines of the angles
between descriptor-axes be proportional to their covariances. In this approach, the
angles between descriptor-axes are between 0° (maximum positive covariance) and
180° (maximum negative covariance); an angle of 90° indicates a null covariance
(orthogonality). This result is achieved by scaling each eigenvector k to a length equal
to its standard deviation *. This is PCA scaling 2, explained in Subsection 9.1.4.
With this scaling for the eigenvectors, the Euclidean distances among objects are not
preserved.

Using the diagonal matrix ,,,, of eigenvalues (eq. 2.20), the new matrix of
eigenvectors, called Usc2 (i.e. U for scaling 2), can be directly computed by means of
the expression U,,,,1/2. For the numerical example:

Usc2 = U,,,,1/2 = (9.8)

In scaling 2, the relationships among descriptors are the same as in the dispersion
matrix S (on which the analysis is based), since

(U,,,,1/2) (U,,,,1/2)' = U,,,,U' = U,,,,U–1 = S (9.9)

*  In some computer packages, PCA only scales the eigenvectors to length  and only
provides a plot of the descriptor-axes; no plot of the objects in reduced space is available.
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Equation U,,,,U–1 = S is derived directly from the general equation of eigenvectors
SU = U,,,, (eq. 2.27). In other words, the new matrix U,,,,1/2 is of the following form
(the lengths of the row and column vectors are given outside the matrix):

Usc2 = U,,,,1/2 = (9.10)

This equation shows that, when the eigenvectors are scaled to the lengths of their
respective standard deviations , the lengths of the descriptor-axes are 
(i.e. their standard deviations) in multidimensional space. The product of two
descriptor-axes, which corresponds to their angle in the multidimensional space, is
therefore equal to their covariance sjl.

2. Projection of descriptors in reduced space, scaling 1: matrix U. — When matrix
U is used to project the descriptor-axes in a PCA plot, the descriptor-axes are of unit
lengths and at right angles in multidimensional space (Fig. 9.3a). The angles between
descriptor-axes and principal axes are projections of the rotation angles corresponding
to the elements of matrix U (Fig. 4.10). For the numerical example, the angles between
descriptors and principal axes are computed as in Section 4.4 using matrix U:

The values of angles in the inset of Fig. 9.3a are thus: . = 26°34', / = 63°26',
0 = 26°34'. The correlations between descriptors j and principal axes k are the same as
in scaling 2 (below) because the two scalings only differ by the stretching of the axes.
In scaling 1, the correlations among descriptors are equal to 0 because descriptors are
orthogonal (i.e. at right angles) in this representation.

Projection ujk of a descriptor-axis j on a principal axis k is proportional to the
covariance of that descriptor with the principal axis. The proportionality factor is
different for each principal axis, so that it is not possible to compare the projection of a
descriptor on one axis to its projection on another axis. It is correct, however, to
compare the projections of different descriptor-axes on the same principal axis. It can
be shown that an isogonal projection (with respectively equal angles) of p orthogonal
axes of unit lengths gives a length  to each axis in d-dimensional space. In
Fig. 9.4, the equilibrium projection of each of the three orthogonal unit axes, in two-
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dimensional space, has a length of . This is due to the fact that an isogonal
projection results in an equal association of all descriptor-axes with the principal axes. 

An equilibrium circle of descriptors, with radius , may be drawn as
reference to assess the contribution of each descriptor to the formation of the reduced
space (Fig. 9.4),. The circle is also drawn in the inset of Fig. 9.3a; its radius is

 = 1 because, in the numerical example, both the reduced space and the total
space are two-dimensional. If one was only interested in the equilibrium contribution
of descriptors to the first principal axis, the one-dimensional “circle” would then have
a “radius” of  = 0.7071. For the example, the projection of the first descriptor on
the first principal axis is equal to 0.8944 (examine matrix U and Fig. 9.3a), so that this
descriptor contributes in an important way to the formation of axis I. This is not the
case for the second descriptor, whose projection on the first axis is only 0.4472.

3. Projection of descriptors in reduced space, scaling 2: matrix Usc2. — Ecologists
using principal component analysis are not interested in the whole multidimensional
space but only in a simplified projection of the objects in a reduced space (generally a
two-dimensional plane). The elements  of the eigenvectors scaled to  are
the coordinates of the projections of descriptors j on the different principal axes k.

Figure 9.3 Numerical example from Fig. 9.2. Distance and correlation biplots are discussed in Subsection
9.1.4. (a) Distance biplot (scaling 1). The eigenvectors are scaled to lengths 1. Inset: descriptors
(matrix U). Main graph: descriptors (matrix U; arrows) and objects (matrix F; dots). The
interpretation of the object-descriptor relationships is not based on their proximity, but on
orthogonal projections (dashed lines) of the objects on the descriptor-axes or their extensions.
The lengths of the arrows were multiplied by 4 for clarity of the diagram. (b) Correlation biplot
(scaling 2). Descriptors (matrix U,,,,1/2; arrows) with a covariance angle of 76°35'. Objects
(matrix G; dots). Projecting the objects orthogonally on a descriptor (dashed lines) reconstructs
the values of the objects along that descriptors, to within a multiplicative constant. 
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They are scaled in such a way that the projections of descriptor-axes can be drawn in
the reduced space formed by the principal axes (Fig. 9.3b). As in scaling 1, the
descriptors are represented by arrows since they are axes. In a reduced-dimension
plane, projections of descriptor-axes are shorter than or equal to their lengths in the
multidimensional space. In the case of Fig. 9.3b, the lengths are the same in the
projection plane as in the original space because the latter only has two dimensions.

In the reduced-space plane, the angles between descriptors are projections of their
true covariance angles. It is thus important to consider only the descriptors that are
well represented in the projection plane. To do so, one must recognize, in the
multidimensional space, the descriptors that form small angles with the reduced plane;
they are the descriptors whose projections approach their real lengths s in the
multidimensional space. Since the length of the projection of a descriptor-axis j is
equal to or shorter than sj, one must choose a criterion to assess the value of the
representations in the projection plane. 

If a descriptor j was equally associated with each of the p principal axes, all
elements of row j (which is of length sj) of matrix Usc2 would be equal, their values
being . The length of the descriptor-axis would be = sj in
multidimensional space. The length of the projection of this descriptor-axis in a
reduced space with d dimensions would therefore be . The latter expression
defines, in the d-dimensional space, a measure of the equilibrium contribution of a
descriptor to the various axes of the whole multidimensional space. When applied to
scaling 1, where the length of the projection of a descriptor in p-dimensional space is 1
(eq. 9.7) instead of sj (eq. 9.10), the formula for the equilibrium projection of p
orthogonal axes in d-dimensional space becomes , as shown above.

Figure 9.4 Equilibrium projection, in a plane, of three orthogonal vectors with unit lengths, and equilibrium
circle of the three descriptors.
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The actual length of a descriptor in reduced space can be compared to that measure,
to help judge whether the contribution of the descriptor to the reduced space is larger
or smaller than it would be under the hypothesis of an equal contribution to all
principal axes. For the numerical example, the lengths of the rows of matrix Usc2
(eq. 9.8), in two-dimensional space, are:

length of the first descriptor (row) =  = 2.8636 = s1 

length of the second descriptor (row) =  = 2.4083 = s2 

Because this simple numerical example has two dimensions only, these lengths are
equal to their equilibrium contributions in the two-dimensional space. This is easily
verified, using the variances of the descriptors, which are known (Subsection 9.1.1):

equilibrium projection of first descriptor = 

equilibrium projection of second descriptor = 

In real studies, where ecological data sets are multidimensional, the lengths of
descriptors in the reduced space are not equal to their equilibrium contributions.

In scaling 1 above, the angular interpretation of the product of two descriptor-axes
was simple: the descriptor-axes were at right angles in multidimensional space. In
scaling 2, the angle between two descriptors can be found by applying eq. 2.9 to the
rows of the matrix of eigenvectors: the scalar product of two rows of matrix Usc2
(eq. 9.10) divided by the product of the lengths of the rows (which are the standard
deviations sj), gives the cosine of that angle.

The scalar product of two rows of matrix Usc2 is related to the correlation
coefficient of the corresponding descriptors. The angles among all descriptors are
obtained by reducing to unity (i.e. = 1) the lengths of the row vectors of matrix
Usc2 = U,,,,1/2, then computing the matrix of scalar products among the rows:

[D(s)–1U,,,,1/2] [D(s)–1U,,,,1/2]' = D(s)–1 U,,,,U' D(s)–1 = D(s)–1 S D(s)–1 = R (9.11)

S

The result of this equation is the correlation matrix among the descriptors. In the last
step of the equation, the correlation matrix R is connected to the dispersion matrix S
by the diagonal matrix of standard deviations D(s), following eq. 4.10.

The cosine of the angle 1jl between two descriptors yj and yl, in multidimensional
space, is therefore related to their correlation (rjl); it can actually be shown that
cos (1jl) = rjl. This angle is the same as that of the covariance because standardization
of the rows to unit lengths has only changed the lengths of the descriptor-axes and not
their positions in multidimensional space. For the numerical example, the correlation
between the two descriptors is equal to  (eq. 4.7). The angle
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corresponding to this correlation is (arc cos 0.232) =  76°35', which is the same as the
angle of the covariance in Fig. 9.3b.

In the same way, the angle between a descriptor j and a principal axis k, in
multidimensional space, is the arc cosine of the correlation between descriptor j and
principal component k. The correlation rjk is element jk of the matrix of eigenvectors
(eq. 9.10) normalized by row (the length of a row vector in eq. 9.10 is sj):

rjk = (9.12)

In other words, the correlation is calculated by weighting the element of the
eigenvector by the ratio of the standard deviation of the principal component to that of
the descriptor. For the numerical example, these correlations and corresponding angles
are computed using matrix U,,,,1/2 (calculated above) and the standard deviations of the
two descriptors (s1 = 2.8636, s2 = 2.4083):

[rjk] =

The values of angles in Fig. 9.3b are thus: . = 20°26', / = 56°09', 0 = 33°51'. These
correlations may be used to study the contributions of the descriptors to the various
components, the scale factors of the descriptors being removed. The highest
correlations (absolute values), in the correlation matrix between descriptors and
components, identify the descriptors that contribute most to each eigenvector. The
significance of the correlations between descriptors and components cannot be tested
using a standard test for Pearson correlation coefficients, however, because the
principal components are linear combinations of the descriptors themselves.

When the descriptor-axes of matrix U,,,,1/2 are scaled to unit lengths, which is done
by computing [D(s)–1U,,,,1/2] as in eq. 9.11, drawing their projections in the principal
axes space is not recommended. This is because the rescaled eigenvectors are not
necessarily orthogonal and may be of any lengths:

[D (s)–1 U,,,,1/2]' [D (s)–1 U,,,,1/2] 2 I (9.13)

The principal axes are therefore not necessarily at right angles.

The projections of the descriptor-axes of matrix U,,,,1/2 may be examined, in
particular, with respect to the following points:

• The coordinates of the projection of a descriptor-axis specify the position of the apex
of this descriptor-axis in the reduced space. It is recommended to use arrows to
represent projections of descriptor-axes. Some authors call them point-descriptors or
point-variables and represent them by points in the reduced space. This representation
is ambiguous and misleading. It is acceptable only if the nature of the point-descriptors

u jk "k s j
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is respected; they actually are apices of descriptor-axes, so that the relationships
among them are defined in terms of angles representing their correlations, not in terms
of proximities (Fig. 9.5).

• The projection  of a descriptor-axis j on a principal axis k shows its
covariance with the principal axis and, consequently, its positive or negative
contribution to the position of the objects along the axis. It follows that a principal axis
may often be qualified by the names of the descriptors that are mostly contributing, and
in a preferential way, to its formation. Thus, in Fig. 9.5, principal axis I is formed
mainly by descriptors 6 to 10 and axis II by descriptors 1 to 4.

• The descriptors that contribute most to the formation of the reduced space are those
whose projected lengths reach or exceed the values of their equilibrium contributions.
Descriptor-axes that are clearly shorter than these values contribute little to the
formation of the reduced space under study and, therefore, contribute little to the
structure that may be found in the projection of the objects in that reduced space.

• The correlations among descriptors are expressed by the angles between descriptor-
axes, not by the proximities between their apices. In the reduced space, one can often
identify groups of descriptor-axes that form small angles with one another, or have
angles close to 180° (cos 180° = –1, which would reflect a perfect negative
correlation). One must remember, however, that projections of correlation angles in a
reduced space do not render the complete correlations among variables. Thus, it may
be informative to cluster descriptors by cluster analysis (Chapter 8) of a distance
matrix computed as the one-complement of the correlations (D = 1 – cor(Y)) or the
one-complement of the absolute values of the correlations. 

• Objects in scaling 2 (or correlation) biplots can be projected at right angles onto the
descriptor-axes to approximate their values along the descriptors (Fig. 9.3b). The
distances among objects in a scaling 2 biplot are not approximations of their Euclidean
distances; they approximate their Mahalanobis distances (Subsection 9.1.4).

The main properties of a principal component analysis of centred descriptors are
summarized in Table 9.2.

4. Cumulative fit tables. — How well is the variance of each descriptor explained,
or fitted, by 1, 2, or more axes of the PCA solution? To obtain that information, R2

coefficients (eq. 10.20) can be computed between the descriptors (which have possibly
been standardized or transformed in some other way prior to PCA) and principal
components 1, 2, …, k found in matrices F or G (Subsection 9.1.4). Then, for each
descriptor, a table of Cumulative fit per descriptor is created. The R2 coefficient for
axis 1 alone is written in column 1; the cumulated sum of the R2 coefficients over
axes 1 and 2 is written in column 2; the cumulated sum of the R2 coefficients over
axes 1, 2 and 3 is written in column 3; and so on. For the numerical example data of

u jk "k

Cumulative 
fit per 
descriptor
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the present section, which produce a PCA solution in two dimensions, the table has
two columns only:

The values of R2 in the last column are always 1 in PCA. Identical results can be
computed directly from matrix Usc2: the coefficients found in that matrix (eq. 9.8) are
squared and summed cumulatively from left to right; then the cumulated sum for row j
is divided by the total variance of descriptor j. That table proves very useful for
interpretation of analyses involving many variables, in particular in the case of
species-rich assemblages in community studies: it allows one to decide which species
are well fitted and should be represented, for example, in a two-dimensional PCA
biplot (Subsection 9.1.4). This output table is available in program CANOCO where it is
called “Cumulative fit per species as fraction of variance of species”.

Objects are vectors in multivariate A-space (Fig. 7.2) and vectors have lengths
(Section 2.4). The squared length of each object, computed as the sum of the squared
values in matrix Yc subjected to PCA, is the reference value. An identical total squared
length can be computed using matrix F instead of Yc. Use matrix F to compute the

Cumul. axis 1 Cumul. axis 2
Descriptor y1 0.8780 1.0000

Descriptor y2 0.3103 1.0000

Table 9.2 Principal component analysis. Main properties for centred descriptors j. 

Scaling 1 Scaling 2
(distance biplot)  (correlation biplot)

Length of the scaled eigenvectors 1

Length of descriptor j in U or Usc2 1 sj

Angles in reduced 90°, i.e. rigid rotation of projections of covariances
space the system of axes (correlations)

Length of equilibrium circle with radius 
contribution

Projection on principal ujk 
axis k i.e. proportional to the i.e. covariance with

 covariance with k component k

Correlation with principal 
component k

"k
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squared length of each object in 1, 2, 3 … PCA dimensions. For example, the total
squared length of object 2 of the numerical example is (–2.22 + 1.42) = 6.8 and the
squared length of the projection of object 2 on PCA axis I, read from matrix F
(Subsection 9.1.2), is (f21)2 = (–1.342)2 = 1.8. Hence the proportion of fit for that
object along PCA axis I is 1.8/6.8 = 0.2647. The squared residual length of object 2
after fitting it along axis I is 6.8 – 1.8 = 5. For the numerical example data, the table of
cumulative percent fit of the objects is:

This type of output table is useful to decide which objects are well represented in a
PCA plot: the distances between well-represented objects can be trusted and interpreted.
A related table called “Squared residual length per sample” is available in the output of
program CANOCO; it gives squared residual values instead of relative values or
percent fit.

4 — PCA biplots

The previous two subsections have shown that, in principal component analysis, both
the descriptor-axes and object-vectors can be plotted in the reduced space. This led
Jolicoeur & Mosimann (1960) to plot these projections together in the same diagram.
Gabriel (1971) proposed the name biplot for these diagrams and developed the theory
of biplots in Gabriel (1971, 1982). Other important contributors to the theory of biplots
are ter Braak (1983 and other papers) and Gower (1990 and other papers).
Mathematical details about the theory of PCA biplots are found in Greenacre (2010)
and Gower et al. (2011); these books offer R functions to produce various types of
biplots.

Two types of biplots may be used to represent PCA results (Gabriel, 1982; ter
Braak, 1994). Distance biplots graph together matrices U (eigenvectors scaled to
lengths 1) and F (eq. 9.4); in F, the variance of principal component (column) k is .
Correlation biplots use matrix Usc2 for descriptors, where eigenvector k is scaled to
length , and matrix G for objects, where

G = F,,,,–1/2 (9.14)

The columns of matrix G have unit variances. The Euclidean distances among the
objects in matrix G are equal to the Mahalanobis distances (D5, eq. 7.38) among the
objects in the original data matrix Y, so that the distances in a correlation biplot are

Cumul. axis 1 Cumul. axis 2
Object 1 1.0000 1.0000
Object 2 0.2647 1.0000
Object 3 0.2647 1.0000
Object 4 0.6622 1.0000
Object 5 0.6622 1.0000

Cumulative 
fit of objects

"k

"k

Mahalanobis
distance
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projections of these Mahalanobis distances, not of the original Euclidean distances.
Since Mahalanobis distances are independent of the scaling of descriptors, it follows
that the Euclidean distances among objects in matrix G are the same for a PCA
conducted on unstandardized or standardized descriptors when considering all axes.

Matrices F and U, or G and Usc2, can be used together in biplots because the
products of the eigenvectors with the object score matrices reconstruct the original
(centred) matrix Y perfectly: 

FU' = Y    and    G(U,,,,1/2)' = Y.

Actually, the eigenvectors and object score vectors may be multiplied by any constant
without changing the interpretation of a PCA biplot. 

• Distance biplot, scaling 1 (Fig. 9.3a). — The main features of a distance biplot are
the following: (1) Distances among objects in the biplot are approximations of their
Euclidean distances in multidimensional space. (2) Projecting an object at right angle
on a descriptor approximates the position of the object along that descriptor. (3) Since
descriptors have lengths of 1 in the full-dimensional space (eq. 9.7), the length of the
projection of a descriptor in reduced space indicates how much it contributes to the
formation of that space. (4) The angles among descriptor-axes are meaningless.

• Correlation biplot, scaling 2 (Fig. 9.3b). — The main features of a correlation biplot
are the following: (1) Distances among objects in the biplot are approximations of
their Mahalanobis distances in multidimensional space; they are not approximations of
their Euclidean distances. (2) Projecting an object at right angle on a descriptor
approximates the position of the object along that descriptor. (3) Since descriptors have
lengths sj in full-dimensional space (eq. 9.10), the length of the projection of a
descriptor in reduced space is an approximation of its standard deviation. (4) The angles
between descriptors in the biplot reflect their correlations. (5) When the distance
relationships among objects are important for interpretation, this type of biplot is
inadequate; a distance biplot should be used.

For the numerical example, matrix G is computed from eq. 9.14 as follows:

G = F,,,,–1/2 = 

One can check that the columns of G have unit variances. In this particular example,
the relationships between objects and descriptors are fully represented in a two-
dimensional space. Readers are invited to repeat the PCA using standardized
descriptors and verify the fact that the Euclidean distances among objects in matrix G

Distance
biplot
(scaling 1)

Correlation
biplot
(scaling 2)

3.578– 0
1.342–   2.236
1.342– 2.236–

  3.130   2.236
  3.130 2.236–

0.3333 0
0 0.4472

1.193–   0.000
0.447–   1.000
0.447– 1.000–

  1.044   1.000
  1.044 1.000–

=
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are the same for unstandardized and standardized descriptors: in both cases, they are
the Mahalanobis distances among the objects in matrix Y.

The descriptor coordinates must often be multiplied by a constant to produce a
clear visual display. In Fig. 9.3a for instance, the lengths of the descriptor arrows
would be too short for visual appraisal if they were plotted in the same system of
coordinates as the objects. In computer software, rescaling of the descriptors is done
either by the PCA function or by the plotting function. Some researchers have been
tempted to interpret the relationships between objects and descriptors in terms of their
proximity in the reduced space, whereas a correct interpretation requires the projection
of the objects on the descriptor-axes (centred with respect to the scatter of points) or on
their extensions (Fig. 9.3a). In Fig. 9.2a for example, it would not come to mind to
interpret the relationship between the objects and descriptor y1 in terms of the distance
between the object-points and the apex (head of the arrow) of axis y1. In Fig. 9.3a, the
position of the apex of y1 is arbitrary and depends on the multiplicative constant used.
Projections of objects onto an axis specify the coordinates of the objects with respect
to that descriptor-axis, taking the multiplicative constant into account.

5 — Principal components of a correlation matrix

Principal component analysis performs a partitioning of the total variance of matrix Y.
If the variables are not in the same physical dimensions, their variances, which are
expressed in the squared units of the variables, cannot be added (Section 3.2). As a
consequence, before adding the variances of the p variables of Y, one must make sure
that the variables are dimensionally homogeneous, i.e. expressed in the same physical
dimensions. If they are not, they must be standardized (eq. 1.12). The analysis is then
described as a PCA carried out on a correlation matrix R since correlations are
covariances of standardized descriptors (Section 4.2).

In an R matrix, all diagonal elements are equal to 1. It follows that the sum of
eigenvalues, which corresponds to the total variance of the dispersion matrix, is equal
to the order of R, given by the number of descriptors p. Before computing the principal
components, it may be a sound practice to check that R 2 I (eq. 4.14).

Principal components extracted from correlation matrices are not the same as those
computed from dispersion matrices. [Beware: some computer packages only allow the
computation of principal components from correlation matrices; this is inappropriate
for many studies.] Consider the basic equation for the eigenvalues and eigenvectors,
(S – "k I) uk = 0. The sum of the eigenvalues of S is equal to the sum of variances s2,
whereas the sum of eigenvalues of R is equal to p, so that the eigenvalues of the two
matrices, and therefore also their eigenvectors, are necessarily different. This is due to
the fact that distances between objects are not the same in the two analyses. 

In the case of correlations, the descriptors are standardized. It follows that the
distances among objects are independent of the measurement units, whereas those in
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the space of the original descriptors vary according to measurement scales. When the
descriptors are all of the same type and order of magnitude, and have the same units, it
is clear that matrix S must be used to compute PCA. In that case, the eigenvectors, on
the one hand, and the correlation coefficients between descriptors and components, on
the other hand, provide complementary information. The former give the loadings of
descriptors and the latter quantify their relative importance. When the descriptors are
of different types or orders of magnitude, or have different units, one must conduct
PCA on matrix R instead of matrix S.

Ecologists who wish to study the relationships among objects in a reduced space of
principal components may base their decision of conducting the analysis on S or R on
the answer to the following question: 

• If one wanted to cluster the objects in the reduced space, should the clustering be
done with respect to the original descriptors (or any transformation of these
descriptors; Section 1.5), thus preserving their differences in magnitude? Or, should all
descriptors contribute equally to the clustering of objects, independently of the
variance exhibited by each one? In the second instance, one should proceed from the
correlation matrix. An alternative in this case is to transform the descriptors by
ranging, using eq. 1.10 for relative-scale descriptors and eq. 1.11 for interval-scale
descriptors, and carry out the analysis on matrix S of the transformed descriptors.

Another way to look at the same problem was suggested by Gower (1966): 

• The Euclidean distance (eq. 7.32) is the distance preserved among objects through
principal component analysis. Is it with the raw data (covariances) or with the
standardized data (correlations) that the spatial configuration of the objects, in terms of
Euclidean distances, is the most interesting for interpretation? In the first case, conduct
PCA on matrix S; in the second case, use matrix R.

The principal components of a correlation matrix are computed from matrix U of
the eigenvectors of R and the matrix of standardized observations:

(9.15)

Principal component analysis is still only a rotation of the system of axes
(Subsection 9.1.2). However, since the descriptors are now standardized, the objects
are not positioned in the same way as if the descriptors had simply been centred
(i.e. principal components computed from matrix S in the previous subsections).

As far as the representation of descriptors in the reduced space computed from
matrix R is concerned, the conclusions of Subsection 9.1.3, which concerned matrix S,
can be used here, after replacing covariance by correlation, sjl by rjl, and dispersion
matrix S by correlation matrix R.

S or R
matrix?

F y y–
sy

----------- U=
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The variances, and therefore also the standard deviations, of the standardized
descriptors are equal to unity (i.e. = 1), which leads to some special properties for the
U,,,,1/2 matrix. First, D(s) = I, so that U,,,,1/2 = D(s)–1U,,,,1/2, i.e. the coefficients

 are the correlation coefficients between descriptors j and components k. In
addition, the equilibrium contribution corresponding to each descriptor, in the reduced
space of U,,,,1/2, is  (since si = 1). It is therefore possible to judge
whether the contribution of each descriptor to the reduced space is greater or smaller
than expected under the hypothesis of an equal contribution to all principal axes, by
comparing the lengths of their projections to an equilibrium circle with radius 
(Fig. 9.5).

The main properties for standardized descriptors are summarized in Table 9.3,
which parallels Table 9.2 for centred descriptors. 

u jk "k

s j d p d p=

d p

Figure 9.5 Fifteen descriptors plotted in the plane determined by the first two principal axes. The
coordinates of each descriptor are the first two elements of the corresponding row of matrix
U,,,,1/2 (i.e. the eigenvectors of R scaled to ). The circle of equilibrium descriptor
contribution is drawn at  = 0.365. The inset figure shows the same descriptor-axes using
only the apices of the vectors. This representation, which is sometimes encountered in the
ecological literature, must be avoided because of possible confusion with point-objects.
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6 — The meaningful components

The successive principal components correspond to progressively smaller fractions of
the total variance. One problem is therefore to determine how many components are
meaningful in ecological terms or, in other words, what should be the number of
dimensions of the reduced space. The best approach may be to visually check the
representativeness of the projections in reduced space for two, three, or more
dimensions, using Shepard diagrams (Fig. 9.1). However, principal component
analysis being a form of variance partitioning, researchers may wish to test the
significance of the variance associated with the successive principal axes. 

There are a number of classical statistical approaches to this question, such as
Bartlett’s (1950) test of sphericity. These approaches have been reviewed by Burt
(1952) and Jackson (1993). The problem is that these formal tests require normality of
all descriptors, a condition that is rarely met by ecological data. 

There is an empirical rule suggesting that one should only interpret a principal
component if the corresponding eigenvalue " is larger than the mean of the "’s. In the
particular case of standardized data, where S is a correlation matrix, the mean of the
"’s is 1 so that, according to the rule, only the components whose "’s are larger than 1
should be interpreted. This is the so-called Kaiser-Guttman criterion. Ibanez (1973)
has provided a theoretical framework for this empirical rule. He showed that, if a
variable made of randomly selected numbers is introduced among the descriptors, it is

Table 9.3 Principal component analysis. Main properties for standardized descriptors j.

Scaling 1 Scaling 2
(distance biplot)  (correlation biplot)

Length of the scaled eigenvectors 1

Length of descriptor j in U or Usc2 1 1

Angles in reduced 90°, i.e. rigid rotation of projections of correlations
space the system of axes

Radius of equilibrium
contribution circle

Projection on principal ujk 
axis k i.e. proportional to the i.e. correlation with

 correlation with k  component k

Correlation with principal 
component k

"k

d p d p

u jk "k

u jk "k u jk "k

Kaiser-
Guttman
criterion
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not possible to interpret the eigenvectors that follow the one on which this random-
number variable has the highest loading. One can show that this random-number
variable, which has covariances near zero with all the other descriptors, introduces in
the analysis an eigenvalue of 1 if the descriptors have been standardized. For non-
standardized descriptors, this eigenvalue is the mean of the "’s if the variance of the
random-number variable is made equal to the mean variance of the other descriptors. 

Frontier (1976) proposed to compare the list of decreasing eigenvalues to the
decreasing values of the broken stick model (Subsection 6.5.2). This comparison is
based on the following idea. Consider the variance shared among the principal axes to
be a resource embedded in a stick of unit length. If principal component analysis had
divided the variance at random among the principal axes, the fractions of total variation
explained by the various axes would be about the same as the relative lengths of the
pieces obtained by breaking the unit stick at random into as many pieces as there are
axes. If a unit stick is broken at random into p = 2, 3, … pieces, the expected values
(E) of the relative lengths of the successively smaller pieces (j) are given by eq. 6.50:

(9.16)

The expected values are equal to the lengths that would be obtained by breaking the
stick at random a large number of times and calculating the mean length of the longest
pieces, the second longest pieces, etc. A stick of unit length may be broken at random
into p pieces by placing on the stick (p – 1) random break points selected using a
uniform [0, 1] random number generator. An R function is available to compute the
expected values of the broken stick distribution for any number of pieces (Section 9.5).

Coming back to the eigenvalues, it would be meaningless to interpret the principal
axes that explain a fraction of the variance as small as or smaller than that predicted by
the broken stick null model. The test may be carried out in two ways. One may
compare individual eigenvalues to individual predictions of the broken stick model
and select for interpretation only the eigenvalues that are larger than the values
predicted by the model. Or, to decide whether eigenvalue "k should be interpreted, one
may compare the sum of eigenvalues, from 1 to k, to the sum of the values from 1 to k
predicted by the model. This test usually recognizes the first two or three principal
components as meaningful, which corresponds to the experience of ecologists.

After an empirical study using a variety of matrix types, using simulated and real
ecological data, Jackson (1993) concluded that two methods consistently pointed to
the correct number of ecologically meaningful components in data sets: the broken-
stick model and a bootstrapped eigenvalue-eigenvector method proposed in his paper.

Chapter 10 will discuss how to use explanatory variables to ecologically interpret
the first few principal components that are considered to be meaningful according to
one of the criteria mentioned in the present subsection.

Broken
stick

E piece j( )
1
p
--- 1

x
---

x j=

p
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7 — Misuses of principal component analysis

Given the power of principal component analysis, some applications have used it in
ways that exceed the limits of the model. Some of these limits may be transgressed
without much consequences, while others are more critical. The most common errors
are: the use of descriptors for which a measure of covariance is not appropriate, and
the interpretation of relationships between descriptors, in reduced space, based on the
relative positions of the apices of axes instead of the angles between them.

Principal component analysis was originally defined for data with multinormal
distributions (Section 4.4), so that its optimal use (Cassie & Michael, 1968) calls for
normalization of the data (Subsection 1.5.6). Deviations from normality do not
necessarily bias the analysis, however (Ibanez, 1971). It is only important to make sure
that the descriptors’ distributions are reasonably unskewed. Typically, in analyses
conducted with strongly skewed distributions, the first few principal components only
separate a few objects with extreme values from the remaining objects, instead of
displaying the main axes of variation of all objects in the study.

A full-rank dispersion matrix S cannot be estimated using a number of
observations n smaller than or equal to the number of descriptors p. When n $ p, since
there are n – 1 degrees of freedom in total, the rank of the resulting dispersion matrix
of order p is (n – 1). In such a case, the eigen-decomposition of S produces (n – 1) real
and [p – (n – 1)] null eigenvalues. Indeed, positioning n objects while respecting their
distances requires (n – 1) dimensions only. The PCA of a data matrix where n $ p
produces (n – 1) eigenvalues larger than 0 and the (n – 1) corresponding eigenvectors
and principal components. To obtain a full-rank dispersion matrix S and p principal
components, the number of objects n must be larger than p. 

Principal components are computed from the eigenvectors of a dispersion matrix.
This means that the method is to be used on a matrix of covariances (or possibly
correlations) with the following properties: matrix S (or R) has been computed among
descriptors that are quantitative, and for which valid estimates of the covariances (or
correlations) may be obtained. These conditions are violated in the following cases:

1) Some authors have transposed the data matrix and computed correlations among
the objects (i.e. Q mode) instead of among the descriptors (R mode). Their aim was to
position the descriptors in the reduced space of the objects. There are several reasons
why this operation is incorrect, the least being that it is useless considering that
principal component analysis provides information about the relationships among both
objects and descriptors. The reasons why correlations should not be computed in Q-
mode are explained in Box 7.1, where points 1, 2 and 4 also apply to covariances.

In the literature, the expression “components in Q mode” may sometimes designate
a rightful analysis conducted on an R matrix. This expression comes from the fact that
one can use principal component analysis primarily as a method for positioning objects
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in reduced space. The meanings of “Q mode” and “R mode” are variable in the
scientific literature; their meanings in numerical ecology are defined in Section 7.1.

Rao (1964), Gower (1966), and Orlóci (1967a) have shown that, as a
computational technique, principal components can be obtained by computing the
eigenvalues and eigenvectors of a Q-mode matrix. The steps are the following: 

• Starting with matrix Y centred by columns, Yc, compute matrix Cnp = Yc/ .
This matrix is such that C'C = Spp, which is the usual variance-covariance matrix of Y. 

• Compute the cross-product matrix Qnn = CC' instead of Spp = C'C. 

• Determine the non-zero eigenvalues of Q and their associated eigenvectors.

• Scale each eigenvector k to length , then multiply each value by . 

• The eigenvalues of matrix Q are the same as those of matrix S, and the scaled
eigenvectors are matrix F of the principal components of Y. This perfectly valid
computational technique is different from the approach criticised in the previous
paragraph.

2) Covariances and correlations are defined for quantitative descriptors only
(Section 7.5). This implies, in particular, that one must not use multistate qualitative
descriptors in analyses based upon covariance matrices, because means and variances
computed from non-ordered states are meaningless.

Principal component analysis is very robust, however, to variations in the precision
of data. Variables may be recoded into a few classes without noticeable change to the
results (Frontier & Ibanez, 1974; Dévaux & Millerioux, 1976a). Pearson correlation
coefficients calculated using semiquantitative data are equivalent to Spearman’s rank
correlation coefficients (eq. 5.3). In a discussion of principal component analysis
computed using semiquantitative data, Lebart et al. (1979) provide, for various
numbers of objects and descriptors, values above which the "’s of the first two
principal components may be considered significant. Gower (1966) has also shown
that, with binary descriptors, principal component analysis positions the objects, in
multidimensional space, at distances that are proportional to the square roots of the
 complements of simple matching coefficients, i.e. D =  (S1: eq. 7.1). 

3) When calculated over data sets with many double-zeros, coefficients such as the
covariance and correlation lead to PCA ordinations with inadequate estimates of the
distances among sampling sites. The problem arises from the fact that the principal-
component rotation preserves the Euclidean distance among objects (Table 9.1,
Fig. 9.2d). The double-zero problem has been discussed in Subsection 7.2.2 and the
paradox associated with the Euclidean distance has been presented after eq. 7.32. With
untransformed species abundance data, principal component analysis should only be
used when the sampling sites cover short gradients (see Subsection 9.1.10). For longer
ecological gradients, the species data must be transformed using one of the

n 1–

"k n 1–

Precision
of data

Spearman
correlation

1 S1–
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transformations of Section 7.7. Else, ordinations can be obtained using correspondence
analysis (CA, Section 9.2) when the chi-square distance is appropriate, or by principal
coordinate analysis (PCoA, Section 9.3) or nonmetric multidimensional scaling
(nMDS, Section 9.4) using other adequate distances.

This last remark explains why, in the ecological literature, principal component
analysis has at times not provided interesting results, for example in studies of species
associations (e.g. Margalef & Gonzalez Bernaldez, 1969; Ibanez, 1972; Reyssac &
Roux, 1972). This problem had also been noted by Whittaker & Gauch (1973). The
search for species association is discussed in Section 8.9.

Attempts to interpret the proximities between the apices of species-axes in the
reduced space, instead of considering the angles separating these descriptor-axes
(e.g. Fig. 9.5, inset), may also led to incorrect conclusions and useless results. 

Table 9.4 summarizes, with reference to the text, the various questions that may be
addressed in the course of a principal component analysis.

8 — Ecological applications

Ecological application  9.1a

From 1953 to 1960, pitfall traps were set at 100 sites in four valleys in the Meijendel dune area
north of the Hague, in The Netherlands. They were visited weekly during 365 weeks. In the
36500 relevés, approximately 425 animal species were identified, about 90% of them being
arthropods. Aart (1973) studied the wolf spiders (Lycosidea and Pisauridae: 45030 specimens)
to assess how lycosid species shared the multidimensional space of resources (see Section 1.0
for the concept of niche). The Aart (1973) paper reports a PCA based on a data table of 100 sites
× 12 species obtained by adding the values from the different week catches for each trap; two of
the 14 species were eliminated because they had been found only twice and once, respectively.
PCA was applied to the standardized species data, which contained about 30% zero values.
Previous editions of the present book reproduced the separate PCA plots of species and sites
found in the Aart (1973) paper.

Another set of pitfall traps were set at 100 sites for 60 weeks, in 1969-1970, in Bierlap, one
of the dune valleys of the previous survey. Eleven of the 12 spider species were the same as in
the Aart (1973) paper. Environmental descriptors were obtained for 28 of these sites. The spider
data (28 sites × 12 species, data cumulated over the weeks) were analysed by Aart & Smeenk-
Enserink (1975) and related to the environmental variables using canonical correlation analysis
(CCorA, Section 11.4); these data are reanalyzed in Ecological application 11.1b using
redundancy analysis (RDA, Section 11.1) instead of CCorA. 

The spider data from the 28 sites* are analysed here by PCA to illustrate the interest of data
transformations. Figure 9.6a shows the results of the analysis of the raw species abundance data
and Fig. 9.6b the biplot resulting from the analysis of the same data after a log(y + 1)
transformation, the same transformation that had been used by Aart & Smeenk-Enserink (1975).

*  The species data file is available electronically. See footnote in Ecological application 11.1b.
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Table 9.4 Questions that can be addressed in the course of a principal component analysis and the answers
found in Section 9.1. 

Before starting a principal component analysis Pages

1) Are the descriptors appropriate?
3 Quantitative descriptors; multinormality; not too many zeros. 450-452

2) Are the descriptors dimensionally homogeneous?
3 If YES, conduct the analysis on the dispersion matrix 442, 446
3 If NO, conduct the analysis on the correlation matrix 445-448

3) Purpose of the ordination in reduced space:
3 To preserve and display the relative positions of the objects: 

scale the eigenvectors to unit lengths to obtain matrix U 432
Draw a distance biplot (descriptors: U; objects: F = YU) 444

3 To display the correlations among descriptors:
scale the eigenvectors to  to obtain matrix Usc2 436
Draw a correlation biplot (descriptors: Usc2; objects: G = F,,,,–1/2)
(beware: Euclidean distances among objects are not preserved) 444

While examining the results of a principal component analysis

1) How informative is a representation of the objects 
in an m-dimensional reduced space? 

3 Compute eq. 9.5 433

2) Are the distances among objects well preserved in the 
reduced space?

3 Compare Euclidean distances using a Shepard diagram 427-428

3) Which eigenvalues are important?
3 Is  "k larger than the mean of the "’s? 448
3 Is the percentage of the variance corresponding to "k 

larger than the corresponding value in the broken stick model? 449

4) What are the descriptors that contribute the most to the 
formation of the reduced space?

3 Compute the equilibrium contribution of descriptors and,
when appropriate, draw the circle 437, 439, 442, 448

3 Compute correlations between descriptors and principal axes 440, 442, 448
3 Compute the table of “Cumulative fit per descriptor” 441-442

5) How to represent the objects in the reduced space?
3 Scaling 1: F = YcU;  scaling 2: G = F,,,,–1/2 433-435, 443-444
3 Compute the table of “Cumulative percent fit of the objects” 443

"
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Figure 9.6 PCA correlation biplots of (a) the raw (untransformed) and (b) the log-transformed spider data
(28 sites, 12 species). Scaling type 2 was used in both biplots to emphasize the covariances
among species. The species are: Alopecosa accentuata (abbreviation: Alop.acce), Alopecosa
cuneata (Alop.cune), Alopecosa fabrilis (Alop.fabr), Arctosa lutetiana (Arct.lute), Arctosa perita
(Arct.peri), Aulonia albimana (Aulo.albi), Pardosa lugubris (Pard.lugu), Pardosa monticola
(Pard.mont), Pardosa nigriceps (Pard.nigr), Pardosa pullata (Pard.pull), Trochosa terricola
(Troc.terr) and Zora spinimana (Zora.spin).
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It is clear that Fig. 9.6b is easier to interpret than Fig. 9.6a. The reason is found by examining the
“Cumulative fit per descriptor” table described in Subsection 9.1.3: in the raw data analysis,
principal components I and II explained more than 60% of the variation for only four of the 12
species, whereas in the analysis of the log-transformed data, the first two principal components
explained more than 60% of the variation for 10 of the 12 species.

Readers are invited to compare Fig. 9.6b to the results on the canonical analysis (RDA) in
Fig. 11.7; the latter figure provides an interpretation of the site and species clusters using the
environmental variables. Compare also the species clusters (species with small angles) in
Fig. 9.6b to the species associations described in Ecological application 11.1b.

Ecological application  9.1b

A study of soil microfungi living in association with the aspen Populus tremuloides Michx.
provides another type of utilization of principal component analysis. This study by Morrall
(1974) covered 26 stations with 6 sites each, scattered throughout the Province of Saskatchewan
(Canada). It evidenced relationships between the distributions of some species and soil types.

Among the 205 species or taxonomic entities that were identified, 51 were included in the
ordination study. The others were not, considering criteria aimed at eliminating rare taxa which
could have been either ephemeral constituents of the soil microflora or even contaminants of the
laboratory cultures. Observations were transformed into presence-absence data.

Following principal component analysis, the 26 sampling sites were plotted in the reduced
space of the first two principal components, onto which information about the nature of the soils
was superimposed (Fig. 9.7a). Soils of Saskatchewan may be classified into 5 types, i.e. (G) the

Figure 9.7 Principal component analysis computed from presence-absence of 51 soil microfungi.
(a) Pedological information drawn on the ordination of the 26 sampling sites, plotted in the
reduced space of the first two principal components. From north to south, soil types are: G =
grey, DG = dark grey, BL = black, DB = dark brown, B = brown. (b) and (c) Distributions of the
sites (envelopes) where two microflora species were present. Modified from Morrall (1974).
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grey wooded soils of the northern boreal forest, followed southward by the dark grey (DG)
transition soils and the black soils (BL). Further south are dark brown soils (DB), which give
way to the brown soils (B) of the grasslands. Since the principal components were computed
from presence-absence data, the distribution of the sites in the reduced space is expected to
reflect that of the fungus species. The author tested this for the most abundant species in the
study, by plotting, in the reduced space, distributions of the sites where some fungus species
were present; two examples are given in Figs. 9.7b and c. The author could then compare these
distributions to that of the soil types.

9 — Algorithms
Three different methods are available for computing the eigenvalues and eigenvectors
of a real, symmetric matrix, such as a covariance matrix S. 

1. The most widely used method of eigen-decomposition is Householder reduction.
This is the method implemented in function eigen() of R. It is very efficient for cases
in which all eigenvalues and eigenvectors must be computed. 

2. Clint & Jennings (1970) published a pioneering paper describing how to
compute a subset only of the eigenvalues and corresponding eigenvectors of a real
symmetric matrix, using an iterative method. Hill (1973b) used this idea to develop a
“reciprocal averaging” algorithm for correspondence analysis; Hill’s work will be
further discussed in Section 9.2 on correspondence analysis. Building on these bases,
ter Braak (1987c) proposed a two-way weighted summation algorithm (TWWS) for
principal component analysis. This algorithm is described in detail here for three
reasons: (1) it is closely linked to the basic equations of the PCA method, so that it
may help readers understand them; (2) it is easy to program; (3) using it, one can
compute the first few components only, when these are the ones of interest. The
algorithm is summarized in Table 9.5. 

The numerical example worked out in Table 9.6 should help understand how the
algorithm computes the principal components, the eigenvectors, and the eigenvalues.
The data are those of the numerical example presented at the beginning of Section 9.1
and used in Subsections 9.1.1 to 9.1.4. The procedure starts with the matrix of centred
data, Yc, shown in a box in the upper left-hand corner of Table 9.6.

To estimate principal component I, arbitrary scores are first assigned to the rows of
the centred data matrix (Table 9.6, column R0); values [fi1] = [1 2 3 4 5]' are used here.
Any other initial choice would lead to the same estimate for the first principal
component [fi1] although the number of iterations necessary to reach it may differ. The
only choice to avoid is to make all initial fi1 values equal. From these, column scores
are found by multiplying the transpose of the data matrix by the row scores (Table 9.6,
row C1):

[column scores1j] = [fi1] (9.17)

Householder

TWWS
algorithm

y y–[ ] '
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Table 9.5 Two-way weighted summation (TWWS) algorithm for PCA. Modified from ter Braak (1987c).

a) Iterative estimation procedure

Step 1: Consider a table of n objects (rows) × p variables (columns).
Centre each variable (column) on its mean.

Decide how many eigenvectors are needed and, for each one. DO the following:

Step 2: Take the row order as the arbitrary initial object scores (1, 2, …).
Set the initial eigenvalue estimate to 0.

Iterative procedure begins
Step 3: Compute new variable loadings: colscore(j) = - y(i,j) × rowscore(i)
Step 4: Compute new object scores: rowscore(i) = - y(i,j) × colscore(j)
Step 5: For the second and higher-order axes, make the object scores uncorrelated with all previous axes

(Gram-Schmidt orthogonalization procedure: see b below).
Step 6: Scale the vector of object scores to length 1 (normalization procedure c, below); obtain S.
Step 7: Upon convergence, the eigenvalue is S/(n – 1) where n is the number of objects. So, at the end of

each iteration, S/(n – 1) provides an estimate of the eigenvalue. If this estimate does not differ
from that of the previous iteration by more than a small quantity (“tolerance”, set by the user),
go to step 8. If the difference is larger than the tolerance value, go to step 3.

End of iterative procedure

Step 8: Normalize the eigenvector (variable loadings), i.e. scale it to length 1 (procedure c, below).
Rescale the principal component (object scores) to variance = eigenvalue.

Step 9: If more eigenvectors are to be computed, go to step 2. If not, continue with step 10.
Step 10: Return the eigenvalue, % variance, cumulative % variance, eigenvector (variable loadings), and

principal component (object scores).

b) Gram-Schmidt orthogonalization procedure

DO the following, in turn, for all previously computed principal components k:

Step 5.1: Compute the scalar product SP = - [rowscore(i) × v(i,k)] of the current object score vector
estimate with previous component k, where vector v(i,k) contains the object scores of component
k, scaled to length 1. This product varies between 0 (if the vectors are orthogonal) and 1.

Step 5.2: Compute new values of rowscore(i) such that vector rowscore becomes orthogonal to vector
v(i,k): rowscore(i) = rowscore(i) – (SP × v(i,k)).

c) Normalization procedure

Step 6.1: Compute the sum of squares of the object scores: S2 = - rowscore(i)2, and the length S = .
Step 6.2: Compute the normalized object scores: rowscore(i) = rowscore(i)/S.

S2
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Subscript 1 designates the first iteration. At the end of the iteration process, the column
scores will provide estimates of the first column of matrix U. The rationale for this
operation comes from the basic equation of eigenanalysis (eq. 2.27) applied to
matrix S:

S U = U ,,,,

Replacing S by its value in the definition of the covariance matrix (eq. 4.6),
S = (n – 1)–1 , one obtains:

U = (n – 1) U ,,,,

Since F = U (eq. 9.4), it follows that:

F = (n – 1) U ,,,,

Hence, the column scores obtained from eq. 9.17 are the values of the first eigenvector
(first column of matrix U) multiplied by eigenvalue "1 (which is the first diagonal
element of matrix ,,,,) and by (n – 1).

From the first estimate of column scores, a new estimate of row scores is computed
using eq. 9.4, F = U:

[row scoresi1] = [ui1] (9.18)

The algorithm alternates between estimating row scores and column scores until
convergence. At each step, the row scores (columns called R in Table 9.6) are scaled to
length 1 in order to prevent the scores from becoming too large for the computer to
handle, which they may easily do. Before this normalization, the length of the row
score vector, divided by (n – 1), provides the current estimate of the eigenvalue. This
length actually measures the amount of “stretching” the row score vector has incurred
during an iteration.

This description suggests one of several possible stopping criteria (Table 9.5,
step 7): if the estimate of the eigenvalue has not changed, during the previous iteration,
by more than a preselected tolerance value, the iteration process is stopped. Tolerance
values between 10–10 and 10–12 produce satisfactory estimates when computing all the
eigenvectors of large matrices, whereas values between 10–6 and 10–8 are sufficient to
compute only the first two or three eigenvectors. Another possible stopping criterion
would be a minimum percentage of change in the estimate of the eigenvalue.

At the end of the iterative estimation process (Table 9.5, step 8), 

• the eigenvector (Table 9.6, line C13) is normalized (i.e. scaled to unit length), and

• the principal component is scaled to length . This makes its variance
equal to its eigenvalue.

y y–[ ] ' y y–[ ]

y y–[ ] ' y y–[ ]

y y–[ ]

y y–[ ] '

y y–[ ]

y y–[ ]

n 1–( ) "1
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Note that the eigenvalues, eigenvectors, and principal components obtained using this
iterative procedure and shown in Table 9.6 are the same as in Subsections 9.1.1 and
9.1.2, except for the signs of the second eigenvector and principal component, which
are all changed in this example. One may arbitrarily change all signs of an eigenvector
and the corresponding principal component, since signs result from an arbitrary
decision made when computing the eigenvectors (Section 2.9). This is equivalent to
turning the ordination diagram by 180

 

°

 

 if signs are changed on both the first and
second principal components, or looking at it from the back of the page, or in a mirror
if signs are changed for one axis only.

To estimate the second principal component, eigenvalue, and eigenvector, row
scores are again assigned arbitrarily at the beginning of the iterative process. In
Table 9.6 (bottom part), the same values were actually chosen as for axis I, as stated in
step 2 of the algorithm (Table 9.5). Iterations proceed in the same way as above, with
the exception that, during each iteration, the row scores are made orthogonal to the
final estimate obtained for the first principal component (column R13 in the upper
portion of Table 9.6). This follows from the basic rule that principal components must
be linearly independent (i.e. orthogonal) of one another. For the third and following
principal axes, the vectors estimating row scores are made orthogonal, in turn, to 

 

all

 

previously computed principal components. 

The algorithm converges fairly rapidly, even with small tolerance values. For the
example of Table 9.6, it took 13 iterations to reach convergence for axis I, and 2
iterations only for axis II, using a tolerance value of 10

 

–6

 

. With a tolerance value of
10

 

–10

 

, it took 21 and 2 iterations, respectively. The initial, arbitrary values assigned to
the row scores also have an (unpredictable) effect on the number of
iterations; e.g. with a different set of initial values [2 5 4 3 1], it took 14 iterations
instead of 13 to reach convergence for the first axis (tolerance = 10

 

–6

 

). 

Supplementary objects or variables may easily be incorporated in the calculations
using this algorithm. These are objects or variables that have not been used to compute
the eigenvalues and eigenvectors of the ordination space, but whose positions are
sought with respect to the original set of objects and variables that were used to
compute the eigenvalues and eigenvectors. In Ecological application 9.1a for example,
where the principal component analysis was computed using the species abundance
data, the environmental descriptors used in Ecological application 11.1b could have
been added to the analysis as supplementary variables. In addition, since there were
100 pitfall traps of spider observations, the traps that were excluded from the analysis
could have been added to the ordination plot as supplementary objects. Preliminary
transformations are required: (1) the supplementary variables must be centred on their
respective means; (2) for each variable used in the original PCA (e.g. the 12 spider
species), supplementary objects must be centred using the mean value of that variable
calculated for the original set of objects. When the algorithm has reached convergence
for an axis using the original set of objects, it is a simple matter to compute the column
scores of the supplementary variables using eq. 9.17 and the row scores of the
supplementary objects using eq. 9.18. The final step consists in applying to the

Supplemen-
tary object
and variable
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supplementary variable scores the scaling that was applied to the terms of the
eigenvector corresponding to the original set of variables and, to the supplementary
object scores, the scaling that was applied to the original set of objects.

3. Another way of computing principal components involves 

 

singular value
decomposition

 

 (SVD, Section 2.11). SVD is also a widely used approach to compute
correspondence analysis (Section 9.2).

The relationship with principal component analysis is the following. Centre the
column vectors of 

 

Y

 

 on their respective means, forming matrix 

 

Y

 

c

 

, and compute the
covariance matrix 

 

S

 

 = (

 

n

 

 – 1)

 

–1

 

Y

 

c

 

'

 

Y

 

c

 

 (eq. 4.6). Carry out a singular value
decomposition: 

 

Y

 

c

 

 = 

 

V

 

 

 

W

 

 

 

U

 

svd

 

' (eq. 2.31). The following reasoning will show that
matrix 

 

U

 

 produced by SVD, 

 

U

 

svd

 

, is equal to matrix 

 

U

 

 computed by eigen-
decomposition, 

 

U

 

eigen

 

. Use these SVD result to reconstruct 

 

S

 

:

 

S = Y

 

c

 

'

 

Y

 

c

 

 = 

 

(U

 

svd

 

W

 

' 

 

V

 

') (

 

V

 

 

 

W

 

 

 

U

 

svd

 

')

Since 

 

V

 

 is orthonormal (Section 2.11), 

 

V

 

'

 

V

 

 = 

 

I

 

 and one obtains:

 

S = Y

 

c

 

'

 

Y

 

c

 

 = 

 

U

 

svd

 

 

 

W

 

'

 

W

 

 

 

U

 

svd

 

'

 

(9.19)

 

In the theory of eigen-decomposition, eq. 2.28 states that 

 

S

 

 = 

 

U

 

eigen

  

!!!!

 

U

 

eigen
–1

 

.
Because 

 

U

 

eigen

 

 is orthonormal, 

 

U

 

eigen
–1

 

 = 

 

U

 

eigen

 

' (property 7 of inverses, Section 2.8)
and the equation can be rewritten:

 

S

 

 = 

 

U

 

eigen

  

!!!!

 

U

 

eigen

 

'

Combining the latter equation with eq. 9.19 shows that 

 

U

 

eigen

  

!!!!

 

U

 

eigen

 

' = 

 

U

 

svd

 

  

 

U

 

svd

 

'

hence:

 

U

 

eigen

 

 = 

 

U

 

svd

 

 and 

  

!!!!

 

 = 

 

W

 

'

 

W

 

 = 

 

(9.20)

 

These correspondences can readily be verified, for the numerical example data, by
singular value decomposition of the matrix of centred data 

 

Y

 

c

 

:

 

Y

 

c

 

 = 

 

V W U

 

svd

 

'

SVD

1
n 1–
------------ 1

n 1–
------------

1
n 1–
------------ 1

n 1–
------------

1
n 1–
------------W'W" #

$ %

1
n 1–
------------ 1

n 1–
------------ w j

2
[ ]

3.2– 1.6–
2.2–   1.4
0.2– 2.6–

  1.8   3.4
  3.8 0.6–

0.5963–   0.0000
0.2236–   5.0000
0.2236– 5.0000–

  0.5217   5.0000
  0.5217 5.0000–

6.0000 0
0 4.4721

  0.8944   0.4472
0.4472–   0.8944

=
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(As for eigenvalue decomposition, different SVD functions can revert the signs of
some columns of 

 

V

 

 and 

 

U

 

.) One can check that the squared singular values divided by
(

 

n

 

 – 1) are the eigenvalues, 

 

&

 

1

 

 = 9 and 

 

&2 = 5, and that Usvd = Ueigen computed in
Subsection 9.1.1.

Matrix G, which gives the object positions in the correlation biplot (scaling 2), is
obtained from V as follows:

G = V (9.21)

Matrix F, which gives the object positions in the distance biplot (scaling 1), can be
computed from V in two different ways:

F = VW or F = V!!!!1/2 (9.22)

When there are as many, or more variables than there are objects (i.e. p ' n, for
example in species-rich communities), eigenvalues and eigenvectors can still be
computed using any of the three methods described above: Householder reduction, the
TWWS algorithm, or singular value decomposition. The covariance matrix is positive
semidefinite in such cases, so that null eigenvalues are produced (Table 2.2). When p is
much larger than n and all eigenvalues and eigenvectors must be computed, important
savings in computer time can be made by applying Householder reduction or singular
value decomposition to the cross-product matrix [YY'], which is of size (n × n),
instead of [Y'Y]* which is of size (p × p) and is thus much larger; Y is centred by
columns. The eigenvalues of [YY'] are the same as the non-zero eigenvalues of [Y'Y].
Matrix U of the eigenvectors of [Y'Y] can be found from matrix V of the eigenvectors
of [YY'] using the transformation U = Y'V!!!!–1/2. Matrix F of the principal components
is found from the equation F = V!!!!1/2. 

Negative eigenvalues may occur in principal component analysis due to the
handling of missing values. Pairwise deletion of missing data (Subsection 1.6.2), in
particular, creates covariances computed with different numbers of degrees of
freedom; this situation can make the covariance matrix indefinite (Table 2.2). A
Householder algorithm should be used in such a case because negative eigenvalues
come out of SVD as positive singular values (Section 2.11, Application 2).

10 — Metric ordination of community composition data

Different approaches are available to obtain metric ordinations of community
composition (species) data (Fig. 9.8): the classical ordination approaches (PCA, this
section, and CA, Section 9.2), the transformation-based PCA (tb-PCA), and the

*  Matrix S differs from the cross-product matrix [Y'Y] by the division of the cross-products by
(n – 1) in S. The eigenvalues of [Y'Y] are larger than those of S by this factor (n – 1), but the
eigenvectors are identical.

n 1–

n 1–
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distance-based method of principal coordinate analysis (PCoA, Section 9.3). These
metric ordination methods produce ordinations that fully preserve the distances among
sites. They are discussed here in turn. The distance preserved by each method is
specified in Table 9.1. The non-metric method of nMDS (Section 9.4) is not mentioned
in Fig. 9.8 because the ordinations that it produces distort the distances among sites.

In the classical approach (Fig. 9.8a), the species-environment relationship is
analysed by PCA (this Section) or by CA (Section 9.2). In the early applications of
PCA to community ecology, CA was considered preferable to PCA for species data
tables sampled in highly diversified regions (“long gradients”) because these tables
contain many zeros. This is the case, for example, when sampling communities along

Figure 9.8 Different approaches are available for metric ordination of community composition data:
(a) classical PCA and CA, (b) the transformation-based approach, and (c) the distance-based
approach (PCoA). Metric ordination methods produce ordinations that fully preserve the
distances among sites, as specified in Table 9.1. Modified from Legendre & Gallagher (2001).

(a) Classical approach

(b) Transformation-based approach (tb-PCA)

Y = Raw data

(sites × species)

Short gradients: CA or PCA
Long gradients: CA

Raw data

(sites × species)

Y=Transformed
data

(sites × species)

PCA

Ordination biplot

Representation of elements:
Species = arrows
Sites = symbols

Raw data

(sites × species)
Distance
matrix

PCoA

(c) Distance-based approach (PCoA)
Ordination of sites

Representation of elements:
Sites = symbols
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extensive spatial or temporal gradients, where the species composition may change
greatly along the gradient. For groups of sites that were fairly homogeneous in species
composition (“short gradients”), PCA was considered appropriate. A wider array of
options is now available.

PCA can be made to preserve some distance that is appropriate for the study of
composition data in highly diversified regions, e.g. along gradients, instead of the
Euclidean distance D1 (Fig. 9.8b). Composition data can be transformed using the
transformations described in Section 7.7, leading to the transformation-based PCA, or
tb-PCA, approach. PCA computed on data transformed using these equations will
actually preserve the chord, profile, Hellinger, or chi-square distance, or the chi-square
metric among sites, depending on the transformation used. Note that the corresponding
distances (D3 and D15 to D18 in Table 7.3) have the property of being Euclidean.

One can also (Fig. 9.8c) compute directly one of the distance functions appropriate
for community composition data (Table 7.4) and carry out a principal coordinate
analysis (PCoA, Section 9.3) of the distance matrix to obtain an ordination. This is the
distance-based approach. PCoA obtains metric ordinations from D matrices, whereas
nonmetric multidimensional scaling (nMDS, Section 9.4) produces non-metric
ordinations that distort the distances among sites. These methods should be used in
analyses involving distance functions that cannot be obtained by a data transformation
followed by PCA (tb-PCA approach, Fig. 9.8b). Among the distances developed
specifically for species data (Table 7.4) are most of the coefficients designed for binary
data, e.g. Jaccard ( ) and Sørensen (D13 or ), as well as quantitative
distance measures like the asymmetric Gower coefficient ( ), the geodesic
metric (D4), Whittaker (D9), Canberra (D10), Clark (D11), percentage difference (D14),
and mean character difference modified for species data D19. 

9.2 Correspondence analysis (CA)

Correspondence analysis (CA) was developed independently by several authors. It
was first proposed for the analysis of contingency tables by Hirschfeld (1935), Fisher
(1940), Benzécri (1969), and others. In a historical review of the subject, Nishisato
(1980) traces its origin back to 1933. It was applied in ecology to the analysis of
sites × species tables by Roux & Roux (1967), Hatheway (1971), Ibanez & Séguin
(1972), Hill (1973b, 1974), Orlóci (1975), and others. Its use was generalized to other
types of data tables by Benzécri and his collaborators (Escofier-Cordier, 1969;
Benzécri and coll., 1973). Other important books on correspondence analysis are those
of Nishisato (1980), Greenacre (1983, 2007), ter Braak (1988), and van Rijckevorsel
& de Leeuw (1988). In the course of its history, the method was successively
designated under the English names contingency table analysis (Fisher, 1940),
RQ-technique (Hatheway, 1971), reciprocal averaging (Hill, 1973b), correspondence
analysis (Hill, 1974), reciprocal ordering (Orlóci, 1975), dual scaling (Nishisato,

tb-PCA

1 S7– 1 S8–
1 S19–
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1980), and homogeneity analysis (Meulman, 1982), while it is known in French as
analyse factorielle des correspondances (Cordier, 1965; Escofier-Cordier, 1969).

Correspondence analysis was first proposed for analysing two-way contingency
tables (Section 6.2). In such tables, the states of a first descriptor (rows) are compared
to the states of a second descriptor (columns). Data in each cell of the table are
frequencies, i.e. numbers of objects coded with a combination of states of the two
descriptors. These frequencies are positive integers or zeros. The most common
application of CA in ecology is the analysis of community composition (species
presence-absence or abundance values) at sampling sites (Subsection 9.2.4). The rows
and columns of the data table then correspond to sites and species, respectively. Such a
table is analogous to a contingency table because the data are frequencies. 

In general, correspondence analysis can be applied to any data table that is
dimensionally homogeneous, meaning that the physical dimensions of all variables are
the same (Chapter 3), and that does not contain negative values (i.e. only positive
integers or zeros are allowed). The values have to be additive in rows and columns
(additivity: see Subsection 1.4.2) to allow computation of row and column sums and
transformation of the data table into matrix  (eq. 9.24). Frequency data have these
characteristics. The (2 distance (D16, eq. 7.55), which is a coefficient that excludes
double-zeros, is used to quantify the relationships among rows and columns in CA
(Table 9.1).

Correspondence analysis can also be conducted on contingency tables that
compare two groups of descriptors. The method is then called multiple correspondence
analysis (MCA). For example, the rows of the table could be different species, each
divided into a few abundance classes, and the columns, different descriptors of the
physical environment with, for each, a number of columns equal to the number of its
states. Each site (object) then contributes to several frequencies of the table, but this
does not invalidate the results because of the transformations described in the next
subsection. The analysis can be done using a standard CA function. Special programs
and R functions also exist for MCA, which is not described further in this section. For
a table of species × environmental variables, a better way of comparing species to
environmental data is canonical correspondence analysis (CCA, Section 11.2), which
does not require that the species and environmental data be recoded into a few classes.

Correspondence analysis is primarily an ordination method. As such, it is similar to
principal component analysis; it preserves, in the space of the principal axes (i.e. after
rotation), the Euclidean distance between profiles of weighted conditional
probabilities. This is equivalent to preserving the (2 distance (D16, eq. 7.55) between
the rows or columns of the contingency table. The relationships between
correspondence analysis and principal component analysis will be further described in
the next subsections.

Contingency
table

Frequencies

Q

Multiple
corresp.
analysis
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1 — Computation

This description of correspondence analysis will proceed in three steps. (1) The
contingency (or community composition) table will be transformed into a table of
contributions to the Pearson chi-square statistic after fitting a null model to the
frequency data. (2) The transformed data table will be decomposed to obtain the
eigenvalues and eigenvectors, as in PCA. (3) Further matrix operations will lead to the
various tables needed for plotting useful diagrams. Besides its role as an ordination
method, CA may be used for studying the proximities between the rows (or the
columns) of a contingency table, as well as the correspondence between rows and
columns as in Section 6.4. 

Consider a contingency table with r rows and c columns, as in Section 6.2. Assume
that the table is written in such a way that r ' c; the table may be transposed to meet
this condition, since the rows and columns of a contingency table play identical roles.
The symbolism is as follows: 

• Absolute frequencies are represented by fij and relative frequencies (“probabilities”
or “proportions”) by pij.

• pij is the frequency fij in cell ij divided by the sum f++ of the fij’s over the whole
table. The table containing the relative frequencies pij is called Q; its size is (r×c).

• The weight attached to row i is pi+ = fi+/f++, where fi+ is the sum of the values in
row i. Vector [pi+] is of size r = number of rows.

• Likewise, the weight attached to column j is p+j = f+j/f++ , where f+j is the sum of
values in column j. Vector [p+j] is of size c = number of columns.

The computation steps are as follows:

1. Transform the data table. — The Pearson chi-square statistic,  (eq. 6.5), is a
sum of squared  values, computed for every cell ij of the contingency table. Each

 value is the standardized residual of a frequency fij after fitting a null model to the
contingency table. The null model states that there is no relationship between the rows
and columns of the table (eq. 6.4). Simple algebra shows that the component of  for
each cell (eq. 6.26) is:

(9.23)

Correspondence analysis is based upon a matrix called (r×c) in this book:

(9.24)

(P
2

(ij
(ij

(ij

Component
of chi-square (ij

Oij Eij–

Eij

------------------- f++
pij pi+p+ j–

pi+p+ j

--------------------------= =

Q

Q qij[ ]
pij pi+p+ j–

pi+p+ j 
--------------------------= =
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Values , which are at the basis of correspondence analysis, only differ from the 
values by the numerical constant :  = / . This difference causes all the
eigenvalues to be smaller than or equal to 1, as shown below. Values  can also be
calculated directly from the fij’s:

(9.25)

The sum of squares of all values in matrix , ) , measures the total inertia in
. It is also equal to the sum of all eigenvalues to be extracted by eigenanalysis of .

2. Decomposition of . — Singular value decomposition (SVD, eq. 2.31) can be
applied to matrix , with the following result (the symbolism is slightly modified
compared to Section 2.11):

(r×c) = (r×c) W(diagonal, c×c) U'(c×c) (9.26)

where both U and  are orthonormal matrices (i.e. matrices containing column
vectors that are normalized and orthogonal to one another; Section 4.4) and W is a
diagonal matrix D(wi). The diagonal values wi in W, which are all non-negative, are
the singular values of .

Because  = WU' (eq. 9.26), the multiplication  gives the following
result:

(c×c) = UW' ( ) W U' (9.27)

Since  is orthonormal, , hence:

 = U W'W U' (9.28)

Equation 2.28 shows that the eigenvalues (forming diagonal matrix !!!!) and
eigenvectors (matrix U) of a square matrix A obey the relationship: 

A = U!!!!U–1

If the vectors in U are normalized, as they are here, U is an orthonormal matrix with
the property U–1 = U'. As a consequence, eq. 2.28 may be rewritten as

A = U!!!!U' (9.29)

It follows that the diagonal matrix [W'W], which contains squared singular values on
its diagonal, is the diagonal matrix !!!!(c×c) of the eigenvalues of . Similarly, the
orthonormal matrix U of eqs. 9.27 and 9.28 is the same as matrix U of eq. 9.29; it is the
matrix of eigenvectors of (c×c), containing the loadings of the columns of the
contingency table. A similar reasoning applied to matrix (r×r) shows that the

qij (ij
f++ qij (ij f++

qij

qij
f ijf++ f i+f+ j–

f++ f i+f+ j 
--------------------------------=

Q qij
2Total inertia

Q Q

QSVD
Q

Q Û

Û

Q

Q Û Q'Q

Q'Q U'ˆ Û

Û U'ˆ Û ÛU'ˆ I= =

Q'Q

Q'Q

Q'Q
QQ'



468 Ordination in reduced space

orthonormal matrix  produced by singular value decomposition is the matrix of
eigenvectors of , containing the loadings of the rows of the contingency table.

The relationship between eq. 9.26 and eigenvalue decomposition (eq. 2.22) is the same as in
principal component analysis (Subsection 9.1.9). Prior to eigenvalue decomposition, a square
matrix of sums of squares and cross products  is computed. This is similar to using the
matrix of sums of squares and cross products Y'Y for eigenvalue decomposition in PCA; Y'Y is
the covariance matrix S multiplied by the constant (n – 1). In PCA, matrix Y was centred on the
column means prior to computing Y'Y whereas, in CA, matrix  is centred by the operation
(Oij – Eij) (eqs. 9.23 and 9.24). In spite of this centring operation, the sums of the rows and
columns of  are not equal to zero. 

Results identical to those of SVD would be obtained by applying eigenvalue
decomposition (eqs. 2.22 and 9.1) either to the covariance matrix , which would
produce the matrices of eigenvalues !!!! and eigenvectors U, or to matrix , which
would provide the matrices of eigenvalues !!!! and eigenvectors . Actually, it is not
necessary to repeat the eigenanalysis to obtain U and , because:

(r×c) = !!!!–1/2 (9.30)

and U(c×c) = !!!!–1/2 (9.31)

In the sequel, all matrices derived from U will be without a hat and all matrices derived
from  will bear a hat.

Singular value decomposition of matrix , or eigenvalue analysis of matrix ,
always yields one null eigenvalue. This is due to the centring in eq. 9.24, where
(pi+p+j) is subtracted from each value pij. The number of positive eigenvalues is
min(r – 1, c – 1). Hence, when r ' c, there are (c – 1) positive eigenvalues. The part of
matrix U that is considered for interpretation is of size c × (c – 1); likewise, the part of

 that is considered is of size r × (c – 1).

The analysis, by either SVD or eigenvalue decomposition, is usually performed on
matrix  with r ' c, for convenience. The reason is that not all SVD programs can
handle matrices with r < c (function svd() of R does not present that problem). In
addition, when using eigenanalysis, the computation is shorter when performed on the
smallest of the two possible covariance matrices, both solutions leading to identical
results. If one proceeds from a matrix such that r < c, the first r – 1 eigenvalues are the
same as in the analysis of the transposed matrix, the remaining eigenvalues being zero.

Consider now the non-centred matrix (r×c) in which (pi+p+j) is not subtracted
from each term pij in the numerator:

(9.32)

Û
QQ'

Q'Q

Q

Q
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QQ'
Û

Û

Û QU

Q'Û
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Q Q'Q

Û

Q

Q̃
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pij

pi+p+ j 
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f ij
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What happens if the analysis is based on matrix  instead of  (eq. 9.24)? The only
difference is that decomposition of  produces one extra eigenvalue; all the other
results are identical. This extra eigenvalue is easy to recognize because its value is 1 in
correspondence analysis. This eigenvalue is meaningless because it only reflects the
distance between the centre of mass of the data points in the ordination space and the
origin of the system of axes. In other words, it reflects the lack of centring of the
scatter of points on the origin (Hill, 1974); it explains none of the dispersion (Lebart &
Fénelon, 1971). There are computer programs that do not make the centring; in that
case, the first eigenvalue (&1 = 1) and eigenvector must be discarded. All programs that
carry out the calculations on matrix  produce one eigenvalue less than min[r, c]; if
the data table Q is such that r ' c, correspondence analysis yields (c – 1) non-null and
positive eigenvalues.

Alternatively, what happens if the analysis is based on the matrix of (ij values
(eq. 9.23) instead of matrix ? Since values (ij = , it follows that the total
variance in matrix [(ij] is larger than that of matrix  by a factor ;
hence, all eigenvalues obtained by analysing matrix [(ij] are larger than those of  by
a factor . The normalized eigenvectors in matrices U and  remain unaffected.
When the analysis is carried out on matrix , all eigenvalues are smaller than or equal
to 1, which is convenient.

3. Compute matrices for biplots. — Matrices U and  may be used to plot the
positions of the row and column vectors in two separate scatter diagrams. For biplots,
which are joint plots of the rows and column vectors, various scalings have been
proposed. First, matrices U and  can be weighted by the inverse of the square roots
of the column and row weights, written out in diagonal matrices D(p+j)–1/2(size c × c)
and D(pi+)–1/2(size r × r), respectively:

V(c×c) = D(p+j)–1/2 U (9.33)

(r×c) = D(pi+)–1/2 (9.34)

Discarding the null eigenvalue, the part of matrix V to consider for interpretation is of
size c × (c – 1) and the part of matrix  to consider is of size r × (c – 1).

Matrix F, which gives the positions of the rows of the contingency table in the
correspondence analysis space, is obtained from the transformed matrix of
eigenvectors V, which gives the positions of the columns in that space. This is done by
applying the usual equation for component scores (eq. 9.4) to data matrix Q, with
division by the row weights:

F(r×c) = !!!!1/2 (9.35a)

or F(r×c) = D(pi+)–1QV (9.35b)

Q̃ Q
Q̃

Q

Q f++ qij
Q f++( )

2
f++=

Q
f++ Û

Q

Û
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Û

V̂ Û

V̂
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In the same way, matrix , which gives the positions of the columns of the
contingency table in the correspondence analysis space, is obtained from the
transformed matrix of eigenvectors , which gives the positions of the rows in that
space. The equation is the same as above, except that division here is by the column
weights:

(c×c) = V!!!!1/2 (9.36a)

or (c×c) = D(p+j)–1 (9.36b)

Discarding the null eigenvalue, the part of matrix F to consider for interpretation is of
size r × (c – 1) and the part of matrix  to consider is of size c × (c – 1). With this
scaling, matrices F and V form a pair such that the rows (given by matrix F) are at the
centroid (also called centre of mass, or “barycentre”, from the Greek *+,-. ,
pronounced “barus”, heavy) of the columns in matrix V. In the same way, matrices 
and  form a pair such that the columns (given by matrix ) are at the centroids of
the rows in matrix . This property is illustrated in the numerical example below. 

Biplots of the rows (e.g. sites) and columns (e.g. species) can be drawn using
different combinations of the matrix scalings described above. Scaling types 1 and 2,
described below, are the most commonly used by ecologists when analysing
community composition data (ter Braak, 1990).

• Scaling type 1. — Draw a joint plot with the sites (matrix F) at the centroids of the
species (matrix V). For sites × species data tables, this scaling is the most appropriate
if one is primarily interested in representing the distance relationships among the sites
because, in matrix F, the distances among sites are projections of their (2 distances
(D16) (ter Braak, 1987c; see Numerical example, Subsection 9.2.2).

• Scaling type 2. — Draw a joint plot with the species (matrix ) at the centroids of
the sites (matrix ). For sites × species data tables, this scaling is the most appropriate
if one is primarily interested in representing the distance relationships among the
species because, in matrix , the distances among species are projections of their (2

distances (see Numerical example, Subsection 9.2.2).

• Scaling type 3. — This is a compromise between scalings 1 and 2. This scaling,
called “symmetric” in program CANOCO, does not preserve the chi-square distances
among the species or among the site scores. It is obtained by drawing together matrices
!!!!1/4 (or F!!!!–1/4) for sites and V!!!!1/4 (or !!!!–1/4) for species.

• Scaling type 4. — This scaling is useful in the correspondence analysis of a
contingency table crossing two qualitative descriptors or two factors. Draw a joint plot
using F, which preserves the chi-square distances among the rows, and  which
preserves the chi-square distances among the columns of the contingency table. This
hybrid scaling correctly represents the chi-square distance relationships among the
states of the two qualitative descriptors. In this scaling, the relative positions of the row
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V̂

F̂

F̂ Q'V̂

F̂

F̂
V̂ F̂

V̂

Scalings
in CA

F̂
V̂
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and column symbols along each axis of the plot are the same as in scaling 3. The range
of axis k in scaling 3 multiplied by  gives the range of that axis in scaling type 4.
The axes in scaling 4 are thus compressed compared to the corresponding axes in
scaling 3 because the eigenvalues are always smaller than 1 in CA. The compression is
not isotropic, however, because the eigenvalues differ among axes.

Other possible, but less often used scaling methods are discussed by ter Braak
(1987c, 1990).

4. Cumulative fit tables. — Tables of cumulative fit for columns and rows can be
computed in CA, as it was the case in PCA (Subsection 9.1.3.4). The sum of squares of
the values in row j of matrix  gives the total variance of column (descriptor) j in the
multidimensional ordination space. The relative cumulative fit of descriptor j is found
by computing the sum of squared values for axis 1, axes 1 and 2, axes 1, 2 and 3, and
so on, and dividing it by the total variance of j. This statistic represents the fit of
descriptor j in 1, 2, or more dimensions; it can be interpreted like a coefficient of
multiple determination (R2).

The sum of squared values of row i of matrix F gives the squared length of the
vector representing object i in the multidimensional ordination space. Use matrix F to
compute the squared length of each object vector i in 1, 2, 3 … CA dimensions and
divide these lengths by the total square length of object vector i. See example in the
next subsection. Squared residual lengths can be computed by subtracting from the
length of i the sum of squared values for axis 1, axes 1 and 2, axes 1, 2 and 3, etc.

2 — Numerical example

The following numerical example illustrates the calculations involved in correspondence
analysis. This example assumes that three species have been observed in three lakes
(Table 9.6)*. The justification for analysing community composition data by CA is provided in
Subsection 9.2.4. The data table is of small size (3 × 3) to allow readers to follow or repeat the
calculations easily. 

Matrix Q contains the proportions pij , from which the marginal distributions of the rows and
columns, pi+ and p+j , are computed. The row and column identifiers are as in Table 9.6:

*  Table 9.6 could also represent a contingency table crossing the states of two qualitative
descriptors, to illustrate CA of a contingency table. A biplot of the results would use scaling
type 4 (Subsection 9.2.1.3).

[pi+]

Q = [pij] =

[p+j] =

&k
1 4

F̂

Sp1 Sp2 Sp3

L1
L2
L3

0.10 0.10 0.20
0.10 0.15 0.10
0.15 0.05 0.05

0.40
0.35
0.25

0.35 0.30 0.35



472 Ordination in reduced space

Matrix  is computed with eq. 9.24:

and matrix  with eq. 9.32:

The eigenvalues of  are &l = 0.09613 (70.1%), &2 = 0.04094 (29.9%), and &3 = 0
(because of the centring). The first two eigenvalues are also eigenvalues of , its third
eigenvalue being 1 because  is not centred (eq. 9.32). The normalized eigenvectors of ,
corresponding to &l and &2, are (in columns):

 

 

   (&l) (&2)  

U =

Table 9.6 Numerical example: a site-by-species data table.

Species 1 Species 2 Species 3 Row
(Sp1) (Sp2) (Sp3) sums

Lake 1 (L1) 10 10 20 40

Lake 2 (L2) 10 15 10 35

Lake 3 (L3) 15 5 5 25

Column sums 35 30 35 100

Q

    Sp1          Sp2         Sp3

Q qij[ ]
pij pi+p+ j–

pi+p+ j 
----------------------------  == =

L1
L2
L3

0.10690– 0.05774–   0.16036
0.06429–   0.13887 0.06429–

  0.21129 0.09129– 0.12677–

Q̃

   Sp1       Sp2       Sp3

Q̃ q̃ij[ ]
pij

pi+p+ j 
----------------------  == =

L1
L2
L3

0.26726 0.28868 0.53452
0.28571 0.46291 0.28571
0.50709 0.18257 0.16903

Q'Q
Q'˜ Q̃

Q̃ Q'Q

Sp1
Sp2
Sp3

  0.78016 0.20336–
0.20383–   0.81145
0.59144– 0.54790–
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The normalized eigenvectors of  are (in columns):

The third eigenvector is of no use and is therefore not given. Most programs do not compute it.

In scaling type 1 (Fig. 9.9a), the rows of the data matrix (L1, L2 and L3 in the example),
whose coordinates will be stored in matrix F, are to be plotted at the centroids of the columns
(Sp1, Sp2 and Sp3 in the example). The scaling for the columns is obtained using eq. 9.33: 

To put the rows (matrix F) at the centroids of the columns (matrix V), the position of each row
along an ordination axis is computed as the mean of the column positions, weighted by the
relative frequencies of the observations in the various columns of that row. Consider the first
row of the data table (Table 9.6), for example. The relative frequencies of the three columns in

   (&l) (&2)  

   (&l) (&2)  

V = D(p+j)–1/2 U =

QQ'

Û =
L1
L2
L3

0.53693– 0.55831–
0.13043–   0.79561

  0.83349 0.23516–

Figure 9.9 Correspondence analysis biplots. (a) Scaling type 1: the rows of the data table (lakes L1 to L3
represented by circles, matrix F) are at the centroids (barycentres) of the columns (species Sp1
to Sp3 represented by squares, matrix V). (b) Scaling type 2: the species (squares, matrix ) are
at the centroids (barycentres) of the lakes (circles, matrix ).
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that row are 0.25, 0.25, and 0.50. Multiplying matrix V by that vector provides the coordinates
of the first row in the ordination diagram:

[0.25  0.25  0.50]  = [–0.26322  –0.17862]

These coordinates put the first row at the centroid of the columns in Fig. 9.9a; they are stored in
the first row of matrix F. The row-conditional probabilities for the whole data table are found
using the matrix operation D(pi+)–1Q, so that matrix F is computed using eq. 9.35b:

Using the formulae for the Euclidean (D1, eq. 7.32) and (2 (D16, eq. 7.55) distances, one can
verify that the Euclidean distances among the rows of matrix F are equal to the (2 distances
among the rows of the original data table (Table 9.6):

Matrix F thus provides a proper ordination of the rows of the original data matrix (temperatures
in the numerical example).

In scaling type 2 (Fig. 9.9b), the columns, whose coordinates will be stored in matrix , are
to be plotted at the centroids of the rows (matrix ). The scaling for matrix  is obtained using
eq. 9.34:

To put the columns (matrix ) at the centroids of the rows (matrix ), the position of each
column along an ordination axis is computed as the mean of the row positions, weighted by the
relative frequencies of the observations in the various rows of that column. Consider the first
column of the data table (Table 9.6), for example. The relative frequencies of the three rows in
that column are (10/35 = 0.28571), (10/35 = 0.28571) and (15/35 = 0.42857). Multiplying
matrix  by that vector provides the coordinates of the first column in the ordination diagram:

   (&l) (&2)  

F = D(pi+)–1QV =

D =

   (&l) (&2)  

 = D(pi+)–1/2  =

  1.31871 0.34374–
0.37215–   1.48150
0.99972– 0.92612–
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[0.28571  0.28571  0.42857]  = [0.40887  –0.06955]

These coordinates put the first column at the centroid of the rows in Fig. 9.9a; they are stored in
the first row of matrix . The column-conditional probabilities for the whole data table are
found through matrix operation D(p+j)–1 , so that matrix  is computed using eq. 9.36a
or 9.36b:

Using the formulae for the Euclidean (D1, eq. 7.32) and (2 (D16, eq. 7.55) distances, one can
verify that the Euclidean distances among the rows of matrix  are equal to the (2 distances
among the columns of the original data table (Table 9.6):

Matrix  thus provides a proper ordination of the columns of the original data matrix (species
abundance classes in the numerical example).

For the numerical example, the table of Cumulative fit per species (3 species) is of size
(3 × 2) because the CA solution has two dimensions (i.e. two positive eigenvalues) only:

In the column that corresponds to the last eigenvalue, the values are always 1 in CA. The table of
Cumulative fit of the objects (3 lakes) is also of size (3 × 2) in this numerical example:

The two tables indicate that species 2 and lake 2 are poorly fitted along axis 1, as can be
observed in Fig. 9.9, and that all species and lakes are perfectly represented in 2 dimensions.
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 = V!!!!1/2 = D(p+j)–1  =

D =

Cumul. axis 1 Cumul. axis 2
Sp1 0.9719 1.0000

Sp2 0.1290 1.0000

Sp3 0.7323 1.0000

Cumul. axis 1 Cumul. axis 2
L1 0.6847 1.0000
L2 0.0594 1.0000
L3 0.9672 1.0000

0.84896– 0.88276–
0.22046–  1.34482

  1.66697 0.47032–
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3 — Interpretation

The relationship between matrices V and , which provide the ordinations of the
columns and rows of the species data (or contingency) table, respectively, is found by
combining eqs. 9.30, 9.33 and 9.34 in the following expression:

!!!!1/2 = D(pi+)–1/2 D(p+j)1/2V (9.37)

This equation means that the ordination of the rows (matrix ) is related to the
ordination of the columns (matrix V), along principal axis h, by the value  which
is a measure of the “correlation” between these two ordinations. The value (1 – &h)
actually measures the difficulty of ordering, along principal axis h, the rows of the
contingency table from an ordination of the columns, or the converse (Orlóci, 1978).
The highest eigenvalue (0.096 in the above numerical example), or its square root
( ), is thus a measure of dependence between two unordered descriptors,
to be added to the measures described in Chapter 6. Williams (1952) discusses
different methods for testing the significance of R2 = &h.

Joint plots (e.g. Fig. 9.9) can be used to draw conclusions about the ecological
relationships displayed by the data. 

• With scaling type 1, (a) the distances among rows (or sites in the case of a
species × sites data table) in reduced space approximate their (2 distances, and (b) the
rows (sites) are at the centroids of the columns (species). Positions of the centroids are
calculated using weights equal to the relative frequencies of the columns (species);
columns (species) that are absent from a row (site) have null weights and do not
contribute to the position of that row (site). Thus, the ordination of rows (sites) is
meaningful. In addition, any row (site) found near the point representing a column
(species) is likely to have a high contribution of that column (species); for binary (or
species presence-absence) data, the row (site) is more likely to possess the state of that
column (or contain that species). 

• With scaling type 2, it is the distances among columns (species) in reduced space
that approximate their (2 distances, whereas columns (species) are at the centroids of
the rows (sites). Consequently, (a) the ordination of columns (species) is meaningful,
and (b) any column (species) that lies close to the point representing a row (site) is
more likely to be found in the state of that row (site), or with higher frequency
(abundance) than in rows (sites) that are further away in the joint plot.

For species presence-absence or abundance data, insofar as a species has a
unimodal (i.e. bell-shaped) response curve along the axes of ecological variation
corresponding to the ordination axes, the optimum for that species should be close to
the point representing it in the ordination diagram and its frequency of occurrence or
abundance should decrease with the distance from that point. Species that are absent at
most sites often appear at the edge of the scatter plot, near the point representing a site
where they happen to be present — by chance, or because they are favoured by some
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V̂ Q

V̂
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&1 0.31=
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rare condition occurring at that site. Such species have little influence on the analysis
because their numerical contributions are small (column sums in Table 9.6). Finally,
species that lie near the centre of the ordination diagram may have their optimum in
that area of the plot, or have two or several optima (bi- or multi-modal species), or else
be unrelated to the pair of ordination axes under consideration. Species of the latter
group may express themselves along some other axis or axes; close examination of the
raw data table may be required in that case. It is the species found away from the
centre of the diagram, but not near the edges, that are the most likely to display clear
relationships with the ordination axes (ter Braak, 1987c).

4 — Site × species data tables

Correspondence analysis has been applied to data tables other than contingency tables.
Justification is provided by Benzécri and coll. (1973). Notice, however, that the
elements of a table to be analysed by correspondence analysis must be dimensionally
homogeneous (i.e. same physical units, so that they can be added), non-negative (' 0,
so that they can be transformed into probabilities or proportions), and additive so that
the sums of rows and columns, fi+ and f+j , make sense (additivity: see
Subsection 1.4.2). Several types of data possess these characteristics, such as
(bio)mass values, concentrations, financial data (in $, € , ¥, etc.), and species
abundances.

Other types of data may be recoded to make the descriptors dimensionally
homogeneous and positive; the most widely used data transformations are discussed in
Section 1.5. For descriptors with different physical units, the data may, for example, be
standardized (which makes them dimensionless; eq. 1.12) and made positive by
translation, i.e. by subtracting the most negative value; or they may be divided by the
maximum or by the range of values (eqs. 1.10 and 1.11). Data may also be recoded
into ordered classes. Regardless of the method, recoding is then a critical step of
correspondence analysis. Consult Benzécri and coll. (1973) on this matter.

Several authors, mentioned at the beginning of this section, have applied
correspondence analysis to the analysis of site × species matrices containing species
presence/absence or abundance data. This generalization of the method is based on the
following sampling model. If sampling had been designed in such a way as to collect
individual organisms (which is usually not the case, the sampled elements being, most
often, sampling sites), each organism could be described by two descriptors: the site
where it was collected and the taxon to which it belongs. These two descriptors may be
recorded in an inflated data matrix, which has as many rows as there are individual
organism, and two columns identifying the site and the taxon of the individual
(qualitative descriptors). The familiar site × species data table is the contingency table
resulting from crossing the two descriptors of the inflated data matrix, i.e. the sites
and taxa. That table could be analysed using any of the methods applicable to
contingency tables. Most methods involving tests of statistical significance cannot be
used, however, because the hypothesis of independence of the individual organisms,
following the sampling model described above, is not met by species presence-absence

Inflated
data matrix
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or abundance data collected at sampling sites. An inflated data matrix will be used
again in the description of canonical correspondence analysis, Subsection 11.2.1.

Niche theory tells us that species have ecological preferences, meaning that they
are found at sites where they encounter favourable conditions. This statement is rooted
in the idea that species have unimodal distributions along environmental variables
(Fig. 9.10), more individuals being found near some environmental value which is
“optimal” for the given species. This has been formalised by Hutchinson (1957) in his
fundamental niche model. Furthermore, Gause’s (1935) competitive exclusion
principle suggests that, in their micro-evolution, species should have developed non-
overlapping niches. These two principles indicate together that species should be
roughly equally spaced in the n-dimensional space of resources. This model has been
used by ter Braak (1985) to justify the use of correspondence analysis on presence-
absence or abundance data tables; he showed that the (2 distance preserved through
correspondence analysis (Table 9.1) is an appropriate model for species with unimodal
distributions along environmental gradients.

Let us follow the path travelled by Hill (1973b), who rediscovered correspondence
analysis while exploring the analysis of vegetation variation along environmental
gradients; he called his method “reciprocal averaging” before realizing that this was
correspondence analysis (Hill, 1974). Hill started from the simpler method of gradient
analysis, proposed by Whittaker (1960, 1967) to analyse site × species data tables.
Gradient analysis uses a matrix Y (site × species) and an initial vector v of values vj
which are ascribed to the various species j as indicators of the physical gradient to be
evidenced. For example, a score (scale from 1 to 10) could be given to the each species
for its preference with respect to soil moisture. These coefficients are used to calculate
the positions of the sites along the gradient. The score  of a site i is calculated as the
average score of the species (j = 1 … p) present at that site, using the formula:

(9.38)

where yij is the abundance of species j at site i and yi+ is the sum of the organisms at
this site (i.e. the sum of values in row i of matrix Y).

Gradient analysis produces a vector  of the positions of the sites along the
gradient under study. Hill (1973b, 1974) suggested to continue the analysis, using now
vector  of the ordination of sites to compute a new ordination (v) of the species:

(9.39)
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in which y+j is the sum of values in column j of matrix Y. Alternating between v and 
(scaling the vectors at each step as shown in step 6 of Table 9.8) defines an iterative
procedure that Hill (1973b) called “reciprocal averaging”. This procedure converges
towards a unique unidimensional ordination of the species and sites, which is
independent of the values initially given to the vj’s; different initial guesses as to the
values vj may however change the number of steps required to reach convergence.
Being aware of the work of Clint & Jennings (1970), Hill realized that he had
discovered an eigenvector method for gradient analysis, hence the title of his 1973b
paper. It so happens that Hill’s method produces the barycentred vectors v and  for
species and sites, which correspond to the first eigenvector of a correspondence
analysis. Hill (1973b) showed how to calculate the eigenvalue (&) corresponding to
these ordinations and how to find the other eigenvalues and eigenvectors. Hill thus
created a simple algorithm, described in Subsection 9.2.7, for correspondence analysis. 

When interpreting the results of correspondence analysis, one should keep in mind
that the simultaneous ordination of species and sites aims at determining how useful
the ordination of species is, as a whole, for predicting the ordination of the sites. In
other words, it seeks the predictive value of one ordination with respect to the other.
Subsection 9.2.3 has shown that, for any given dimension h, (1 – &h) measures the
difficulty of ordering, along principal axis h, the row states of the contingency table
from an ordination of the column states, or the converse. The interpretation of the
relationship between the two ordinations must be done with reference to this statistic.

When it is used as an ordination method, correspondence analysis provides an
ordination of the sites which is somewhat similar to that resulting from a principal
component analysis of the correlation matrix among species (standardized data). This
is to be expected since the first step in the calculation actually consists in weighting
each datum by the sums (or the relative frequencies) of the corresponding row and
column (eq. 9.24 and 9.25), which eliminates the effects due to the large variances that
certain rows or columns may have. In the case of steep gradients (i.e. many zeros in the
data matrix), correspondence analysis should produce a better ordination than PCA
(Hill, 1973b). This was also shown by Gauch et al. (1977) using simulated and
observational floristic data. This result logically follows from the fact that the (2

distance (D16) is a coefficient that excludes double-zeros from the estimation of
resemblance. This is not the case with the Euclidean distance (eq. 7.32), which is the
distance preserved in principal component analysis. For this reason, correspondence
analysis is one of the methods recommended in Fig. 9.8 for reduced-space ordination
of species abundances when the data contain a large number of null values; this
situation is encountered when sampling environmental gradients that are long enough
for species to replace one another. Data tables with many zeros may contain rare
species. Box 9.2 describes a procedure for handling rare species in CA.

As mentioned in Section 8.9, for the clustering of species into associations,
correspondence analysis does not seem to escape the problems encountered with
principal component analysis (Reyssac & Roux, 1972; Ibanez & Séguin, 1972; Binet
et al., 1972). The most serious problem is that the species, which are multidimensional

v̂

v̂
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descriptor-axes, are projected in a low-dimensional space by both PCA and CA. This
explains the tendency for the species to form a more or less uniformly dense scatter
centred on the origin except in simple situations. It may nevertheless be interesting to
superimpose a clustering of species, determined using the methods of Section 8.9, on a
reduced-space ordination obtained by correspondence analysis.

Rare species in CA Box 9.2

In Chapter 7, it was shown that rare species contribute heavily to the chi-square
distance (D16, eq. 7.55), which is the distance preserved in correspondence analysis.
The present discussion focuses on the species with small occurrence values; they
only occur in a small fraction of the study sites. These species generate a large
number of zeros in the data matrix. Because zeros have high leverage, they
contribute heavily to the total inertia of matrix  (eq. 9.24). These species
contribute very little to the first few CA ordination axes, but they are highly
conspicuous in biplots because they are found at the periphery of the graph. Should
we keep rare species in CA? If not, which ones should be eliminated?

On the one hand, ecologists who see what they are collecting (e.g. vegetation) may
consider rare species as potential indicators of special environmental conditions, but it is not
the role of CA to display these conditions. The primary purpose of CA is to display the main
axes of variation of the data, not to deal with exceptions. On the other hand, ecologists who
sample blindly often consider the occurrence of rare species a chance event which should not
be heavily weighted in the analysis. In the case of mobile animals, the presence of an animal
at a site is no indication that the site provides favourable conditions for that species.

Empirical methods for down-weighting rare species have been proposed and are
available in some computer programs, but these methods lack strong ecological foundations.
It is better to simply eliminate the rarest species from CA. The following stepwise method
has been developed by Daniel Borcard (personal communication):

• For convenience, order the species in the data table in increasing or decreasing occurrences.
That will facilitate the stepwise elimination of the species with small occurrence values.

• Carry out a first CA. Note the total inertia as well as the first few eigenvalues (e.g. 4).

• Repeat that step after removing the species with occurrence 1; the species with occurrence 1
and 2; the species with occurrence 1 to 3; and so on. After each analysis, note the total inertia
as well as the first few eigenvalues.

• Plot these results. A jump should be observed in total inertia and in some of the eigenvalues.
The jump indicates that one has gone too far in removing rare species. [Continued next page.]

Q
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When sites (objects) and species (descriptors) are plotted together, the joint plot
must be interpreted with care. The practice that consists in only associating species
with neighbouring species in the plot often gives good results, although it may
overlook indications of avoidance of sites by certain species. An interesting
complement to correspondence analysis is the direct analysis of the site × species table
by the Freeman-Tukey deviates and standardized residuals methods described in
Section 6.4. These methods are better at evidencing all the correspondences between
sites and species (attraction and avoidance). Applying contingency table analysis to
sites × species tables is justified by the same logic that allows correspondence analysis
to be applied to such data matrices.

Box 9.2 (continued)

The following example concerns fish biomass data (47 underwater transects, 156 fish
species) collected by researchers Pierre Labrosse and Eric Clua (Secretariat of the Pacific
Community) near the village of Manuka in the Tonga Islands, under the DemEcoFish project
funded by the MacArthur Foundation (data used here with permission of the authors).

The curves show that the 61 species with occurrences 1 to 4 can be removed from the
analysis with little effects on the first four eigenvalues (right-hand graph). These species
generate 24% of the inertia in matrix  (left-hand graph) subjected to eigenvalue
decomposition in CA.

For comparison, the same data were submitted to PCA after Hellinger transformation
(Section 7.7). The total variance decreased by only 4.6% after removing the 61 species with
occurrences 1 to 4 and the first four eigenvalues were not affected at all by the removal of
rare species. The Hellinger transformation was recalculated after each step of species
removal.
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5 — Arch effect and detrended correspondence analysis

Environmental or temporal gradients often support spatial or temporal succession of
species. Since the species that are controlled by environmental factors (versus
population dynamics, historical events, etc.) generally have unimodal distributions
along gradients, the effect of gradients on the distance relationships among sites,
calculated on species presence-absence or abundance data, is necessarily nonlinear. 

Numerical example 1. A data set was created (Fig. 9.10; Table 9.7) to represent the
abundances of three hypothetical species at 19 sites over an environmental gradient along which
the species were assumed to have unimodal distributions (Whittaker, 1967).

The three species in Fig. 9.10 have unimodal distributions; each one shows a well-
defined mode along the gradient represented by sites 1 to 19. Ordination methods aim
at rendering this non-linear phenomenon in a Euclidean space, in particular in two-
dimensional plots. In such plots, non-linearities end up being represented by curves,

Environ-
mental
gradient

Figure 9.10 Distributions of three species at 19 sampling sites along a hypothetical environmental gradient
These artificial data are found in Table 9.7.
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Table 9.7 Artificial data illustrated in Fig. 9.10.

Sampling sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Species 1 1 2 4 7 8 7 4 2 1 0 0 0 0 0 0 0 0 0 0

Species 2 0 0 0 0 0 1 2 4 7 8 7 4 2 1 0 0 0 0 0

Species 3 0 0 0 0 0 0 0 0 0 0 1 2 4 7 8 7 4 2 1
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called arches or horseshoes, described in the next paragraph. While most ecologists
are content with interpreting the ordination plots for the information they display about
distances among sites, some feel that they should try to reconstruct the original
gradient underlying the observed data. Hence their concern with detrending, which is
an operation carried out on the ordination axes of correspondence analysis. In that
operation, the arch is unbent to display the gradient as a linear arrangement of the sites.

Euclidean distances calculated on the species data of Fig. 9.10, between site 1 and
sites 2, 3, etc., do not increase monotonically from one end of the gradient to the other.
These distances form the first row of the Euclidean distance matrix among sites; they
are reported on the first row of Table 9.11 in Subsection 9.3.5. Distances from site 1
increase up to site 5, after which they decrease; they increase again up to site 10, then
decrease; they increase up to site 15 and decrease again. The other rows of the
Euclidean distance matrix display equally complex patterns; they are not shown in
Table 9.11 to save space. A PCA algorithm is facing the task of representing these
complex patterns in at most three dimensions because PCA ordinations cannot have
more axes than the number of original variables (i.e. three species in Fig. 9.10). The
result is illustrated in Fig. 9.11, panels a and b. The most dramatic effect is found at the
ends of the transect, which are folded inwards along axis I. This is because the
Euclidean distance formula considers the extreme sites to be very near each other
(small distances due to double-zeros for species 2). This shape is called a horseshoe.
Figure 9.11b shows that the end sites also go “down” along the third axis. In
correspondence analysis on the contrary, extremities of the gradient are, in most
instances, not folded inwards in the plot (but see Wartenberg et al., 1987, Fig. 3, for a
case where this occurs); a bent ordination plot with extremities not folded inwards is
called an arch, e.g. Fig. 9.11c. 

The presence in ordination plots of a bow (Swan, 1970), horseshoe (Kendall,
1971), or arch (Gauch, 1982) had already been noted by ecologist Goodall (1954).
Benzécri and coll. (1973) discuss the arch under the name Guttman effect. Several
authors have explained the nature of this mathematical construct, which occurs when
the species composition of the sites progressively changes along an environmental
gradient. Detrended correspondence analysis (DCA; Hill & Gauch, 1980; Gauch,
1982) aims at eliminating the arch effect.

Figure 9.11c helps in understanding the meaning of CA joint plots. This joint plot
has been produced using scaling type 1 to preserve the (2 distances (D16) among sites;
in that respect, this plot is comparable to the PCA ordination shown in Fig. 9.11a. The
ordination is two-dimensional since the data set only contains three species. The
species (black squares) occupy the edges of a triangle; heavy lines are drawn to
materialize their distances to the centre of the plot. Sites 1-5, 10, and 15-19, which
only have one species present, occupy the same position as the point representing that
species because sites are at the barycentres (centroids) of the species; CA does not
spread apart sites that possess a single and same species, even in different amounts.
Sites 6-9 and 11-14, which possess two species in various combinations, lie on a line
between the two species; their positions along that line depend on the relative
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abundances of the two species at each site. No site has three species in this example, so
that no point lies inside the triangular shape of the scatter of sites. Considering site 1
(lower left in Fig. 9.11c), examine its distances (D16) to all the other sites in the last
row of Table 9.11: they increase from site 6 to 10, after which they remain constant.
This corresponds to the relative positions of the sites in the figure. Had the example
contained more species, the site points would have displayed a rounded shape. 

Figure 9.11 Ordinations of the data from Fig. 9.10 and Table 9.7. Circles are sites, and squares in panels c
and d are species. Principal component analysis, scaling 1: (a) PCA axes I and II (&1 = 50.1%,
&2 = 40.6%), (b) axes I and III (&1 = 50.1%, &3 = 9.3%). (c) Correspondence analysis, scaling 1,
CA axes I and II (&1 = 58.1%, &2 = 41.9%). A quadratic polynomial function of axis I is also
shown (convex curve): (axis II) = 1.056 – 1.204 (axis I)2. (d) Detrended correspondence
analysis (scaling type 1, detrending by quadratic polynomial), DCA axes I and II (&1 = 58.1%,
&2 = 1.6%). (c) and (d) Bold lines drawn from the centres of the plots represent the species axes.
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Two approaches have been proposed to remove arches in CA, producing detrended
correspondence analysis: detrending by segments and by polynomials.

1. When detrending by segments (Hill & Gauch, 1980), axis I is divided into a
number of segments and, within each one, the mean of the scores along axis II is made
equal to zero; in other words, data points in each segment are moved along axis II to
make their mean coincide with the abscissa. Figure 9.12b shows the result of
detrending the ordination of Fig. 9.11c using the three segments defined in Fig. 9.12a.
The bottom line is that scores along detrended axis II are meaningless. Proximities
among points should in no case be interpreted ecologically, because segmenting
generates large differences in scores for points that are near each other in the original
ordination but happen to be on either side of segment divisions (Fig. 9.12). The
number of segments is arbitrary; different segmentations lead to different ordinations
along axis II.

The method is only used with a fairly large number of segments. Programs DECORANA (Hill,
1979b) and CANOCO use a minimum of 10 and a maximum of 46 segments, 26 being the default
value that users often take to be the ‘recommended’ number. This requires a number of data
points larger than that in Fig. 9.10. 

In order to deal with the contraction of the ends of the gradient when the sites are projected
onto the first axis, nonlinear rescaling of the axes is often performed following detrending. An
extreme case is represented by Fig. 9.11c where sites 1 to 5 and 15 to 19 each occupy a single
point along axis I. To equalize the breadths of the species response curves, the axis is divided
into small segments and segments with small within-group variances are expanded, whereas
segments with large within-group variances are contracted (Hill, 1979b). Figure 5.5 of ter Braak
(1987c) provides a good illustration of the process; ter Braak (1987c) advises against the routine
use of nonlinear rescaling.

Figure 9.12 Detrending by segments. (a) Three arbitrarily defined segments are delimited by vertical lines in
the CA ordination (from Fig. 9.11c). (b) After detrending, the mean of the points in each
segment is zero.
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After detrending by segments and nonlinear rescaling of the axes, the DCA ordination has
the interesting property that the axes are scaled in units of the average standard deviation (SD) of
species turnover (Gauch, 1982). Along a regular gradient, a species appears, rises to its modal
value, and disappears over a distance of about 4 SD; similarly, a complete turnover in species
composition occurs, over the sites, in about 4 SD units. A half-change in species composition
occurs within about 1 to 1.4 SD units. Thus the length of the first DCA axis is an approximate
measure of the length of the ecological gradient, measured in species turnover units. In this
respect, DCA with nonlinear rescaling of the axes is a useful method to estimate the lengths of
ecological gradients. The length of a gradient revealed by a pilot study may help determine the
extent (Section 13.0) to be given to a subsequent full-scale study.

2. Detrending by polynomials (Hill & Gauch, 1980; ter Braak, 1987c) directly
follows from the fact that an arch is produced when a gradient of sufficient length is
present in data. When a sufficient number of species are present and replace each other
along the gradient, the second CA axis approaches a quadratic function of the first one
(i.e. a second-degree polynomial), and so on for the subsequent axes. This is clearly
not the case with the data of Table 9.7, which consist of three species only.
Figure 9.11c shows that the ‘arch’ is reduced to a triangular shape in that case.

The arch effect is removed by imposing, in the CA algorithm, the constraint that axis II be
uncorrelated not only to axis I (orthogonalization procedure in Table 9.8), but also to its square,
its cube, and so on; the degree of the polynomial function is chosen by the user. In the same way,
axis III is made uncorrelated to the 1st, 2nd, 3rd … k-th degree polynomial of axes I and II. And
so forth. When detrending is sought, detrending by polynomial is an attractive method. The
result is a continuous function of the previous axes, without the discontinuities generated by
detrending-by-segments. However, detrending by polynomials imposes a specific model onto
the data, so that the success of the operation depends on how closely the polynomial model
corresponds to the data. Detrending by polynomial does not solve the problem of compression
of the sites at the ends of the ordination axes.

Detrending by quadratic polynomial was applied to the test data. Figure 9.11c shows the
quadratic polynomial (convex curve; among the terms of the quadratic polynomial, only the
(axis I)2 term was significant) that was fitted to the CA ordination, which has a triangular shape
in the present example. Detrending involves computing and plotting the vertical (residual)
distances between the data points and the fitted polynomial. The detrended ordination is shown
in Fig. 9.11d. The regression residuals display an elegant but meaningless shape along axis II.

The controversy about detrending raged in the literature for more than 10 years.
Key papers are those of Wartenberg et al. (1987), Peet et al. (1988), and Jackson &
Somers (1991b). Wartenberg et al. (1987) argued that the arch is an important and
inherent attribute of the distances among sites, not a mathematical artifact. The only
effect of DCA is to flatten the distribution of points onto axis I without affecting the
ordination of sites along that axis. They also pointed out that detrending-by-segments
is an arbitrary method for which no theoretical justification has been offered. Similarly,
the nonlinear rescaling procedure assumes that, on average, each species appears and
disappears at the same rate along the transect and that the parametric variance is an
adequate measure of that rate; these assumptions have not been substantiated. Despite
these criticisms, Peet et al. (1988) still supported DCA on the ground that detrending

Length of
gradient
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and rescaling may facilitate ecological interpretation. Jackson & Somers (1991b)
showed that the DCA ordination of sites greatly varied with the number of segments
one arbitrarily decides to use, so that the ecological interpretation of the results may
vary widely, as do the correlations one can calculate with environmental variables.
One should always try different numbers of segments if one decides to use DCA.

Simulation studies involving DCA have been conducted on artificial data
representing unimodal species responses to environmental gradients in one
(coenoclines) or two (coenoplanes) dimensions, following the method pioneered by
Swan (1970). Kenkel & Orlóci (1986) report that DCA did not perform particularly
well in recovering complex gradients. Using Procrustes statistics (Subsection 11.5.2)
as measures of structure recovery, Minchin (1987) showed that DCA did not perform
well with complex response models and non-regular sampling schemes. Both studies
concurred that nMDS (Section 9.4) was a better method than DCA for recovering
complex gradients.

Present evidence indicates that detrending should be avoided except for the specific
purpose of estimating the lengths of gradients; such estimates remain subject to the
condition that the assumptions of the model are true. In particular, DCA should be
avoided when analysing data that represent complex ecological gradients. Most
ordination techniques are able to recover simple, one-dimensional environmental
gradients. When there is a single gradient in the data, detrending is useless since the
gradient is well represented by CA axis I.

Satisfactory mathematical solutions to the problem of detrending remain to be
found. In the meantime, ordination results should be interpreted with caution and in the
light of the type of distance preserved by each method.

6 — Ecological applications

Ecological application  9.2a

The spider data (28 sites × 12 species) of Aart & Smeenk-Enserink (1975) that have been
analysed by principal component analysis (PCA) in Ecological application 9.1a are reanalysed
here by correspondence analysis (CA). Figure 9.13 presents two CA biplots (scaling types 1
and 2) obtained for these data. Compare the species groups and site ordinations with the PCA
biplot presented in Fig. 9.6b (log-transformed data).

Ecological application  9.2b

Cadoret et al. (1995) investigated the species composition (presence/absence and abundance) of
chaetodontid fish assemblages off Moorea Island, French Polynesia, in order to describe the
spatial distribution of the butterflyfishes and determine their relationships with groups of benthic
organisms. Sampling was conducted in four areas around the island: (a) Opunohu Bay, (b) Cook
Bay, (c) the Tiahura transect across the reef in the northwestern part of the island, and (d) the
Afareaitu transect across the reef in the eastern part of the island.

Correspondence analysis (Fig. 9.14) showed that the fish assemblages responded to the main
environmental gradients that characterized the sampling sites. For areas c and d (transects across
the reef), axis I corresponded to a gradient from the coastline to the ocean; from left to right, in
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Figure 9.13 Correspondence analysis biplots of the spider data. (a) Scaling type 1: the sites (solid circles) are
at the centroids of the species (open squares). (b) Scaling type 2: the species (open squares) are
at the centroids of the sites (solid circles). Species abbreviations: see Fig. 9.6. 
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the plot, are the sites of the fringing reef, the shallows (found only in sector c), the barrier reef,
and the outer slope. Sites from the bays (areas a and b) are also found in the left-hand part of the
graph. Axis II separates the sites located in the upper reaches of Opunohu Bay (a11, a12 and a13,
in the upper-left of the plot) from all the others. This application will be further developed, in
Subsection 11.2.2, to identify species assemblages and evidence the relationships between
species and environmental variables, using canonical correspondence analysis. 

Ecological application  9.2c

In a study on the vegetation dynamics of southern Wisconsin, Sharpe et al. (1987) undertook a
systematic field survey of all forest tracts in two townships. Detrended correspondence analysis
was used to display the relationships among stands with respect to species composition. The
scores of the first ordination axes were used to construct three-dimensional maps. In the map of
the first axis (Fig. 9.15), the scores were generally low in the southern and central portions of the
area, and increased towards the west and north. Since the first axis showed a trend from forest
tracts dominated by Acer saccharum to oak-dominated forests (not shown), Fig. 9.15 indicates
that stands dominated by A. saccharum were located in the south-central portion of the area,
whereas oak-dominated stands were to the west, north and, to a lesser extent, east. Such a
mapping, using a 3- or 2-dimensional representation, is often a useful way of displaying
synthetic information provided by the scores of objects along the first ordination axes. 

Figure 9.14 Correspondence analysis (CA): ordination of sampling sites with respect to axes I and II from
presence/absence observations of butterflyfishes (21 species) in four areas (different symbols)
around Moorea Island. Axes I and II explain together 29% of the variation among sites. Species
are not drawn; they would have overloaded the plot. Modified from Cadoret et al. (1995).
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Maps like the one displayed in Fig. 9.15 may be produced for the ordination scores
computed by any of the methods described in the present chapter; see Section 13.2. 

7 — Algorithms

There are several computer programs and R functions available for correspondence
analysis; see Section 9.5. 

CANOCO (ter Braak, 1988b, 1988c, 1990; ter Braak & Smilauer, 1998) uses Hill’s
two-way weighted averaging (TWWA) algorithm as summarized by ter Braak (1987c).
This algorithm is described in Table 9.8. There are three main differences with the
TWWS algorithm for PCA presented in Table 9.5: (1) variables are centred in PCA,
not in CA; (2) in CA, the centroid of the site scores is not zero and must thus be
estimated (step 6.1); (3) in CA, summations are standardized by the row sum, column

Figure 9.15 Three-dimensional map of the scores of the first ordination axis (detrended correspondence
analysis), based on trees observed in 92 forest tracts of southern Wisconsin, U.S.A. (survey area:
11 × 17 km). Modified from Sharpe et al. (1987).
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Table 9.8 Two-way weighted averaging (TWWA) algorithm for correspondence analysis. From Hill
(1973b) and ter Braak (1987c).

a) Iterative estimation procedure

Step 1: Consider a table Y with n rows (sites) × p columns (species).
Do NOT centre the columns (species) on their means.

Determine how many eigenvectors are needed. For each one, DO the following:

Step 2: Take the row order as the arbitrary initial site scores. (1, 2, …)
Set the initial eigenvalue estimate to 0. In what follows, yi+ = row sum for site i, y+j = column
sum for species j, and y++ = grand total for the data table Y.

Iterative procedure begins
Step 3: Compute new species loadings: colscore(j) = 2 y(i,j) × rowscore(i)/y+j

Step 4: Compute new site scores: rowscore(i) = 2 y(i,j) × colscore(j)/yi+

Step 5: For the second and higher-order axes, make the site scores uncorrelated with all previous axes
(Gram-Schmidt orthogonalization procedure: see b below).

Step 6: Normalize the vector of site scores (procedure c, below) and obtain an estimate of the
eigenvalue. If this estimate does not differ from the previous one by more than the tolerance set
by the user, go to step 7. If the difference is larger than the tolerance, go to step 3.

End of iterative procedure

Step 7: If more eigenvectors are to be computed, go to step 2. If not, continue with step 8.
Step 8: The row (site) scores correspond to matrix . The column scores (species loadings) correspond

to matrix . Matrices  and  provide scaling type 2 (Subsection 9.2.1). Scalings 1 or 3 may
be calculated if required. Return the eigenvalues, % variance, species loadings, and site scores.

b) Gram-Schmidt orthogonalization procedure

DO the following, in turn, for all previously computed components k:

Step 5.1: Compute the scalar product SP = 2 (yi+ × rowscore(i) × v(i,k)/y++) of the current site score
vector estimate with the previous component k. Vector v(i,k) contains the site scores of
component k scaled to length 1. This product is between 0 (if the vectors are orthogonal) and 1.

Step 5.2: Compute new values of rowscore(i) such that vector rowscore becomes orthogonal to vector
v(i,k): rowscore(i) = rowscore(i) – (SP × v(i,k)).

c) Normalization procedure†

Step 6.1: Compute the centroid of the site scores: z = 2 (yi+ × rowscore(i)/y++).
Step 6.2: Compute the sum of squares of the site scores: S2 = 2 (yi+ × (rowscore(i) – z)2/y++); S = .
Step 6.3: Compute the normalized site scores: rowscore(i) = (rowscore(i) – z)/S.
Step 6.4: At the end of each iteration, S, which measures the amount of shrinking during the iteration,

provides an estimate of the eigenvalue. Upon convergence, the eigenvalue is S.

† Normalization in CA is such that the weighted sum of squares of the elements of the vector is equal to 1.

V̂
F̂ F̂ V̂

S2
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sum, or grand total, as appropriate, which produces shrinking of the ordination scores
at the end of each iteration in CA (step 6.4), instead of stretching as in PCA.

R functions for CA use either singular value decomposition (SVD, function svd()
of R) or Householder reduction (function eigen() of R). SVD and eigen-decomposition
were both used to describe the CA algorithm in Subsection 9.2.1; they provide the
eigenvalues as well as matrices U and . The various matrices for the row and column
scores used in scalings are then obtained using eqs. 9.33 to 9.36. 

9.3 Principal coordinate analysis (PCoA)

Principal component analysis (PCA) is only applicable to data for which the Euclidean
distance (D1) is appropriate, whereas correspondence analysis (CA) is only applicable
to frequency-like data for which the (2 distance (D16) is appropriate. For other types of
data, the relationships among objects are computed with one of the resemblance
coefficients described in Chapter 7. The list includes coefficients that can handle
binary data (S1 to S14, S24 to S27) and mixtures of quantitative and qualitative
descriptors (S15, S16). PCA cannot be applied to these data. CA can be used with
presence-absence data for which double zeros must be excluded from object
comparisons, but not with mixtures of quantitative and qualitative descriptors.

Gower (1966) described a method to obtain a Euclidean representation (i.e. a
representation in a Cartesian coordinate system) of a set of objects whose relationships
are measured by any distance coefficient chosen by users. This method, known as
principal coordinate analysis (abbreviated PCoA), metric multidimensional scaling (in
contrast to the nonmetric method described in Section 9.4), or classical scaling by
reference to the pioneering work of Torgerson (1958), allows one to position objects in
a space of reduced dimensionality while preserving their distance relationships as well
as possible; see also Rao (1964).

The interest of the PCoA method lies in the fact that it may be used with all types
of descriptors — even data sets with descriptors of mixed levels of precision, provided
that a coefficient appropriate to the data has been used to compute the resemblance
matrix (e.g. S15 or S16, Chapter 7). It will be shown that, if the distance matrix is
metric, i.e. if it contains no violation of the triangle inequality, the relationships among
objects can, in most cases, be fully represented in Euclidean space. In the case of
violations of the triangle inequality, or when problems of “non-Euclideanarity” occur
with metric distances (Gower, 1982; Fig. 9.16), negative eigenvalues are produced. In
most cases, this does not impair the quality of the Euclidean representation obtained
for the first few principal coordinates. It is also possible to transform the distance
matrix, or use an alternative resemblance measure, to eliminate the problem. These
topics are discussed in Subsection 9.3.4.

SVD
Householder

Û

Euclidean
represen-
tation

Mixed
precision
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One may look at principal coordinates as the equivalent of principal components.
Principal components, on the one hand, are linear combinations of the original (or
standardized) descriptors; linear is the key concept. Principal coordinates, on the other
hand, are also functions of the original variables, but mediated through the distance
function that has been computed among objects. In any case, PCoA can only embed
(i.e. fully represent), in Euclidean space, the Euclidean part of a distance matrix. This
is not a property of the data, but a result of the Euclidean model, which is forced upon
the data because the objective is to draw scatter diagrams on sheets of paper. By doing
so, one must accept that whatever is non-Euclidean cannot be drawn on paper. This
may be viewed as the problem of drawing points separated by non-Euclidean distances
into a Euclidean space.

Like PCoA, the method of nonmetric multidimensional scaling (nMDS,
Section 9.4) produces ordinations of objects from any resemblance matrix. It
compresses the distance relationships among objects into, say, two or three dimensions
in a more efficient way than PCoA. nMDS always obtains a Euclidean representation,
even from non-Euclidean-embeddable distances. However, nMDS compresses the
distances in a non-linear way and its algorithm is computer-intensive, requiring more
computing time than PCoA. The latter is faster for large distance matrices.

1 — Computation

Gower (1966) explained how to compute the principal coordinates of a distance
matrix:

• The calculation starts with a distance matrix D = [Dhi]. It is also possible to carry out
the calculations from a similarity matrix S = [Shi]; the method is detailed in
Subsection 9.3.3. 

• Matrix D is transformed into a new matrix A = [ahi] by defining:

(9.40)

The purpose of this transformation is explained in Subsection 9.3.3.

• Matrix A is centred to give matrix 33331 = [4hi], using the following equation:

(9.41)

where  and  are the means of the row and column corresponding to element ahi of
matrix A, respectively, and  is the mean of all ahi’s in the matrix. The following
matrix equation produces the centring described in eq. 9.41:

33331 = (9.42)

Euclidean
model

ahi  12
---– Dhi

2=

4hi ahi ah ai a+––=
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where I is an identity matrix of order n and 1 is a column vector of length n containing
values “1”. Centring has the effect of positioning the origin of the new system of axes
at the centroid of the scatter of objects without altering the distances among objects.

In the particular case of distances computed using the Euclidean distance
coefficient (D1, eq. 7.32), it is possible to obtain the Gower-centred matrix 33331 directly,
i.e. without calculating a matrix D of Euclidean distances and going through eqs. 9.40
and 9.41, because 33331 = YcYc', where Yc is Y centred by columns. This may be verified
using numerical examples. In that particular case, 33331 is always a positive semidefinite
matrix (Table 2.2).

• The eigenvalues &k and normalized eigenvectors (matrix U) are computed and each
eigenvector uk is multiplied by the square root of its eigenvalue. As a result, the
eigenvectors are scaled to lengths equal to the square roots of their eigenvalues:

Due to the centring, matrix 33331 always has at least one zero eigenvalue. The reason
is that at most (n – 1) real axes are necessary for representing n points in Euclidean
space. There may be more than one zero eigenvalue if the distance matrix is
degenerate, i.e. if the objects can be represented in fewer than (n – 1) dimensions. In
practice, there are c positive eigenvalues and c real axes forming the Euclidean
representation of the data, the rule being that c 5 n – 1.

With the Euclidean distance (D1), when there are more objects than descriptors
(n > p), the maximum value of c is p; when n 5 p, then c 5 n – 1. Take as example a set
of three objects or more, and two descriptors (n > p). The objects, as many as they are,
may be represented in a two-dimensional space — for example, the scatter diagram of
the two descriptors. Consider now the case where there are two objects and two
descriptors (n 5 p); the two objects only require one dimension for representation.

• After scaling, if the eigenvectors are written as columns (e.g. Table 9.9), the rows of
the resulting table are the coordinates of the objects in the space of principal
coordinates, without any further transformation; they form matrix PC of the principal
coordinates. Plotting the points on, say, the first two principal coordinates produces a
reduced-space ordination diagram of the objects in two dimensions. 

2 — Numerical example

Readers may get a better feeling of what principal coordinate analysis does by
comparing it to principal component analysis. Consider a data matrix Y on which a
principal component analysis (PCA) has been computed, with resulting eigenvalues,
eigenvectors (matrix U), and principal components (matrix F). If one also computed a
Euclidean distance matrix D = [Dhi] for the same n objects, the eigenvectors obtained
by principal coordinate analysis would be exactly the same as the principal
components. The eigenvalues of the PCoA are equal to the eigenvalues one would

Euclidean
distance

u'kuk &k=

Degenerate
D matrix
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obtain from a PCA conducted on the cross-product matrix ; these are
larger than the eigenvalues of a PCA conducted on the covariance matrix S by factor
(n – 1) because S = (1/(n – 1)) . Since PCA has been defined, in this
book, as the eigenanalysis of the covariance matrix S, the same PCA eigenvalues can
be obtained from a principal coordinate analysis computed on the Euclidean distance
matrix among objects, and dividing the resulting PCoA eigenvalues by (n – 1). If one
is only interested in the relative magnitude of the eigenvalues, this scaling step is not
necessary and may be ignored. 

The previous paragraph does not mean that principal coordinate analysis is limited
to Euclidean distance matrices. It can actually be computed for any distance matrix. If
the distances cannot readily be embedded in Euclidean space, negative eigenvalues
may be obtained, with consequences described in Subsection 9.3.4.

Table 9.9 Principal coordinates of the objects (rows) are obtained by scaling the eigenvectors to .

Eigenvalues

&1 &2 . . . &c

Objects Eigenvectors

x1 u11 u12 . . . u1c
x2 u21 u22 . . . u2c

. .  .

. .  .

. .  .
xh uh1 uh2 . . . uhc

. .  .

. .  .

. .  .
xi ui1 ui2 . . . uic

. .  .

. .  .

. .  .
xn un1 un2 . . . unc

Lengths:  = . . .

Centroid:  = 0 0 . . . 0

&

uik
2

i
) &1 &2 &c

uk[ ]

y y–[ ] ' y y–[ ]

y y–[ ] ' y y–[ ]
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Numerical example 2. The numerical example for principal component analysis
(Section 9.1) is used here to illustrate the main steps in the computation of principal coordinates.
The example also shows that computing principal coordinates from a matrix of Euclidean
distances D = [Dhi] gives the exact same results as a principal component analysis of the raw
data, with the exception that the descriptor loadings are not obtained in PCoA. Indeed,
information about the original descriptors is not passed on to the PCoA algorithm. Indeed, since
PCoA is computed from a distance matrix among objects, it cannot give back the loadings of the
descriptors. A method for computing them a posteriori is described in Subsection 9.3.3
(eq. 9.45).

1) The matrix of Euclidean distances among the 5 objects of data matrix Y used to illustrate
Section 9.1 is:

2) Matrix 33331 obtained by Gower’s centring (eqs. 9.40 and 9.41) is:

33331 = 

The trace (sum of the diagonal elements) of this matrix is 56. This is (n – 1) = 4 times the trace
of the covariance matrix computed in PCA, which was 14. The diagonal elements are the
squared distances of the points to the multivariate centroid. Note that matrix 33331 could have been
obtained directly from data matrix Y centred by columns (Yc), as mentioned in Subsection 9.3.1
for the particular case where D is computed using the Euclidean distance coefficient (D1,
eq. 7.32): 33331 = YcYc'. Readers can verify this property numerically for the example.

3) The eigenvalues and eigenvectors of matrix 33331, scaled to , are shown in Table 9.10.
There are only c = 2 eigenvalues different from zero; this was to be expected since the distances
had been computed from p = 2 variables only (c = p = 2). The principal coordinates, which are
the rescaled eigenvectors of the PCoA, are identical to the principal components
(Subsection 9.1.2 and Table 9.6) in this example. Measures of resemblance other than the
Euclidean distance may produce a different number of eigenvalues and principal coordinates
and they would, of course, position the objects differently.

While the numerical example illustrates the fact that a PCoA computed on a
Euclidean distance matrix gives the same results as a PCA conducted on the original
data, the converse is also true: taking the coordinates of the objects in the full space (all
eigenvectors) obtained from a PCoA and using them as input of a principal component
analysis would produce the same PCA eigenvalues as those of the original PCoA (to a

D

  0.00000  3.16228 3.16228 7.07107 7.07107
  3.16228    0.00000  4.47214 4.47214 6.32456
  3.16228  4.47214   0.00000  6.32456 4.47214
  7.07107  4.47214 6.32456   0.00000  4.47214
  7.07107  6.32456 4.47214 4.47214   0.00000  

=

    12.8      4.8      4.8  11.2– 11.2–
      4.8      6.8  3.2–       0.8    –9.2
      4.8    –3.2    6.8   –9.2       0.8  

11.2–   0.8 9.2–   14.8     4.8
11.2– 9.2–   0.8     4.8   14.8

&

PCA and
PCoA
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factor n – 1), and the principal components will be identical to the principal
coordinates. All the signs of any one component may be inverted, though, as explained
in Subsection 9.1.9; signs depend on an arbitrary decision made during execution of
eigen-decomposition functions (Subsection 2.9.2). Because of this, before presenting
their results, users of ordination methods are free to invert all the signs of any principal
component or principal coordinate if that suits them better.

3 — Rationale of the method

Gower (1966) has shown that the distance relationships among objects are preserved in
the full-dimensional principal coordinate space. His proof is summarized as follows.

• In the total space of the principal coordinates (i.e. all eigenvectors), the distance
between objects h and i can be found by computing the Euclidean distance between
rows h and i of Table 9.9:

(9.43)

Table 9.10 Principal coordinates computed for the numerical example for PCA developed in Section 9.1.
Compare with PCA results in Subsection 9.1.2 and Table 9.6.

Eigenvalues

&1 &2 

Objects Eigenvectors

x1 –3.578 0.000
x2 –1.342 –2.236
x3 –1.342 2.236
x4 3.130 –2.236
x5 3.130 2.236

Eigenvalues of PCoA 36.000 20.000

PCoA eigenvalues/(n – 1) 
= eigenvalues of corresponding PCA 9.000 5.000

Lengths:  =  6.000 = 4.472 = uik
2

i
) 36 20

D'hi uhk uik–( )
2

k 1=

c

)
1 2
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k 1=

c
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• Since the eigenvectors are scaled in such a way that their lengths are  (in other
words, U is scaled here to !!!!1/2), the eigenvectors have the property that 33331 = UU'. One
can thus write:

33331 = [4hi] = 

from which it can be shown, following eq. 9.43, that:

Readers can verify this property on the above numerical example.

• Since 4hi =  (eq. 9.41), replacing the values of 4 in the right-hand
member of the previous equation gives:

hence

The transformation of A into    33331    is not essential. It is simply meant to eliminate one of
the eigenvalues, which could be the largest and would only account for the distance
between the centroid and the origin.

• The transformation of the matrix of original distances Dhi into A is such that
distances are preserved in the course of the calculations. Actually, one can replace the
ahi terms in the previous equation by –0.5  (eq. 9.40), which produces the equation

and, since Dhh = Dii = 0 (property of distances),

Principal coordinate analysis thus preserves the original distances, regardless of the
formula used to compute them. If the distances have been calculated from similarities,
Dhi = 1 – Shi will be preserved in the full-dimensional principal coordinate space. If
the transformation of similarities into distances was done by Dhi =  or
Dhi = , then it is these distances that are preserved by the PCoA. As a
corollary, these various representations in principal coordinate space should be as
different from one another as are the distances themselves.

Gower (1966) has also shown that principal coordinates can be directly computed from a
similarity matrix S instead of a distance matrix D, as follows: (1) make sure that the diagonal of
matrix S contains 1’s and not 0’s before centring; (2) centre matrix S using eq. 9.41 or 9.42

&k

u1u'1 u2u'2 … ucu'c+ + +

D'hi 4hh 4ii 24hi–+[ ]
1 2=
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without applying eq. 9.40 first; (3) compute the eigenvalues and eigenvectors; (4) multiply the
elements of each eigenvector k by &k

0.5. The distances  among the reconstructed point-
objects in the full-dimensional principal coordinate space are not the same as the distances
Dhi = (1 – Shi); they are distorted, being such that . Looking at it from another
viewpoint, the reconstructed distances  are larger than the distances Dhi = (1 – Shi)0.5 by a
factor  without further distortion. These relationships hold only if the centred matrix S is
positive semidefinite, i.e. if its eigen-decomposition does not produce negative eigenvalues.

To summarize, principal coordinate analysis produces a representation of objects in
Euclidean space that preserves the distance relationships computed using any measure
selected by users. This is a major difference with PCA, where the distance among
objects is always, by definition, the Euclidean distance (Table 9.1). In PCoA, the
representation of objects in the reduced space of the first few principal coordinates
forms the best possible Euclidean approximation of the original distances, because the
sum of squared lengths of the objects in the selected subspace is maximum (Gower,
1982). The quality of a Euclidean representation in a space of principal coordinates
can be assessed using a Shepard diagram (Fig. 9.1).

Contrary to principal component analysis, the relationships between the principal
coordinates and the original descriptors are not provided by a principal coordinate
analysis. Indeed the descriptors, from which distances were initially computed among
the objects, do not play any role during the calculation of the PCoA from matrix D.
However, computing the projections of descriptors in the space of the principal
coordinates to produce biplots is fairly simple:

(9.44)

(9.45)

Yc is the centred matrix of the original descriptors or any other set of explanatory
variables that users wish to project in the PCoA biplot. Y may need to be transformed
before it is centred and used in eq. 9.44; for example, dimensionally heterogeneous
physical variables need to be standardized. Ust is the matrix of PCoA eigenvectors
(n × c) standardized by columns (eq. 1.12); it may contain a subset of the eigenvectors
only, for example the first two. Spc is the covariance matrix between Y and the
standardized principal coordinates Ust; in the computation of this covariance matrix,
eq. 9.44 assumes that the descriptors in matrix Y are quantitative. The rows of matrix
Uproj correspond to the p descriptors to be added to the biplot, and its columns
correspond to the principal coordinates. For a PCoA conducted on a Euclidean
distance matrix (D1) computed from Y, the PCoA biplot with matrix PC for objects
and matrix Uproj for descriptors is identical to a PCA distance biplot of Y
(Subsection 9.1.4), notwithstanding possible changes of signs along some of the axes
between the two analyses.

D'hi
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4 — Negative eigenvalues

There are distance matrices that do not allow a full representation of the distance
relationships among objects in Euclidean space (i.e. a set of real Cartesian
coordinates).

• Problems of Euclidean representation may result from the use of a distance measure
that violates the triangle inequality. Such distances are called semimetric and
nonmetric in Tables 7.2 and 7.3.

• Such problems may also result from an imbalance in the distance matrix, due to the
handling of missing values. See for instance how missing values are handled in
coefficients S15, S16, S19, and S20 of Chapter 7, using Kronecker delta functions.

• Some metric distance matrices present problems of “non-Euclideanarity”, as
described by Gower (1982, 1985). Figure 9.16 illustrates such a case; the closing of all
individual triangles (triangle inequality condition, Section 7.4) is a necessary, but not a
sufficient condition to guarantee a full Euclidean representation of a set of objects.
This “non–Euclideanarity”, when present, translates itself into negative eigenvalues.

Non-Euclide-
anarity

Figure 9.16 This figure, from Gower (1982), illustrates a case where the triangle inequality is not violated,
yet no Euclidean representation of the four points (x1 to x4) is possible because the distances D,
which are all equal, are too small for the three representations of the inner point (x4) to join in a
single point. Assuming that the outer edges are all of lengths 1, the triangle inequality will be
violated if D is smaller than 0.5. On the contrary, a two-dimensional Euclidean representation of
the four points will be possible with D =  because then the three representations of x4 will
meet at the centroid. With D > , the Euclidean representation of the four points, x1 to x4,
will form a three-dimensional pyramid.
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For instance, most of the metric distances resulting from the transformation of a
similarity coefficient using the formula D = 1 – S are non-Euclidean (Table 7.2). This
does not mean that all distance matrices computed using these coefficients are non-
Euclidean, but that cases can be found where PCoA produces negative eigenvalues.
Among the metric coefficients described in Subsection 7.4.1, several were
demonstrated to be Euclidean whereas others are not Euclidean (Table 7.3). 

Tables 7.2 and 7.3 show that, for many coefficients, the distances  or
 are Euclidean even though the distances D or D = (1 – S) are not

Euclidean. The use of  or the transformation  should thus be
preferred before computing PCoA using those coefficients. This transformation solves
the negative eigenvalue problem even for coefficients that are known to be semimetric.
This is the case, for instance, with coefficients S8, S17, and the percentage difference
(D14 = 1 – S17), which are widely used by ecologists to analyse tables of species
presence or abundance data. A square-root transformation of D14 = 1 – S17, for
example, eliminates negative eigenvalues in principal coordinate analysis; see
Numerical example 1 (continued) in Subsection 9.3.5. In support of this statement,
Gower & Legendre (1986) have shown that coefficient S8, which is the binary form of
S17, is Euclidean when transformed into , and simulations have never
turned up cases where  is non-Euclidean.

When one does not wish to apply a square root transformation to the distances, or
when negative eigenvalue problems persist in spite of a square root transformation,
Gower & Legendre (1986) have shown that the problem of “non–Euclideanarity”, and
of the negative eigenvalues that come with it, can be solved by adding a (large enough)
constant to all values of a distance matrix that would not lend itself to full Euclidean
representation. No correction is made along the diagonal, though, because the distance
between an object and itself is always zero. Actually, adding some large constant
would make the negative eigenvalues disappear and produce a fully Euclidean
representation, but it would also create an extra dimensions (and eigenvalue) to
express the additional variance so generated. In Fig. 9.17c, for instance, adding a large
value, like 0.4, to all six distances among the four points in the graph would create a
pyramid, requiring three dimensions for a full Euclidean representation instead of two. 

The problem is to add just the right amount to all distances in the matrix to
eliminate all negative eigenvalues and produce a Euclidean representation of the
distance relationships among objects, without creating unnecessary extra dimensions.
Following Gower & Legendre (1986, Theorem 7*), this result can be obtained by
adding a constant c to either the squared distances  or the original distances Dhi .
This provides two methods for adjusting the original distances and correcting for their
non-Euclidean behaviour.

*  The present subsection corrects two misprints in theorem 7 of Gower & Legendre (1986).

D
D 1 S–=

D Dhi 1 Shi–=

D 1 S8–=
D 1 S17–=

Dhi
2
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• Correction method 1 (derived from the work of Lingoes, 1971). — Add a constant to
all squared distances , except those on the diagonal, creating a new matrix  of
distances  through the following transformation:

      for h 6 i (9.46)

How to obtain c1 is described a few lines below. Then proceed to the transformation of
 into matrix  using eq. 9.40. The two operations may be combined into a single

transformation producing the new matrix  directly from the original
distances Dhi:

     for h 6 i

Then, proceed with eq. 9.41 and recompute the PCoA. The constant to be added, c1, is
the absolute value of the largest negative eigenvalue obtained by analysing the original
matrix 33331. Constant c1 is also used in eq. 9.48 below. After correction, all non-zero
eigenvalues are augmented by a value equal to c1, so that the largest negative
eigenvalue is now shifted to value 0. As a consequence, the corrected solution has two
null eigenvalues (hence a maximum of n – 2 dimensions), or more if the matrix is
degenerate. The constant c1 is the smallest value that will produce the desired effect.
Any value larger than c1 would also eliminate all negative eigenvalues and make the
system fully Euclidean, but it would also create a solution requiring more dimensions.

Figure 9.17 (a) Distances among four points constructed in such a way that the system cannot be represented
in Euclidean space because the three lines going towards point x4 do not meet. (b) By adding a
constant to all distances (c2 = 0.2 in the present case), correction method 2 makes the system
Euclidean; in this example, the distances can be associated with a representation of the points in
two-dimensional space. (c) When increasing the distances further (adding again 0.2 to each
distance in the present case), the system remains Euclidean but requires more dimensions for
representation (three dimensions in this example).
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• Correction method 2 (proposed by Cailliez, 1983). — Add a constant c2 to all
elements Dhi of matrix D, except those on the diagonal, creating a new matrix  of
distances  through the transformation:

      for h 6 i (9.47)

and proceed to the transformation of  into matrix  using eq. 9.40. The two
operations may be combined into a single transformation producing the new matrix

 directly from the original distances Dhi:

     for h 6 i

Then, proceed with eq. 9.41 and recompute the PCoA. The constant to be added, c2, is
equal to the largest positive eigenvalue obtained by analysing the following special
matrix, which is of order 2n:

where 0 is a null matrix, I is an identity matrix, 33331 is the centred matrix defined by
eqs. 9.40 and 9.41, and 33332 is a matrix containing values (–0.5Dhi) centred using
eq. 9.41. The order of each of these matrices is n. Beware: the special matrix is
asymmetric. Press et al. (2007) describe an algorithm to compute the eigenvalues of
such a matrix. Function eigen() of R can also compute them. The solution has two null
eigenvalues (hence a maximum of n – 2 dimensions), or more if the matrix is
degenerate. The constant c2 is the smallest value that will produce the desired effect;
any value larger than c2 would also eliminate all negative eigenvalues and make the
system fully Euclidean, but the solution would require more dimensions. Figure 9.17a-
b shows the effect of adding constant c2 to a non-Euclidean group of four points, and
Fig. 9.17c shows the effect of adding a value larger than c2.

The two correction methods do not produce the same Euclidean representation.
This may be understood by examining the consequences of adding c2 to the distances
in D. When  is transformed into  (eq. 9.40), (Dhi + c2) becomes:

     for h 6 i

The effect on  does not only depend on the value of c2 but it also varies with each
value Dhi. This is clearly not the same as subtracting a constant from all ahi values
(i.e. correction method 1). The eigenvectors resulting from one or the other correction
also differ from those resulting from a PCoA without correction for negative
eigenvalues. The two correction methods, and PCoA without correction, thus
correspond to different partitions of the variation because the total variance, given by
the trace of centred matrix 33331, differs among methods.

D̂
D̂hi

D̂hi Dhi c2+=

D̂ Â

Â âhi[ ]=

âhi  12
--- Dhi c2+( )

2–=

  0        233331

I–    433332–
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How large must constants c1 and c2 be for coefficient D14 = 1 – S17, which is
important for the analysis of species abundance data? To answer this question,
Legendre & Anderson (1999) simulated species abundance data matrices. After
computing distance D14, the correction constants (c1 for method 1, c2 for method 2)
increased nearly linearly with the ratio (number of sites:number of species). In
extremely species-poor ecosystems, corrections were the largest; for instance, with a
ratio 20:1 (e.g. 200 sites, 10 species), c1 was near 0.4 and c2 was near 0.8. When the
ratio was near 1:1 (i.e. number of sites 7 number of species), c1 was about 0.06 and c2
was about 0.2. In species-rich ecosystems, corrections were small, becoming smaller
as the species richness increased for a constant number of sites; with a ratio 1:2 for
example (e.g. 100 sites, 200 species), c1 was near 0.02 and c2 was about 0.1. Results
also depended to some extent on the data generation parameters.

To summarize, all methods for eliminating negative eigenvalues operate by making
the small distances larger, compared to the large distances, in order to allow all
triangles to close (Figs. 9.16, 9.17a and b). As explained above, the first approach
consists in taking the square root of all distances; this reduces the largest distances
more than the small ones. The other two approaches (described above as correction
methods 1 and 2) involve adding a constant to all non-diagonal distances; small
distances are proportionally more augmented than large distances. In correction
method 1, a constant (2c1) is added to the squared distances  whereas in method 2
a constant (c2) is added to the distances  themselves.*

Numerical example 3. Consider the numerical example used in Subsection 7.4.2 to
demonstrate the semimetric nature of the percentage difference (D14). The data matrix contained
3 objects and 5 species. Matrix D, matrix A = , and matrix 33331 are:

D =   A =   33331= 

The trace of 33331 is 0.21597. The eigenvalues are: &1 = 0.21645, &2 = 0.00000, and
&3 = –0.00049. The sum of the eigenvalues is equal to the trace. 

For correction method 1, value c1 = 0.00049 is subtracted from all non-diagonal values of A
to give , which is then centred (eq. 9.41) to give the corrected matrix 33331:

 =   33331 = 

The trace of the corrected matrix 33331 is 0.21694. The corrected eigenvalues are: &1 = 0.21694,
&2 = 0.00000, and &3 = 0.00000. This Euclidean solution is one-dimensional.

*  In the R language, function pcoa() in APE offers these two corrections.

Dhi
2

Dhi

0.5Dhi
2–[ ]

0.00000 0.05882 0.60000
0.05882 0.00000 0.53333
0.60000 0.53333 0.00000

  0.00000 0.00173– 0.18000–
0.00173–   0.00000 0.14222–
0.18000– 0.14222–   0.00000

  0.04916   0.03484 0.08401–
  0.03484   0.02398 0.05882–

0.08401– 0.05882–   0.14283

Â

Â
  0.00000 0.00222– 0.18049–

0.00222–   0.00000 0.14271–
0.18049– 0.14271–   0.00000

  0.04949   0.03468 0.08417–
  0.03468   0.02430 0.05898–

0.08417– 0.05898–   0.14315
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For correction method 2, value c2 = 0.00784, which is the largest eigenvalue of the special
matrix, is added to all non-diagonal elements of matrix D to obtain , which is then
transformed into  (eq. 9.40) and centred (eq. 9.41) to give the corrected matrix 33331:

 =   =  33331= 

The trace of the corrected matrix 33331 is 0.22226. The corrected eigenvalues are: &1 = 0.22226,
&2 = 0.00000, and &3 = 0.00000. This Euclidean solution is one-dimensional, as was the case
with correction method 1.

Using the square root of coefficient D14, matrices D, A and 33331 are:

D =   A =  33331 = 

The trace of 33331 is 0.39739. The eigenvalues are: &1 = 0.36906, &2 = 0.02832, and &3 = 0.00000.
No negative eigenvalue is produced using this coefficient. This Euclidean solution is two-
dimensional.

If negative eigenvalues are present in a full-dimensional PCoA solution and no
correction is made to the distances to eliminate negative eigenvalues, problems of
interpretation arise. Since the eigenvectors uk are scaled to length , it follows that
the axes corresponding to negative eigenvalues are not real, but complex. Indeed, in
order for the sum of squares of the uik’s in an eigenvector uk to be negative, the
coordinates uik must be imaginary numbers. When some of the axes of the reference
space are complex, the distances cannot be fully represented in Euclidean space, as in
the example of Figs. 9.16 and 9.17a. 

It is, however, legitimate to investigate whether the Euclidean approximation
corresponding to the positive eigenvalues (i.e. the non-imaginary principal
coordinates) provides a good representation, when no correction for negative
eigenvalues is applied. Cailliez & Pagès (1976) have shown that such a representation
is meaningful as long as the largest negative eigenvalue is smaller, in absolute value,
than any of the m positive eigenvalues of interest for representation in reduced space
(usually, the first two or three). 

When there are no negative eigenvalues, the quality of the representation in a
reduced Euclidean space with m dimensions can be assessed, as in principal
component analysis (eq. 9.5), by the R2-like ratio:

(9.5)

D̂
Â

D̂
0.00000 0.06667 0.60784
0.06667 0.00000 0.54118
0.60784 0.54118 0.00000

Â
  0.00000 0.00222– 0.18474–

0.00222–   0.00000 0.14644–
0.18474– 0.14644–   0.00000

  0.05055   0.03556 0.08611–
  0.03556   0.02502 0.06058–

0.08611– 0.06058–   0.14669

0.00000 0.24254 0.77460
0.24254 0.00000 0.73030
0.77460 0.73030 0.00000

  0.00000 0.02941– 0.30000–
0.02941–   0.00000 0.26667–
0.30000– 0.26667–   0.00000

  0.08715   0.04662 0.13377–
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0.13377– 0.11155–   0.24532
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where c is the number of positive eigenvalues. This comes from the fact that the
eigenvalues of a PCoA are the same (to a factor n – 1) as those of a PCA performed on
the coordinates of the same points in the full-dimensional space of the principal
coordinates, e.g. the object coordinates in Table 9.10. Cailliez & Pagès (1976) further
suggested that, when negative eigenvalues are present, a correct estimate of the quality
of a reduced-space representation can be obtained by the corrected R2-like ratio:

(9.48)

where m is the dimensionality of the reduced space, n is the order of the distance
matrix (total number of objects), and c1 is the absolute value of the largest negative
eigenvalue; c1 was found in correction method 1 above. Equation 9.48 gives the same
value as if correction method 1 had been applied to the distance matrix, the PCoA had
been recomputed, and the quality of the representation had been calculated using
eq. 9.5. All non-zero eigenvalues would be augmented by a value equal to c1 = |&n|,
producing the same changes to the numerator and denominator as in eq. 9.48.

5 — Ecological applications

Principal coordinate analysis is an ordination method of great interest to ecologists
because the nature of ecological descriptors often makes it necessary to use other
measures of resemblance than the Euclidean distance preserved by principal
component analysis or the (2 distance preserved by correspondence analysis
(Table 9.1). Ordination methods such as principal coordinate analysis and nonmetric
multidimensional scaling (Section 9.4) provide Euclidean representations of point-
objects for any distance measure selected by users. 

Numerical example 1 (continued from Subsection 9.2.5). From the data shown in Fig. 9.10
and Table 9.7, four Q-mode distance measures were computed among sites (Table 9.11) to
illustrate some properties of principal coordinate analysis. 

• Row 1 of Table 9.11 — The Euclidean distance D1 is a symmetrical coefficient. It is not ideal
for species abundance data, and it is only used here for comparison. A principal coordinate
analysis of this matrix led to 19 eigenvalues: three positive (accounting for 50, 41, and 9% of the
variation, respectively) and 16 null. This was expected since the original data matrix contained
three variables.

• Row 2 — Distance D14 is often applied to species abundance data. Like its one-complement
S17, it excludes double-zeros. Principal coordinate analysis of this distance matrix led to 19
eigenvalues: 11 positive, one null, and 7 negative. The distance matrix was corrected using
method 1 of Subsection 9.3.4, which makes use of the largest negative eigenvalue. PCoA
produced 17 positive and two null eigenvalues, the largest one accounting for 31% of the
variation. The distance matrix was also corrected using method 2 of Subsection 9.3.4, which
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makes use of the largest eigenvalue of the special matrix. PCoA also produced 17 positive and
two null eigenvalues, the largest one accounting for 34% of the variation.

• Row 3 — Principal coordinate analysis was also conducted using the square root of coefficient
D14. The analysis led to 18 positive, one null, and no negative eigenvalues, the largest one
accounting for 35% of the variation.

• Row 4 — A fourth distance matrix was computed using the (2 distance D16, which excludes
double-zeros. Principal coordinate analysis produced 19 eigenvalues: two positive (accounting
for 4 and 36% of the variation, respectively) and 17 null. The (2 distance (D16) is the coefficient
preserved in correspondence analysis (CA, Section 9.2), which would also produce two positive
eigenvalues with these data. Indeed, CA always produces one dimension less than the original
number of species, or fewer in the case of degenerate matrices.

This example shows that different distance measures may lead to very different numbers
of dimensions of the Euclidean representations. In the analyses reported here, the numbers
of dimensions obtained were 3 for distance D1, 11 for uncorrected D14 (not counting the
complex axes corresponding to negative eigenvalues), 17 for D14 after correction by the
largest negative eigenvalue, 18 for the square root of D14, and 2 for D16. 

For the example data, the PCA ordination (Fig. 9.11a, b) is identical to the ordination that
would have been obtained from PCoA of a matrix of Euclidean distances among sites, as shown
in Numerical example 2 (Subsection 9.3.2). In the same way, the ordination of sites in the
CA plot (Fig. 9.11c), which used scaling type 1, is similar to a PCoA ordination that would
be obtained from a matrix of (2 distances (D16) among sites. The ordinations (Fig. 9.18)
obtained from distance coefficients D14 and  are also of interest because these
coefficients are often used to analyse community composition data; they are illustrated in
Fig. 9.18a-d. The ordinations produced by these coefficients are quite similar to each other
and present horseshoes, which are not as pronounced as in PCA because coefficients D14 and

 exclude double-zeros from the calculations. In Fig. 9.18a (coefficient D14), sites 6 to
14 form an arch depicting the three-species gradient, with arms extending in a perpendicular

Table 9.11 Distance matrices computed from the artificial data in Fig. 9.10 and Table 9.7. Each row in this
table corresponds to the first row of a distance matrix, comparing site 1 to itself and to the 18
other sites. The remaining rows of the distance matrices are not shown to save space; readers can
compute these matrices from the data in Table 9.7. Values are rounded to a single decimal place.

Sampling sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D1 (Euclidean) 0.0 1.0 3.0 6.0 7.0 6.1 3.6 4.1 7.0 8.1 7.1 4.6 4.6 7.1 8.1 7.1 4.1 2.2 1.4

D14 = (1 – S17) 0.0 0.3 0.6 0.8 0.8 0.8 0.7 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 0.0 0.6 0.8 0.9 0.9 0.9 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

D16 ((2 distance) 0.0 0.0 0.0 0.0 0.0 0.3 0.8 1.6 2.1 2.4 2.3 2.2 2.2 2.3 2.4 2.4 2.4 2.4 2.4

D14

D14

D14
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direction (axis III, Fig. 9.18b) to account for the dispersion of sites 1 to 5 and 15 to 19,
each group containing one species only, as shown in Table 9.7. The ordination produced by
coefficient  is very similar to the above (Fig. 9.18c-d). There are two advantages to

 over D14, though:  never produces negative eigenvalues and, in the present
case at least, the ordination explains more variation than D14 in two or three dimensions.

Only the Euclidean distance and derived coefficients lead to a number of principal
axes equal to the original number of descriptors. Other coefficients may produce fewer,
or more axes. The dimensionality of a principal coordinate space is a function of the

Figure 9.18 Principal coordinate ordinations of the data in Fig. 9.10 and Table 9.7. Distance D14, analysis
corrected for negative eigenvalues: (a) PCoA axes I and II (&1 = 30.8%, &2 = 18.6%), (b) axes I
and III (&1 = 30.8%, &3 = 8.3%). Distance : (c) PCoA axes I and II (&1 = 34.5%,
&2 = 22.9%), (d) axes I and III (&1 = 34.5%, &3 = 10.5%).
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number of original descriptors, mediated through the distance measure that was
selected for the analysis.

There are many applications of principal coordinate analysis in the ecological
literature. This method may be used in conjunction with clustering techniques; an
example is presented in Ecological application 10.1. Direct applications of the method
are summarized in Ecological applications 9.3a and 9.3b. The application of principal
coordinate analysis to the clustering of large numbers of objects is discussed in
Subsection 8.7.3.

Ecological application  9.3a

Field & Robb (1970) studied the molluscs and barnacles from a rocky shore (21 quadrats) in
False Bay, South Africa, in order to determine the influence of factors emergence (the height on
the shore relative to the mean sea level) and wave on these communities. Quadrats 1 to 10, on a
transect parallel to the shoreline, differed in their exposure to wave action; quadrats 11 to 21,
located on a transect at right angle to the shoreline, covered the spectrum between the mean high
and mean low waters of spring tides. 79 species were enumerated, one reaching 10864
individuals in a single quadrat. When going up the shore, quadrats had progressively larger
numbers of individuals and smaller numbers of species. This illustrates the principle that
increasing environmental stress (here, the emergence factor) is accompanied by decreasing
diversity. It also shows that the few species that can withstand a high degree of stress do not
encounter much interspecific competition and may therefore become very abundant.

The same principal coordinate ordination could have been obtained by estimating species
abundances with a lesser degree of precision, e.g. using classes of abundance. Table 7.4 gives
the association measures that would have been appropriate for such data.

Species abundances  were first normalized by logarithmic transformation
, and centred ( ), to form matrix Y = [yij] containing the

data to be analysed. Scalar products among quadrat vectors were used as measures of similarity:

Principal coordinates were computed using a variant procedure proposed by Orlóci (1966).
Figure 9.19 displays the ordination of quadrats 1 to 19 in the space of the first two principal
coordinates. The ordination was also calculated including quadrats 20 and 21 but, since these
came from the highest part of the shore, they introduced so much variation in the analysis that
the factor emergence dominated the first two principal coordinates. For the present ecological
application, only the ordination of quadrats 1 to 19 is shown. The authors looked for a
relationship between this ordination and the two environmental factors, by calculating
Spearman’s rank correlation coefficients (eq. 5.3) between the ranks of the quadrats on each
principal axis and their ranks on the two environmental factors. This showed that the first
principal axis had a significant correlation with elevation with respect to the shoreline
(emergence), and the second axis was significantly related to wave action. The authors
concluded that PCoA is well adapted to the study of ecological gradients, provided that the data
set is fairly homogeneous. (Correspondence analysis, described in Section 9.2, would have been
another appropriate way of obtaining an ordination of these quadrats.)

y'ij( )
y''ij  loge y'ij 1+( )= yij y''ij yi–=

Sn n× Yn p× Y'p n×=
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Ecological application  9.3b

Ardisson et al. (1990) investigated the spatio-temporal organization of epibenthic communities
in the Estuary and Gulf of St. Lawrence, an area ca. 1150 × 300 km. Quantitative data were
obtained over 8 years, between 1975 and 1984, from 161 collectors (summer navigation buoys)
moored yearly from May through November, and retrieved by the Canadian Coastguard before
winter ice formation. 

Each year was represented by a data table of 161 sites (buoys) × 5 dominant species (dry
biomass). A similarity matrix among sites was computed for each year separately, using the
asymmetrical form of the Gower similarity coefficient (S19). The eight yearly matrices were
compared to one another using Mantel statistics (Subsection 10.5.1). A principal coordinate
analysis (Fig. 9.20) was conducted on the resulting matrix of (1 – Mantel) statistics to determine
whether year-to-year differences were random or organized. The among-year pattern of
dispersion suggested the existence of a cycle of variation whose length was about equal to the
duration of the study. This cycle might represent the response of the Estuary-Gulf system, as an
integrated unit, to external inputs of auxiliary energy, although the specific causal process,
physical or biotic, remains unknown.

The same type of analysis as in this ecological application, i.e. comparing several data
matrices about the same objects, could be based on RV coefficients (eq. 11.66) computed
between all pairs of data matrices. The corresponding distance-like coefficients (1 – RV) would
be assembled in a square distance matrix and PCoA would be computed on that matrix to obtain
an ordination of the type illustrated in Fig. 9.20.

Figure 9.19 Ordination of quadrats 1 to 19 in the space of the first two principal coordinates (PCoA axes I
and II). Modified from Field & Robb (1970).
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This last ecological application showed that the usefulness of principal coordinate
analysis is not limited to projecting, in reduced space, classical resemblance matrices
among objects. In that example, the relationships among data tables, as expressed by
Mantel statistics, were represented in a Euclidean space using PCoA. The method may
actually be applied to any type of symmetric resemblance matrices. This includes
cases where the measures of resemblance are obtained directly from observation
(e.g. interaction matrices in behavioural studies) or from laboratory work (DNA
hybridisation results, serological data, etc.). If the resulting matrix is non-symmetric, it
may be decomposed into a symmetric and a skew-symmetric component (Section 2.3),
which can be analysed separately by PCoA. 

6 — Algorithm

Principal coordinate analysis is easy to compute for any distance matrix, using a
standard eigenanalysis function. Follow the steps summarized in Table 9.12.

Figure 9.20 Among-year variability illustrated in the space of the first two principal coordinates, obtained
from analysing a matrix of Mantel statistics comparing yearly similarity matrices. Recomputed
from the Mantel statistic values provided in Fig. 8 of Ardisson et al. (1990).
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9.4 Nonmetric multidimensional scaling (nMDS)

The reduced-space ordination methods of the previous sections produced an ordination
(scaling) of the objects in full-dimensional space. Users could then select the first few
dimensions and check how well the distance relationships among the objects were
preserved in that reduced space. There are cases, however, where the exact
preservation of the distances among objects is not of primary importance, the priority
being instead the representation of the objects in a small and specified number of
dimensions, usually two or three. In such cases, the objective is to plot dissimilar
objects far apart in the ordination space and similar objects close to one another. This
is called the preservation of ordering relationships among objects. The method to do
so is called nonmetric multidimensional scaling (nMDS, or simply MDS). It was
devised by psychometricians Shepard (1962, 1966) and Kruskal (1964a, b). Programs
for nMDS were originally distributed by Bell Laboratories in New Jersey, where the
method originated; see Carroll (1987) for a review. The method is now available in
several major (SPSS, SAS, SYSTAT, etc.) and specialized computer packages as well as
in R*. A useful reference is the book of Kruskal & Wish (1978). Relationships between
nMDS and other forms of ordination have been described by Gower (1987).
Extensions of nMDS to several matrices, weighted models, the analysis of preference
data, etc. are discussed by Young (1985) and Carroll (1987). A form of hybrid scaling,
combining metric and nonmetric scaling criteria, was proposed by Faith et al. (1987);
it was further explained in Belbin (1991) and is available in packages DECODA (written
by Peter R. Minchin) and PATN.

Table 9.12 Computing principal coordinates.

a) Centre the distance matrix

Transform and centre the distance matrix following Gower’s method (eqs. 9.40 and 9.41).

b) Compute the eigenvalues and eigenvectors

Use an eigen-decomposition function†.

c) Final scaling

Scale each eigenvector k to length  to obtain the principal coordinates.

† For a matrix of Euclidean distances D1, the eigenvalues obtained from PCoA are larger than
those of PCA by a factor (n – 1).

&k
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Like principal coordinate analysis (PCoA), nMDS is not limited to Euclidean
distance matrices; it can produce ordinations of objects from any distance matrix. The
method can also proceed with missing distances — actually, the more missing
distances there are, the easier the computations — as long as there are enough
measures left to position each object with respect to a few of the others. This feature
makes it a method of choice for the analysis of matrices obtained by direct observation
(e.g. behaviour studies) or laboratory assays, where missing pairwise distances often
occur. Some programs can handle non-symmetric distance matrices, for which they
provide a compromise solution between distances in the upper and lower triangular
parts of the matrix. Contrary to PCA, PCoA, or CA, which are eigenvector-based
methods, nMDS calculations do not maximize the variability associated with
individual axes of the ordination; nMDS axes are arbitrary, so that plots may arbitrarily
be rotated, centred, or inverted. Reasons for this will become clear from the
presentation of the method.

Consider a distance matrix Dn×n = [Dhi] computed using a measure appropriate to
the data at hand (Chapter 7). Matrix D may also result from direct observations,
e.g. affinities among individuals or species found in serological, DNA pairing, or
behavioural studies; these matrices may be non-symmetric. Nonmetric
multidimensional scaling of matrix D may be summarized in the following steps.

1) Specify the number m of dimensions chosen a priori for scaling the objects. The
output will provide coordinates of the n objects on m axes. If several configurations for
different numbers of dimensions are sought — say, 2, 3, 4, and 5 dimensions, they
must be computed separately. Several programs actually allow solutions to cascade
from high to low numbers of dimensions — for instance from 4 to 3 to 2 to 1.

2) Construct an initial configuration of the objects in m dimensions, to be used as a
starting point for the iterative adjustment process of steps 3 to 7. The way this initial
configuration is chosen is critical because the solution on which the algorithm
eventually converges depends to some extent on the initial positions of the objects. The
same problem was encountered with K-means partitioning (Section 8.8); the “space of

*  nMDS is available in R functions listed in Section 9.5. It is also found in the following
commercially available packages (list not exhaustive): 
• NTSYSPC. Distribution: see footnote in Section 7.8. 
• PATN. Distribution: see footnote in Section 7.8.
• PRIMER. That package was developed by M. R. Carr and K. R. Clarke at the Plymouth Marine
Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, Great Britain. 
• PC-ORD. Distribution: see footnote in Section 11.7. Besides nMDS, PC-ORD contains many
other methods of multivariate ecological data analysis. 
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solutions” may contain several local minima besides the overall minimum (Fig. 8.17).
The usual solutions to this problem are the following:

• Run the program several times, starting from different random initial placements of
the objects. The solution minimizing the objective function (step 5) is retained. 

• Initiate the run from an ordination obtained using another method, e.g. PCoA. 

• If the data are thought to be spatially structured and the geographic positions of the
objects are known, these geographic positions may be used as the starting
configuration for nMDS of a matrix D computed from the data.

• Work step by step from higher to lower dimensionality. Compute, for instance, a first
nMDS solution in 5 dimensions from a random initial placement of the objects. Note
the stress value (eqs. 9.49 to 9.51), which should be low because the high number of
dimensions imposes little constraint to the distances. Use 4 of the 5 dimensions so
obtained as the initial configuration for a run in 4 dimensions, and so forth until the
desired number (m) of ordination dimensions is reached.

3) Calculate a matrix of fitted distances dhi in the ordination space, using one of
Minkowski’s metrics (D6, eq. 7.43). Most often, one chooses the second degree of
Minkowski’s metric, which is the Euclidean distance. (a) In the first iteration, distances
dhi are computed from the initial (often random) configuration. (b) In subsequent
iterations, the configuration is that obtained in step 6.

4) Consider the Shepard diagram (Figs. 9.1 and 9.21b) comparing the fitted
distances dhi to the empirical (i.e. original) distances Dhi. Regress dhi on Dhi. Values
forecasted by the regression line are called . The choice of the type of regression is
left to the users, given the choices implemented in the computer program. Usual
choices are the linear, polynomial, or monotone regressions (also called
“nonparametric”, although there are other types of nonparametric regression methods). 

Monotone regression is a step-function constrained to always increase from left to
right (Fig. 9.21b); this is a common choice in nMDS. A monotone regression is
equivalent to a linear regression performed after monotonic transformation of the
original distances Dhi, so as to maximize the linear relationship between Dhi and dhi.
The regression is fitted by least squares.

If there are tied values among the empirical distances, Kruskal (1964a, b) proposed
two approaches that may be followed in monotone regression. Ties are likely to occur
when the empirical distances Dhi are computed from a table of raw data using one of
the coefficients described in Chapter 7; they are less likely to occur when distances
result from direct observations. In Fig. 9.21b, for instance, there are ties for several of
the values on the abscissa; the largest number of ties is found at D = Dmax = 1. 

• In Kruskal’s primary approach, one accepts the fact that, if an empirical distance Dhi
corresponds to different fitted values dhi, it also corresponds to different forecasted

Local
minimum

Shepard
diagram

d̂hi

Tied values
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values . Hence the monotone regression line is allowed to go straight up in a
column of tied values, subject to the constraint that the regression line is not allowed to
decrease compared to the previous values D. The monotone regression line is not a
mathematical function in that case, however. In order to insure monotonicity, the only
constraint on the  values is:

when Dgi < Dhi, then 

• In the secondary approach, the forecasted value  is the same for all fitted
distances dhi that are tied to a given empirical distance value Dhi. To insure
monotonicity, the constraints on the  values are:

when Dgi < Dhi, then 

when Dgi = Dhi, then 

In this approach, the least-squares solution for  is the mean of the tied dhi’s when
considering a single value Dhi. The vertical difference in the diagram between dhi and

 is used as the contribution of that point to the stress formula, below. In Fig. 9.21b,
the secondary approach is applied to all tied values found for Dhi < (Dmax = 1), and the
primary approach when Dhi = Dmax = 1.

Computer programs may differ in the way they handle ties. This may cause major
differences between reported stress values corresponding to the final solutions,
although the final configurations of points are usually very similar from program to
program, except when two programs identify different final solutions having very
similar stress values.

A reduced-space scaling would be perfect if all points in the Shepard diagram fell
exactly on the regression line (straight line, smooth curve, or step-function); the rank
ordering of the fitted distances dhi would be exactly the same as that of the original
distances Dhi and the value of the objective function (step 5) would be zero.

5) Measure the goodness-of-fit of the regression using an objective function. All
objective functions used in nMDS are based on the sum of the squared differences
between fitted values  and the corresponding values  forecasted by the
regression function; this is the usual sum of squared residuals of regression analysis
(least-squares criterion, Subsection 10.3.1). Several variants have been proposed and
are used in nMDS programs:

Stress (formula 1) = (9.49)

Stress (formula 2) = (9.50)
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Sstress = (9.51)

The denominators in the two Stress formulas (eqs. 9.49 and 9.50) are scaling terms that
make the objective functions dimensionless and produce Stress values between 0
and 1. These objective functions may apply the square root, or not, without changing
the issue; a configuration that minimizes these objective functions would also
minimize the non-square-rooted forms. Other objective criteria, such as Strain, have
been proposed. All objective functions measure how far the reduced-space
configuration is from being monotonic to the original distances Dhi. Their values are
only relative, measuring the decrease in lack-of-fit between iterations of the
calculation procedure.

6) Improve the configuration by moving it slightly in a direction of decreasing
stress. This is done by a numerical optimization algorithm called the method of
steepest descent; the method is explained, for instance, in Numerical Recipes (Press et
al., 2007) and in Kruskal (1964b). The direction of steepest descent is the direction in
the space of solutions along which stress is decreasing most rapidly. This direction is
found by analysing the partial derivatives of the stress function (Carroll, 1987). The
idea is to move points in the ordination plot to new positions that are likely to decrease
the stress most rapidly.

7) Repeat steps 3 to 6 until the objective function reaches a small, predetermined
value (tolerated lack-of-fit), or until convergence is achieved, i.e. until it reaches a
minimum and no further progress can be made. The coordinates calculated at the last
passage through step 6 become the coordinates of the n objects in the m dimensions of
the multidimensional scaling ordination.

8) Most nMDS programs rotate the final solution using principal component
analysis, for easier interpretation.

In most situations, users of nMDS decide that they want a representation of the
objects in two or three dimensions, for illustration or other purpose. In some cases,
however, one wonders what the “best” number of dimensions would be for a data set,
i.e. what would be the best compromise between a summary of the data and an
accurate representation of the distances. As pointed out by Kruskal & Wish (1978),
determining the dimensionality of an nMDS ordination is as much a substantive as a
statistical question. The substantive aspects concern the interpretability of the axes,
ease of use, and stability of the solution. The statistical aspect is easier to approach
since stress may be used as a guide to dimensionality. Plot the stress values as a
function of dimensionality of the solutions, using one of the stress formulas above
(eqs. 9.49 to 9.51). Since stress decreases as dimensionality increases, choose for the
final solution the dimensionality where the change in stress becomes small.

For species count data, Faith et al. (1987) have shown, through simulations, that
the following strategy yields informative ordination results: (1) standardize the data by

dhi
2 d̂hi

2
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dividing each value by the maximum abundance for that species in the data set; (2) use
the Steinhaus (S17) or the Kulczynski (S18) similarity measure; (3) compute the
ordination by nMDS.

Besides the advantages mentioned above for the treatment of nonmetric distances
or non-symmetric matrices (see also Sections 2.3 and 8.10 on this topic), Gower
(1966) pointed out that nMDS can summarize distances in fewer dimensions than
principal coordinate analysis (i.e. lower stress in, say, two dimensions). Results of the
two methods may be compared by examining Shepard diagrams of the results obtained
by PCoA and nMDS, respectively. If the scatter of points in the Shepard diagram for
PCoA is narrow, as in Fig. 9.1a or b, the reduced-space ordination is useful in that it
correctly reflects the relative positions of the objects. If the scatter is wide or nearly
circular (Fig. 9.1c), the ordination diagram is of little use and one may try nMDS to
find a more satisfactory solution in a few dimensions. A PCoA solution remains easier
to compute in most cases, however, because it does not require multiple runs, and it is
obtained using a direct eigenanalysis algorithm instead of an iterative procedure.

Numerical example 1 (continued from Subsections 9.2.5 and 9.3.5). The percentage
difference distance matrix (D14) computed in Table 9.11 was subjected to nMDS analysis using
the package DECODA written by Peter R. Minchin. This nMDS program uses Stress formula 1
(eq. 9.49). Repeated runs, using m = 2 dimensions but different random starting configurations,
produced very similar results; the best one had a stress value of 0.0181 (Fig. 9.21a). 

Kruskal’s secondary approach, explained with computation step 4 above, was used in
Fig. 9.21b for all tied values found when Dhi < Dmax , while the primary approach was used
when Dhi = Dmax = 1. The rationale for this follows from the fact that the empirical distances Dhi
are blocked by an artificial ceiling Dmax of the distance function, over which they cannot
increase. So, pairs of sites tied at distance Dmax = 1, for which dhi is larger than the previous
value , are not expected to be the same distance apart in the ordination. Hence these values
should not contribute to the stress despite their ties.

Using  as the distance measure, instead of D14, produced an identical ordination,
since nMDS is invariant to monotonic transformations of the distances. The stress value did not
change either, because the square root transformation of D14 affects only the abscissa of
Fig. 9.21b, whereas the stress is computed along the ordinate. The arch effect found in
Fig. 9.18a does not appear in Fig. 9.21a. The horizontal axis of the nMDS ordination reproduces
the original gradient almost perfectly in this example.

Points in an nMDS plot may be rotated, translated, inverted, or scaled a posteriori in any
way considered appropriate to achieve maximum interpretability or to illustrate the results. This
may be done either by hand or, for example, through canonical analysis of the nMDS axes with
respect to a set of explanatory variables (Chapter 11).

With the present data, a one-dimensional ordination (stress = 0.1089) perfectly reconstructed
the gradient of sites 1 to 19; the same ordination was always obtained when repeating the run
from different random starting configurations and cascading from 3 to 2 to 1 dimensions. This
configuration, and the low stress value, were hardly ever obtained when performing the nMDS
ordination directly in one dimension, without the cascading procedure.

d̂

D14



518 Ordination in reduced space

Ecological application  9.4a

Sprules (1980) used nonmetric multidimensional scaling to analyse seasonal changes in
zooplankton assemblages at a site located in Lake Blelham, in the Lake District of northern
England, and in two experimental enclosures built in that lake. The three sites were surveyed on
a weekly basis from June to December 1976. nMDS was preferred to PCA because the
responses of the species to environmental gradients could not be assumed to be linear. 

For each site, points in the nMDS ordination diagram were connected in chronological order
to reflect the seasonal changes in faunal composition. The plot (not reproduced here) is therefore
of the same type as Fig. 12.24. In one of the enclosures, the assemblage oscillated about a mean
value without any clear cycle; small-size species dominated the assemblage. In the other
enclosure and in the lake, changes were more directional; at these sites, predators were more
abundant. Based on available evidence, Sprules concluded that the differences observed
between the two patterns of seasonal change were related to differences in predation intensity,
quality of food available to herbivores, and nutrient dynamics.

Ecological application  9.4b

Redford et al. (2010) studied the bacteria living on the surfaces of leaves of 56 tree species
found on the University of Colorado campus in Boulder, Colorado, USA. The bacterial
communities were characterized by barcoded pyrosequencing. The authors analysed the intra-

Figure 9.21 (a) nMDS ordination (2-dimensional) of the D14 distance matrix in Table 9.11. Sampling sites
are numbered as in Fig. 9.10 and Table 9.7. (b) Shepard diagram of the final solution (2-
dimensional) showing the monotone regression line fitted by nonparametric regression. The
scatter about the line is measured by a stress function (eq. 9.49 to 9.51).
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and inter-tree-species variation in bacterial community composition. They found the bacterial
communities to be more similar within a given tree species and among closely related species
than among phylogenetically distant host species. The results were illustrated by nMDS plots
computed from matrices of phylogenetic and community ecology distances among bacterial
communities. The authors also compared the bacterial communities found on Pinus ponderosa
needles from different locations with geographic distances ranging from 10 m to more than
10000 km; the bacterial floras of the leaves of three other tree species from Boulder were
included in this analysis. The authors found that the bacterial communities were more similar
among P. ponderosa trees from different locations than among different host species from the
University of Colorado campus in Boulder. 

Ecological application  9.4c

The relationship between snake community composition (46 sampling sites, 43 species) and
environmental variables was investigated by de Fraga et al. (2011) in a 25 km2 portion of
Reserva Ducke near Manaus (Amazonas, Brazil) in the rain forest. The authors computed the
first nMDS axis of a distance matrix based on the presence-absence of the species (Chao index,
Subsection 7.3.4), and related it to the distance from streams in a dispersion diagram. The plot
showed that snake community composition was fairly similar among sites close to streams, but
varied much more for distances greater than 100 m from streams. Direct ordination of presence
and absence data for 26 common snake species across all plots indicated a gradual substitution
of species with distance from the streams. 

Many ecological applications of nonmetric multidimensional scaling are found in
the ecological literature. Two papers are especially interesting: Whittington & Hughes
(1972; Ordovician biogeography from the analysis of trilobite fauna), and Fasham
(1977; comparison of nonmetric multidimensional scaling, principal coordinate
analysis and correspondence analysis for the ordination of simulated coenoclines and
coenoplanes). Ecological application 12.6b (Subsection 12.6.5) features a nMDS plot. 

9.5 Software

All general-purpose statistical packages offer principal component analysis, but not
with options for the scalings used by ecologists. Among the specialized packages
recommended for ecological analysis are CANOCO* (ter Braak & Smilauer, 1998 and
later editions), PC-ORD and SYN-TAX 2000. For distribution of these programs, see
Section 11.7. 

*  CANOCO was often referred to in this chapter. It was the first program to offer ecologists a
whole array of simple and canonical ordination methods and it is still the reference for
developers of ordination programs. 
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Several R-language packages offer functions for ordination of multivariate data. 

1. Principal component analysis (PCA). — Functions dudi.pca() in ADE4, PCA() in
FACTOMINER, pca() in LABDSV, prcomp() in STATS, and rda() in VEGAN compute
PCA. Compare the PCA eigenvalues to the broken-stick model (eq. 9.16):
PCAsignificance() in BIODIVERSITYR and bstick() in VEGAN. A PCA biplot with an
equilibrium contribution circle is drawn by ordiequilibriumcircle() of
BIODIVERSITYR. Fuzzy PCA and CA are available in dudi.fca() of ADE4.

2. Correspondence analysis (CA). — Functions dudi.coa() of ADE4, ca() of CA, CA()
of FACTOMINER, corresp() of MASS and cca() of VEGAN compute CA. Multiple
correspondence analysis (MCA): functions dudi.acm() of ADE4, mjca() of CA, MCA()
of FACTOMINER, and mca() of MASS.

3. Principal coordinate analysis (PCoA). — Functions dudi.pco() of ADE4, pcoa() of
APE, pco() of ECODIST, pco() of LABDSV, pcoa() and pcoa.all() of PCNM, cmdscale()
of STATS, and wcmdscale() of VEGAN compute PCoA. Function pcoa.all() of package
PCNM allows the computation of principal coordinates from distance matrices that
have non-zero diagonals, which will be useful in Section 14.2. It also contains an
option to output the eigenvectors corresponding to negative eigenvalues; in that case,
the eigenvectors are not scaled to lengths of  since that would produce complex
vectors, but are kept normalized to lengths 1. Function is.euclid() of ADE4 checks the
Euclidean nature of distance matrices; see Tables 7.2 and 7.3.

4. Nonmetric multidimensional scaling (nMDS). — Functions nmds() of ECODIST,
nmds() of LABDSV, isoMDS() of MASS, and metaMDS() of VEGAN compute nMDS.

R functions for PCA and CA that follow and illustrate the algebra described in
Sections 9.1 and 9.2 are available on the page http://numericalecology.com/rcode/. 
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Interpretation of 
ecological structures

 

10.0 Ecological structures

 

The previous chapters explained how to use the techniques of clustering and ordination
to investigate relationships among objects or descriptors. What do these analyses
contribute to the understanding of ecological phenomena? Ecological applications in
Chapters 8 and 9 have shown how clustering and ordination can synthesize the
variability of the data and present it in a format that is easily amenable to
interpretation. It often happens, however, that researchers who are using these
relatively sophisticated methods do not go beyond the description of the structures of
multidimensional data matrices, in terms of clusters or gradients. The descriptive
phase must be followed by interpretation, which is conducted using either the
descriptors that were used to evidence the structure, or other ecological descriptors that
have not yet been involved in the analysis.

From the previous chapters, it should be clear that the 

 

structure

 

 of a data matrix is
the organization of the objects, or descriptors, along gradients in a continuum, or in the
form of subsets (clusters). This organization characterizes the data matrix, and it is
derived from it. The first phase of multidimensional analysis (i.e. clustering or/and
ordination) thus consists in characterizing the data matrix in terms of a simplified
structure. In a second phase, ecologists may use this structure to interpret the
phenomenon that underlies the data matrix. To do so, analyses are conducted to
quantify the relationships between the structure of the data matrix and potentially
explanatory descriptors. The methods that are most often used for interpreting
ecological structures are described in the present chapter and in Chapter 11.

During the interpretation phase, one must assume that the analysis of the structure
has been conducted with care, using measures of association that were appropriate to
the objects and/or descriptors of the data matrix (Chapter 7) as well as analytical
methods that corresponded to the objectives of the study. Ordination (Chapter 9) is
used when gradients are sought, and clustering (Chapter 8) when one is looking for a

Structure
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partition of the objects or descriptors into subsets. When the gradient is a function of a
single or a pair of ordered descriptors, the ordination may be plotted in the original
space of the descriptors. When the gradient results from the combined action of several
descriptors, the ordination must be carried out in a reduced space using the methods
discussed in Chapter 9. It may also happen that an ordination is used as a basis for
visual clustering. Section 10.1 discusses the combined use of clustering and ordination
to optimize the partition of objects or descriptors.

The interpretation of structures, in ecology, has three main objectives:
(1)

 

 explanation

 

 (often called 

 

discrimination

 

) of the structure of one or several
descriptors, using the descriptors at the origin of the structure or, alternatively, a set of
other descriptors that may potentially explain the structure; (2)

 

 forecasting

 

 of one or
several descriptors (which are the response, or dependent, variables: Box 1.1), using a
number of other descriptors (called the explanatory, or independent, variables);
(3)

 

 prediction

 

 of one or several descriptors, using descriptors that can be manipulated
experimentally or naturally exhibit environmental variation. The terms 

 

forecasting

 

 and

 

prediction

 

, which are not equivalent (Subsection 10.2.2), are often confused in the
ecological and statistical literatures. Each of the above objectives covers a large
number of numerical methods, which correspond to various levels of precision of the
descriptors involved in the analysis. 

Section 10.2 reviews the methods available for interpretation. The next sections are
devoted to some of the methods introduced in Section 10.2. Regression and other
scatterplot smoothing methods are discussed in Section 10.3. Section 10.4 deals with
path analysis, which is used to assess causal relationships among quantitative
descriptors. Section 10.5 discusses some methods developed to test the relationship
between association or data matrices. 

 

10.1 Clustering and ordination

 

Section 8.2 showed that single linkage clustering accurately accounted for the
relationships between highly similar objects. However, due to its tendency to chaining,
single linkage agglomeration is not very suitable for investigation of ecological
questions. Because ecological data generally form a continuum in A-space (Fig. 7.2), it
is often informative to use single linkage clustering in conjunction with an ordination
of the objects. In the full multidimensional ordination space of principal component
analysis (Section 9.1), Euclidean distances among the main clusters of objects are the
same as in the original A-space. Other ordination methods (Sections 9.2 to 9.4) may be
more appropriate in other cases. However, when only the first two or three dimensions
are considered, ordinations in reduced space may misrepresent the structure by
projecting together clusters of objects that are distinct in higher dimensions. Clustering
methods allow one to separate clusters whose projections in reduced space may
sometimes obscure the relationships between them.

Explanation

Forecasting

Prediction
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Several authors (e.g. Gower & Ross, 1969; Rohlf, 1970; Schnell, 1970; Jackson &
Crovello, 1971; Legendre, 1976) have independently proposed to take advantage of
the characteristics of clustering and ordination by combining the results of the two
types of analyses on the same diagram. The same similarity or distance matrix
(Tables 7.4 to 7.6) is often used for the ordination and cluster analyses. Any clustering
method may be used, as long as it is appropriate to the data. If linkage clustering is
chosen, it is easy to draw the links between objects onto the ordination diagram, up to
a given level of similarity. One may also identify the various similarity levels by using
different colours or streaks (for example: solid line for 1.0 

 

!

 

 

 

S

 

 > 0.8, dashed for
0.8 

 

!

 

 

 

S

 

 > 0.6, dotted for 0.6 

 

!

 

 

 

S

 

 > 0.4, etc., or any other convenient combination of
codes or levels). If a divisive method or centroid clustering was used, a polygon or
envelope may be drawn, on the ordination diagram, around the members of each
cluster. This is consistent with the opinion of Sneath & Sokal (1973), who suggested to
always simultaneously carry out clustering and ordination on a set of objects. Field

 

 et
al.

 

 (1982) expressed the same opinion about marine ecological data. It is therefore
recommended, as a routine procedure in ecology, to represent clustering results onto
ordination diagrams.

The same approach can be applied to cluster analyses of descriptors. Clustering
may be conducted on a dependence matrix among descriptors — especially species
(Subsection 8.9.2) — in the same way as for an association matrix among objects. An
ordination of species (e.g. Figs. 8.19 and 8.20) or other descriptors can be obtained
using one of the ordination methods described in Chapter 9, depending on the measure
of dependence among descriptors that is appropriate for the data under study. With
quantitative physical or chemical descriptors of the environment, the method of choice
is principal component analysis of the correlation matrix (Section 9.1); descriptors are
represented by arrows in the ordination diagram. In some cases, before clustering,
negative correlations among descriptors can be made positive because they are
indicative of resemblance on an inverted scale.

When superimposed onto an ordination, single linkage clustering becomes a most
interesting procedure for ecological interpretation. Single linkage clustering is the best
complement to an ordination due to its contraction of the clustering space (Table 8.9,
Fig. 8.24). Drawing single linkage results onto an ordination diagram provides both
the correct positions for the main clusters of objects (from the ordination) and the fine
relationships between closely similar objects (from the clustering). It is advisable to
only draw the chain of primary connections (Section 8.2) on the ordination diagram
because it reflects the changes in the composition of clusters. Otherwise, the groups of
highly similar objects may become lost in the multitude of links drawn on the
ordination. Ecological application 10.1 provides an example of this procedure.

Jackson & Crovello (1971) suggested to indicate the directions of the links on the
ordination diagram (Fig. 10.1). This information may be useful when delineating
clusters. In such diagrams, each link of the primary chain is drawn with an arrow. On a
link from 

 

x

 

l

 

 to 

 

x

 

2

 

, an arrow pointing towards 

 

x

 

2

 

 indicates that object 

 

x

 

l

 

 has 

 

x

 

2

 

 as its
closest neighbour in multidimensional A-space (i.e. in the association matrix among



 

524 Interpretation of ecological structures

 

objects). When 

 

x

 

2

 

 also has 

 

x

 

l

 

 as its closest neighbour, the arrow goes both ways. When

 

x

 

2

 

 has 

 

x

 

3

 

 as its closest neighbour, the arrow from 

 

x

 

2

 

 points towards 

 

x

 

3

 

. New links
formed between objects that are already members of clusters do not receive arrows.
These links may be removed to separate the clusters.

 

Ecological application  10.1

 

Single linkage clustering was illustrated by Ecological application 8.2 taken from a study of a
group of ponds, based upon zooplankton. The same example (Legendre & Chodorowski, 1977)
is used again here. Twenty ponds were sampled on islands of the St. Lawrence River, east and
south of Montréal (Québec). Similarity coefficient 

 

S

 

20

 

 (eq. 7.27) was computed with 

 

k

 

 = 2. The
matrix of similarities among ponds was used to compute both single linkage clustering and an
ordination in reduced space by principal coordinate analysis. In Fig. 10.2, the chain of primary
connections is superimposed onto the ordination, in order to evidence the clustering structure.
The ponds are divided between a cluster of periodic ponds, which are dry during part of the year
(encircled), and a cluster of permanent ponds. Ponds with identification numbers beginning with
the same digit (which indicates the region) tend to be close to one another and to cluster first
with one another. The second digit refers to the island on which a pond was located.

Figure 10.1 Three-dimensional ordination of objects (dots), structured by the primary connections of a
single linkage clustering. The arrows (excluding those of the principal axes I to III) specify the
directions of the relationships between nearest neighbours; see text. Modified from Jackson &
Crovello (1971). Cutting the link without arrows determines two clusters (boxed points).
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When no clear clustering structure is present in the data but groups are still needed,
for management purpose for instance, arbitrary groups may be delineated by drawing a
regular grid on the reduced-space ordination diagram. This grid may be orthogonal
(i.e. square or rectangular) or polar (division into triangles from the point of origin of
the graph coordinates). Another method is to divide the objects according to the
quadrants of the ordination in reduced space (in 2

 

d

 

 groups for a 

 

d

 

-dimensional space);
the result is the hierarchic classification scheme of Lefkovitch (1976) described in
Subsection 8.7.3.

Figure 10.2 Comparison of 20 ponds on the basis of their zooplankton fauna. Ordination in a space of
principal coordinates (principal axes I and II), and superimposition of the chain of primary
connections obtained by single linkage clustering. The encircled ponds are periodic; the others
are permanent. Adapted from Legendre & Chodorowski (l977).

432

431

435 436

233 125

126
234

322 151

211 214

324 321 121

124

422 421

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

212

PCoA axis I

PC
oA

 a
xi

s I
I

323



 

526 Interpretation of ecological structures

 

Figure 10.3 summarizes the steps involved in producing a cluster analysis and an
ordination from a resemblance matrix. Description of the data structure is clearer when
the clustering results are drawn onto the ordination. In order to assess to what extent
the clustering and the ordination correspond to the resemblance matrix from which
they originate, these representations may be compared to the original resemblance
matrix using matrix correlation or related methods (Subsection 8.12.2).

 

10.2 The mathematics of ecological interpretation

 

The present section summarizes the numerical methods available for the interpretation
of ecological structures. The most widely used of these techniques (regression, path
analysis, matrix comparison, the fourth-corner method, and canonical analysis) are
discussed in Sections 10.3 to 10.6 and in Chapter 11. A few other methods are briefly
described in the present section.

The numerical methods presented in this section are grouped into three
subsections, which correspond to the three main objectives of ecological
interpretation, set in Section 10.0: explanation, forecasting, and prediction. For each of
these objectives, there is a summary table (Tables 10.1 to 10.3) intended to facilitate
the choice of methods best suited to the researchers’ ecological objectives and the
nature of their data. 

Ecological interpretation, and especially the 

 

explanation

 

 and 

 

forecasting

 

 of the
structure of several descriptors (i.e. multivariate data), may be conducted following
two approaches, which are the indirect and direct comparison schemes (Fig. 10.4).

 

Indirect comparison

 

 proceeds in two steps. The structure (ordination axes, or clusters)
is first identified from a set of descriptors (response data) of prime interest in the study.
In a second step, the structure is interpreted using either (a) the descriptors that were
analysed in the first step to identify the structure, or (b) another set of descriptors that
may help explain the structure. In his chapter on ordination analysis, ter Braak (1987c)
referred to this form of analysis as 

 

indirect gradient analysis

 

 because he was mostly
concerned with the study of environmental gradients.

In 

 

direct comparison

 

, one simultaneously analyses the response and explanatory
data matrices in order to identify how they are related. Direct comparison is done by
the asymmetric methods of canonical analysis (Sections 11.1 and 11.2), which allow
one to bring out the ordination structure of a response data set that is explained by
another data set; ter Braak (1987c) refers to this approach as 

 

direct gradient analysis

 

. 

Other forms of direct comparison analysis are available. One can compare
similarity or distance matrices, derived from the original data matrices, using the
techniques of matrix comparison (Section 10.5); this type of comparison should,
however, be restricted to test hypotheses that concern similarities or distances, not raw
data (Subsection 10.5.1). 

Indirect
comparison

Direct
comparison
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Figure 10.3 Identification of the structure of five objects, using clustering and ordination. Bottom right: the
chain of primary connections is superimposed on a 2-dimensional ordination, as in Figs. 10.1
and 10.2. Top: the reduced-space ordination and the clustering results are compared to the
resemblance matrix from which they originate. Upper right (top): a matrix of metric distances
Dm is computed from the reduced-space ordination, and compared to the original distances
using matrix correlation; r = 0.999 is a rather high score. Upper right (below): a cophenetic Du
matrix (Section 8.3) is computed from the dendrogram, and compared to the original distances
using matrix correlation (r = 0.866).
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Figure 10.4 Indirect and direct comparison approaches for analysing and interpreting the structure of
ecological data. Single thin arrow: inference of structure. Double arrow: interpretation strategy.
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One can also compare dendrograms derived from resemblance matrices, using

 

consensus indices

 

; this approach should be restricted to test hypotheses that concern
dendrograms. Two main approaches have been developed to test the significance of
consensus statistics: (1) a probability distribution derived for a given consensus
statistic may be used, or (2) a specific test may be carried out to assess the significance
of the consensus statistic, in which the reference distribution is found by permuting the
two dendrograms under study in an appropriate way (Lapointe & Legendre, 1995).
Readers are referred to the papers of Day (1983, 1986), Shao & Rohlf (1983), Shao &
Sokal (1986), Lapointe & Legendre (1990, 1991, 1992a, 1992b, 1995), and Steel &
Penny (1993), where these methods are described. Lapointe & Legendre (1994) used
the three forms of direct comparison analysis (i.e. comparison of raw data, distance
matrices, and dendrograms; Fig. 10.4) on five data sets describing the same objects. In
that study, all methods essentially led to similar conclusions, with minor differences.

The interpretation of a structure using the descriptors from which it originates
makes it possible to identify which of these descriptors mainly account for the
structuring of the objects. In some ordination methods (i.e. principal component and
correspondence analysis), the eigenvectors readily identify the important descriptors.
Other types of ordination, or the clustering techniques, do not directly provide this
information, which must be found 

 

a posteriori

 

 using methods of indirect comparison.
This type of interpretation does not allow one to perform formal tests of significance.
The reason is that the structure under study is derived from the very same descriptors
that are now used to interpret it; it is thus not independent of them. 

Interpretation of a structure using external information (data matrix 

 

X

 

 in Fig. 10.4)
is central to numerical ecology. This approach is used, for example, to diagnose abiotic
conditions (response data matrix 

 

Y

 

) from the available biological descriptors
(explanatory data matrix 

 

X

 

) or, alternatively, to forecast the responses of species
assemblages (matrix 

 

Y

 

) using available environmental descriptors (matrix 

 

X

 

). In the
same way, it is possible to compare two groups of biological descriptors or two
matrices of environmental data. Until the mid-1980’s, the indirect comparison scheme
was favoured because of methodological problems with canonical correlation analysis,
which was then the only method available in computer packages to analyse two sets of
descriptors. When new methods and computer programs (including R functions) were
made available, direct comparison became widely used in the ecological literature.

In the indirect comparison approach, the first set of descriptors is reduced to a
single or a few one-dimensional variables, i.e. a partition resulting from clustering, or
one or several ordination axes, the latter being generally interpreted one at a time. It
follows that the methods of interpretation for univariate descriptors (e.g. correlation,
regression) can also be used for indirect comparisons. This is the approach used in
Tables 10.1 and 10.2.

Consensus
index

Permutation
test
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1 — Explaining ecological structures

 

Table 10.1 summarizes the methods available to 

 

explain

 

 the patterns found in one or
several ecological descriptors. 

 

Explaining

 

 is taken here in the sense of looking for
correlations and using them to formulate hypotheses. The purpose is data exploration,
not hypothesis testing. The first dichotomy of the table separates methods for
univariate descriptors (used also in the indirect comparison approach) from those for
multivariate data.

Methods used for explaining the structure of 

 

univariate descriptors

 

 belong to three
major groups: (1) measures of dependence, (2) discriminant analysis, (3) and methods
for qualitative descriptors. Methods used for explaining the structure of 

 

multivariate
descriptors

 

 belong to two major types: (4) asymmetric canonical analysis using a
response and an explanatory matrix, and (5) symmetric canonical analysis comparing
two interchangeable data matrices. (6) Supplementary data associated with the sites
and the species of a community composition data matrix can be related in fourth-
corner analysis. The following paragraphs briefly review these groups of methods.

1. Various coefficients have been described in Chapters 4 and 5 to measure the

 

dependence

 

 between two descriptors exhibiting linear or monotonic relationships
(i.e. the parametric and nonparametric 

 

correlation coefficients

 

). When there are more
than two descriptors, one may use the 

 

coefficients of partial correlation

 

 (Section 4.5)
or the 

 

coefficient of concordance 

 

(Section 5.4). The 

 

coefficient of multiple
determination 

 

(

 

R

 

2

 

), computed in 

 

multiple linear regression

 

, may be used to assess the
dependence of a quantitative response descriptor on an explanatory matrix containing
quantitative or mixed-level descriptors. 

 

Dummy variable regression

 

 is a special case of
multiple regression where the explanatory matrix contains qualitative descriptors
recoded into dummy variables, as explained in Subsection 1.5.7. These different types
of regression are briefly discussed in Subsection 10.2.2, in relation with Table 10.2,
and in more detail in Section 10.3.

2. Explaining the structure of a qualitative descriptor is often called 

 

discrimination

 

,
when the aim of the analysis is to identify explanatory descriptors that would allow
one to discriminate among the various states of the qualitative descriptor. Linear
discriminant analysis may be used when (1) the explanatory (or discriminant)
descriptors are quantitative, (2) the distributions of the within-group residuals are not
too far from normal, and (3) the within-group dispersion matrices are reasonably
homogeneous. Linear discriminant analysis (LDA) is described in Section 11.3. Its use
with species data is discussed in Section 11.6, where alternative strategies are
proposed.

3. When both the descriptor to be explained and the explanatory descriptors are
qualitative, one may use multidimensional contingency table analysis. It is then
imperative to follow the rules, given in Section 6.3, concerning the models to use when
a distinction is made between the explained and explanatory descriptors. When the
response variable is binary, logistic regression is a better choice than multidimensional
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Table 10.1 Numerical methods to explain the structure of descriptors, using either the descriptors from
which the structure originates, or other, potentially explanatory descriptors. In parentheses,
identification of the section where a method is discussed. Tests of significance cannot be
performed when the structure of a descriptor is explained by the descriptors at the origin of that
structure. 

1) Explanation of the structure of a single descriptor, or indirect comparison  . . . . . . . . . see 2
2) Structure of a quantitative or a semiquantitative descriptor . . . . . . . . . . . . . . . . . . . see 3

3) Explanatory descriptors are quantitative or semiquantitative. . . . . . . . . . . . . . . see 4
4) To measure the dependence between descriptors. . . . . . . . . . . . . . . . . . . . . see 5

5) Pairs of descriptors: Pearson r, for quantitative descriptors exhibiting linear 
relationships (4.2); Kendall # or Spearman r, for quantitative or 
semiquantitative descriptors exhibiting monotonic relationships (5.3)

5) A single quantitative descriptor as a function of several others: coefficient of 
determination R2 of multiple regression (4.5, 10.3.3)

5) Several descriptors exhibiting monotonic relationships: coefficient of 
concordance W (5.4)

4) To interpret the structure of a single descriptor: partial Pearson r, for 
quantitative descriptors exhibiting linear relationships (4.5); partial Kendall #, 
for descriptors exhibiting monotonic relationships (5.3)

3) Explanatory descriptors are qualitative: R2 of dummy variable regression (10.3)
3) Estimation of the dependence between descriptors of the sites and descriptors of the 

species (any precision level): the fourth-corner method (10.6)
2) Structure of a qualitative descriptor (or of a classification) . . . . . . . . . . . . . . . . . . . see 6

6) Explanatory descriptors are quantitative: linear discriminant analysis (LDA, 11.3)
6) Explanatory descriptors are qualitative: multidimensional contingency table 

analysis (6.3); discrete discriminant analysis (10.2)
6) Explanatory descriptors are of mixed precision: logistic regression (in most cases, 

the explained descriptor is binary; 10.3)
1) Explanation of the structure of a multivariate data matrix . . . . . . . . . . . . . . . . . . . . . . . see 7

7) Direct comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 8
8) Asymmetric analysis of a response matrix by an explanatory matrix: redundancy 

analysis (RDA, 11.1); canonical correspondence analysis (CCA, 11.2); multivariate 
regression tree analysis (MRT, 8.11). Basic statistic in RDA: canonical R2

8) Symmetric comparison of two data matrices: canonical correlation analysis 
(CCorA, 11.4), co-inertia analysis (CoIA, 11.5.1), Procrustes analysis (Proc, 
11.5.2). Statistics: RV (11.5.1), TraceW and m12

2 (10.5.4, 11.5.2)
8) Compare classifications computed from two data matrices: contingency table 

analysis (6.2), modified Rand index (8.12)
7) Indirect comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 10

10) Ordination in reduced space: each axis is treated in the same way as a single 
quantitative descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 2

10) Clustering: each partition is treated as a qualitative descriptor  . . . . . . . . . . . . . see 2
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contingency table analysis. An additional advantage is that logistic regression allows
one to use explanatory variables presenting a mixture of precision levels. For
qualitative variables, the equivalent of discriminant analysis is called discrete
discriminant analysis. Goldstein & Dillon (1978) describe this form of analysis.

4. The standard approach for comparing two sets of descriptors is canonical
analysis (Chapter 11). In ecology, the asymmetric forms of canonical analysis, where
the two data matrices do not play the same role, are the most widely used. Asymmetric
analyses involve a response matrix Y and an explanatory matrix X. The methods are
called redundancy analysis (RDA, Section 11.1) and canonical correspondence
analysis (CCA, Section 11.2). The difference between these two methods is the same
as between principal component and correspondence analyses (Table 9.1). An
alternative method of asymmetric analysis is multivariate regression tree analysis
(MRT, Section 8.11), which looks for cutting points in the explanatory descriptors X
that create compact groups in the response data Y. 

5. It is also possible to compare two matrices that play the same role and can be
interchanged in the analysis. These symmetric analyses are carried out by canonical
correlation analysis (CCorA, 11.4), co-inertia analysis (CoIA, 11.5.1), and Procrustes
analysis (Proc, 11.5.2).

6. Consider a (site × species) matrix containing community composition data
(presence-absence or abundance), for which supplementary variables are known for
the sites (e.g. habitat characteristics, spatial data) and for the species (e.g. biological or
behavioural traits). The fourth-corner method, described in Section 10.6, offers a way
of estimating the dependence between the supplementary variables of the rows and
those of the columns and testing the resulting correlation-like statistics for
significance.

2 — Forecasting ecological structures

A distinction has to be made between forecasting and prediction in ecology.
Forecasting models extend, into the future or to different situations, structural
relationships among descriptors that have been quantified for a given data set. A set of
relationships among variables, which simply describe the changes in one or several
descriptors in response to changes in others as computed from a “training set”, make
up a forecasting model. In contrast, when the relationships are considered causal and
to describe a mechanistic process, the model is predictive. A condition to successful
forecasting is that the values of all important variables that have not been observed (or
controlled, in the case of an experiment) be about the same in the new situation as they
were during the survey or experiment. In addition, forecasting does not allow
extrapolation beyond the observed range of the explanatory variables. Forecasting
models (also called correlative models) are frequently used in ecology, where they are
sometimes misleadingly called “predictive models”. Forecasting models are useful
provided that the above conditions are fulfilled. In contrast, predictive models describe
known or assumed causal relationships. They allow one to estimate the effects, on

Forecasting
model
Predictive
model
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some variables, of changes in other variables; they will be briefly discussed at the
beginning of the next subsection.

Methods in Table 10.2 are used to forecast descriptors. As in Table 10.1, the first
dichotomy in the table distinguishes the methods that allow one to forecast values of a
single descriptor (response or dependent variable) from those that may be used to
simultaneously forecast several descriptors. Forecasting methods belong to four major
groups: (1) regression models, (2) identification functions, (3) asymmetric canonical
analysis methods, and (4) multivariate regression trees.

Table 10.2 Numerical methods to forecast one or several descriptors (response or dependent variables)
using other descriptors (explanatory or independent variables). In parentheses, identification of
the section where a method is discussed.

1) Forecasting the structure of a single descriptor, or indirect comparison  . . . . . . . . . . . . see 2
2) The response variable is quantitative  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 3

3) The explanatory variables are quantitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 4
4) Null or low correlations among explanatory variables: multiple linear regression 

(10.3); nonlinear regression (10.3)
4) High correlations among explanatory variables (collinearity): ridge regression 

(10.3); regression on principal components (10.3)
3) The explanatory variables are qualitative: dummy variable regression (10.3)

2) The response variable is qualitative (or a classification)  . . . . . . . . . . . . . . . . . . . . . see 5
5) Response: two or more groups; explanatory variables are quantitative (but 

qualitative variables may be recoded into dummy variables): identification functions 
in discriminant analysis (11.3)

5) Response: binary (presence-absence); explanatory variables are quantitative (but 
qualitative variables may be recoded into dummy var.): logistic regression (10.3)

2) The response and explanatory variables are quantitative, but they display a nonlinear 
relationship: nonlinear regression (10.3)

1) Forecasting the structure of a multivariate data matrix. . . . . . . . . . . . . . . . . . . . . . . . . . see 6
6) Direct comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 7

7) Linear modelling: redundancy analysis (RDA, 11.1); canonical correspondence 
analysis (CCA, 11.2) 

7) Find a tree-like decision model: multivariate regression tree analysis (MRT, 8.11)
6) Indirect comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 8

8) Ordination in reduced space: each axis is treated in the same way as a single 
quantitative descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see 2

8) Clustering: each partition is treated as a qualitative descriptor  . . . . . . . . . . . . . see 2
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1. Methods belonging to regression models are numerous. Several regression
methods include measures of dependence that have already been mentioned in the
discussion of Table 10.1: multiple linear regression (the explanatory variables are
quantitative or mixed), dummy variable regression (a special case of multiple
regression where the explanatory matrix contains qualitative descriptors (e.g. ANOVA
factors) recoded into dummy variables, as explained in Subsection 1.5.7), and logistic
regression (the explanatory variables may be of mixed levels of precision; the response
variable is qualitative). Section 10.3 provides a detailed description of several
regression methods.

2. Identification functions are part of linear discriminant analysis (Section 11.3),
which was briefly described in the previous subsection. These functions allow the
assignment of any object to one of the states of a qualitative descriptor, using the
values taken by several quantitative variables (i.e. the explanatory or discriminant
variables). As mentioned in the previous subsection, the distributions of the
discriminant variables must not be too far from normality, and their within-group
dispersion matrices must be reasonably homogeneous (i.e. about the same in all
groups). 

3. Canonical analysis, and especially redundancy analysis and canonical
correspondence analysis, which were briefly discussed in the previous subsection (and
in more detail in Sections 11.1 and 11.2), allow one to model a data matrix from the
descriptors of a second data matrix; these two data matrices form the “training set”.
Using the resulting model, it is possible to forecast the position of any new observation
among those of the “training set”, for example along environmental gradients. The
new observation may represent some condition that may occur in the future, or at a
different but comparable location.

4. An alternative forecasting method of analysis is multivariate regression tree
analysis (MRT, Section 8.11). This method produces a decision tree in which the
response data Y are divided into groups, whereas the bifurcations of the tree
correspond to splits in the explanatory variables X that can be used for forecasting the
positions of new observations.

3 — Ecological prediction

As explained in the Preface, predictive modelling does not belong to numerical
ecology sensu stricto. However, some methods of numerical ecology may be used to
analyse causal relationships among a small number of descriptors, thus linking
numerical ecology to predictive modelling. Contrary to the forecasting or correlative
models (previous subsection), predictive models allow one to foresee how some
variables of interest would be affected by changes in other variables. Prediction is
possible when the model is based on causal relationships among descriptors (i.e. not
only correlative evidence). Causal relationships are stated as hypotheses (theory) for
modelling; they may also be validated through experiments in the laboratory or in the
field. In manipulative experiments, one observes the responses of some descriptors to

Predictive
model

Experiment
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user-determined changes in other descriptors, by reference to a control. Besides
manipulative experiments, which involve two or more treatments, Hurlbert (1984)
recognizes mensurative experiments, which involve measurements made at one or
more points in space or time and allow one to test hypotheses about patterns in space
(Chapters 13 and 14) and/or time (Chapter 12). The numerical methods in Table 10.3
allow one to explore a network of causal hypotheses, using the observed relationships
among descriptors. The design of experiments and analysis of experimental results are
discussed by Mead (1988) who offers a statistically-oriented presentation, and by
Underwood (1997) in a book emphasizing ecological experiments.

One may hypothesize that there exist causal relationships among the observed
descriptors or, alternatively, that the observed descriptors are caused by underlying
hidden variables. Depending on the hypothesis, the methods for analysing causal
relationships are not the same (Table 10.3). Methods appropriate to the first case
belong to the family of path analysis (Section 10.4). The second case leads to
confirmatory factor analysis, which is not discussed in this book; see e.g. Brown
(2006) or Harrington (2009) on this subject. The present chapter only discusses the
former. In addition to these methods, techniques of forecasting (Table 10.2) may be
used for predictive purposes when there are reasons to believe that the relationships
between explanatory and response variables are of causal nature.

Fundamentals of path analysis are presented in Section 10.4. Path analysis is an
extension of multiple linear regression and is thus limited to quantitative or binary
descriptors (including qualitative descriptors recoded as dummy variables:
Subsection 1.5.7). In summary, path analysis is used to decompose and interpret the
relationships among a small number of descriptors, assuming that (a) there is a (weak)
causal order among descriptors, and (b) the relationships among descriptors are
causally closed. Causal order means, for example, that y2 possibly (but not
necessarily) affects y3 but that, under no circumstance, y3 would affect y2 through the

Table 10.3 Numerical methods for analysing causal relationships among ecological descriptors, with the
purpose of predicting one or several descriptors using other descriptors. In parentheses,
identification of the section where the methods are discussed. In addition, forecasting methods
(Table 10.2) may be used for prediction when there are reasons to believe that the relationships
between the explanatory and response variables are of causal nature.

1) The causal relationships among descriptors are given by hypothesis . . . . . . . . . . . . . . . see 2
2) Quantitative descriptors; linear causal relationships: causal modelling using 

correlations (4.5); path analysis (10.4)
2) Qualitative descriptors: logit and log-linear models (6.3)

1) Hidden variables (latent variables, factors) are assumed to cause the observed structure of 
the descriptors: confirmatory factor analysis (not discussed in this book)
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same process. Double causal “arrows” are allowed in a model only if different
mechanisms may be hypothesized for the reciprocal relationships. Using this
assumption, it is possible to set a causal order between y2 and y3. The assumption of
causal closure implies independence of the residual causalities, which are the
unknown factors responsible for the residual variance (i.e. the variance not accounted
for by the observed descriptors). Path analysis is restricted to a small number of
descriptors. This is not due to computational problems, but to the fact that the
interpretation becomes complex when the number of descriptors in a model becomes
large. When the analysis involves three descriptors only, the simple method of causal
modelling using correlations may be used (Subsection 4.5.4). 

For qualitative descriptors, Fienberg (1980; his Chapter 7) explains how to use
logit or log-linear models (Section 6.3) to determine the signs of causal relationships
among such descriptors, by reference to diagrams similar to the path diagrams of
Section 10.4.

10.3 Regression

The purpose of regression analysis is to describe the relationship between a dependent
(or response) random* variable (y) and a set of independent (or explanatory)
variables, in order to forecast or predict the values of y for given values of the
independent variables x1, x2, …, xm. Box 1.1 gives the terminology used to refer to the
dependent and independent variables of a regression model in an empirical or causal
framework. The explanatory variables may be either random*, or controlled (and,
consequently, known a priori). On the contrary, the response variable must of
necessity be a random variable. That the explanatory variables be random or controlled
will be important when choosing the appropriate computation method (model I or II). 

A mathematical model is simply a mathematical formulation (algebraic, in the case
of regression models) of a relationship or a set of relationships among variables, whose
parameters have to be estimated or tested against a hypothesis; in other words, it is a
simplified mathematical description of a real-life system. Regression, with its many
variants, is the first type of modelling method presented in this chapter for the analysis
of ecological structures. It is also used as a platform to help introduce the principles of
structure analysis. The same principles will apply to more mathematically advanced
forms, collectively referred to as canonical analysis, which are discussed in
Chapter 11.

*  A random variable is a variable whose values are assumed to result from some random process
(Section 1.0); these values are not known before observations are made. A random variable is
not a variable consisting of numbers drawn at random; such variables, usually generated with
the help of a pseudo-random number generator, are used by statisticians to assess the properties
of statistical methods under some distribution hypotheses.

Random
variable

Model
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Regression modelling may be used for description, inference, or
forecasting/prediction:

1. Description aims at finding the best functional relationship among variables in the
model, and estimating its parameters, based on available data. In mathematics, a
function y = ƒ(x) is a rule of correspondence, often written as an equation, that
associates with each value of x one and only one value of y. A well-known functional
relationship in physics is Einstein’s equation E = mc2, which describes the amount of
energy E associated with given amounts of mass m; the scalar value c2 is the parameter
of the model, where c is the speed of light in vacuum.

2. Inference means generalizing the results of a set of observations to the whole target
population, as represented by a sample drawn from that population. Inference may
consist in estimating the confidence intervals within which the true values of the
statistical population parameters are likely to be found, or testing a priori hypotheses
about the values of model parameters in the statistical population. (1) The ecological
hypotheses may simply concern the existence of a relationship, e.g. the slope or the
intercept are different from 0. The test consists in finding the two-tailed probability of
observing the slope (b1) or intercept (b0) values that have been estimated from the
sample data, given the null hypothesis (H0) stating that the slope ($1) or intercept ($0)
parameters are zero in the statistical population. These tests are described in manuals
of elementary statistics. (2) In other instances, the ecological hypothesis concerns the
sign that the relationship should have. One then tests the one-tailed null statistical
hypotheses (H0) that the intercept or slope parameters in the statistical population are
zero, against alternative hypotheses (H1) that they have the signs (positive or negative)
stated in the ecological hypotheses. For example, one might want to test Bergmann’s
law (1847), that the body mass of homeotherms, within species or groups of closely
related species, increases with latitude. (3) There are also cases where the ecological
hypothesis states specific values for the parameters. Consider for instance the
isometric relationship specifying that mass should increase as the cube of the length in
animals, or in log form: log(mass) = b0 + 3 log(length). Length-to-mass relationships
found in nature are most often allometric, especially when considering a multi-species
group of organisms. Reviewing the literature, Peters (1983) reported allometric slope
values from 1.9 (algae) to 3.64 (salamanders).

3. Forecasting (or prediction) consists in calculating values of the response variable
using a regression equation. Forecasting (or prediction) is sometimes described as the
purpose of ecology. In any case, ecologists agree that empirical or hypothesis-based
regression equations are helpful tools for management. This objective is achieved by
using the equation that minimizes the residual mean square error, or maximizes the
coefficient of determination (r2 in simple regression; R2 in multiple regression). 

A study may focus on one or two of the above objectives, but not necessarily all
three. Satisfying two or all three objectives may call upon different methods for
computing the regressions. In any case, these objectives differ from that of correlation
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analysis, which is to support the existence of a relationship between two random
variables, without reference to any functional or causal link between them (Box 10.1).

This section does not attempt to present regression analysis in a comprehensive
way. Interested readers are referred to general texts of (bio)statistics such as Sokal &
Rohlf (1995), specialized texts on regression analysis (e.g. Draper & Smith, 1981;
Neter et al., 1996), or textbooks such as those of Ratkowski (1983) or Ross (1990) for
nonlinear estimation. The purpose here is to survey the main principles of regression
analysis and, in the light of these principles, explain the differences among the
regression models most commonly used by ecologists: simple linear (model I and
model II), multiple linear, polynomial, partial, nonlinear, and logistic. Some
smoothing methods will also be described. Several other types of regression will be

Correlation or regression analysis? Box 10.1

Regression analysis is a type of modelling. Its purpose is either to find the best
functional model relating a response variable to one or several explanatory
variables, in order to test hypotheses about the model parameters, or to forecast or
predict values of the response variable.

The purpose of correlation analysis is quite different. It aims at establishing
whether there is interdependence, in the sense of the coefficients of dependence of
Chapter 7, between two random variables, without assuming any functional or
explanatory-response or causal link between them. 

In model I simple linear regression, where the explanatory variable of the model
is controlled, the distinction is easy to make; in that case, a correlation hypothesis
(i.e. interdependence) is meaningless. Confusion comes from the fact that the
coefficient of determination, r2, which is essential to estimate the forecasting value
of a regression equation and is automatically reported by most regression programs,
happens to be the square of the coefficient of linear correlation.

When the two variables are random (i.e. not controlled), the distinction is more
tenuous and depends on the intent of the investigator. If the purpose is modelling (as
broadly defined in the first paragraph of this Box), model II regression is the
appropriate type of analysis; otherwise, correlation should be used to measure the
interdependence between such variables. In Sections 4.5 and 10.4, the same
confusion is rampant, since correlation coefficients are used as an algebraic tool for
choosing among causal models or for estimating path coefficients.
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mentioned, such as ridge regression, multivariate linear regression, and monotone or
nonparametric regression.

Incidentally, the term regression has a curious origin. It was coined by the
anthropologist Francis Galton (1889, pp. 95-99), a cousin of Charles Darwin, who was
studying the relationship between the heights of parents and children. Galton observed
“that the Stature of the adult offspring … [is] … more mediocre than the stature of
their Parents”, or in other words, closer to the population mean; so, Galton said, they
regressed (meaning going back) towards the population mean. He called the slope of
this relationship “the ratio of ‘Filial Regression’ ”. For this historical reason, the slope
parameter is now known as the regression coefficient.

1 — Simple linear regression: model I

Linear regression is used to compute the parameters of a first-degree equation relating
variables y and x. The expression simple linear regression applies to cases where there
is a single explanatory variable x. The equation (or model) for simple linear regression
has the form:

(10.1)

This corresponds to the equation of a straight line (hence the name linear) that crosses
the scatter of points in some optimal way and allows the computation of an estimated
value  (along the ordinate scale of the scatter diagram) for any value of x (abscissa;
Fig. 10.5a). Parameter b0 is the estimate of the intercept of the regression line with the
ordinate; it is also called the y-intercept. Parameter b1 is the slope of the regression
line; it is also called the regression coefficient. In Subsection 10.3.4 on polynomial
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(b) Graphical representation of regression residuals %i (vertical lines); %1 is the residual for point
1 with coordinates (x1, y1).
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regression, a distinction will be made between linearity in parameters and linearity in
response to the explanatory variables.

The intercept b0 has the same physical dimensions as y, whereas the regression
coefficient b1 has the physical dimensions of [y]/[x] (Section 3.1) so that b1x has the
same physical dimensions as y. As a consequence, the regression equation (eq. 10.1) is
dimensionally homogeneous (Section 3.2).

When using this type of regression, one must be aware of the fact that a linear
model is imposed on the data. In other words, one assumes that the relationship
between variables may be adequately described by a straight line and that the vertical
dispersion of observed values above and below the line is the result of a random
process. The difference between the observed and estimated values along y, noted

 for every observation i, may be either positive or negative since the
observed data points lie above and below the regression line.  is called the residual
value of observation  after fitting the regression line (Fig. 10.5b). Including  in the
equation allows one to describe exactly the ordinate value yi of each point (xi, yi) in the
data set; yi is equal to the value  predicted by the regression equation plus the
residual :

(10.2)

This equation is the linear model of the relationship.  is the predicted, or fitted value
corresponding to each observation i. The model assumes that the only deviations from
the linear functional relationship  are vertical differences (“errors”)  on
values  of the response variable, and that there is no “error” associated with the
estimation of x. “Error” is the traditional term used by statisticians for deviations of all
kind due to random processes, and not only measurement error. In practice, when it is
known by hypothesis — or found by studying a scatter diagram — that the relationship
between two variables is not linear, one may either try to linearise it (Section 1.5), or
else use polynomial or nonlinear regression methods to model the relationship
(Subsections 10.3.4 and 10.3.6, below).

Besides the supposition that the variables under study are linearly related, model I
regression makes the following additional assumptions about the data:

1. The explanatory variable x is controlled, or it is measured without error. (The
concepts of random and controlled variables have been briefly explained above.)

2. For any given value xi of x, the values y in the statistical population are
independently and normally distributed. This does not mean that the response variable
y must be normally distributed, but instead that the “errors”  are normally distributed
about a mean of zero. One also assumes that the %i’s have the same variance for all
values of x in the range of the observed data (homoscedasticity: Box 1.3).
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So, model I regression is appropriate to analyse results of controlled experiments,
and also the many cases of field data where a response random variable y is to be
related to sampling variables under the control of the researcher (e.g. location in time
and space, volume of water filtered). The next subsection will show how to use
model II regression to analyse situations where these assumptions are not met.

In simple linear regression, one is looking for the straight line with equation
 that minimizes the sum of squares of the vertical residuals, , between

the observed values and the regression line. This is the principle of least squares, first
proposed by the mathematician Adrien Marie Le Gendre from France, in 1805, and
later by Karl Friedrich Gauss from Germany, in 1809; these two mathematicians were
interested in estimation problems of astronomy. This sum of squared residuals,

, offers the advantage of providing a unique solution, which would not be
the case if one chose to minimize another function — for example . It can
also be shown that the straight line that meets the ordinary least-squares (OLS)
criterion passes through the centroid, or centre of mass  of the scatter of points,
whose coordinates are the means  and . The formulae for parameters b0 and b1 of
the line meeting the least-squares criterion are found using partial derivatives. The
solution is:

    and    (10.3)

where sxy and  are estimates of covariance and variance, respectively (Section 4.1).
These formulae, written in full, are found in textbooks of introductory statistics. Least-
squares estimates of b0 and b1 can also be computed directly from the x and y data
vectors using eq. 2.19. Least-squares estimation provides the line of best fit for
parameter estimation and forecasting when the explanatory variable is controlled.

Regressing y on x does not lead to the same least-squares equation as regressing x
on y. Figure 10.6a illustrates this for two random variables, which would represent a
case for model II regression discussed in the next subsection. Even when x is a random
variable, the variables will continue to be called x and y (instead of y1 and y2) to keep
the notation simple. Although the covariance sxy is the same for the calculation of the
regression coefficient of y on x ( ) and that of x on y ( ), the denominator
of the slope equation (eq. 10.3) is  when regressing y on x, whereas it is  when
regressing x on y. Furthermore, the means  and  play inverted roles when estimating
the two intercepts,  and . This emphasizes the importance of clearly
defining the explanatory and response variables when performing regression.

The two least-squares regression lines come together only when all observation
points fall on the same line (correlation = 1). According to eq. 4.7, .
So, when r = 1,  and, since  (eq. 10.3), then

. Similarly, the slope , which describes the same
line in the transposed graph, is . In the more general case where r
is not equal to 1, . When the two regression lines are drawn on
the same graph, assuming that the variables have been standardized prior to the
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computations, there is a direct relationship between the Pearson correlation coefficient
rxy and angle ( between the two regression lines:

( = 90° – 2 tan–1 r,    or    r = tan (10.4)

If r = 0, the scatter of points is circular and angle ( = 90°, so that the two regression
lines are at a right angle; if r = 1, the angle is 0°. Computing angle ( for non-
standardized variables, as in Fig. 10.6a, is a bit more complicated:

(10.5)

where sign(r) is the sign of the correlation coefficient.

The coefficient of determination r2 measures how much of the variance of each
variable is explained by the other. This coefficient has the same value for the two
regression lines. The amount of explained variance for y is the variance of the fitted
values , calculated as:

(10.6)
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Figure 10.6 (a) Two least-squares regression equations are possible in the case of two random variables
(called x and y here, for simplicity). When regressing y on x, the sum of vertical squared
deviations is minimized (full lines); when regressing x on y, the sum of horizontal squared
deviations is minimized (dashed lines). Angle ( between the two regression lines is computed
using eq. 10.5. (b) In major axis regression, the sum of the squared Euclidean distances to the
regression line is minimized.
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whereas the total amount of variation in variable y is

It can be shown that the coefficient of determination, which is the ratio of these two
values (the two denominators (n – 1) cancel out), is equal to the square of the Pearson
correlation coefficient r. It is thus designated by r2:

(10.7)

With two random variables, the regression of y on x makes as much sense as the
regression of x on y. In that case, the coefficient of determination may be computed as
the product of the two regression coefficients: . The coefficient of
correlation is then the geometric mean of the coefficients of linear regression of each
variable on the other, to which the sign of one of the regression coefficients is imposed:
r = ; function sign() is described after eq. 10.5.
It may also be computed as the square of r in eq. 4.7:

(10.8)

A value r2 = 0.81, for instance, means that 81% of the variation in y is explained by x,
and vice versa. In Section 10.4, the quantity (1 – r2) will be called the coefficient of
nondetermination; it measures the proportion of the variance of a response variable
that is not explained by the explanatory variable(s) of the model. 

When x is a controlled variable, one must be careful not to interpret the coefficient
of determination in terms of interdependence, as one would for a coefficient of
correlation, in spite of their algebraic closeness and the fact that one coefficient can,
indeed, be calculated directly from the other (Box 10.1).

2 — Simple linear regression: model II

When both the response and explanatory variables of the model are random (i.e. not
controlled by the researcher), there are errors associated with the measurements of
both x and y. Such situations call for methods that are referred to as model II
regression. As a parallel to model II ANOVA, which is concerned with the analysis of
the effect of a random factor on a random variable (Sokal & Rohlf, 1995, Section 8.7),
model II regression is concerned with the analysis of two random variables. In model
II regression, different computational procedures are required for description and
inference, as opposed to forecasting; these three objectives of regression analysis were
described at the beginning of Section 10.3.

1. Model II regression can be used for description and inference, that is, to estimate
the slope of a process (parametric estimation) corresponding to the linear relationship
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between the measured variables, and compute confidence intervals around the slope or
test its significance. Examples:

• In aquatic ecology, in vivo fluorescence is routinely used to estimate the amount of
chlorophyll a in phytoplankton. These variables, which are both random and measured
with error, must be related by model II regression to establish their functional
relationship (slope). The slope can also be tested for significance. If the objective is to
forecast chlorophyll a from fluorescence values, see point 2 below.

• In freshwater sediment, one may be interested in comparing the rate of microbial
anaerobic methane production to total particulate carbon in two environments
(e.g. two lakes) where several sites have been studied. Since total particulate carbon
and methane production have been measured with error in the field, rates are given by
the slopes of model II regression equations computed on the data from the two lakes
separately; the confidence intervals of these slopes may serve to compare the two
environments.

Model II regression can be used with the more simple purpose of drawing a line in a
graph of two random variables. This can be done for the above examples.

2. Model II regression can also be used for forecasting, that is, for computing fitted
values about one variable from the values of the other. The method to be used in that
case is ordinary least squares (OLS). The reason is simple: OLS is the method that
produces fitted values with the smallest error, defined as 
(Subsection 10.3.1). Hence, OLS is also one of the methods that can be used in model
II situations, when the purpose is forecasting. Example:

• In microbial ecology, the concentrations of two substances produced by bacterial
metabolism have been measured. One is of economical interest, but difficult to
measure with accuracy, whereas the other is easy to measure. Determining their
relationship by regression may allow ecologists to use the second substance as a proxy
for the first. An OLS regression model can be used to estimate the concentrations of
the first substance from the concentrations of the second.

3. Another application of model II regression concerns deterministic models,
which are often used to describe ecological processes. In order to test how good a
model is at describing reality, one can run the model with observed values of the
control variables and compare the values predicted by the model to the observed
values of the response variable. Since both sets of variables (control, response) are
random, the values predicted by the model are just as random as the values of the
response variables, so that they should be related and compared using model II
regression. The hypothesis is one-tailed in this case; indeed, a model accurately
reflects the field process only if its predictions are positively correlated with the field
observations. Theory and examples are provided by Mesplé et al. (1996).

& yi ŷi–( )
2



Regression 545

In the descriptive examples above, one was interested in estimating the parameters
of the equation that describes the functional relationship between pairs of random
variables in order to quantify underlying physiological or ecological processes. When
both variables are random, as in these examples, model II regression should be used
for parameter estimation since the slope found by ordinary least squares (OLS) is too
small in absolute value, due to the presence of measurement error in the explanatory
variable. OLS regression should only be used when x is fixed by experiment (model I
regression) or is a random variable measured with little error compared to y (see
recommendation 1 at the end of this subsection). OLS regression (model I or II) should
also be used when the objective of the study is forecasting (see recommendation 6).

To better understand the above assertion, let us consider the relationship between length and
mass of adult animals of a given species. Let us further assume that the relationship is isometric
(mass = c × length3) for the species under study; this equation would correspond to the case
where all individuals, short or long, have the same shape (fatness). The same functional
equation, in log form, is log(mass) = b0 + 3 log(length), where b0 is the log of parameter c.
Since individual measurements are each subject to a large number of small genetic and
environmental influences, presumably additive in their effects and uncorrelated among
individuals, it is expected that both length and mass include random deviations from the
functional equation; measurement errors must be added to this inherent variability. In such a
system, the slope of the OLS regression line of log(mass) on log(length) would be smaller than
3 (Fig. 10.7; Ecological application 10.3a), which would lead one to conclude that the species
displays allometric growth, with longer individuals thinner than short ones. On the contrary, the
slope of the regression line of log(length) on log(mass), computed in the transposed space,
would produce a slope smaller than 1/3; its inverse, drawn in Fig. 10.7, is larger than 3; this
slope would lead to the opposite conclusion, i.e. that shorter individuals are thinner than long
ones. This apparent paradox is simply due to the fact that OLS regression is inappropriate to
describe the functional relationship between these variables.

Figure 10.7 Isometric growth is depicted by the functional relationship log(mass) = b0 + 3 log(length). The
ordinary least-squares (OLS) regression line of log(mass) on log(length) would suggest
allometric growth of one type, while the OLS regression line of log(length) on log(mass) would
suggest allometric growth of the opposite type.

Isometric growth equation
OLS equation: log (length) = ƒ(log (mass))

OLS equation: log (mass) = ƒ'(log (length))
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Several methods have been proposed to estimate model II regression parameters,
and a controversy has raged in the literature about which method was the best. The
following methods are the most popular — although, surprisingly, the major statistical
packages, except R, are still ignoring them (except method 4, OLS). For methods 1
to 3 described below, slope estimates can easily be calculated with a pocket calculator,
from values of the means, variances, and covariance, computed with standard
statistical software.

Methods 1, 2, and 4 are special cases of the structural relationship, which assumes
that there is error %i on y and -i on x, %i and -i being independent of each other. As
stated above, “error” means deviation of any kind due to a random process, not only
measurement error. The maximum likelihood (ML) estimate of the slope for such data
is (Madansky, 1959; Kendall & Stuart, 1966):

(10.9)

where  and  are the estimated variances of y and x, respectively,  is their
covariance, and . is the ratio  of the variances of the two error terms. 

When . is large or  is very small, another equation form may provide greater
computational accuracy than eq. 10.9. It is derived from the property that the slope of
the regression line of y on x is the inverse of the slope of the regression of x on y in the
case of symmetric regression lines. After the proper substitutions, eq. 10.9 becomes:

(10.10)

The model II regression methods are derived from eq. 10.9 or eq. 10.10.

1. Major axis regression (MA). — In this method, the estimated regression line is
the first principal component of the scatter of points (see principal component analysis,
Section 9.1). The quantity that is minimized is the sum, over all points, of the squared
Euclidean distances between the points and the regression line (Fig. 10.6b), instead of
vertical distances as in OLS (Fig. 10.6a). In this method, one assumes that the two
error variances (  on y and  on x) are equal, so that their ratio . = 1. This
assumption is strictly met, for example, when both variables have been measured using
the same instrument and all of the error is measurement error (McArdle, 1988). The
slope of the major axis is estimated by the following formula (Pearson, 1901;
Jolicoeur, 1973; Sokal & Rohlf, 1995), which is a special case of eq. 10.9 for . = 1:

(10.11)
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The positive square root is used in the numerator. A second equation is obtained by
using the negative square root; it estimates the slope of the minor axis, which is the
second principal component, of the bivariate scatter of points. When the covariance is
near 0, bMA is estimated using eq. 10.10 (with . = 1) instead of eq. 10.11, in order to
avoid numerical indetermination.

The slope of the major axis may also be calculated using estimates of the slope of
the OLS regression line, , and of the correlation coefficient, rxy:

   where   

The positive root of the radical is used when the correlation coefficient is positive, and
conversely when it is negative.

Just as with principal component analysis, this method is useful in situations where
both variables are expressed in the same physical units or are dimensionless (naturally,
or after standardization or ranging). Many natural ecological variables are not in the
same physical units. Major axis regression has been criticized because, in that case, the
slope estimated by major axis regression is not invariant under an arbitrary change of
scale such as expansion (Section 1.5) and, after a change of scale, bMA cannot be
directly calculated using the change-of-scale factor. In these conditions, the actual
value of the slope may be meaningless (Teissier, 1948; Kermack and Haldane, 1950;
Ricker, 1973; McArdle, 1988) or difficult to interpret. By comparison, the slopes of
the OLS, SMA, and RMA (described below) regression lines are not invariant either to
change-of-scale transformations, but the slopes of the transformed data can easily be
calculated using the change-of-scale factor. For example, after regressing a mass
variable in g onto a length variable in cm, if the OLS slope is  (in g/cm), then after
rescaling the explanatory variable from cm to m, the OLS slope becomes

.

Significance of bMA estimates can be tested by permutation (Section 1.2); the
values of one or the other variable (i.e. x or y) are permuted a large number of times
and slope estimates are computed using eq. 10.11. The test should be carried out on the
lesser of the two slopes in absolute value: b1 of y on x, or  of x on y. If the
objective is simply to assess the relationship between the two variables under study,
the correlation coefficient should be tested for significance instead of the slope of a
model II regression line. 

When the variances  and  are equal, the slope estimated by eq. 10.11 is ±1, the
sign being that of the covariance, whatever the value of . As in the case of SMA
(below), permutations produce slope estimates of +1 or –1 in equal numbers, with a
resulting probability near 0.5 whatever the value of the correlation. This result is
meaningless. The practical consequence is that, if the slope estimate bMA is to be
tested by permutations, variables should not be standardized (eq. 1.12).
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Alternatively, one may compute the confidence interval of the slope at a
predetermined confidence level and check whether the value 0 (or, for that matter, any
other value of interest) lies inside or outside the confidence interval. Computation of
the confidence interval involves several steps; the formulae are given in Jolicoeur &
Mosimann (1968), Jolicoeur (1990), and Sokal & Rohlf (1995, pp. 589-591), among
others. When both n and the ratio of the eigenvalues of the bivariate distribution (see
principal component analysis, Section 9.1) are small, limits of the confidence interval
cannot be computed because it covers all 360° of the plane. Such a confidence interval
always includes slope 0, as well as any other value. For example, when n = 10, the
ratio of the eigenvalues must be larger than 2.21 for the 95% confidence interval to be
real; for n = 20, the ratio must be larger than 1.63; and so on.

It frequently happens in ecology that a scatter plot displays a bivariate lognormal
distribution; the univariate frequency distributions of such variables are positively
skewed, with longer tails in the direction of the higher values. Such distributions may
be normalized by applying a log transformation (Subsection 1.5.6; Fig. 1.11). This
transformation also solves the problem of dimensionally heterogeneous variables and
makes the estimate of the major axis slope invariant over expansion (multiplication or
division by a constant: Section 1.5) — but not over translation. One should verify, of
course, that the log-transformed data conform to a bivariate normal distribution before
proceeding with major axis regression.

This property can easily be demonstrated as follows. Consider a model II functional
equation describing the linear relationship between two log-transformed variables x and y:

log(y) = b0 + b1 log(x)

If x and y are divided by constants c1 and c2 respectively (expansion), one obtains new variables
 and , so that  and . The functional equation becomes:

which may be rewritten as

where  is the new intercept, while the slope of  is
still b1. So, under log transformation, the slope b1 is invariant for any values of expansion
coefficients c1 and c2; it differs, of course, from the major axis regression coefficient (slope) of
the untransformed variables.

Dividing x and y by their respective standard deviations,  and , is an expansion which
makes the two variables dimensionless. It thus follows that the major axis slope of the original
log-transformed data is the same as that of the log of the standardized (dimensionless) data. This
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also applies to other standardization methods such as division by the maximum value or the
range (eqs. 1.10 and 1.11).

Readers who prefer numerical examples can easily check the above derivation by computing
a principal component analysis on a small data set containing two log-transformed variables
only, with or without expansion (multiplication or division by a constant prior to the log
transformation). The angles between the original variables and the first principal component are
easily computed as the cos–1 of the values in the first normalized eigenvector (Subsection 9.1.3);
the slopes of the major axis regression coefficients of y = ƒ(x) and x = ƒ(y), which are the
tangents (tan) of these angles, remain the same over such a transformation.

2. Standard major axis (SMA). — Regression using variables that are not
dimensionally homogeneous produces results that vary with the scales of the variables.
If the physical dimensions are arbitrary (e.g. length measurements that may
indifferently be recorded in mm, cm, m, or km), the slope estimate is also arbitrary. In
ordinary least-squares regression (OLS), the slope and confidence interval values
change proportionally to the measurement units. For example, multiplying all y values
by 10 produces a slope estimate ten times larger, whereas multiplying all x values by
10 produces a slope estimate 10 times smaller. This is not the case with MA; the major
axis slope does not scale proportionally to the units of measurement. For that reason, it
may be desirable to make the variables dimensionally homogeneous prior to model II
regression.

Standard major axis regression is MA regression performed on standardized
variables, which are thus dimensionally homogeneous. It is computed as follows:

• Standardize variables x and y using eq. 1.12.

• Compute MA regression on the standardized variables. The slope estimate is always
+1 or –1; the sign is that of the covariance  or correlation coefficient .

• Back-transform the slope estimate to the original units by multiplying it by (sy/sx).

As a consequence, the slope of the standard major axis (SMA), or reduced major axis,
is computed as the ratio (Teissier, 1948):

(10.12)

where sign(r) is the sign of the correlation coefficient. This formula is obtained from
eq. 10.9 by assuming that the error variances  and  of y and x, respectively, are
identically proportional to their respective variances  and ; in other words,

. This assumption is unlikely to be strictly true with real data, except
in cases where both variables are counts (e.g. numbers of organisms), raw or log-
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transformed (McArdle, 1988). Replacing variances  and  by their unbiased
estimates  and  gives the following value to . in eq. 10.9: 

Equation 10.9 then simplifies to eq. 10.12. Since the square root  is either
positive or negative, the slope estimate receives the sign of the Pearson correlation
coefficient, which is the same as that of the covariance  in the denominator of
eq. 10.9 or that of the OLS slope estimate. The bSMA estimate is also the geometric
mean of the OLS regression coefficient of y on x and the reciprocal of the regression
coefficient of x on y; this is why the method is also called geometric mean regression,
besides a variety of other names. 

From equations 4.7 (Pearson r), 10.3 ( ) and 10.12 ( ), one can show that

   when   rxy 0 0 (10.13)

So, in addition to eq. 10.12, one can easily compute  from eq. 10.13 using values
of  and rxy provided by an OLS regression program. This equation also shows
that, when the variables are highly correlated (r 1 1), . When they are
not,  is always larger than  for positive values of r, and smaller for negative
values of r; in other words,  is always closer to 0 than . 

When rxy = 0, the  estimate obtained from eq. 10.12, which is the ratio of the
standard deviations, is meaningless. It does not fall to zero when the correlation is
zero, except in the trivial case where sy is zero (Jolicoeur, 1975, 1990). Since the

 estimate is independent of the presence of a significant covariance between x
and y (eq. 10.12), users should always compute a Pearson correlation coefficient and
test it for significance prior to computing the slope of a standard major axis regression
line. If r is not significantly different from zero,  should not be computed.

The slope of the standard major axis cannot be tested for significance by a regular
permutation test. There are two reasons for this. 

• Consider permutation testing. The  slope estimate is  but, for all
permuted data,  is a constant. Giving the signs of the permuted covariances to the
permuted slope estimates inevitably produces a probability near 0.5 of obtaining, by
permutation, a value as extreme as or more extreme than the estimate .

• The confidence interval of the slope , described below, is inappropriate to test
the null hypothesis $ = 0 because the ratio  cannot be zero unless sy is equal to
zero. This is a trivial case, unsuitable for regression analysis (Sokal & Rohlf, 1995).

McArdle (1988) suggests that the solution to this problem is to test the correlation
coefficient rxy for significance instead of testing . Warton et al. (2006,
Appendix F) describe a permutation test of the SMA slope based on residuals.
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When needed, an approximate confidence interval [b1, b2] can be computed for
 as follows (Jolicoeur & Mosimann, 1968):

where

and t is a two-tailed Student’s  value for significance level 2 and (n – 2) degrees of
freedom. 

3. Ranged major axis regression (RMA). — An alternative transformation to make
the variables dimensionally homogeneous is ranging (eqs. 1.10 and 1.11). This
transformation does not make the variances equal and thus does not lead to the
problems encountered with SMA regression. It leads to RMA, which proceeds as
follows:

• Transform the y and x variables into y' and x', respectively, using eq. 1.11. For
relative-scale variables (Subsection 1.4.1), which have zero as their natural minimum,
the ranging transformation is carried out using eq. 1.10.

• Compute MA regression between the ranged variables y' and x'. Test by permutation
if a test is required.

• Back-transform the estimated slope and confidence interval limits to the original
units by multiplying them by the ratio of the ranges, (ymax – ymin)/(xmax – xmin).

The RMA slope estimator has several desirable properties when variables x and y
are not expressed in the same units.   The slope estimator scales proportionally to the
units of x and y. The estimator is not insensitive to the covariance, as is the case for
SMA. Finally, it is possible to test the hypothesis that an RMA slope estimate is equal
to a stated value, in particular 0 or 1. As in MA, this may be done either by
permutations, or by comparing the confidence interval of the slope to the hypothetical
value of interest. Thus, whenever MA regression cannot be used because of
incommensurable units, RMA regression can be used. There is no reason, however, to
use RMA when the variables are expressed in the same units.

Prior to RMA, one should check for the presence of outliers, using a scatter
diagram of the objects. Outliers cause important changes to the estimates of the ranges
of the variables. Outliers that are not aligned with the bulk of the objects may thus
have an undesirable influence on the slope estimate. RMA should not be used in the
presence of such outliers.
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4. Ordinary least squares (OLS). — The OLS method is derived from eq. 10.10 by
assuming that there is no error on x, so that the error variance on x, , is zero and thus

. After simplification, the OLS slope is equal to (eq. 10.3)

The remainder of the subsection is devoted to the description of general properties
and the comparison of model II regression methods. 

With all methods of model II regression, an estimate of the intercept, b0, can be
computed from b1 and the centroid of the scatter of points , using eq. 10.3. The
same equation can be used to calculate approximate estimates of the confidence limits
of the intercept. Warton et al. (2006) describe more precise estimates of these
confidence limits.

The first three methods (MA, SMA, RMA) have the property that the slope of the
regression y = ƒ(x) is the reciprocal of the slope of x = ƒ(y). This property of symmetry
is desirable here since there is no functional distinction between x and y in a model II
situation. OLS regression does not have that property (Fig. 10.6a). 

Users of model II regression techniques are never certain that the assumptions of the
various methods are met by the variables in the data sets (i.e. MA:  so that

; SMA: ; OLS:  so that ).
For that reason, McArdle (1988) carried out an extensive simulation study to
investigate the influence of the error variances,  for y and  for x, on the efficiency
(i.e. precision of the estimation) of the MA, SMA and OLS methods, measuring how
variable the estimated slopes were under various conditions. Likewise, Jolicoeur (1990)
used simulations to investigate the effects of small sample sizes and low correlations
on the slope estimates obtained by MA and SMA. D. J. Currie, P. Legendre and
A. Vaudor (unpublished study) also used numerical simulations to investigate the
relationship between slope estimate formulas. They compared MA to OLS and MA to
SMA in the correlation situation, defined as that where researchers are interested in
describing the slope of the bivariate relationship displayed by two correlated random
variables, i.e. variables that are not controlled or error-free. The results of all these
simulations lead to the following recommendations for the estimation of parameters of
functional linear relationships between variables that are random (i.e. not controlled)
and measured with error (Table 10.4). They were first presented in a guide (Legendre,
2008b) distributed with the R package LMODEL2.

1. If the magnitude of the random variation (i.e. the error variance*) on the response
variable y is much larger (i.e. more than three times) than that on the explanatory
variable x, use OLS as the model II regression method. Otherwise, proceed as follows.

*  Contrary to the sample variance, the error variance on x or y cannot be estimated from the data.
It can only be estimated from knowledge of the way the variables were measured.
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2. Check whether the data are approximately bivariate normal, either by examining a
scatter diagram or by performing a formal test of significance. If they are not, attempt
transformations to make the distribution bivariate normal. For data that are or can be
made to be reasonably bivariate normal, consider recommendations 3 and 4. If not, see
recommendation 5.

3. For bivariate normal data, if the two variables are expressed in the same physical
units (untransformed variables that were originally measured in the same units) or are
dimensionless (e.g. log-transformed variables), and if it can reasonably be assumed
that the error variances of the variables are approximately equal, use major axis (MA)
regression. 

When no information is available on the ratio of the error variances and there is no reason to
believe that it may differ from 1, MA may be used provided that the results are interpreted with
caution. MA produces unbiased slope estimates and accurate confidence intervals (Jolicoeur,
1990).

MA can be used with dimensionally heterogeneous variables (1) when the purpose of the
analysis is to compare slopes computed from these variables measured in an identical way in
different systems (e.g. at two or more sampling sites). It may also be useful (2) when the
objective of the study is to test the hypothesis that the slope of the major axis of the empirical
data does not differ from a value given by theory.

Table 10.4 Recommendations for the application of the model II regression methods. The numbers refer to
the corresponding recommendation paragraphs (recom.) in the text.

• The error on y is much larger than the error on x: use OLS (recom. 1)
• The data distribution is close to bivariate normal (recom. 2)

• The variables are in the same physical units or dimensionless, the error variance is about
the same for x and y: use MA (recom. 3)
• The variables are not dimensionally homogeneous. The error variance along each axis is
proportional to the variance of the corresponding variable (recom. 4)

• There are no outliers in the scatter diagram: RMA can be used (recom. 4.1)
• The Pearson correlation coefficient r is significant: SMA can be used (recom. 4.2)

• The data distribution is clearly not bivariate normal (recom. 2)
• The relationship between x and y is linear: use OLS (recom. 5)

• The objective is to compute forecasted (i.e. fitted) values : use OLS (recom. 6)
• The objective is to compare observations to model predictions: use MA (recom. 7)

ŷ
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4. For bivariate normal data, if MA cannot be used because the variables are not
expressed in the same physical units or the error variances on the two axes differ, two
methods are available to estimate the parameters of the functional linear relationship if
it can be assumed that the error variance on each axis is proportional to the variance of
the corresponding variable, i.e. (error variance of y / sample variance of y) 4 (error
variance of x / sample variance of x). This condition is often met with counts
(e.g. number of plants or animals) or log-transformed data (McArdle, 1988). The two
following methods can be used if their specific conditions are met by the data.

4.1. Ranged major axis regression (RMA) can be used if there are no outliers in the
scatter of points. Prior to RMA, one should check for the presence of outliers, using a
scatter diagram of the objects.

4.2. Standard major axis regression (SMA) can be used if the coefficient of linear
correlation (Pearson r) is significant. SMA regression should not be computed when
this condition is not met. 

The SMA slope cannot be tested by a standard permutation test, but the correlation coefficient r
can. See also Warton et al. (2006, Appendix F) for a permutation test of the SMA slope based on
residuals. Confidence intervals should be used with caution: simulations have shown that, as the
slope departs from ±1, the SMA slope estimate is increasingly biased and the confidence interval
includes the true value less and less often. Even when the slope is near ±1, the confidence
interval is too narrow if n is very small or if the correlation is weak.

5. If the distribution is not bivariate normal and the data cannot be transformed to
satisfy that condition (e.g. if the distribution possesses two or several modes), one
should wonder whether the slope of a regression line is really an adequate model to
describe the functional relationship between the two variables. Since the distribution is
not bivariate normal, there seems little reason to apply models such as MA, SMA or
RMA, which primarily describe the first principal component of a bivariate normal
distribution. So, (1) if the relationship is linear, OLS is recommended to estimate the
parameters of the regression line. The significance of the slope should be tested by
permutation, however, because the distributional assumptions of the parametric test
are not satisfied. (2) If a straight line is not an appropriate model, polynomial or
nonlinear regression should be considered.

6. When the purpose of the study is not to estimate the parameters of a functional
relationship, but simply to forecast or predict values of y for given x’s, use OLS in all
cases. OLS is the only method that minimizes the squared residuals in y. The OLS
regression line itself is meaningless. Do not use the OLS standard error and confidence
bands unless x is known to be free of error (Sokal and Rohlf, 1995: 545, Table 14.3).

7. Observations may be compared to the predictions of a statistical or deterministic
model (e.g simulation model) in order to assess the quality of the model. If the model
contains random variables measured with error, use MA for the comparison when the
observations and model predictions are in the same units. 
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If the model fits the data well, the MA slope is expected to be 1 and the intercept 0. A slope that
significantly differs from 1 indicates a difference between observed and simulated values that is
proportional to the observed values. For relative-scale variables, a MA intercept that
significantly differs from 0 suggests the existence of a systematic difference between
observations and simulations (Mesplé et al., 1996).

8. With all methods, the confidence intervals are large when n is small; they become
smaller as n goes up to about 60, after which they change much more slowly. Model II
regression should ideally be applied to data sets containing 60 observations or more. 

Numerical examples illustrating the cases found in Table 10.4 are described in
Legendre (2008b). The data and R script are found in the help file of the lmodel2()
function (Section 10.7). Other interesting examples are found in Warton et al. (2006). 

Ecological application  10.3a

Laws & Archie (1981) re-analysed data published in two previous papers that had quantified the
relationships between the log of respiration rates and the log of biomass for zooplankton under
various temperature conditions. The authors of the original papers had computed OLS slopes
and confidence intervals (model I regression) of the biomass-respiration relationships for each
temperature condition. They had come to the conclusions (1) that the surface law, which states
that the slope of the log-log relationship should fall between 0.66 and 1.00, was not verified by
the data, and (2) that the slope significantly varied as a function of temperature. Based on the
same data, Laws & Archie recomputed the slopes using the standard major axis method. They
found that all slopes were larger than estimated by OLS (same phenomenon as in Fig. 10.7) and
that none of them was significantly outside the 0.66 to 1.00 interval predicted by the surface law.
Furthermore, comparing the slopes of the different temperature data sets at 2 = 0.02, they found
that they did not differ significantly from one another.

3 — Multiple linear regression

When there are several explanatory variables x1, x2, …, xm, it is possible to compute a
regression equation where the response variable y is a linear function of all explanatory
variables xj. The multiple linear regression model is a direct extension of simple linear
regression:

(10.14)

for object i . Equation 10.14 leads to the well-known formula for the fitted values:

(10.15)

Using ordinary least squares (OLS), the vector of regression parameters b = [bj] is
easily computed from matrix eq. 2.19: b = [X'X]–1 [X'y]. If an intercept (b0) must be
estimated, a column of 1’s is added to matrix X of the explanatory variables. QR
decomposition (Section 10.7) is an alternative, computer-efficient method for the
computation of regression coefficients in univariate or multivariate regression.

yi b0 b1xi1 b2xi2 … bmxim %i+ + + + +=

ŷi b0 b1xi1 b2xi2 … bmxim+ + + +=
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Equation 10.15 provides a model I estimation, which is valid when the xj variables
have been measured without error. This is the only method presently available in
commercial statistical packages and, for this reason, it is the multiple regression model
most widely used by ecologists. McArdle (1988) proposed a multiple regression
method, the standard minor axis, to be used when the explanatory variables of the
model are random (i.e. with measurement error or natural variability). McArdle’s
standard minor axis is the multivariate equivalent of the standard major axis (SMA)
method described in the previous subsection. 

Another approach is orthogonal distance regression (ODR), computed through
generalized least squares. The method minimizes the sum of the squares of the
orthogonal distances between each data point and the curve described by the model
equation; this is the multivariate equivalent of the major axis regression (MA) method
described in the previous subsection. ODR is used extensively in econometrics. Boggs
& Rogers (1990) give entry points to the numerous papers that have been published on
the subject in the computer science and econometric literature and they propose an
extension of the method to nonlinear regression modelling. They also give references
to ODRPACK*, a public-domain collection of FORTRAN subprograms for weighted
orthogonal distance regression, which allows estimation of the parameters that
minimize the sum of squared weighted orthogonal distances from a set of observations
to the curve or surface determined by the parameters.

When the same multiple regression model is to be computed for several response
variables y1, …, yi, …, yp, regression coefficients can be estimated by ordinary least
squares for all response variables simultaneously, using a single matrix expression:

The procedure is called multivariate linear regression (Finn, 1974). In this expression,
which is the multivariate equivalent of eq. 2.19, X is the matrix of explanatory
variables, Y is the matrix of the p response variables, and  is the matrix of regression
coefficients. The coefficients found using this equation are the same as those obtained
from multiple regressions computed in separate runs for each response variable. The
multivariate matrix of fitted values is obtained by the following matrix expression,
which will serve as the basis for redundancy analysis (eq. 11.3) in Section 11.1:

 = X [X'X]–1 X'Y (10.16)

Two types of regression coefficients can be computed in regression analysis. 

• Ordinary regression coefficients, represented by symbols b, are computed on the
original variables. The physical dimension of coefficient bj associated with
explanatory variable xj is (dimension of y / dimension of xj). These regression

*  ODRPACK is available from the following Web site: <http://www.netlib.org/odrpack/>.
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coefficients are useful when the regression equation is to be used to compute estimated
values of y for objects that have not been involved in the estimation of the regression
parameters, and for which y and x values are available. This is the case, for instance,
when a regression model is validated using a new set of observations: estimates  are
computed from the regression equation to be validated, using the observed values of
the explanatory variables xj , and they are compared to the corresponding observed y’s,
to assess how efficient the regression model is at calculating y for new data. 

• In contrast, standard regression coefficients, often represented by symbols , are
computed on standardized variables X and y. Standard regression coefficients are
dimensionless. These regression coefficients are useful as a means of assessing the
relative importance of each explanatory variables xj included in the regression model:
the variables with the highest standard regression coefficients (in absolute values) are
those that contribute the most to the estimated  values. The relationship between
coefficients b and  obtained by ordinary least-squares estimation is:

, where  is the partial regression coefficient for explanatory
variable xj. 

It is interesting and important to note that, for the objects that were used to estimate the
regression parameters, the fitted values  computed from the ordinary regression
coefficients (hence from the original variables) are identical to the fitted values
computed from standard regression coefficients (i.e. from the standardized variables).

Both the ordinary and standard regression coefficients in multiple regression are
partial regression coefficients. The term partial means that each regression coefficient
is a measure, standardized or not, of the rate of change that variable y would have per
unit of variable xj , if all the other explanatory variables in the study were held
constant. The concept of partial regression is further developed in Subsection 10.3.5.
Partial regression coefficients can be tested by permutation using methods similar to
those described in Subsection 11.1.8 for canonical redundancy analysis (RDA).

When the explanatory variables xj of the model are uncorrelated, multiple
regression is a straightforward extension of simple linear regression. In experimental
work, controlled variables may satisfy this condition if the experiment has been
planned with care and the design is balanced. With observational data, however, the
explanatory variables used in multiple regression models are most often collinear
(i.e. correlated to one another), and it will be seen that strong collinearity may affect
the ability to correctly estimate the regression parameters. How to deal with this
problem will depend on the purpose of the analysis. If one is primarily interested in
forecasting, the objective is to maximize the coefficient of multiple determination
(called R2 in multiple regression); collinearity of the explanatory variables is not a
concern. For description or inference, however, the primary interest is to correctly
estimate the parameters of the model; the effect of multicollinearity on the estimates of
the model parameters must then be minimized. 
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Prior to regression, different methods can be used to identify fully or highly
collinear variables. 

• One can check if the group of explanatory variables is of full rank. This can be done
by singular value decomposition (SVD) of the data matrix (Section 2.11,
Application 1): the matrix is not of full rank if one or more of the singular values are 0.
Alternatively, one can compute the determinant of the covariance matrix of a group of
variables: the determinant is 0 if the group includes variables that are linearly
dependent on other variables in the group (Section 2.6, property 5; Section 2.7). 

• If the rank of the matrix is smaller than its order, check subgroups of explanatory
variables. Place the variables in an order that seems suitable; for example, put the most
ecologically informative or easy-to-measure variables first. Compute SVD of the
matrix containing the first two variables, then the first three, and so on. SVD produces
a singular value of zero when a variable that is fully collinear with the previous ones is
included in the group. When identified, remove the fully collinear variable from the set
of explanatory variables and resume the exploration of the remaining variables.

• For variables that are not fully collinear, compute the extent to which each variable
is collinear with the other variables in the group. This is done by computing variance
inflation factors (VIF; Neter et al., 1996, their Sections 9.5 and 10.2). Each variable j is
regressed, in turn, on all the other variables in the group and the coefficient of
determination ( , eq. 10.20) of that regression model is noted. The VIF for variable j
is computed as follows:

(10.17)

All VIF coefficients can actually be found in a single operation by computing the
inverse of the correlation matrix, R–1, among the variables in the group under study;
the diagonal elements of that inverse matrix are the VIF coefficients. VIFj is 1 for a
variable j that has correlations of 0 with all the other variables in the group, and is
larger than 1 when the correlations between j and some or all the other variables differ
from 0 (positive or negative correlation values). Variables that have high VIF
coefficients can be scrutinized and considered as candidates for elimination from the
group of explanatory variables. Different cut-off values have been proposed to identify
highly collinear variables: VIF > 5, or > 10 (Neter et al., 1996), or > 20 (ter Braak &
Smilauer, 2002).

The effect of collinearity on the estimates of regression parameters may be
described as follows. Let us assume that one is regressing y on two explanatory
variables x1 and x2. If x1 is uncorrelated to x2, the variables form a well-defined
Cartesian plane. If y is represented as an axis orthogonal to that plane, a multiple linear
regression equation corresponds to a plane in the three-dimensional space; this plane
represents the variation of y as a linear function of x1 and x2. If x1 is strongly correlated
(i.e. collinear) to x2, the axes of the base plane form an acute angle instead of being at
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right angle. In the limit situation where r (x1, x2) = 1, they become a single axis. With
such correlated explanatory variables, the angles determined by the slope coefficients
(b1 and b2), which set the position of the regression plane in the x1–x2–y space, are
more likely to be unstable; their values may change depending on the random
component %i in yi. In other words, two samples drawn from the same statistical
population may be modelled by regression equations with very different parameters —
even to the point that the signs of the regression coefficients may change.

Simulation is the easiest way to illustrate the effect of collinearity on the estimation of
regression parameters. Vectors x1 and x2 were generated, each containing 100 random normal
deviates N(0,1), and assembled into an explanatory matrix X. Because the data were generated
at random, vectors x1 and x2 should be uncorrelated. Actually, the correlation between them was
–0.002. The control data set was completed by computing a response variable y1 as the sum of
x1 and x2 , to which a random component was added in the form of an error term % composed of
random normal deviates N(0,2):

y1i = xi1 + xi2 + %i

For the test data set, two correlated explanatory variables w1 and w2 were created by
multiplying matrix X by the square root of a correlation matrix stating that the correlation
between x1 and x2 should be 0.8:

W = [w1, w2] = XR0.5     where     X = [x1, x2] and R0.5 = 

R0.5 is computed using eq. 2.29; Cholesky factorization (Section 2.12) of R may be used instead
of square root decomposition. Since x1 and x2 are N(0,1) random deviates, they have expected
values of 0 and are orthogonal for large n. The covariance matrix of W can be developed as
follows, which shows that its expected value is equal to the imposed correlation matrix R:

For the simulated data, the correlation between w1 and w2 turned out to be 0.801, which is
very close to 0.8. The test data set was completed by computing a variable y2 from [w1, w2]
with the same error term % as in the equation for y1 above:

y2i = wi1 + wi2 + %i

Each data matrix was divided into five independent groups of 20 observations each, and multiple
regression equations were computed; the groups were independent of one another since the
generated data were not autocorrelated. Results are shown in Table 10.5. Note the high
variability of the slope estimates obtained for the test data groups (lower panel, with collinearity
in the explanatory variables) compared to the control data groups (upper panel). In two cases,
the signs of the regression coefficients were changed: for b1 in group 5 and for b2 in group 1.

When trying to find the ‘best’ possible model describing an ecological process,
another important aspect is the principle of parsimony, also called Ockham’s razor.
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This principle, formulated by the English logician and philosopher William Ockham
(1290-1349), professor at Oxford University, states that

Pluralites non est ponenda sine necessitate

which literally translates: “Multiplicity should not be posited without necessity”. In
other words, unnecessary assumptions should be avoided (i.e. “shaved away”) when
formulating hypotheses. Following this principle, parameters should be used with
parsimony in modelling, so that any parameter that does not significantly contribute to
the model (e.g. by increasing the R2 coefficient in an important way, or by decreasing
AIC) should be eliminated. Indeed, any model containing as many parameters as the
number of data points can be adjusted to perfectly fit the data. The corresponding
‘cost’ is that there is no degree of freedom left to test its significance, hence the
‘model’ cannot be extended to any other situation.

Table 10.5 Parameters of the multiple regression equations for two data sets, each divided into five groups
of 20 objects. Top: control data where variables x1 and x2 are uncorrelated. Bottom: test data
with r(x1, x2) 4 0.8. Note how the range and standard deviation statistics indicate higher slope
variability among the test groups (lower panel). The intercepts are the same in the two panels.

5 b0 b1 b2 

Group 1 0.922 1.457 0.247
Group 2 0.002 –0.033 1.032
Group 3  0.494 1.264 1.206
Group 4 0.343 0.614 0.339
Group 5 0.209 0.410 1.410

Mean 0.394 0.742 0.847

Range of slope estimates = Max – Min 1.491 1.163
Standard deviation of slope estimates 0.615 0.524

5 b0 b1 b2 

Group 1 0.922 1.988 –0.718
Group 2 0.002 –0.819 1.563
Group 3 0.494 0.985 0.855
Group 4 0.343 0.663 0.048
Group 5 0.209 –0.440 1.796

Mean 0.394 0.475 0.709

Range of slope estimates = Max – Min 2.807 2.514
Standard deviation of slope estimates 1.129 1.050

ŷ1 b0 b1x1 b2x2+ +=

ŷ2 b0 b1w1 b2w2+ +=

Ockham’s 
razor
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When the explanatory variables of the model are orthogonal to one another (no
collinearity, for example among the controlled factors of well-planned and balanced
factorial experiments), applying Ockham’s razor is easy: one can remove from the
model any variable whose contribution (slope parameter) is not statistically significant.
Tests of significance for the partial regression coefficients (i.e. the individual b’s) are
described in standard textbooks of statistics. The task is not that simple, however, with
observational data, because these often display various degrees of collinearity. The
problem is that significance may get ‘diluted’ among collinear variables contributing
in the same way to the explanation of a response variable y. Consider a data set where
an explanatory variable x1 makes a significant contribution to a regression model;
introducing a highly correlated copy of x1 in the calculation is usually enough to make
the contribution of each copy non-significant, simply as the result of the collinearity
that exists between copies (if the second copy is a perfect copy of x1, the regression
coefficients must be computed using a generalized inverse; see Section 2.11,
Application 3). Linear dependence (or full collinearity) in a group of explanatory
variables is easy to detect; see Identify collinear variables in the margin a few pages
above. Multicollinearity (without full collinearity) among explanatory variables is
measured by VIF coefficients (eq. 10.17). Hocking (1976) compared a number of
methods proposed for selecting variables in linear regression exhibiting collinearity.

Some statistical programs offer procedures that allow one to compute and compare
all possible regression submodels for a small set of k explanatory variables. When such
a procedure is not available and one does not want to manually test all possible
models, heuristic methods that have been developed for selecting the ‘best’ subset of
explanatory variables may be used, although with caution. The explanatory variables
with the strongest contributions may be chosen by backward elimination, forward
selection, or stepwise procedure. The three strategies do not necessarily lead to the
same selection of explanatory variables. 

• The backward elimination procedure is easy to understand. All variables are initially
included and, at each step, the variable that contributes the least to explaining the
response variable (usually that with the smallest partial correlation) is removed, until
all explanatory variables remaining in the model have a significant partial regression
coefficient. Some programs express the selection criterion in terms of a F-to-remove
(F-statistic for testing the significance of the partial regression coefficient) or a p-to-
remove criterion (same, but expressed in terms of probability), instead of the value of
the partial correlation, or else in terms of AIC or AICc (eqs. 10.22 and 10.23, below). 

• The forward selection procedure starts with no explanatory variable in the model.
The variable entered is the one that produces the largest increase in R2, provided this
increase is significantly different from zero using a predetermined significance level.
The procedure is iteratively repeated until no more explanatory variable can be found
that produces a significant increase in R2. Calculations may be simplified by
computing partial correlations for all variables not yet in the model, and only testing
the significance of the largest partial correlation. Again, some programs base the final
decision for including an explanatory variable on a F-to-enter value, which is

Backward
elimination

Forward
selection
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equivalent to using the actual probability values, or on AIC or AICc (eqs. 10.22 and
10.23, below). The major problem with forward selection is that all variables included
at previous steps are kept in the model, even though some of them may finally
contribute little to the R2 after incorporation of some other variables.

• The latter problem may be alleviated by the stepwise procedure, which alternates
between forward selection and backward elimination. After each step of forward
inclusion, the significance of all the variables in the model is tested, and those that are
not significant are excluded before the next forward selection step. 

In any case, a problem common to all stepwise inclusion procedures remains: when
a model with, say, k explanatory variables has been selected, the procedure offers no
guarantee that there does not exist another subset of k explanatory variables, with
significant partial correlations, that would explain together more of the variation of y
(larger R2) than the subset selected by stepwise procedure. Furthermore, Sokal &
Rohlf (1995) warn users that, after doing repeated tests, the probability of type I error
is far greater than the nominal significance value 2. The stepwise approach to
regression can only be recommended in empirical studies, where one must reduce the
number of explanatory variables in order to simplify data collection during the next
phase of field study.

There are other ways to counter the effects of multicollinearity in multiple
regression. Table 10.5 shows that collinearity has the effect of inflating the variance of
regression coefficients, with the exception of the intercept b0. When the objective is
forecasting or prediction, one can use regression on principal components or ridge
regression, described below. These methods reduce the variance of the regression
coefficients, which leads in turn to better predictions of the response variable.
However, the regression coefficients they produce are biased; despite of that, they are
still better estimates of the ‘true’ regression coefficients than those obtained by
ordinary multiple regression for collinear variables. In other words, the price to pay for
reducing the inflation of variance is some bias in the estimates of the regression
coefficients. This may provide better forecasting or prediction than the ordinary
multiple regression solution since, as a consequence of the larger variance in the
regression coefficients, multicollinearity tends to increase the variance of the
forecasted or predicted values (Freund & Minton, 1979).

• Regression on principal components consists of the following steps: (1) perform a
principal component analysis on the matrix of the explanatory variables X,
(2) compute the multiple regression of y on the principal components (matrix F,
eq. 9.4) of X instead of the original explanatory variables, and (3) find back the
contributions of the explanatory variables by multiplying matrix U of the eigenvectors
with the vector of regression coefficients c of y regressed on the selected principal
components (without including the intercept). One obtains a new vector b of
contributions of the original variables to the regression equation as follows:

(10.18)

Stepwise
procedure

Regression
on principal
components

bm 1×( ) U m k×( ) c k 1×( )=



Regression 563

where m is the number of explanatory variables in the analysis and k is the number of
principal components retained for step 3. This procedure does not necessarily resolve
the problem of multicollinearity, although it is true that the regression is performed on
principal components, which are not correlated to one another by definition. Consider
the following case: if all m eigenvectors are kept in matrix U for step 3, one obtains
exactly the same regression coefficients as in ordinary multiple regression. When X
contains collinear variables, there is a gain in stability of the regression coefficients
only if some of the principal components are eliminated from the computation of
eq. 10.18. One may either eliminate the eigenvectors with the smallest eigenvalues or,
better, use only in eq. 10.18 the principal components that significantly contribute to
explain the variation of y. By doing so, the regression coefficient estimates become
biased, of course. In problems involving a small number of explanatory variables,
regression on principal components may be difficult to use because the number of
principal components is small, so that eliminating one of them from the analysis may
result in a large drop in R2. Ecological application 12.7 provides an example of
regression on principal components.

• Ridge regression, developed by Hoerl (1962) and Hoerl & Kennard (1970a, b),
approaches the problem in a different way; another important paper on the subject is

Figure 10.8 ‘Ridge trace’ diagram showing the estimates of the standard regression coefficients b(x1) to
b(x3) for explanatory variables x1 to x3 as a function of k. Table on the right: decrease of R2 as a
function of k.
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Marquardt & Snee (1975). Instead of the usual matrix eq. 2.19 ,
the regression coefficients are estimated using a modified equation,

,   where   k > 0. (10.19)

Hence, the method consists in increasing the diagonal terms (variances) of the
covariance matrix  by a constant positive quantity k. This reduces the variance
of the regression coefficients while creating a bias in the resulting estimates. So, users
are left with the practical problem of choosing a value for k that is optimal in some
sense. This is accomplished by computing regression coefficient estimates for a series
of values of k, and plotting them (ordinate) as a function of k (abscissa); this plot is
called the ‘ridge trace’, for historical reasons (Hoerl, 1962). After studying the plot,
one chooses a value of k which is as small as possible, but large enough that the
regression coefficient estimates change little after it. Since ridge regression is usually
computed on standardized variables, no intercept is estimated. A number of criteria
have been proposed by Obenchain (1977) to help choose the value of k. These criteria
must be used with caution, however, since they often do not select the same value of k
as the optimal one. 

An example of a ‘ridge trace’ diagram is presented in Fig. 10.8. The data set
consists of a response variable y and three collinear explanatory variables x1 to x3;
their empirical correlation matrix is the following:

Variables x1 and x3 are highly correlated. The leftmost regression coefficient estimates
in Fig. 10.8 (for k = 0) are the standardized OLS multiple regression coefficients.
Going from left to right in the figure, the regression coefficients stabilize after a sharp
decrease or increase. One may decide that setting the cut-off point at k = 0.2 would be
an appropriate compromise between small k and stable regression coefficients.
Boudoux & Ung (1979) and Bare & Hann (1981) provide applications of ridge
regression to forestry; in both papers, some regression coefficients change signs with
increasing k. An application of ridge regression to modelling heterotrophic bacteria in
a sewage lagoon ecosystem is presented by Troussellier et al. (1986, followed-up by
Troussellier & Legendre, 1989).

The coefficient of multiple determination R2, also called the unadjusted coefficient
of multiple determination, is the square of the multiple correlation coefficient R of
Section 4.5; it varies between 0 and 1.  measures the proportion of the variation
of variable y about its mean that is explained by the linear model of the variables

y x1 x2 x3

y 1
x1 –0.40 1
x2 –0.44 0.57 1
x3 –0.41 0.99 0.56 1

b X'X[ ]
1– X'y[ ]=

b X'X kI+[ ]
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included in explanatory matrix X. As in simple linear regression, where the coefficient
of determination is r2 (eq. 10.7),  is the regression sum of squares (SS) divided by
the total sum of squares (total SS, TSS), or the one-complement of the ratio of the sum
of squared residuals (residual sum of squares, RSS) to the total sum of squares (TSS):

(10.20)

The expected value of R2 in a regression involving m random predictors is not 0 but
m/(n – 1), as explained below. As a consequence, if X contains m = (n – 1) predictors
that are linearly unrelated to the response variable y, for example m columns of random
numbers, R2 = 1 even though the explanatory variables explain none of the variation of
y . For that reason, R2 cannot be interpreted as a correct (i.e. unbiased) estimate of the
proportion of variation of y explained by X.

Three useful statistics can, however, be derived from R2. They serve distinct
purposes in regression analysis.

1. The adjusted coefficient of multiple determination  or adjusted R2 (Ezekiel,
1930), provides an unbiased estimate of the proportion of variation of y explained by
X. The formula takes into account the numbers of degrees of freedom (d.f.) of the
numerator and denominator portions of R2:

(10.21)

• In ordinary multiple regression, the total degrees of freedom of the F-statistic are
(n – 1) and the residual d.f. are (n – m – 1), where n is the number of observations and
m is the number of explanatory variables in the model (eq. 4.40). 

• In multiple regression through the origin, where the intercept is forced to zero, the
total degrees of freedom of the F-statistic are n and the residual d.f. are (n – m). 

These same degrees of freedom are used in eq. 10.21. The logic of this adjustment is
the following: in ordinary multiple regression, a random predictor explains on average
a proportion 1/(n – 1) of the response’s variation, so that m random predictors explain
together, on average, m/(n – 1) of the response’s variation; in other words, the
expected value of R2 is E(R2) = m/(n – 1). Applying eq. 10.21 to that value, where all
predictors are random, gives  = 0. In regression through the origin, a random
predictor explains on average a proportion 1/n of the response’s variation, so that m
random predictors explain together, on average, m/n of the response’s variation, and
R2 = m/n. Applying eq. 10.21 to that case gives, again,  = 0. 

 is a suitable measure of goodness of fit for comparing the success of regression
equations fitted to different data sets, with different numbers of objects and
explanatory variables. Using simulated data with normal error, Ohtani (2000) has
shown that  is an unbiased estimator of the contribution of a set of random
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predictors X to the explanation of y. This adjustment may be too conservative when
m > n/2 (Borcard et al., 2011); this is a rule of thumb rather than a statistical principle.

With real matrices of random variables (defined at the beginning of Section 10.3),
when the explanatory variables explain no more of the response’s variation than the
same number of variables containing random numbers, the value of  is near zero; it
can be negative on occasion. Contrary to R2,  does not necessarily increase with the
addition of explanatory variables to the regression model if these explanatory variables
are linearly unrelated to y.  is a better estimate of the population coefficient of
determination 62 than R2 (Zar, 1999, Section 20.3) because it is unbiased. 

Healy (1984) pointed out that Ezekiel’s (1930) adjusted R2 equation ( ,
eq. 10.21) makes sense and should be used when X contains observed values of
random variables. That is not the case for ANOVA fixed factors, which can be used in a
multiple regression equation when they are recoded into binary dummy variables or
Helmert contrasts (Subsection 1.5.7).

In canonical analysis (Chapter 11), the canonical R2 is called the bimultivariate redundancy
statistic (Miller & Farr, 1971), canonical coefficient of determination, or canonical R2. Using
numerical simulations, Peres-Neto et al. (2006) have shown that, in redundancy analysis (RDA,
Section 11.1), for normally distributed data or Hellinger-transformed species abundances, the
adjusted canonical R2 ( , eq. 11.5), obtained by applying eq. 10.21 to the canonical R2 ( ,
eq. 11.4), produces unbiased estimates of the contributions of the variables in X to the
explanation of a response matrix Y, just as in multiple regression. With simulated data, they also
showed the artificial increase of R2 as the number of unrelated explanatory variables in
explanatory matrix X increases. 

2. The Akaike Information Criterion (AIC) is a measure of the goodness of fit of the
data to an estimated statistical model (Akaike, 1974). When comparing linear
regression models, AIC is computed as follows (RSS, TSS: see eq. 10.20):

AIC = (10.22)

where k is the number of parameters, including the intercept, in the regression
equation. Independence of the observations is assumed in the calculation of AIC, as
well as normality of the residuals and homogeneity of their variances. The following
formula is also found in the literature: AIC = . A constant,
nloge(TSS), must be added to this formula to obtain eq. 10.22. Since AIC is used to
compare different models of the same response data, either formula will identify the
same model as the one that minimizes AIC.

The corrected form of AIC, abbreviated AICc (Hurvich & Tsai, 1993), is AIC with a
second-order correction for small sample size:

AICc = AIC + (10.23)
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Burnham & Anderson (2002) strongly recommend using AICc rather than AIC when n
is small or k is large. Because AICc converges towards AIC when n is large, AICc
should be used with all sample sizes. 

The AICc statistic is not the basis for a test of significance. It plays a different role
than the F-test (below): it is used to compare models. For a given data set, several
competing models may be ranked by AICc. The model with the smallest value of AICc
is the best-fitting one, i.e. the most likely for the data. For example, in selection of
explanatory variables, the model for which AICc is minimum is retained.

3. The F-statistic (see eq. 4.40) serves as the basis for the test of significance of the
coefficient of multiple determination, R2. A parametric test can be used if the
regression residuals are normal. Otherwise, a permutation test should be used.

There is another way of comparing models statistically, but it is limited to nested
models of the same response data. A model is nested in another if it contains one or
several variables less than the reference model. The method consists in calculating the
R2 of the two linear models and computing a F-statistic to test the difference in R2

between them. The F-statistic is computed as follows for two nested models, the most
inclusive containing m2 variables and the model nested into it containing m1 variables:

The difference in R2 is tested for significance parametrically with 71 = (m2 – m1) and
72 = (n – m2 – 1) degrees of freedom, or by permutation. This method can be used in
forward selection or backward elimination. It is implemented, for example, in
functions ordiR2step() of VEGAN and forward.sel() of PACKFOR (Subsection 11.1.10,
paragraph 7), which can be used in models involving a single response variable y .

As a final note, it is useful to remember that several types of explanatory variables
can be used in multiple regression:

• Binary descriptors can be used as explanatory variables in multiple regression,
together with quantitative variables. This means that multistate qualitative variables
can also be used, insofar as they are recoded into binary dummy variables, as described
in Subsection 1.5.7*. This case is referred to as dummy variable regression. 

• Geographic information may be used in multiple regression models in different
ways. On the one hand, latitude (Y) and longitude (X) information form perfectly valid
quantitative descriptors if they are recorded as axes of a Cartesian plane. Geographic
data in the form of degrees-minutes-seconds should, however, be recoded to decimal

*  In R, qualitative multistate descriptors used as explanatory variables are automatically recoded
into dummy variables by function lm() if they are identified as factors in the data frame.
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form before they are used as explanatory variables in regression. The X and Y
coordinates may be used either alone, or in the form of a polynomial (X, Y, X2, XY,
Y2, etc.). Regression using such explanatory variables is referred to as trend surface
analysis in Chapter 13. Spatial eigenfunctions, described in Chapter 14, are more
sophisticated descriptions of geographic relationships among study sites; they can also
be used as explanatory variables in regression.

• If replicate observations are available for each site, the grouping of observations,
which is also a kind of geographic information, may be used in multiple regression as
a qualitative multistate descriptor, recoded into a set of dummy variables.

• Finally, any analysis of variance may be reformulated as a linear regression analysis;
actually, linear regression and ANOVA both belonging to the General Linear Model.
Consider one-way ANOVA for instance: the classification criterion can be written as a
multistate qualitative variable and, as such, recoded as a set of dummy variables
(Subsection 1.5.7) on which multiple regression may be performed. The analysis of
variance table obtained by multiple regression is identical to that produced by ANOVA.
This equivalence is discussed in more detail by ter Braak & Looman (1987) in an
ecological framework. Draper & Smith (1981) and Searle (1987) discuss in some
detail how to apply multiple regression to various analysis of variance configurations.
ANOVA by regression can be extended to cross-factor (two-way or multiway) ANOVA.
How to carry out these analyses is described in Subsection 11.1.10, point 4, for the
more general analysis of multivariate response data Y (MANOVA).

4 — Polynomial regression

Several solutions have been proposed to the problem of fitting, to a response variable y,
a nonlinear function of a single explanatory variable x. An elegant and easy solution is
to use a polynomial of x, whose terms are treated as so many explanatory variables in a
multiple regression procedure. In this approach, y is modelled as a polynomial function
of x:

(10.24)

Such an equation is linear in its parameters (if one considers the terms x2, …, xk as so
many explanatory variables), although the modelled response of y to the explanatory
variable x is nonlinear. The degree of the equation, which is its highest exponent,
determines the shape of the curve: each degree above 1 (straight line) and 2 (concave
up or down) adds an inflexion point to the curve. Increasing the degree of the equation
always increases its adjustment to the data (R2). If one uses as many parameters b
(including the intercept b0) as there are data points, one can fit the data perfectly
(R2 = 1). However, the cost of that perfect fit is that there are no degrees of freedom
left to test the relationship and, therefore, the “model” cannot be extended to other
situations. Hence, a perfectly fitted model is useless. In any case, a high-degree
polynomial would be of little interest in view of the principle of parsimony (Ockham’s
razor) discussed in Subsection 10.3.3, which states that the best model is the simplest

Polynomial
model ŷ b0 b1x b2x2
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one that adequately describes the relationship. Each term of a polynomial expression is
called a monomial. 

So, the problem left to ecologists is to find the most parsimonious polynomial
equation that adequately fits the data. The methods for selecting variables, described
above for multiple regression, may be used to profit here. 

One can start with a polynomial equation of degree k (e.g. k = 4) and use a
selection procedure, based on AIC, to determine which subset of the monomials
produces the most parsimonious model. Backward, forward or stepwise procedures
can be applied. One could add the following constraint: that all monomials in the final
model be significant, e.g. at level 2 = 0.05. It may turn out that some higher-degree
monomials are retained by the selection procedure, and are significant, whereas some
of the lower-order monomials are excluded; this is entirely permissible. Beware: in
some statistical packages, selection of monomials in polynomial regression only
removes higher-degree monomials; monomials of degrees lower than k cannot be
removed if xk is retained in the model. These procedures do not produce a
parsimonious model in cases where some lower-degree terms should be eliminated.

The successive terms of an ordinary polynomial expression are collinear. Starting
for instance with a variable x made of the successive integers 1 to 10, variables x2, x3,
and x4 computed from it display the following correlations:

The problem of multicollinearity is severe with such data. Centring variable x on its
mean before computing the polynomial is good practice. It reduces the linear
dependency of x2 on x (it actually eliminates it when the x values are at perfectly
regular intervals, as in the present example), and somewhat alleviates the problem for
the higher terms of the polynomial. This may be enough when the objective is
descriptive. If, however, it is important to estimate the exact contribution (standard
regression coefficient) of each term of the polynomial in the final equation, the various
monomials (x, x2, etc.) should be made orthogonal to one another before computing
the regression equation. Orthogonal monomials may be obtained, for example, through
the Gram-Schmidt procedure described in Table 9.5 and in textbooks of linear algebra
for instance Lipschutz (2009); see function poly() in Section 10.7.

Numerical example. Data from the ECOTHAU program (Ecology of the Thau lagoon,
southern France; Amanieu et al., 1989) are used to illustrate polynomial regression. Salinity
(response variable y) was measured at 20 sites in the brackish Thau lagoon (Mediterranean Sea)
on 25 October 1988. The lagoon is elongated in a SW-NE direction. The explanatory variable x

x x2 x3 x4

x 1
x2 0.975 1
x3 0.928 0.987 1
x4 0.882 0.961 0.993 1

Monomial

Orthogonal
monomials
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is the projection of the positions of the sampling sites on the long axis of the lagoon, as
determined by principal component analysis of the site coordinates. Being a principal
component, variable x is centred. The other terms of an ordinary 6th-degree polynomial were
computed from it. After stepwise selection, the model with the lowest AICc contained variables
x, x4 and x5 (AICc = –80.845,  = 0.815); the regression parameters for x4 and x5 were not
significant at the 0.05 level. Then, all possible models involving x, x2, x3, x4 and x5 were
computed. The model with the largest number of significant regression coefficients contained
variables x and x4 (AICc = –80.374,  = 0.792). These results indicate that the model with three
monomials (x, x4 and x5) is slightly better in terms of AICc and is thus the best-fitting model for
the data. The line fitted to the second model, which is more parsimonious with only two
explanatory variables (x and x4), is shown in Fig. 10.9). 

5 — Partial linear regression and variation partitioning

There are situations where two or more complementary sets of hypotheses may be
invoked to explain the variation of an ecological variable. For example, the abundance
of a species could vary as a function of biotic and abiotic factors. Regression
modelling may be used to study one set of factors, or the other, or the two sets together.
In most if not all cases involving field data (by opposition to experimental designs),
there are correlations among variables across the two (or more) explanatory data sets.
Partial regression is a way of estimating how much of the variation of the response
variable can be attributed exclusively to one set once the effect of the other has been
taken into account and controlled for. The purpose may be to estimate the amount of
variation that can be attributed exclusively to one or the other set of explanatory
variables and the amount explained jointly by the two explanatory data sets, or else to
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Regression equation:

Regr.
coeff.

Standard
coeff.

b0 36.929 0
b1(x) –0.0509 –0.9699
b2(x4) –0.0001 –0.7261

Figure 10.9 Polynomial regression line describing the structure of salinity (psu: practical salinity units) in
the Thau lagoon (Mediterranean Sea) along its main geographic axis on 25 October 1988.
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estimate the vector of fitted values corresponding to the exclusive effect of one set of
variables. When the objective is simply to assess the unique contribution of each
explanatory variable, there is no need for partial regression analysis: the coefficients of
multiple regression of the standardized variables already provide that information
since they are standard partial regression coefficients.

Consider three data sets. Vector y is the response variable whereas matrices X and
W contain the explanatory variables. Assume that one wishes to model the relationship
between y and X, while controlling for the effects of the variables in matrix W, which
is called the matrix of covariables. The roles of X and W could of course be inverted.

Variation partitioning consists in apportioning the variation* of variable y among
two or more explanatory data sets. This approach was first proposed by Mood (1969,
1971) and further developed by Borcard et al. (1992) and Peres-Neto et al. (2006). The
method is described here for two explanatory data sets, X and W, but it can be
extended to more explanatory matrices. When X and W contain random variables
(defined at the beginning of Section 10.3), adjusted coefficients of determination ( ,
eq. 10.21) are used to compute the fractions following the method described below.
Ordinary R2 (eq. 10.20) are used instead of  when X and W represent ANOVA fixed
factors coded into binary dummy variables or Helmert contrasts (Subsection 1.5.7).

Figure 10.10 sets a nomenclature, [a] to [d], for the fractions of variation that can
be identified in y. Kerlinger & Pedhazur (1973) called this form of analysis
“commonality analysis” by reference to the common fraction of variation (fraction [b]
in Fig. 10.10) that two sets of explanatory variables may explain jointly. Partial
regression assumes that the effects are linear and additive. There are two ways of
carrying out the partitioning computations, depending on whether one wishes to obtain
vectors of fitted values corresponding to fractions of variation, or simply estimate the
amounts of variation corresponding to the fractions. In the description that follows, the
fractions of variation are computed from  statistics.

(1) If one is interested in obtaining a partial regression equation and computing a
vector of partial fitted values, one first computes the residuals of y on W (noted yres|W)
and the residuals of X on W (noted Xres|W):

Residuals of y on W: yres|W = 

Residuals of X on W: Xres|W = 

In both cases, the regression coefficients are computed here through eq. 2.19 in which
X is replaced by W. QR decomposition (see Section 10.7), which is also used in some

*  The term variation, a less technical and looser term than variance, is used because one is
partitioning the total sum of squared deviations of y from its mean (total SS). In variation
partitioning, there is no need to divide the total SS of y by its degrees of freedom to obtain the
variance  (eq. 4.3).

Matrix of
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Variation
partitioning
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situations in Subsection 11.1, e.g. in Table 11.5, offers another way of computing
regression equations.

Then, two computation methods are available: one can either 

(1.1) regress yres|W on Xres|W , 

(1.2) or regress y on Xres|W. The same partial regression coefficients are obtained in
both cases, as will be verified in the numerical example below. Between calculation
methods, the vectors of fitted values only differ by the values of the intercepts. The R2

of analysis 1.1 is the partial R2 whereas that of analysis 1.2 is the semipartial R2; their
square roots are the partial and semipartial correlation coefficients (Box 4.1).

(2) If one is interested in estimating the fractions resulting from partitioning the
variation of vector y among the explanatory data sets X and W, there is a simple way
to obtain the information, considering the ease with which multiple regressions can be
computed using R or commercial statistical packages:

• Compute the multiple regression of y against X and W together. The corresponding
 measures the fraction of information [a + b + c], which is the sum of the fractions

of variation [a], [b], and [c] defined in Fig. 10.10. For the example data set (below),
R2 = 0.5835, so  = 0.3913 = [a + b + c]. The vector of fitted values corresponding to
fraction [a + b + c], which is required to plot Fig. 10.13 (below), is also computed.

• Compute the multiple regression of y against X. The corresponding  measures
[a + b], which is the sum of the fractions of variation [a] and [b]. For the example data,

Figure 10.10 Partition of the variation of a response variable y among two sets of explanatory variables, X
and W. The rectangle represents 100% of the variation in y. Fraction [b] is the intersection (not
the interaction) of the variation explained by linear models of X and W. Adapted from Legendre
(1993).
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R2 = 0.4793, so  = 0.3817 = [a + b]. The vector of fitted values corresponding to
fraction [a + b], which is required to plot Fig. 10.13, is also computed.

• Compute the multiple regression of y against W. The corresponding  measures
[b + c], which is the sum of the fractions of variation [b] and [c]. For the example data,
R2 = 0.3878, so  = 0.2731 = [b + c]. The vector of fitted values corresponding to
fraction [b + c], which is required to plot Fig. 10.13, is also computed.

• If needed, fraction [d] may be computed by subtraction. For the example, it is equal
to 1 – [a + b + c], or 1 – 0.3913 = 0.6087.

As explained in Subsection 10.3.3, the adjusted R-square,  (eq. 10.21), is an
unbiased estimator of the real contribution of a set of random variables X to the
explanation of y. Following Peres-Neto et al. (2006), the values of the individual
fractions [a], [b], and [c] must be computed by combining the  values obtained from
the three multiple regressions that produced fractions [a + b + c], [a + b], and [b + c]:

• fraction [a] is computed by subtraction, using the  values:
[a] = [a + b + c] – [b + c];

• likewise, fraction [c] is computed by subtraction, using the  values:
[c] = [a + b + c] – [a + b];

• fraction [b] is also obtained by subtraction, using the  values, in the same way as
the quantity B used for comparing two qualitative descriptors in Section 6.2: 

[b] = [a + b] + [b + c] – [a + b + c]   or   [b] = [a + b] – [a]   or   [b] = [b + c] – [c]

Fraction [b] may be negative. As such, it is not a rightful measure of variance; this
is another reason why it is referred to by the looser term variation. A negative fraction
[b] indicates that two variables (or groups of variables X and W), together, explain y
better than the sum of the individual effects of these variables. This can happen: see
Numerical examples 2 and 3. Fraction [b] is the intersection of the variation explained
by linear models of X and W. It is not an interaction in the ANOVA sense.

Vectors of fitted values corresponding to fractions [a] and [c] can be computed
using partial regression, as explained above, while the vector of residuals of the
regression equation that uses all predictors corresponds to fraction [d]. No fitted vector
can be estimated for fraction [b], however, because no partial regression model can be
written for that fraction. No degrees of freedom are attached to fraction [b]; hence [b]
cannot be tested for significance.

If a selection procedure (backward, forward, stepwise; Subsection 10.3.3) is used,
it must be applied to data matrices X and W separately, before partitioning, in order to
preserve fraction [b] of the partition. Applying the selection to matrices X and W
combined could result in the elimination of variables from one or both matrices
because they are correlated with variables in the other matrix, thereby reducing or
eliminating fraction [b].
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Numerical example 1. The example data set (Table 10.6) is from the ECOTHAU research
program mentioned in the numerical example of Subsection 10.3.4 (Amanieu et al., 1989). It
contains two bacterial variables (Bna, the concentration of colony-forming units of aerobic
heterotrophs growing on bioMérieux nutrient agar, with low NaCl concentration; and Ma, the
concentration of aerobic heterotrophs growing on marine agar with a salt content of 34 gL–1);
three environmental variables (NH4 in the water column, in µmolL–1; phaeopigments from
degraded chlorophyll a, in µgL–1; and bacterial production, determined by incorporation of
tritiated thymidine in bacterial DNA, in nmolL–1d–1); and three spatial variables of the
sampling sites on the nodes of an arbitrarily located grid (the X and Y geographic coordinates, in
km, each centred on its mean, and the quadratic monomial X2, which was found to be important
for explaining the response variables). All bacterial and environmental variables were log-
transformed using loge(x + 1). One of the bacterial variables, Ma, is used here as the response
variable y; the three environmental variables form the matrix of explanatory variables X; the
three spatial variables make up matrix W of the covariables. Table 10.6 will be used again in

Table 10.6 Data collected at 20 sites in the Thau coastal lagoon on 25 October 1988. There are two bacterial
response variables (Bna and Ma), three environmental variables (NH4, phaeopigments, and
bacterial production), and three spatial variables (the X and Y geographic coordinates measured
with respect to arbitrary axes and centred on their respective means, plus the quadratic
monomial X2). The variables are further described in the text. The code names of these variables
in the present section are y, x1 to x3, and w1 to w3, respectively.

Site Bna Ma NH4 Phaeo. a Prod. X Y X2

No. y x1 x2 x3 w1 w2 w3

1 4.615 10.003 0.307 0.184 0.274 –8.75 3.7 76.5625
2 5.226 9.999 0.207 0.212 0.213 –6.75 2.7 45.5625
3 5.081 9.636 0.140 0.229 0.134 –5.75 1.7 33.0625
4 5.278 8.331 1.371 0.287 0.177 –5.75 3.7 33.0625
5 5.756 8.929 1.447 0.242 0.091 –3.75 2.7 14.0625
6 5.328 8.839 0.668 0.531 0.272 –2.75 3.7 7.5625
7 4.263 7.784 0.300 0.948 0.460 –1.75 0.7 3.0625
8 5.442 8.023 0.329 1.389 0.253 –0.75 –0.3 0.5625
9 5.328 8.294 0.207 0.765 0.235 0.25 –1.3 0.0625

10 4.663 7.883 0.223 0.737 0.362 0.25 0.7 0.0625
11 6.775 9.741 0.788 0.454 0.824 0.25 2.7 0.0625
12 5.442 8.657 1.112 0.395 0.419 1.25 1.7 1.5625
13 5.421 8.117 1.273 0.247 0.398 3.25 –4.3 10.5625
14 5.602 8.117 0.956 0.449 0.172 3.25 –2.3 10.5625
15 5.442 8.487 0.708 0.457 0.141 3.25 –1.3 10.5625
16 5.303 7.955 0.637 0.386 0.360 4.25 –5.3 18.0625
17 5.602 10.545 0.519 0.481 0.261 4.25 –4.3 18.0625
18 5.505 9.687 0.247 0.468 0.450 4.25 –2.3 18.0625
19 6.019 8.700 1.664 0.321 0.287 5.25 –0.3 27.5625
20 5.464 10.240 0.182 0.380 0.510 6.25 –2.3 39.0625
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Section 13.4. A multiple regression of y against X and W together was computed first as a
reference. The regression equation was the following:

 = 9.64 – 0.90x1 – 1.34x2 + 0.54x3 + 0.10w1 + 0.14w2 + 0.02w3     

(R2 = 0.5835;  = 0.3913 = [a + b + c])

The adjusted coefficient of determination ( ) is an unbiased estimate of the proportion of the
variation of y explained by the regression model containing the 6 explanatory variables; it
corresponds to fraction [a+b+c] in the partitioning table below and to the sum of fractions [a],
[b] and [c] in Fig. 10.10. The vector of fitted values was also computed; after centring, this
vector will be plotted as fraction [a + b + c] in Fig. 10.13. Since the total sum of squares in y is
14.9276 [SS = ], the R2 allowed the computation of the sum of squares
corresponding to the vector of fitted values: SS( ) =14.9276 × 0.5835 = 8.7109. This value can
also be obtained by computing directly the sum of squared deviations about the mean of the
values in the fitted vector .

For calculation of the partial regression equation using method 1.1, the residuals* of the
regression of y on W were computed. One way is to use the following equation, which requires
adding a column of “1” to matrix W in order to estimate the regression intercept:

yres|W = 

The residuals of the regressions of X on W were computed in the same way:

Xres|W = 

Then, vector yres|W was regressed on matrix Xres|W with the following result:

regression equation:  = 0 – 0.90xr(W)1 – 1.34xr(W)2 + 0.54xr(W)3 (R2 = 0.3197)

The value R2 = 0.3197 is the partial R2. In its calculation, the denominator is the sum of squares
corresponding to fractions [a] and [d], as shown for the partial correlation coefficient in Box 4.1.

For calculation through method 1.2, y was regressed on matrix Xres|W with the following
result:

regression equation:  = 8.90 – 0.90xr(W)1 – 1.34xr(W)2 + 0.54xr(W)3 (R2 = 0.1957)

The value R2 = 0.1957 is the semipartial R2. The semipartial R2 is the square of the semipartial
correlation defined in Box 4.1. It represents the fraction of the total variation of y explained by
the partial regression equation because, in its calculation, the denominator is the total sum of
squares of the response variable y , [a+b+c+d]. That value is shown in the variation partitioning
table below, but it will not be used to compute the individual fractions of variation.

Note that the three regression coefficients for the three x variables in the last equation are
exactly the same as in the two previous equations; only the intercepts differ. This gives
substance to the statement of Subsection 10.3.3 that regression coefficients obtained in multiple

*  In the R language, regression residuals can be computed using residuals(lm()). 
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linear regression are partial regression coefficients in the sense of the present subsection.
Between calculation methods, the vectors of fitted values only differ by the value of the intercept
of the regression of y on Xres|W , 8.90, which is also the mean of y. The centred vector of fitted
values will be plotted as fraction [a] in Fig. 10.13.

The calculation of partial regression can be done in the opposite way, regressing y on W
while controlling for the effects of X. First, yres|X and Wres|X were computed. Then, for
method 1.1, yres|X was regressed on Wres|X with the following result:

regression equation:  = 0 – 0.10wr(X)1 – 0.14wr(X)2 + 0.02wr(X)3 (R2 = 0.2002)

where R2 = 0.2002 is the partial R2. For method 1.2, y was regressed on Wres|X with the
following result:

regression equation:  = 8.90 – 0.10wr(X)1 – 0.14wr(X)2 + 0.02wr(X)3 (R2 = 0.1043)

where R2 = 0.1043 is the semipartial R2, shown in the variation partitioning table below, but not
used to compute the individual fractions of variation. 

Again, the three regression coefficients in these partial regression equations are exactly the
same as in the first regression equation of this example; only the intercepts differ. Between
calculation methods, the vectors of fitted values only differ by the value of the intercept of the
regression of y on Xres|W , 8.90, which is also the mean of y. The centred vector of fitted values
will be plotted as fraction [c] in Fig. 10.13.

To estimate fraction [a + b] of Fig. 10.10, the multiple regression of y on the three original
(non-residualized) variables in X was computed. The regression equation was:

 = 10.20 – 0.93x1 – 2.02x2 + 0.89x3 (R2 = 0.4793;  = 0.3817 = [a + b])

The value  = 0.3817 is an unbiased estimate of the fraction of the variation of y accounted for
by the linear model of the three explanatory variables X. The vector of fitted values was
computed; after centring, this vector will be plotted as fraction [a + b] in Fig. 10.13.

To obtain fraction [b + c] of Fig. 10.10, the multiple regression of y on the three original
(non-residualized) variables in W was computed. The regression equation was:

 = 8.32 + 0.09w1 + 0.10w2 + 0.03w3 (R2 = 0.3878;  = 0.2731 = [b + c])

The value  = 0.2731 is the unbiased estimation of the fraction of the variation of y accounted
for by the linear model of the three explanatory variables W. The vector of fitted values was
computed; after centring, this vector will be plotted as fraction [b + c] in Fig. 10.13.
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ŷ
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Following the fraction nomenclature convention set in Fig. 10.10, the variation partitioning
results were assembled in the following table (rounded values): 

The partitioning results are illustrated as Venn diagrams in Fig. 10.11*. In Chapter 11, Fig. 11.6
shows partitioning results for multivariate response data involving three explanatory matrices.

*  A Venn diagram with proportional circle and intersection sizes can be obtained using function
venneuler() of the same-name package (Section 10.7).

Fractions
of variation

Sums of
squares (SS)

Proportions of
variation of y (R2)

Adjusted R2

( )
[a + b] 7.1547 0.4793 0.3817
[b + c] 5.7895 0.3878 0.2731

[a + b + c] 8.7109 0.5835 0.3913
[a] 2.9213 0.1957 0.1183
[b] 4.2333 0.2836 0.2634
[c] 1.5562 0.1043 0.0097

Residuals = [d] 6.2167 0.4165 0.6087
[a + b + c + d] 14.9276 1.0000 1.0000

Ra
2

Figure 10.11 Venn diagram illustrating the results of variation partitioning of the numerical example.
(a) Diagram drawn by the plotting function plot.varpart() of the VEGAN package. The circles are
of equal sizes despite differences in the corresponding . (b) Prior to publication of the
partitioning results, the diagram can be redrawn, here using rounded rectangles, to better
represent the relative fraction sizes with respect to the size of the outer rectangle, which
represents the total variation in the response data. The fractions are identified by letters [a] to
[d]; the value next to each identifier is the adjusted R2 ( ). Rectangle sizes are approximate.
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As mentioned at the beginning of this subsection, and following Peres-Neto et al. (2006),
when X and W contain random variables,  values corresponding to [a + b + c], [a + b], and
[b + c] are used to compute, by subtraction, the fractions [a] to [d] shown in column 4 of the
table.  provides unbiased estimates of the contributions of the explanatory data sets X and W
to y when X and W contain random variables. The adjusted fractions [a], [b], and [c] cannot be
directly computed using the non-adjusted fractions computed from non-adjusted R2 coefficients,
shown in italics in the 3rd column. When n is small as in this example, the estimated fractions
computed from  may be very different from the fractions computed from R2 values.

Ordinary R2 (3rd column) are used to compute the fractions (values in italics) when X and
W represent ANOVA fixed factors coded into dummy variables. When these values are required,
they can be calculated by subtraction from the R2 values in the first three rows of the table: R2[a]
= R2[a+b+c] – R2[b+c] = 0.1957 (which is equal to the R2 of the partial regression equation
computed above through method 1.2); R2[c] = R2[a+b+c] – R2[a+b] = 0.1043 (which is equal to
the R2 of the partial regression equation computed above through method 1.2); R2[b] = R2[a+b]
+ R2[b+c] – R2[a+b+c] = 0.2836 (this value can only be obtained by subtraction). The sums of
squares in the 2nd column of the table are obtained by multiplying these R2 values by the total
sum of squares in y, which is 14.9276.

The partial correlation coefficient between y and matrix X while controlling for the
effect of W can be obtained from the values [a] and [d] in the column “Sums of
squares” of the table, as explained in Box 4.1 of Section 4.5: 

This value is not the same as the semipartial R2, which is computed as follows
(Box 4.1):

If the conditions of homoscedasticity and normality of the residuals are satisfied,
the fractions (with the exception of [b]) can be tested for significance through
parametric tests. For fractions [a + b + c], [a + b], and [b + c], one can use the results
of the parametric tests produced by the statistical software. For fractions [a] and [c],
one must construct a F-statistic as in eq. 11.22, using the sum of squares corresponding
to fraction [a] (symbol: SS[a]) or [c] (symbol: SS[c]) in the numerator, and the residual
sum of squares corresponding to [d] (symbol: SS[d]) in the denominator, together with
appropriate numbers of degrees of freedom. The test statistic for fraction [a], for
example, is constructed as follows:

where m is the number of explanatory variables in set X and q is the number of
covariables in set W. In the parametric framework, the statistic is tested against the
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F–distribution with m and (n – m – q – 1) degrees of freedom. An example of that F-
statistic for the test of partial or semipartial correlation coefficients is given in Box 4.1
for the simple case where there is a single variable in X and W.

If the conditions of homoscedasticity or normality of the residuals are not satisfied,
one can use permutation tests to obtain p-values. Permutation of the raw data is used to
test fractions [a + b + c], [a + b], and [b + c]. To test fractions [a] and [c], permutation
of the residuals of a null or full model should be used (Anderson & Legendre, 1999).
These permutation methods are described in Subsection 11.1.8.

Numerical example 2. This example illustrates the appearance of a negative fraction [b]
when there are strong direct effects of opposite signs of x and w on y and a strong correlation
between x and w (non-orthogonality). For three variables measured over 50 objects, the
following correlations are obtained: r(x, w) = 0.8, r(y, x) = 0.2 and r(y, w) = –0.2; y, x, and w
have the same meaning as in the previous numerical example. r(y, x) and r(y, w) are not
statistically significant at the 2 = 0.05 level. Referring to Section 10.4, one may use path
analysis to compute the direct and indirect causal covariation relating the explanatory variables x
and w to the response variable y. One can also compute the coefficient of determination of the
model y = f(x, w); its value is R2 = 0.40. From these values, the partition of the variation of y can
be achieved: R2 of the whole model = 0.40,  = [a + b + c] = 0.37447; r2(w, y) = 0.04,  =
[a + b] = 0.02; r2(x, y) = 0.04,  = [b + c] = 0.02. Hence, [b] = [a + b] + [b + c] –
[a + b + c] = –0.33447, [a] = [a + b] – [b] = 0.35447, and [c] = [b + c] – [b] = 0.35447. How is
that possible?

Carrying out path analysis (Fig. 10.12), and assuming a symmetric model of relationships
(i.e. w affects x and x affects w), the direct effect of x on y, pxy = 1.0, is positive and highly
significant, but it is counterbalanced by a strong negative indirect covariation of –0.8 going
through w. In the same way, pwy = –1.0 (which is highly significant), but this direct effect is
counterbalanced by a strong positive indirect covariation of +0.8 going through x. As a result,
and although they both have the maximum possible value of 1.0 for direct effects on the
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Figure 10.12 Correlations, path coefficients, and coefficients of determination for Numerical example 2.
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response variable y, both w and x turn out to have non-significant total correlations with y. In the
present variation partitioning model, this translates into small adjusted amounts of explained
variation [a + b] = 0.02 and [b + c] = 0.02, and a negative value for fraction [b]. If an
asymmetric model of relationship had been assumed (e.g. w affects x but x does not affect w),
essentially the same conclusion would have been reached from path analysis. 

Numerical example 3. Another situation can give rise to a negative fraction [b], i.e. when
there is no linear correlation between y and one of the explanatory variables, e.g. r(y, x) = 0.0,
but the other two correlations differ from 0, e.g. r(y, w) = 0.5 and r(x, w) = 0.5. For this
example, assuming again n = 50, we find [a + b + c] = 0.30497, [a + b] = –0.02083, and [b + c] =
0.23438 (computed from the  coefficients), so that [b] = –0.09142. The partial explanation of
the variation of y provided by x, estimated by the partial regression or partial correlation
coefficient, is not zero and may be significant in the statistical sense: using path analysis
(Section 10.4) for this example, the direct effect of x on y is pxy = –0.33333 (p = 0.019, which is
significant) and the indirect effect is 0.33333, these two effects summing to zero. The direct
effect of w on y is pwy = 0.66667 and its indirect effect is –0.16667. The negative [b] fraction
indicates that x and w, together, explain the variation of y better than the sum of the individual
effects of these variables. The signs of the regression coefficients (path coefficients) actually
vary depending on the signs of the correlations r(y, w) and r(x, w). 

The above decomposition of the variation of a response vector y between two sets
of explanatory variables X and W was described by Whittaker (1984) for the simple
case where there is a single regressor in each set X and W. Whittaker showed that the
various fractions of variation may be represented as vectors in space, and that the value
of fraction [b] [noted G(12:) by Whittaker, 1984] is related to the angle ( between the
two regressors through the following formula:

1 – 2cos2((/2)  "  [b]  "  2cos2((/2) – 1 (10.25)

( is related to the coefficient of linear correlation (eq. 10.4). This formula has three
interesting properties. (1) If the two regressors are orthogonal (r = 0), then
2cos2((/2) = 1, so that 0 " [b] " 0 and consequently [b] = 0. Turning the argument
around, the presence of a non-zero fraction [b] indicates that the two explanatory
variables are not orthogonal. There are also instances where [b] is zero with two non-
orthogonal regressors; a simple example is when the two regressors are uncorrelated
with y and explain none of its variation. (2) If the two regressors are identical, or at
least pointing in the same direction (( = 0°), then –1 " [b] " 1. It follows that the
proportion of variation of y that is accounted for by either regressor (fraction [b]) may
be, in some cases, as large as 1, i.e. 100%. (3) The formula allows for negative values
of [b], as shown in Numerical example 2.

In conclusion, fraction [b] represents the fraction of variation of y that may
indifferently be attributed to X or W. The interpretation of a negative [b] is that the two
processes, represented in the analysis by data sets X and W, are competitive; in other
words, they have opposite effects, one process hindering the contribution of the other
in the joint regression model. One could use eq. 6.15, S = [b]/[a + b + c], to quantify
how similar X and W are in explaining y. Whittaker (1984) also suggested that if X
and W represent two factors of an experimental design, [b] may be construed as a
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measure of the effective balance (i.e. orthogonality) of the design; [b] is 0 in a
balanced crossed design.

Whittaker’s representation may be used even when regressors X and W are
multivariate data sets. Figure 10.13 illustrates the angular relationships among the
fitted vectors corresponding to the fractions of variation of Numerical example 1. One
plane is needed for vectors {[a], [b + c], and [a + b + c]} in which [a] is orthogonal and
additive to [b + c]; another plane is needed for vectors {[c], [a + b], and [a + b + c]}
where [c] is orthogonal and additive to [a + b]. However, the sets {[a], [b + c]} and
{[c], [a + b]} belong to different planes, which intersect along vector [a + b + c]; so,
the whole set of fitted vectors is embedded in a three-dimensional space when there are
two explanatory data sets; this is independent of the number of variables in each set.
The vector of residuals corresponding to fraction [d] is orthogonal to all the fitted

Figure 10.13 Numerical example of partial regression analysis: representation of the fitted vectors in
regression space. Vectors are represented with lengths proportional to their standard deviations.
Upper left: scatter diagram of objects along orthogonal vectors [a] and [b + c]. Vector
[a + b + c], also shown, is obtained by adding vectors [a] and [b + c]. Lower left: same for
orthogonal vectors [c] and [a + b]. Right: all five fitted vectors are represented in a compromise
plane obtained by principal component analysis (PCA axes I and II, which explain 96.7% of the
variation). [a] is still orthogonal to [b + c] in three-dimensional space, and [c] to [a + b]; these
orthogonal relationships are slightly deformed by the projection in two dimensions.
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vectors and lies in a fourth dimension. Whittaker (1984) gives examples involving
more than two explanatory data sets. The graphical representation of the partitioned
fitted vectors in such cases requires spaces with correspondingly more dimensions.

Ecological application  10.3b

Birks (1996) used partial regressions to analyse the mountain plant species richness in 75 grid
squares covering Norway (109 species in total), in order to test whether the nunatak hypothesis
was necessary to explain the present distribution of these plants. The nunatak, or refugial
hypothesis, holds that apparent anomalies in present-day species distributions are explained by
survival through glaciations on ice-free mountain peaks or rocky outcrops, called ‘nunataks’
(from Inuit nunataq), projecting above continental glaciers. Implicit in this hypothesis is that the
presumed refugial species have poor dispersal ability. According to the nunatak hypothesis, one
would expect a concentration of rare plants in the glacial refuges or their vicinity. Hence, a
variable describing unglaciated areas (3 abundance classes for occurrence of presumed
unglaciated areas) was introduced in the analysis to represent “history”. The alternative
hypothesis, called “tabula rasa”, holds that present-day distributions are well-explained by the
environmental control model (Whittaker, 1956; Bray & Curtis, 1957). To materialise this
hypothesis in the analysis, Birks used 10 explanatory variables that described bedrock geology,
geography, topography, and climate. “Geography” was introduced in the analysis in the form of
a third-degree polynomial of the geographic coordinates, which allowed a representation of the
geographic variation of species richness by a cubic trend surface of latitude and longitude, as
explained in Subsection 13.2.1; the terms of the polynomial representing latitude and longitude2

were retained by a forward selection procedure. 

(1) Birks (1996) first used a form of stepwise multiple regression, adding variables in a
specified order, to determine the importance of unglaciated areas in explaining mountain plant
species richness. In the “ecology first” analysis, history (i.e. variable “unglaciated areas”) was
introduced last in the analysis; it added about 0.1% to the explained variation, whereas the
environmental variables explained together 84.9% of the variation. In the “history first”
analysis, history was entered first; it only explained 7.6% of the variation, which was not a
significant contribution. (2) The contribution of “history” did not improve in partial regression
analyses, when controlling for either land area per grid square alone, or land area, latitude and
longitude. Modern ecological variables such as bedrock geology, climate, topography, and
geography were considerably more effective explanatory variables of species richness than
“history”. (3) In order to find out whether “history” made a unique statistically significant
contribution to the variation of the species richness when the effects of the other variables were
controlled for, Birks computed variation partitioning, described above, after partial regression
analyses, using non-adjusted R2 coefficients. Fraction [a], corresponding to the influence of all
environmental variables independent of “history”, explained 77.4% of the variation of species
richness; fraction [b], in which “environment” covaried with “history”, explained 7.5%; fraction
[c], “history” independent of “environment”, explained 0.1%; the unexplained variation,
fraction [d], was 15.0%. Fraction [b] is likely to result from the spatial coincidence of
unglaciated areas with high elevation, western coastal areas, and certain types of bedrock, all
these being included among the environmental variables.

In another paper, Birks (1993) used partial canonical correspondence analysis, instead of
partial regression analysis, to carry out the same type of analysis (including variation
decomposition) on a matrix of grid cells × species presence/absence. Again, the results
suggested that there was no statistically significant contribution from unglaciated areas in
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explaining present-day distribution patterns when the effects of modern topography, climate,
and geology were considered first.

These two papers (Birks, 1993, 1996) show that the hypothesis of survival in glacial
nunataks is unnecessary to explain the present-day patterns of species distribution and richness
of Norwegian mountain plants. Following Ockham’s razor principle (Subsection 10.3.3), this
unnecessary assumption should be avoided when formulating hypotheses intended to explain
present-day species distributions.

6 — Nonlinear regression

In some applications, ecologists know from existing theory the algebraic form of the
nonlinear relationship between a response variable and one or several explanatory
variables. An example is the logistic equation, which describes population growth in
population dynamics:

(10.26)

This equation gives the population size (Nt) of a species at time t as a function of time
(t). The equation contains three parameters a, r, and K, which are adjusted to the data;
r is the Malthus parameter describing the natural rate of increase of the population, and
K is the support capacity of the ecosystem. Nonlinear regression allows one to estimate
the parameters (a, r, and K in this example) of the curve that best fits the data, for a
user-selected function. This type of modelling does not assume linear relationships
among the variables; the equation to be fitted is provided by the user. The algorithm for
nonlinear parameter estimation tries to minimize an objective function.

The most usual objective functions to minimize are (1) the usual least-squares
criterion  and (2) the sum of squared Euclidean distances of the points to
the regression function. These two criteria are illustrated in Fig. 10.6. The parameters
of the best-fitting equation are found by iterative adjustment; users usually have the
choice among a variety of rules for stopping the iterative search process. Common
choices are: when the improvement in R2 becomes smaller than some preselected
value, when some preselected maximum number of iterations is reached, or when the
change in all parameters becomes smaller than a given value. Useful references on this
topic are Hollander & Wolfe (1973), Ratkowsky (1983), Ross (1990), Huet et al.
(1992), and Bates & Chambers (1992). Nonlinear regression is available in several
statistical packages, including R (see Section 10.7). 

Consider the Taylor equation relating the means  and variances  of several
groups of data:

(1.17)
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One must decide whether the equation should be fitted to the data by nonlinear
regression, or to the corresponding logarithmic form (eq. 1.18) by linear regression.
Look at the data in the original mean-variance space and in the transformed
log(mean)-log(variance) space, and choose the form for which the data are
homoscedastic.

Other often-encountered functions are the exponential, hyperbolic, Gaussian, and
trigonometric (for periodic phenomena; see Subsection 12.4.5), and other growth
models for individuals or populations.

As an alternative to linear or nonlinear regression, Conover (1980, his Section 5.6)
proposed monotone regression which may be used when (1) the relationship is
monotonic (increasing or decreasing), (2) the purpose is forecasting or prediction
rather than parameter estimation, and (3) one does not wish to carefully model the
functional relationship; see also Iman & Conover (1983, their Section 12.6). Monotone
regression consists in assigning ranks to the x and y observations and computing a
linear regression on these ranks. Simple, natural rules are proposed to reassign real-
number values to the forecasted/predicted values obtained from the rank-based
equation for given values of x. Monotone regression is sometimes called
nonparametric regression. A specialized form of monotone regression is used in
nMDS algorithms (Section 9.4).

7 — Logistic regression

Binary variables form an important category of response variables that ecologists may
wish to model. In process studies, one may wonder whether a given effect will be
present under a variety of circumstances. Population ecologists are also often
interested in determining the factors responsible for the presence or absence of a
species. When the explanatory variables of the model are qualitative, modelling may
call upon log-linear models computed on multiway contingency tables (Section 6.3).
When the explanatory variables are quantitative, or represent a mixture of quantitative
and qualitative data, logistic regression is the approach of choice. 

In logistic regression, the response variable is binary (presence-absence, or 1-0; see
example below). A linear model of quantitative explanatory variables would
necessarily produce some forecasted/predicted values larger than 1 and some values
smaller than 0. Consider Fig. 10.14, which illustrates the example developed below. A
linear regression line fitting the data points would have a positive slope and would
span outside the vertical [0, 1] interval, so that the equation would forecast ordinate
values smaller than 0 (for small x) and larger than 1 (for large x); these would not make
sense since the response variable can only be 0 or 1. 

If one tries to predict the probability of occurrence of an event (for example the
presence of a species), instead of the event itself (0 or 1 response), the model should be
able to produce real-number values in the range [0, 1]. The logistic equation
(eq. 10.26) described in Subsection 10.3.6 provides a sigmoid model for such a

Monotone
regression
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response between limit values (Fig. 10.14). It is known to adequately model several
ecological, physiological and chemical phenomena. Since the extreme values of the
probabilistic response to be modelled are 0 and 1, then K = 1, so that eq. 10.26
becomes:

(10.27)

where p is the probability of occurrence of the event. z is a linear function of the
explanatory variable(s):

for a single predictor x (10.28a)

or for several predictors (10.28b)

Note that there are other, equivalent algebraic forms for the logistic equation. A form
equivalent to eq. 10.27 is: p = ez /(1 +  ez).

For the error part of the model, the %i values cannot be assumed to be normally
distributed and homoscedastic, as it is the case in linear regression, since the response
variable can only take two values (presence or absence). The binomial distribution is
the proper model in such a case, or the multinomial distribution for multistate
qualitative response variables, as allowed in some computer software (e.g. CATMOD in
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Figure 10.14 Logistic regression equation fitted to presence/absence of Anisophyllea corneri, as a function of
elevation, in 200 forest quadrats.
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SAS). The parameters of the model cannot be estimated by ordinary least-squares
since the error term is not normally distributed. This is done instead by maximum
likelihood. Logistic regression is a special case of the generalized linear model (GLM:
McCullagh & Nelder, 1983; Section 10.7); least-squares regression is another special
case of GLM. According to the maximum likelihood principle, the best values for the
parameters of a model are those for which the likelihood is maximum. The likelihood
L of a set of parameter estimates is defined as the probability of observing the values
that have actually been observed, given the model and the parameter estimates. This
probability, which is not the same as p in eq. 10.27, is expressed as a function of the
parameters:

L = p(observed data 8model, parameters)

So, one iteratively searches for parameter estimates that maximize the likelihood
function.

Numerical example. Data describing the structure of a tree community, sampled over a
50–ha plot in the Pasoh forest*, Malaysia, were studied by He et al. (1994, 1996, 1997). The plot
was established to monitor long-term changes in a primary tropical forest. The precise locations
of the 334 077 individual trees and shrubs at least 1 cm in diameter at breast height (dbh) were
determined (825 species in total) and a few environmental variables were recorded at the centres
of 20 × 20 m quadrats. The present example uses the presence or absence of a species,
Anisophyllea corneri Ding Hou (Cucurbitales), in each quadrat. One hundred quadrats were
selected at random in the plot among those where A. corneri was present, and 100 among the
quadrats where it was absent, for a total of 200 quadrats. Results of the logistic regression study
presented below were reported by He et al. (1997).

Stepwise logistic regression was used to model the presence or absence of the species with
respect to slope and elevation (i.e. altitude in metres measured by reference to the lowest part of
the forest plot floor), using the SPSS software package. Following the calculations, elevation
was included in the model for its significant contribution, whereas slope was left out. The linear
part of the fitted model (eq. 10.28a) was:

z = –1.8532 + 0.2646 × elevation

Significance of the regression coefficients was tested using the Wald statistic, which is the
square of the ratio of a regression coefficient to its standard error; this statistic is distributed like
92. Both the intercept and slope coefficients of the model were significant (p < 0.001).

As explained above, the probability of the observed values of the response variable, for
given values of the parameters, is called the likelihood. Since a probability is in the range [0, 1],
its natural logarithm is a negative number. It is customary to multiply it by –2 to obtain
–2 loge(L), noted –2LL, a positive number that measures of how poorly a model fits the data;
–2LL = 0 represents a perfect fit. This value presents the advantage of being distributed like 92,

*  The Pasoh forest is one of the CTFS permanent forest plots. See note on these forest plots in
Subsection 6.5.3. 

Maximum
likelihood
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so that it can be tested for significance. The significance of the model was tested using the
following table:

Parameters were added to the model, one by one, as long as they improved the fit. The
procedure is the same as in log-linear models (e.g. Table 6.6).

• For a model with an intercept only, –2LL = 277.259. The hypothesis to be tested was that
–2LL = 277.259 was not significantly different from 0, which would be the value of –2LL for a
model fitting the data perfectly. Degrees of freedom were computed as the number of
observations (200) minus the number of fitted parameters (a single one up this point). The
significant 92 statistic (p < 0.05) indicated that the model did not fit the data well.

• Inclusion of elevation added a second parameter to the model; this parameter was fitted
iteratively and the resulting value of –2LL was 217.549 at convergence, i.e. when –2LL did not
change by more than a small preselected value. Since the probability associated with the 92

statistic was large, the null hypothesis that the model fitted the data could not be rejected. The
difference in 92 between the two models (277.259 – 217.549 = 59.709) was tested with 1 degree
of freedom. The significant probability (p < 0.05) showed that elevation brought a significant
contribution to the likelihood of the model.

• Inclusion of slope added a third parameter to the model. The resulting model also fitted the
data well (p > 0.05), but the difference in 92 between the two models
(217.549 – 215.933 = 1.616) was not significant (p = 0.2057), indicating that slope did not
significantly contribute to increase the likelihood of the model. Hence, slope was left out of the
final model.

The last row of the table tested a goodness-of-fit statistic that compared the observed values
(0 or 1 in logistic regression) to the probabilities forecasted by the model, which included the
intercept and elevation in this example (Norusis, 1990, p. 52). The statistic (183.790) is
distributed like 92 and has the same number of degrees of freedom as the 92 statistic for the
complete model. In the present example, this statistic was not significant (p > 0.05), which led to
conclude that there was no significant discrepancy between the forecasted values and the data.

Putting back the observed values of the explanatory variable(s) into the model (eq. 10.28a)
provided estimates of z. For instance, one of the quadrats in the example data had elevation = 9.5
m, so that

z = –1.8532 + 0.2646 × 9.5 = 0.6605

92 7 p (92)
Intercept only 277.259 199 0.0002
Difference 59.709 1 < 0.0001
Intercept + elevation 217.549 198 0.1623
Difference 1.616 1 0.2057
Intercept + elevation + slope 215.933 197 0.1690
Goodness of fit 183.790 198 0.7575
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Incorporating this value into eq. 10.27 provided the following probability that A. corneri would
be present in the quadrat:

Since p > 0.5, the forecast was that the species should be found in this quadrat. In general, if
p < 0.5, the event is unlikely to occur whereas it is likely to occur if p > 0.5. (Flip a coin if a
forecasted value is required in a case where p = 0.5 exactly.) With the present equation, the
breaking point between forecasted values of 0 and 1 (i.e. the point where p = 0.5) corresponded
to an elevation of 7 m. The logistic curve fitted to the A. corneri data is shown in Fig. 10.14.

Forecasted values may be used to produce a classification (or “confusion”) table, as in linear
discriminant analysis (Section 11.3), in which the forecasted values are compared to
observations. For the example data, the classification table was:

Since most values are in the diagonal cells of the table, one concludes that the logistic regression
equation based solely on elevation was successful at forecasting the presence of A. corneri in the
quadrats.

A Gaussian logistic equation may be used to model the unimodal response of a
species to an environmental gradient. Fit the logistic equation with a quadratic
response function , instead of eq. 10.28a, to obtain a Gaussian
logistic model; the response function for several predictors (eq. 10.28b) may be
modified in the same way. See ter Braak & Looman (1987) for details.

Linear discriminant analysis (Section 11.3) has often been used by ecologists to
study niches of plants or animals, before logistic regression became widely available
in computer packages. Williams (1983) gives examples of such works. The problem
with discriminant analysis is that it constructs a linear model of the explanatory
variables, so that the forecasted values are not limited to the [0, 1] range. Negative
values and values higher than 1 can be produced, which are ecologically unrealistic for
presence-absence data. This problem does not appear with logistic regression, which is
available in major statistical packages as well as in S-PLUS:, MATLAB: and R. This
question is further discussed in Section 11.6.

In procedure CATMOD of SAS, the concept of logistic regression is extended to
multi-state qualitative response variables. Trexler & Travis (1993) provide an
application of logistic regression to an actual ecological problem, including selection
of the most parsimonious model; they also discuss the relative merits of various
alternatives to the logistic model.

Observed Forecasted Percent

correct0 1
0 78 22 78%
1 35 65 65%

Total correct classification 71.5%

p 1
1 e 0.6605–+
--------------------------- 0.659==

Classification
table

Gaussian
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Regression 589

8 — Splines and LOWESS smoothing

There are instances where one is only interested in estimating an empirical relationship
between two variables, without formally modelling the relationship in an equation and
estimating its parameters. In such instances, smoothing methods may be the most
appropriate, since they provide an empirical representation of the relationship,
efficiently and at little cost in terms of time spent specifying a model. Since they fit the
data locally (i.e. within small windows), smoothing methods are useful when the
relationship greatly varies in shape along the abscissa. This is the opposite of the
parametric regression methods, where a single set of parameters is used to adjust the
same function to all data points (global fit). Smoothing methods are far less sensitive to
exceptional values and outliers than regression, including polynomial regression.
Several numerical methods are available for smoothing.

A simple way to visualize an empirical relationship is the method of moving
averages, described in more detail in Section 12.2. Define a ‘window’ of a given
width, position it at one of the margins of the scatter diagram, and compute the mean
ordinate value (y) of all the observations in the window. Move the window by small
steps along the abscissa, recomputing the mean every time, until the window reaches
the opposite margin of the scatter diagram. Plot the window means as a function of the
positions of the window centres along the abscissa. Link the mean estimates by line
segments. This empirical line may be used to estimate y as a function of x.

Piecewise polynomial fitting by “splines” is a more advanced form of local
smoothing. In its basic form, spline estimation consists in dividing the range of the
explanatory variable x (which is also the width of the scatter diagram) into a number of
intervals, which are generally of equal widths and separated by knots, and adjusting a
polynomial of order k to the data points within each segments using polynomial
regression (Subsection 10.3.4). To make sure that the transitions between spline
segments are smooth at the junction points (knots), one imposes two constraints:
(1) that the values of the function be equal on the left and right of the knots, and
(2) that the (k–1) first derivatives of the curves be also equal on the left and right of the
knots. Users of the method have to make arbitrary decisions about (1) the level k of the
polynomials to be used for regression (a usual choice is cubic splines) and (2) the
number of segments along the abscissa. If a large enough number of intervals is used,
the spline function can be made to fit every data point. A smoother curve is obtained by
using fewer knots. It is recommended to choose the interval width in such a way as to
have at least 5 or 6 data points per segment (Wold, 1974). Knots should be positioned
at or near inflexion points, where the behaviour of the curve changes (see example
below). A large body of literature exists about splines. Good introductory texts are
Chambers (1977), de Boor (1978), Eubank (1988), and Wegman & Wright (1983).
The simplest text is Montgomery & Peck (1982, Section 5.2.2); it inspired the
explanation of the method that follows.

Moving
average
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When the positions of the knots are known (i.e. decided by users), a cubic spline
model with no continuity restriction is written as:

(10.29)

In this equation, the parameters b0j in the first sum correspond to a cubic polynomial
equation in x. The parameters bkj in the second sum allow the curve segments to be
disconnected at the positions of the knots. There are h knots, and their positions along
the abscissa are represented by tk; the knots are ordered in such a way that t1 < t2 < …
< th. This equation, written out in full, is the following for a single knot (i.e. h = 1)
located at position t:

The expression  takes the value  when  (i.e. if the given
value x is to the right of the knot), and 0 when  (for values of x on the knot or
to the left of the knot). The constraint of continuity is implemented by giving the value
zero to all terms bkj , except the last one. In eq. 10.29, it is these parameters that allow
the relationship to be described by discontinuous curves; by removing them, eq. 10.29
becomes a cubic splines equation with continuity constraint:

(10.30)

which has a single parameter bk for each knot. Written in full, eq. 10.30 is the
following for two knots (i.e. h = 2) located at positions t1 = –5 and t2 = +4, as in the
numerical example below:

This approach is not the one used in advanced spline smoothing packages because
it has some numerical drawbacks, especially when the number of knots is large. It is,
however, the most didactic, because it shows spline smoothing to be an extension of
OLS polynomial regression. Montgomery & Peck (1982) give detailed computational
examples and show how to test the significance of the difference in R2 between models
with decreasing numbers of knots, or between a spline model and a simple polynomial
regression model. They finally show that piecewise linear regression — that is, fitting
a continuous series of straight lines through a scatter of points — is a natural extension
of the spline eq. 10.30 in which the exponent is limited to 1.

LOWESS refers to Locally Weighted Scatterplot Smoothing (Cleveland, 1979). This
method is an extension of moving averages in the sense that, for each value xi along
the abscissa, a value  is estimated from the data present in a window around xi . The
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number of data points included in the moving window is a proportion f, determined by
users, of the total number of observations; a commonly-used first approximation for f
is 0.5. The higher this proportion, the smoother the line of fitted values will be. For the
end values, all observed points in the window come from the same side of xi; this
prevents the lines from becoming flat near the ends. Estimation proceeds in two steps:

• First, a weighted simple linear regression is computed for the points within the
window and an estimate  is obtained. Weights, given to the observation points by a
‘tricube’ formula, decrease from the focal point xi outwards. Points outside the
window receive a zero weight. This regression procedure is repeated for all values xi
for which estimates are sought.

• The second step is to make these first estimates more robust, by reducing the
influence of exceptional values and outliers. Residuals are computed from the fitted
values and, from these, new weights are calculated that give more importance to the
points with low residuals. Weighted linear regression is repeated, using as weights the
products of the new weights with the original neighbourhood weights. This second
step may be repeated until the recomputed weights display no more changes.

Trexler & Travis (1993) give a detailed account of the LOWESS method, together
with a full example, and details on two techniques for choosing the most appropriate
value for f . The simplest approach is to start with a (low) initial value, and increase it
until a non-random pattern along x appears in the residuals; at that point, f is too large.
Other important references are Chambers et al. (1983) and Cleveland (1985).

Numerical example. Consider again the dependence of salinity on the position along a
transect, as modelled in Fig. 10.9. This same relationship may be studied using cubic splines and
LOWESS (Fig. 10.15). For splines smoothing, the arbitrary rule stated above (5 or 6 points at
least per interval) leads to 3 or 4 intervals. Figure 10.9 indicates, on the other hand, that there are
at least three regions in the scatter of points, which can be delimited by knots located at
approximately –5 and +4 along the abscissa. The computed spline regression equation which
follows has R2 = 0.841:

The difference in explained variation between this spline model and a cubic polynomial model
(R2 = 0.81, Fig. 10.9) is not significant. 

The LOWESS curve also clearly suggests the presence of three distinct physical processes
which determine the values of salinity along the long axis of the lagoon, i.e. from abscissa –10 to
about –5, the central portion, and the right-hand portion from abscissa 4 and on.

Other smoothing methods are available in computer software, such as negative
exponentially weighted smoothing (the influence of neighbouring points decreases
exponentially with distance); inverse squared distance smoothing, described in
Subsection 13.2.2 (eq. 13.21 with k = 2); distance-weighted least-squares smoothing
(the surface is allowed to bend locally to fit the data); and step smoothing (a step
function is fitted to the data).
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10.4 Path analysis

Subsection 4.5.4 showed that causal relationships among descriptors cannot be
unambiguously derived from the sole examination of correlation coefficients, whether
simple, multiple, or partial. Several causal models may account for the same
correlation coefficients. In the case of prediction (versus forecasting, see
Subsection 10.2.2), however, causal (and not only correlative) relationships among
descriptors must be established with reasonable certainty. Path analysis is an extension
of multiple linear regression (Subsection 10.3.3) that allows the decomposition and
interpretation of linear relationships among a (small) number of descriptors. It is thus
possible to formally state a priori hypotheses concerning the causal relationships
among descriptors and, using path analysis, examine their consequences given the
coefficients of regression and correlation computed among these descriptors.

Path analysis was developed by Wright (1921, 1960). It is now recognized as a
special case of a more general method called structural equation modelling (SEM),
which includes latent variables (unmeasured, but estimated in the model by several
measured variables) in addition to the measured variables. Structural equation models
allow both exploratory and confirmatory modelling, meaning that the method is suited
to develop as well as test theories. There are many interesting applications of path
analysis and SEM in ecology, evolution, population genetics, and the social sciences.
An introductory presentation of path analysis is found in Sokal & Rohlf (1995). The
present section only provides a summary of path analysis showing its link with linear

Figure 10.15 Cubic splines and LOWESS scatter diagrams describing the relationship of salinity with the
position of the sites along the main geographic axis of the Thau lagoon, on 25 October 1988.
Cubic splines were computed with knots at –5 and +4 on abscissa. For LOWESS (computed using
SYSTAT), the proportion of the points included in each smoothing window was f = 0.5.
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regression, and concludes with an ecological application. More complete and detailed
presentations of path analysis and structural equation modelling are found in the books
of Shipley (2002), Pugesek et al. (2003) and Grace (2006) written for ecologists, as
well as books written for the social sciences, e.g. Kaplan (2009) and Kline (2011).

As mentioned in Section 10.2, path analysis is based on two fundamental
assumptions. (1) There exists a causal order among the variables. This causal order,
which must be defined by the researchers, may be derived from ecological theory, or
established experimentally (for a brief discussion of experiments, see
Subsection 10.2.3). The assumption is that of weak causal ordering, e.g. y1 may affect
y2 but y2 cannot affect y1. In path diagrams (Figs. 10.16 to 10.18), the causal ordering
is represented by arrows, e.g. y1 1 y2. (2) No model can account for all the observed
variance. Path models thus include residual variables ui , which represent the unknown
factors responsible for the residual variance (i.e. the variance not accounted for by the
observed descriptors). The assumption of causal closure implies the independence of
the residual causal variables; in other words, one assumes the existence of residual
variables such that u1 1 y1 and u2 1 y2, whereas u1 1 y2 or u2 1 y1 is not allowed.

Numeral example. A simple example, with three variables exhibiting causal relationships,
is used to illustrate the main features of path analysis. It is adapted from Nie et al. (1975, p. 386
et seq.). The example considers hypothesized relationships among water temperature,
picophytoplankton (algae < 2 µm), and microzooplankton (e.g. ciliates) grazing on the
picophytoplankton. In the model, it is assumed that water temperature (y3) directly affects the
growth of microzooplankton (y1) and picophytoplankton (y2), whose abundance, in turn, affects
that of microzooplankton. Following the terminology of Sokal & Rohlf (1995, Section 16.3), y2
and y3 are predictor (or explanatory) variables while y1 is the criterion (or response) variable.
Figure 10.16 illustrates this hypothetical network of causal relationships in schematic form.
Since the three variables probably do not explain all the observed variance, the model also

Causal
order

Path
diagram

Causal
closure

Figure 10.16 Path diagram for three linearly related descriptors. Adapted from Nie et al. (1975).
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includes residual variables u1 to u3. The causal ordering of Fig. 10.16 is summarized in the
following system of linear equations:

y3 = u3

y2 = p23y3 + u2

y1 = p13y3 + p12y2 + u1

where parameters pij are the path coefficients. All variables are centred on their respective
means. The hypothesis of causal closure implies that:

s(u1,u2) = s(u1,u3) = s(u2,u3) = 0

because the residual causes are independent; s represents covariances.

The path coefficients are estimated using multiple linear regression (Subsection 10.3.3):

There are no intercepts (coefficients p0) in the regression equations because the data are centred.
For a model with n descriptors, one can estimate all path coefficients using at most (n – 1)
regression equations. Each descriptor is predicted from the descriptors with immediately higher
causal order. Two regression equations are needed to calculate the three path coefficients in
Fig. 10.16. Let us use the following values for the path coefficients (Fig. 10.17) and coefficients
of determination (R2) of the numerical example:

R2 = 0.25

R2 = 0.28

Path
coefficient

ŷ2 p23y3=

ŷ1 p13y3 p12y2+=

Figure 10.17 Results of path analysis for the example of Fig. 10.16. See text.
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and the following correlation coefficients among the descriptors:

r12 = 0.4        r13 = 0.5        r23 = 0.5

The correlation r13 depends on both the direct relationship between y1 and y3 and the
indirect relationship via y2 (Figs. 10.16 and 10.17). Path analysis makes it possible to interpret
the correlation r13 within the framework of the above model of causal relationships. Because the
regressions that provide the estimates of the path coefficients are computed using standardized
variables (eq. 1.12), it follows (Sokal & Rohlf, 1995, eq. 16.6) that

r13 = p13 + r23p12

= 0.4 + 0.5 × 0.2

= 0.4 + 0.1 = 0.5

The correlation between y3 (predictor variable) and y1 (criterion variable) includes the direct
contribution of y3 to y1 (path coefficient p13), and also the common causes behind the
correlations between y3 and y1. More generally, the correlation between a predictor variable yi
and a criterion variable y1 includes the direct contribution of yi to y1, plus the common causes
behind the correlations between yi and any other variable that has a direct effect on y1. These
various contributions may either increase (as in the present example) or decrease the correlation
between the predictor and criterion variables. The correlation coefficient r13 thus includes both a
direct (0.4) and an indirect component (0.1).

Coefficients of nondetermination* are used to estimate the fractions of the variance that are
not explained by the models (Fig. 10.17):

r2(u2, y2) = 1 –  = 1 – 0.25 = 0.75

r2(u1, y1) = 1 –  = 1 – 0.28 = 0.72

One concludes that 75% of the variance of picophytoplankton (y2) and 72% of the variance of
microzooplankton (y1) are not explained by the causal relationships stated in the model. The
same results are obtained using the following general formula (Sokal & Rohlf, 1995):

r2(u1, y1) = 1 – 

= 1 – [(  + ) + 2(p12p13r23)

= 1 – [(0.04 + 0.16) + 2(0.2 × 0.4 × 0.5)]

= 1 – [0.20 + 2(0.04)]

= 1 – 0.28 = 0.72

The above results may be summarized in a single table. In the numerical example
(Table 10.7), 0.1/0.5 = 20% of the covariation between microzooplankton (y1) and temperature
(y3) is through picophytoplankton (y2). In addition, 0.2/0.4 = 50% of the observed relationship
between microzooplankton (y1) and picophytoplankton (y2) is not causal, and thus spurious

*  The coefficient of nondetermination is (1 – R2);  is called the coefficient of alienation. 
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according to the path model of Figs. 10.16 and 10.17. Such spurious correlations occur when
two descriptors are caused by a third one (e.g. Fig. 4.11, Model 2) whose values have not been
observed in the study. 

Path analysis can be applied to more than three variables. As the number of
variables increases, interpretation of the results becomes more complex and the
number of possible models increases rapidly. In practice, path analysis is restricted to
exploring the causal structure of relatively simple systems. This type of analysis is
very useful in many ecological situations, if only because it forces researchers to
explicitly state their hypotheses about the causal relationships among descriptors. The
method helps assess the consequences of hypotheses, given the observed covariation
among descriptors. Other methods, mentioned in Table 10.3, must be used when the
descriptors do not exhibit linear relationships, or when they are not quantitative.

The following Ecological application 10.4 concerns freshwater ecology. Other
applications of path analysis may be found, for example, in the fields of bacterial
ecology (Troussellier et al., 1986), biological oceanography (Gosselin et al., 1986;
Legendre et al., 1991), and plant ecology (Hermy, 1987; Kuusipalo, 1987).

Ecological application  10.4

Harris & Charleston (1977) used path analysis to compare the microhabitats of two pulmonate
snails, Lymnaea tomentosa and L. columella. The two species live in freshwater marshes; there
are no obvious differences in the physical or chemical features of their respective habitats. Path
analysis was used to examine, for each of the two species, the hypothetical model of causal
relationships represented in schematic form in Fig. 10.18. In this model, water was assumed to
affect snail numbers directly, and also via mud and flocculence, since both factors are partly
determined by the amount of water present. The amount of mud was also expected to influence

Table 10.7 Decomposition of bivariate covariation among the (standardized) variables of Fig. 10.17.
Adapted from Nie et al. (1975).

Bivariate Total Causal covariation Noncausal
relationships covariation Direct Indirect Total covariation

(A) (B) (C) (D = B+C) (A–D)

y2y3 r23 = 0.5 0.5 0.0 0.5 0.0

y1y3 r13 = 0.5 0.4 0.1 0.5 0.0

y1y2 r12 = 0.4 0.2 0.0 0.2 0.2
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snails directly; however, larger mud areas are less likely to contain vegetation and are thus more
likely to be flocculent, hence the indirect path from mud to snails via flocculence.

Results of path analysis (Fig. 10.18) suggest major differences between the microhabitats of
the two species. Overall, increasing water cover has a direct (positive) effect on L. columella; in
addition, flocculent mud appears to favour L. tomentosa whereas L. columella seem to prefer
firm mud. The effects of water and mud on L. columella are thus direct, whereas they are indirect
on L. tomentosa (i.e. via flocculence). The tentative hypothesis generated by the path diagrams
must be further tested by observations and experiments. However, designing experiments to test
the role played by the consistency of mud, while controlling for other (confounding) variables,
would require considerable ingenuity.

10.5 Matrix comparisons

Regression and path analysis are restricted to the interpretation of univariate response
variables. Other methods are required to perform direct comparison analyses when the
descriptors form multivariate data tables. As shown in Fig. 10.4, canonical methods
(Chapter 11) analyse the relationship between two rectangular data tables, whereas
Mantel tests and derived forms, described in the present section, relate similarity or
distance matrices derived from rectangular data tables. 

Three main approaches are discussed in the present section. The Mantel test
(Subsection 10.5.1) and derived forms (partial Mantel test, multiple regression on
distance matrices, Subsection 10.5.2) are used to test relationships between association
matrices, not between the rectangular date tables from which they originate. This is
also the case of the analysis of similarities (ANOSIM, Subsection 10.5.3). The
Procrustes test (Subsection 10.5.4) is different: it  assesses the relationship between
two rectangular data tables, not between association matrices. That test, derived from
Procrustes analysis (Subsection 11.5.2), is presented in the present section to indicate
that there are alternatives to the Mantel test to relate data matrices. Chapter 11
describes several other methods for the comparison of raw data matrices.

Figure 10.18 Path diagrams of the hypothesized effects of water, mud and flocculence on population densities
of two pulmonate snails in marsh microhabitats. After Harris & Charleston (1977).
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1 — Two association matrices: Mantel test

The Mantel (1967) test is a method to compare two similarity (S) or distance matrices
(D), computed for the same objects, and test a hypothesis about the relationship
between these matrices. For simplicity, the presentation will focus on distance matrices
D. Mantel tests should not be used to test hypotheses about the relationships between
the original data tables, for reasons explained at the end of this subsection. The data
tables used to compute the two distance matrices must have been obtained
independently of each other (i.e. different variables). One of the matrices may actually
represent a hypothesis instead of real data, as shown below.

Ecological theory sometimes predicts relationships between resemblance matrices
(S or D). This is the case with neutral theory, which predicts a monotonic relationship
to appear in similarity decay plots where community composition similarity is
expected to decreases with geographic distance (Nekola & White, 1999; Hubbell,
2001). In genetics, the theory of isolation by distance (Wright, 1943) is based on the
fact that in sexually reproducing organisms, individuals tend to find mates in nearby
rather than distant populations; for sessile organisms, this theory applies to species
with short-range dispersal. As a consequence, populations living near each other tend
to be more genetically similar than distant populations. In both cases, the theoretical
predictions can be tested by analysing matrices of ecological or genetic distances DY
versus geographic distances DX using the Mantel test or regression on distance
matrices (Subsection 10.5.2). Matrices DY and DX must be computed for the same n
objects listed in the same order. For ecological data, the choice of an appropriate
resemblance measure is discussed in Chapter 7. In the two examples of the present
paragraph, one of the matrices contains geographic distances among sites and Mantel
tests may be used to test the predictions of these theories concerning distances. Other
statistical methods can and should be used to test other predictions of these theories.

The basic form of the Mantel statistic, called zM, is the scalar product (Section 2.5)
of the (unstandardized) values in the two resemblance matrices, excluding the main
diagonal, which only contains trivial values (1’s for similarities, 0’s for distances) for
which no estimate has been computed (Fig. 10.19). A second approach is to
standardize the values in each of the two vectors of resemblance before computing the
Mantel statistic. The cross-product statistic, divided by the number of distances in each
half-matrix minus 1 [i.e. (n(n – 1)/2) – 1], is bounded between –1 and +1; it behaves
like a correlation coefficient and is called rM. A third approach is to transform the
distances into ranks (Dietz, 1983) before computing the standardized Mantel statistic;
this is equivalent to computing a Spearman correlation coefficient (Section 5.3)
between the corresponding values of matrices DY and DX.

Mantel statistics are tested by permutation (Section 1.2). The n objects forming the
rows and columns of the similarity or distance matrices are the permutable units, so
that the permutations actually concern the n objects, not the [n(n – 1)/2] values in each
half-matrix of distances. The testing procedure for Mantel statistics is summarized in
Box 10.2. 

zM statistic

rM statistic

Permutation
test
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The permutation test leads to the same p-value with statistics zM or rM because all
cross-product results, permuted or not, are affected in the same way by linear
transformations such as standardization (eq. 1.12) of one or both vectors of distances.
This is a most important property of the Mantel test. Thanks to it, the arbitrary values
used in model matrices (below) are not an issue because any pair of chosen contrasting
values leads to the same p-value.

Mantel tests are usually one-tailed since, in most cases, ecologists have a strong
hypothesis about the sign of the correlation between the two matrices being compared.
The hypothesis may be that the two distance matrices are positively related, which
leads to a test of significance in the upper tail of the reference distribution. This is
certainly the case when testing a hypothesis of isolation by distance in genetics. When
comparing a similarity to a distance matrix, as in similarity decay plots, one generally
expects a negative relationship to be found, if any; the test is then in the lower tail of
the reference distribution. 

Figure 10.19 The Mantel statistic is the scalar product (sum of cross products) of the corresponding values in
two distance matrices (D). Values in the vectors representing the unfolded matrices (i.e. written
out as vectors) may be standardized before computing the statistic (rM), or not (zM), or
transformed into ranks.
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Theory of the Mantel test Box 10.2

Hypotheses

H0: The distances among objects in matrix DY are not (linearly or monotonically) related to
the corresponding distances in DX. 

H1: The distances among points in matrix DY are related to the distances in DX.

Test statistics

• Mantel (1967) statistic: zM =  where i and j are row and column
indices of the D matrices.

• Standardized Mantel statistic: rM = 

where stand(DY) stand(DX) contain standardized distances in their upper-triangular portions
and d = [n(n – 1)/2] is the number of distances in the upper-triangular portion of each matrix.

Distribution of the test statistic

• According to H0, the vector of values observed for any one object could have been observed
for any other object; in other words, the objects are the permutable units. A realization of H0
is obtained by permuting the objects (rows) in one of the original data matrices, bringing with
them their vectors of values for the observed variables, and recomputing the distance matrix.

• An equivalent result is obtained by permuting at random the rows and corresponding
columns of matrix DY . Either DY or DX can be permuted at random, with the same net effect.

• Repeating the above operation, the different permutations produce a set of values of the
Mantel statistic, zM or rM, obtained under H0. These values estimate the sampling
distribution of the Mantel statistic under H0.

Statistical decision

As in any other statistical test, the decision to reject H0 or not is made by comparing the
actual value of the auxiliary variable (zM or rM) to the reference distribution obtained under
H0. If the actual value of the Mantel statistic is one likely to have been obtained under the
null hypothesis (no relationship between DY and DX), H0 is not rejected; if it is too extreme
to be considered a likely result under H0, H0 is rejected. See Section 1.2 for details.

Remarks

• The zM or the rM statistics may be transformed into another statistic, called t by Mantel
(1967), which is asymptotically normal. It is tested by referring to a table of the standard
normal distribution. It provides a good approximation of the probability when n is large.

• Like the Pearson correlation coefficient, the Mantel statistic formula is a linear model that
brings out the linear component of the relationship between the values in two distance
matrices. Strong nonlinearities may prevent the identification of relationships in Mantel tests.
This led Mantel (1967) and Dietz (1983) to suggest the use of the Spearman or Kendall
nonparametric correlation coefficients, instead of Pearson’s r, as the statistic in Mantel tests.
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Examples of Mantel tests are found in Upton & Fingleton (1985), Legendre &
Fortin (1989), Sokal & Rohlf (1995), and elsewhere. The Mantel test is the statistical
basis for the Mantel correlogram described in Subsection 13.1.6. 

The Mantel test is only valid if matrix DX is independent of the resemblance
measures in DY , i.e. DX should not be derived in any way from DY nor from the data
that were used to compute DY . The Mantel test has two chief domains of application in
community ecology: 

1. It may be used to compare two resemblance matrices computed from empirical data
and test a hypothesis about the relationship between the distances, as in the similarity
decay plot example described above. For the test to be valid, DX must be computed
from the same objects but a different set of variables than those used to compute DY .

2. The Mantel test may also be used to assess the goodness-of-fit of data to an a priori
distance model. The test compares the empirical distance matrix to a model matrix
(also called a pattern or design matrix). This matrix is constructed to represent the
model to be tested; in other words, it depicts the alternative hypothesis of the test. For
example, in the Mantel correlogram (Subsection 13.1.6), the model is a classification
of the distances in two groups, e.g. the distances smaller than a given value of interest
and the larger distances. Figure 13.14 (Chapter 13) shows two matrices, X(1) and
X(2), representing such models. Other examples are given by Sokal & Rohlf (1995,
Section 18.3). 

The Mantel test cannot be used to check the conformity to a matrix DY of a model
derived from the same data, e.g. to test the conformity of DY to a group structure
obtained by clustering matrix DY . In such a case, the model matrix DX , which depicts
the alternative hypothesis of the test, would describe a structure made to fit the very
data that would now be used to test the null hypothesis. The hypothesis (DX) would not
be independent of the data (DY) used to test it. Such a test would be incorrect; it would
almost always reject the null hypothesis and support the conformity of DY to DX . This
point has been mentioned in Subsection 8.12.2.

Goodness-of-fit Mantel tests have been used in vegetation studies to investigate
hypotheses related to questions like the concept of climax (McCune & Allen, 1985)
and the environmental control model (Burgman, 1987, 1988). Hypotheses of niche
segregation have been tested for trees by Legendre & Fortin (1989), and for animals by
Hudon & Lamarche (1989). Somers & Green (1993) used Mantel tests based on
Spearman correlation coefficients (see Box 10.2, Remarks) to assess the relationship
between crayfish catches in six Ontario lakes and five model matrices corresponding to
different ecological hypotheses. Considering what is now known about the properties
of the Mantel test (see Box 10.3), in all these applications, the Mantel test should be
replaced by canonical analysis (Chapter 11), which provides more powerful tests of
significance.   

Model
matrix
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Further developments, Mantel test Box 10.3

Mantel tests should be restricted to test hypotheses concerning distances. A Mantel test
between two distance matrices DY and DX derived from raw data tables Y and X is not
equivalent to (1) the test of a correlation coefficient computed between two vectors of raw
data, (2) a test computed by linear regression between a response vector y and an explanatory
matrix X, or (3) a test in canonical analysis between a multivariate response matrix Y and an
explanatory matrix X. This statement is supported by the following observations.

1. The sum of squares of the distances is not the sum of squares of the raw data
(Legendre et al., 2005; Legendre & Fortin, 2010). On the one hand,

SS(Y) =  = 

as shown in Box 6.1, eqs. 6.55 and 6.56. On the other hand, the sum of squares of the
distances in a distance matrix D is computed as follows:

SS(D) =  = 

The last equation is for symmetric distance matrices, where only the Dih values in the upper
or lower-triangular portion of D are used. The right-hand parts of the two equations above are
irreductible to one another. Consider the numbers 1 to 10 for example: their total sum of
squares SS(Y) in the first equation is 82.5 and the sum of squares of the Euclidean distances
among these values (SS(D), second equation) is 220. SS(Y) is the denominator of R2 in
multiple regression (eq. 10.20) and canonical analysis (eq. 11.4) whereas SS(D) is the
denominator of the R2 in regression on distance matrices (Subsection 10.5.2); in simple
Mantel tests, the square root of this R2 is the Mantel statistic rM. As a consequence, the R2

computed by regressing DY on DX has nothing to do with the canonical R2 obtained by
analysing the variation of Y with respect to the variation of X.

2. An example given by Legendre et al. (2005) concerns a group of four sites that have
one species in common; in addition, each site harbours one species that is not present in any
of the three other sites (Fig. 10.20). This group of sites clearly displays spatial variation in
community structure, or beta diversity (Subsection 6.5.3). The total sum of squares of the
species data, SS(Y), is 3.0; it is positive, as expected for a group of sites showing beta
diversity (Box 6.1). However, the sum of squared distances in the upper (or lower) triangular
portion of matrix D, SS(D), is zero. Because SS(D) is the denominator of the R2 in regression
on distance matrices and the square root of this R2 is the Mantel statistic rM, the variation in
the data shown in Fig. 10.20a cannot be analysed by a Mantel test because the Mantel
correlation rM would be indeterminate. This example also shows that SS(D) is not a measure
of beta diversity.

yij y j–( )
2

i 1=

n

;
j 1=

p

; Dih
2

i h0
;) *

+ , n

Dih D–( )
2

i h0
; Dih

2

i h0
;

Dih
i h0
;) *

+ ,
2

n n 1–( ) 2
-----------------------------–



Matrix comparisons 603

Box 10.3 (continued)

3. Numerical simulations involving two variables were carried out by Legendre & Fortin
(2010, Table 2) to demonstrate the difference in power between tests of significance of
correlation coefficients between two variables and Mantel tests carried out between distance
matrices computed from these same variables. A population correlation value was imposed
between two vectors of random variables, as in Table 10.5 of Subsection 10.3.3. When the
correlation value was 0, all tests (the parametric and permutation test of the correlation
coefficient, as well as the Mantel test) had correct levels of type I error, i.e. all tests rejected
H0 at the 2 level in a proportion of the cases approximately equal to 2. When the population
correlation was 6 = 0.5, the mean of the Pearson correlations computed on samples of n = 10
to 100 data (10000 repetitions for each value of n) was approximately 0.5; the mean of the
Mantel rM statistics was near 0.2. Tests of the Pearson correlations increased in power as n
increased, from a rejection rate of H0 of 0.455 for n = 10 to 1.000 for n = 100; Mantel tests
had a rejection rate of 0.279 for n = 10 to 0.968 for n = 100. When the population correlation
was negative (6 = –0.5), the mean of the Pearson correlations was approximately –0.5; the
mean of the Mantel rM statistics was near 0.2; note the positive sign. Powers for the two
statistics were the same as when the population correlation was 6 = 0.5. To summarize, these
simulations showed the following: when it detects a correlation in the original data, the
Mantel test may not correctly estimate the sign of the correlation coefficient, and it produces
tests with lower power than the test of Pearson’s r. Conclusion: the Mantel test is
inappropriate to test hypotheses concerning correlations in raw data.

4. Dutilleul et al. (2000) described cases where the values of the Mantel statistics were
negative whereas the Pearson correlation was strictly 0; their Table 4 also showed cases, for
real bivariate data, where the signs of the Mantel statistics varied but were unrelated to the
signs of the Pearson correlations. Again, the Mantel test seemed inappropriate to test
hypotheses concerning correlations in raw data.

Figure 10.20 Illustrative example. (a) Community composition data table and (b) derived distance matrix,
Dij = (1 – Sij), based on the Jaccard similarity index (S7). Redrawn from Legendre et al. (2005).

            Sp.1  Sp.2  Sp.3  Sp.4  Sp.5
Site 1
Site 2
Site 3
Site 4

1
1
1
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

             Site 1  Site 2  Site 3  Site 4
Site 1
Site 2
Site 3
Site 4

0
0.667
0.667
0.667

0.667
0

0.667
0.667

0.667
0.667

0
0.667

0.667
0.667
0.667

0

(b) D = [1 – Jaccard similarity](a) Data
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2 — More than two association matrices

Smouse et al. (1986) proposed to compute partial correlations involving similarity or
distance matrices. Consider distance matrices D1, D2, and D3 computed from three
multivariate data tables, using a distance measure appropriate to each case. The partial
Mantel statistic, rM(D1D2.D3), estimating the correlation between matrices D1 and D2
while controlling for the effect of D3, is computed in the same way as a partial
correlation coefficient (eq. 4.36), except that the calculation is based here on
standardized Mantel statistics rM (Box 10.2) instead of Pearson correlations r. For
symmetric distance matrices, only the upper (or lower) triangular portions are used in
the calculations. The tests of significance applicable to partial Mantel statistics
(permutation tests) are described in Legendre (2000) and in Appendix 4 of Legendre &
Fortin (2010). 

Like Mantel tests, partial Mantel tests are only applicable to questions that concern
relationships among three distance matrices, not raw data. Another method described
in the present section, multiple regression on distance matrices, is applicable to
questions involving more than three distance matrices,

Ecological application  10.5

This application analyses the microgeographic morphological differentiation of muskrats
(Ondatra zibethicus) in the upper basin of River La Houille in southern Belgium. Muskrats were
introduced into Bohemia (now part of the Czech Republic) from North America in 1905 for
breeding and fur production. In later years, the species was introduced into other European
countries, including Belgium, where individuals were released to the wild in 1928 (Le
Boulengé, 1972). After their release from breeding farms, muskrats colonized ponds and
waterways throughout Europe. 

Muskrats were captured during a government-sponsored trapping campaign conducted in
1971-1972 to eradicate rats from the ponds of the upper La Houille basin (approximately
150 km2) where the river forms a broad, 15 km long loop, before flowing towards the Ardennes
Department of France where it becomes a tributary of River Meuse (Fig. 10.21a). Muskrats were
captured in nine local population zones, seven of which are included in the part of the study of
Le Boulengé et al. (1996) reported here. Age and sex of the captured specimens were
determined and measurements of the skull were taken. Mahalanobis distances based on 10 age-
adjusted skull measurements were computed among the muskrat population zones. 

Despite the absence of environmental heterogeneity across the study region, significant skull
morphological differences were identified among the local populations by ANOVA and
MANOVA. These differences were possibly due to founder effects and/or colonization of the
tributaries by animals from different origins, coupled with a spatial pattern of genetic relatedness
among the zones. The question addressed by the authors was: how can the relatedness of the
populations in the different zones be explained? Are geographically closer populations more
similar in their skull morphology? And then, what is it to be “geographically closer” for
muskrats, which are semi-aquatic mammals? The populations are genetically interconnected by
the migration of the young which, after weaning, may disperse to other population zones. In this
study, the relationships to be tested clearly concerned distances (morphological and geographic),
so Mantel tests were appropriate.

Partial
Mantel test
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The authors measured the geographic distance between the zones in two ways: straight-line
geographic distance and distance along the waterways. Muskrats are fast-moving animals when
they travel, so perhaps the actual distance is not really the determining factor. For that reason,
the authors also devised a “Decision distance”, which is the number of furcations of the river
network separating two zones. At these points, a migrating muskrat must decide to go either left
or right along the river network. The relationship between the three types of geographic
separation distances and the morphometric (Mahalanobis) distances are shown in Fig. 10.21b-d,
where simple Mantel correlations (rM) are shown. The graphs also show that the different types
of geographic distances are linearly related to the morphometric distances, so that the Mantel
statistic based on the Pearson correlation coefficient was appropriate in this study.

Figure 10.21 (a) Schematic representation of the upper La Houille River network in Belgium, showing the
seven muskrat local population zones, identified by letters C to T. (b) to (d) Distance comparison
diagrams and simple Mantel statistics (rM) for three types of geographic separation distances.
An OLS regression line indicates the trend in each graph.
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The authors formulated a sociobiological hypothesis called “isolation by distance along
corridors”. This hypothesis states that the decision distances explain the morphometric
differentiation of the local populations best. Partial Mantel tests were computed to compare the
ability of different distances to explain the morphological distances. Comparisons of the
geographic and decision distances produced the following results:

rM(Mahalanobis Geographic.Decision) = 0.03, p = 0.455

rM(Mahalanobis Decision.Geographic) = 0.55, p = 0.010

showing that the decision distance matrix explained the morphometric distances significantly
better than the geographic distances. Likewise, the decision distance matrix explained the
morphometric distances significantly better than the waterways distances; there was no
significant difference in explanation of the morphometric distances between the geographic and
waterways distances (results computed from the distance matrices found in the paper). Hence
the results were consistent with the hypothesis of “isolation by distance along corridors”.

Partial Mantel tests are not always easy to interpret. Legendre & Troussellier
(1988) have shown the consequences of all possible three-matrix causal models on the
significance of Mantel and partial Mantel statistics. The models (and their predictions)
are the same as those illustrated in Fig. 4.11 for three simple variables. This approach
leads to a form of causal modelling on resemblance matrices (Legendre, 1993). It
should only be used to analyse questions that require the modelling of distances, not
raw data.

In ecology, this type of analysis has been used mostly to study the distribution of
organisms (matrix D1) with respect to environmental variables (matrix D2) while
considering the spatial locations of the sampling sites (matrix D3). We now know that
in all these applications, including Legendre & Trousselllier (1988), the Mantel test
should be replaced by canonical analysis (Chapter 11), which provides much more
powerful tests of significance (see Box 10.4).

One may also want to model the variation in a first distance matrix as a function of
the variation in other distance matrices about the same objects. Multiple regression on
resemblance matrices has been suggested by several authors (Hubert & Golledge,
1981; Smouse et al., 1986; Manly, 1986; Krackhardt, 1988) to address research
questions formulated in terms of distances. Legendre et al. (1994) described
appropriate testing procedures for evolutionary studies where the response data was a
dendrogram or an evolutionary tree. The parameters of the multiple regression model
are obtained using a procedure similar to that of the Mantel test (Fig. 10.22). The
response distance matrix DY , which represents the evolutionary tree, is unfolded into a
vector y; likewise, each explanatory distance matrix DX is unfolded into a vector x. A
multiple regression is computed in which y is a function of vectors xj . The parameters
of that regression (the coefficient of multiple determination R2 and the partial
regression coefficients) are tested by permutations, as follows. When the response
distance matrix DY is an ordinary distance or similarity matrix, the permutations of the
corresponding vector y are carried out in the way of the Mantel permutational test
(Subsection 10.5.1). When it is an ultrametric matrix representing a dendrogram
(Subsection 8.3.1), the double-permutation method of Lapointe and Legendre (1990,

Causal
modelling

Regression
on distance
matrices

Permutation
test



Matrix comparisons 607

1991) is used. When it is a path-length matrix representing an additive tree (i.e. a
cladogram in phylogenetic studies), a triple-permutation method (Lapointe and
Legendre, 1992a) is used. Vectors xj representing the explanatory matrices are kept
fixed with respect to one another during the permutations. Selection of explanatory
matrices may be done by forward selection, backward elimination, or a stepwise
procedure, which are described in Legendre et al. (1994). For research questions that
do not strictly concern distances, the method of multiple factor analysis (MFA, briefly
described at the end of Subsection 11.5.1) should be used for analysis.

Further developments, partial Mantel test Box 10.4

During the past 15 years, partial Mantel tests and regression on distance matrices have been
used in many ecological papers that had for objective to analyse the spatial variation of
community composition (raw data, not distances) among sites, i.e. beta diversity
(Subsection 6.5.3). Some of these papers were listed as examples by Legendre et al. (2005).
To demonstrate that the Mantel test should not be used for that type of objective, that paper
presented simulation results involving multivariate, spatially correlated data. The simulations
compared canonical analysis (RDA, Section 11.1) to Mantel tests to detect the effect of
environmental variables X on species-like response data Y, as well as the presence of spatial
structures in the species-like data (10 simulated species, n = 100). The results found in
Table 1 and Fig. 3 of Legendre et al. (2005) showed the following:

• The two testing methods had correct levels of type I error. They were thus statistically valid.

• When Y was related to the environmental variables X (plus random error in Y), RDA
detected a significant relationship in 97% of the simulations whereas the Mantel test detected
it in 49% of the cases. 

• Using the distance-based Moran’s eigenvector map method of spatial analysis (dbMEM,
Section 14.1) in RDA, significant spatial structures were detected in the simulated data in
99% of the cases, compared to 8 to 22% of the cases detected by Mantel tests. 

These findings support the conclusion that the Mantel test is inappropriate to test hypotheses
concerning correlations in raw data. Other simulation results, where community composition
data were simulated according to Hubbell’s (2001) neutral model, led to the same
conclusions about the difference in power between the two types of tests when applied to raw
data (Legendre et al., 2008).

Not everyone agrees about the questions that can be answered by Mantel tests. See the
controversy raised by Tuomisto & Ruokolainen (2006) and the exchanges that followed in
the ecological literature (Pélissier et al., 2008; Laliberté, 2008; Legendre et al., 2008;
Tuomisto & Ruokolainen, 2008). Everyone now seems to agree, however, that Mantel tests
should be limited to questions about relationships between distance matrices. 



608 Interpretation of ecological structures

The CADM method to test the congruence among distance matrices, described in
Subsection 5.4.3, is another extension of the Mantel test to several distance matrices.

3 — ANOSIM test

Focusing on problems of analysis of variance that involved community composition
data, Clarke (1988, 1993) developed a parallel approach to the goodness-of-fit Mantel
tests. Clarke’s method, called ANOSIM (ANalysis Of SIMilarities), is implemented in
the PRIMER package, referred to in Section 9.4, and in R. In PRIMER, program ANOSIM
includes one-way and two-way analyses (crossed or nested) for replicated data,
whereas program ANOSIM2 covers two-way analyses without replication (Clarke &

Figure 10.22 Multiple regression is computed on the vectors resulting from unfolding matrices DY (response)
and DX1, DX2, etc. (explanatory).
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Warwick, 1994). After a brief presentation of Clarke’s statistic, below, the similarities
and differences between the ANOSIM and Mantel approaches will be shown.

Consider the situation illustrated in Fig. 10.23a. The distances shown in
Fig. 12.22a were transformed into ranks, the least dissimilar pair (i.e. the most similar)
receiving rank 1. Tied values in Fig. 12.22a were given mean rank values, as usual in
nonparametric statistics. Objects are arbitrarily numbered 5, 6, 7, 8, 9. The objects are
assumed to form two groups, defined here on a priori bases; the two groups are not
supposed to result from clustering as in Fig. 12.22a. The two a priori groups are (5, 6)
and (7, 8, 9). The null hypothesis is of the ANOVA type: 

H0: There is no difference between the two (or more) groups.

In Fig. 10.23a, does one find the kind of variation among distance values that one
might expect if the data corresponded to the null hypothesis? Clarke (1988, 1993)
proposed the following statistic to assess the differences among groups:

(10.31)

where  is the mean of the ranks in the between-group submatrix (i.e. in Fig. 10.23a,
the rectangle crossing groups 1 and 2),  is the mean of the ranks in all within-group
submatrices (i.e. the two triangles in the figure), and n is the total number of objects. In
the present example,  = 7.083 and  = 3.125, so that R = 0.79167 (eq. 10.31).

Using ranks instead of the original distances is not a fundamental requirement of
the method. It comes from a (reasonable) recommendation, by Clarke and co-authors,
that the test statistic should reflect the patterns formed among sites represented by

(a) X = ranked distances (b) Y = model matrix

Figure 10.23 (a) Distances from the numerical example in Fig. 12.22a are transformed into ranks, the most
similar pair receiving rank 1. (b) Weighting required to compute the ANOSIM statistic as a
Mantel statistic.

Group 1 Group 2 Group 1 Group 2
D 5 6 7 8 9 D 5 6 7 8 9
5 5
6 2 6 –1/20

7 4 8.5 7 1/30 1/30

8 6.5 5 1 8 1/30 1/30 –1/20

9 8.5 10 3 6.5 9 1/30 1/30 –1/20 –1/20
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multidimensional scaling plots (nMDS, Section 9.4), which preserve rank-
transformations of distances. The R statistic is tested by permutations of the objects, as
explained in Box 10.2. The denominator of eq. 10.31 is chosen in such a way that
R = 1 if all the lowest ranks are in the “within-group” submatrices, and R = 0 if the
high and low ranks are perfectly mixed across the “within” and “between”
submatrices. R is unlikely to be substantially smaller than 0; this would indicate that
the similarities within groups are systematically lower than among groups.

Clarke (1988, 1993) actually applied the method to the analysis of several groups.
This is also the case in the nonparametric ANOVA-like example of the Mantel test in
the Sokal & Rohlf (1995) book. The statistic (eq. 10.31) can readily handle the more-
than-two-group case:  is then the mean of the ranks in all between-group
submatrices, whereas  is the mean of the ranks in all within-group submatrices. 

Equation 10.31 may be reformulated as a Mantel cross-product statistic zM
(Box 10.2). To achieve this, define a model matrix containing positive constants in the
“between-group” portion and negative constants in the “within-group” parts: 

• the “between” values (shaded area in Fig. 10.23b) are chosen to be the inverse of the
number of between-group distances (1/6 in this example), divided by the denominator
of eq. 10.31, i.e. [n(n – 1)/4] (which is 5 in the present example); 

• similarly, the “within” values in Fig. 10.23b are chosen to be the inverse, with
negative signs, of the number of distances in all within-group submatrices (–1/4 in the
example), also divided by [n(n – 1)/4] (= 5 in the present example).

The coding is such that the sum of values in the half-matrix is zero. The
unstandardized Mantel statistic (Box 10.2), computed between matrices DX and DY of
Fig. 10.23, is zM = 0.79167. This result is identical to Clarke’s ANOSIM statistic.

Since the permutation method is the same in the Mantel and ANOSIM procedures,
the tests should produce similar p-values. They may differ slightly in practice because
different programs, and even different runs of the same program, may produce
different sequences of permutations of the objects. As shown in Subsection 10.5.1, any
binary coding of the “within” and “between” submatrices of the model matrix leads to
the same probabilities. Of course, interchanging the small and large values produces a
change of sign of the statistic and turns an upper-tail test into a lower-tail test. The only
substantial difference between the Mantel goodness-of-fit and ANOSIM tests is one of
tradition: Clarke (1988, 1993) and the ANOSIM function in the PRIMER package
(Clarke & Warwick, 1994) and in R (Section 10.7) transform the distances into ranks
before computing eq. 10.31. Since Clarke’s R is equivalent to a Mantel statistic
computed on ranked distances, it is thus analogous to a Spearman correlation
coefficient (eqs. 5.1 and 5.3).

The Mann-Whitney U statistic could also be used for analysis-of-variance-like
tests of significance performed on distance matrices. This has been suggested by

Permutation
test

rB
rW



Matrix comparisons 611

Gordon (1994) in a different context, i.e. as a way of measuring the differentiation of
clusters produced by clustering procedures (internal validation criterion), as reported
in Section 8.13. In Gordon’s method, distances are divided in two subsets, i.e. the
within-group (W) and between-group (B) distances — just like in Clarke’s method. A
U statistic is computed between the two subsets. U is closely related to the Spearman
rank correlation coefficient (eqs. 5.1 and 5.3); a U test of a variable against a dummy
variable representing a classification in two groups is equivalent to a Spearman
correlation test (same probability). Since Clarke’s statistic is also equivalent to a
Spearman correlation coefficient, the Mann-Whitney U statistic should lead to the
exact same probability as the Clarke or Mantel statistics, if U was used as the statistic
in a Mantel-like permutation test. [Using the U statistic as an internal validation
criterion, as proposed by Gordon (1994), is different. On the one hand, the grouping of
data into clusters is obtained from the distance matrix that is also used for testing; this
is not authorized in an analysis-of-variance approach. On the other hand, Gordon’s
Monte Carlo testing procedure differs from the Mantel permutation test.]

4 — Procrustes test

In Greek mythology, Procrustes was a son of Poseidon and a rogue. He invited
travellers to spend the night with him, then tied them down to an iron bed and either
cut off their limbs if they were taller than the bed, or stretched the victims if they were
too short, till they fitted in.

Procrustes analysis, proposed by Gower (1971b, 1975, 1987), is primarily a
canonical ordination method; it is described in Subsection 11.5.2. The Procrustes test
(PROTEST) is presented here as a statistical method for comparing two rectangular data
matrices about the same objects. It is appropriate to answer questions about the
relationship between the original data sets (i.e. raw data), which is not the case of the
Mantel test. Another statistic that can be used in the same situation is the RV coefficient
(eqs. 11.65 and 11.66) described with co-inertia analysis (Subsection 11.5.1).

The purpose of Procrustes analysis is to find a compromise ordination for two raw
data matrices with the same objects in rows, using a rotational-fit algorithm that
minimizes the sum of squared distances between corresponding points of the two
matrices in a joint ordination. In that ordination, each object has two representations,
one from each matrix, so that the scatter diagram allows one to visualize the
differences between the two original matrices. In orthogonal Procrustes, two matrices
are considered and fitted using rigid-body motions (translation, rotation, and mirror
reflection). Generalized Procrustes analysis is the extension of the method to more
than two matrices. Details are found in the references given above. 
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The present subsection focuses on the residual sum-of-squares statistic of
orthogonal Procrustes analysis, which is a goodness-of-fit statistic. It was called m2 by
Gower and is computed as follows:

(10.32)

where Y1 and Y2 are the two rectangular matrices of raw data to be analysed, with
column vectors centred on their respective means, and W is a diagonal matrix of
singular values found by the singular value decomposition  (SVD,
eq. 2.31). 

Equation 10.32 is not symmetric; indeed, the  value resulting from fitting Y2 to
Y1 differs from  obtained by fitting Y1 to Y2. To solve that problem, transform the
column-centred matrix Y1 to Y1.tr by dividing each value of Y1 by the square root of
the trace of , which is the same as the trace of ; that trace is easily
computed as the sum of squares of all values in Y1. Using the same method, transform
the centred matrix Y2 to Y2.tr . For Y1.tr and Y2.tr , the two Procrustes statistics are now
identical:

(10.33)

Jackson (1995) suggested using the symmetric orthogonal Procrustes statistic 
(eq. 10.33) as a measure of concordance, or similarity, between two data matrices
representing, in particular, species abundances and environmental variables. The
statistic is tested by permutation. Jackson (1995) called this procedure the Procrustean
randomization test (PROTEST). He provided examples of applications to ecological
data: benthic invertebrates, lake morphometry, lake water chemistry, and geographic
coordinates, for 19 lakes in Ontario, Canada. What Jackson actually compared in that
paper were, for each data set, the first two ordination axes from correspondence
analysis (CA, for benthic invertebrates) or principal component analysis (PCA, for
lake morphometry and chemistry); the geographic coordinates were left
untransformed. The PROTEST method, as re-described by Peres-Neto and Jackson
(2001), can actually be used to test the significance of the relationship between data
matrices in all situations where co-inertia and orthogonal Procrustes analyses are
applicable (Section 11.5). In R, function protest() of VEGAN uses TraceW instead of

 or  as the test statistic in the Procrustean permutation test.

Numerical simulations carried out by Peres-Neto & Jackson (2001) showed that
PROTEST was more powerful than the Mantel test to identify correlations generated
between raw data matrices. This finding is in accordance with the conclusions of other
authors, reported in Box 10.3, that the Mantel test should not be used to test
hypotheses concerning correlations between raw data matrices.
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10.6 The fourth-corner problem

How do the biological and behavioural characteristics of species determine the niches
they occupy or their geographic locations in an ecosystem?

This question, which stems from niche theory, has long been neglected by
ecologists because they lacked an appropriate method of analysis. Observation of
species in nature helps ecologists formulate hypotheses in that respect. Testing such
hypotheses requires (1) a way of detecting relationships between species traits and
habitat characteristics, and (2) of testing the significance of these relationships. A
method of analysis for this problem was proposed by Legendre et al. (1997a) and the
statistical theory was completed by Dray & Legendre (2008) and by ter Braak et al.
(2012).

Consider a matrix A (n × p) containing data on the presence-absence or abundance
of p species at n sites (Fig. 10.24)*. A second matrix B (q × p) describes q biological or
behavioural traits of the same p species. A third matrix C (n × m) contains information
about m habitat characteristics (environmental variables) at the n sites. How does one

*  Matrices A to D are transposed compared to the presentation in Legendre et al. (1997).

Figure 10.24 Given the information in
matrices A, B, and C, the
fourth-corner problem is to
estimate the parameters in
the fourth-corner matrix D
that crosses the habitat
characteristics with the
biological or behavioural
traits of the species. In Dray
& Legendre (2008), matrix A
is called L, B is called Q',
and C is called R.
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go about associating the q biological and behavioural traits to the m habitat
characteristics? To help find a solution, let us translate the problem into matrix form:

(10.34)

Using this representation, the problem may now be stated as follows: 

• How does one go about estimating the parameters in matrix D (q × m) where the q
biological and behavioural traits are related to the m habitat characteristics? 

• Are these parameters significant in some sense, i.e. are they different from 0 (no
relationship) or from the value they could take in a randomly organized environment? 

The statistical problem of estimating the parameters in matrix D is referred to as
the fourth-corner problem because matrix D lies in the fourth corner of the matrix
arrangement shown in eq. 10.34. Data in matrix A belong to the presence/absence or
abundance types (only presence-absence data were considered by Legendre et al.,
1997a). Matrices B and C may contain quantitative or qualitative (nominal) data. The
papers referenced at the beginning of the section describe solutions to accommodate
the different types of variables. The relationship between B and C mediated by A can
also be analysed by a related method called RLQ analysis (Dolédec et al., 1996). 

1 — Comparing two qualitative variables

The first situation considered here concerns two qualitative variables, one from matrix
B (behaviour), the other from matrix C (habitat). Any qualitative variable can be
expanded into a series of binary variables, one for each state (Subsection 1.5.7). 

Numerical example. In test cases 1 and 2 (Table 10.8), A is a matrix of presence-absence of
species at two sites; B and C contain supplementary variables (qualitative, two states) for the
rows and columns of A, respectively. To fix ideas, let us assume that the variable in B describes
two feeding habits (herbivorous, carnivorous) and C is the nature of the substrate at the study
sites on a coral reef (live coral, turf). This example describes the approach for qualitative
variables (Subsection 10.6.1) and introduces the method for significance testing
(Subsection 10.6.2).

Matrices A, B and C (or L, Q and R) are all needed to estimate the parameters in
the fourth-corner matrix D. The three matrices can be combined by multiplication
around the set of four matrices while preserving matrix compatibility:

clockwise: D = B A' C   or   D = Q' L' R (10.35)

or counter-clockwise: D' = C' A B'   or   D' = R' L Q (10.36)

For the two test cases of the numerical example, matrix D is shown in Table 10.8.
Equations 10.35 and 10.36 have an equivalent in traditional statistics. If the data in A,

A n p×( ) C n m×( )

B q p×( ) D q m×( )
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B, and C are frequencies, they can be combined to form an “inflated data matrix”.
Matrix D, which results from crossing the two columns of the inflated matrix, is a
contingency table as shown in Table 10.9; values dij in matrix D are frequencies or
pseudo-frequencies (see Ecological application 10.6). So, a solution that naturally
comes to mind for significance testing is to compute a 92 statistic, using either
Pearson’s (eq. 6.5) or Wilks’ formula (eq. 6.6, also called the G statistic). The G
statistic is used here; it is the first type of fourth-corner statistic.

Table 10.8 Test cases for qualitative variables. Matrices are transposed to reduce their widths in the page.
A' is (10 species × 2 sites), B' is (10 species × 2 feeding habits), and C' is (2 habitat types ×
2 sites). So, D' is (2 habitat types × 2 feeding habits). Probabilities (p) are one-tailed, assuming
that H1 states the sign of the relationship. H1 is indicated by a sign in each cell of D', + meaning
that the actual value is larger than the expected value and is tested in the upper tail, and – in the
opposite case. Probabilities computed after 9999 permutations. E = exact probabilities; see text.

Test case 1 Test case 2
___________________________________ ___________________________________

A': Site 1 Site 2 B':Herbiv. Carniv. A': Site 1 Site 2 B':Herbiv. Carniv.
__________ ________________ __________ ________________

Sp. 1 1 0 0 1 Sp. 1 1 1 0 1
Sp. 2 0 1 0 1 Sp. 2 1 1 0 1
Sp. 3 1 0 0 1 Sp. 3 1 1 0 1
Sp. 4 1 0 0 1 Sp. 4 1 1 0 1
Sp. 5 1 0 0 1 Sp. 5 1 1 0 1
Sp. 6 0 1 1 0 Sp. 6 1 1 1 0
Sp. 7 0 1 1 0 Sp. 7 1 1 1 0
Sp. 8 0 1 1 0 Sp. 8 1 1 1 0
Sp. 9 0 1 1 0 Sp. 9 1 1 1 0
Sp. 10 0 1 1 0 Sp. 10 1 1 1 0
___________________________________ ___________________________________

C': Site 1 Site 2 D':Herbiv. Carniv. C': Site 1 Site 2 D':Herbiv. Carniv.
__________ ________________ __________ ________________

Live 1 0 0 – 4 + Live 1 0 5 5
coral p = 0.029 p = 0.189 coral p = 1.000 p = 1.000

E = 0.031 E = 0.188 E = 1.000 E = 1.000

Turf 0 1 5 + 1 – Turf 0 1 5 5
p = 0.029 p = 0.189 p = 1.000 p = 1.000
E = 0.031 E = 0.188 E = 1.000 E = 1.000

___________________________________ ___________________________________

Contingency statistic: Contingency statistic:

G = 8.4562, p (9999 permutations) = 0.021 G = 0.0000, p (9999 permutations) = 1.000

Inflated
data matrix
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Dray & Legendre (2008) have shown that species abundance data can be used as
well as presence-absence data in the calculation of fourth-corner statistics and in the
permutation tests described in the next two subsections.

For large contingency tables D, relationships among descriptor states could be
visualized in a correspondence analysis (CA) biplot (Subsection 9.2.1). Consider
matrix D shown in Table 10.10 (below) as an example. It may be simplified as follows
before CA: for the cells where dij is significant, code those that are above the expected
value (sign + in the matrix) with +1 and those that are below the expected value (sign –
in the matrix) with –1. Code the non-significant cells with 0. After coding, add 1 to all
cells because CA requires that the values in the matrix subjected to the analysis be
non-negative. Carry out CA of the coded matrix and use scaling type 4 for the biplot. A
CA biplot remains a simplified summary; it contains less precise information than the
original matrix D.

2 — Test of statistical significance

In fourth-corner problems, one cannot test the G statistics in the usual manner because,
in the general case (although not in test case 1 of Table 10.8), several species are
observed at any one sampling site so that the rows of the inflated matrix are not
independent of one another; several rows of that matrix result from observations at a
single site. To solve the problem, G is tested by permutations (Section 1.2). The
procedure is as follows.

Table 10.9 Inflated data matrix (left); there is one row in this matrix for each species “presence” (value 1) in
matrix A' of test case 1 (Table 10.8). The contingency table (matrix D', right) is constructed
from the inflated matrix.

Inflated data matrix Contingency table
______________________________________ ___________________________

Occurrences Feeding habits Habitat types D': Herbivorous Carnivorous
in test case 1 from B from C
______________________________________ ___________________________

Sp. 1 @ Site 1 Carnivorous Live coral Live coral 0 4
Sp. 2 @ Site 2 Carnivorous Turf
Sp. 3 @ Site 1 Carnivorous Live coral Turf 5 1
Sp. 4 @ Site 1 Carnivorous Live coral ___________________________
Sp. 5 @ Site 1 Carnivorous Live coral
Sp. 6 @ Site 2 Herbivorous Turf
Sp. 7 @ Site 2 Herbivorous Turf
Sp. 8 @ Site 2 Herbivorous Turf
Sp. 9 @ Site 2 Herbivorous Turf
Sp. 10 @ Site 2 Herbivorous Turf

Permutation
test
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Hypotheses 

• H0: the species traits (matrix B) are unrelated to the characteristics of the sites
(matrix C), their relationships (links) being mediated by the species presence-absence
or abundance data (matrix A). Different permutation null models are detailed in the
next subsection.

• H1: the species traits are related to the characteristics of the sites. 

Test statistic

Compute a 92 statistic (G here) on the contingency table (matrix D) and use it as the
reference value for the remainder of the test.

Distribution of the test statistic

Under H0, the species found at any one site could have been observed at any other site.
Where the species have actually been observed is due to chance alone. So, a realization
of H0 is obtained by permuting at random the values in matrix A, using one of the
methods described in the next subsection. After each permutation of matrix A,
recompute the 92 statistic on D.

• Repeat the permutation a large number of times (say, 999 or 9999 times). The
different permutations produce a set of values of the 92 statistic, obtained under H0. 

• Add to this set the reference value of the statistic, computed for the unpermuted data
matrix. Together, the unpermuted and permuted values (for a total of 1000 values,
10000 values, etc.) form an estimate of the sampling distribution of 92 under H0.

Statistical decision

As in any other statistical test, the decision is made by comparing the reference value
of the 92 statistic to the distribution obtained under H0. If the reference value of 92 is
one likely to have been obtained under the null hypothesis, H0 is not rejected. If it is
too extreme (i.e. located out in a tail) to be considered a likely result under H0, then H0
is rejected.

Individual values dij in matrix D can also be tested for significance, as shown
below in the numerical example and the ecological application.

In addition, a global test of significance can be carried out for the fourth-corner
relationship involving all variables in matrices A and C in the analysis. The global test
uses statistic SRLQ, which is the trace of a cross-product matrix computed from the
fourth-corner matrix D. See Dray & Legendre (2008, eq. 8). This quantity is equal to
the total inertia of an RLQ analysis (Dolédec et al., 1996). 
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3 — Permutational models

Permutations may be conducted in different ways, depending on the ecological
hypotheses to be tested against observations. Technically, the fourth-corner statistical
method can accommodate any of the permutation models described below. The
random component is clearly the field information about the species found at the
sampling sites, i.e. matrix A. It is thus matrix A that should be permuted (randomized)
for the purpose of hypothesis testing. This may be done in various ways (Fig. 10.25).
Models 1 to 4 were described by Legendre et al. (1997a), model 5 by Dray & Legendre
(2008).

Model 1: Environmental control over individual species. — Permute the species
presence-absence or abundance data within each column of matrix A, independently
from column to column. This not only destroys the link between A and C, but also the
relationship between A and B, as shown by Dray & Legendre (2008, Appendix A). The
null hypothesis (H0) states that individuals of a species are randomly distributed with
respect to the site characteristics. The corresponding alternative hypothesis (H1) states
that individuals of a species are distributed according to their preferences for site
conditions. Under this permutation model, the number of sites occupied by each

Figure 10.25 Permutations of matrix A may be
performed in different ways
which correspond to different null
ecological models.

(1) The occurrence of a species in
the study area is constant, but po-
sitions are random; permute at
random within columns. 

(2) Positions of species assem-
blages are random; permute
whole rows (assemblages). 

(3) Lottery hypothesis: the spe-
cies that arrived first occupied a
site; permute at random within
rows. 

(4) Species have random at-
tributes; permute whole columns.

Model 1 Model 2

Model 3 Model 4
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species is kept constant, as in permutation method 2b of the Raup & Crick similarity
coefficient (S27, Chapter 7).

Model 2: Environmental control over species assemblages. — Permute entire rows of
matrix A at random. This method destroys the link between A and C but keeps A
linked to B; it is equivalent to permuting the rows of C. H0 states that species
assemblages are randomly attributed to sites, irrespective of the site characteristics.
The corresponding alternative hypothesis (H1) states that species assemblages are
dependent upon the physical characteristics of the locations where they are found. This
method preserves the covariances among the species throughout the permutations, as
well as the number of sites occupied by each species.

Model 3: Lottery. — Permute the species data within each row of matrix A,
independently from row to row. This not only destroys the link between A and B, but
also the relationship between A and C. H0 states that the distribution of the presences
of various species at a site is the result of a random allocation process (the lottery for
space model advocated by Sale, 1978); it is not due to the adaptation of the species
traits to the sites. The alternative hypothesis (H1) states that due to their traits, species
have some competitive advantages over chance settlers in the habitats where they are
found. Under this model, the number of species present in a given site (i.e. species
richness) is kept constant.

Model 4: Random species attributes. — Permute entire columns of matrix A at
random. This destroys the link between A and B but keeps A linked to C; it is
equivalent to permuting the columns of B. H0 states that species are distributed
according to their preferences for site conditions, but irrespective of their traits or other
characteristics included in B. The alternative hypothesis (H1) states that the
distributions of the species among the sites, which are related to their preferences for
site conditions, depend on the adaptations (traits) of the species. Under this model, the
number of species present at each site (i.e. the species richness) is kept constant.

Model 5: Permute rows and columns. — Permute entire rows of A at random, then (or
before) permute entire columns at random. The links between A and B and between A
and C are destroyed. An alternative, equivalent method is to permute at random the
rows of C and the columns of B while keeping A fixed, which was the method used by
Dolédec et al. (1996). H0 states that the species distributions among the sites are not
related to the site conditions nor to the traits of the species. The alternative hypothesis
(H1) states that the species distributions across the sites are related to species traits,
and/or that species assemblages are dependent upon the environmental conditions.

The type I error rate and power of these permutation models were studied by Dray
& Legendre (2008) under six data generation scenarios. All permutation models have
nearly equal power to detect a relationship between B and C mediated by A when such
a relationship is present in the data. In the opposite situation, when there is no
relationship between A and B nor between A and C, all permutation models have
correct rates of type I error and reject H0 at the 2 significance level. However, in some
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simulation situations, the permutation models differ in type I error rates, which can be
very high with some models (Dray & Legendre, 2008). This makes it difficult, with
some models, to interpret a rejection of H0: does it mean that there is a relationship
between B and C via A, or is it a type I error? 

• When one can assume that a relationship exists between A and B (i.e. the species
have fixed trait values) and the test concerns the relationship between A and C,
(i.e. test the species-environment relationship), permutation model 2 has a correct type
I error rate; so this permutation model can be used in that situation. 

• Similarly, in the opposite situation, when one can assume that a relationship exists
between A and C and the test concerns the relationship between A and B, permutation
model 4 can be used.

• When no a priori assumption can be made about existing relationships (the data in B
and C are considered random instead of fixed), the best strategy is to carry out two
tests in sequence using permutation models 2 and 4 and take the maximum of the two
p-values as the probability of the data under the combined null hypothesis (ter Braak et
al., 2012).

Numerical example. Let us examine how the fourth-corner method behaves when applied
to the data sets introduced in the numerical example of Subsection 10.6.1. The first test case
(Table 10.8, left) was constructed to suggest that herbivores are found on turf while carnivores
are more ubiquitously distributed. Globally, the G statistic indicates a significant relationship
(2 = 0.05) between behavioural states and types of habitat (p = 0.0207 after 9999 random
permutations under model 1 above). The expected values in the various cells of matrix D
determine the tail in which each frequency dij of the contingency table is to be tested for
significance; this value is taken to be the mean frequency expected from all possible
permutations of matrix A, given the permutation model that has been selected. Looking at
individual values dij , herbivores are clearly positively associated with turf and negatively with
coral (p = 0.0287, computed from the random permutation results), while carnivores are not
significantly associated with either live coral or turf (p = 0.1890). These probabilities are very
close to the exact probabilities calculated for the same data, which are the values obtained from
a complete permutation procedure (E in Table 10.8). Values of exact probabilities E are
computed as follows: consider all possible permutations that result from independently
permuting the rows of matrix A (permutation model 1); count how many of these would produce
values equal to, or more extreme than the observed value in each given cell of matrix D. This
value may differ slightly from the random permutational probability. Globally, the testing
procedure for the relationship between behaviour and habitat behaved as expected in this
example, and the random permutation procedure produced values quite close to the exact
probabilities.

The second test case (Table 10.8, right) illustrates a situation where the null hypothesis is
true in all cases, matrix A indicating all 10 species to be present everywhere. Indeed, the testing
procedure finds all permutation statistics to be equal to the unpermuted ones, so that the
probability of the data under the null hypothesis is 1 everywhere. The procedure once more
behaved correctly.
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4 — Other types of comparisons among variables

Variables in matrices B and C are not always qualitative. Through lines of reasoning
similar to that of Subsection 10.6.1, involving inflated data matrices (as in Table 10.9),
fourth-corner statistics can be formulated to accommodate other types of variable
comparisons.

• To compare a quantitative variable in B to a quantitative variable in C, a Pearson
correlation coefficient may be computed between the columns of the inflated matrix. A
correlation coefficient is directly obtained from the fourth-corner equation D = BA'C if
the columns of the inflated data matrix are first standardized and the scalar product is
divided by the number of rows of the inflated matrix minus 1.

• When comparing a quantitative variable in B to a qualitative variable coded into
dummy variables (Subsection 1.5.7) in C, or the converse, the fourth-corner matrix
product (eq. 10.35) is equivalent to computing an overall F-statistic for the pair of
variables, as explained in Legendre et al. (1997a); the cells dij of matrix D contain
measures of within-group homogeneity. Correlations may also be computed between
the quantitative variable on the one hand, and each of the dummy variables coding for
the qualitative variable on the other hand.

Each of these statistics can be tested for significance using the permutational procedure
described in Subsection 10.6.2.

The fourth-corner method offers a way of analysing the relationships between
supplementary variables associated with the rows and columns of a community
composition data matrix. Other types of problems could be studied using this method.
Here are two examples.

• In biogeography, consider a matrix A of presence/absence or abundance of species; a
matrix B describing the extensiveness of the species’ distributions, their migratory
behaviour, etc.; and a matrix C of habitat characteristics (environmental variables), as
above. The question is again to relate habitat to species characteristics.

• In the study of feeding behaviour, consider a matrix A with columns that are
individuals while rows correspond to sites. The prey ingested by each individual are
found in matrix B. Matrix C may contain either microhabitat environmental variables,
or prey availability variables. The question is to determine feeding preferences: choice
of prey versus availability, or choice of prey versus microhabitat conditions. Problems
of the same type are found in such fields as sociology, marketing, political science, and
the like. 

• In studies involving spatial data, matrix C may contain spatial eigenfunctions
(Chapter 14) representing the spatial relationships among the study sites. A global test
of significance can be carried our between the characteristics of the species in B and
the spatial eigenfunctions in C using the global statistic SRLQ.
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Ecological application  10.6

Development of the fourth-corner method was motivated by the study of a fish assemblage
(280 species) surveyed along a one-km transect across the coral reef of Moorea Island, French
Polynesia (Legendre et al., 1997a). Biological and behavioural characteristics of the species were
used as descriptors (supplementary variables) for the rows, and characteristics of the
environment for the columns of the fish presence-absence data matrix A. Parameters of the
relationship between habitat characteristics (distance from the beach, water depth, and substrate
variables) and biological and behavioural traits of the species (feeding habits, ecological niche
categories, size classes, egg types, activity rhythms) were estimated and tested for significance.
Results were compared to predictions made independently by reef fish ecologists, in order to
assess the method as well as the pertinence of the variables subjected to the analysis. 

Table 10.10 summarizes the comparison of reef bottom materials to feeding habits. This is
an interesting case: the eight “reef bottom materials” variables are relative frequencies; each one
represents the proportion of the habitat covered by a category of substrate material, so that non-
integer pseudo-frequencies are obtained in the contingency table where the variables are crossed
(Table 10.10). The permutation testing procedure allows data in matrices B and C to be relative
or absolute frequencies. Probabilities remain the same under any linear transformation of the
frequency values, even though the value of the G statistic is changed. This would not be allowed
by a standard 92 test.

The relationship is globally significant (G = 15.426, p(G) = 0.0001 after 9999 random
permutations following model 1 of Subsection 10.6.3 above); 20 of the 56 fourth-corner
statistics dij were significant (*) after applying Holm’s correction for multiple testing (Box 1.3).
Compared to the null hypothesis, fish are under-represented on sand and large algae, and are
unrelated to stone slab. In addition, herbivores are over-represented on live coral and calcareous
algae. Grazers of sessile invertebrates and carnivores of types 1 and 2 are over-represented on
coral debris, turf and dead coral, live coral, calcareous algae, and other types of substrate (large
echinoderms, sponges, anemones, alcyonarians); this includes all areas where herbivores are
found. Copepod eaters are over-represented on live coral and calcareous algae. Omnivores and
specialist piscivores (fish-only diet) do not exhibit significant relationships with substrate.

Distance from the beach and size of fish species (adult individuals) are quantitative
variables. The fourth-corner statistic that crosses these two variables is thus correlation-like; its
value is r = 0.0504, with a probability of 0.001 after 999 random permutations. There is thus a
weak but significant correlation, indicating that larger fish are found farther away from the beach
than smaller ones. Other comparisons between biological-behavioural and habitat variables are
presented in the published paper.

10.7 Software

Functions in the R language are available to carry out all analyses described in this
chapter. 

1. Linear regression. — In package STATS, function lm() computes simple or multiple
linear regression. Function step() used in conjunction with lm() offers model selection
by AIC using a backward, forward, or stepwise strategy.
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Functions lmodel2() of LMODEL2 and sma() of SMATR compute model II simple
linear regressions. Function lmorigin() in APE computes regression through the origin
with permutation test. Variance inflation factors are computed by function vif() of
packages CAR and DAAG, applied to models computed by lm(). 

QR decomposition, carried out by function qr() of BASE, is an efficient method to
compute coefficients in univariate or multivariate linear regression. Multivariate linear
regression can be computed using either lm(), which takes either a single variable y or
a whole matrix Y as the response data, or qr() after incrementing the explanatory

Table 10.10 Contingency table comparing feeding habits (7 states) to materials covering reef bottom
(8 proportions). From Legendre et al. (1997a, Table 6). First row in each cell: pseudo-frequency
resulting from the matrix operation D = BA'C; lower row, probability adjusted using Holm’s
procedure; *: p " 0.05. Probabilities before correction resulted from 9999 random permutations.
Sign indicates whether a statistic is above (+) or below (–) the expected value, estimated as the
mean of the permutation results.

Herbiv- Omniv- Sessile Carniv. 1 Carniv. 2 Fish Copepod
orous orous invertebrates diurnal nocturnal only eater

Stone slab 6.20– 5.84+ 3.72– 8.42– 5.18+ 0.96+ 2.40–
p 0.429 0.232 1.535 2.650 2.650 2.650 2.650

Sand 81.22– 54.26– 43.34– 94.38– 35.90– 8.94– 26.26–
p 0.039* 0.799 0.006* 0.006* 0.006* 0.799 0.039*

Coral debris 34.96+ 20.22– 24.32+ 46.74+ 25.60+ 4.48+ 12.08–
p 1.976 1.976 0.006* 0.009* 0.645 2.650 2.650

Turf, dead cor. 45.46+ 27.88+ 28.28+ 57.58+ 33.58+ 6.20+ 15.76+
p 0.207 2.650 0.081 0.013* 0.029* 1.976 2.650

Live coral 49.86+ 28.50+ 29.20+ 58.28+ 40.82+ 6.22+ 21.06+
p 0.006* 1.976 0.006* 0.006* 0.006* 1.976 0.006*

Large algae 44.66– 37.50+ 28.12– 59.68– 32.26– 6.34– 19.20–
p 0.006* 2.650 0.105 0.048* 0.140 2.650 2.650

Calcar. algae 29.12+ 16.32+ 16.08+ 31.00+ 26.02+ 4.50+ 11.32+
p 0.006* 1.030 0.079 0.122 0.006* 0.207 0.036*

Other substrate 2.52+ 1.48+ 1.94+  2.92+ 1.64+ 0.36+ 0.92+
p 0.105 2.650 0.006* 0.795 1.734 1.976 1.976
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matrix X with a column of 1’s to estimate the intercept, producing matrix X+1. For
example, the matrix of fitted values in multivariate regression can be computed as
follows: fitted(lm(as.matrix(Y) ~ ., data=X)), or qr.fitted(qr(X+1), as.matrix(Y)). 

Ridge regression is available in functions lm.ridge() of MASS, ridge() of
SURVIVAL, and penalized() of PENALIZED. Generalized linear models are computed by
function glm() of STATS. Among the generalized linear models, only logistic regression
is discussed in detail in the present chapter; it is computed by glm(y~x,
family=binomial(logit)). In STATS, function nls() computes nonlinear weighted least-
squares estimates of the parameters of a nonlinear statistical model; optim() is a
general-purpose nonlinear optimization function offering a variety of optimization
algorithms. 

2. Partial regression and variation partitioning. — Partial linear regression can be
computed by function rda() of VEGAN. varpart() of VEGAN is used for variation
partitioning; plot.varpart() plots a Venn diagram with fixed circle and intersection
sizes. A Venn diagram with proportional circle and intersection sizes can be obtained
with function venneuler() of package VENNEULER*.

3. Path analysis. — Structural equation modelling, which is a generalized form of
analysis encompassing path analysis, is available in package SEM.

4. Matrix comparisons. — Simple Mantel tests are found in functions mantel.test() of
APE and mantel.rtest() of ADE4. For simple and partial Mantel tests, use mantel() of
VEGAN, mantel() of ECODIST, mantel.test() and partial.mantel.test() of NCF. protest()
in VEGAN computes the Procrustes permutation test. anosim() in VEGAN computes the
ANOSIM test. The MRM() function in ECODIST carries out multiple regression on
distance matrices.

5. Fourth-corner problem. — Functions fourthcorner() and fourthcorner2() of ADE4
compute fourth-corner analysis; function rlq() of ADE4 carries out RLQ analysis.

6. Miscellaneous methods. — Function poly() of STATS computes ordinary or
orthogonal polynomials, the latter of the degree specified by the user, from a data
vector. The resulting monomial vectors are normalized (i.e. scaled to length 1, eq. 2.7)
and made to be orthogonal to one another. Several packages contain functions for
spline and LOWESS smoothing, e.g. STATS, SPLINES and DIERCKXSPLINE.

*  Beware: the fraction names in the combinations option of function venneuler() follow a
different convention than in varpart(). For two explanatory matrices for example, the first
element mentioned, e.g. A, is fraction [c] of Fig. 10.10; the second element, e.g. B, is fraction
[a]; the intersection [b] is called “A&B”. See the examples in the documentation file.
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Canonical analysis

 

11.0 Principles of canonical analysis

 

Canonical analysis is the simultaneous analysis of two, or possibly several data tables.
Canonical analyses allow ecologists to perform 

 

direct comparisons

 

 of two data
matrices (also called “direct gradient analysis”; Fig. 10.4, Table 10.1). Typically, one
may be interested in the relationship between a first table describing species
composition and a second table containing environmental descriptors, observed 

 

at the
same locations

 

; or two tables of environmental descriptors, e.g. a table about the
chemistry of lakes and another about drainage basin geomorphology.

In 

 

indirect comparison

 

 (also called “indirect gradient analysis”; Fig. 10.4), the
matrix of explanatory variables 

 

X

 

 does not intervene in the calculation producing the
ordination of 

 

Y

 

. Correlation or regression of the ordination vectors on 

 

X

 

 are computed

 

a posteriori

 

. In 

 

direct comparison analysis

 

 (canonical analysis) on the contrary, matrix

 

X

 

 intervenes in the calculation, forcing the ordination vectors to be maximally related
to combinations of the variables in 

 

X

 

. This description applies to all forms of canonical
analysis and in particular to the asymmetric forms described in Sections 11.1 to 11.3. 

There is a parallel in cluster analysis, when clustering results are constrained to be
consistent with explanatory variables in multivariate regression trees (MRT,
Section 8.11) or with structural relationships among observations, either temporal
(Subsection 12.6.4) or spatial (Subsection 13.3.2), which are inherent to the sampling
design. In constrained clustering or canonical ordination, the results differ in most
instances from those of unconstrained analysis and are, hopefully, more readily
interpretable. Furthermore, direct comparison analysis allows one to directly test 

 

a
priori

 

 ecological hypotheses by (1) bringing out 

 

all

 

 the variance of 

 

Y

 

 that is related to

 

X

 

 and (2) allowing formal tests of these hypotheses to be performed, as detailed below.
Further examination of the unexplained variability may help generate new hypotheses,
to be tested using new field observations (Section 13.5).

In mathematics, a 

 

canonical form

 

 (from the Greek 

 

!"#$#

 

, pronounced “kanôn”,
rule) is the simplest and most comprehensive form to which certain functions,
relations, or expressions can be reduced without loss of generality. For example, the

Indirect
comparison

Direct
comparison

Canonical
form
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canonical form of a covariance matrix is its matrix of eigenvalues. In general, methods
of canonical analysis use eigenanalysis (i.e. calculation of eigenvalues and
eigenvectors), although some extensions of canonical analysis have been described
that use multidimensional scaling (nMDS) algorithms (Section 9.4).

There are two main families of canonical ordination methods: asymmetric and
symmetric. In the asymmetric forms of analysis, there is a response data set and an
explanatory data set, which are represented by 

 

Y

 

 and 

 

X

 

, respectively, in this chapter.
The asymmetric methods are redundancy analysis (RDA), canonical correspondence
analysis (CCA), and linear discriminant analysis (LDA). In contrast, symmetric
methods are used in cases where the two data sets, called 

 

Y

 

1

 

 by 

 

Y

 

2

 

 to mark the
symmetry, play the same role in the study; this means that an analysis of 

 

Y

 

1

 

 by 

 

Y

 

2

 

produces the same result as an analysis of 

 

Y

 

2

 

 by 

 

Y

 

1

 

. These methods include canonical
correlation analysis (CCorA), co-inertia analysis (CoIA), Procrustes analysis (Proc),
and some others.

Interrelationships among the variables involved in canonical analysis may be
represented by the following partitioned covariance matrix, resulting from the
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account for the covariances among the descriptors of the two groups, as in eq. 4.27.

 

Asymmetric canonical analysis

 

 combines the concepts of ordination and
regression. It involves a response matrix 
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 and an explanatory matrix 
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. As it was the
case with the simple ordination methods (Chapter 9 and Fig. 11.1a), the asymmetric
methods of canonical analysis produce a single ordination of the objects, which may
be plotted in a scatter diagram. With the symmetric methods on the contrary, two
different ordinations of the objects are produced, one for each data set; see below.
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Redundancy analysis (RDA, Section 11.1) and canonical correspondence analysis
(CCA, Section 11.2) are related to multiple linear regression. In Subsection 10.3.3,
multiple regression was described as a method for modelling a response variable y
using a set of explanatory variables assembled into a data table X. Another aspect of
regression analysis must be stressed: while the original response variable y provides,

Figure 11.1 Relationships between (a) ordination, (b) regression, and (c) two asymmetric forms of canonical
analysis (RDA and CCA). In (c), each canonical axis of Y is constrained to be a linear
combination of the explanatory variables X.
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by itself, an ordination of the objects in one dimension, the vector of fitted values
(eq. 10.15)

creates a new one-dimensional ordination of the same objects (Fig. 11.1b). The
ordinations corresponding to y and  differ; the square of their correlation is the
coefficient of determination (eq. 10.20) of the multiple regression model:

(11.2)

So, multiple regression creates a correspondence between ordinations y and ,
because ordination  is constrained to be optimally (in the least-squares sense) and
linearly related to the variables in X. The constraint implemented in multiple
regression maximizes R2. The asymmetric methods of canonical analysis share this
property.

Asymmetric canonical analysis combines the properties of two families of
methods, i.e. ordination and regression (Fig. 11.1c). It produces ordinations of Y that
are constrained to be linearly related to a second set of variables X, and the results are
plotted in reduced space. The way in which the relationship between Y and X is
established differs among methods of asymmetric canonical analysis. 

• In redundancy analysis (RDA, Section 11.1), each canonical ordination axis
corresponds to a direction, in the multivariate scatter of objects, that is maximally
related to a linear combination of the explanatory variables X. A canonical axis is thus
similar to a principal component (Box 9.1). Two ordinations of the objects may be
plotted along the canonical axes: (1) linear combinations of the Y variables (matrix F,
eq. 11.17), as in PCA, and (2) linear combinations of the fitted  variables (matrix Z,
eq. 11.18), which are thus also linear combinations of the X variables. RDA preserves
the Euclidean distances among objects in matrix , which contains values of Y fitted
by regression to the explanatory variables X (Fig. 11.2); variables in  are therefore
linear combinations of the X variables.

• Canonical correspondence analysis (CCA, Section 11.2) is similar to RDA. The
difference is that CCA preserves the %2 distance (as in correspondence analysis),
instead of the Euclidean distance among objects in matrix . Calculations are a bit
more complex since matrix  contains fitted values obtained by weighted linear
regression of matrix  of correspondence analysis (eq. 9.24) on the explanatory
variables X. As in RDA, two ordinations of the objects may be plotted.

• In linear discriminant analysis (Section 11.3), the objects are divided into k groups,
described by a qualitative descriptor (factor) forming the response matrix Y. The
method seeks linear combinations of explanatory variables (matrix X) that explain the
classification in Y by maximizing the dispersion of the centroids of the k groups. This
is obtained by maximizing the ratio of the among-object-group dispersion over the
pooled within-object-group dispersion (eq. 11.33).
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The symmetric forms of canonical analysis described in this book are the
following:

• In canonical correlation analysis (CCorA, Section 11.4), the canonical axes
maximize the correlation between linear combinations of the two sets of variables Y1
and Y2. This is obtained by maximizing the squared among-variable-set correlations
(Table 11.10). Two different ordinations of the objects are obtained, one for data set Y1
and the other for Y2.

• Co-inertia analysis (CoIA) and Procrustes analysis (Proc) (Section 11.5) search for
common structures between two data sets Y1 and Y2 describing the same objects. Each
object has two representations in the joint plot, one from Y1 and the other from Y2.

The application of the various methods of canonical analysis to ecological data was
briefly discussed in Section 10.2. In summary, when one of the data sets (Y) is to be
explained by another (X), the asymmetric forms of canonical analysis should be used;
the methods are redundancy analysis (RDA) and canonical correspondence analysis
(CCA) when Y is a full table of response variables, and linear discriminant analysis
(LDA) when Y contains a classification of the objects. RDA is used when the X
variables display linear relationships with the Y variables, whereas CCA can be used
in the cases where correspondence analysis (CA, Section 9.2) would be appropriate for
an ordination of Y alone. Linear discriminant analysis is applicable when the response
data set contains a classification of the objects or an ANOVA factor; in ecology, LDA is
used mostly to discriminate among groups of sites using descriptors of the physical
environment (Section 11.3). In contrast, canonical correlation analysis (CCorA), co-
inertia analysis (CoIA) and Procrustes analysis (Proc) are used to relate two data sets
describing the same objects in a correlative framework (Sections 11.4 and 11.5).

Canonical analysis has become an instrument of choice for ecological analysis. A
bibliography on the applications of canonical analysis to ecology, covering the period
1986 to 1996, contains a total of 804 entries (Birks et al., 1998). CCorA and
discriminant analysis are available in most commercial statistical packages. For RDA,
CCA, CoIA and Proc, one must rely on specialized ordination packages and R
functions. CANOCO (ter Braak, 1988b) was the first ordination package that made RDA
and CCA available to users. These methods are also available in PC-ORD and SYN-
TAX 2000. See Section 11.7.

11.1 Redundancy analysis (RDA)

Redundancy analysis (RDA) is the direct extension of multiple regression to the
modelling of multivariate response data. The analysis is asymmetric: Y (n × p) is a
table of response variables and X (n × m) is a table of explanatory variables. In RDA,
the ordination of Y is constrained in such a way that the resulting ordination axes
(matrix Z below) are linear combinations of the variables in X. The difference between

Symmetric,
canonical
analysis
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RDA and canonical correlation analysis (CCorA, Section 11.4) is the same as that
between simple linear regression (asymmetric analysis) and linear correlation analysis
(symmetric); see Box 10.1.

In RDA, the ordination axes are obtained by principal component analysis (PCA,
Section 9.1) of a matrix , computed by fitting the Y variables to X by multivariate
linear regression (details in Subsection 11.1.1). So, in scaling type 1 plots
(Subsection 11.1.3), RDA preserves the Euclidean distance among objects (D1,
Chapter 7): the ordination of the points in matrix Z is a PCA rotation of the points in

. The ordination axes in Z differ, of course, from the principal components that
could be computed directly from the Y data table because they are constrained to be
linear combinations of the variables in X. Prior to RDA, the data in Y must be at least
centred, or transformed following the same principles as in PCA.

1 — Simple RDA

Canonical redundancy analysis was first described by Rao (1964). In his 1973 book
(p. 594-595), he proposed the topic to readers as an exercise at the end of his Chapter 8
on multivariate analysis. Rao called the method Principal components of instrumental
variables. RDA was later rediscovered by Wollenberg (1977) who called the method
Redundancy analysis by reference to the redundancy index of Stewart & Love (1968),
which is the proportion of the variance of the response data matrix Y that is accounted
for by the explanatory matrix X. Redundancy is synonymous with explained variance
(Gittins, 1985). In his paper, Wollenberg did not refer to Rao’s paper (1964) and book
(1973). Wollenberg’s equation, which only applied to correlation matrices, was less
general than that of Rao which involved covariance matrices in general. 

Redundancy analysis (RDA) of a response matrix Y (with n objects and p
variables) by an explanatory matrix X (with n objects and m variables) is called simple
RDA in Subsections 11.1.1 to 11.1.5, by opposition to partial RDA, described in
Subsections 11.1.6 to 11.1.10, which involves a matrix of covariables W. Simple RDA
involves two computational steps (Fig. 11.2). In the algebraic development that
follows, the columns of matrices Y and X are centred to have means of 0. In computer
software, the columns of X may be standardized for programming convenience, but
this has no effect on the results of the analysis since the matrix of fitted values  is
identical when computed from centred or standardized X variables. As in PCA, the
variables in Y should be standardized if they are not dimensionally homogeneous
(e.g. if they are a mixture of temperatures, concentrations, and pH values).
Transformations applicable to community composition data (presence-absence or
abundance) are described in Section 7.7. As in multiple regression analysis, matrix X
can contain explanatory variables of different mathematical types: quantitative, multi-
state qualitative (e.g. ANOVA factors), or binary variables; see the last five paragraphs
of Subsection 10.3.3. If present, collinearity among the X variables should be reduced
prior to RDA using the methods described for multiple regression in
Subsection 10.3.3. Chapters 13 and 14 will show how different expressions of spatial
relationships can be used as the explanatory matrix X in RDA.

Ŷ

Ŷ
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Ŷ
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Figure 11.2 Redundancy analysis may be understood as a two-step process: (1) regress each variable in Y on
all variables in X and compute the fitted values; (2) carry out a PCA of the matrix of fitted values
to obtain the eigenvalues and eigenvectors. Two ordinations are obtained, one (F = YU) in the
space of the response variables Y, the other (Z = ) in the space of the explanatory variables
X. Another PCA ordination can be computed for the matrix of residuals.
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The variable distributions should be examined for normality at this stage, as well as
bivariate plots within and between the sets Y and X. Because RDA is a linear model
based on multiple linear regression, data transformations (Section 1.5) should be
applied as needed to linearize the relationships and make the frequency distributions as
symmetric as possible, thus reducing the effect of outliers.

• Step 1 is a multivariate linear regression of Y on X (eq. 10.16), which produces a
matrix of fitted values  through the linear equation:

 = X [X'X]–1 X'Y (11.3)

This is equivalent to a series of multiple linear regressions of the individual variables
of Y on X to calculate vectors of fitted values followed by stacking these column
vectors side by side into matrix . In principle, model II regression should be used
when the explanatory variables X are random, by opposition to controlled
(Subsection 10.3.2). Ordinary least squares (OLS) are used in eq. 11.3 because, among
the model II regression methods, OLS produces fitted values with the smallest error for
given values of the predictors (Table 10.4). For efficiency reasons in computer
software, matrix  may be computed through QR decomposition instead of eq. 11.3.

• Step 2 is a principal component analysis of . This PCA produces the canonical
eigenvalues and eigenvectors, as well as matrix Z containing the canonical axes
(object ordination scores, like matrix F in PCA). That step is performed to obtain
reduced-space ordination diagrams displaying the objects, response variables, and
explanatory variables for the most important axes of the canonical relationship. The
PCA step is pertinent only if a significant canonical relationship has been found
between Y and X through an appropriate test of significance (Subsection 11.1.2).

Like the fitted values of a multiple linear regression, which are linear combinations
of the explanatory variables, the canonical axes (object ordination scores) are also
linear combinations of the explanatory variables in X. That RDA axes are linear
combinations of the explanatory variables is the fundamental property of RDA (ter
Braak, 1987c; ter Braak and Prentice, 1988). Individual canonical axes can be tested
for significance to determine which ones are important enough to warrant
consideration, plotting, and detailed analysis.

2 — Statistics in simple RDA

After step 1 of RDA, one can compute the following informative statistics. 

1. From matrices Y and , one can calculate the canonical R2, which Miller and
Farr (1971) called the bimultivariate redundancy statistic. This statistic measures the
strength of the linear relationship between Y and X:

(11.4)
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where is the total sum of squares (or sum of squared deviations from the
means) of  and SS(Y) is the total sum of squares of Y. The canonical R2 is
constructed in the same way and has the same meaning as the R2 statistic in multiple
regression (eq. 10.20): it is the proportion of the variation of Y explained by a linear
model of the variables in X.

Note: in the absence of relationship between Y and X, the expected value of R2 in
multiple regression and in RDA is not 0 but m/(n – 1). This is because a matrix X
containing m = (n – 1) columns of random numbers produces an R2 of 1; this
surprising fact can easily verify numerically by computing a multiple regression or a
RDA with a matrix X containing (n – 1) columns of random numbers. Hence, the
expected value (E) of the R2 produced by a single explanatory variable made of
random numbers is E(R2) = 1/(n – 1), and E(R2) = m/(n – 1) for m explanatory
variables. This is illustrated in the numerical simulation results presented by Peres-
Neto et al. (2006).

2. The adjusted R2 ( ) is computed as in eq. 10.21 (Ezekiel, 1930): 

(11.5)

where m is the number of explanatory variables in X or, more precisely, the rank of the
variance-covariance matrix of X.

3. The F-statistic for the overall test of significance is constructed as follows
(Miller, 1975):

(11.6)

This statistic is used to perform the overall test of significance of the canonical
relationship. The null hypothesis of the test is H0: the strength of the linear
relationship, measured by the canonical R2, is not larger than the value that would be
obtained for unrelated Y and X matrices of the same sizes. 

When the variables of Y are standardized (Ystand) and the error distribution is
normal, the F-statistic (eq. 11.6) can be tested for significance using the Fisher-
Snedecor F-distribution with degrees of freedom #1 = mp and #2 = p(n – m – 1). p is
the number of response variables in Y. Because m parameters were estimated for each
of the p multiple regressions used to compute the vectors of fitted values forming the p
columns of , a total of mp parameters were estimated. This is why there are #1 = mp
degrees of freedom attached to the numerator of F . Each multiple regression equation
has residual degrees of freedom equal to (n – m – 1), so the total number of degrees of
freedom of the denominator, #2, is p times (n – m – 1). Miller (1975) conducted
numerical simulations in the multivariate normal case, with combinations of m and p
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from 2 to 15 and sample sizes of n = 30 to 160. He showed that eq. 11.6 produced
distributions of F values that were very close to theoretical F-distributions with the
same numbers of degrees of freedom. Additional simulations conducted by Legendre
et al. (2011, Appendix A) confirmed that the parametric test of significance had correct
levels of type I error when Y was standardized. This was not the case, however, for
non-standardized matrices of response variables Y generated with equal or unequal
population variances, especially when the error was not normal. Permutation tests
always had correct levels of type I error in these simulations. The effect of correlations
among the standardized response variables in Y on the validity of the parametric test
remains to be investigated.

In many instances, the response variables should not be standardized prior to RDA.
With community composition data (species abundances), for example, the variances of
the species should be preserved in most analyses since abundant and rare species do
not play the same roles in ecosystems. A permutation test should always be used in that
case. For permutation tests, one can simplify eq. 11.6 of the F-statistic by eliminating
the constant p from the numerator and denominator:

(11.7)

While the numerator and denominator of eq. 11.6 indicate the numbers of degrees of
freedom for a correct parametric test of F, eliminating p from both does not change the
computed value of F. Equation 11.7 is the one used for permutation tests in programs
of canonical analysis such as CANOCO and VEGAN’s rda(). Actually, the degrees of
freedom can be entirely eliminated from statistic equations used in permutation tests
since they are invariant across all permutations of the data. However, most computer
programs and functions that carry out permutation tests display them to allow
comparison with the F-statistic used in parametric tests.

4. Individual canonical axes can be tested for significance. Since one deals with
complex, multivariate data influenced by many factors, several independent structures
may coexist in the response data. If these structures are linearly independent, they
should appear on different canonical axes. The results of the tests of individual axes
allow researchers to determine which of the canonical axes represent variation that is
more structured than random. Canonical axes that do not explain more variation than
random should be identified since they do not need to be further considered in the
interpretation of the results.

Two methods, called the forward and marginal testing procedures, can be used for
testing individual axes. The forward method was developed by Cajo J. F. ter Braak and
implemented in the CANOCO package since version 3.10 (ter Braak, 1990). The
marginal method was developed by Jari Oksanen for the permutest.cca() function of
the VEGAN R package; that function carries out tests of significance of the canonical
axes when users call the anova.cca() function with parameter by="axis", after
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canonical analysis by functions rda() or cca(). In a simulation study, Legendre et al.
(2011) showed that these two methods had correct levels of type I error and
comparable powers. This latter study also investigated a third method, the
simultaneous test of all canonical axes, which was shown to be invalid.

The null hypothesis for the test of significance of the jth canonical axis is H0: the
linear dependence of the response variables Y on the explanatory variables X is less
than j-dimensional. More informally, the null hypothesis is that the j th axis under test
explains no more variation than a random axis of the same order (j), given the
variation explained by the previously tested axes. The test of individual canonical axes
can also be carried out in partial RDA (Subsection 11.1.6), a form of RDA that
incorporates a matrix of covariables W.

3 — The algebra of simple RDA

The eigenanalysis equation for redundancy analysis, which is an asymmetric form of
analysis, can be obtained from eq. 11.48 of canonical correlation analysis (CCorA,
Section 11.4), which is a symmetric form of analysis, by changing the  matrix
(called  in eq. 11.48) into an identity matrix I. The latter does not have to be
written after matrix  and thus disappears from the equation (Rao, 1973; ter Braak,
1987c):

(11.8)

The covariance relationships among the explanatory variables, , remains included
in the equation. Equation 11.8 differs from the original formulations by Rao (1964,
1973) and Wollenberg (1977), but it produces the same canonical eigenvalues.

Equation 11.8 is the end result of carrying out the two steps described in the
previous subsection, which characterize RDA: (1) a multivariate regression of Y on X
to obtain a matrix of fitted values , followed by (2) a PCA of that matrix of fitted
values. The asymmetric nature of RDA comes from the fact that multivariate
regression (eqs. 10.16 and 11.3) is an asymmetric analysis, just as its univariate
counterpart, multiple linear regression, where y is the response vector and X is the
explanatory matrix. The developments that follow show that these two computational
steps produce eq. 11.8.

1) For each response variable in matrix Y, compute a multiple linear regression on
all variables in matrix X. For each regression, the coefficients are computed as follows
(eq. 2.19):

b = [X'X]–1 X'y 
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The matrix containing all regression coefficients can be obtained by a single matrix
operation (equation without number above eq. 10.16 in Subsection 10.3.3):

B = [X'X]–1 X'Y (11.9)

where B (m × p) is the matrix of regression coefficients of all p response variables Y on
the m explanatory variables X.

As in multiple regression, the fitted values  can be computed by a single
matrix operation:

 = X B (11.10)

This is the multivariate extension of eq. 10.1. Replacing B by the expression from
eq. 11.9, eq. 11.10 becomes:

 = X [X' X]–1 X' Y (11.11)

which is the multivariate linear regression equation (eq. 10.16). Because the variables
in X and Y were centred on their respective means, there are no intercept parameters in
the column vectors of regression coefficients forming B, and the column vectors in 
are also centred.

2) The covariance matrix corresponding to the table of fitted values  is computed
using eq. 4.6:

 = [1/(n – 1)] (11.12)

Replacing  by the expression from eq. 11.11, eq. 11.12 becomes:

 = [1/(n – 1)] Y' X [X' X]–1 X' X [X' X]–1 X' Y (11.13)

This equation reduces to:

 = (11.14)

where SYY is the (p × p) covariance matrix among the response variables, SXX the
(m × m) covariance matrix among the explanatory variables (it is actually a matrix
RXX when the X variables have been standardized), and SYX is the (p × m) covariance
matrix among the variables of the two sets; the order of its transpose S'YX = SXY is
(m × p). If the Y variables had also been standardized, this equation would read

, which is the multivariate form of the equation for the coefficient of
multiple determination (eq. 4.31).
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3) The matrix of fitted values  is subjected to principal component analysis to
reduce the dimensionality of the solution. This corresponds to solving the eigenvalue
problem:

(  – &kI) uk = 0 (11.15)

which, using eq. 11.14, translates into:

(11.16)

This is the equation for redundancy analysis (eq. 11.8). Different programs may
express the eigenvalues in different ways: raw eigenvalues, fractions of the total
variance in Y, or percentages; see Tables 11.2 and 11.4 for examples.

The matrix containing the normalized canonical eigenvectors uk is called U. The
eigenvectors give the contributions of the descriptors in matrix  to the various
canonical axes. Matrix U, of size (p × p), contains only min[p, m, n – 1] eigenvectors
with non-zero eigenvalues, since the number of canonical eigenvectors cannot exceed
the minimum of p, m and (n – 1):

• It cannot exceed p, which is the dimension of the reference space of matrix Y. This is
obvious in multiple regression where matrix Y contains a single variable; the
ordination given by the fitted values  is one-dimensional.

• It cannot exceed m, which is the number of variables in X. Consider an extreme
example: if X contains a single explanatory variable (m = 1), regressing all p variables
in Y on this single explanatory variable produces p fitted vectors  which all point in
the same direction of the p-dimensional space; a principal component analysis of
matrix  of these fitted vectors can only produce one common (canonical) axis.

• It cannot exceed (n – 1), which is the maximum number of dimensions required to
represent n points in Euclidean space.

The canonical coefficients in the normalized matrix U give the contributions of the
variables of  to the canonical axes. They should be interpreted as in PCA. Matrix U
is used to produce scaling 1 biplot or triplot diagrams, described below. For scaling 2
plots, U is rescaled in such a way that the length of each eigenvector is .

If X and Y are made to contain the same data (i.e. X = Y), eq. 11.16 becomes
, which is the equation for principal component analysis (eq. 9.1).

The result of RDA is then a principal component analysis of data table Y, a fact that
was pointed out by Rao (1964, 1973) and by Wollenberg (1977). Another way to look
at this point is to say that a RDA of Y by Y is a PCA of Y because  = Y in that case.

Additional computations must be done to produce the RDA triplot diagram
(below), which contains three types of elements: response variables (e.g. species),
objects (e.g. sites), and explanatory variables.
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4) The ordination of objects in the space of the response variables Y is obtained
directly from the centred matrix Yc, using the standard equation for principal
components (matrix F, eq. 9.4) and matrix U of the eigenvectors uk found in eq. 11.16:

F = YcU (11.17)

The ordination vectors (columns of F) defined in eq. 11.17 are called the vectors of
“site scores”. They have variances that are close, but not equal to the corresponding
eigenvalues. How to represent matrix F in biplots is discussed in point 8 (below).

5) Likewise, the ordination of objects in space X is obtained as follows:

Z = U = XBU (11.18)

As stated above, the vectors in matrix  are centred on their respective means. The
right-hand part of eq. 11.18, obtained by replacing  by it value in eq. 11.10, shows
that this ordination is a linear combinations of the X variables. For that reason, these
ordination vectors (columns of matrix Z) are also called “fitted site scores”, or “sample
scores that are linear combinations of environmental variables” in program CANOCO.
The ordination vectors, defined in eq. 11.18, have variances equal to the corresponding
eigenvalues. The representation of matrix Z in biplots is discussed in point 8 (below).

The “site scores” of eq. 11.17 are obtained by projecting the original data
(matrix Y) onto axis k; they approximate the observed data, which contain residuals
( , Fig. 11.2). In contrast, the “fitted site scores” of eq. 11.18 are
obtained by projecting the fitted values of the multiple regressions (matrix ) onto
axis k; they approximate the fitted data. Either set may be used in biplots; different
programs offer one or the other as the default option. These plots may look very
different, so users must decide which one they want to obtain and report in published
papers. The practical difference between “site scores” and “fitted site scores” is further
discussed in the second example below.

6) The correlation rk between the ordination vectors in spaces Y (from eq. 11.17)
and X (from eq. 11.18) for dimension k is called the “species-environment
correlation”. It measures the strength of the relationship between the two data sets as
expressed by each canonical axis k. It should be interpreted with caution because a
canonical axis with high species-environment correlation may explain but a small
fraction of the variation in Y, which is given by the amount (or proportion) of variance
of matrix Y explained by each canonical axis; see example in Table 11.2.

7) The last important information needed for interpretation is the contribution of
the explanatory variables X to the canonical ordination axes. Either the regression or
the correlation coefficients may be considered:

• Matrix C of the canonical coefficients,

C = B U (11.19)

Site scores

Ŷ

Ŷ
Ŷ

Fitted
site scores

Y Ŷ Yres+=
Ŷ
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gives directly the weights of the explanatory variables X in the formation of the matrix
of fitted site scores. The ordination of objects in the space of the explanatory variables
can be found directly by computing XC; these vectors of site scores are the same as in
eq. 11.18. The coefficients in the columns of matrix C are identical to the regression
coefficients of the ordination scores from eq. 11.18 on the matrix of standardized
explanatory variables X; they may thus be interpreted in the same way.

• Correlations may also be computed between the variables in X, on the one hand, and
the ordination vectors, in either space Y (from eq. 11.17) or space X (from eq. 11.18),
on the other hand. The correlations between X and the ordination vectors in space X,
RXZ = cor(X, Z), are used to represent the explanatory variables in biplots.

8) In RDA, one can draw biplot diagrams, called biplots, which contain two sets of
points as in PCA (Subsection 9.1.4), or triplot diagrams (triplots) which contain three
sets: the site scores (matrices F or Z, from eqs. 11.17 and 11.18), the response
variables from Y, and the explanatory variables from X. Each pair of sets of points may
be drawn in a biplot. Biplots help interpret the ordination of objects in terms of Y and
X. When there are too many objects, or too many variables in Y or X, separate
ordination diagrams for the response and explanatory variables may be drawn and
presented side by side. The construction of RDA biplot diagrams is explained in detail
in ter Braak (1994); his conclusions are summarized here. As in PCA, two main types
of scalings may be used (Table 9.2):

RDA scaling type 1. — The eigenvectors in matrix U, representing the scores of the
response variables along the canonical axes, are scaled to lengths 1. The site scores in
space X are obtained from equation Z =  (eq. 11.18); these vectors have variances
equal to . The site scores in space Y are obtained from equation F = YU; the
variances of these vectors are usually slightly larger than  because Y contains both
the fitted and residual components and has thus more total variance than . Matrices
Z and U, or F and U, can be used together in biplots because the products of the
eigenvectors with the site score matrices reconstruct the original matrices perfectly:
ZU' =  and FU' = Y, as in PCA (Subsection 9.1.4). 

In scaling type 1, a quantitative explanatory variable x is represented in the biplot
or triplot using the vector of correlations of x with the fitted site scores, rxZ =
cor(x, Z), modified by multiplying each correlation by  where

 is the eigenvalue of the corresponding axis k. The whole matrix of biplot scores in
scaling type 1 (BS1) for the explanatory variables is computed as follows:

BS1 = (Total variance in Y)–1/2RXZ ''''1/2 (11.20)

This correction accounts for the fact that, in this scaling, the variances of the site scores
differ among axes. The correlation matrix RXZ was obtained in calculation step 7.

The consequences of this scaling, for PCA, are summarized in the central column
of Table 9.2. The graphs resulting from this scaling, called distance biplots or triplots,

Biplot
Triplot

Scalings
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ŶU
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Ŷ

Ŷ

&k Total variance inY
&kMatrix of

biplot scores



640 Canonical analysis

focus the interpretation on the ordination of objects because the distances among
objects approximate their Euclidean distances in the spaces corresponding to matrices
Y or .

The main features of a distance biplot or triplot are the following: (1) Distances
among objects in a biplot are approximations of their fitted Euclidean distances.
(2) Projecting an object at right angle on a response variable y approximates the fitted
value (e.g. abundance) of the object along that variable, as in Fig. 9.3a. (3) The angles
among variables y are meaningless. (4) The angle between two variables x and y in the
biplot reflect their correlation. (5) Binary explanatory variables x may be represented
as the centroids of the objects possessing state “present” or “1” for that variable.
Examples are given in Subsection 11.1.4. Since a centroid represents a “mean object”,
its relationship to a variable y is found by projecting it at right angle on the variable, as
for an object. Distances among centroids, and between centroids and individual
objects, approximate Euclidean distances.

RDA scaling type 2. — Alternatively, one obtains response variable scores by
rescaling the eigenvectors in matrix U to lengths , using the transformation UUUU''''1/2

as in PCA (eq. 9.10). The site scores in space X obtained for scaling 1 (eq. 11.18) are
rescaled to unit variances using the transformation ZZZZ''''–1/2; this is the same
transformation as used in PCA (eq. 9.14) to obtain matrix G of site scores in scaling 2.
Likewise, the site scores in space Y obtained for scaling 1 are rescaled using the
transformation F''''–1/2; the variances of these vectors are usually slightly larger than 1
for the reason explained in the case of scaling 1. Matrices Z''''–1/2 and U''''1/2, or F''''–1/2

and U''''1/2, can be used together in biplots because the products of the eigenvectors
with the site score matrices reconstruct the original matrices perfectly:
Z''''–1/2''''1/2U' =  and F''''–1/2''''1/2U' = Y, as in PCA (Subsection 9.1.4). 

In scaling type 2, a quantitative explanatory variable x is represented in the biplot
using the vector of correlations of x with the fitted site scores, rxZ = cor(x, Z),
obtained in calculation step 7, without further transformation. The matrix of biplot
scores (BS2) for the explanatory variables is then:

BS2 = RXZ = cor(X, Z) (11.21)

Note that cor(X, Z''''–1/2) produces the same correlations as cor(X, Z). 

The consequences of this scaling, for PCA, are summarized in the right-hand
column of Table 9.2. The graphs resulting from this scaling, called correlation biplots
or triplots, focus on the relationships among the response variables (matrix Y or ). 

The main features of a correlation biplot or triplot are the following: (1) Distances
among objects in the biplot are not approximations of their fitted Euclidean distances.
(2) Projecting an object at right angle on a response variable y approximates the fitted
value (e.g. abundance) of the object along that variable. (3) The angle between two
variables x and y in the biplot reflects their correlation. (4) Projecting an object at right
angle on a variable x approximates the value of that object along the variable.
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(5) Binary explanatory variables may be represented as described above. Their
interpretation is done in the same way as in scaling type 1, except for the fact that the
distances in the biplot among centroids, and between centroids and individual objects,
do not approximate Euclidean distances.

The type of scaling depends on the purpose of the plot: displaying the distances
among objects or the correlations among variables. When most explanatory variables
are binary, scaling type 1 is probably the most interesting; when most of the variables
in set X are quantitative, one may prefer scaling type 2. When the first two eigenvalues
are nearly equal, the two scalings lead to very similar plots.

9) Redundancy analysis usually does not completely explain the variation in the
response variables (matrix Y). During the regression step (Fig. 11.2), regression
residuals may be computed for each variable y; the residuals are the differences
between the observed values yij in matrix Y and the corresponding fitted values  in
matrix . The matrix of residuals (Yres in Fig. 11.2) is also a matrix of size (n × p).
Residuals may be analysed by principal component analysis, leading to min[p, n – 1]
non-canonical eigenvalues and eigenvectors (Fig. 11.2, bottom). So, the full analysis
of matrix Y (i.e. the analysis of fitted values and residuals) may lead to more
eigenvectors than a principal component analysis of matrix Y: there is a maximum of
min[p, m, n – 1] non-zero canonical eigenvalues and corresponding eigenvectors, plus
a maximum of min[p, n – 1] non-canonical eigenvalues and eigenvectors, the latter
being computed from the matrix of residuals (Table 11.1). When the variables in X are
good predictors of the variables in Y, the canonical eigenvalues may be larger than the
first non-canonical eigenvalues, but this is not always the case. If the variables in X are
not good predictors of Y, the first non-canonical eigenvalues, computed on the
residuals, may be larger than their canonical counterparts.

In the case where Y contains a single response variable, redundancy analysis is
simply a multiple linear regression analysis. This is why variation partitioning

ŷij
Ŷ

Table 11.1 Maximum number of non-zero eigenvalues and corresponding eigenvectors that may be
obtained from canonical analysis of a matrix of response variables Y(n × p) and a matrix of
explanatory variables X(n × m) using redundancy analysis (RDA) or canonical correspondence
analysis (CCA).

Canonical eigenvalues Non-canonical eigenvalues
and eigenvectors and eigenvectors

RDA min[p, m, n – 1] min[p, n – 1]

CCA min[(p – 1), m, n – 1] min[(p – 1), n – 1]
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(Subsection 11.1.11) can be obtained for a single response variable using an R
function, varpart(), which was designed for the analysis of multivariate response data.

Different algorithms can be used in computer programs to compute RDA. One may
go through the multiple regression and principal component analysis steps described in
Fig. 11.2, or calculate the matrix corresponding to  in eq. 11.8 and
decompose it into eigenvalues and eigenvectors using standard eigen-analysis
(Section 2.9). Computation of the matrix of fitted values  can be done by QR
decomposition, as explained in Subsection 11.1.1, and eigen-decomposition can be
replaced by singular value decomposition (SVD, Section 2.11) as shown for PCA
(Subsection 9.1.9). Instead of eigen-decomposition or SVD, an iterative algorithm is
used in the program CANOCO to calculate the first four canonical eigenvalues and
eigenvectors (ter Braak, 1987c).

4 — Numerical examples, simple RDA

As a first example, consider again the data presented in Table 10.6. For RDA, the first
five variables were assembled into matrix Y whereas the three spatial variables made
up matrix X. The Y variables were standardized at the beginning of the calculations
because they were dimensionally heterogeneous. The results of RDA are presented in
Table 11.2. There are min[5, 3, 19] = 3 canonical eigenvectors in this example, and 5
non-canonical PCA axes computed from the residuals. This is a case where the
canonical analysis is not very successful: the three canonical eigenvalues account
together for only 28% (R2 = 0.2807) of the variation present in the standardized
response data Y. The first non-canonical eigenvalues are larger than any of the
canonical eigenvalues. The correlations shown in Table 11.2 between the two sets of
ordination axes (matrices F and Z) are rather weak. The ordination of objects along the
canonical axes (calculation steps 4 and 5 of the previous subsection) as well as the
contributions of the explanatory variables to the canonical ordination axes (calculation
step 6) are not reported in the table.

A second example was constructed to illustrate the calculation and interpretation of
redundancy analysis. In this artificial example, fish have been observed at 10 sites
along a transect perpendicular to the beach of a tropical island, with water depths
going from 1 to 10 m (Table 11.3). The first three sites are on sand while the other sites
alternate between coral and “other substrate”. The first six species avoid the sandy
area, possibly because there is little food for them there, whereas the last three are
ubiquitous. The sums of abundances for the 9 species are in the last row of the table.
Species 1 to 6 come in three successive pairs, with distributions forming opposite
gradients of abundance between sites 4 and 10. Species 1 and 2 are not associated with
a single type of substrate. Species 3 and 4 are found in the coral areas only while
species 5 and 6 are found on other substrates only (coral debris, turf, calcareous algae,
etc.). The distributions of abundances of the ubiquitous species (7 to 9) have been
produced using a random number generator, fitting the frequencies to a predetermined
sum; these species will only be used to illustrate CCA in Section 11.2.

SYXSXX
1– S'YX

Ŷ



Redundancy analysis (RDA) 643

RDA was computed using the first six species as matrix Y. Had the data been real,
they would have been subjected to a Hellinger, chord, or chi-square transformation
(Section 7.7) prior to RDA, because of the large proportion of zeros in the data. This is
not done here in order to simplify the task of readers who would like to replicate the
results. These same data, augmented with species 7 to 9, will be analysed using CCA
in Section 11.2. Comparison of the RDA results about species 1 to 6 (Tables 11.4 and
Fig. 11.3), on the one hand, to the CCA results about species 1 to 9 (Table 11.7 and
Fig. 11.9), on the other hand, allows some comparison of the two methods. 

The Y variables were not standardized: species abundances do not require
standardization since they are all in the same physical dimensions. In most ecological
studies, it is important to preserve the variances of the individual species in the
analyses because abundant and rare species play different roles in ecosystems. Among
the X variables, the three binary variables coding for substrate types form a collinear
group. Including all three in the cross-product matrix [X'X] would prevent its
inversion because the matrix would be singular (Section 2.8); this would jeopardize

Table 11.2 Results of redundancy analysis (selected output). Matrix Y contained the first five variables of
Table 10.6 and matrix X, the last three.

Canonical axes Non-canonical axes
I II III IV V VI VII VIII

Eigenvalues (with respect to total variance of the standardized variables in Y = 5)

 0.8044 0.5864 0.0124 1.4517 1.1165 0.5469 0.3715 0.1101

Fraction of total variance in Y

 0.1609 0.1173 0.0025 0.2903 0.2233 0.1094 0.0743 0.0220

Correlations between the ordination vectors in spaces Y and X

 0.7996 0.5936 0.1301

Normalized eigenvectors (the rows correspond to the five standardized variables in matrix Y)

1 0.2977 0.6173 –0.3441 –0.3345 0.5904 –0.1631 –0.5570 –0.4502

2  –0.6286 0.3455 0.0471 0.1753 0.5936 –0.4738 0.1769 0.6010

3 0.1664 0.4049 0.8922 –0.7254 –0.0735 0.3017 –0.2000 0.5808

4 0.6414 –0.2740 0.0928 0.4459 –0.2856 –0.1018 –0.7857 0.3031

5 0.2778 0.5105 –0.2735 0.3638 0.4605 0.8047 –0.0331 0.0832
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the calculation of the regression coefficients (eq. 11.9) and of the matrix of fitted
values  (eq. 11.11). It is not necessary, however, to eliminate one of the dummy
variables: in well-designed programs for canonical analysis, the last dummy variable is
automatically eliminated from the calculations leading to , but its position in the
ordination diagram is estimated in the final calculations. A group of dummy variables
coding for a qualitative variable, like the substrate types here, can be replaced by a
single factor-type variable in R functions such as VEGAN’s rda().

Results of the analysis are presented in Table 11.4. Scaling type 1 was selected for
the biplot in order to illustrate the extra calculation step required to transform the
correlations into biplot scores for scaling type 1. The data could have produced 3
canonical axes and up to 6 non-canonical eigenvectors. In this example, only 4 of the 6
non-canonical axes had variances larger than 0. An overall test of significance
(Subsection 11.1.2) showed that the canonical relationship between matrices X and Y
was very highly significant (p = 0.001 after 999 permutations). The canonical axes
explained 66%, 22% and 8% of the variance of the response data, respectively, for a
total R2 of 0.9597 and  = 0.9396. The three canonical axes were all significant
(p < 0.05) and displayed strong species-environment correlations (r = 0.999, 0.997,
and 0.980, respectively).

In Table 11.4, the eigenvalues are first shown with respect to the total variance of
matrix Y, as is customary in principal component analysis. They are also presented as
proportions of the total variance of Y; these are the eigenvalues provided by CANOCO
for PCA and RDA. The species and sites are scaled for a distance triplot (RDA scaling
type 1). The eigenvectors, normalized to length 1, provide the “species scores”. The

Table 11.3 Artificial data set representing observations (fish abundances) at 10 sites along a tropical reef
transect. The variables are further described in the text. 

Site Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Sp. 6 Sp. 7 Sp. 8 Sp. 9 Depth Substrate type
No. (m) Coral Sand Other

1 1 0 0 0 0 0 2 4 4 1 0 1 0
2 0 0 0 0 0 0 5 6 1 2 0 1 0
3 0 1 0 0 0 0 0 2 3 3 0 1 0
4 11 4 0 0 8 1 6 2 0 4 0 0 1
5 11 5 17 7 0 0 6 6 2 5 1 0 0
6 9 6 0 0 6 2 10 1 4 6 0 0 1
7 9 7 13 10 0 0 4 5 4 7 1 0 0
8 7 8 0 0 4 3 6 6 4 8 0 0 1
9 7 9 10 13 0 0 6 2 0 9 1 0 0

10 5 10 0 0 2 4 0 1 3 10 0 0 1
Sum 60 50 40 30 20 10 45 35 25
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Table 11.4 Results of redundancy analysis of the data in Table 11.3 (selected output). Matrix Y: species 1 to
6. Matrix X: depth and substrate classes.

Canonical axes Non-canonical axes
I II III IV V VI VII

Eigenvalues (with respect to total variance of Y = 112.88889)
74.52267 24.94196 8.87611 4.18878 0.31386 0.03704 0.00846

Fraction of total variance of Y
0.66014 0.22094 0.07863 0.03711 0.00278 0.00033 0.00007

Cumulative fraction of total variance of Y accounted for by axes 1 to k
0.66014 0.88108 0.95971 0.99682 0.99960 0.99993 1.00000

Normalized eigenvectors (“species scores”): mat. U for canonical, Ures for non-canonical portions (Fig. 11.2)
Species 1 0.30127 –0.64624  0.39939  –0.00656 –0.40482 0.70711 –0.16691
Species 2 0.20038 –0.47265 –0.74458 0.00656 0.40482 0.70711 0.16691
Species 3 0.74098 0.16813 0.25690 –0.68903 –0.26668 0.00000 0.67389
Species 4 0.55013 0.16841 –0.26114 0.58798 0.21510 0.00000 0.68631
Species 5 –0.11588 –0.50594 0.29319 0.37888 –0.66624 0.00000 0.12373
Species 6 –0.06292 –0.21535 –0.25679 –0.18944 0.33312 0.00000 –0.06187

Matrix Z for the canonical part (“fitted site scores”, eq. 11.18) and F for the non-canonical part (eq. 9.4)
Site 1 –6.79498 5.49498 2.24897 0.24712 1.14353 0.23570 0.01271
Site 2 –6.96197 5.91719 0.63774 0.00000 0.00000 –0.47140 0.00000
Site 3 –7.12895 6.33941 –0.97349 –0.24712 –1.14353 0.23570 –0.01271
Site 4 –3.55205 –6.52301 4.39356 2.14250 –0.28230 0.00000 0.00141
Site 5 12.69996 0.24686 3.17159 –3.80923 –0.14571 0.00000 0.10360
Site 6 –3.88603 –5.67858 1.17109 0.71417 –0.09410 0.00000 0.00047
Site 7 12.36599 1.09129 –0.05088 0.22968 0.08889 0.00000 –0.22463
Site 8 –4.22000 –4.83415 –2.05138 –0.71417 0.09410 0.00000 –0.00047
Site 9 12.03201 1.93572 –3.27335 3.57956 0.05682 0.00000 0.12103
Site 10 –4.55398 –3.98972 –5.27384 –2.14250 0.28230 0.00000 –0.00141

Correlations of environmental variables with the Z site scores 
Depth 0.42265 –0.55914 –0.71325
Coral 0.98850 0.15079 –0.01178
Sand –0.55652 0.81760 0.14771
Other subs. –0.40408 –0.90584 –0.12715

Biplot scores of environmental variables
Depth 0.34340 –0.26282  –0.20000
Coral 0.80314 0.07088 –0.00330
Sand –0.45216 0.38431 0.04142
Other subs. –0.32831 –0.42579 –0.03565

Centroids, in the triplot, of the sites with code “1” for the BINARY environmental variables
Coral 12.36599 1.09129 –0.05088
Sand –6.96197 5.91719 0.63774
Other subs. –4.05301 –5.25636 –0.44014
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“fitted site scores” (matrix Z) are obtained from eq. 11.18. They provide the ordination
of the objects, computed from , in the space of the explanatory variables X. These
axes are orthogonal to one another because they directly result from the PCA of .
The “site scores” (matrix F, not shown) in the space of Y would be obtained by
eq. 11.17. The columns of matrix F are, however, not orthogonal to one another
because Y contains the “residual” components of the multiple regressions (Fig. 11.2).
Both the “site scores” (matrix F) and “fitted site scores” (matrix Z) may be used in
RDA triplots. 

Correlations of the environmental variables with the ordination vectors can be
obtained in two forms: with respect to either the “site scores” (eq. 11.17) or the “fitted
site scores” (eq. 11.18). The latter set of correlations is used to draw triplots containing
the sites as well as the variables from Y and X, as done in Fig. 11.3. There were three
binary variables in Table 11.3. Each such variable may be represented by the centroid
of the sites possessing state “1” for that variable (or else, the centroid of the sites
possessing state “0”). These three variables are represented by both arrows
(correlations) and symbols (centroids) in Fig. 11.3 to show the difference between
these representations. In real-case triplots, only one of the two representations is used.

The fitted site scores in Table 11.4 have much larger ranges of values than the
species scores and the biplot scores of environmental variables. Drawing triplots from
these tables of values would produce graphs in which the arrows representing the
species and environmental variables would be minute and clustered in the centre of the
graph. Two strategies are used in computer software: either the tables of output results
are modified to make the three sets of values to be drawn (species, sites, environmental
variables) commensurable in the graph (this is the case in CANOCO and in VEGAN’s
function rda()), or the output tables are those produced by the equations of
Subsection 11.1.3 but the species and environmental variable arrows are drawn using a
different scale than for the site scores (as done in Fig. 11.3).

5 — RDA and CCA of community composition data

Different approaches are available for the canonical analysis of community
composition data (Fig. 11.4): the classical approaches (RDA and CCA),
transformation-based RDA (tb-RDA), and distance-based RDA (db-RDA). The three
approaches are discussed here in turn. 

In the classical approach (Fig. 11.4a), the species-environment relationship is
analysed by RDA (this section) or by CCA (Section 11.2). In the early applications of
canonical analysis to community ecology, the latter was considered preferable for
species data tables sampled in highly diversified regions (“long gradients”), which
contain many zeros. This is the case, for example, when sampling communities along
extensive spatial or temporal gradients, where the species composition may differ
greatly between the two ends of the gradient. For groups of sites that were fairly
homogeneous in species composition (“short gradients”), RDA was considered
appropriate. A wider array of options is now available.

Ŷ
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Like PCA (Fig. 9.8), RDA can be made to preserve some distance that is
appropriate to study composition data along gradients, instead of the Euclidean
distance. Figure 11.4b shows that composition data can be transformed using
the transformations described in Section 7.7. This is the transformation-based RDA

Figure 11.3 RDA triplot of the data in Table 11.3, scaling 1; the numerical results are in Table 11.4. Open
circles represent the sites; the site numbers correspond to the site water depths (in m). Dashed
arrows are the species. Full-line arrows represent the environmental variables. The sites are
positioned in the diagram using the lower and left-hand scales, whereas the species and
environmental variables are positioned using the top and right-hand scales. The “centroids of the
sites with code 1 for the [three] binary environmental variables” are represented by crossed
circles. Binary environmental variables are usually represented by either arrows or symbols, not
both as in this triplot.
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file, Hellinger, chi-square distance

One can also (Fig. 11.4c) compute one of the distance functions appropriate for
community composition data (Table 7.4), carry out a principal coordinate analysis
(PCoA) of the distance matrix, and use all the PCoA eigenvectors as input into a RDA.
This is the distance-based RDA, or db-RDA, approach advocated by Legendre &
Anderson (1999). 

Figure 11.4 Comparison of (a) classical RDA and CCA, and (b and c) alternative approaches forcing RDA
to preserve other distances adapted to community composition data. Modified from Legendre &
Gallagher (2001).
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(Legendre & Gallagher, 2001), or tb-RDA, approach. RDA computed on data transformed
by these equations will actually preserve the chord, pro
or chi-square metric among sites, depending on the transformation used. 
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The db-RDA approach must be used in analyses involving distance functions that
cannot be obtained by a data transformation followed by RDA (tb-RDA). Among these
are most of the coefficients designed for binary data, e.g. Jaccard ( ) and
Sørensen (D13 or ), as well as quantitative distance measures like the
asymmetric Gower coefficient ( ), the geodesic metric (D4), Whittaker (D9),
Canberra (D10), Clark (D11), percentage difference (D14), and mean character
difference modified for species data D19. Distance coefficients intended for other types
of data, e.g. symmetric Gower ( ), Estabrook-Rogers ( ), and the
generalized Mahalanobis distance for groups of observations, can also be used in
canonical ordination through db-RDA. Published studies involving db-RDA include
Anderson (1999), Geffen et al. (2004) and Lear et al. (2008). 

6 — Partial RDA

Partial RDA is the analysis of response variables Y by explanatory variables X in the
presence of additional explanatory variables, W, called covariables. In partial RDA,
the linear effects of the explanatory variables X on the response variables Y are
adjusted for the effects of the covariables W, as was done in partial linear regression
(Subsection 10.3.5). Partial RDA was first proposed by Davies & Tso (1982, their
Section 10.3). 

In multiple regression, the partial regression of y on X in the presence of
covariables W can be computed in two different ways that were described in
Subsection 10.3.5. After computing the residuals of y on W (noted yres|W) and the
residuals of X on W (noted Xres|W), one could either (1) regress yres|W on Xres|W or
(2) regress y on Xres|W. The same partial regression coefficients were obtained in both
cases. Between calculation methods, the vectors of fitted values only differed by the
value of the intercept of the regression of y on Xres|W , which was also the mean of y.
The R2 of the first analysis was the partial R2, whereas that of the second analysis was
the semipartial R2; their square roots were the partial and semipartial correlation
coefficients described in Box 4.1.

The same two approaches can be used for partial RDA, which is the extension of
partial linear regression to a multivariate response matrix Y. First, one computes the
residuals of Y on W (noted Yres|W) and the residuals of X on W (Xres|W). Then, one
can compute either (1) the RDA of Yres|W by Xres|W or (2) the RDA of Y by Xres|W.
The two approaches produce the same canonical eigenvalues, eigenvectors and axes.
In both approaches, the significance of the canonical axes can be tested using the
forward and marginal methods described in Subsection 11.1.2 (paragraph 4). In partial
RDA, the canonical axes (matrix Z) are linear combinations of the residuals of the
explanatory variables X, Xres|W, and are orthogonal to the covariables in W. The R2

obtained in the first approach is the partial canonical R2, whereas that of the second
analysis is the semipartial canonical R2; these two statistics are described in the next
subsection. In computer programs, it is customary to use as matrix F (eq. 11.17) the
matrix obtained from the RDA of Yres|W by Xres|W, not the matrix computed in the
RDA of Y by Xres|W.

1 S7–
1 S8–

1 S19–

1 S15– 1 S16–
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Table 11.5 presents a very short algorithm for partial RDA, designed by Prof. Jari
Oksanen (University of Oulu, Finland). This algorithm handles different cases. (1) If
there are covariables (W) in the analysis, Y is regressed on W and residuals Yres|W are
computed using QR decomposition (function qr() in R), which is faster than
multivariate regression by matrix inversion (eqs. 10.16 and 11.11). (2) If there are
explanatory variables (X), RDA is the eigen-decomposition (by SVD through function
svd() in R, Section 2.11) of the fitted values of the multivariate regression of Y on X. If
X and W are both present, regressing Yres|W on the column concatenation of X and W
produces the same result as a partial regression of Yres|W on Xres|W because Yres|W is
orthogonal to W. (3) A PCA of the residuals is computed. (4) If there are neither
explanatory variables X nor covariables W in the analysis, the result only contains a
PCA of Y and no RDA is computed.

Table 11.5 Algorithm for partial RDA in the R language. This is the skeleton of the algorithm used in the
rda() function of the VEGAN package. (Jari Oksanen, personal communication.) 

pRDA <- function(Y, X = NULL, W = NULL, scale.Y = FALSE)
{

Y <- scale(as.matrix(Y), center = TRUE, scale = scale.Y)

if (!is.null(W)) { # If covariables W are present
W <- scale(as.matrix(W), center = TRUE, scale = FALSE)
Y <- qr.resid(qr(W), Y)

}
if (!is.null(X)) { # If there are explanatory variables X 

X <- scale(as.matrix(X), center = TRUE, scale = FALSE)
X <- cbind(X, W)
Q <- qr(X)
RDA <- svd(qr.fitted(Q, Y))
RDA$w <- Y %*% RDA$v %*% diag(1/RDA$d)
Y <- qr.resid(Q, Y)

} else { # No explanatory variables X nor covariables W 
RDA <- NULL

}
RES <- svd(Y) # PCA of the residuals
list(RDA = RDA, RES = RES)

}
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7 — Statistics in partial RDA

For analysis in the presence of W containing q covariables (partial RDA), the partial
F-statistic is constructed as follows (ter Braak & Smilauer, 2002):

 (11.22)

There are several ways of computing the sum of squares of the fitted values SS(Yfit)
and residuals SS(Yres) in the partial RDA case. The most convenient are the following: 

SS(Yfit) = SS(Yfit|(X+W)) – SS(Yfit|W)

and SS(Yres) = SS(Y) – SS(Yfit|(X+W)) 

where (X+W) designates the concatenation of X and W in a single matrix; this is
obtained by the operation cbind(X,W) in the R language. Yfit was noted  in eq. 11.3
which did not involve covariables W. 

The semipartial R2, , is the proportion of explained variation with respect
to the total variation in Y. This is the most widely used R2 statistic in partial RDA
because the denominator, which is the total variation in Y, forms a common basis for
comparisons among analyses using different explanatory matrices X and different
matrices of covariables W. It is the R2 of the simple RDA of Y by Xres|W :

 = (11.23)

The partial R2, , is the proportion of explained variation with respect to
the total variation in Y residualized on the matrix of covariables W. Although more
rarely used than the semipartial R2, it is computed as the R2 of the simple RDA of
Yres|W by Xres|W :

 = (11.24)

8 — Tests of significance in partial RDA

Tests of significance in partial RDA, using the F-statistic described in eq. 11.22,
involve either permutation of the raw data, unrestricted permutation of the residuals of
the reduced model (a method proposed by Freedman & Lane, 1983), or unrestricted
permutation of the residuals of the full model (a method proposed by ter Braak, 1990,
1992). These methods are described in Anderson & Legendre (1999) for multiple
linear regression, which is RDA with a single response variable. 

Partial 
F-statistic

F
SS Yfit( ) m

SS Yres( ) n m– q– 1–( )
-----------------------------------------------------------------=

Ŷ

Semipartial
R2

R2
Y Xres W

R2
Y Xres W

SS Yfit( )

SS Y( )
----------------------

Partial R2 R2
Yres W Xres W

R2
Yres W Xres W

SS Yfit( )

SS Yres W( )
-----------------------------

Permutation
test
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• In permutation of the raw data (method = “direct” in VEGAN’s permutest.cca()), the
rows of Y are permuted at random to produce the matrix of permuted response data
Y*. This permutation method is used in simple RDA. It can also be used in partial
RDA when the covariables do not contain outlying values, e.g. when they represent
experimental factors (Subsection 11.1.10, point 4).

• In permutation of the residuals of the reduced model (method = “reduced” in
VEGAN’s permutest.cca()), one computes the matrix of fitted values FitY|W and the
matrix of residuals ResY|W of the multivariate regression of Y on the matrix of
covariables W. The rows of ResY|W are permuted, producing matrix Res*Y|W . The
matrix of permuted response data, Y*, is obtained by adding FitY|W (unpermuted) to
Res*Y|W .

• In permutation of the residuals of the full model (method = “full” in VEGAN’s
permutest.cca()), one computes the matrix of fitted values FitY|XW and the matrix of
residuals ResY|XW of the multivariate regression of Y on the matrix obtained by
concatenation of X and W by columns into a single matrix. The rows of ResY|XW are
permuted, producing matrix Res*Y|XW . The matrix of permuted response data, Y*, is
obtained by adding FitY|XW (unpermuted) to Res*Y|XW .

Permutation of the residuals of the reduced and full models were found by
Anderson and Legendre (1999) to produce equivalent results. Permutation of the raw
data should not be used in partial RDA when the covariables contain outliers. It can,
however, be used when partial RDA is used as a form of 2-way MANOVA
(Subsection 11.1.10, point 4): in tests of individual factors or the interaction, matrix W
contains variables coding for the factors or the interaction, and these variables do not
have outlier values.

Besides these methods, one can also permute the rows of Y in a way imposed by
the logic of the problem at hand. The most important methods of restricted
permutation are: permutation within the levels of a factor or block which is used as a
covariable in the study, loop permutation along a time series, and toroidal permutation
of the points on a geographic surface (Lotwick & Silverman, 1982). 

Methods of permutation of raw data or residuals are compared in Table 11.6 in
terms of the permuted portions of variation, in the presence or absence of covariables
W. Without covariables, permutation of raw data involves fraction [a + d] of variation
partitioning (Subsection 10.3.5) whereas permutation of residuals of the full model
involves [d]. No residual can be computed under a reduced model in the absence of
covariables; the method becomes a permutation of raw data. With covariables,
permutation of residuals may only involve the residuals of the reduced model of the
covariables (fraction [a + d]), or the residuals of the full model of the explanatory
variables and covariables (fraction [d]). Permutation of the raw data may result in
unstable (often inflated) type I error when the covariable contains outliers. This does
not occur, however, when using restricted permutations of raw data within groups of a
qualitative covariable, which produces an exact test.

Permute
raw data

Permute
residuals of
reduced
model

Permute
residuals of
full model

Restricted
permutation
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9 — Numerical example, partial RDA

Partial RDA provides an answer to the question: what is the partial contribution of one
set of explanatory variables when controlling for the effect of another set? 

Example 1. — Consider the data in Table 11.3. In that data table, the species can be
analysed with respect to substrate types while controlling for the effect of depth, which
is correlated with substrate types. The semipartial R2 of the analysis is 0.73271; the
partial effect of substrate types is highly significant (p = 0.001 after 999 random
permutations of the residuals of the reduced model). The two canonical axes produce
the triplot shown in Fig. 11.5a. 

Example 2. — The converse analysis of the partial effect of depth on the
distributions of species across the sites while controlling for substrate types is also
interesting. The semipartial R2 of this analysis is 0.08274. This is a much weaker effect
than that of substrate types, but the partial effect of depth remains significant
(p = 0.002 after 999 random permutations of the residuals of the reduced model). A
single canonical axis (abscissa of the triplot, Fig. 11.5b) is produced, with the
explanatory variable depth pointing to the right. Since there is no second canonical
axis available, the first axis of the PCA of the residual variation is used as the ordinate
of the diagram. This axis separates the coral sites 5, 7 and 9 from the other sites. 

These two effects will be considered jointly within the framework of variation
partitioning in Subsection 11.1.11 below.

Table 11.6 Tests of statistical significance in canonical analysis. Comparison of the methods of permutation
of raw data or residuals in terms of the permuted fractions of variation, in the presence or
absence of a matrix of covariables W. Fractions of variation are noted as in Fig. 10.10: [a] is the
variation of matrix Y explained by X alone, [c] the variation explained by W alone, [b] the
variation explained jointly by X and W, and [d] the residual variation.

Without covariables With matrix W of covariables

Permute raw data Permute [a + d] Permute [a + b + c + d]
Permute residuals: 
• reduced model Equivalent to Permute [a + d]

permuting raw data
• full model Permute [d] Permute [d]

Explained by X
Explained by W

Unexplained
variation

[a] [b] [c] [d]
Explained by X Unexplained

variation

[a] [d]
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10 — Some applications of partial RDA

Partial canonical analysis can be used to investigate a variety of problems. Here are
some examples. In most of these applications, CCA (Section 11.2) can be used instead
of RDA when Y contains frequency data and one wants the analysis to preserve the
chi-square distance instead of the Euclidean distance.

1. Control for well-known linear effects. — Consider the case where W contains
variables whose effects on Y are well understood. One wants to control for these well-
known effects when analysing the effect of a set of variables X on Y. For example, one
may want to control for the well-known co-variation between phytoplankton
assemblages and salinity in a river estuary when analysing the linear effect of nutrient
concentrations on phytoplankton. Partial RDA should be used in that case.

2. Isolate the effect of a single explanatory variable or factor. — After conducting
a standard RDA as in Subsections 11.1.4, one may want to isolate the partial effect of a
single explanatory variable, as in the two examples presented in Subsection 11.1.9
(example 1: a factor with 3 levels; example 2: a quantitative variable). Using all the
other explanatory variables as covariates produces a single canonical axis that
represents the partial effect of a single quantitative explanatory variable on Y. The

Figure 11.5 Partial RDA triplots of the data in Table 11.3. (a) The explanatory matrix X is substrate types,
the covariable W is depth; (b) the explanatory matrix X is depth, the covariable W is substrate
types. The sites are represented by open circles, the species by dashed arrows, and the
explanatory variables in X by bold arrows.

Control for
effect of W

Partial effect
of a variable
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corresponding canonical eigenvalue divided by the total variance of Y quantifies the
partial fraction of the variation of Y that is accounted for by that variable (semipartial
R2). The effect of a factor with more than two levels can be isolated by the same
method, but then more than one canonical axis are produced because a factor with k
levels produces (k – 1) canonical axes.

3. Analysis of related samples. — Ecological sampling often results in related
samples (Box 1.1), where each observation at a site shares some properties with
observations at other sites. This is the case, for instance, when sampling different lakes
at several depths, the same in all lakes, to study the variation in zooplankton
composition. A large portion of the variation in community composition may be
associated with the different depths, possibly more than among lakes. Partial RDA
offers a way to take this source of variation into account in the analysis of the species-
environment relationships. Depth can be coded as a factor or a series of dummy
variables, or else as Helmert or polynomial contrasts (Subsection 1.5.7). (Ecologists
usually do not hypothesize that zooplankton composition is linearly related to depth,
so the covariable depth structuring the sample should be treated as a multi-level factor
instead of a quantitative variable.) Including the coding variables in the analysis as a
matrix of covariables W will effectively control for the effect of the structuring
variable. The semipartial R2 will correctly estimate the partial effect of the
environmental variables included in the analysis while controlling for the effect of the
structuring variables. Carrying out the analysis for one factor (lakes in this example)
while controlling for the effect of the other (depths), and then the opposite, is a form of
two-way analysis-of-variance without replication.

Related samples are also obtained when sampling a single lake at different dates
and at several depths, or a set of lakes at different dates, the same for all lakes. One
may wish to control for the effect of the sampling dates in an analysis of the effect of
depths, or lakes, on species composition, bacterial production, or other response
variables of interest. As in the previous paragraph, this can be done by using the
variable(s) describing the sampling dates as covariable(s) in the analysis. Dates may be
represented by dummy variables, or by a quantitative variable whose effect on Y is
assumed to be linear, or by a sine transformation of the “day of year” (also called
“ordinal date”, and often “Julian date”*), etc. The analysis will effectively control for
the effect of dates (days, weeks, years, …) if they only affect the means of the response
variables and nothing else. If there is an interaction between sampling dates and the
other environmental or spatial variables included in the analysis, the effect of dates
cannot be controlled through this simple approach. In the presence of an interaction,
the interaction terms must remain in the analysis for the model to be valid (see

*  The “day of year”, also called “ordinal date”, is a calendar date starting on 1st January and
ranging between 001 and 366. The “Julian day” is used in the “Julian date” system of time
measurement, mostly by the astronomy community, where the interval of time is stated in days
and fractions of a day since 1st January 4713 BC Greenwich noon. The use of “Julian date” to
refer to the day of year, although technically incorrect, is widespread in ecology and other
natural sciences. Readers may check the entries “Julian day” and “ordinal date” on Wikipedia.

Related
samples



656 Canonical analysis

paragraph 4 below). How to test the space-time interaction in the absence of
replication is described in Subsection 14.5.1.

In the same way, one can control for the effect of the sampling locations. Sampling
locations may be represented by dummy variables, or by a trend-surface polynomial
(Chapter 13) or a set of spatial eigenfunctions (Chapter 14) derived from the
geographic coordinates of the sites. The caveat of the previous paragraph concerning
interactions applies here as well.

4. MANOVA by RDA. — Partial canonical analysis may be used, instead of
MANOVA, to analyse a multivariate response data matrix Y in cross-factor
experimental designs, including tests of significance for the main effects and the
interaction term. For a single experimental factor, the analysis can be conducted using
simple RDA or CCA. For two or more factors and their interactions, partial RDA or
CCA must be used. 

In MANOVA by RDA involving two or more crossed factors, the factors and their
interactions are coded by Helmert contrasts (Subsection 1.5.7). The interaction
between factors A and B, for example, is represented by a series of variables obtained
by the Hadamard product of each Helmert variables coding for factor A by each
Helmert variable coding for factor B. Three partial RDAs are necessary to conduct an
analysis involving two crossed factors:

• Test the interaction through a RDA of Y with the interaction variables in the
explanatory matrix X and the Helmert variables coding for factors A and B together in
the matrix of covariables W. If the interaction is significant, analyse separately the
effect of factor A in each class of factor B, and conversely the effect of factor B in each
class of factor A, because a significant interaction indicates that the effects of factor A
on Y depend on the levels of factor B, and conversely. If the interaction is not
significant, proceed with the next two steps.

• Test the effect of factor A on Y through a RDA of Y with the variables coding for A
in X in the presence of a matrix of covariables W containing all variables coding for B
and the interaction.

• Test the effect of factor B on Y through a RDA of Y with the variables coding for B
in X in the presence of a matrix of covariables W containing all variables coding for A
and the interaction.

The results of the three tests of significance can be assembled in a MANOVA table. 

The condition of homogeneity of the variance-covariance matrices applies to this
form of MANOVA, as it does to regular MANOVA. It can be tested by the function
betadisper() of the VEGAN package, which implements the testing method described by
Anderson (2006). A fully worked out example of MANOVA by RDA, including a test
of homogeneity of the multivariate dispersion, is given in Section 6.3.2.8 of Borcard et
al. (2011). 

MANOVA 
by RDA
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As stated in Subsection 11.1.5, when Y is a matrix of species presence-absence or
abundance data, one can either transform Y prior to MANOVA by RDA using the
transformations described in Section 7.7 (transformation-based RDA, tb-RDA) to
force the partial RDA to preserve the distance that is implicit in the transformation, or
use partial CCA to preserve the chi-square distance among sites. Else, one can use the
distance-based RDA method (db-RDA, Subsection 11.1.5) to preserve some other
distance function appropriate for community data. 

5. Principal response curves (PRC). — Principal response curves is another form
of MANOVA; it was developed by van den Brink and co-authors (1998, 1999, 2003,
2009) to analyse the results of experiments conducted over time, that involved
multivariate response data (e.g. community composition data). PRC is a special case of
RDA with a single factor for treatments and a single factor representing the time series
of repeated observations. The method studies the changes in the multivariate
(e.g. species) response variables associated with the treatments over time. In this type
of analysis, one is interested in displaying the values of the coefficients (contrasts
against the control level) computed for the first RDA axis representing the effects of
treatment along time. Significance of the canonical relationship and of the first axis can
be tested when there is replication in the experimental design. This is an omnibus test:
H0 corresponds to ‘no treatment effect’. H1 includes all functional forms that the
treatment effects can take, i.e. main effect and/or interaction. No effect at all produces
coinciding treatment lines in the plot. One can also test separately the effect of the
main factor (treatment) and, when there is replication, the treatment-time interaction.
A significant interaction indicates that the treatment levels had different effects on the
response data at different times; it is displayed as non-parallel or crossing treatment
lines in the plot.

6. Partial PCA. — Partial principal component analysis is the PCA of a response
data table Y residualized on a set of explanatory variables. This method allows
researchers to examine the multivariate structure of the data after removing the effect
of the X variables on Y, which may already be well understood, by computing
residuals. Note that the results of a partial PCA differ from those of a partial RDA.

The three tables represented at the bottom of Fig. 11.2 illustrate how partial PCA is
carried out: the residuals of Y by X are computed, followed by a PCA of the matrix of
residuals. Alternatively, since RDA of Y by Y is a PCA of Y, as shown in
Subsection 11.1.3, partial PCA can be obtained by computing a partial RDA of Y by Y
with X as covariables. In R, the regression function lm() can be used to easily obtain a
matrix of residuals: res = residuals(lm(Y ~ X)). With the data of Table 11.3 for
instance, one could examine the residual structure, after controlling for depth and
substrate, by plotting a PCA biplot of the non-canonical axes shown in Table 11.4. In
spatial analysis, one could detrend the data by computing the regression residuals of Y
on the geographic coordinates of the sites before computing a PCA.

7. Selection of explanatory variables. — Different selection methods are available
in canonical analysis, as well as in multiple regression (Subsection 10.3.3): backward,

Principal
response
curves

Partial PCA

Selection of
explanatory
variables
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forward, and stepwise. Function ordistep() in VEGAN offers all three methods of
selection. In forward selection, the significance of the partial F-statistics associated
with all candidate variables is tested using permutations, and the explanatory variable
that has the most significant partial effect is selected if its p-value satisfies the “p-to-
enter” significance level; in case of equality, the variable that has the lowest value of
the Akaike Information Criterion (AIC, eq. 10.22)* is selected for inclusion in the
model. The backward option sequentially drops variables from the model using the
same criteria of significance (the highest p-value is compared to a “p-to-exclude”
significance level) and AIC in case of equality (the variable whose removal produces
the model with the lowest AIC value is excluded). The stepwise option tries to
eliminate variables from the model (backward) after each forward step. In this
function, “best” refers to the most significant variable.

Functions ordiR2step() of VEGAN and forward.sel() of PACKFOR offer the forward
method. In these functions, the basic algorithm, developed by ter Braak (1990), is the
same as in CANOCO: considering the variables already selected, the explanatory
variable with the highest partial R2 is selected if the additional contribution of that
variable is significant (permutation test) at a pre-selected significance level. In these
functions, “best” refers to the variable that explains the largest portion of the
remaining unexplained variance of Y. These two functions offer the option of applying
a second stopping criterion proposed by Blanchet et al. (2008b): the selection stops
either when the tested variable has a p-value higher than the pre-selected significance
level or when the adjusted R2 of the full model, before any selection, is exceeded.

Before applying these variable selection methods, one should look at the
collinearity among the variables in X by computing variance inflation factors (VIF,
eq. 10.17), and remove variables as needed to reduce collinearity. Borcard et al. (2011)
present examples of forward selection prior to RDA.

11 — Variation partitioning by RDA

Variation partitioning, described in Subsection 10.3.5 for univariate response data, was
originally developed for the analysis of multivariate response tables (Borcard et al.,
1992; Borcard & Legendre, 1994). It is especially useful for partitioning the variation
of community composition data with respect to two or more sets of explanatory
variables.

Ecological application  11.1a

The method is illustrated here using fish assemblage data (27 species) from 29 sampling sites
along the Doubs River in eastern France. The calculations reported in this application were done

*  The AIC criterion is not meant to identify the “true” model (which is only known in simulation
studies) among several alternative models, but to find the best predictive model for new
observations.
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by RDA, whereas they involved multiple regression in Subsection 10.3.5. The partitioning
example reported here uses the species and environmental data collected by Verneaux (1973),
which are available in the R package ADE4. The data were reanalysed for variation partitioning
by Borcard et al. (2011, Section 6.3.2.7); here as in that book, site 8, where no fish were caught,
was removed from the original 30-site species and environment data tables. 

Partitioning involved three data sets: Topography (variables: altitude, slope, water flow),
Chemistry (variables: pH, hardness, concentrations of phosphate, nitrate, ammonia, dissolved
O2, and biological oxygen demand), and Geography (variable: linear distance from the source
along the course of the river). The partitioning results, obtained from function varpart() of the
VEGAN package, are illustrated by a Venn diagram (Fig. 11.6); the decomposition into fractions
[a] to [h] was done from the adjusted R2 values ( ) calculated by RDAs involving 1, 2, and all
3 explanatory data tables, as in Subsection 10.3.5. The first finding was that each of the three
data sets explained approximately the same fraction of the spatial variation in the fish
assemblage along the river (  = 0.345, 0.474, and 0.367, respectively). A great deal of the
variation was shared among two or all three sets of explanatory variables. There was a small but
significant portion of the fish variation explained by Topography that was not shared with the

Figure 11.6 Venn diagram illustrating the results of variation partitioning of the Doubs River fish assemblage
data (29 sites) among three sets of explanatory variables: Topography, Chemistry and
Geography. The fractions of variation are identified by letters [a] to [h]. The value next to each
identifier is the adjusted R2 ( ). The circles, drawn by the plotting function plot.varpart(), are
of equal sizes despite differences in the corresponding . Circle sizes and shapes can be
modified using a graphics editor prior to the publication of the partitioning results.
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two other data sets (fraction [a]:  = 0.036, p = 0.047), and likewise for Chemistry (fraction
[b]:  = 0.076, p = 0.020). However, all the fish variation among sites explained by Geography
was also explained by one of the other two explanatory data tables, or by both, leaving no
significant portion of variation explained solely by Geography (  = 0.001, p = 0.411).
Whereas the three explanatory data sets explained jointly 58.7% of the species variation, it was
the Topography and Chemistry data that were the most informative and complementary, adding
to the model portions of variation that were not explained by Geography alone. Results of a
partitioning involving soil mite assemblages by four explanatory data sets are presented in
Borcard et al. (2011, Section 7.4.2.5).

In Chapter 14, which describes multiscale spatial analysis, variation partitioning is
used to partition the variation of data Y between two components, environmental (X)
and spatial (W). Two ecological applications (14.1a and 14.1b) involving variation
partitioning by partial canonical analysis are presented.

Ecological application  11.1b

In a classical study of spider community ecology, Aart & Smeenk-Enserink (1975) used
canonical correlation analysis (CCorA, Section 11.4) to analyse a portion of the hunting spider
data collected in pitfall traps at 100 sites in the Bierlap dune valley of the Netherlands. The
paper related the species to environmental descriptors obtained at 28 of the 100 sites. The
authors used canonical correlation analysis, a symmetric method of canonical analysis that was
available in computer packages in the 1970s, to describe the influence of environmental
conditions on the spider assemblages; their objective was to test the hypothesis of an asymmetric
relationship between species and environmental conditions. The present example will show
original results that we obtained by RDA, which is a more appropriate method to study and test
asymmetric relationships. An additional advantage is that RDA can be carried out on
unstandardized species data, thus preserving the original variances of the individual species in
the analysis (Subsection 11.1.5), whereas the species data are always standardized in CCorA
(Subsection 11.4.1). The Aart & Smeenk-Enserink spider data have been reanalysed, after
recoding, by ter Braak (1986)* using CCA. The same data (recoded by ter Braak, 1986) were
also analysed by De’ath (2002) using multivariate regression tree analysis (MRT, Ecological
application 8.11).

At the 28 sites included in the canonical correlation analysis of Aart & Smeenk-Enserink
(1975), the community composition data were the abundances of 12 hunting spider species
normalized by logarithmic transformation, log(y + 1). Among the 27 environmental descriptors
characterizing the light, vegetation, and soil that had been observed, only the 15 that were
linearly correlated with the species variables were used by these authors for their canonical
correlation analysis in order to ensure linearity of the relationships between the two sets of
descriptors.† 

*  Warning to users: the 28 sites for which environmental data are provided in the Aart &
Smeenk-Enserink (1975) paper are presented in a different order in Table 3 of ter Braak (1986).
†  The spider (28 sites, 12 species) and environmental data (28 sites, 15 variables) used in this
Application are available on the Web page http://numericalecology.com/data.
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For the present application, the 15 environmental variables selected by Aart & Smeenk-
Enserink (1975) were used as matrix X to insure comparability of the present results with theirs.
The adjusted R2 ( ) of the RDA provided a criterion to select the best transformation for the
species data: after computing RDA of the spider data, transformed in different ways, with the 15
environmental variables,  was higher for the log-transformed species data than for any of the
other transformations of Section 7.7; so the log-transformed data were used in the RDA.
Forward selection (with the stopping criterion p ( 0.05) was carried out among the 15
environmental variables (Subsection 11.1.10, point 7). A parsimonious model containing six
environmental variables was selected, which provided the same explanation as the full set of
explanatory variables:  = 0.761 for the full set of 15 environmental variables,  = 0.768 for
the subset of six variables, i.e. water content of the soil, illuminance under cloudless sky, ground
cover by leaves and twigs, cover by the herb layer, cover by Calamagrostis epigejos (a grass,
family Poaceae), and cover by the tree layer.

A search for species associations was carried out using concordance analysis, described in
Subsection 8.9.2. The first statistically significant association comprised three species:
Alopecosa accentuata, Alopecosa fabrilis and Arctosa perita; a fourth species, Pardosa
monticola, was weakly associated with this group. The second significant association contained
seven species: Alopecosa cuneata, Arctosa lutetiana, Aulonia albimana, Pardosa nigriceps,
Pardosa pullata, Trochosa terricola and Zora spinimana. The species Pardosa lugubris formed
a single-species group. 

The RDA triplot (Fig. 11.7) shows the relationships between the species and the
environmental variables. The species belonging to association 1 (upper ellipse) were found in
greater abundances at very dry and more intensely lit sites. Those belonging to association 2
(right ellipse) were found at sites with higher soil humidity and higher cover by herbs and by
Calamagrostis epigejos. The single-species association Pardosa lugubris exhibited preference
for shaded sites with higher soil humidity and higher cover by trees and by leaves and twigs.

The total species variation, which is a measure of beta diversity (Section 6.5), was
partitioned between the physical (soil, light) and vegetation influences using variation
partitioning (Fig. 11.8). Fractions [a] and [c] were both statistically significant (tested by partial
RDA), but fraction [c], which depicted the fraction of beta diversity explained exclusively by
vegetation (  = 0.43), was much larger than fraction [a], which corresponded to the variation
explained only by the physical environment (  = 0.07). Most of the explanation ([b] = 0.27)
provided by the physical variables was shared with the vegetation variables. 

11.2 Canonical correspondence analysis (CCA)

Canonical correspondence analysis is a canonical asymmetric ordination method
developed by ter Braak (1986, 1987a, 1987c). First implemented in the program
CANOCO (ter Braak, 1988b, 1988c, 1990; ter Braak & Smilauer, 1998), it is now
available in several computer packages and R functions for community ecology. It is
the canonical form of correspondence analysis. Any data table that could be subjected
to correspondence analysis (CA, Section 9.2) is a suitable response matrix Y for CCA;
this is the case, in particular, for species presence-absence or abundance data
(Subsection 9.2.4).
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1 — The algebra of canonical correspondence analysis

The mathematics of CCA is derived from that of RDA. The first difference is that
matrix  is used instead of Y as the response matrix in the calculations, as it was the
case in correspondence analysis (Section 9.2). The second difference is that a diagonal
matrix of row weights, D(pi+), is used in the regression portion of the calculation. For

Figure 11.7 RDA triplot relating the spider species (dashed arrows) to the selected environmental variables
(full-line arrows). Scaling type 2 was used to emphasize the covariances among the species.
Small open circles represent the 28 sites; site names were not printed to keep the diagram
simple. The species associations are indicated by ellipses. Association 1: Alopecosa accentuata
(abbreviation: Alop.acce), Alopecosa fabrilis (Alop.fabr), Arctosa perita (Arct.peri) and
Pardosa monticola (Pard.mont, weakly associated with this group). Association 2: Alopecosa
cuneata (Alop.cune), Arctosa lutetiana (Arct.lute), Aulonia albimana (Aulo.albi), Pardosa
nigriceps (Pard.nigr), Pardosa pullata (Pard.pull), Trochosa terricola (Troc.terr) and Zora
spinimana (Zora.spin). Single-species group: Pardosa lugubris (Pard.lugu).

Q
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each row of Y, fi+ is the sum of the values in row i, and pi+ is fi+ divided by the grand
total, f++, of the frequencies in Y. 

To obtain a CCA, the regression portion of the calculation is modified, in eq. 11.25
(below), in such a way as to emulate a RDA carried out on inflated data matrices Yinfl
and Xinfl constructed as follows. Y (n × p) contains frequency data, such as species
presences or abundances of p species observed at n sites, and X (n × m) contains
explanatory, e.g. environmental, variables. The presence of a single individual in Y
produces a new row in Yinfl , so that there are as many rows in Yinfl as there are
individual organisms, or presences, in Y. The number of rows of Yinfl is thus f++. Yinfl
still has p columns for the p species, but a single individual is present in each row. In
Xinfl , the row vectors of explanatory data are duplicated as many times as needed to
make every individual organism (i.e. every species presence) in Yinfl face, in Xinfl , a
copy of the appropriate vector of explanatory data. Compute  from Yinfl using
eq. 9.24. CCA is the RDA of  by Xinfl: the eigenvalues* and matrix of
eigenvectors are the same.

*  The eigenvalues of RDA of  by Xinfl  computed on the covariance matrix of , instead
of the cross-product matrix, are smaller than those of CCA by a multiplicative factor (f++ – 1).

Figure 11.8 Venn diagram partitioning the total spider species variation (rectangle) between physical (water
content of the soil, illuminance under cloudless sky) and vegetation influences (ground cover by
leaves and twigs, cover by the herb layer, cover by Calamagrostis epigejos, and cover by the
tree layer). The fraction identifiers [a], [b] and [c], are as in Fig. 10.10. The fractions are
expressed as , as in Fig. 11.6. Circle sizes are approximate.Ra
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In computer programs, it is possible to use matrices  and X for the calculations
instead of  and Xinfl , which would be cumbersome to compute when Y has a
large sum f++. The modified algorithm is the following: 

• The dependent data matrix is not Y centred by columns as in RDA. In this algorithm,
CCA uses matrix  of the contributions to chi-square, also used in correspondence
analysis, as the response matrix.  is derived from matrix Y through eq. 9.24. 

• Matrix X is standardized to Xstand  using weights D(fi+). To achieve this, the inflated
matrix Xinfl  is constructed as described above; it contains f++ rows. Then the mean and
standard deviation of each column of Xinfl are computed and used to standardize the
explanatory variables in X. For the standard deviations (eq. 4.5), the maximum
likelihood estimator of the variance is used instead of the usual unbiased estimator
(eq. 4.3); in other words, the sum of squared deviations from the mean of the variables
in Xinfl  is divided by the number of rows of that matrix (which is equal to f++), instead
of the number of rows minus 1.

• To obtain the regression coefficients, weighted multiple regression is used instead of
conventional multiple regression. The row weights, written in diagonal matrix
D(pi+)1/2 (Subsection 9.2.1), are applied to matrix X everywhere it occurs in the
multivariate regression equation, which becomes:

B = [Xstand' D(pi+) Xstand]–1 Xstand' D(pi+)1/2 

and  = D(pi+)1/2 Xstand B

The equation for computing  is then:

 = D(pi+)1/2 Xstand [Xstand' D(pi+) Xstand]–1 Xstand' D(pi+)1/2 (11.25)

The matrix of residuals is computed as res = . This is the equivalent, for
CCA, of equation Yres =  found in Fig. 11.2 for RDA.

• Eigenvalue decomposition (eqs. 11.15 and 11.16) is carried out on matrix 
which, in this case, is simply the matrix of sums of squares and cross products, without
division by the number of degrees of freedom — as in correspondence analysis: 

(11.26)

One can show that  (eq. 11.26) is equal to  if the covariance
matrices  and  are computed as follows, with weights on X given by matrix
D(pi+)1/2: 

 =  D(pi+)1/2 X     and      = X' D(pi+) X

without division by degrees of freedom.
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In the modified algorithm, CCA is the eigen-decomposition of  (eq. 11.26). It
produces matrices '''' of eigenvalues and U of eigenvectors. Canonical correspondence
analysis is thus a weighted form of redundancy analysis, applied to response matrix

. The solution approximates the chi-square distances among the rows (objects) of
the dependent data matrix, subject to the constraint that the canonical ordination
vectors be maximally related to weighted linear combinations of the explanatory
variables. The method is well suited to analyse the relationships between species
presence/absence or abundance data matrices and tables of environmental variables.
The number of canonical and non-canonical axes expected from the analysis are
shown in Table 11.1. Tests of significance for the total canonical variation and for
individual canonical axes are carried out in the same way in CCA as described for
RDA in Subsections 11.1.2 and 11.1.8.

• The normalized matrix  is obtained using eq. 9.30:

 = U''''–1/2

In CCA, matrix  defined here does not contain the loadings of the rows of  on the
canonical axes. It contains instead the loadings of the rows of  on the ordination
axes, as in CA. It will be used to find the site scores (matrices F and ) in the space of
the original variables Y. The site scores in the space of the fitted values  will be
found using U instead of .

• Matrix V of species scores (for scaling type 1) and matrix  of site scores (for
scaling type 2) are obtained from U and  using the transformations described for
correspondence analysis (Subsection 9.2.1):

eq. 9.33 (species scores, scaling 1): V = D(p+j)–1/2U

and eq. 9.34 (site scores, scaling 2):  = D(pi+)–1/2

or combining eqs. 9.30 and 9.34:  = D(pi+)–1/2 U''''–1/2

Scalings 1 and 2 are the same as in correspondence analysis (Subsection 9.2.1).
Matrices F (site scores for scaling type 1) and  (species scores for scaling type 2) are
found using eqs. 9.35a and 9.36a:

''''1/2   and   ''''1/2

Equations 9.35b and 9.36b cannot be used here to find F and  because the
eigenanalysis has been conducted on a covariance matrix (eq. 11.26) computed from
the matrix of fitted values  (eq. 11.25) and not from Q defined in Subsection 9.2.1.

As mentioned in Subsection 9.2.1 about correspondence analysis, scaling type 3,
which is called “symmetric scaling” in program CANOCO, is a compromise between
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Û

V̂ Û
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scalings 1 and 2. This scaling does not preserve the chi-square distances among the
species or among the site scores. It is obtained by drawing together matrices ''''1/4 (or
F''''–1/4) for sites and V''''1/4 (or ''''–1/4) for species.

The site scores that are linear combinations of the environmental variables,
corresponding to eq. 11.18 of RDA, are found from  using the following equations:

For scaling type 1: Z1 = D(pi+)–1/2 U (11.27)

For scaling type 2: Z2 = D(pi+)–1/2 U''''–1/2 (11.28)

For scaling type 3: Z3 = D(pi+)–1/2 U''''–1/4 (11.29)

Before computing the biplot scores, matrix Z1 (or Z2 or Z3: identical results) must
be standardized to Zstand using the procedure described for the standardization of X:
generate the inflated matrix Z1.infl , compute the vectors of column means and standard
deviations (in the computation of the variances, divide the sums of squares by f++
instead of (f++ – 1)) for Z1.infl , and use these vectors to standardize Z1. Applying this
concept, computational shortcuts can be used to obtain matrix Zstand without actually
generating matrix Z1.infl . The matrices of biplot scores (BS) for the explanatory
variables can now be computed using Xstand , Zstand , and the diagonal matrix of row
weights D(pi+):

For scaling type 1: BS1 = Xstand' D(pi+) Zstand ''''1/2 (11.30)

For scaling type 2: BS2 = Xstand' D(pi+) Zstand (11.31)

For scaling type 3: BS3 = Xstand' D(pi+) Zstand ''''1/4 (11.32)

For scaling type 1, triplots are drawn using matrix V for the species, either Z1 or F
for the sites, and BS1 for the explanatory variables. For scaling type 2, matrix  is
used for the species, either Z2 or  for the sites, and BS2 for the explanatory
variables. For scaling type 3, matrix V''''1/4 is used for the species, either Z3 or ''''1/4

for the sites, and BS3 for the explanatory variables. The construction and interpretation
of CCA triplots is discussed in more detail in ter Braak & Verdonschot (1995).

• Residuals can be analysed by applying eigenvalue decomposition (eq. 11.15) to
matrix res , producing a matrix of eigenvalues '''' and a matrix of eigenvectors U.
Matrix  is obtained using eq. 9.30:  = U''''–1/2. Species and site scores are
obtained for scaling types 1 and 2 (eqs. 9.33, 9.34, 9.35a and 9.36a) using the matrices
of row and column sums D(pi+)–1/2 and D(p+j)–1/2 of the original matrix Y.

CCA can be computed following the algorithm described in the present
subsection*. One may also use the iterative algorithm proposed by ter Braak (1986,
1987a) and implemented in the program CANOCO. The latter algorithm, which has
historical significance, is described in Table 11.6 of Legendre & Legendre (1998).
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Developed by ter Braak (1988a), partial CCA is computed essentially like partial RDA
(Subsection 11.1.6), after residualizing  and X on the covariables W. The weights
D(pi+)1/2

 are used in the computation of these residuals.

CCA can be used for variation partitioning (Subsections 10.3.5 and 11.1.11). The
difficulty with CCA resides in the calculation of the adjusted R2, which is necessary to
obtain unbiased estimates of the fractions of explained variation. A method to compute
the adjusted R2 in CCA, involving a permutation procedure, was described by Peres-
Neto et al. (2006). In Supplements to their paper, Peres-Neto et al. (2006) provided a
MATLAB package and an executable program to conduct variation partitioning in
CCA. At the time this paragraph is written, however, that method has not been
incorporated into any major package for community ecology, with the consequence
that variation partitioning is not yet generally available for CCA.

2 — Numerical example

Table 11.3 will now be used to illustrate the computation and interpretation of CCA.
The 9 species were used in matrix Y. Matrix X comprised the four columns shown in
the right-hand portion of Table 11.3. CCA results are presented in Table 11.7 and
Fig. 11.9; the CANOCO program and the CCA functions in R* provide more output
tables than presented here. There was a possibility of 3 canonical and 8 non-canonical
axes. It turned out that the last 2 non-canonical axes had zero variance; they are
consequently not displayed. An overall test of significance showed that the canonical
relationship between matrices X and Y was very highly significant (p = 0.001 after 999
permutations of residuals under a full model; Subsection 11.1.8). The canonical axes
explained 47%, 24% and 10% of the response table’s inertia, respectively. They were
all significant (p < 0.05) and displayed strong row-weighted species-environment
correlations (r = 0.998, 0.940, and 0.883, respectively).

Scaling type 2 (Subsection 11.2.1) was used, in this example, to emphasize the
relationships among species. As a result, the species (matrix ) are at the centroids of
the sites (matrix ) in Fig. 11.9a, and distances among species approximate their chi-
square distances. Species 3 and 4 characterize the sites with coral substrate, whereas
species 5 and 6 indicate the sites with “other substrate”. Species 1 and 2, which occupy
an intermediate position between the sites with coral and other substrate, are not well
represented in the biplot of canonical axes I and II; axis III is needed to adequately
represent the variance of these species. Among the ubiquitous species 7 to 9, two are
well represented in the subspace of canonical axes I and II; they fall near the middle of
the area encompassing the three types of substrate. The sites are not perfectly ordered
along the depth vector; the site ordering along this variable mainly reflects differences
in species composition between the shallow sandy sites (1, 2 and 3) and the other sites.

*  Function CCA.R was written to demonstrate the CCA algorithm described in this subsection.
It produces results identical to those of CANOCO 4.x. The function is available on the Web page
http://numericalecology.com/rcode.

Partial CCA
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Table 11.7 Results of canonical correspondence analysis of the data in Table 11.3 (selected output). Matrix
Y: species 1 to 9; X: depth and 3 substrate classes. Non-canonical axes VIII and IX not shown.

Canonical axes Non-canonical axes
I II III IV V VI VII

Eigenvalues (their sum is equal to the total inertia in matrix  of species data = 0.78417)
0.36614 0.18689 0.07885 0.08229 0.03513 0.02333 0.00990

Fraction of the total variance in 
0.46691 0.23833 0.10055 0.10494 0.04481 0.02975 0.01263

Cumulative fraction of total inertia in  accounted for by axes 1 to k
0.46691 0.70524 0.80579 0.91072 0.95553 0.98527 0.99791

Eigenvectors (“species scores”, scaling 2): matrices  for the canonical and non-canonical portions (eq. 9.36a)
Species 1 –0.11035 –0.28240 –0.20303 0.00192 0.08223 0.08573 –0.01220
Species 2 –0.14136 –0.30350 0.39544 0.14127 0.02689 0.14325 0.04303
Species 3 1.01552 –0.09583 –0.19826 0.10480 –0.13003 0.02441 0.04647
Species 4 1.03621 –0.10962 0.22098 –0.22364 0.24375 –0.02591 –0.05341
Species 5 –1.05372 –0.53718 –0.43808 –0.22348 0.32395 0.12464 –0.11928
Species 6 –0.99856 –0.57396 0.67992 0.38996 –0.29908 0.32845 0.21216
Species 7 –0.25525 0.17817 –0.20413 –0.43340 –0.07071 –0.18817 0.12691
Species 8 –0.14656 0.85736 –0.01525 –0.05276 –0.35448 –0.04168 –0.19901
Species 9 –0.41371 0.70795 0.21570 0.69031 0.14843 –0.33425 –0.00629
Site scores (“sample scores”, scaling 2): matrices  for the canonical and the non-canonical portions (eq. 9.34)
Site 1 –0.71059 3.08167 0.21965 1.24529 1.07293 –0.50625 0.24413
Site 2 –0.58477 3.00669 –0.94745 –2.69965 –2.13682 0.81353 0.47153
Site 3 –0.76274 3.15258 2.13925 3.11628 2.30660 –0.69894 –1.39063
Site 4 –1.11231 –1.07151 –1.87528 –0.66637 1.10154 1.43517 –1.10620
Site 5 0.97912 0.06032 –0.69628 0.61265 –0.98301 0.31567 0.57411
Site 6 –1.04323 –0.45943 –0.63980 –0.28716 0.57393 –1.44981 1.70167
Site 7 0.95449 0.08470 0.13251 0.42143 0.11155 –0.39424 –0.67396
Site 8 –0.94727 0.10837 0.52611 0.00565 –1.26273 –1.06565 –1.46326
Site 9 1.14808 –0.49045 0.47835 –1.17016 1.00599 0.07350 0.08605
Site 10 –1.03291 –1.03505 2.74692 1.28084 –0.36299 1.98648 1.05356
Correlations of environmental variables with site scores
Depth 0.18608 –0.60189 0.65814
Coral 0.99233 –0.09189 –0.04614
Sand –0.21281 0.91759 0.03765
Other subs. –0.87958 –0.44413 0.02466
Correlations of environmental variables with fitted site scores (for biplot, scaling 2)
Depth 0.18636 –0.64026 0.74521
Coral 0.99384 –0.09775 –0.05225
Sand –0.21313 0.97609 0.04263
Other subs. –0.88092 –0.47245 0.02792
Centroids of sites with code “1” for the BINARY environmental variables, scaling 2
Coral 1.02265 –0.10059 –0.05376
Sand –0.66932 3.06532 0.13387
Other subs. –1.03049 –0.55267 0.03266
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Figure 11.9b shows how to infer the ranking of species along a quantitative
environmental variable. Depth is used in this example. The graphical method simply
consists in projecting (at right angle) the species onto the arrow representing that
variable. This gives an approximation of the weighted averages of the species with
respect to environmental variables. Ecologists like to interpret this ranking as
representing the niche optima for the species under consideration. It is important to
realize that three rather strong assumptions are made when attempting such an
interpretation:

• that the various species have unimodal distributions along the environmental
variable of interest (Subsection 9.2.4); 

• that the species distributions are under environmental control (Whittaker, 1956; Bray
& Curtis, 1957), so that the mode of each species is at its optimum along each
environmental variable; and

Figure 11.9 CCA ordination triplot (scaling type 2) of the artificial data in Table 11.3; the numerical results
of the analysis are in Table 11.7. (a) Triplot representing the species (squares), sites (dots, with
site identifiers that also correspond to water depths in m), and environmental variables (full
arrow for depth, triangles for the three binary substrate variables). (b) Ranking of the species
along the quantitative environmental variable (depth) is inferred by projecting the species at
right angle onto the arrow representing that variable. 
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• that the environmental gradient under study is long enough to allow each species to
go from some less-than-optimum low frequency to its high-frequency optimum, and
back to some past-optimum low frequency. 

In the data of the present example (Table 11.3), only species 1, 3 and 5 were
constructed to approximately correspond to these criteria. Species 7, which may also
look like it has a unimodal distribution, has actually been constructed using a pseudo-
random number generator; so its optimum along depth is fortuitous.

To investigate the similarities among sites or the relationships among species after
controlling for the linear effects of depth and type of substrate, one could draw
ordination biplots of the non-canonical axes in Table 11.7. These axes correspond to a
correspondence analysis of the table of regression residuals, as shown in Fig. 11.2.

Ecological application  11.2a

Ecological application 9.2b described the spatial distribution of chaetodontid fish assemblages
(butterflyfishes) around a tropical island, using correspondence analysis. This application is
continued here. Cadoret et al. (1995) next described the relationships between the fish species
(quantitative relevés) and some environmental variables, using canonical correspondence
analysis. The environmental variables were: the type of environment (qualitative descriptor: bay,
lagoon, or outer slope of the reef on the ocean side), geomorphology (qualitative: reef flat, crest,
and reef wall of the fringing reefs of bays; fringing reef, shallow, barrier reef, and outer slope for
transect sites), depth (quantitative: from 0.5 to 35 m), and exposure to swell (qualitative: low,
high, or sites located in bays).

The ordination of sampling sites by CCA is virtually identical to that in Fig. 9.14; this
indicates that the first two CA axes are closely related to the environmental variables. The
canonical axes account together for 35% of the variation in the species data (p = 0.001 after 999
permutations). The description of the ordination of sites presented in Ecological application 9.2b
may be compared to Fig. 11.10. This figure shows which types of environment are similar in
their chaetodontid species composition and which species are associated with the various types
of environment. It indicates that the reef flats of the fringing reefs in bays are similar in species
composition to the fringing reefs in the lagoon; likewise, the crests of the fringing reefs in bays
are similar to the barrier reefs in the lagoon. The species composition along the reef walls in
bays and that on the outer slopes differ, however, from all the other types of environment. The
authors discuss the ecology of the most important chaetodontid species in their paper.

Ecological application  11.2b

Canonical correspondence analysis is widely used in palaeoecology, together with regression
and calibration, to infer past ecological conditions (climatic, limnological, etc.) from palaeo-
assemblages of species. The first 10 years of that literature (1986-1996) was summarized in a
bibliography assembled by Birks et al. (1998), under the headings limnology, palaeoecology,
palaeolimnology, etc. Several applications of CCA are described in a chapter by Legendre &
Birks (2012) in a book about numerical methods in palaeoecology edited by Birks et al. (2012).
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One of the classical papers on the subject was written by Birks et al. (1990a).
Palaeolimnological reconstruction involves two main steps: modelling from a training data set,
followed by the construction of forecasting models that are then applied to the palaeo-data. In
this paper, diatoms were used to reconstruct past water chemistry. The training data set consisted
of diatom assemblages comprising 287 species, from present-day surface samples from 138
lakes in England, Norway, Scotland, Sweden, and Wales. Data were also available on pH,
conductivity, Ca, Mg, K, SO4, Cl, alkalinity, total Al, and DOC. Data from more lakes were
available for subsets of these variables. CCA was used to relate species composition to water
chemistry. The first two canonical eigenvalues were significant and displayed strong species-
environment correlations (r = 0.95 and 0.84, respectively). The first axis expressed a significant
diatom gradient which was strongly and positively correlated with alkalinity and its close
correlates, Ca and pH, and negatively but less strongly correlated with total Al; the second axis
corresponded to a significant gradient strongly correlated with DOC. This result indicated that
pH (or alkalinity), Al, and DOC were potentially reconstructible from the fossil diatom
assemblages.

Figure 11.10 (a) CCA ordination diagram: presence/absence of 21 Chaetodontid fish species at 42 sampling
sites around Moorea Island, French Polynesia, related to environmental variables. The species
(names abbreviated to 3 letters) are represented by circles for readability of the diagram. Axis I:
14.6% of the variation (p = 0.001 after 999 permutations); axis II: 7.4% (p = 0.010). Redrawn
from the original data of Cadoret et al. (1995).
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The fossil data set contained 101 slices of a sediment core from a small lake, the Round
Loch of Glenhead, in Galloway, southwestern Scotland. The data series covered the past 10000
years. The fossil data (292 diatom taxa) were included in the CCA as passive objects (called
supplementary objects in Subsection 9.1.9) and positioned in the ordination provided by
canonical axes I and II. All fossil objects were well-fitted in that space (they had low squared
residual distances), indicating that the pattern of variation in diatom composition can be linked
to the modern chemical variables.

Reconstruction of past surface-water chemistry involved two steps. First, the training set
was used to model, by regression, the responses of modern diatoms to the chemical variables of
interest (one variable at a time). Secondly, the modelled responses were used to infer past
chemistry from the composition of fossil diatom assemblages; this phase is called calibration
(ter Braak, 1987b; ter Braak & Prentice, 1988). Extensive simulations led Birks et al. (1990b) to
prefer weighted averaging (WA) over maximum likelihood (ML) regression and calibration.
Consider pH in lakes, for example. WA regression simply consists in applying eq. 9.39 to
estimate the pH optimum of each taxon of the training set as the weighted average of all the pH
values for lakes in which this taxon occurs, weighted by the taxon’s relative abundance.
WA calibration consists in applying eq. 9.38 to estimate the pH of each lake as the weighted
average of the pH optima of all the taxa present. Taxa with a narrow pH tolerance or amplitude
may, if required, be given greater weight in WA regression and calibration than taxa with a wide
pH tolerance (Birks et al., 1990b). 

Application of eqs. 9.39 and 9.38 to the data resulted in shrinkage of the range of pH scores.
Shrinkage occurred for the same reason as in the TWWA algorithm for correspondence analysis;
in step 6.4 of that algorithm (Table 9.8), the eigenvalue was actually estimated from the amount
of shrinkage incurred by the site scores after each iteration through eqs. 9.39 and 9.38 (steps 3
and 4). Deshrinking may be done in at least two ways; the relative merits of the two methods are
discussed by Birks et al. (1990b).

• Deshrinking by classical regression proceeds in two steps. (1) The pH values inferred by WA
regression and calibration ( ) are regressed on the observed values xi for the training set, using
the linear regression model  = b0 + bixi + )i. (2) The parameters of that model are then used to
deshrink the  values, using the equation: final  = (  – b0)/b1. This method was used to
deshrink the inferred pH values.

• Another way of deshrinking, advocated by ter Braak & van Dam (1989) for palaeolimnological
data, is to use “inverse regression” of xi on  (ter Braak, 1987b). Inverse regression was used to
deshrink the inferred Al and DOC values.

Training sets containing different numbers of lakes were used to infer pH, total Al, and
DOC. Past values of these variables were then reconstructed from the palaeo-assemblages of
diatoms, using the pH optima estimated above (eq. 9.39) for the various diatom species,
followed by deshrinking. Reconstructed values were plotted against depth and time, together
with error estimates obtained by bootstrapping. The past history of the Round Loch of Glenhead
over the past 10000 years is discussed in the paper.

This approach involving CCA, WA regression, and WA calibration, is now widely used in
palaeolimnology to reconstruct, for example, surface-water temperatures from fossil chironomid
assemblages, as well as lake salinity, lake water phosphorus concentrations, or surface water
chlorophyll a concentrations from fossil diatom assemblages. The WA regression and WA
calibration method was further improved by ter Braak & Juggins (1993). ter Braak (1995) made
a theoretical comparison of reconstruction methods. For a recent presentation, see the chapter by
Birks (2010) in a book edited by Smol & Stoermer (2010). How to carry out the calculations was

x̂i
x̂i

x̂i x̂i x̂i

x̂i
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described by ter Braak & Juggins (1993) and Line et al. (1994). R functions for
palaeoenvironmental reconstruction are available in package RIOJA (Juggins, 2009).

A little-known application of CCA is worth mentioning here. Consider a
qualitative environmental variable and a table of species presence-absence or
abundance data. How can one “quantify” the qualitative states, i.e. give them values
along a quantitative scale that would be related in some optimal way to the species
data? CCA provides an easy answer to this problem. The species data form matrix Y;
the qualitative variable, which may be coded as a factor or recoded as a set of dummy
variables, is placed in matrix X. Compute CCA and take the fitted site scores (or “site
scores that are linear combinations of environmental variables”): they provide a
quantitative rescaling of the qualitative variable, maximizing the weighted linear
correlation between the dummy variables and matrix . In the same way, RDA may
be used to rescale a qualitative variable (factor) with respect to a table of quantitative
variables of the objects if linear relationships can be assumed.

McCune (1997) warns users of CCA against inclusion of noisy or irrelevant
explanatory variables in the analysis: they may lead to misleading interpretations.

11.3 Linear discriminant analysis (LDA)

A situation that often occurs is to start with an already known grouping of the objects,
considered to form a qualitative response variable y in this type of analysis, and try to
determine to what extent a set of quantitative descriptors, which are the explanatory
variables X, can actually explain this grouping. In this type of analysis, the grouping is
known at the start of the analysis. It may be the result of a cluster analysis computed
from a different data set, or reflect an ecological hypothesis to be tested. The problem
no longer consists in delineating groups, as in cluster analysis, but in interpreting them. 

Linear discriminant analysis is a method of linear modelling, like the analysis of
variance, multiple linear regression, redundancy analysis, and canonical correlation
analysis. It proceeds in two steps. (1) First, one tests for differences in the predictor
variables (X) among the predefined groups using Wilks’ lambda (eq. 11.42). This part
of the analysis is identical to the overall test performed in MANOVA. (2) If the test
supports the alternative hypothesis of significant differences among groups in the X
variables, the analysis proceeds to find the linear combinations (called discriminant
functions or identification functions) of the X variables that best discriminate among
the groups.

Like one-way analysis of variance, discriminant analysis considers a single
classification criterion (i.e. division of the objects into groups) and allows one to test
whether the explanatory variables can discriminate among the groups. Testing for
differences among group means, in discriminant analysis, is identical to ANOVA for a
single explanatory variable and to MANOVA for multiple variables (X). 

Q
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When it comes to modelling, i.e. finding the linear combinations of the predictors
(X) that best discriminate among the groups, discriminant analysis is a form of
“inverse analysis” (ter Braak, 1987b), where the classification criterion is considered
to be the response variable (y) whereas the quantitative variables (matrix X) are
predictors of the classification. In ANOVA, on the contrary, the objective is to estimate
if the variation in a quantitative response descriptor y is significantly explained by one
or several classification criteria (explanatory variables X). As in multiple regression,
the discriminatory power of X is the same in LDA for X standardized or not.

As in multiple regression, discriminant analysis estimates the parameters of a linear
model of the explanatory variables that may be used to forecast the response variable
(states of the classification criterion). While inverse multiple regression would be
limited to two groups (expressed by a single binary variable y), discriminant analysis
can handle several groups. Discriminant analysis is a canonical method of analysis; its
link to canonical correlation analysis (CCorA) is explained at the end of
Subsection 11.3.1, after some necessary concepts have been introduced.

After the overall test of significance, the search for discriminant functions may be
conducted with two different purposes in mind. One may be interested in obtaining a
linear equation to allocate new objects to one of the states of the classification criterion
(identification), or simply in determining the relative contributions of various
explanatory descriptors to the distinction among these states (discrimination). 

Discriminant analysis is also called canonical variate analysis (CVA). The method
was originally proposed by Fisher (1936) for the two-group case (g = 2). Fisher’s
results were extended to g > 2 by Rao (1948, 1952). Fisher (1936) illustrated the
method using a famous data set describing the morphology (lengths and widths of
sepals and petals) of 150 specimens of irises (Iridaceae) belonging to three species.
The data had originally been collected in the Gaspé Peninsula, eastern Québec
(Canada), by the botanist Edgar Anderson of the Missouri Botanical Garden who
allowed Fisher to publish and use the raw data in his 1936 paper. Fisher showed how to
use these morphological measurements to discriminate among the species. The data set
is sometimes — erroneously — referred to as “Fisher’s irises”.

The analysis is based upon an explanatory data matrix X of size (n × m), where n
objects are described by m descriptors. X is meant to discriminate among the groups
defined by a separate classification criterion vector (y). As in regression analysis, the
explanatory descriptors must in principle be quantitative, although qualitative
descriptors coded as dummy variables may also be used (Subsection 1.5.7). Other
methods are available for discrimination using non-quantitative descriptors
(Table 10.1). The objects, whose membership in the various groups of y is known
before the analysis is undertaken, may be sites, specimens, quadrats, etc. 

One possible approach would be to examine the descriptors one by one, either by
hand or using analyses of variance, and to note those which have states that
characterize one or several groups. This information could be transformed into an
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identification key, for example. It often occurs, however, that no single descriptor
succeeds in separating the groups completely. The next best approach is then to search
for a linear combination of descriptors that provides the most efficient discrimination
among groups. Figure 11.11 shows an idealized example of two groups (A and B)
described by two descriptors only. The groups cannot be separated on either of the two
axes taken alone. The solution is a new discriminant descriptor z, drawn on the figure,
which is a linear combination of the two original descriptors. Along z, the two groups
of objects are perfectly separated. Note that discriminant axis z is parallel to the
direction of greatest variability between groups. This suggests that the weights uj used
in the discriminant function could be the elements of the eigenvectors of a between-
group dispersion matrix. The method can be generalized to more than two groups and
several descriptors. 

• Discriminant functions (also called standardized discriminant functions) are
computed from standardized descriptors. The coefficients of these functions are used
to assess the relative contributions of the descriptors to the final discrimination. 

Figure 11.11 Two groups, A and B, with 6 objects each, are overlapping on both axes, x1 and x2, as shown by
the histograms on the axes. They are perfectly separated, however, along a discriminant axis z.
The position of each object i is calculated along z using the equation zi = (cos 45˚) xil – (cos 45˚)
xi2. Adapted from Jolicoeur (1959).

zi  =  u1  xi1   +  u
2  xi2
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• Identification functions (also called unstandardized discriminant functions) are
computed from the original descriptors (not standardized). They may be used to
compute the group to which a new object is most likely to belong. Discriminant
analysis is seldom used for this purpose in ecology, whereas it is widely used in that
way in taxonomy.

When there are only two groups of objects, the method is called Fisher’s, or simple
discriminant analysis (a single function is needed to discriminate between two
groups), whereas the case with several groups is called multiple discriminant analysis
or canonical variate analysis. Because the simple discriminant analysis model (two
groups) is a particular case of multiple discriminant analysis, it will not be developed
here. The solution can be entirely derived from the output of a multiple regression
using a dummy variable defining the two groups (used as the dependent variable y)
against the table of predictor variables X. 

Analysis of variance is often used for screening variables prior to discriminant
analysis: each variable in matrix X is tested for its capacity to discriminate among the
groups of the classification y. Figure 11.11 shows however that there is a danger in this
approach; any single variable may not discriminate groups well, although it may have
high discriminating power in combination with other variables. One should be careful
when using univariate analysis to eliminate variables. If the analysis requires that
poorly discriminating variables be eliminated, one should use stepwise discriminant
analysis instead, which allows users to identify a subset of good discriminators. Bear
in mind, though, that stepwise selection of explanatory variables does not guarantee
that the “best” set of explanatory variables will necessarily be found. This is equally
true in discriminant analysis and regression analysis (Subsection 10.3.3).

1 — The algebra of discriminant analysis

The problem consists in finding linear combinations of the predictors in matrix
X (n × m) that maximize the differences among groups while minimizing the variation
within the groups. As in regression analysis, the descriptors must be quantitative or
binary since they are combined into linear functions. Each descriptor may have already
been transformed to meet the condition of multinormality or at least to reduce the
asymmetry of its distribution. The discriminant analysis model is robust to departures
from this condition, but the parametric statistical tests assume within-group normality
of the descriptors.

Computations are carried out using either dispersion matrices (V, A) or matrices of
sums of squares and cross-products of centred descriptors (W, B) (Table 11.8). These
matrices are constructed in the same way as in analysis of variance, except that here
the predictors form a multivariate data matrix. Matrix T is the matrix of scalar
products of the centred descriptors, , for all objects irrespective of the groups:
T =  (total sums of squares and cross-products). When divided by the
total number of degrees of freedom n – 1, it becomes the total dispersion matrix S used
in principal component analysis.

Identification
function

x x–[ ]
x x–[ ] ' x x–[ ]
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Matrix W, which pools the sums of squares within all groups, is computed by
adding up matrices W1 to Wg of the sums of squares and cross-products for each of the
g groups. Each matrix Wj is computed from descriptors that have been centred for the
objects of that group only, just as in ANOVA. In other words, matrix Wj is the product

 for the objects that belong to group j only. Dividing the pooled
within-group matrix W by the within-group number of degrees of freedom, n – g,
produces the pooled within-group dispersion matrix V. In ANOVA involving a single
explanatory variable, W contains a single value, the residual sum of squares, which is
the sum of the within-group sums of squares (SSwithin groups).

Matrix B of the sums of squares among groups is computed by subtracting the
pooled within-group matrix W from the total matrix of sums of squares T. Since
B = T – W, the number of degrees of freedom by which B must be divided to obtain
the among-group dispersion matrix A is: (n – 1) – (n – g) = g – 1. In ANOVA involving
a single explanatory variable, B contains a single value, the among-group sum of
squares (SSamong groups).

In analysis of variance involving a single explanatory variable, sums of squares
(SS) among and within groups are used to construct the F-statistic to test the
hypothesis of no difference between the means of the groups:

where MS stands for “mean square”. 

The matrix of predictor variables, X, is multivariate in discriminant analysis. The
numerator of F is matrix A and its denominator is matrix V. One cannot compute A/V

Table 11.8 Discriminant analysis is computed on either dispersion matrices (right-hand column) or
matrices of sums of squares and cross-products (centre). Matrices in the right-hand column are
simply those in the central column divided by their respective numbers of degrees of freedom.
The dimension of all matrices is (m × m).

Matrices of sums of Dispersion
squares and cross-products matrices

Total dispersion T S = T/n – 1

Pooled within-group dispersion W = W1 + … + Wg V = W/n – g

Among-group dispersion B = T – W A = B/g – 1

x x–[ ] ' x x–[ ]

F
MSAmong groups
MSWithin groups
----------------------------------

SSAmong groups g 1–( )

SSWithin groups n g–( )
------------------------------------------------------= =
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but one can compute V–1A. The eigenvalues of V–1A are the canonical F-statistics,
which can be tested for significance. The eigenvalues are found by eigen-
decomposition (eq. 2.22) using the following equation:

(11.33)

This equation maximizes the variation among groups while minimizing the variation
within groups. It also produces the matrix of normalized eigenvectors U = [uk]. Matrix
V–1A is asymmetric, as in eqs. 11.48 and 11.50 of CCorA, so its eigenvectors are not
orthogonal. The maximum number of discriminant axes needed for the ordination of g
groups is (g – 1), so the number of canonical eigenvalues is at most min(number of
predictors in X, (g–1)).

Eigen-decomposition could have been carried out using the matrices of sums of
squares and cross-products W and B instead of the dispersion matrices V and A. The
eigen-decomposition of 

(11.34)

produces the same matrix of eigenvectors U as eq. 11.33. The eigenvalues lk are
modified by a factor corresponding to the degrees of freedom shown in the equation of
the F-statistic and in Table 11.8:

(11.35)

which leaves unchanged the percentage of the variance of A or B explained
by each canonical eigenvalue. 

When the non-orthogonal eigenvectors are plotted at right angles, they straighten
the reference space and, with it, the ellipsoids of the within-group scatters of objects. If
the eigenvectors are now rescaled in an appropriate manner, the within-group scatters
of objects can be made circular (Fig. 11.12), insofar as the within-group cross-product
matrices Wj are homogeneous (same dispersion in all groups). This is done by
rescaling the eigenvectors (matrix U) using the following formula. The result is matrix
C containing the discriminant function coefficients:

(11.36)

where  is a diagonal matrix.

Matrix C contains the rescaled eigenvectors defining the canonical space of the
discriminant analysis. After this transformation, the variance among group centroids is
maximized even if the group dispersion matrices are not homogeneous. This leads to
the conclusion that the principal axes describe the dispersion among groups. The first

V 1– A &kI–( ) uk 0=

W 1– B lkI–( ) uk 0=

lk
g 1–
n g–
------------ &k=

V 1– W 1–

C U U' W
n g–
------------U* +

, - 1 2–
U U'VU( )

1 2–= =

U'VU( )
1 2–
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principal axis indicates the direction of largest variation among group centroids, and so
on for the successive canonical axes, after the reference space has been straightened up
to make each group spherical. The SAS and STATISTICA packages, among others, as
well as function lda() of the MASS package in R, offer the normalization of eq. 11.36.

Other methods for normalizing the eigenvectors are found in the literature, i.e. to
lengths 1 or . Some statistical packages unfortunately compute the positions of the
objects along the canonical axes (matrix F, eq. 11.37) directly from matrix U of the
eigenvectors normalized to length 1. In that case, the group dispersions remain
nonspherical; it is then difficult to compare the eigenvectors because they describe a
combination of within-group and among-group dispersion. It is not always easy to

Figure 11.12 Basic principles of multiple discriminant analysis. Dashed: two original descriptors. Full lines:
canonical axes. The within-group dispersion matrices are homogeneous in this example. (a) The
canonical axes are not orthogonal in the reference space of the original descriptors. (b) When
they are used as the orthogonal reference space, the ellipsoids of the within-group scatters of
objects are straightened up. (c) Rescaling the eigenvectors to produce C (eq. 11.36) makes the
within-group dispersions circular if they are homogeneous.

(a) (b)

(c)

II
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understand, from the documentation, what a specific statistical program does. A simple
way to find out what kind of normalization is used by a program or R function is to run
the small example presented in Subsection 11.3.3. 

The last step of the computation is to find the positions of the objects in the space
of the canonical axes. The matrix of discriminant scores F is obtained by multiplying
the matrix of centred data with the matrix of normalized eigenvectors C:

(11.37)

Since the matrix of centred data  is used in eq. 11.37, the origin of the
discriminant axes is located at the centroid of all objects, as in Fig. 11.12. It is common
practice to also compute the positions of the centroids of the g groups of objects in
canonical space, by multiplying the matrix of the original group centroids (computed
from data centred over all objects in the analysis) with matrix C. The centroid of a
group is a point whose coordinates are the mean values of the objects of that group for
all descriptors. The matrix of group centroids therefore has g rows and m columns.

As in principal component analysis, equation  contains the scores
of the objects, i, on each canonical axis k:

(11.38)

The columns of matrix F are called canonical variates in discriminant analysis. The
distances among objects in discriminant space are Mahalanobis distances (eq. 7.38).
The positions of the group centroids in discriminant space can be found by computing
these same functions for the mean values of the groups along the X variables.

If the analysis is carried out on the non-standardized descriptors, the columns of
matrix C are called identification functions. Identification functions are used to place
new objects in the canonical space. To do so, values of the various descriptors of a new
object are centred using the same descriptor means as in eq. 11.38, and the centred
values are multiplied by the weights . This provides the position of this object on
the canonical axes. By plotting the point representing this object in the canonical
ordination space together with the original set of objects, it is possible to identify the
group to which the new object most likely belongs.

There are other ways of assigning objects to groups. Classification functions* are
linear equations that can be used for that purpose. A separate classification function is
computed as follows for each group j:

Classification function for group j =  (11.39)

*  This terminology is unfortunate. In biology, classification consists in forming groups, using
clustering methods for instance (Chapter 8), whereas identification is to assign objects to
preestablished groups.

F x x–[ ] C=

x x–[ ]

F x x–[ ] C=

f ik xi1 x1–( ) c1k … xip xp–( ) cpk+ +=

c jk

0.5 x' jV
1– x j– V 1– x j+
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where V is the pooled within-group dispersion matrix (Table 11.8) and  is the vector
describing the centroid of group j for all m variables of matrix X. Each classification
function looks like a multiple regression equation; eq. 11.39 provides the weights
( ) to apply to the various descriptors of matrix X combined in the linear
equation, as well as a constant ( ). The classification score of each object
is calculated for each of the g classification functions; an object is assigned to the
group for which it receives the highest classification score. Another way is to compute
Mahalanobis distances (eq. 7.38) of the objects from each of the group centroids. An
object is then assigned to the group to which it is the closest. 

A confusion or classification table (also called confusion or classification matrix)
can be constructed; this is a contingency table comparing the original assignment of
objects to groups (usually in rows) to the group assignments made by the classification
functions (in columns). From that table, users can determine the number and
percentage of the objects correctly classified by the discriminant functions.

An alternative way to obtain the eigenvalues and eigenvectors in discriminant
analysis is through the canonical correlation equation (eq. 11.50). The method is
described by Tatsuoka & Lohnes (1988, Section 7.8). The vector of classification
levels is first transformed into a matrix Y containing (g – 1) binary or Helmert-coded
variables (Subsection 1.5.7). One then computes the eigenvalues and eigenvectors of
matrix . The notation is the same as in eq. 11.46: S11 is the covariance
matrix of Y, S22 is the covariance matrix of X, and S12 is the covariance matrix
crossing the two groups of variables:

(11.40)

 is the transpose of the matrix in eq. 11.50 (Tatsuoka & Lohnes, 1988,
eq. 7.26). Because this matrix is of order (m × m), the computed matrix of eigenvectors
U has m rows and contains the weights associated with the predictors X.

The discriminant eigenvalues lk are found by transforming the eigenvalues hk as
follows: 

It is the eigenvalues lk of eq. 11.34 that are found here because eq. 11.40 does not
involve the degrees of freedom of Table 11.8. The discriminant eigenvalues &k are
obtained by applying eq. 11.35 in reverse. The matrix of eigenvectors U is the same as
obtained from eqs. 11.33 and 11.34. Matrix C of discriminant function coefficients can
then be computed using eq. 11.36. 

This approach is further supported by the demonstration made by Gittins (1985)
that  is matrix B of Table 11.8, while S22 is matrix T. Hence eq. 11.40,
which is the form of the CCorA equation applied to discriminant analysis, can be
written .

x j

V 1– x j
0.5 x' jV
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2 — Statistics in linear discriminant analysis

Spherical within-group dispersions are obtained only if the condition of homogeneity
of the within-group dispersion matrices is fulfilled. Even if discriminant analysis is
moderately robust to departures from this condition, it remains advisable to examine
whether this condition is met prior to LDA. Several statistics have been developed to
test the hypothesis of homogeneity of the within-group dispersion matrices. One of
them is Kullback’s statistic (1959) which is approximately distributed as %2:

(11.41)

with (g –1)m(m + 1)/2 degrees of freedom, where nj is the number of objects in
group j,  is the determinant of the pooled within-group dispersion matrix V, and

 is the determinant of the within-group dispersion matrix of group j. When the test
value is larger than or equal to the critical %2 value, the hypothesis of homogeneity is
rejected. Another method, which is robust to departures from normality, is the test of
homogeneity of multivariate dispersions developed by Anderson (2006); this is the
multivariate analogue of Levene’s (1960) univariate test for homogeneity of variances.
Anderson’s test can be computed for any dissimilarity measure of choice. It is
available in VEGAN’s function betadisper().

Several important tests in discriminant analysis are based on Wilks’ ' (lambda)
statistic (1932). This statistic can be used in an overall test to assess if the groups
significantly differ in the positions of their centroids, given the within-group
dispersions. ' is computed as the ratio of the determinants of the matrices of sums of
squares and cross-products W and T:

(11.42)

This ratio produces values in the range from near 0 (maximum dispersion of the
centroids) to 1 (no dispersion among groups). It can be transformed to a X2 (chi-
square) statistic with m(g – 1) degrees of freedom (Bartlett, 1938): 

 (11.43)

Alternatively, Wilks’ ' can be transformed into an F-statistic following Rao (1951). It
is a generalization of Student’s t-test to several groups and several explanatory
variables. Another multidimensional generalization of t, for two groups, is Hotelling’s

 (eq. 7.41), which has been discussed with reference to the Mahalanobis generalized
distance (eq. 7.39).
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As explained above, discrimination among g groups requires a maximum of (g – 1)
discriminant functions. To test the significance of the (g – k – 1) eigenvalues that
remain after examining the first k, Wilks’ ratio is computed as the product

(11.44)

where the lj are the eigenvalues of eq. 11.34. The value L computed for all eigenvalues
produces the value ' of eq. 11.42. Transformation of this statistic to X2, as above
(eq. 11.43), allows one to estimate the significance of the discriminant power of the
axes remaining after accepting the first k eigenvalues as significant (Bartlett, 1948):

(11.45)

with (m – k)(g – k – 1) degrees of freedom. (The logarithm of L from eq. 11.44 is equal
to minus the logarithm of the product of the terms (1 + lj) in the denominator.) When
the last (g – k – 1) canonical eigenvalues, taken together, do not reach the chosen
critical  value, the null hypothesis that the centroids of the groups do not differ on
the remaining (g – k – 1) discriminant functions cannot be rejected. This indicates that
the detectable discriminant power is limited to the first k discriminant functions.

3 — Numerical example

Discriminant analysis is illustrated by means of a numerical example in which seven
objects, allocated to three groups, are described by two descriptors. The calculation of
identification functions is shown first (raw data), followed by discriminant functions
(standardized data). Normally, these data should not be submitted to discriminant
analysis since the variances of the group matrices are not homogeneous; they are used
here to illustrate the steps involved in the computation. The data set is the following: 
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The centred data for the objects and the group centroids are the following: 

The matrix of sums of squares and cross-products is:

The pooled within-groups matrix W is computed by adding up the three group
matrices of sums of squares and cross-products W1, W2 and W3:

The determinants of matrices W and T are 1.25000 and 1179.57, respectively. The
ratio of these two values is Wilks’ ' (eq. 11.42: ' = 0.00106; eq. 11.43: X2 = 23.97,
p < 0.001). This indicates that there are significant differences among the groups in the
X variables. Hence, the analysis can proceed with the calculation of identification and
discriminant functions.

To obtain the identification functions, the matrix of sums of squares among groups
is computed as:

B = T – W = 

The characteristic equation  is used to calculate the two eigenvalues:

   0   

   0   

In this example, canonical axes 1 and 2 explain 93.13 and 6.87% of the among-group
variation, respectively. The two eigenvalues are used to compute the eigenvectors, by

Groups = 1 2 3 

X centred[ ] ' x x–[ ] ' 4.429– 3.429– 3.429–   2.571   2.571   2.571   3.571
1.429– 1.429– 2.429–   3.571   2.571 0.429– 0.429–

= =

Centroids[ ] ' 3.762–   2.571   3.071
1.762–   3.071 0.429–

=

T x x–[ ] ' x x–[ ] 75.71429   32.71429
32.71429   29.71429

= =

W   0.66667 0.33333–
0.33333–   0.66667

0 0
0 0.5

0.5 0
0 0

+ +   1.16667 0.33333–
0.33333–   1.16667

= =

74.54762   33.04762
33.04762   28.54762

B lW– 0=

l1 106.03086= &1
7 3–( )
3 1–( )

------------------ 106.03086× 212.06171 93.13%( )= =

l2 7.81668= &2 2 7.81668× 15.63336 6.87%( )= =
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means of matrix equation (B – lkW) uk = 0. These eigenvectors, normalized to length
1, are the columns of matrix U:

The vectors are not orthogonal since  = 0.12394. In order to bring the
eigenvectors to their final lengths, the following scaling matrix is computed:

The component terms of each eigenvector uj are divided by the corresponding diagonal
term from this matrix, to obtain the final vectors (identification functions):

Multiplication of the centred matrices of the raw data and centroids by C gives the
positions of the objects (matrix F) and centroids in canonical space (Fig. 11.13):

One can verify that, in canonical space, the among-group dispersion matrix A is equal
to the matrix of eigenvalues and that the pooled within-groups dispersion matrix V is
the identity matrix I. Beware: some computer programs calculate the discriminant
scores as XU instead of [X centred] U or [X centred] C. 

The classification functions, computed from eq. 11.39, are the following for
descriptors x1 and x2 of the example:

Group 1: Scorei = –13.33333 + 8.00000 xi1 + 8.00000 xi2

Group 2: Scorei = –253.80000 + 36.80000 xi1 + 32.80000 xi2

Group 3: Scorei = –178.86667 + 34.93333 xi1 + 20.26667 xi2

U 0.81202 0.47849–
0.58363   0.87809

=

u'1 u2

U' W
n g–
------------U* +

, - 1 2 0.46117 0
0 0.60141

=

C 1.76077 0.79562–
1.26553   1.46006

=

Groups = 1 2 3 

F = X centred[ ] C x x–[ ] C 9.606– 7.845– 9.111–   9.047   7.783   3.985   5.747
  1.438   0.642 0.818–   3.169   1.708 2.672– 3.466–

= =
'

Centroids[ ] C 8.854–   8.415   4.866
  0.420   2.438 3.069–

=
'
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The scores of the 7 objects i, computed from these functions, are the following:

Each object is assigned (right-hand column) to the group corresponding to the function
giving it the highest score. The classification table can now be constructed; this is a
contingency table comparing the original group assignment of the objects (from the
second column in table above) to the assignment made from the classification
functions (last column in table above):

Object
number

Observed
group

Function
1

Function
2

Function
3

Assigned
to group

1 1 10.66667 –151.40000 –103.40000 1
2 1 18.66667 –114.60000 –68.46667 1
3 1 10.66667 –147.40000 –88.73334 1
4 2 106.66667 270.20000 242.46666 2
5 2 98.66667 237.40000 222.19999 2
6 3 74.66667 139.00000 161.39998 3
7 3 82.66667 175.80000 196.33331 3

Observed
group

Assigned to group Total and
% correct1 2 3

1 3 0 0 3 (100%)
2 0 2 0 2 (100%)
3 0 0 2 2 (100%)

Total 3 2 2 7 (100%)

Figure 11.13 Ordination diagram of the seven objects (circles) and group centroids (squares) of the example
in the canonical discriminant space.
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In order to compute discriminant functions, the descriptors are standardized at the
start of the analysis:

The remaining calculations are the same as for the identification functions (above):

B = T – W = 

   0   

   0   

The amounts of among-group variation explained by the canonical axes (93.13 and
6.87%) are the same as those obtained above with the unstandardized data.

     0     

Groups = 1 2 3 

X standardized[ ] ' x x–
sx

----------- 1.247– 0.965– 0.965–   0.724   0.724   0.724   1.005
0.642– 0.642– 1.091–   1.605   1.155 0.193– 0.193–

= ='

Centroids[ ] ' 1.059–   0.724   0.865
0.792–   1.380 0.193–

=

T x x–
sx

-----------  x x–
sx

----------- 6.00000 4.13825
4.13825 6.00000

= ='

W   0.05283 0.04217–
0.04217–   0.13462

 0   0 
 0   0.10096

0.03962   0 
0   0 

+ +   0.09246 0.04217–
0.04217–   0.23558

= =

5.90755 4.18042
4.18042 5.76441

l1 106.03086= &1
7 3–( )
3 1–( )

------------------ 106.03086× 212.06171 93.13%( )= =

l2 7.81668= &2 2 7.81668× 15.63336 6.87%( )= =

U 0.91183 0.65630–
0.41057   0.75450

=

U' W
n g–
------------U* +

, - 1 2 0.14578 0
0 0.23221

= C 6.25473 2.82627–
2.81631   3.24918

=
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The raw and standardized data produce exactly the same ordination of the objects and
group centroids. 

The classification functions computed using the standardized descriptors differ
from those reported above for raw data, but the classification table is the same in both
cases.

Computer packages usually have an option for variable selection using forward
entry, backward elimination, or stepwise selection, as in multiple regression
(Subsection 10.3.3). These procedures are useful for selecting only the descriptors that
significantly contribute to discrimination, leaving the others out of the analysis. This
option must be used with caution. As it is the case with any stepwise computation
method, the step-by-step selection of s successively most discriminant descriptors does
not guarantee that they form the most discriminant set of s descriptors.

The following ecological application is an example of multiple discriminant
analysis among groups of observations, using physical and chemical descriptors as
discriminant variables. Steiner et al. (1969) applied discriminant analysis to the
agronomic interpretation of aerial photographs, based upon a densimetric analysis of
different colours.

Ecological application  11.3

Sea ice is an environment with a rich and diversified biota. This is because ice contains a
network of brine cells and channels in which unicellular algae, heterotrophic bacteria, protozoa,
and small metazoa can develop and often reach very high concentrations. Legendre et al. (1991)
investigated the environmental factors controlling the growth of microscopic algae in the sea ice
of southeastern Hudson Bay, Canadian Arctic.

Ice cores were taken at eight sites along a transect that extended from the mouth of the Great
Whale River to saline waters 25 km offshore. Ice thickness ranged from 98 to 125 cm. The cores
were used to determine the crystallographic structure of the ice, at 2 cm intervals from the top to
the bottom of each core, together with several chemical and biological variables (nutrients, algal
pigments, and taxonomic composition of algal assemblages) along the cores. The chemical and
biological variables were determined on melted 10-cm thick sections of the cores; using
crystallographic information, the chemical and biological data were transformed into values per
unit of brine volume. The rate of ice growth for each 10-cm interval of each core was calculated

Groups = 1 2 3 

F = X standardized[ ] C 9.606– 7.845– 9.111–   9.047   7.783   3.985   5.747
  1.438   0.642 0.818–   3.169   1.708 2.672– 3.466–

=
'

Centroids[ ] C 8.854–   8.415   4.866
  0.420   2.438 3.069–

=
'
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by combining the mean daily air temperatures since the start of ice formation with the ice
thickness at the date of sampling. Data on taxonomic composition of the algal assemblages in
the brine cells were analysed as follows: (1) Similarities (%2 similarity; S21, eq. 7.28) were
computed among all pairs of core sections, on the basis of their taxonomic composition. (2) The
similarity matrix was subjected to flexible clustering (Subsection 8.5.10) to identify groups of
core sections that were taxonomically similar. (3) Discriminant analysis was used to determine
which environmental variables best accounted for differences among the groups of core
sections. Chlorophyll a is not a descriptor of the environment but of the ice algae, so that it was
not used as discriminant variable; it is, however, the response variable in the path analysis
mentioned below. Another approach to this question would have been to look directly at the
relationships between the physical and chemical data and the species, using RDA or CCA.

Cluster analysis evidenced five groups among the 10-cm ice sections. The groups were
distributed at various depths in the cores, sometimes forming clusters of up to 5 adjacent ice
sections from within the same core. Discriminant analysis was conducted on standardized
descriptors. The first canonical variate accounted for 62% of the variation among groups, and
the second one 29%. 

The standardized canonical coefficients for the first two canonical variates (Table 11.9)
indicate that the environmental descriptors that best accounted for the among-group variation
were the rate of ice growth (first variate) and nitrate (second variate). Figure 11.14 shows the
position of the centroids of the 5 groups of core sections, plotted in the space of the first two
canonical axes, with an indication of the role played by the environmental variables in
discriminating among the groups of core sections. According to the figure, the groups of core
sections are distributed along two gradients, one dominated by ice growth rate (with groups 1, 3
and 5 in faster-growing ice) and the other by nitrate (with group 1 in low-nitrate and group 5 in
high-nitrate environments). These results are consistent with those of a path analysis
(Section 10.4) conducted on the same data, showing that algal biomass (chl a) was inversely
related to the rate of ice growth. The paper concluded that slower ice growth favoured the
colonization of brine cells by microalgae (path analysis) and that the rate of ice growth had a
selective effect on taxa, with nutrient limitation playing a secondary role in some brine cells
(discriminant analysis).

Table 11.9 Standardized canonical coefficients for the first two canonical variates.

Discriminant variable Canonical variate 1 Canonical variate 2

Nitrate –0.63 0.69

Phosphate 0.55 –0.08

Silicate 0.29 0.44

Rate of ice growth 0.89 0.54
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11.4 Canonical correlation analysis (CCorA)

Canonical correlation analysis (CCorA; Hotelling, 1936), differs from redundancy
analysis (RDA) in the same way as linear correlation differs from simple linear
regression (Box 10.1). In CCorA, the two matrices under consideration are treated in a
symmetric way whereas, in RDA, the Y matrix is considered to be dependent on an
explanatory matrix X. The algebraic consequence is that, in CCorA, the matrix whose
eigenvalues and eigenvectors are sought (eq. 11.48) is constructed from all four parts
of eq. 11.1 whereas, in the asymmetric RDA method, eq. 11.8 does not contain the
SYY matrix.

In CCorA, the objects (sites) under study are described by two sets of quantitative
descriptors between which a general form of correlation is sought; for example, a first
set Y1 of p1 chemical and a second set Y2 of p2 geomorphological descriptors of the
sampling sites. The dispersion matrix S of these p1 + p2 descriptors contains four sub-
matrices, as in eq. 11.1:

S = (11.46)

Figure 11.14 Centroids of the five groups of taxonomically similar core sections plotted along the first two
canonical axes. Insert: contributions (from Table 11.9) of the four environmental variables
(arrows) to the formation of the canonical axes. The groups of core sections are distributed along
two gradients, one dominated by ice growth (groups 4, 2 and 3), the other by nitrate (groups 1, 3
and 5). Modified from Legendre et al. (1991).
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The data matrices are designated Y1 and Y2, instead of Y and X, to emphasize the fact
that the two matrices play equivalent roles in CCorA. Matrices Y1 and Y2 are
designates by numbers (1, 2) to simplify the writing in the present section. Submatrices
S11 (order p1×p1) and S22 (order p2×p2), represent, respectively, the covariance
matrices of Y1 and Y2, whereas S12 (order p1×p2) and its transpose S'12 = S21 (order
p2×p1) represent the covariance matrix between the two sets of descriptors. 

Gittins (1985) presents a comprehensive review of the theory and applications of
CCorA in ecology. CCorA has limited applications nowadays because many two-
matrix problems encountered in ecology are asymmetric and should be analysed by
RDA (Section 11.1) or CCA (Section 11.2), whereas symmetric analyses are often
conducted using the more flexible method of co-inertia analysis (Section 11.5).

1 — The algebra of canonical correlation analysis

Consider two response data sets Y1 (n×p1) and Y2 (n×p2), containing different
variables about the same objects. They are to be related and compared in an analysis.
CCorA does not invoke the directional hypothesis that Y1 may influence Y2 or the
opposite. 

The correlation coefficient between two variables is computed as rjk = sjk/(sjsk)
(eq. 4.7). Matrix K is constructed like a correlation coefficient:

K =  (11.47)

K summarizes the correlation structure between data matrices Y1 and Y2. In this
equation,  is the inverse of the Cholesky root* of S11, and similarly for . K
would be identical if computed from correlation matrices R11, R12 and R22; this is
why the same eigenvalues and eigenvectors are found in CCorA based on either
covariance (raw data) or correlation matrices (standardized data). In this symmetric
analysis, matrix K would be transposed if computed after inverting the roles of Y1 and
Y2 in the equation. The algebra in the present section applies equally well to S
matrices defined as matrices of sums of squares and cross products (SYY = Y'Y) or
dispersion (variance-covariance) matrices (SYY = (1/(n – 1)) Y'Y).

The canonical correlation approach consists in maximizing the between-set
dispersion with respect to the two within-set dispersions. The expression to be
optimized is  since  does not exist in matrix algebra.

*  The Cholesky root of a matrix A is an upper triangular matrix L such that L'L = A. Cholesky
factorization is easier than computing the true square root of A using eq. 2.29.

S'11
0.5– S12S22

0.5–

S11
0.5– S22

0.5–

S12S22
1– S'12 S11

1– S12S'12 S11 S22
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Finding solutions to this optimization problem calls for eigenvalues and eigenvectors.
Canonical eigenvalues are obtained by solving the characteristic equation:

(11.48)

In this equation,  is an asymmetric matrix, as was that of numerical
example 2 in Section 2.9. Its eigenvalues can be used in turn in the following equation,
which results from the multiplication of the left and right members of eq. 11.48 by S11:

(11.49)

This equation is used to estimate the matrix of eigenvectors V = [vk] of the first data
set. Because the analysis is symmetric, the same non-zero eigenvalues are found in the
solution of the following equation, which is the dual of eq. 11.48:

(11.50)

The eigenvalues are now used in the following equation, which results from the
multiplication of both sides of eq. 11.50 by S22:

(11.51)

This equation is used to estimate the matrix of eigenvectors U = [uk] of the second
data set. Matrix U is also the matrix of eigenvectors of K'K whereas V is the matrix of
eigenvectors of KK'.

Equations 11.49 and 11.51 cannot be solved using regular eigenvalue
decomposition as described in Section 2.9. So in practice, the solution is found by
singular value decomposition of K (SVD, Section 2.11):

K(p1×p2) = V(p1×c) W(diagonal, c×c) U' (c×p2)* (11.52)

The canonical correlations (rk) are the singular values found on the diagonal of W. The
eigenvalues are the squared singular values, so the diagonal matrix of eigenvalues is:

 = W2

The eigenvalues found here are the same as those of eqs. 11.48 to 11.51. The rank of
the solution (i.e. the number of canonical axes) is equal to the number, c, of
eigenvalues larger than 0, where c ( min(p1, p2).

*  As explained in Section 2.11, the symbolism for SVD used in this book differs from that of the
R language. Matrix V is component $u of the output object of R function svd() while matrix U is
component $v.

S12S22
1– S'12 S11

1–
&kI– 0=
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1– S'12 S11

1–

S12S22
1– S'12 &kS11–( ) vk 0=

S'12 S11
1– S12S22

1–
&kI– 0=

S'12 S11
1– S12 &kS22–( ) uk 0=

''''
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The canonical coefficients give the contributions of the two sets of variables to the
canonical axes. They are computed as follows:

CoeffY1 = (11.53)

CoeffY2 = (11.54)

The scores of the objects on the canonical axes form matrices CY1 and CY2, called
the canonical variates. These matrices, with order (n×c), are computed as follows:

CY1 = Y1CoeffY1 = Y1 (11.55)

CY2 = Y2CoeffY2 = Y2 (11.56)

The canonical correlations found above are the Pearson correlations between the
object scores in corresponding columns of CY1 and CY2. The interpoint distances in
the canonical space are Mahalanobis distances. Indeed, CCorA of a data set by itself
produces identical matrices CY1 and CY2; in these matrices, the Euclidean distances
among objects are the Mahalanobis distances (D5, eq. 7.38) among the objects in the
original data matrices.

The variables of both sets are drawn in the canonical space using correlation
matrices computed as follows:

plot variables Y1 in space Y1 using cor(Y1,CY1) (11.57)

plot variables Y2 in space Y2 using cor(Y2,CY2) (11.58)

One could also plot the variables of one set in the space of the other set, although this
is rarely done:

plot variables Y1 in space Y2 using cor(Y1,CY2)  

plot variables Y2 in space Y1 using cor(Y2,CY1)

These equations explain why analyses based upon unstandardized or standardized
descriptors produce CCorA biplots with the same projections of the objects and
variables: the projections of the objects are the same because the covariance matrices,
which differ between unstandardized and standardized descriptors, are included in
eqs. 11.55 and 11.56, and the projections of the variables are computed using
correlations (eqs. 11.57 and 11.58), which are the same for unstandardized and
standardized descriptors.
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2 — Statistics in canonical correlation analysis

Several statistics derived from multivariate analysis of variance (MANOVA) can be
used to test the significance of the canonical correlation between two matrices. The
most commonly used is Wilks’ Lambda likelihood ratio test, which is also used in
discriminant analysis (eq. 11.42). These statistics may provide diverging diagnostics
especially when they are tested parametrically. Pillai & Hsu (1979) showed that
Pillai’s trace (V) is quite robust to non-normality; it also performs well in MANOVA. It
is computed as follows:

V = trace( ) = sum of the canonical eigenvalues (11.59)

For normal data, V can be tested parametrically with reference to the F-distribution.
For non-normal data, a permutation test of V is available in VEGAN's function CCorA()
in addition to the parametric test. For that test, the rows of either Y1 or Y2 are
permuted, S12 is recomputed using the permuted data, and V = trace( ) is
recomputed. This operation is repeated a large number of times to obtain the sampling
distribution of V under H0.

When one of the matrices only contains one descriptor (p1 = 1 and p2 > 1 for
example), there is only one positive eigenvalue. The canonical correlation problem
reduces to the problem of finding the linear combination of variables in Y2 that is
maximally correlated with the single variable y1; this is simply a problem of multiple
correlation (Subsection 4.5.1). The general equation from which eigenvalues are
computed in eq. 11.48 simplifies to:

(11.60)

where s12 is a vector of covariances. This equation corresponds to that of multiple
correlation (eq. 4.31), expressed in Chapter 4 in terms of r instead of s. Finally, when
the two sets contain only one descriptor each (p1 = p2 = 1), eq. 11.60 becomes:

(11.61)

which is the formula for the square of the Pearson linear correlation (eq. 4.7). The
parametric F-test of Pillai’s trace gives the exact same p-value as the test of the
Pearson correlation coefficient in that case.

3 — Applications of CCorA

CCorA cannot handle data sets with p1 or p2 greater than (n – 1) because the
covariance matrices S11 and S22 must be inverted (eqs. 11.48 to 11.51). This precludes
the analysis of community composition data that contain more species than sites.
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The interpretation of canonical correlation analyses is more difficult than that of
other multidimensional analyses. The main use of this technique is to test the
significance of the correlation between two multidimensional data sets, then explore
the structure of the data by computing the correlations (which are the square roots of
the CCorA eigenvalues) that can be found between linear functions of two groups of
descriptors (Kendall & Stuart, 1966). The detailed (graphical) study of pairs of
eigenvectors is usually restricted to the first few canonical correlations, although
Blackith & Reyment (1971) give an example taken from Blackith & Albrecht (1959)
where the lowest canonical correlations were of interest; the corresponding canonical
eigenvectors made it possible to isolate a “phase” vector in locusts which was
independent of the “size” vector. 

When using CCorA, one should remember that strong canonical correlations do not
necessarily mean that the corresponding vectors of ordination scores CY1 and CY2
explain a large fraction of the variation in Y1 or Y2; indeed, strong canonical
correlations may be produced between members of a pair of canonical variates that
may not explain large portions of the variance of the two data sets. Redundancy
coefficients are used in CCorA to measure the proportion of the variance of Y1 (or Y2)
that is explained by a linear combination of the variables in Y2 (or Y1); they should
always be computed together with canonical correlations to help interpret them
(Stewart & Love, 1968).

Ecological application  11.4

The Doubs river data of Verneaux (1973) were described and analysed by variation partitioning
in Ecological application 11.1a. In the present example, CCorA is used to compare 3 geographic
and topographic (linear distance from the source along the course of the river, slope, mean
minimum discharge) to 7 water chemistry variables (pH, hardness, concentrations of phosphate
(PO4), nitrate (NO3), ammonia (NH4) and dissolved oxygen (O2), and biological oxygen
demand (BOD)) observed at 30 sites along the main course of the river. A similar analysis is
presented by Borcard et al. (2011), where one topographic variable differs from the present
analysis and some of the variables are pre-transformed to make their distributions more
symmetrical.

The data sets individually explain fairly well the variation in fish assemblages along the
river: a RDA of the Hellinger-transformed fish abundances by geography and topography (site 8
removed, where no fish were captured) produced  = 0.45, whereas a RDA of fish by
chemistry produced  = 0.47. The present analysis will try to determine to what extent the
water chemistry variables are correlated with the geographic and topographic variables.

Pillai’s trace (V = 1.54387) is very highly significant, which shows that there is a significant
correlation between the two groups of variables. RDA of geography and topography on
chemistry produced a very high  of 0.49, whereas the opposite analysis, RDA of chemistry
by geography and topography, produced a fairly high  of 0.29. The canonical correlations are
high on the first two canonical axes: 0.93 for axis 1 and 0.72 for axis 2. 

Two biplots (Fig. 11.15) show the canonical relationships. In both biplots, the sites are
clearly divided between sites 1-15 on the left (highest portion of the river), associated with high
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values of slope in Fig. 11.15a and O2 in Fig. 11.15b, and sites 16-30 on the right (lowest portion
of the river) which are associated with high values of distance from the source and discharge in
Fig. 11.15a and BOD, NH4, PO4, NO3 and hardness in Fig. 11.15b.

11.5 Co-inertia (CoIA) and Procrustes (Proc) analyses

Co-inertia analysis (CoIA) is an alternative to canonical correlation analysis,; it was
proposed by Dolédec & Chessel (1994) to search for common structures between two
data sets describing the same objects.The method is closely related to Procrustes
analysis (Proc), described below. CoIA and Proc are symmetric forms of analysis,
meaning that they are appropriate when either data set can be equally used as Y1 or Y2
in the analysis. This characteristic distinguishes the symmetric canonical ordination
methods (CCorA, CoIA, Proc) from the asymmetric methods (RDA, CCA, LDA). 

In CoIA, the variables of both data sets are projected onto the axes obtained by
eigen-analysis of the cross-set covariance matrix. Various transformations can be used
to correctly model the structure in each data set prior to CoIA (Dray et al., 2003).

Figure 11.15 (a) CCorA biplot of the sites and the geographic and topographic variables, canonical axes 1 and
2. (b) Biplot of the sites and the water chemistry variables, same canonical axes. Results
computed using function CCorA() of the VEGAN package. The sites are drawn in the graph using
the lower and left-hand scales whereas the variables are positioned using the top and right-hand
scales. 
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1 — The algebra of co-inertia analysis (CoIA)

Consider two response data sets Y1 (n × p1) and Y2 (n × p2), containing different
variables about the same n objects. The analysis will relate and compare the two sets.
Like CCorA, CoIA does not invoke the directional hypothesis that Y1 may influence
Y2, or the opposite. CoIA is compared to canonical correlation analysis (CCorA) in
Subsection 11.5.3.

The analysis for two data sets is conducted as follows: 

• Compute the covariance matrix crossing the variables of the two data sets. The sum
of the squared covariances is the total co-inertia. Compute the eigenvalues and
eigenvectors of that matrix. The eigenvalues represent a partitioning of the total co-
inertia.

• Project the objects and variables of the two original data sets on the co-inertia axes.
Different graphs are produced to compare the projections of the two data sets in the
common co-inertia space.

Here is the algebraic development. Co-inertia analysis is implemented in R by the
ADE4 function coinertia(), and some of its computational details are mentioned below
to clarify what the function does. Compute the matrix of covariances crossing the two
data sets Y1 (n × p1) and Y2 (n × p2):

(11.62)

The notation Y1.cent and Y2.cent indicates that the two matrices are centred to have
column means of 0 before computing Cov12. Cov12 is matrix S12 of Subsection 11.5.1.
Compute the singular value decomposition (Section 2.11) of Cov12, with the following
result:

Cov12 (p1 × p2) = V (p1 × c) W(diagonal, c × c) U' (c × p2) (11.63)

The value c is defined a few lines down. As mentioned above, the total co-inertia is the
sum of the squared covariances in Cov12. It is partitioned among the CoIA
eigenvalues, which are the squares of the singular values found on the diagonal of W.
So, the diagonal matrix of eigenvalues is:

'''' = W2 (11.64)

One could have carried out an eigen-decomposition of Cov12' Cov12 =  or
Cov12Cov12' = , instead of a SVD of Cov12: the eigenvalues of these
decompositions are the same as those found by squaring the singular values in W; the
matrix of eigenvectors of Cov12' Cov12 is matrix U whereas that of Cov12Cov12' is
matrix V. The rank of the solution (i.e. the number of co-inertia axes) is equal to the
number (c) of eigenvalues larger than 0, where c ( min(p1, p2).

Total 
co-inertia

Cov12
1

n 1–
------------Y'1.centY2.cent=

S'12 S12
S12S'12
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The objective of co-inertia analysis is to project the objects and variables of the two
data sets onto this common multivariate space and compare their positions. This is
done as follows.

• To obtain the positions of the objects of Y1 in the common space, compute F1 =
Y1.centV, then normalize each column of F1 to length 1 (eq. 2.7). Multiply the resulting
matrix by  and by ''''1/2. As a result, column k of F1 has variance &k; this
preserves the Euclidean distance among the objects as in PCA scaling type 1. Proceed
in the same way for the second data set: compute F2 = Y2.centU, then normalize F2 and
multiply by  and by ''''1/2. Use the normalized F1 and F2 to construct a single
plot showing the two sets of objects; add arrows going from the representation of each
object in F1 to the representation of the corresponding object in F2; invert the order of
the input data sets to obtain arrows going in the other direction. The objects that have
very close representations (i.e. short arrows) in the joint plot contribute more to the co-
inertia (overall similarity) between the data sets than objects that are linked by long
arrows; see the ecological application below. One may choose to further norm the
columns of F1 and F2 to variances of 1 and use the resulting matrices for plotting, thus
preserving the Mahalanobis distances among objects in the joint plot; this is done in
ADE4 function coinertia(), as discussed in the notes below.

• Project the variables of Y1 and Y2 onto the canonical axes: draw arrows anchored at
the zero-origin of the plot using the coordinates provided by matrices V for the
variables of Y1 and U for the variables of Y2.

Function coinertia() of ADE4 carries out the computation slightly differently from the
description above. The differences are mentioned here to allow comparison between the results
obtained with the above equations and those of the ADE4 function. 

• In coinertia(), the covariance matrix is computed as . 

• Function coinertia() was designed to handle data sets where the rows within each set may have
different weights, representing for instance different sizes of sampling units or different row
sums of abundances in CA. CoIA requires, however, that the weights be the same for F1 and F2;
the row weights are scaled to sum to 1. In coinertia(), the lengths of the column vectors are
computed with these row weights. When the weights are all equal, this amounts to multiplying
all values in F1 and F2 by ; the column vectors normalized in that way have lengths of .
For equal row weights, this multiplication has no incidence on the joint plot other than changing
the numerical scales along the axes of the graph.

• The final normalization of matrices F1 and F2 to variances equal to the respective eigenvalues
is not done in function coinertia(). With equal row weights, the vectors in F1 and F2 are
normalized to constant lengths of  (or variance = 1); this preserves the Mahalanobis distance
among objects as in PCA scaling type 2. Compared to scaling type 1, this operation shrinks the
objects along axis 1 and stretches them along axis 2. The plot no longer preserves the Euclidean
distances among objects, but the two sets of objects are more easily represented into a square
plot and the arrows joining the corresponding objects are more easily seen. Co-inertia plots
resulting from different pre-treatments of the data sets, e.g. a PCA and a PCoA, are also easier to
read.

n 1–

n 1–

Cov21
1
n
---Y'2.centY1.cent=
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• Function coinertia() requires the prior computation of separate ordinations, one for Y1 and the
other for Y2, using a dudi.xxx() function. The raw data are included in the dudi.xxx() output
lists. The coinertia() function retrieves them from these output objects to compute the
covariance matrix. For ordinary data sets or community composition data pre-transformed using
for instance the Hellinger transformation, use dudi.pca(). To apply a distance function other than
the Euclidean distance, use dudi.pco() which carries out principal coordinate analysis (PCoA).

• Function coinertia() also produces graphs of the principal axes of the two data sets Y1 and Y2.
These additional graphs, which are not an essential part of co-inertia analysis, indicate how the
principal axes of Y1 and Y2 are related to the axes of the common co-inertia solution.

Data may have to be transformed prior to co-inertia analysis: standardize the data
(eq. 1.12) if a set contains variables expressed in different physical units, or carry out a
Hellinger, chord, or chi-square transformation (Section 7.7) for presence-absence or
abundance community composition data with many zeros. No transformation is
required if the Euclidean distance among objects is to be preserved. 

Else, compute distance matrices D1 and D2 using distance coefficients appropriate
to each type of data (Chapter 7). Carry out a principal coordinate analysis (PCoA,
Section 9.3) of each D matrix and obtain tables of principal coordinates PC1 and PC2.
If negative eigenvalues are present, retain only the axes corresponding to the positive
eigenvalues, or apply a correction method to make all eigenvalues positive
(Subsection 9.3.4). Use matrices PC1 and PC2 as input into co-inertia analysis.

Note that if the preliminary analysis incorporates vectors of row weights (row
weight can be imposed in functions dudi.pca() and dudi.pco() of ADE4), CoIA requires
that the weights must be the same for both data sets, a condition that precludes using
CoIA with the results of two correspondence analyses (CA). Indeed, CA is a weighted
regression method, and the row weights differ between data sets since they depend on
the data in each matrix. Applying one or the other vector of weights to both data sets
would lead to different CoIA solutions, and there seems to be no logical way of
deciding between these two solutions. Co-correspondence analysis (ter Braak &
Schaffers, 2004) offers a way to handle that problem; it is available in function
cocorresp() of package COCORRESP. Another way of producing an analysis of two
community composition data sets that preserves chi-square distances (eq. 7.55) is to
apply a chi-square transformation (eq. 7.70) to each table and use them as input into
CoIA; with ADE4, pre-process these tables using dudi.pca(). 

Two overall statistics of co-inertia are available. The first one is the RV coefficient
(Escoufier, 1973; Robert & Escoufier, 1976), which is a multivariate generalization of
the Pearson correlation coefficient; for two vectors x1 and x2, RV(x1,x2) = cor(x1,x2)2.
The second one is the Procrustes statistic described in the next subsection. Coefficient
RV is computed as follows for two rectangular data matrices with corresponding
objects as rows, centred to column means of 0:

(11.65)

RV
coefficient

RV Y1 Y2,( )
trace Y1Y'1Y2Y'2( )

trace Y1Y'1Y1Y'1( ) trace Y2Y'2Y2Y'2( )
-------------------------------------------------------------------------------------------------------=
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The RV coefficient can also be computed from the matrices of sums of squares and
cross-products SS12 = Y1'Y2, SS11 = Y1'Y1, and SS22 = Y2'Y2:

(11.66)

where the notation  means that each element of SS12 is squared before
summation. Significance of the RV coefficient can be tested by permutation (Heo &
Gabriel, 1998) or parametrically (Josse et al., 2008). The null hypothesis of the test is:
the two data sets are no more related than random data sets would be; this is the same
kind of null hypothesis as in correlation analysis.

Ecological application  11.5, part 1

Oribatid mites (Acari: Oribatida) are a very diversified group of small (0.2 to 1.2 mm) soil-
dwelling arthropods. In June 1989, Daniel Borcard collected 70 soil cores from the peat blanket
of a bog lake on the territory of Station de biologie des Laurentides of Université de Montréal,
Québec, Canada. During the following weeks, he extracted, identified, and counted 9800
individuals found therein, which he separated into 35 morphospecies. The mite and
environmental data are fully described in a paper by Borcard & Legendre (1994); the data set is
available in the VEGAN and ADE4 R packages. For the present ecological application,
Dr. Borcard divided the species into a group of 23 panphytophagous species, which eat
vegetation debris (most of their regime) as well as algae, fungi, spores, pollen grains, and
bacteria, and 12 microphagous species which feed mostly on algae, fungi, spores, and pollen
grains. The presence of vegetation debris in the diet of the panphytophagous species
differentiates the two groups, which were almost equally represented in the data sets: there were
5667 panphytophagous and 4133 microphagous individuals.

The two data sets, which were considered to represent different communities, were
Hellinger-transformed (eq. 7.69) separately, then subjected to co-inertia analysis using the ADE4
function coinertia(). All row weights were equal. The RV coefficient (RV = 0.36038) was highly
significant (p = 0.0001 after 9999 permutations), indicating a strong relationship between the
two data sets. The first two canonical axes represented respectively 83% and 10% of the co-
inertia. Figure 11.16a shows the 70 sites from the two data sets projected in the co-inertia space
and linked by arrows (tail of each arrow = panphytophagous, head = microphagous). The low-
numbered sites were physically located near the margin of the forest surrounding the bog lake
whereas the high-numbered sites were near the free water portion of the bog. In Fig. 11.16a,
most sites are equally distant from the origin of the plot and their arrows have about the same
lengths, showing that they contribute fairly equally to the total co-inertia; only a few sites, with
high site numbers, have long arrows. Panels b and c show that most of the 12 microphagous
species contribute to the dispersion of the sites in the co-inertia plane (long arrows), whereas
only 4 or 5 of the 23 panphytophagous species contribute strongly to that dispersion. 

Two mite species associations were identified by Legendre (2005). It is interesting to note
that the species with fairly long arrows (important contributions) in Fig. 11.16 (panels b and c),
found in the same quadrant of the two species projections, also belong to the same species
association: species 9, 31, 34 and 35 in quadrant 1, species 1, 10 and 15 in quadrant 2, species
13, 14 and 27 that point left along axis 1, species 7 and 11 in quadrant 3, and species 16 and 23

RV Y1 Y2,( )
sum SS12

2( )
( )

sum SS11
2( )

( ) sum SS22
2( )

( )
-----------------------------------------------------------------=

SS12
2( )

Permutation
test
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Figure 11.16 Results of co-inertia analysis of the mite data. (a) Joint site plot for the two sets of objects
represented in the plane of canonical axes 1 and 2, which accounts for 93% of the total co-
inertia. Arrows link objects from set 1 (panphytophagous species at the arrow tails) to the
corresponding objects from set 2 (microphagous species at the arrow heads). (b) Projection of
the panphytophagous and (c) of the microphagous species onto the co-inertia plane. Figure
produced by the plot.coinertia() function of ADE4, then modified using a graphics editor.
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in quadrant 4. In addition, a majority of the panphytophagous species point toward the left-hand
site of their plot (panel b), where, in panel a, are found the sites that are closer to the forest and
contain coarser vegetation debris. 

Interestingly, site-species associations are also identifiable in Fig. 11.16. For example,
species 16 (in panel b) and 23 (in panel c) dominate the communities in sites 38, 43, 44, 59 and
67. These site-species associations can be verified in the matrices of Hellinger-transformed mite
data. 

It is also interesting to look at arrow directions in panel (a): for most of the low-numbered
sites (with the exceptions of sites 1 to 4, 9 and 15), the arrows point from left to right, indicating
that the panphytophagous species put these sites at larger distances from the other sites than the
microphytophagous species do. So for these sites, the panphytophagous species contribute more
to beta diversity than the microphytophagous species. Indeed, for sites 5-8, 10-14 and 16-29, the
sum of the variances of the Hellinger-transformed data, which is a measure of beta diversity
(Legendre et al., 2005), is 0.25638 for the panphytophagous and 0.13374 for the
microphytophagous species. This method of calculation produces a value of 1 when the sites
have completely different species compositions; this corresponds to the situation where beta
diversity is maximum (Subsection 6.5.3).

Co-inertia analysis is appropriate to compare pairs of data sets that play equivalent
roles in the analysis. The method finds a common space onto which the objects and
variables of these data sets can be projected and compared. The analysis may, for
example, concern two segments of the species forming an ecological community (as in
Ecological application 11.5, part 1). One could also compare data sets representing the
physical or biological characteristics of organisms (individuals, species) to their
behavioural characteristics. Moretti & Legg (2009) used co-inertia analysis to compare
plant and invertebrate animal functional traits across forest sites with different fire and
cutting histories. Several other examples are described in Dray et al. (2003).
Compared to CCorA, co-inertia analysis imposes no constraint regarding the number
of variables in the two sets, so that it can be used to compare ecological communities
even when they are species-rich; see the comparison of methods in Subsection 11.5.3. 

Co-inertia analysis is not well-suited, however, to analyse pairs of data sets that
contain the same variables, because the analysis does not establish one-to-one
correspondences between variables in the two data sets; the method does not ‘know’
that the first variable is the same in the first and the second data sets, and likewise for
the other variables. Data of that type are found in before-after (BA) or control-impact
(CI) studies. When the two data sets contain most or all of the same species, they can
be analysed by placing the data ‘before’ on top of those ‘after’ in a joint data file, and
computing a PCA of the combined data; the before-after pairs can then be linked by
arrows in the common PCA ordination graph. Else, the difference between the two
sections of the data table can be tested by RDA for the effect of a ‘before-after’ factor,
in the presence of covariables representing the pairing of the sampling sites; see
Analysis of related samples in Subsection 11.1.10, point 3. For data of that type, the
RDA test has greater power to detect a difference than a co-inertia test because it uses
the information more efficiently. The null hypothesis of the RDA test is H0: there is no
difference between ‘before’ and ‘after’ for data described by the same variables,
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whereas the null hypothesis in CoIA is H0: the two data sets have no more co-inertia
structure than random data sets would have, without any reference to the variables
being the same in the two data sets.

Multiple factor analysis (MFA) can be used to compare several data sets describing
the same objects (Escofier & Pagès, 1994). MFA consists in projecting objects and
variables of two or more data sets on a global PCA, computed from all data sets, in
which the sets receive equal weights. For the comparison of two data sets, the algebra
of MFA differs from that of CoIA. This method is implemented in functions mfa() of
ADE4 and MFA() of FACTOMINER; the latter offers more options. A summary of the
theory as well as an ecological application are presented in Section 6.10 of Borcard et
al. (2011).

2 — Symmetric Procrustes analysis (Proc)

Co-inertia analysis is closely related to the orthogonal Procrustes analysis of two data
sets. The orthogonal Procrustes problem was first formulated by Hurley & Cattell
(1962) who called their computer program PROCRUSTES after the villain of Greek
mythology*; later authors referred to the method by that name. The problem consists in
finding the best superposition of two sets of corresponding objects (i.e. the n objects of
the two sets are the same) by rotation and mirror reflection, if necessary, of one of the
data sets with respect to the other, in such a way as to minimize the sum of squared
distances between the corresponding objects. A general least-squares solution was
described by Schönemann (1966) and Schönemann & Carroll (1970) and perfected by
Gower (1971b). The Procrustes rotation solution can be asymmetric, meaning that one
matrix is rotated to maximum fit while the other is kept fixed, or symmetric in the
sense described below. 

In symmetric Procrustes rotation, described here, each of the two data sets, Y1
(n × p1) and Y2 (n × p2), is standardized to have its total variance equal to 1 prior to
rotation. This is obtained by Gower’s standardization (Gower, 1971b), which consists
in dividing each value in a column-centred data matrix by the square root of the total
variance of the matrix, which is also the square root of the sum of its eigenvalues. The
covariance of the two Gower-standardized matrices, Y1.Gower and Y2.Gower, is then
computed using the same covariance formula as in co-inertia analysis
(Subsection 11.5.1):

(11.67)

Note that co-inertia analysis (Subsection 11.5.1) of two Gower-standardized matrices
produces the same relative eigenvalues, RV coefficient, and plots, as the CoIA of the

*  For a brief description of the story of Procrustes in Greek mythology, see the first paragraph of
Subsection 10.5.4.
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original data sets. Procrustes analysis differs from co-inertia analysis in that it uses
different output matrices for the joint plot of the two sets of objects.

The singular values of Cov12 are computed by singular value decomposition
(Section 2.11):

Cov12 (p1 × p2) = V (p1 × c) W(diagonal, c × c) U' (c × p2) (11.68)

and the trace of W is computed:

TraceW = .(singular values) (11.69)

The singular values are the diagonal values of W. Because singular values are positive
or null, TraceW is non-negative. The Procrustes residual sum-of-squares statistic
(Gower, 1971b, 1975*; Davis, 1978) is 

m12
2 = 1 – TraceW2 (11.70)

Following that, the rotation matrix that provides the best adjustment of the objects of
Y2 to the objects of Y1 is computed as:

H = UV' (11.71)

The rotated matrix Y2.rot is computed as follows: 

Y2.rot = traceW Y2.Gower H (11.72)

where traceW acts as a scaling factor. The Procrustes analysis is called symmetric
when the two data sets are subjected to Gower standardization; it remains asymmetric
in the fact that Y2.Gower is projected after optimal rotation (Y2.rot) onto Y1.Gower.
Objects are plotted on a graph using matrices Y1.Gower and Y2.rot . It is thus more
interesting (but not compulsory) in most instances to start Procrustes analysis with a
matrix Y1.ord that represents an ordination of Y1, e.g. by PCA or PCoA. Differences in
positions between corresponding objects of the two data sets can be interpreted as in
co-inertia analysis (Subsection 11.5.1).

For permutation testing, one can use either the m12
2 statistic, or its complement the

Procrustes R2 = (1 – m12
2) = TraceW2, or else TraceW. The latter is a Procrustean form

of the correlation coefficient; its value is always positive or null. This permutation test,
called PROTEST (Jackson, 1995; Peres-Neto & Jackson, 2001), is available in VEGAN’s
protest() function described in Subsection 10.5.4. It tests the same hypothesis as the
test of the RV coefficient in CoIA. Two-matrix (or Classical) Procrustes rotation has
been extended to m matrices in Generalized Procrustes analysis (Gower, 1975).

*   Gower called the residual sum of squares statistic R2 in 1971b and m12
2 in his 1975 paper.
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Symmetric Procrustes analysis is appropriate for the same types of questions as co-
inertia analysis, the difference between the two methods residing in the matrices used
to plot the objects. Likewise, the situations where symmetric Procrustes analysis is
inappropriate are the same as for CoIA analysis. Procrustes analysis is also appropriate
to compare the results of ordinations derived from two sets of distances, for example
the distances computed among sets of morphological landmarks (which form the data
rows) measured on two organisms, or ordinations obtained by different methods,
e.g. PCA and CA of the same data; no test of significance is possible in that case,
however, because the original data are the same in the two ordinations.

Ecological application  11.5, part 2

The mite data used to illustrate co-inertia analysis (Subsection 11.5.1) were subjected to a
symmetric Procrustes rotation using VEGAN’s function procrustes(). Principal components of the
Hellinger-transformed panphytophagous species were compared to the rotated (Hellinger-
transformed) microphagous species. The value of TraceW, which is used as the test statistic in
PROTEST (Subsection 10.5.4), was 0.53994; the test was highly significant (p = 0.0001 after
9999 permutations). Figure 11.17 illustrates the symmetric Procrustes rotation results. Note that
the axes of the graph are not the canonical axes of the co-inertia analysis, Fig. 11.16. The rotated
vectors (species in this example) of the microphagous data set are shown as crossed hairs with
numbers in the centre of the plot.

3 — Canonical correlation, Procrustes, or co-inertia analysis?

Which method should be used for symmetric analysis of two data sets? Table 11.10
compares the properties and requirements of canonical correlation analysis, on the one
hand, to those of co-inertia and Procrustes analyses, on the other hand. A particularly
interesting feature of CoIA and Proc, compared to CCorA, is that they allow the joint
analysis of two community composition data sets with more species than there are
sites. In addition, as in PCA, collinearity among the variables in one or the other data
sets produces no problem in CoIA and Proc. This is not the case in CCorA where
collinearity may prevent the computation of the inverses of the covariance matrices of
the separate data sets, and .

Note that CoIA carried out between two sets of principal components or principal
coordinates is not equivalent to CCorA of these same matrices: the eigenvalues and
eigenvectors of the two-table analyses are not the same. The reason is that S11 and S22
are diagonal matrices of eigenvalues in that case, not identity matrices I, so that the
matrix [ ], which is decomposed in CCorA (eq. 11.48), is not equal to
matrix  which is subjected to eigen-decomposition in CoIA.

S11
1– S22

1–

S12S22
1– S'12 S11

1–
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11.6 Canonical analysis of community composition data

In early numerical ecology papers, canonical correlation analysis and discriminant
analysis were used to analyse tables of species presence/absence or abundance data. In
many applications, however, the assumptions of linearity and the algebraic constraints
imposed by the models make these methods unsuitable for such data. RDA and CCA
provide alternatives that are often more appropriate. Let us consider different types of
situations that may involve species data.

Figure 11.17 Results of symmetric Procrustes rotation of the mite data showing the two sets of objects along
axes 1 and 2. Arrows link objects (numbers in boxes) from set 1 (principal components of the
panphytophagous species at the arrow tails) to the corresponding objects from set 2
(microphagous species at the arrow heads). The plot was produced by VEGAN’s function
plot.procrustes().
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1. Species in Y. — The first case involves a matrix Y of species presence-absence or
abundance data and a matrix X of habitat characteristics. One may wish to find support
for the ecological hypothesis of environmental control of the species distributions
(Whittaker, 1956; Bray & Curtis, 1957), and/or describe in what way the species are
related to the environmental variables. The analysis is not symmetric; the species
clearly form the response variables, to be explained by the environmental variables.
Hence a symmetric form of analysis such as CCorA or CoIA is not appropriate; one
should rely instead on the asymmetric forms of analysis, RDA and CCA. 

In some applications, it is interesting to compare two groups of species found
together at a series of sampling sites. There are often more species than sites when
these analyses involve species-rich communities. CCorA is unable to analyse such
data because it cannot handle more variables in any one of the data sets than there are
sites minus 1. Rare species would have to be dropped from the analysis to satisfy the
requirements of the method. Co-inertia and Procrustes analyses do not have this
limitation and can be used for this type of analysis.

Table 11.10 Comparison of canonical correlation analysis (CCorA), on the one hand, to co-inertia analysis
(CoIA) and symmetric Procrustes analysis (Proc), on the other.

CCorA CoIA, Proc

Matrix sizes p1 and p2 < n No constraint

Physical dimensions The variables in each set are All variables in each set must have
standardized in CCorA the same physical dimensions*

Eigen-analysis of …  (or SVD of SS12)

The canonical axes … Maximize squared correlations Maximize squared covariances
among sets (co-inertia) among sets

Distances among Mahalanobis distances** Euclidean distances
objects preserved

Test of significance Statistic: Pillai’s trace, etc. Statistics: RV, TraceW 
of the relationship

* Standardize (eq. 1.12) the variables of data sets that have heterogeneous physical dimensions.
This can be done before the analysis, or by the computer programs performing the analysis.
** Mahalanobis distances among points (eq. 7.38) are preserved in CCorA. They are equal to
Euclidean distances computed from matrix G used to position the objects in PCA scaling 2
(correlation biplot). In this scaling, the ordination axes are stretched to account for the
correlations among variables (Subsection 9.1.4).

S12S22
1– S'12 S11

1– S12S'12
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When X contains dummy variables describing e.g. types of habitat (qualitative
variable) recoded as in Subsection 1.5.7, RDA or CCA may be used to test the
hypothesis that groups of sites, identified a priori, do not differ in species composition.
The question is of the same type as in multivariate analysis of variance. Likewise,
when X codes for factors of an experiment, RDA or CCA may be used for analysis.

2. Species presence-absence. — Ecologists may wish to use the environmental
variables in X to forecast a classification criterion (y) representing the presence or
absence of a single species, a group of species, or a functional trait at various locations.

Linear discriminant analysis (LDA) is a suitable choice to separate the sites where
the species is present from those where it is absent. The classification functions
(eq. 11.39) will attribute the observations to the rightful group if the descriptors allow
it. Another appropriate statistical model is logistic regression (Subsection 10.3.7)
because the forecasted response is binary, 0 (absence) or 1 (presence). 

Between linear discriminant analysis (Section 11.3) and logistic regression
(Subsection 10.3.7), which method is the most appropriate? Efron (1975) has shown
that when the groups are drawn from populations with multinormal distributions in the
space of the explanatory variables, discriminant analysis is more effective than logistic
regression. On the other hand, logistic regression is more robust than discriminant
analysis to departures from multivariate normality. This finding is important for the
analysis of species with unimodal distributions along environmental gradients
(Subsection 9.2.4): a species may be absent under both low and high values of an
environmental variable. One can plot scatter diagrams of the presence/absence of the
species of interest against each of the environmental variables in matrix X. When a
unimodal response is detected, a quadratic [orthogonal] polynomial function of that
explanatory variable should be used in the logistic model (see Gaussian logistic
response, Subsection 10.3.7). The multivariate dispersions of groups of observations
representing the presence and absence of a species in the space of an explanatory
variable to the powers 1 and 2 (or 1, 2 and 3) cannot be multivariate normal. So in this
situation, Gaussian logistic regression should be preferred to discriminant analysis.

3. Indicator species. — Species may represent the explanatory variables (matrix
X). What are the species that characterize different types of habitat? In such cases, the
types of habitat form the classification criterion y. The method of choice is indicator
species analysis (Subsection 8.9.3). 

Discriminant analysis is ill-adapted to this type of problem because it requires that
there be more objects (n) than descriptors (m) in X. Actually, Williams & Titus (1988)
recommend that the total number of observations per group be at least three times the
number of variables in X; ter Braak (1987c) recommends that n be much larger than
the number of species (m) plus the number of groups (g).

4. Inverse analysis. — RDA may be used as a form of inverse analysis to relate
species assemblages to types of habitat. The classification criterion (e.g. types of
habitat) is represented by a set of dummy variables, written into response matrix Y.
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The species data are the explanatory variables X; they should most likely be
transformed using one of the transformations of Section 7.7. The condition of more
objects (n) than species (m) must be satisfied in this analysis. For species-rich
communities, a solution may be to replace the abundances of individual species by the
abundances of species associations identified using an appropriate statistical method;
see Section 8.9.

Matrix X, in which each species is represented by a vector, may be transformed
prior to RDA or discriminant analysis, by replacing the m species vectors by m
ordination axes produced by PCA of the transformed species data, or by (m – 1)
ordination axes obtained by CA of the raw species data. An alternative is to compute a
similarity or distance matrix among sites using the species data and obtain new axes by
principal coordinate analysis (PCoA). PCA, CA or PCoA axes might relate to the
environmental descriptors better than the original species data. The solution using
PCoA is implemented in the CAP method of Anderson & Willis (2003).

One may wish to use the species data in X to predict or reconstruct one or more
environmental variables in Y. This case, which is related to Ecological
application 11.2b, is like CCA but with X and Y interchanged. A solution, which
circumvents the too-many-species-problem, is Weighted Averaging Partial Least
Squares (WA-PLS), which extends PLS regression in the correspondence analysis
framework (ter Braak, 1995).

11.7 Software

Among the methods of canonical analysis, commercial statistical packages usually
offer canonical correlation analysis and linear discriminant analysis. RDA and CCA
are available in CANOCO* as well as in other packages, in particular PC-ORD and SYN-
TAX 2000†.

The R language offers functions for all methods described in this chapter: 

1. Redundancy analysis (RDA). — Simple and partial RDA is available in function
rda() in VEGAN, and in package RDATEST found on the Web page
http://numericalecology.com/rcode. Selection of explanatory variables in RDA:
ordistep() and ordiR2step() in VEGAN, forward.sel() in PACKFOR. Principal response
curves are computed by function prc() in VEGAN. Function varpart() is available in
VEGAN for variation partitioning by RDA. db-RDA: function capscale() in VEGAN

*  CANOCO is available from Plant Research International, Wageningen, The Netherlands.
http://www.canoco.com/. 
†  PC-ORD (http://www.pcord.com) is available from MjM Software, P.O. Box 129, Gleneden
Beach, Oregon 97388, USA. SYN-TAX 2000 (http://ramet.elte.hu/~podani) is available from
Exter Software, 47 Route 25A, Suite 2, Setauket, New York 11733-2870, USA.
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offers db-RDA based on any of the distance functions in vegdist(). Multivariate
analysis of variance: function manovRDa() for two-way crossed-factor MANOVA, for
fixed or random factors, is available on the Web page http://www.elaliberte.info/. A
similar function anova.2way.unbalanced() for two fixed factors, balanced or
unbalanced designs, is available on the Web page http://numericalecology.com/rcode;
type III sums-of-squares are used in the analysis of unbalanced designs. Function
nested.anova.dbrda() for nested MANOVA with two levels (the main factor and one
nested factor) is available in the BIODIVERSITYR package. 

2. Canonical correspondence analysis (CCA). — Simple and partial CCA: function
cca() in VEGAN, cca() in ADE4. Function CCA() is available on the Web page
http://numericalecology.com/rcode; this function was written to demonstrate the CCA
algorithm described in Subsection 11.2.1; it is fully functional for calculation of CCA
and plotting triplots, but tests of significance are not available in that function. 

3. Linear discriminant analysis (LDA). — lda() in MASS, discrimin() in ADE4. Test of
homogeneity of multivariate dispersions: betadisper() in vegan. Selection of
explanatory variables in LDA can be carried out with function stepclass() of package
KLAR (direction = “forward”, “backward” or “both”).

4. Canonical correlation analysis (CCorA). — Functions cancor() of STATS, CCorA()
of VEGAN, and cc() of CCA.

5. Co-inertia (CoIA) and Procrustes (Proc) analyses. — Co-inertia analysis in
coinertia() of ADE4. Test of the RV coefficient: permutational test in RV.rtest() of
ADE4, parametric test in coeffRV() of FACTOMINER. One can also apply function
randtest.coinertia() to the output of function coinertia(). Asymmetric and symmetric
Procrustes analysis in procrustes() of VEGAN and procustes() of ADE4. Permutation
test of the Procrustes statistic: function protest() of VEGAN. Co-correspondence
analysis in cocorresp() of package COCORRESP. Multiple factor analysis (MFA) in
mfa() of ADE4 and MFA() of FACTOMINER; the latter offers more options.

6. Miscellaneous methods. — Functions for palaeoenvironmental reconstruction, in
particular MAT(), MLRC(), WA() and WAPLS(), are available in package RIOJA. QR
decomposition is computed by qr() of BASE; this is an efficient computation method
for regression coefficients in linear models, e.g. in RDA. 

PERMANOVA (permutational ANOVA/MANOVA) is an add-on package for
PRIMER 6* that carries out permutational multivariate analysis of variance. This
program tests the simultaneous response of one or more variables to one or more
factors in an ANOVA experimental design on the basis of any distance measure, using
permutation methods. The latest version of the program can handle any balanced
ANOVA design up to nine factors.

*  Available from PRIMER-E Ltd., 3 Meadow View, Lutton, Ivybridge, PL21 9RH, England.
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12.0 Ecological series

 

The use and analysis of 

 

data series

 

 has become increasingly popular in ecology,
especially because many terrestrial, aquatic and atmospheric observing stations
measure and record environmental variables either automatically or with human
intervention. Ecological data series contain continuous or discrete (discontinuous)
variables sampled over time or along transects in space.

A data series is a sequence of observations that are 

 

ordered

 

 along a temporal or
spatial axis. As mentioned in Section 1.0, a series is one of the possible realizations of
a 

 

stochastic process

 

. A 

 

process

 

 is a phenomenon (response variable), or a set of
phenomena, which is organized along some independent axis. In most cases, the
independent axis is time, but it may also be space, or a trajectory through both time
and space (e.g. sampling during a cruise). 

 

Stochastic processes

 

 generally exhibit three
types of components, i.e. deterministic, systematic, and random. Methods for the
numerical analysis of data series are designed to characterize the deterministic and
systematic components present in series, given the probabilistic environment resulting
from the presence of random components.

The most natural axis along which processes may be studied is 

 

time

 

 because
temporal phenomena develop in an irreversible way, and independently of any
decision made by the observer. The temporal evolution of populations or communities,
for example, provides information that can unambiguously be interpreted by
ecologists. Ecological variability is not a characteristic limited to the time domain,
however; it may also be studied across space. In that case, the decisions to be made
concerning the observation axis and its direction depend on the working hypothesis. In
ecology, the distinction between space and time is not always straightforward. At a
fixed sampling location, for example, time series analysis may be used to study the
spatial organization of a moving system (e.g. migrating populations, plankton in a
current), whereas a spatial series is required to assess temporal changes in that same

Stochastic
process
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system. The first approach (i.e. at a fixed point in space) is called 

 

Eulerian

 

, and the
second (i.e. at a fixed point within a moving system) is known as 

 

Lagrangian

 

.

Ecologists are often interested in 

 

periodic 

 

changes. This follows in part from the
fact that many ecological phenomena are largely determined by geophysical rhythms,
but there are also rhythms that are endogenous to organisms or ecosystems. The
geophysical cycles of glaciations, for example, or, at shorter time scales, the solar
(i.e. seasons, days) or lunar (tides) periods, play major roles in ecosystems.
Endogenous rhythms, also called biological clocks (including the well-known
circadian, i.e. 24-hour, rhythms), are extensively described in the scientific literature.

The analysis of data series often provides unique information concerning
ecological phenomena. However, the quality of the results depends to a large extent on
the 

 

sampling design

 

. As a consequence, data series must be sampled following well-
defined rules, in order (1) to preserve the spatio-temporal variability, which is often
minimized on purpose in other types of ecological sampling design, and (2) to take
into account the various conditions prescribed by the methods of numerical analysis.
These conditions will be detailed later in the present chapter. An even more demanding
framework prevails for 

 

multidimensional series

 

, which result from sampling several
variables simultaneously. Most numerical methods require that the series be made up
of 

 

large numbers of observations

 

 (

 

n

 

 > 100, or even 

 

n

 

 > 1000) for the analysis to have
enough statistical power to provide conclusive results, especially when large random
variation is present. Long series require extensive sampling. This is often carried out,
nowadays, using equipment that automatically measures and records the variables of
ecological interest. There are also a few methods that have been especially designed
for the analysis of short time series; they are discussed below.

The most fundamental constraint in periodic analysis is the 

 

observational window

 

.
The width of this window is determined by the number of observations in the data
series (

 

n

 

) and the interval (time or distance) between successive observations. This
interval is called the 

 

lag

 

, 

 

!

 

; for the time being, it is assumed to be uniform over the
whole data series. These two characteristics set the time or space domain that can be
“observed” when analysing data series (Table 12.1). For temporal data, one refers to
either the 

 

period

 

 (

 

T

 

, in time units) or the 

 

frequency

 

 (

 

f

 

 = 1/

 

T

 

) whereas, for spatial data,
the corresponding concepts are the 

 

wavelength

 

 (

 

"

 

, in spatial distance units) and the

 

wavenumber

 

 (1/

 

"

 

). 

The length of the series (

 

!

 

n

 

) sets, for temporal data, the 

 

fundamental period

 

(

 

T

 

0

 

 = 

 

!

 

n

 

) or 

 

fundamental frequency

 

 (

 

f

 

0

 

 = 1/

 

T

 

0

 

 

 

= 1/

 

!

 

n

 

) and, for spatial data, the

 

fundamental wavelength

 

 (

 

"

 

0

 

 = 

 

!

 

n

 

) or 

 

fundamental wavenumber

 

 (1/

 

"

 

0

 

 = 1/

 

!

 

n

 

).

 

Harmonic periods 

 

and 

 

wavelengths 

 

are 

 

integral fractions

 

 of the fundamental period
and wavelength, respectively (

 

T

 

i

 

 = 

 

T

 

0

 

/

 

i

 

 and 

 

"

 

i

 

 = 

 

"

 

0

 

/

 

i

 

, where 

 

i

 

 = 1, 2, … 

 

n

 

), whereas

 

harmonic frequencies 

 

and 

 

wavenumbers 

 

are 

 

integral multiples

 

 of the fundamental
frequency and wave number, respectively (

 

f

 

i

 

 = 

 

i f

 

0

 

 and 1/

 

"

 

i

 

 = 

 

i 

 

/

 

"

 

0

 

). Concerning the
actual limits of the observational window, the 

 

longest

 

 period or wavelength that can be
statistically investigated is, at best, equal to 

 

half the length

 

 of the series (

 

!

 

n

 

/2). For

Eulerian
Lagrangian

Periodic
phenomena

Observation-
al window

Lag
Period
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Wavenumber



 

Ecological series 713

 

example, in a study on circadian (24-h) rhythms, the series must have a

 

 minimum

 

length of two days (better 4 days or more). Similarly, in an area where spatial
structures are of the order of 2 km, a transect must cover

 

 at least

 

 4 km (better 8 km or
more). Similarly, the 

 

shortest

 

 period or wavelength that can be resolved is equal to

 

twice the interval

 

 between observations (2

 

!

 

). In terms of frequencies, the highest
possible frequency that can be resolved, 1/2

 

!

 

, is called the 

 

Nyquist frequency

 

. For
example, if one is interested in hourly variations, observations must be made 

 

at least

 

every 30 min. In space, in order to resolve changes at the metre scale, observations
must be collected along a transect 

 

at least

 

 every 50 cm, or closer.

To summarize the above notions concerning the observational window, let us
consider a variable observed every month during one full year. The data series would
allow one to study periods ranging between (2 

 

×

 

 1 month = 2 months) and
(12 months/2 = 6 months). Periods shorter than 2 months and longer than 6 months
are outside the observational window. In other words, statistical analysis cannot
resolve frequencies higher than 1/(2 months) = 0.5 cycle month

 

–1

 

 = 6 cycles year

 

–1

 

(Nyquist frequency), or lower than 1/(6 months) = 0.167 cycle month

 

–1

 

 =
2 cycles year

 

–1

 

. The longest period (or lowest frequency) of the observational window
is easy to understand, by reference to the usual notion of degrees of freedom (Box 1.2).
Indeed, in order to have minimum certainty that the observed periodic phenomenon is
real, this phenomenon must be observed at least twice, which provides only one degree
of freedom. For example, if an annual cycle was observed over a period of one year

Table 12.1 Characteristics of the observational window in periodic analysis. Strictly speaking, the length of
a data series is (n – 1)! but, for simplicity, one assumes that the series is long, hence (n – 1) # n.

Harmonic Period (Ti) Frequency (fi)
i Wavelength ("$) Wavenumber (i)

1 n! 1/n! Fundamental value, i.e. the whole series

2 n!/2 2/n! Limit of observational window

. . .

. . .

i n!/i i/n! ith harmonic

. . .

. . .

n/2 2! 1/2! Limit of window: Nyquist frequency

Nyquist
frequency



714 Ecological data series

only, there would be no indication that it would occur again during a second year
(i.e. no degree of freedom). A similar reasoning applies to the shortest period (or
highest, Nyquist frequency) detectable in the observational window. For example, if
the observed phenomenon exhibits monthly variation (e.g. oscillations between
maximum and minimum values over one month), two observations a month would be
the absolute minimum required for identifying the presence of that cycle.

Most methods described in the present chapter are limited to the observational
window. However, some methods are mathematically capable of going beyond the
upper limit (in terms of periods) of the window, because they can fit incomplete cycles
of sine and cosine functions to the data series. This is the case of Dutilleul’s modified
periodogram (Section 12.4) and spectral analysis (Section 12.5). A significant period
found in this region (e.g. a 3-month period in a data series 4 months long) should be
interpreted with care. It only indicates that a longer time series should be observed and
analysed (e.g. > 1 year of data) before drawing ecological conclusions.

There exists another constraint, which is also related to the observational window.
This constraint follows from a phenomenon known as aliasing. It may happen that the
observed variable exhibits fluctuations whose frequency is higher than the Nyquist
frequency. This occurs when a period T or wavelength " of the observed variable is
smaller than 2!. Undersampling an important high-frequency fluctuations may
generate an artificial signal in the series, whose frequency is lower than the Nyquist
frequency (Fig. 12.1). Researchers unaware of the phenomenon could attempt to
interpret this artificial low frequency in the series; this would obviously be incorrect.
To avoid aliasing, the sampling design must provide at least four data points per cycle
of the shortest important period or wavelength of the variable under study. The latter
period or wavelength may be determined either from theory or from a pilot study.

The sections that follow explore various aspects of series analysis. The methods
discussed are those best adapted to ecological data. Additional details may be found in
the biologically-oriented textbook of Diggle (1990) and the review paper of Fry et al.
(1981), or in other textbooks on time series analysis, e.g. Jenkins & Watts (1968),
Bloomfield (1976), Box & Jenkins (1976), Brillinger (1981), Priestley (1981a, b),
Kendall et al. (1983), Chatfield (1989), Kendall & Ord (1990), Venables & Ripley
(2002), Dutilleul (2011) and Shumway & Stoffer (2011, with R examples). Methods
for analysing time series of ecological and physiological chronobiological data were
reviewed by Legendre & Dutilleul (1992).

12.1 Characteristics of data series and research objectives

Observed data series may be decomposed into various components, which can be
studied separately since they have different statistical and ecological meanings.
Figure 12.2 shows an artificial data series constructed by adding three components: a
periodic signal, a trend, and a noise component. Series may be analysed in terms of

Aliasing

Signal
Trend
Noise
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deterministic change (trend), systematic (periodic) variability, and random fluctuations
(noise). Data series may be recorded with different objectives in mind (Table 12.2), to
which are associated different methods of time series analysis. The following
presentation of objectives is largely drawn from Legendre & Dutilleul (1992).

Objective 1. — Ecological data series often exhibit a deterministic component,
known as the trend. The trend may be linear, polynomial, cyclic, etc. This
deterministic component underlies the evolution of the series (Fig. 12.2a). It must be
extracted as the first step of the analysis.

Figure 12.1 Aliasing. (a) The artificial signal detected in the data series (dashed line) is caused by
observations (dots) made at a frequency lower than twice that present in the series under study
(solid line). Along the abscissa, 1 time unit = 1/60 s. (b) With a sampling frequency of 20 Hz, the
observed frequency (ordinate) varies between 0 and 10 Hz, as the actual frequency of the signal
increases (abscissa). The observed frequency would be equal to the frequency of the signal (no
aliasing) only for a signal % 10 Hz, which is half the 20 Hz sampling frequency. In the example,
the frequency of the signal is 30 Hz and the observed (aliased) frequency is 10 Hz (dashed line).
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In some cases, determining the trend is the chief objective of the study. For
example, progressive changes in the characteristics of an ecosystem, over several
years, may be used to assess whether this system is responding or not to anthropogenic
effects. In such a case, the problem would be to characterize the long-term trend, so
that the annual cycle as well as the high-frequency noise component would be of no
interest. Long-term trends in data series may be modelled by regression (Section 10.3).
Linear regression is used when the trend is (or seems to be) linear. In other cases, the
ecological hypothesis or a preliminary examination of the series may indicate that the
trend is of some other mathematical form (e.g. logistic), in which case the methods of
polynomial or nonlinear regression should be used (e.g. Ross, 1990).

Figure 12.2 Artificial data series (a) constructed by adding the three components shown in (b), i.e. a periodic
signal and a noise component, whose combination gives a stationary series (not illustrated), and
a linear trend. The periodic signal is the same as in Fig. 12.13. There are n = 34 data points
sampled at regular intervals. The overall mean of the noise signal is zero, by definition.
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In contrast, ecologists primarily interested in the periodic component of data series
(Objective 2) consider the long-term trend as a nuisance. Even when the trend is not of
ecological interest, it must be extracted from the series because most methods of analysis
require that the series be stationary, i.e. that the mean, variance, and other statistical
properties of the distribution be constant over the series. In the numerical example
of Fig. 12.2, the observed data series (a) is obviously not stationary. It becomes so if the
linear trend shown in (b) is removed by subtraction; this operation is called 

reasonably long segment of data; detrending consists in calculating the regression
residuals. In practice, the analysis of series only requires weak, or second-order, or
covariance stationarity, i.e. the mean and variance are constant along the series and the
autocovariance (or autocorrelation) function depends only on the distance between
observations along the series; two observations separated by a given interval have the
same autocovariance no matter where they occur in the series. Extracting trends may
be done in various ways, which are detailed in Section 12.2.

Some low-frequency periodic components may also be considered as trends,
especially when these are both trivial and known a priori (e.g. an annual cycle). A
long-term trend as well as broad-scale periodic components may be extracted in order
to focus the analysis on finer components of the data series. Again, regression or other
statistical methods (Section 12.2) may be used to model the low-frequency
components and compute residuals on which the analysis could be carried out.

Objective 2. — Identifying characteristic periods is a major objective of series
analysis in ecology. It is generally done for one variable at a time, but it is also possible
to study multidimensional series (i.e. several variables, often analysed two at a time).
Ecological series always exhibit irregular and unpredictable fluctuations, called noise
(Fig. 12.2b), which are due to non-permanent perturbation factors. The larger the
noise, the more difficult it is to identify characteristic periods when analysing
stationary series. Table 12.3 summarizes the methods available to do so; several of
these are described in Sections 12.3 to 12.5. 

Objective 3. — One method for identifying characteristic periods is spectral
analysis. In this analysis, the variance of the data series is partitioned among
frequencies (or wavenumbers) in order to estimate a variance spectrum. Section 12.5
shows that the spectrum is a global characteristic of the series, and presents examples
where the spectra are interpreted as reflecting ecological processes.

Objective 4. — There are data series that do not behave in a periodic manner. This
may be because only one or even part of a cycle has been sampled or, alternatively,
because the variables under study are not under the control of periodic processes. Such
series may exhibit structures other than periodic, along time or a spatial direction. In
particular, one may wish to identify discontinuities along multidimensional data series.
Such discontinuities may, for example, characterize ecological succession. A
commonly-used method for finding discontinuities is cluster analysis. To make sure
that the multidimensional series gets divided into blocks, each one containing a set of

Stationarity

Detrending detrending
(or trend extraction). The trend may be estimated, in this case, by linear regression over aTrend

extraction
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temporally contiguous observations, authors have advocated to constrain clustering
algorithms so that they are forced to only group observations that are contiguous.
Various methods to do so are discussed in Section 12.6. 

Objective 5. — Another objective is to correlate variations in the data series of
interest (i.e. the target or response variable) with variations in series of some
potentially explanatory variable(s), with a more or less clearly specified model in
mind. There are several variants. (1) When the sampling interval between observations
is large, the effect of the explanatory variables on the target variable may be
considered as instantaneous. In such a case, various forms of regression analysis may
be used. When no explicit model is known by hypothesis, spline regression may be
used to describe temporal changes in the target variable as a function of another
variable (e.g. Press et al., 2007). These methods are described in Section 10.3.
(2) When the interval between consecutive data is short compared to the periods in the
target variable, it is sometimes assumed that the target variable responded to events
that occurred at some previous time, although the exact delay (lag) may not be known.
In such a case, the method of cross-correlation may be used to identify the time lag that
maximises the correlation between the explanatory and target variables (Section 12.3).
When the optimal lag has been found for each of the explanatory variables in a model,
multiple regression can then be used, each explanatory variable being lagged by the

Table 12.2 Analysis of data series: research objectives and related numerical methods. Adapted from
Legendre & Legendre (1984b) and Legendre & Dutilleul (1992).

Research objective Numerical methods

1) Characterize the trend • Regression (linear or polynomial)*
• Moving averages
• Variate difference method

2) Identify characteristic periods & Details in Table 12.3
3) Characterize series by spectrum • Spectral analysis
4) Detect discontinuities in • Clustering the data series (with or without constraint)

multivariate series • Hawkins & Merriam or Webster segmentation methods
5) Correlate variations in a series 

with changes in other series
5.1) Univariate target series • Regression*: simple / multiple linear, nonlinear, splines

• Cross-correlation
5.2) Multivariate target series • Canonical analysis**

• Mantel test*
6) Formulate a forecasting model • Box-Jenkins modelling

Methods described in * Chapter 10 or ** Chapter 11.
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appropriate number of sampling intervals. (3) The previous cases apply to situations
where there is a single target variable in the series under study. When there are several
target variables, the target series is multivariate; the appropriate methods of data
analysis are globally called canonical analysis (Chapter 11). Two forms are of special
interest here: redundancy analysis and canonical correspondence analysis. (4) Finally,
the relationship between two distance matrices based on two multivariate data sets can
be analysed using the Mantel test or its derived forms (Section 10.5 and
Subsection 13.1.6) when the question strictly concerns distances.

Objective 6. — A last objective is to formulate a model to forecast the future
behaviour of the target series. Following the tradition in economics, one way of doing
that is to model the data series according to its own past behaviour (Section 12.7). 

The first problem encountered when analysing data series is to decide whether a
trend is present or not. Visual examination of the series, which may be combined with
previous knowledge about the process at work, is often sufficient to detect one or
several trends. These may be monotonic (e.g. gradient in latitude, altitude, or water
depth) or not (e.g. daily, lunar, or annual cycles). Four methods can be used to test for
the presence of trends (extraction of trends: see Section 12.2).

• 1. The most widely used method is to regress the response data series y on the time
variable. A significant regression coefficient indicates the presence of a linear trend,
either positive or negative, in the series. Researchers must beware of a situation where

Table 12.3 Analysis of data series: methods for identifying characteristic periods. The approaches best
suited to short data series are: the contingency periodogram, Dutilleul’s modified periodogram,
and maximum entropy spectral analysis. Adapted from Legendre & Legendre (1984b) and
Legendre & Dutilleul (1992).

Type of series Methods
Quantitative variables only All precision levels

1) A single variable • Autocorrelogram • Spatial correlogram* (quantitative,
qualitative)

• Periodograms (Whittaker & • Contingency periodogram for
Robinson, Schuster, Dutilleul) qualitative data

• Spectral analysis • Kedem’s spectral analysis for
binary data

2) Two variables • Parametric cross-correlation • Nonparametric cross-correlation
• Coherence and phase spectra • Cross-contingency analysis

3) Multivariate series • Multivariate spectral analysis • Multivariate variogram*, 
Mantel correlogram*

* Methods described in Chapter 13.

Testing for
the presence
of trends



720 Ecological data series

a trend is sought in a series that contains high variability nested into the series. For
example, when looking for a trend among years in a series y covering several years,
linear regression of y on the variable years may fail to detect a significant trend if the
variation among months is high. To circumvent that problem, one can use a qualitative
variable (or factor) coding for the months as covariable in the analysis. In practice, one
can simply compute a linear model of y as a function of the quantitative variable years
and the factor months, and check if the regression coefficient associated with years is
significant.

• 2. The numbers of positive and negative differences between successive values in the
series are counted. These are then subjected to a sign test (Table 5.2), where the null
hypothesis (H0) is that the plus and minus signs correspond to a population in which
the two signs are present in equal proportions. Rejecting H0 is indication of a trend. 

• 3. All values in the series are ranked in increasing (or decreasing) order. Kendall’s
rank correlation coefficient (') (Subsection 5.3.2) may be used to assess the degree of
resemblance between the rank-ordered series and the original one; this is done by
computing the Kendall correlation between the original data series and the observation
rank labels: 1, 2, 3, …, n. When ' is significantly different from zero, one can conclude
that the series exhibits a monotonic trend. These two methods are described in Kendall
& Ord (1990, pp. 21-22). The approach based on Kendall’s ' is preferable to the sign
test because it uses the actual data in the series instead of the differences between
neighbouring values. 

• 4. A nonparametric test, called the up and down runs test, is well suited to detect the
presence of various types of trends. Consider again n values and, for each one, the sign
of the difference from the previous value. The (n – 1) signs would all be the same if the
observations were monotonically increasing or decreasing. Cyclical data, on the other
hand, would produce more long runs of “+” or “–” signs than expected for random
data, or more short runs, depending on the sampling frequency within each cycle. A
run is a set of like signs, preceded and followed (except at the end of the series) by
opposite signs. Count the number of runs in the data series, including those of length 1
(e.g. a single “+” sign, preceded and followed by a “–”). The up and down runs test,
described for instance in Sokal & Rohlf (1995), compares this number to the number
of runs expected from a same-length sequence of random numbers.

When there is a trend in the series, it must be extracted using one of the methods
discussed in Section 12.2. If, after detrending, the mean of the series is still not
stationary, a second trend must be searched for and removed. When the series does not
exhibit any trend, or after detrending, one must decide, before looking for periodic
variability (Sections 12.3 to 12.5), whether the stationary series presents some kind of
systematic variability or if, on the contrary, it simply displays the kind of variation
expected from a random process. In other words, one must test whether the series is
simply random, or if it exhibits periodic variability that could be analysed.

Up and down
runs test
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In some instances, as in Fig. 12.3, it is useless to conduct sophisticated tests,
because the random or systematic character of the series is obvious. Randomness of a
series may be tested as follows: identify the turning points (i.e. the peaks and troughs)
in the series and record the distribution of the number of intervals (phase length)
between successive turning points. It is possible to test whether these values
correspond or not to those of a random series (Kendall & Ord, 1990, p. 20). This
procedure actually tests the same null hypothesis as the up and down runs test
described above. In practice, any ecological series with an average phase longer than
two intervals may be considered non-random.

The overall procedure for analysing data series is summarized in Fig. 12.4. The
following sections describe the most usual methods for extracting trends, as well as
various approaches for analysing stationary series. It must be realized that, in some
instances, variations in stationary series may be so small that they cannot be analysed,
because they are of the same order of magnitude as the background noise. 

If parametric statistical tests are to be conducted during the course of the analysis,
normality must be checked (Section 4.6) and, if the data are not normally distributed,
they must be transformed as explained in Subsection 1.5.6. In addition, several of the
methods discussed in the following sections require that observations in the series be
equally spaced. If they are not, data may be eliminated to make them equispaced, or
else, missing data may be estimated by regression or other interpolation methods
(Section 1.6); most methods of series analysis cannot handle missing values.
Obviously, it is preferable to consider the requirement of equispaced data when
designing a sampling program than to have to modify the data at the stage of analysis.

Figure 12.3 Two artificial series; (a) would be random if the linear trend was extracted, whereas (b) displays
a cyclic trend.

(b)

(a)

Test series
randomness
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In addition to the numerical methods discussed in the following sections, ecologists
may find it useful to have a preliminary look at the data series, using the techniques of
exploratory data analysis described by Tukey (1977, his Chapters 7 and 8). These are
based on simple arithmetic and easy-to-draw graphs, and they may help decide which
numerical treatments would be best suited for analysing the series. Exploratory data
analysis for time series is also described in Chapter 14 of Venables & Ripley (2002)
and in Chapter 2 of Shumway & Stoffer (2011).

12.2 Trend extraction and numerical filters

When there is a trend in a series (which is not always the case), it must be extracted
from the data prior to further numerical analyses. As explained in the previous section,
this is because most methods of analysis require that the series be stationary.

Figure 12.4 Flow diagram summarizing the steps involved in the analysis of data series.
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When the trend itself is of interest, it can be analysed in ecological terms
(Objective 1 above). For example, Fortier et al. (1978) interpreted a cyclical trend in
temporal changes of estuarine phytoplankton in terms of physical oceanographic
forcing. In a long-term monitoring study of bacteria of sanitary importance at a lake
beach, St-Louis & Legendre (1982) interpreted the significant negative slope of a
water quality index computed from bacterial data (363 water samples analysed over 9
years) as an indication of deterioration of the water quality. Borcard et al. (2004)
identified a linear trend in marine zooplankton size-class data across a coastal reef
lagoon in Guadeloupe (spatial series). The trend was related to increasing salinity from
the coast to the outer reef, and to decreasing phytoplankton biomass, wind speed and
dissolved oxygen. In the analysis of fossil diatom assemblages along a sediment core
from south-western Scotland covering the past 10000 years (101 core levels, 139
species), Legendre & Birks (2012) identified a significant temporal trend and related it
to changes in the relative abundances of eight diatom species that were highly
correlated with their positions along the core.

When the study goes beyond the identification of a trend (Objectives 2 et seq.), the
analysis is normally conducted on the residual (or detrended) data series. The residual
(i.e. stationary) series is obtained, for each data point i along the series, by subtracting
the value estimated by the trend function at position xi from the observed value yi:

 = residual of yi = observed value (yi) – value of the trend at xi (12.1)

There are cases where several trends of different natures must be extracted
successively before reaching stationarity. However, because each trend extraction
distorts the residuals, one must proceed with caution with detrending. The success of
trend extraction may be assessed by plotting and examining the resulting trend
(Objective 1) or the detrended series.

The method of moving averages is often used to estimate trends, e.g. in climate-
change related studies. One calculates successive arithmetic averages over 2m + 1
contiguous data as one moves along the data series. The interval (2m + 1) over which a
moving average is computed is called window. For example, with m = 2, the first
moving average  is computed over the first 5 values y1 to y5, the second moving
average  is calculated over values y2 to y6, the third one ( ) is the average of
values y3 to y7, and so forth. Each average value is positioned at the centre of its
window. For a series of n observations, there are (n – 2m) moving averages:

x1 x2 x3 x4 … xn–2 xn–1 xn

y1 y2 y3 y4 … yn–2 yn–1 yn

Residuals yres.i

Detrending

Moving
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(=     y4
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The general formula for moving averages is thus:

(12.2)

The h values corresponding to the above example, where m = 2, would be: –2, –1, 0,
+1, and +2, respectively.

Moving averages may also be weighted. In such a case, each of the 2m + 1 values
within the window is multiplied by a weight wh. Usually, values closer to the centre of
the window receive larger weights. The general formula for the weighted moving
average corresponding to any position (or object) xi is:

(12.3)

Choosing values for the weights depends on the underlying hypothesis. Kendall & Ord
(1990, p. 3) give coefficients to be used under hypotheses of polynomial trend of the
second, third, fourth, and fifth degrees. Another, simple method for assigning weights
is that of repeated moving averages. After calculating a first series of non-weighted
moving averages (eq. 12.2), a second series of moving averages is calculated using
values from the first series. Thus calculation of three successive series of non-weighted
moving averages produces the following results ( ) and weights wh (Table 12.4):

first series (m = 1)

second series (m = 2)

third series (m = 3)

It is easy to check the above values by simple calculations, as shown in Table 12.4.

When using moving averages for estimating the trend of a series, one must choose
the width of the window (i.e. choose m) as well as the shape of the moving average
(i.e. the degree of the polynomial or the number of iterations). These choices are not
simple. They depend in part on the goal of the study, namely the ecological
interpretation of the trend itself or the subsequent analysis of residuals (i.e. detrended
series). To estimate a cyclic trend, for instance, it is recommended to set the window
width (2m + 1) equal to the period of the cyclic fluctuation.
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Trend extraction by moving averages may add to the detrended series an artificial
periodic component, which must be identified before analysing the series. This
phenomenon is called the Slutzky-Yule effect, because these two statisticians
independently drew attention to it in 1927. According to Kendall (1976, pp. 40-45) and
Kendall et al. (1983, pp. 465-466), the average period of this artificial component (T)
is calculated using the (2m + 1) weights wi of the moving average formula (eq. 12.3)*:

T = 2)/*   for angle * in radians, or   T = 360°/*   for angle * in degrees,

where (12.4)

The values of the weights located outside the window are zero:  and
. For example, using the weights of the second series of repeated moving

averages above (m = 2):

[wh] = [1  2  3  2  1]

*  In Kendall (1976) and Kendall et al. (1983) and previous editions of The Advanced Theory of
Statistics, Vol. 3, there is a printing error in the formula for the Slutzky-Yule effect. In the first
parenthesis of the last term of their numerator, the printed sign for the second weight 
is positive; this sign should be negative, as in eq. 12.4, giving (0 – 1) in our numerical example.
However, their numerical example is correct, i.e. it is computed with , not .

Table 12.4 Calculation of repeated moving averages. Development of the numerator for the first and second
series of averages.
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gives

from which it follows that

and thus:

If, after detrending by this method of repeated moving averages, the analysis of the
series resulted in a period T # 6, this period would probably be a by-product of the
moving average procedure. It would not correspond to a component of the original
data series, so that one should not attempt to interpret it in ecological terms. If a period
T # 6 was hypothesized to be of ecological interest, one should use different weights
for trend extraction by moving average analysis.

The most usual approach for estimating trends is the analytical method. It consists
in fitting a regression model to the whole series, using the least squares approach or
some other method. The matter was fully reviewed in Section 10.3. Smoothing
methods such as splines and LOWESS can also be used (Subsection 10.3.8). The model
for the trend may be linear, polynomial, exponential, logistic, etc. The main
advantages of trend extraction based on regression are: the explicit choice of a model
by the investigator, and the ease of calculation using a statistical package. The main
problem is that a new regression must be calculated upon addition of one or several
observations to the data series, which may generate different values for the regression
coefficients. However, as the series gets longer, estimates of the regression coefficients
become progressively more stable.

Contrary to the above methods, where the estimated trend was subtracted from the
observed data (eq. 12.1), the variate difference method directly detrends the series. It
consists in replacing each value yi by the difference (yi+1 – yi). As in the case of
repeated moving averages, differences may be calculated not only on the original data,
but also on data resulting from previous detrending. If this is repeated on progressively
more and more detrended series, the variance of the series usually stabilizes rapidly.
The variate difference method, when applied once or a few times to a series, can
successfully remove any polynomial trend. Only exponential or cyclic trends may
sometimes resist the treatment. The method may be used to remove any cyclic trend
whose period T is known, by using differences (yi+T – yi); however, this is fully
successful only in cases where T is an integer multiple of the sampling interval !. One
must remember that this method does not model the trend that is removed from the
data series as a data vector; hence, the trend cannot be studied independently.

In some instances, ecologists may also wish to eliminate the random noise
component from the data series, in order to better evidence the ecological phenomenon
under study. This operation, whose aim is to remove high-frequency variability from
the series, is called filtration. In a sense, filtration is the complement of trend
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extraction, since the former removes high-frequency components of the series and the
latter, low-frequency components. Specialists of series analysis often use the term
filter for any preliminary treatment of the series, whether the extraction of low
frequencies (trend) or the removal of high frequencies (noise). Within the context of
spectral analysis (Section 12.5), filtration of the series is often called “prewhitening”.
This refers to the fact that filtration flattens the spectrum of a series and makes it
similar to the spectrum of white light. The reciprocal operation (called “recolouring”)
fits the spectrum (calculated on the filtered series) in such a way as to make it
representative of the nonfiltered series. The sequence of operations — prewhitening of
the series, followed by computation of the spectrum on the filtered series, and finally
recolouring of the resulting spectrum — finds its justification in the fact that spectra
that are more flat are also more precisely estimated.

In addition to filters, which aim at extracting low frequencies (trends), computer
programs for series analysis offer a variety of numerical filters that allow the removal,
or at least the reduction, of any component located outside a given frequency band
(passband). It is thus possible, depending on the objective of the study, to select the
high or low frequencies, or else a band of intermediate frequencies. It is also possible
to eliminate a band of intermediate frequencies, which is the converse of the latter
filter. Generally, these numerical filters are found in programs for spectral analysis
(Section 12.5), but they may also be used to filter series prior to analyses using the
methods described in Sections 12.3 and 12.4. In most cases, filtering data series
(including trend extraction) requires solid knowledge of the techniques, because
filtration always distorts the original series and thus influences further calculations. It
is therefore better to do it under the supervision of an experienced colleague.

12.3 Periodic variability: correlogram

The systematic component of a stationary series is called periodic variability. There
are several methods available for analysing this type of variability. Those discussed in
the present section, namely the autocovariance and autocorrelation (serial correlation)
and the cross-covariance and cross-correlation, are all extensions, to the analysis of
data series, of statistical methods described in earlier chapters. These methods of
analysis have been extensively used in ecology.

At this stage of series analysis, it is assumed that the data series is stationary, either
because it originally exhibited no trend or as the result of detrending (Section 12.2). It
is also assumed that variability is large enough to emerge from random noise.

A general approach for analysing periodic variability is derived from the concepts
of covariance and correlation defined in Chapter 4. The methods are called
autocovariance and autocorrelation analysis. The approach is to quantify the
relationships between successive terms of the data series. These relationships reflect
the pattern of periodic variability.

Filter
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1 — Autocovariance and autocorrelation

Autocovariance measures the covariance of the series with itself, computed as the
series is progressively shifted with respect to itself (Fig. 12.5). Because second-order
stationarity is assumed in the calculation of autocovariance and autocorrelation
(Section 12.1), all coefficients will be computed using the same mean and variance,
estimated from the whole series, even though individual coefficients involve only part
of the data. The overall mean is . For the common variance, the sum of squared
deviations from  is divided by n instead of (n – 1), as in Moran’s I coefficient of
spatial correlation (eq. 13.1); this is the maximum-likelihood estimator of the variance: 

(12.5)

This is the covariance of the series with itself when there is no shift. The notation
syy(0) indicates a lag of zero, or lag k = 0. 

Figure 12.5 Calculation of autocovariance (syy) and autocorrelation (ryy). Stepwise shift of a data series
relative to itself, with successive lags of k units. The number of terms involved in the calculation
(n – k) decreases as k increases.

n–2

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y' y''

n

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y'

n–1

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y''

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y1

y2

y3

yn–2

yn–1

yn

.

.

.

y' y''

k = 0 k = 1 k = 2

syy (0) = s2
y ryy (1) =

syy (1)

syy (0) ryy (2) =
syy (2)

syy (0)

y
y

syy 0( )
1
n
--- yi y–( )

i 1=

n

(=



Periodic variability: correlogram 729

When the series is shifted relative to itself by one unit (lag k = 1), the left-hand
copy of the series in Fig. 12.5 loses observation y1 and the right-hand copy loses
observation yn. The two truncated series, each of length (n – 1), are compared. For a
lag of k units, the covariance syy(k) is computed from the (n – k) terms remaining in the
two truncated series, using the mean and n value from the whole series to insure that
the covariances remain comparable: 

(12.6)

That equation is similar to that of the covariance (eq. 4.4). In correlograms (below),
the autocovariance is estimated for several successive lags k. In specific applications,
researchers may decide on biological grounds how long the lag should be to compute
the autocovariance of the variable under study.

In eq. 4.7, the Pearson coefficient of linear correlation between variables yj and yk
is computed by dividing their covariance by the product of their standard deviations:

In a similar way, the autocorrelation of a series ryy(k) is computed as the ratio of its
autocovariance syy(k) (eq. 12.6) to its variance syy(0) (eq. 12.5): 

(12.7)

Equation 12.6 is a good estimator of autocorrelation when (n – k) is reasonably large.
The autocorrelation is also called serial correlation. It measures the average
dependence of the values in the series on values found at a distance of k lags. 

One may be tempted to compute ryy(k) using the Pearson linear correlation formula
(eq. 4.7) between terms yi and yi+k of the series, for the n – k pairs of corresponding
values in the observed and shifted series (Fig. 12.5). This is not recommended,
however, because the mean and variance estimates used for computing eq. 4.7 change
with lag k, so that ryy(k) would not produce a set of comparable autocorrelation
coefficients (Jenkins & Watts, 1968; Venables & Ripley, 2002).

Since the number of terms (n – k) involved in the calculation of the autocovariance
or autocorrelation decreases as k increases, it follows that, as k increases, the precision
of the estimate, the number of degrees of freedom available, and consequently the
power of the test of significance decrease. The largest interpretable lag is often
considered to be about kmax = n/3; Venables & Ripley (2002) use 10 log10(n) as the
default value for the largest lag in function acf() in R. Table 12.5 gives the values of
autocovariance and autocorrelation for the artificial stationary series of Fig. 12.2b. 

Auto-
covariance syy k( )

1
n
--- yi k+ y–( )

i 1=

n k–

( yi y–( )=

r jk
s jk
s jsk
---------=

Auto-
correlation ryy k( )

syy k( )

syy 0( )
----------------=



730 Ecological data series

Table 12.5 Autocovariance and autocorrelation coefficients (eq. 12.7) for the artificial series of Fig. 12.2b,
after detrending (i.e. periodic signal + noise components only). For each successive lag, the
series is shifted by one sampling interval. Values corresponding to odd lags are not shown. The
autocovariance and autocorrelation coefficients are plotted against lag in Fig. 12.6.

Lag Autocovariance syy(k) Autocorrelation ryy(k)

0 3.07 1.00
2 1.01 0.33
4 –0.90 –0.29
6 –0.28 –0.09
8 –0.29 –0.10
l0 –0.87 –0.28
12 –0.36 –0.12
14 –0.27 –0.09
16 –0.64 –0.21
18 0.33 0.11
20 1.22 0.40
22 0.47 0.15

Figure 12.6 Correlogram (autocovariance and autocorrelation; values from Table 12.5) for the artificial
series of Fig. 12.2b, after detrending (i.e. periodic signal + noise components only).
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The autocorrelation (or autocovariance) coefficients are plotted as a function of lag
k (abscissa), in a graph called autocorrelogram (or correlogram, for simplicity).
Autocorrelation coefficients range between +1 and –1. The scale factor between the
autocorrelation and autocovariance coefficients is the variance of the series (eq. 12.5).
In Fig. 12.6, this factor is syy(0) = 3.07; it is shown in Table 12.5 at lag k = 0.

The interpretation of correlograms is based on the following reasoning. At lag
k = 0, the two copies of the series (y' and y") have the exact same values facing each
other (Fig. 12.5), hence ryy(0) = +1. With increasing lag k, corresponding values in the
series y' and y" move farther apart and ryy(k) decreases. This is what is happening, in
the numerical example, for lags up to k = 4 (Table 12.5 and Fig. 12.6). In series where
periodic variability is present (with period Tp), increasing k eventually brings similar
values to face each other again (at lag k = Tp), with peaks facing peaks and troughs
facing troughs, hence a high positive value of ryy(k). The value of ryy(k =Tp) is always
smaller than 1, however, because there is always noise in data and because natural
periodic phenomena seldom repeat themselves perfectly. Negative autocorrelation
often reaches its maximum at k = Tp/2 because the signals in y' and y" are then
maximally out of phase. 

A practical problem occurs when there are several periodic signals in a series; this
may increase the complexity of the correlogram. Nevertheless, high positive values in
a correlogram may generally be interpreted as indicative of the presence of periodic
variability in the series. For the numerical example, Fig. 12.6 indicates that there is a
major periodicity at k = 20, corresponding to period T = 20; this interpretation is
supported by the low value of ryy(10). Period T = 20 is indeed the distance between
corresponding peaks or troughs in the series of Fig. 12.2b. Other features of the
correlogram may be indicative of additional periods (which is the case here, as can be
seen by examining Fig. 12.2b) or may simply be the result of random noise.

Confidence intervals can be computed and drawn on a correlogram to identify the
values that are significantly different from zero. The confidence interval is usually
represented on the correlogram as a two-standard-error band. If the data can be
assumed to be normal, independent (in the sense of not autocorrelated, Box 1.1) and
identically distributed, the confidence interval of ryy can be computed through the
usual formula for confidence intervals of correlation coefficients. In most time series
analyses, however, there is an assumption that the data are autocorrelated. It is thus
more appropriate to compute confidence intervals under a moving average (MA)
model (eq. 12.31) (Venables & Ripley, 2002). Both methods of calculation are
available in the R function plot.acf() (Section 12.8).

When the series is long, its correlogram may exhibit significant values for
harmonics (integer multiples) of the period present in the signal (Tseries). This is a
normal phenomenon, which is generally not indicative of additional periodicity in the
data series. However, when a value of the correlogram statistic is noticeably larger for
a harmonic period than for the basic period, one can conclude that the harmonic is also
a true period of the series. 

Autocorrel-
ogram

Harmonic
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For short series, autocorrelograms should only be computed when the series
include very strong periodic components. This is because the test of significance is not
very powerful, i.e. the probability of rejecting the null hypothesis of no autocorrelation
is small when a periodic component is present in short series. When there is more than
one periodic component in a series, correlograms should generally not be used, even
with long series, because components of different periods may interfere with one
another and prevent the correlogram from showing significance (see also the next
paragraph). Periodograms (Section 12.4) should be used instead. Finally, when the
data are not equispaced and one does not wish to interpolate, methods developed for
spatial correlation analysis, which do not require equal spacing of the data, may be
used (Section 13.1). Special forms of spatial correlation coefficients allow the analysis
of series of qualitative data (last paragraph of Subsection 13.1.1).

It may happen that periods present in the series do not appear in a correlogram,
because they are concealed by other periods accounting for larger fractions of the
variance of the series. When one or several periods have been identified using a first
correlogram, one may remove these periods from the series using one of the methods
recommended in Section 12.2 for cyclic trends and compute a new correlogram for the
detrended series. It could bring out previously concealed periods. This is not without
risk, however, because successively extracting trends rapidly distorts the residuals.
Approaches better adapted to series containing multiple periods are discussed in
Sections 12.4 and 12.5.

The following numerical example and ecological applications illustrate the
computation and use of correlograms.

Numerical example. Consider the following series of 16 data points (quantitative variable):

2, 2, 4, 7, 10, 5, 2, 5, 8, 4, 1, 2, 5, 9, 6, 3

Table 12.6 illustrates the computation of the autocorrelation coefficients. These could be plotted
as a function of lag (k) to form a correlogram, as in Figs. 12.6 and 12.7b. The coefficients clearly
point to a dominant period at k = 5, for which autocorrelation is positive and maximum. This
approximately corresponds to the average distance separating successive maximum values, as
well as successive minima, along the data series.

Ecological application  12.3a

In order to study the spatial variability of coastal marine phytoplankton, Platt et al. (1970)
measured chlorophyll a along a transect 8 nautical miles long, at 10 m depth and intervals of
0.1  naut. mi. (1 naut. mi. = 1852 m). The resulting 80 values are shown in Fig. 12.7a.

The series exhibited a clear linear trend, which was extracted at the beginning of the
analysis. Autocorrelation coefficients were computed from the residual series, up to lag k = 10,
because the series was quite short (Fig. 12.7b). The position of the first zero in the correlogram
was taken as indicative of the average apparent radius of phytoplankton patches along the
transect. The model underlying this interpretation is that of circular patches, separated by
average distances equal to their average diameter. In such a case, it is expected that the second
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zero would occur at a lag three times that of the first zero, as was indeed observed on the
correlogram. In the present case, the average diameter of phytoplankton patches and the distance
separating them appeared to be ca. 0.5 naut. mi.

Ecological application  12.3b

Steven & Glombitza (1972) sampled tropical phytoplankton and chlorophyll at a site off
Barbados during nearly three years. Sampling was approximately fortnightly. The physical
environment there is considered to be very stable over the year. The most abundant
phytoplankton species, in surface waters, is the filamentous cyanobacterium Trichodesmium
thiebaudii. Data were concentrations of chlorophyll a and of Trichodesmium filaments.

The raw data were subjected to two transformations: (1) computation of equispaced data at
15-day intervals by interpolation, and (2) filtration intended to reduce the importance of non-
dominant variations. The filtered data are shown in Fig. 12.8a, where the synchronous variations
of the two variables are obvious. Correlograms for the nonfiltered (Fig. 12.8b) and filtered
(Fig. 12.8c) series clearly show the same periodic signal, of ca. 8 lags × (15 days lag-1) =
120 days. Nonfiltered data provide the same information as the filtered series, but not quite as
clearly. According to the authors, these periodic variations could be an example of free

Table 12.6 Computation of the autocorrelation coefficients for the data of the numerical example. Boxes
delimit the values included in each calculation. Note how the highest values are facing each
other at lag 5, where the autocorrelation coefficient is maximum.

Lag Data series Autocorrelation ryy(k)

k=0 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 1.000
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=1 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.313
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=2 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.544
2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3

k=3 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.472
2 2 4 7 10 5 2 5 8 4 1 2 5 9 …

k=4 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.105
2 2 4 7 10 5 2 5 8 4 1 2 5 …

k=5 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 0.323
2 2 4 7 10 5 2 5 8 4 1 2 …

k=6 2 2 4 7 10 5 2 5 8 4 1 2 5 9 6 3 –0.107
2 2 4 7 10 5 2 5 8 4 1 …

etc. etc. etc.
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oscillations, since they seemed independent of any control by the environment, which was stable
the year round. The same ecological application will be used again below to illustrate the
calculation of cross-correlation (next subsection) and Schuster’s periodogram (Section 12.4). 

Wilson & Dawe (2006) used autocorrelograms to compare variations in population
densities of marine foraminifera with monsoonal rainfall data. Dutilleul (2011, his
Sections 6.2.1 and 6.3.2) discussed applications of autocorrelation to several data

Figure 12.7 Chlorophyll a concentrations in a coastal marine environment, along a transect 8 naut. miles
long in St. Margaret’s Bay (Nova Scotia, Canada). (a) Data series exhibiting a linear trend, and
(b) correlogram of the detrended series where lags (abscissa) are given as distances along the
transect. After Platt et al. (1970).
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series: maternal behaviour of the Wistar rat (a strain of albino rats) in the laboratory,
observed every two hours during five days (his Fig. 6.7, b1 and b2); yearly mean
sunspot numbers for the period 1749-1994 (his Fig. 6.8, b and c); monthly atmospheric
CO2 concentrations at Mona Laua, Hawaii, from 1965 through 2004 (his Fig. 6.9,
c and d); daily mean temperatures in air and soil in the Gault Nature Reserve (Québec)
over thirty days in June 2004 (his Fig. 6.3, b-c and f-g); and hourly mean temperatures
in air and soil in the same nature reserve over eight days in June (his Fig. 6.10, c-d
and g-h).

2 — Cross-covariance and cross-correlation

In order to determine the extent to which two data series exhibit concordant periodic
variations, a method closely related to autocovariance and autocorrelation can be used.
This method has two variants called cross-covariance and cross-correlation (or lag
correlation).

Figure 12.8 (a) Filtered time series of chlorophyll a and Trichodesmium in tropical surface waters off
Barbados. Marks along the abscissa are spaced by 75 days. On the ordinate, units are
103 filaments Trichodesmium L-1 and µg chlorophyll a L-1. Correlograms of (b) the nonfiltered
series and (c) the filtered series. After Steven & Glombitza (1972).
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Consider two series, yj and yl, of the same length. One is progressively shifted with
respect to the other, with lags k = 1, 2, … As the lag increases, the zone of overlap
between the two series shortens. Cross-covariance of order k is computed in a way
analogous to autocovariance. As in eq. 12.6 for autocovariance, the means  and 
of the full series are used to compute the cross-covariance sjl(k) between the two series
for lag k:

(12.8)

When k = 0 (no shift), eq. 12.6 becomes the maximum likelihood estimator of the
covariance between the variables:

Equation 12.8 shows an important difference between cross-covariance and
autocovariance, namely that the relative direction in which a series is shifted with
respect to the other must be taken into account. Indeed, shifting series yj “to the right”
by k units with respect to series yl is not equivalent to shifting it “to the left” because
the direction of the implied causal relationship (arrows in the figure) is not the same:

The value of cross-covariance for lag k would be different if yj and yl were
interchanged in eq. 12.8; in other words, generally sjl(k) , slj(k). In order to distinguish
between the two sets of cross-covariances, one set of shifts is labelled as positive and
the other as negative. The choice of the positive and negative directions is arbitrary
and without consequence. In eq. 12.8, if the cross-covariance of yj relative to yl is
identified as sjl(k), the converse would be labelled sjl(–k). No distinction was made
between the two relative shift directions in autocovariance (eq. 12.6) because
syy(+k) = syy(–k). When the direction of the causal relationship is known, there is no
need to compute cross-covariance for both positive and negative shifts, although
computer functions may automatically compute them, e.g. function ccf() in R.

The cross-covariance is generally plotted as a function of the positive and negative
lags k, to the right and to the left of k = 0. The alternative is to plot the two sets on the
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positive side of the abscissa using two different symbols. Maximum cross-covariance
does not necessarily occur at k = 0. Sometimes, the dependence between the two series
is maximum at a lag k , 0. In predator-prey interactions for example, cross-covariance
may be maximum for a lag corresponding to the response time of the predator
population (target variable) to changes in the number of prey (predictor variable).
One then says that the target variable lags the causal variable.

Cross-covariance can be transformed into cross-correlation. To do so, the cross-
covariance sjl(k) is divided by the product of the corresponding standard deviations,
which are the square roots of the variance ssjj(0) and ssll(0) (eq. 12.5):

(12.9)

As for cross-covariance, cross-correlation is defined for +k and –k. Values are plotted
as a function of k in a cross-correlogram. Fortier & Legendre (1979) used Kendall’s '
(Section 5.3) instead of Pearson’s r for computing cross-correlations between series of
quantitative variables which were not linearly related. They called this measure
Kendall’s cross-correlation. It may also be applied to series of semiquantitative data;
Spearman’s r (Section 5.3) could be used instead of Kendall’s '. Legendre & Legendre
(1982) proposed to extend this approach to qualitative data under the name cross-
contingency. In that case, contingency statistics (X2 or uncertainty coefficients;
Section 6.2) are computed for the two series as one is progressively shifted with
respect to the other.

When several ecological variables are observed simultaneously, the resulting
multidimensional series may be analysed using cross-covariance or cross-correlation.
Such methods are obviously of interest in ecology, where variation in one variable is
often interpreted in terms of variation in others. However, eq. 12.9 considers only two
series at a time; for multidimensional data series, it is sometimes useful to extend the
concept of partial correlation (Sections 4.5 and 5.3) to the approach of cross-
correlation. In Ecological application 12.3d, Fréchette & Legendre (1982) used
Kendall’s partial (partial '; Section 5.3) cross-correlation to analyse an ecological
situation involving three variables.

Ecological application  12.3c

In their study on temporal variability of tropical phytoplankton (Ecological application 12.3b),
Steven & Glombitza (1972) compared the variations in concentrations of chlorophyll a and
Trichodesmium, using cross-correlations (Fig. 12.9). The cross-correlogram shows that changes
in the two variables were in phase, with a period of 8 lags × 15 days lag–1 = 120 days. Filtration
of the data series brought but a small improvement to the cross-correlation. These results
confirm the conclusions drawn from the correlograms (Fig. 12.8), and show that variations of
chlorophyll a concentration, in surface waters, were due to changes in the concentration of
Trichodesmium filaments. This same application will be further discussed in Section 12.4
(Ecological application 12.4e).

Cross-
correlation r jl k( )

s jl k( )

s jj 0( ) sll 0( )
-----------------------------------=

Cross-
correlogram



738 Ecological data series

Ecological application  12.3d

At an anchor station in the St. Lawrence Estuary (Québec), Fréchette & Legendre (1982)
determined the photosynthetic capacity of phytoplankton ( ) hourly, during six consecutive
days. The sampling area was subjected to internal tides, which drove changes in two important
physical variables: (1) vertical oscillations of the water mass (characterized in this study by the
depth of isopycnal -t = 22, i.e. the depth where the density of water was 1022 kg m–3), and
(2) variations in the vertical stability of the upper water column, estimated as the density
gradient between 1 and 25 m. Two hypotheses could explain the observed effects of internal
tides on : (1) upwelling under the effect of incoming internal tides, up to the depths where
sampling took place, of deeper water containing phytoplankton with lower , or
(2) adaptation of  to changes in the vertical stability of the upper water column. 

Since the two physical variables were controlled by the same mechanism (i.e. internal tides),
it was not easy to identify their specific contributions to phytoplankton photosynthesis. This was
achieved by computing two Kendall’s partial cross-correlations (partial '): (1) between 
and the depth of -t = 22, controlling for the effect of vertical stability, and (2) between 
and stratification, controlling for vertical displacement. When calculating the partial cross-
correlations, the response variable ( ) was shifted relative to the two potentially causal
(physical) variables until a maximum value was reached. 

The authors concluded that the photosynthetic activity of phytoplankton responded to
changes in the vertical stability of the water column, driven by internal tides. This was
interpreted as an adaptation of the cells to periodic variations in their light environment.

Figure 12.9 Cross-correlations between temporal changes in concentrations of chlorophyll a and
Trichodesmium, in tropical surface waters, computed on nonfiltered (solid line) and filtered
(dotted line) data series. After Steven & Glombitza (1972). 
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Another example of cross-correlation applied to an ecological data series can be
found in Wilson & Dawe (2006), who used cross-correlograms to compare variations
in population densities of marine foraminifera with monsoonal rainfall data.

For series with irregular lag or missing data, the multivariate variogram
(Subsection 13.1.4) can be used to detect periodic phenomena in univariate or
multivariate quantitative data series. Likewise, the Mantel correlogram
(Subsection 13.1.6) can be used to detect periodic phenomena in irregular univariate
quantitative, semiquantitative or qualitative data series, and in multivariate series
involving variables of any precision level. This type of correlogram is computed from
a distance matrix among the observations in the series. 

12.4 Periodic variability: periodogram

In addition to the relatively simple methods discussed in the previous section, there is
another general approach to the study of periodic variability, called harmonic analysis.
This approach is mathematically more complex than correlogram analysis, but it is
often better adapted to the study of ecological data series. Results of harmonic analysis
are generally plotted in a graph called periodogram.

1 — Periodogram of Whittaker and Robinson

The simplest way to approach harmonic analysis is to examine a Buys-Ballot table.
Assume that a series of n quantitative observations is characterized by a period Tseries.
If T = Tseries is known, the series can be split into n/T sequences, each containing T
observations. A Buys-Ballot table (Table 12.7) is a double-entry table whose rows
contain the r = n /T sequences of T observations. The number of columns corresponds
to the known or assumed period of the data series. If T = Tseries, the r successive rows
in the table are repetitions of the same oscillation, although the actual values in any
column ( j) are generally not identical because of noise. Calculating the mean value for
each column ( ) and comparing these means is a way of characterizing the
variation within period Tseries.

When there exists a hypothesis concerning the value of Tseries (e.g. a diurnal cycle),
Buys-Ballot tables may be constructed for this value and also for neighbouring lower
and higher values Tk . As the period of the table (Tk) approaches that of the series
(Tseries), values within each column become more similar, so that all maximum values
tend to be located in one column and all minimum values in another. As a result, the
difference between the highest and lowest mean values is maximum when period Tk of
the table is the same as period Tseries of the series. The amplitude of a Buys-Ballot

yT j,

Amplitude
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table is some measure of the variation found among the columns of the table. It may be
measured by the range of the column means (Whittaker & Robinson, 1924):

[  – ] (12.10)

or by the standard deviation of the column means (Enright, 1965):

(12.11)

When the period T of interest is not an integer multiple of the interval between two
observations, a problem occurs in the construction of the Buys-Ballot table. The solution
proposed by Enright (1965) is to construct the table with a number of columns equal to the
largest integer that is less than or equal to the period of interest, T . Observations are attributed to
the columns in sequence, as usual, leaving out an observation here and there in such a way that
the average rate of advance in the series, from row to row of the Buys-Ballot table, is T . This is
done, formally, by using the following formula for the mean of each column j:

(12.12)

where r is the number of rows with data in column j of the table. The subscript of y is
systematically rounded up to the next integer. Thus, for example, if T = 24.5,  is estimated
from values {y1, y26, y50, y75, y99, y124, etc.} found in rows i = {1, 2, 3, 4, 5, 6, etc.} of the table;

Table 12.7 Buys-Ballot table. Allocation of data from a series containing n observations to the rows of the
table.
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in other words, intervals of 24 and 25 units are successively used, to give an average period
T = 24.5. This modified formula is required to understand Ecological application 12.4a, where
fractional periods are used.

When studying an empirical data series, the period Tseries is not known a priori.
Even when some hypothesis is available concerning the value of Tseries, one may want
to check whether the hypothesized value is the one that best emerges when analysing
the data. In both situations, estimating Tseries becomes the purpose of the analysis. The
values of amplitude, computed for different periods T, may be plotted together as a
periodogram in order to determine which period best characterizes the data series.

The periodogram of Whittaker & Robinson is a graph in which the measures of
amplitude (eq. 12.10 or 12.11) are plotted as a function of periods Tk. According to
Enright (1965), periodograms based on the statistic of eq. 12.11 are more internally
consistent than those based on eq. 12.10. Various ways have been proposed for testing
the significance of statistic 12.11 (reviewed by Sokolove & Bushell, 1978); these
tests are only asymptotically valid, so that they are not adequate for short time series.

Numerical example. Consider again the series (2, 2, 4, 7, 10, 5, 2, 5, 8, 4, 1, 2, 5, 9, 6, 3)
used in Subsection 12.3.1 to compute Table 12.6. In order to examine period Tk = 4, for instance,
the series is cut into segments of length 4 as follows:

2, 2, 4, 7;    10, 5, 2, 5;    8, 4, 1, 2;    5, 9, 6, 3

and distributed in the successive rows of the table. Buys-Ballot tables for periods Tk = 4 and 5
are constructed as follows:

The range is calculated using eq. 12.10 and the standard deviation with eq. 12.11. Repeating the
calculations for k = 2 to 8 produces the periodogram in Fig. 12.10.

Interpretation of the periodogram may be quite simple. If one and only one
oscillation is present in the series, the period with maximum amplitude is taken as the
best estimate for the true period of this oscillation. Calculation of the periodogram is
made under the assumption that there is a single stable period in the series. If several
periods are present, the periodogram may be so distorted that its interpretation could
lead to erroneous conclusions. Enright (1965) provides examples of such distortions,
using artificial series. Other methods, discussed below, are better adapted to series with
several periods.

T = 4 1 2 3 4 T = 5 1 2 3 4 5
Row 1 2 2 4 7 Row 1 2 2 4 7 10
Row 2 10 5 2 5 Row 2 5 2 5 8 4
Row 3 8 4 1 2 Row 3 1 2 5 9 6
Row 4 5 9 6 3 Row 4 3
Means 6.25 5 3.25 4.25 Means 2.75 2 4.67 8 6.67
Range = 3, standard deviation = 1.0951 Range = 6, standard deviation = 2.2708

Periodogram
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Ecological application  12.4a

Enright (1965) re-examined 17 time series taken from the literature, which described the activity
of animals as diverse as the chaffinch (bird), laboratory rat, crayfish, oyster, quahog (mollusc),
and fiddler crab. The purpose of Enrigh’s study was to determine, using periodograms, whether
the cycles of activity described by the authors of the original papers (solar, i.e. 24 h, or lunar,
i.e. 24.8 h) could withstand rigorous numerical analysis.

The approach is exemplified here by a series of 28 days of observations on the perch-
hopping activity of a chaffinch, a European songbird, kept under constant light conditions. The
periodogram shown in Fig. 12.11a is clearly dominated by a period of 21.8 h. Figures 12.11b-d
display the mean values  of the columns of the Buys-Ballot tables constructed for some of
the time periods investigated: Tk = 21.8, 24.0 and 24.8 h. (The values  of Fig. 12.11b-d
were used to calculate the amplitudes of the periodogram shown in Fig. 12.11a.) Similar figures
could be drawn for each point of the periodogram, since a Buys-Ballot table was constructed for
each period considered. Without the array of values in the periodogram, exclusive examination
of, say, the Buys-Ballot table for Tk = 24 h (Fig. 12.11c) could have led to conclude to the
presence of a circadian rhythm. Similarly, examination of the table for Tk = 24.8 h (Fig. 12.11d)
could have suggested a lunar rhythm. In the present case, the periodogram allowed Enright to
(1) reject periods that were intuitively interesting (e.g. Tk = 24 h) but whose amplitude was not
significantly high, and (2) identify a somewhat unexpected 21.8-h rhythm, which seemed to be
of endogenous nature.

The 17 data series re-examined by Enright (1965) had been published with the objective of
demonstrating the occurrence of circadian or tidal cycles. Enright’s periodogram analyses
confirmed the existence of circadian cycles for only two of the published series: one for the rat
locomotor activity, and one for the quahog shell-opening activity. None of the published series
exhibited a tidal (lunar) cycle. This stresses the usefulness of periodogram analysis in ecology
and the importance of using appropriate numerical methods when studying data series.

Figure 12.10 Periodogram of Whittaker and Robinson for the artificial data series. The amplitude statistics
plotted in the periodogram may be either the range or the standard deviation of the column
means in the Buys-Ballot tables.
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Figure 12.11 (a) Periodogram for the chaffinch perch-hopping activity series (n = 672 data points). The
amplitude was calculated using Enright’s formula (eq. 12.12). The three lower panels illustrate
examples of values from which the amplitudes in (a) were calculated. These graphs show the
means  of the columns in the Buys-Ballot tables, as functions of time, for periods Tk of
(b) 21.8 h, (c) 24.0 h, and (d) 24.8 h. After Enright (1965).
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Ecological application  12.4b

Nardi et al. (2003) used the periodogram of Whittaker & Robinson to study seasonal variations
in the free-running period (i.e. circadian rhythm) in two populations of sandhopper (marine
amphipods) on Italian beaches that differed in morphodynamics and human disturbance.

2 — Contingency periodogram of Legendre et al.

Another type of periodogram has been proposed by Legendre et al. (1981) to identify
rhythms in series of qualitative ecological data. In this contingency periodogram, the
Buys-Ballot table is replaced by a contingency table (Section 6.2). The columns of the
table (Colwell, 1974) are the same as in a Buys-Ballot table, but the rows are the r
states of the qualitative descriptor under study. Values in the table are frequencies fij of
the states of the descriptor (rows i), observed at the various times (columns j) of period
Tk. As in the periodogram of Whittaker & Robinson (above), a different table is
constructed for each period Tk considered in the periodogram.

Information (H) as to the states of the qualitative variable of interest (S), which is
accounted for by a given period Tk , is the information in common between S and the
sampling axis X (most often, time). This amount of information is computed as the
intersection between S and X, for period Tk:

(12.13)

Equation 12.14 is the same as eq. 6.10, used for calculating the information shared by
two descriptors (statistic B), so that  = B. 

The contingency periodogram is a graph of the values  = B on the
ordinate, as a function of periods Tk . Periodograms, as well as spatial correlograms
(Section 13.1), are often read from left (shortest periods or lags) to right (larger periods
or lags). This is the case when the process that may have generated the periodic or
autocorrelated structure of the data, if any, is assumed to be stronger at small lags and
to generate short periods before these are combined into long periods.

Section 6.2 has shown that statistic B is related to Wilks’  statistic:

 = 2nB     (when B in nats; eq. 6.13)

or  = 2nB loge 2 = nB loge 4     (when B in bits; eq. 6.14).

Because  can be tested for significance, critical values may be drawn on the
periodogram. The critical value of B is found by replacing  in eq. 6.13 by the
critical value :

Bcritical = /2n     (for B in nats)
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where 0 is the significance level and 1 = (r – 1)(Tk – 1) is the number of degrees of
freedom. For the periodogram, an alternative to plotting B is to plot the  statistic as
a function of periods Tk; the critical value to be used is then  directly. As one
proceeds from left (smaller periods) to right (larger periods) in the periodogram, Tk
and 1 increase; as a consequence, the critical value,  or Bcritical , monotonically
increases from left to right in this type of periodogram, as will be shown in the
numerical example below.

Since multiple tests are performed in a contingency periodogram, the critical
values of B must be corrected (Box 1.3). The simplest approach is the Bonferroni
correction, where significance level 0 is replaced by 0' = 0/(number of simultaneous
tests). In a periodogram, the number of simultaneous tests is the number of periods Tk
for which the statistic (B or ) has been computed. Since the maximum number of
periods that can be investigated is limited by the observational window (Section 12.0),
the maximum number of simultaneous tests is [(n/2) – 1] and the strongest Bonferroni
correction that can be made is 0' = 0/[(n/2) – 1]. This is the correction recommended
by Oden (1984) to assess the global significance of spatial correlograms
(Section 13.1). In practice, when analysing long data series, one usually does not test
the significance past some arbitrarily chosen point; if there are h statistics that have
been tested for significance, the Bonferroni method would call for a corrected
significance level 0' = 0/h.

There are two problems with the Bonferroni approach applied to periodograms and
spatial correlograms. The first one is that the correction varies in intensity, depending
on the number of periods (in periodograms) or lags (in spatial correlograms) for which
statistics have been computed and tested. The second problem is that the interest in the
results of the tests of significance decreases as the periods (or lags) get longer,
especially in long data series; when a basic period has been identified, its harmonics
are of lesser interest. These problems can be resolved by resorting to a progressive
Bonferroni correction, proposed by P. Legendre in the Hewitt et al. (1997) paper. In
this method, the first periodogram or spatial correlogram statistic is tested against the
0 significance level; the second statistic is tested against the Bonferroni-corrected
level 0' = 0/2 because, at this point, two tests have been performed; and so forth until
the k-th statistic, which is tested against the Bonferroni-corrected level 0' = 0/k. This
approach also solves the problem of “where to stop computing a periodogram or
spatial correlogram”; one goes on as long as significant values are likely to emerge,
considering the fact that the significance level becomes progressively more stringent.

Numerical example. Consider the following series of qualitative data (n = 16), for a
qualitative variable with 3 states (from Legendre et al., 1981):

1, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 1, 2, 3, 3, 1

To analyse period Tk = 4, for instance, the series is cut into segments of length 4 as follows:

1, 1, 2, 3;    3, 2, 1, 2;    3, 2, 1, 1;    2, 3, 3, 1
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and distributed in the successive rows of the table. The first four data go into columns 1 to 4 of
the contingency table, each one in the row corresponding to its code; similarly, observations 5 to
8 are placed into the columns of the table, each in the row corresponding to its code; and so
forth. When the operation is completed, the number of occurrences of observations are counted
in each cell of the table, so that the resulting table is a contingency table containing frequencies
fij. As an exercise, readers should try to reproduce the contingency tables shown below for Ti = 4
and Ti = 5. The values of  and B (in nats) are given for these two periods:

Repeating the calculations for k = 2 to 8 produces the periodogram shown in Fig. 12.12.
Only  = 26.72 (T = 5) is larger than the corresponding critical value, which may be
computed in various ways (as explained above), depending on the need:

• Uncorrected critical value: 0 = 0.05, 1 = (3 – 1)(5 – 1) = 8, critical  = 15.5. Bcritical
= 15.5/(2 × 16) = 0.484.

• Bonferroni correction for 7 simultaneous tests: 0' = 0/(n/2 – 1) = 0.05/7, 1 = 8, critical
 = 21.0. Bcritical = 21.0/32 = 0.656.

T = 4 1 2 3 4 T = 5 1 2 3 4 5
State 1 1 1 2 2 State 1 3 3 0 0 0
State 2 1 2 1 1 State 2 1 0 3 0 1
State 3 2 1 1 1 State 3 0 0 0 3 2

B (in nats) = 0.055,  = 1.76 B (in nats) = 0.835,  = 26.72
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Figure 12.12 Contingency periodogram for the artificial data series (circles). The contingency statistic used
here is B = H (S . X). (1) Uncorrected critical values. (2) Bonferroni-corrected critical values,
correcting for 7 simultaneous tests in the observational window. (3) Progressive Bonferroni
correction; the first value (Tk = 2) is without correction, while the last (Tk = 8) receives the full
Bonferroni correction.
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• Progressive Bonferroni correction. Example for the 4th test: 0' = 0/4 = 0.05/4, 1 = 8, critical
 = 19.5. Bcritical = 19.5/32 = 0.609.

Thus, the only significant period in the data series is Tk = 5.

The contingency periodogram can be directly applied to qualitative descriptors.
Quantitative or semiquantitative descriptors must be divided into states before analysis
with the contingency periodogram. A method to do so is described in Legendre et al.
(1981).

In their paper, Legendre et al. (1981) established the robustness of the contingency
periodogram in the presence of strong random variations, which often occur in
ecological data series, and its ability to identify hidden periods in series of non-
quantitative ecological data. Another advantage of the contingency periodogram is its
ability to analyse very short data series.

One of the applications of the contingency periodogram is the analysis of
multivariate series (e.g. multi-species; Ecological application 12.4c). Such series may
be transformed into a single qualitative variable describing a partition of the
observations found by clustering (Chapter 8). With the contingency periodogram, it is
possible to analyse the data series, now transformed into a single nonordered variable
(factor) corresponding to the partition of the observations. An alternative approach
would be to carry out the analysis on the multivariate distance matrix among
observations using the Mantel correlogram described in Subsection 13.1.6.

Ecological application  12.4c

Phytoplankton was enumerated in a series of 175 water samples collected hourly at an anchor
station in the St. Lawrence Estuary (Québec). Using the contingency periodogram, Legendre et
al. (1981) analysed the first 80 h of that series, which corresponded to neap tides. The original
data consisted of six functional taxonomic groups. The six-dimensional quantitative data were
transformed into a one-dimensional qualitative descriptor by clustering the 80 observations
using flexible clustering (Subsection 8.5.10). Five clusters of “hours” were obtained; each hour
of the series was attributed to one of them. Each cluster thus defined a state of the new
qualitative variable resulting from the classification of the hourly data. 

When applied to the qualitative series, the contingency periodogram identified a significant
period T = 3 h, which suggested rapid changes in surface waters at the sampling site. The integer
multiples (harmonics) of the basic period (3 h) in the series also appeared in the contingency
periodogram. Periods T = 6 h, 9 h, and so on, had about the same significance as the basic
period, so that they did not indicate the presence of additional periods in the series.

3 — Periodogram of Schuster 

For quantitative serial variables, there exists another method for calculating a
periodogram, which is mathematically more complex than the periodogram of
Whittaker and Robinson (Subsection 12.4.1) but is also more powerful. It is sometimes
called harmonic analysis or periodic regression. This method is based on the fact that
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the periodic variability present in series of quantitative data can often be represented
by a sum of periodic terms, involving combinations of sines and cosines (Fig. 12.13):

(12.14)

Equation 12.15 is called a Fourier series. Constant a0 is the mean of the series;
parameters ak and bk determine the importance of a given period Tk in the resulting
signal. Using eq. 12.14, any periodic signal can be partitioned into a sequence of
superimposed oscillations (Fig. 12.13). Function cos[x (2) /Tk)] transforms the
explanatory variable x into a cyclic variable. Periods Tk are generally chosen in such a
way that the sines and cosines, which model the data series, are harmonics
(Section 12.0) of a fundamental period T0: Tk = T0/k (where k = 1, 2, …, n/2). Periods
Tk become shorter as k increases. Equation 12.15 may be rewritten as:

Generally, T0 is taken to be equal to the length of the series (T0 = n!, where ! is the
interval between data points), so that:

(12.15)

The purpose of Fourier analysis is not to determine the values of coefficients ak and
bk, but to find out which periods, among all periods Tk, best explain the variance
observed in the response variable y(x). After estimating the values of ak and bk, the
amplitude of the periodogram for each period Tk is computed as the fraction of the
variance of the series that is explained by the given period. This quantity, which is a
sum of coefficients of partial determination, combines the estimates of coefficients ak
and bk as follows:

(12.16)

Values in the periodogram are thus calculated by fitting to the data series (by least
squares) a finite number of sine and cosine functions with different periods. There are
n/2 such functions in the harmonic case. The shortest period considered is 2!
(Tk max =T0/(n/2) = n!/(n/2) = 2!). It corresponds to the lower limit (expressed in
period or wavelength) of the observational window (bottom row of Table 12.1). The
amplitude is computed for each period Tk independently.

Plotting the amplitudes from eq. 12.16 as a function of periods Tk produces the
periodogram of Schuster (1898), which is used to identify significant periods in data
series. In usual calculations, frequencies Tk are harmonics of T0, but it is also possible
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Figure 12.13 Fourier series. The periodic variation in this example (bottom graph, same as the periodic
component of Fig. 12.2b) results from the sum of three sines and three cosines, which make up a
harmonic sequence (Tk = T, T/2 and T/3). The mean of the series is 0 (a0 = 0) and the amplitude
of each sine and cosine is equal to 1 (ak = bk = 1).
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to choose them to correspond to values of particular interest in the study. Contrary to
the periodogram of Whittaker & Robinson, which does not refer to an underlying
mathematical model, Schuster’s periodogram is based on Fourier series (eqs. 12.14
and 12.15). Indeed, Kendall & Ord (1990, p. 158) have shown that any time series may
be decomposed into a set of cycles based on the harmonic frequencies, even if the
series does not display periodicity. Spatial eigenfunctions (Sections 14.1 to 14.3),
computed along the time series, can be used for the same type of decomposition.

One advantage of Schuster’s periodogram is that it can handle series showing
several periods, contrary to the periodogram of Whittaker and Robinson which is
limited to series with only one stable period (see above). Values in Schuster’s
periodogram can be tested for significance by reference to a critical value, which is
calculated using a formula derived from Anderson (1971, p. 110 et seq.):

(12.17)

where n is the number of observations in the series, m is the largest computed
harmonic period (usually, m = n/2), and 0 is the significance level. 

Ecological application  12.4d

Demers & Legendre (1981) used Schuster’s periodogram to analyse a 76-h series of
oceanographic data. For a significance level 0 = 0.05, the critical value for the periodogram was:

Hence, any period explaining more than 17.4% of the variance of the series was considered to be
significantly different from zero at significance level 0 = 0.05.

Ecological application  12.4e

The time series of chlorophyll a and Trichodesmium filaments in tropical waters (Steven &
Glombitza, 1972), discussed in Ecological applications 12.3b and 12.3c above, were subjected
to harmonic analysis. Results are reported in Table 12.8. Each column of results could also be
plotted as a periodogram. The period T = 120 days, already evidenced by autocorrelation
(Fig. 12.8) and cross-correlation (Fig. 12.9), was also clearly identified by harmonic analysis.

Ecological application  12.4f

Crow birds act as a reservoir of the West Nile virus (WNV), which first appeared in North
America in 1999. Ludwig et al. (2009) used Schuster’s periodogram to investigate the
population dynamics of crow birds in Québec and evaluate the impact of WNV infection on
these dynamics. Their purpose was to develop a predictive algorithm that could be used as a
disease surveillance tool and a measure of the impact of WNV on wildlife. 

2 n( )– loge 1 1 0–m–( )

2 76( )– loge 1 1 0.05–38–( ) 0.174 17.4%= =
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4— Periodogram of Dutilleul

Fractional periods do not correspond to an integer number of cycles in the series.
These periods are usually not computed in Schuster’s periodogram, although there is
nothing that prevents it mathematically except the fact that the test of statistical
significance of individual values (eq. 12.17) is only asymptotically valid with
fractional periods. As a consequence, Schuster’s periodogram is poorly adapted to the
analysis of short time series, in which the periods of interest are likely to be fractional.
A rule of thumb is to only analyse series that are at least 10 times as long as the longest
hypothesized period.

Dutilleul (1990) proposed to modify Schuster’s periodogram, in order to compute
the portion of total variance associated with periods that do not correspond to integer
fractions of the fundamental period T0 (i.e. fractional periods). The method allows a
more precise detection of the periods of interest and is especially useful with short
data series. 

The statistic in Dutilleul’s modified periodogram is the exact fraction of the total
variance of the time series explained by regressing the series on the sines and cosines
corresponding to one or several periodic components. In contrast, Schuster’s
periodogram is estimated for a single period at a time, i.e. each period Tk in eq. 12.14.
It follows that, when applied to short series, Schuster’s periodogram generally only
provides an approximation of the explained fraction of the variance. In general, the
number of periodic components actually present in a series is unknown a priori, but it
may be estimated using a stepwise procedure proposed by Dutilleul (1990; see also

Table 12.8 Harmonic analysis of time series of chlorophyll a and Trichodesmium filaments, in tropical
marine waters. The table reports the amplitudes corresponding to harmonic periods. The
dominant period (Tk = 120) is in italics. After Steven & Glombitza (1972).

Harmonic Period Nonfiltered series Filtered series
k Tk = 840 days/k Chl a Trichodesmium Chl a Trichodesmium

4 210 0.007 67 0.010 75
5 168 0.007 178 0.006 168

6 140 0.022 113 0.019 129

7 120 0.039 318 0.038 311

8 105 0.017 147 0.016 162

9 93 0.018 295 0.019 291

10 84 0.020 123 0.020 144

Dutilleul
periodogram
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Dutilleul, 1998). The modified periodogram thus offers two major extensions over
Schuster’s: (1) it may be computed for several periods at a time (i.e. it is
multifrequential) and (2) its maximization over the continuous domain of possible
periods provides the maximization of the sum of squares of the corresponding
trigonometric model fitted by least squares to the series. Both periodograms lead to the
same estimates when computed for a single period over a long data series, or when the
period corresponds to an integer fraction of T0. In all other cases, the modified
periodogram has better statistical properties (Dutilleul, 1990; see also Legendre &
Dutilleul, 1992; Dutilleul & Till, 1992; Dutilleul, 1998, 2011): 

• The explained fraction of the variance tends to be maximum for the true periods
present in the time series, even when these are fractional, because the periodogram
statistic exactly represents the sum of squares of the trigonometric model fitted by least
squares to the series at the frequencies considered, whether these are integers or not
(when expressed in number of cycles over the series).

• Assuming normality for the data series, the periodogram statistic is distributed like
/2 for all periods in small or large samples, which leads to exact tests of significance.
With Schuster’s periodogram, this is only the case for periods corresponding to integer
fractions of T0 or, outside these periods, only for large samples.

• When the number of frequencies involved in the computation corresponds to the true
number of periodic components in the series, the frequencies maximizing the
periodogram statistic are unbiased estimates of the true frequencies. The stepwise
procedure mentioned above allows the estimation of the number of periodic
components present in the series.

In order to compare Dutilleul’s periodogram to Schuster’s, Legendre & Dutilleul
(1992) created a test data series of 30 simulated observations containing two periodic
components, which jointly accounted for 70.7% of the total variance in the series, with
added noise. The true periods were T = 12 and 15 units. Schuster’s periodogram
brought out only one peak, because the two components were close to each other and
Schuster’s periodogram statistic was estimated for only one period at a time. When
estimated for a single period, Dutilleul’s modified periodogram shared this drawback.
However, when estimated for the correct number of periods (i.e. two, as found by the
stepwise procedure mentioned above), the modified periodogram showed maxima near
the two constructed periods, i.e. at T = 11.3 and 14.4 units. The authors also compared
the results of Dutilleul’s method to those obtained with the stepwise procedure of
Damsleth & Spjøtvoll (1982), which is based on Schuster’s periodogram. Results from
the latter (estimated periods T = 10.3 and 13.5) were not as good as with Dutilleul’s
modified periodogram. Dutilleul (1998) also showed the better performance of the
modified periodogram over autocorrelograms in the context of scale analysis. 

Dutilleul & Till (1992) published an application of the modified periodogram to the
analysis of long dendrochronological series. Dutilleul’s periodogram clearly detected
the annual solar signal in cedar tree-ring series in the Atlas, a sub-tropical region
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where, typically, the annual dendrochronological signal is weak. An application to a
series of moderate length (river discharge) was published by Tardif et al. (1998). 

Dutilleul (2011, his Section 6.3.2) discussed applications of Dutilleul’s
periodogram to several data series: maternal behaviour of the Wistar rat (a strain of
albino rats) in the laboratory, observed every two hours during five days (his Fig. 6.7,
c1 and c2); yearly mean sunspot numbers for the period 1749-1994 (his Fig. 6.8,
d and e); monthly atmospheric CO2 concentrations at Mona Laua, Hawaii, from 1965
through 2004 (his Fig. 6.9b); and hourly mean temperatures in air and soil in the Gault
Nature Reserve (Québec) over eight days in June 2004 (his Fig. 6.10, b and f).

5— Harmonic regression

Legand (1958) proposed to use the first term of the Fourier series (eq. 12.14) to
analyse ecological periodic phenomena with known sinusoidal periodic variability
(e.g. circadian or annual). This method is called harmonic regression. As in the case of
Fourier series (see above), the explanatory variable x (e.g. time of day) is transformed
into a cyclic variable:

(12.18)

for cosine functions using angles in radians, as in R. In the above expression, which is
the first term of a Fourier series, T is the period suggested by hypothesis (e.g. 24
hours); x is the explanatory variable (e.g. local time); and 2) is replaced by 360° when
the cosine function uses angles in degrees. Constant c fits the position of the cosine
along the abscissa, so that it corresponds to the time of minimum and maximum values
in the data set. The regression coefficients are estimated by the least-squares method:

The harmonic regression equation can be fitted to data series by nonlinear least squares
using function nls() in R (Section 10.7).

Ecological application  12.4g

Angot (1961) studied the diurnal cycle of marine phytoplankton production near New
Caledonia, in the South Pacific. Values of primary production exhibited regular diurnal cyclic
variations, which might reflect physiological rhythms. After logarithmic transformation of the
primary production values, the author found significant harmonic regressions, with T = 24 h and
c = 3 h; the explanatory variable x was the local time. Coefficients of regression b0 and b1 were
used to compare different sampling sites.

x' 2)
T

------ x c+( )cos=
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Ecological application  12.4h

Taguchi (1976) used harmonic regression to study the short-term variability of marine
phytoplankton production for different irradiance conditions and seasons. Data, which
represented a variety of coastal conditions, were first transformed into ratios of production to
chlorophyll a. The explanatory variable x was local time, c = 4 h, and T was generally 24 h. The
intercept b0 represented the mean production and b1 was the slope of the regression line. The
two coefficients decreased with irradiance and varied with seasons. The author interpreted the
observed changes of regression coefficients in terms of photosynthetic dynamics.

Periodogram analysis is of interest in ecology because calculations are relatively
simple and interpretation is direct. The correlogram and periodogram approaches,
however, often give way to spectral analysis (next section). Spectral analysis is more
powerful than correlogram or periodogram analyses, but it is also a more complex
method for studying series. For simple problems where spectral analysis would be an
unnecessary luxury, ecologists should rely on correlograms or, better, periodograms.

12.5 Periodic variability: spectral and wavelet analyses

Spectral analysis is the most advanced approach to analyse data series. The general
concepts upon which it is founded are described below and illustrated by ecological
applications. However, the analysis cannot be conducted without taking into account a
number of theoretical and practical considerations, whose discussion exceeds the
scope of the present book. Interested readers should refer, for instance, to the review
papers by Platt & Denman (1975) and Fry et al. (1981). They may also consult the
books of Bendat & Piersol (1971) and Muller & Macdonald (2002) as well as the
references provided at the end of Section 12.0. Ecologists wishing to use spectral
analysis are advised to consult a colleague with practical experience of the method. 

1 — Series of a single variable

In the previous section, calculation of the Schuster periodogram involved least-squares
fitting of a Fourier series to the data (eq. 12.14):

When calculating the periodogram, the Fourier series was constructed using periods Tk
= T0/k. In spectral analysis, frequencies fk = 1/Tk are used instead of periods Tk. Thus,
eq. 12.14 is rewritten as:

(12.19)
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Using a formula similar to eq. 12.16, the intensity of the periodogram, at frequency
fk, is computed using the least-squares estimates of coefficients ak and bk:

(12.20)

The intensity of the periodogram is defined only for harmonic frequencies k/n!. It is
possible, however, to turn the intensity of the periodogram into a continuous function
over all frequencies from zero to the Nyquist frequency (see Table 12.1). This defines
the spectrum of the series:

(12.21)

The spectrum is thus a continuous function of frequencies, whereas the periodogram is
discontinuous. Calculation and interpretation of spectra is the object of spectral
analysis. Because of its origin in the field of electricity and telecommunications, the
spectrum is sometimes called “power spectrum” or “energy spectrum”. As shown
below, it is also a “variance spectrum”, which is the terminology used in ecology.

In algebra, there exist mathematically equivalent pairs of equations that are used to
go from one independent variable to another. Two mathematically equivalent
equations where one is a function of x and the other a function of frequency f = 1/x are
called a pair of Fourier transforms. It can be shown that the autocovariance or
autocorrelation function (eqs. 12.5-12.7) and the spectral density function (eq. 12.21)
are a pair of Fourier transforms. In other words, the spectral density function is a
Fourier transform of the autocorrelation function, and vice versa. Therefore, both the
correlogram (Section 12.3) and periodogram analyses (Section 12.4), when they are
generalized, lead to spectral analysis (Fig. 12.14). Classically, the spectrum is
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Figure 12.14 Relationships between a data series, its correlogram and periodogram, and its variance
spectrum. The figure shows that the correlogram or the periodogram, on the one hand, and the
spectrum, on the other hand, form a pair of Fourier transforms.
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computed by Fourier transformation (also called “Fourier transform”) of the
autocorrelation, followed by smoothing. There is another method, called Fast Fourier
Transform (FFT), which is faster than the classical approach (shorter computing time)
and efficiently computes the pair of Fourier transforms written in discrete form. This
last method offers the advantage of computational efficiency, but it involves a number
of constraints, which can only be fully mastered after acquiring some practical
experience of spectral analysis. It is sometimes confusing that, according to the
context, the word “transform” is used as a verb (i.e. to transform an equation into
another) or as a noun, and in the latter case it either refers to an algebraic operation
(e.g. fast Fourier transform) or the result of that operation (e.g. a pairs of Fourier
transforms).

The spectrum computed from a correlogram or autocovariance function is an
unbiased estimate of the true spectrum. However, the standard error of this spectral
estimate is 100% whatever the length of the series. It follows that the computed
spectrum must be smoothed in order to reduce its variance. Smoothing is done using a
window, which is a function by which one multiplies the spectrum itself (spectral
window), or the autocovariance estimates (lag window) prior to Fourier
transformation. The two types of windows lead to the same results. The main problem
of smoothing is that reduction of the standard error of the spectral estimates, on the
ordinate, always leads to spreading of the variance on the abscissa. As a result, the
spectral estimate, at any given frequency, may become contaminated by variance that
is “leaking” from neighbouring frequencies. This leakage may result in biased
smoothed spectral estimates. The various windows found in the literature (e.g. Bartlett,
Daniell, de la Valle-Poussin or Parzen, Hamming, von Han, Tukey) provide different
compromises between reduction of the standard error of spectral estimates and loss of
resolution between adjacent frequencies. As was stressed above, the practical aspects
of spectral analysis, including the choice of windows, filters (Section 12.2), and so on,
often necessitate the help of an experienced colleague.

The ecological interpretation of spectra is not necessarily the same as that of
correlograms or periodograms. First, the spectrum is a true partition of the variance of
the series among frequencies. Therefore, spectral analysis is a third type of variance
decomposition, in addition to the usual partitioning among experimental factors or
sampling axes (ANOVA) and the partition among principal axes (Sections 4.4 and 9.1).
The units of spectral density are [variance × frequency–1], i.e. [(units of the response
variable y)2 × (units of the explanatory variable x)]. Therefore, the variance that
corresponds to a frequency band is the area under the curve between the upper and
lower frequencies, i.e. the integration of [variance × frequency–1] over the frequency
band. Spectra may be computed to identify harmonics in the data series or they may be
regarded as characteristics of whole series, whether they are true sums of harmonics or
not (Kendall & Ord, 1990, p. 158). These concepts should become clearer with the
following ecological applications.

Fast Fourier
Transform

Smoothing
window
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Ecological application  12.5a

At an anchor station in the Gulf of St. Lawrence, Platt (1972) continuously recorded in vivo
fluorescence in surface waters as an estimate of phytoplankton chlorophyll a. Spectral analysis
of the detrended data series (Fourier transform of autocorrelation) resulted in a spectrum
characterized by a slope of –5/3, over frequencies ranging between ca. 0.01 and 1 cycle min–1.
The average current velocity being ca. 20 cm s–1 (ca. 10 m min–1), the time series covered
spatial scales ranging between ca. 1000 and 10 m (wavelength = speed × frequency–1). This is
illustrated in Fig. 12.15.

Interpretation of the spectrum was based on the fact that spectral analysis is a type of
variance decomposition in which the total variance of the series is partitioned among the
frequencies considered in the analysis (here: 0.03 cycle min–1 < f < 1.5 cycle min–1). The slope
–5/3 corresponds to that of turbulent processes. This led the author to hypothesize that the local
concentration of phytoplankton could be mainly controlled by turbulence. In a subsequent
review paper, Platt & Denman (1975) cite various studies, based on spectral analysis, whose
results confirm the hypothesis that the mesoscale spatial organization of phytoplankton is
controlled by physical processes, in both marine and freshwater environments. This is in fact a
modern version of the model proposed in 1953 by Kierstead & Slobodkin, which is discussed in
Ecological applications 3.2d and 3.3a. Other references on spectral analysis of in vivo
fluorescence series include Demers et al. (1979), Denman (1976, 1977), Denman & Platt (1975,
1976), Denman et al. (1977), Fashman & Pugh (1976), Legendre & Demers (1984), Lekan &
Wilson (1978), Platt (1978), Platt & Denman (1975), and Powell et al. (1975), among others.

Figure 12.15 Horizontal distribution of chlorophyll a (in vivo fluorescence; arbitrary units) in surface waters
of the Gulf of St. Lawrence. The two parallel lines on the variance spectrum show the envelope
of calculated spectral densities. The Nyquist frequency is 1.5 cycle min–1. After Platt (1972).
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Ecological application  12.5b

Campbell & Shipp (1974) tried to explain the migrations of an Australian cricket from
observations on rhythms of locomotor activity of the males and females. One summer migration
was followed during 100 days, starting in mid-February. In addition, locomotor activity rhythms
of the males and females were observed in the laboratory during ca. 100 days. Figure 12.16
shows smoothed spectra for numbers of migrating crickets and locomotor activity, for both
sexes.

Peaks corresponding to periods of ca. 2.5, 5, 10, and 20 days were observed in one or several
spectra, which suggested a long-term biological rhythm with several harmonics. It followed
from spectral analysis that the migratory waves could be explained by synchronization of the

Figure 12.16 Estimates of smoothed spectra for numbers of migrating (a) male and (b) female crickets and for
the locomotor activity of (c) male and (d) female crickets in the laboratory. The Nyquist
frequency is 0.5 cycle day–1. Periods corresponding to the main peaks are indicated above the
curve, in order to facilitate interpretation; periods are the inverse of frequencies (abscissa). After
Campbell & Shipp (1974).
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locomotor activity cycles of individuals in the population. Migrations of the males appeared to
follow a 20-day cycle, whereas those of females seemed to follow a cycle of ca. 10 days. The
authors suggested that, during these periods, males attract females to their burrows and form
relatively stable couples.

Ecological application  12.5c

Another ecological example, quite different from those presented above, is provided by the
study of Logerwell et al. (1998) in the southeastern Bering Sea. There, the authors used spectral
analysis to characterise the spatial aggregation patterns of thick-billed murres (Uria lomvia)
(birds, family Alcidae), and their prey (e.g. juvenile fish and krill), whose biomass had been
estimated by underwater acoustic surveying.

As a further example, Dutilleul (2011, his Sections 6.2.1 and 6.2.2) applied spectral
analysis to time series of daily mean temperatures in air and soil in the Gault Nature
Reserve (Québec) sampled over thirty days in June 2004 (his Fig. 6.3, d and h). 

2 — Multidimensional series

Spectral analysis can be used not only with univariate but also with multidimensional
series, when several ecological variables have been recorded simultaneously. This
analysis is an extension of cross-covariance or cross-correlation, in the same way as
the variance spectrum is a generalization of autocovariance or autocorrelation
(Fig. 12.14).

From two data series, yj and yl, one can compute a pair of smoothed spectra Sjj and
Sll and a cross-correlation function rjl(k). These are used to define the co-spectrum
(Kjl) and the quadrature spectrum (Qjl):

Kjl( f ) = Fourier transform of [rjl(k) + rjl(–k)]/2 (12.22)

Qjl( f ) = Fourier transform of [rjl(k) – rjl(–k)]/2 (12.23)

The co-spectrum (eq. 12.22) measures the distribution, as a function of frequencies, of
the covariance between those components of the two series that are in phase, whereas
the quadrature spectrum (eq. 12.23) provides corresponding information for a phase
shift of 90° between the same components. For example, a sine and cosine function are
in perfect quadrature. These spectra are used, below, to compute the coherence, phase,
and gain.

The cross-amplitude spectrum is defined as:

(12.24)

Two-
dimensional
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Co-spectrum

Quadrature s.
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The spectra for yj and yl are used to compute the (squared) coherence spectrum (Cjl)
and the phase spectrum (6jl):

(12.25)

(12.26)

The squared coherence (eq. 12.25) is a dimensionless measure of the correlation of the
two series in the frequency domain; for frequency f, = 1 indicates perfect
correlation between two series whereas = 0 implies the opposite. The phase
spectrum (eq. 12.26) shows the phase shift between the two series. When the phase is a
regular function of the frequency, the squared coherence is usually significantly
different from zero; when the phase is very irregular, the squared coherence is
generally low and not significant.

In order to assess the causal relationships between two variables, one can use the
gain spectrum ( ), which is analogous to a coefficient of simple linear regression.
One can determine the response of yj to yl:

(12.27)

or, alternatively, the response of yl to yj:

(12.28)

Ecological application  12.5d

In a study of the spatial variability of coastal marine phytoplankton, Platt et al. (1970) repeated,
in 1969, the sampling programme of 1968 described in Ecological application 12.3a. This time,
data were collected not only on chlorophyll a but also on temperature and salinity at 80 sites
along a transect. Figure 12.17 shows the coherence spectra for the three pairs of series, recorded
on 24 June. Strong coherence between temperature and salinity indicates that these variables
well characterized the water masses encountered along the transect. Significant coherence
between the series of chlorophyll a and those of temperature and salinity, at ca. 3 cycles (naut.
mi.)–1, were consistent with the hypothesis that the spatial distribution of phytoplankton was
controlled to some extent by the physical structure of the environment.
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Ecological application  12.5e

In order to identify the factors controlling the spatial heterogeneity of marine phytoplankton
(patchiness), Denman & Platt (1975) analysed values of chlorophyll a and temperature, recorded
continuously along a transect in the St. Lawrence Estuary. Two pumping systems were towed, at
depths of 5 and 9 m, over a distance of 16.6 km (10 nautical miles). The sampling interval was
1 s, which corresponds to 3.2 m given the speed of the ship. After detrending, computations
were carried out using the fast Fourier transform. Four coherence and phase spectra were
calculated, as shown in Fig. 12.18.

For a given depth (Fig. 12.18a: 5 m; b: 9 m), the coherence between temperature and
chlorophyll a was high at low frequencies and the phase was relatively constant. At higher
frequencies, the coherence decreased rapidly and the phase varied randomly. The lower panels
of Fig. 12.18 indicate the absence of covariation between series from different depths. The
authors concluded that physical processes played a major role in the creation and control of
phytoplankton heterogeneity at intermediate scales (i.e. from 50 m to several kilometres). Weak
coherence between series from the two depths, which were separated by a vertical distance of
only 4 m, suggested the presence of a strong vertical gradient in the physical structure. Such

Figure 12.17 Coherence spectra between pairs of variables sampled along a transect 8 nautical miles long in
St. Margaret’s Bay (Nova Scotia, Canada). Dashed lines: approximate 95% confidence limits.
After Platt et al. (1970).
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gradients are known to favour the propagation of internal waves (analogous to the propagation
of waves at the air-water discontinuity). The authors proposed that the strong coherence between
temperature and chlorophyll a, at each of the sampled depths, could reflect the presence of
internal waves.

Ecological application  12.5f

In the study on the spatial distributions of thick-billed murres (Uria lomvia) and their prey
(acoustic data) in the southeastern Bering Sea, described in Ecological application 12.5c,
Logerwell et al. (1998) also used phase and coherence spectra. With these spectra, the authors
compared the distribution patterns of birds and prey over a wide range of spatial scales.

Figure 12.18 Values of coherence (solid lines) and phase (open circles), for pairs of spatial series continuously
recorded in the St. Lawrence Estuary. Abscissa: wavenumber (= 2)/wavelength =
2) frequency/speed). Adapted from Denman & Platt (1975).
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In the last paragraphs, the approach to multidimensional situations was to consider
two series at a time. Brillinger (1981) provides the mathematical bases for processing
multidimensional series using methods that are fully multivariate. When a stochastic
series is a time-invariant function of several other series, the method recommended is
frequency regression. It is analogous to multiple linear regression (Subsection 10.3.3),
computed in the frequency domain. More generally, the method to study relationships
among several series is that of principal components in the frequency domain (see
Ecological application 12.5g). In that case, a spectrum is computed for each of the
principal components, which are linear combinations of the serial variables
(Section 9.1). The method has been adapted by Laurec (1979), who explained how to
use it in ecology.

Another approach to the analysis of multivariate data series is the Mantel
correlogram (Subsection 13.1.6). Because this type of correlogram is based upon a
similarity or distance matrix among observations (Chapter 7), it is suitable to analyse
multivariate data. It can also be used to analyse univariate or multivariate series of
semiquantitative, qualitative, or binary data, like the species presence-absence data
often collected by ecologists. Yet another approach is spatial eigenfunction analysis
(Chapter 14). The study of a sediment core representing 10000 years of sedimentation
(101 levels, 139 diatom species) by Legendre & Birks (2012), reported near the end of
Subsection 14.1.3, is an example of analysis of a multivariate ecological series.

Ecological application  12.5g

Arfi et al. (1982, pp. 359-363) reported results from a study on the impact of the main sewage
effluent of the city of Marseilles on coastal waters in the Western Mediterranean. During the
study, 31 physical, chemical, and biological variables were observed simultaneously, at an
anchor station 1 km offshore, every 25 min during 24 h (n = 58). Spectra for individual series
(detrended) all showed a strong peak at T = ca. 6 h. Comparing the 31 data series two at a time
would not have made sense because this would have required (31 × 30)/2 = 465 comparisons.
Thus, the 31-dimensional data series was subjected to principal component analysis in the
frequency domain. Figure 12.19 shows the 31 variables, plotted in the plane of the first two
principal components (as in Fig. 9.5), for T = 6 h. The long arrows pointing towards the upper
left-hand part of the graph corresponded to variables that were indicative of the effluent
(e.g. dissolved nutrients, bacterial concentrations) whereas the long arrows pointing towards the
lower right-hand part of the ordination plane corresponded to variables that indicated
unperturbed marine waters (e.g. salinity, dissolved O2, phytoplankton concentrations). The
positions of the two groups of variables in the plane show that their variations were out of phase
by ca. 180°, for period T = 6 h. This was interpreted as a periodic increase in the effluent every
6 h. This periodicity corresponded to the general activity rhythm of the adjacent human
population (wake-up, lunch, end of work day, and bedtime).

3 — Maximum entropy spectral analysis

As explained in Subsection 12.5.1, estimating spectra requires the use of spectral or
lag windows. Each type of window provides a compromise between reduction of the
standard error of the spectral estimates and loss of resolution between adjacent

Frequency
regression

Multivariate
spectral
analysis
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frequencies. As an alternative to windows, Burg (1967) proposed to improve the
spectral resolution by extrapolating the autocorrelation function beyond the maximum
lag (kmax), whose value is limited by the length of the series (Subsection 12.3.1). For
each extrapolated lag (kmax + k), he suggested to calculate an autocorrelation value
ryy(kmax + k) that maximizes the entropy (Chapter 6) of the probability distribution of
the autocorrelation function. Burg’s (1967) method will not be further discussed here,
because a different algorithm (Bos, 1971; see below) is now used for computing this
maximum entropy spectral analysis (MESA). Estimation of the spectrum, in MESA,
does not require spectral or lag windows. An additional advantage, especially for
ecologists, is that it allows the computation of spectra for very short series.

Data series may be mathematically described as stochastic linear processes. A
corresponding mathematical model is the autoregressive model (also called AR model
or all-pole model), where each observation in the series  (centred on the mean  of
the series: ) is represented as a function of the q preceding observations:

(12.29)

q specifies how many steps back one takes into account to forecast value . This is
called the order of the process. The autoregression coefficients 7 are estimated using

Figure 12.19 Principal component analysis in the frequency domain of 31 simultaneous series of physical,
chemical, and biological variables, obtained at an anchor station in the Western Mediterranean.
Plot of the 31 variables (arrows), in the plane of the first two principal components, for period
T = 6 h. Adapted from Arfi et al. (1982).
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the observations of the data series itself. Residual values at must be independent of one
another; the series of residual values is called white noise. Their overall variance is
noted . This type of model will be further discussed in Section 12.7.

Concerning maximum entropy spectral analysis, Bos (1971) has shown that the
maximum entropy method proposed by Burg (1967) is equivalent to a least-squares
fitting of an AR model to the data series. Using the autoregression coefficients 7, it is
possible to compute the same spectral densities as those resulting from the entropy
calculation of Burg (1967). Thus, the spectrum is estimated directly from the
autoregression coefficients 7 of the AR model, which are themselves estimated from
the values  of the data series. The spectral density for each frequency f is:

(12.30)

where i = . Generally, the sampling interval is ! = 1 time or space unit.

Maximum entropy spectral analysis is not entirely free of problems. Some of these
are still the subject of specialized papers. A first practical problem is choosing the
order q of the AR model for an empirical data series. Various criteria for determining q
have been reviewed by Berryman (1978) and Arfi & Dumas (1990). Another problem
concerns the estimation of the coefficients of the AR model (see, for instance, Ulrych
& Clayton, 1976). A third problem, also discussed by Ulrych & Clayton (1976), is that
other processes may fit the data series better than the AR model; for example, an
autoregressive-moving average model (ARMA; Section 12.7). Fitting such models
may, however, raise other practical problems. The criteria for deciding to use models
other than AR are partly intuitive (Section 12.7).

Ulrych & Bishop (1975) briefly reviewed the theoretical bases underlying the
algorithms of Burg (1967) and Bos (1971). Barrodale & Erikson (1980) propose
another algorithm for estimating the coefficients 7 of the AR model, based on least
squares, which provides a more precise estimation of the spectrum frequencies. The
same authors criticize, on an empirical basis, the method of Akaike, and they propose a
different approach. 

Maximum entropy spectral analysis can handle short series as well as series with
data exhibiting measurement errors (Ables, 1974). It may also be used to analyse series
with missing data (Ulrych & Clayton, 1976). Arfi & Dumas (1990) compared MESA
to the classical Fourier approach, using simulated and real oceanographic data series.
For long series (n = 450), the two approaches have the same efficiency when noise is
low, but MESA is more efficient when noise is high. For short (n = 49 to 56) and very
short (n = 30) series, MESA is systematically more efficient. For long data series with
low noise, it may often be simpler to compute the spectrum in the traditional way
(Berryman, 1978). However, for many ecological data series, MESA would be the
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method of choice. The maximum entropy approach can be generalized to handle
multivariate series, since coherence and phase spectra can be computed (Ulrych &
Jensen, 1974).

Spectral analysis and, thus, Objective 3 of the analysis of data series (Table 12.2),
are presently restricted to quantitative data. The only exception is the computation of
spectra for long (i.e. n > 500 to 1000) series of binary variables, using the method of
Kedem (1980). Since MESA is not very demanding as to the precision of the data, it
could probably be used as well for analysing series of semiquantitative data coded
using several states.

Ecological application  12.5h

Colebrook & Taylor (1984) analysed the temporal variations of phytoplankton and zooplankton
series recorded monthly in the North Atlantic Ocean and in the North Sea during 33 consecutive
years (1948 to 1980). Similar series were also available for some environmental variables
(e.g. surface water temperature). The series were analysed using MESA. In addition, coherence
spectra were computed between series of some physical variables and the series representing the
first principal component calculated for the plankton data. For the plankton series, one spectrum
was computed for each species in each of 12 regions, after which the spectra were averaged over
the species in each region. The resulting 12 species-averaged spectra exhibited a number of
characteristic periods, of which some could be related to periods in the physical environment
using coherence spectra. For example, a 3 to 4-year periodicity in plankton abundances was
associated to heat exchange phenomena at the sea surface. Other periods in the spectra of the
physical and biological variables could not easily be explained. Actually, 33-year series are
relatively short compared with the long-term meteorological or oceanographic variations, so that
some of the identified periods may turn out not to be true cycles.

Ecological application  12.5i

Kim et al. (2003) measured the oxygen consumption rates of sublittoral-dwelling Washington
clams (Saxidomus purpuratus) collected in southern South Korea. Using MESA, they evidenced
two endogenous rhythms in clam respiration kept under constant conditions, i.e. during 7-9 days
after collection. They found a rhythm that corresponded to the tides in their original
environment, followed by a shift to a circadian rhythm.

4 — Wavelet analysis

Subsection 12.5.1 introduced the notion of pairs of mathematically equivalent
equations that are called pairs of transforms, and applied it to Fourier transforms. It
was then shown that the autocovariance or autocorrelation function (eqs. 12.5-12.7)
and the spectral density function (eq. 12.21) are a pair of Fourier transforms. Another
type of transform, called wavelet transform, provides a somewhat different approach
to the analysis of data series, including ecological series. Although the wavelet
transform can be regarded as a generalisation of the Fourier transform, the former may
be better adapted to ecological data series than the latter (Cazelles et al., 2008). This is
because Fourier analysis decomposes the signal into waveforms that have constant
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amplitude along the time axis (i.e. the sines and cosines in Fig. 12.13), whereas
wavelet analysis uses waveforms (wavelets) that are narrow when the features of the
signal are high-frequency and occur over a short period along the time axis, and wide
when these features are low-frequency and occur over a long period. In practice, the
wavelet transform decomposes the signal over functions (called wavelets) that are
narrow in the portions of the data series presenting high-frequency features, and wide
where structures in the data series are of low frequency. 

Section 12.3 explained that a basic assumption of the correlation-based techniques
used in series analysis is stationarity, i.e. the statistical parameters of a stationary time
series are constant along the time axis. However, many ecological processes violate
the stationarity assumption, including population dynamics (e.g. Cazelles & Hales,
2006). As explained by various authors including Cazelles et al. (2008), wavelet
analysis overcomes the problems of non-stationarity in time series by performing local
time-scale decomposition of the signal, i.e. it estimates different spectral
characteristics along the time axis. As in the case of Fourier analysis for
multidimensional series (Subsection 12.5.2), it is possible to investigate relationships
between two signals using wavelet cross-spectrum and coherence.

In practice, wavelet analysis is only useful to analyse univariate, regular data
without gaps. For one-dimensional time series or spatial transects, the data set must be
fairly large, the time interval between neighbouring observations (i.e. the lag) must be
small, and the series must be long compared to the structures to be extracted. In the
context of spatial analysis (Chapter 13), wavelets can be used for the analysis of two-
dimensional data on a grid, e.g. remotely sensed data, or forest plots that have been
entirely studied; see note in Subsection 6.5.3 about the CTFS permanent forest plots
and Ecological application 14.1b where data from one of those plots are analysed. 

Basic principles of wavelet analysis, and applications to both artificial data series
and real ecological time series, are found in Cazelles et al. (2008). In that paper, the
authors analyse real ecological time series describing fluctuations in populations of red
grouse in Scotland over 100 years, and the association between sunspot numbers and
populations of lynx and porcupine over almost 200 years. 

Fortin & Dale (2005, their Section 2.6.6) provide a short introduction to wavelet
analysis. Readers may refer to Dale & Mah (1998), Percival & Walden (2000), and
Keitt & Urban (2005) for more in-depth introductions to this type of analysis. Analysis
of ecological time series with the wavelet approach offers a new perspective for the
treatment of univariate data series that do not meet the stationarity assumption. For
that reason, the number of publications reporting analyses of this kind is rapidly
growing.
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12.6 Detection of discontinuities in multivariate series

Detection of discontinuities in multivariate data series is a problem familiar to
ecologists (Objective 4 of Section 12.1 and Table 12.2). For example, studies on
changes in species assemblages over time often refer to the concept of ecological
succession. According to Margalef (1968), the theory of species succession within
ecosystems plays the same role in ecology as evolutionary theory does in general
biology.

The simplest way to approach the identification of discontinuities in multivariate
series is by visual inspection of the curves depicting changes with time (or along a
spatial direction) in the abundance of the various taxa or/and in the values of the
environmental variables. In most instances, however, simple visual examination of a
set of graphs does not allow one to unambiguously identify discontinuities in
multivariate series. Numerical techniques must be used.

Methods of series analysis described in Sections 12.3 to 12.5 are not appropriate
for detecting discontinuities in multivariate series, because the presence of
discontinuities is not the same as periodicity in the data. Four types of methods are
summarized here.

Instead of dividing multivariate series into subsets, Orlóci (1981) proposed a
multivariate method for identifying successional trends and separating them into
monotonic and cyclic components. That method may be viewed as complementary to
those described below.

1 — Ordinations in reduced space

Several authors have used ordinations in reduced space (Chapter 9) to represent
multispecies time series in low-dimensional space. To help identify the discontinuities,
successive observations of the time series are connected with lines, as in Figs. 9.20 and
12.24. When several observations corresponding to a bloc of time are found in a small
part of the reduced space, they may be thought of as a “step” in the succession. Large
jumps in the two-dimensional ordination space are interpreted as discontinuities. This
approach has been used, for example, by Williams et al. (1969; vegetation, principal
coordinates), Levings (1975; benthos, principal coordinates), Legendre et al. (1984a;
benthos, principal components), Dessier & Laurec (1978; zooplankton, principal
components and correspondence analysis), and Sprules (1980; nonmetric
multidimensional scaling; zooplankton; Ecological application 9.4a). In studies of
annual succession in temperate or polar regions, using ordination in reduced space, one
expects the observations to form some kind of a circle in the plane of the first two axes,
since successive observations are likely to be close to each other in the
multidimensional space, due to climate forcing (temporal correlation, Section 1.1), and
the community structure is expected to come back to its original structure after one
year; the rationale for this null model of succession is developed in Legendre et al.

Ecological
succession
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(1985, Appendix D). Departures from a regular circular pattern are thus interpreted as
evidence for the existence of subsets in the data series. In simple situations, such
subsets are indeed observed in the plane of the first two ordination axes (e.g. Figs. 9.20
and 12.24). When used alone, however, this approach has two major drawbacks. 

• Plotting a multivariate data series in two or three dimensions only is not the best way
of using the multivariate information. In most studies, the first two principal axes used
to represent the data series account together for only 10 to 50% of the multivariate
information. In such cases, distances from the main clusters of observations to isolated
objects (which are in some particular way different from the major groups) are likely
to be expressed by some minor principal axes that are orthogonal (i.e. perpendicular in
multidimensional space) to the main projection plane. As a consequence, these objects
may be projected, in the reduced-spaced ordination, within a group from which they
are actually quite different. Moreover, it has been observed that the “circle” of
observations (see previous paragraph) may be deformed in a spoon shape so that
groups that are distinct in a third or higher dimension may be packed together in some
part of the two-dimensional ordination plane. These problems are common to all
ordinations when used alone for the purpose of group recognition. They are not as
severe for ordinations obtained by nonmetric multidimensional scaling, however,
because that method is, by definition, more efficient than others at flattening
multidimensional phenomena into a user-determined small number of dimensions
(Section 9.4). The best way to eliminate this first drawback is to associate ordination to
clustering results, as explained in Section 10.1. This was the approach of Allen et al.
(1977) in a study of the phytoplankton succession in Lake Wingra. See also Fig. 12.24. 

• The second drawback is the lack of a criterion for assigning observations to groups
in an ordination diagram. As a consequence, groups delineated on published ordination
diagrams often look rather arbitrary.

2 — Segmenting data series

Hawkins & Merriam (1973, 1974) proposed a method for segmenting a multivariate
data series into homogeneous units, by minimizing the variability within segments in
the same way as in K-means partitioning (Section 8.8). Their work followed from the
introduction of a contiguity constraint in the grouping of data by Fisher (1958), who
called it restriction in space or time. The method of Hawkins & Merriam has been
advocated by Ibanez (1984) for studying successional steps. 

The method has three interesting properties. (a) The multidimensional series is
partitioned into homogeneous groups using an objective clustering criterion. (b) The
partitioning is done with a constraint of contiguity along the data series. Within the
context of series analysis, contiguity means that only observations that are neighbours
along the series may be grouped together. The notion of contiguity has been used by
several authors to resolve specific clustering problems: temporal contiguity
(Subsection 12.6.5, below) or spatial contiguity (Subsection 13.3.2). (c) The
observations do not have to be equispaced. 

Contiguity
constraint
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A first problem with Hawkins & Merriam’s method is that users must determine
the number of segments that the method is requested to identify. To do so, the increase
in explained variation relative to the increase in the number of segments is used as a
guide. Any one of the stopping rules used with K-means partitioning could also be
used here (end of Section 8.8). A solution to this problem is described in
Subsection 12.6.4. For community composition data, a second problem is that strings
of zeros in multispecies series are likely to result in segments that are determined by
the simultaneous absence of species. That problem can be resolved by transforming
the species data using one of the transformations described in Section 7.7.

3 — Webster’s method

Webster (1973) proposed a rather simple method to detect discontinuities in data
series. He was actually working with spatial transects, but his method is equally
applicable to time series. Draw the sampling axis as a line and imagine a window that
travels along that line, stopping at the mid-points between adjacent observations (if
these are equispaced). Divide the window in two equal parts (Fig. 12.20a). There are
observations in the left-hand and right-hand halves of the window. Calculate the
difference (see below) between the points located in the left-hand and right-hand
halves and plot these differences in a graph, as the window is moved from one end of
the series to the other (Fig. 12.20c, d). The principle of the method is that the
difference should be large at points where the left-hand and right-hand halves of the
window contain values that are appreciably different, i.e. where discontinuities occur
in the series. The following statistics may be used in the computations:

• For univariate data, calculate the absolute value of the difference between the means
of the values in the left-hand and right-hand halves of the window:

.

• For univariate data again, one may choose to compute the absolute value of a
t–statistic comparing the two halves of the window: . If
one assumes second-order stationarity of the series and uses the standard deviation of
the whole series as the best estimate of the standard deviations in the two halves, this
statistic is linearly related to the previous one. Alternatively, one could use the regular
t-statistic formula for t-tests, estimating the variance in each window from the few
values that it contains; this is not recommended as it produces values of the t-statistic
that cannot be compared, and unstable estimates when windows are narrow, which is
often the case with this method.

• For multivariate series, compare the two halves of the window using either the
Mahalanobis generalized distance (  or , eq. 7.39), which is the multivariate
equivalent of a t-statistic, or the coefficient of racial likeness (D12, eq. 7.52).

The width of the window is an empirical decision made by the investigator. It is
recommended to try different window widths and compare the results. The window
width is limited, of course, by the spacing of observations, considering the

Window

Statistic x1 x2–=

Statistic x1 x2– sx1 x2–=

D5 D5
2
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approximate interval between the expected discontinuities. Webster’s method works
best with equispaced observations, but some departure from equal spacing, or missing
data points, are allowed, because of the empirical nature of the method.

Figure 12.20 Webster’s method for detecting discontinuities in data series. (a) Principle of the method.
(b) Numerical example (see text). Results using a window that was (c) 4 observations wide, or
(d) 8 observations wide.

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

0

1

2

3

4

0 5 10 15 20 25 30 35 40

0

1

2

3

4

0 5 10 15 20 25 30 35 40
Positions along transect

(b) Observed values

(c) Window width: 2+2

(d) Window width: 4+4

Discontinuity 1 Discontinuity 2

8x1 – x28

8t statistic8

8t statistic8

8x1 – x28

0 5 10 15 20 25 30 35 40

(a) Two-part window, moving along the sampling axis



772 Ecological data series

Numerical example. A series of 40 observations was generated using a normal pseudo-
random number generator N(5,1). The values of observations 11 to 30 were increased by adding
3 to the generated values in order to artificially create discontinuities between observations 10
and 11, on the one hand, and observations 30 and 31, on the other. It so happened that the first of
these discontinuities was sharp whereas the second was rather smooth (Fig. 12.20b).

Webster’s method for univariate data series was used with two window widths. The first
window had a width of 4 observations, i.e. 2 observations in each half; the second window had a
width of 8 observations, i.e. 4 in each half. Both the absolute values of the differences between
means and the absolute values of the t-statistics were computed. The overall standard deviation
of the series was used as the denominator of t, so that this statistic was a linear transformation of
the difference-between-means statistic. Results (Fig. 12.20c, d) are reported at the positions
occupied by the centre of the window.

The sharp discontinuity between observations 10 and 11 was clearly identified by the two
statistics and window widths. This was not the case for the second discontinuity, between
observations 30 and 31. The narrow window (Fig. 12.20c) estimated its position correctly, but
did not allow one to distinguish it from other fluctuations in the series, found between
observations 20 and 21 for instance (remember, observations are randomly-generated numbers;
so there is no structure in this part of the series). The wider window (Fig. 12.20d) brought out
the second discontinuity more clearly (higher values of the statistics), but its exact position was
no longer estimated precisely.

Ibanez (1981) proposed a related method to detect discontinuities in multivariate
records (e.g. simultaneous records of temperature, salinity, in vivo fluorescence, etc. in
aquatic environments). He called the method  to the centroid. For every sampling
site, the method computes a generalized distance  (eq. 7.39) between the new
multivariate observation and the centroid (i.e. multidimensional mean) of the m
previously recorded observations, m defining the width of a window. Using simulated
and real multivariate data series, Ibanez showed that changes in  to the centroid,
drawn on a graph like Figs. 12.20c or d, allowed one to detect discontinuities. For
multi-species data, however, the method of Ibanez suffers from the same drawback as
the segmentation method of Hawkins & Merriam: since the simultaneous absence of
species is taken as an indication of similarity, it could prevent changes occurring in the
frequencies of other species from producing high, detectable distances. That problem
can be resolved by transforming the community composition data, prior to the
analysis, using one of the transformations described in Section 7.7.

McCoy et al. (1986) proposed a segmentation method somewhat similar to that of
Webster, for species occurrence data along a transect. A matrix of Raup & Crick
similarities is first computed among sites (S27, eq. 7.31) from the species presence-
absence data. A “+” sign is attached to a similarity found to be significant in the upper
tail (i.e. when ahi is significantly larger than expected under the random sprinkling
hypothesis) and a “–” sign to a similarity that is significant in the lower tail (i.e. when
ahi is significantly smaller than expected under that null hypothesis). The number of
significant pluses and minuses is analysed graphically, using a rather complex
empirical method, to identify the most informative boundaries in the series.
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4 — Time-constrained clustering by MRT

Multivariate regression tree analysis (MRT, Section 8.11) can be used as a form of
time-constrained clustering. The solution consists in analysing a multivariate response
matrix Y using a quantitative or rank-ordered variable x representing the sampling
sequence through time. Y may contain community composition data transformed in
some appropriate way (Section 7.7). For a weekly time series over a year, for example,
the constraining variable x may be a vector containing the sampling dates, counted
from January 1st, or the numbers 1 to 52; the results will be identical since MRT
segments Y at cutting points along the explanatory, or constraining, variable x. The
observations do not have to be equispaced.

MRT is a least-squares algorithm. In the present application, it segments Y in such
a way that the sum of the within-group multivariate sums of squares is minimum, with
the constraint that the sampling dates within each group be adjacent along the
sampling sequence. As a consequence, the solution obeys the Hawkins & Merriam
criterion described in Subsection 12.6.2. As a bonus, the cross-validation procedure
available in MRT helps determine the ‘best’ number of groups for the data under
study; this solves the first problem of the Hawkins & Merriam method mentioned in
Subsection 12.6.2. MRT can be used to segment spatial series, e.g. transect data as
shown in the following ecological application, as well as time series.

Ecological application  12.6a

Borcard et al. (2011, their Section 4.11) used MRT to segment fish assemblage data collected at
29 sites along the Doubs River in eastern France (29 sites, 27 species) by space-constrained
clustering along the course of the river. These data were also used in Ecological
application 11.1a. In the present application, the data were chord-transformed (eq. 7.67) before
MRT analysis. Cross-validation in MRT suggested 5 groups as the best solution; that solution
had the smallest CVRE value (eq. 8.23). The five groups are represented on a map of the river in
Fig. 12.21. The calculations were done with the R code provided by Borcard et al. (2011).

5 — Chronological clustering

Combining some of the best aspects of the methods described above, Gordon & Birks
(1972, 1974) and Gordon (1973) introduced a constraint of temporal contiguity in a
variety of clustering algorithms to study pollen stratigraphy. Analysing bird surveys
repeated at different times during the breeding season, North (1977) also used a
constraint of temporal contiguity to cluster bird presence locations on a geographic
map and delineate territories. Applications of time-constrained clustering to
palaeoecological data (where a spatial arrangement of the observations corresponds to
a time sequence) can be found in Bell & Legendre (1987), Hann et al. (1994) and Song
et al. (1996). Algorithmic aspects of constrained clustering are discussed in
Subsection 13.3.2.

Temporal
contiguity
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Using the same concept, Legendre et al. (1985) developed the method of
chronological clustering, based on hierarchical clustering (Chapter 8). The algorithm
was designed to identify discontinuities in multi-species time series. It has also been
successfully used to analyse spatial transects (e.g. Galzin & Legendre, 1987; Ardisson
et al., 1990; Tuomisto & Ruokolainen, 1994: Ecological application 12.6c; Tuomisto
et al., 2003). When applied to ecological succession, chronological clustering
corresponds to a well-defined model, in which succession proceeds by steps and the
transitions between steps are rapid (see also Allen et al., 1977, on this topic). Broad-
scale successional steps contain finer-scale steps, which may be identified using a finer
analysis if finer-scale data are available. Chronological clustering takes into account
the sampling sequence, imposing a constraint of temporal contiguity to the clustering
activity.

The method also permits the elimination of singletons (in the game of bridge, a
singleton is a card that is the only one of a suit in the hand of a player). Such singular
observations often occur in ecological series. In nature, singletons are the result of

Figure 12.21 Clustering with spatial contiguity constraint of the Doubs River fish assemblage data by
multivariate regression tree analysis (MRT). The groups of sites are represented on a map along
the course of the river; the arrows indicate flow direction. Sites are numbered 1 to 30; site 8 was
removed from the analysis for the reason explained in Ecological application 11.1a.

Succession
model
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random fluctuations, migrations, or local changes in external forcing. In an aquatic
system studied at a fixed location (Eulerian approach, Section 12.0), such changes may
be due to temporary movements of water masses. Singletons may also result from
improper sampling or inadequate preservation of specimens.

Hierarchical agglomerative clustering (Section 8.5) proceeds from an association
matrix (n × n) among the observations of the data series (length n), computed using an
appropriately chosen similarity or distance coefficient (Chapter 7). Any method of
agglomerative clustering may be used; Legendre et al. (1985) used intermediate
linkage clustering (Subsection 8.5.3). The clustering algorithm is modified to include
the contiguity constraint; Fig. 13.25 shows how a constraint of spatial or temporal
contiguity can be introduced into any agglomerative clustering algorithm. Each
clustering step is subjected to a permutation test (Subsection 1.2.2) before the fusion of
two objects or groups is authorized.

Consider two adjacent groups of objects pertaining to some data series
(Fig. 12.22). The first group (n1 = 2) includes objects 5 and 6 and the second (n2 = 3)
contains objects 7, 8 and 9. Assume that an agglomerative clustering algorithm now
proposes that these two groups are the next pair to join. Distances among the five
objects are given in Fig. 12.22a. Before applying the permutation test of cluster fusion,
the distances are divided in two groups: the 50% of the distances (5 in this example)
that have the highest values are called “high distances” and are coded 1 (Fig. 12.22b)
whereas the other 50% are called “low distances” and are coded 0. The test statistic is
the number of high distances (h) in the between-group matrix (shaded area); h = 4 in
this example. Under the null hypothesis, the objects in the two groups are drawn from
the same statistical population and, consequently, it is only an artefact of the
agglomerative clustering algorithm that they temporarily form two groups. If the null
hypothesis is true, the number of high distances (h = 4) presently found in the
between-group matrix should be comparable to that found among all possible

Figure 12.22 Numerical example. (a) Distance matrix for two contiguous groups from a multidimensional
time series (used also in Fig. 10.23). The lower half of the symmetric matrix is shown. (b) 50%
of the distances, i.e. those with the highest values, are coded 1; the others are coded 0.

Group 1 Group 2 Group 1 Group 2
D 5 6 7 8 9 D 5 6 7 8 9
5 0 5
6 0.2 0 (a) 6 0 (b)
7 0.4 0.7 0 7 0 1
8 0.6 0.5 0.1 0 8 1 0 0
9 0.7 0.8 0.3 0.6 0 9 1 1 0 1

Permutation
test
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permutations of the five objects in two groups with n1 = 2 and n2 = 3 objects. If the
null hypothesis is false and the two groups come from different statistical populations
(i.e. different steps of the succession), the number of high distances presently found in
the between-group matrix should be higher than most of the values found after
permutation of the objects into two groups with n1 = 2 and n2 = 3 objects. This calls
for a one-tailed test. After setting a significance level 0, the permutations are
performed and results that are higher than or equal to h are counted. The number of
distinguishable combinations of the objects in two groups of sizes n1 and n2 is
(n1 + n2)!/(n1! n2!). If this number is not too large, all possible permutations can be
examined; otherwise, permutations may be selected at random to form the reference
distribution for significance testing. The number of permutations producing a result as
large as or larger than h, divided by the number of permutations performed, gives an
estimate of the probability p of observing the data under the null hypothesis. 

• If p > 0, the null hypothesis is not rejected and the two groups are fused. 

• If p % 0, the null hypothesis is rejected and fusion of the groups is prevented.

This test may actually be reformulated as a Mantel test (Section 10.5.1) between the
matrix of recoded distances (Fig. 12.22b) and another matrix of the same size
containing 1’s in the among-group rectangle and 0’s elsewhere. 

The above is not a proper test of significance because the alternative hypothesis
(H1: the two groups actually found by the clustering method differ) is not independent
of the data that are used to perform the test; it comes from the data through the
agglomerative clustering algorithm. So this is actually an internal validation clustering
criterion (Section 8.13). Legendre et al. (1985) have shown, however, that this
criterion has a correct probability of type I error; when testing on randomly generated
data (Monte Carlo simulations) at significance level 0, the null hypothesis was rejected
in a proportion of the cases approximately equal to 0.

Significance level 0 used as the criterion for cluster fusion determines how easy it
is to reject the null hypothesis. When 0 is small (close to 0), the null hypothesis is
almost never rejected and only the sharpest discontinuities in the time or space series
are identified. Increasing the value of 0 actually makes it easier to reject the null
hypothesis, so that more groups are formed; the resulting groups are thus smaller and
bring out more discontinuities in the data series. So, changing the value of 0 actually
changes the resolution of the clustering results.

A singleton is defined as a single observation whose fusion has been rejected with
the groups located to its right and left in the series. When the test leads to the discovery
of a singleton, it is temporarily removed from the series and the clustering procedure is
started again from the beginning. This is done because the presence of a singleton can
disturb the whole clustering geometry, as a result of the contiguity constraint. 

Internal
validation
criterion

Resolution

Singleton
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The end result of chronological clustering is a nonhierarchical partition of the
series into nonoverlapping homogeneous groups. Within the context of ecological
succession, these groups correspond to the steps of a succession. A posteriori tests are
used to assess the relationships between distant groups along the series as well as the
origin of singletons. Plotting the clusters of observations onto an ordination diagram in
reduced space may help in the overall interpretation of the results.

Legendre (1987b) showed that time-constrained clustering possesses some
interesting properties. On the one hand, applying a constraint of spatial or temporal
contiguity to an agglomerative clustering procedure forces different clustering
methods to produce approximately the same results; without the constraint, the
methods may lead to very different clustering results (Chapter 8), except when the
spatial or temporal structure of the data (patchiness, gradient: Section 13.0) is very
strong. Using autocorrelated simulated data series, he also showed that, if patches do
exist in the data, constrained clustering always recovers a larger fraction of the
structure than the unconstrained equivalent.

Constrained clustering along a time or spatial sampling axis can also be done by a
more general form of constrained hierarchical clustering described in
Subsection 13.3.2; see function constrained.clust() in Section 12.8.

Ecological application  12.6b

In May 1977, the Société d’Énergie de la Baie James impounded a small reservoir (ca. 7 km2),
called Desaulniers, in Northern Québec (77°32' W, 53°36' N). Ecological changes occurring
during the operation were carefully monitored in order to use them to forecast the changes that
would take place upon impoundment of much larger hydroelectric reservoirs in the same region.
Several sampling sites were visited before and after the flooding. Effects of flooding on the
zooplankton community of the deepest site (max. depth: 13 m), located ca. 800 m from the dam,
were studied by Legendre et al. (1985) using chronological clustering. Before flooding, the site
was located in a riverbed and only zooplankton drifting from lakes located upstream was found
there (i.e. there was no zooplankton community indigenous to the river). Changes observed are
thus an example of primary succession.

After logarithmic normalization of the data (eq. 1.14), the Canberra metric (D10, eq. 7.49)
was used to compute distances among all pairs of the 47 observations. Homogeneous groups of
observations were identified along the data series, using a time-constrained algorithm for
intermediate linkage clustering (Subsection 8.5.3) and the permutation test of cluster fusion
described above. Results of chronological clustering are shown in Fig. 12.23 for different levels
of resolution 0. Plotting the groups of observations from Fig. 12.23, for 0 = 0.25, on an
ordination diagram obtained by nonmetric multidimensional scaling (Fig. 12.24), led to the
following conclusions concerning changes in the zooplankton community. In 1976, as
mentioned above, zooplankton was drifting randomly from small lakes located upstream. This
was evidenced by low species numbers and highly fluctuating evenness (eq. 6.45), which
indicated that no stable community was present. After impoundment of the reservoir, the
community departed rapidly from the river status (Fig. 12.24) and formed a fairly well-
developed assemblage, with 13 to 20 species in the summer of 1977, despite large chemical and
water-level fluctuations. After the autumn overturn and during the 1977-1978 winter period, the
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community moved away from the previous summer’s status. When spring came (observation
35), the community had reached a zone of the multidimensional scaling plane quite distinct from
that occupied in summer 1977. Zooplankton was then completely dominated by rotifers, which
increased from 70 to 87% in numbers and from 18 to 23% in biomass between 1977 and 1978,
with a corresponding decrease in crustaceans, while the physical and chemical conditions had
stabilized (Pinel-Alloul et al., 1982). When the succession was interrupted by the 1978 autumn
overturn, the last group in the series (observations 45-47) was found (Fig. 12.23) near the
position of the previous winter’s observations (29-34), indicating that the following year’s
observations might resemble the 1978 succession.

Figure 12.23 Chronological clustering: zooplankton time series. Results for different levels of resolution (0).
For 0 = 0.25, the double arrows identify a posteriori tests with probabilities of fusion larger than
0. Asterisks (*) identify singletons. Modified from Legendre et al. (1985).
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Ecological application  12.6c

Tuomisto & Ruokolainen (1994) studied species assemblages of Pteridophyta (ferns; 40 species
in the study) and Melastomataceae (a family of shrubs, vines, and small trees restricted to the
American tropics; 22 species in the study) along two spatial transects (replicates) in a non-
flooded area of the Amazonian rain forest in Peru, covering an edaphic (i.e. soil-related) and
topographic gradient from clay soil on level ground, to quarzitic sand on a hill top. The two 700-
m-long and 5-m-wide, parallel transects were 50 m apart. Chronological clustering was applied
to the edaphic and floristic variables separately, using different similarity coefficients and three
levels of resolution (parameter 0). In all cases, the transects could be divided into distinct
sections; the results of constrained clustering were more readily interpretable than the
unconstrained equivalent. The groups of plants selected proved adequate for the rapid
assessment of changes in the floristic composition of the rain forest.

Ecological application  12.6d

Tuomisto et al. (2003) studied the community structure of Pteridophyta (ferns) and
Melastomataceae, the same groups as in Ecological application 12.6c, along a 43-km long
transect in the Amazonian rain forest in Peru. They segmented the series of pteridophytes and

Figure 12.24 Chronological clustering: zooplankton time series. Nonmetric multidimensional scaling plot
showing groups of observations from Fig. 12.23, for 0 = 0.25. The groups are the sets of
observations that are connected by lines materializing the sampling sequence. Objects in boxes
are singletons. From Legendre et al. (1985). The regions of the graph delimited by envelopes
correspond to sampling years.
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Melastomataceae data into groups using chronological clustering. They also used chronological
clustering to partition a data series of spectral reflectance characteristics of the forest, extracted
from a Landsat TM satellite image. The chronological clustering results were fairly consistent;
the authors recognize eight groups of sites, which were also related to topography and soil
characteristics. Pteridophyta and Melastomataceae indicator species of these groups of sites
were then identified using the INDVAL index (Subsection 8.9.3). The results supported the
hypothesis that species segregate edaphically at the landscape scale within the rain forest.

12.7 Box-Jenkins models

Objective 6 of time series analysis in ecology (Section 12.1) is to forecast future
values. The Preface explained that ecological modelling is not, as such, within the
scope of numerical ecology. In ecological studies, however, Box-Jenkins modelling is
often conducted together with other forms of series analysis; this is why it is briefly
presented here. This type of technique has already been mentioned in the context of
maximum entropy spectral analysis (MESA, Section 12.5.3). The present section
summarizes the principles that underlie the approach. Interested readers may refer to
Box & Jenkins (1976), Cryer (1986), and Bowerman & O’Connell (1987) for the
theory and to user’s manuals of computer packages and R functions for actual
implementation of the method.

Stochastic linear models (processes) described here are based on the idea that, in a
series where data within a small window are strongly interrelated, the observed values
are generated by a number of “shocks” at . These shocks are independent of each other
and their distribution is purely random (mean zero and variance ). Such a series
(at, at–1, at–2, …) is called white noise. In the moving average (MA) model, each
observations in the series ( , i.e. the data are centred on the mean  of the
series) can be represented as a weighted sum of the values of process a:

(12.31)

where * are the weights and q is the order of the model. The name moving average for
this process comes from the fact that eq. 12.31 is somewhat similar to that of the
moving average (see the right-hand column of Table 12.4). The weights * are
estimated by numerical iteration, using techniques that are described in the above
references and available in computer packages and R functions.

When the above model does not fit the series adequately (see below), another
possibility is to represent an observation by a weighted sum of the q previous
observations plus a random shock:

This is the autoregressive model (AR, or all-pole model) already described in
eq. 12.29. In this model (of order q), q successive terms of the series are used to

Forecasting
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ỹt yt y–= y
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forecast term (q + 1), with error at. When estimating the autocorrelation coefficients 7
by least squares, it is easy to compute residual errors at = yt – . Residual errors, as
specified above for all Box-Jenkins models, must be independent of one another; this
implies that a correlogram of the series of residuals at should display no significant
value. The residuals must also be normally distributed.

Combining the above two models gives the autoregressive-moving average model
(ARMA model), whose general form is:

(12.32)

An important advantage of ARMA models is that they can be fitted to data series using
a small number of parameters (i.e. the coefficients 7 and *). However, such models
may only be estimated for strictly stationary series (Sections 12.1 and 12.2).

One approach described in Section 12.2 for extracting the trend from a series is the
variate difference method. In the computation, each value yt is replaced by

 where T is the period of the trend:

(12.33)

Since  results from a difference, yt is called the integrated form of . When an
ARMA model is applied to a series of values computed with eq. 12.33, it is called an
autoregressive-integrated-moving average model (ARIMA model).

Box-Jenkins analysis normally proceeds in four steps. (1) Identification of the type
of model to be fitted to the data series (i.e. MA, AR, ARMA, or ARIMA). Even though
Box & Jenkins (1976) described some statistical properties of the series (e.g. shape of
the autocorrelation) that may guide this choice, identification of the proper model
remains a somewhat intuitive step (e.g. Ibanez, 1982). (2) Estimation of the
parameters of the model. For each case, various methods are generally available, so
that one is confronted with a choice. (3) The residuals must be independent and
normally distributed. If not, either the model is not adequate for the data series, or the
parameters were not properly estimated. In such a case, step (2) can be repeated with a
different method or, if this does not improve the residuals, a different model must be
chosen at step (1). Steps (1) through (3) may be repeated as many times as necessary to
obtain a good fit. The procedure of identification of the appropriate model is therefore
iterative. (4) Using the model, values can be forecasted beyond the last observation.

It may happen that the data series is under external influences, so that the models
described above cannot be used as such. For example, in the usual ARIMA model, the
state of the series at time t is a function of the previous q observations ( ) and of the
random errors (a). In order to account for the additional effect of external variables,
some computer programs allow the inclusion of a transfer function into the model (if
the external forcing variable is also a random variable) and/or an intervention
component (if the external variable is binary and not random). It is possible to extend

ỹt
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the forecasting to multidimensional data series. References to conduct the analysis are
Whittle (1963) and Jones (1964).

It is important to remember that the models discussed here are forecasting and not
predictive models. Indeed, the purpose of Box-Jenkins modelling is to forecast values
of the series beyond the last observation, using the preceding data. Such forecasting is
only valid as long as the environmental conditions that characterize the population
under study (demographic rates, migrations, etc.) as well as the anthropogenic effects
(exploitation methods, pollution, etc.) remain essentially the same. In order to predict
with some certainty the fate of the series, causal relationships should be determined
and modelled; for example, between the observed numbers of organisms, on the one
hand, and the main environmental conditions, population characteristics, or/and
anthropogenic factors, on the other. This requires extensive knowledge of the system
under study. Forecasting models often prove quite useful in ecology, but one must be
careful not to use them beyond their limits.

Ecological application  12.7

Boudreault et al. (1977) tried to forecast lobster landings in Îles-de-la-Madeleine (Gulf of St.
Lawrence, Québec), using various methods of series analysis. In a first step, they found that an
autoregressive model (of order 1) accounted for ca. 40% of the variance in the series of landings.
This relatively low percentage could be explained by the fact that observations in the series were
not very homogeneous. In a second step, external physical variables were added to the model
and the data were analysed using regression on principal components (Section 10.3). The two
external variables were: water temperature in December, 8.5 years before the fishing season, and
average winter temperature 3.5 years before. This increased to 90% the variance explained by
the model. Lobster landings in a given year would thus depend on: the available stock
(autocorrelated to landings during the previous year), the influence of water temperature on
larval survival (lobster Homarus americanus around Îles-de-la-Madeleine reach commercial
size when ca. 8 years old), and the influence of water temperature at the time the animals
reached sexual maturity (at the age of ca. 5 years).

12.8 Software

Procedures available in commercial statistical packages are not reviewed here. The R
language offers functions for the methods described in Chapter 12. 

1. Time series objects. — Function ts() of STATS creates a time-series object identified
to class "ts". plot.ts() plots a graph for such an object, ts.plot() plots several time series
in a common plot. ts.union() binds two or more time series into a single R object.

2. Trend extraction. — Function lm() in STATS is used to detrend data, i.e. extract a
linear or polynomial trend and compute residuals.
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3. Periodic variability: correlogram. — Function acf() in STATS computes spatial
autocovariance and autocorrelation; plot.acf() plots confidence intervals under either a
white noise or a MA model. ccf() computes cross-covariance and cross-correlation.
For spatial transects or time series with irregular lags, correlograms can be computed
using function sp.correlogram() of package SPDEP; a constant must be written in the
second column in the file of geographic coordinates used to create the list of
neighbours.

4. Periodic variability: periodogram. — buysbal() in PASTECS constructs Buys-Ballot
tables from time series. periodograph()* computes the contingency periodogram
(Subsection 12.4.2). spec.pgram() in STATS estimates the spectral density of a series
by a smoothed Schuster periodogram. cpgram() plots a cumulative periodogram.

5. Periodic variability: spectral analysis. — Function spectrum() in STATS estimates
the spectral density of a time series. spec.ar() fits an AR model to a time series and
computes the spectral density of the fitted model.

6. Wavelet analysis. — Function dwt() of WAVESLIM is used to compute wavelet
analysis for data series, and dwt.2d() for two-dimensional data†. Package WMTSA
contains other wavelet methods for time series analysis.

7. Detection of discontinuities in multivariate series. — Function chclust() of package
RIOJA, developed for palaeoecological reconstruction, performs constrained
hierarchical clustering from a distance matrix, with clusters constrained by the order of
the sampling units in the data file. The method is applicable to temporal or spatial
multivariate series, such as sediment core data. Multivariate regression tree analysis
(MRT) can also be used for constrained clustering for temporal or spatial multivariate
data series, as shown in Subsection 12.6.4. Function constrained.clust() of package
CONST.CLUST* carries out constrained hierarchical clustering along a time or spatial
series, or on a geographic surface (Section 13.3.2), with cross-validation of the results.
Chronological clustering (Section 12.6.5) is implemented in function chrono of THE R
PACKAGE* for mainframe computers and Mac OS Classic. This program has not been
rewritten yet for the R language.

8. Box-Jenkins models. — Function ar() in STATS fits an autoregressive model to a
univariate or multivariate time series; arima() fits an ARIMA model to a univariate
time series; ARMAacf() computes the theoretical autocorrelation function for an
ARMA process.

9. Miscellaneous methods. — Function turnogram() in PASTECS computes and plots
turnograms; turpoints() analyses turning points (Section 12.1) and tests the
randomness of series. 

*  Available on the Web page http://numericalecology.com/rcode.
†  An introduction and R code for wavelet analysis using WAVESLIM are found on the Web page
https://sites.google.com/site/patrickmajames/stuff.
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Spatial analysis

 

13.0 Spatial patterns

 

The analysis of spatial patterns is of prime interest to ecologists because most
ecological phenomena investigated by sampling geographic space are structured by
forces that have spatial components. Spatial patterns are studied through surveys
(called 

 

mensurative experiments

 

 by Hurlbert, 1984), whereas underlying processes can
be studied by 

 

manipulative experiments

 

 (Subsection 10.2.3). Ecological processes may
give rise to response data displaying recognizable spatial patterns, which may be the
subject of spatial analysis. Most ecological patterns may be described as either patches
(such as tree groves, phytoplankton patches, and animal herds) or gradients. The latter
may be linear or not.

Ecologists investigate the spatial patterns of species assemblages in order to
understand the mechanisms that control species distributions. Patchiness is found at all
spatial scales — from micrometres to continental and ocean-wide scales. Displaying
the spatial variation of an ecological variable in the form of a map shows whether the
structure is smoothly continuous or marked by sharp discontinuities. Most field studies
cover only a part of any variable’s spatial structure. So, gradients or patches displayed
by maps may only be interpreted with respect to the scale of the sampling programme,
which should be compared to the scale of the phenomenon under study when it is
known.

It is now understood that species distributions result from the combined action of
several forces, some of which are external whereas others are intrinsic to the
community. According to the environmental control model (Whittaker, 1956; Bray &
Curtis, 1957; Hutchinson, 1957), environmental characteristics are the external forces
that control species distributions. The internal forces relate to population dynamics or
to top-down or bottom-up biotic interactions within the community (Lindeman, 1942;
Southwood, 1987). Both types of forces generate spatial patterns within species or
communities. Historical events (Sousa, 1979; Pickett & White, 1985; Reynolds, 1987)
are other possible sources of spatial patterns; examples are given in Subsection 14.1.4.
The mechanisms that create spatial structures and, hence, spatial correlation in the
data, have been discussed in Section 1.1. 
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The present chapter is not a tutorial discussing all possible questions concerning
the analysis of spatial structures. Its scope is more modest; it will describe some
methods that allow the investigation of some of the questions of interest in spatial
pattern analysis. A fundamental question will be left unanswered in this chapter: that
of designing efficient sampling programmes for studying and analysing spatial
patterns. The theory of spatial ecological sampling has to be re-written to provide
meaningful answers to this question.

 

Scale

 

 is a key concept in both sampling design and the analysis of spatial (or
temporal) patterns. It includes several spatial (or temporal) characteristics of random
variables. Definition of these properties, which follows, depends on context.

 

In sampling theory

 

 (Fig. 13.1), spatial scale encompasses three elements of the
sampling design (Wiens, 1989; Allen & Hoekstra, 1991; He 

 

et al.

 

, 1994; Dungan 

 

et al.

 

,
2002):

 

• 

 

Grain size

 

 is the size of the elementary sampling units. It may be expressed as the
diameter, surface or volume of matter supporting the measurements. In time series
analysis, it is the duration over which measurements are integrated. The 

 

resolution

 

 of a
study (Schneider, 1994) is equal to the grain size of its sampling design.

 

• 

 

Sampling interval

 

 is the average distance between neighbouring sampling units. It is
called 

 

lag

 

 in time series analysis (Section 12.0). For fixed extent, the sampling interval
is a function of 

 

n

 

, the number of sampling units. In turn, 

 

n

 

 is determined by the total
effort that can be allocated to sampling.

 

• 

 

Extent

 

 is the total length, area or volume included in the study, or the total duration
of the time series. It was called 

 

range

 

 by Schneider (1994) who also defined the 

 

scope

 

as the ratio of the extent to the grain size. Since extent and grain size are expressed in
the same units, scope is a dimensionless variable (Section 3.1).

It may happen that the data consist of contiguous sampling areas that completely
cover the extent, instead of small sampling units distant from one another. This may
occur in a variety of circumstances where a map is divided into contiguous “picture

Scale

Figure 13.1 Components of a sampling design are
the grain size, sampling interval, and
extent. In the figure, the sampling
units are represented by squares.
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cells” or 

 

pixels

 

. These include satellite data, video analysis of a transect, completely
inventoried forest plots, and modelling. The linear measurement of grain size is equal
to the sampling interval in such a case. Time series may also be entirely studied.

 

The spatial scale of patterns or processes

 

 is described as follows:

 

• 

 

How large is a unit object, or how much space is disturbed by a unit process? This
amount of space, which is equivalent to grain size, is called the ecological
neighbourhood (Addicott 

 

et al.

 

, 1987) or the area of resolution of individuals (Wiens,
1989). 

 

Unit objects

 

 may be individual plants or animals, bacterial colonies, etc.
Examples of measurable structures resulting from 

 

unit processes

 

 are: the
neighbourhood occupied by a territorial animal, the width of the wetland zone along a
stream or of a tidal sand flat, the size of the patch of soil modified by the root system of
a plant, and the size of phytoplankton patches which result from the combined action
of primary production and diffusion (see Ecological applications 3.2d and 3.3a).

 

• 

 

What is the average distance between unit objects or processes? This distance is
equivalent to the sampling interval.

 

• 

 

Over how much space does this type of object, or this process, occur? This amount
of space is equivalent to the extent. For some processes, the extent may be an ocean or
the whole planet.

The same notions may be applied to temporally occurring patterns or processes.
While they are readily applicable to patterns that concern the distribution of objects,
they may sometimes be applied as well to processes.

 

The scale of the sampling design

 

 should follow from what is known (e.g. from a
pilot study) about the scale of the pattern or process, and from the ecological question
being addressed (Dungan 

 

et al.

 

, 2002). A well-focused question generally reduces the
difficulty of choosing the type (simple random, systematic, stratified, etc.) as well as
the scale components (grain, interval, extent) of the sampling design.

 

• 

 

The sampling grain should be larger than a unit object (e.g. an individual organism)
and the same as, or preferably smaller than, the structures resulting from a unit process
(e.g. a patch), which should be detected by the sampling design.

 

• 

 

The sampling interval should be smaller than the average distance between the
structures resulting from a unit process to be detected by the sampling design.

 

• 

 

The sampling extent may, in some cases, be the same as the total area covered by the
type of objects or by the process under study. In other cases, it is limited to a smaller
area, determined by the total allowable effort (

 

n

 

) and the maximum interval that one
wishes to maintain between adjacent sampling units. For constant 

 

n

 

, the sampling
extent can be maximized by turning the sampling area into a transect (see Ecological
application 13.1c).
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The extent and grain define the observation window in spatial pattern analysis. No
structure can be detected that is smaller than the grain or larger than the extent of a
study. Wiens (1989) compares them to the overall size and mesh size of a sieve,
respectively.

In quantitative ecology, the term “scale” is generally used in a sense opposite to
that of cartography. For cartographers, the scale is the ratio between the linear size of
an object on a map and its size in nature, so that a small-scale map (e.g. 1:100000) is
less detailed than a large-scale map (e.g. 1:25000). For ecologists, scale generally
refers to the unit of measurement, e.g. the kilometre sampling scale is bigger than the
centimetre scale and weekly observations are broader-scaled than hourly observations.
Confusion is avoided by using “broad scale” for phenomena with large extents and
“fine scale” for those with small extents (Wiens, 1989)

 

*

 

. In any case, these terms only
have comparative values.

In many instances, not one but several scales may be pertinent for the study of a
pattern or process. Different processes are often at work, depending on the scale, to
determine spatial patterns. As a consequence, conclusions derived for a spatial scale
often cannot be extrapolated to other scales. The scale chosen for any particular study
may be considered as a variable-sized window through which one observes nature; see
the notion of observational window in Section 12.0. He 

 

et al.

 

 (1994) have shown how
species diversity, for example, changes as a function of different components of scale
(grain size, sampling interval, and extent). The methods described in Section 13.1, in
particular, allow researchers to depict how spatial correlation changes as a function of
the sampling interval. 

Scale is an important reference to help understand the difference between
environmental management problems and the answers that may be found in ecological
studies. Most studies are conducted at scales (extents) finer than those of natural or
anthropogenic disturbances (Fig. 13.2). As a consequence, environmental problems
usually involve scales broader than the information available from field studies —
surveys or field experiments. Scaling up from studies to environmental problems is a
challenge that ecologists are often facing. New concepts and modelling tools must be
developed to do so (Thrush 

 

et al.

 

, 1997). Multiscale spatial analysis of the results of
surveys conducted across several spatial scales is one means towards that end.

An important concept is that of 

 

heterogeneity

 

 (Kolasa & Rollo, 1991; Dutilleul &
Legendre, 1993; Dutilleul, 2011). With reference to spatial patterns, heterogeneity is
the opposite of 

 

homogeneity

 

 which means the absence of variation. In everyday’s
language, heterogeneous means “composed of unlike elements or parts”. Pitard (1992)
distinguishes 

 

constitution heterogeneity

 

, which is a property of the objects under study,
from 

 

distribution heterogeneity

 

 which can be altered by mixing. In spatial pattern

 

*  

 

Unfortunately these two terms are not antonymic. 

 

Broad 

 

scale refers to the extent; its antonym
is 

 

narrow

 

. 

 

Fine

 

 scale refers to the grain; its antonym is 

 

coarse.

Broad scale
Fine scale
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analysis, heterogeneous refers to spatial variation in the measurements, in some
general sense that applies to quantitative, semiquantitative, or qualitative variables
(Subsection 1.4.1). The concept of heterogeneity may also be applied to the time
dimension, considering repeated observations made at a single point in space.
Heterogeneity can be measured in a univariate (e.g. the variance of a singe variable) or
a multivariate way (e.g. the trace of a dispersion matrix). It can be decomposed into
orthogonal components (as in PCA, Section 9.1) or with respect to spatial or temporal
distance classes (e.g. correlograms for spatial survey data, Section 13.1, or for time
series, Section 12.3). Kolasa & Rollo (1991) recognize that “measured heterogeneity”,
which reflects the observer’s perspective, may be inadequate in that it may differ from
“functional heterogeneity”, which is the heterogeneity that influences the organisms.
Functional heterogeneity may not be the same for different groups of organisms
because the processes that are important for different groups may act at different
temporal or spatial scales. In the sea, for instance, the doubling time of organisms is of
the order of 1 day for phytoplankton, 10 to 40 days for zooplankton, 100 to 900 days
for fish, and 120 to 500 days for mussels. Spatially, the horizontal scales that
characterize patches are of the order of 0.1 to 1 km for phytoplankton and zooplankton,
and 1 to 100 km for fish (Legendre 

 

et al.

 

, 1986). Measured heterogeneity converges
towards functional heterogeneity as our knowledge of a system increases and, with it,
our ability to use our measures to characterize important properties of the system
(Kolasa & Rollo, 1991; Dutilleul & Legendre, 1993). 

The analysis of spatial ecological patterns comprises two families of methods.

 

Point pattern analysis

 

 is concerned with the distribution through space of individual
objects — for instance individual plants or animals. Its chief purpose is to determine
whether the geographic distribution of data points is random or not and to describe the
type of pattern, in order to infer what kind of process may have generated it. In this
family of methods, the quadrat-density and nearest-neighbour approaches have been
widely used in vegetation science (Galiano, 1982; Carpenter & Chaney, 1983). Point
pattern analysis will not be discussed further in this chapter. It has been authoritatively
reviewed by a number of authors, including Pielou (1977), Cicéri 

 

et al.

 

 (1977), Getis

Figure 13.2 Scale differences between environmental management problems and the answers that may be
found in ecological studies. From S. F. Thrush (pers. comm.).
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& Boots (1978), Ripley (1981, 1987), and Upton & Fingleton (1985), and by Dale
(1999) and Fortin & Dale (2005) for ecological data. 

Values of a variable observed over a delimited geographic area form a 

 

regionalized
variable

 

 (Matheron, 1965), also called a 

 

surface

 

 (Oden 

 

et al

 

., 1993; Legendre &
McArdle, 1997), if the sites where the variable has been observed may be viewed as a
sample from an underlying continuous surface. The second family of methods to
analyse spatial ecological patterns, called 

 

surface pattern analysis

 

, deals with the study
of spatially continuous phenomena. The spatial distributions of the variables are
known, as usual, through sampling (or measurements on aerial photos or satellite
maps) at discrete sampling sites. One or several variables are observed or measured at
the observation sites, each site representing its surrounding portion of the geographic
space. The analysis of continuous surfaces, where pixels cover the whole map
(including data obtained by echolocation or remote sensing), is not specifically
discussed here.

Surface pattern analysis includes a large number of methods developed to answer a
variety of questions (Table 13.1). Several of these methods are discussed in the present
chapter. General references are: Cliff & Ord (1981), Ripley (1981), Upton & Fingleton
(1985, 1989), Griffith (1987), Legendre & Fortin (1989), and Rossi 

 

et al.

 

 (1992). The
geostatistical literature is briefly reviewed in Subsection 13.2.2. The comparison of
surfaces, i.e. univariate measures over the same area repeated at two or more sampling
times, has been discussed by Legendre & McArdle (1997). 

Multiscale modelling of univariate or multivariate ecological data can be done
using spatial eigenfunction analysis, described in Chapter 14. Wavelet analysis,
described in Subsection 12.5.4 for ecological data series, offers another method of
multiscale modelling for 

 

univariate spatial data on a regular grid

 

, e.g. remotely
sensed data or entirely inventoried map areas. 

The book of Fortin & Dale (2005) describes point pattern as well as surface pattern
methods of spatial analysis. Section 13.6 provides a list of computer programs and
functions for surface pattern analysis; most of these methods are not available in the
major statistical packages. 

Geographers have also developed 

 

line pattern analysis

 

 which is a topological
approach to the study of networks of connections among points. Examples are: roads,
electric or telephone lines, and river networks.

For a point pattern, heterogeneity refers to the distribution of individuals across
space; one often compares the observed density variation of organisms to that expected
for randomly distributed objects. For a surface pattern, heterogeneity refers to the
variability of quantitative or qualitative descriptors across space. Dutilleul & Legendre
(1993) provide a summary of the main statistical tools available to ecologists to
quantify spatial heterogeneity in both the point and the surface pattern cases. Dutilleul
(1993) describes in more detail how experimental designs can be accommodated to the
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Surface

Surface
pattern

Line 
pattern
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spatial heterogeneity found in nature; spatial heterogeneity may be a nuisance for the
experimenter, or a characteristic of interest. The analysis of spatial patterns is the study
of organized arrangements of [ecological] heterogeneity across space. 

These concepts, and more, are discussed in the book of Dutilleul (2011) on spatio-
temporal heterogeneity. The book describes the study designs (field surveys and
experiments) as well as the methods of analysis to interpret point and surface patterns
in data collected to answer questions about the spatial, temporal, and spatio-temporal
heterogeneity of ecosystems.

Table 13.1 Surface pattern analysis: research objectives and related numerical methods. Modified from
Legendre & Fortin (1989).

Research objective Numerical methods

1) Description of spatial structures
and testing for the presence of
spatial correlation
(Descriptions using structure
functions should always be
complemented by maps.)

2) Mapping; estimation of values at
given locations

3) Modelling species-environment
relationships while taking spatial
structures into account

4) Performing valid statistical tests
on autocorrelated data

Univariate structure functions: correlogram,
variogram, etc. (Section 13.1)

Multivariate structure functions: multivariate
variogram, Mantel correlogram (Section 13.1)

Testing for a gradient in multivariate data:
canonical ordination between the multivariate
response data and the geographic coordinates of
the sites (Section 13.4). 

Univariate data: local interpolation map, kriging;
trend-surface map (global statistical model)
(Section 13.2)

Multivariate data: space-constrained clustering,
search for boundaries (Section 13.3); interpolated
map of the 1st (2nd, etc.) ordination axis
(Section 13.4); multivariate trend-surface map
obtained by canonical analysis (Section 13.4)

Spatial modelling through canonical analysis
(Section 13.5); 

Multiscale analysis: spatial eigenfunction
modelling (Chapter 14).

Subsections 1.1.2 and 14.5.3.
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13.1 Structure functions

 

Ecologists are interested in describing spatial structures in quantitative ways and
testing for the presence of spatial correlation in data. The primary objective is to:

 

• 

 

either support the null hypothesis that no significant spatial correlation is present in a
data set, or that none remains after detrending (Subsection 13.2.1) or after controlling
for the effect of explanatory (e.g. environmental) variables, thus insuring valid use of
the standard univariate or multivariate statistical tests of hypotheses,

 

• 

 

or reject the null hypothesis and show that significant spatial correlation is present in
the data, in order to use it in conceptual or statistical models. 

Tests of spatial correlation coefficients may only support or reject the null hypothesis
of the absence of significant spatial structure. When a significant spatial structure is
found, it may correspond to induced spatial dependence (Subsection 1.1.1, model 1) or
true spatial autocorrelation (model 2).

Spatial structures may be described through 

 

structure functions

 

, which allow one to
quantify the spatial dependence and partition it amongst distance classes.
Interpretation of that description is usually supported by maps of the univariate or
multivariate data (Sections 13.2 to 13.4). The most commonly used spatial structure
functions are correlograms, variograms, and periodograms. 

A 

 

correlogram

 

 is a graph in which spatial correlation values are plotted, on the
ordinate, against

 

 distance classes

 

 among sites on the abscissa. Correlograms (Cliff &
Ord, 1981) can be computed for single variables (Moran’s 

 

I

 

 or Geary’s 

 

c

 

,
Subsection 13.1.1, or the spatial correlation function, Subsection 13.1.5) or for
multivariate data (multivariate variogram, Subsection 13.1.4, and Mantel correlogram,
Subsection 13.1.6). In all cases, a test of significance is available for each individual
spatial correlation coefficient plotted in a correlogram.

Similarly, a 

 

variogram

 

 is a graph in which semi-variance is plotted, on the ordinate,
against

 

 distance classes

 

 among sites on the abscissa (Subsection 13.1.3). In the
geostatistical tradition, semi-variance statistics are not tested for significance, although
they could be through the test developed for Geary’s 

 

c

 

, when the condition of second-
order stationarity is satisfied (Subsection 13.1.1). Statistical models may be fitted to
variograms (linear, exponential, spherical, Gaussian, etc.); they allow the investigator
to relate the observed structure to hypothesized generating processes or to produce
interpolated maps by kriging (Subsection 13.2.2). 

Because they measure the relationship between pairs of observation points located
a certain distance apart, correlograms and variograms may be computed either for
preferred geographic directions or, when the phenomenon is assumed to be isotropic in
space, in an all-directional way. 

Map

Spatial
correlogram

Variogram
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A two-dimensional Schuster (1898) periodogram may be computed when the
structure under study is assumed to consist of a combination of sine waves propagated
through space. The basic idea is to fit sines and cosines of various periods, one period
at a time, and to determine the proportion of the series’ variance (r2) explained by each
period. In periodograms, the abscissa is either a period or its inverse, a frequency; the
ordinate is the proportion of variance explained. Two-dimensional periodograms may
be plotted for all combinations of directions and spatial frequencies. The technique is
applicable to regular grids of points; it is described Priestley (1964), Ripley (1981),
Renshaw and Ford (1984) and Legendre & Fortin (1989). It is not discussed further in
this book. Spatial eigenfunction analysis, described in Chapter 14, carries out a similar
form of analysis and is more general since it can be used on irregularly-spaced points.

1 — Spatial correlograms

For quantitative variables (univariate data), spatial correlation can be estimated by
Moran’s I (1950) or Geary’s c (1954) spatial correlation statistics* (Cliff & Ord, 1981):

Moran’s I:    for h ! i (13.1)

Geary’s c:    for h ! i (13.2)

yh and yi are the values of the observed variable at sites h and i, and d is the distance
class considered in the calculation. Before computing spatial correlation coefficients, a
matrix of geographic distances D = [Dhi] among observation sites must be calculated.
Statistical details about these coefficients are available in Cliff & Ord (1981) and
d’Aubigny (2006).

In the presence of explanatory variables generating spatial structure in the variable
of interest, true spatial autocorrelation must be estimated on the residuals of a model
that takes these explanatory variables into account. This is in agreement with the
definition of spatial autocorrelation (Section 1.1), which is the spatial dependence
among the error components of the observed data (eq. 1.2).

*  These statistics are often called spatial autocorrelation coefficients. This terminology is
misleading since the coefficients measure any type of spatial structure, be it due to induced
spatial dependence (eq. 1.1) or true spatial autocorrelation (eq. 1.2).
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In the construction of a correlogram, spatial correlation coefficients are computed,
in turn, for the various distance classes d. The weights whi are Kronecker deltas (as in
eq. 7.21); the binary weights take the value whi = 1 when sites h and i are at distance d
and whi = 0 otherwise. In this way, only the pairs of sites (h, i) within the stated
distance class (d) are taken into account in the calculation of any given coefficient.
This approach is illustrated in Fig. 13.3. W is the sum of the weights whi for the given
distance class, i.e. the number of pairs used to calculate the coefficient. For a given
distance class, the weights wij are written in a (n × n) spatial weighting matrix W; an
example of a binary spatial weighting matrix is matrix X(1) of Fig. 13.14. Jumars et al.
(1977) present ecological examples where the distance–1 or distance–2 among adjacent
sites is used for weight instead of 1’s.

Figure 13.3 Construction of correlograms. Left: data series observed along a single geographic axis
(10 equispaced observations). Moran’s I and Geary’s c statistics are computed from pairs of
observations found at preselected distances (d = 1, d = 2, d = 3, etc.). Right: correlograms are
graphs of the spatial correlation statistics plotted against distance. Dark squares: significant
correlation statistics (p # 0.05). Lower right: histogram showing the number of pairs in each
distance class. Coefficients for the larger distance values (grey zones in correlograms) should
not be considered in correlograms, nor interpreted, because they are based on a small number of
pairs (test with low power) and exclude some points found in the centre of the series or surface.
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The numerators of eqs. 13.1 and 13.2 are written with summations involving each
pair of objects twice; in eq. 13.2 for example, the terms (yh – yi)2 and (yi – yh)2 are
both used in the summation. This allows for cases where the distance matrix D or the
weight matrix W is asymmetric. In studies of the dispersion of pollutants in soil, for
instance, drainage may make it more difficult to go from A to B than from B to A; this
may be recorded as a larger distance from A to B than from B to A. In spatio-temporal
analyses, an observed value may influence a later value at the same or a different site,
but not the reverse. An impossible connection may be coded by a very large value of
distance or by whi = 0. In most applications, however, the geographic distance matrix
among sites is symmetric and the coefficients can be computed from the half-matrix of
distances; the formulae remain the same, because W and the sum in the numerator are
half the values computed over the whole distance matrix D. 

One may use distances along a network of connections (Subsection 13.3.1) instead
of straight-line geographic distances; this includes the “chess moves” for regularly-
spaced points as obtained from systematic sampling designs: rook’s, bishop’s, or
king’s connections (see Fig. 13.21). For very broad-scale studies, involving a whole
ocean or continent, “great-circle distances”, i.e. distances along the earth’s curved
surface, should be used instead of straight-line distances through the earth crust.

Moran’s I formula is related to the Pearson correlation coefficient; its numerator is
a covariance, comparing the values found at all pairs of points in turn, while its
denominator is the maximum-likelihood estimator of the variance (i.e. division by n
instead of n – 1); in Pearson r, the denominator is the product of the standard
deviations of the two variables (eq. 4.7), whereas in Moran’s I there is only one
variable involved. Moran’s I mainly differs from Pearson r in that the sums in the
numerator and denominator of eq. 13.1 do not involve the same number of terms; only
the terms corresponding to distances within the given class are considered in the
numerator whereas all pairs are taken into account in the denominator. Moran’s I
usually takes values in the interval [–1, +1] although values lower than –1 or higher
than +1 may occasionally be obtained. Positive spatial correlation in the data translates
into positive values of I; negative correlation produces negative values.

Readers who are familiar with correlograms in time series analysis (Section 12.3)
will be reassured to know that, when a problem involves equispaced observations
along a single physical dimension, as in Fig. 13.3, calculating Moran’s I (eq. 13.1) for
the different distance classes is nearly the same as computing the autocorrelation
coefficient of time series analysis (Fig. 12.5, eq. 12.7).

Geary’s c coefficient is a distance-type function; it varies from 0 to some
unspecified value larger than 1. Its numerator sums the squared differences between
values found at the various pairs of sites being compared. A Geary’s c correlogram
varies as the reverse of a Moran’s I correlogram; strong spatial correlation produces
high values of I and low values of c (Fig. 13.3). Positive spatial correlation translates
in values of c between 0 and 1 whereas negative correlation produces values larger
than 1. Hence, the reference ‘no correlation’ value is c = 1 in Geary’s correlograms.
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For sites lying on a surface or in a volume, geographic distances do not naturally
fall into a small number of values; this is true for regular grids as well as random or
other forms of irregular sampling designs. Distance values must be grouped into
distance classes; in this way, each spatial correlation coefficient can be computed using
several comparisons of sampling sites. 

Numerical example. In Fig. 13.4 (artificial data), 10 sites have been located at random into
a 1-km2 sampling area. Euclidean (geographic) distances were computed among sites. The
number of classes is arbitrary and left to the user’s decision. A compromise has to be made
between resolution of the correlogram (more resolution when there are more, narrower classes)
and power of the test (more power when there are more pairs in a distance class). Sturges’
(1926) rule is often used to decide about the number of classes in histograms; it was used here
and gave:

Number of classes = 1 + 3.322log10(m) = 1 + 3.3log10(45) = 6.46 (13.3)

Figure 13.4 Calculation of distance classes, artificial data. (a) Map of 10 sites in a 1-km2 sampling area.
(b) Geographic distance matrix (D, in km). (c) Frequency histogram of distances (classes 1 to 6)
for the upper (or lower) triangular portion of D. (d) Distances recoded into 6 classes.

(a)  0.00 0.52 0.74 0.20 0.31 0.29 0.72 0.72 0.59 0.23

 0.52 0.00 0.27 0.41 0.27 0.75 0.52 0.25 0.45 0.53

 0.74 0.27 0.00 0.58 0.44 1.00 0.74 0.37 0.70 0.67

 0.20 0.41 0.58 0.00 0.15 0.49 0.76 0.65 0.63 0.12

 0.31 0.27 0.44 0.15 0.00 0.59 0.68 0.51 0.57 0.26

 0.29 0.75 1.00 0.49 0.59 0.00 0.76 0.90 0.64 0.50

 0.72 0.52 0.74 0.76 0.68 0.76 0.00 0.40 0.13 0.87

 0.72 0.25 0.37 0.65 0.51 0.90 0.40 0.00 0.39 0.77

 0.59 0.45 0.70 0.63 0.57 0.64 0.13 0.39 0.00 0.74

 0.23 0.53 0.67 0.12 0.26 0.50 0.87 0.77 0.74 0.00
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where m is the number of distances in the upper triangular matrix and 3.322 is 1/log102; the
number was rounded to the nearest integer (i.e. 6). The distance matrix was thus recoded into
6 classes, ascribing class numbers (1 to 6) to all distances within a class of the histogram. 

An alternative to distance classes with equal widths would be to create distance
classes containing the same number of pairs (notwithstanding tied values); distance
classes formed in this way are of unequal widths. The advantage is that the tests of
significance have the same power across all distance classes because they are based
upon the same number of pairs of observations. The disadvantages are that limits of
the distance classes are more difficult to find and correlograms are harder to draw.

Spatial correlation coefficients can be tested for significance and confidence
intervals can be computed. With proper correction for multiple testing, one can
determine if a significant spatial structure is present in the data and what are the
distance classes showing significant positive or negative correlation. Tests of
significance require, however, that certain conditions specified below be fulfilled. 

The tests require that the condition of second-order stationarity be satisfied.
Second-order stationarity refers to the vectors separating pairs of values in the study
area. This rather strong condition states that the mean of the variable is constant over
the study area, and the spatial covariance (numerator of eq. 13.1) depends only on the
length and orientation of the vector between any two points, not on its position in the
study area (David, 1977). The variance (denominator of eq. 13.1) must be the same for
all points in the study area (homogeneity of the variance; Dutilleul, 2011).

A relaxed form of stationarity, called intrinsic stationarity, states that the
differences (yh – yi) for any distance d (numerator of eq. 13.2) must have zero mean
and constant and finite variance over the study area, independently of the location
where the differences are calculated. Here, one considers the increments of the values
of the regionalized variable instead of the values themselves (David, 1977). As shown
below, the variance of the increments is the variogram function. In layman’s terms, this
means that a single spatial correlation function is adequate to describe the entire
surface under study. An example where intrinsic stationarity does not hold is a region
which is half plain and half mountains; such a region should be divided in two
subregions in which the variable “altitude” could be modelled by separate spatial
correlation functions. Second-order stationarity implies intrinsic stationarity, but the
reciprocal is not true. Intrinsic stationarity is a weaker form of stationarity compatible
with a broader range of models. This condition must always be met when variograms
or correlograms (including multivariate Mantel correlograms) are computed, even for
descriptive purpose.

Cliff & Ord (1981) describe how to compute confidence intervals and test the
significance of spatial correlation coefficients. For any normally distributed statistic
Stat, a confidence interval at significance level $ is obtained as follows:

(13.4)

Second-
order
stationarity

Intrinsic
stationarity

Pr Stat z$ 2 Var Stat( )– StatPop Stat z$ 2 Var Stat( )+< <( ) 1 $–=
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For significance testing with large samples, a one-tailed critical value Stat$ at
significance level $ is obtained as follows:

(13.5)

It is possible to use this approach because both I and c are asymptotically normally
distributed for data sets of moderate to large sizes (Cliff & Ord, 1981). Values z$/2 or
z$ are found in a table of standard normal deviates. Under the hypothesis (H0) of
random spatial distribution of the observed values yi , the expected values (E) of
Moran’s I and Geary’s c are: 

E(I) = –(n – 1)–1    and    E(c) = 1 (13.6)

Under the null hypothesis, the expected value of Moran’s I approaches 0 as n
increases. The variances are computed as follows under a randomization assumption,
which simply states that, under H0, the observations yi are independent of their
positions in space (second-order stationarity assumption) and, thus, are exchangeable:

(13.7)

(13.8)

In these equations,

•  (there is a term of this sum for each cell of matrix W);

• 

•  measures the kurtosis of the distribution;

• W is as defined in eqs. 13.1 and 13.2.
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In most cases in ecology, tests of spatial correlation are one-tailed because the sign
of the correlation is stated in the ecological hypothesis; for instance, contagious
biological processes such as growth, reproduction, and dispersal, all suggest that
ecological variables are positively correlated at short distances. To carry out an
approximate test of significance, select a value of $ (e.g. $ = 0.05) and find z$ in a
table of the standard normal distribution (e.g. z0.05 = +1.6452). Critical values are
found as in eq. 13.5, with a correction factor that becomes important when n is small:

•  in all cases, using the value in the upper tail of the z
distribution when testing for positive spatial correlation (e.g. z0.05 = +1.6452), and the
value in the lower tail in the opposite case (e.g. z0.05 = –1.6452);

•  when c < 1 (positive spatial correlation), using the value in
the lower tail of the z distribution (e.g. z0.05 = –1.6452);

•  when c > 1 (negative spatial correlation), using
the value in the upper tail of the z distribution (e.g. z0.05 = +1.6452).

The value taken by the correction factor k$ depends on the values of n and W. If
, then ; otherwise, k$ = 1. If the test

is two-tailed, use $* = $/2 to find z$* and k$* before computing critical values. These
corrections are based upon simulations reported by Cliff & Ord (1981, Section 2.5).

Other formulas are found in Cliff & Ord (1981) for conducting a test under the
assumption of normality, where one assumes that the yi’s result from n independent
draws from a normal population. When n is very small, tests of I and c should be
conducted by permutation (Subsection 1.2.2). 

Moran’s I and Geary’s c are sensitive to extreme values and, in general, to
asymmetry in the data distributions, as are the related Pearson r and Euclidean distance
coefficients. Asymmetry increases the variance of the data. It also increases the
kurtosis and hence the variance of the I and c coefficients (eqs. 13.7 and 13.8); this
makes it more difficult to reach significance in statistical tests. So, practitioners usually
attempt to normalize the data before computing correlograms and variograms.

Statistical testing in correlograms implies multiple testing since a test of
significance is carried out for each spatial correlation coefficient. Oden (1984) has
developed a Q statistic to test the global significance of spatial correlograms; his test is
an extension of the Portmanteau Q-test used in time series analysis (Box & Jenkins,
1976). An alternative global test is to check whether the correlogram contains at least
one correlation statistic that is significant at the Bonferroni-corrected significance level
(Box 1.3). Simulations by Oden (1984) showed that the power of the Q-test is not
appreciably greater than the power of the Bonferroni procedure, which is
computationally a lot simpler. A practical question remains, though: how many
distance classes should be created? This determines the number of simultaneous tests
that are carried out. More classes mean more resolution but fewer pairs per class and,

I$ z$ Var I( ) k$– n 1–( )
1–=

c$ z$ Var c( ) 1+=

c$ z$ Var c( ) 1 k$ n 1–( )
1––+=

4 n n–( ) W 4 2n 3 n– 1+( )#< k$ 10$=



800 Spatial analysis

thus, less power for each test; more classes also mean a smaller Bonferroni-corrected
$' level, which makes it more difficult for a correlogram to reach global significance.

When the overall test has shown global significance, one may wish to identify the
individual spatial correlation statistics that are significant, in order to reach an
interpretation (Subsection 13.1.2). One could rely on Bonferroni-corrected tests for all
individual correlation statistics, but this approach would be too conservative; a better
solution is to use Holm’s correction procedure (Box 1.3). Another approach is the
progressive Bonferroni correction described in Subsection 12.4.2; it is only applicable
when the ecological hypothesis indicates that significant spatial correlation is to be
expected in the smallest distance classes and the purpose of the analysis is to determine
the extent of the spatial correlation (i.e. which distance class it reaches). With the
progressive Bonferroni approach, the likelihood of emergence of significant values
decreases as one proceeds from left to right, i.e. from the small to the large distance
classes of the correlogram. In addition, one does not have to limit the correlogram to a
small number of classes to reduce the effect of the correction, as it is the case with
Oden’s overall test and with the Bonferroni and Holm correction methods. This
approach will be used in the examples that follow.

Spatial correlation coefficients and tests of significance also exist for qualitative
(nominal) variables (Cliff & Ord, 1981); they have been used, for example, to analyse
spatial patterns of sexes in plants (Sakai & Oden, 1983; Sokal & Thomson, 1987).
Special types of spatial correlation coefficients have been developed to answer specific
problems (e.g. Galiano, 1983; Estabrook & Gates, 1984). The paired-quadrat variance
method, developed by Goodall (1974) to analyse spatial patterns of ecological data by
random pairing of quadrats, is related to correlograms.

2 — Interpretation of all-directional correlograms

When the spatial correlation function is the same for all geographic directions
considered, the phenomenon is isotropic. The opposite of isotropy is anisotropy. When
a variable is isotropic, a single correlogram can be computed over all directions of the
study area. The correlogram is said to be all-directional or omnidirectional.
Directional correlograms, which are computed for a single spatial direction, are
discussed together with anisotropy and directional variograms in Subsection 13.1.3. 

Correlograms are analysed mostly by looking at their shapes. Examples will help
clarify the relationship between spatial structures and all-directional correlograms. The
important message is that, although correlograms may give clues as to the underlying
spatial structure, the information they provide is not specific; a blind interpretation
may be misleading and should be supported by examination of maps (Section 13.2).

Numerical example. Artificial data were generated that correspond to a number of spatial
patterns. The data and resulting correlograms are presented in Fig. 13.5.

Isotropy
Anisotropy



Structure functions 801

1. Nine bumps. — The surface in Fig. 13.5a is made of nine bi-normal curves. 225 points were
sampled across the surface using a regular 15 × 15 grid (Fig. 13.5f). The “height” was noted at
each sampling point. The 25200 distances among points found in the upper-triangular portion of
the distance matrix were divided into 16 distance classes, using Sturges’ rule (eq. 13.3), and
correlograms were computed. According to Oden’s test, the correlograms were globally
significant at the $ = 5% level since several individual values were significant at the Bonferroni-
corrected level $' = 0.05/16 = 0.00312. In each correlogram, the progressive Bonferroni
correction method was applied to identify significant spatial correlation coefficients: the
coefficient for distance class 1 was tested at the $ = 0.05 level; the coefficient for distance
class 2 was tested at the $' = 0.05/2 level; and, more generally, the coefficient for distance class
k was tested at the $' = 0.05/k level. Spatial correlation coefficients are not reported for distance
classes 15 and 16 (60 and 10 pairs, respectively) because they only include the pairs of points
bordering the surface, to the exclusion of all other pairs.

There is a correspondence between individual significant spatial correlation coefficients and
the main elements of the spatial structure. The correspondence can clearly be seen in this
example, where the data generating process is known. This is not the case when analysing field
data, for which the existence and nature of the spatial structures must be confirmed by mapping
the data. The presence of several equispaced patches produces an alternation of significant
positive and negative values along the correlograms. The first spatial correlation coefficient,
which is above 0 in Moran’s correlogram and below 1 in Geary’s, indicates positive spatial
correlation in the first distance class; the first class contains the 420 pairs of points that are at
distance 1 of each other on the grid (i.e. the first neighbours in the N-S or E-W directions of the
map). Positive and significant spatial correlation in the first distance class confirms that the
distance between first neighbours is smaller than the patch size; if the distance between first
neighbours in this example were larger than the patch size, the first neighbours would be
dissimilar in values and the correlation would be negative for the first distance class. The next
peaking positive correlation value (which is smaller than 1 in Geary’s correlogram) occurs at
distance class 5, which includes distances from 4.95 to 6.19 in grid units; this corresponds to
positive spatial correlation between points located at similar positions on neighbouring bumps,
or neighbouring troughs; distances between successive peaks are 5 grid units in the E-W or N-S
directions. The next peaking positive spatial correlation value occurs at distance class 9
(distances from 9.90 to 11.14 in grid units); it includes value 10, which is the distance between
second-neighbour bumps in the N-S and E-W directions. Peaking negative correlation values
(which are larger than 1 in Geary’s correlogram) are interpreted in a similar way. The first such
value occurs at distance class 3 (distances from 2.48 to 3.71 in grid units); it includes value 2.5,
which is the distance between peaks and troughs in the N-S and E-W directions on the map. If
the bumps were unevenly spaced, the correlograms would be similar for the small distance
classes, but there would be no other significant values afterwards.

The main problem with all-directional correlograms is that the diagonal comparisons are
included in the same calculations as the N-S and E-W comparisons. As distances become larger,
diagonal comparisons between, say, points located near the top of the nine bumps tend to fall in
different distance classes than comparable N-S or E-W comparisons. This blurs the signal and
makes the spatial correlation coefficients for larger distance classes less significant and
interpretable.

2. Wave (Fig. 13.5b).   — Each crest was generated as a normal curve. Crests were separated by
five grid units; the surface was constructed in this way to make it comparable to Fig. 13.5a. The
correlograms are nearly indistinguishable from those of the nine bumps. All-directional
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correlograms alone cannot tell apart regular bumps from regular waves; directional
correlograms or maps are required.

3. Single bump (Fig. 13.5c). — One of the normal curves of Fig. 13.5a was plotted alone at the
centre of the study area. Significant negative spatial correlation, which reaches distance classes 6
or 7, delimits the extent of the “range of influence” of this single bump, which covers half the
study area. It is not limited here by the rise of adjacent bumps, as this was the case in (a).

4. Linear gradient (Fig. 13.5d). — The correlogram is monotonic decreasing. Nearly all spatial
correlation values in the correlograms are significant. 

There are actually two kinds of gradients (Legendre, 1993). True gradients, on the one hand,
are deterministic structures. Model 1 of Subsection 1.1.1 (induced spatial dependence, eq. 1.1)
can generate a true gradient; see Fig. 1.5, case 4. That gradient can be modelled using trend-
surface analysis (Subsection 13.2.1). The observed values have independent error terms,

Figure 13.5 Spatial correlation analysis of artificial spatial structures shown on the left: (a) nine bumps;
(b) waves; (c) a single bump. Centre and right: all-directional correlograms. Dark squares:
correlation statistics that remain significant after progressive Bonferroni correction ($ = 0.05);
white squares: non-significant values. (The figure continues next page.)
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i.e. error terms that are not autocorrelated. False gradients, on the other hand, are structures that
look like gradients, but actually correspond to spatial correlation generated by some spatial
process. Model 2 of Subsection 1.1.1 (spatial autocorrelation, eq. 1.2) can generate a false
gradient, especially when the sampling area is small relative to the range of influence of the
generating process; see Fig. 1.5, case 3.

In the case of “true gradients”, spatial correlation coefficients should not be tested for
significance because the condition of second-order stationarity is not satisfied (definition in
Subsection 13.1.1); the expected value of the mean is not the same over the whole study area. In
the case of “false gradients”, however, tests of significance are warranted. For descriptive
purposes, correlograms may still be computed for “true gradients” (without tests of significance)
because intrinsic stationarity is satisfied. One may also choose to extract a “true gradient” using
trend-surface analysis, compute residuals, and look for spatial correlation among the residuals.
This is equivalent to trend extraction prior to time series analysis (Section 12.2). 

Figure 13.5 (continued) Spatial correlation analysis of artificial spatial structures shown on the left:
(d) gradient; (e) step. (h) All-directional correlogram of random values. (f) Sampling grid used
on each of the artificial spatial structures to obtain 225 “observed values” for spatial correlation
analysis. (g) Histogram showing the number of pairs in each distance class. Distances, from 1 to
19.8 in units of the sampling grid, were grouped into 16 distance classes. Spatial correlation
statistics (I or c) are not shown for distance classes 15 and 16; see text.
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How does one know whether a gradient is “true” or “false”? This is a moot point. When the
process generating the observed structure is known, one may decide whether it is likely to have
generated spatial correlation in the observed data, or not. Otherwise, one may empirically look
at the target population of the study. In the case of a spatial study, this is the population of
potential sites in the larger area into which the study area is embedded, the study area
representing the statistical population about which inference can be made. Even from sparse or
indirect data, a researcher may form an opinion as to whether the observed gradient is
deterministic (“true gradient”) or is part of a landscape displaying spatial correlation at broader
spatial scale (“false gradient”).

5. Step (Fig. 13.5e). — A step between two flat surfaces is enough to produce a correlogram that
is indistinguishable, for all practical purposes, from that of a gradient. Correlograms alone
cannot tell apart regular gradients from steps; maps are required. As in the case of gradients,
there are “true steps” (deterministic) and “false steps” (resulting from an autocorrelated
process), although the latter is rare. The presence of a sharp discontinuity in a surface generally
indicates that the two parts should be subjected to separate analyses. The methods of boundary
detection and constrained clustering (Section 13.3) may help detect such discontinuities and
delimit homogeneous areas prior to spatial correlation analysis.

6. Random values (Fig. 13.5h). — Random numbers drawn from a standard normal distribution
were generated for each point of the grid and used as the variable to be analysed. Random data
are said to represent a “pure nugget effect” in geostatistics. The spatial correlation coefficients
were small and non-significant at the 5% level. Only the Geary correlogram is presented.

Sokal (1979) and Cliff & Ord (1981) described, in general terms, where to expect
significant values in correlograms, for some spatial structures such as gradients and
large or small patches. Their summary tables are in agreement with the test examples
above. The absence of significant coefficients in a correlogram must be interpreted
with caution, however.

• The absence may indicate that the surface under study is free of spatial correlation at
the study scale. This conclusion is subject to type II error. Type II error depends on the
power of the test, which is a function of (1) the $ significance level, (2) the size of
effect (i.e. the minimum amount of spatial correlation) one wants to detect, (3) the
number of observations (n), and (4) the variance of the sample of data (Cohen, 1988):

Power = (1 – %) = f ($, size of effect, n, )

Is the test powerful enough to warrant such a conclusion? Are there enough
observations to reach significance? The easiest way to increase the power of a test, for
a given variable and fixed $, is to increase n.

• The absence may also indicate that the sampling design is inadequate to detect the
spatial correlation that may exist in the system. Are the grain size, extent and sampling
interval (Section 13.0) adequate to detect the type of spatial correlation one can
hypothesize from knowledge about the biological or ecological process under study?

Ecologists can often formulate hypotheses about the mechanism or process that
may have generated a spatial phenomenon and deduct the shape that the resulting

sx
2
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surface should have. When the model specifies a value for each geographic position
(e.g. a spatial gradient), data and model can be compared by correlation analysis. In
other instances, the biological or ecological model only specifies the process
generating the spatial correlation, not the exact geographic position of each resulting
value. Correlograms may be used to support or reject a biological or ecological
hypothesis. As in the examples of Fig. 13.5, one can construct an artificial model-
surface corresponding to the hypothesis, compute a correlogram of that surface, and
compare the correlograms of the real and model data. For instance, Sokal et al. (1997a)
generated data corresponding to several gene dispersion mechanisms in populations
and showed the kind of spatial correlogram that may be expected from each model.
Another application concerning phylogenetic patterns of human evolution in Eurasia
and Africa (space-time model) is found in Sokal et al. (1997b).

Bjørnstad et al. (1999) and Bjørnstad & Falck (2001) proposed a spline
correlogram, which provides a continuous and model-free function for the spatial
covariance. The spline correlogram may be seen as a modification of the
nonparametric covariance function of Hall and co-workers (Hall & Patil, 1994; Hall et
al., 1994). A bootstrap algorithm estimates a confidence envelope around the entire
correlogram. Confidence envelopes allow one to test the similarity between
correlograms of real or simulated data. See package NCF in Section 13.6.

Ecological application  13.1a

During a study of the factors potentially responsible for the choice of settling sites of Balanus
crenatus larvae (Cirripedia) in the St. Lawrence Estuary (Hudon et al., 1983), plates of artificial
substrate (plastic laminate) were subjected to colonization in the infralittoral zone. Plates were
positioned vertically, parallel to one another. Pictures of plates were taken during the course of
the study. The present ecological application uses data obtained from a picture of a plate taken
after a 3-month immersion at a depth of 5 m below low tide, during the summer 1978. The
picture was divided into a (10 × 15) grid, for a total of 150 pixels of 1.7 × 1.7 cm. Barnacles
were counted by C. Hudon and P. Legendre for the present application (Fig. 13.6a; not published
in op. cit.). The hypothesis to be tested was that barnacles had a patchy distribution. Barnacles
are gregarious animals; their larvae are chemically attracted to settling sites by arthropodine
secreted by settled adults (Gabbott & Larman, 1971).

A gradient in larval concentration was expected in the top-to-bottom direction of the plate
because of the known negative phototropism of barnacle larvae at the time of settlement
(Visscher, 1928). Some kind of border effect was also expected because access to the centre of
the plates located in the middle of the pack was more limited than to the fringe. These large-
scale effects create violations to the condition of second-order stationarity. A trend-surface
equation (Subsection 13.2.1) was computed to account for it, using only the Y coordinate (top-
to-bottom axis). Indeed, a significant trend surface was found, involving Y and Y2, that
accounted for 10% of the variation. It forecasted high barnacle concentration in the bottom part
of the plate and near the upper and lower margins. Residuals from this equation were calculated
and used in spatial correlation analysis.

Euclidean distances were computed among pixels; following Sturge’s rule (eq. 13.3), the
distances were divided into 14 classes (Fig. 13.6b). Significant positive spatial correlation was
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found in the first distance classes of the correlograms (Fig. 13.6c, d), supporting the hypothesis
of patchiness. The size of the patches, or “range of influence” (i.e. the distance between zones of
high and low concentrations), is indicated by the distance at which the first maximum negative
Moran’s I correlation value is found. This occurs in classes 4 and 5, which correspond to a
distance of about 5 in grid units, or 8 to 10 cm. The patches of high concentration are shaded on
the map of the plate of artificial substrate (Fig. 13.6a).

A spatial correlogram is an overall function of spatial correlation across a study
area. It is not meant to display details of the structure across the area. Anselin (1995)
proposed to decompose the global spatial correlation coefficients into Local Indicators
of Spatial Association (LISA), producing a local statistic for each sampling unit
compared to its surrounding units. LISA can be computed using Moran’s I or
Geary’s c formulas (eqs. 13.1 and 13.2), and the resulting values can be plotted on
maps. Fortin & Dale (2005) give examples of such maps of LISA computed for

Figure 13.6 (a) Counts of adult barnacles in 150 (1.7 × 1.7 cm) pixels on a plate of artificial substrate
(17 × 25.5 cm). The mean concentration is 6.17 animals per pixel; pixels with counts & 7 are
shaded to display the aggregates. (b) Histogram of the number of pairs in each distance class.
(c) Moran’s correlogram. (d) Geary’s correlogram. Dark squares: spatial correlation statistics
that remain significant after progressive Bonferroni correction ($ = 0.05); white squares: non-
significant values. Grey zones: coefficients that should not be interpreted because they exclude
some points in the centre of the study area. Coefficients for distance classes 13 and 14 are not
given because they only include the pairs of points bordering the surface. Distances are also
given in grid units and in cm.
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simulated data. Readers can also run the example provided in the documentation file of
function lisa() of package NCF in R.

In anisotropic situations, directional correlograms should be computed in two or
several directions. Description of how the pairs of points are chosen is deferred to
Subsection 13.1.3 on variograms. One may choose to represent either a single, or
several of these correlograms, one for each of the aiming geographic directions, as
seems fit for the problem at hand. A procedure for representing in a single figure the
directional correlograms computed for several directions of a plane was proposed by
Oden & Sokal (1986); Legendre & Fortin (1989) gave an example for vegetation data.
Another method is illustrated in Rossi et al. (1992).

Another way to approach anisotropic problems is to compute two-dimensional
spectral analysis. This method, described by Priestley (1964), Rayner (1971), Ford
(1976), Ripley (1981) and Renshaw & Ford (1984), differs from spatial correlation
analysis in the structure function it uses. As in time-series spectral analysis
(Section 12.5), the method assumes the data to be stationary (second-order
stationarity; i.e. no “true gradient” in the data) and made of a combination of sine
patterns. A spatial correlation function rdX,dY for all combinations of lags (dX, dY) in
the two geographic axes of a plane, as well as a periodogram with intensity I for all
combinations of frequencies in the two directions of the plane, are computed. Details
of the calculations are also given in Legendre & Fortin (1989), with an example.

3 — Variogram

Like correlograms, semi-variograms (called variograms for simplicity) decompose the
spatial (or temporal) variability of observed variables among distance classes. The
structure function plotted as the ordinate, called semi-variance, is the numerator of
eq. 13.2:

   for h ! i (13.9)

or, for symmetric distance and weight matrices, which is the most common case:

(13.10)

'(d) is thus a non-standardized form of Geary’s c coefficient. ' may be seen as a
measure of the error mean square of the estimate of yi using a value yh distant from it
by d. The two equation forms produce the same numerical value in the case of
symmetric distance and weight matrices. The calculation is repeated for different
values of d. This provides the sample variogram, which is a plot of the empirical
values of variance '(d) as a function of distance d. 
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The equations usually found in the geostatistical literature look a bit different, but
they correspond to the same calculations and give the same results:

       or      

Both of these expressions mean that pairs of values are selected to be at distance d of
each other; there are W(d) such pairs for any given distance class d. The condition
dhi ( d means that distances may be grouped into distance classes, placing in class d
the individual distances dhi that are approximately equal to d. In directional variograms
(below), d is a directional measure of distance, i.e. taken in a specified direction only.
The semi-variance function is often called the variogram in the geostatistical literature.
When computing a variogram, one assumes that the spatial correlation function applies
to the entire surface under study (intrinsic stationarity, Subsection 13.1.1).

Generally, variograms tend to level off at a sill which is equal to the variance of the
variable (Fig. 13.7); the presence of a sill implies that the data are second-order
stationary. The distance at which the variance levels off is referred to as the range
(parameter a); beyond that distance, the sampling units are not spatially correlated.
The discontinuity at the origin (non–zero intercept) is called the nugget effect; the
geostatistical origin of the method transpires in that name. It corresponds to the local
variation occurring at scales finer than the sampling interval, such as sampling error,
fine-scale spatial variability, and measurement error. The nugget effect is represented
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Figure 13.7 Spherical variogram model showing characteristic features: nugget effect (C0 = 2 in this
example), spatially structured component (C1 = 4), sill (C = C0 + C1 = 6), and range (a = 8).
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by the error term )ij in spatial structure model 2 (eq. 1.2) of Subsection 1.1.1. It
describes a portion of variation which is not autocorrelated, or is autocorrelated at a
scale finer than can be detected by the sampling design. The parameter for the nugget
effect is C0 and the spatially structured component is represented by C1; the sill, C, is
equal to C0 + C1. The relative nugget effect is C0/(C0 + C1).

Although a sample variogram is a good descriptive summary of the spatial
contiguity of a variable, it does not provide all the semi-variance values needed for
kriging (Subsection 13.2.2). A model must be fitted to the sample variogram; the
model will provide values of semi-variance for all the intermediate distances. The
most commonly used models are the following (Fig. 13.8):

• Spherical model:  if d # a;  if d > a;

• Exponential model: ;

• Gaussian model: ;

Figure 13.8 Commonly used variogram models.

Distance
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

Se
m

i-v
ar

ia
nc

e '
(d

)

11 12 13 14 15

Linear Gaussian

Spherical

Exponential

Hole effect

Pure nugget effect

' d( ) C0 C1 1.5d
a
--- 0.5 d

a
---* +

, - 3
–+= ' d( ) C=

' d( ) C0 C1 1 exp– 3 da
---–* +

, -+=

' d( ) C0 C1 1 exp– 3 d
2

a2-----–
* +
. /
, -

+=



810 Spatial analysis

• Hole effect model: . An equivalent form is

 where a' = 1/a.  represents the value

of ' towards which the dampening sine function tends to stabilize. This equation would
adequately model a variogram of the periodic structures in Fig. 13.5a-b (variograms
only differ from Geary’s correlograms by the scale of the ordinate);

• Linear model:  where b is the slope of the variogram model. A
linear model with sill is obtained by adding the specification:  if d & a;

• Pure nugget effect model:  if d > 0;  if d = 0. The latter part
applies to a point estimate. In practice, observations have the size of the sampling grain
(Section 13.0); the error at that scale is always larger than 0.

Other less-frequently encountered variogram models are described in geostatistics
textbooks. A model is usually chosen on the basis of the known or assumed process
having generated the spatial structure. Several models may be added up to fit any
particular sample variogram. Parameters may be fitted by weighted least squares; the
weights are functions of the distance and the number of pairs in each distance class
(Cressie, 1991); in practice, variograms are often fitted by visual estimation. Fitting a
variogram model requires that the hypothesis of intrinsic stationarity be satisfied
(Subsection 13.1.1).

As mentioned at the beginning of Subsection 13.1.2, anisotropy is present in data
when the spatial correlation function is not the same for all geographic directions
considered (David, 1977; Isaaks & Srivastava, 1989). In geometric anisotropy, the
variation to be expected between two sites distant by d in one direction is equivalent to
the variation expected between two sites distant by b × d in another direction. The
range of the variogram changes with direction while the sill remains constant. In a
river for instance, the kind of variation expected in phytoplankton concentration
between two sites 5 m apart across the current may be the same as the variation
expected between two sites 50 m apart along the current even though the variation can
be modelled by spherical variograms with the same sill in the two directions. Constant
b is called the anisotropy ratio (b = 50/5 = 10 in the river example). This is equivalent
to a change in distance units along one of the axes. The anisotropy ratio may be
represented by an ellipse or a more complex figure on a map, its axes being
proportional to the variation expected in each direction. In zonal anisotropy, the sill of
the variogram changes with direction while the range remains constant. An extreme
case is offered by a strip of land. If the long axis of the strip is oriented in the direction
of a major environmental gradient, the variogram may correspond to a linear model
(always increasing) or to a spherical model with a sill larger than the nugget effect,
whereas the variogram in the direction perpendicular to it may show only random
variation without spatial structure with a sill equal to the nugget effect.
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Directional variograms and correlograms may be used to determine whether
anisotropy (defined in Subsection 13.1.2) is present in data; they may also be used to
describe anisotropic surfaces or to account for anisotropy in kriging
(Subsection 13.2.2). A direction of space is chosen (i.e. an angle 0, usually by
reference to the geographic north) and a search is launched for the pairs of points that
are within a given distance class d in that direction. There may be few such pairs
perfectly aligned in the aiming direction, or none at all, especially when the observed
sites are not regularly spaced on the map. More pairs can usually be found by looking
within a small neighbourhood around the aiming line (Fig. 13.9). The neighbourhood
is determined by an angular tolerance parameter 1 and a parameter 2 that sets the
tolerance for distance classes along the aiming line. For each observed point Øh in
turn, one looks for other points Øi that are at distance d ± 2 from it. All points found
within the search window are paired with the reference point Øh and included in the
calculation of semi-variance or spatial correlation coefficients for distance class d. In
most applications, the search is bi-directional, meaning that one also looks for points
within a search window located in the direction opposite (180°) the aiming direction.
Isaaks & Srivastava (1989, their Chapter 7) propose a way to assemble directional
measures of semi-variance into a single table and produce a contour map that describes
the anisotropy in the data, if any; Rossi et al. (1992) have used the same approach for
directional spatial correlograms.

Directional
variogram
and
correlogram

Figure 13.9 Search parameters for pairs of points in directional variograms and correlograms. From an
observed study site Ø1, an aiming line is drawn in the direction determined by angle 0 (usually
by reference to the geographic north, indicated by N in the figure). The angular tolerance
parameter 1 determines the search zone (grey) laterally whereas parameter 2 sets the tolerance
along the aiming line for each distance class d. Points within the search window (in gray) are
included in the calculation of I(d), c(d) or '(d).

Aiming line

Ø1

N

d
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2
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Numerical example. An artificial data set was produced containing random autocorrelated
data (Fig. 13.10a). The data were generated using the turning bands method (David, 1977;
Journel & Huijbregts, 1978); random normal deviates were autocorrelated following a spherical
model with a range of 5. The sample variogram (without test of significance) and spatial
correlograms (with tests) are shown in Fig. 13.10b-d. In this example, the data were
standardized during data generation, so that the denominator of eq. 13.2 was 1; therefore, the
sample variogram and Geary’s correlogram were identical. The variogram suggests a spherical
model with a range of 6 units and a small nugget effect (Fig. 13.10b).

Besides the description of spatial structures, variograms are used for several other
purposes in spatial analysis. In Subsection 13.2.2, they will be the basis for
interpolation by kriging. In addition, structure functions (variograms, spatial
correlograms) may prove extremely useful to help determine the grain size of the
sampling units and the sampling interval to be used in a survey, based upon the
analysis of a pilot study. They may also be used to perform change-of-scale operations
and predict the type of spatial correlation and variance that would be observed if the
grain size of the sampling design were different from that actually used in a field study
(Bellehumeur et al., 1997).

Figure 13.10 (a) Series of 100 equispaced random, spatially autocorrelated data. (b) Sample variogram, with
spherical model superimposed (heavy line). Abscissa: distances between points along the
geographic axis in (a). (c-d) Spatial correlograms. Dark squares: spatial correlation statistics that
remain significant after progressive Bonferroni correction ($ = 0.05); white squares: non-
significant values.
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4 — Multivariate variogram

Consider a multivariate matrix Y with n rows (sites) and p columns, e.g. species
presence-absence or abundance data. A variogram 'j(d) for a single variable j is
computed using eq. 13.10. The cross-variogram 'jk(d) between two variables j and k is
now defined as follows (Isaaks & Srivastava, 1989):

(13.11)

It partitions the covariance between two variables among the distance classes d. 

Each variogram and cross-variogram can be seen as a vector containing values
computed for different distance classes; the largest distance class is labelled dmax. For
a multivariate response matrix Y of size (n × p), a variogram is produced for each of
the p variables and there is a cross-variogram for each of the p(p – 1)/2 pairs of
variables. These vectors can be assembled in a distance-dependent cubic symmetric
variance-covariance matrix called the variogram matrix C (Myers, 1997; Fig. 13.11)
with elements cij(d) = 'jk(d) (eq. 13.11). The arrows in the figure show the values

' jk d( )
1

2W d( )
------------------ y jh y ji–( ) ykh yki–( )

h i,( ) dhi d(

W d( )

"=

Variogram
matrix

Figure 13.11 Representation of a variogram matrix C containing the information from all variograms and
cross-variograms. C is composed of separate variance-covariance matrices C(d), each of size
(p × p), corresponding to one of the distance classes d. Redrawn from Wagner (2003).
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c11(d) used to draw the variogram '11(d) of variable 1 and the values c13(d) used to
draw the cross-variogram '13(d) crossing variables 1 and 3. 

Matrix C contains a series of square variance-covariance matrices C(d). Each
matrix C(d) is of size (p × p) because it is computed among the p descriptors; it
contains the information for one of the distance classes d of each variogram and cross-
variogram. The variance-covariance matrix SY of the p-dimensional matrix Y is the
weighted sum of the C(d) matrices, showing that the set of C(d) matrices represents an
additive decomposition of the total variance-covariance matrix SY among the distance
classes d. The weights in that sum are the number of pairs of points used to compute
the values in each distance class divided by the total number of pairs of points. 

In order for the variances of the variables in data matrix Y to be additive, these
must be in the same physical dimensions or standardized. This question was discussed
in the first paragraph of Subsection 9.1.5. The variogram matrix can be used to plot
several graphs (Wagner, 2003):

• The empirical variogram of variable j is obtained by plotting the diagonal elements
cjj(d) (e.g. the values along the left-hand arrow in Fig. 13.11) against distances d.

• The empirical cross-variogram of variables j and k is obtained by plotting the non-
diagonal elements cjk(d) (e.g. the values along the right-hand arrow in Fig. 13.11)
against distances d.

• Sum the diagonal elements (gray squares in Fig. 13.11) in each matrix C(d). Since
the sum of the diagonal elements of S is the total variance in Y and the matrices C(d)
decompose S, a plot of these sums against distances d is the multivariate variogram
decomposing the total variance in S. An example is given in Ecological
application 13.1b. Furthermore, Wagner (2003) showed that for species presence-
absence data, a plot of these sums against distances d is an empirical variogram of
complementarity, meaning the variogram of the dissimilarity in species composition.
These sums are direct measures of species turnover between sites located at distances
d; a higher sum of variances indicates larger differences among the sites separated by
that distance than for other distances where the among-site sum of variances is lower.

• As shown in Section 4.1, the sum of all values in matrix S is equal to the variance of
a new variable, y, computed as the sum by rows of all variables in Y. Because the
matrices C(d) represent a decomposition of S among the distance classes d, one can
sum all elements of each matrix C(d) and plot these sums against distances d to obtain
a variogram of y. If Y contains species abundance data, the graph is a variogram of the
total number of individuals at the sites, which can in some cases be interpreted as the
total yield or the carrying capacity of the sites. If Y comprises species presence-
absence data, a variogram of species richness is obtained (Wagner, 2003).

The statistics in multivariate variograms can be tested for significance using
Mantel tests (Wagner, 2004). The tests used in function mso() of VEGAN in R, which

Multivariate
variogram
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are based on the matrix of squared distances, are identical to those used in the Mantel
correlogram (Subsection 13.1.6).

Ecological application  13.1b

The oribatid mite data of Borcard & Legendre (1994), analysed in Ecological application 11.5,
are used here to compute a multivariate variogram. Prior to analysis, the mite data were
Hellinger-transformed (eq. 7.69) and detrended along the north-south axis of the study area to
meet the stationarity assumption. Function mso() of the R VEGAN package was used to compute
the variogram; see Section 13.6. 

The results are shown in Fig. 13.12. The interval size of the distance classes was the distance
that kept all points connected in a dbMEM analysis; this is the threshold distance (thresh) of
Section 14.1, 1.01119 m. The horizontal line in Fig. 13.12 is the total variance in the data. It is
also the weighted sum of the variances (sums of the diagonal elements) of the C(d) matrices
over the different distance classes. Because the sum of the weights is 1, as explained in the
description of the method, the dashed line is located at the weighted mean of the multivariate
variogram values and can be used as a reference for their visual assessment. 

The p-values were Bonferroni-corrected for 7 simultaneous tests. The variogram displays
significant spatial correlation; it may correspond to a spherical or a hole model. These data will
be further analysed by multiscale ordination in Section 14.4.

Figure 13.12 Multivariate variogram of the Hellinger-transformed and detrended mite data, computed using
function mso(). Dark squares: variances with p-values significant at the 5% level, after
Bonferroni correction for 7 simultaneous tests. Dashed horizontal line: total variance in the data.
Vertical dotted line: half the maximum number of classes; the last point, to the right of that line,
includes all remaining pairs of sites and should not be interpreted. Values written above the
abscissa: number of pairs involved in the calculation of each statistic.
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5 — Spatial covariance, semi-variance, correlation, cross-correlation

This subsection examines the relationships between spatial covariance, semi-variance
and correlation (including cross-correlation), under the assumption of second-order
stationarity, leading to the concept of cross-correlation. The assumption of second-
order stationarity (Subsection 13.1.1) may be restated as follows:

• The first moment (mean of values i) of the variable has a constant and finite value:

(13.12)

and its value does not depend on the position in the study area.

• The second moment (spatial covariance, numerator of eq. 13.1) of the variable exists
(i.e. the variogram has a finite sill value):

(13.13)

    for h, i .dhi ( d (13.14)

h, i .dhi ( d means that the pairs of points h and i used to compute covariance C(d) are
at distances dhi that are approximately equal to d. The values of C(d) depend only on d
and on the orientation of the distance vectors, not on their positions in the study area. 

To understand eq. 13.13 as a measure of covariance, imagine the elements of the
various pairs yh and yi written in two columns as if they were two variables. The
equation for the covariance (eq. 4.4) may be written as follows, using a final division
by n instead of (n – 1) (maximum-likelihood estimate of the covariance, which is
standard in geostatistics):

The overall variance (Var[yi], with division by n instead of n – 1) also exists since it
is the covariance calculated for d = 0:

(13.15)

When computing the semi-variance, one only considers pairs of observations
distant by d. Equations 13.9 and 13.10 are re-written as follows:

    for h, i .dhi ( d (13.16)
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A few lines of algebra obtain the following formula:

    for h, i .dhi ( d (13.17)

Two properties are used in the derivation of eq. 13.17 from eq. 3.16: (1) "yh = "yi ,
and (2) the variance (Var[yi], eq. 13.15) can be estimated using any subset of the
observed values if the hypothesis of second-order stationarity is verified.

The correlation is the covariance divided by the product of the standard deviations.
For a spatial process, the (auto)correlation is written as follows:

(13.18)

The right-hand formula is Moran’s I (eq. 13.1). Consider the formula for Geary’s c
(eq. 13.2), which is the semi-variance divided by the overall variance (ignoring the fact
that the variance in eq. 13.2 is computed with division by n – 1 instead of n). The
following derivation

shows that Geary’s c is one minus the coefficient of spatial (auto)correlation (ignoring
again the division by n – 1 instead of n). In a graph, the semi-variance and Geary’s c
coefficient have exactly the same shape (e.g. Fig. 13.10, b and d); only the ordinate
scales may differ if Var[yi] is not 1. An autocorrelogram plotted using r(d) has the
exact reverse shape as a Geary correlogram. The important conclusion is that the plots
of semi-variance, covariance, Geary’s c coefficient, and r(d), are equivalent to
characterize spatial structures under the hypothesis of second-order stationarity
(Bellehumeur & Legendre, 1998).

Cross-covariances may also be computed from eq. 13.13, using values of two
different variables observed at locations distant by d (Isaaks & Srivastava, 1989).
Equation 13.18 leads to a formula for cross-correlation that may be used to plot cross-
correlograms; the construction of the cross-correlation statistic is the same as for time
series (eq. 12.9). With transect data, the result is similar to that of eq. 12.9. However,
the programs designed to compute spatial cross-correlograms do not require the data to
be equispaced, contrary to programs for time-series analysis. The theory is presented
by Rossi et al. (1992), as well as applications to ecology.

Ecological application  13.1c

A survey was conducted on a homogeneous sandflat in the Manukau Harbour, New Zealand, to
identify the scales at which spatial heterogeneity could be detected in the distribution of adult
and juvenile bivalves (Macomona liliana and Austrovenus stutchburyi), as well as indications of
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adult-juvenile interactions within and between species. The results were reported by Hewitt et
al. (1997); see also Ecological application 13.2. Sampling was conducted along transects
established at three sites located within a 1-km2 area; there were two transects at each site,
forming a cross. This way, there were transects perpendicular to the direction of tidal flow, and
others parallel. Sediment cores (10 cm diam., 13 cm deep) were collected using a nested
sampling design; the basic design was a series of cores 5 m apart, but additional cores were
taken 1 m from each of the 5-m-distant cores. This design provided several comparisons in the
short distance classes (1, 4, 5, and 6 m). Using transects instead of rectangular areas allowed
relatively large distances (150 m) to be studied, given the allowable sampling effort. Nested
sampling designs have also been advocated by Fortin et al. (1989) and by Bellehumeur &
Legendre (1998).

Spatial correlograms were used to identify scales of variation in bivalve concentrations. The
Moran correlogram for juvenile Austrovenus, computed for the three transects perpendicular to
the direction of tidal flow, displayed significant spatial correlation at distances of 1 and 5 m
(Fig. 13.13a). The same pattern was found in the transects parallel to tidal flow. Figure 13.13a
also indicates that the range of influence of spatial correlation was about 15 m. This was
confirmed by plotting bivalve concentrations along the transects: LOWESS smoothing of the
graphs (Subsection 10.3.8) showed patches of about 25-30 m in diameter (Hewitt et al., 1997,
their Figs. 3 and 4).

Cross-correlograms were computed to detect signs of adult-juvenile interactions. In the
comparison of adult (> 10 mm) to juvenile Macomona (< 5 mm), a significant negative cross-
correlation was identified at 0 m in the direction parallel to tidal flow (Fig. 13.13b); correlation
was not significant for the other distance classes. As in time series analysis, the cross-correlation
function is not symmetrical; the correlation obtained by comparing values of y1 to values of y2
located at distance d on their right is not the same as when values of y2 are compared to values
of y1 located at distance d on their right, except for d = 0. In Fig. 13.13b, the cross-correlogram
is folded about the ordinate (compare to Fig. 12.9). Contrary to time series analysis, it is not
useful in spatial analysis to discuss the direction of lag of a variable with respect to the other
unless one has a specific hypothesis to test.

Figure 13.13 (a) Spatial autocorrelogram for juvenile Austrovenus densities. (b) Cross-correlogram for adult-
juvenile Macomona interactions, folded about the ordinate: circles = positive lags, squares =
negative lags. Dark symbols: correlation statistics that are significant after progressive
Bonferroni correction ($ = 0.05). Redrawn from Hewitt et al. (1997).
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6 — Multivariate Mantel correlogram

Sokal (1986) and Oden & Sokal (1986) found an ingenious way to compute a
correlogram for multivariate data, using the normalized Mantel statistic rM and test of
significance (Subsection 10.5.1). This method is useful, in particular, to describe the
spatial structure of species assemblages.

The principle is to quantify the ecological relationships among sampling sites by
means of a matrix Y of multivariate similarities or distances (using, for instance,
coefficients S17 or D14 in the case of species abundance data), and compare Y to a
model matrix X (Subsection 10.5.1), which is different for each geographic distance
class (Fig. 13.14). 

• For distance class 1 for instance, pairs of neighbouring stations (that belong to the
first class of geographic distances) are coded 1, whereas the remainder of matrix X(1)
contains zeros. A first Mantel statistic (rM1) is calculated between Y and X(1). 

• The process is repeated for the other distance classes d, building each time a model-
matrix X(d) and recomputing the normalized Mantel statistic. Matrix X(d) may
contain 1’s for pairs that are in the given distance class, or the code value for that
distance class (d) (as in Fig. 13.14), or any other value different from zero; all coding
methods lead to the same value of the normalized Mantel statistic rM.

The Mantel statistics, plotted against distance classes, produce a multivariate
correlogram. Each value is tested for significance in the usual way, using either
permutations or Mantel’s normal approximation (Box 10.2). Computation of
standardized Mantel statistics assumes second-order stationarity. Borcard & Legendre
(2012) have shown that for univariate data, the tests of significance in a Mantel
correlogram computed on the matrix of squared Euclidean distances was equivalent to
the tests in a Geary’s c correlogram. Using numerical simulations, they also showed
that the power of the test in Mantel correlograms was high for multivariate data.

A multivariate correlogram can be computed with function mantel.correlog() in R;
see Section 13.6. If the calculation is based upon a squared Euclidean distance matrix,
the Mantel test results in the multivariate correlogram are identical to the Mantel test
results computed by the multivariate variogram function mso(), provided that the
distance classes are the same (Borcard & Legendre, 2012). As in the case of univariate
correlograms (above), one is advised to use some form of correction for multiple
testing (Box 1.3) before interpreting multivariate correlograms and variograms.

Numerical example. Consider again the 10 sampling sites of Fig. 13.4. Assume that species
assemblage data were available and produced similarity matrix S of Fig. 13.14. Matrix S played
here the role of DY in the computation of Mantel statistics. Were the species data autocorrelated?
Distance matrix D, already divided into 6 classes in Fig. 13.4, was recoded into a series of model
matrices X(d) (d = 1, 2, etc.). In each of these, the pairs of sites that were in the given distance
class received the value d, whereas all other pairs received the value 0. Mantel statistics were
computed between S and each of the X(d) matrices in turn; positive and significant Mantel
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statistics indicate positive spatial correlation in the present case. The statistics were tested for
significance using 999 permutations and plotted against distance classes d to form the Mantel
correlogram. The progressive Bonferroni method was used to account for multiple testing
because interest was primarily in detecting spatial correlation in the first distance classes.

Before computing the Mantel correlogram, one must assume that the condition of second-
order stationarity is satisfied. This condition is more difficult to explain in the case of

Figure 13.14 Construction of a Mantel correlogram for a similarity matrix S (n = 10 sites). The matrix of
geographic distance classes D, from Fig. 13.4d, gives rise to model matrices X(1), X(2), etc. for
the various distance classes d. These are compared, in turn, to matrix S using standardized
Mantel statistics (rMd). Dark squares in the correlogram: Mantel statistics that are significant
after progressive Bonferroni correction ($ = 0.05).
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multivariate data; it means essentially that the surface is uniform in (multivariate) mean,
variance and covariance at broad scale. The correlogram illustrated in Fig. 13.14 suggests the
presence of a gradient. If the condition of second-order-stationarity is satisfied, this means that
the gradient detected by this analysis is a part of a larger, autocorrelated spatial structure. This
was called a “false gradient” in the numerical example of Subsection 13.1.2.

When DY is a similarity matrix and distance classes are coded as described above,
positive Mantel statistics correspond to positive spatial correlation; this is the case in
the numerical example. When the values in DY are distances instead of similarities, or
if the 1’s and 0’s are interchanged in matrix X, the signs of all Mantel statistics are
changed. One should always specify whether positive spatial correlation is expressed
by positive or negative values of the Mantel statistics when presenting Mantel
correlograms. Mantel correlograms have been computed for real data by Legendre &
Fortin (1989), Le Boulengé et al. (1996), and Fortin & Dale (2005).

13.2 Maps

The most basic step in spatial pattern analysis is the production of maps displaying the
spatial distributions of values of the variable(s) of interest. Furthermore, maps are
essential to help interpret spatial structure functions (Section 13.1). 

Several methods are available in mapping programs. The final product of modern
computer programs may be a contour map, a mesh map (such as Figs. 13.15b and
13.18b), a raised contour map, a shaded relief map, and so on. The present section is
not concerned with the graphic representation of maps, but instead with the ways
mapped values are obtained. Spatial interpolation methods have been reviewed by
Lam (1983).

Geographic information systems (GIS) are widely used nowadays, especially by
geographers and increasingly by ecologists, to manage complex data corresponding to
points, lines, and surfaces in space. The present section is not an introduction to these
complex systems. It only aims at presenting the most widespread methods for mapping
univariate data (i.e. a single variable y). The spatial analysis of multivariate data
(multivariate matrix Y) is deferred to Sections 13.3 to 13.5.

Beware of non-additive variables such as pH, logarithms of counts of organisms,
diversity measures, and the like (Subsection 1.4.2). Maps of such variables, produced
by trend-surface analysis or interpolation methods, should be interpreted with caution
because the interpolated values of such variables only make sense by reference to
sampling units of the same size as those used in the original sampling design. Block
kriging (Subsection 13.2.2) for blocks representing surfaces or volumes that differ
from the grain of the observed data does not make sense for non-additive variables.
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1 — Trend-surface analysis

Trend-surface analysis is the oldest method for producing smoothed maps. In this
method, estimates of the variable at given locations are not obtained by interpolation,
as in the methods presented in Subsection 13.2.2, but through a regression model
calibrated over the entire study area.

In 1914, W. S. Gosset, writing under the pseudonym Student, proposed to express
observed values as a polynomial function of time and mentioned that it could be done
for spatial data as well. This is also one of the most powerful tools of spatial pattern
analysis, and certainly the easiest to use. The objective is to express a response
variable y as a nonlinear function of the geographic coordinates X and Y of the
sampling sites where the variable was observed:

y = f (X, Y)

In many cases, a polynomial of X and Y with cross-product terms is used; trend-
surface analysis is then an application of polynomial regression (Subsection 10.3.4) to
spatially-distributed data. For example a relatively complex, but smooth surface might
be fitted to a variable using a third-order polynomial with 10 parameters (b0 to b9):

 = f (X, Y) = b0 + b1X + b2Y + b3X2 + b4XY + b5Y2 + b6X3 + b7X2Y + b8XY2 + b9Y3 (13.19)

Note the distinction between the response variable y, which may represent a physical
or biological variable, and the Cartesian geographic coordinate Y. Using polynomial
regression, trend-surface analysis produces an equation that is linear in its parameters,
although the response of y to the explanatory variables in matrix X = [X,Y] may be
nonlinear. If variables y, X and Y have been centred on their respective means prior to
model fitting, the model has an intercept of 0 by construct; hence parameter b0 does
not have to be fitted and it can be removed from the model.

Numerical example. The data from Table 10.6 are used here to illustrate the method of
trend-surface analysis. The dependent variable of the analysis, y, is Ma, which was the log-
transformed (loge(x + 1)) concentrations of aerobic heterotrophic bacteria growing on marine
agar at salinity of 34 psu. The explanatory variables are the X and Y geographic coordinates of
the sampling sites (Fig. 13.15a). The steps of the calculations are the following:

• Centre the geographic coordinates on their respective means. The reason for centring X and Y
is given in Subsection 10.3.4; the amount of variation explained by a trend-surface equation is
not changed by a translation (centring) of the spatial coordinates across the map. 

• Determine the order of the polynomial equation to be used. A first-degree regression equation
of Ma as a function of the geographic coordinates X and Y alone would only represent the linear
variation of Ma with respect to X and Y; in other words, a flat surface, possibly sloping with
respect to X, Y, or both. With the present data, the first-degree regression equation was not
significant (R2 = 0.02), meaning that there was no significant linear geographic trend to be
described in the data. A regression equation incorporating the second-degree monomials (X2,
XY and Y2) together with X and Y would be appropriate to model a surface presenting a single

ŷ
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large bump or trough. Again, this did not seem to be the case with the present data since the
second-degree equation was not significant (R2 = 0.39). An equation incorporating the third-
degree, fourth-degree, etc. terms would be able to model structures of increasing complexity and
refinement. The cost, however, is a loss of degrees of freedom for every new monomial in the
equation; trend-surface analysis using high-order equations thus requires a large number of
observed sampling sites. In the present example, the polynomial was limited to the third degree,
for a total of 9 terms; this is a large number of terms, considering that the data only contained 20
sampling sites.

• Using the values of coordinates X and Y, calculate the terms of the third-degree polynomial, by
combining variables X and Y as follows: X2, X×Y, Y2, X3, X2×Y, X×Y2, Y3. Alternatively, one
could compute a third degree orthogonal polynomial of the geographic coordinates. Ordinary
and orthogonal polynomials can both be computed by function poly() in R (Section 13.6).

• Compute the multiple regression equation. The model obtained using all 9 regressors had
R2 = 0.87, but several of the partial regression coefficients were not significant. 

• Remove nonsignificant terms. The linear terms may be important to express a linear gradient;
the quadratic and cubic terms may be important to model more complex surfaces.
Nonsignificant terms should not be left in the model, except when they are required for
comparison purpose. Nonsignificant terms were removed one by one (backward elimination,
Subsection 10.3.3) until all terms (monomials) in the polynomial equation were significant. The
resulting trend-surface equation was highly significant (R2 = 0.81, p < 0.0001):

 = 8.13 – 0.16 XY – 0.09 Y2 + 0.04 X2Y + 0.14 XY2 + 0.10 Y3

Remember, however, that tests of significance are too liberal with autocorrelated data, due to the
non-independence of residuals, with the consequence that nonsignificant relationships are
declared significant too often (Subsection 1.1.2).

Figure 13.15 Variable Ma (log-transformed concentrations of aerobic heterotrophic bacteria growing on
marine agar at salinity of 34 psu) at 20 sites in the Thau coastal lagoon, France, on 25 October
1988. (a) Map of the sampling sites with respect to arbitrary geographic coordinates X and Y.
The observed values of Ma, from Table 10.6, are also shown. The N  arrow points to the north.
(b) Trend-surface map; the vertical axis gives the values of Ma estimated by the polynomial
regression equation. Dots represent the sampling sites.
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• Lay out a regular grid of points (X', Y') and, using the regression equation, compute forecasted
values ( ) for these points. Plot a map (Fig. 13.15b) using the file with (X', Y', and ). Values
estimated by a trend-surface equation at the study sites do not coincide with the values observed
at these sites; regression is not an exact interpolator, contrary to kriging (Subsection 13.2.2).

Different features could be displayed by rotating the figure. The orientation chosen in
Fig. 13.15b does not clearly show that the values along the long axis of the Thau lagoon are
smaller near the centre than at the ends. It displays, however, the wavy structure of the data from
the lower left-hand to the upper right-hand corner, which is roughly the south-to-north direction.
The figure also clearly indicates that one should refrain from interpreting extrapolated data
values, i.e. values located outside the area that has actually been sampled. In the present
example, the values forecasted by the model in the lower left-hand and the upper right-hand
corners (–99 and +53, respectively) are meaningless for log bacterial concentrations. Within the
area where real data are available, however, the trend-surface model provides a good visual
representation of the broad-scale spatial variation of the response variable. 

Examination of the residuals is essential to make sure that the model is not missing some
salient feature of the data. If the trend-surface model has extracted all the spatially-structured
variation of the data, given the scale of the study, residuals should look random when plotted on
a map and a correlogram of residuals should be non-significant. With the present data, residuals
were small and did not display any recognizable spatial pattern.

A cubic trend-surface model is often appropriate with ecological data. Consider an
ecological phenomenon that starts at the mean value of the response variable y at the
left-hand border of the sampled area, increases to a maximum, then goes down to a
minimum, and comes back to the mean value at the right-hand border. The amount of
space required for the phenomenon to complete a full cycle — whatever the shape it
may take — is its extent (Section 13.0). Using trend-surface analysis, such a
phenomenon would be correctly modelled by a third-degree trend surface equation. 

The degree of the polynomial that is appropriate to model a phenomenon is partly
predictable. If the extent is of the same order as the size of the study area (say, in the X
direction), the phenomenon will be correctly modelled by a polynomial of degree 3,
which has two extreme values, a minimum and a maximum. If the extent is larger than
the study area, a polynomial of degree less than 3 is sufficient; degree 2 if there is only
one maximum, or one minimum, in the sampling window; and degree 1 if the study
area is limited to the increasing, or decreasing, portion of the phenomenon.
Conversely, if the scale of the phenomenon controlling the variable is smaller than the
study area, more than two extreme values (minima and maxima) will be found, and a
polynomial of order larger than 3 is required to model it correctly. The same reasoning
applies to the X and Y directions when using a polynomial combining the X and Y
geographic coordinates. So, using a polynomial of degree 3 acts as a filter: it is a way
of looking for phenomena that are of the same extent, or larger, than the study area.

An assumption must be made when using the method of trend-surface analysis:
that all observations form a single statistical population, subjected to one and the same
generating process, and can consequently be modelled using a single polynomial
equation of the geographic coordinates. Evidence to that effect may be available prior

y'ˆ y'ˆ
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to the analysis. When that is not the case, the hypothesis of homogeneity may be
supported by examining the regression residuals (Subsection 10.3.1). When there are
indications that values in different regions of the geographic space obey different
processes (e.g. different geology, action of currents or wind, or influence of other
physical variables), the study area should be divided into regions, to be modelled by
separate trend-surface equations.

Polynomial regression, as used in the numerical example above, is a good first
approach to fitting a model to a surface when the shape to be modelled is unknown, or
known to be simple. In some instances, however, it may not provide a good fit to the
data; trend-surface analysis must then be conducted using nonlinear regression
(Subsection 10.3.6), which requires that an appropriate numerical model be provided
to the estimation program. Consider the example of the effect of some human-
generated environmental disturbance at a site, the indicator variable being the number
of species. The response, in that case, is expected to be stronger near the impacted site,
tapering off as one gets farther away from it. 

Assuming that data were collected along a transect (a single geographic coordinate
X) and that the impacted site was near the centre of the transect, a polynomial equation
would not be appropriate to model an inverse-squared-distance diffusion process
(Fig. 13.16a). An equation of the form:

would provide a much better fit (Fig. 13.16b). The minimum of that equation is b0; this
value occurs when X = 0. The maximum, b1/b2, is reached asymptotically as X
becomes large in either the positive or negative direction. For data collected in
different directions around the impacted site, a nonlinear trend-surface equation with
similar properties would be of the form:

where X and Y are the coordinates of the sites in geographic space.

Trend-surface analysis is appropriate for describing broad-scale spatial trends in
data, but it does not produce accurate fine-grained maps of the spatial variation of a
variable. Other methods described in Chapter 14 allow researchers to model variation
at finer scales. In some studies, the broad-scale trend itself is of interest; this is the case
in the numerical example above and in Ecological application 13.2. In other situations,
and especially in studies that cover large geographic expanses, the broad-scale trend
may be already known and understood; researchers interested in geographic variation
patterns may want to conduct analyses on detrended data, i.e. data from which the
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broad-scale trend has been removed. Detrending a variable may be achieved by
computing the residuals from a trend-surface equation of sufficient order, as in time-
series analysis (Section 12.2).

If there is replication at each geographical observation point, it is possible to
perform a test of goodness-of-fit of a trend-surface model (Draper and Smith, 1981;
Legendre & McArdle, 1997). By comparing the observed error mean square after
fitting the trend surface to the error mean square estimated by the among-replicate
within-location variation, one can test if the model fits the data properly. The latter
variation is computed from the deviations from the means at the various locations; it is
the residual mean square of an ANOVA testing for differences among locations. When
the trend surface goes through the expected values at the various locations, these two
error mean squares are not much different, and their F-ratio does not significantly
differ from 1. If, on the contrary, the fitted surface does not follow the major features
of the variation among locations, the deviations of the data from the fitted trend-
surface values are larger than the residual within-location variation. The F-statistic is
then significantly larger than 1, indicating that the trend surface is misrepresenting the
variation among locations.

Numerical example. Consider the artificial data in Fig. 13.17. Variable X represents a
geographic axis along which sampling has taken place at 6 sites with replication. Variable y was
constructed using equation y = 2.5X – 0.3X2 + ), where ) is a random standard normal deviate
[N(0,1)]. A quadratic trend-surface model of X was fitted to the data. The residual mean square,
or “error mean square after fitting the trend surface”, was MS1 = 0.84909 (3 = 27). An analysis
of variance was conducted on y using the grouping of data into 6 sites as the classification

Figure 13.16 (a) Artificial data representing the number of species around the site of an environmental
disturbance (located at X = 0) are not well-fitted by a 4th-order polynomial equation of the X
coordinates (R2 = 0.7801). (b) They are well-fitted by the following inverse-squared-distance
diffusion equation:  (R2 = 0.9975).ŷ 1 0.0213X2 0.0004X2 1+( )[ ]+=
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criterion. The residual mean square obtained from the ANOVA was MS2 = 0.87199 (3 = 24). The
ratio of these two mean squares gave an F-statistic:

which was tested against F$=0.05(27, 24) = 1.959. The F-statistic was not significantly different
from 1 (p = 0.530), which indicated that the model fitted the data properly.

The trend-surface analysis was recomputed using a linear model of X. The model obtained
was  = 3.052 + 0.316X (R2 = 0.1941). MS1 in this case was 1.29358 (3 = 28). The F-ratio
MS1/MS2 = 1.29358/0.87199 = 1.48348. The reference value was F0.05(28, 24) = 1.952. The
probability associated with the F-ratio, p = 0.165, indicated that this model still fitted the data,
which were constructed to contain a linear term (2.5X in the construction equation) as well as a
quadratic trend (term –0.3X2), but the fit was poorer than with the quadratic polynomial model,
which was capable of accounting for both the linear and quadratic trends.

This numerical example shows that trend-surface analysis may be applied to data
collected along a transect; the “trend surface” is one-dimensional in that case. The
numerical example at the end of Subsection 10.3.4 is another example of a trend-
surface analysis of a dependent variable, salinity, with respect to a single geographic
axis (Fig. 10.9). Trend-surface analysis may also be used to model data in three-
dimensional geographic space (geographic coordinates X, Y and Z, where Z is either
altitude or depth), or with one of the dimensions representing time. Section 13.5 will
show how the analysis may be extended to a multivariate dependent data matrix Y.

Figure 13.17 Artificial data representing sampling along a geographic axis X with 5 replicates at each site;
n = 30. The F-test of goodness-of-fit indicates that the trend-surface equation  = 0.562 +
2.184X – 0.267X2 (R2 = 0.4899) fits the data properly.
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Haining (1987) described alternative methods for estimating the parameters of a
trend-surface model when the residuals are spatially autocorrelated; in that case, least-
squares estimation of the parameters is inefficient and standard errors as well as tests
of significance are biased. Haining’s methods allow one to recognize three components
of spatial variation corresponding to the site, local, and regional scales, respectively.

Ecological application  13.2

A survey was conducted at 200 locations within a fairly homogeneous 12.5 ha rectangular
sandflat area in Manukau Harbour, New Zealand, to identify factors that controlled the spatial
distributions of the two dominant bivalves, Macomona liliana Iredale and Austrovenus
stutchburyi (Gray), and to look for evidence of adult-juvenile interactions within and between
species. Results were reported by Legendre et al. (1997). Most of the broad-scale spatial
structure detected in the bivalve counts (two species, several size classes) was explained by the
physical and biological variables. Results of principal component analysis and spatial regression
modelling suggested that different factors controlled the spatial distributions of adults and
juveniles. Larger size classes of both species displayed significant spatial structures, with
physical variables explaining some but not all of this variation; the spatial patterns of the two
species differed, though. Smaller organisms were less strongly spatially structured; virtually all
of their spatial structure was explained by physical variables.

Highly significant trend-surface equations were found for all bivalve species and size classes
(log-transformed data), indicating that the spatial distributions of the organisms were not
random, but highly organised at the scale of the study site. The trend-surface models for smaller
animals had much smaller coefficients of determination (R2 = 0.10-0.20) than for larger animals
(R2 = 0.30-0.55). The best models, i.e. those with the highest R2, were for the Macomona
> 15 mm and Austrovenus > 10 mm. The coefficients of determination were consistently higher
for Austrovenus than for Macomona, despite the fact that Macomona were usually far more
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Figure 13.18 Macomona > 15 mm at 200 sites in Manukau Harbour, New Zealand, on 22 January 1994.
(a) Actual counts at sampling sites in 200 regular grid cells; in the field, sites were not perfectly
equispaced. (b) Map of the trend-surface equation explaining 32% of the spatial variation in the
data. The values estimated from the trend-surface equation (log-transformed data) were back-
transformed to raw counts before plotting. Modified from Legendre et al. (1997).
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numerous than Austrovenus. A map illustrating the trend-surface equation is presented for the
largest Macomona size class (Fig. 13.18); the field counts are also shown for comparison.

2 — Interpolated maps

In the family of interpolated map methods, the value of the variable at a point location
on a map is estimated by local interpolation, using only the observations available in
the vicinity of the point of interest. In this respect, interpolation mapping differs from
trend surface analysis (Subsection 13.2.1), where estimates of the variable at given
locations were not obtained by interpolation, as in the present subsection, but through a
statistical model whose parameters were estimated from all observations in the study
area. Figure 13.19 illustrates the principle of interpolation mapping. A regular grid of
nodes (Fig. 13.19c) is defined over the area that contains the study sites Øi
(Fig. 13.19a, b). Interpolation assigns a value to each point of the grid. This is the
single most important step in mapping. Following that, results may be represented in
the form of contours (e.g. Fig. 13.19d) with or without colours or shades, or three-
dimensional constructs such as Fig. 13.18b.

Figure 13.19 Summary of the interpolation procedure.

(b) Map of sampling sites

(d) Contour map(c) Regular grid of nodes

(a) Observed data
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Estimating the value corresponding to each grid node may be done in different
ways. Different interpolation methods may produce maps that look different; this is
also the case when using different parameters with a same method (e.g. different
exponents in inverse-distance weighting).

The most simple rule would be to give, to each node of the grid, the value of the
observation which is the closest to it. The end result is a division of the map into
Voronoï polygons (Subsection 13.3.1) displaying a “zone of influence” drawn around
each observation. Another simple solution consists in dividing the map into Delaunay
triangles (Subsection 13.3.1). There is an observed value yi at each site Øi . A triangular
portion of plane, adjusted to the points Øi that form the vertices (corners) of a
Delaunay triangle, provides interpolated values for all points inside the triangle. Maps
obtained using these solutions are shown in Chapter 11 of Isaaks & Srivastava (1989).

Alternatively, one may draw a “search circle” (or an ellipsoid for anisotropic data)
around each grid node (Fig. 13.20). The radius of the circle may be determined in
either of two ways. (1) One may fix a minimum number of observed points that must
be included in the interpolation for each grid node; or (2) one may use the “distance of
influence of the process” found by correlogram or variogram analysis (Section 13.1).
The estimation procedure is repeated for each node of the grid. Several methods of
interpolation may be used.

• Mean. — Consider all the observed study sites found within the circle; assign the
mean of these values to the grid node. This method does not produce smooth maps;
discontinuities in neighbouring grid node values occur as observed points move in or
out of the search circle.

Figure 13.20 To estimate the value at a grid node
(square), draw a search circle around it
and consider the observed points (Øi)
found within the circle. Observed
points are separated from the node by
distances D(Øi, Node).

Node
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• Inverse-distance weighting. — Consider the observation sites found within the circle
and calculate a weighted mean value, using the formula:

(13.20)

where yi is the value observed at point Øi and weight wi is the inverse of the distance
(D) from point Øi to the grid node to be estimated. The inverse distances, to some
power k, are scaled by the sum of the weights for all points Øi in the estimation, so as
to produce values that are consistent with the values observed at points Øi
(unbiasedness condition):

(13.21)

A commonly-used exponent is k = 2. This corresponds, for instance, to the decrease in
energy of waves dispersing across a two-dimensional surface. The greater the value of
k, the less influence distant data points have on the value assigned to the grid node.
This method produces smooth values over the grid of nodes. The range of estimated
values is smaller than the range of observed data so that, contrary to trend-surface
analysis (Fig. 13.15b), inverse-distance weighting does not produce meaningless
values in the parts of the map beyond the area that was actually sampled. When the
observation sites Øi do not form a regular or nearly regular grid, however, this
interpolation method may generate features in maps that have little to do with reality.
As a consequence, inverse-distance weighting is not recommended in that situation.

• Weighted polynomial fitting. — In this method, a trend-surface equation
(Subsection 13.2.1) is adjusted to the observed data points within the search circle,
weighting each observation Øi by the inverse of its distance (using some appropriate
power k) to the grid node to be estimated. A first or second-order polynomial equation
is usually used. The value estimated by the polynomial equation for the coordinates of
a grid node is denoted zNode. This method suffers from the same problem as inverse
distance weighting with respect to observation sites Øi that do not form a regular or
nearly regular grid of points.

• Kriging. — This is the mapping tool in the toolbox of geostatisticians. The method
was named by Matheron after the South African geostatistician D. G. Krige, who was
the first to develop formal solutions to the problem of estimating ore reserves from
sampling (core) data (Krige, 1952, 1966). Geostatistics was developed by Matheron
(1962, 1965, 1970, 1971, 1973) and co-workers at the Centre de morphologie
mathématique of the École des Mines de Paris. Geostatistics comprises the estimation
of variograms (Subsection 13.1.3), kriging, validation methods for kriging estimates,
and simulations methods for geographically distributed (“regionalized”) data. Major
textbooks have been written by former students of Matheron: David (1977) and
Journel & Huijbregts (1978). Other useful references are Clark (1979), Rendu (1981),
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Verly et al. (1984), Armstrong (1989), Isaaks & Srivastava (1989), and Cressie (1991).
Applications to environmental sciences and ecology have been discussed by Gilbert &
Simpson (1985), Robertson (1987), Armstrong et al. (1989), Legendre & Fortin
(1989), Soares et al. (1992), and Rossi et al. (1992). Geostatistical methods can be
implemented using the software library of Deutsch & Journel (1992).

As in inverse-distance weighting (eq. 13.20), the estimated value for any grid node
is computed as:

The chief difference between kriging and inverse-distance weighting is that, in kriging,
the weights wi applied to the points Øi used in the estimation are not standardized
inverses of the distances to some power k. Instead, the weights are based upon the
covariances (semi-variances, eqs. 13.9 and 13.10) read on a variogram model
(Subsection 13.1.3). They are found by linear estimation, using the equation:

       C            ·  w     =    d

(13.22)

where C is the covariance matrix among the n points Øi used in the estimation, i.e. the
semi-variances corresponding to the distances separating the various pair of points,
provided by the variogram model; w is the vector of weights to be estimated (with the
constraint that the sum of weights must be 1); and d is a vector containing the
covariances between the various points Øi and the grid node to be estimated. This is
where a variogram model becomes essential; it provides the weighting function for the
entire map and is used to construct matrix C and vector d for each grid node to be
estimated. Element 4 in vector w is a Lagrange parameter (as in Section 4.4)
introduced to minimize the variance of the estimates under the constraint 
(unbiasedness condition). The solution to this linear system is obtained by matrix
inversion (Section 2.8):

w = C–1 d (13.23)

Vector d plays a role similar to the weights in inverse-distance weighting since the
covariances in vector d decrease with distance. Using covariances, the weights are
statistical in nature instead of geometrical.
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Kriging takes into account the grouping of observed points Øi on the map. When
two points Øi are close to each other, the value of the corresponding coefficient cij in
matrix C is high; this contributes to lowering their respective weights wi. In this way,
the redundancy of information introduced by dense groups of sampling sites is taken
into account. 

When anisotropy is present, kriging can use two, four, or more variogram models
computed for different geographic directions and combine their estimates when
calculating the covariances in matrix C and vector d. In the same way, when
estimation is performed for sampling sites in a volume, a separate variogram can be
used to describe the vertical spatial variation. Kriging is the best interpolation method
for data that are not on a regular grid or display anisotropy. The price to pay is
increased mathematical complexity during interpolation.

Among the interpolation methods, kriging is the only one that provides a measure
of the error variance for each value estimated at a grid node. For each grid node, the
error variance, called ordinary kriging variance ( ), is calculated as follows (Isaaks
& Srivastava, 1989), using vectors w and d from eq. 13.22:

(13.24)

where Var[yi] is the maximum-likelihood estimate of the variance of the observed
values yi (eq. 13.15). Equation 13.24 shows that  only depends on the variogram
model and the local density of points, and not on the values observed at points Øi . The
ordinary kriging variance may be used to construct confidence intervals around the
grid node estimates at some significance level $, using eq. 13.4. It may also be mapped
directly. Regions of the map with large values  indicate that more observations
should be made because sampling intensity was too low.

Kriging, as described above, provides point estimates at grid nodes. Each estimate
actually applies to a “point” whose size is the same as the grain of the observed data.
The geostatistical literature also describes how block kriging may be used to obtain
estimates for blocks (i.e. surfaces or volumes) of various sizes. Blocks may be small,
or a single block may cover the whole map if one wishes to estimate a resource over a
whole area. As mentioned in the introductory remarks of the present section, only
additive variables can be used in block kriging. Block kriging programs always assume
that the variable is intensive, e.g. concentration of organisms (Subsection 1.4.2). For
extensive variables, such as the number of individual trees, one must multiply the
block estimate by the ratio (block size / grain size of the original data).

3 — Measures of fit

Different measures of fit may be used to determine how well an interpolated map
represents the observed data. With most methods, some measure may be constructed of
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the closeness of the estimated (i.e. interpolated) values  to the values yi observed at
sites Øi. Four easy-to-use measures are:

• The mean absolute error: ;

• The mean squared error: ;

• The Euclidean distance: ;

• The correlation coefficient (r) between values yi and  (eq. 4.7). In the case of a
trend-surface model, the square of this correlation coefficient is the coefficient of
determination of the model.

In the case of kriging, the above measures of fit cannot be used because the
estimated and observed values are equal at all observed sites Øi. The technique of
cross-validation can be used instead (Isaaks & Srivastava, 1989, their Chapter 15).
One observation, say Ø1, is removed from the data set and its value is estimated using
the remaining points Ø2 to Øn. The procedure is repeated for Ø2, Ø3, …, Øn. One of
the measures of fit described above may be used to measure the closeness of the
estimated to the observed values. If replicated observations are available at each
sampling site (a situation that does not often occur), the F-test of goodness-of-fit
described in Subsection 13.2.1 can be used with all interpolation methods.

13.3 Patches and boundaries

Multivariate data may be condensed into spatially-constrained clusters. These may be
displayed on maps, using different colours or shades. The present section explains how
clustering algorithms can be constrained to produce groups of spatially contiguous
sites; study of the boundaries between homogeneous zones is also discussed. Prior to
clustering, one must state unambiguously which sites are neighbours in space; the
most common solutions to this problem are presented in Subsection 13.3.1.

1 — Connection networks

When sampling has been conducted on a regular rectangular grid, neighbouring points
may be linked using simple connecting schemes whose names are derived from the
game of chess (Cliff & Ord, 1981): rook’s (rectangular: Fig. 13.21a), bishop’s
(diagonal: Fig. 13.21b), or king’s connections (also called queen’s: both rectangular
and diagonal, Fig. 13.21c). Sampling in staggered rows leads to connecting each point
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2

i
"=

D1 yi ŷi–( )
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(except borders) to six (Fig. 13.21d) or eight neighbours (Fig. 13.21e). Algorithms
may allow the construction of regular grids with missing points (Fig. 13.21f). When
the objects represent irregularly-shaped land units covering a geographic area
(e.g. types of ecosystems in a nature reserve), parcels sharing a common boundary are
regarded as contiguous.

When the sites are positioned in an irregular manner, one can use geometric
connecting schemes such as Delaunay triangulation, Gabriel graph, relative
neighbourhood graph or minimum spanning tree, described below. There exists an
inclusion relationship among these four connecting schemes: all edges that are
members of a minimum spanning tree (MST) also obey the relative neighbourhood
graph criterion; these are all members of a Gabriel graph, which in turn are all included
in a Delaunay triangulation (Toussaint, 1980; Matula & Sokal, 1980; Gordon, 1996c):

MST 6 Relative neighbourhood graph 6 Gabriel graph 6 Delaunay triangulation

• Delaunay triangulation. — The Delaunay triangulation criterion (Dirichlet, 1850;
Upton & Fingleton, 1985) is illustrated in Fig. 13.22. For any triplet of points A, B and
C, the three edges (i.e. lines) connecting these points are included in the triangulation
if and only if the circumscribed circle (i.e. the circle passing through the three points;
on the left in the figure) includes no other point. For example, the file of coordinates
shown in the central part of the figure gives rise to the triangulation on the right. The
triangulation is fully described by a list of pairs of points corresponding to its edges;
this is how the information can be passed on to a computer program for space-
constrained clustering (Subsection 13.3.2).

Figure 13.21 Connecting schemes for regular grids of points. See text.

(b) Rectangular grid,
bishop connection

(c) Rectangular grid,
king (or queen) connection

(f) Hollow grid,
rook connection

(d) Staggered rows,
six neighbours

(a) Rectangular grid,
rook connection

(e) Staggered rows,
eight neighbours

Delaunay
triangulation
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Long edges may be created at the outskirts of a set of points, simply because there
is no other point located farther away in the sampling design; this is called a border
effect. For example, edges 2–9 and 7–9 could have been removed from the
triangulation in Fig. 13.22 by the presence of other points in the circumscribed circles
of triangles (2, 5, 9) and (7, 8, 9) had the sampling extent been broader. Long
peripheral edges can be removed by hand from the list, or by the computer algorithm.

• Gabriel graph. — The Gabriel graph criterion (Gabriel & Sokal, 1969) differs from
that of the Delaunay triangulation (Fig. 13.23a). Draw a line between two points A and
B. This line is part of the Gabriel graph if and only if no other point C lies inside the
circle whose diameter is that line. In other words, the edge between A and B is part of
the Gabriel graph if D2(A, B) < D2(A, C) + D2(B, C) for all other points C in the study,
where D2(A, B) is the square of the geographic distance between points A and B.
Another way of expressing this criterion is the following: if CENTRE represents the
middle point between A and B, the edge connecting A to B is part of the Gabriel graph
if D(A, B)/2 < D(CENTRE, C) for any other point C in the study.

The Gabriel graph in Fig. 13.23a is constructed for the same points as the Delaunay
triangulation in Fig. 13.22. The 12 edges forming the Gabriel graph are a subset of the
19 edges of the Delaunay triangulation. Indeed, as shown by the sketch in the centre of
the figure, the exclusion zone formed by the three circles corresponding to the Gabriel
criterion (which have for diameters the edges A–B, B–C and A–C) may contain, in the
shadowed areas outside the Delaunay circle (white inner circle), some points that the

Figure 13.22 Construction of a Delaunay triangulation for 10 points.
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19 edges form the Delaunay triangulation:

1–2     1–3     1–4     2–3     2–5     2–9     3–4
3–5     3–6     4–6     4–7     5–6     5–8     5–9
6–7     6–8     7–8     7–9     8–9

Point Coordinates
identifiers X Y

1 0 3
2 1 5
3 2 2
4 2 1
5 4 4
6 5 2
7 8 0
8 7.5 3
9 8 5
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graph
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Figure 13.23 (a) Left: geometric criterion for the Gabriel graph. Centre: the zone of exclusion of the criterion,
here for three points (grey zones + white inner circle), is larger than that of the Delaunay
criterion (white inner circle). Right: graph for the example data, containing 12 edges. (b) Left:
geometric criterion of the relative neighbourhood graph. The zone of exclusion of the criterion,
here for two points (grey zones + white inner circle), is larger than that of the Gabriel criterion
(white inner circle). Right: graph for the example data, containing 9 edges. (c) Left: criterion of
the maximum distance graph. Right: graph for the example data with D # 5, with 22 edges.
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(b) Relative neighbourhood graph

9 edges form the relative neighbourhood graph:
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12 edges form the Gabriel graph:
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22 edges form the maximum distance graph:

1–2     1–3     1–4     1–5     2–3     2–4    
3–4     3–5     3–6     4–5     4–6     5–6     5–8     5–9
6–7     6–8     6–9     7–8     7

(c) Maximum distance graph

Criterion: D # threshold
In this example, D # 5

12 edges form the Gabriel graph:

1–2     1–3     2–5     3–4     3–5     3–6 
5–6     5–9     6–7     6–8     7–8     8–9

9 edges form the relative neighbourhood graph:

1–2     1–3     2–5     3–4     3–5     5–6
6–8     7–8     8–9

22 edges form the maximum distance graph:

1–2     1–3     1–4     1–5     2–3     2–4     2–5     2–6
3–4     3–5     3–6     4–5     4–6     5–6     5–8     5–9
6–7     6–8     6–9     7–8     7–9     8–9
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Delaunay criterion circle does not exclude. This is why some edges that are authorized
by the Delaunay criterion are excluded from the Gabriel graph.

• Relative neighbourhood graph. — The relative neighbourhood criterion is as follows
(Toussaint, 1980; Fig. 13.23b). Draw a line between two points A and B. Draw a first
circle centred over A and a second one centred over B, each one having the line from A
to B as its radius. This line is part of the graph if no other point C in the study lies
inside the intersection of the two circles. Points that fall on the circumference of one of
the circles in the intersection zone do not count. In algebraic terms, the edge from A to
B is part of the relative neighbourhood graph if and only if D(A, B) # max [D(A, C),
D(B, C)] for all other points C in the study. For points forming an equilateral triangle,
for instance, the three edges are included in the relative neighbourhood graph.

The relative neighbourhood graph in Fig. 13.23b is constructed for the same set of
points as in Figs. 13.22 and 13.23a. The 9 edges forming the relative neighbourhood
graph are a subset of the 12 edges of the Gabriel graph. Indeed, as shown by the sketch
on the left of the figure, the exclusion zone at the intersection of the two circles
corresponding to the relative neighbourhood criterion (which have for radius the edge
A–B) may contain, in the shadowed zone outside the Gabriel circle (white inner
circle), some points that the Gabriel criterion circle does not exclude. This is why some
edges authorized by the Gabriel criterion are excluded from the relative
neighbourhood graph.

• Maximum distance graph. — Another strategy is to select a distance threshold and
connect all points that are within that distance of each other. The result is called a
maximum distance graph or an influence circle graph (Fig. 13.23c). One possible
criterion to choose the distance threshold is to make it equal to the range of a
variogram model (Fig. 13.7) computed for univariate (Subsection 13.1.3) or
multivariate response data (Subsection 13.1.4).

• Minimum spanning tree (MST). — This tree connects the n points in the study with
(n – 1) edges. The sum of the weights (i.e. distances) of the edges used in the tree is
minimum, meaning that it is smaller than or equal to the sum of the edge weights of
any other tree connecting these n objects. Its construction is described at the end of
Section 8.2; one way of obtaining it is to list the edges forming the primary
connections of a single-linkage dendrogram. For points forming an equilateral triangle,
for example, only two of the edges are included in the minimum spanning tree,
whereas the three edges are included in a relative neighbourhood graph; the choice of
the edge to leave out is arbitrary. The edges of a minimum spanning tree are either the
same as, or a subset of, the edges of a relative neighbourhood graph of the same points.
The minimum spanning tree for the example data set is shown in Fig. 14.3.

The list of connecting edges (Figs. 13.22 and 13.23) may be written out to a file.
The file may be modified to take into account other information that researchers may
have about the study area. For example, one may wish to eliminate edges that do not
make sense in terms of gene flow because they cross unsuitable areas (e.g. a sea or a

Relative
neighbour-
hood graph

Maximum
distance
graph

Minimum
spanning
tree (MST)
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mountain range, in the case of terrestrial mammals). Or, one may wish to add
connections that are potentially of interest although they do not imply first neighbours;
for example, plants or animals may be able to cross water bodies (lake, sea) and settle
in non-contiguous sites, which should be considered contiguous for the analysis
because there is a direct path between them. Users of constrained clustering methods
should not hesitate to modify lists of connections obtained from geometric criteria
such as described above, to make the list of edges a better description of potential flow
among sites, given the problem under study. 

It is sometimes interesting to determine the geometric zone of influence of each
point on a map. The zone of influence of a point A includes all the other points of the
surface that are closer to A than to any other point in the study. The zones of influence
so defined have the shape of polygons, also called tiles, tessellae, or tesserae (singular:
tessella or tessera). The resulting picture is called a mosaic or tessellation (adjective:
tessellated); it is also referred to as a Dirichlet tessellation (1850), Voronoï polygons
(1909), or Thiessen polygons (1911), from the names of the authors who described
these mathematical structures.

Polygons are easily constructed from a Delaunay triangulation (Fig. 13.24). Draw
the perpendicular bisector of each segment in the triangulation; the crossing points of
the bisectors delimit the polygons (tiles). Computer algorithms may be used to
calculate the surface area of each polygon, at least those that are closed; peripheral
tiles may be open. Upton & Fingleton (1985) and Isaaks & Srivastava (1989) propose
various applications of tessellations to spatial analysis.

2 — Space-constrained clustering

The delineation of clusters of contiguous objects has been discussed in Section 12.6
for time series and spatial transects. The method of chronological clustering, in

Influence
polygons

Figure 13.24 Delaunay triangulation (grey lines) and influence polygons (black lines) for the nine points of
Fig. 13.22.
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particular, was described in Subsection 12.6.4; it proceeds by imposing to a clustering
algorithm a constraint of contiguity along the time series. Constraints of contiguity
have been applied to spatial clustering by several authors, including Lefkovitch (1978,
1980), Monestiez (1978), Lebart (1978), Roche (1978), Perruchet (1981) and
Legendre & Legendre (1984c). In the present subsection, it is generalized to two- or
three-dimensional spatial data and to spatio-temporal data.

Constrained clustering differs as follows from its unconstrained counterpart:

• Unconstrained clustering methods (Chapter 8) only use the information in the
similarity or distance matrix computed among the objects. In hierarchical methods, a
local criterion is optimized at each step; in all methods included in the Lance and
Williams general model, for instance, the objects or groups clustered at each step are
those with the smallest fusion distance or the largest fusion similarity. In partitioning
methods, a global criterion is optimized; in K-means, for instance, the algorithm looks
for K groups that feature the smallest sum of within-group sums-of-squares ;

• Constrained clustering methods take into account more information than the
unconstrained approaches. In the case of spatial or temporal contiguity, the only
admissible clusters are those that obey the contiguity relationship. Spatial contiguity
may be described by one of the connecting schemes of Subsection 13.3.1. The
criterion to be optimized during clustering is relaxed to give priority to the constraint
of spatial contiguity. It is no surprise, then, that a constrained solution may be less
optimal than its unconstrained counterpart in terms of the clustering criterion, e.g. .
This is balanced by the fact that the resulting clusters are likely to more readily
interpretable.

It is fairly easy to modify clustering algorithms to incorporate a constraint of
spatial contiguity (Fig. 13.25). As an example, consider the clustering methods
included in the Lance and Williams general agglomerative model (Subsection 8.5.9).
At the beginning of the clustering process, the vector of group membership has each
object in a different group (Fig. 13.25, right). Proceed as follows:

1. Compute a distance matrix (D) among objects using the non-geographic
information. Turn it into a similarity matrix S using one of the equations of
Subsection 7.2.1. This transformation will make step 3 of the procedure possible.

2. Choose a connecting scheme (Subsection 13.3.1) and produce a list of connection
edges as in Figs. 13.22 and 13.23. Read in the file of edges and transform it into a
contiguity matrix containing 1’s for connected sites and 0’s elsewhere.

3. Compute the Hadamard product of these two matrices, i.e. their product element by
element (Section 2.5). The resulting matrix contains similarity values in the cells
where the contiguity matrix contained 1’s, and 0’s elsewhere.

4. The largest similarity value in the matrix resulting from step 3 determines the next
pair of objects or groups (h and i) to be clustered. Modify the vector of group
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membership (right of the figure), giving the same group label to all members of former
groups h and i.

5. Update the similarity matrix using eq. 8.12.

6. Update also the contiguity matrix. All objects that were neighbours to h are now also
neighbours to i and vice versa.

7. Go back to step 3. Iterate until all objects are members of a single group.

8. Determine the most informative number of clusters, either by visual inspection of
space-constrained clustering maps, or after calculating one of the indices mentioned at
the end of Section 8.8 (available in R function clustIndex() of package CCLUST).
Among those indices, the Calinski-Harabasz criterion was recommended by Gordon
(1999) for constrained clustering. Pawitan & Huang (2003) proposed a permutation
procedure to test the significance of successive partition levels in constrained
clustering. Cross-validation seems another promising way of identifying the most
informative partition in constrained clustering.

Figure 13.25 Summary of the spatially-constrained clustering procedure for methods included in the Lance
and Williams general clustering model. The vector of group membership is represented on the
right; at the start of the clustering process, each object is in a different group (numbers 1 to 9 in
the example). Locations of the points are the same as in Fig. 13.22. 
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Ferligoj & Batagelj (1982) showed that the introduction of relational constraints
(e.g. spatial contiguity) may occasionally produce reversals with any of the
hierarchical clustering methods included in the Lance & Williams algorithm
(Subsection 8.5.9], except complete linkage. Additional constraints may be added to
the algorithm, for example to limit the size or composition of any group (Gordon,
1996c). K-means partitioning algorithms (Section 8.8) can also be constrained by the
contiguity matrix shown in Fig. 13.25.

Space-constrained clustering is useful in a variety of situations. Here are some
examples.

• In many studies, there are compelling reasons to force the clusters to be composed of
contiguous sites; for instance, when delineating ecological regions, administrative
units, or resource distribution networks.

• One may wish to relate the results of clustering to geographically-located potential
causal factors that are known to be spatially autocorrelated, e.g. geological data.

• One may wish to cluster sites based upon environmental variables, using a constraint
of spatial contiguity, in order to design a stratified biological sampling program to
study community composition. 

• To test the hypothesis that neighbouring sites are ecologically similar, one may
compare unconstrained and constrained clustering solutions using the modified Rand
index (Subsection 8.12.2). De Soete et al. (1987) give other examples where such
comparisons may help test hypotheses in the fields of molecular evolution,
psycholinguistics, cognitive psychology and evolution of languages.

• Constrained solutions are less variable than unconstrained clustering results, which
may differ in major ways among clustering methods. Indeed, the constraint of spatial
contiguity reduces the number of possible solutions and forces different clustering
algorithms to converge onto largely similar clusters (Legendre et al., 1985).

Constrained clustering can also be used for three-dimensional or spatio-temporal
sampling designs (e.g. Planes et al., 1993). As long as the three-dimensional or spatio-
temporal contiguity of the observations can be accurately described as a file of edges
as in Figs. 13.22 and 13.23, constrained clustering programs have no difficulty in
computing the solution; the only difficulty is the representation of the results as three-
dimensional or spatio-temporal maps. Higher-dimensional extensions of the geometric
connecting schemes presented in Subsection 13.3.1 are available in the literature. In
addition, space-constrained clustering can be used to detect discontinuities in spatial
transects or time series, a topic that has been discussed in Section 12.6.

Legendre (1987b) suggested a way of introducing spatial proximity into clustering
algorithms which is less stringent than the methods described above. The method
consists in weighting the values in the ecological similarity or distance matrix by some
function of the geographic distances among points, before clustering. The idea was
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implemented by Bourgault et al. (1992) who proposed to use a multivariate variogram
or covariogram as spatial weighting function prior to clustering. Large ecological
distances between sites that are close in space are downweighted to some extent by this
procedure. It is then easier for clustering algorithms to incorporate somewhat
diverging sites into neighbourhood clusters. Oliver & Webster (1989) suggested to use
a univariate variogram for the same purpose. Constrained classification methods were
reviewed by Gordon (1996c, 1999) and algorithms were surveyed by Murtagh (1985).
Formal aspects were discussed by Ferligoj & Batagelj (1982, 1983). Generalized
forms of constrained clustering were described by De Soete et al. (1987).

Numerical example. An artificial set of 16 sites was constructed to represent staggered-
row sampling of a distribution with two peaks. From the geographic positions of the sites, a
Delaunay triangulation (35 edges) was computed (Fig. 13.26a). A single variable was attributed
to the sites. For three groups, the unconstrained K-means solution has a sum of within-group
sums-of-squares  = 53 (Fig. 13.26b). The constrained K-means solution, for three groups,
has a value  = 188 (Fig. 13.26c) which is higher than that of the unconstrained solution, for
reasons explained above. The two partitions are interesting in different ways. The unconstrained
solution identifies sites with similar values, whereas the constrained solution brings out the two
regions with high values plus a region with lower values forming a valley between the peaks.

Figure 13.26 Numerical example showing the difference between (b) unconstrained and (c) constrained
clustering solutions. (a) Delaunay triangulation with 35 edges, which were used as constraint
in (c). The values of the artificial variable are given in panels (b) and (c); the three groups
obtained by unconstrained and constrained K-means are identified by shadings.
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Space-constrained clustering has been applied to a variety of ecological situations.
Applications to two-dimensional map data are found in Legendre & Legendre (1984c),
Legendre & Fortin (1989), Legendre et al. (1989), Lapointe & Legendre (1994), and
Fortin & Dale (2005, their Section 4.1.2). Two examples of application of space-
constrained clustering to community composition data surveyed on a geographic
surface and along a transect, respectively, are available in the documentation file of
function constrained.clust() of the R package CONST.CLUST; see Section 13.6. Users
are invited to run these examples. A space-constrained clustering map of the data of
Table 13.2 (bacterial data from the Thau coastal lagoon, France) is shown in
Fig. 13.28b. Applications to transect and stratigraphic data (sediment cores) were
mentioned in Subsection 12.6.5 and 12.8.

3 — Ecological boundaries

Detection of boundaries is the complementary problem to the detection of
homogeneous regions of space. Boundaries appear on maps as a by-product of
constrained clustering, for example. Most methods of clustering delineate groups even
in gradient situations; a boundary between groups does not have to correspond to a
sharp discontinuity in the data. Other methods have been developed that focus on
boundary elements; these methods do not aim at completely isolating regions of space. 

For univariate or multivariate transect data, boundaries can be detected using the
methods described in Section 12.6. Detection of boundaries of various sorts on maps is
more complex. This is a well-studied topic in the field of image analysis; it has been
reviewed by Davis (1975), Peli & Malah (1982) and Huang & Tseng (1988); see also
Hobbs & Mooney (1990). The present section briefly summarizes the efforts made to
detect boundaries in ecological data sets, using a technique called wombling, and to
statistically assess their significance. Readers are referred to Section 4.2 (Boundary
delineation) of the book of Fortin & Dale (2005) for details; several examples are also
presented in that book.

Wombling is a technique for detecting zones of rapid spatial change in a set of
regionalized variables. It was developed by Womble (1951) and Barbujani et al.
(1989) for gene frequencies and morphological measurements, and refined by Fortin
and co-authors (Oden et al., 1993; Fortin, 1994, 1997; Fortin & Drapeau, 1995; Fortin
et al., 1996) with emphasis on ecological data. The original form of wombling (lattice
wombling) could only be applied to quantitative variables observed at sites forming a
regular, rectangular grid of points. Recent developments include categorical wombling
for qualitative variables (Oden et al., 1993) and triangulation wombling for sites
linked by a Delaunay triangulation which do not necessarily correspond to a regular
sampling grid (Fortin, 1994). The latter is a frequent situation in ecology.

Wombling
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A boundary is delineated on a map by linking adjacent points where the variable
shows high rates of change (Fortin, 1994). Triangulation wombling (Fig. 13.27a)
proceeds as follows:

• Link the observed sites by a Delaunay triangulation (Subsection 13.3.1).

• Consider a quantitative variable measured at three sites Øi  forming a Delaunay
triangle. Each site has geographic coordinates (Xi , Yi) and an observed value yi. The
plane to be fitted to these points is a linear function y = f (X, Y) = b0 + b1X + b2Y
whose parameters can be computed by matrix inversion (Section 2.8):

• Find the direction of maximum slope of the triangle. The slope varies with the
direction considered (arrows in Fig. 13.27a). Using the b coefficients calculated above,
the maximum slope of the triangle is:

 (13.25)

Figure 13.27 Examples of initial calculations on spatial elements (triplets of points) for three different
boundary detection methods. Consider three points Øi , with coordinates (Xi, Yi),  forming a
Delaunay triangle. (a, b) Variable y, measured at sites Øi , is quantitative (values shown as
heights). (a) Method 1: find the direction of maximum slope of the triangle; allocate this slope
value to the triangle centroid (dot). (b) Method 2: compute slopes along the edges connecting
adjacent sites; allocate the values to the edge mid-points (dots). (c) Method 3: for a qualitative
variable y (with 2 states in this example), adjacent sites are compared in terms of matches (0-0 or
1-1) or mismatches (0-1); allocate the matches and mismatches to the edge mid-points (dots).
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and the angle from the X coordinate axis is given by tan–1(b2/b1). Note that angles are
in radians in R. Allocate this value of slope (m) to the centroid of the triangle, which is
the point with coordinates:

[X, Y]centroid = (13.26)

• If several variables are considered (i.e. several species), calculate the mean slope
( ) of the variables at the centroid of each Delaunay triangle.

• Create an ordered list of the slope values. Starting at the top of the list (highest
slopes), mark the corresponding triangle centroids on the map; they become boundary
elements. Going down the list, mark a predetermined proportion of the slopes
(e.g. 10%), or go down to a preselected value of slope. Other strategies are possible,
e.g. going down the list to the value of the mean plus one or two standard deviations.

• A boundary is delineated by linking contiguous boundary elements. A single
boundary element unlinked to other elements may be seen as a small boundary.

An alternative would be to compute the slopes of the edges between adjacent sites
(Fig. 13.27b). For univariate data, the rate of change would simply be the absolute
value of the difference between values at sites Øh and Øi: . For multivariate
data, any of the distance functions of Chapter 7 could be used. The disadvantage of
this method is that slopes calculated along the edges of the Delaunay triangle do not
have the same value as the maximum slope of the triangle, computed by eq. 13.25. To
alleviate this problem, Dufrêne & Legendre (1991) calculated multivariate distances in
four directions between pixels of a map; for each pixel, they used the largest of the
distances to delineate boundaries.

Computation of statistics along the edges between adjacent sites is the option used
in categorical wombling, which is appropriate for species presence-absence data. The
basic statistic is to record a match or a mismatch between adjacent observed sites
(Fig. 13.27c). For multivariate qualitative data, one may count both the positive and
negative matches and embed this number into one of the symmetrical binary
coefficients of Subsection 7.3.1 (e.g. the simple matching coefficient); for species
presence-absence data, one may count the positive matches only and embed this
number into one of the asymmetrical binary coefficients of Subsection 7.3.2 (e.g. the
Jaccard coefficient).

Tests of significance, based on permutations (Subsection 1.2.2), have been
proposed by Fortin and co-authors (Oden et al., 1993; Fortin, 1994, 1997; Fortin &
Drapeau, 1995; Fortin et al., 1996) to answer the following questions: 

• Are the boundaries found by this analysis similar to random boundaries in terms of
the number of separate boundaries, their maximum or mean lengths, or other boundary
or graph-theoretic statistics?

X1 X2 X3+ +
3

--------------------------------
Y1 Y2 Y3+ +

3
--------------------------------,

m
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• Are the boundaries found by wombling the same as borders stated by hypothesis, or
found by clustering methods, or obtained using different data for the same locations?

These papers also present applications of the method to real and simulated data. A
computer program for wombling is commercially available (BOUNDARYSEER,
Table 13.3). An R package is also available (Section 13.6).

4 — Dispersal

Individuals, populations, and communities often cross ecological boundaries; such
crossings occur on different time scales. The routes taken by species when they invade
a territory after a perturbation event (long-term, e.g. glaciation; short term,
e.g. pollution) is a question of interest in biogeographic analysis. Dispersal routes may
be easier to identify if, as a first step in the analysis, one delineates regions that are
largely homogeneous in species composition. Regions may be delimited using prior
hypotheses, by unconstrained or constrained cluster analysis, or using boundary
detection methods. 

Legendre & Legendre (1984c) developed coefficients to measure the likelihood of
species dispersal between geographically contiguous regions, for species presence-
absence or abundance data. The assumptions of these coefficients are that the species
arrived by migration, and the past dispersal has left traces in present-day distributions.
For presence-absence data, adjacent regions x1 and x2 can be compared using the same
quantities a, b, and c as in the similarity coefficients of Subsection 7.3.1 and 7.3.2: a is
the number of species that two regions have in common; b is the number of species
found in x1 but not in x2; c is the number of species found in x2 but not in x1. The
combination of the following indications is evidence for species dispersal from
region x1 to x2:

• the number of species common to the two zones is high, i.e. a is large;

• b is substantially larger than c. Conversely, c larger than b would support the
hypothesis of dispersal from x2 to x1.

The basic form of the coefficient of species dispersal direction (DD) is thus
a (b – c). To make the values of the coefficient comparable for faunas with different
richness, each term is standardized by dividing it by the richness of the fauna or flora
of the two regions combined:

(13.27)

When this coefficient is positive, it measures the likelihood that species dispersed from
x1 to x2. A negative sign indicates that, if dispersal occurred, species migrated from
x2 to x1 instead. 

DD1 x1 x28( )
a

a b c+ +( )
---------------------------- b c–( )
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----------------------------=
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The asymmetric portion of this coefficient may be tested for significance using a
McNemar test. Under the null hypothesis of no asymmetry (H0: b = c), the test statistic

(13.28)

is distributed as 92 with one degree of freedom. The value –1 subtracted in the
numerator is Edwards’ (1948) correction for continuity; this is the correction used by
function mcnemar.test() in R. The test may be one-tailed if one has specific hypotheses
about the direction of dispersal; otherwise, a two-tailed test is used. 

The log-linear form of the McNemar statistic is (Sokal & Rohlf, 1995):

(13.29)

where q is the Williams (1976) correction for continuity:

Equation 13.29 provides a more powerful test than the classical McNemar equation
(eq. 13.28). If any of the values b or c is 0, the corresponding term (x logex) is 0 since

 (Section 6.5).

The first part of the DD1 equation is easily recognized as the Jaccard coefficient of
similarity (eq. 7.10). One may prefer to give double weight to the number of common
species, a, as in the coefficient of Sørensen (eq. 7.11):

(13.30)

Two other forms of the coefficient use species abundance data instead of presence-
absence:

(13.31)

and (13.32)

where W, A, and B are as in the Steinhaus similarity coefficient (eq. 7.24). Coefficient
DD4 gives double weight to the abundances of the species in common and is thus the
counterpart of DD2, whereas DD3 gives these species single weight, as in DD1. These
two coefficients take the following indications as evidence for dispersal from x1 to x2:

• the number of species common to the two zones and their abundances are high,
i.e. W is large;
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• A is substantially larger than B; B larger than A would produce a negative coefficient,
indicating possible dispersal from x2 to x1.

Legendre & Legendre (1984c) used DD coefficients and tests of significance to
identify plausible routes taken by freshwater fishes to reinvade the Québec peninsula
after the last glaciation. Borcard et al. (1995) used the same method in a finer-scale
study, showing possible patterns of migration of Oribatid mites between zones of an
exploited peat bog in the Swiss Jura. At broader scale, Bachraty et al. (2009) used DD
coefficients to identify possible faunal dispersal pathways between adjacent deep-sea
hydrothermal provinces of the world ocean.

13.4 Unconstrained and constrained ordination maps

Subsection 13.3.2 has shown how maps for multivariate data can be produced by
clustering methods; these maps display discontinuous zones. For continuous
representation of quantitative variables, however, the techniques of Section 13.2 can
only produce maps for single variables. The present section shows how continuously-
varying maps can be obtained for multivariate data sets through ordination methods.
The relationship between univariate or multivariate structure functions (Section 13.1)
and maps has been stressed in the introductory paragraph of Section 13.2.

The simplest method consists in analysing a data table with one of the ordination
methods of Chapter 9 and map the first, or the first few ordination axes. For example:

• Decompose the variation of a (sites × species) presence-absence or abundance table
into successive ordination axes, using PCA, CA, PCoA, or nMDS (Chapter 9). 

• Consider the ordination of sites along the first axis. This axis is a new, synthetic
quantitative variable describing the variation among sites. Associate it to the (X, Y)
geographic coordinates of the sites. Produce a map using one of the methods described
in Section 13.2. An example of such a map is given in Fig. 9.15 for correspondence
analysis axis I of a vegetation data table.

• Repeat the operation, producing maps for ordination axes II, III, etc. as long as
interesting or significant spatial variation can be detected. Univariate correlograms of
the successive ordination axes (Subsection 13.1.1), with tests of significance, may be
used as criterion for deciding which of the ordination axes should be mapped. 

Simple ordination analysis leaves it to chance to find spatially-structured
components of variation. One may decide instead to look directly for such
components, by forcing the analysis to bring out axes of variation that are related to the
X and Y coordinates, or combinations of X and Y into a spatial polynomial equation.
The spatial polynomial is constructed as in Subsection 13.2.1. (In Chapter 14, the X
and Y coordinates will be used to derive spatial eigenfunctions that will replace the



850 Spatial analysis

spatial polynomial in the same type of analysis as described here.) Ordination analysis
of a species data table, constrained to be related to a spatial polynomial, can be carried
out by canonical analysis (Chapter 11). Canonical analysis then becomes an extension
to multivariate data tables of the method of trend surface analysis. The method will be
described with the help of a numerical example. Another example (vegetation data) is
found in Legendre (1990).

Numerical example. Bacterial data from the Thau coastal lagoon are used again here
(Tables 10.6 and 13.2). The response data include Bna and Ma bacteria in the present example.
No significant linear trend was present in the response data. To facilitate mapping, the X and Y
geographic coordinates of the sites were rotated by principal component analysis (PCA using the
covariance matrix; scaling type 1 was used); Table 13.2 gives the rotated coordinates. A third-
degree polynomial of these new X and Y coordinates was created (Subsection 13.2.1) and
subjected to forward selection in order to select the spatial monomials that significantly
contributed to the explanation of the Bna and Ma bacterial variables. The following five terms of

Table 13.2 Data from Table 10.6. There are two bacterial response variables (Bna and Ma, forming matrix
Y) and three environmental variables (NH4, phaeopigments, and bacterial production, forming
matrix X). Five spatial variables (X2, X3, X2Y, XY2, and Y3, included in matrix W) were
derived from the X and Y coordinates, reported in the table, obtained by PCA rotation of the
geographic coordinates of Table 10.6. The variables are described in more detail in Numerical
example 1 of Subsection 10.3.5.

Station Bna Ma NH4 Phaeo. a Prod. X Y
No. y1 y2 x1 x2 x3 after PCA rotation

1 4.615 10.003 0.307 0.184 0.274 –9.4173 –1.2516
2 5.226 9.999 0.207 0.212 0.213 –7.1865 –1.0985
3 5.081 9.636 0.140 0.229 0.134 –5.8174 –1.4528
4 5.278 8.331 1.371 0.287 0.177 –6.8322 0.2706
5 5.756 8.929 1.447 0.242 0.091 –4.6014 0.4238
6 5.328 8.839 0.668 0.531 0.272 –4.2471 1.7929
7 4.263 7.784 0.300 0.948 0.460 –1.8632 –0.2848
8 5.442 8.023 0.329 1.389 0.253 –0.4940 –0.6391
9 5.328 8.294 0.207 0.765 0.235 0.8751 –0.9934

10 4.663 7.883 0.223 0.737 0.362 –0.1398 0.7300
11 6.775 9.741 0.788 0.454 0.824 –1.1546 2.4534
12 5.442 8.657 1.112 0.395 0.419 0.2145 2.0992
13 5.421 8.117 1.273 0.247 0.398 4.9824 –2.0562
14 5.602 8.117 0.956 0.449 0.172 3.9676 –0.3328
15 5.442 8.487 0.708 0.457 0.141 3.4602 0.5289
16 5.303 7.955 0.637 0.386 0.360 6.3515 –2.4105
17 5.602 10.545 0.519 0.481 0.261 5.8441 –1.5488
18 5.505 9.687 0.247 0.468 0.450 4.8293 0.1746
19 6.019 8.700 1.664 0.321 0.287 4.6762 2.4054
20 5.464 10.240 0.182 0.380 0.510 6.5527 1.1894
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the spatial polynomial were retained by the selection procedure: X2, X3, X2Y, XY2 and Y3.
Spatial eigenfunction analysis, described in Chapter 14, would not have produced a good spatial
model with these data because the 20 sites are too irregularly spaced on the map (Fig. 13.28).

Redundancy analysis (RDA, Section 11.1) produced two canonical axes (41 = 0.622,
42 = 0.111) because there were two dependent variables only (Bna, Ma) (see Table 11.1). The
canonical relationship accounted for  = 0.639 of the variation in the bacterial data; it was
globally significant (p = 0.001); so was the first canonical eigenvalue. 81% of the variance of Ma
was expressed along axis I, but only 7% of the variance of Bna. The second canonical
eigenvalue was not significant at $ = 0.05 (p = 0.123) although 42% of the variance of Bna was
expressed on this axis. There are two non-canonical axes representing the non-spatially-
structured variation of the response variables; they represent 16% and 10% of the variation of
matrix Y, respectively. Canonical axis I differs from the first principal component of matrix Y:
that axis would express the variation in the response variables (Bna, Ma) without the constraint
of being a linear combination of the spatial monomials.

Figure 13.28 (a) Fitted site scores map of the first canonical axis of the bacterial variables in the Thau coastal
lagoon constrained by a spatial polynomial. (b) Space-constrained clustering map of the
bacterial data, 5 groups (symbols). Dots are the 20 sampling sites, with identification numbers in
map b. The north-south direction is nearly parallel to the vertical axis of the maps; compare with
the point positions in Fig. 13.15a.
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For axis I, the fitted site scores from matrix Z (eq. 11.18) were mapped (Fig. 13.28a) by
kriging (Subsection 13.2.2) using program OKB2D of the GSLIB library (Deutsch & Journel,
1992); an all-directional spherical variogram models was fitted to the empirical variograms prior
to kriging (Subsection 13.1.3). The trend surface equation that produced the fitted site scores for
the 20 sites is:

The spatial monomials were standardized before computing this equation.

Interpretation of the map is rather simple in this example: examination of Table 13.2 shows
that the sites with the highest scores along canonical axis I (i.e. sites 1-3, 11, 17, 18 and 20,
located in grey areas of Fig. 13.28a) possessed the highest concentrations of aerobic
heterotrophic bacteria growing on marine agar (variable Ma), which was the variable
dominating axis I. These sites also formed three separate and clearly identified groups in the
space-constrained clustering map (Fig. 13.28b) produced using function constrained.clust()
using the Ward.D2 algorithm (Subsection 8.5.8); see Section 13.6. The clustering level,
5 groups, displayed in the map was selected by cross-validation.

Thioulouse et al. (1995) proposed a different approach to mapping, which
combines connection networks, decomposition of the variation into local and global
components, eigenvalue decomposition, and mapping. The neighbouring relationships
among sites are represented by a connection network (e.g. Delaunay triangulation for a
homogeneous two-dimensional sampling area, or neighbouring relationships for sites
along a river network) which is translated into a contiguity matrix M (Fig. 13.25). M is
standardized to P by division by the total number of pairs of neighbours. A diagonal
matrix D describes the degree of connectedness of the sites. Using matrices P and D,
the authors define principal component and correspondence analysis for the total,
local, and global components of variation; each fraction is decomposed into
orthogonal axes, which may be mapped to facilitate interpretation. Their paper
presents applications to simulated and real ecological data (bird survey).

13.5 Spatial modelling through canonical analysis

The significance of spatial heterogeneity for the functioning of ecosystems was
discussed in Section 1.1. Models of ecosystem processes may fail to correctly model
the spatial variation of communities (i.e. beta diversity, Subsection 6.5.3) if they do
not include the spatial organization of the populations and communities among the
models’ predictor variables. This can be achieved by explicitly incorporating spatial
predictors in ecological models of community composition data (or other response
data matrices) using canonical analysis. The method consists in modelling the
variation of the variables of interest across the study area as a linear combination of the
environmental variables and some function of the geographic coordinates of the sites. 

Axis I 1.0526X2 1.1881X3 0.5225X2Y– 0.7674XY2–+= 0.7167Y3+
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In this approach, one is interested in explicitly identifying the effect of spatial
structures, singling it out from other environmental effects, through methods discussed
in previous chapters and sections: partial regression analysis (univariate,
Subsection 10.3.5) or partial canonical analysis (multivariate, Section 11.1.6) on the
one hand; trend surface analysis (univariate, Subsection 13.2.1) and spatially
constrained ordination maps (multivariate, Section 13.4) on the other hand. In its basic
form, the analysis considers three data sets: Y contains the response variables; X is the
set of explanatory environmental variables; W is the set of explanatory spatial
variables. In the present section, which introduces the method, W contains a
polynomial of the geographic coordinates of the sites. In Chapter 14, spatial
eigenfunctions will replace the spatial polynomial. Variation partitioning (univariate,
Section 10.3.5, or multivariate, Section 11.1.11) produces synthetic presentations of
the results. Variation partitioning can actually accommodate more than one
environmental and one spatial matrix — up to four with the presently available version
of function varpart() in R.

There are two motivations, described in more detail in Section 14.1.4, to carry out
spatial modelling of response matrix Y by variation partitioning. The first focuses on
fraction [a] of Fig. 10.10, in cases where one wishes to control for spatial correlation in
the analysis of species-environment relationships. The second corresponds to
situations where both the spatial and non-spatial structures of the explanatory variables
X are of interest to explain the variation of Y, in which case fractions [a], [b] and [c]
can all be interpreted. In this approach, any structure identified in the response data is
considered to indicate the presence of some process generating it. Mapping fraction [c]
of the variation may help generate hypotheses about the spatial process or processes
responsible for the observed residual spatial pattern.

The variation partitioning approach described in the present section is essentially
correlative. It differs from the analysis of variance, which estimates the variation
associated with well-defined effects in structured sampling or manipulative
(i.e. controlled) experiments. In the initial stages of ecological research, correlative
methods are routinely used to sort out hypotheses centring on broad correlative
patterns among groups of variables, before specific hypotheses can be experimentally
tested. In particular, the analysis presented in this section allows researchers to
consider different groups of explanatory variables (environmental, spatial, or
temporal) and examine their capacity to explain patterns in the multivariate response
variables (species or others) that are of interest in a study; it further allows one to
measure the degree of overlap that exists among these groups of explanatory variables
with regard to that capacity (Anderson & Gribble, 1998). The correlations brought out
by the analyses are only interpretable insofar as hypotheses can be formulated about
the processes that may have generated the observed patterns. This approach is related
to regression (Section 10.3) and path analysis (Section 10.4), in which a large number
of plausible relationships may be hypothesized and sorted out by statistical analysis.
The method is illustrated by a numerical example. 



854 Spatial analysis

Numerical example. The data of Table 13.2 (Thau coastal lagoon) are reanalysed here. In
the numerical example of Section 13.4, the variable selection procedure retained the following
terms of the spatial polynomial: X2, X3, X2Y, XY2, and Y3; the same terms are used in the
present example. The following variation partitioning table (R2 and  columns) was obtained
using function varpart() of VEGAN. The values in the three columns to the right were obtained by
RDA and partial RDA.

In the table, significant fractions at level $ = 0.05 are identified by asterisks. Eigenvalues of the
first canonical axis (canonical 41) are reported as fractions of the total variance of Y. None of the
second canonical axes were significant; since each analysis only produced two canonical
eigenvalues in this example, the portions of variation corresponding to 42 are the differences
between columns 2 and 5 from the left. Fraction [b] is not an independently-calculated
component of the variation; hence, it cannot be tested for significance nor decomposed into
canonical axes (see Méot et al., 1998, for alternative solutions).

Variation partitioning decomposed the total explained variation [a + b + c], expressed as
, into a significant environmental component [a + b] and a significant component [c] that

estimated the spatially-structured variation of Y not explained by the environmental variables.
The table shows that [a + b], which is the variation of Y explained by the environmental
variables, was entirely spatially structured; [a] is a small negative value that must be interpreted
as a zero. The partitioning results are represented by a Venn diagram in Fig. 13.29. 

Figure 13.30 shows maps of the fitted site scores from matrix Z (eq. 11.18) of the first
canonical axis of fraction [a + b + c] and of its two components, [a + b] and [c]. These maps
were obtained by kriging (Subsection 13.2.2) using program OKB2D of the GSLIB library
(Deutsch & Journel, 1992); all-directional spherical variogram models were fitted to the
empirical variograms prior to kriging (Subsection 13.1.3). While the adjusted proportions of
variation of [a + b] and [c] add up to that of [a + b + c] (0.347 + 0.280 = 0.627), this is not the
case for the proportions of variation represented by the first canonical axes: 41[a + b] + 41[c] !
41[a + b + c]. This is because the partition of fraction [a + b + c] into canonical axes is done
independently of the partitions of [a + b] or [c]. As a consequence, maps of a given axis of
variation (e.g. axis I of the various fractions, mapped in Fig. 13.30) do not exactly add up with
this method; they only add up approximately.

The adjusted fraction [b + c] (0.639 of the bacterial data variation) is the one extracted by
canonical analysis in the numerical example of Section 13.4 (same data); Fig. 13.28a maps this

Fractions
of variation

Proportion of
var. of Y (R2)

Adjusted
R2

Probability
(999 perm.)

Canonical
44441

Probability
(999 perm.)

[a + b] 0.450 0.347 0.005* 0.359 0.025*
[b + c] 0.734 0.639 0.001* 0.622 0.001*

[a + b + c] 0.784 0.628 0.001* 0.632 0.001*
[a] –0.011(0 0.549 0.042 0.561
[b] 0.358 ----- ----- -----
[c] 0.281 0.011* 0.304 0.004*

Residuals = [d] 0.372 ----- ----- -----
[a + b + c + d] 1.0000

Ra
2

Ra
2
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fraction of the variation. In this example, the map of axis I of fraction [b + c] (Fig. 13.28a) is
very similar to the map of axis I of [a + b + c] (Fig. 13.30) because [a] is close to zero. 

The maps of axis I of fraction [a + b + c] (63% of the variation in the bacterial variables) and
[a + b] (36%) are quite similar, whereas the map of axis I of fraction [c] (33% of the variation) is
quite different. The trend surface equation that produced the fitted site scores for the 20 sites is:

In this equation, the spatial variables are residuals of the standardized terms of the spatial
polynomial after controlling for the effect of the three environmental variables. Examination of
the map of fraction [c] suggests a hypothesis for the origin of this fraction of variation, i.e. a
marine influence, which had not been included among the explanatory variables in the analysis.
Indeed, the negative values on the map form a plume originating at the connections of the Thau
lagoon with the sea and extending westwards. To “explain away” fraction [c], i.e. to make it
become non-significant, another analysis could be conducted that would include variables
quantifying the marine influence on the stations of the lagoon among the environmental
variables. Such variables could, for example, be obtained from a hydrodynamic model of the
lagoon.

Interpretation of the fractions is described in Subsection 14.1.4. Applications of
this method cover a wide range of ecological problems. Here is a selected list of fields
and papers: palaeoecology (Zeeb et al., 1994; see also Ecological application 10.3b),
stream monitoring (Passy, 2007), vegetation (Heikkinen & Birks, 1996; Bjorholm et
al., 2005), periphyton (Cattaneo et al., 1993), protozoa (Buttler et al., 1996),
zooplankton (Pinel-Alloul, 1995), aquatic macroinvertebrates (Pinel-Alloul et al.,
1996), fish (Rodríguez & Magnan, 1995), birds (Bersier & Meyer, 1994; Gordo et al.,
2007), and mammal conservation (Burbidge et al., 2008).

Variation partitioning has been applied to more than two explanatory data sets.
(1) Pinel-Alloul et al. (1995) tested the hypothesis that biotic and abiotic factors, as
well as spatial structuring, explained together the broad-scale spatial heterogeneity of
zooplankton assemblages among lakes. The explanatory variables comprised abiotic

Figure 13.29 Venn diagram illustrating the variation
partitioning results for the numerical example.
The rounded rectangle surface areas
approximate the relative fraction sizes with
respect to the size of the outer rectangle, which
represents the total variation in the response
data. The fractions are identified by letters [b] to
[d]; [a] is not shown because it is approximately
zero. The values next to the identifiers are
adjusted R2 ( ).Ra

2

[b] = 0.358
[c] =
0.281

[d] = Residual R2
a = 0.372

Axis I of [c] 1.8017X2 2.2817X3 1.0809X2Y– 1.3064XY2–+= 1.5563Y3+
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(physics and chemistry, morphometry) and biotic factors (phytoplankton and fish
assemblages); these factors were analysed separately and together, using four
approaches described in the paper. (2) Quinghong & Bråkenhielm (1995) explained
the spatial patterns of epiphytic green algae and lichens using climatic, pollution, and

Figure 13.30 Bacterial variables: map of the fitted site scores of the first canonical axes of three fractions of
the variation: top [a + b + c], middle [a + b], bottom [c]. Dots represent the 20 sampling sites.
North is nearly parallel to the vertical axis of the maps. Compare with Fig. 13.28a, which
represents fraction [b + c]. Arrows at the base of map [c], labelled “sea water”, indicate the
positions of connections of the Thau coastal lagoon with the adjacent Mediterranean Sea.
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geographic variables. They showed how to isolate the seven components of variation
resulting from crossing three sets of explanatory variables. (3) Anderson & Gribble
(1998) applied the variation partitioning method to three matrices of explanatory
variables representing the environmental, spatial and temporal components,
respectively. Using this approach, they were able to resolve the confounding of space
and time that is often encountered when sampling is conducted over a long time period
because of the large size of the surveyed area.

13.6 Software

Most of the methods described in this chapter cannot be implemented using the major
statistical packages. Table 13.3 lists some of the software available commercially or
from researchers. The list is not exhaustive.

Table 13.3 Computer programs implementing the methods of surface pattern analysis discussed in
Chapter 13. The list is not exhaustive.

BOUNDARYSEER  Detection of boundaries (wombling)
and space-constrained clustering

BioMedware Inc., 3526 W. Liberty, Suite 100,
Ann Arbor, Michigan 48103, USA.
http://www.biomedware.com/

GEOEAS Variogram, kriging; contour mapping
Developed by US Environmental Protection
Agency. Available from ACOGS, P.O. Box
44247, Tucson, Arizona 85733-4247, USA.
ftp://math.arizona.edu/incoming/unix.geoeas/

GSLIB Geostatistical software library
Geostatistical methods described in the
Deutsch & Journel (1992) book. 
http://www.gslib.com/

ISATIS Variogram, kriging; contour mapping. 
Geovariances, 49bis avenue Franklin-
Roosevelt, F-77212 Avon Cedex, France. 
http://www.geovariances.com/en/software-ru2

SAAP Spatial autocorrelograms (Moran’s I
and Geary’s c)

Written by D. Wartenberg, Department of
Environmental and Community Medicine,
Robert Wood Johnson Medical School,
Piscataway, New Jersey, USA. Distributed by
Exter Software:
http://www.exetersoftware.com

SPACESTAT Directional and omnidirectional
spatial variograms; several types of
kriging; interpolated maps; global and
local spatial correlation statistics;
geographically weighted regression

BioMedware Inc., 3526 W. Liberty, Suite 100,
Ann Arbor, Michigan 48103, USA;
http://www.biomedware.com.

SURFER Kriging; other interpolation methods;
contour mapping

RockWare Inc., 2221 East St. #101, Golden,
Colorado 80401, USA.
http://www.rockware.com/



858 Spatial analysis

The R language offers functions for all methods described in this chapter:

1. Structure functions. — Function correlog() of NCF: Moran’s I spatial correlograms
computed as described in Subsection 13.1.1 (two-tailed tests). sp.correlogram() of
SPDEP: spatial correlograms based on Moran’s I, Geary’s c, or the spatial correlation
function (eq. 13.18), based on a list of connection edges (two-tailed tests). 

In package NCF, functions Sncf(), Sncf.srf(), Sncf2D(), spline.correlog() and
spline.correlog2D() estimate spline correlograms in various ways for univariate or
multivariate spatial data, including directional correlograms for anisotropic data.
Confidence envelopes are computed through bootstrapping. Function lisa() computes
LISA statistics (local Moran) for single response variables. A randomization test is
used to test for significance of the LISA statistics.

Functions variog() of GEOR, Variogram() of NLME, vario() of PASTECS, and
est.variogram() of SGEOSTAT compute empirical variograms. A multivariate
variogram of Y with permutation test is computed by mso() of VEGAN, after a PCA of
Y by rda(). A multivariate correlogram is computed by mantel.correlog() of VEGAN. 

2. Maps. — Function lm() of STATS can be used to compute trend-surface analysis of
univariate response data. eyefit() of GEOR adjusts variogram models to data.
krige.conv() in GEOR carries out conventional kriging. Among the functions available
with the Borcard et al. (2011) book, sr.value() draws bubble maps; values of a variable
are represented either by circles of different sizes or by circles with shades of grey.
Function s.value() of ADE4 also draws bubble maps using squares instead of circles. 

3. Patches and boundaries. — Function constrained.clust() of package CONST.CLUST*

carries out constrained hierarchical clustering along a time or spatial series or on a
geographic surface, with cross-validation of the results. Wombling analysis for the
estimation of boundaries (Subsection 13.3.3) is computed by package WOMBSOFT.
Coefficients of dispersal direction, described in Subsection 13.3.4, are available in
function bgdispersal() of VEGAN.

4. Unconstrained and constrained ordination maps. — R functions are listed in
Section 9.5 for unconstrained and in Section 11.7 for constrained ordination.

5. Spatial modelling through canonical analysis. — Functions for canonical analysis
and variation partitioning are described in Section 11.7

6. Miscellaneous methods. — Function geoXY() in SODA transforms latitude-
longitude (LatLon) data to flat Cartesian coordinates. lm() in STATS can be used to
carry out spatial detrending of univariate or multivariate data. poly() in STATS
computes ordinary or orthogonal polynomials.

*  Available on the Web page http://numericalecology.com/rcode.
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Multiscale analysis: 
spatial 
eigenfunctions

 

14.0 Introduction to multiscale analysis

 

Tobler’s (1970) first law of geography states that “Everything is related to everything
else, but near things are more related than distant things”. This law is at the core of
spatial analysis and modelling in geography and related fields such as biogeography,
community ecology, population biology, landscape ecology and landscape genetics.

Spatial eigenfunction analysis is a family of methods for multiscale analysis of
univariate or multivariate response data. Based on the theory introduced in Section 1.1
concerning the origin of spatial structures in ecosystems, these methods draw upon
several developments discussed earlier in this book: distances (Chapter 7), principal
coordinate analysis (Section 9.3), multiple regression modelling (Section 10.3.3),
redundancy analysis (Section 11.1), variation partitioning (Sections 10.3.5 and
11.1.11), and the concept of scale in spatial patterns (Section 13.0). 

The expression 

 

spatial eigenfunction analysis

 

 was proposed by Griffith & Peres-
Neto (2006) for the whole family of methods where eigenvectors of spatial
configuration matrices are computed and used as predictors in linear models, including
the full range of general and generalized linear models

 

*

 

. The expression proposed by
these authors covers both the early methods developed by geographers to analyse
binary spatial connection matrices (Garrison & Marble, 1964; Gould, 1967; Tinkler,
1972; Griffith, 1996; these methods are briefly described in Subsection 14.2.2) and the
more recent methods that take into account the distances among localities and are
described in the present chapter. Extension of spatial eigenfunction analysis to time
series is straightforward; all methodological developments in this chapter labelled
“spatial” could readily be changed to “temporal”.

 

*  

 

These two forms of linear models are described on the Web pages http://en.wikipedia.org/wiki/
General_linear_model and http://en.wikipedia.org/wiki/Generalized_linear_model.
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Multiscale spatial analysis is used to answer questions like the following:

 

• 

 

Description: What are the spatial scales of variation of the [univariate or
multivariate] response data under study? What are the spatial patterns at these scales?

 

• 

 

Explanation (in the sense of Subsection 10.2.1): What are the processes that explain
(meaning 

 

account for

 

) the spatial variation of the response data at different scales?
Indeed, different processes may affect (or be associated with) that spatial variation at
different scales.

 

• 

 

For communities of organisms, beta diversity is the spatial variation in community
composition among sites (Subsection 6.5.3). How does beta diversity relate to
different types of processes at different scales, for example environmental control
(Subsection 1.1.1, model 1) and neutral processes (Subsection 1.1.1, model 2)?

In multiscale spatial analysis, the variation in response data is analysed with
respect to variables (eigenfunctions) representing geographic variation, which may be
divided into submodels corresponding to different spatial scales; see the following
sections. Of course, space 

 

per se

 

 cannot be considered as an explanation of ecological
variability. The spatial variables used as explanatory variables in analyses are proxies
for real environmental or ecological explanatory variables. The spatial proxies serve to
quantify and dissect the spatial variation present in the response data. Part of that
variation can then be attributed to some of the potentially explanatory variables that
are available for analysis, the remainder being considered as spatial variation that
remains to be explained. Subsection 14.1.4 discusses different hypotheses that can be
invoked to explain such variation. 

Trend-surface analysis described in Subsection 13.2.1 and used for spatial
modelling in Section 13.5 is a rather crude method. A model that simply uses the
spatial coordinates is sufficient to model a flat surface; a quadratic model (coordinates
to the powers 1 and 2) can represent a bowl or saddle shape; a cubic model (powers 1,
2 and 3) has one more bend in each geographic direction. To model fine structures
would require a polynomial equation with more monomials than there are objects,
which would render the method useless in practice for data analysis.

Given the lack of efficient methods to model multiscale spatial structures until the
late 1990’s and the beginning of the 21st century, researchers were then looking for
appropriate approaches. Ideally, the modelling matrix should contain mutually
orthogonal vectors; because of that property, these vectors could be combined into
submodels, corresponding to different spatial scales, that would be linearly
independent of one another in variation partitioning. The following sections describe
modelling methods that meet these expectations: dbMEM analysis (formerly called
PCNM analysis, Section 14.1); generalized Moran’s eigenvector maps (MEM,
Section 14.2); asymmetric eigenvector maps (AEM) developed to model the effects of
directional physical processes (Section 14.3); and multiscale ordination (Section 14.4).
Section 14.5 describes derived methods of spatial analysis based on MEM, and

Space
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Section 14.6 is a rejoinder that shows how these methods can help answer questions
involving the multiscale analysis of beta diversity. Section 14.7 lists R functions
available to carry out the calculations.

 

14.1 Distance-based Moran’s eigenvector maps (dbMEM)

 

The positions of study sites on a map are identified by their spatial coordinates.
Subsection 13.2.1 has shown how geographic coordinates can be used in a form of
geographic modelling known as spatial trend-surface analysis. In that method, the
coordinates are used, either directly (i.e. without transformation) or in the form of a
polynomial function, to model univariate or multivariate response data through
multiple regression (Subsection 13.2.1) or canonical analysis (Section 13.5). 

Another way to look at the relative positions of the study sites is to compute
geographic distances among them and write these to a geographic distance matrix

 

D

 

Geo

 

. A simple form of spatial eigenfunction analysis is obtained by modifying the
geographic distance matrix 

 

D

 

Geo

 

, as explained below, and computing spatial
eigenfunctions by eigen-decomposition. That form was described in three papers by
Borcard & Legendre (2002), Borcard 

 

et al.

 

 (2004) and Legendre & Borcard (2006),
where the spatial eigenfunctions were called 

 

Principal Coordinates of Neighbour
Matrices

 

 (PCNM). They are a special class of a family of eigenfunctions called

 

Moran’s eigenvector maps

 

 (MEM) described in Section 14.2. The formerly called
PCNM eigenfunctions are actually MEM eigenfunctions based on simple geographic
distances; they are now called 

 

distance-based MEM

 

, abbreviated dbMEM. 

The construction of dbMEM eigenfunctions is described in Subsection 14.1.1.
After their construction, spatial eigenfunctions can be used in linear models of the
response data in the same way as polynomials of geographic coordinates: they become
explanatory variables in multiple linear regression when analysing univariate response
data, e.g. species richness at different sites, or in canonical analysis when studying the
spatial variation of multivariate response data, e.g. community composition. They can
also be used as one of the explanatory matrices in variation partitioning aimed at
analysing a matrix of response data from two or more angles. These aspects are
illustrated through ecological applications presented in Subsection 14.1.3.

Ecologists who are not familiar with multiscale eigenfunction analysis may
consider looking at the examples and ecological applications of Subsections 14.1.2
and 14.1.3 first, before coming back to study the algorithm in detail.

PCNM
MEM

dbMEM
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1 — Algorithm

 

The steps involved in the construction of dbMEM eigenfunctions are the following:

 

• 

 

Compute a matrix of geographic distances by applying the Euclidean distance
function to a set of Cartesian geographic coordinates. Latitude-longitude data can be
transformed into flat Cartesian coordinates using function 

 

geoXY()

 

 (Section 14.7).
Alternatively, for sites covering a large geographic area on the Earth’s surface,
geodesic distances can be computed. The end product of this first step is a square
symmetric matrix of distances among sites.

 

• 

 

Choose a distance threshold called ‘

 

thresh

 

’ to truncate the geographic distances,
separating them in two groups: small and large distances. This way of proceeding was
inspired by the division of distances into distance classes in Mantel correlograms
(Subsection 13.1.6). How to determine the value of the threshold is described below.
The distances smaller than or equal to the threshold are kept as they are in the modified
distance matrix 

 

D

 

trunc

 

. The distances larger than the threshold are replaced by an
arbitrary large distance. 

 

D

 

trunc

 

 is a truncated distance matrix because the distances
larger than 

 

thresh

 

 have been removed and replaced by a large constant value. The
value arbitrarily used in computer software is 4 times the value of the threshold. Any
value larger than 4 would serve equally well the purpose of distorting the distance
matrix and allowing spatial eigenfunctions to be computed from it, with little change
to the numerical results.

 

• 

 

In dbMEM, the diagonal values of the distance matrix, which were originally zeros,
are replaced by the value (4 

 

×

 

 

 

thresh

 

)

 

*

 

. This change on the diagonal of 

 

D

 

trunc

 

 indicates
that a site is not connected to itself; this is also the case in the computation of
Moran’s 

 

I

 

 coefficients in correlograms.

 

• 

 

Compute a principal coordinate analysis (PCoA, Section 9.3) of 

 

D

 

trunc

 

 producing
eigenvalues and eigenvectors. If PCoA were computed from 

 

D

 

Geo

 

 instead, the relative
positions of the sites would be recovered in a two-dimensional ordination of the points;
so there would be two positive eigenvalues (or three for sites representing a large area
on the Earth’s surface), and all the other eigenvalues would be 0. Here, PCoA is
applied to the distorted (truncated) matrix 

 

D

 

trunc

 

. The surprising consequence is the
production of (

 

n

 

 – 1) eigenvalues different from 0 and (

 

n

 

 – 1) corresponding
eigenvectors, instead of two. Some of the eigenvalues are positive, some are negative.
The examples below will show the balance between positive and negative eigenvalues,
and what they mean. In the calculation of eigenvectors, the signs along any one
eigenvector can be switched among software or computer platforms, because the sign

 

*  

 

In classical PCNM eigenfunctions, the diagonal values of 

 

D

 

trunc

 

 are 0, indicating that a site is
connected to itself. The eigenvalues of classical PCNM analysis are larger than those of dbMEM
analysis by a constant equal to (4 

 

×

 

 

 

thresh

 

)

 

2

 

/2, so that there are artificially more positive
eigenvalues in the PCNM than in the dbMEM solutions, but the eigenvectors, which are the
spatial eigenfunctions, are identical to those computed by the dbMEM procedure described here.
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of the first element of each eigenvector (+ or –) is assigned arbitrarily, as explained in
Chapters 2 and 9.

 

• 

 

The principal coordinates, which are the spatial eigenfunctions, represent (or 

 

model

 

)
together the multiscale distance relationships among the sites. They can be used in the
same ways as any other types of explanatory variables: they can be mapped (examples
are shown below); or used as explanatory variables in linear modelling (multiple linear
regression, generalized linear models, canonical analysis, etc.); or used in variation
partitioning. Subsets of them can be selected by linear model selection procedures.

The eigenfunctions computed in this way are called 

 

Moran’s eigenvectors

 

 because
their eigenvalues are equal to Moran’s 

 

I

 

 coefficients of spatial correlation (eq. 13.1)
computed for these eigenfunctions using the pairs of sites that remain connected after
truncation, divided by a constant (Dray 

 

et al.

 

, 2006). In the case of a linear transect
with equispaced points (example developed below), about half the eigenvectors have
positive Moran’s 

 

I

 

 and model positive spatial correlation, and the other half have
negative Moran’s 

 

I

 

 and model negative spatial correlation at short range. In most
ecological studies, only the eigenvectors with positive Moran’s 

 

I

 

 are used to model the
spatial correlation in data, but the eigenvectors with negative Moran’s 

 

I

 

 are also
available to model the response data. In studies of territorial animals, for example, the
eigenfunctions with negative Moran’s 

 

I

 

 allow researchers to test hypotheses
formulated to explain the negative spatial correlation among the study sites. 

How should the truncation threshold be chosen? The method for choosing the
value of the threshold, 

 

thresh

 

, derives from the observation that MEM eigenfunctions
display variation across the full set of sites under study if the sites form a connected
graph in matrix 

 

D

 

trunc

 

, meaning that there is chain of connections made of distances
smaller than or equal to 

 

thresh

 

 linking all sites; the concept of 

 

G

 

c

 

-chain is explained in
Section 8.2. If there are, say, two groups of points (sites) with no connection between
the groups, the variation within each group is modelled by subsets of dbMEM
eigenfunctions that do not vary in the other group. This observation suggests the
following method: to ensure that all points are modelled by the same set of
eigenfunctions, choose the value of 

 

thresh

 

 in such a way that the distances smaller than
or equal to 

 

thresh

 

 in 

 

D

 

Geo

 

 form a 

 

G

 

c

 

-chain linking all points in a connected graph.
Disconnected pairs are identified in matrix 

 

D

 

trunc

 

 by distances equal to (4 

 

×

 

 

 

thresh

 

).
This leads to the following recommended method:

 

• 

 

Create a minimum spanning tree (MST, Sections 8.2 and 13.3.1) linking all points
(sites) in the study. Identify the length of the largest edge in the chain forming the
MST. An illustration is provided with Numerical example 3 below.

 

• 

 

Set 

 

thresh

 

 equal to the length of the largest edge in the MST, or any other value of the
user’s choice that is larger than that value. See the examples below. In practice,
choosing a 

 

thresh

 

 value equal to the longest edge forming the MST maximizes the
number of eigenfunctions that model positive spatial correlation. Although it is
compatible with the definition of dbMEM eigenfunctions, choosing for 

 

thresh

 

 a value

Moran’s
eigenvectors
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larger than that reduces the number of eigenfunctions that model positive spatial
correlation. The first few eigenvectors remain unchanged, but the following ones are
changed. Hence it is recommended to routinely use the smallest possible truncation
level for 

 

thresh

 

, i.e. the value provided by the MST.

It may be interesting and appropriate in some studies to analyse together two or
several disconnected groups of sites. In that case, separate sets of dbMEM
eigenfunctions should be generated before analysing the spatial structure of response
data observed at these sites, and assembled in a staggered matrix of eigenfunctions that
will allow a single analysis to be conducted for the sites belonging to the separate
groups. This is a far better practice than trying to create a single set of dbMEM
eigenfunctions by choosing a large 

 

thresh

 

 value. Indeed, that would compromise the
resolution of the analysis by affecting the fine-scale dbMEM eigenfunctions. Function

 

create.MEM.model()

 

 described in Section 14.7 allows users to generate
eigenfunctions for this type of analysis. An application is found in a study of the spatial
metacommunity architecture of zooplankton in groups of pools located in separate
valleys of the High Andes in Bolivia (Declerck 

 

et al.

 

, 2011). 

A MEM scalogram is a diagram representing the proportion of variance (

 

R

 

2

 

)
explained by the MEM eigenfunctions ordered along the abscissa by decreasing
eigenvalues (Legendre & Borcard, 2006). For univariate response data 

 

y

 

, the
scalogram can display the Pearson correlations, the regression coefficients, or the
absolute values of the 

 

t

 

-statistics associated with the regression coefficients computed
between 

 

y

 

 and the MEM eigenfunctions. Because the MEM eigenfunctions are
orthogonal to one another, the partial regression coefficients obtained in a multiple
regression of 

 

y

 

 on all MEM eigenfunctions are equal to the simple regression
coefficients between 

 

y

 

 and each MEM eigenfunction in turn. For a multivariate
response matrix 

 

Y

 

, the ordinate of the scalogram can display either the 

 

R

 

2

 

 explained by
the various MEM eigenfunctions or the associated 

 

F-statistics. A t-value scalogram
displays t-statistics obtained by multiple regression of a single response variable on the
MEM eigenfunctions. An example of t-value scalogram is shown in Fig. 14.5
(Ecological application 14.1a).

2 — Numerical examples

This subsection examines numerical examples of dbMEM eigenfunctions produced for
different sampling designs.

Numerical example 1. Consider a transect with 50 equally-spaced sites. Only the positions
of the points along the transect are required for the generation of the inter-point distance matrix
DGeo and the calculation of dbMEM eigenfunctions; the point positions were represented by the
integers 1 to 50 for the calculations, but they could have been given by any other series of 50
equally-spaced values. There were 49 non-zero eigenvalues and 49 corresponding eigenvectors
produced. The eigenvalues, ranging from the largest (!1 = 14.9) to the smallest (!49 = –15.0),
ordered the eigenfunctions by wavelengths, from broad scale to fine scale. Twenty-four
eigenvectors had positive eigenvalues and Moran’s I, and 25 eigenvectors had negative
eigenvalues and Moran’s I. 
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Figure 14.1 shows some of the 49 eigenfunctions that were produced. The first seven
eigenfunctions illustrated in the figure (dbMEM 1 to 5, 10, 20) belong to the group modelling
positive spatial correlation. dbMEM 30, 40 and 49 displays negative spatial correlation at small
distances; indeed, these eigenfunctions have negative Moran’s I values. The values along each
eigenfunction form a sine wave. Signs may be reverted along any one eigenfunction because
different software, or the same software running on different computer platforms, can produce
switched signs along any of the eigenvectors in PCoA. The wavelengths of eigenfunctions are
rarely integer multiples of the sampling interval. Because the eigenfunctions are only computed
and plotted at the 50 sampling points, interference generates amplitude-modulation (AM)
waves in panels dbMEM 30, 40 and 49, although the eigenfunctions are perfectly correlated
with sine waves.

Guénard et al. (2010, eq. 3) showed that for a transect containing n regularly-
spaced points and with sampling interval s, the wavelength !i of the sine wave
corresponding to the eigenfunction with rank i is: 

(14.1)

Figure 14.1 Graphs of ten of the 49 dbMEM eigenfunctions that represent the spatial variation along a
transect with 50 equally-spaced points. Abscissa, from left to right: sites 1 to 50. Ordinates:
values along the dbMEM eigenfunctions. 

!i 2 n s+( )
i 1+( )

------------------=
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For example, for a 50-point transect as the one used to compute Fig. 14.1, the complete
sine wave of dbMEM 1 has a wavelength of 51 units (eq. 14.1), compared to the length
of the transect which is 50 – 1 = 49 inter-point units, assuming sampling points with
negligible size. The following eigenfunctions form sine waves of shorter wavelengths,
as predicted by eq. 14.1. The last eigenfunction shown in Fig. 14.1, dbMEM 49, has a
wavelength of 2.04; hence it is not in phase with the set of points that are spaced by 1
unit and a false wave that has the length of the series modulates the amplitude of the
sine wave in the envelope of the eigenfunction graph (amplitude modulation, or AM,
wave). When the points are irregularly-spaced along a transect, the sine waves are
deformed, but one can still recognize the eigenfunctions that model broader-scaled and
finer-scaled phenomena. Examples are given by Borcard et al. (2004, Appendix C).

Numerical example 2. Surveys of permanent forest plots*, as well as many field
experiments, are conducted on regular grids of points. A regular 12 × 8 grid (96 points) was
generated for the present example to illustrate dbMEM eigenfunctions on regular grids. The
eigenfunctions were computed for that grid using a thresh value of 1, which corresponded to the
distance between adjacent points in the horizontal and vertical directions. There were a total of
95 eigenvalues and corresponding eigenfunctions. The first 48 eigenfunctions modelled positive
spatial correlation† and the last 47 modelled negative spatial correlation. 

Figure 14.2 shows maps of ten of the 48 eigenfunctions modelling positive spatial
correlation. The patterns alternate between vertical, horizontal, and diagonal contrasts. The two
central horizontal lines of points in the map of dbMEM 1 have the same large sine wave shape as
dbMEM 1 in Fig. 14.1: the values go from 0 (grey) on the left, to negative values (white), to 0
(grey) in the centre of the lines, to positive (black), and back to 0 (grey) on the right.

For a square regular grid of points, many of the pairs of successive eigenfunctions
produced during dbMEM generation have multiple eigenvalues (Section 2.10, third
property), creating situations of circularity. Different software, or different computer
platforms using the same software, may produce pairs of eigenvectors that are rotated
differently. Note, however, that these pairs of eigenfunctions explain together the same
amount of variation in the data, whatever the rotation. In any case, the patterns on
some eigenfunction maps are symmetric while for pairs of multiple eigenvalues,
successive maps display the same pattern with a 90º rotation. Borcard et al. (2011,
Fig. 7.4) showed spatial eigenfunction maps for a square grid of points.

Numerical example 3. Nine points were used to illustrate the construction of connection
networks in Figs. 13.22 to 13.24. These points are used again here to compute dbMEM

*  See note on the CTFS permanent forest plots in Subsection 6.5.3 and Ecological
application 14.1b where one of those forest plots is analysed.
†  The expected value of Moran’s I under the null hypothesis regarding the absence of spatial
correlation is a small negative value, E(I) = –(n – 1)–1 (eq. 13.6). Sometimes, as in the present
example, it happens that a dbMEM eigenfunction has a small negative Moran’s I value that is
larger than E(I), and thus also has a small negative eigenvalue. In the example, eigenfunction 48
had a Moran’s I value of –0.00948, which is larger than E(I) = –0.01053; it was counted among
those that modelled positive spatial correlation.
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eigenfunctions. Figure 14.3 shows the minimum spanning tree computed from the spatial
coordinates of the points found in Fig. 13.22. The longest edge along the tree has a length of
3.04 units; that length was used as the thresh value for the computation of the truncated distance
matrix Dtrunc. Figure 14.4 shows maps of the eight eigenfunctions produced by dbMEM

Figure 14.2 Bubble maps showing ten of the 48 dbMEM eigenfunctions that display positive spatial
correlation. Shades of grey represent the values in each eigenvector, from white (largest negative
value) to black (largest positive value). Signs may be reverted in the construction of the
eigenvectors with no consequence for the analysis; reverted signs would interchange black and
white in the panels. The maps were produced using function sr.value() (Section 13.6).
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decomposition: four display positive spatial correlation and have positive eigenvalues and
Moran’s I, and four display negative spatial correlation and have negative eigenvalues and
Moran’s I. The map of dbMEM 1, for example, displays a gradient between negative values
(white) on the left and positive values (black) on the right. dbMEM 2 contrasts the centre of the
map (white circles) with the left and right edges (dark grey and black circles). The last maps
have circles with contrasting shades side by side, picturing negative spatial correlation at short
range.

An important methodological point concerns the analysis of data that embed a
linear spatial gradient. A linear gradient can be modelled by dbMEM eigenfunctions.
Along a regular transect, for example, the even-numbered dbMEM eigenfunctions can
be used together in a linear function to model a linear gradient almost perfectly,
i.e. with a very high R2. This is because the even-numbered eigenfunctions (1, 3, 5,
etc.) are asymmetrically positioned with respect to the centre of the transect, as can be
seen in Fig. 14.1. The odd-numbered eigenfunctions (2, 4, 6, etc.), on the contrary,
have symmetrical shapes with respect to the centre of the transect and cannot be used
to model a linear gradient. This being said, it is not good practice to use eigenfunctions
to model a gradient. There are two reasons for this. Firstly, a gradient can be seen as a
portion of a spatial structure that is much larger than the study area. Nothing will be
learned by using half of the eigenfunctions to model such a structure, which can be
modelled more simply by a linear function of the positions of the sites along a transect
or their geographic coordinates on a surface. Secondly, if eigenfunctions are used to
model a linear gradient, they cannot be used to model more interesting spatial
structures. As a consequence, when the response data contain a linear gradient in one
or two geographic dimensions, it is recommended to detrend them prior to MEM
analysis (Subsection 13.2.1).

Figure 14.3 Minimum spanning tree of the nine points from Fig. 13.22. The longest edge, between points 7
and 8, is in bold; its length (3.04) is used as the thresh value. The dashed edges are shorter.

Detrend
the data
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Users of spatial eigenfunction analysis are warned against the temptation to
interpret a single MEM eigenfunction that happens to fit well a spatial structure that
can be observed in response data. Had the set of study points be offset with respect to
the actual study area, for instance to the east or to the west, that MEM would probably
not fit the response data so well, or not at all, and the structure would then be fitted by
other eigenfunctions. The message here is that users should look for sets of MEM
eigenfunctions, corresponding to a given spatial scale, that, together, fit response data
fairly well, not individual eigenfunctions.

3 — Ecological applications

Many applications of spatial eigenfunction analysis of the dbMEM type are available
in the ecological literature. Three of those are summarized here. 

Figure 14.4 Bubble maps showing the eight dbMEM eigenfunctions for the nine points from Fig. 13.22. The
first four model positive spatial correlation. Shades of grey: see Fig. 14.2.
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Ecological application  14.1a

This application illustrates dbMEM analysis for a single response variable along a transect of
equally-spaced sampling sites. Borcard et al. (2004) reanalysed data originally collected and
analysed by Tuomisto & Poulsen (2000) who surveyed the fern assemblages (32 species) along a
1300 m transect in the tropical forest, in the Huanta region of the Upper Amazonian River in
northeastern Peru. The response variable examined in the present application is the abundance of
the fern Adiantum tomentosum Klotzsch in 260 adjacent 5 × 5 m quadrats. Explanatory
environmental variables were also collected along the transect. The objective of the study
presented by Borcard et al. (2004) was to determine the spatial scales at which the abundance of
the species was structured, and relate these scales to environmental variables that were
hypothesized to affect the spatial distribution of the species. 

In the analysis of the Huanta fern data, Borcard et al. (2004) used all 176 PCNM
eigenfunctions that had positive eigenvalues. These corresponded to dbMEM eigenfunctions 1
to 129 that modelled positive spatial correlation plus the first 47 dbMEM that modelled negative
spatial correlation. In the analysis recomputed for the present application, only the 129 dbMEM
that modelled positive spatial correlation were used; this corresponds to present-day practice.
The changes to the results are small as can be seen by comparing the present results to those
shown in Appendix B of Borcard et al. (2004). A dbMEM model could also be developed based
on the eigenfunctions that model negative spatial correlation; such a model, if significant, would
display avoidance phenomena.

Prior to analysis against the dbMEM and environmental variables, the abundance data were
square-root transformed to make the distribution of abundances more symmetrical, albeit not
strictly normal. There was no significant spatial trend in the data, so no detrending was carried
out. The dbMEM eigenfunctions were computed along the transect; the integers 1 to 260
represented quadrat positions along the transect. Among the 129 dbMEM that had positive
Moran’s I values and thus modelled positive spatial correlation, 26 significant eigenfunctions
(p " 0.05) were identified by forward selection (Section 11.1.10, paragraph 7). In the scalogram
(Fig. 14.5), these eigenfunctions are identified by black symbols. These same 26 eigenfunctions
were also significant in a multiple regression of the response variable against the 129 dbMEM
eigenfunctions.

Together, these 26 significant eigenfunctions formed a descriptive model with  = 0.568.
They were divided into four submodels as shown in the scalogram (Fig. 14.5): the first seven
dbMEM were called the very-broad-scale (VBS) submodel, the next seven the broad-scale (BS)
submodel, the next six the medium-scale (MS) submodel, and the last six formed the fine-scale
(FS) submodel. Natural clusters of significant values can be seen in the scalogram, especially for
the first two groups; they helped divide the dbMEM into submodels. Because there is a single
response variable in this application, i.e. the Adiantum tomentosum fern abundance, fitted values
were computed by regression of the species data on the eigenfunctions forming each submodel.
These fitted values are show in Fig. 14.6 b-e. All submodels were statistically significant.

The next step of the analysis was to identify the environmental variables that corresponded
to the different submodels. 

• The very-broad-scale (VBS) submodel was explained by six variables that were significant in
forward selection (  = 0.382 with respect to the variance in the VBS fitted values): quadrat
elevation (this variable was detrended against quadrat positions along the transect prior to the
analysis), trees 3-7.5 cm dbh (dbh is diameter at breast height), trees 31.5-62.5 cm dbh, lianas 8-
15 cm diameter, thickness of soil organic horizon, canopy height. 
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• The broad-scale (BS) submodel was explained by a different linear model containing two of
the same variables as in the VBS submodel (  = 0.124 with respect to the variance in the BS
fitted values): quadrat elevation, and lianas 8-15 cm diameter. 

• The medium-scale (MS) submodel was explained by two variables (  = 0.064 with respect to
the variance in the MS fitted values): waterlogging (saturation of the soil by groundwater),
which was not selected in the VBS and BS submodels, and canopy height. 

• The fine-scale (FS) submodel was not explained by any of the environmental variables that
were available for the analysis. 

In multiscale analysis of ecological data, one often finds that the fine-scale submodel is not
explained by the available environmental variables, although the eigenfunctions composing it
are significant. One remains uncertain as to the interpretation to give to this observation: either
the environmental variables that could explain the fine-scale variation have not been measured,
or the fine-scale spatial structure displayed by the response data is not due to environmental
control (Chapter 1, eq. 1.1) but represents autocorrelation (eq. 1.2) generated by the dynamics of
the population (in the present example), or by community dynamics when studying community
composition data. This question of interpretation is revisited in Subsection 14.1.4.

Variation partitioning (Subsections 10.3.5 and 11.1.11) was performed with respect to
(1) the seven environmental variables selected above, (2) the 20 dbMEM eigenfunctions
forming submodels VBS, BS and MS that are related to the environmental variables, and (3) the
six dbMEM eigenfunctions forming the FS submodel. Figure 14.7a shows the partitioning
results. Even though the two sets of dbMEM eigenfunctions were uncorrelated, subtraction of

 coefficients artificially created small negative values in the fractions of the partition
corresponding to intersections between the dbMEM submodels; these small values should be
interpreted as zeros. This annoying problem can be corrected by creating a hierarchy among the

Figure 14.5 Scalogram of the fern Adiantum tomentosum multiscale structure along the Huanta transect.
Abscissa: the 129 dbMEM eigenfunctions with positive Moran’s I. Ordinate: absolute values of
the t-statistics. The 26 eigenfunctions selected by forward selection (p " 0.05) are identified by
black squares. Dashed lines indicate the divisions into the VBS, BS, MS and FS submodels.
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Figure 14.6 MEM analysis of the fern Adiantum tomentosum in the Huanta transect, Peru. Abscissa: quadrat
positions along the transect. (a) Square-root transformed abundances. Zero values were
observed in portions of the transect. (b) Fitted values of very-broad-scale (VBS) submodel,
centred (seven dbMEM); (c) of broad-scale (BS) submodel (seven dbMEM); (d) of medium-
scale (MS) submodel, (six dbMEM); (e) of fine-scale (FS) submodel (six dbMEM). The
adjusted R2 of each submodel is shown. The ordinate scale is the same in graphs b-e to
emphasize differences in explained variation among submodels.
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eigenfunction submodels in the analysis, or by apportioning the  of the intersection fractions
proportionally to the variation explained by each submodel (Legendre et al., 2012). In the
present application, if one applies hierarchical partitioning and states that the (VBS, BS and MS)
submodel has priority over the FS submodel, then the (VBS, BS and MS) submodel is served
first in the variance resource and secures for itself the small negative fractions found in the
intersection with the FS submodel. As a result, the intersection in explained variation between
the two submodels has disappeared in Fig. 14.7b. 

Nearly all the among-site fern variation explained by the environmental variables was also
explained by the eigenfunctions, showing that it was spatially structured. The first three spatial
submodels, grouped in the upper-right circle of Fig. 14.7b, accounted for about half (52%) of the
among-site variation of fern abundances, and (0.203/0.520) # 40% of that explained variation
was shared with the environmental variables, pointing to an environmental control of that
portion of variation. This left about 60% of that variation unexplained by the environmental
variables. The fine-scale submodel explained much less of the fern abundance variation, but
very little of that variation was shared with the environmental variables, suggesting that a
different process was at work that generated this smaller amount of explained variation.

Ecological application  14.1b

This application illustrates dbMEM analysis for a multivariate response matrix on a regular grid
positioned on a geographic surface (map). Data from a 24-ha permanent forest plot established
and surveyed in 2005 in the Gutianshan National Nature Reserve in the Zhejiang Province of

Figure 14.7 (a) Venn diagram presenting the variation partitioning results for the fern Adiantum tomentosum
along the Huanta transect. The fraction values displayed are computed from adjusted R-squares
( ). (b) Same partition with hierarchical partitioning, which keeps the two sets of dbMEM
orthogonal (intersection fractions = 0). The diagram on the left is the one produced by function
varpart() of the VEGAN package in R, onto which text was added.
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China were analysed by Legendre et al. (2009) to determine how much of the spatial variation in
species composition (beta diversity) was spatially structured, and of that, how much variation
was related to the topography of the forest plot. The forest plot was fully surveyed, i.e. all
140676 trees with diameter at breast height (dbh) larger than 1 cm were tagged, identified to
species, measured, and georeferenced. The trees belonged to 49 families and 159 species. The
climate of the plot (29º15’N) is subtropical. The Gutianshan plots is a member of the CTFS
network (see footnote in Subsection 6.5.3).

For the analysis, the forest plot was divided in the computer into cells of 20 × 20 m. The first
part of the spatial analysis was based on those 600 cells. There were between 19 and 54 tree
species per cell. Four topographic variables were available. Three of them (altitude, convexity of
the cells, and slope) were developed into cubic polynomials to allow these variables to model
nonlinear relationships with the tree species abundances, thus increasing their explanatory
power; see polynomial regression, Subsection 10.3.4. The fourth variable, aspect, is a circular
variable; it was transformed into two new variables, sin(aspect) and cos(aspect), which allowed
their use in linear models. 

339 PCNM eigenfunctions (now called dbMEM) were used in the analysis without any
selection. Indeed, the  statistic obtained from the analysis of the community composition
data by the full set of 339 PCNM (  = 0.626) was nearly identical to that obtained after
forward selection of 179 eigenfunctions that were significant at the 0.05 level (  = 0.625). The
339 PCNMs included 200 functions with positive Moran’s I, which modelled positive spatial
correlation, and 139 with negative Moran’s I*. Among the first 180 eigenfunctions, nearly all
significantly explained the tree community variation; these eigenfunctions represent broad to
medium-scale variation.

The variation partitioning results (Fig. 14.8a) indicated that 63% of the among-cell variation
( ) of the community composition (159 species) was spatially structured and explained by the
339 spatial eigenfunctions. Nearly half of that (0.278/0.626 = 44%) was also explained by the
four topographic variables. Without surprise, nearly all the variation explained by the
topographic variables was shared with the spatial eigenfunctions. The spatially-structured
fraction of variation unexplained by the topographic variables (  = 0.348) could be related to
unmeasured environmental variables, like soil chemistry, or it may have been generated by
community dynamics, including neutral processes (Subsection 1.1.1).

For multivariate response data, variation partitioning is computed using RDA (Section 11.1)
instead of multiple regression. The total variation of the community composition data by the
table of topographic variables (fraction [a+b] of the Venn diagram in Fig. 10.10), and that of the
joined tables of topographic and PCNM variables (fraction [a+b+c]), were partitioned into a
number of orthogonal canonical axes by RDA. The table of fitted values corresponding to [c],
the fraction uniquely explained by the PCNM variables, was computed by partial RDA, which
also partitioned it into orthogonal canonical axes. Maps of the first canonical axis of each of
these analyses are presented in Fig. 14.8b-d. Note that these maps are not additive, i.e. the values
on the map of [a+b+c] are not equal to the values on the map of [a+b] plus those on the map of
[c], because the production of orthogonal axes is done separately by the three canonical
analyses. The interpretation of these maps is not as straightforward as for univariate response

*  In classical PCNMs, some of the eigenfunctions with negative Moran’s I have positive
eigenvalues, as explained in the footnote of Subsection 14.1.1. These eigenfunctions were not
used when the analysis was repeated with only the 200 dbMEM eigenfunctions with positive
Moran’s I. That analysis produced nearly identical variation partitioning results as in Fig. 14.8a.
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data. These maps are useful, though, because they allow ecologists to visualize the spatial
variation on separate canonical axes for each fraction of variation separately.

In addition to the 20 × 20 m cells, the forest plot was also divided in the computer into cells
of sizes 10 × 10 m, 40 × 40 m, and 50 × 50 m. These four cell sizes allowed divisions of the 24-
ha plot into cells of equal sizes that added up to the whole plot. The variation of the four
resulting community tables was partitioned as described for the 20 × 20 m cell data. Comparison
of the results showed that the effect of the topographic variables (fraction [a+b]) increased with
cell size whereas the variation uniquely modelled by the eigenfunctions (‘pure’ spatial variation,
fraction [c]) decreased. Hence the perceived balance between environmental and spatial effects
varies with the size of the sampling units (‘grain size’ in Section 13.0).

Figure 14.8 (a) Venn diagram: variation partitioning of the Gutianshan forest community composition with
respect to topographic variables and spatial eigenfunctions. (b-d) The Gutianshan forest plot was
divided into 600 cells of 20 × 20 m. Maps of canonical axis 1 of (b) fraction [a+b+c] (43% of the
species variation, unadjusted R2), (c) fraction [a+b] (24% of the species variation), (d) fraction
[c] (14% of the species variation). Values in the cells are represented by shades of grey as shown
above each map. Modified from Legendre et al. (2009).



876 Multiscale analysis: spatial eigenfunctions

Ecological application  14.1c

This application illustrates dbMEM analysis of multivariate response data in a non-standard
sampling situation. Freshwater fish were censused by snorkelling at 90 sites in the littoral zone
of a small lake; the data were analysed by Brind’Amour et al. (2005). The littoral zone of a lake
forms a loop instead of a transect. The same situation occurs when sampling the beach around an
island or the ecotone* around a forest patch. To compute dbMEM eigenfunctions in such a
situation, one must proceed as follows (Fig. 14.9):

• Calculate the distances between adjacent sites along the sampling loop (e.g. the shoreline in
the Brind’Amour et al., 2005, fish data). The largest of these distances provides the thresh value.

• Construct matrix Dtrunc: keep the original distances between the neighbouring sites as they are
in the distance matrix. Recode the distances between non-neighbouring sites to 4 × thresh. The
value of thresh is 1 in the simplified example of Fig. 14.9; in a real study, it would be the largest
distance between adjacent sites. Values 1 are found in the subdiagonal row of matrix Dtrunc. An
additional value 1 between sites 10 and 1 closes the loop. The diagonal of Dtrunc receives values
of 4 × thresh to produce dbMEM eigenfunctions (Subsection 14.1.1).

*  An ecotone is a transition area between two adjacent and different patches of landscape, such
as forest and grassland.

Figure 14.9 Example of construction of dbMEM eigenfunctions for a loop sampling design. (a) Ten sites
located along the shoreline of a lake. The lines representing the distances between neighbouring
sites along the shore are in bold. (b) Truncated distance matrix Dtrunc: the neighbouring sites are
at distance of 1 in this sketchy example; non-neighbouring sites (grey lines in panel a) receive
values 4 × thresh, where thresh = 1. Diagonal values (= 4) not shown. Redrawn from
Brind’Amour et al. (2005).
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For the 7-species fish community found in the small study lake, Brind’Amour et al. (2005)
used RDA (Section 11.1) to compute dbMEM models corresponding to four scales: very broad,
broad, middle, and fine scale. The community data were Hellinger-transformed (Section 7.7)
prior to RDA. For interpretation, the first canonical axis of matrix Z (eq. 11.18) corresponding to
each submodel was related by multiple regression to an explanatory matrix of environmental
variables.

Besides the Adiantum tomentosum variable studied in Ecological application 14.1a,
three other ecological data sets were analysed by Borcard et al. (2004): marine
zooplankton collected along transects in Guadeloupe, chlorophyll a in a brackish
lagoon in southern France, and the oribatid mite data also used in Ecological
application 11.5. Other examples are: Jones et al. (2008: fern community composition
across 1045 circular plots in an old growth rain forest in Costa Rica); Léonard et al.
(2008: macrophyte community composition in 232 quadrats sampled along 24
transects in a fluvio-lacustrine underwater landscape); Arias-González et al. (2008:
fish and coral community composition among reefs, and among reef types within reefs,
in the western Caribbean Sea); Declerck et al. (2011: application briefly described at
the end of Subsection 14.1.1); Bellchambers et al. (2011: distribution of spider conch
in the Cocos Islands); Astorga et al. (2011: spatial variation of macroinvertebrate
species richness in headwater streams at two spatial scales in Finland); Andersen et al.
(2011: environmental control and spatial structures in peatland vegetation); Legendre
& Birks (2012: analysis of fossil diatom assemblages (139 taxa) in a sediment core
from south-western Scotland covering the past 10000 years). 

Applications are also found in the field of hydrology. — Lacey et al. (2007) and
Roy et al. (2010): modelling turbulent flow in a river in Québec; Noorduijn et al.
(2010): water table response to alley farming of trees in Western Australia; Ali et al.
(2010): soil moisture patterns in relation to hydrometeorological variables and
topography in a forested catchment in Québec.

4 — Interpretation of the fractions

In simple regression or canonical analysis modelling, one is interested in interpreting
the variation of the response data (vector y or matrix Y) that is accounted for by the
explanatory variables (matrix X) according to a model of causal relationships stated
prior to the analysis. That model may be formulated loosely or stated quite precisely.
The fraction of variation explained by the model is estimated by the adjusted
coefficient of determination ( ) in multiple regression (eq. 10.21) and in RDA
(eq. 11.5). The residual variance is assumed to be a random error component.

There may be two reasons for decomposing the variation of response vector y or
matrix Y into additive components through the variation partitioning approach
(Subsections 10.3.5 and 11.1.11). Fractions [a], [b] and [c] referred to in the following
paragraphs are shown in Fig. 10.10.

Ra
2
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• If the spatial structure is considered to be a source of false correlations, i.e. that are
not indicative of causal relationships, fraction [b] measures the interference of the
spatial variables with the analysis of the relationship between Y and X. Fractions [b]
and [c] should not be interpreted separately in that case, although one may still be
interested in modelling the spatial structure of Y (fraction [b + c]) in a different
analysis. As explained in Subsection 14.5.3, corrected tests of significance of fraction
[a], which measures the effect of the X variables on Y, are obtained by incorporating
MEM eigenfunctions as covariables in partial RDA to control for spatial correlation. 

• If both the spatial and non-spatial structures of the explanatory variables are
considered causal to the spatial variation of Y, fraction [a + b] estimates the amount of
variation of Y explained by X. In such a case, the residuals of the analysis of Y by X
are assumed to contain two identifiable fractions: [c], which is spatially structured, and
[d], which is the random error component. A test of significance allows one to
determine, at some confidence level $, if [c] accounts for a significant fraction of the
variation of Y. When that is the case, one should try to interpret fraction [c]. The next
step is to “explain away” fraction [c] if possible. In other words, one should try to
make fraction [c] fade away by adding explanatory variables (if available) to matrix X
and recomputing the model. Mapping the site scores for the significant canonical axes
of fraction [c] may help identify the processes responsible for this fraction of variation
(Borcard & Legendre, 1994). Section 1.1 has shown, however, that spatial structures
found in communities may originate from neutral processes of population and
community dynamics (eq. 1.2) in addition to spatial dependence on environmental
factors (eq. 1.1), so that not all the spatial variation in Y may be explainable by X.

In statistical analysis, causality, if invoked, resides in the hypotheses of the
researcher (Subsection 4.5.4). The objective of causal statistical modelling is to assess
how much of the observed variation can be explained by a consistent body of
hypotheses (i.e. a set of compatible hypotheses). Problems of interpretation may occur,
however, when important causal factors are left out of the model. The amount of
variation of Y explained by the model may be small and, if these factors are causally
anterior to both the variables in Y and some of the variables in set X, false correlations
may appear in the model; this is also the case in path analysis (Section 10.4).

In community analysis, researchers are faced with a multiplicity of potential causal
agents acting at a variety of spatial and temporal scales, thus creating a network of
interactions that may be difficult to untangle. Section 13.0 mentioned three general
models often invoked to explain community variation: the environmental control
model (ECM), the biotic control model (BCM), and historical dynamics (HD). The
latter refers to past natural events, such as isolation by geographic barriers and
disturbances of various kinds (e.g. storms, forest fires, volcanic eruptions, landslides),
and to anthropogenic causes such as agriculture, logging, mining, and constructions of
various sizes (Plate 14.1, p. 906). These factors are usually not explicitly represented
by variables in X. Some of these events may be traced by researchers (e.g. tornadoes,
forest fires, logging, past agricultural plots) and explicitly included in a second round
of modelling, while others cannot and may only be invoked in general terms to account
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for community variation. Table 14.1 summarizes the interpretation of the fractions of
variation of Fig. 10.10, assuming that matrix W contains spatial eigenfunctions. The
following examples refer to factors that may intervene to explain community variation
in a temperate forest; they illustrate the statements found in Table 14.1.

Table 14.1 Causal factors invoked to explain the fractions of variation [a] to [d] of Fig. 10.10, assuming that
matrix W contains spatial eigenfunctions. The table focuses on the correlations between
environmental variables (matrix X) and community composition (matrix Y). The following
hypotheses are invoked: environmental control model (ECM), biotic control model (BCM),
historical dynamics (HD), and spatial autocorrelation. Bullets: factors explicitly stated in the
model; asterisks: factors not explicitly spelled out. Arrows: causal relationships. Modified from
Borcard & Legendre (1994).

Fraction Causal factors Process Causal model1

[a] • Non-spatially-structured component ECM
of environmental or biotic factors BCM

* Non-spatially-structured environmental ECM
or biotic factors not included in the analysis BCM

* Historical events without spatial HD
structure at the scale of the study

[b] • Spatially-structured component of biotic or ECM
environmental factors included in the analysis BCM

* Spatially-structured environmental or biotic ECM
factors not included in the analysis BCM

* Spatially-structured historical events HD

* Spatial autocorrelation in X and Y Spatial autocorrelation

[c] * Spatially-structured environmental or biotic ECM
factors not included in the analysis BCM

* Spatially-structured historical events HD
* Spatial autocorrelation in matrix Y Spatial autocorrelation

[d] * Environmental or biotic factors not included ECM
 in analysis and not spatially structured BCM

at scale of study
* Historical events not included in analysis HD

and not spatially structured at scale of study
• Random variation, sampling error, etc. Noise

1 C: community structure (matrix Y)
E: factor explicitly represented by explanatory variable(s) in the analysis (in matrix X)
F: factor not represented by explanatory variable(s) in the analysis

E C

{ F
E

C

E C

{ F
E

C

CE
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[a] The environmental and biotic factors that are explicitly represented by variables in
matrix X and generate the variation explained by fraction [a] have either local effects
or spatial variation at scales finer than those detected by the spatial eigenfunction
model. Besides these factors, local variation in unobserved soil chemistry data or other
environmental variables may affect the community structure (matrix Y) as well as the
explanatory variables found in X, a case that would lead to covariation between X and
Y (false correlation). In addition, localized infestation by pest insects may have
occurred in the past, leaving variation at some sites in the forest that persisted
throughout the years; such a historical event may also have left traces in the variables
included in X, for instance a higher content in soil organic matter due to larger
amounts of dead wood deposits, leading to causal or non-causal correlations.

[b] The environmental and biotic factors that are explicitly represented by variables in
X often have spatial variation, detectable by the spatial eigenfunction model, which
may explain part of the variation of the forest community. Besides these factors, spatial
variation in unobserved environmental factors may affect the community structure
(matrix Y) as well as the explanatory variables found in X, a case that would lead to
covariation between X and Y (false correlation). In addition, past occupation of the
territory under study by agriculture may have left spatially-structured variation in the
forest community; it may also have left traces in the measured soil variables of matrix
X, leading to causal or non-causal correlations. Spatial correlation in both the response
and explanatory variables may cause covariation between matrices Y and X, hence
inflating fraction [b].

[c] Part of the spatial structure of the community may be caused by environmental or
biotic factors that were not included in the analysis; for instance, a soil moisture
gradient or the effects of grazers may not have been measured. A windstorm may have
occurred in the past, creating a clearing in the forest that was later recolonized and has
left a detectable broad-scale spatial structure in the forest community. In other types of
communities, competition within or among species may play an important role but
may have been left unmeasured. Neutral community processes such as growth and
reproduction are also a major source of spatial autocorrelation (eq. 1.2), which is
responsible for part of the spatially-structured variation observed in communities; it
cannot be explained by external factors.

[d] This fraction represents the unexplained variation of matrix Y that either is not
spatially structured, or has spatial structure at scales finer than those detected by the
spatial eigenfunction model. Some of that variation may perhaps be explained by
factors that have not been included in the analysis, such as local patches of grazers. If
these explanatory variables had been included in X, that variation would have
contributed to fraction [a]. The remainder is random local variation, which may be
referred to as local innovation, and sampling error.

The above examples illustrate the fact that, in some cases, trying to increase the
fraction of explained variation by incorporating more environmental variables into the
model is doomed to failure. Fraction [c], which may represent an important proportion
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of the unexplained variation, can often only be explained by neutral population or
community-based spatial processes (e.g. reproduction, biotic interactions) or by past
events that can sometimes be documented, but remain often unknown to the
investigator.

Partitioning the spatial variation of communities into components and mapping
them allow researchers to find interesting correlations that are consistent with models
of causal relationships. It also allows one to quantify and map fraction [c], which
measures by how much preconceived models fall short of accounting for all the spatial
variation in data. The same type of analysis can be conducted on time series.
Ecologists can use insights obtained by analysing fraction [c] to formulate better
ecological hypotheses, which they may undertake to test by going back to the field to
collect new data (Borcard & Legendre, 1994; Section 13.5, numerical example).

14.2 Moran’s eigenvector maps (MEM), general form

Dray et al. (2006) developed a general algebraic formulation for the construction of
Moran’s eigenvector maps, or MEM eigenfunctions. They observed that the
computation of dbMEM (Section 14.1) actually involved two different types of
information (Fig. 14.10). The first type is found in connectivity matrix B, which
contains information about the presence or absence of connections between points.
The graph edges representing the connections in Fig. 4.10a are coded in binary form in
matrix B: the value is 1 if there is a black edge between two points, and 0 otherwise.
The second type of information is found in the edge weighting matrix A, which
contains the values, or weights, that are placed on the edges of the graph. In this
generalized approach, matrices B and A are constructed separately; B can contain any
type of graph and A any type of weights.

1 — Algorithm described through an example

This generalization leads to a new algorithm for the construction of dbMEM
eigenfunctions, different from that of Section 14.1.1, which will now be described.
Following the description of the new algorithm for dbMEM, Subsection 14.2.2 will
explain how to obtain MEM eigenfunctions that differ from dbMEM. In the numerical
example that follows (next paragraph), the algorithm is described with distances in
matrix A. In the paragraph after the numerical example, the algorithm is redescribed
with similarities in matrix A.

Numerical example 3 (continued). Let us consider again the data (nine points) used in
Numerical example 3 of Subsection 14.1.2. These points were used to illustrate different types
of connection networks (graphs) in Figs. 13.22 to 13.24. The point coordinates are shown in
Fig. 13.22, and Fig. 14.10a displays lines representing the distances among the points. 

MEM
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• The 10 edges in black in Fig. 14.10a are equal to or shorter than the longest edge of the
minimum spanning tree (Fig. 14.3), which has a length of 3.04 units. That value is chosen as the
thresh value, as in Numerical example 3 of Subsection 14.1.2. 

• Construct the binary connectivity matrix B (Fig. 14.10b, left). In that matrix, the 10 distances
equal to or smaller than thresh are represented by 1 (connection edges present) and those larger
than thresh are coded 0 (no connection).

• Construct the edge weighting matrix A (Fig. 14.10b, centre). The weights can be any set of
values that are appropriate for the problem at hand, representing the difficulty of exchange
between points. In the present example, the inter-point distances are used as weights.

Figure 14.10 Generalized MEM eigenfunctions are the principal coordinates of matrix Dtrunc. (a) Graph of
the nine sites of Numerical example 3, drawn on a map. The 10 distances that are equal to or
shorter than the longest edge of the minimum spanning tree (Fig. 14.3) are in black, those that
will be discarded are represented by dashed grey lines. The largest distance in black in the graph,
3.04, is the thresh value. It is found between sites 7 and 8. (b) Connectivity matrix B where the
10 edges in black in panel (a) are represented by values 1, the other edges by 0. The weight
matrix A can contain any set of weights of interest. In this example, it contains the distances
among points. Matrix W is the result of the Hadamard product (represented by *) of B and A.
(c) Matrix Dtrunc is obtained by replacing the zero values in W by 4 times thresh: 4 × 3.04 =
12.16, rounded to 12.2 in the figure. The diagonal contains values 4 × thresh, indicating that a
site is not connected to itself. For clarity, only the lower triangular and diagonal portions of the
matrices are represented; all four matrices are symmetric.

Connectivity
matrix B

Edge
weighting
matrix A
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• Compute the Hadamard product (Section 2.5) of B and A to obtain the spatial weighting matrix
W (Fig. 14.10b, right). The 10 distances in matrix A that correspond to edges coded by 1 in B
are preserved in W; the other distances are replaced by zeros. Note that the diagonal contains
zeros; these values will be changed in the next step.

• Construct matrix Dtrunc (Fig. 14.10c). It is obtained by replacing the zero values in W by 4
times the thresh value. The fact that the zeros on the diagonal are replaced by 4 × thresh
indicates that a site is not connected to itself.

• Compute the principal coordinates of matrix Dtrunc by PCoA (Section 9.3): they are the MEM
eigenfunctions. For the present example where inter-point distances were used in matrix A, the
MEM eigenfunctions obtained are identical to the dbMEM eigenfunctions of Numerical
example 3; they are plotted in Fig. 14.4. This example shows that dbMEM are but a special type
of MEM eigenfunctions. Other values than inter-point distances will be used in the next
subsection. Because matrix Dtrunc has non-zero values on the diagonal, the function used to
compute PCoA must not assume that the diagonal contains zeros*.

In the Dray et al. (2006) paper, the algorithm is described in terms of similarities
instead of distances. To obtain dbMEM eigenfunctions identical to those of
Section 14.1, the edge weighting similarity matrix A = [aij] is computed as 

and the inter-point distances are used as the dij values. The aij are similarities
representing the ease of communication of matter, energy or information between
points. A is multiplied (Hadamard product) with connectivity matrix B (where bij = 1
when dij " thresh) to produce W, which contains zeros for all excluded distances. The
diagonal elements are also zero, indicating that a site is not similar, or connected, to
itself. This is still a similarity matrix since, among the non-zero entries, larger values
indicate more strongly connected pairs of points. Matrix W is subjected to PCoA
computed for a similarity matrix, as described in Subsection 9.3.3. The computation
steps are the following: (1) skip eq. 9.40, (2) centre the similarity matrix (eq. 9.41 or
9.42), and (3) proceed with eigen-decomposition of the centred matrix. The
eigenvalues are the same as those computed from Dtrunc in the previous paragraph, to
within a multiplicative constant. The eigenvectors normalized to 1 are identical to
those of the previous paragraph when they are also normalized to 1. They are the
dbMEM eigenfunctions.

MEM eigenfunctions with positive eigenvalues are usually presented scaled to
lengths of  since they are the result of principal coordinate analysis. MEM with

*  The computation of principal coordinates analysis for matrices with non-zero diagonals is
available in function pcoa.all() of package PCNM (Section 14.7). That function also contains an
option that allows users to output the principal coordinates corresponding to negative
eigenvalues. These eigenvectors are outputted as they are computed by function eigen(),
i.e. normalized to lengths of 1. They are not scaled to lengths of .
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negative eigenvalues must be presented scaled to lengths of 1, however, because
scaling them to lengths of  would produce complex vectors in which each value
would have a real and an imaginary part. When they are used as explanatory variables
in regression or canonical analysis, including variation partitioning, eigenfunctions
scaled to any value have the same explanatory power and produce the exact same R2.
This is why scaling them to lengths of 1 instead of  is legitimate in MEM analysis,
where the eigenfunctions are used as explanatory variables in regression or canonical
analysis. 

2 — Different types of MEM eigenfunctions

In spatial/landscape studies in ecology, study sites can be depicted as linked by
different types of relationships (spatial neighbouring, exchange routes, mutual effects,
etc.), which are represented by lines drawn on maps. Landscape analysis is also of
interest in genetics, evolution, epidemiology, anthropology, demography, economics,
and related fields. Graphs are schematic representations of relationships among sites.
Graph theory is the mathematical study of graphs, which are structures used to model
pairwise relations between the objects of interest in a study. In graph theory, the sites
are called nodes and the lines are called edges. Urban et al. (2009) and Dale & Fortin
(2010) reviewed the use of graphs in ecology. Graph theory was briefly used in
Section 8.2.

Dale & Fortin (2010) explained the difference between aspatial (non-spatial) and
spatial graphs. Examples of aspatial graphs are food webs and atoms linked by
chemical bonds to form molecules (atom positions in these models are chemical
relationships, not measured positions). Among the spatial graphs, the authors
distinguished between planar spatial graphs, which are used in the present section to
create the binary connectivity matrix B, and directed spatial graphs, which will be of
interest in Section 14.3. They reviewed the use of graphs in landscape studies in
ecology, evolution, genetics, and epidemiology. 

Matrix B can be constructed using different types of graphs like those described in
Subsection 13.3.1 for regular grids or irregularly-spaced points on a map. The present
subsection describes how to obtain different types of MEM eigenfunctions by
modifying the contents of matrices B and A, followed by computation of
eigenfunctions as explained in Section 14.2.1. The main categories are the following:

1. Binary MEM eigenfunctions. — In some problems, only the presence of
connections among sites matters. Differentiated values on the edges may be of no
interest, or cannot be determined, so that the weights in matrix A are all equal. This
type of spatial eigenfunctions was developed by statistical geographers; the literature
on this subject was reviewed by Tinkler (1972) and Griffith (1996). Griffith & Peres-
Neto (2006) called this type of methods topology-based spatial filtering because
computation of the eigenfunctions is based on the topology of the connection network
described by the spatial connectivity matrix B. In applications of spatial eigenfunction
analysis by Tinkler (1972) and other authors, a transport network composed of

!k

!k
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locations (nodes) and routes linking them (edges) was represented by a binary
connectivity matrix, and the structure of the network was characterized by the
eigenvectors of that matrix, called eigenfunctions. In Griffith (1996), urban census
areas that were spatially adjacent were connected in matrix B (called C by Griffith)
and non-adjacent areas were not connected. After centring matrix B (eq. 9.41 or 9.42),
eigenfunctions were computed; they characterized the spatial relationships among the
census areas. In all these applications, inter-point distances were not taken into
consideration.

2. Transforming the geographic distances recorded in A. — In some problems, the
geographic distance does not produce the best set of explanatory eigenfunctions, and
more efficient sets of eigenfunctions are found by using some non-linear function of
the geographic distances. Dray et al. (2006) proposed three families of functions for
nonlinear transformation of the geographic distances into similarities, which are used
in the SPACEMAKER package. Different exponent values can be tested in turn to find
the transformation of distances that produces the best model for a matrix of
response data*. 

• Linear function f1: 

(14.2)

where dij is the geographic distance between points i and j . Division by max(dij)
ensures that the similarities are in the range [0, 1]. f1 does not change the modelling
capacity of the resulting MEM eigenfunctions: in an analysis based on a matrix [  =
dij /max(dij)], the eigenvalues are changed compared to an analysis based on matrix
[dij], but the eigenvectors scaled to lengths 1 are the same. f1 is presented here as a
reference to help in understanding f2.

• Concave-down function f2: 

(14.3)

With $ > 0, function f2 operates a non-linear transformation of distances dij . The
similarity sij decreases as dij increases, but more rapidly for larger dij values. When
$ = 1, f2 is the same as f1. To appreciate the shape of the transformation, readers can
compute this function for dij values from 1 to 20, using a positive integer larger than 1
for $, and plot the results. Fractional positive values of exponents $ produce concave-
up transformations where the similarity sij decreases less rapidly for larger dij values.

*  Function test.W() of the SPACEMAKER package allows users to automatically test the effect of
different exponents of functions f2 and f3, or any other function that transforms the distances
before they are included in matrix A, and select the one that produces the model with the lowest
value of AICc (eq. 10.23). A tutorial (Dray, 2010) is provided with the package.
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• Concave-up function f3: 

(14.4)

where ) is a positive real number. The similarity sij decreases as dij increases, but less
rapidly for larger dij values.

Other transformations of geographic distances to similarities can be devised and
applied to data. In their search for the best predictive model for the oribatid mite data
also used in Ecological applications 11.5 and 14.4, Dray et al. (2006) tried in turn
functions f1, f2 with $ = 2 to 10, and f3 with ) = 1 to 10. A similarity matrix S was
computed for each of these functions and exponent values. S was used as the edge
weighting matrix A to compute the spatial weighting matrix W, which was
decomposed into MEM eigenfunctions. After selection of the best MEM submodel in
each case, the set of MEM eigenfunctions that produced the lowest value of AICc
(eq. 10.23) was retained as the best spatial model of the response data. Details are
presented in Ecological application 14.2a hereunder. 

When f1 or f2 provides the best predictive model, the following method can be used:
compute a minimum spanning tree for matrix D = [1 – sij] to identify the value of thresh, then
replace max(dij) by (4 × thresh) in the denominators of transformation equations f1 and f2; for
example, f1: sij = 1 – (dij/(4 × thresh)). This alternative method, which uses thresh, would be in
line with the similarity-based procedure for dbMEM described in Subsection 14.2.1.

3. Using other measures of geographic resistance as weights in A. — The edge
weighting matrix A can be generalized further by using measures of landscape
resistance that are not based on transformations of the geographic distances. Dale &
Fortin (2010) give several examples. One of them is the analysis of animal movement,
which can be based on estimates of the attractiveness of patches for the species under
study, or on estimates of movements obtained from field observations. Other aspects
that can be used to construct matrix A are transport models, landscape connectivity,
least-cost paths, and multiple paths forming corridors. Applications of these measures
of resistance in landscape ecology and genetics have yet to be fully explored. 

The MEM eigenfunctions obtained in these different ways can all be grouped into
spatial submodels corresponding to different spatial scales, which can be analysed by
RDA, mapped, and interpreted separately. Dray et al. (2006) remind users that the
choice of a spatial weighting matrix W in the similarity approach, or Dtrunc in the
distance-based approach, is a critical step in spatial eigenfunction analysis. While the
structures modelled by eigenfunctions obtained using different A matrices are fairly
similar for regular sampling designs like regular grids, they may differ greatly for
irregular distributions of sites. The authors recommend a pragmatic approach where
several solutions are explored and the one that explains the response data best is
retained, unless ecological theory suggests a specific way for the construction of A,
e.g. knowledge of propagule dispersal processes. In linear modelling, model efficiency
can be estimated by the AICc coefficient (eq. 10.23) associated with the model.

sij 1 dij
)
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Ecological application  14.2a

An example of MEM analysis with selection of the geographic distances leading to the best
model is included in the Dray (2010) tutorial document about MEM eigenfunction analysis. It
was reproduced, with additional comments, in Borcard et al. (2011, Subsection 7.4.3.2). The
application involves the oribatid mite data already used in Ecological application 11.5. In the
present application, the detrended and Hellinger-transformed abundances of the 35 mite
morphospecies were used together with the spatial coordinates of the 70 soil cores from which
the mites were extracted. Geographic distances were computed among the core positions. For
reference, dbMEM analysis (Subsection 14.1) of the same data produced a spatial model
containing eight MEM eigenfunctions that explained the mite data with  = 0.24. Can one find
a better spatial model of the mite data? 

The first attempt was based on a Delaunay triangulation with binary weights (1 for presence
of an edge, otherwise 0) in the edge weighting matrix A. Forward selection of MEM
eigenfunctions was carried out by function ortho.AIC() of the SPACEMAKER package
(Section 14.7). That function computes AICc for successive models containing orthogonal
explanatory variables ordered by their contributions to R2. The best model, i.e. the one with the
lowest AICc, contained seven MEM variables. Its AICc value was –94.2.

In an attempt to find a better model, the edges of the Delaunay triangulation were weighted
using function f2 described above. Values of exponent $ from 1 to 10 were investigated (f2 with
$ = 1 is function f1), and for each exponent, forward selection was performed. The best among
these models turned out to be one obtained with $ = 1. The value of AICc was –95.5, lower than
with binary weights; the model contained six MEM variables.

In a further attempt to find a better model, connectivity matrices B were constructed based
on inclusion circles of increasing radii around each point. A multivariate variogram
(Subsection 13.1.4) showed that spatial correlation was maximum at a distance of about 4 m.
Since the shortest distance that kept all points connected in a minimum spanning tree was
thresh = 1.01 m, the distances to be investigated covered the range [1.01 m, 4 m]. Ten circle
sizes were created. For each value, the inter-point distances smaller than or equal to the stated
distance value were coded by 1 in matrix B. There were no weights in matrix A. The connection
network with distances smaller than or equal to 2.01 produced the best model; it had an AICc
coefficient of –100.6. The model contained five MEM variables.

The search for the best model was broadened by combining different distance thresholds, as
in the previous paragraph, with weighting the edges in matrix A using function f2 with different
values of exponent $. The connection network with distances " 2.67 produced the best model
when combined with exponent $ = 3. That model had AICc = –102.7; it included seven MEM
eigenfunctions.

The  statistic increased along that search. It was 0.20 for the two models based on
Delaunay triangulations, 0.21 for the model that included all distances " 2.01 but no weights,
and 0.29 for the model that included all distances " 2.67 weighted by f2 with exponent $ = 3.
That last model, which involved seven MEM eigenfunctions, led to a RDA that produced two
significant axes representing two orthogonal spatial models, whose values can be plotted on
maps of the 70 soil cores, as suggested in the R script provided by Borcard et al. (2011). Careful
empirical selection of the spatial weighting matrix W produced a much better model, in terms of
AICc and , than the initial model. The final model is parsimonious in terms of the number of
MEM eigenfunctions that are included. 
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Ecological application  14.2b

Landeiro et al. (2011) compared MEM eigenfunctions derived from geographic distances and
from distances along a river network, called watercourse distances, in an ecological study of a
stream network in the Ducke Reserve in Central Amazon, Brazil. The eigenfunctions derived
from watercourse distances provided stronger explanations (higher ) of community variation
among sampling sites located along the network than eigenfunctions derived from geographic
distances, for both real (fish, caddisfly) and simulated data. 

14.3 Asymmetric eigenvector maps (AEM) 

In fluid ecosystems (water, air), distributions of the organisms that form communities
are often driven in part by directional physical processes. These include water currents
in rivers, lakes and oceans, prevailing wind along mountainsides, river networks, and
glaciations at historical time scales. Spatial modelling by MEM eigenfunctions was
not designed to take into account such directional processes. A different type of spatial
eigenfunction analysis, called asymmetric eigenvector maps (AEM), was developed by
Blanchet et al. (2008a, 2009) to model this type of phenomenon. 

1 — Algorithm described through an example

The algorithm for the construction of AEM eigenfunctions representing directional
physical processes is described here through an example. 

Numerical example 4. Let us consider the river network shown in Fig. 14.11a, the same as
in Fig. 1.14. The network contains eight nodes (N1 to N8); six of them are lakes, the other two
are river junction points. For the sake of the example, let us assume that sampling has taken
place at these eight nodes. One could study fish communities found either in the six lakes, or at
all nodes. Even if no data are available at the root of the network, a non-sampled node 0 is added
there to unite the network into a single structure. AEM modelling could be used to test the
hypothesis that the communities are spatially related through a process of colonization of the
network from node 0. 

The river network can be coded as shown in Fig. 14.11b:

• The nodes are the rows of the coding table (matrix E), the columns are the edges. In matrix E,
an edge located between node i and node 0 is coded 1 in the row corresponding to node i; the
other edges are coded 0. The coding is the same as in Fig. 1.14. For a denser connection
network, as in Fig. 1 of Blanchet et al. (2009), matrix E can often have many more columns than
rows.

• A vector of weights w = [wj] may be applied to the edges. The weights may be based upon
geographic distances, estimates from a flow model, current speed, and so on. They represent the
ease of communication of matter, energy or information among the sites. The weight values
must be structured as similarities between nodes, not as distances, so that larger weights produce
higher values in the matrix Ew resulting from the scalar product of E by the diagonal matrix of
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weights D(wj). Matrix Ew has the same number of rows and columns as E. The initially chosen
weights may be reworked through weighting functions f1, f2 and f3 of Subsection 14.2.2 in order
to transform them in an optimal way. Several examples of the search for optimal weights are
found in the applications presented by Blanchet et al. (2011).

The weighted or unweighted matrix, Ew or E, is subjected to principal component analysis
(PCA); matrices F or G of the PCA output contain the AEM eigenfunctions. Alternatively,
matrix E can be centred by columns, producing Ec, and then subjected to singular value
decomposition (SVD). A third computational approach is to compute a Euclidean distance
matrix (D1, eq. 7.32) among the rows of Ew or E, followed by principal coordinate analysis

Figure 14.11 Schematic of AEM analysis. (a) River network from Fig. 1.14. The Ni are nodes and the Ej are
edges. The nodes in boxes are lakes, labelled Lake 1 to Lake 6 in Fig. 1.14. The node at the
origin of the network is labelled Node 0. (b) Nodes-by-edges matrix E. PCA of matrix E or Ew
(weighted), or SVD of Ec (centred) or Ewc (weighted and centred), or PCoA of a distance matrix
computed from E or Ew, produces the table of AEM spatial eigenfunctions, which is used in
(c) to analyse the variation of response matrix Y by RDA.
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(PCoA, Section 9.3). The three forms of decomposition produce equivalent AEM spatial
eigenfunctions.

PCA produces matrices F or G of object scores (eqs. 9.4 and 9.14), SVD produces matrix V
(eq. 2.31), and PCoA produces a matrix of eigenvectors rescaled as principal coordinates. All
four matrices can be used interchangeably as the explanatory matrix in the next step of the
analysis because they only differ by the scaling of their vectors. The singular values obtained by
SVD can be transformed into the eigenvalues of the PCA, as shown in Subsection 9.1.9; the
relationship between the eigenvalues of the PCoA of a Euclidean distance matrix (D1) and those
of the PCA computed on the same original data has been shown in Subsection 9.3.2. Contrary to
MEM where positive and negative eigenvalues are found, all AEM eigenvalues are positive or
null because PCA eigenvalues cannot be negative (Section 9.1).

Contrary to MEM analysis, the response data should not be detrended (Subsection 13.2.1)
prior to AEM analysis. The reason is that a gradient structure is a logical consequence of a
directional forcing process, and detrending would remove a portion of its expected signature.
This makes the comparison of the results of MEM and AEM modelling difficult. An example in
Blanchet et al. (2011) shows how to resolve that problem by introducing a model corresponding
to the spatial trend in the variation partitioning operation involving the MEM and AEM models.

For the example, if response data (e.g. fish community composition) were only available for
the six lakes, the rows of E corresponding to the six lakes could be selected for PCA, SVD or
PCoA instead of the whole matrix E. The number of columns would remain the same, although
columns containing only zeros, if present, could be discarded before decomposition since they
would have no effect on the AEM eigenfunctions.

The matrix of AEM eigenfunctions can now be used as explanatory data in multiple
regression analysis to explain the variation of univariate response data y, or in RDA to explain
the variation of multivariate response data Y (Fig. 14.11c).

Moran’s I coefficients (eq. 13.1) can be computed for each AEM eigenfunction* (Blanchet et
al., 2011); this allows users to separate the eigenfunctions modelling positive and negative
spatial correlation, and select one of the two groups for analysis. The eigenfunctions of the
selected group can then be divided into submodels for multiscale analysis. The whole matrix of
AEM, or the submodels, can be used jointly with other matrices of explanatory variables in
variation partitioning. The latter form of analysis may involve environmental explanatory data.
It can also involve MEM eigenfunctions, which model non-directional spatial processes; an
example is found in Ecological application 14.1a. Before variation partitioning, a hierarchy can
be established among the AEM submodels to avoid the production of un-interpretable non-zero
fractions of shared variation between the orthogonal submodels; else, the intersection fractions
can be apportioned proportionally to the variation explained by each submodel (Legendre et al.,
2012); see Fig. 14.7b.

For the example (Fig. 14.11), AEM eigenfunctions were computed with edges having equal
weights of 1, i.e. all wj = 1. The first four eigenfunctions had Moran’s I larger than the expected
value E(I) and thus modelled positive spatial correlation. Bubble maps are shown in Fig. 14.12;

*  Moran’s I coefficients can be computed using function moran.I.multi() of the AEM package;
see Section 14.7.
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the eight nodes are drawn on top of the river network. AEM 1 displays a double gradient
showing the directional process corresponding to the structure of the river network: node shades
go from gray (node 0) to white in the left branch and from gray to black in the right branch.
AEM 2 differentiates the extreme nodes of the left branch, black versus white; the nodes of the
right branch are near the mean value (0, gray) for this AEM. In a similar way, AEM 3
differentiates the extreme nodes of the right branch, black versus white; all the other nodes are
zero (gray) for this AEM. AEM 4 displays a concave-up shape with low values near the origin of
the network and high values at the tips: the white dot (N2) has the lowest value and from that
point, values increase in the right branch to maximum at N7 and N8, and similarly in the left
branch to an intermediate value at N6 and a maximum value at N3. The last three AEMs, 5, 6
and 7, show quick successions of black and white dots in the left or right branch; they model

Figure 14.12 Bubble maps of the seven AEM eigenfunctions corresponding to the example in Fig. 14.11.
Shades of grey: see Fig. 14.2.
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negative spatial correlation on the river network, as shown by their Moran’s I smaller than E(I).
This set of AEM eigenfunctions is well suited to model directional processes along the network
with differentiation of the two main branches.

Time series represent a form of directional stochastic process (Section 12.0). To
emphasize the directional nature of the process influencing the data, AEM analysis,
which was designed to take trends into account, should be applied to the non-
detrended series. MEM analysis can be applied to data series that were detrended to
remove the directional component (recommendation of Subsection 14.1.2). Detrended
palaeoecological sediment core data, for example, could be studied by MEM analysis.

2 — Ecological applications

Three applications of AEM analysis drawn from the ecological literature are
summarized hereunder.

Ecological application  14.3a

A fully developed ecological application of AEM analysis is presented by Blanchet et al.
(2008a). It concerns the diet composition of brook trout, Salvelinus fontinalis, collected in 42
lakes in the river network of the Mastigouche Reserve in Québec, Canada. The diet composition
of 20 trouts per lake was divided into nine functional prey categories. The data were analysed to
test the hypothesis that diet composition was determined at least in part by the structure of the
river network, which captured the geomorphological differences among the lakes in different
portions of the river network as well as genetic differences among the trout populations, which
migrated from lake to lake along the network.

The spatial modelling was conducted in different ways: (1) based on the lake geographic
coordinates (polynomial of the coordinates, dbMEM analysis); (2) using the same coding of the
nodes as in Magnan et al. (1994; coding briefly described in Subsection 1.5.7); and (3) using a
coding of the edges as described in Fig. 14.11. Then, the edges of the network were analysed in
three different ways: (3.1) RDA with forward selection was conducted on the nodes-by-edges
matrix (matrix E in Fig. 14.11); (3.2) the edges were used to compute distances along the river
network (watercourse distances), assuming that all edges had the same resistance value along
the network, and these distances were transformed into MEM eigenfunctions which were used
in RDA with forward selection; (3.3) the edges coded into matrix E were used to compute AEM
eigenfunctions, assuming again that all edges had the same wj values, and the AEMs were used
in RDA with forward selection. 

The analyses based on edges outperformed the analyses based on geographic coordinates of
the lakes and on nodes of the network in terms of . The non-directional MEM model based
on watercourse distances produced  = 0.56 whereas the directional AEM model had

 = 0.64. For these data, all the spatial variation explained by the MEM model was also
explained by the AEM model, and the latter explained a small but significant extra fraction of
variation (  = 0.08) that was not explained by the symmetric MEM model*. 

*  This additional result was computed and provided by F. Guillaume Blanchet, University of
Alberta, Edmonton. It is not found in the Blanchet et al. (2008a) paper.

Time series
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Three other application of AEM analysis are found in Blanchet et al. (2011). The
applications include the distribution of a crustacean (Atya) in a river, bacterial
production in a fluvial lake, and the distribution of the copepodite stages of a
crustacean on the Atlantic Ocean shelf. In each of these applications, the AEM, MEM,
and dbMEM modelling results were compared. These applications show that AEM and
MEM analyses can often be used together to identify the directional and non-
directional components in the spatial structure of ecological data; the overlap between
the fractions of explained variation by the two models is often high.

Ecological application  14.3b

Gray & Arnott (2011) studied zooplankton dispersal among 45 lakes in the Killarney Provincial
Park, Ontario, Canada, that were heavily impacted by acidification before and during the 1970’s.
Zooplankton data were available for 1972, 1990 and 2005.

Spatial modelling and variation partitioning were carried out to determine the relative
importance of spatial relationships and environmental control in models explaining the variation
in zooplankton community structure over the 45 lakes. The objective was to determine if
dispersal was an important determinant of the structure of recovering zooplankton communities
over time. Three spatial models were compared: a non-directional spatial dbMEM model based
on overland distances, a stream dispersal MEM model using watercourse distances among lakes
(as in Ecological application 14.2b), and asymmetric AEM models describing overland dispersal
by wind among lakes in the predominant spring and summer wind direction. The analysis was
applied to data collected in 1972 (acidified) and in 1990 and 2005 (recovery period).

Analysis of the community structure across the 45 lakes was carried out for the three study
periods separately with respect to environmental (physical and chemical) data and the three
spatial models, for a total of nine variation partitioning results. The environmental variables had
greater effect on zooplankton community structure than the spatial models, yet these had
significant effects. In 1972 (highly acidified lakes), the symmetric spatial model had greater
effect than the stream dispersal and directional models, but during the following study periods
(chemical recovery), the effect of the directional (wind-driven) dispersal model grew and, in
2005, it explained more of the community variation than the symmetric and stream dispersal
models. The directional model explained a new portion of the community variation that was not
shared with the environmental variables and was larger than that explained by the other two
models. The authors concluded that limitation of zooplankton dispersal was an important
obstacle to lake recovery after acidification.

Ecological application  14.3c

Sharma et al. (2011) assembled a database on fish community composition (100 species), lake
morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in
Ontario, Canada. The authors compared dbMEM and AEM models through variation
partitioning to determine if the spatial patterns could have been produced by human-mediated or
natural modes of dispersal. Examination of the relative roles of spatial structure and
environmental conditions showed that most of the explained variation of native species
assemblages was governed by environmental conditions. Non-native fish assemblage
composition could be related to human-mediated dispersal, showing that the ecological
processes that underlaid biogeographical patterns differed for native and non-native fish species.
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14.4 Multiscale ordination (MSO)

Are the environmental variables responsible for the spatial correlation observed in the
response matrix, for example in community composition data? If so, at which distance
classes is that effect important? Is it for all scales (distance classes) or for some scales
only? Wagner (2003, 2004) addressed these important questions by combining
multivariate variograms (Subsection 13.1.4) with simple (Chapter 9) or canonical
ordination (Chapter 11), in a form of analysis called multiscale ordination (MSO).
MSO had originally been described by Noy-Meir & Anderson (1971) and Ver Hoef &
Glenn-Lewin (1989) for the analysis of the covariation among species in blocks of
different sizes. That form of analysis required a continuous sampling design composed
of adjacent or regularly-spaced quadrats along a transect or on a lattice. Wagner (2003,
2004) generalized the method to regular or irregular sampling designs using the
geostatistical framework. Spatial eigenfunctions can be incorporated as covariables
into MSO; an ecological application will illustrate the interest of doing that.

Wagner’s multiscale ordination, described in the present section, is based on
multivariate variograms (Subsection 13.1.4) and on ordination methods. It can be
carried out using PCA, CA, RDA, CCA, or the partial versions of RDA and CCA. The
variables in the multivariate data matrix Y must all have the same physical dimensions.
If they do not, they need to be standardized before MSO based on PCA or RDA
(Subsection 9.1.5) because the variances of individual variables must be summed to
obtain the variogram statistics (Subsection 13.1.4); in any case, the condition of
dimensional homogeneity of the variables must also be fulfilled before computing
PCA or RDA (Subsection 9.1.5). The data used in CA and CCA are frequencies
(Section 9.2), which should not be standardized. In the context of simple ordination
(PCA, CA), MSO partitions the variance of the ordination axes among distance
classes. This exploratory analysis aims at identifying the ordination axes that display
spatial structure and finding out if the spatial structure differs among axes. With the
canonical ordination methods, the analysis can incorporate matrices of environmental
variables and eigenfunctions (MEM or AEM), which makes it possible to determine if
the spatial correlation in the data is due to induced spatial dependence (eq. 1.1,
Chapter 1) or the presence of spatial autocorrelation in the response data (eq. 1.2). 

In the present section, the different levels of analysis will be described for
ordination methods of increasing complexity that preserve the Euclidean distance:
PCA, RDA and partial RDA. Couteron & Ollier (2005) give details for methods that
preserve the chi-square distance (CA, CCA, partial CCA). MSO with Euclidean-based
methods is presented in detail here because these methods are flexible; by applying the
transformations of Section 7.7 to community composition data, MSO through PCA
and RDA can preserve a variety of distances, including the chi-square.

MSO can be computed on non-stationary data (see Ecological application 14.4),
but one must be aware of the fact that the calculation of confidence intervals in
variograms requires stationarity, a problem that can be solved by detrending the data
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(Subsection 13.2.1). With non-stationary data, the confidence intervals are too broad
and thus the tests for spatial correlation are too conservative.

The MSO algorithm is implemented as follows in Wagner’s function mso() of the
VEGAN package in R. 

1. MSO with simple ordination (PCA). — Consider a multivariate matrix Y with n
rows (sites) and p columns (e.g. Hellinger-transformed species presence-absence or
abundance data). The spatial coordinates of the sites along the transect or on the
surface must also be provided to the function for the calculation of the distance classes.

• Compute the variogram matrix of Y and draw a multivariate variogram, as explained
in Subsection 13.1.4. The variogram will indicate the presence of spatial correlation in
Y, if any, pointing out the distance classes where spatial correlation is significant.

• Compute a PCA of Y; it produces eigenvalues !k and eigenvectors uk. Eigenvalue !k
can be partitioned among distance classes d by computing !k(d) = uk' C(d) uk for each
distance class. A plot of !k(d) against distances d is a variogram of PCA axis k. It
shows the spatial correlation structure of the variation represented by that axis. 

After a PCA, function mso() only produces a multivariate variogram of Y. The
variogram of PCA axes is not presently computed by function mso(). One can use a
regular univariate variogram function (Section 13.6) to compute a variogram of the kth

principal component, which is found in matrix F of the PCA results (eq. 9.4).

2. MSO with canonical ordination (RDA). — If the multivariate variogram
indicates significant spatial correlation, one may test the hypothesis that explanatory
(e.g. environmental) data can explain that spatial structure. When it is the case, the
spatial structure can be attributed to induced spatial dependence (eq. 1.1). That point
can be addressed by MSO based on canonical ordination, using an explanatory matrix
X to model the spatial variation of Y.

• Carry out a canonical ordination by RDA to analyse Y using explanatory data X that
are thought (hypothesized) to drive the observed spatial variation.

• Compute a multivariate variogram of matrix  shown in Fig. 11.2. The variogram
decomposes the explained variance of the RDA model among the distance classes.
The variogram statistics can be plotted in a graph. For the first analysis carried out in
Ecological application 14.4 (below), the variogram statistics decomposing the
explained variation into distance classes are represented by circles in Fig. 14.13a.

• Compute a multivariate variogram of the matrix of residuals (Fig. 11.2, lower left
matrix) as well as the tests significance of the variogram statistics. Plot the variogram
statistics in the graph (squares in Fig. 14.13a). Is there significant spatial correlation
remaining in the residual data after fitting the explanatory variables? If not, this result
indicates that the explanatory variables X explain the multiscale spatial structure well.
If significant spatial correlation remains in some distance classes, either there are other

Ŷ
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explanatory variables (environmental or historical, Subsection 14.1.4) that may
explain that variation but were not included in explanatory matrix X, or the remaining
spatial correlation is true spatial autocorrelation in the data (eq. 1.2).

• Compute a multivariate variogram of Y as described in Subsection 13.1.4. Compute
the confidence intervals of the variogram statistics using parametric standard errors.
Plot these confidence intervals in the graph (two continuous lines in Fig. 14.13a). The
confidence intervals are computed under the second-order stationarity assumption
(Subsection 13.1.1). 

• Add together the variogram statistics of the explained and residual variation. Plot
these sums in the graph (crosses in Fig. 14.13a) and compare them to the confidence
intervals plotted in the preceding step (previous bullet). The confidence intervals of the
variogram of Y provide a diagnostic tool: if the empirical variogram of the explained
plus residual variation remains entirely within the confidence envelope, this indicates
that the linear relationship between Y and the explanatory variables does not vary
significantly with scale. In the absence of significant spatial correlation in the
residuals, values found outside the confidence envelope may indicate that the
relationship between Y and the explanatory variables is scale-dependent, or that there
may be a mismatch between the scale at which the predictors X were measured and the
scale of the response of Y to these factors (Wagner & Fortin, 2005). The roles of the
many mechanisms that may be responsible for the mismatch are still poorly
understood and should be the subject of further studies, e.g. by numerical simulations. 

If one finds indications of scale-dependent relationships, one can look for the cause
either through data analysis or by testing specific hypotheses. For example, one could
use MEM eigenfunctions to model the response data at different scales, then regress
the fitted values or canonical axes on explanatory data X in order to identify the source
of the spatial correlations. An example of this approach is presented in Ecological
application 14.1a. Another approach is to select MEM eigenfunctions that are
significantly related to Y and use them as covariables in MSO based on partial RDA;
see item 3 below. An example in found in the part of Ecological application 14.4 that is
illustrated in Fig. 14.13b.

MSO can be computed for non-stationary data, but beware: because the confidence
intervals are then too broad, they may not evidence values of the empirical variogram
of the explained plus residual variation that lie outside the confidence envelope of the
multivariate variogram.

Although the variogram of the explained plus residual variation is not identical to
the variogram of Y, the weighted sums of the values in these two variograms are equal
to the total variance in Y. The weights in these sums are the number of pairs of points
used to compute the values in each distance class divided by the total number of pairs
of points. 
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3. MSO with partial canonical ordination (partial RDA). — If an explicit MEM or
AEM spatial model is available to account for spatial correlation at scales of interest in
the study, the MEM or AEM model can be used as matrix of covariables W in partial
RDA (Subsection 11.1.6).

• Carry out a partial canonical ordination to analyse Y using explanatory data X and
covariables W. The analysis must be computed using the first calculation method of
Subsection 11.1.6: residuals of both Y and X are computed with respect to W,
obtaining Yres|W and Xres|W, before the canonical analysis of Yres|W by Xres|W. This is
the method used to compute partial RDA in function rda() of VEGAN (Table 11.5).

• Compute a multivariate variogram of the variance explained by the partial canonical
analysis, i.e. the variance of Yres|W explained by Xres|W. This variogram can be
computed either on the matrix of fitted values of that analysis or on the canonical axes
(matrix Z in Fig. 11.2), with identical results. It decomposes the variance explained by
the partial RDA among the distance classes. Plot these values in a graph; they are
represented by circles in Fig. 14.13b for Ecological application 14.4.

• Compute a multivariate variogram of the residual variation after fitting matrices W
and X; compute also the tests of significance of the variogram statistics. Plot these
values in the graph (squares in Fig. 14.13b). Is there significant spatial correlation
remaining in the residual data after fitting the explanatory variables? If not, this
indicates that the explanatory matrices X and W explain the multiscale spatial
structure well. 

• Compute a multivariate variogram of Yres|W as described in Subsection 13.1.4 and
compute the confidence intervals on that variogram using parametric standard errors.
Plot these confidence intervals in the graph (two continuous lines in Fig. 14.13b).

• Add together the variogram statistics of the explained and residual variation. Plot
these sums in the graph (crosses in Fig. 14.13b) and compare them to the confidence
intervals already plotted. The confidence intervals of the variogram of Yres|W provide a
diagnostic tool: if the empirical variogram of the explained plus residual variation
remains entirely within the confidence envelope, this indicates that the linear
relationship between Yres|W and explanatory matrix Xres|W does not vary with scale.

MSO provides diagnostics about the interpretation of spatial correlation at different
scales. Under the assumption that all relevant environmental factors have been
measured (and measured at the relevant spatial scales), MSO allows researchers to
distinguish between induced spatial dependence and true spatial autocorrelation.These
assumptions are difficult to check in practice. It also allows users to assess the
presence of significant correlation in residuals, as well as the scale-invariance of the
species-environment correlation. How to interpret MSO results is illustrated in
Ecological application 14.4.
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Ecological application  14.4

The oribatid mite data of Borcard & Legendre (1994) were used in Ecological application 11.5
to compute a multivariate variogram. The analysis reported here was developed by Borcard et
al. (2011) to illustrate different facets of MSO analysis. The mite data were Hellinger-
transformed prior to analysis. For the variograms, the interval size of the distance classes was
the distance that kept all points connected in a dbMEM analysis; this is the threshold distance
(thresh = 1.0112 m) computed in Ecological application 14.2a.

In a first set of analyses, a MSO variogram was computed, without detrending, after a RDA
of the mite data modelled by several environmental variables. These variables were: substrate
density, water content of the soil, substrate types (7 classes), shrub density (3 classes) and
microtopography of soil surface (2 classes). The MSO plot is shown in Fig. 14.13a. The
confidence interval envelope is that of the multivariate variogram of the Hellinger-transformed
mite data, undetrended. Examination of the plot shows that the variogram of the explained plus
residual variation (dashed line) increases monotonically, which is the signature of a strong linear
gradient in the data. The variogram of the residuals, however, is flat and not significant, showing
that the environmental variables account well for the gradient in the data. The dashed line is not
within the confidence envelope of the multivariate variogram for distance classes 0, 1 and 4,
despite the fact that the confidence intervals, computed using non-stationary data, were too
broad. This indicates that the spatial structure of the mite data varied with scale.

In an attempt to determine if a MEM model would successfully control for the spatial
structure in the species-environment relationship, MSO was computed from a partial RDA that
controlled for a set of seven MEM eigenfunctions selected near the end of Ecological
application 14.2a. The results of this second set of analyses are displayed in Fig. 14.13b. The
variogram of the explained plus residual variation is now entirely within the confidence
envelope of the variogram of Yres|W and the separate variograms of explained and residual
variation are flat, showing that the MEM eigenfunctions successfully controlled for the spatial
correlation of the mite data that was not well explained by the environmental variables. For
these data, variation partitioning (Subsections 10.3.5, 11.1.11) showed that the seven selected
MEM eigenfunctions accounted almost completely for the linear trend present in both the mite
data and the environmental variables. Using the selected MEM as covariables in partial RDA
had effectively detrended the mite data as well as the environmental variables because the mite
and environmental data were structured by the same spatial trend (Borcard & Legendre, 1994).

In a third series of analyses, the Hellinger-transformed mite data were detrended along the
north-south sampling axis to meet the stationarity assumption for the computation of confidence
intervals. Will this analysis produce different results than above? A MSO variogram plot was
computed after a RDA of the mite data modelled by the same environmental variables as above,
except that they were also detrended along the north-south sampling axis, like the mite data. The
MSO plot is shown in Fig. 14.13c. The confidence interval envelope is that of the multivariate
variogram displayed in Fig. 13.12 where the mite data had also been detrended; the confidence
intervals are thus not too broad. The variogram of the explained plus residual variation mostly
remains within the confidence envelope, except for distance classes 1, 3 and 4 where a slight
departure is observed; this indicate that the species-environment relationship varied slightly with
scale. In the variogram of residual variation, none of the statistics forming the variogram are
significant, showing that the spatial correlation in the detrended data is well explained by the
detrended environmental variables. In summary, the MSO plot indicates that the environmental
variables accounted well for the spatial structure in the data although the explained variation
shows that the spatial structure varied with scale.
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Figure 14.13 MSO plots of (a) the RDA of the Hellinger-transformed, undetrended mite data, analysed
against environmental variables, (b) the partial RDA of the same matrices with MEM
eigenfunctions as covariables, and (c) the RDA of the Hellinger-transformed and detrended mite
data analysed against detrended environmental variables. Plots produced by function mso().
Crosses: variograms of explained plus residual variation. Continuous lines delineate the
confidence envelopes of the variograms of Y in (a), of Yres|W in (b), and of detrended Y in (c).
Squares: variograms of residual variation; the squares are white, indicating that the variogram
statistics are not significant in these examples. Circles: variograms of explained variation.
Vertical dotted lines: half the maximum number of classes; the last points, to the right of these
lines, include all remaining pairs of sites and should not be interpreted. Values written above the
abscissas: number of pairs involved in the calculation of each statistic.
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As in the second set of analyses, a MSO was computed from a partial RDA that controlled
for the seven pre-selected MEM eigenfunctions. The results of this fourth set of analyses were
almost identical to those shown in Fig. 14.13b: the variogram of the explained plus residual
variation was now entirely within the confidence envelope of the variogram of Yres|W and the
separate variograms of explained and residual variation were flat, showing that the MEM
eigenfunctions successfully controlled for the spatial correlation of the detrended mite data that
was not well explained by the detrended environmental variables. 

The results of this analysis could have differed from Fig. 14.13b if the mite data had been
structured by a broad-scale spatial trend running in a different direction from that of the
environmental data. Had that been the case, the trend in the undetrended response data Y shown
in Fig. 14.13b would not be modelled by the undetrended environmental variables X. However,
the fourth set of analyses described in the present paragraph, with Y and X having been both
detrended, would not have been impaired by these differing trends.

The R code to run the MSO analyses reported in the present ecological application is found
in Section 7.5.3 of Borcard et al. (2011).

14.5 Other eigenfunction-based methods of spatial analysis

This section describes additional statistical methods based on spatial eigenfunctions
that were not covered in the previous sections. 

1 — Space-time interaction

A commonly used approach to test hypotheses about natural or man-made
environmental changes, including climate change, is to sample portions of ecosystems
repeatedly over time. This type of sampling is usually done without replication of
sites; in this way, the sampling effort can be spent on maximizing the expanse of space
covered by the study. If the sampling sites and times are represented by dummy
variables or Helmert contrasts, as in paragraphs 3 and 4 of Subsection 11.1.10, one can
use canonical analysis to study the effect of the sites on species composition while
controlling for the effect of time, and vice versa. An important limit of this approach is
that the interaction between space and time cannot be estimated for lack of replicates.
Assessing that interaction is, however, of great interest in such studies because a
significant interaction would indicate that the spatial structure of the univariate or
multivariate response data has changed through time, and conversely that the temporal
variations differed significantly among the sites, thus indicating, for example, the
signature of climate change on ecosystems. 

Legendre et al. (2010) described a statistical method to analyse the interaction
between the space (S) and time (T) factors in space-time studies without replication;
the acronym of the method is STI (for space-time interaction). The method can be
applied to multivariate response data, e.g. ecological community composition, through
partial RDA. The method consists in representing the space and/or time factors by
spatial and/or temporal eigenfunctions (MEM, Sections 14.1 and 14.2, or AEM,

STI
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Section 14.3). It is not necessary to represent both space and time by eigenfunctions:
for example, if there are many sites and only a few sampling times, e.g. 2 or 3, spatial
relationships may be coded using spatial eigenfunctions and temporal relationships
using dummy variables or Helmert contrasts. Coding the space and/or time factors by
spatial and/or temporal eigenfunctions requires fewer coding variables than dummy
variables or Helmert contrasts. The interaction can be represented by variables
obtained by computing the Hadamard product of each eigenfunction that codes for
space with each eigenfunction that codes for time. Enough degrees of freedom are
saved to correctly estimate the residual fraction of variation and test the significance of
the interaction term. 

The above paper gives details about the computation method. The R package STI is
available to carry out the calculations (Section 14.7). The paper also contains two
applications to real species assemblage data: an analysis of Trichoptera (insects, 56
species) emerging from a stream and captured in 22 emergence traps during 100 days,
grouped into 10 consecutive 10-day periods, and a study of four surveys conducted
between 1982 and 1995 in the Barro Colorado Island permanent forest plot (315
species of trees). Another application is found in Laliberté et al. (2009) where tree
seedling abundances at 40 sites along a transect in a temperate forest understory,
monitored during a 9-year period, were analysed for space-time interaction. The
analysis of spatio-temporal data is also discussed in Cressie & Wikle (2011).

2 — Multiscale codependence analysis

A causal relationship between an explanatory (x) and a response variable (y) across
space implies that the two variables are correlated. When the correlation between x
and y is not significant, the causal hypothesis must be abandoned. Conversely, a
significant correlation can be interpreted as support of the causal hypothesis that x may
have an effect on y. Given the multiscale nature of ecological processes, one may
wonder at which scales x is an important predictor of y. The same question can be
asked about pairs of variables forming a bivariate time series; for simplicity, the
presentation here will focus on space.

Guénard et al. (2010) developed multiscale codependence analysis (MCA) to
address the above question and test the significance of the correlations between two
variables at different spatial scales. The method is based on spatial eigenfunctions,
MEM or AEM, which correspond to different and identifiable spatial scales: indeed, a
Moran’s I statistic (eq. 13.1) can be computed for each eigenfunction. If the sampling
is regular along a transect, eq. 14.1 can be used to determine the wavelegths of the k
eigenfunctions, which are assembled in a matrix called W, of size n × k. Correlation
coefficients are computed between y and each of the k eigenfunctions, and written in a
vector ryW of length k. Similarly, correlation coefficients are computed between x and
each of the k eigenfunctions, and written in a vector rxW. The Hadamard product of
the two vectors, ryW and rxW, is the vector of codependence coefficients, which reflect
the strength of the x-y correlations at the different scales represented by the
eigenfunctions in matrix W. Each codependence coefficient can be tested for

MCA
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significance using a * (tau) statistic obtained by computing the product of the t-
statistics associated with the two correlation coefficients. The testing procedure is
described in the paper. An R package is available for the calculations (Section 14.7).

In the above paper, the method was applied to model the river habitat of juvenile
Atlantic salmon (parr). MCA showed that variables describing substrate composition
of the river bed were the most influential predictors of parr abundance at the 0.4 –
4.1 km scales whereas mean channel depth was more influential at the 200 – 300 m
scales. This example shows that when properly assessed, the multiscale structuring
observed in nature may be used to refine our understanding of natural processes.

3 — Estimating and controlling for spatial structure in modelling

The examples and applications reported in Sections 14.1 to 14.3 show that spatial
eigenfunctions can efficiently model all kinds of spatial structures in data. Can they be
used to find a solution to the problem described in Subsection 1.1.2, that spatial
correlation inflates the level of type I error in tests of species-environment
relationships in regression and canonical analysis?

A species-environment relationship after controlling for spatial structure can be
represented by fraction [a] in a Venn diagram (e.g. Figs. 10.10) showing the
partitioning of the variation of response data, univariate y or multivariate Y, with
respect to environmental (left circle) and spatial variables (right circle). A real example
is shown in Fig. 14.7. Using numerical simulations, Peres-Neto & Legendre (2010)
showed that spatial eigenfunctions provided an effective answer to the problem.
Firstly, one must determine if the spatial component of y or Y is significant. This can
be done by regression of y, or canonical analysis of Y, against all MEM spatial
predictors, or by univariate (for y) or multivariate (for Y) variogram analysis.
Secondly, if the spatial component is significant, one can select a subset of spatial
predictors, and use the environmental (X) and the selected spatial predictors
(covariables W) in a partial regression (for y, Subsection 10.3.5) or partial canonical
analysis (for Y, Subsection 11.1.6). 

For the analysis of community composition data, the authors found that a species-
by-species forward selection procedure, described in their paper, was to be preferred to
a global, community-based selection. In this method, eigenfunctions are selected for
each species independently, and the union of the selected sets is used as the matrix of
MEM covariables in canonical analysis. This provides an effective method of control
for type I error in the assessment of species-environment relationships. The paper also
showed that polynomial regressors (Subsection 13.2.1) did not produce tests of
significance with correct levels of type I error.

The Peres-Neto & Legendre (2010) paper provides theoretical support to the effect
observed in Ecological application 14.4, that MEM used as covariables in canonical
analysis effectively controlled for the spatial correlation observed in the species-
environment relationship in the first part of the analysis of the mite data. 
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14.6 Multiscale analysis of beta diversity

The present book is concerned with the analysis of multivariate ecological matrices,
with special emphasis on community composition data. The book started with a
difficult problem: Section 1.1 explained the origin of spatial structures in ecosystems,
and showed that these structures may be generated by two types of processes,
i.e. spatial dependence induced by environmental variables (eq. 1.1) and community
dynamics that can generate spatial autocorrelation (eq. 1.2). How can one distinguish
between these two families of processes? To do so, it is necessary to analyse
community variation at multiple scales.

The focus of ecologists on natural communities of organisms stems from the fact
that communities are the best response variable available to assess the effects of
natural or man-made changes to the natural environment. Ecologists determine effects
by studying how the members of natural communities, i.e. the species, react to
changes, appraised through an appropriate sampling design. The difficulty of this
approach is that species assemblages form multivariate data tables that cannot be
analysed using simple univariate statistical methods. In addition, the presence of
spatial structures in communities indicates that some processes have been at work that
generated these structures. By relating natural communities to hypothesized causal
factors, one can determine if changes observed in communities can be related to these
assumed causes. In the face of climate changes and other major anthropogenic
impacts, species act as dormant spies in ecosystems that ecologists can awaken to test
hypotheses about the origins of changes, which is an essential step before remedial
actions can be developed.

Biodiversity is a most important property of ecosystems because of its numerous
services to humans, including aesthetic services (Section 6.5). The term biodiversity
covers different components: taxonomic (most importantly at the species level),
phylogenetic, genetic, ecological and cultural. An important aspect is the spatial
organization of biodiversity, called beta diversity — the spatial variation of community
composition through space. Some beta diversity studies focus on species turnover
along well-identified environmental gradients. A more general concept, followed in
this book, is the non-directional approach, where spatial variation of communities is
studied not along selected gradients but over whole natural ecosystems. In the latter
approach, the variance of a community composition matrix is a measure of beta
diversity, and it was shown in this book that this variance can be analysed and
decomposed using numerical methods that form a crescendo of power and refinement,
from the description of multivariate (multi-species) structures in Chapters 8 and 9 to
analyses carried out with respect to explanatory (e.g. environmental) variables in
Chapter 11.

After developing concepts and methods of spatial analysis in Chapter 13, the
present chapter has come back to the question stated in Section 1.1: how can one study
the multiscale structure of communities? Methods based on spatial eigenfunctions
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provided answers by drawing upon methods studied earlier in the book: distance
measures (Chapter 7), principal coordinate analysis (Section 9.3), linear modelling by
multiple regression (Section 10.3.3) and redundancy analysis (Section 11.1), variation
partitioning (Sections 10.3.5 and 11.1.11), and the concept of scale in spatial patterns
(Section 13.0).

There are already several methods available for multiscale ecological analysis, and
more will undoubtedly be developed in the future. The spatial eigenfunction basis
described in the present chapter is rich in possibilities, and it is left to the imagination
of researchers, driven by ecological questions, to continue the development of derived
methods. The help of mathematicians and statisticians will be welcome to provide
solid mathematical foundations for these methods. These new methods will hopefully
allow researchers to detect more clearly the signals arising from natural communities,
which can be deciphered as messages from species spies in ecosystems, and used to
manage the balance between human societies and the natural environment.

14.7 Software

R-language functions are available to compute all methods of analysis described in this
chapter.

1. Distance-based Moran’s eigenvector maps (dbMEM). — Package VEGAN contains
functions pcnm() for construction of dbMEM eigenfunctions. Package PCNM,
presently available on https://r-forge.r-project.org/R/?group_id=195, contains
functions PCNM() and quickPCNM() for classical PCNM and dbMEM analysis.
Among the functions available with the Borcard et al. (2011) book,
create.MEM.model() allows users to generate a staggered matrix of dbMEM spatial
eigenvectors corresponding to several groups of disconnected sites that are analysed
together.

2. Moran’s eigenvector maps (MEM), general form. — Package SPACEMAKER,
presently available on https://r-forge.r-project.org/R/?group_id=195, contains
functions for MEM spatial modelling. In particular, function test.W() computes and
tests MEM eigenfunctions for various pre-constructed spatial weighting matrices W
and selects the best spatial model using AIC.

3. Asymmetric eigenvector maps (AEM). — Package AEM, presently available on
https://r-forge.r-project.org/R/?group_id=195, contains functions for AEM spatial
modelling.

4. Multiscale ordination (MSO). — Function mso() is available in VEGAN for
multiscale ordination.
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5. Other eigenfunction-based methods of spatial analysis. — To study space-time
interaction in surveys without replication: package STI is available on Ecological
Archives E091-019-S1 (http://esapubs.org/archive/archive_E.htm, year 2010) as well
as on the Web page http://sites.google.com/site/miqueldecaceres/software. Functions
STImodels() and quickSTI() of that package are also found in package PCNM; see
paragraph 1 above. Codependence analysis is available in package CODEP.

6. Miscellaneous methods. — Function geoXY() of SODA transforms latitude-
longitude (LatLon) data to flat Cartesian coordinates. Variation partitioning involving
spatial eigenfunction submodels, with hierarchical partitioning or proportional
apportioning of the shared fractions of variation, is found in R functions available in a
supplement of the Legendre et al. (2012) paper, downloadable from the ESA
Ecological Archives page http://esapubs.org/archive/archive_E.htm.

Package ADESPATIAL, presently under development, will contains functions to
carry out the analyses described in Sections 14.1 to 14.3 of this chapter. 
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Plate 14.1 Historical dynamics (Section 14.1.4). In the ancient Gallic city of Burdigala (now Bordeaux, in
southwestern France), the Romans built a Gallo-Roman town around 50 BC. At the beginning of
the 2nd century AD, an oval-shaped amphitheatre (132 m × 111 m) was erected on the northwest
outskirts of the city. It was later abandoned, probably during the 4th century, when the ancient
city decreased in size and the amphitheatre was left out of the new city walls. At the end of the
Middle Ages, the monument was progressively dismantled, in particular its western side. At the
beginning of the 19th century, the inside of the amphitheatre was divided into lots were upper
middle-class houses were built. The only standing portion nowadays is the northwestern porch
(upper-right in the picture). The elliptic outline of the amphitheatre, now called Palais-Gallien,
has been preserved in the city plan. It is still visible nowadays on aerial photographs of
Bordeaux (44°50'52" N, 00°34'59" W). Information kindly provided by David Hourcade,
Institut Ausonius (UMR 5607, Centre national de la recherche scientifique/Université de
Bordeaux 3), France. Photo reproduced with permission of Institut national de l’information
géographique et forestière, France (+IGN France, flight 1966_CDP6309_P_8000_5579).
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connectedness within c.: see connectedness 
degree of isolation of c., 411–412 
representation, 418–420 
validation, 338, 415–418 

clustering, 4, 198, 200, 265-266, 273, 324, 334, 
337-424, 521-533, 718, 747, 769; see also 
partition  
absolute resemblance c., 352 
agglomeration c. methods, 348 
association analysis, 377–379 
average clustering methods, 351–360, 421; 

see also clustering (unweighted arithmetic 
average c.; unweighted centroid c.; 
weighted arithmetic average c.; weighted 
centroid c.) 

clustering (continued) 
average linkage c., 352 
beta-flexible c.: see clustering (flexible c.) 
chronological c., 773–780, 783, 839 
Clifford & Goodall: see clustering 

(probabilistic methods) 
CoIA (co-interia analysis), 401 
combinatorial c. methods, 367–370, 421 
combined with an ordination, 522-526 
complete linkage c., 343, 348, 350-351, 369, 

370, 392-395, 404, 414, 421-422, 
constrained c., 349, 402, 773, 777, 779, 783, 

791, 839–844, 847, 851, 852, 857, 858 
descriptive c., 341 
dissimilarity analysis, 380 
division in ordination space, 380–381, 422 
division c. methods, 348 
Edwards & Cavalli-Sforza, 379-380 
flexible c., 370–371 
furthest neighbour sorting: see clustering 

(complete linkage) 
general agglomerative c. model, 367–370, 

376, 423, 840 
hierarchical agglomerative c. methods, 349, 

350–376, 384, 419, 421, 775 
hierarchical c., 527 
hierarchical c. methods, 348–349, 421-423 
hierarchical divisive c., 377–383 
information analysis, 372–376, 421 
integer link linkage c., 352 
intermediate linkage c., 351–352, 370, 414, 

421, 775, 777 
monothetic c. methods, 348, 377–379, 422 
nearest neighbour c.: see clustering (single 

linkage c.) 
non-hierarchical complete linkage c., 392–

395, 422 
non-hierarchical c. methods, 346, 348–349, 

422; see also clustering (non-hierarchical 
complete linkage c.) 

non-probabilistic c. methods, 349–350 
overlapping c. methods, 393 
polythetic c. methods, 348, 379–380, 422 
probabilistic c. methods, 349–350 
proportional link linkage c., 352, 414, 423 
relative resemblance c., 352 
sequential c. algorithms, 347-348 
simultaneous c. algorithms, 347-348 
single linkage c., 341–346, 374-350, 369, 

370, 391, 411, 414, 415, 421–423, 522–
525, 527 

space constrained c., spatial c., 402, 839-844 
species c., 389-403 
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clustering (continued) 
statistics, 411–415, 416 
synoptic c., 341, 419 
time-constrained c. by MRT, 773 
unweighted arithmetic average c. (UPGMA), 

352–355, 369, 421 
unweighted centroid c. (UPGMC), 353, 357–

360, 369, 372, 376, 421 
very large data sets, 349 
Ward's minimum variance c., 360–367 
weighted arithmetic average c. (WPGMA), 

353, 355–356, 369, 421 
weighted centroid c. (WPGMC), 353, 360-

362, 369, 376, 421 
with spatial contiguity constraint, 774 

co-spectrum, 759 
coding, 39–54, 610, 720, 901; see also 

normalization, transformation of variables 
coefficient; see also statistic 

adjusted c. of multiple determination 
(adjusted R2), 565–566, 633 

association c., 4, 45, 198-200, 269–273 
asymmetric uncertainty c., 233–234 
asymmetrical binary c., 275–277 
asymmetrical c., 272 
asymmetrical quantitative c., 284–288 
average distance (D2), 298, 300-301, 325 
binary c.: see coefficient (asymmetrical 

binary c.; symmetrical binary c.)  
Bray-Curtis (D14): see coefficient (percentage 

difference distance) 
Canberra metric (D10), 298, 306, 312, 321, 

324 
chi-square c. (X 2): see statistic (chi-square s.) 
chi-square distance (D16), 263, 308-310, 452, 

480, 654, 657, 665–667, 699, 894; see also 
transformation of variables (chi-square 
distance t.) 

chi-square metric (D15), 319, 323; see also 
transformation of variables (chi-square 
metric t.) 

chi-square similarity (S21), 288, 297 
choice of a c., 320–326 
chord distance (D3), 261, 263, 277, 289, 298, 

301-302, 310, 324 
city-block metric (D7): see coefficient 

(Manhattan metric) 
coherence c., 233 
cohesion index, 411–412 
coincidence index (S8): see coefficient 

(Sørensen c.) 
concordance: see coefficient (of concordance) 
connectedness: see connectedness 

coefficient (continued) 
contingency c., 234–235, 314, 334 
correlation c.: see correlation 
Czekanowski, 276, 285, 304-305 
dependence c.: see coefficient (of 

dependence) 
deviant index, 380 
dissimilarity c., 270 
distance c., 64, 270, 272, 273, 295–312, 322, 

323, 327, 328, 492, 775 
distance between species profiles (D18), 263, 

298, 305, 307, 321, 324 
drag c.: see drag (coefficient) 
efficiency c., 375 
Estabrook & Rogers (S16), 280-283, 297, 325 
Euclidean distance (D1), 261-263, 272, 297–

301, 304, 309, 325, 327–329, 332-334, 
426, 453, 465, 492, 513, 799, 834 

Fager & McGowan (S24), 318, 392 
Faith c. (S26), 277, 297 
Geary's spatial autocorrelation c. (c), 793, 817 
geodesic metric (D4), 298, 302, 324 
Goodall probabilistic c. (S22, S23), 288-292 
Gower (S15), 280, 297, 325, 335 
Gower (S19), 286-288, 297, 321, 324, 370, 510 
Gower distance (for matrix comparison), 413-

415 
great-circle distance, 795 
Hamann c., 275 
Hellinger distance (D17), 261, 263, 277, 289, 

298, 310, 321-324, 333 
index of association (D9), 298, 305, , 319-320, 

324 
information measures, 198-199; see also 

coefficient (reciprocal information c.) 
Jaccard c. of community (S7), 263, 275-276, 

284, 317 
Krylov (S25), 318-319, 393 
Kulczynski (S12), 277, 296, 324 
Kulczynski (S18), 286, 297, 311, 324 
Lance & Williams information statistic (I), 

372-373, 375 
Legendre & Chodorowski (S20), 287-288, 297, 

321, 324 
Mahalanobis generalized distance (D5), 298, 

303-304, 325, 335 
Manhattan metric (D7), 298, 304-306, 325, 334 
mean character difference (D8), 298, 304-305, 

325 
Minkowski metric (D6), 298, 304 
modified Gower dissimilarity, 305 
modified mean character difference (D19), 

298, 305, 324 
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Moran's spatial autocorrelation c. (I), 793 
nonmetric c. (D13), 298, 310-311 
Ochiai (S14), 277, 297, 317 
Odum c. (D14): see coefficient (percentage 

difference distance) 
of alienation, 595 
of community: see coefficient (Jaccard c.) 
of concordance (Kendall W), 196, 205, 213-

218, 395, 396, 530-531 
of dependence, 199, 313–320, 391, 538 
of divergence (D11), 298, 306, 321, 324 
of diffuse light attenuation, 114 
of multiple determination (R2), 172-176, 179-

181, 530, 564-565, 567, 636 
of nondetermination, 178, 543, 595 
of partial determination, 180, 181 
of racial likeness (D12), 298, 306-307, 325, 

770 
of species dispersal direction, 847-849 
of variation, 148 
path c., 579, 580, 594–595 
Pearson contingency c., 234 
Pearson's  (phi), 275 
percentage difference distance (D14), 261, 263, 

285, 298, 311, 312, 321, 324, 333, 402, 
464, 501, 504, 649 B-C 263, 311, 333, 334 

probabilistic c., 288–295, 320, 324, 326 
probabilistic similarity measure of association 

(S27), 295 
properties of distance c., 296-298 
Q-mode association c., 200, 266-268 
quantitative c., 278-288 
R2: see coefficient (of multiple determination) 
R-mode association c., 199, 266-268 
Rajski's metric, 233 
Rand index, 413, 424, 531 
Raup & Crick (S27), 293–295 
reciprocal information c., 232–234, 326 
redundancy c., 695 
regression c.: see regression (c.) 
Rogers & Tanimoto (S2), 274, 296 
Russell & Rao (S11), 277, 296, 324 

similarity c., 64, 200, 270, 272–297, 392, 501 
simple matching c. (S1), 274, 278, 296, 325, 

334 
singularity index, 380 
Sørensen coefficient (S8), 276, 317 
spatial autocorrelation c.: see coefficient 

(Geary's spatial autocorrelation c., Moran's 
spatial autocorrelation c.) 

Steinhaus (S17), 285-286, 289, 297, 311, 324 
symmetric uncertainty, c., 233–234 

symmetrical binary c., 273–275 
symmetrical c., 272 
symmetrical quantitative c., 278–284 
taxicab metric (D7): see Manhattan metric 
transforming D into S, 270 
transforming S into D, 270, 296-297 
Tschuproff contingency c., 234 
types of c., 320–321 
uncertainty c., 233-234, 326 
Whittaker's index of association (D9): see 

coefficient (index of association) 
Yule, 275, 323 

coenoclines, coenoplanes, 487, 519 
coherence,: see coefficient (coherence), 

spectrum (coherence s.) 
collinearity, 533, 557–564 
comparison 

direct, 526, 528-529, 531, 533, 597, 625 
indirect, 526, 528–533, 625 

competitive exclusion principle, 478 
computer programs and packages, 32-33 

3WAYPACK, 269 
BOUNDARYSEER, 847, 857 
CANOCO, 330, 442, 443, 470, 485, 490, 519, 

629, 634, 638, 642, 644, 646, 658, 661, 
665–667, 709 

CLUSTAN, 334 
DECODA, 512, 517 
GEOEAS, 857 
GSLIB, 852, 854, 857 
ISATIS, 857 
JMP, 334, 423 
MATLAB, 32, 103, 107, 194, 588, 667 
NTSYSPC, 275, 334, 423, 513 
ODRPACK, 556 
PATN, 335, 512, 513 
PC-ORD, 335, 381, 398, 513, 519, 629, 709 
PERMANOVA, 710 
PRIMER, 513, 608, 610, 710 
R, 32–33; see also R functions, R packages 

S, 32 
SAAP, 857 
SAS, 32, 107, 203, 334, 353, 366, 386, 389, 

420, 423, 512, 586, 588, 679 
SPACESTAT, 857 
S-PLUS, 32, 59, 103, 107, 194, 588 
SPSS, 32, 334, 423, 512, 586 
STATISTICA, 32, 334, 423, 679 
SURFER, 857 
SYN-TAX 2000, 335, 519, 629, 709 
SYSTAT, 334, 353, 423, 512, 592 
THE R PACKAGE, 783  



coefficient (continued) coefficient (continued) 

RV c., 699–700, 704, 710

R packages 
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computer programs and packages (continued) 
TWINSPAN, 381–383, 391, 397, 398, 402, 

418, 422 
WINTWINS, 381 
WOMBSOFT, 858 

concentration index (Simpson): see entropy 
(Simpson concentration index) 

concentration ellipse, 162–165 
concordance analysis: see analysis (concordance 

a.) 
concordance, coefficient of: see coefficient (of 

concordance) 
conditional entropy: see entropy (conditional e.) 
congruence among distance matrices (CADM), 

217, 218, 608 
connectedness, 345, 351, 411–412 
connection network, 834–839 
consensus (index, tree), 415, 417-418, 529 
conservation biology, 401 
contiguity constraint, 769 

spatial c. c., 423, 774, 840, 842 
temporal c. c., 423, 769, 773–780, 840, 842 

contingency table analysis, 228-247, 264 
ANOVA hypothesis in c. t. a., 220 
correlation hypothesis in c. t. a., 220 
correspondence in c. t. a., 199, 243–247 
cross-contingency a.: see analysis (cross-

contingency a.) 
expected frequencies in c. t. a., 229-231, 235-

238, 240-246 
hierarchical models in multiway c. t. a., 236–

239 
multiway c. t. a., 198-199, 219–220, 235–244, 

264, 316, 584 
null hypothesis (H0) in c. t. a., 220, 229–231, 

237, 243, 245, 246 
test of hypothesis Oij = Eij, 244, 247 
two-way c. t. a., 200, 203, 219–220, 228–235, 

241, 244, 264, 314, 465 
cophenetic 

correlation, 412–415, 418 
distance, 346-347 
matrix, 346–347, 376, 411–414, 417, 423, 527 
similarity, 346-347 

coral reefs, 124, 614, 622 
correction for multiple testing: see multiple 

testing 
correlation 

among objects (Q-mode): see Q-mode c.  
canonical c.: see analysis (canonical 

correlation a.) 
causal modelling using c.: see causal 

modelling (using c.) 

correlation (continued) 
cophenetic c.: see cophenetic c. 
cross-correlation, 718-719, 735-739, 759, 783 
false c., 878, 880 
general formula of c. coefficient, 206 
Kendall c. coefficient ( ), 34, 187, 198, 209-

213, 218, 314, 326, 335, 531 
Kendall cross-correlation, 737 
lag c.: see correlation (cross-correlation) 
matrix, 23, 151–158, 194, 335 
multiple c. coefficient (R), 172, 173–175, 179 
nonparametric c. coefficient: see correlation 

(rank c. coefficient) 
partial c. coefficient (nonparametric), 213 
partial c. coefficient (parametric), 172, 175-194 
Pearson c. coefficient (r), 17, 34, 151-158, 

194, 198, 266, 313-315, 326, 334-335, 531, 
795 

point c. coefficient, 319 
principal components of a c. matrix, 445–448, 

453 
properties of multiple c. coefficient, 181 
properties of partial c. coefficient, 181 
properties of linear c. coefficient (Pearson r), 

158 
Q-mode c., 61, 315, 450-451 
rank c. coefficient, 205–213, 334, 413 
semipartial c. coefficient, 172, 179, 181, 182 
serial c.: see autocorrelation 
spatial c., 8–22, 732, 788, 791 
spatial cross-correlation, 817-818 
Spearman c. coefficient (r or ), 18, 198, 205-

209, 212, 218, 314, 319, 326, 335, 451, 531 
species c. (SC), 319-320 
species-environment c. in RDA, 638 
spurious c., 43, 596 

correlogram, 7 
all-directional c., 792, 800–807 
autocorrelogram: see correlogram (in time 

series) 
cross-c., 737-739,  
directional c., 802, 807, 810-812, 858 
in time series, 719, 730-734 
Mantel (multivariate) c., 601, 719, 739, 747, 

763, 791, 792, 797, 819–821, 858 
spatial c., 719, 744, 745, 792–800, 805, 806, 

812, 818, 858 
spatial cross-c., 817-818 
spline c., 805, 858 

correspondence analysis: see analysis 
(correspondence a.) 

covariance, 146-152, 158, 198, 326, 334; see 
also matrix (covariance m.) 




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covariance (continued) 
cross-covariance in time series, 735–739, 783 
matrix, 144-152, 161, 168, 194, 335 
multivariate covariogram, 843 
spatial, 816–818 
spatial cross-covariance, 817 

crabs, 742 
crayfish, 601, 742 
CT: see analysis (classification tree) 

D data (time) series, 4, 711-783; see also analysis 
(time series), autocorrelation, autocovariance, 
autocorrelogram, correlogram, periodogram, 
spectrum, wavelet 
binary d. s., 719, 763, 766 
components of d. s., 711-717 
detrended d. s., 723–726, 732, 734, 757, 763 
discontinuities in d. s.: see discontinuities 

(detection of) 
equispaced data, 721, 732-733, 769-771, 773 
Eulerian approach, 712, 775 
Lagrangian approach, 712 
multidimensional (or multivariate) d. s., 712, 

717, 718, 719, 737-739, 747, 759-763, 767, 
768-780,782, 783 

noise in d. s., 714-717, 721, 726, 727, 730-
731, 765, 780 

periodic variability in d. s., 715, 720, 727–
767, 783 

qualitative d. s., 719, 732, 737, 739, 744-747, 
763 

residual d. s., 717, 723-724, 732, 782 
semiquantitative d. s., 737, 739, 747, 763, 766 
short d. s., 712, 719, 732, 741, 747, 751, 764, 

765-766 
trend in d. s.: see trend 
with measurement error, 765 

data box, 266-269 
dbMEM: see distance-based Moran's 

eigenvector maps 
decit, 227 
degrees of freedom, 18-20 

in contingency table analysis, 230, 236-237, 
240-241 

Delaunay triangulation, 830, 835–836 
dendrites, 346 
dendrogram, 343-344, 346-347, 412-420, 527-529 

comparison of, 528-529 
dependence; see also independence 

linear, 558, 561, 569 
descriptor, 33-39, 60, 61, 63, 144-147, 266-268; 

see also data (time) series, variable 

descriptor (continued) 
binary d., 35-36, 202, 334-335, 426, 531, 533, 

719; see also descriptor (presence-absence) 
centred d. in PCA, 442 
meristic d., 35 
mixed precision levels: see descriptors (of 

mixed precision) 
number of d., 145, 151, 450 
of mixed precision, 197-201, 426, 531, 719 
presence-absence d., 35-36, 324–326, 421, 

533 
qualitative d., 35-36, 197-204, 219-264, 325, 

426, 531, 533, 535, 719 
quantitative d., 34–35, 143-194, 197-204, 

324-326, 426, 453, 531, 533, 535, 719 
scale of d.: see scale 
semiquantitative d., 35-36, 195-218, 324-325, 

426, 531 
standardized d. in PCA, 448 
state, 34 
with mixed levels of precision: see descriptors 

(of mixed precision) 
deshrinking, 672 
determinant, 76–80 

properties of the d., 76, 78-79 
determinantal equation, 92 
deterministic relationship, 1-3 
detrending (in data series, or in spatial structure): 

see trend (extraction) 
detrending (in correspondence analysis); see 

analysis (detrended correspondence a.) 
controversy about d., 486 

diagram 
path d., 593 
quantitative-rank d., 198–200 
rank d.: see rank-rank diagram 
rank-rank d., 198-200 
scatter d., 198–200 
Shepard d., 427-428 
Shepard-like d., 414 
trellis d., 403–406 

dimensions (physical), 109-115 
of animals, 119-122 

dimensional 
analysis, 3-4, 109–142 
constant, 111 
homogeneity principle, 115–116, 125, 128, 

129 
variable, 111, 115, 124 

dimensionless 
complete set of d. products, 116, 117,  

130–138 
constant, 111, 126 
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dimensionless (continued) 
graph, 118–119, 123 
product, 111, 116 
variable, 111, 117, 124 

direction cosine, 170–171 
Dirichlet tessellation, 839 
discontinuities (detection of), 717-718 

chronological clustering, 773-780 
Hawkins & Merriam segmentation method, 

718, 769-770 
Ibanez segmentation method, 772 
in multivariate series, 768–780, 783 
McCoy et al. segmentation method, 772 
Webster segmentation method, 718, 770–772 

discriminant analysis: see analysis (linear 
discriminant a.) 

discrimination, 522, 530 
dispersal routes, 847 
dispersion: see covariance 
distance (dissimilarity), 270; see also coefficient, 

metric d., nonmetric d., semimetric d. 
properties of d. coefficients, 295-298 
square-root transformation of d., 270, 296-

298 
ultrametric, 527; see also cophenetic (matrix) 

distance-based Moran's eigenvector maps 
(dbMEM), 815, 8610–881, 904 

distance-based RDA (db-RDA): see analysis 
(distance-based RDA) 

distribution 
bivariate normal d., 161–164 
broken stick d., 256, 264; see also broken 

stick model 
multinormal d., 157–165 
normal d., 157–159 
random d., 8-9 
uniform d., 8 
univariate normal d., 159 

diversity (species), 37, 198, 247-264, 788 
alpha d., 248, 258-259, 294 
beta d., 258–261, 661, 702, 860, 874, 903–

904 
gamma d., 258–260 
hierarchical components of d., 253 
indices, 243, 247-255, 259, 260, 264 
numbers (Hill), 251, 254, 258 

double-zero problem, 271–273, 327, 451 
drag 

force, 116 
coefficient, 118, 120, 139 

ecological interpretation, 526-536: see also 
structure 

ecological resemblance, 265–335, 403; see also 
coefficient 

edge (of a dendrogram, or a graph), 53, 343, 
405, 835-839, 858, 881-892 

eigenanalysis, 89-103, 194, 429, 495, 626 
eigenvalue, 89-103, 104, 107 

multiple e., 97, 100–102 
negative e., 55, 100, 297, 310, 462, 500–508, 

520, 699, 864, 868, 884, 890 
properties of e., 99–103 

eigenvector, 89-103, 104, 107 
normalized e., 87, 95 
properties of e., 99–103 

entropy, 221-222 
Brillouin H, 253 
conditional e., 231 
generalized e. formula, 250 
negative e., 222 
Shannon H, 227, 250, 252–253, 260, 372 
Simpson concentration index, 253–254 

equality of variances: see homogeneity of 
variances 

equation 
characteristic, or determinantal e.: see 

determinantal equation 
Einstein's e., 537 
Gaussian logistic e.: see model (Gaussian 

logistic) 
logistic e.: see model (logistic) 
Taylor e., 583 

equilibrium 
circle of descriptors, 437-438 
contribution of a descriptor, 437–441, 447, 

448, 453 
projection, 436–439 

equitability: see evenness 
Euclidean distance: see coefficient (Euclidean 

d.) 
Euclidean property (or Euclidean coefficient), 

297; see also space (Euclidean s.) 
Euclidean representation, 492–494, 499–501, 

503, 506, 507; see also space (Euclidean s.) 
evenness, 255-258 

Hurlbert e., 256 
index of functional e., 257 
Pielou e., 255–256 

evolution (biological), 2, 68, 337, 768 
ex aequo: see tied values 

E  
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expansion by minors, 77, 78, 84 
experiment 

field e., 8, 20, 21, 788, 866 
manipulative e., 8, 534, 535, 785, 853 
mensurative e., 535, 785 

extent (element of sampling design), 786-788 

F filtration, filter (in time series), 726-727 
fish, 54, 185, 249, 481, 487, 622, 623, 658–660, 

670, 671, 695, 759, 773, 774, 849, 855, 856, 
876, 877, 888, 893 
association, 393-396 
fisheries, 243 
growth, 127-129, 137 

Fisher's irises, 674 
Fourier 

fast F. transform (FFT), 755-756, 761 
series, 748–750, 753, 754 
transform, 755–757, 759, 761, 766 

Freeman-Tukey deviate, 244, 245 
fourth-corner method, or problem, 526, 531-532, 

613-622, 624 
frequency (in time series), 712 

fundamental f., 712 
harmonic f., 712, 750, 755 
Nyquist f., 713–714, 757 

Friedman chi-square statistic: see statistic 
(Friedman chi-square s.) 

function 
classification f., 680-681, 708 
discriminant f., 673–676, 678, 681, 683 
identification f., 533-534, 673, 676,  

680 
objective f., 360, 384, 514–516, 583 
structure f., 791–821, 858 

fundamental niche: see niche theory 
fungi, 271, 455, 700 

G game theory, 2-3 
Gauss-Jordan method, 85, 86 
geostatistics, 21, 831 
gradient (ecological), 53, 259-260, 285, 451, 

463-464, 486, 487, 509; see also structure 
(spatial) 

grain size (element of sampling design), 786-788 
Gram-Schmidt orthogonalization, 73, 457, 491 
graph 

connected subgraph, 343–346, 418, 419 
Gabriel g., 836 
relative neighbourhood g, 838 
theory, 344-345, 884 

graph (continued) 
undirected g, 345 

growth 
allometric, 545 
isometric, 545 

Guttman effect, 483; see also arch effect, 
horseshoe 

H harmonic, 712, 713, 731, 739, 747–751, 755–
756, 758; see also frequency, period, 
wavelength, wavenumber 
regression, 753-754 

hartley, 227 
heterogeneity of variances, heteroscedasticity, 

45, 46 
heterogeneity (ecological), 22, 788-789 

measured h., 789 
functional h., 789 

Holm correction: see multiple testing (Holm c.) 
homogeneity of variances, homoscedasticity, 46 
horseshoe, 483, 507; see also arch effect 
human communication, 227-228 
hypothesis (statistical) 

alternative h., 24 
null h., 22–24 

I icicle plot, 419 
independence, 10 

linear i., 10, 81 
of observations (hypothesis of), 8, 11, 18, 

25,146  
independent 

observations, 8, 10, 18 
descriptors, 10, 34 
samples, 10, 201–204 
variable of a model, 10 

index: see coefficient 
indicator value: see species (indicator value) 
inertia, 426, 467–468, 480, 481, 617, 667-668 
inference, 6 

design-based, randomization-based, 6, 11, 21 
model-based, superpopulation, 6, 11 

inflated data matrix, 477, 478, 663, 664, 666  
information, 222 

shared by two descriptors (B), 232, 233 
theory, 3-4, 219, 221 

insects, 401, 417, 880, 901 
intercept, 539–540 

confidence limits of, 552 
invertebrates, 612, 622, 623, 702 
isotropy, 800 
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jackknife, 31, 257 
joint plot, 469, 481, 629, 698; see also biplot, 

tripot 

K K-means, 328, 383–389, 396, 401-402, 422–
424, 842, 843 

Kaiser-Guttman criterion, 448–449 
Kendall coefficient of concordance (W): see 

coefficient (of c.) 
Kendall : see correlation (Kendall c. 

coefficient) 
Kendall W: see coefficient (of concordance) 
kriging, 791, 792, 811, 831–833, 857, 858 
Kronecker delta, 279–281 
kurtosis, 188 

L lag (element of sampling design), 786 
Lagrangian multiplier, 90, 166–167 
language 

English, 227 
French, 227, 228 
redundancy in l, 228 

latent root: see eigenvalue 
latent vector: see eigenvector 
LDA: see analysis (linear discriminant a.) 
least squares 

method, 88 
ordinary l. s. criterion (OLS), 541 
principle of l. s., 541 

limnology, 43, 670 
linear algebra, 62; see also matrix algebra 
linear equations (system of), 87 
link (in clustering), 343, 344 
lizards, 243 
lobsters, 782 
local minimum, 384–386, 514 
Loch Ness Monster, 225–226 

M Mahalanobis generalized distance: see 
coefficient (Mahalanobis generalized 
distance) 

mammals, 121, 122, 235, 604, 839, 855; see also 
cetaceans 

MANOVA: see analysis (multidimensional a. of 
variance) 

map, 792, 821-834; see also kriging 
constrained ordination m., 849–853, 858 
interpolated m., 791, 821, 829–833, 857 
inverse-distance weighting m., 830–832 
multivariate trend-surface m., 791 

map (continued) 
trend-surface m., 791, 822–829 
unconstrained ordination m., 849–853, 858 
weighted polynomial fitting m., 831 

marine benthos, 243 
matrix, 62 

addition, 71 
adjugate (adjoint) m., 83 
algebra, 3, 4, 59–107 
association m, 5, 63–65, 147, 233-234, 266–

267, 269 
asymmetric m.: see matrix (non-symmetric m.) 
canonical form of a m., 90, 625-626 
classification m., 681 
cofactor, 78 
column m., 62, 69 
comparison, 526-528, 597–613, 624 
conformable m., 74 
cophenetic m.: see cophenetic (matrix) 
correlation (i.e. m. correlation), 412-413,  

526-528 
correlation m.: see correlation (matrix) 
covariance m., see covariance (matrix) 
data m., 4, 60–63 
degenerate m., 494 
design m.: see matrix (model m.) 
determinant of a m.: see determinant 
diagonal m., 66, 67 
dimensions of a m., 62 
dispersion m. (S), 144–151, 158, 429–432, 

450, 453, 626 
format of a m.: see matrix (dimensions of a m.) 
Hadamard product of two m., 75 
identity m.: see matrix (unit m.) 
ill-conditioned m., 105–106 
indefinite m., 102, 103 
inflated data m., 477, 615,-616, 663 
inverse m. (properties of), 86-87 
inversion, 82–89 
minor of a m., 77 
model m., 601, 819-820 
multiplication, 71–76 
negative semidefinite m., 102-103 
non-symmetric m., 68, 91, 100, 269, 404, 

422-423, 428, 511, 513, 517 
nonsingular m., 84 
null (zero) m., 67 
of diagonal elements of  , 156 
of eigenvalues, 90 
order of a m.: see matrix (dimensions of a m.) 
orthogonal m., 75 
orthonormal m., 86 
partial similarity m.: see partial similarity 

J 




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matrix (continued) 
pattern m.: see matrix (model m.) 
positive definite m., 102-103 
positive semidefinite m., 102-103 
postmultiplication, 76 
power of a m., 100 
premultiplication, 76 
quadratic form of a m., 103 
rank of a m., 80–82, 100, 104, 133, 151 
rearrangement, 403 
row m., 62 
scalar m., 66 
singular m., 84 
skew-symmetric m., 68, 269, 404, 511 
square m., 62, 64–68 
symmetric m., 64, 68, 102–103, 269, 404, 511 
trace of a m., 66 
transform m., 99 
transpose of a m., 67 
triangular m., 67 
unit m., 66 
zero m.: see matrix (null m.) 

mean, 146 
median, 195 
meiofauna, 404 
MEM: see Moran's eigenvector maps 
metric 

distance, 299–310, 324-326, 527 
properties of m. distance, 295 
space, 268, 273 

Michaelis-Menten equation, 123-124 
missing data, 54–57, 279, 462, 500 

in time series, 721, 739, 765, 771 
mites, 396-397, 402, 660, 700–702, 705-706, 

815, 849, 877, 886, 887, 898–900, 902 
model, 3-8 

all-pole m.: see model (autoregressive m.) 
autoregressive m. (AR), 12, 764, 765, 780–

783 
autoregressive-integrated-moving average m. 

(ARIMA), 781, 783 
autoregressive-moving average m. (ARMA), 

781, 783 
backward elimination of terms in a m., 240, 

561-562, 567 
biotic control m., 878-879 
Box-Jenkins: see analysis (Box-Jenkins a.) 
broken stick m.: see broken stick model 
confirmatory, 592 
correlative m., 532 
environmental control m., 12, 13, 582, 601, 

785, 878-879 
exploratory, 186, 592 

model (continued) 
forecasting m., 532, 671, 718, 782 
forward selection of terms in a m., 240,

Gaussian logistic m., 588 
hierarchical m., 236–239 
historical dynamics, 878, 879, 906 
inverse-squared-distance diffusion m., 825, 

826 
linear regression m., 539-568 
log-linear m., 198, 235–242, 264, 535, 536, 

584, 587 
logistic model, 583–585, 588 
logit m., 198, 242, 535, 536; see also 

regression (logistic) 
mathematical m., xiv, 138, 536 
moving average m. (MA), 731, 780, 783 
path m., 593, 596 
permutational m., 618–620 
physical m., 138 
polynomial m., 486, 568, 827 
predictive m., 532, 534, 782 
saturated m., 236 
small-scale, 138-141 
spatial m., 791 
testing (in engineering), 118, 138 
variogram m., 808–810, 832-833, 838, 852, 

854, 858 
molluscs, 509 
monomial, 569 
monotonic relationship, 196 
Monte Carlo method, 31 
Moran's eigenvector maps (MEM), 881–888, 

892–893, 898–900, 904; see also distance-
based Moran's eigenvector maps 

moving average, 581, 718, 723-726 
weighted m. a., 724 
repeated m. a., 724–726 

MRT: see analysis (multivariate regression 

MSO: see multiscale ordination 
multidimensional 

data, 4 
qualitative data, 219–264 
quantitative data, 143–194 
scaling: see analysis (nonmetric 

multidimensional s., principal coordinate a.) 
semiquantitative data, 195–218 
variate, 144 

multiple correlation: see correlation (multiple c. 
coefficient) 

multiple factor analysis (MFA), 401, 607, 703, 
710 

561–562, 567 

tree a.) 
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multiple regression: see regression (multiple 
linear r.) 

multiple testing, 23, 57, 143, 239 
Bonferroni correction, 23, 244-245, 745-746, 

799-800, 815 
Hochberg correction, 23 
Holm correction, 23, 244, 318, 396, 622-623, 

800 
progressive Bonferroni correction, 745–747, 

800–802, 806, 812, 818, 820 
multiplicity, 101, 102, 168, 171 
multiscale ordination (MSO), 894–900, 904 
multiscale codependence analysis (MCA), 

multivariate: see multidimensional (variate) 
multivariate regression tree (MRT): see analysis 

(multivariate regression tree a.) 

N nat, 227 
negative matches, 273; see also double-zero 

problem 
niche theory, 4-5, 12, 271, 478 
nMDS: see analysis (nonmetric 

multidimensional scaling) 
node (of a graph), 343, 884 
non-Euclideanarity, 492, 500, 501 
nonmetric distance, 296, 298, 500, 517 

properties of n. d, 296 
nonmetric multidimensional scaling (nMDS): 

see analysis (nonmetric multidimensional 
scaling) 

nonparametric statistics, 4, 31, 36, 195–218; see 
also parametric 

non-symmetric data matrix: see matrix (non-
symmetric data m.) 

normal distribution: see distribution 
normal probability plot, 190–191 
normality assumption, 25 
normalization, 45-54 

Anderson transformation, 285, 327 
angular transformation, 48 
arcsine transformation, 48 
Box-Cox method, 48–50 
hyperbolic transformation, 46, 48 
logarithmic transformation, 41-42, 46, 47,  

49  
of a distance coefficient, 270 
omnibus procedure, 50–51 
square root transformation, 46-49 
Taylor's power law, 50 

NP-hard, NP-complete problem, 386 
nugget effect, 804, 808–810, 812 

number 
Froude n., 116 
Newton n., 116, 133 
Reynolds n., 116, 120, 129, 133, 139 

numerical ecology, xiv-xv 
numerical taxonomy, xv, 33, 337, 341, 676 
nunatak hypothesis, 582 

O object, 33, 60, 61, 63, 144-147, 266-268 
number of o. (or observations) versus number 

of descriptors, 151, 450, 
supplementary o. in PCA, 460–461 

observation: see object 
Ockham's razor, 559–561, 568, 583 
ordered comparison case series (OCCAS), 322, 

323 
ordination, 4, 198, 200, 265–269, 339–341, 380–

383, 391, 394–397, 414, 421–422, 425–520, 
522-533, 611, 612, 763, 768–769; see also 
map (constrained ordination m., 
unconstrained ordination m.), multiscale 
ordination 
canonical o., 611, 625-710, 791 

overall minimum: see local minimum 

P  (Pi) theorem, 115–130 
palaeoecology, 293, 328, 670, 855 
parameter, 146, 159 
parametric, nonparametric, 3, 4, 157-158, 195-196 
partial canonical analysis: see analysis (partial 

canonical a., partial CCA, partial RDA) 
partial canonical correspondence analysis 

(partial CCA): see analysis (partial canonical 
correspondence a.) 

partial correlation: see correlation (partial c. 
coefficient) 

partial least squares, 709 
partial coefficient of multiple determination 

(partial R2), 572, 575, 576, 649, 651, 658 
partial redundancy analysis (partial RDA): see 

analysis (partial redundancy a.) 
partial regression, 172, 557, 570–583, 624 
partial similarity, 278–284, 287-288, 289–291, 

324, 325 
partition, 338-339, 347; see also K-means, 

variation partitioning 
fuzzy p., 424 

patches (detection of): see structure (spatial) 
PCA: see analysis (principal component a.) 
PCNM: see distance-based Moran's eigenvector 

maps (dbMEM) 

901–902 
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PCoA: see analysis (principal coordinate a.) 
Pearson chi-square statistic: see statistic 
Pearson r: see correlation 
period, 712 

fundamental, 712, 748, 751 
harmonic, 712, 713, 731, 748, 750, 751 
characteristic, 7, 717–719, 766 

periodic phenomena, 712, 713 
periodic variability, 715, 727–767, 783 
periodogram, 719, 739-753, 755, 783 

contingency p., 719, 744–747, 783 
Dutilleul modified p., 751–753 
Schuster p., 747–751, 754, 783 
two-dimensional Schuster p., 793 
Whittaker and Robinson, 739–744, 747, 750 

periphyton, 855 
permutation 

exact or complete p. test, 30 
models, 618–620; see also permutation (of 

raw data) 
number of permutations, 26, 31 
of raw data, 579, 651–653 
of residuals, 652-653 
restricted p., 25, 30, 652 
sampled p. test, 30, 31 
test, 21, 25–32, 57 

phytoplankton, 2, 8, 36, 114, 123–124, 125, 238, 
242, 246-247, 370, 391, 723, 732, 733, 737, 
738, 747, 753, 754, 757, 760, 761, 763, 766, 
769 

phytosociology, 339, 404 
pivotal condensation method, 79–80 
pixel, 787 
plant ecology, 596 
pollution, 258, 396, 782, 847, 856 
polygon; see also Dirichlet tessellation 

Voronoï, 830, 839 
influence, 839 
Thiessen, 839 

ponds, 290–292, 342–345, 524-525, 604 
population genetics, 592 
Prim network, 346 
principal axis, 165–171 
principal component, 429, 430, 432; see also 

analysis (principal component a.) 
meaningful components, 448–449 
misuses of p. c., 450–452 
principal-component axis, 429 

principal coordinate analysis (PCoA): see 
analysis (principal coordinate a.) 

principal coordinates of neighbour matrices 
(PCNM): see distance-based Moran's 
eigenvector maps (dbMEM) 

principle 
of least squares, 541 
of maximum likelihood (ML), 586 
of parsimony, 559, 568 

probability 
frequency theory of, 1 
distribution, 1 
of interspecific encounter, 254 

Proc: see analysis (Procrustes a.) 
process, 6, 711 

physical p., 9, 888 
stochastic p., 6, 711 

product 
cross p., 72 
dot p., 72, 334 
inner p., 72 
postmultiplication, 76 
premultiplication, 76 
properties of matrix p., 75 
scalar p., 72–73 
vector (or external) p., 72 

prototype, 118, 138–141 
protozoa, 688, 855 

Q Q analysis: see analysis (Q-mode a.) 
quantification, 39 

R R functions 
acf(), 729, 731, 783 
ad.test(), 191, 194 
agnes(), 366, 423 
anosim(), 624 
anova.2way.unbalanced(), 710 
aov(), 218 
anova.cca(), 634 
ar(), 783 
arima(), 783 
ARMAacf(), 783 
beals(), 335 
betadisper(), 303, 335, 656, 682, 710 
bgdispersal(), 858 
boxcox.fit(), 57 
BSS.test(), 335 
bstick(), 264, 520 
buysbal(), 783 
ca(), 520 
CA(), 520 
CADM.global(), 218 
CADM.post(), 218 
cancor(), 710 
capscale(), 709 
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R functions (continued) 
cascadeKM(), 423 
CascadeMRT(), 424 
cc(), 710 
cca(), 520, 710 
CCA(), 710 
ccf(), 736, 783 
cclust(), 423 
CCorA(), 694, 696, 710 
chclust(), 783 
chisq.test(), 218, 264, 335 
chol(), 107 
clustIndex(), 389, 423, 841 
clValid(), 389, 423, 841 
cmdscale(), 520 
cmeans(), 424 
cocorresp(), 699, 710 
coeffRV(), 710 
coinertia(), 697–701, 710 
coldiss(), 403, 423 
constrained.clust(), 783, 844 
contr.helmert(), 57 
contr.poly(), 57 
cophenetic(), 412, 423 
cor(), 194, 218, 335, 412 
correlog(), 858 
corresp(), 520, 710 
cor.test(), 194, 335 
cov(), 194, 335 
cpgram(), 783 
create.MEM.model(), 864, 904 
daisy(), 279, 335 
dbFD(), 264 
decostand(), 57, 327, 330, 331, 335 
det(), 107 
discrimin(), 710 
dist(), 334, 335 
dist.binary(), 335 
divc(), 264 
dudi.acm(), 520 
dudi.coa(), 520 
dudi.fca(), 520 
dudi.pca(), 520, 699 
dudi.pco(), 520, 699 
dwt(), 783 
dwt.2d(), 783 
eigen(), 95, 107, 194, 492, 503, 883 
est.variogram(), 858 
eyefit(), 858 
fanny(), 424 
fisher.test(), 218 
forward.sel(), 567, 658, 709 
fourthcorner(), 624 

R functions (continued) 
fourthcorner2(), 624 
friedman.test(), 218 
ftable(), 264 
geoXY(), 858, 862, 905 
ginv(), 107 
glm(), 218, 624 
gowdis(), 279, 335 
hclust(), 353, 355, 357, 360, 366, 423 
heatmap(), 383, 403, 405, 423 
help(), 33 
hmap(), 383, 403, 423 
imputePCA(), 57 
indval(), 399, 424 
is.euclid(), 335, 520 
isoMDS(), 520 
kendall.global(), 218, 424 
kendall.post(), 218, 424 
kkmeans(), 423 
kmeans(), 423 
KMeans(), 423 
krige.conv(), 858 
kruskal.test(), 218 
lda(), 679, 710 
lillie.test(), 191, 194 
lisa(), 807, 858 
lm(), 567, 622, 623, 657, 782, 858 
lmodel2(), 624 
lmorigin(), 623 
lm.ridge(), 624 
loglin(), 264 
mahalanobis(), 335 
manovRDa(), 710 
mantel(), 624 
mantel.correlog(), 819, 858 
mantel.rtest (), 624 
mantel.test (), 624 
mantelhaen.test(), 264 
MAT(), 710 
MLRC(), 710 
mca(), 520 
MCA(), 520 
mcnemar.test(), 218 
metaMDS(), 520 
mfa(), 703, 710 
MFA(), 703, 710 
mice(), 57 
mjca(), 520 
mlogit(), 218 
model.matrix(), 57 
moran.I.multi(), 890 
MRM(), 624 
mso(), 814, 815, 819, 858, 895, 899, 904 
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R functions (continued) 
mstree(), 423 
mst(), 423 
multipatt(), 399, 424 
mvpart(), 407, 410, 423 
nested.anova.dbrda(), 710 
nls(), 624, 753 
nmds(), 520 
optim(), 624 
ordiequilibriumcircle(), 520 
ordistep(), 567, 658, 709 
ordiR2step(), 567, 658, 709 
ortho.AIC(), 887 
p.adjust(), 57 
pam(), 424 
partial.cor(), 194 
partial.mantel.test(), 624 
pca(), 520 
PCA(), 520 
PCAsignificance(), 520 
pchisq(), 194 
pco(), 520 
pcoa(), 504, 520 
pcoa.all(), 520, 883 
pcnm(), 904 
PCNM(), 904 
penalized(), 624 
periodograph(), 783 
permutest.cca(), 634, 652 
pf(), 194, 335 
plot.acf(), 731, 783 
plot.coinertia(), 701 
plot.procrustes(), 706 
plot.ts(), 782 
plot.varpart(), 577, 624, 659 
pnorm(), 190, 194 
poly(), 569, 624, 823, 858 
prc(), 709 
prcomp(), 520 
procrustes(), 705, 710 
protest(), 612, 624, 704,  

710 
pt(), 194 
qqnorm(), 194 
qr(), 107, 623, 650, 710 
quickPCNM(), 904 
quickSTI(), 905 
randtest.coinertia(), 710 
raoD(), 264 
rarefy(), 264 
raupcrick(), 294, 335 
rda(), 33, 520, 624, 634, 635, 644, 646, 650, 

709, 858, 897 

R functions (continued) 
residuals(), 575 
ridge(), 624 
rlq(), 624 
rnorm(), 51 
RV.rtest(), 710 
sample(), 57 
scale(), 57 
seriate(), 423 
seriation(), 423 
shapiro.test(), 191, 194 
sma(), 623 
Sncf(), 858 
Sncf2D(), 858 
Sncf.srf(), 858 
solve(), 107 
spantree(), 405, 423 
sp.correlogram(), 783, 858 
specaccum.psr(), 264 
spec.ar(), 783 
spec.pgram(), 783 
spectrum(), 783 
spline.correlog(), 858 
spline.correlog2D(), 858 
sr.value(), 858, 867 
stepclass(), 710 
STImodels(), 905 
strassoc(), 424 
s.value(), 858 
svd(), 103, 107, 468, 492, 650, 692 
table(), 264 
table.cont(), 264 
test.W(), 885, 904 
t.perm(), 32 
ts(), 782 
ts.union(), 782 
t.test(), 218 
turnogram(), 783 
turpoints(), 783 
var(), 194, 335 
vario(), 858 
variog(), 858 
Variogram(), 858 
varpart(), 624, 642, 659, 709, 853, 854, 873 
var.test(), 194 
vegclust(), 424 
vegdist(), 285, 306, 335, 710 
venneuler(), 577, 624 
vif(), 623 
WA(), 710 
WAPLS(), 710 
wcmdscale(), 520 
wilcox.test(), 218 
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R packages 
ADE4, 264, 335, 423, 520, 624, 659, 697–

701, 703, 710, 858 
ADESPATIAL, 905 
AEM, 888–901, 904 
APE, 423, 504, 520, 623, 624 
BASE, 107, 264, 623, 710 
BIODIVERSITYR, 264, 520, 710 
CA, 520 
CAR, 623 
CCLUST, 389, 423, 841 
CLUSTER, 279, 335, 366, 423, 424 
CLVALID, 418, 424 
COCORRESP, 699, 710 
CODEP, 905 
CONST.CLUST, 783, 844, 858 
DAAG, 623 
DIERCKXSPLINE, 624 
ECODIST, 520, 624 
FACTOMINER, 520, 703, 710 
FD, 264, 279, 335 
FLEXCLUST, 424 
GEOR, 57, 858 
INDICSPECIES, 399, 424 
KERNLAB, 423 
KLAR, 710 
LABDSV, 399, 424, 520 
LMODEL2, 552, 623 
MASS, 107, 520, 624, 679, 710 
MATRIX, 107 
MICE, 57 
MISSMDA, 57 
MLOGIT, 218 
MVPART, 407, 410, 423 
MVPARTWRAP, 423 
NCF, 624, 807, 858 
NLME, 858 
NORTEST, 191, 194 
PACKFOR, 567, 658, 709 
PASTECS, 783, 858 
PCNM, 520, 860–862, 870, 874, 883, 904, 

905 
PENALIZED, 624 
PICANTE, 264 
RCMDR, 194, 423 
RDATEST, 709 
RIOJA, 673, 710, 783 
SEM, 624 
SERIATION, 383, 403, 423 
SGEOSTAT, 858 
SMATR, 623 
SODA, 858, 905 
SPACEMAKER, 885, 887, 904 

R packages (continued) 
SPDEP, 423, 783 
SPLINES, 624 
STATS, used in chapters 1, 3, 4, 6, 7, 8, 9, 10, 

11, 13, 14 
STI, 900–901, 905 
SURVEY, 264 
SURVIVAL, 624 
VEGAN, used in chapters 1, 3, 4, 6, 7, 8, 9, 

10, 11, 13, 14 
VEGCLUST, 424 
VENNEULER, 624 
WAVESLIM, 783 
WMTSA, 783 

R : see coefficient (of multiple determination, 
canonical R )

R -like ratio in PCA and PCoA, 505–506 
R analysis: see analysis (R-mode a.) 
randomization: see permutation 
range 

of a Buys-Ballot table, 740 
of a variable, 16, 35, 136, 195, 248, 786; see 

also transformation (ranging)  
of a variogram, 808 

rank statistic, 195 
rarefaction method (Sanders), 251 
RDA: see analysis (redundancy a.) 
redundancy (Patten), 256 
redundancy in RDA and CCorA, 630; see also 

analysis (redundancy a.) 
regression, 198, 536-592; see also intercept, 

slope 
coefficient, 539; see also slope 
cubic splines, 589-592  
dummy variable r., 530, 531, 533, 534, 567 
frequency r., 763 
geometric mean r., 550 
harmonic r., 753–754 
linear r., 87-88, 198, 539-568, 622-623 
logistic r., 202, 203, 218, 242–243, 530–534, 

584–588, 624 
LOWESS, 590-592, 624 
major axis r. (MA), 542, 546–549, 553, 556, 

623 
model I r., 540-543, 545, 555 
model II r., 538, 543–555, 549, 623, 632 
monotone r., 514, 515, 518, 584 
multiple linear r., 88, 533–535, 555–568, 592, 

622, 651 
multiple r. on resemblance matrices, 606 
multivariate linear r., 556, 623 
nonlinear r., 533, 540, 554, 556, 583–584 
nonparametric r.: see regression (monotone)  

2

2

2
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regression (continued) 
objectives of r. analysis (description, 

inference, forecasting), 537-538 
on principal components, 562–563 
ordinary least-squares r. (OLS), 541; see also 

regression (simple linear) 
orthogonal distance r., 556 
partial linear r.: see partial regression  
partial r. coefficient: see partial regression 
periodic r., 747 
polynomial r., 88–89, 568–570 
ranged major axis r. (RMA), 551–554 
recommendations about model II r. methods, 

552–555 
reduced major axis r.: see regression (standard 

major axis) 
residual, 540 
ridge r., 563–564, 624 
simple linear r., 87–88, 198, 539–555, 622-623 
splines, 198, 589-592, 624 
standard major axis r. (SMA), 549, 551, 554, 

623 
standard minor axis r., 556 
tree analysis (RT): see analysis (regression 

tree) 
variable selection in multiple r. (backward, 

forward, stepwise), 561–562, 623 
resolution of a study, 786 
reversal, 357, 358, 360, 376–377, 421 
rhythm 

geophysical r., 712 
endogenous r., 712, 742, 744, 766 

river network, 53–54, 605, 852, 888, 889, 891, 
892 

rotation angle, 169, 436 
RT: see analysis (regression tree) 

S salamanders, 537 
sample 

independent s., 10, 201–204 
matched s.: see sample (related) 
paired s.: see sample (related) 
related s., 10-11, 201–204, 218, 266, 655-656 
small s., 25, 31, 190, 195, 230, 450 

sampling 
design, 5–7, 15, 16, 21, 199, 241, 355, 359, 

712, 714, 795, 821, 864, 894; see also 
extent, grain size, lag, sampling (interval), 
scale 

interval (element of sampling design), 786–788 
nested s., 241, 818 
with (or without) replacement, 31, 253, 416 

scalar, 62 
scale 

broad s., 788 
fine s., 788 
interval s. (of a descriptor), 34 
relative s. (of a descriptor), 34 
spatial s. of pattern or process, 787 
spatial s. of sampling design, 787 
spatial s., 785–789 

scale factor (in dimensional analysis), 129, 137, 
138–141 

scaling 
in correspondence analysis (CA), 470–471 
in principal component analysis (PCA), 434-

435 
in redundancy analysis (RDA), 639-640 
in canonical correspondence analysis (CCA), 

665–666 
segmentation of data series, 718, 772 
semi-variance, 807–809, 811, 812, 816, 817 
semimetric distance, 296-298, 310–312, 324-325 

properties of s. d., 295, 500 
semipartial correlation: see correlation 

(semipartial c. coefficient) 
semipartial coefficient of multiple determination 

(semipartial R2), 572, 575, 578, 651 
seriation, 339, 403–406, 422, 423 
sewage, 564, 763 
sill of a variogram, 808-810 
similarity (in dimensional analysis), 141 

geometric, 122, 139, 141 
kinematic, 141 
physical, 141 

similarity of qualitative descriptors, 233 
singleton, 776 
singular value decomposition, 82–84, 103–107 
skewness, 188 
skyline plot, 419–420 
slope, 539 

confidence interval of s., 548-551 
estimation of s. of linear relationship: 

recommendations, 552-555 
maximum likelihood (ML) estimate of s., 546 

Slutzky-Yule effect, 725–726 
small number of observations: see sample 

(small) 
smoothing: see regression (cubic splines, 

LOWESS, splines) 
snails, 596, 597 
soil microfungi, 455 
space 

A-space, 268, 411-412,  
contraction, 414, 421 
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space (continued) 
Euclidean s., 69, 144-145, 268, 295, 310, 500, 

502, 505, 637; see also coefficient 
(Euclidean distance), Euclidean property, 
Euclidean representation 

metric s.: see metric (space) 
reduced s., 427 
solution s., 384-385 

space-time interaction (STI), 900–901, 905 
spatial 

analysis: see analysis (spatial a.) 
autocorrelation: see autocorrelation (spatial a.) 
correlation: see correlation (spatial c.) 
heterogeneity, 9, 22, 790, 791, 817, 852, 855 
origin of s. structure, 11–17 

Spearman r or : see correlation 
species 

abundance paradox, 300, 329 
association, 316-320,379, 389–403, 421, 422, 

424, 452, 661, 662, 700 
bioindicator, 401 
biological associations: see species 

(associations)  
differential s., 382 
diversity: see diversity (species) 
fidelity of s., 382, 398-400, 402 
indicator s., 381-383, 397–403, 422, 424, 708 
indicator value of a s., 382-383, 398–403, 

411, 422, 424 
null models for s. associations, 391 
number of s., 61, 198, 199, 248-253, 255-257, 

26 
presence-absence, 260, 275, 293316–319, 

334, 335, 372, 390, 393, 399, 400, 455, 
476, 708, 763, 772, 814, 846 

probabilistic association, 320 
pseudospecies, 382, 383, 402, 422 
satellite s., 393, 394, 422 
specificity of s., 398-402 
succession of s.: see succession 

spectral analysis: see analysis (spectral a.) 
spectrum, 717-718, 754-767, 783 

co-spectrum, 759 
coherence s., 719, 760–762, 766, 767 
cross-amplitude s., 759 
gain s., 760 
phase s., 719, 760, 766 
power s., 755 
quadrature s., 759 
variance s., 717, 755, 757, 759 

spiders, 410, 411, 418, 452, 454, 460, 487, 488, 
660–663, 877 

standard deviation, 148 

standardization, 44, 57, 95, 152, 324, 332, 703-
704 

stationarity, 717, 723, 767 
intrinsic assumption, 797, 803, 808, 810 
second-order s., 717, 728, 798, 803, 807 

statistic, 19, 22, 146, ; see also nonparametric 
(statistics), test (specific, statistical) 
2I s., 230 
chi-square (X 2) s., 157, 216, 220, 229, 230, 

275, 277, 314, 318, 319, 378, 466, 682 
components of Pearson and Wilks X 2 s., 244 
F, 24, 25 
Freeman-Tukey deviate, 244 
Friedman chi-square s. (X 2), 216 
G or G 2 s., 230, 615, 616, 620, 622 
Hotelling T 2, 304 
information s., 744 
Kullback (X 2) s., 682 
Mann-Whitney U, 202, 610-611 
Mantel s., 510–511, 598, 819 
partitioning a X 2 s., 240 
Pearson chi-square s., 230, 466 
partial F, 651 
pivotal test s, 24 
Procrustes s. (m2): see test (Procrustes t.) 
Shannon (diversity, entropy) s., 221, 250, 252 
Shapiro & Wilk s., 191 
squared error s. (e2), 363 
standardized Mantel s., 600, 820 
strain, 516 
stress, 413, 515-517 
Student t, 24, 25, 304, 682 
sum of squared errors s. (E 2), 363 
test s., 18, 22, 24–27,  
total error sum of squares (TESS), 366 
Wilks  (lambda), 304, 682 
Wilks chi-square (or likelihood ratio) s, 230 

statistics (descriptive, inferential), 5, 22, 158 
stopping rules in clustering, 389 
structure (ecological), 269, 521 

explanation, 522, 526, 530-532 
forecasting, 522, 526, 529, 532–535 
interpretation of s., 4-6, 201, 341, 521–624 
prediction, 522, 526, 532, 534–536, 

structure (spatial), 8-22 
autocorrelation model, 12-16, 259, 792, 793, 

803, 879, 880, 894, 896, 897 
gradient (true false), 17, 802–804, 807, 821; 

see also gradient (ecological) 
induced spatial dependence model, 12-15, 

792, 793, 802, 894-895, 897 
patch, patchiness, 9, 21, 136, 732-733, 761, 

777, 785, 805-806, 818, 834-849, 858 



#
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succession (ecological; species), 2, 482, 717, 
768-769, 774-778 

surface (statistical definition), 790 

T table 
Buys-Ballot t., 739–744, 783 
classification t., 588, 681, 686 
confusion t., 588, 681 
contingency t., 200, 210, 211, 219–220, 228–

247, 264, 464–471, 476-481, 530–532, 
584, 615–617, 622-623, 744-746 

inflated data t.: see matrix (inflated data) 
taxocene, 249–250 
taxonomy: see numerical taxonomy 
Taylor's power law, 50 
tb-PCA: see analysis (transformation-based 

PCA) 
tb-RDA: see analysis (transformation-based 

RDA) 
terrestrial fauna, 283 
test (specific); see also statistic 

Anderson-Darling t. of normality, 190, 191 
Bartlett t. of equality of variances, 25 
Bartlett t. of independence of variables, 157 
chi-square (X 2) t., 218, 229, 264, 335; see also 

statistic (chi-square s.) 
Cochran Q t., 202, 204 
Cramér-von Mises t. of normality, 190 
Fisher exact probability t., 203, 218, 319 
Friedman t., 213, 218 
goodness-of-fit Mantel t., 601, 608 
Hotelling T 2 t., 198, 199, 304, 682 
Kolmogorov-Smirnov t. of normality, 189-

190, 193 
Kolmogorov-Smirnov two-sample t., 202-203 
Kruskal-Wallis H t., 202-203, 218, 316 
Mann-Whitney U t., 202, 218, 610–611 
Mantel t., 217, 417, 528, 597–608, 624, 718, 

719, 814, 819 
McNemar t., 202-204, 218, 848 
median t., 202-203 
of Kendall W (coefficient of concordance), 

216-217, 218 
of Kendall  t, 212, 720 
of multinormality (Dagnelie), 193–194 
of multiple correlation coefficient, 181 
of partial correlation coefficient, 172, 181-

182, 213 
of Pearson r, 180 
of Spearman r, 208 
partial Mantel t., 604, 606, 607, 624 
Portmanteau Q-test, 799 

test (specific) (continued) 
Procrustes t., Procrustean randomization t., 

597, 611, 612, 624, 704, 710 
Shapiro & Wilk t. of normality, 190-191, 193, 

194 
sign t., 202, 204, 720 
t-test (Student), 202-204, 218 
up and down runs t., 720, 721 
Wilcoxon signed-ranks t., 202, 204, 218 
Wilks lambda ( ) t., 682, 694 

test (statistical), 5, 17-21, 22-32, 57 
classical t. of significance, 22–25 
distribution-free, 195 
for the presence of trends in data series, 719–

720 
multidimensional ranking t., 205-218 
multiple testing, 22, 23, 57, 799 
nonparametric t., 157, 195-218 
of dependence coefficients, 313 
of differences among groups, 201-205, 609 
of normality and multinormality, 187–194 
of series randomness, 721–722 
of significance in RDA and CCA, 632-635, 

651–653, 665, 709-710 
of significance in the presence of 

autocorrelation, 11, 17-21 
of trend-surface model, 826-827 
one-tailed t., 24 
parametric t., 157 
permutation t.: see permutation 
power of a t., 11, 23, 202, 212,  
ranking: see tests (statistical, nonparametric) 
statistic: see statistic 
two-tailed t., 24 

tied values, ex aequo, 51 207-216, 279, 408, 
514-517, 609, 797 

time series: see data (time) series 
transformation-based K-means partitioning (tb- 

K-means): see analysis (transformation-based 
K-means partitioning) 

transformation-based PCA (tb-PCA): see 
analysis (transformation-based PCA) 

transformation-based RDA (tb-RDA): see 
analysis (transformation-based RDA) 

transformation of variables, 39, 40; see also 
normalization 
community composition data t., 261, 263 
chi-square distance t., 263, 328, 331-332 
chi-square metric t., 328, 331–332 
chord t., 261, 263, 326, 328, 330, 332 
Hellinger t., 261, 263, 326, 328, 330–332 
linear t., 10, 40–41 
logarithmic t., 41–42, 46, 47, 49 




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transformation of variables (continued) 
nonlinear t., 41–43 
profile: see transformation (species profile t.) 
ranging, 44, 57 
species profile t., 263, 328, 330–331 
square root t., 46-49 
standardization, 44, 57 

tree (classification), 338 
minimum-length t.: see tree (classification, 

minimum spanning t.) 
minimum spanning t., 345–346, 423 
shortest spanning t. : see tree (classification, 

minimum spanning t.) 
tree (plot), 419 
trees (vegetation): see vegetation 
trend (in data series, or in spatial structure), 16, 

714-719 
analytical method for estimating t., 726 
cyclic t., 721, 724–726 
extraction (detrending), 16, 18, 717, 720, 

722–727, 730, 782, 803, 825–828, 890 
linear t., 716, 717, 719, 721 
removal: see trend (extraction) 
trend-surface analysis: see analysis (trend-

surface a.), trend (extraction) 
trend (in correspondence analysis) ; see analysis 

(detrended correspondence a.) 
triangle's inequality, 295, 500 
trilobites, 519 
triplot; see also biplot, joint plot 

in CCA, 666, 669, 710 
in RDA, 637, 639, 640, 644-648, 653-654, 

661, 662 
turning point, 721, 783 
typology, 338 

U ultrametric property, 347, 357, 370,  
376 

units 
base, 110, 112 
derived, 111, 112-113 
international system (SI), 110–113, 142 

V validation: see cluster (validation) 
variable, 1-2, 33, 144; see also data, descriptor 

additive v., 37-38 
criterion v., 10, 595 
dependent v., 10, 135–136, 186, 220, 522, 

533, 676 
dimensional v., 111, 115, 124 
 

variable (continued) 
dimensionless v., 44, 111 
dummy v., 52–54 
explanatory v., 10–15, 56, 180, 242, 338, 406, 

416, 532–534, 536-593, 625-710, 718, 793, 
822, 852-857, 860-863, 877–880, 895–897 

extensive v., 37, 38 
independent v., 10, 160, 522, 533, 536, 755 
intensive v., 37, 38 
non-additive v., 38, 821 
predictor v., 10, 673, 676, 677, 852 
qualitative v., 52-53, 264, 532, 533, 567, 568, 

614–616, 720, 744, 747, 844 
random v., 1–3, 38, 144–147, 152, 158–160, 

181, 240, 314, 536, 541–545, 552, 554, 
559, 566, 571, 712, 747 

regionalized v., 790, 844 
response v., 11–15, 56, 180, 186, 533–535, 

536-538, 629, 631, 641, 649, 673, 711, 
718, 822, 858, 901, 903 

scale of a v.: see scale 
selection of v. in multiple regression: see 

regression (variable selection in multiple r.) 
standardized v., 44 
supplementary v. in PCA, 460, 461 
target v., 718, 719, 737 

variance, 146-148, 194, 195, 248 
analysis of v. (ANOVA); see analysis 

(ANOVA) 
partition of v. in spectral analysis, 756 
semi-variance: see semi-variance 

variate difference method, 718, 726, 781 
variate: see random variable 
variaton partitioning, 172, 570–583, 624, 

658–661, 667, 709, 853–855, 858, 859–
861, 871, 873–875, 890, 905 

variogram, 791, 792, 807-813 
directional v., 800, 808, 811, 857 
multivariate v., 719, 739, 791, 813–815, 858, 

894–898 
vector, 69, 144-145 

characteristic: see eigenvector 
length, 70, 71 
linearly independent vectors, 10, 80, 81 
norm, 70 
normalization, 70–71 
orthogonal v., 10, 73, 438, 860 
row v., 69 
scaling, 70 

vegetation, 222, 311, 402, 478, 489, 597, 601, 
660, 661, 663, 700, 768, 789, 807, 849, 850, 
855, 877 
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Wavelength, 712 
fundamental w., 712 
harmonic w., 712 

wavenumber; 712 
fundamental w., 712 
harmonic w., 712 

Wilks chi-square (or likelihood ratio) statistic: 
see statistic 

Williams' correction, 230, 233, 238, 247, 
 848 

window 
in moving averages, 723–725 
observational w., 712–714, 745, 746, 748, 

788 
smoothing w. in spectral analysis, 756 

wombling, 844 
categorical, 844, 846 
triangulation, 844, 845 

Z zero 
double zero problem: see double-zero 

problem 
historical origin of the zero, 67 
sampling z., 240, 242 
structural z., 241 

zooplankton, 2, 13–15, 36, 290, 342, 372,  
518, 524, 525, 555, 723, 766,  
768, 777–779, 789, 855, 864,  
877, 893 

W 
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